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This work is dedicated to my colleague Beniamino Segre who about twenty years ago
pressed me to write it as a necessary document for clarifying one point of view in its
entirety

[1970]
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Foreword

It is an honour to be asked to write a foreword to this book, for I believe that it is a book
destined ultimately to be recognized as one of the great books of the world.

The subject of probability is over two hundred years old and for the whole period of
its existence there has been dispute about its meaning. At one time these arguments
mattered little outside academia, but as the use of probability ideas has spread to so
many human activities, and as probabilists have produced more and more sophisticated
results, so the arguments have increased in practical importance. Nowhere is this more
noticeable than in statistics, where the basic practices of the subject are being revised as
a result of disputes about the meaning of probability. When a question has proved to be
difficult to answer, one possibility may be that the question itself was wrongly posed
and, consequently, unanswerable. This is de Finetti’s way out of the impasse. Probability
does not exist.

Does not exist, that is, outside of a person: does not exist, objectively. Probability is a
description of your (the reader of these words) uncertainty about the world. So this
book is about uncertainty, about a feature of life that is so essential to life that we cannot
imagine life without it. This book is about life: about a way of thinking that embraces all
human activities.

So, in a sense, this book is for everyone; but necessarily it will be of immediate appeal
to restricted classes of readers.

Philosophers have recently increased their interest in probability and will therefore
appreciate the challenging ideas that the author puts forward. For example, those of the
relationships between possibility and tautology. They will notice the continual concern
with reality, with the use of the ideas in practical situations. This is a philosophy intended
to be operational and to express the individual’s appreciation of the external world.

Psychologists are much concerned with the manner of this appreciation, and experi-
ments have been performed which show that individuals do not reason about uncer-
tainty in the way described in these volumes. The experiments provide a descriptive
view of man’s attitudes: de Finetti’s approach is normative. To spend too much time on
description is unwise when a normative approach exists, for it is like asking people’s
opinion of 2 +2, obtaining an average of 4-31 and announcing this to be the sum. It
would be better to teach them arithmetic. I hope that this book will divert psycholo-
gists’ attentions away from descriptions to the important problem, ably discussed in this
book, of how to teach people to assess probabilities.
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Mathematicians will find much of interest. (Let me hasten to add that some people
may approach the book with fear because of the amount of mathematics it contains.
They need not worry. Much of the material is accessible with no mathematical skill: yet
more needs only a sympathetic appreciation of notation. Even the more mathematical
passages use mathematics in a sparse and yet highly efficient way. Mathematics is always
the servant — never the master (see Section 1.9.1).) Nevertheless, the mathematician
will appreciate the power and elegance of the notation and, in particular, the discussion
of finite additivity. He will be challenged by the observation that ‘mathematics is an
instrument which should conform itself strictly to the exigencies of the field in which it
is to be applied: He will enjoy the new light shed on the calculus of probabilities.

Physicists have long used probabilistic notions in their understanding of the world,
especially at the basic, elementary-particle level. Here we have a serious attempt to con-
nect their use of uncertainty with the idea as used outside physics.

Statisticians are the group I can speak about with greatest confidence. They have
tended to adopt a view of probability which is based on frequency considerations and is
too narrow for many applications. They have therefore been compelled to introduce
artificial ideas, like confidence intervals, to describe the uncertainties they need to use.
The so-called Bayesian approach has recently made some significant impression, but de
Finetti’s ideas go further still in replacing frequency concepts entirely — using his notion
of exchangeability — and presenting an integrated view of statistics based on a single
concept of uncertainty. A consequence of this is that the range of possible applications
of statistics is enormously widened so that we can deal with phenomena other than
those of a repeatable nature.

There are many other groups of people one would like to see reading these volumes.
Operational research workers are continually trying to express ideas to management
that involve uncertainty: they should do it using the concepts contained therein. One
would like (is it a vain hope?) to see politicians with a sensible approach to uncer-
tainty — what a blessing it would be if they could appreciate the difference between
prediction and prevision (p. 60).

The book should therefore be of interest to many people. As the author says (p. 12) ‘it
is ... an attempt to view, in a unified fashion, a group of topics which are in general
considered separately, each by specialists in a single field, paying little or no attention to
what is being done in other fields’

The book is not a text on probability in the ordinary sense and would probably not be
useful as a basis for a course of lectures. It would, however, be suitable for a graduate
seminar wherein sections of it were discussed and analysed. Which sections were used
would depend on the type of graduates, but with the continuing emphasis on unity, it
would be valuable in bringing different disciplines together. No university should ignore
the book.

It would be presumptuous of me to say how you should read the two volumes but a
few words may help your appreciation. Firstly, do not approach it with preconceived
ideas about probability. I address this remark particularly to statisticians, who can so
easily interpret a formula or a phrase in a way that they have been used to, when de
Finetti means something different. Let the author speak for himself. Secondly, the book
does not yield to a superficial reading. The author has words of wisdom to say about
many things and the wisdom often only appears after reflection. Rather, dip into parts
of the book and read those carefully. Hopefully you will be stimulated to read the whole.
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Thirdly, the style is refreshing — the translators have cleverly used the phrase ‘a whimsical
fashion’ (Section 1.3.3) — so that every now and again delightful ideas spring to view; the
idea that we shall all be Bayesian by 2020, or how-to play the football pools. But, as I
said, this is a book about life.

November 1973
University College London,
D.\V. Lindley



Preface

I became a postgraduate student of statistics at University College London in 1968,
soon after Dennis Lindley had moved there to become the head of the department. He
was, at that time, one of the very few academic statisticians committed to the so-called
Bayesian approach to the subject. While I was a postgraduate, Lindley several times
mentioned to me that his American colleague and fellow Bayesian, L.]. Savage, had
encouraged him, and indeed anyone interested in the subjectivist approach to Bayesian
statistics, to read the works of the Italian probabilist, actuary and philosopher, Bruno
de Finetti.

But there was a problem for most of us at that time. Very little of his work had been
translated into English and his 1970 magnum opus, the two-volume Teoria Delle Probabilitd,
was only available in Italian. The thought of struggling through several hundred pages of
dense and difficult writing with the aid of a dictionary was simply too daunting.

In 1971, I left University College London to take up an academic post at the
Mathematics Institute in the University of Oxford. Early in 1972, an Italian group
theorist called Antonio Machi came to spend a year at the Institute. We became friends
and at some stage I mentioned my interest in de Finetti and the frustrations of trying to
get to grips with the Teoria Delle Probabilita. Antonio immediately suggested that we
work together on translating the two-volume work into English. Two years later, after
many exchanges between Oxford and Rome, the first Wiley English edition appeared,
with a Foreword by Dennis Lindley, with whom I subsequently gave a series of lectures
in London to draw the attention of the wider statistics community to the importance of
de Finetti’s ideas.

There was growing interest in Bayesian ideas throughout the 1970s, but it was still
very much a minority view among academic statisticians. The first attempt by some of
us to organize a specifically Bayesian international conference in 1978, the first of what
were to become the four-yearly Valencia Conferences, attracted around eighty partici-
pants. However, by the time we reached the ninth such meeting in 2011, the attendance
had grown tenfold and Bayesian thinking had become a significant and influential fea-
ture of the statistical landscape.

De Finetti predicts in these volumes that we shall all be Bayesians by 2020. There is
still some way to go, but if it proves to be so it will be due in no small measure to the
influence of these wonderful volumes.

Adrian Smith

xiii



Introduction

1.1  Why a New Book on Probability?

There exist numerous treatments of this topic, many of which are very good, and others
continue to appear. To add one more would certainly be a presumptuous undertaking if
I thought in terms of doing something better, and a useless undertaking if I were to
content myself with producing something similar to the ‘standard’ type. Instead, the
purpose is a different one: it is that already essentially contained in the dedication to
Beniamino Segre

[who about twenty years ago pressed me to write it as a necessary document for
clarifying one point of view in its entirety.]

Segre was with me at the International Congress of the Philosophy of Science (Paris
1949), and it was on the occasion of the discussions developed there on the theme of
probability that he expressed to me, in persuasive and peremptory terms, a truth, per-
haps obvious, but which only since appeared to me as an obligation, difficult but
unavoidable.

‘Only a complete treatment, inspired by a well-defined point of view and collect-
ing together the different objections and innovations, showing how the whole
theory results in coherence in all of its parts, can turn out to be convincing. Only
in this way is it possible to avoid the criticisms to which fragmentary expositions
easily give rise since, to a person who in looking for a completed theory interprets
them within the framework of a different point of view, they can seem to lead
unavoidably to contradictions’

These are Segre’s words, or, at least, the gist of them.

It follows that the requirements of the present treatment are twofold: first of all to
clarify, exhaustively, the conceptual premises, and then to give an essentially complete
exposition of the calculus of probability and its applications in order to establish the
adequacy of the interpretations deriving from those premises. In saying ‘essentially’
complete, I mean that what matters is to develop each topic just as far as is necessary to
avoid conceptual misunderstandings. From then on, the reader could follow any other

Theory of Probability: A Critical Introductory Treatment, First Edition. Bruno de Finetti.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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book without finding great difficulty in making those modifications that are needed in
order to translate it, if such be desired, according to the point of view that will be taken
here. Apart from these conceptual exigencies, each topic will also be developed, in
terms of the content, to an extent sufficient for the treatment to turn out to be adequate
for the needs of the average reader.

1.2 What are the Mathematical Differences?

1.2.1. If I thought I were writing for readers absolutely innocent of probabilistic—
statistical concepts, I could present, with no difficulty, the theory of probability in the
way I judge to be meaningful. In such a case, it would not even have been necessary to
say that the treatment contains something new and, except possibly under the heading
of information, that different points of view exist. The actual situation is very different,
however, and we cannot expect any sudden change.

My estimation is that another fifty years will be needed to overcome the present
situation, but perhaps even this is too optimistic. It is based on the consideration
that about thirty years were required for ideas born in Europe (Ramsey, 1926; de
Finetti, 1931) to begin to take root in America (even though B.O. Koopman
(1940) had come to them in a similar form). Supposing that the same amount of
time might be required for them to establish themselves there, and then the same
amount of time to return, we arrive at the year 2020.

It would obviously be impossible and absurd to discuss in advance concepts and, even
worse, differences between concepts to whose clarification we will be devoting all of
what follows; however, much less might be useful (and, anyway, will have to suffice for
the time being). It will be sufficient to make certain summary remarks that are intended
to exemplify, explain and anticipate for the reader certain differences in attitude that
could disorientate him, and leave him undecided between continuing without under-
standing or, on the other hand, stopping reading altogether. It will be necessary to show
that the ‘wherefore’ exists and to give at least an idea of the ‘wherefore, and of the
‘wherefores; even without anticipating the ‘wherefore’ of every single case (which can
only be seen and gone into in depth at the appropriate time and place).

1.2.2. From a mathematical point of view, it will certainly seem to the reader that
either by desire or through ineptitude I complicate simple things; introducing captious
objections concerning aspects that modern developments in mathematical analysis
have definitively dealt with. Why do I myself not also conform to the introduction of
such developments into the calculus of probability? Is it a question of incomprehen-
sion? Of misoneism? Of affectation in preferring to use the tools of the craftsman in an
era of automation which allows mass production even of brains — both electronic
and human?

The ‘wherefore; as I see it, is a different one. To me, mathematics is an instrument that
should conform itself strictly to the exigencies of the field in which it is to be applied.
One cannot impose, for their own convenience, axioms not required for essential
reasons, or actually in conflict with them.
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I do not think that it is appropriate to speak of ‘incomprehension’ I have followed
through, and appreciated, the reasons pro (which are the ones usually put forward),
but I found the reasons contra (which are usually neglected) more valid, and even
preclusive.

I do not think that one can talk of misoneism. I am, in fact, very much in favour of
innovation and against any form of conservatism (but only after due consideration, and
not by submission to the tyrannical caprice of fashion). Fashion has its use in that it
continuously throws up novelties, guarding against fossilization; in view of such a func-
tion, it is wise to tolerate with goodwill even those things we do not like. It is not wise,
however, to submit to passively adapting our own taste, or accepting its validity beyond
the limits that correspond to our own dutiful, critical examination.

I do not think that one can talk of ‘affectation’ either. If anything, the type of ‘affecta-
tion’ that is congenial to my taste would consist of making everything simple, intuitive
and informal. Thus, when I raise ‘subtle’ questions, it means that, in my opinion, one
simply cannot avoid doing so.

1.2.3. The ‘wherefore’ of the choice of mathematical apparatus, which the reader
might find irksome, resides, therefore, in the ‘wherefores’ related to the specific mean-
ing of probability, and of the theory that makes it an object of study. Such ‘wherefores’
depend, in part, on the adoption of this or that particular point of view with regard to
the concept and meaning of probability, and to the basis from which derives the possi-
bility of reasoning about it, and of translating such reasoning into calculations. Many of
the ‘wherefores’ seem to me, however, also to be valid for all, or many, of the different
concepts (perhaps with different force and different explanations). In any case, the criti-
cal analysis is more specifically hinged on the conception that we follow here, and which
will appear more and more clear (and, hopefully, natural) as the reader proceeds to the
end — provided he or she has the patience to do so.

1.3 What are the Conceptual Differences?

1.3.1. Meanwhile, for those who are not aware of it, it is necessary to mention that in the
conception we follow and sustain here only subjective probabilities exist — that is, the
degree of belief in the occurrence of an event attributed by a given person at a given
instant and with a given set of information. This is in contrast to other conceptions that
limit themselves to special types of cases in which they attribute meaning to ‘objective
probabilities’ (for instance, cases of symmetry as for dice etc., ‘statistical’ cases of
‘repeatable’ events, etc.). This said, it is necessary to add at once that we have no inter-
est, at least for now, either in a discussion, or in taking up a position, about the ‘philo-
sophical’ aspects of the dispute; in fact, it would be premature and prejudicial because
it would entangle the examination of each concrete point in a web of metaphysical
misunderstandings.

Instead, we are interested, on the contrary, in clearly understanding what one means
according to one’s own conception and in one’s own language, and learning to enter into
this conception and language in its motivations and implications (even if provisionally,
in order to be able to make pertinent criticism later on). This is, it seems to me, an invio-
lable methodological need.

3
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1.3.2. There is nothing more disappointing than to hear repeated, presented as ‘criti-
cisms; clichés so superficial that it is not possible to infer whether the speaker has even
read the arguments developed to confute them and clear them up, or has read them
without understanding anything, or else has understood them back to front. The fault
could be that of obscure presentation, but a somewhat more meaningful reaction would
be required in order to be able to specify accurately, and to correct, those points which
lend themselves to misunderstanding.

The fault may be the incompleteness of the preceding, more or less fragmentary, exposi-
tions, which, although probably more than complete if taken altogether, are difficult to
locate and hold in view simultaneously. If so, the present work should obviate the incon-
venience: unfortunately, the fact that it is published is not sufficient; the result depends on
the fact that it is read with enough care to enable the reader to make pertinent criticisms.

I would like to add that I understand very well the difficulties that those who have
been brought up on the objectivistic conceptions meet in escaping from them. I under-
stand it because I myself was perplexed for quite a while some time ago (even though I
was free from the worst impediment, never having had occasion to submit to a ready-
made and presented point of view, but only coming across a number of them while
studying various books and works on my own behalf). It was only after having analysed
and mulled over the objectivistic conceptions in all possible ways that I arrived, instead,
at the firm conviction that they were all irredeemably illusory. It was only after having
gone over the finer details and developed, to an extent, the subjectivistic conception,
assuring myself that it accounted (in fact, in a perfect and more natural way) for every-
thing that is usually accredited, overhastily, to the fruit of the objectivistic conception,
it was only after this difficult and deep work, that I convinced myself, and everything
became clear to me. It is certainly possible that these conclusions are wrong; in any case
they are undoubtedly open to discussion, and I would appreciate it if they were discussed.

However, a dialogue between the deaf is not a discussion. I think that I am doing my
best to understand the arguments of others and to answer them with care (and even
with patience when it is a question of repeating things over and over again to refute
trivial misunderstandings). It is seldom that I have the pleasure of forming the impres-
sion that other people make a similar effort; but, as the Gospel says, ‘And why beholdest
thou the mote that is in thy brother’s eye, but considerest not the beam that is in thine
own eye?” if this has happened to me, or is happening to me, I would appreciate it if
someone would enlighten me.

1.3.3. One more word (hopefully unnecessary for those who know me): I find it much
more enlightening, persuasive, and in the end more essentially serious, to reason by
means of paradoxes; to reduce a thesis to absurdity; to make use of images, even light-
hearted ones provided they are relevant, rather than to be limited to lifeless manipula-
tions in technical terms, or to heavy and indigestible technical language. It is for this
reason that I very much favour the use of colourful and vivid forms of expression, which,
hopefully, may turn out to be effective and a little entertaining, making concrete, in a
whimsical fashion, those things that would appear dull, boring or insipid and, therefore,
inevitably badly understood, if formulated in an abstract way, stiffly or with affected
gravity. It is for this reason that I write in such a fashion, and desire to do so; not because
of ill-will or lack of respect for other people, or their opinions (even when I judge them
wrong). If somebody finds this or that sentence a little too sharp, I beg him to believe in
the total absence of intention and animosity, and to accept my apologies as of now.
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1.4 Preliminary Clarifications

1.4.1. For the purpose of understanding, the important thing is not the difference in philo-
sophical position on the subject of probability between ‘objective’ and ‘subjective; but
rather the resulting reversals of the réles and meanings of many concepts, and, above all,
of what is ‘rigorous; both logically and mathematically. It might seem paradoxical but the
fact is that the subjectivistic conception distinguishes itself precisely by a more rigorous
respect for that which is really objective, and which it calls, therefore, ‘objective§1 There are
cases in which, in order to define a notion, in formulating the problem, or in justifying the
reasoning, there exists a choice between an unexceptionable, subjectivistic interpretation
and a would-be objectivistic interpretation. The former is made in terms of the opinions
or attitudes of a given person; the latter derives from a confused transposition from this
opinion to the undefinable complex of objective circumstances that might have contributed
to its determination: in such cases there is nothing to do but choose the first alternative.
The subjective opinion, as something known by the individual under consideration, is, at
least in this sense, something objective and can be a reasonable object of a rigorous study.
It is certainly not a sign of greater realism, of greater respect for objectivity, to substitute
for it a metaphysical chimera, even if with the laudable intention of calling it ‘objective’ in
order to be able to then claim to be concerned only with objective things.

There might be an objection that we are in a vicious circle, or engaged in a vacuous
discussion, since we have not specified what is to be understood by ‘objective. This
objection is readily met, however: statements have objective meaning if one can say, on
the basis of a well-determined observation (which is at least conceptually possible),
whether they are either TRUE or FALSE. Within a greater or lesser range of this delimi-
tation a large margin of variation can be tolerated, with one condition — do not cheat.
To cheat means to leave in the statement sufficient confusion and vagueness to allow
ambiguity, second-thoughts and equivocations in the ascertainment of its being TRUE
or FALSE. This, instead, must always appear simple, neat and definitive.

1.4.2. Statements of this nature, that is the only ‘statements’ in the true sense of the
word, are the object of the logic of certainty, that is ordinary logic, which could also be
in the form of mathematical logic, or of mathematics. They are also the objects to which
judgements of probability apply (as long as one does not know whether they are true or
false) and are called either propositions, if one is thinking more in terms of the expres-
sions in which they are formulated, or events, if one is thinking more in terms of the situ-
ations and circumstances to which their being true or false corresponds.

On the basis of the considerations now developed, one can better understand the
statement made previously, according to which the fundamental difference between the
subjectivistic conception and the objectivistic ones is not philosophical but methodo-
logical. It seems to me that no-one could refute the methodological rigour of the subjec-
tivistic conception: not even an objectivist. He himself, in fact, would have unlimited
need of it in trying to expose, in a sensible way, the reasons that would lead him to
consider ‘philosophically correct’ this one, or that one, among the infinitely many pos-
sible opinions about the evaluations of probability. To argue against this can only mean,

1 This fact has often been underlined by L.J. Savage (see Kyburg and Smokler (1964), p. 178, and elsewhere).

5
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even though without realizing it, perpetuating profitless discussions and playing on the
ambiguities that are deeply rooted in the uncertainty.

At this stage, a few simple examples might give some preliminary clarification of the
meaning and compass of the claimed ‘methodological rigour’ — under the condition,
however, that one takes into account the necessarily summary character of these pre-
liminary observations. It is necessary to pay attention to this latter remark to avoid both
the acceptance of such observations as exhaustive and the criticism of them that results
from assuming that they claim to be exhaustive: one should realize, with good reason,
that they are by no means such.

1.5 Some Implications to Note

1.5.1. We proceed to give some examples: to save space, let us denote by ‘O’ statements
often made by objectivists, and by ‘S’ those with which a subjectivist (or, anyway, this
author) would reply.

O: Two events of the same type in identical conditions for all the relevant circum-
stances are ‘identical’ and, therefore, necessarily have the same probability.>

S: Two distinct events are always different, by virtue of an infinite number of circum-
stances (otherwise how would it be possible to distinguish them?!). They are equally
probable (for an individual) if — and so far as — he judges them as such (possibly by judg-
ing the differences to be irrelevant in the sense that they do not influence his judgement).
An even more fundamental objection should be added: the judgement about the prob-
ability of an event depends not only on the event (or on the person) but also on the state
of information. This is occasionally recalled, but more often forgotten, by many
objectivists.

O: Two events are (stochastically) independent3 if the occurrence of one does not
influence the probability of the other.

S: I would say instead: by definition, two events are such (for an individual) if the
knowledge of the outcome of one does not make him change the evaluation of probabil-
ity for the other.

O: Let us suppose by hypothesis that these events are equally probable, for example
with probability p = %, and independent, and so on.

S: It is meaningless to consider as an ‘hypothesis’ something that is not an objective
statement. A statement about probability (the one given in the example or any other one
whatsoever) either is the evaluation of probabilities (those of the speaker or of someone
else), in which case there is nothing to do but simply register the fact, or it is nothing.

O: These events are independent and all have the same probability which is, however,
‘unknown’

2 The objectivists often use the word event in a generic sense also, using ‘trials’ (or ‘repetitions’) of the same
‘event’ to mean single events, ‘identical’ or ‘similar. From time to time we will say ‘trials’ (or ‘repetitions’) of a
phenomenon, always meaning by event a single event. It is not simply a question of terminology, however:
we use ‘phenomenon’ because we do not give this word any technical meaning; by saying ‘trials of a
phenomenon’ one may allude to some exterior analogy but one does not mean to assume anything that
would imply either equal probability, or independence, or anything else of probabilistic relevance.

3 Among events, random quantities, or random entities in general, it is possible to have various relations
termed ‘independence’ (linear, logical, stochastic); it is better to be specific if there is any risk of ambiguity.
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S: This formulation is a nonsense in the same sense as the preceding one but to a
greater extent. By interpreting the underlying intention (which, as an intention, is rea-
sonable) one can translate it (see Chapter 11) into a completely different formulation,
‘exchangeability; in which we do not have independence, the probabilities are known,
and vary, precisely, in depending only on the number of successes and failures of which
one has information.

One might continue in this fashion, and it could be said that almost the whole of what
follows will be, more or less implicitly, a continuation of this same discussion. Rather, let
us see, by gathering together the common factors, the essential element in all these
contrapositions.

1.5.2. For the subjectivist everything is clear and rigorous when he is expressing
something about somebody’s evaluation of probabilities; an evaluation which is, simply,
what it is. For that somebody, it will have motivations that we might, or might not,
know; share, or not share; judge® more or less reasonable, and that might be more or less
‘close’ to those of a few, or many, or all people. All this can be interesting, but it does not
alter anything. To express this in a better way: all these things matter in so far as they
determined that unique thing that matters, and that is the evaluation of probability to
which, in the end, they have given rise.

From the theoretical, mathematical point of view, even the fact that the evaluation of
probability expresses somebody’s opinion is then irrelevant. It is purely a question of
studying it and saying whether it is coherent or not; that is whether it is free of, or affected
by, intrinsic contradictions. In the same way, in the logic of certainty one ascertains the
correctness of the deductions but not the accuracy of the factual data assumed as premises.

1.5.3. Instead, the objectivist would like to ignore the evaluations, actual or hypotheti-
cal, and go back to the circumstances that might serve as a basis for motivations which
would lead to evaluations. Not being able to invent methods of synthesis comparable in
power and insight to those of the human intuition, nor to construct miraculous robots
capable of such, he contents himself, willingly, with simplistic schematizations of very
simple cases based on neglecting all knowledge except a unique element which lends
itself to utilization in the crudest way.

A further consequence is the following. The subjectivist, who knows how much cau-
tion is necessary in order to remain within the bounds of realism, will exercise great
care in not going far beyond the consideration of cases immediately at hand and directly
interesting. The objectivist, who substitutes the abstraction of schematized models for
the changing and transient reality, cannot resist the opposite temptation. Instead of
engaging himself, even though in a probabilistic sense (the only one which is valid), in
saying something about the specific case of interest, he prefers to ‘race on ahead; occu-
pying himself with the asymptotic problems of a large number of cases, or even playing
around with illusory problems, contemplating infinite cases where he can try, without
any risk, to pass off his results as ‘certain predictions.®

4 With a judgment which is ‘subjective squared’: our subjective judgment regarding the subjective judgment
of others.

5 Concerning the different senses in which we use the terms ‘prevision’ and ‘prediction, see Chapter 3 (at
the beginning and then in various places, in particular 3.7.3).

7



8

Theory of Probability: A Critical Introductory Treatment

1.6 Implications for the Mathematical Formulation

1.6.1. From these conceptual contrapositions there follows, amongst other things, an
analogous contraposition in the way in which the mathematical formulation is conceived.
The subjectivistic way is the one that it seems appropriate to call ‘natural” it is possible to
evaluate the probability over any set of events whatsoever; those for which it serves a
purpose, or is of interest, to evaluate it; there is nothing further to be said. The objectivis-
tic way (and also the way most congenial to contemporary mathematicians, independently
of the conception adopted regarding probability) consists in requiring, as an obligatory
starting point, a mathematical structure much more formidable, complete and compli-
cated than necessary (and than it is, in general, reasonable to regard as conceivable).

1.6.2. Concerning a known evaluation of probability, over any set of events whatso-
ever, and interpretable as the opinion of an individual, real or hypothetical, we can only
judge whether, or not, it is coherent® If it is not, the evaluator, when made aware of it,
should modify it in order to make it coherent. In the same way, if someone claimed to
have measured the sides and area of a rectangle and found 3m, 5m and 12 m?2, we, even
without being entitled, or having the inclination, to enter into the merits of the ques-
tion, or to discuss the individual measurements, would draw his attention to the fact
that at least one of them is wrong, since it is not true that 3 x 5 = 12.

Such a condition of coherence should, therefore, be the weakest one if we want it to be
the strongest in terms of absolute validity. In fact, it must only exclude the absolutely
inadmissible evaluations; that is those that one cannot help but judge contradictory (in
a sense that we shall see later).

Such a condition, as we shall see, reduces to finite additivity (and non-negativity). It is
not admissible to make it more restrictive (unless it turns out to be necessary if we dis-
cover the preceding statement to be wrong); it would make us exclude, erroneously,
admissible evaluations.

1.6.3. What the objectivistic, or the purely formalistic, conceptions generally postulate
is, instead, that countable additivity holds (as for Borel or Lebesgue measure), and that
the field over which the probability is defined be the whole of a Boolean algebra. From
the subjectivistic point of view this is both too much and too little: according to what
serves the purpose and is of interest, one could limit oneself to much less, or even go
further. One could attribute probabilities, finitely but not countably additive, to all, and
only, those events that it is convenient to admit into the formulation of a problem and
into the arguments required for its solution. One might also go from one extreme to the
other: referring to the analogy of events and probability with sets and measure, it might,
at times, be convenient to limit oneself to thinking of a measure as defined on certain
simple sets (like the intervals), or even on certain sets but not their intersections (for
instance, for ‘vertical’ and ‘horizontal ‘stripes’ in the (x,y)-plane (x' <x < x”, ' <y < y")
but not on the rectangles); and, at other times, to think of it instead as extended to all the
sets that the above-mentioned convention would exclude (like the ‘non-Lebesgue-meas-
ureable sets’).

6 See Chapter 3.
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1.6.4. In a more general sense, it seems that many of the current conceptions consider
as a success the introduction of mathematical methods so powerful, or of tricks of for-
mulation so slick, that they permit the derivation of a uniquely determined answer to a
problem even when, due to the insufficiency of the data, it is indeterminate. A capable
geometer in order to conform to this aspiration would have to invent a formula for
calculating the area of a triangle given two sides.

Attempts of this kind are to be found in abundance, mainly in the field of statisti-
cal induction (see some remarks further on in this Introduction, 1.7.6).

In the present case, the defect is somewhat hidden and consists in the following
distinction between the two cases of measure and of probability.

To extend a mathematical notion (measure) from one field (Jordan—Peano) to
another (Borel-Lebesgue) is a question of convention. If, however, a notion (like
probability) already has a meaning (for each event, at least potentially, even if not
already evaluated), one cannot give it a value by conventional extension of the
probabilities already evaluated except for the case in which it turns out to be the
unique one compatible with them by virtue of the sole conditions of coherence
(conditions pertaining to the meaning of probability, not to motives of a mathe-
matical nature). The same would happen if it were a question of a physical quan-
tity like mass. If one thought of being able to give meaning to the notion of ‘mass
belonging to any set of points of a body’ (for instance those with rational coordi-
nates), in the sense that it were, at least conceptually, possible to isolate such a
mass and weigh it, then it would be legitimate, when referring to it, to talk about
everything that can be deduced about it by mathematical properties that trans-
late necessary physical properties, and only such things. To say something more
(and in particular to give it a unique value when such properties leave the value
indeterminate between certain limits), by means of the introduction of arbitrary
mathematical conventions, would be unjustified, and therefore inadmissible.

1.7 An Outline of the‘Introductory Treatment’

1.7.1. The reader must feel as though he has been plunged alternately into baths of hot
and cold water: in Section 1.5 he encountered the contraposed examples of the concep-
tual formulation, presented either as meaningful or as meaningless; in Section 1.6 the
mathematical formulations, presented either as suitable or as academic. Following this,
a simple and ordered presentation of the topics that will follow may provide a suitable
relaxation, and might even induce a return to the preceding ‘baths’ in order, with a
greater knowledge of the motives, to soak up some further meaning.

1.7.2. In Chapter 2 we will not talk of probability. Since we wish to make absolutely
clear the distinction between the subjective character of the notion of probability and
the objective character of the elements (events, or any random entities whatsoever) to
which it refers, we will first treat only these entities. In other words, we will deal with
the preliminary logic of certainty where there exist only:

e TRUE and FALSE as final answers;
o CERTAIN and IMPOSSIBLE and POSSIBLE as alternatives, with respect to the pre-
sent knowledge of each individual.

9
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In this way, the range of uncertainty, that is of what is not known, will emerge in
outline. This is the framework into which the (subjective) notion of probability will be
introduced as an indispensable tool for our orientation and decision making.

The random events, random quantities and any other random entities, will already be
defined, however, before we enter the domain of probability, and they will simply
be events, quantities, entities, well-defined but with no particular features except the
fact of not being known by a certain individual. For any individual who does not know
the value of a quantity X, there will be, instead of a unique certain value, two, or several,
or infinitely many, possible values of X. They depend on his degree of ignorance and are,
therefore, relative to his state of information; nevertheless, they are objective because
they do not depend on his opinions but only on these objective circumstances.

1.7.3. Up until now the consideration of uncertainty has been limited to the negative
aspect of nonknowledge. In Chapter 3 we will see how the need arises, as natural and
appropriate, to integrate this aspect with the positive aspect (albeit weak and temporary
while awaiting the information that would give it certainty) given by the evaluation of
probabilities. To any event in which we have an interest, we are accustomed to attribut-
ing, perhaps vaguely and unconsciously, a probability: if we are sufficiently interested
we may try to evaluate it with some care. This implies introspection in depth by weigh-
ing each element of judgment and controlling the coherence by means of other evalua-
tions made with equal accuracy. In this way, each event can be assigned a probability,
and each random quantity or entity a distribution of probability, as an expression of the
attitude of the individual under consideration.

Let us note at once a few of the points that arise.

Others, in speaking of a random quantity, assume a probability distribution as already
attached to it. To adopt a different concept is not only a consequence of the subjectivis-
tic formulation, according to which the distribution can vary from person to person, but
also of the unavoidable fact that the distribution varies with the information (a fact
which, in any case, makes the usual terminology inappropriate).

Another thing that might usefully be mentioned now is that the conditions of coher-
ence will turn out to be particularly simplified and clarified by means of a simple device
for simultaneously handling events and random quantities (or entities of any linear
space whatever). Putting the logical values “True’ and ‘False’ equal to the numbers ‘1’
and ‘0; an event is a random quantity that can assume these two values: the function
P(X), which for X = event gives its probability, is, for arbitrary X, the ‘prevision’ of X (i.e.
in the usual terminology, the mathematical expectation).

The use of this arithmetic interpretation of the events, preferable to, but not exclud-
ing, the set-theoretic interpretation, has its utility and motivation, as will be seen. The
essential fact is that the linearity of the arithmetic interpretation plays a fundamental
role (which is, in general, kept in the background), whereas the structure of the Boolean
algebra enters rather indirectly.

1.7.4. After having extended these considerations, in Chapter 4, to the case of condi-
tional probabilities and previsions (encountering the notions of stochastic independence
and correlation), we will, in Chapter 5, dwell upon the evaluation of probabilities. The
notions previously established will allow us not only to apply the instruments for this
evaluation, but also to relate them to the usual criteria, inspired by partial, objectivistic
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‘definitions’ We will see that the subjectivistic formulation, far from making the valid ele-
ments in the ideas underlying these criteria redundant, allows the best and most complete
use of them, checking and adapting, case by case, the importance of each of them. In
contrast to the usual, and rather crude, procedure, which consists of the mechanical and
one-sided application of this or that criterion, the proposed formulation allows one to
behave in conformity with what the miraculous robot, evoked in Section 1.5.3, would do.

1.7.5. Chapters 6—10 extend to give a panoramic vision of the field of problems with
which the calculus of probabilities is concerned. Of course, it is a question of compro-
mising between the desire to present a relatively complete overall view and the desire
to concentrate attention on a small number of concepts, problems and methods, whose
role is fundamental both in the first group of ideas, to be given straightaway, and, even
more, in further developments, which, here, we can at most give a glimpse of.

Also in these chapters, which in themselves are more concerned with content than
critical appraisal, there are aspects and, here and there, observations and digressions
that are relevant from the conceptual angle. It would be inappropriate to make detailed
mention of them but, as examples, we could quote the more careful analysis of what the
knowledge of the distribution function says, or does not say (also in connection with the
‘possible’ values), and of the meaning of ‘stochastic independence’ (between random
quantities), expressed by means of the distribution function.

1.7.6. The last two chapters, 11 and 12, deal briefly with the problems of induction (or
inference) and their applications, which constitute mathematical statistics. Here we
encounter anew the conceptual questions connected with the subjective conception,
which, of course, bases all inference on the Bayesian procedure (from Thomas Bayes,”
1763). In this way, the theory and the applications come to have a unified and coherent
foundation: it is simply a question of starting from the evaluation of the initial probabili-
ties (i.e. before acquiring new information — by observation, experiment, or whatever)
and then bringing them up to date on the basis of this new information, thus obtaining the
final probabilities (i.e. those on which to base oneself after acquiring such information).

The objectivistic theories, in seeking to eschew the evaluation and use of ‘initial prob-
abilities; lack an indispensable element for proceeding in a sensible way and appeal to a
variety of empirical methods, often invented ad hoc for particular cases. We shall use
the term ‘Adhockeries, following Good® (1965) who coined this apt expression, for the
methods, criteria and procedures that, instead of following the path of the logical for-
mulation, try to answer particular problems by means of particular tricks (which are
sometimes rather contrived).

7 One must be careful not to confuse Bayes’ theorem (which is a simple corollary of the theorem of
compound probabilities) with Bayes’ postulate (which assumes the uniform distribution as a representation
of ‘knowing nothing’). Criticisms of the latter, often mistakenly directed against the former, are not therefore
valid as criticisms of the position adopted here.

8 Good’s position is less radical than I supposed when I interpreted ‘Adhockery’ as having a derogatory
connotation. I gathered this from his talk at the Salzburg Colloquium, and commented to this effect in an
Addendum to the paper I delivered there; Synthese 20 (1969), 2—16: ‘According to it, “adhockeries” ought
not to be rejected outright; their use may sometimes be an acceptable substitute for a more systematic
approach. I can agree with this only if — and in so far as — such a method is justifiable as an approximate
version of the correct (i.e. Bayesian) approach. (Then it is no longer a mere “adhockery”)’

11
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1.8 A Few Words about the ‘Critical’ Appendix

1.8.1. Many of the conceptual questions are, unfortunately, inexhaustible if one wishes
to examine them thoroughly; and the worst thing is that, often, they are also rather
boring unless one has a special interest in them.

A work that is intended to clarify a particular conceptual point of view cannot do
without this kind of analysis in depth, but it certainly seems appropriate to avoid weigh-
ing down the text more than is necessary to meet the needs of an ordinary reader who
desires to arrive at an overall view. For this reason, the most systematic and detailed
critical considerations have been postponed to an Appendix. This is intended as a reas-
surance that there is no obligation to read it in order to understand what follows, nor to
make the conclusions meaningful. This does not mean, however, that it is a question of
abstruse and sophisticated matters being set aside for a few specialists and not to be
read by others. It is a question of further consideration of different points that might
appear interesting and difficult, to a greater or lesser extent, but which might always
improve, in a meaningful and useful, though not indispensable, way, the awareness of
certain questions and difficulties, and of the motives which inspire different attitudes
towards them.

1.8.2. In any case, one should point out that it is a question of an attempt to view, in a
unified fashion, a group of topics that are in general considered separately, each by
specialists in a single field, paying little or no attention to what is being done in other
fields. Notwithstanding the many gaps or uncertainties, and the many imperfections
(and maybe precisely also for the attention it may attract to them), I think that such an
attempt should turn out to be useful.

Among other things, we have tried to insert into the framework of the difficulties
associated with the ‘verifiability’ of events in general, the question of ‘complementarity’
that arose in quantum physics. The answer is the one already indicated, in a summary
fashion, elsewhere (de Finetti, 1959), and coinciding with that of B.O. Koopman (1957),
but the analysis has been pursued in depth and related to the points of view of other
authors as far as possible (given the margin of uncertainty in the interpretation of the
thought of those consulted, and the impossibility of spending more time on this topic in
attempting to become familiar with others).

1.8.3. Various other questions that are discussed extensively in the Appendix, are cur-
rently objects of discussion in various places: for instance, the relationships between
possibility and tautology seem to be attracting the attention of philosophers (the inter-
vention of Hacking at a recent meeting, Chicago 1967); while the critical questions
about the mathematical axioms of the calculus of probability (in the sense, to be under-
stood, of making it a theory strictly identical to measure theory, or with appropriate
variations) are always a subject of debate.

Apart from the points of view on separate questions, the Appendix will also have as
a main motive the proposal to model the mathematical formulation on the analysis of
the actual needs of the substantive interpretation. Moreover, to do so with the greatest
respect for ‘realism; which the inevitable degree of idealization must purify just a little,
but must never overwhelm or distort, neither for analytical convenience, nor for any
other reason.
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1.9 Other Remarks

1.9.1. It seems appropriate here to draw attention also to some further aspects, all
secondary, even if only to underline the importance that attaches, in my opinion, to ‘secondary’
things.

One characteristic of the calculus of probability is that mathematical results are often
automatically obtained because their probabilistic interpretations are obvious. In all
these cases I think it is much more effective and instructive to consider as their proofs
these latter expressive interpretations, and as formal verifications their translation into
technical details (to be omitted, or left to the reader). This seems to me to be the best
way of realizing the ideal expressed in the maxim that Chisini’ often repeated: ‘mathe-
matics is the art which teaches one how not to make calculations.

It is incredible how many things are regularly presented in a heavy and obscure fash-
ion, arriving at the result through a labyrinth of calculations that make one lose sight of
the meaning, whereas simple, synthetic considerations would be sufficient to reveal
that, for those not wishing to behave as if handcuffed or blindfolded, results and mean-
ing are at hand, staring one in the face.

On numerous occasions one sees very long calculations made in order to prove results
that are either wrong or obvious. The latter case is the more serious, without any
extenuating circumstances, since it implies lack of realization that the conclusion was
obvious, even after having seen it. On the other hand, failing to get the result due to a
casual mistake merits only half a reproach, since the lack of realization only applies
before starting the calculations.

Instead, it is often sufficient to remark that two formulae are necessarily identical for
the simple reason that they express the same thing in different ways, since they provide
the result of the same process starting from different properties which characterize it,
or for other similar reasons. Problems that can, more or less ‘surprisingly;, be reduced to
synthetic arguments arise frequently in, amongst other things, questions connected
with random processes (ranging from the game of Heads and Tails to cases involving
properties of characteristic functions etc.). Often, on the other hand, it is an appropriate
geometric representation that clarifies the situation and also suggests, without calcula-
tions and without any doubts, the solution in formulae.

1.9.2. In addition, however, there are even more secondary things which have their
importance. These I would like to explain with a few examples so that it does not seem
that some small innovation, perhaps in notation or terminology, has been introduced
just for the sake of changing things, instead of with reluctance, overcome by the realiza-
tion that this was the only way of getting rid of many useless complications.

The very simple device, from which most of the others derive, is that mentioned
already in 1.7.3. We identify an event E with the random quantity, commonly called the
‘indicator of E;, which takes values 1 or 0 according to whether E is true or false. Not only
can one operate arithmetically on the events (the arithmetic sum of many events = the

9 Oscar Chisini, a distinguished and gifted pupil of Federigo Enriques, was Professor at the University of
Milan where the author attended his course on Advanced Geometry. Chisini’s generalized definition of the
concept of mean (see Chapter 2, Section 2.9) came about as a result of his occasionally being concerned
with this notion in connection with secondary-school examinations.
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number of successes; E — p = the gain from a bet for a person who stakes a sum p in
order to receive a sum 1 if E occurs etc.) but one operates with a unique symbol P in
order to denote both probability and prevision (or ‘mathematical expectation’), thus
avoiding duplication. The ‘theorem’ M(Ir) = P(E), ‘the mathematical expectation of the
indicator of an event is equal to the probability of the same event; is rendered superfluous
(it could only be expressed by P(E) = P (E)!).

1.9.3. The identification TRUE = 1, FALSE = 0 is also very useful as a simple conven-
tional device for denoting, in a straightforward and synthetic way, many mathematical
expressions that usually require additional verbal explanation. Applying the same iden-
tifications to formulae expressing conditions, for instance, interpreting ‘(0 < x < 1)’ asa
symbol with value 1 for x between 0 and 1, where the inequality is true, and value 0
outside, where it is false, one can simply write expressions of the type

f(x)=g(#) (o<x<1)

(and more complicated forms), which otherwise require verbal explanations, like ‘the
function f{x) which coincides with g(x) for 0 < x < 1 and is zero elsewhere; or writing in
the cumbersome form

=0 for x<0,
f(x)=1<=g(x) for 0<x<1,
=0 for x>1.

It is easy to imagine many cases in which the utility of such a convention is much greater,
but I think it is difficult to realize the number and variety of such cases (I am often
surprised by new, important applications not previously foreseen).

1.9.4. Other simplifications of this kind, which can sometimes be used in conjunction
with the above, result from a parallel (or dual) extension of the Boolean operations to
the field of real numbers, coinciding, for the values 0 and 1, with the usual meaning for
the events. This natural and meaningful extension will also reveal its utility in many
applications' (see Chapter 2, Sections 2.5 and 2.11).

1.9.5. A small innovation in notation is that of denoting the three most important
types of convergence in the probabilistic field by:
symbol: type of convergence:

5 weak (in probability) (in measure)
J,  strong (almost certain) (almost everywhere)
_y  quadratic (in mean-square)  (in mean (quadratic))

10 The advantages of these two conventions (0 and 1 for True—False, and v and A among numbers) are
illustrated, somewhat systematically and with concise examples, in a paper in the volume in honour of O.
Onicescu (75th birthday): ‘Revue roumaine de mathématiques pures et appliquées; Bucharest (1967), XII, 9,
1227-1233. An English translation of this appears in B. de Finetti, Probability, Induction and Statistics, John
Wiley & Sons (1972).
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(this could also have value in function theory). The innovation seems to me appropriate
not only to avoid abbreviations which differ from language to language but also for
greater clarity, avoiding the typographic composition and deciphering of symbols that
are either cumbersome or unreadable.

1.9.6. Another device which we will introduce with the intention of simplifying the
notation does not have a direct relationship with the calculus of probability. For this
reason we were even more hesitant to introduce it, but finally realized that without such
a remedy there remained simple and necessary things which could not be expressed in
a decently straightforward way.

The most essential is the device of obtaining symbols indicating functions, substi-
tuting for the variable (in any expression whatever) a ‘place-name’ symbol: as such O
would seem suitable; it also suggests something which awaits filling in. The scope is the
same as obtained by Peano by means of the notation ‘|«} ‘varying x; which, applied for
instance to the expression (x sin x* + V(3 — x))/log(2 + cos x) gives f = {[(x sin &* +
V(3 —x))/log (2 + cos x)]|x}, where f is the symbol of the function such that fx) gives the
expression above, and f{y), lax® + b), fle”), ... is the same thing in which at each place
where an « is found we substitute y, or ax® + b, or e*, or whatever. This notation,
however, does not lend itself to many cases where it would be required, and where,
instead, the notation which puts the ‘place-name’ for the variable, which is left at our
disposal,'! is very useful. In the preceding example one would write

O sin 0%+ \/(3 - I:l)

log(2 + cos |:|)

and to denote fx), i), flax* + b), fle?), it would suffice to write on the right, within
parentheses, (), the desired variable.

The greatest utility is perhaps obtained in the simplest cases: for instance, in order to denote
by O, 0% O the identity function, fix) = x, or the quadratic, flx) = &°, or the reciprocal, fix) =
1/x, when the f must be denoted as the argument in a functional. For example, F(O), E),
might indicate the first and second moments of a distribution F (according to the conventions
of which we shall speak in Chapter 6), and then for any others, {0"), F(|O"|) and so on.

1.9.7. Finally, a secondary device is that of consistently denoting by K'any multiplicative
constant whatever and, if necessary, indicating its expression immediately afterwards,
instead of writing it directly, in extensive form, in the formulae. Otherwise, it often hap-
pens that a function, of x say, has a rather complicated appearance and each symbol, even
those in small print or in the exponents and so on, must be deciphered with care in order
to see where x appears. Often one subsequently realizes that the function is very simple
and that the complexity of the expression derives solely from having expressed the con-
stant in extensive form. We may have a normalizing constant which, at times, could even
be ignored because it automatically disappears in the sequel, or can be calculated more

11 In the case of many variables (for instance three) one could easily use the same device, putting in their
places different ‘placenames’; for example, 0Oy, Oy, O3, with the understanding that fix, y, z) or A5, —%, 0) or
Sl + y,—2x, 1 - 29) etc., is what one obtains putting the 1st or 2nd or 3rd elements of the triple in the places
indicated by the three ‘place names’ with indices 1, 2, 3.
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easily from the final formula. At times, in fact, it will be left as a ‘reminder’ of the exist-
ence of an omitted multiplicative factor, which will always be indicated by K, even if the
value might change at each step: the reader should make careful note of this remark.

1.10 Some Remarks on Terminology

1.10.1. It is without doubt unreasonable, and rather annoying, to dwell at length on
questions of terminology; on the other hand, a dual purpose glossary would be useful
and instructive. In the first place, it could improve on a simple alphabetical index in
aiding those who forget a definition, or remember it only vaguely; secondly, it could
explain the motivation behind the choice, or sometimes the creation, of certain terms,
or the fixing of certain conventions for their use.'? For those interested, such an expla-
nation would also provide an account of the wherefores of the choices. Such a glossary
would, however, be out of place here and, in any case, the unusual terms are few and
they will be explained as and when they arise.

1.10.2. More importantly, attention must be drawn to some generic remarks, like paying
attention to the nuances of divergences of interpretation, which depend on differences in
conception. The main one, that of registering that an event is always a single case, has
already been underlined (Section 1.5.1); the same remark holds for a random quantity
(Section 1.7.2), and for every kind of ‘random entity. Two clarifications of terminology are
appropriate at this juncture: the first to explain why I do not use the term ‘variable’; the
second to explain the different uses of the terms ‘chance; ‘random’ and ‘stochastic’

To say ‘random (or “chance”) variable’ might suggest that we are thinking of the ‘statisti-
cal’ interpretation in which one thinks of many ‘trials’ in which the random quantity can
vary, assuming different values from trial to trial: this is contrary to our way of understand-
ing the problem. Others might think that, even if it is a question of a unique well-deter-
mined value, it is ‘variable’ for one who does not know it, in the sense that it may assume
any one of the values ‘possible’ for him. This does not appear, however, to be a happy
nomenclature, and, even less, does it appear to be necessary. In addition, if one wanted to
adopt it, it would be logical to do so always, by saying: random variable numbers, random
variable vectors, random variable points, random variable matrices, random variable dis-
tributions, random variable functions, ..., random variable events, and not saying random
vector, random point, random matrix, random distribution, random function, random
event, and only in the case of numbers not to call it number any more, but variable.

With regard to the three terms — ‘chance;, ‘random; ‘stochastic’ — there are no real
problems: it is simply the convenience of avoiding indiscriminate usage by supporting
the consolidation of a tendency that seems to me already present but not, as far as I
know, expressly stated. Specifically, it seems to me preferable to use, systematically:

o ‘Random’ for that which is the object of the theory of probability (as in the preceding
cases); I will, therefore, say random process, not stochastic process.

o ‘Stochastic’ for that which is valid ‘in the sense of the calculus of probability”: for
instance, stochastic independence, stochastic convergence, stochastic integral; more

12 A very good example would be that of the Dictionary at the end of the ‘book’ by Bourbaki (1939).
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generally, stochastic property, stochastic models, stochastic interpretation, stochastic
laws; or also, stochastic matrix, stochastic distribution,'* and so on.

o ‘Chance’ is perhaps better reserved for less technical use: in the familiar sense of ‘by
chance] ‘not for a known or imaginable reason, or (but in this case we should give
notice of the fact) in the sense of ‘with equal probability’ as in ‘chance drawings from
an urn; ‘chance subdivision, and similar examples.

1.10.3. Special mention should be made of what is perhaps the important change in
terminology: prevision in place of mathematical expectation, or expected value and so
on. Firstly, all these other nomenclatures have, taken literally, a rather inappropriate
meaning and often, through the word ‘expectation; convey something old-fashioned
and humorous (particularly in French and Italian, where ‘espérance’ and ‘speranza’
primarily mean ‘hope’!). In any case, it is inconvenient that the expression of such a
fundamental notion, so often repeated, should require two words. Above all, however,
there was another reason: to use a term beginning with P, since the symbol P (from
what we have said and recalled) then serves for that unique notion which in general
we call prevision'* and, in the case of events, also probability."®

1.11 The Tyranny of Language

All the devices of notation and terminology and all the clarifications of the interpreta-
tions are not sufficient, however, to eliminate the fundamental obstacle to a clear and
simple explication, adequate for conceptual needs: they can at most serve as palliatives,
or to eliminate blemishes.

That fundamental obstacle is the difficulty of escaping from the tyranny of everyday
language, whose viscosity often obliges us to adopt phrases conforming to current
usage instead of meditating on more apt, although more difficult, versions. We all
continue to say ‘the sun rises’ and I would not know which phrase to use in order not
to seem an anachronistic follower of the Ptolemaic system. Fortunately the suspicion
does not even enter one’s mind because nobody quibbles about the literal meaning of
this phrase.

13 The case of matrices and distributions illustrates the difference well. A random matrix is a matrix whose
entries are random quantities; a stochastic matrix (in the theory of Markov chains) is the matrix of
‘transition probabilities’; i.e. well-determined quantities that define the random process. A random
distribution (well-defined but not known) is that of the population in a future census, according to age, or
that of the measures that will be obtained in 7 observations that are to be made; a stochastic distribution
would mean distribution of probability (but it is not used, nor would it be useful).

14 Translators’ note. We have used prevision rather than foresight (as in Kyburg and Smokier, p. 93)
precisely for the reasons given in 1.10.3.

15 SIn almost all languages other than Italian, the letter E is unobjectionable, and often a single word is
sufficient: Expectation (English), Erwartung (German), Espérance mathématique (French), etc. However,
the use of E is inconvenient because this is often used to denote an event and, in any case, it can hardly
remain if one seeks to unify it with P. It is difficult to foresee whether this unification will command
widespread support and lead to a search for terms with initial letter P in other languages (see footnote
above), or other solutions. We say this to note that the proposed modification causes little difficulty in Italy,
not only because of the existence and appropriateness of the term ‘Previsione’ but also because the
international symbol E has not been adopted there.

17
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In the present exposition we shall often, for the sake of brevity, use incorrect
language, saying, for example: ‘let the probability of E be = %’, ‘let the events A and B
be (stochastically) independent; ‘let the probability distribution of a random quan-
tity X be normal; and so on. This is incorrect, or, more accurately, it is meaningless,
unless we mean that it is a question of an abbreviated form to be completed by
‘according to the opinion of the individual (for example You) with whom we are
concerned and who, we suppose, desires to remain coherent’ The latter should be
understood as the constant, though not always explicitly stated, intention and inter-
pretation of the present author.

This is stated, and explicitly repeated, wherever it seems necessary, due to the intro-
duction of new topics, or for the examination of delicate points—perhaps even too
insistently, with the risk, and near certainty, of irritating the reader. Even so, notwith-
standing the present remark (even imagining that it has been read), I am afraid that the
very same reader when confronted with phrases like those we quoted, instead of under-
standing implicitly those things necessary in order to interpret them correctly, could
have the illusion of being in an oasis — in the ‘enchanted garden’ of the objectivists (as
noted at the end of Chapter 7, 7.5.7) — where these phrases could constitute ‘statements’
or ‘hypotheses’ in an objective sense.

In our case, in fact, the consequences of the pitfalls of the language are much more
serious than they are in relationship to the Copernican system, where, apart from the
strong psychological impediments due to man’s egocentric geocentrism, it was simply a
question of choosing between two objective models, differing only in the reference sys-
tem. Much more serious is the reluctance to abandon the inveterate tendency of savages
to objectivize and mythologize everything;'® a tendency that, unfortunately, has been,
and is, favoured by many more philosophers than have struggled to free us from it."”
This haslg)een acutely remarked, and precisely with reference to probability, by Harold
Jeffreys:

‘Realism has the advantage that language has been created by realists, and mostly
very naive ones at that; we have enormous possibilities of describing the inferred
properties of objects, but very meagre ones of describing the directly known ones
of sensations’

16 The main responsibility for the objectivizationistic fetters inflicted on thought by everyday
language rests with the verb ‘to be’ or ‘to exist} and this is why we drew attention to it in the
exemplifying sentences by the use of italics. From it derives the swarm of pseudoproblems from ‘to be
or not to be) to ‘cogito ergo sum), from the existence of the ‘cosmic ether’ to that of ‘philosophical
dogmas’.
17 This is what distinguishes the acute minds, who enlivened thought and stimulated its progress, from the
narrow-minded spirits who mortified it and tried to mummify it: those who took every achievement as the
starting point to presage further achievement, or those, on the contrary, who had the presumption to use it
as a starting point on which to be able to base a definitive systematization.

For the two types, the qualification given by R. von Mises seems appropriate (see Selected Papers,
Vol. 11, p. 544): ‘great thinkers’ (like Socrates and Hume) and ‘school philosophers’ (like Plato
and Kant).
18 Jeffreys, a geophysicist, who as such was led to occupy himself deeply with the foundations of
probability, holds a position similar in many aspects to the subjectivistic one. The quotation is taken from
H. Jeffreys, Theory of Probability, Oxford (1939), p. 394.
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1.12 References

1.12.1. We intend to limit the present references to a bare minimum. The reader who wishes
to study the topics on his own can easily discover elsewhere numerous books and references
to books. Here the plan is simply to suggest the way which I consider most appropriate for
the reader who would like to delve more deeply into certain topics, beyond the level reached
here, without the inconvenience of passing from one book to another, with differences in
notation, terminology and degree of difficulty.

1.12.2. The most suitable book for consultation according to this plan is, in my opinion,
that of Feller:

Willy Feller, An Introduction to Probability Theory and its Applications, in two volumes:
I (1950) (2nd and 3rd edn, more and more enriched and perfected, in 1956 and 1968);
11 (1966); John Wiley & Sons, Inc., New York.

The treatment, although being on a high level and as rigorous as is required by the topic,
is not difficult to read and consult. This is due to the care taken in abolishing useless compli-
cations, in making, as far as possible, the various chapters independent of each other while
facilitating the links with cross-references, and in maintaining a constant interplay between
theoretical questions and expressive examples. Further discussion may be found in a review
of it, by the present author, in Statistica, 26, 2 (1966), 526—528.

The point of view is not subjectivistic, but the mainly mathematical character of the treat-
ment makes differences of conceptual formulation relatively unobtrusive.

1.12.3. For the topics in which such differences are more important, that is those of infer-
ence and mathematical statistics (Chapter 11 and Chapter 12), there exists another work
that is inspired by the concepts we follow here. Such topics are not expressly treated in Feller
and thus, with particular reference to these aspects, we recommend the following work, and
above all the second volume:

Dennis V. Lindley, Introduction to Probability and Statistics from a Bayesian viewpoint, in
two volumes: I, Probability; 11, Inference; Cambridge University Press (1965).

Complementing the present work with those of Feller and Lindley would undoubtedly
mean to learn much more, and better, than from this work alone, except in one aspect; that
is the coherent continuation of the work of conceptual and mathematical revision in con-
formity with the criteria and needs already summarily presented in this introductory chapter.

The above-mentioned volumes are also rich in interesting examples and exercises, varied
in nature and difficulty.
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Concerning Certainty and Uncertainty

2.1 Certainty and Uncertainty

2.1.1. In almost all circumstances, and at all times, we all find ourselves in a state of
uncertainty.

Uncertainty in every sense.

Uncertainty about actual situations, past and present (this might stem from either a
lack of knowledge and information, or from the incompleteness or unreliability of the
information at our disposal; it might also stem from a failure of memory, either ours or
someone else’s, to provide a convincing recollection of these situations).

Uncertainty in foresight: this would not be eliminated or diminished even if we accepted,
in its most absolute form, the principle of determinism; in any case, this is no longer in
fashion. In fact, the above-mentioned insufficient knowledge of the initial situation and of
the presumed laws would remain. Even if we assume that such insufficiency is eliminated,
the practical impossibility of calculating without the aid of Laplace’s demon would remain.

Uncertainty in the face of decisions: more than ever in this case, compounded by the
fact that decisions have to be based on knowledge of the actual situation, which is itself
uncertain, to be guided by the prevision of uncontrollable events, and to aim for certain
desirable effects of the decisions themselves, these also being uncertain.

Even in the field of tautology (i.e. of what is true or false by mere definition, indepen-
dently of any contingent circumstances), we always find ourselves in a state of uncer-
tainty. In fact, even a single verification of a tautological truth (for instance, of what is
the seventh, or billionth, decimal place of 7, or of what are the necessary or sufficient
conditions for a given assertion) can turn out to be, at a given moment, to a greater or
lesser extent accessible or affected with error, or to be just a doubtful memory.

2.1.2. It would therefore seem natural that the customary modes of thinking, reason-
ing and deciding should hinge explicitly and systematically on the factor uncertainty as
the conceptually pre-eminent and determinative element. The opposite happens, how-
ever: there is no lack of expressions referring to uncertainty (like ‘I think] ‘I suppose;,
‘perhaps; ‘with difficulty, ‘I believe, ‘I consider it as probable; ‘I think of it as likely,
‘I would bet, T'm almost certain, etc.), but it seems that these expressions, by and large,
are no more than verbal padding. The solid, serious, effective and essential part of
arguments, on the other hand, would be the nucleus that can be brought within the

Theory of Probability: A Critical Introductory Treatment, First Edition. Bruno de Finetti.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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language of certainty — of what is certainly ¢rue, or certainly false. It is in this ambit that
our faculty of reasoning is exercised, habitually, intuitively and often unconsciously.

In reasoning, as in every other activity, it is, of course, easy to fall into error. In order to
reduce this risk, at least to some extent, it is useful to support intuition with suitable super-
structures: in this case, the superstructure is logic (or, to be precise, the logic of certainty).

Whether it is a question of traditional verbalistic logic, or of mathematical logic, or of
mathematics as a whole, the only difference in this respect is in the degree of extension,
effectiveness and elegance. In fact, it is, in any case, a question of ascertaining the
coherence, the compatibility, of stating, believing, or imagining as hypotheses some set of
‘truths! To put it in a different way: thinking of a subset of these ‘truths’ as given (knowing,
for instance, that certain facts are true, certain quantities have given values, or values in
between given limits, certain shapes, bodies or graphs of given phenomena enjoy given
properties, and so on), we will be able to ascertain which conclusions, among those of interest,
will turn out to be — on the basis of the data — either certain (certainly true), or impossible
(certainly false), or else possible. The qualification ‘possible’ — which is an intermediate,
generic and purely negative qualification — is applied to everything that does not fall into the
two extreme limit cases: that is to say, it expresses one’s ignorance in the sense that, on the
basis of what we know, the given assertion could turn out to be either true or false.

2.1.3. This definition of ‘possible’ itself reveals an excessive and illusory confidence in
‘certainty’: in fact, it assumes that logic is always sufficient to separate clearly that which
is determined (either true or false), on the basis of given knowledge, from that which is
not. On the contrary (even apart from the possibility of deductions which are wrong, or
whose correctness is in doubt), to the sphere of the logically possible (as defined above)
one will always add, in practice, a fringe (not easily definable) of the personally possible;
that is that which must be considered so, since it has not been established either that it
is a consequence of one’s knowledge or that it is in conflict with it.

We have already said, in fact, that logic can reduce the risk of error, but cannot
eliminate it, and that tautological truths are not necessarily accessible. However, in
order not to complicate things more than is required to guard against logical slips, we
will always consider the case in which ‘possible’ can be interpreted as logically possible."

2.2 Concerning Probability

2.2.1. The distinction between that which, at a certain moment, we are ignorant of, and
that which, on the other hand, turns out to be certain or impossible, allows us to think
about the range of possibility; that is, the range over which our uncertainty extends.
However, this is not sufficient as an instrument and guide for orientation, decision or
action: to this end —and this is what we are interested in — it will be necessary to base
oneself on a further concept; the concept of probability.

1 Possibly by eliminating some knowledge. For instance, in the case of z it seems reasonable (for the
problem under consideration) to imagine that one ignores the properties that permit the calculation of z,
and to consider it as an ‘experimental constant’ whose decimal representation could only be known if
somebody had determined it and published the result. I believe that for a mathematician, too, it would be
reasonable to think that everything proceeds as if he were in such a state of ignorance.
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In this chapter we do not wish to talk about probabilities, however; they will
be introduced in Chapter 3. This deferment is undoubtedly awkward: obviously, the
awkwardness consists in introducing preliminary notions without, at the same time,
exhibiting their use. Didactically this is a bad mistake — one runs the risk of making
boring and dull that which otherwise would appear clear and interesting. However,
when it is important to emphasize an essential distinction, which otherwise would
remain unnoticed and confused, a rigid separation is necessary — even if it seems to be
artificial and pedantic. This is precisely the case here.

2.2.2. The study of the range of possibility, to which we shall here limit ourselves,
involves learning how to know and recognize all that can be said concerning uncer-
tainty, while remaining in the domain of the logic of certainty; that is, in the domain of
what is objective. Probability will be a further notion not belonging to that domain and,
therefore, a subjective notion. Unfortunately, these two adjectives anticipate a question
about which there could be controversial opinions — their use here is not intended to
prejudice the conclusion, however. For the time being, what matters is to make clear a
distinction that is methodologically fundamental: afterwards, one can discuss the
interpretation of the meaning of the two fields it delineates, the choice of nomenclature,
and the points of view corresponding to them. It is precisely in order to be able to discuss
them lucidly afterwards that it is necessary to avoid an immediate discussion of possi-
bility and probability together; the confusion so formed would be difficult to resolve.

Both the distinction and the connection between the two fields are easily clarified: the
logic of certainty furnishes us with the range of possibility (and the ‘possible’ has no
gradations); probability is an additional notion that one applies within the range of pos-
sibility, thus giving rise to gradations (‘more or less probable’) that are meaningless in
the logic of certainty.

2.2.3. Since it is certain that everyone knows enough about probability to be able to inter-
pret these explanations in a less vague fashion, we can say that ‘probability is something
that can be distributed over the field of possibility. Using a visual image, which at a later
stage might be taken as an actual representation, we could say that the logic of certainty
reveals to us a space in which the range of possibilities is seen in outline, whereas the logic
of the probable will fill in this blank outline by considering a mass distributed upon it.

There is no harm in anticipating the developments that the treatment will undergo
from the next chapter onwards, provided that, from the fact that they are not talked
about here, one understands that they do not belong in the domain that we now con-
sider it important to present as well-delimited and distinct.

2.3 The Range of Possibility

2.3.1. Prologue. Let us introduce right away the use of “You, following Good (Savage uses
‘Thou’). The characterization of what is possible depends on the state of information. The
state of information will be that (at a given moment) of a real individual, or it might even
be useful to think of a fictitious individual (as an aid to fixing ideas). This individual, real or
fictitious, in whose state of information — and, complementarily, of uncertainty — we are inter-
ested, we will denote by “You! We do so in order that You, the reader, can better identify
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yourself with the role of this character. This character — or, better, You — will play a much more
important role after this chapter, when probabilities will enter the scene. For the moment, You
are in the audience, because You have to limit yourself to passively recording what You know
for certain, or what You do not know.> All the same, it will be useful for You to at least get used
to putting yourself in this character’s place, since, even if it is not yet time to speak our lines,
we are about to walk onto the stage — that is to enter into the range of possible alternatives.

With regard to any situation or problem that You have to consider, there will always exist
an enormous number of conceivable alternatives. Your information and knowledge will, in
general, permit You to exclude some of them as impossible: that is, they will permit You — and
this has been said to be the function of science — a ‘limitation of expectations. All the others
will remain possible for You; neither certainly true, nor certainly false. It will not happen that
only one of them will be isolated as certain, except in special cases, or unless a rather crude
analysis of the situation is given. Obviously, it is always sufficient to take all the possible alter-
natives and present them as a whole in order to obtain a single alternative which is ‘certain

The choice of which of the more or less sophisticated, detailed, particularized forms
we need, or consider appropriate, in order to distinguish or subdivide such alternatives,
according to the problems and the degree of refinement we require in considering them,
depends on us, on our judgment. Also, we have available several possible languages in
which we can express ourselves in this connection. It is convenient to introduce them
straight away, and altogether, in order to show, at the same time, on the one hand their
essential equivalence, and, on the other, the differences between them which render
their use more or less appropriate in different cases.

2.3.2. Random events and entities. Everything can be expressed in terms of events
(which is the simplest notion); everything can be expressed in terms of random entities
(which is the most generic and general notion); and so on. One or other of these notions
is sufficient as a starting point to obtain all of them. However, it is instructive to concen-
trate attention on four notions which immediately allow us to frame within the general
scheme the most significant types of problems, important from both the conceptual
and practical points of view.

We will consider:

random events,
random quantities,
random functions,
random entities.

Let us make clear the meaning that we give to ‘random: it is simply that of ‘not known’
(for You), and consequently ‘uncertain’ (for You), but well-determined in itself. Not even
the circumstance of ‘not known’ is to be taken as obligatory; in the same way we could
number constants among functions, though we will not call a constant a ‘function’ if
there is no good reason. To say that it is well-determined means that it is unequivocally
individuated. To explain this in a more concrete fashion; it must be specified in such a
way that a possible bet (or insurance) based upon it can be decided without question.

2 You would have a more personal and autonomous role if we took into account the faculty, which You
certainly possess, of considering as ‘possible’ that which You could show to be impossible, but which
demands too much deductive effort. However, we have stated, in Section 2.1.3, that, for the sake of
simplicity, we omit consideration of such hypotheses.
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2.3.3. First, let us consider random quantities: this is an intermediate case from which
we can pass more easily to the others, particularizing or generalizing as the case may be.
We will denote a number, considered as a random quantity, by a capital letter; for exam-
ple X or ¥, and so on. It might be an integer, a real number, or even a complex number;
but the latter case should be specified explicitly. The true value is unique, but if You call
it random (in a nonredundant usage) this means that You do not know the true value.
Therefore, You are in doubt between at least two values (possible for You), and, in gen-
eral, more than two — a finite or infinite number (for instance, all the values of an inter-
val, or all the real numbers). We will denote by I(X) the set of possible values of X, and we
will write, in abbreviated form, inf X and sup X for inf I(X) and sup I(X). It is particularly
important to distinguish the cases of random quantities which are bounded (from above
and below), that is inf X and sup X finite, and those which are only bounded from above,
or only bounded from below, or unbounded, that is inf X = —co, or sup X = +eo, or both.

To exemplify what we mean by well determined in the case of random quantities, let
us put X = the year of death of Cesare Battisti.? The true value is X = 1916. While he was
alive this value was not known to anyone and all years from that time on were possible
values (for everybody). After the event, it is only random for those who are ignorant of
it: for instance, for those who know only that it happened during Italy’s participation in
the World War I, the possible values are the four years 1915, 1916, 1917 and 1918.

Every function of a random quantity, ¥ = f{IX) or of two (or more), Z = (X, Y), and so
on, is a random quantity (possibly ‘degenerate; i.e. certain, if, for instance, f(X) has the
same value for all possible values of X).

2.3.4. An event (or proposition) admits only two values: TRUE and FALSE. In place of
these two terms it is convenient to put the two values 1 and 0 (1 = TRUE, 0 = FALSE);
in this way we simply reduce to a special case of the preceding, with an obvious, expres-
sive meaning. Thus, when we wish to interpret the convention in this way, the event is
identified with a gain of 1 if the event occurs and with a gain of 0 if the event does not
occur. Moreover, with this convention the logical calculus of the events is simplified.

We continue to denote events with capital letters; in the main, E, H, A, B,.... It is clear,
for instance, that 1 — E is the negation of E, which is false if E is true, and vice versa (value
0 if E = 1, and conversely): it is also clear that AB is the logical product of A and B, that
is true if both A and B are true, and so on (this is merely an example, the topic will be
developed later, in Section 2.5).

An event corresponds to a question which admits only two answers; YES or NO (YES = 1,
NO =0). It is clear that with a certain number of questions of this type we can obtain an
answer to a question that involves any number of alternative answers. Given a partition
into s alternatives (one, and only one, of which is true), we can consider, for instance, the
s events (exclusive and exhaustive) which correspond to them. But even less is sufficient:
with # events we can imagine 2" dispositions of YES—NO answers; we therefore have a
partition into s = 2" alternatives if all these answers are possible, or into a smaller num-
ber, s < 2", if some of them are impossible (see Section 2.7 for further details).

Abandoning the restriction to a ‘finite number; it is clear that by means of events we
can study every case, even those involving an infinite number of possibilities.

3 Cesare Battisti was deputy for Trento at the Vienna Parliament; he volunteered for the Italian army, was
then taken prisoner and hanged by the Austrians in 1916.
(Trento, where the author once lived, is an Italian city which was, in Battisti’s time, a part of Austria.)
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2.3.5. By talking about random entities in general, we have a means of expressing in a
synthetic form the situation presented by any problem whatever. It is a question of
referring oneself at all times to the same perspective, the one already implicitly intro-
duced in the case of a random quantity, and which we now wish to make more precise
and then to extend.

In the case of a random quantity, X, we can visualize the situation by considering as
the ‘space of alternatives, .7 a line, the x-axis,* and on it the set, £, of the only values
(points) possible (for You). In this way we consider en masse, implicitly, all the events
concerning X (that it belongs to a half-line, X < %, or to an interval, ¥’ < X <«”, or to any
arbitrary set, X € I).”

But now it is obvious that the same representation holds in all cases (in a more intui-
tive sense, of course, in three, or fewer, dimensions). If we consider two random quanti-
ties, X and Y, we can think of the Cartesian plane, with coordinates x and y, as the space

.’in which we have a set ¢/ of points (pairs of values for X and Y) possible (for You)

for a random point (X, Y). Every event (proposition, statement) concerning X and Y
corresponds to a set / of .: of course, only the intersection with ¢ is required, but it is
simpler (and innocuous) to think of all sets /. The same could be said in the case of three
random quantities X, Y, Z (in this case .’is ordinary space), or for more than three.

Independently of the coordinate system, we could, in this geometric representation,
formulate a problem straightaway. It might concern a random point on a plane (e.g.
that point which would be hit in firing at a target), or in ordinary space (e.g. the posi-
tion, at a given instant, of a satellite with which we have lost contact). We find an
appropriate representation for the situation of a particle (position and velocity) by
using six-dimensional space: the space of dimension 6# serves as ‘phase space’ for the
case of n particles.

Independently of the geometrical meaning, or any meaning that suggests (in a natural
way) a geometrical representation, we can always imagine, for any random entity, an
abstract space ./ consisting of all possible alternatives (or, if convenient, a larger space
of which these form a subset .””). We could consider, for example, random vectors,
random matrices or random functions, and, thus far, the linear structure of the space
continues to present itself as natural. But we could also consider random sets: for example,
random curves (the path of a fly, or an aeroplane), random sets on surfaces (that part of
the earth’s surface in shadow at a given instant, or on which rain fell in the last 24 hours);
or we could think of random entities inadequate to give any structure to the space.

We can, therefore, accept this representation as the general one, despite some res-
ervations which will follow shortly (the latter are intended not as arguments against
the representation, or for its rejection, but rather in favour of its acceptance ‘with a
pinch of salt’).

4 We always denote by x(y, etc.) the axis on which X(Y, etc.) is represented.

5 We omit here critical questions relating to the possibility of giving, or not giving, a meaning to statements of
an extremely delicate or sophisticated nature (or at least to the possibility of taking them into consideration).
For example, the distinction between < and <, the case of I ‘nonmeasurable’ in some sense or other, etc. It will
be necessary to say something in Chapter 6; discussion of a critical character will be developed only in the
Appendix, apart from brief anticipatory remarks here and there.
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2.3.6. There is no need to deal with random functions separately, by virtue of the
particular position they hold with respect to the preceding considerations (just as
events and arbitrary entities have extreme positions, and random quantities an inter-
mediate, but instrumentally fundamental, position). It is useful, however, to mention
them explicitly for a moment. Firstly, in order to point out an example of applications
which become more and more important from now on, and are largely new with respect
to the range of problems traditionally recognized. Secondly, because we can allude, in a
simple and intuitive way, to certain critical observations of the kind that will be reserved,
in general, for the Appendix.

A random function is a function whose behaviour is unknown to You: we will denote
it by Y(#), assuming for convenience of intuition that the variable ¢ is time.°® If the func-
tion is known up to certain parameters, for instance Y{(¢) = A cos(Bt + C) with A, B, C
random (i.e. unknown to You), the whole thing is trivial and reduces to the space of
parameters. The case which, in general, we have in mind when we speak of a random
function — or a random process, if we wish to place more emphasis on the phenomenon
than on the mathematical translation — is that in which (to use the suggestive, if somewhat
vague, phrase of Paul Lévy) the uncertainty exists at every instant (or, in his original
expression, ‘chance operates instant by instant’).

This might mean, for example, that knowing the values of Y(t) at any number of instants,
t =ty ty,..., t,, however large the (finite) #, the value at a different instant ¢ will still, in
general, be uncertain. Sometimes, either for simplicity or in order to be ‘realistic; we imag-
ine that it makes sense to measure Y at a finite (although unrestrictedly large) number of
instants, without disposing of other sources of knowledge.” In such cases, the space.”” can
be thought of as that in which every function is a ‘point; but in which the possibility of
distinguishing whether or not a function belongs to a set is only possible for those sets
defined by a finite number of coordinates: the latter, being observable, are actually events.
The simplest form of these events occurs when we ask whether or not the values at given
instants fall inside fixed intervals a;, < Y(¢;,) < by, h = 1, 2,..., n. To give a visual interpreta-
tion, we ask whether or not the graph passes through a sequence of # ‘doors; like a slalom.

2.4 Critical Observations Concerning the‘Space
of Alternatives’

2.4.1. Having reference to the ‘space of alternatives’ undoubtedly provides a useful
overall visualization of problems. Nevertheless, the systematic and, in a certain sense,
indiscriminate use of it, which is fashionable in certain schools of thought, does have its
dangers. One should learn to recognize these, and strive to avoid them.

In considering fields of problems of whatever complexity — in which, for instance,
random sets, functions, sequences of functions and so on can occur together — the most

6 Our preference for Y(¢), rather than the more usual X(¢) as a notation for a generic random function,
depends mainly on the fact that an X is often used as an ‘ingredient’ in the construction of Y(¢) At other
times, x is used as a variable in place of t, and, anyway, in the graphical representation it is always convenient
to think of the ordinate as y, and the abscissa as t or «.

7 Like, for instance, velocity Y'(¢) at an instant, measured with a speedometer; or the maximum or
minimum of Y(£) in an interval (¢, t”), measured with instruments like a Max—Min thermometer.
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general way of interpreting and applying the concepts exhibited in Section 2.3.5 is
always the same; that is the following.

One goes back to the finest possible partition into ‘atomic’ events — not themselves
subdivisible for the purposes of the problem under consideration — and these are con-
sidered as points constituting the set £/ of ‘possible outcomes’ This abstract space is the
‘space of alternatives, or the ‘space of outcomes’: in certain cases, such as the examples
of Section 2.3, it may be convenient to think of it as embedded in a larger and more
‘manageable’ space, and to regard this latter as the ‘space of alternatives.

In this scheme of representation, each problem (by which we mean problem concern-
ing the alternatives ¢/) reduces to considering ‘the true alternative’ (or ‘the one which
will turn out to be verified, or however one wants to express it), as a random point in.””
or, if we wish to be precise, in 2. Let us call this point Q: it expresses everything there is
to be said. Were we to lump together in.” all possible problems, this space would be the
space of all possible histories of the universe (explained as far as the most unimaginably
minute details), and Q would be that point representing the true history of the universe
(explained as far as the most unimaginably minute details).

Each event in this scheme is evidently interpretable as a set of points. E is the set of all
points Q for which E is true; for example, it is the set of all individual ‘histories of the
universe’ in which E turns out to be true. With the interpretation 1 = TRUE, 0 = FALSE,
one could also say that E is a function of the point Q with values 1 on points Q of the set
E, and 0 elsewhere (the indicator® function of the set E).

Similarly, each random quantity is interpretable as a real-valued function of the points
Q:X = X(Q) is the value which X assumes if the true point is Q. The preceding case, E =
E(Q), is simply the particular case which arises when the function can only take on the
values 0 and 1.

The same is true for random entities of any other kind: for example, a random vector
is a vector which is a function of the point Q.

2.4.2. That all this can be useful and convenient as a form of representation is beyond
question. But things are useful if and only if we retain the freedom to make use of them
when, and only when, they are useful, and only up to the point where they continue to
be useful. A scheme that is too rigid, too definitely adopted and taken ‘too seriously,
ends up being employed without checking the extent to which it is useful and sensible,
and risks becoming a Procrustean bed.

This is what happens to those who refer themselves too systematically to this scheme.
Pushing the subdivision as far as the ‘points’ perhaps goes too far, but stopping it there
creates a false and misleading dichotomy between the problems belonging, and not
belonging, to the field under present consideration. The logical inconvenience which
this already creates in the range of possibility will become far more dangerous and
insidious when probabilities are introduced into such a structure.

An analogy between events and sets exists, but it is nothing more than an analogy.
A set is effectively composed of elements (or points) and its subdivision into subsets

8 In a different terminology, the indicator function is also called the characteristic function: this term has
many other meanings, and, in particular, in the calculus of probability it has a different and very important
meaning for which it must be reserved (see Chapter 6).
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necessarily stops when subdivision reaches its constituent points. With an event, how-
ever, it is possible, at all times, to pursue the subdivision (although in any application it
is convenient to stop as soon as the subdivision is sufficient for the study in progress,
otherwise things get unnecessarily complicated). The elements of the ‘final subdivision’
we have interpreted as ‘points; but any idea which does not take into account the rela-
tive, arbitrary and provisional nature of such a delimiting of the subdivision, which
thinks of it as ‘indivisible; or as ‘less subdivisible; or in any way different from all other
events, is without foundation and misleading. For instance, it would be illusory to wish
to distinguish between events corresponding to ‘finite’ or ‘infinite’ sets, or belonging to
finite or infinite partitions, as if this had some intrinsic meaning. There is even less
justification for retaining, as necessary, topological properties which happen to be
meaningful in.””. The latter we referred to as ‘space; instead of ‘set, simply to use a more
expressive language, and also because topological structures often exist and have inter-
est in certain spaces by virtue of the nature of the spaces themselves, even when not
required for any reason pertaining to the logical or probabilistic meaning.

2.4.3. Other objections, which we will develop a little more in the Appendix, would
lead us to impugn even more radically the validity of the above representative scheme
(and of many other things that we have hitherto admitted and which, for the moment,
we continue to admit). As an example, we note the fact that all sets (or the ‘points’ of
them) must be accepted as having the meaning of events.

In general terms, it will always be a question of examining if, and in which sense, a
statement really constitutes an ‘event; permitting, in a more or less realistic and accept-
able form, and in a unique way, the ‘verification’ of whether it is ‘true’ or ‘false!

What should be said concerning statements that are ‘verifiable’ only by means of an
infinite number of observations, or by waiting an infinite length of time, or by attaining
an infinite precision? A critical attitude in this respect could lead one not to consider as
‘events’ the fact that X has exactly the value x, or belongs to a set of measure zero (e.g. is
rational), but only the fact that X € I for a set I ‘up to sets of measure zero’ (and this,
although it eliminates some difficulties, introduces others), or ‘up to an error <g, that
can be chosen as small as desired, but nonzero; and so on. Even more radical are the
difficulties of ‘complementarity; which appeared first in quantum physics but can be
detected on a smaller scale in more everyday examples: A and B are events (observable),
but it is not possible to observe both of them, and, therefore, it is not possible to call the
product AB an event (observable).

All this, in addition to the specific reasons already given in the main text (and to
which we return in the next paragraph), reduces the value of the reduction to ‘points’
Indeed, it is symptomatic that, precisely in connection with arguments of this kind, von
Neumann developed a ‘geometry without points’ (in ‘Continuous geometries, Proc.
Nat. Acad., 22 (1936), 92—-100 and exemplified Proc. Nat. Acad., 22 (1936), 101-108)
where, as he says: “The point which we wish to stress is that the investigations described
above show an unbroken trend away from the notion of the point. The studies to which
he alludes are those of K. Menger and G. Bergmann (on linear spaces), of E. Klein, G.
Birkhoff and O. Ore (on lattices), and discussions with J.W. Alexander and H. Veblen.

Even more strictly in accordance with the considerations in the text, appear to be the
studies of St Ulam (in the ‘von Neumann lecture] Princeton (1963), still unpublished),
since he also refers himself to structures open to the adjunction of new entities as new
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circumstances arise. A ‘continuous geometry’ of von Neumann, on the other hand, is a
closed structure, although very rich, containing linear systems of any dimension ¢, with
¢ any real number between 0 and 1 (the empty and complete systems, respectively).
Ulam says: The indications are ... that there are no atoms of simplicity and, which is
most strange, one would almost be tempted to say that in the physical world the set-
theory axiom of Regularity — that is to say, that every set contains a minimal element
with respect to the relation of “belonging to a set” — does not hold!’

2.5 Logical and Arithmetic Operations

2.5.1. Having, through the convention 1 = TRUE, 0 = FALSE, given to events an
interpretation that makes them particular random quantities, it becomes both possible
and useful to take advantage of this unification in order to effect also an appropriate
unification of the operations related to them. Usually, and inevitably, prior to such a
convention,'® one considers two distinct series of operations: the (Boolean) logical
operations

Alogical product; v logical sum; ~ negation

applicable only to events; and the arithmetic operations

- product; + sum (and their inverses :/and —)

applicable only to numbers.

We have already touched upon the utility of certain applications of the arithmetic
operations to events, automatically possible by the above convention (see Section 2.3.4,
and also allusions in Chapter 1). We are now able not only to develop this extension
systematically, but also to obtain a complete unification by extending, in the opposite
direction, the logical operations into the field of numbers.

In fact, in the field of (real) numbers, we make the definitions:

xAy=min(x,y), xvy=max(x,y), ~x= l—x(zfc).11

It is immediate that the definitions agree with those known in the field of events (that is,
of the idempotent numbers 0 and 1), whereas, obviously, the usual properties (which it
would be beneficial to interpret and understand through examples in each of the two
cases), always hold both for numbers and events:

9 The italics are present in the original for the last three words only.

10 Which, as I later discovered, had already been adopted by von Neumann in 1932 in his treatment of
quantum mechanics; Appendix, Section 9.

11 As usual, we agree to place the tilde for ‘complementary to 1’ above, instead of in front, when dealing
with a single letter. The same convention — using a bar rather than a tilde — was adopted by L. Dubins and
L.J. Savage, How to Gamble if You Must, McGraw-Hill (1965), p. 64, and found to be of frequent utility.
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~(xny)=%vy
. (duality of A and v with respect to complements),
~(xvy)=%nAjy
xA(yvz)=(xry)v(xnz
(y ) ( y) ( ) (distributivity between A andv),
xv(yaz)=(xvy)a(xvz)
XAX=X
} (idempotence for Aand v)
xXVx=x

(in addition to the obvious commutative and associative properties of A and V).

2.5.2. Operations on events. By virtue of what has already been said, it is not a ques-
tion of making new definitions, but only of applying the general definitions to the case
of the values 0 and 1; it remains only to establish agreement with the usual meaning.

By the logical product of two (or more) events A, B, we mean the event which is true
if and only if all the factors are, and therefore false if at least one is false. If the factors
can only be 0 and 1, both the arithmetic product and the operation min (A) obviously
enjoy the property that the result is 1 if and only if all the factors are 1. Therefore, in the
field of events, the two operations of arithmetic product and logical product coincide;
thus, we could always refer simply to the product of two events, without danger of ambi-
guity, and write E = AB. The symbol A might be used for greater clarity only in compli-
cated cases; for instance,

E:(X+Y>54)A(Z>Y+12),

where the events are conditions (on random quantities X, Y, Z etc.), written as paren-
theses, and the fact that they are events and not numbers could be overlooked.

By the negation of an event A, we mean the event that is true if A is false and vice
versa; obviously, we have ‘not A’ = ~4 = A=1-A, because ~1=1-1=0, ~0 =
1-0=1.

By the logical sum of two (or more) events A, B, we mean the event that is true if at
least one of the summands is true, and therefore false if and only if they are all false. To
this corresponds the operation max (A), which gives 1 if at least one summand is 1, and
0 if all summands are 0. It is also obvious and well known that, with respect to negation,
the operation is dual to that of the product:

AvB=~ (A AB )
This follows also from the properties stated generally for ¥ A ¥.

This allows us to obtain an arithmetic expression for the logical sum: taking complements
and expanding, we obtain

AvB=1-(1-A)(1-B)=A+B-AB, 2.1)
and, similarly,

AvBvC=1-(1-A)(1-B)(1-C)
=A+B+C-AB-AC—-BC+ ABC.
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In general, for n summands,

E\VEyv..VE, =Y E~-YEE,

! i 2.2

+Y EEE,—..* E\E, .. E,, 22)
ijh

where the sums have to be taken over all the #n events E; over all the (3) products two at
a time, over all the (3) products three at a time, and so on, with alternate signs, up to the
last term which is the product of all # events with + if # is odd, - if # is even.

The arithmetic sum of two (or more) events A, B, is not, in general, an event, but a
random number expressing the number of successes. In particular, A + B has either the
value O (if they are both false), or 1 (if one is true and the other false), or 2 (if they are
both true). In general, as in this case, the relation between logical sum and arithmetic
sum is the following: both have the value 0 if every summand happens to be false (no
successes), whereas, otherwise, if true summands (successes) exist and number 1, 2,
3,..., in general m, the (arithmetic) sum is that number, whereas the logical sum always
takes the value one; that is, does not take into account multiplicity,

(logical sum)=1 A (arithmetic sum) (2.3)
or, explictly,
El\/Ez\/...\/En:1/\(E1+E2+...+En). (2.3,)

The fact of having two distinct notions is not, therefore, inconvenient but, on the
contrary, is an advantage because both have their raison d’étre. We are still faced with
the problem of eliminating the ambiguity of the terminology — since we do not wish to
be obliged to say ‘logical sum’ or ‘arithmetic sum’ every time. For this purpose it is
sufficient to adopt the natural convention of using sum for the arithmetic sum, and
event-sum for the logical sum (because only this is an event).

2.5.3. We observe that the operations introduced induce, over the field of real
numbers, the structure of a lattice, with the operation ~ which enjoys many properties
of the complement (in the algebraic sense), but is not exactly such, except in the field of
events (the numbers 0 and 1). There, in fact, we have x V& =1 (because either x or X is 1,
and the other 0), in addition to x + ¥ =1, which is also valid for any .

In addition, we observe that the expressions in arithmetic form for ~ x, x Ay, x V y
coincide (in the field of events) with those of Stone, where the sum has to be taken ‘mod
2, however, in order to obtain a Boolean ring.

The conventions adopted here do not give rise to algebraic properties of this kind but
seem to be the most suitable for expressing, simply and naturally, many things which are
otherwise difficult to express.

We will give examples at the end of this chapter (Section 2.11) in order not to inter-
rupt the flow of the argument, and we will often use similar simplifications. It will be
seen that it is not only a question of expressions concerning events or random quanti-
ties: for identical reasons, the same conventions meet requirements which also occur in
other fields.
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Figure 2.1 Venn diagrams: the representations of events and their logical relationships in the
set-theoretic interpretation: (a), (b) the cases of two and, respectively, three events with all (4 and,
respectively, 8) constituents possible; (c) an example in which only six of the eight combinations give
(possible) constituents.

2.5.4. We have mentioned, in Section 2.3, the set-theoretic interpretation. It is clear
that, by interpreting the events as sets, the operations ~, A, V, which we have introduced,
correspond in that context to the set-theoretic operations ~, N, U (complementation,
intersection, union). For random quantities, understood as functions of the ‘point’ Q,
Z = X Vv Yis the function that, at each point Q, assumes the larger of the two values X(Q)
and Y(Q):

Z(Q)=X(Q)vY(Q) (and similarly for A). (2.4)

A geometrical representation (which is formally identical) is especially useful, particu-
larly for didactic purposes, even if a genuine set-theoretic interpretation is lacking: it is
that of the so-called ‘Venn diagrams’ The events which one wishes to represent are drawn
as areas of a rectangle, which itself represents the certain event. The areas are delimited
with lines or, better, distinguished with different types of shading. In this way, one can
illustrate visually the relationships that are supposed to exist among the different events:
the existence, or not, of a certain intersection — distinguished by the overlapping of differ-
ent shadings — the inclusion of one event in another; and so on. Of course, it is only in
rather simple examples that clear figures, whose areas are not too contorted, are possible.

Shown in Figure 2.1a and 2.1b are the cases of two and three events, respectively,
where all the four (or eight) intersections are nonempty, that is are possible events;
whereas in Figure 2.1c two of the pair-wise intersections are not present.

2.6 Assertion, Implication; Incompatibility

2.6.1. We began this chapter by saying that, for You, every event, or proposition, can be
either certain, or impossible, or possible. We then talked about possibility. The time has
now come to translate these premises into a precise argument. We must make a distinc-
tion that, in the terminology proposed by B.O. Koopman,'? could be called a distinction
between contemplated propositions and asserted propositions. As considered so far, a
proposition E is always a contemplated proposition (for which You, or anyone else,

12 The Bases of Probability, in Kyburg and Smokler, pp. 161-172.
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could know whether it is true or false). Thus it remains, even if changed into E = 1, or
~E =0, or (E=1) = 1, and so on, or, put into words, ‘E is true, ‘not-E is false) ‘it is true
that E is true! Nothing is altered, because these are simply more or less extended ways
of saying nothing more and nothing less than E.

To make an assertion, we have to step outside of the vicious circle by saying something
extra-logical; such as ‘I assert that E is true, ‘For You, it is certain that E is impossible;
‘For me, E is possible’: that is something expressing not a logical relationship between
propositions, but a relationship between the proposition and the speaker.

To denote this succinctly, the symbol F has been introduced. If E is a proposition, an
event, then, by using - as a prefix, FE becomes the assertion that ‘E is certain’ (for
someone). Naturally, -~E is the assertion that ‘E is impossible, whereas by ~+E
we mean to denote the assertion that ‘E is possible’ (i.e. the nonassertion of both E and
of not-E).

2.6.2. We shall not make much use of this symbol, because we think that, in general,
the distinction will be clear from the context (for instance, by saying ‘certainly’). It is
useful, however, to draw attention to the importance of the distinction, and to illustrate
the use of the symbol by giving some examples in order to fix all this in the reader’s
mind. In any case, these observations were necessary at this juncture in order to make
it clear that certain expressions, which we will now introduce, have to be taken as
assertions.

By saying that an event A implies the event B, or that A is contained in B, we mean to
assert that A cannot occur unless B also occurs, or that AB is impossible: in symbols
 ~ AB. Instead of ~ AB one may also write AvBor AB=0,orA<B,orB-A>0
(because the inequality is false only for 1 < 0, i.e. for A = 1 and B = 0). It is always a
question of ways of expressing ~ AB, independently of the fact that it is certain, or
impossible, or possible, and these give assertions, simply by making the assertions. In
order to write that ‘A implies B’ with the meaning, as we have said, of assertion, it will
be necessary to write, for example, - A < B. However, we will introduce some ad hoc
symbols, to be understood as already having the value of assertions:

A
A

V/A)

B, A implies B;

B, A is identical to B (or A C BA B C A), or, A and B are
either both certainly true or both certainly false: (certain)
equality of A and B;

ACB.=ACBA~A=B, Astrictlyimplies B.13

A
A

N

B.=F
B. =k

13 The equality, A = B, is the event that takes place if A and B are both true or both false, and this can
happen for any A and B (except in the case of complementary events, B = A). However, in order not to make
the language unnecessarily heavy, we will continue to say, as usual, ‘equal; rather than ‘certainly equal; and to
write =, rather than =, except in ambiguous cases.

As regards strict implication, observe that it asserts that A < B with certainty, but that A = B is not
certain. In other words, we exclude A > B, i.e. A true and B false, but we do not exclude the converse, A < B.
Nothing is said concerning the possibility or impossibility of A and B being either both true, or both false.
Observe that A C B means (A C B) A ~(A = B) or (F A < B) A (~FA = B), which is very different from
- |:(A <B).~(A= B):| =+ A < B =+ AB, which denotes the assertion that A is false and B is true.

The meaning of all these relationships is immediately, intuitively obvious under the set-theoretic
interpretation.
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Figure 2.2 Venn diagram: the case of implication (inclusion).

2.6.3. The relationship of implication, which is clearly reflexive and transitive, induces,
over any set of events, a partial ordering and in particular a lattice in which the opera-
tions A and V (in the sense of ‘maximal’ element contained in those given, and ‘minimal’
element containing the given ones) coincide with those of logical product and logical
sum, already introduced. This is evident above-all under the set-theoretic interpreta-
tion A C B means that A is a subset of B, possibly coincident with B (this being excluded
if we write A C B, affirmed if we write A = B); hence the terms ‘contains, ‘is contained
in, have the opposite meaning to ‘imply; ‘is implied by, instead of being synonymous as
they might appear to be if one thought, for both terms, of the interpretation in terms of
events.'* In other words, in the Venn diagram for two events, which ‘in general’ (more
precisely, for A and B logically independent) has the appearance of Figure 2.1, the part
of A not contained in B must be missing (empty); in other words, A must coincide with
the doubly shaded area AB (as in Figure 2.2).

If both regions with single shading are missing we have the case A = B, and if the other
two regions (double shading and no shading) are missing we have A = B. Two other
important cases correspond to the absence of the doubly shaded area (case of incompat-
ibility: AB = 0), or the absence of the nonshaded area (case of exhaustivity: AB=0)."

2.6.4. Incompatibility. By saying that two events A and B are incompatible, we mean
to assert that it is impossible for them both to occur; i.e. that AB is impossible: in sym-
bols - ~AB. Instead of ~AB we can write AB=0,0or Av B,orA+B=AVB,orA+B<1,
or A<B, or B<A, always expressing the event ~AB, independently of the fact that it is
certain or impossible or possible. Each of these forms expresses the incompatibility; if it
is asserted, we can write, e.g.,F A + B< 1, ort A<B, which can be expressed, by reduc-
tion to the implication, as A c B. By saying that # events Ej, E,,...,E, are incompatible,
we mean to assert that they are pairwise incompatible (- EiE; = 0, i = j); that is that at
most one of them can occur. As a straightforward extension of - A + B <1, this can be
expressed as - Y < 1, where Y = E; + E; + ... + E,, is the number of ‘successes’; that is of
the events E; that are true. The same definition also holds for an infinite number of
events: in this case, instead of a non-negative integer, Y could also be an infinite cardinal
(e.g. that of denumerability, or of the continuum, or any other aleph). We note also that
the condition E; + E; + ... + E,=E; VE; Vv ... V E,, that is the coincidence of the logical
and arithmetic sums,'® is always characteristic of the case of incompatibility.

14 To avoid possible consequent mnemonic uncertainties about the meaning of C (and hence the opposite
meaning for D), it is sufficient to think of it as corresponding to < (2 then corresponds to >), whose meaning is
clear if we consider operations on the numbers 0 and 1 (events, indicator functions of sets).

15 The other cases are trivial: A or B or both would be determined, either certain or impossible.

16 For any non-negative (random) numbers the same conclusion is obviously valid: such equality holds if
and only if at most one of them can be nonzero.
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In other words, incompatible events are mutually exclusive; in the set-theoretic inter-
pretation it is a question of disjoint sets, having an empty intersection (pairwise, and
hence, a fortiori, for three or more).

2.6.5. Exhaustivity. By saying that two events A and B are exhaustive, we mean to
assert that it is impossible for neither of them to occur; i.e. that AB is impossible: in
symbols F~ AB. Instead of ~ AB one can (as above) write AB=0. or A vV B, or
A+B=AvB(ie.2-(A+B) =1-AB,A+B=1+AB),orA+B>1,or A<Bor B<A;
another form for the exhaustivity is therefore, for instance, FA + B > 1. This lends
itself easily to the extension of the definition to the case of n events, or even to an
infinite number. By saying that these are exhaustive (or, better, form an exhaustive
family — but the phrase is cumbersome), we mean to assert that at least one of them
must take place; that is, in the preceding notation, - Y > 1. This shows the relation-
ship between the two conditions. In the set-theoretic interpretation, it is a question of
a family of sets which covers the whole set Q of possible points (of course, there may
be some ?;/erlapping); i.e. those sets of points for which the complement of the union
is empty.

2.7 Partitions; Constituents; Logical Dependence
and Independence

2.7.1. Partitions. A partition is a family of incompatible and exhaustive events — that is for
which it is certain that one and only one event occurs. The coexistence of the conditions
FY<1andF Y>1means,in fact, - Y= 1. A partition can be finite or infinite: partitions
(and, for the simplest conclusions, in particular finite partitions) have a fundamental
importance in the calculus of probability (which, as already indicated, will consist in
distributing a unit ‘mass’ of probability among the different events of each partition).

It is, therefore, of importance to see now if, and how, one can reduce the general case,
in which one considers any finite number of events E;, E,,..., E,, to that of a partition.
We observe first of all that if, in particular, the E; are already incompatible, but not
exhaustive, it will be sufficient to add on the extra event

E, :1—(E1 +E, +...+E,,) (i.e., in another form, E, :EIEZ...En).

In the general case, we must consider the 2” products E\E,...E' where each E, is
either E;, or its complement E; formally, we can obtain them as the individual terms of
the expansion (E; + E,)(E, + E,)...(E, + E, ), which is identically 1, since each factor is 1.
Some of the 2" terms may turn out to be impossible and do not have to be considered:
those which remain, and are therefore possible, are called the constituents Cy, C,, ..., C;
of the partition determined by Ej, Ej, ..., E,, where s < 2".

17 Suppose that, instead of considering Q — the space of possible points for You, now — one considers a
larger space S which contains, in addition, certain points that are already known to be impossible (for
instance, in the light of more recent information). In all the preceding cases, the statement that a set is
empty must be replaced by empty of possible points — i.e. empty of points belonging to Q. In diagrams, one
could think of the region S ~ Q as drawn in black, and consider it as ‘nonexistent’



2 Concerning Certainty and Uncertainty | 37

By observing that the given expansion has value 1, we have already established that we
are dealing with a partition; on the other hand, the fact is evident per se (even more so
under the set-theoretic interpretation). A partition is given by a family of disjoint sets
that covers the space Q; or, in other words, into which Q is subdivided — in the same
way, for instance, in which Italy is divided into municipalities. If, instead, we perform
any other division whatsoever, the partition given by the constituents is that into the
‘pieces’ resulting from such a subdivision. For instance, Italy east and west of the Monte
Mario meridian, north and south of a given parallel, areas of altitude above and below
500 metres, areas more or less than 50 kilometres from the sea, belonging to a province
the name of whose capital or main city begins with a vowel or consonant, and so on.'®

Sometimes it will also be useful to introduce the (clumsy) notion of a ‘multi-event’ for
cases in which (provided we do not restrict ourselves to meaning ‘event’ in a purely
technical sense) a partition might correctly be called an ‘event with many alternatives’
Such is a game — a football game, for instance — with the three alternatives ‘victory,
‘draw’ and ‘defeat’ (and possibly a fourth, ‘not valid’ because of postponement etc.). The
same holds in the case of drawings from an urn containing balls of three or more differ-
ent colours, for example ‘white; ‘red; ‘black’; or throwing a die, or two dice, with possible
points in the range 1-6, or 2—12, respectively. A multi-event with m alternatives — more
briefly an ‘m-event’ — can always be thought of as a random quantity with m possible
values (e.g. 1, 2,..., m). In the case of a single die, the ‘points’ are precisely 1, 2,..., 6,
whereas for the two dice it is irrelevant whether we use 2, 3,..., 12, or 1, 2,..., 11. The
colours, or results of the game, could similarly be coded numerically. In speaking of an
m-event we want, essentially, to emphasize the qualitative aspects of the alternatives.
It is then appropriate to use the mathematical interpretation of them as unit vectors
(1,0,..,0)(0,1,0,..,0),..., (0, 0, 0,..., 1) in an m-dimensional space. In this way, writing
Ej, (h =1, 2,...,m) for the events*® which consist in the occurrence of the 4th alternative,
an m-event can be identified with the random vector (E;, E,,..., E,,). The (arithmetic)
sum of multi-events gives, therefore, the number of occurrences of the single results: for
instance, (W, R, B) = the number of drawings of White, Red and Black balls. We observe
the analogy with the case of events, which could be handled in this same way, by substi-
tuting (1, 0) for 0 and (0, 1) for 1 (if the advantage of the symmetry seemed to compen-
sate for the unnecessary introduction of the doubleton).

2.7.2. Logical dependence and independence of events. We define n events (necessarily
possible) to be logically independent when they give rise to 2” possible constituents. This
means that each of these events remains uncertain (possible) even after the outcomes of
all the others, whatever they may be, are known: this explains the choice of terminology.
In fact, let us suppose that one of the products is impossible, and therefore only a constitu-
ent in a formal sense — without loss of generality, take it to be E1E; ... E,. E; is possible,
E,E, may or may not be, and the same holds for E,E,Es, E1E;E3E,, and so on. If one of
these products is impossible, obviously all the subsequent ones are; the last one — the

18 Caution: do not think of separate parts of a unique nonconnected ‘piece’ as ‘pieces’ — the topology of the
representation must be ignored. The ‘piece’ of Italy north-east of Monte Mario with altitude below 500
metres and more than 50 kilometres from the sea in a province beginning with a vowel is certainly
composed of separated parts (for instance in the provinces of Ancona and Udine).

19 Necessarily incompatible and exhaustive.
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product of all the # events — is impossible by hypothesis, and therefore either it or one
of the preceding ones must be the first to be impossible: suppose this is E1E,E3E,. This
means that it is possible for events Ej, E; and Ej5 to occur and that, knowing this, we are
in a position to exclude the possibility that E, can be true. The events are therefore in
this case — that is if the number of constituents is s < 2" — logically dependent.

Of course, if # events are logically independent the subsets of the u are, a fortiori,
independent: the converse does not hold. Even if all their proper subsets exhibit logical
independence # events can still be logically dependent. As a simple example, let all the
constituents in which the number of successes is even be possible, and no others; this
imposes no restrictions on the result of any # — 1 events whatsoever, but for each event
the result is determined once we know the results of the others.

2.7.3. If one wishes to consider more specifically the dependence of a particular event
E on certain others, Ey, Ey,..., E,, it becomes necessary to consider several cases. It is, in
fact, possible that E remains uncertain after we know the results of the Ei, whatever
these may be: we then call it logically independent. On the other hand, it is possible that
it will always be determined (either true or false), in which case we call it logically
dependent. However, an intermediate case could also arise: the uncertainty or the deter-
mination of E might depend on the actual results of the E; this we will call logical semi-
dependence. We could be more precise and refer to logical semidependence from below,
or from above, or two-sided, according to whether there exist outcomes for the E; which
make E certain, or impossible, or whether there exist outcomes of both types.

In order to characterize the various types of event, with respect to the fixed E;, it
suffices to consider the constituents determined by the E;. We have C; + Co + ... + C; =1,
and each event E can, therefore, be decomposed into E = EC; + EC; + ... + EC,. For any
one of the summands, say EC), there are three possibilities: either EC;, = C;, (if Cj, is
contained in E), or ECy, = 0 (if Cj, is contained in E), or else 0 ¢ EC;, € C, (if both EC;, and
ECj, are possible). The possible results for the E; correspond to the occurrence of one of
the constituents C;: according to whether Cj is of the first, second or third type, E turns
out to be certain, impossible or remains uncertain, respectively.

The conclusions are obvious.

E is logically dependent if constituents of the third type do not exist; that is if E is a sum of
constituents (of the first type). We could also say that E is logically dependent on the E; if and
only if it is expressible as a function of them by means of logical operations: in this case we
have dependence by definition. The value (true or false) of such an expression is, in fact,
determined by the values of the variables appearing in it; conversely, every such expression
reduces to a canonical form as a sum of constituents and, therefore, the condition is also
necessary. In this case, constituents of both the first and second types exist; otherwise, E
would have been either certain or impossible to begin with, contrary to hypothesis.

E is logically independent if all the constituents are of the third type, and logically
semidependent if some, but not all, are of the third type: in the latter case, we have semi-
dependence from below if the others are all of the first type, from above if they are all of
the second type, two-sided if there are some of each type.

If we consider the two events

E'’ = the sum of all the constituents of the first type, and
E” = the sum of all the constituents of the first and third types,
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it clearly turns out that in each case E' C E C E”, and E’ and E” are, respectively, the
maximal event certainly contained in E, and the minimal event that certainly contains
it — that is the events giving the best possible bounds.

We can then say that: E is logically dependent if E' = E” (and hence = E); logically inde-
pendent if £’ = 0 and E” = 1; semidependent from below, from above, or two-sided, if

OcEcE'=1l, O0=E'cE'cl, OcEcE'c],

respectively.

2.7.4. These notions of logical dependence and independence are meaningful more
generally; they apply not only to the case of events, as considered so far, but also to
partitions, or random quantities, or any random entities whatsoever. We will present
the development for the case of random quantities, which is the most intuitive; it will
then suffice to remark that the concept is always the same.

Random quantities (suppose, to fix ideas, that there are three: X, Y, Z) are said to be
logically independent if there are no circumstances in which the knowledge of some of
them can modify the uncertainty concerning the others. This means that if X, ¥, Z have,
respectively, r possible values x;, s possible values y; ¢ possible values z;, then all the rst
triples (x;, ¥, zi) are possible for (X, Y, Z); that is the set Q of possible points (x, y, z) is the
Cartesian product of the sets, Q,, Q,, Q; of possible values for X, Y, Z. In this form the
definition is general: it is valid not only for # (instead of 3), but also if the random quanti-
ties have an infinite number of possible values (for instance, those of an interval), or in
the case of random entities of other kinds, or, generically, for partitions,*® In other words,
the condition means that nothing, no known interdependence, allows any further restric-
tion of the set Q of possible points over and above that resulting from the fact that the
individual random quantities, or entities, must assume values in Qy, Qy, ..., Q.

2.7.5. The logical dependence of one (random) quantity on others (to fix ideas con-
sider the dependence of Z on X and Y) has exactly the meaning that it has in analysis: Z
is a function (i.e. a one-valued function) of X and Y, Z = (X, Y), the function z = f (x, y)
being defined for all the possible points (x, ¥) of (X, Y). Logical independence means that
the set of possible values of Z conditional on the knowledge of the values of X and Y (any
pair of possible values (x, y) for (X, Y)) is always the set of Q of all the (unconditionally)
possible values of Z. Intermediate cases, which are not worth listing in further detail,
always give logical semidependence.

2.7.6. A critical observation is appropriate at this point, both as a refinement of the
present argument and to exemplify various cases in which it is useful to examine
whether the logic needs to be taken with a pinch of salt (see Appendix).

We will confine ourselves to a single example. Suppose that X and Y have as possible
values all the numbers between 0 and 1, with the condition that X + Yis irrational : then
Q is the unit square with an infinite number of ‘scratches’ removed — parallel to the
diagonal and corresponding precisely to the lines x + y = rational. For the partition into

20 A partition can be reduced to a random quantity by considering as such, for example, the index i of Ei:X = i
if Ei is true, provided the partition has at most the cardinality of the continuum, or is denumerable if we
require integer values.
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points, logical independence does not hold; it would hold, however, for every partition
into vertical or horizontal stripes, however small.

Is it advantageous to say that we do not have logical independence when its failure is
attributable to subtleties of this kind? Clearly, there is no categorical answer. It seems
obvious that, depending on the problem and on one’s intentions, one decides whether
or not to take such subtleties into account (of course, one must be careful to be precise
when such is required).

2.7.7. Finally, we make an observation which, strictly speaking, is unnecessary — being
implicit in the very definition of ‘possibility’ — but which it is convenient to make and under-
line. All the notions we have encountered, or introduced — from incompatibility to logical
dependence or independence — are relative to a given ‘state of information. They are valid
for You (or for me, or him) according to the knowledge, or the ignorance, determining the
uncertainty; that is the extent of the range of the possible, of the set Q (yours, mine, his,...).

It is a question of relative and personal notions, but nonetheless objective, in the sense
that they depend on what one knows, or does not know, and not on one’s opinion con-
cerning what one does not know, and what is, consequently, uncertain.

In order to avoid ambiguity, we must never forget that we are always speaking about
uncertainty in the simple sense of ignorance. In particular, of course, we are dealing
with matters traditionally attributed to ‘chance’ — a trace of this remains in the word
‘random,?' and in other expressions which we will be using. In general, however, we are
concerned with any future matters whatsoever, and also of things in the past concerning
which there is no information, or for which no information is available to You, or which
You cannot remember exactly: we might even be concerned with tautologies. The vari-
ous cases differ in one important aspect: that is the existence and degree of possibility
and facility of obtaining, in one way or another, further information, should one wish to
do so. This fact will, of course, be relevant in determining behaviour in decision prob-
lems, where it could be convenient to condition on the acquisition of new information.
But apart from this, basically, it is convenient to regard any distinctions of this kind as
unimportant. The only essential element, which determines and characterizes our
object of study, is the existence of imperfect information — of whatever kind — and the
situations of uncertainty in which, consequently, You might find yourself.

There is a prejudice that uncertainty and probability can only refer to future matters,
since these are not ‘determined’ — in some metaphysical sense attributed to the facts
themselves instead of to the ignorance of the person judging them. In this connection,
it is useful to recall the following observation of E. Borel: ‘One can bet on Heads or Tails
while the coin, already tossed, is in the air, and its movement is completely determined;
and one can also bet after the coin has fallen, with the sole proviso that one has not seen
on which side it has come to rest’

2.7.8. Remark. It might be useful to point out (or, for those who already know it, to
recall the fact) that in the theory of probability one often uses the term ‘independence’
(without further qualification) to denote a different condition, that of stochastic
independence, which refers to probability and will be introduced in Chapter 4.

21 Translators’ note. The Italian word here is 'aleatorio’ (see French, aléatoire) from the Latin alea meaning
die: ‘alea jacta est " — the die is cast I" — as Caesar said when crossing the Rubicon.
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Be careful not to confuse it with logical independence — which we have just dis-
cussed — or with linear independence, which we will discuss in the next section. Both of
these notions have an objective meaning; that is independent of the evaluation of the
probabilities.

2.8 Representations in Linear form

2.8.1. Basic notions. When referring to the set Q of possible ‘points’ in the case of two
random quantities X and Y, we tacitly interpreted the pair (x, y) as Cartesian coordi-
nates in the plane (which it was natural to take as the space of alternatives S). Similarly,
for three or more points, we extend to ordinary space, or to spaces of any dimension
(always in Cartesian coordinates).

This was simply a question of habit and, therefore, of convenience. One could have
thought of any coordinate system; of a curved surface instead of a plane, or, in order to
say more and in a better way, it is enough to think in terms of a space in a merely
abstract sense, for which such distinctions of a geometric nature do not even make
sense. With reference to the simplest case, it is sufficient that different pairs (x, y) are
made to correspond to distinct ‘points!

For further reasons, which we now wish to take into account — because, as we shall see
in Chapter 3, they are essential for the theory of probability — it becomes important
instead to think of S as a linear (affine) space. We shall call it the linear ambit and denote
it by A because at times it will be convenient to consider as the space S not the whole of
A but a less extensive manifold which contains Q. For example: if A is ordinary space,
and X Y Z are related by the equation X + Y + Z* = R? it might be convenient to think
of S as the spherical surface on which one finds the possible points Q; these may consist
of all the points of the surface, or a part of it, or just a few points, depending on other
restrictions and circumstances and knowledge.

A representation that is linear with respect to certain random quantities (e.g. those
considered initially) is such with respect to others that are linear combinations of them
(but not with respect to the rest). If we require that linearity holds for the rest too, we
have to extend the linear ambit A to new dimensions, as we shall see later.

The random quantities linearly represented in an ambit A themselves constitute a
linear system, which we denote by S, and which is dual to A. One might ask whether it
is useful to think of the two dual spaces, A and S, as superposed. In principle, the answer
is no: in fact, only the affine notions have any meaning, and the metric, introduced sur-
reptitiously by means of such a superposition, would be dependent on the arbitrary
choice of the coordinate system that has to be superposed onto its dual. In general, for
this reason, it is not even practically convenient. A unique exception is perhaps that
of the case we considered first, in which we start from events, and it is ‘natural’ to
represent them with unit, orthogonal vectors. In any case, whether or not this possibility
is useful in a particular case, it is important never to forget that it is only the affine
properties which make sense.

These properties also underlie the notions and methods fundamental to the theory of
probability. On the other hand, the things in question are very elementary, and are cur-
rently applied without first introducing this formulation and terminology — which
might well be considered excessively theoretical and, for the purpose in hand,
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disproportionately so. Nevertheless, if one is prepared to make the small effort necessary
to picture the question in terms of the present scheme, many aspects of what follows
will appear obvious and well-connected among themselves, instead of, as they might
otherwise appear, unrelated and confused. So much so, that the preeminent — one
might even say exclusive — role of linearity in the theory of probability has always
remained very much in the background. This is, in part perhaps, because of the promi-
nence given to the Boolean operations, and because of the nonimmediacy of the arith-
metic operations on events when the latter are not identified with their ‘indicators. The
present treatment is intended to provide the framework within which these observa-
tions will find their justification and clarification.

2.8.2. Let us begin by considering events Ej, E,,..., E,;, and, often, in order to be able to
think in terms of ordinary space, we will, without essential loss of generality, take # to
be three.

The linear ambit A is the affine vector space in # dimensions, with coordinate system
X1, X2,..., X, in which we will consider the values of the random quantities X3, X5, ..., X,
In this case, the latter are the events E;, Ej,..., E,, taking only the values 0 and 1: the set
of ‘possible’ points consists at most, therefore, of the 2” points (8, if # = 3) with coordinates
either 0 or 1, and may be a subset of these. One sees immediately — as was inevitable — that
the ‘possible’ points correspond to the s (s < 2") constituents.

Given the special role of these points, it is convenient to think of the prism, of which
they are the vertices, as a cube (or hypercube) and, therefore, to think of the Cartesian
coordinate system x; as orthogonal and of unit length — with the reservation that this
metric not be taken too ‘seriously’

The linear system L, of linear combinations of £y, Ej,... E,, consists of random quanti-
ties X = u1Ey + uoEy + ... + u,E,p22 interpretable as the gain of someone who receives an
amount u if E is true, plus an amount u, if E, is true, and so on (of course, the ‘gains’
may be positive or negative). The X possess at most as many (distinct) possible values as
there are constituents — namely s — and the latter occurs if the corresponding ‘possible
points’ are found on distinct hyperplanes X,u;x; = constant.

An important example is that where Y = the number of successes. In order to obtain this,
it is sufficient to take all the u; = 1 — a gain of 1 for each event — obtaining, as we have
already shown directly, Y = E; + E; + ... + E,. In this case, it is clearly not true that the
possible points occur on distinct hyperplanes; if all the 2" vertices of the hypercube are
possible, they are, in fact, distributed over the # + 1 hyperplanes Y= 0, 1, 2,..., n accord-
ing to the binomial coefficients (1, n,% n(n-1),...,m,1),(}) being the number of possible
ways of obtaining / successes in # events.

For the case n = 3, we shall denote the Cartesian coordinates of the ambit A in
the usual manner, by x, y, z, and those of the dual system L by u, v w. If X = uE; +
vE, + wE3, then ux + vy + wz is the value which X would assume if E; takes the value
x, E5 the value y and Ej the value z. Given the meaning of the E; such values can only
be either 0 or 1, and the value of the random quantity X (e.g. gain) can only be one
of those corresponding to the eight vertices of the cube (or to a part of it, if not all
the vertices are possible).

22 In order to simplify this example we omit the constant u, (see Section 2.8.3).
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Here are the coordinates of such vertices Q together with the corresponding
values of X:

Q = (0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1),
X= 0 w v U V+w u+w u+v u+v+w.

In particular, for u = v = w = 1, we see (as was obvious) that the number of successes
is 0 in one case, 1 in three cases, 2 in three cases and 3 in one case. In addition (apart
from the combinatorial meaning, (1 + 1)3 =1+ 3+ 3 + 1 = 8), this shows that, when
projected onto a diagonal, the vertices of the cube fall as follows: one at each end, and
three each at B and & of the way along the diagonal.

2.8.3. The sum Zi”ixi (in particular ux + vy + wz) is a linear function both of X (i.e.
of its components u;), and also of /(i.e. of its coordinates x;). We will denote it both by
X(Q) - thinking of it as ‘the value of a given X as Q varies’ — and also by Q(X) — thinking
of it as ‘the value assigned to different X by the resultant Q’ The same operation, how-
ever, will still turn out to be useful independently of the fact that Q is a possible point
(i.e. Q € ). That is, by replacing Q by any A in . Z, writing X(A) or A(X):

A(X) = X(A) =D iz,

where the u; are the coordinates of the X considered as points of %, or, better, the com-
ponents of X considered as vectors of %, and similarly the x; are coordinates (or compo-
nents) of the A considered as points (or vectors) of 2.2 The expressions A(X) or X(A)
then appear as products of vectors, A and X, belonging to the two dual spaces. Zand #.**
What we have said so far in this section is independent of the assumption that, rather
than taking any random quantities whatsoever, we start with events, X; = E; (as we did in
Section 2.8.2, in order to fix ideas). Since it is convenient to consider not only the homo-
geneous linear combinations, X = Zi”iXi’ as we have up until now, but also complete
combinations with an additional constant, say u,, we will always assume as added to the
X; a fictitious random quantity Xj, taking the single value X, = 1 with certainty. The
summand ©oX, has precisely the value 1, with no alteration to the formula; we have only
to take into account that there is an additional, fictitious, variable, x,, and that, for all
possible points (and, usually, also for every A to be considered), we will have xg = 1.

2.8.4. Linear dependence and independence. We have considered zi”iX ; (i=0,1,2,...n),
linear combinations (either homogeneous or complete) of # random quantities X; (i = 1,
2,..., n); X is said to be linearly dependent on the X;. It may be, however, that the X; are
already linearly dependent themselves; that is that one of their linear combinations is
identically zero (or constant: due to the inclusion of X, the two are essentially identical),

23 Given that the point O (the origin) has meaning in both L and A, there is no risk of ambiguity in identifying
points and vectors.

24 If one thinks of the two spaces as superposed — we have already said that, in general, this is not

advisable — we would have the scalar product. In any case, one could write AX and XA, instead of A(X) and
X(A), thinking in terms of the product rather than writing it as a ‘function’ The main application, however,
will be when A = P (probability, prevision), and the omission of the parentheses in this case — although used
by some authors — seems to give less emphasis to the structure of the formulae, and therefore to the meaning.
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in which case at least one of the X; is a linear combination of the others and can be elimi-
nated (because it already appears as a combination of the others). Geometrically, this
means that the set Q of possible points belongs to a linear subspace A’ of A, and hence
it is sufficient to confine attention to A’: the extension from A’ to A is illusory — one
adds only points which are certainly impossible.

We observe that linear dependence is a special case of logical dependence — that is
that linear dependence is a more restrictive condition. Conversely, it goes without say-
ing that logical independence is more restrictive than linear independence.

‘We now return, briefly, to the case of events, for even here the distinction between
linear dependence and logical dependence is of fundamental importance for the theory
of probability. The negation of E depends linearly on E: in fact, E =1— E. On the other
hand, the logical product E = AB, and the logical sum E = A v B, do not depend linearly
on A and B (except when, under the assumption that A and B are incompatible, the logi-
cal sum has the form A v B = A + B). However, the logical sum does depend linearly on
the two events and their product: A v B = A+ B — AB. In general, the logical sum of three
or more events depends linearly on the events themselves and on their products two at
a time, three at a time,..., and finally the product of all of them (see Section 2.5.2). Apart
from these cases of a general nature, however, it is possible that an event can be a linear
combination of others ‘by chance’ (so to speak): an example can be found in Chapter 3,
in connection with a probability problem, where an event E is expressed linearly as a
function of others by the following formula

E=%(3_2E1 +E2 —E3 +3E4 +5E5 _5E6)

How can one tell whether or not such a linear dependence exists? It is sufficient to
express all events as sums of constituents and then to see whether the matrix (consisting
entirely of zeroes and ones) is zero or not.

2.8.5. The above considerations refer to the system .7, but linear dependence is still
meaningful and important in the ambit . Z. The interest there lies in considering the
barycentre P of two points Q; and Q, with ‘masses’ g; and g,, where q; + g, = 1. By a
well-known property in mechanics — which is, on the other hand, an immediate conse-
quence of linearity — each linear function X assumes at P the value X(P) = :X(Q;) +
42X(Q,), and the same holds for the barycentre of three, or (leaving ordinary space) any
number of points whatsoever. The property even holds if some of the masses are nega-
tive, but the cases in which we are normally interested are those with non-negative
masses (usually, in fact, we will be dealing with probability).

The barycentre can, therefore, be any point® belonging to the convex hull of the points
Qy, under consideration. Consideration of the convex hull determined by the ‘possible
points, Q € Cor, in other words, the convex hull of Z'will play a fundamental réle in the
calculus of probability. Dually (and this property too, well-known and intuitive, will turn
out to be meaningful in future applications), the convex hull is also the intersection of all

25 If the points Qy, are infinite in number, then in order for this to be true we must also allow ‘limit cases’ of
barycentres (which, in other respects, correspond to actual requirements of the calculus of probability, at
least according to the version we will follow, in which we do not assume ‘countable additivity’). Anyway,
apart from questions of interpretation, this simply means that by convex hull we mean the set of barycentres
completed by their possible adherent points.
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the half-spaces containing ¢ In other words, if a point P belongs to the convex hull K(J) of
a set /, then it is on the same side as I with respect to any hyperplane not cutting the
set — that is which leaves it all on the same side. On the other hand, if a point does not
belong to the convex hull, there exists a hyperplane separating it from I — that is which
does not cut the latter and leaves it all on the opposite side with respect to the point.
Translating all this into an analytic form: every non-negative linear function on / is also such
on K(J); conversely, the property does not hold for any point not belonging to K(J).

2.8.6. Returning to the case of the cube (Section 2.8.2), we already have a meaningful
example, although a little too simple, of the way in which the convex hull varies as we
consider all eight vertices or a subset of them (see Chapter 3, where the probabilistic
meaning will also appear).

With this example in mind, it is now possible to make an observation which, although
trivial in this context, is useful for explaining in an intuitive way our immediate inten-
tions (Section 2.8.7) in cases where it could seem less obvious and perhaps strange.

In the space . Z we could represent the eight constituents by the vertices of the cube:
we suppose that all eight actually exist, there is no need to consider other cases here. In
the dual space %, however, we could only represent the random quantities depending
linearly on E;,E,,Es. The eight constituents, considered as random quantities, could not
be represented, and so neither could the random quantities derived from them line-
arly — unless these happened to be linearly dependent on the three fundamental events
E;. Does the method create a discrimination between events which have a representa-
tion as vectors in 4 and those which do not? If so, can we put the situation right?

The answer to the first question is no: the method creates no discrimination. The fact is
that it enables us to consider more or fewer dimensions according to what we need. The
representation in terms of the cube is sufficient for the separation of the eight constituents
(as points of .7), and for the consideration of random quantities linearly dependent on
the three Ej. If we wished, we could even reduce to a single dimension by considering
only the random quantity X = 4E; + 2E, + Es: this is sufficient to characterize the eight
constituents, since X can assume the values 0, 1, 2, 3, 4, 5, 6, 7. These values, incidentally,
are obtained by reading the triple of coordinates as a binary number — for example (1,0, 1) =
101 (binary) = 4 + 0 +1 = 5. If we were interested only in such an X (up to linear transforma-
tions, aX + b), and in distinguishing the constituents, this would be sufficient. Similarly, if
in addition to X we are interested, for instance, in the number of successes Y = E; + E, +
E3, and nothing else, we could pass to two dimensions. Suppose, however, that, for reasons
which depend on the linearization, we are interested in studying, in ., either one of the
constituents, or a linear combination of constituents not reducible to a linear combina-
tion of the Ej. In this case, it will be necessary to introduce a third dimension and then, if
required, others..., up to seven. In general, if there are s constituents we require s — 1
dimensions (s if we include a fictitious one for the constant Xy = 1) in order that everything
geometrically representable in .7 is also linearly interpretable in .

In fact, if in our case (that of the cube) we consider an eight-dimensional space, whose
coordinates x;, give the value of the constituents Cj, the possible points, Q;, are the
points with abscissa 1 on one of the eight axes (because one, and only one, of the eight
constituents must occur). They are linearly independent in the seven-dimensional
space x; + Xy + ... + xg = 1: one of the «xy, is superfluous, but it makes no difference
whether we leave it, or eliminate it and add a fictitious coordinate xo = 1. In terms of .%,
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we can therefore obtain all the X either as linear combinations ZuhCh, for 4 from 1 to
8, or for /1 from O to 7 (excluding Cg but adding the fictitious Cp = Xy = 1).

Conclusion: everything can be represented linearly provided one takes a sufficient
number of dimensions. It is possible, and this provides a simplification, to reduce this
number by projecting onto a subspace (although in this way we give up the possibility of
distinguishing between those things which have the same projection). Thus, for instance,
different possible cases may be confounded into a single one, or even if we take care to
avoid it, barycentres arising from different distributions of mass may be confounded.
In the case of the cube, for example, each internal point can be obtained as the barycentre
of oo’ 73 = oo* different distributions of mass on the eight vertices.

2.8.7. In the general case, considering any random quantities whatsoever, the same cir-
cumstance arises and has even greater interest. Suppose we consider the ambit . Z relative
to n random quantities X; (i = 1, 2,..., n) and, for simplicity, let us assume that all the real
values are possible and compatible for the X;: that is that all the points of . Z are possible
(7= ). It follows that every random quantity Z = f(X3, Xy,..., X,,) is geometrically indi-
viduated in .7 (to each point of . Z there corresponds, in a known way, a value of Z), but
is not vectorially represented in 4 unless it is a linear function of the X;. If such a vectorial
representation for Z is needed, however, it is sufficient to add on a new dimension for it — that
is to introduce an extra axis, z, o, if one prefers, x,, , 1, on which Z can be represented.

To give an intuitive illustration: in the plane (x, y) every function z = f (x, y) already
has a geometrical representation (visually through contour lines), but in order for z to
appear linearly in the representation it is necessary to introduce a new axis, z, and to
transfer each contour line to the corresponding height, obtaining the surface z = f (x, ).

As a practical example, in fact one which continuously finds application, an even sim-
pler case will suffice. We have a single random quantity, X: by taking the x-axis as the
ambit . 7, we represent, by means of its points, all the possibilities (values x) which
determine, together with x, every function of x, f(x). However, if we are interested in the
linear representation of a given f(x) we must introduce a new axis, y, and on it represent
y = f(x). The linear ambit A will be the plane (x, y), but for the space.”"we could more
meaningfully consider the curve y = f (x), whereas ¢ could be a set of points on such a
curve (if not all values are possible for X). It will be, so to speak, the set £, previously
thought of on the x-axis, projected onto the curve y = f(x). We note, incidentally, that
this illustrates the observation made in Section 2.8.1 regarding the nonidentification of
A and S. The criterion which has been followed can be explained in the following way:
we delimit S by taking into account the ‘essential’ circumstances, considering as such
the fact of studying X together with a given Y = f(X), whatever the random quantity X
may be; we do not take into account the ‘secondary’ circumstances, considering as such
the particular facts or knowledge which, in certain cases or at certain moments, lead us
to exclude the possibility of X attaining certain values.

The most important practical case (which we have already mentioned) is the simplest
one: that of X and Y = f{X) = X>. The curve is the parabola y = x% and the linear system
L consists of all the polynomials of second degree in X; aX? + bX + c. Suppose that we
are interested in barycentres of possible points Q;, with given masses g, If the points are
taken on the parabola we obtain a point ¥, ¥, which is meaningful for both coordinates,
whereas if we leave the points on the x-axis the barycentre would give the same x, but
no information about y.
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Obviously, if we were interested in considering Z = X also (i.e. extending L to polynomials
of the third degree) it would be necessary to take the space (x, , z) as the ambit A, the
curve y = x% z = x° as the space S, and to project onto it the set Q already given; and so on.

2.9 Means; Associative Means

2.9.1. Within this representation, we will take the opportunity to present, in an abstract
form, a notion which has great practical and conceptual importance in all fields, and
which, in what follows, will above all prove useful in connection with probabilistic and
statistical interpretations. The notion in question is that of a mean. This is usually
defined in terms of mere formal properties of particular cases, but (as Oscar Chisini
pointed out) it has a well-defined and important meaning as a useful ‘summary’ or
‘synthetic characteristic’ of something more complicated.

A prime example (already considered in the preceding pages) is that of the barycentre,
or, arithmetically, that of the arithmetic mean (in general weighted) of the coordinates
of the point masses. It is well known how, in mechanics, for many aspects and conse-
quences, everything proceeds as if the whole mass were concentrated at the barycentre.
In the language of statistics (which we will encounter mainly in Chapters 11 and 12) one
would say that knowledge of the barycentre (and of the mass) constitutes, for certain
purposes, a sufficient statistic (i.e. an exhaustive summary). For other purposes, in
mechanics, it is necessary to know in addition the moments of inertia, and the exhaus-
tive summary is then the collection of these items of information of first and second
orders. It is convenient to point out in advance that knowledge of the second-order
characteristics will also play an important role in statistics and in the theory of probabil-
ity. Above all, it gives a powerful tool for studying problems in a way that is often
sufficiently exhaustive, although summary.

2.9.2. Let us now consider the definition of mean according to Chisini, which is based
precisely on this concept of an exhaustive summary. In this way we impart to the notion
the relative functional meaning conveyed by ‘tailor-made (better the German
Zweckmidissig, whose equivalent is missing in other languages: zweck = purpose, missig =
adequate). According to Chisini,”® ‘x is said to be the mean of n numbers x,, x,,..., Xy,
with respect to a problem in which a function of them fixy, xy,..., x,,) is of interest, if the
function assumes the same value when all the x), are replaced by the mean value x: fx;,
Xpeeer Xy) = f (%, %,..., x)” Here we are considering the simplest case, without weighting,
but the concept is still the same in the latter case, and in that — as we shall see in
Chapter 6 — of distributions, even continuous ones.

2.9.3. The most important type of mean is the associative one. The defining property
of associative means is that they are unchanged if some of the quantities are replaced by
their mean (in the same way as, in order to find the barycentre, one can concentrate
some of the masses at their barycentre). Independently, and almost simultaneously,
Nagumo and Kolmogorov proved that the associative means are all, and only, the

26 O. Chisini, ‘Sul concetto di media; in Periodico di Matematiche (1929); the topic is taken up again in an
article by B. de Finetti in Giorn. Ist. Ital. Attuari (1931). The proof of the theorem of Nagumo and
Kolmogorov can also be found there.
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Figure 2.3 Comparison between associative (y-)
means based on comparisons of the convexity
of the functions y(x) used to construct them.
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(increasing) transforms of the arithmetic mean. They are obtained by taking an increas-
ing function y(x), and, given the values x;, with respective weights p;, (X p; = 1), instead
of taking the barycentre, x =Y, p,x;,, one takes the barycentre of the corresponding y;,
= y(x1), ¥ = 21 Pnyn and then reverts to the ‘scale’ x by means of the inverse function
m, =y~ (y) thus obtaining the y-mean.

The procedure can be clearly ‘seen’ in the representation of the preceding paragraph.
If we consider the example given there, we have y = y(x) = % and, of course, we must
limit ourselves to the positive semi-axis in order that y be increasing.”’ It is a question
of thinking of the masses py, as placed on the parabola; the barycentre is the point whose
coordinates are X and y, whereas x = m, (obtained as shown in Figure 2.3) is the point
to which corresponds (on the parabola) the same ordinate of the barycentre, the square
root of the mean of the squares.

Considering the other function z = x> (either by itself in the plane (x, z), or together with
y = &% in the space (x, y, ), as noted in Section 2.8.7), the barycentre would be ¥, Z, respec-
tively, X,7,z, where Z = the mean of the cubes =3, p,«;, and >Vz = the cube root of the
mean of the cubes = the cubic mean of the values x;, with weights py, and so on. In Chapter 6
we will say something about the most important associative means: these correspond to
y(x) = powers (with any positive or negative real exponent whatsoever; if zero we have
the limit case of the logarithm), and exponential. At this point, however, it is convenient
to consider some general properties related to the notion of convexity of which we have
spoken. This will also clarify a few questions which we will meet in Chapter 3.

2.9.4. The barycentre is always in the convex polyhedron (or, in general, the convex
hull) determined by the point masses: in our example we can think of it both in the
plane and in ordinary space. For the main conclusion of interest to us, the case of the
plane is sufficient. If the masses are on a curve whose concavity is always in the same
direction, or on a portion of the curve for which this is true, the barycentre is always in
the area bounded by the concavity; hence: the y-mean is greater than the arithmetic
mean if y (increasing) is concave upwards. The quadratic mean is, therefore, greater
than the arithmetic mean and so is the cubic mean: the question arises, can these two

27 Or the negative one. In fact, as is easily seen, y;(x) and y,(x) are equivalent with respect to the mean if
(and only if) y; = ay, + b(a # 0). If we change the sign of a (i.e. change increasing into decreasing) nothing is
altered. It is clear from the diagram, in fact, that a change in y, either of scale or sign, or a vertical translation
of the curve, makes no difference.
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be compared? Of course; it is sufficient to project the curve y = &% z = x> (explicitly, z =
¥*?) onto the plane (y, z): the concavity is upwards and so the cubic mean is greater.

Even without the graphical comparison, it is sufficient to take into account that
‘greater relative concavity’ (in the sense that a diagram would display) corresponds,
locally, to a greater value of y”(x)/y'(x) (in the interval of interest if the function is not
everywhere invertible). In the above example, we have y"/y' = 2/2x = 1/x, 2" /2 = 6x/3x> =
2/x and so, for x > 0, z"/7’ is always greater. More generally, since for the powers y(x) =
x°one has y"/y' = c(c — 1)x“%/cx*™ = (c - 1)/x, the mean increases with the exponent;
this also holds for log x (the limit case as ¢ — 0: log x = (x° - 1)/¢): in fact, y"/y' = —x"%/
x™' = —1/x = (0 - 1)/x. This particular choice (c = 0, y = log) gives the geometric mean,
which, in the case of two, or more generally n, values with equal weights (the ‘simple;
unweighted case) assumes the more familiar forms: V(x20), "N (1%, ... %), respectively.
For ¢ = 1, we have the harmonic mean, the reciprocal of the mean of the reciprocals.

From the fact that -1 < 0 <1 <2 < 3 it follows that in the above-mentioned cases, for
example, we have:

harmonic < geometric < arithmetic < quadratic < cubic.

2.9.5. Remarks. Although it may seem strange to do so, we conclude by saying that the
following observation is important: the barycentre of points which are on a curve (other
than a straight line) is not a point on the curve — unless perhaps ‘by chance’ In the same
way, the barycentre of points on a surface (not a plane) is not, generally speaking, a
point of the surface; and so on, in any dimension. The observation may seem strange
because it is so obvious: its obviousness, however, results from the demonstration in
terms of the above representation. How many people would recognize the fact before
having their attention drawn to it? In facing real problems one often reasons as if what
one considers strange, and even absurd, is precisely this fact!

2.10 Examples and Clarifications

2.10.1. Examples are always useful in order to give a sense of concreteness to concepts
introduced in a general and abstract form. In this case, they will serve in addition to
underline the meaning and importance of certain refinements, either already mentioned
in passing or to be added soon, and also to introduce, before we yet talk about probability,
a few of the kinds of situation which we will repeatedly come across in various problems.

Above all, by selecting widely differing examples we intend to remove any possible
residual doubts that might lead to restrictive interpretations of the field of uncertainty
to which we refer ourselves. The subject matter to which the uncertainty refers is irrel-
evant: political or economic events, meteorological phenomena, historical or scientific
conjectures, judicial investigation, personal or everyday affairs, competition in sport, or
any other field in which uncertainty and imperfect knowledge are present. This includes
of course —and they in no way differ from the others — the traditional games of chance.
This latter is, in fact, the least interesting case, because it leads to a standardized scheme
in which all the conceptual and substantial aspects of the problem are made to disappear.

2.10.2. Examples of events. Will a given candidate, on a given occasion, succeed
in getting elected (for instance, as a senator, a mayor, a member of a committee,
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a president of a society or of the university), or in passing (for instance, a student sitting
an examination), or in being the winner (in a contest or a lottery, at Bingo, in a sports
competition, in a game of cards or chess, or anything else) and so on? Will a vote turn
out to be favourable — for instance, for a given law, or for an issue of confidence facing a
government and so on? Is the accused in a given trial really the murderer? And, in any
case, will he be convicted as such? Is the approaching tram the one I am waiting for? Will
the next child of a given couple be a boy? Will it rain tomorrow at a given place? Will the
next attempt at a soft landing on the moon be successful?

In all cases, and in various ways, if we want to be more detailed, or to extend the
questions, we often conveniently express ourselves in terms of random quantities. In
the examples of elections and voting, we might ask the following sorts of questions.
How many votes are favourable? How many against, invalid or abstentions? What is the
percentage of those in favour? In the case of examinations, contests and competitions,
what is the mark or position obtained? And when — what year, day or moment — will the
event in question occur (moon launch, trial verdict, vote, birth of the particular baby
etc.)? Or, alternatively, how many will succeed — among those participating in an exami-
nation, contest, sports event and so on? Which one among them — identified by entry
number, or position in alphabetical order — will attain first place, or second place? Who,
within a given age limit, will be best placed? In a competition with several stages, or
legs, who among the entrants will maintain, or improve, or worsen, their position with
respect to the previous placings?

In other cases one uses different terminology. Random point: for instance, the point of
the lunar surface which will next be reached. Random set: the set of those who pass an
examination, the set of points on the earth’s surface on which rain will fall tomorrow, the
set of instants at which the temperature at a given place is below, above, or at, zero.
Random function: the temperature at the above-mentioned place, the score during a com-
petition, the number of votes of confidence since a certain date and so on, all considered
as functions of time. If one wishes to avoid reference to irrelevant items of information
(for instance, by referring to an entry number rather than to the individual concerned) it
is preferable to speak of a multi-event, rather than a random quantity, and so on.

2.10.3. It is clear that in all cases it would be possible to go into more and more detail,
and if all the cases we have mentioned were considered simultaneously we would arrive
at even more minute subdivisions. And to these cases could be added others, ad infini-
tum. To arrive at a final subdivision into ‘points’ — not further divisible — would at least
imply the construction of all possible ‘histories of the universe; distinct in every detail.
These would include, for example, the precise specification, instant by instant, of the
position of every atom, and of the thoughts and moods of each individual — including,
possibly, beings, more or less similar, living on other worlds. Even if we limit ourselves
to much more restricted problems, an exhaustive description, though very much
reduced in scale, would by no means turn out to be more realistic. Consider a single toss
of a coin: unimaginable faculties would be needed if we wished to provide a description,
with such absolute precision, of a single one of the possible ways in which a person
tosses the coin, the air influences the movement, and every peculiarity of the ground
and of the coin at the point and position of the latter’s fall gives rise to successive move-
ments, and so on, until the coin comes to rest. But this would still be nothing, because,
instead, we must imagine and distinguish the totality of such ways.



2 Concerning Certainty and Uncertainty | 51

We have pushed ourselves to absurd lengths — in a way pointless in itself — but perhaps
this will serve to illustrate the thesis that it is inappropriate to distinguish between
events represented by ‘points; or by ‘sets; thinking of it as something systematic, rather
than being dependent on momentary conveniences of representation.

2.10.4. This has been said to emphasize the considerations already made (in Section 2.7.7
and elsewhere), but it is even more necessary to underline the sense in which an event
(random quantity etc.) has to be — as we said — something ‘well determined’ This means that
the formulation must be unambiguous and complete, in such a way as to rule out any
possibility of argument (for instance in the case of a bet which is based on it). To give an
example: ‘A.N. Other wins the lottery™® is an event only if the person A.N. Other, of whom
we are speaking, is perfectly individuated, along with the circumstances that make the
statement precise. Examples of the latter might be: win in next week’s drawing; or in the
first week that he plays; or any week of this year; and so on. It should also be made precise,
or understood, whether possible wins in partnership with others are to be included, or
not, along with any other possible aspects allowing ambiguity. By changing the individual,
or any of the circumstances or provisos, we obtain other events, all different from each
other. We say this only to avoid the situation where, being familiar with other terminolo-
gies, someone might think that they should be called ‘identical events’ or, even worse,
‘trials’ of ‘the same event; which consists in ‘winning the lottery’

Conversely, two events expressed in completely different ways are identical — that is they
are the same event — if we know that the occurrence of either one of them implies the
occurrence of the other. Suppose, for instance, that we know for certain that this week A.N.
Other is going to play the ‘straight’ three numbers 21-63-82 on the Roman wheel, and
nothing else: in this case, the two events ‘A.N. Other is going to win the lottery this week’
and “This week the numbers 21, 63 and 82 will come out on the Roman wheel’ are identical.
On the other hand, in order to demonstrate that it would be wrong to think in terms of the
identification of a ‘fact, we note the following: ‘A.N. Other is going to win the next time he
plays” and ‘Next week the youngest person playing is going to win’ are two distinct events
which might, by chance, turn out to be the same fact if next week A.N. Other plays and
wins and, in addition, happens to be the youngest player. This example also serves the
purpose of making clear that there is no need to identify explicitly the person and the draw-
ing (either by the date or, possibly, the wheel) so long as, by some means or other, it turns
out that whether we must call the statement true or false is well determined.

2.10.5. One could object, with reason, that such a requirement is practically unrealiz-
able, and that, in fact, it is not even realized in the example which we have just given. For
instance, how is the statement ‘A.N. Other is going to win the lottery the next time he
plays’ to be evaluated if A.N. Other never plays again for the rest of his life? This should
be made clear by means of some arbitrary convention. In most cases of this kind, how-
ever, we shall interpret the statement in a sense which falls outside the present concept
of an event, but which leads to a generalization (conditional event) that we will consider

28 Translators’ note. Every Saturday in Italy, at each of ten cities, a drawing takes place of 5 from 90 possible
numbers. To enter the lottery, one places a bet, prior to the drawing, specifying which combination(s) of
numbers (up to a maximum of 5) one thinks will be drawn in a chosen city. The device which produces the
numbers is known as a ‘wheel’
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explicitly later on (in Chapter 4). In addition to being true (=1) or false (=0) it could also
be void (= @). In terms of a bet, this means that it could not only result in gain or loss, but
could also, in certain cases, be called off. If these things are not made clear explicitly, in a
systematic way, then even the statement ‘A.N. Other is going to win the lottery next week’
might appear ambiguous, because of the doubt as to whether we mean ‘false’ or ‘void’ if
A.N. Other does not play: in such a case one implicitly assumes certain refinements, but
without justification. We will not labour this point, postponing further discussion until
the appropriate place. In the same way, we do not enter into discussion of certain other
questions, like perhaps the preceding ones, which may appear sterile but which, if misun-
derstood, give rise to numerous possible ambiguities and errors. In contrast to the above,
these questions can be put off until later. Let us merely remark — in order not to seem
mysterious — that, above all, it is a question of discussing the actual possibility of obtain-
ing, within a given time and with greater or lesser certainty and precision, information
concerning the events and quantities of interest, about which we are at present uncertain.

2.10.6. We now return to the examples that we considered before in order to draw
attention to some of the kinds of problems that we will frequently meet in the future,
and which will serve, for the time being, to illustrate the notions introduced in the pre-
ceding paragraph.

When we ask how many of the participants in an examination will succeed in passing,
we have an example of a problem concerning the number of successes, Y =Ey + Ey + ... + E,,
where E;, = ‘the success of participant /’ or, alternatively, one concerning the frequency,
or percentage, of successes, Y/n. Other examples, chosen from the infinite number of
possibilities, might include the following: the number of ‘white balls in # given drawings
from an urn’; or of ‘males among the first # births registered in Orvieto next year’; or of
‘those among the # participants in a competition with many stages who maintain, after
a given stage, their previous position’

Clearly, Y can only assume the values 0, 1, 2,..., n, and, obviously, these will all be actu-
ally possible if the events Ej, are logically independent. This means that the set of all those
who pass an examination can, in fact, be any one of the 2" subsets of candidates (includ-
ing the whole set and the empty set); that is for each 2 =0, 1, 2,..., #, all the (} ) subsets of
h individuals are subsets for which Y = /. In the cases of examinations, drawings from an
urn, births and so on, this will be true under most of the usual assumptions (and we shall
see what these are shortly, when we turn to counterexamples). For the time being, however,
we note that the # + 1 values can all be possible, even in cases where logical independ-
ence does not hold. Suppose, for instance, that £, means that ‘the person placed in the
hth position in a competition has reached some minimum prescribed score’ (or time in
a race, distance with a throw, height with a jump). It is possible that all, or none, or any
intermediate number /, will succeed; in the latter case these are obviously the first # and
no others. We do not have logical independence since if Ej, is true, all the preceding ones
are necessarily true, and if false all the following ones are false.

At the other extreme, it is possible that Y'is certain. This is the case, for instance, if E3,
E,,..., E, represent the drawing of white balls in # successive drawings without replace-
ment from n balls, /1 of which are white; then we certainly have Y = /4, the number /
being known with certainty at the present moment. But in every case (drawings with
replacement, examinations, sex of births) we find ourselves in the same situation if we
are acquainted with the outcome as a whole, even though ignorant of the results of
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single drawings and so on. It is important to notice that the Ej are, in this case, not only
logically, but also linearly, dependent (Ey + E; + ... + E,, = Y = h). The logical dependence
assumes a concrete form in the fact that once all the white balls (or all the others) are
out, the result of the subsequent drawings is certain (in any case, this is always so for the
last drawing at least).

All intermediate hypotheses can be shown to be possible by the use of examples of a
more or less artificial nature. The actual possibility of all # + 1 values is also compatible
with linear dependence: if # > 3 we could have E; = E, with certainty if one thinks, for
example, of the first two balls being drawn from an urn containing balls of the same
colour in pairs. Restrictions on Y may exist in the case of competitive examinations with
a maximum number of awards available, or in the case of drawings without replacement
of n balls from an urn containing N balls of which H are white : in this case n — (N — H)
< Y < H, the restrictions being real if the limits are >0 and <#, respectively.

An important case, of some interest since it is rather less obvious, is that in which all
values except n — 1 are possible. We meet it in the example of ‘maintaining rank in a clas-
sification, which, more abstractly, consists in considering the elements that remain fixed
under a permutation. One of the many well-known different interpretations is the follow-
ing: we put, more or less haphazardly, n letters into # envelopes, and we consider the
random quantity Y which denotes the number of letters correctly placed. Clearly, all out-
comes are possible, except that of making just one error: one letter cannot be misplaced if
all the others are in their own envelopes, since only the correct envelope then remains.

2.10.7. In the case of three or more alternatives (for each of # multi-events*’) we must
consider for each of them the number of successes or realizations: for instance, X, Y, Z,
with X + Y+ Z = n, X, Y, Z being the number of votes for, against or abstentions, out of
n votes; or wins, draws and losses out of n games; or of bachelors, married men or
widowers out of # males; and so on, and so forth. Similarly for cases involving many
alternatives: for example X; + X, + ... + X = n for occurrences of the points 1, 2,..., 6
when we throw # dice, or a single die # times (or, in the previous example, if we distin-
guish marital status and sex).

Problems of this kind are called problems of subdivisions: here we have been dealing
with the subdivisions of the integer # into a given number of (non-negative) integer
summands, but more generally we could consider subdivisions of a given quantity g into
any kinds of summands whatsoever — non-negative real values X; + X5 + ... + X;, = q.
We often prefer to take g = 1, that is to reduce to percentages: in the preceding case we
could also divide the numbers of occurrences by n, obtaining in this way the frequen-
cies. A classical example is the subdivision of an interval (into m parts with m — 1 divi-
sion points). One could also imagine, however, the masses of the m parts into which an
object of mass g breaks on falling; or, alternatively, the masses of m materials from
which it is constructed (for example m metals if we are dealing with an alloy). We shall
meet these kinds of problems again.

It is of interest to note that in such cases the m random quantities are linearly dependent.
Other quantities that have to be considered in connection with questions of this nature

29 Of course, this is also valid in the case of only two alternatives; in this case, however, it is trivial to take
into account the number of occurrences of each of them since Y = n - X.
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are also linearly dependent if they are linear combinations of them. As examples, we
note the difference between votes for and against, or the total number of ‘points’ scored
(taking 2 for a win, 1 for a draw). On the other hand, this would not be true, for example,
for ratios, such as votes in favour divided by votes against, where one would have logical
but not linear dependence.

2.10.8. In the above example of a ratio (Z = Y/X), and in others that will follow, the
logical dependence will be functional dependence (in the clearest case, with fX], X5,...,
X,) such that each Xj, turns out to be uniquely determined within the permitted field).
Naturally, the given definition does not imply anything of this kind. Not only may the
uniqueness fail — as when we consider points on the spherical surface X* + Y* + Z? = 1
with admissible values not constrained to be non-negative — but one might also con-
sider all points of the sphere as possible (by substituting < for =) without destroying the
logical dependence. To see this, note that, given X = x and Y = y, the possible values of
Z lie in the segment between +V(1 — x* — y*), which is a function of x and y. Given that
X, Y, Z can all assume values between +1, we have logical independence only for the
case in which all the points of the cube -1 < x, y, z < +1 are possible: the exclusion of a
single point, for example the origin, is sufficient to give logical dependence (to avoid it,
we would have to exclude the points on the coordinate planes; i.e. the value 0 for each
random quantity separately). One also has logical dependence if one excludes from the
cube the points for which, for example, X + Y + Z (or XYZ, XY/Z, etc.) is rational, or
transcendental, or whatever (to avoid it, one should instead exclude separately, X, for
example, being rational, Y being transcendental, Z being zero).

2.10.9. A case of logical dependence, which is of practical importance and frequent
occurrence, is the following: given a number of random quantities, say X, Y, Z, we
denote, by definition, the smallest of these by X, the middle one by Y, the greatest by Z.
In this case, we exclude all those points which are not included in the dihedron y — x >
0,z — y 2 0, even if the coordinates of the points are possible values for X, Y, Z (unless
all the possible values for X are less than all the possible values for Y, and these are less
than all the possible values for Z, in which case X < Y < Z does not constitute a restric-
tion). It is necessary to pay attention to circumstances of this kind, as the necessity of
establishing and taking appropriate account of them could be overlooked.

If we take the example of a subdivision resulting from the splitting of a fallen
object — let us say into three pieces, X, Y, Z — the situation differs according to whether
the criterion by which we rank them is the order of magnitude, or something else not
depending on it. For instance, we might take the angle formed between the half-line
starting from the point of fall and passing through the barycentre of the piece in ques-
tion and the direction North, the angle being taken in a counterclockwise direction.

The same thing holds in the example we are about to consider now, where X, Y, Z
are the sides of a random prism (rectangle): for example, a block of stone, a building,
a suitcase. We may or may not have more or less ‘natural’ circumstances which lead us
to define, in each case, what we mean by ‘length’ (X), ‘breadth’ (Y) and ‘height’ (Z).
Without getting bogged down in an analysis, which everyone can provide for them-
selves anyway, the answer seems to be easy for the suitcase, not always such for the
building — the distinction between length and breadth may not be clear if there is no
recognizable facade — and indeterminate for the block (unless we use conventions
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based on how it is temporarily situated with respect to North, East and the zenith). If
we agree to call the maximum side the length, and the minimum side the height, we
are in the other situation.

Given this random prism — and however we think of the problem, with the sides X, ¥,
Z logically independent or not — let us consider its diagonal I/, area V and volume W. In
either case, these are random quantities that are logically (and even, in a unique way,
functionally) dependent on the preceding ones: U = V(X + Y* + Z%), V = 2(XY+ XZ +
YZ), W = XYZ. Clearly, however, the dependence is not linear; when we return to the
question, in Chapter 3, this example will serve to clarify, in an appropriate way, how, and
why, certain reasonings about uncertainty, though seemingly obvious, are correct in
some cases, but not in others (and this according to whether one has linear dependence
or not).

2.11 Concerning Certain Conventions of Notation

2.11.1. As we announced in Section 2.5.3, and briefly mentioned in Chapter 1 (1.9.3 and
1.9.4), we will demonstrate, by means of examples, the utility that can be derived in
many cases from the use of conventions introduced in the present chapter for simplify-
ing the notation. To be explicit:

o the identification of TRUE and FALSE with 1 and 0;
o the ‘lattice’ operations for numbers.

2.11.2. The convention TRUE = 1 and FALSE = 0 turns out to be very useful also when
applied outside of the field of events, to propositions or any ‘conditions’ whatsoever

Examples. (x > a) is the function which = 0 for x < 2 and = 1 for x > a; we could write
such a function as F(x) = (x > a), and, more generally,

F#)=2m(x>a)

is the step-function with jumps pj, at the points x = a;; assuming that the gy, are in
increasing order of magnitude, this could also be written

F(x)=Ycn(am<x <ap.),
W

which denotes that in the given interval the value is

cn = pi(i<h)=>p;.
i i=1
In the last example we used the function (a < x < b), which is = 1 in the given interval
and = 0 outside: more generally, we use (x € ) to denote the indicator function of the
set I (the function which = 1 if x is in I, and = 0 otherwise).

30 Given the purely illustrative purpose of these forms of notation, we omit all the possible refinements
that should be added, case by case, in specific applications: for instance, here, hypotheses of convergence if
we are dealing with series: in an opposite sense the convention a,,,; = « if a,, is the last term, etc. The
notation < instead of < etc. will vary from case to case.
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Using such a function as a multiplier, one obtains immediately the restriction of a
function to a given interval or set; for example,

x*(x20)=0forx<0and=x" for x>0;

fix) =x(1 -x)(-1 <x<1) =x(-x)(x| <1)is equal to x(l - x) for x in [-1, 1], 0
otherwise; and, more generally, for a function with a different expression in different
intervals, for example,

f(x)=a(x+3)3(—3<x<—1)+(b—ax2)(—1<x<1)
+a(3-x)’ (1<x<3),

or even (for a large, or infinite, number of intervals)

f(x)zgfh(x)(hgx<h+l), or f(x)=;fh(X)(ﬂh <x<ﬂh+1).

Remarks. The examples in which the functions are denoted by F(x) and f{x), respectively,
can be interpreted as the distribution function (F) and the density function (f = F’) of a
distribution. These notions may already be familiar but will, in any case, be introduced
in Chapter 6.

2.11.3. In the previous cases of summation, we have already seen the expression of the
condition functioning as a multiplier in order to define each single sum-function, or
(under another equivalent interpretation) specifying, for a given x, which terms had to
be summed. The systematic usage of such a convention to this end, even in the absence
of a useful interpretation in the first sense, would seem to be very convenient, both for
clarity and typographical convenience. It replaces, in an advantageous manner, either
explanations in the text, or complicated instructions to be composed under the summation
(or integral) sign and so on.

The meaning of the following examples is self-evident:

Zﬂh(hEH), Zﬂh(bh EB), Z(lh(hi()), Zﬂhk(hik),
Lay (h<k),
ff(x)dx(2n<x<2n+1), ff(x,y)dxdy(x2+y2<r2).

2.11.4. Use of the Boolean operations. The Boolean operations Vv and A often serve
(even better than the system given above) to denote ‘truncations’ and similar opera-
tions. For instance, the function F(x) = ‘x provided it is not less than zero or greater than
one’ could be written in either of the two ways

F(x):x(0<x<1)+(x>1)20vx/\1,

and the second is clearly simpler. In general, the function which = fix) but is never less
than m or greater than M can be written as m V f(x) A M, and similarly m(x) Vv fix) A
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M(x), so long as we always have m(x) < M(x) (otherwise we would not have (m Vv f) AM=m Vv
(f A M), and the notation would not be admissible).

This notation, in our context, will serve in particular for random quantities: we pre-
sent here a few examples in both notations (and the Boolean form seems to be simpler):

X(X>0)=0vX, X(X<0)=0rX,
X=X(X20)+X(X<0)=0vX+0AX,
|X|=X(X>0)-X(X<0)=0vX-0AX;

X(0<X<K)+K(X>K)=0vXAK,
(K >0)
X(|X|< K)+K[(X>K)-(X<-K)]=-K v XK,

and so on.



3

Prevision and Probability

3.1 From Uncertainty to Prevision

3.1.1. So far, even in the way we presented the preceding examples, we have limited our-
selves to depicting and representing the situation facing You, when You are interested in
distinguishing among a more or less extensive class of alternatives (all those which, in the
present state of your information, appear possible to You). This preliminary topic, which
we will have to consider more deeply in what follows, is still within the ambit of ordinary
logic, the logic of certainty. One should always be careful to distinguish clearly between
those things belonging to this domain and those belonging to the probabilistic domain — the
ambit of the logic of uncertainty, the logic of prevision — to which we must now turn our
attention. It was precisely in order to pin-point this distinction that we decided upon this
form of exposition, presenting concepts and related examples which reveal the situation as
it is, while leaving undetermined all questions concerning the possible introduction of
probability, its conceptual basis and its evaluation. It would certainly be easier, and seem-
ingly more instructive, to go right ahead and take the two steps together, instead of just the
one. In other words, we could present right away, fused together in the examples and defi-
nitions, both the probability (which answers the need) and the uncertainty (from which the
need arises), without first making such a need ‘felt; and then pausing to reflect upon it. It is
precisely this latter course, however, which must be recommended.

The situation is this: having distinguished the possible cases, and having represented
them in the way which seems to You most effective (or in any way convenient to You), if
You then wish to restrict yourself to the logic of certainty You have to stop, and consider
the question closed. Is this what You want to do? And can You do it?

For each one of us, it is often the case that we do not content ourselves (or are not able
to content ourselves) with this, and therefore we proceed further. And, strictly speaking,
to proceed further means to enter into what we have called the logic of prevision (in a
sense that we will make clear in order to draw attention to the distinction between this
and other interpretations, whose drawbacks must be pointed out).

3.1.2. Prevision, not prediction. In order to use this word, ‘prevision, it will be neces-
sary to give an absolutely precise meaning to it (and to derived words) and to insist on
this meaning and keep it in mind, consistently and scrupulously, in the sequel. It must
be distinguished, and in fact contraposed, to another word, which, in everyday language,
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is perhaps more commonly attributed to it, and for which we will reserve the alternative
name, ‘prediction.

To make a prediction would mean (using the term in the sense we propose) to venture
to try to ‘guess; among the possible alternatives, the one that will occur. This is an
attempt often made, not only by would-be magicians and prophets, but also by experts
and such like who are inclined to precast the future in the forge of their fantasies.! To
make a ‘prediction; therefore, would not entail leaving the domain of the logic of cer-
tainty, but simply including the statements and data which we assume ourselves capable
of guessing, along with the ascertained truths and the collected data. It is not enough to
tone down the ‘prophetic’ character of such pronouncements by taking precautions
with feelings (‘I think] ‘perhaps; etc.) as we have already mentioned: either these artifi-
cial additions remain without any authentic meaning, or they need to be actually trans-
lated into probabilistic terms, substituting prevision in place of prediction.

If we remain within the logic of certainty, such additions not only have no authentic
meaning in themselves, but, in point of fact, they render meaningless the entire discus-
sion. If the discussion affirms that something is true, and the ‘perhaps’ means that
instead of being true it could also be false, this is equivalent to retracting the preceding
statement, declaring it to be invalid and unfounded (cancelling it, disowning it). If not,
then ‘perhaps’ should be erased as it might give a false impression of such a retraction.

Alternatively — and this is the approach indicated below, and which corresponds to
the subjectivistic conception of probability — the ‘perhaps’ can be explained as an indi-
cation, even if crudely qualitative, of a degree of subjective probability which, if we
wished, could be made more precise, and even quantified.

All this would be very clear if there did not exist, unfortunately, in the very field of
probability and statistics, certain tendencies to avoid the choice, playing precisely on
that ambiguity which we drew attention to earlier, and making it worse. In fact, the
ambiguity of the ‘perhaps’ (which could be innocent, due to simple unwariness) is
fraudulently concealed beneath a showy exterior. It is translated into technical terms
like ‘accept’ and ‘reject, which neither mean YES or NO with certainty, nor are to be
interpreted in a probabilistic sense, but simply lay claim to be themselves ‘accepted,
rather than ‘rejected; without giving to those terms any ‘acceptable’ meaning whatsoever.

3.1.3. Prevision, in the sense in which we have said we want to use this word, does not
involve guessing anything. It does not assert — as prediction does — something that might
turn out to be true or false, by transforming (over-optimistically) the uncertainty into a

1 Everyone will no doubt have noticed, and had occasion to notice, how often the ‘foresights of experts’
turn out to be completely different from the facts, sometimes spectacularly so. In the main, this is precisely
because they are intended as predictions which ‘deduce; more or less logically, a long chain of
consequences — still considered necessarily plausible — from the assumed plausibility of an initial
hypothesis. Interesting examples of the lack of connection between prevision and reality (in the political
field) are pointed out and discussed by B. de Jouvenel in ‘Futuribles;, Bulletin Sedeis, 20 January 1962.

Here also one might note the irrelevant distinction, as far as prevision and prediction are concerned,
between the future and the past: the hypothetical reconstructions of murders or historical facts made by
detectives, scholars or novelists, based on scanty data and meriting varying degrees of respect, are, in the
above sense, ‘predictions’

It is useful to ask oneself, incidentally, whether such ‘facile fantasies’ are really ‘rich fantasies, or rather
‘poor fantasies; in that ineptitude or laziness prevents us from seeing how many other possibilities there are,
besides the first one we happened to think of.
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claimed, but worthless, certainty. It acknowledges (as should be obvious) that what is
uncertain is uncertain: in so far as statements are concerned, all that can be said beyond
what is said by the logic of certainty is illegitimate. If we think that something might be
added, if we think, as we remarked above, that we can proceed further, it will necessarily
be a question of entering into a completely new field and scheme of things, one which
goes beyond the logic of certainty, even if it must be linked to it and superimposed upon it.

When we cease to content ourselves with the logic of certainty, in what sense do we
go beyond it? In what sense do You go beyond it? Let us ask ourselves this question. Ask
yourself. The thing we are not content with, and neither are You, is the agnostic and
undifferentiated attitude towards all those things which, not being known to us with
certainty, are uncertain, are possible. There are no degrees® of possibility: it is possible
(equall possible) that it snows on a winter or summer day; that a great champion or a
novice wins the competition; that every student, whether well-prepared or not, will pass
an examination; that next Christmas You will find yourself at any place in the world.
However, You do not content yourself with this, and, in fact, it is not your real attitude.
Faced with uncertainty, one feels, and You feel too, a more or less strong propensity to
expect that certain alternatives rather than others will turn out to be true; to think that
the answer to a certain question is YES rather than NO; to estimate that the unknown
value of a certain quantity is small rather than large.

These attitudes, of ours and of yours, do not lead us — as in the case of someone who
claims to make a spot-on prediction — to assert as certain or impossible something
which, on the basis of the logic of certainty, is possible but uncertain, and which remains
such whatever further assertions or thoughts might be added. Uncertain things remain
uncertain, but we attribute to the various uncertain events a greater or lesser degree of
that new factor which is extralogical, subjective and personal (mine, yours, his, any-
body’s), and which expresses these attitudes. In everyday language this is called proba-
bility, a concept that we shall have to clarify and study. Prevision, in the sense we give to
the term and approve of (judging it to be something serious, well-founded and neces-
sary, in contrast to prediction), consists in considering, after careful reflection, all the
possible alternatives, in order to distribute among them, in the way which will appear
most appropriate, one’s own expectations, one’s own sensations of probability.

We all of us enter into this ambit of prevision in a spontaneous fashion; sometimes
without a specific need, for the sole reason that one is interested in the object of uncer-
tainty, that there are desires or hopes that certain alternatives occur, anxieties and fears
regarding the occurrence of unfavourable alternatives, and that the weighing up of such
hopes and fears matters to one. Sometimes, on the other hand, all one’s behaviour may
necessarily depend on a comparative evaluation, albeit crude and perhaps unconscious,
of the various impending risks, and of the various targets that one can set oneself. In this
sense, and because of the enormous range of possibilities, one may find oneself com-
pelled to weigh up such evaluations, and to express the prevision. In the case of more
important and conscious decisions, one might try to reason about each choice, and
weigh up the pros and cons by means of some criterion or other.

2 In a certain sense, however, there exists a partial order since one could call, ‘not less possible’ than
another, an event which is a consequence of it (in the same way as one could call, ‘not less extended’ than
another one, a set containing it). In both cases, however, no step forward is made towards a comparability or
measurability of the ‘possibilities’ or of the ‘extensions!
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3.1.4. Coherence. It is precisely in investigating the connection that must hold between
evaluations of probability and decision making under conditions of uncertainty that one
can arrive at criteria for measuring probabilities, for establishing the conditions which they
must satisfy, and for understanding the way in which one can, and indeed one must, ‘reason
about them It turns out, in fact, that there exist simple (and, in the last analysis, obvious)
conditions, which we term conditions of cokerence: any transgression of these results in
decisions whose consequences are manifestly undesirable (leading to certain loss).

The ‘one must’ is to be understood as ‘one must if one wishes to avoid these particular
objective consequences’ It is not to be taken as an obligation that someone means to
impose from the outside, nor as an assertion that our evaluations are always automati-
cally coherent. On the contrary, it is precisely because this is an area where it is particu-
larly easy to slip into incoherence that it is important to learn the art of prevision (to
adapt the phrase Ars Conjectandi, used by James Bernoulli as the title of the first treatise
on the calculus of probability).

Given any set of events whatsoever, the conditions of coherence impose no limits on
the probabilities that an individual may assign, except that they must not be in contra-
diction amongst themselves. Without further delay, we will proceed to the construction
of the theory of probability, using as a basis the theory of decision making. For the time
being, this will be done in an extremely simplified form, as a preliminary clarification of
ideas. In the next paragraph we will discuss certain other aspects of the problem, and
then turn to the constructive formulation.

Within this framework, we obtain the greatest insight by considering as a starting
point the case of random quantities (especially when we interpret them as random
gains). With a more rigorous approach, inspired by decision-theoretic considerations, it
is essentially a question of returning to that problem of a fair evaluation, or estimation,
which, in connection with similar problems of an economic nature, seems to have fore-
shadowed by centuries the beginnings of the calculus of probability. In this sense, the
modern setting of the problem, within decision theory, constitutes, to some extent, a
return to its origins.

The definition of the probability of an event will turn out to be contained automati-
cally in that given in the case of random quantities: we simply define events as particular
random quantities. From a mathematical viewpoint also, this would appear the appropriate
thing to do. In Chapter 2 we saw that in the case of events the most useful arguments,
which are very simple if one considers the events as special points in the space of
random quantities, are not available if one thinks in terms of the set of events without
reference to the space in which this set is ‘naturally’ embedded, and in which it is neces-
sary to see it embedded.

Let us proceed then to the matter in hand, starting with the consideration of a random
gain X: by this we mean a random quantity X having the meaning of gain (the latter
intended, of course, in an algebraic sense; a loss is a negative gain). The possible values
of X could, therefore, also be negative, either in part, or entirely. We might ask an indi-
vidual, for example You, to specify the certain gain that is considered equivalent to X.
This we might call the price (for You) of X (we denote it by P(X)?) in the sense that, on

3 We could write P;(X) to emphasize that we are dealing with the evaluation of a particular individual i.
This is an unnecessary precaution, however, since it is understood that we are always referring ourselves to
the evaluation of a given individual (real or fictitious).
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your scale of preference, the random gain X is, or is not, preferred to a certain gain x
according to whether x is less than or greater than P(X). For every individual, in any
given situation, the possibility of inserting the degree of preferability of a random gain
into the scale of the certain gains is obviously a prerequisite condition of all decision-
making criteria. Among the decisions that lead to different random gains, the choice
must be the one that leads to the random gain with the highest price. Moreover, this is
not a question of a condition but simply of a definition, since the price is defined only in
terms of the very preference that it means to measure, and which must manifest itself in
one way or another.

In general, it is not true that if one is prepared to buy an article A at the price P(4)
and an article B at the price P(B), one must be prepared to buy both of them together
at a price P(A) + P(B). It may happen that the purchase of one of them affects, in vari-
ous ways, the desirability of the other. Similar qualifications hold if instead of two
articles A and B we consider two random gains X and Y; this case will be examined in
the next paragraph. In both cases, however, additivity is something more than just an
interesting simplifying hypothesis, which may be approximately valid. As we shall
see later, provided we modify slightly the way in which the notion of price P(X) is
introduced, additivity will turn out to be an exact property, the foundation of the
whole treatment.

3.1.5. Properties of P. If You are indifferent to the exchange of X for P(X) and of Y
for P(Y), then, if we assume the simplifying hypothesis given above, You are also
indifferent to the exchange of X + Y for P(X) + P(Y). The value for which You are indif-
ferent to the exchange of X + Y is, however, by definition, P(X + Y); we therefore
conclude that
a) the price P is an additive function:

P(X+Y)=P(X)+P(Y). (3.1)

A second property, obvious, but equally fundamental, can be derived by noting that
P(X) must not be less than the lower bound of the set of possible values for X, inf X, nor
greater than the upper bound, sup X (otherwise the choice would allow a certain loss).
Therefore,

b) the price P must satisfy the inequality:

inf X <P(X)<supX; (3.2)

obviously, this condition only imposes a restriction if the random quantity X is
bounded in at least one direction (either inf X > —co or sup X < +e). Generally, but
not always, we will restrict our attention to the bounded case (i.e. bounded from
above and below).

When we come to formulate and examine this set-up in a more exhaustive fashion, we
shall see that the two extremely simple conditions, (@) and (b), are not only necessary but
also sufficient for coherence — that is for avoiding undesirable decisions. This is all that
is needed for the foundation of the whole theory of probability: in fact, the definition of
probability immediately reduces, as a special case, to that of a price P.

We observe, from (a) and (), that the price P must also be a linear function, in the
sense that for every real a we have
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P(aX)=aP(X), (3.3)
and therefore, more generally,

P(aX +bY +cZ+...)=aP(X)+bP(Y)+cP(Z)+... (3.4)

for any finite number of summands.

Given this property, it is possible to extend the definition of P(X) to the case in which
X is a random quantity (pure number), or a random magnitude not having the meaning
of gain (for instance, time, length, etc.). In fact, it suffices to choose a coefficient
whose dimension is such that aX is a monetary value: for instance, in the cases of time
and length we could take Lire/s and $/cm. We now define P(X) = (1/a)P(aX): this is well
defined, since the expression is invariant with respect to the choice of & (we can substitute
Aa in place of a, where 1 is a nonzero real number).

In the general case (where we do not have a monetary value), the term ‘price’ is no
longer appropriate: we speak instead of the ‘prevision of X’, valid in all cases,’ and, in
particular, of the ‘probability of E' when X = E is an event.

The probability P(E) that You attribute to an event E is, therefore, the certain gain p
that You judge equivalent to a unit gain conditional on the occurrence of E: in order to
express it in a dimensionally correct way, it is preferable to take pS equivalent to S con-
ditional on E, where S is any amount whatsoever, one Lira or one million, $20 or £75.
Since the possible values for a possible event E satisfy inf E = 0 and sup E = 1, for such
an event we have 0 < P(E) < 1, while necessarily P(E) = 0 for the impossible event, and
P(E) = 1 for the certain event.®

3.2 Digressions on Decisions and Utilities

3.2.1. In Section 3.1, we have introduced the notions of prevision and probability by
following the path laid down by certain decision-theoretic criteria of an essentially eco-
nomic nature: the presentation was, however, in a simplified form.

It follows, therefore, that before going any further we should make some comments
and give some further details about the theory of decision making, and above all about
utility. The latter, together with probability, is one of the two notions on which the cor-
rect criterion of decision making depends. We warn the reader, however, that this is in

4 This is obvious if & is rational, and the extension to every a is straightforward if X is always positive
(because then if & lies between a’ and a”, we also have aX between a’X and a”X). But we can always write
X=Y-Z where Y=X(X20)and Z = - X(X <0), and these numbers are always non-negative: Y = X if X > 0
and zero otherwise, Z = -X if X < 0 and zero otherwise. The conclusion is therefore valid for Y and for Z,
and hence for X =Y - Z.

5 This corresponds to ‘mathematical expectation’ in classical terminology, and to ‘mean value’ in more
up-to-date usage. We prefer to reserve the term ‘mean value’ for objective distributions (e.g. statistical
distributions).

6 These are the only cases in which the evaluation of the probability is predetermined, rather than
permitting the choice of any value in the interval from 0 to 1 (end-points included). The predetermination
that one meets in these cases arises because there exists no uncertainty and the use of the term probability
is redundant. The same thing holds for prevision: P(X) necessarily has a given value x if and only if X has x
as a unique possible value; i.e. if X is not really random. The above is the special case where either x = 0
orx=1.
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the nature of a digression and anyone not interested in the topic can skip it without any
great loss: the details (of a noneconomic nature) that are given in Section 3.3, and in
subsequent sections, will prove quite sufficient.

3.2.2. Operational definitions. In order to give an effective meaning to a notion — and
not merely an appearance of such in a metaphysical—verbalistic sense — an operational
definition is required. By this we mean a definition based on a criterion that allows us to
measure it.” We will, therefore, be concerned with giving an operational definition to
the prevision of a random quantity, and hence to the probability of an event.

The criterion, the operative part of the definition which enables us to measure it,
consists in this case of testing, through the decisions of an individual (which are observ-
able), his opinions (previsions, probabilities), which are not directly observable.

Every measurement procedure and device should be used with caution, and its results
carefully scrutinized. This is true in physics, despite the degree of perfection attainable,
and even more so in a field as delicate as ours, where similar and much more profound
difficulties are encountered.

In the first place, if, as is implicit in what we have said so far, we identify, generically,
decisions and preferences, then we are ignoring many of the extraneous factors that
play a part in decision making. Nobody accepts all the opportunities or bets that he
judges favourable, and perhaps we all sometimes enter into situations that we judge
unfavourable. To reduce the influence of such factors it is convenient to effect the
observations on the phenomena isolated in their most simple forms: this is in fact what
we attempt to do when we construct measuring devices. For the purpose of a formal
treatment of the topic, we will present (in the next section) two different procedures by
means of which we try to force the individual to make conscious choices, releasing him
from inertia, preserving him from whim. Of course, we have to establish that the two
procedures are equivalent, and this we shall do.

A doubt might remain, however. Are the conclusions that we draw after observing the
actual behaviour of an individual, directly making decisions in which he has a real inter-
est, more reliable than those based on the preferences which he expresses when con-
fronted with a hypothetical situation or decision? Both the direct interest and the lack
of it might on the one hand favour, and on the other obstruct, the calmness and accu-
racy, and hence the reliability, of the evaluations. In any case, it is not really a mathemat-
ical question: it is useful to be aware of the problem, but it is mainly up to the
psychologists to delve further into the matter. We merely note that between the two
extreme hypotheses one could consider an intermediate one that might be of interest;
the case of an individual being consulted about a decision in which others are inter-
ested. This might well lead to responsibility in the judgment without affecting the calm-
ness of the decision maker. In Chapter 5, 5.5.6, we encounter another example which is
similar in spirit to the last one: this is where the accuracy of the evaluation is related to
one’s self-respect in some competitive situation (with prizes which are materially insig-
nificant, but which are related to the significance of the competition).

At this point, the reader may be wondering on what basis individuals do evaluate their
probabilities or previsions: the question is not appropriate, however. Firstly, we must

7 See P. Bridgman, The Logic of Modern Physics, Macmillan, New York (1927).
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attempt to discover opinions and to establish whether or not they are coherent. Only at
the second stage, having acquired the necessary knowledge, could we also apply it to
investigate these other aspects, and not until it was very much advanced could this be
done in a sufficiently satisfactory way (up to and including the rather complicated justi-
fications for the case of evaluations based on frequencies, a case wrongly considered
simple).

3.2.3. Reservations concerning rigidity. The main question that we have to face in these
‘remarks’ is the one already mentioned when we expressed reservations about assuming
additivity for the price of a random gain: recall that it is this hypothesis which underlies
the definition of prevision, and the special case of probability.

It is well known, and indeed obvious, that usually this is not realistic because of the
phenomenon of risk aversion (or occasionally its opposite, but we shall not bother with
such cases). In fact, as we already noted in effect when we introduced it, the hypothesis
of additivity expresses an assumption of rigidity in the face of risk. Let us now try to
make this clear. As a preliminary, it will suffice to restrict ourselves to simple examples
that are within our present scope. These will be sufficient to show that in order to obtain
a formulation which is completely satisfactory from the economic point of view, it is
necessary to eliminate such rigidity by introducing the notion of utility. On the other
hand, they will also show that one is able to manage without this notion, except when
occupied with applications of an expressly economic nature.

Suppose that You are faced with two eventualities that You judge equally probable:
taking the standard example, it could be a question of Heads or Tails. Given the hypoth-
esis of rigidity in the face of risk, You should be indifferent between ‘receiving with
certainty a sum S, or twice the sum if a particular one of the two possible cases occurs’
likewise, between ‘losing with certainty a sum S, or twice the sum if a particular one of
the two possible cases occurs’; and similarly between ‘accepting or not accepting a bet
which, in the two possible cases, would lead either to a loss, or to a gain, of the same sum
S’ This much is obvious, but in any case we shall carry out the calculations as an exer-
cise. Let us denote by A and B the two events: A + B = 1 because one and only one of the
two occurs. Their probabilities, being supposed equal, must each have the value %, since
P(A) = P(B), and P(A) + P(B) = P (A + B) = P(1) = 1. It follows that cases of so-called
indifference simply imply the equality of the following: S and (25)/2, -S and -(25)/2, 0
and %S + %(—S) (since, for instance, the gain 2S conditional on the event A is the random
quantity X = 254, P(X) = P(2SA) = 2SP(A) = 25.(1).

If instead, as is likely, You are risk averse, then in all cases You will prefer the certain
alternative to the uncertain one (the form and extent of the aversion will depend upon
your temperament, or perhaps be influenced by your current mood, or by some other
circumstance). To arrive at the actual indifference, You would content yourself with
receiving with certainty a sum S’ (less than S) in exchange for the hypothetical gain 2S;
You would be disposed to pay with certainty a sum S” (greater than S) in order to avoid
the risk of a hypothetical loss 2S; You would pay a certain penalty K in order to be
released from any bet where the gain and loss are, in monetary terms, symmetric.

This means, however, that by virtue of risk aversion one has symmetry in the scale in
which one’s judgments of indifference are based: that is equal levels in passing from 0 to
S’ and from S’ to 2§, or in passing from -2S to -S” and from -S” to 0, or in passing from -S
to -K and from —-K to S. The scale no longer coincides with the monetary one, as in the
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case of rigidity. In short, as far as we are concerned, things proceed as if successive
increments of equal monetary value had for You smaller and smaller subjective value or
utility. This term — often used in a similar sense, but in a questionable form, in eco-
nomic science — has been rehabilitated and adopted with the specific meaning derived
from the present considerations about risk.

3.2.4. The scale of utility. The above considerations enable us to construct a scale of
utility; that is a function U(x), the utility of the gain x, whose increments, U(x;,;) — U(x;),
are equal when, and only when, we are indifferent between the corresponding incre-
ments of monetary gain, x;,; — x;. We could proceed, for instance, by dividing an inter-
val into two ‘indifferent increments; in the way indicated in the examples above, and in
the same way obtain subdivisions into 4, 8, 16,..., parts. It would be more appropriate,
instead of considering the variable x representing the gain, to take f + x, where f'is the
individual’s ‘fortune’ (in order to avoid splitting hairs, inappropriate in this context, one
could think of the value of his estate). Anyway, it would be convenient to choose a less
arbitrary origin in order to take into account the possibility that judgments may alter
because in the meantime variations have occurred in one’s fortune, or risks have been
taken, and in order not to preclude for oneself the possibility of taking these things into
account, should the need arise. Indeed, as a recognition of the fact that the situation will
always involve risks, it would be more appropriate to denote the fortune itself by F
(considering it as a random quantity), instead of with f(a definite given value).

What we have said concerning the scale of utility makes it intuitively clear — and
this is sufficient for the time being — that if, in order to define ‘price; we refer to this
scale rather than to the monetary scale, then additivity holds. In fact, one might say
that such a scale is by definition the monetary scale deformed in such a way as to
compensate for the distortions of the case of rigidity which are caused by risk aver-
sion. The formulation put forward in the preceding paragraph could, therefore, be
made watertight, and this we will do shortly by working in terms of the utility instead
of with the monetary value. This would undoubtedly be the best course from the
theoretical point of view, because one would construct, in an integrated fashion, a
theory of decision making (of the criteria of coherent decisions, under conditions of
certainty or uncertainty), whose meaning would be unexceptionable from an eco-
nomic viewpoint, and which would establish simultaneously and in parallel the prop-
erties of probability and utility on which it depends. The fundamental result lies, in
fact, in recognizing that the criteria of coherent decision making are precisely those
which consist of the choice of any evaluation of the probabilities and any utility func-
tion (with the necessary properties) and in fixing as one’s goal the maximization of the
prevision of the utility. Of course, it is possible to behave coherently with respect to
decisions and preferences without knowing anything about probability and utility.
The fact is, however, that in this case one must behave as if one is acting in the above
manner, as if obeying an evaluation of probability and a scale of utility underlying
one’s way of thinking and acting (even if without realizing it). Provided one could
succeed in exploring these activities in an appropriate way, it might be possible to
trace back and individuate the two components.

This unified approach to an integrated formulation of decision theory in its two
components was put forward by F.P. Ramsey (1926) and rigorously developed by L.].
Savage (1954). However, there are also reasons for preferring the opposite approach,
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the one which we attempt here. This consists in setting aside, until it is expressly
required, the notion of utility, in order to develop in a more manageable way the
study of probability.

3.2.5. An alternative approach. The idea underlying this alternative approach stems
from the observation that the hypothesis of rigidity, as considered above, is acceptable
in practice — even if we stick to monetary values — provided the amounts in question are
not ‘too large’ Of course, the proviso has a relative and approximate meaning: relative to
You, to your fortune and temperament (in precise terms, to the degree of convexity of
your utility function U); approximate because, in effect, we are substituting in place of
the segment of the curve U which is of interest the tangent at the starting point. Clearly,
the smaller the range considered, the more satisfactory is the approximation. With this
in mind, we might consider replacing the previous definition of P(X) — which we tem-
porarily distinguish, denoting it by P*(X) — with a new one, which we define by means
of the relationship:

p(X)- nm(ljp*(ax).

a—>0\ g

Instead, we prefer a less orthodox but more natural and manageable solution, which
consists of not changing anything, but merely remarking that in economic examples
one must remain within appropriate limits (which, as an aid to understanding, we call
‘everyday affairs’).

There are several reasons behind this choice (and, more generally, behind rejecting
the standard method of considering both probability and utility together, right from the
very beginning).

Firstly, on a purely formal level, there is an objection to taking the passage to the limit
so seriously as to base a definition on it: in fact, if 2 becomes too small an evaluation
loses, in practice, any reliability. This is the same phenomenon that one encounters
when attempting to define density, although the underlying reasons are different. One
needs to consider the ratios mass/volume for neighbourhoods small enough to avoid
macroscopic inhomogeneities, but not so small as to be affected by discontinuities in
the structure of matter. We accept that once we are in the area of mathematical idealiza-
tion we can leave out of consideration adherence to reality in every tiny detail: on the
other hand, it seems rather too unrigorous to act in this way when formulating that very
definition that should provide the connection with reality.

This does not mean that it is not useful to accept the form of the passage to the limit
(as an innocuous and convenient assumption, although not appropriate to fulfil the
function of a definition). In any case, let us suppose that we have introduced the linear
prevision P(X), and that we know the utility function U, which, for the sake of simplicity,
we now take to be expressed as a function of the gain x. Then the original P(X) as it
actually turns out to be, assuming that the hypothesis of rigidity is not satisfied (this is
denoted above by P*, but from now on we denote it by P;), can be expressed immedi-
ately as a transform of P by means of U:

Py (X)=u{P[u(x)]}. (3.5)
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In the standard case, where U is convex, we have P;/(X) < P(X), as noted above, and as
can be seen from the theory of associative means (Chapter 2, 2.9.3). In order to be able
to distinguish between the two concepts, when referring to them, we will say that:

a transaction is indifferent, advantageous, disadvantageous
depending on

whether Py remains constant, or increases, or decreases;

a transaction is P fair, favourable, unfavourable
depending on

whether remains constant, or increases, or decreases.

A fair transaction is such for everyone agreeing on the same evaluation of probabili-
ties, even for the other contracting party (P(-X) = —P(X)); an indifferent transaction is
not such as U varies, and cannot be such for both contracting parties if they both have
convex utility functions (in this case Py (-X) < P(-X) = -P(X) < -Py(X)).

3.2.6. Some further remarks. Finally, let us turn to the other reasons for preferring this
approach: these are essentially concerned with simplicity. The separation of probability
from utility, of that which is independent of risk aversion from that which is not, has
first of all the same kind of advantages as result from treating geometry apart from
mechanics, and the mechanics of so-called rigid bodies without taking elasticity into
account (instead of starting with a unified system).

The main motivation lies in being able to refer in a natural way to combinations of bets,
or any other economic transactions, understood in terms of monetary value (which is
invariant). If we referred ourselves to the scale of utility, a transaction leading to a gain of
amount S if the event E occurs would instead appear as a variety of different transactions,
depending on the outcome of other random transactions. These, in fact, cause variations
in one’s fortune, and therefore in the increment of utility resulting from the possible addi-
tional gain S: conversely, suppose that in order to avoid this one tried to consider bets, or
economic transactions, expressed, let us say, in ‘utiles’ (units of utility, definable as the
increment between two fixed situations). In this case, it would be practically impossible to
proceed with transactions, because the real magnitudes in which they have to be expressed
(monetary sums or quantity of goods, etc.) would have to be adjusted to the continuous
and complex variations in a unit of measure that nobody would be able to observe.

Essentially, our assumption amounts to accepting as practically valid the hypothesis
of rigidity with respect to risk: in other words, the identity of monetary value and util-
ity® within the limits of ‘everyday affairs. One should be concerned, however, to check
whether this assumption is sufficiently realistic within a wide enough range: actually, it
seems safe to say that under the heading of ‘everyday affairs’ one can consider all those
transactions whose outcome has no relevant effect on the fortune of an individual (or
firm, etc.), in the sense that it does not give rise to substantial improvements in the
situation, nor to losses of a serious nature.

There is no point in prolonging this discussion, but it seems appropriate to mention
an analogy from economics, and one from insurance: these — in the same spirit as the

8 Except for (obviously inessential) changes of origin and unit of measurement.
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preceding geometrical-mechanical analogy — are sufficient to clarify the question, both
from a conceptual and practical point of view. Using the prices P(X) as they appear in
our hypothesis of rigidity is to do the same thing as one does in economics when one
considers the total price of a set of goods, of given amounts, on the basis of the unit
prices in force at the time, without taking into account the variation that a possible
transaction would cause by changing the supply and demand situation. On the other
hand, these variations are only noticeable if the quantities under consideration are suf-
ficiently large. Even more apposite is the example of actuarial mathematics: indeed, the
latter is nothing other than a special case of the theory we are discussing. In the main, it
is traditionally concerned with the terms of an insurance under fair conditions (‘pure’ is
the usual terminology: pure premium, etc.), and only in special cases — for instance, the
theories dealing with the risk of the insurer, or with the advantage for those exposed to
risk in insuring themselves — does one speak in terms of utility (or something equiva-
lent, if such a notion is not introduced explicitly). Notwithstanding the fact that this
stems less from deliberate choice than from a tradition that lacks an awareness of the
questions involved, the ‘rigid” approximation has turned out to be satisfactory for the
greater part of this most classical field of application of the calculus of probability to
economic questions. We intend to use only the simplified version; the above considera-
tions suggest that this is a reasonable thing to do.’

On the other hand, we shall see (in Chapter 5) how, although starting from the
hypothesis of rigidity, one can arrive at the evaluation of probabilities by means of cri-
teria which are neutral with respect to it. The method, which takes as its basis the most
meaningful concept, and then clarifies it by means of this simplifying hypothesis, there-
fore achieves its objective without prejudicing the conclusions.

3.3 Basic Definitions and Criteria

3.3.1. We must now translate into actual definitions and proofs those things that we
have hitherto put forward in an introductory form, bringing in any necessary refine-
ments, and beginning the developments.

We have given some idea of what a prevision function P is, and what conditions it
must satisfy in order to be coherent. The function P represents the opinion of an indi-
vidual who is faced with a situation of uncertainty. To each random magnitude X, there
corresponds the individual’s evaluation P(X), the prevision of X, whose meaning, operation-
ally, reduces, in terms of gain, to that of the (fair) price of X. This includes, in particular,
the special case of probability (which is the more specific name given to prevision when
Xisan event). A prevision function P is cokerent if its use cannot lead to an inadmissible
decision (i.e. such that a different possible decision would have certainly led to better
results, whatever happened). We have remarked already that coherence reduces to lin-
earity and convexity.

3.3.2. In order to fix the formulation in a precise way, we will now put forward
two criteria (in the sense of devices or instruments for obtaining a measurement).
Each one furnishes an operational definition of probability or prevision P, and,

9 For all these topics see de Finetti—-Emanuelli (1967), Part L.
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together with the corresponding conditions of coherence, can be taken as a founda-
tion for the entire theory of probability.

Let us recall that the term ‘operational’ applies to those definitions that allow us to
reduce a concept not merely to sentences, which might have only an apparent meaning,
but to actual experiences, which are at least conceptually possible. Think of Einstein’s
definition of ‘simultaneity’ by means of signals: until that time no-one had even doubted
that the term lacked an absolute meaning. That definitions should be operational is one
of the fundamental needs of science, which has to work with notions of ascertained
validity, in a pragmatic sense, and which must not run the risk of taking as concepts
illusory combinations of words of a metaphysical character.

In our case, for the definition of P(X), it is a question of stating exactly what ‘the rules
of the game’ are. To state, in other words, what, in the application of a given criterion,
are the practical consequences that You know You must accept, and which You do
accept, when You enunciate your evaluation of P(X) (whose meaning as ‘price’ is already
essentially given). From a conceptual point of view, in the case of coherence too the
pointers given in Section 3.1.5 are sufficient in themselves. To make them explicit in a
compact form for specific criteria provides, however, a more incisive schematization of
the theory by reducing it to a really small nucleus of initial assumptions.

3.3.3. As far as the extension of the domain of definition of a function of prevision P is
concerned, we assume that in principle P could be evaluated (by You, by anybody) for every
event E or random quantity X: this is in contrast to what is assumed in other theories and
so it is appropriate to point it out explicitly. It will be sufficient for You to place yourself
under the restriction of a certain criterion, which we shall soon make explicit, and being
forced to answer — that is to make a choice among the alternatives at your disposal — to
reveal your evaluation of P(X) (or, in particular, of P(E)). This is valid, as we have said,
in principle: in other words, we intend not to acknowledge any distinction according to
which it would make sense to speak of probability for some events, but not for others.'® On
the other hand, however, we certainly do not pretend that P could actually be imagined as
determined, by any individual, for a/l events (among which those mentioned or thought of
during the whole existence of the human race only constitute an infinitesimal fraction,
even though an immense number). On the contrary, we can at each moment, and in every
case, assume or suppose P as defined or known for all (and only) the random quantities (or,
in particular, events) belonging'' to some completely arbitrary set %: for instance, those for
which we know the evaluation explicitly expressed by the individual under consideration.

Without leaving this set, whatever it may be, we can recognize whether or not P includes
any incoherence; if so, the individual, when made aware of this fact, should eliminate it,
modifying his evaluations after reconsideration. The evaluation is then coherent and can
be extended to any larger set whatsoever: the extension will be uniquely determined up to
the point that the coherence demands and is, to a large extent, more or less arbitrary
outside that range. One can only proceed, therefore, by interrogating the individual and
alerting him if he violates coherence with respect to the preceding evaluations.

10 For instance, the two following distinctions are quite common: yes for ‘repeatable’ events, no for ‘single’
instances; yes if X belongs to a measurable set , no otherwise. See Appendix.

11 And not, necessarily, belonging to something reducible to a ring (or to a o-ring) of events. Again, see
Appendix.
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Among the answers that do not make sense, and cannot be admitted, are the following:
‘I do not know; ‘I am ignorant of what the probability is; ‘in my opinion the probability
does not exist. Probability (or prevision) is not something that in itself can be known or
not known: it exists in that it serves to express, in a precise fashion, for each individual,
his choice in his given state of ignorance. To imagine a greater degree of ignorance that
would justify the refusal to answer would be rather like thinking that in a statistical
survey it makes sense to indicate, in addition to those whose sex is unknown, those for
whom one does not even know ‘whether the sex is unknown or not!

Other considerations and restrictions may enter in if we consider functions of prob-
ability defined other than as an expression of the opinion of a given individual. If, for
instance, after having considered and interrogated many individuals, we want to study
‘their common opinion; P, this will only exist in the domain of those X for which all the
P(X) coincide (in this way defining P(X)), and will not exist elsewhere. We can also
confine ourselves (there is nothing to prevent us) to evaluations which conform to more
restrictive criteria to which one would prefer to limit the investigation, excluding in this
way events for which one would like to say that the probability ‘does not exist’ or ‘is not
known; knowing all along that such motivations remain, nonetheless, meaningless
within the present formulation. I may please a friend of mine by not inviting along with
him a person whom he judges ‘a jinx; without myself believing that such things exist,
nor understanding how others can believe in it.

As far as coherence is concerned, we will again underline here in what sense the
notion is and must be objective. The conditions of coherence must exclude the pos-
sibility of certain consequences whose unacceptability appears expressible and rec-
ognizable to everyone, independently of any opinions or judgments they may have
regarding greater or lesser ‘reasonableness’ in the opinions of others. Let this be
said in order to make clear that such conditions, although normative, are not (as
some critics seem to think) unjustified impositions of a criterion that their promot-
ers consider ‘reasonable’: they merely assert that ‘you must avoid this if you do not
want ... (and there follows the specification of something which is obviously unde-
sirable). We will see this immediately — note it well! — in the two criteria we are
about to put forward.

3.3.4. Criteria for the evaluations. We now present the details of the two criteria
mentioned above; each will consist of the following:

o a scheme of decisions to which an individual (it could be You) can subject himself in
order to reveal — in an operational manner — that value which, by definition, will be
called his prevision of X, or in particular his probability of E,

o and a condition of coherence that enables one to distinguish (so that the distinction
has an objective meaning) whether an individual’s set of previsions is coherent, and
therefore acceptable, or, conversely, intrinsically contradictory.

In both cases, the prevision of X will be a value x , which can be chosen at will as an
‘estimate’ of X; along with such a choice goes the necessity of making precise, according
to which scheme is used, the otherwise completely indeterminate’? meaning of the

12 Or, even worse, open to being interpreted as ‘prediction’!
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word ‘estimate’ To anticipate the outcome in words, both criteria start by considering
the random magnitude given by the difference, or deviation, X — ¥ , between the actual
value X and that chosen by You. Both lead to the same x if applied coherently.

The first criterion stipulates that You must accept a bet proportional to X - ¥, in
whatever sense chosen by your opponent (i.e. positively proportional either to X - ¥ or
to ¥ - X). This means that there is no advantage to You in deviating, one way or the
other, from the value that makes the two bets indifferent for You; otherwise, one or
other would be unfavourable to You, and the opponent could profit from this by an
appropriate choice.”

The second criterion stipulates that You will suffer a penalty (positively) proportional
to the square of the deviation (X - ¥ )? increasing as one deviates in either direction
from the actual value.

This is evident if one recalls the properties of the barycentre (stable equilibrium,
minimum of the moment of inertia), which give an analogy and, in fact, a perfect inter-
pretation. Those who already know something about probability or statistics will be
well acquainted with the fact that these properties characterize P(X). The latter is usu-
ally called ‘(mathematical) expectation, or ‘mean value, and is denoted by E(X) or M(X):
the only novelty lies in making use of it as an operational and direct definition of P(X),
and in particular of probability. Given the probabilities of all possible values (if they are
finite in number), it is clear how P(X) can be expressed as a function of them: the exten-
sion of this result to the general case will be immediate when we introduce the notion
of a ‘probability distribution’ (see Chapter 6). In the latter approach, however, one
introduces the simpler notion (that of ‘prevision’) by means of the more complicated
one (that of ‘distribution’), which itself becomes a prerequisite, and forces us to use
more advanced mathematical tools (Stieltjes integrals) than necessary. The same thing
happens in the case of a solid body: the barycentre is easily determined and, it might be
said, is always useful; the exact distribution of mass can never be determined in prac-
tice, and is of relatively little interest.

Two further remarks. Firstly, let us recall ‘the hypothesis of rigidity with respect to
risk} which we continue to assume in what follows (not without noting where appropri-
ate, under the heading of ‘Remarks; any implications of this hypothesis at those points
where it merits attention). In order to fulfil more easily the resulting requirement of
considering only ‘moderate amounts; and to omit certain delicate points which are bet-
ter reconsidered later on (in Section 3.11, etc.), we restrict ourselves for the time being
to bounded random magnitudes (i.e. those whose possible values are contained in some
interval; in other words, —e < inf X, sup X < +o0).

Concerning preferences for one or other of the two criteria of definition, it is merely
a question of individual taste, since — as we have stated, and will later show — the two
definitions (together with their respective conditions of coherence) are equivalent. The
first has a meaning that is slightly more immediately intuitive, but, as far as actual
deductions are concerned, the second is more meaningful and fits better into a decision-
theoretic framework. A third criterion, which has useful applications, will be derived in
Chapter 5, but does not lend itself to an autonomous presentation.

13 This is the same criterion as ‘divide the cake into two parts and I will choose the larger; which ensures
that the person dividing it does so into parts he judges to be equal.
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3.3.5. The first criterion. Given a random quantity (or random magnitude) X, You are
obliged to choose a value X, on the understanding that, after making this choice, You are
committed to accepting any bet whatsoever with gain ¢(X — x ), where ¢ is arbitrary
(positive or negative) and at the choice of an opponent.

Definition. P(X), the prevision of X according to your opinion, is by definition the
value x that You would choose for this purpose.

Coherence. It is assumed that You do not wish to lay down bets which will with cer-
tainty result in a loss for You.'* A set of your previsions is, therefore, said to be coherent
if among the combinations of bets which You have committed yourself to accepting
there are none for which the gains are all uniformly negative."”

Analytic conditions. Expressed mathematically, this means that we must choose the
values X; = P(X;) such that there is no linear combination

Y =C1(X1 —J_Cl)+C2(X2 —9_CZ)+...+Cn(Xn —Q_Cn)
with sup Y negative (conversely, inf Y cannot be positive, because then sup (-Y) = —inf

Y would be negative).

Remark. Observe the objective character of these conditions, revealed by the fact that
only ‘possible values’ are referred to.

3.3.6. The second criterion. You suffer a penalty L'® proportional to the square of the
difference (or deviation) between X and a value X, which You are free to choose for this
purpose as you please:

()

(where k, arbitrary, is fixed in advance, possibly differing from case to case).

17

Definition. P(X), the prevision of X according to your opinion, is the value ¥ which
You would choose for this purpose.

Coherence. It is assumed that You do not have a preference for a given penalty if You
have the option of another one which is certainly smaller. Your set of previsions is there-
fore said to be coherent if there is no other possible choice which would certainly lead to
a uniform reduction in your penalty.

Analytic conditions. The definition of coherence implies that there exist no values x;*
which, when substituted for the chosen ¥; = P(X), lead to the penalty

14 Giving rise to what is sometimes called a ‘Dutch Book'

15 The reason why we cannot simply say ‘all negative’ (i.e. <0), but must add ‘uniformly’ (i.e. < —¢ with ¢
positive) will be given later (for the time being we do not worry about the finer points). By ‘combinations’ we
always mean linear combinations of a finite number of the bets even if there are infinitely many of them).

16 From Loss, the terminology introduced by A. Wald.

17 It is convenient to think of k as being homogeneous with X, so that the expression turns out to be a pure
number; with the further understanding that we multiply by a monetary unit u, L has the dimension of a
monetary value. This avoids the complication of writing it, or assuming it as included in k, by conjuring up a
strange factor of dimension '/,
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for any possible points (X;, X, ..., X,,); that is belonging to the set 9.

Remark. As for the first criterion.

3.3.7. The equivalence of the two criteria. The identity of the previsions given by the
two criteria can be verified immediately.

Let x be the prevision of X based on the first criterion, and % that based on the
second; this implies, respectively, that:

i) inthe first case, the random gain X is judged equivalent to the certain gain ¥ (hence:
preferable to each x < ¥ , but not toany x > x );

ii) in the second case, the gain —(X - x )* — negative, since a penalty ! — is judged
preferable to any other —(X - x)2 with x #z X ; in other words, the gain

G=(X -2 ~(X %)
is preferred to O (for all x = x ).

More generally, let us compare preferences between the penalties corresponding to
any two values of x, say x = 2 and x = b, and let us denote by ¢ =3 (a + b) the mid-point of
the interval [a, b].

The choice of a is preferred to that of b, if the gain G = (X - b)? - (X - a)? if preferred
to 0; in other words, expanding, if

G=(X>-2bX +b”)~(X* -2aX +a’)=2(a~b)X ~(a* - 1)

=2(a-b)(X-c)

is preferred to 0. Preferring G to 0 means that P(G) > 0; on the basis of the first criterion
it turns out that P(G) = 2(a - b)(x - ¢), an expression which is positiveifa > band x > ¢,
or, conversely, ifa < band ¥ < c. In other words, in either case, if ¥ lies in the subinter-
val between c and a; that is if X is closer to a than it is to b.

Our assertion is an obvious corollary of this result (whlch it seemed useful to put

forward in this more general form): the optimal choice, x = &, is given by ¥ = X.

The equivalence of the conditions of coherence can also be verified by expansions
of this sort (and we shall do so, writing them out in full, for those who would like to
check them and apply them directly). Conceptually, however, we can make everything
incomparably easier, and intuitively meaningful, by presenting an obvious geometrical
interpretation.
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3.4 A Geometric Interpretation: The Set & of Coherent
Previsions

3.4.1. Any prevision in the linear ambit . Z of the » random quantities X3, X5,..., X,, con-
sists in fixing, in the n-dimensional space with coordinates xy, x5,..., %, (the linear ambit
%), the n values x,%,,...,%,, where x; = P(X;), and hence corresponds to a point in the
said space. The conditions of coherence state — as we shall immediately verify — that
the set 7 of coherent previsions is the closed convex hull of the set (U of possible points.

For the first criterion: in a form that is more directly suited to the purpose in hand, the
necessary and sufficient condition for coherence can be expressed by saying that every
linear relation (or inequality) between the random quantities X;

aXi+eXy,+...+¢, X, =c (or 20)

must be satisfied by the corresponding previsions P(X;):

aP(X1)+eP(Xy)+...+¢,P(X,)=c (or 20).

Geometrically, a point P represents a coherent prevision if and only if there exists no
hyperplane separating it from the set (J of possible points; this characterizes the points of
the convex hull.

For the second criterion: here one introduces into the (affine!) linear ambit.Z a metric
of the form p? =" (x,/k;)’, setting

‘ ) 2
penalty’ =L =(P-Q)
= ‘the square of the distance between the prevision
-point P and the outcome-point Q, according to the given metric’.

The necessary and sufficient condition for coherence requires, in geometrical terms,
that P cannot be moved in such a way as to reduce the distance from all points Q; this is
another characterization of the convex hull.'® Further explanations, and diagrams in the
simple cases, are given in Chapter 5, Section 5.4.

3.4.2. Other interpretations. Every prevision-point P, which is admissible in terms
of coherence, is a barycentre of possible points Q; with suitable weights (or is a

18 If we move the point P to another position P* its distance from a generic point A increases or decreases
depending on whether A is on the same side as P or P* with respect to the hyperplane that bisects the
segment PP* orthogonally.

If P is not in the convex hull of Z'there exists a hyperplane separating it from £. Moving P to P¥ its
orthogonal projection onto such a hyperplane, diminishes its distance from all points Q in 9 (which are on
the opposite side). More precisely, the diminution of the penalty, L — L% i.e. the square of the distance, is
always at least (P — P)%infact, (Q-P)* = (Q-P*)?=[(Q-P*) — (P- P> - (Q-P*)* = (P- P*)* - 2(Q - P*) x
(P — P*), and this scalar product is negative, since the component of the first vector parallel to the second is
in the opposite direction.

Suppose instead that P belongs to the convex hull of . Then to whatever point P* we move P, it always
follows that for some point Q the distance increases: if, with respect to the bisecting hyperplane, they were
all on the same side as P*, the point P would be separated from the convex hull of £, contrary to the
hypothesis.
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limit-case'®). On the other hand, the possible points are themselves particular cases of
previsions; degenerate cases, in that the probability is concentrated at a unique point Q;.
In words, one could say, according to this interpretation, that a prevision turns out to be
a mixture of possibilities.

Of course, one can also form linear combinations of different coherent previsions
(with non-negative weights, summing to 1) again obtaining coherent previsions. More
generally, if 7 is any set of coherent previsions, then its closed convex hull is also a set
of coherent previsions, the mixtures of those in 7. Let us denote it by ;.

3.5 Extensions of Notation

It is convenient, in addition to being natural (and also useful for compactness of notation),
to exploit the linear structure of P in order to extend the range of applicability of this
symbol to any random elements whatsoever belonging to a linear space (vectors, matri-
ces, n-tuples of numbers or magnitudes, functions, etc.), or even just to a linear manifold
(alinear subspace which also contains the zero: for example, the points of a space in which
the differences between points u = A — B, constitute a linear space of vectors).

As a formal definition, it is sufficient to state that P is always intended to be linear, so
that if fis any linear function — that is f(A) is a scalar linear function of the points or
elements A of our linear space or manifold — we have f{P(A)) = P(flA)). For practical
purposes, it is enough to note that P operates on the components or coordinates, so
that, if

A=0+Xi+Yj+ Zk(or, in conventional notation, A=(X,Y, Z)),
we could write
P(A)=P(X)i+P(Y)j+P(Z)k=xi+yj+zk

(in other words, P(X, Y, Z) = (P(X), P(Y), P(2))).

A case of particular importance is the following: if Z is a complex random quantity,
and we denote by X and Y, respectively, the real and imaginary components, its prevision
will be

P(Z)=P(X+iY)=P(X)+iP(Y)=% +iy.

As a practical rule, it is sufficient to replace the random component X by the
corresponding prevision x ; for example:

P(X1, Xz, X, )= (205 0%, ), P(|Xs])=[%s],  ete

19 To be precise: either they can be obtained as barycentres of most # + 1 points Q; (in the #-dimensional
space), or they are adherent points of ¢/ (but not belonging to £’). For instance, we could think of Z/as the
set of points on the circumference of a circle, having rational angular distance from one of its points (with
respect to the complete angle). We are in the plane, n = 2, and each point inside the circle is inside triangles
with vertices in ¢: hence it is the barycentre of 3 = n + 1 points (two would suffice if it were on chords
connecting rational points, and only one if it coincided with such a point). The points, which are on the
circumference, but not rational, are required in order to complete the closed convex hull: they are adherent
points of </ (i.e. there are points of Zin each of their neighbourhoods).
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In the case of a random function X(¢) (where ¢ is the independent variable; for example,
time) it would appear to be an unnecessary subtlety (but it is not) to say that one could
write f = P(X) to mean that fis the function which for each ¢ gives f(t) = P(X(¢)). It would
be a little more explicit to write f(-) = P(X()) in order to indicate that it is a question of
operating on a variable whose position is denoted by the point. Here, however (at least
if one does not want to be limited to considering not more than a finite number of ¢, at
once), one would step outside of the ambit in which, for the time being, we have
expressed our intention of remaining.

3.6 Remarks and Examples

3.6.1. The properties that we have established in Section 3.4 could be said to contain the
whole calculus of probability, even though we have not as yet mentioned probability,
except to point out that it is a special case of prevision. Sections 3.8 and 3.9 will be
devoted to this special case, giving it the attention it merits. However, from our point of
view it turns out to be better formulated and much clearer if embedded in the general
case, where the basic properties present themselves as simple, clear and ‘practical’ It is
precisely for this reason (and certainly not because of any dubious motive of wishing to
start, come what may, by showing off, with no justification, the greatest generality and
abstraction) that we did not begin the discussion with the case of events, and have still
not stopped to consider it. Otherwise, we would have found ourselves, at this moment,
having defined P(E) and not P(X), in more difficulty than if we had defined a unique
concept, and with the unavoidable problem of producing P(X) as something not equally
immediate, but as the combination of the P(E) and who knows what mathematical defi-
nition of integral.

3.6.2. Some remarks concerning the two criteria. Every operational definition, if one
wants to take it too seriously as an actual method of measurement, carries with it the
difficulty that the discussions of principle become mixed up with the doubts deriving
from the practical imperfections inherent in any tool or procedure (these, however,
often arise for reasons which may be important). Let us accept that this difficulty is
unavoidable but that it is by no means a tragedy, since the definition deals with an ideal-
ized case, or limit-case, of conceptually possible experiments. Having said this, and
having repeated that it is always infinitely better than any attempt at a mere verbal
definition, emptily ‘philosophical; there remains, nonetheless, the necessity of making
oneself aware of the weak points in order to keep in mind the appropriate precautions.

We have already discussed, in Section 3.2, ‘rigidity in the face of risk’; in other words,
the temporary identification of utility and monetary value. At this juncture, a brief men-
tion, with specific reference to the two criteria that we have put forward, will suffice.
They both assume, implicitly, the hypothesis of rigidity. In the first place, they take the
different bets, which are used as ‘tests; to be summable; to be rigorous, the stipulation
of any one of them should modify slightly the conditions for the stipulations of the oth-
ers; secondly, by virtue of having a homogeneous character, in the sense that the proce-
dure itself presupposes that P(aX) = aP(X) (this adds no further restrictions, it is the
same rigidity). This is useful if one attempts to limit the bets to be of moderate size; it is
dangerous to allow it to be used indiscriminately. In the first criterion one has to think
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that in practice the opponent cannot impose excessively large bets (although the explicit
inclusion of this kind of regulation in the definition would lead to a hybrid and tediously
wordy exposition).

3.6.3. A defect of the first criterion is, in any case, the intervention of an ‘opponent’:
this can make it difficult to avoid the risk, or at least the suspicion, of other factors
intruding (such as the possibility of taking advantage of differences in information,
competence, or shrewdness). By and large, such possibilities are in ‘his’ favour (he being
the one who decides how much to bet, and in which direction; especially if he is the
same person who has chosen the events for which the evaluation of probability is
required). Sometimes, however, they can be in your favour (for instance, if, imagining
the opponent to have a very distorted opinion, You enunciate an evaluation which
induces him to stipulate a bet in a way that You judge favourable®).

3.6.4. Under the second criterion these negative features are not present (apart from
that inherent in thinking of the various bets as summable). However, given that by choice
of the coefficients k; one can arrange the sizes of the penalties in whatever way one con-
siders most appropriate, even this consequence of ‘rigidity’ becomes practically negligi-
ble. Observe, on the other hand, that the (arbitrary) choice of such coefficients — that is
of the metric — has no influence at all on the implications of the criterion, since these are
always based on merely affine notions: the notion of barycentre, and therefore its prop-
erty of yielding a minimum for the moment, remains invariant under whatever metric
one introduces for other purposes, and which occurs in the definition of the moment.

Another doubt arises: one might ask whether there is any good reason for considering
the minimization of a penalty L, rather than the maximization of a prize K — L. Formally,
there is no difference, but if one wants to fix K greater than any possible value of L (in
order that the ‘prize’ always turns out to be positive) one is faced with an annoying limi-
tation (which is impossible anyway if X is not bounded). There is, moreover, an histori-
cal reason: when introducing a similar theory in statistical applications, Wald found it
natural to posit a Loss in the case of ‘wrong decisions’ (zero for correct decisions).
Finally, one might exercise more care in attempting to prudently minimize a loss (which,
in any case, involves uneasiness and disappointment), than in assuring oneself, in a rea-
sonable manner, of the highest level of gain (in this context, the temptation to take a
chance is often irresistible; naturally enough, since one cannot lose whatever happens).

3.6.5. One further remark, which is so deeply rooted in what we have said over and
over again about the subjective meaning of probability that it is perhaps unnecessary.
The two criteria are operational in the sense that they provide a means by which the
opinions that an individual carries within himself, whatever they may be, turn out to be
observable from the outside. There is no connection with questions like ‘what is the true
value of the probability?” — a question whose meaning finds no place within the present

20 On the eve of a certain football match, You attribute a probability of 40% to the victory of team A, but
You think that your opponent, being a supporter of team A, evaluates it at 70%. You can then enunciate a
probability of 65%, confident that he will hasten to pay 65 for that which to You is worth 40, but to him 70.
But be careful! If he evaluates the probability at 50% instead, and decides to bet in the opposite way, he will
pay You 35 for that which is worth 60 to You, and 50 to him — not 30 as You thought.
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formulation, and whose meaning I was unable to discover in the attempts made by other
theories to provide one — and not even with questions like ‘how well founded, or how
reasonable, are certain evaluations and their associated motivations?.

This last question can, in a certain sense, be dealt with by reflecting on various
problems that will present themselves from time to time as we proceed to study prob-
ability, and to examine various attitudes to both concrete applications and conceptual
questions. However, it is mainly a question of arguments (of a rather psychological
nature) concerning the choice of a single prevision, P, from among the infinite set of
coherent previsions, 7°(which are equally acceptable from the mathematical point of
view). The question does not concern mathematics, except in that it may give a still
more enriched description of the various aspects of each choice, so that such a choice,
always made absolutely freely, can be made by each individual after an accurate and
straightforward examination of everything that in his personal judgment appears rele-
vant for his decision.

3.7 Prevision in the Case of Linear and Nonlinear
Dependence

3.7.1. Let us return to the two examples already introduced (Chapter 2, Section 10)
under the guise of the logic of certainty. They lend themselves not only to illustrat-
ing in practice the application of the two criteria and the consequences of the
properties we have established, but above all to developing necessary and instruc-
tive insights of a general character. First of all, one notes the essential connection
between linearity and prevision (and the way in which this makes inapplicable to
prevision certain arguments which would be valid for prediction). In this connection,
it will become clearer how and why it is appropriate to extend the linear ambit . Z
in relation to the questions to be examined (see the brief explanations given in
Chapter 2, Section 2.8).

In the case of a ballot with # voters, we denoted by X, Y, Z, the number of votes cast
in favour, against or abstaining, and considered in addition the difference and the ratio
of votes for and against, which we denote by / = X - ¥, V' = X/Y.

If invited to make a prevision of the outcomes — on the basis of the first or second of
knowledge, information, impressions or conjectures, about the inclinations or
moods of the voters. If your values constituted a prediction, or if You intended to put
them forward as sure, they would have to be chosen as integers, satisfying
X+y+z=nu=x-y,v=x/y.In a prevision they might not even be integers: would
the three relations hold? Is it valid to argue that they necessarily hold because they must
hold for the true values? In fact, it might seem completely obvious that if the votes for
and against are x and y (in reality, or in a prediction, or an estimation, or any prevision
whatever) then their difference is x - y, and their ratio is x/y, whereas the number
abstaining is n — x — y. For the two linear relations, given the linearity of P, this is cer-
tainly true, and, considering the ambit . Z of (, y, u) — respectively, of (x, y, z) — is easily
interpreted as follows: Vis the set of points with non-negative integer coordinates x and
y with sum < # in the plane u = x — y — respectively, in the planez=#n -x -y —and a
barycentre of such points (with arbitrary weights) can only be some point in the given
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plane, in the triangle defined by x > 0, y > 0, x + y < n. If, however, we consider the . Z
of (x, y, v), the points ¢ are those having the same x, y, but now on the surface (hyper-
bolic paraboloid) v = x/y, and the conclusion is no longer valid.*'

In the case of a random prism with sides X, Y, Z, we denoted the diagonal by U/, the
area by V, and the volume by W. Since these are not linear functions of the sides, one
would not expect that, having evaluated the previsions of the three sides as ¥, ¥, z,
those of the other elements, say iz, v, w, would satisfy the same relations as those hold-
ing between the true magnitudes. In other words, in the (six-dimensional) linear ambit
A4 of (x,, z, u, v, w), in which ¢ is the three-dimensional manifold with equations u’=
x% + 2 25, v = 2(xy + yz + zx), w = xyz (with &, y, z, u positive), one would not necessarily
expect a barycentre of points of ¢ to lie in this manifold. It could be any point P
whatsoever of 7, the convex hull of the given ¢: once we have evaluated ¥, ¥, z, the
previsions #, vV, w can only turn out to be some point of the intersection of 7
withx=%, y=y, z=Z.

If one were interested in a complete solution to the problem, it would be necessary to
determine 7, or this intersection with it. More generally, one should consider the same
problem with certain restrictions on ¢: for instance, we might we aware of restrictions
likea < X<a",b <YLKV, <Z<cord < X+Y+Z<d", X<Y<2X,YL<ZK2Y,
or that only integer values are admissible for X, Y, Z, or that there are only a finite num-
ber of values (x;, y;, z;), and so on. For the purpose of illustration, a simpler version will
do: let us suppose that Z is known, Z = a say, and let us consider the restrictions that,
given x and y, result for &z, v and w, separately, instead of jointly. In this way, everything
is represented each time in a three-dimensional ambit . Z, which is directly ‘visible’

In the ambit of (X, Y, L) the possible points ¢ lie on the circular hyperboloid u* = a* +
X+ y2; in fact, if there are no further restrictions, they are all the points on the ‘quarter’
x>0,y = 0 of the sheet u > 0; otherwise, they are a subset of these. The barycentre of
masses placed on this surface necessarily falls in the convex region that it encompasses
(except in the trivial case where the mass is concentrated at a single point, a case where
nothing is really random). In a coherent prevision, the diagonal must therefore neces-
sarily be estimated longer than it would be if the lengths of the sides coincided exactly
with their respective previsions. In the absence of other constraints, given ¥ and ¥, all
the values lying between that minimum and a+Xx + % are in fact admissible for 7: one
approaches a+x +y asymptotically by placing two small masses, x¥/k and y/k, at the
points (k, 0) and (0, k), with the rest at the origin, and then letting k become arbitrar-
ily large.

In the ambit of (X, Y, W) the possible points ¢ lie instead on the hyperbolic paraboloid
w = axy (on the ‘quarter’ x > 0, y > 0). In the absence of other restrictions, the convex hull
P is the entire positive orthant, since the barycentre can lie anywhere in this region. In
other words, given ¥ and ¥, w can either coincide with w=axy , or can be less (but
bounded below by zero), or can be greater (with no constraint). The two limit-cases can
be approached by simply placing all the mass at the origin, with the exception, in the first
case, of two masses x/k and y/k at the points (k, 0) and (0, k), respectively, and, in the
second case, a single mass 1/k at the point (kx,ky). The case w=axy occurs,

21 In this example, provided we do not evaluate the probability that Y = 0 as zero, we actually have V =P(V) = +oo.
This is of more use in showing how one can encounter, in a natural way, cases where the hypothesis of
boundedness does not hold, than in illustrating the proposition, which will be clearer after the following example.
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for example, under a very important assumption — that of stochastic independence —
which we are not yet in a position to discuss. The case of V reduces immediately (having
set Z = a) to that of Wj in fact, 2(XY + aX + aY) = 2W/a + 2a(X + Y).

The different behaviour in the two cases we looked at is due to that fact that the points
of the first surface were all elliptic, always presenting the concavity in the same direc-
tion (delimiting in this way its convex hull), whereas for the second surface, whose
points were all hyperbolic, the convex hull of each of its parts is necessarily formed of
two parts, adhering to the two faces.

3.7.2. Functional dependence and linear dependence. In this context, the representa-
tion we have already introduced (Chapter 2, Section 2.8) by means of the dual spaces,
% and ., is appropriate, and provides some insight. A(X) denotes the value which X =
fiXy, Xa,..., X,;) would assume if the X}, (belonging to %) assumed the values x;, (the
coordinates of the point A of .7): in other words, A(X) = flxy, x3,..., x,,). This is only
meaningful if A is one of the possible points Z/of 9: that is the values x), of the Xj, are
not incompatible. However, we now know that the other points in A — that is the
points P of 7’the convex hull of &/~ can be interpreted as previsions,”? and one might
ask whether P(X) (understood as above, with P = A) is actually the prevision of X. It is
clear that this only holds if X belongs to %; in other words, if it is a linear function
in the ambit .7, or, alternatively, if X is given not just by any function f of the X},
but in fact by a linear function X=ZuhXh(h=O,1,...,n). The extension is only
valid in this case, and that is why we always confine ourselves to using the notation
A(X). The above considerations give us another way of exhibiting the importance and
the compass of the linearity. A point P (an admissible prevision) can be either a Q
(that is a possible point) in the linear ambit .-Z, or a barycentre of possible points. The
knowledge of the barycentre is sufficient, however, to determine only those things
which remain invariant under any choice of the points Q and distribution of mass
over them so long as one keeps the barycentre fixed.

In other words; one has always to recall that a P, defined on any set of random quanti-
ties X whatsoever (or, in particular, on any set of events ), is uniquely extendible — and
therefore defined — only on the linear space % of the (finite) linear combinations of .%, or,
dually, in the corresponding linear ambit .Z. If 4 (or .7) is enlarged, one can determine
P more precisely by more or less arbitrary extensions. So long as we remain in a given
ambit . 7, each point P represents, in a manner of speaking, all the P* in some larger
ambit which have P as their projection onto .. This also holds in the infinite-dimen-
sional case, but we postpone any explicit discussion until the Appendix. In order to clear
up the simplest cases — one- or two-dimensions — it is sufficient to recall the examples
already given in Section 3.7.1 and to examine these further aspects in that context.

3.7.3. Conclusion. We conclude, therefore, that whereas it is well known that coherent
previsions preserve linear dependence, this only happens, in fact, in this case. In any
other case it does not (unless by chance, or under suitable additional hypotheses)
because the barycentre of masses lying in a given manifold need not itself belong to the

22 Moreover, it is possible to see that it can even be meaningful to consider an A(X) where A does not
belong to £; and not even to 2 For example, one might be interested in the difference between two &, A(X)
= P1(X) - Py(X), and A = P; - P, certainly does not belong to /’since we have A(1) = 0 instead of A(1) = 1.
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manifold (except in the trivial case of linearity). In fact, it is sometimes impossible for it
to do so (if ¢ is the boundary of a convex region).23

It is important to always bear in mind details of this kind and to reflect upon them.
This is not only, and not mainly, because of their intrinsic importance — however nota-
ble this may be — but above all because one has to learn to free oneself from the ever
present danger of confusing prevision and prediction. In a prediction any dependence
should obviously be preserved (because it reduces to the choice of a point in .7, and not
the barycentre of masses distributed over ). The type of argument which, in the exam-
ples given, turned out to be wrong if applied to prevision, would, on the other hand, be
valid for a prediction. Despite knowing, and remembering, that the arguments do not
hold for prevision, anyone (even You, even I) can inadvertently fall into error, applying
them without sufficient thought in some particular problem, or in some small corner of
the formulation of some particular problem.

There will be many and frequent occasions to warn against errors, misunderstand-
ings, distortions, obscurities, contradictions and the other endless troubles that are so
difficult to avoid when dealing with probability, and which are always essentially the
result of ignoring the same warning: prevision is not prediction! It would not be a bad
idea to imagine constantly in front of you an admonitory card — as is used by a certain
well-known organization — bearing the message, “Think!; but with an explanatory rider
suited to the needs of probability theory and its applications:

‘Think : prevision is not prediction!

There is an anecdote, concerning another such maxim, which may perhaps serve to
make this recommendation more forceful. It reveals the fallacy of resorting to the self-
deception of ‘accepting for certain’ the alternative on the basis of which one ‘decides to
act’; a vain attempt to replace a meaningful probability argument by an impossible
translation of it into the inadequate logic of certainty. The anecdote is related by Grayson
(on p. 52 of a book concerning which we shall have more to say: Chapter 5, 5.5.3) in the
following way:

Holes that are going to be dry shouldn’t be drilled

‘is printed on a sign hanging in one operator’s office. This would truly be a “golden rule”
if any oil or gas firm could live by it. Unfortunately, no one can — not even this particular
operator who drilled 30 consecutive dry holes a few years ago’

3.8 Probabilities of Events

3.8.1. The properties of probabilities of events are simply special cases of the properties
of previsions of random quantities. It will be sufficient to establish them quickly, and to
illustrate their meaning within the form of representation that we have introduced.

23 If we wished to be precise, we should exclude the points on the boundary where one does not have strict
convexity: in other words, those which are barycentres of other points; or, alternatively, those through which
there is no hyperplane which leaves all the other points of Z/on the same side.
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The theorem of ‘total probability. This is the name given to the theorem that trans-
lates, into the field of probability, the additive property of prevision.

The case of incompatibility. If two events A and B are incompatible then, as we have
already noted, their logical and arithmetic sums coincide: E = A V B = A + B, so that, if
P P(E) = P(A) + P(B). The same result holds for the (logical and arithmetic) sum of
any finite number of incompatible events: E=E; VE, V... VE, =E; + Ey + ... + E,
and hence

P(E)=P(E)+P(E;)+...+ P(E,).
We can state this formally:

Theorem. In the case of incompatible events, the probability of the event-sum must be
equal to the sum of the probabilities.

The case of (finite) partitions. In particular, for a partition in which, in addition, the
sum E = 1, and hence P(E) = 1, one has the following:

Theorem. In a (finite) partition the probabilities must sum to 1.

In particular, for two complementary events E and E (a partition with # = 2), it turns
out that P(E) + P(E) = 1; that is to say, P(E) =1 - P(E) = ~P(E); or, in yet another form,
if P(E) = p, then P(E) = p.

In words:

Theorem. The probabilities of two complementary events must themselves be
complementary.
Recalling the properties of the constituents, one can state immediately the following:

Corollary. In order that the probabilities of all the events E which are linearly depend-
ent on Ey, ..., E, should be determined, it is necessary and sufficient to attribute probabilities
to all the constituents C ... Cy. These probabilities must sum to 1; the P(E) depend linearly
upon them.

3.8.2. Sufficiency of the conditions. The preceding statements tell us how ‘we must’ —
or ‘You must’ — evaluate probabilities; in other words, they impose necessary condi-
tions for coherence. In fact — with the obvious restriction that the probabilities be
non-negative — they are also sufficient, in the sense that an evaluation satisfying them
is coherent, no matter how You choose it. We have already seen this in general in
Section 3.4; it may be useful to repeat the argument in this particular case where it is
very simple and clear.

Suppose that to the events E; ... E, of a finite partition You have attributed non-negative
probabilities p; ... p,, summing to 1, and that I (thinking in terms of “The first criterion’
of Section 3.3) try to force You into a bet which assures me of certain gain. I have to fix
the amounts ¢; for the bets on the individual E; in such a way that the resulting bet

X:CI(EI_pl)+CZ(E2_p2)+--~+cn(En_Pn)

is certainly positive; in other words,

aEi+E+. .4+, E,>apr+ap+... Py
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no matter which of the E; occurs. If E; occurs, however, the left-hand side has the value
¢;, and it is impossible for this to be always greater than the right-hand side, since the
latter is itself a weighted average of the c;.

3.8.3. The case of compatibility; inequality. For any arbitrary set of events, that is
without making the assumption of incompatibility, we have

E=E1VE2V...VEn =1/\(E1+E2 +...+En)<E1 +E2...+E”

and hence

P(E)<P(E )+P(E;)+...+P(E,). (3.6)
Stated formally:

Theorem. The probability of the event-sum must be less than or equal to the sum of the
probabilities.
This is even more evident if one puts it in the form

P(E)<P(E,+E, +...+E,);

that is that the probability of the event-sum must be less than or equal to the prevision
of the number of successes (one only has to consider that the latter takes into account
multiplicities, whereas the former does not).

Expressions in terms of products. In the case of compatible events nothing can be said
about P(E) other than the preceding inequality based just on the P(E;). If we introduce
other elements, and evaluate them, then, of course, things change. In terms of constitu-
ents, the only one we require is

C=EE,...E, because E=C, P(E)=1-P(C).

Making use of the products of the E; (two at a time, three at a time, etc.), and the
expansion

E=YE -YEE;+YEEE,~..+EE,. E, (3.7)
i ij ijh

we have at once the following:
Theorem. For the probability of the event-sum we must always have

P(E)= Zp(Ei)—ZP(EiE,)+ ZP(EiE,Eh)—...i P(EE,...E,). (3.8)

Observe that the expression is linear in the probabilities of the products. Note also the

special cases of two and three events:

P(Av B)=P(A)+P(B)-P(AB),
P(Av BvC)=P(A)+P(B)+P(C)—P(AB)~P(BC)-P(AC)+P(ABC).
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3.8.4. Extensions. The same formula serves to express the probability that out of
events a given 4 occur, and no others; and hence the probability that exactly / occur (no
matter which ones). The occurrence of E{E; ... Ej, and no others, can be written as:

E\E;...E;,(1-Ejr )(1-Epyn)...(1-E,)
=E\Ey..Ey~ Y EiEy...EyEpei + Y EiEy . EyEyoiEnj . £ By B, (39)

i

(where, as can be seen, the sum with k indices is the sum of the products of & + k
events; the given % together with k of the others). The event Y = /4, the number of
successes = /1, is the sum of(z) events of the above kind; in other words, the sum of all
the corresponding expressions. In this sum, the products / at a time appear only once,
those & + 1 at a time appear /4 + 1 times (once for each combination /% at a time of their
h + 1 factors), and so on; in general, the products / + k at a time each appear (Z+k)
times. For this reason, denoting the sum of the products r at a time by %(r) for con-
venience, we have

(Y=h)=3 " - (5) T 0D+ (52) 2 0 - ()2
Sz

(3.10)

If in place of the X(r) we substitute the sum of the probabilities of the products,
P(E,E;,...E; )= p; ;. i, which we denote by S, for short, the same formula gives the
probability

n

P(Y =h)=>(-1) " ()X i, = i(q)"h (1)s.- (3.11)

r=h r=h

Note in particular:

P(Y=0)=1-S+S8-S+...¥5,.1 £S5,
P(Y=1)=Sl —252 +353 —4'54 +...'T‘(ﬂ—1)sn,1 inS,,
P(Y =2)=S, —3S; + 65, —10S; +...1(";1)5n,1 £(3)s,

(where + stands for (-1)", and F for —(-1)").

Example. A classical and instructive problem is that of matching, which lends itself to
amusing formulations. If one has # letters and their respective envelopes, what is the
probability that if the letters are inserted into the envelopes at random one has none, or one,
or two, ..., or n ‘matchings’; that is letters in their own envelopes? The same problem
arises if one pairs up at random right and left shoes from # pairs, or the husbands and
wives of # couples, or the jackets and trousers of # suits, and so on. Alternatively, if one



3 Prevision and Probability

gives back at random to # people their passports, the keys of their hotel rooms, hats left
in the cloakroom, and so on. More standard versions are given by the matchings in
position among playing cards from two identical decks (for instance by placing them at
random in two rows), or between the number of the drawing from an urn of numbered
balls and the number of the ball drawn.

The probability of a matching at any given position is obviously 1/#, of two matchings
at two given positions is 1/[n(n — 1)], and, in general, of r matchings at r given posi-
tions is

1 (n—r)!

[n(n—l)...(n—r+1)] n!

(in fact: only one out of the n objects, or only one out of the n(n — 1) pairs, ..., or only
one out of the n!/(n — r)! arrangements r at a time, is favourable)
The S, are therefore the sum of (ﬁ’ terms all equal to (n — r)!/n}, so that S, = 1/r!
(independent of n), from which, denoting the number of matchings by Y, we obtain
1 1

1 24
P(Y=0)={1—1+———+...i—}=eI—R,, =e!
2! 3! n!

AN PRI S S (a1 ool
P(Y—h)—{l 1+ 3!+...+(n_h)!}/h!—(e R,y)/hi=e™ /!

(in particular: P(Y =  — 1) = 0, P(Y = n) = 1/n!). Expressed numerically, e = 0-367879.
In the limit, as # increases, the distribution tends to that in which

P(Y=h)=e"/h!

(as we shall see later, Chapter 6, 6.11.2, this is the Poisson distribution with prevision P(Y) = 1).

Observe that for the matching problem one could establish immediately by a direct
argument that P(Y) = 1 (i.e. that, in prevision, there is only one matching, whatever # is).
We have only to note that it is given by P(Y) = n.(1/n), since the prevision (probability)
of a matching at any one of the # places is 1/n.

Observe also that the relation P(Y = n — 1) = 0 is obvious: in fact, # — 1 is not a possible
value for Y because if we have matchings in # — 1 positions the last one cannot fail to
give a matching (it is as well to point out this fact since it is easily overlooked!).

3.8.5. Entropy. Given a partition into events with probabilities py, py,..., p,, we define
the entropy to be the number

> pullogs pu| (loga pu =(log pu )/ (log2)),
h

24 R, is the remainder of the series £ +1/ k! from the term 1/ (n+1)! onwards: it is approximately equal to
this first omitted term (which exceeds it in absolute value). With respect to e™! it is practically negligible,
except when # (respectively n — /) is very small (even for n = 10 or n — & = 10, the correction does not affect
the decimal expression given for e™*).

87
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which represents the prevision of the number of YES—NO questions required to iden-
tify the true event.

This is immediate in the case of n = 2" equally probable events: m YES—-NO questions
are necessary and sufficient to know with certainty to which half, quarter, eighth,..., of
the partition the true event belongs, and finally to know precisely which one it is. If we
have nine events with probabilities 15,4 5535735735 017 o One question suffices if the
first one is true; if not (with probability %) another two questions are sufficient to decide
which one of the next three is true, or whether the true event is one of the remaining
five; finally (with probability %), another two questions are necessary, plus (with proba-
bility 55) a further one to decide between the last two events. The entropy in this exam-
ple is therefore given by

1+2(1)+2(3)+(%)=22=2-28.
If it is not possible to proceed by successive halvings, some fraction is wasted (unless
some device is available: for the time being, however, this brief introduction will suffice).

The unit of entropy is called a bit (contraction of ‘binary digit’): in the example above,
the entropy was 2:28 bits; in the case of 1024 = 2'° equally probable cases it is 10 bits.
For a given #, the entropy is maximized by an equipartition (pj, = 1/n): the reader might
like to verify this as an exercise.

An item of information that leads to the exclusion of certain of the possible outcomes
causes a decrease in entropy: this decrease is called the amount of information, and, like
the entropy, is measured in bits (it is, in fact, the same thing with the opposite sign:
some even call it negative entropy). We note that, for the time being, we are not in a
position to provide a complete explanation of our assertion that an increase in informa-
tion causes a decrease in entropy.

3.8.6. Probability as measure or as mass. In the set-theoretic interpretation of the
events, it appears natural to think of probability — a non-negative, additive function
taking the value 1 on the whole space — either as a measure, or as a mass.

The most widely used approach at the present time is the systematic identification of
events as sets, and probability as measure (with all the advantages — as well as the
risks! — that derive from a mechanical transposition of all the concepts, procedures and
results of measure theory into the calculus of probability). To those reservations that we
have already repeatedly expressed in connection with the systematic adoption of the
set-theoretic interpretation of events, others must be added (in our opinion) concern-
ing the further inflexibility introduced by the identification of probability with measure.
This can, in fact, lead one to think that the representation in a space furnished with a
measure binds events and random entities inseparably to a well-determined evaluation
of probability. In the most elementary case, where we use Venn diagrams, the figures
should be drawn in such a way that the area of each section be equal to its probability
(taking the basic rectangle to have unit area). This, on the other hand, is in accordance
with those points of view in which to each event (set) there corresponds an objectively
(or, in any case, uniquely) determined probability.

If, instead, one wishes to distinguish between, on the one hand, the representation of
the logical situation and, on the other hand, the introduction of whatever coherent
evaluation of probability one wants to make, it turns out to be preferable to think of
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probability as mass. The mass can, in fact, be distributed at will, without altering the
geometric support and the ‘measure, which might in that context appear more natu-
ral.? In the Venn diagram, without changing the figure in any way, there is no difficulty
in imagining the possible ways of distributing a unit mass among the various parts (it
does not matter if we put large masses on small pieces) and in imagining those ways that
various individuals, real or hypothetical, would have chosen as their own opinion, or
those we think they might choose.

Another advantage is the following: if one gives to the space of the representation the
structure of the linear ambit, . 7, then the well-known implications of the mechanical
meaning of mass make clear all those probabilistic properties that can be translated in
terms of knowledge of the barycentre of a distribution (as we have already had occasion
to see), or of moments of inertia, and so on.”®

We shall see shortly some particularly significant applications of this concept in the
linear ambit determined by # events (in the sense explained in Chapter 2, 2.8, where the
‘possible points’ are finite in number, since they correspond to the constituents).
Meanwhile, before concluding these comments on the set-theoretic interpretation, it is
perhaps instructive to point out the simple, but not obvious, meaning that the expres-
sion of the probability of the event-sum acquires under this interpretation. We will
consider the case of three events, where

E=AvBvC=A+B+C-AB-AC-BC+ABC.

In the Venn diagram, Chapter 2, Figure 2.1b, the area of the union of the pieces 4, B, C
(or, alternatively, the mass contained in them) is calculated in the following way: firstly,
we sum the areas of A, B and C; in this way, however, those of ABC,ABC,ABC (doubly
shaded) are counted twice, and that of ABC (triply shaded) is counted three times; sub-
tracting those of AB, AC and BC, we re-establish the correct contribution for those
originally counted twice; however, ABC is now counted three times less (since it belongs
to AB and AC and BC) and therefore turns out to be ignored altogether; if we add it in,
everything turns out as it should be.

3.9 Linear Dependence in General

3.9.1. The straightforward theorems concerning ‘total probability; which we established
at the beginning of the previous section, certainly require no further explanations. It is,
however, convenient to introduce the use of the representation with the spaces . Z and
% by means of the simple cases, before proceeding to others of a less trivial nature.

25 It is not that different distributions of ‘mass’ could not equally well be called different ‘measures It is,
however, a fact that when talking in terms of measure one tends to make of it something fixed, with a special
status, whereas when talking in terms of mass there is the physical feeling of being able to move it in
whatever way one likes.

26 The suggestion has even been put forward that one could always think just in terms of the mass (or
measures, or area) rather than in terms of the original meaning of probability: in this way we avoid the
questions and doubts of a conceptual nature to which such a notion of probability can give rise. In general,
however, in addition to removing the doubts this would also remove the raison d’étre of the problems
themselves (unless these only involve formal aspects, capable of being isolated from the context which
provides them with meaning and content).
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We shall restrict ourselves, in general, to the three-dimensional case, which is the
most obviously intuitive: the extension to # dimensions (which we shall occasionally
mention) presents no difficulty for the reader who is familiar with such things, whereas
for those who lack this familiarity it is better to be clear about the simpler case than to
acquire confused and formal notions in a less accessible field.

Let Ey, E,, E3 be three events (which, for the moment, we take to be logically inde-
pendent; we shall introduce various assumptions as we go on), and let (x, y, z) be the
Cartesian reference system on which we superpose the linear ambit . 7 and the linear
space .. The eight vertices of the unit cube

(0,0,0)(1,0,0)(0,1,0)(0,0,1)(0,1,1)(1,0,1)(1,1,0)(1,1,1),

thought of as points of . 7, represent the constituents Q; forming ;

Q= Q= Q= Q= Q = Q= Q= Q=
E\E,Ey E\E)E;  EE,E;  E\E,Es EEE, EEE,  EEE  EEE

(where negations correspond to the zeros, affirmations to the ones); thought of as points
(or vectors) of 7, they represent the random quantities

0 E E E E,+E; E +E; E,+E, E +E,+E;

(where the presence of a summand corresponds to the ones).

The generic point (%, y, z), thought of as a point of . Z, would mean that E; takes the
value x, and similarly E, = y and Ej3 = z (which is invalid, since the random quantities E;
cannot take on values other than 0, 1). This can be valid, however, as prevision, in the
sense that P(E}) = x, P(E;) = y, P(E3) = z; in other words, (%, ¥, z) represents the prevision
P which attributes to Ej, E,, E3 the probabilities (py, p2, p3) = (%, ¥, 2z), and which is also
expressible as the barycentre of the points Q; with suitable weights (masses) g;. Thought
of as a point (or vector) of %, (x, y, z) represents the random quantity X = uE; + vE, +
wE3 with coefficients (i, v, w) = (x, y, z). Since P(X) = up; + vpy + wps = ux + vy + wz,
P(X) can be interpreted as the inner product of the (dual) vectors P (or P — 0) of .Z and
X (or X - 0) of L; o, alternatively, as P(X) = (P - 0) x (X - 0) in the metric space on which
% and .Z have been superposed.

Until we state precisely the assumptions made concerning the E;, that is establish
which among the eight products are actually possible constituents, all this remains
rather general and introductory in character; simply a repetition of things we know
already, with a few additional details.

3.9.2. The case of partitions. If the E; constitute a partition, there are three constitu-
ents. Q; = (1,0, 0), Q, = (0, 1, 0), Q3 = (0, 0, 1). We know that the p; can be any three
non-negative numbers summing to 1. In other words, the admissible P = (x, y, z) belong
to the plane x + ¥ + z = 1. More precisely, they belong to the triangle having as its verti-
ces the three possible points Qy, Q,, Qs, and are, in fact, uniquely expressible as barycen-
tres of these points, P = q1Q; + ¢2Q, + ¢3Qs, with weights ¢1 = x, g» = ¥, g3 = z. This
triangle constitutes the space 7 of admissible previsions, and is precisely the convex
hull of the set ¢ of possible outcomes (which reduces in this case to the three
given vertices). Representing the triangle by a figure in the plane, one sees that the
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probabilities x, y, z, turn out to be the barycentric coordinates of the point P with respect
to the Q. Since the triangle is equilateral, one has the standard ‘ternary diagram’ (as is
used, for example, to indicate the composition of ternary alloys) in which x, y, z also
have a more immediate interpretation as the distances of the point from the sides, taking
as unity the height of the triangle (to which the sum of the three distances is always
equal). It is also clear that a point outside of the triangle (not in the plane, or in the plane
but outside the triangle) can be brought nearer to all the three vertices — that is to all the
points of /- by transporting it into the triangle. This can be accomplished by project-
ing it onto the plane, and then, if the projection falls outside the triangle, by transport-
ing it to the nearest point on the boundary. This is related to the ‘second criterion; if we
think of the penalty as being the square of the ordinary distance in this representation.

If we think in terms of %, we could say, instead, that the point (1, 1, 1) represents the
random quantity that is certainly equal to 1, given that E; + E; + E3 = 1. The fact that for
the coordinates of P we must have x + ¥ + z = 1 is then interpreted on the basis of the
scalar product: P(1) =x-1+y-1+z-1=1.

3.9.3. The case of incompatibility. If the E; are incompatible (but not exhaustive) there
are four constituents: the previous three and Q, = (0, 0, 0); that is Qy, Q1, Q2, Q3. The above
considerations still hold, except that we now have the relation x + y + z < 1 (instead of = 1).
We still have P expressible uniquely as a barycentre, P = goQp + 1Q1 + g2Q2 + g3Qs3, of the
Q,, with weights go =1 - x - y — 2, ¢1 = %, ¢2 = ¥, g3 = 2, and the space #’(which was the
triangle with vertices Qy, Qo, Q3) is now the tetrahedron having in addition the vertex Q.

3.9.4. The case of a product. Let E; and E, be logically independent, and E; be their
product: E5 = E1E;. The constituents are then the following four: Qg = (0, 0, 0), Q; = (1,
0,0), Q;=(0,1,0) and Q; = (1, 1, 1). The first three are in the plane z = 0, the last three
are on z = x + y — 1; the other two groups of three are on z = y and z = x, respectively.
The space Zis, therefore, the tetrahedronz > 0,z > x + y - 1, z < x, z < y, or, in other
words, expressed compactly using A and Vv,

[max(0,x+y-1)=] Ov(x+y—-1<z<xAy [=min(x,y)].

These are the restrictions under which one can arbitrarily choose the probabilities of two
logically independent events and that of their product.
Here also, P is uniquely expressible as a barycentre

P=qoQo+q:1Q1 +92Q +q0Qo
of the Qwithweightsgo=1-x-y+2z, q1=x-2 ¢=y-240 =2
3.9.5. The case of the event-sum. This proceeds as above, except that E3 = E; V E,
(instead of E1E,). Since the event-sum is E; + E; — E1Ey, this case reduces straightaway

to the preceding ones. The constituents are Qo, Qj, Q;, Qp; the inequalities for the tetra-
hedron 7’ having these vertices are

[max(x,y) :J xvy<z<Ia(x+y) [:min(l,x+yﬂ;

the weights which give P = (x, y, z) as a barycentre in terms of the Q are

qo=1-2z, q=z-y qs=z2—x, qo=x+y+z.
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Remark. In the preceding cases each P was derived as a barycentre of the Q with
uniquely determined weights g; it is important to note (and we shall return to this later)
that this circumstance is exceptional. To be more precise, this happens when and only
when the Q are linearly independent — in the examples above we had, in fact, either three
noncollinear, or 4 noncoplanar — or when they are (as events) expressible as a linear com-
bination of the given events. In fact, they were, in the first case, E;, E,, E3; in the second, 1
- El - E2 - E3, El’ Ez, Eg; in the thlrd, 1- El - E2 + Eg, E1 - Eg, Ez - Eg, Eg; and in the fOLlI'th,
1 - Es, E3 - Ey, E3 - Ey, E1 + E; — Es. In other words, the Q (as events) belonged in these
cases to Z. Observe that the expressions for the Q in terms of the E are the same as those
for the weights g in terms of «, ¥, z. In the following examples this will no longer happen.

3.9.6. The case of exhaustivity. If we specify only that E;, E,, E; are exhaustive, then
there are seven constituents; the eight minus Qg = (0, 0, 0), which is excluded. This latter
vertex of the cube being missing, the convex hull Zis the cube itself minus the tetrahe-
dron defined by this vertex and the three adjacent ones; that is the part of the cube 0 <
%, ¥, z < 1 which satisfies the inequality x + y + z > 1. Each of its points P can be
expressed — in an infinite number of ways — as a barycentre of points Q (unless the point
coincides with a vertex, or belongs to an edge, or a triangular face, in which case the
number of representations is finite). In fact, all we have to do is to choose non-negative
weights g, summing to 1, such that

@+ g5 +q3+q0 =X, D+qi+qz+qo=1y,
GBra+q+q0=2

(4 equations and 7 unknowns).

3.9.7. The case where the negations are also exhaustive. If we exclude both the extreme
constituents, that is in addition to Qo = (0, 0, 0) we also exclude Q| = (1, 1, 1), then six
constituents remain. The cube has now had removed from it the two opposite tetrahe-
drons, and the remaining part #is that defined by the double inequality 1 <x +y +
z € 2.7 Other considerations are as above.

A useful example is given by the comparisons between three random quantities, X, Y, Z;
in other words, by considering the three events E = (X > Y), E; = (Y'> Z), E3 = (Z > X) (we
assume excluded, or at least as practically negligible, the case of equality). By transitivity,
the three events cannot turn out to be either all true or all false; there remain the other six
constituents, corresponding to the 6 = 3! possible permutations. As an application, one
might think, for example, of comparing the weights (or temperatures, etc.) of three objects.

Other cases. The following cases are similar (and are useful as exercises): E3 C E1E; (5
constituents); E; and E, incompatible, E3 C (E; = E,) (6 constituents); and so on. Another
example with four (independent!) constituents is given by E3 = (E; = Ej).

3.9.8. The case of logical independence. All eight constituents exist; #’is the whole
cube. This is the most complete and ‘normal’ case; there is little to say apart from think-
ing about it in the light of remarks concerning more elaborate cases.

27 The case x + y + z = 2 (with constituents Q{, Q3, Q) is similar to that of the partition (x + y + z = 1), and
is obtained if E}, E,, E; form a partition.
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The same case in any number of dimensions. If Ey, E,,..., E, are logically independ-
ent events, we will have 2" constituents Q,, the vertices of the unit hypercube; that
is the points (x, xy,..., x,,) in the linear ambit . Z with x; = 1 or 0. The admissible
previsions P are those of the cube 7, 0 < x; < 1, which is the convex hull of the set
of the vertices . The linear space L is formed by the random quantities X = u,E; +
usEs + ... + u,E,, which are linearly dependent (homogeneously, but it is easy to take
into account separately an additive constant) on the events E;. Conceptually, every-
thing that has been stated for # = 2 and # = 3 also holds for arbitrary # (this saves us
repeating everything in a more cumbersome notation and so making the exposition
rather heavy going).

3.9.9. General comments. Each particular case differs from the final one by virtue of
the exclusion of some of the constituents: instead of 2" there are only s < 2". These
determine a linear space of dimension d(d < n, logy s < d < s - 1); if d < n, the n events
E; are linearly dependent. In fact, if all the Q satisfy a linear relation Zixi =const. the
same holds for the E;. For instance, in the above examplesx + y + z=1,x + y + z = 2 gives
Ey + E; + E3 = 1 (or 2), so that we need only consider two events, for example E; and Ej,
setting E3 = 1 — E; — Ey or E3 = 2 — E; — E,, respectively (this also holds in the general
case). If we consider the unnecessary E; as eliminated (since they are linearly dependent
on the others), we can always arrange that d = »; in any case, #’is the convex hull (d-
dimensional polyhedron) having as vertices the points Q which form .

Given some P (in.7), in other words, having evaluated the probabilities P(E;) of the
given events, P turns out to be determined for all those random quantities X which are
linearly dependent on the E;, and for no others; that is for those belonging to Z. In
particular, the probability of an event E is determined if and only if E is one of these X.*
This statement takes into account all the obvious cases: for example, the probability of
A V B is not determined by P(A) and P(B) (unless we assume incompatibility), but is
determined if we include P(AB), since we have the relation A + B=AB + AV B. It is
useful to see an example of how nontrivial events can be found among the X of Z (i.e.
the X that only have two possible values; which we can always represent as 0 and 1). We
shall see then that, if E is not linearly dependent on the E;, one can only say that p’ <
P(E) < p”, where p’ = sup P(X) for the X of #'which are certainly <E, and p” = inf P(X)
for the X of #'which are certainly >E.

3.9.10. A nonobvious example of linear dependence. Suppose that A, B, C, D, F, G are
the participants in a competition, and that six other individuals each choose from
among the participants their three ‘favourites’ (a prize being offered to all those who
have included the winner among their ‘favourites’). Suppose also that we know the
choices to be: C, D, G for the first individual; B, C, G for the second; A, D, F for the third;
B, F, G for the fourth; A, C, D for the fifth; D, F, G for the sixth. Finally, a seventh indi-
vidual — suppose it is You — has chosen A, B, C. Is your guess, the event E say, linearly

28 This does not exclude the possibility that for certain evaluations (limit-cases in which an inequality
reduces to an equality) P(E) can turn out to be determined for E which are not linearly dependent on the E;
we started with (and perhaps not even logically dependent). For instance, if neither of A and B is logically
dependent on A V B, then knowing P(A V B) is not sufficient to determine P(A) and P(B); if, however, P(A v B) = 0,
it follows necessarily that P(A) and P(B) are also zero.
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dependent on the events Ej,..., Es, which denote the guesses of the others, or not? This
question might be important, for example, in the following situation: there is an expert
in whom You have great confidence, so far as judging the competition and the partici-
pants is concerned, and whose opinion concerning your probability of winning is of
interest to You. However, You do not know this directly (since You do not know what
probability of winning he attributes to each participant) but only indirectly (because
You happen to know what probabilities he attributes to the guesses of the others turning
out to be correct); is this enough?
We have the system of equations:

1=A+B+C+D+F+G

E = C+D +G
E, = B+C +G
E;=A +D+F
E,= B +F+G
E;=A +C+D

E¢ = D+F+G
E=A+B+C

(the first equation states, as we have seen, that the six cases are the only ones possible,
and are incompatible). One could work out the determinant (and, by virtue of its being
zero, could verify linear dependence), but instead we note (and leave the reader to verify
it by working out the sum) that we have the relation

2E, —E, + Es—3E, —5E; +5E; +7E
=3(A+B+C+D+F+G)=3,

from which
1
15=;(3—2E1 +Ey —E3 +3E, +5E5 —5E;).

Hence, if I know the p; = P(E;) of the guesses, I can conclude that in the expert’s opinion
(assumed coherent) p = P(E) must be

1
p=;(3—2p1+pz+p3+3p4+5ps—5p6).

In a similar way one could, of course, see whether the p; ... pg are admissible (compat-
ible with probabilities >0 for the partition A, B, C, D, F, G, and if, in any case, they
determine them, etc.). It may be a useful exercise to develop these questions in the
context of this example (as it stands, or modifying it in some way).

3.10 The Fundamental Theorem of Probability

3.10.1. We turn now to proving and illustrating the general conclusion that we stated
before, and which, in a more complete and precise form, constitutes the following:
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Theorem. Given the probabilities P(E;) (i = 1, 2,..., n) of a finite number of events, the
probability, P(E), of a further event E, either

a) turns out to be determined (whatever P is) if E is linearly dependent on the E; (as we
already know); or

b) can be assigned, coherently, any value in a closed interval p’ < P(E) < p” (which can
often give an illusory restriction, if p’ = 0 and p" = 1, or in limit-cases for particular
P, give a well-determined result p = p’ = p”).

More precisely, p' is the upper bound, sup P(X), of the evaluations from below of the
P(X) given by the random quantities X of % (i.e. linearly dependent on the E;) for which
we certainly have X < E. If E is not logically dependent on the E;, observe that X < E can
be more usefully replaced by X < E' where E' is the largest event logically dependent on
the E; contained in E (see Chapter 2, 2.7.3). The same can be said for p” (replacing sup by
inf, maximum by minimum, E' by E”, and changing the direction of the inequalities, etc.).

Proof. If Q; ... Q, denote the constituents, relative to E; ... E,, and E is logically (but
not linearly) dependent on the E;, then the linear ambit . #’ obtained by the adjunction
of E (i.e. by adding a new coordinate x to the preceding x; ... x,,) has the same constitu-
ents Qy, but now placed at the vertices of a cube in # + 1 dimensions instead of n. Each
Q = (%1, x9,..., %) is either left as it was (with x = 0), or moved onto the parallel S,, (x = 1),
becoming either (x3, xy,..., x,,, 0) or (¥1, X,..., %,, 1), according to whether Q is contained
inE or in E. The convex hull 7 in S,,,; (in.#’) has as its projection onto the preceding
S, (7) the preceding 7. For each admissible P in the latter (with coordinates p; = P(E))),
the admissible extensions in . #’ are the points P’ that project onto P and belong to #;
that is. belong to the segment p’ < x < p” which is the intersection of the ray (p1, p, ...,
P %) with 7. The extreme points (x = p’, x = p’) are on the boundary of 77, that is on
one of the hyperplanes (in # dimensions) that constitute its faces (they could be on more
than one — vertices, edges, etc. — but this does not affect the issue). Suppose the hyper-
plane is given by Yu;x; + ux = c; in other words, suppose that the relation Yu,E; + uE = c
holds on it, that is that E = (¢ — Xu;E;)/u: then the X in % defined by the right-hand side
has the given property, and yields p’ = P(X). Similarly for p”.

3.10.2. Applications. Let us generalize some of the examples considered previously in
S3. Those concerning the number of successes,

Y:El +E2 +E3,

now become the consideration of Y = E; , E; + ... + E,, and we can look at various sub-
cases. Suppose that either Yis known, Y =y (0 < y < n) (as in the previous cases where
Y =1and Y = 2), or certainly lies between two given extreme values y’ and y” (0 <y’ <
y” < n) (as in the previous cases, where 1 < Y < 2). The interpretation of this last exam-
ple, as given in Section 3.9.7, will now be extended (in different ways) to comparisons
between # objects: finally, the case of the event-sum will require all the products.

3.10.3. Knowledge about frequency. This first example is noteworthy in that it consti-
tutes the first and most elementary link in the long chain of conclusions which, as we
proceed, will clarify and enrich our insight into the relationship that holds between
probability and frequency. This is important both for what the conclusions do say and,
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perhaps even more so (in some situations at least), in order to get used to not interpret-
ing them as saying something which they do not say.

The simplest case is that in which the number of successes, Y= E; + E; + ... + E,, is
known (for certain);that is the frequency Y/n is known (for certain). Let Y = y, so that
Y/n = y/n. The following are possible examples: in an election, out of # candidates we
know that y are to be elected; in an examination, y candidates out of #n passed (but we
are still ignorant of which ones); in a drawing of the lottery, out of # = 90 numbers y = 5
will be drawn; at # = 90 successive drawings of all the balls in Bingo, all the y = 15 num-
bers on your card will come out.

As an extension, we have the case in which we know the limits between which Y must
lie; ' < Y < 9" (and hence that the frequency must be between y'/n and y"/n). In the
preceding examples: it may be that the electoral system allows the number elected to
vary between y’ and y”; that on the basis of partial information about the examinations
one knows that at least y" have passed and at least # — y” have not; if we consider 10
drawings of the lottery instead of one (for instance, all the 10 ‘wheels’ on the same day),
then of the # = 90 numbers the total of different numbers drawn can vary between y’ =
5 (all the sets of five identical) and y” = 50 (no number repeated).

It is obvious that, as in the case n = 3, the sum of the P(E;), that is P(Y), must give in
the first case y, and in the second a value y’ < P(Y) < y”. Put more forcefully; dividing by
n, the probabilities P(E;) must be such that their arithmetic mean coincides with the
known frequency y/n, or falls between the extreme values, y'/n and y"[n, that the fre-
quency can assume (end-points included). This is all that can be said on the basis of the
given information. In general, one might say more: for example, that each number in the
lottery has probability 2 of coming up in a given drawing, and not different probabili-
ties with mean 5. This could only be done, however, on the basis of additional knowl-
edge or considerations which must be kept separate.

3.10.4. The linear ambit of events logically dependent on n given events. For the
purpose in hand, it is obviously sufficient to consider the linear ambit, let us call it . 2%,
generated by the s constituents Qy, (these form a partition, and so the dimension is actu-
ally s — 1, given the identity Q; + Qy + ... + Q; = 1). We could also generate it by means
of the E; and their products (two at a time, three at a time, etc.). We saw, in Section 3.8.3,
that in this way one can express the event-sum linearly, and we shall now see that it is
possible to express all the constituents linearly, and hence all the events which are logi-
cally dependent on the E;. We will suppose that the E; are logically independent, so that
s = 2" in the other case, the treatment is equally valid, except that the constituents and
the products which turn out to be impossible have to be omitted.

Let us illustrate the situation by referring to the case of three logically independent
events and their products; for convenience we denote the three events by A, B, C (instead
of E;, E,, E3) and their products by F = AB, G = AC, H = BCand E = ABC. We have seven
events that are linearly independent because there exists only one linear relation
between the 2° = 8 constituents (the sum =1). Some inequalities (implications) hold
among them, however; for instance, A > AB > ABC so that A > F > E (as is obvious if
one considers that of the 27 = 128 vertices of the cube in seven dimensions only the eight
corresponding to the constituents relative to A, B, C, are possible).

We list the constituents, giving their coordinates in the ambit .Z*, and the linear
expressions in the dual space %'*:
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ABCFGHE =(1,1,1,1,1,1,1)=E,
ABCFGHE =(1,1,0,1,0,0,0)=F — E,
ABCFGHE =(1,0,1,0,1,0,0)=G — E,
ABCFGHE=(0,1,1,0, 0,1, 0)=H—E,

ABCFGHE =(1, 0, 0, 0, 0,0, 0)=A—F-G+E,
ABCFGHE =(0,0,1,0, 0, 0, 0)=C—G—H+E,
ABCFGHE =(0, 0, 0, 0, 0, 0,0)0=1-A-B-C+F+G+H—E.

These expressions, and the analogous ones for each of the events logically dependent
on A, B, C, are obtained as shown in the following example:

ABC=(1-A)B(1-C)=B-AB-BC+ABC=B-F-H+L.

The necessary and sufficient condition for coherence is that the probabilities of the
constituents are non-negative (they automatically turn out to sum to 1), and therefore
the following inequalities (where, for simplicity, we denote the probability of an event by
the corresponding lower case letter) are necessary and sufficient:

e=0, fgh>e, azf+g-e b>2f+h-e
czg+h-e, (@+b+c)-(f+g+h)+e< 1.
3.10.5. A canonical expression for random quantities. By analogy, we indicate here

how, in the same manner, each random quantity

X=C0 +C1E1 +C2E2 +...+C,,,En,
linearly expressible in terms of the events E;, can be put in a meaningful canonical form
by reducing it to a linear combination

X :x1C1 +x2C2 +...+xSCS
of the constituents Cj, (the x;, are the possible values of X, assumed in correspondence
to the occurrence of the Cp). As an example: if we denote two logically independent
events by A and B, and the constituents by Q; = AB, Q, = AB, Q3 = AB, Q4 = AB, where
1=0Q1+Qy+ Q3+ Q4 A=Q; +Qy B=Q; + Q3 we have, for instance, for X =3 — 44 + B:

X=3(Q+Q+Q+Qs)-4(Q+Q)+(Q +Q)

=0-Q+(-1)Q+4-Q+3- Q.

X assumes the possible values -1, 0, 3, 4, corresponding to Q,, Qy, Qq, Q3.

3.10.6. Comment. The above considerations are intended to familiarize the reader (in
the case of events) with the crucially important idea of the relations of linearity and
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inequality, and to stress a fact and a criterion that will be of use in what follows, and
more generally.

The fact is the possibility of expressing all that can legitimately be said by arguing
solely in terms of the events (and random quantities) whose prevision is known. That is
to say, without leaving the linear ambit determined by the latter, without imagining
already present a probability distribution over larger ambits, those in which the exten-
sion is possible, albeit in an infinite number of ways.

The criterion lies in the commitment to systematically exploiting this fact; the com-
mitment considered as the expression of a fundamental methodological need in the
theory of probability (at least in the conception which we here maintain). All this is not
usually emphasized.

These considerations should go some way to excusing the length of the exposition,
which is certainly excessive in comparison with what would be desirable if this topic
were well enough known in general to permit us to restrict ourselves to a few brief
remarks.

3.10.7. The case of an infinite number of events (or random quantities). The funda-
mental theorem of probability (and prevision), given in Section 3.10.1, permits us — even
in countably infinite or nondenumerable cases where, of course, the number of choices
is infinite — to proceed to attribute to all the events and random quantities that we wish,
one after the other, probabilities and previsions coherent with the preceding ones. The
arguments presented do not become invalid when we pass to the infinite case, because
the conditions of coherence always refer just to finite subsets: see Appendix, Section 15.

This demonstrates the theorem of the unconditional existence and extendibility of
coherent previsions of events and random quantities in any (open)® field. In other words:

If within the field in which they are made, the previsions do not already give rise to
incoherence, no incoherence arises to prevent the existence of coherent previsions
in any field whatever, coinciding with the preceding ones whenever these apply.

3.11 Zero Probabilities: Critical Questions

3.11.1. In both the criteria put forward in order to define probability there was a point
whose clarification we held over to the sequel. It was the same point in both cases; the
wherefore of the precaution taken in excluding the possibilities of gains being all uni-
formly negative, but not that of gains being all negative (without the ‘uniformity’ condi-
tion). Another matter, connected with this, is the removal of the reservations regarding
the prevision of unbounded random quantities.

We are dealing with critical questions and, if we only wished to consider those aspects
relating to applications, they could be omitted, or confined to the Appendix. This, how-
ever, is not possible. In Chapter 6, we have to study distributions, and to throw light on
the conceptual differences and their wherefores, introduced in accordance with the

29 ‘Open’ is meant in the sense of not being preconstituted, not constrained, not a ‘Procrustean bed; not a
Borel field, not consisting of events, etc., that have a given meaning or structure, but a field in which we can,
at any moment, insert whatever might come to mind.
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present viewpoint, it is better to focus right from the beginning on those aspects which
will play a fundamental réle.

The fact is that a logical construction is such in so far as it is a whole in which ‘tout se
tient’ [‘everything fits together’]; otherwise, it is nothing of the sort. Questions that are
seemingly completely otiose and insignificant can have, and do have, interconnections
with all the rest and are essential for an understanding of them. To ignore them, or
merely to mention them in passing, is dangerous, especially when they impinge on deli-
cate and controversial matters: too many ideas then remain rather vague and give rise
to an accumulation of doubts.

For this reason, having reached the end of Chapter 3, we shall now consider the ques-
tions of a critical nature that have arisen; we shall do the same at the end of Chapter 4,
coming back to these same questions under a new guise; finally, at the end of Chapter 5,
we shall arrive at the same kind of considerations, although with respect to topics that
are less technical and more general. We shall attempt to confine ourselves to the
minimum necessary discussion, expressed as simply as possible. The few additional
clarifications or examples will be recognizable ‘at a glance’ by virtue of the small print.

3.11.2. It would not be accurate to say that all the problems reduce to the presence of
zero probabilities but, in order to have a guideline to follow, it is convenient to think in
these terms (just as it is not only suggestive but also appropriate to mention them in the
section heading).

It seems impossible that there is anything at all to be said about zero probabilities.
Instead, we have the following basic questions:

i) Can a possible event have zero probability? If so:
ii) Isit possible to compare the zero probabilities of possible events (to say if they are
equal, or what their relation is, etc.)?
iii) Cana union of events with zero probabilities have a positive probability (in particu-
lar, can it be the certain event)?
iv) Are there any connections with problems concerning random quantities, and in
particular with the problem of prevision for unbounded random quantities?

Question (II) crops up again within the topics of Chapter 4 and will be discussed
there; we had to mention it, not only to put it in its natural position as a ‘question’ but
also to give prior warning that any incidental comments that we make here for conveni-
ence will be clarified at the appropriate place: we will draw attention to this by writing ‘(II!)’

Questions (I) and (III) can be bracketed and discussed together straightaway; afterwards
we shall pass on to (IV). However, there was a reason for putting the two questions (I) and
(I1I) separately. Question (III), which evidently requires to be put in the context of infinite
partitions, might lead one to think and state that one can only have possible events with
zero probability if they belong to infinite partitions (!). This is monstrous. If E has probabil-
ity p (in particular = 0) it is an event with probability p (in particular with zero probability)
both when considered in itself, or in the dichotomy E and E, or in any other partition into
few, many or an infinite numbers of events, obtained by partitioning in any way whatso-
ever. Unfortunately, this propensity to see each event embedded in some scheme, together
with others usually studied with it, gives rise to serious confusions both in theoretical
matters (as is the case here) and practically (as in the examples in Chapter 5, 5.8.7).
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This having been said as an appropriate warning, we can pose question (III) once
again by asking whether in an infinite partition one can attribute zero probability to all
the events. In this form, the question becomes essentially equivalent to that concerning
the different types of additivity: finite, only for a finite sum; countable, for the denumer-
able case; perfect, if the additivity always holds.

There are precisely three answers, corresponding to these three types (with a varia-
tion, which is related to (I)):

A = Affirmative, N = Negative (N’ and N”), C = Conditional

(and in what follows, we shall denote them and the corresponding points of view with
the initials A, N and C, or, if necessary, A, N', N” and C).

A: Yes. Probability is finitely additive. The union of an infinite number of incompatible
events of zero probability can always have positive probability, and can even be the
certain event.

N: No. Probability is perfectly additive. In any partition there is a finite, or countable,
number of events with positive probabilities, summing to one: the others have zero
probability both individually and together.

C: It depends. The answer is NO if we are dealing with a countable partition, because
probability is countably additive; the sum of a countable number of zeroes is zero. The
answer is YES if we are dealing with an uncountable infinity,” because probability is
not perfectly additive: the sum of an uncountable infinity of zeroes can be positive.

In the case of the answer N, there are, however, two subcases to be distinguished with
reference to question (I) (for which, in cases A and C, the answer can only be YES).

N': Probability zero implies impossibility. What has been said above is a consequence of
this identification.

N": Probability zero does not imply impossibility. However, the behaviour is the same:
even if we take the union of them all, the events of probability zero form an event with
zero probability.

3.11.3. Let me say at once that the thesis we support here is that of A, finite additivity;
explicitly, the probability of a union of incompatible events is greater than or equal to the
supremum of the sums of a finite number of them. Apart from the present author, it
would seem that only B.O. Koopman (1940) has systematically adopted and developed
this thesis. Others, like Good (1965), admit only finite additivity as an axiom, but do
nothing to follow up this observation. Others again, like Dubins and Savage (1965),
make use of finite additivity for special purposes and topics.

The thesis N is supported, as far as I know, only by certain logicians, such as Carnap,
Shimony and Kemeny (as a consequence of a definition of ‘strict coherence’).”!

30 Ido not know whether this corresponds exactly to the conception of the supporters of this thesis (often
one only talks about the case of the continuum).

31 In addition to these serious authors, there is no point in mentioning the large number who refer to zero
probability as impossibility, either to simplify matters in elementary treatments, or because of confusion, or
because of metaphysical prejudices.
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The thesis C is the one most commonly accepted at present; it had, if not its origin, its
systematization in Kolmogorov’s axioms (1933). Its success owes much to the mathe-
matical convenience of making the calculus of probability merely a translation of
modern measure theory (we shall say a lot more about this in Chapter 6). No-one has
given a real justification of countable additivity (other than just taking it as a ‘natural
extension’ of finite additivity); indeed, many authors do also take into account cases in
which it does not hold, but they consider them separately, not as absurd, but nonethe-
less ‘pathological; outside the ‘normal’ theory.

3.11.4. Let us review, briefly, the main objections to the various theses (we number
them: A1, A2,...; N1, N2,...; C1, C2,...). Our point of view is, of course, represented by
the objections to N and C, and by the answers (Ala, A1b,...; A2a, A2b,...) to the objec-
tions raised against A. We will also interpolate some examples (E1, E2,...).

A1 This is an objection from the standpoint of N (or rather N): it is not sufficient to
exclude as inadmissible those bets with gain X certainly negative (—X < 0: weak coher-
ence); it is necessary to exclude them if the gain is certainly nonpositive (— X < 0: strict
coherence). This means that ‘zero probability’ is equivalent to ‘impossibility’.

The most decisive reply will be objection N2, but it is better not to evade a reply that
clarifies the points (perhaps persuasive) put forward in A1; this reply will constitute a
preliminary refutation of N (N1).

Ala It should be unnecessary to point out that the inadmissibility of a bet is always
relative to the set of choices offered by a given scheme. It is obvious that if among the
possible choices there was the choice ‘do not make a bet at all, nobody would choose an
alternative that could only lead to losses (this, however, means nothing).

A1b In the simplest scheme, let X = —E (loss = 1 if E occurs; e.g. the risk we are facing),
and consider the appropriateness of insuring oneself by paying a premium p. Let us
suppose that one is willing to pay (%)” (and no more) if p = (%)"; for example E = all heads
in 7 tosses. If E = all heads in an infinite number of tosses, I will not be willing to pay
more than zero (every € > 0 is (%2” for sufficiently large #, and would be too much even
if the risk were infinitely greater). The lesser evil, therefore, is not to insure oneself; in
other words, to act in this respect (but not in others) as if E were impossible.

Alc There is more, however. The condition of coherence is and must be (as we estab-
lished in Sections 3.3.5 and 3.3.6) even weaker®* than the one criticized in A1, allowing in
addition bets in which one can only lose! Let us suppose that an individual is subjected to
a certain loss of a sum 1/N (where N is an ‘integer chosen at random, with equal — and
therefore zero — probabilities for each value, and hence for each finite segment N < n (II!)).
There is no advantage in paying a sum & (however small) to avoid this certain loss, because
it would always be practically certain that the loss avoided would be very much smaller.

N1 = Ald Summarizing and concluding, we have the following. The variants (from
the weakest to the strongest) consist in excluding X if

sup X <0, sup X <0, with X = 0 impossible, sup X <0,

Objection A1 criticizes the middle statement, and supports the last one. In Alc we
explained why, on the contrary, we think it necessary to support the first one.

32 If we wished to give this condition a name, we might call it sufficient coherence (in contrast to weak and
strict coherence).
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N2 The variant N' is logically absurd unless one excludes the possibility of considering
a partition with an uncountable infinity of possible cases (e.g. the continuum). In the
denumerable case objections arise which also apply to C (C3 = N4, and so on).

N3 The variant N” does away with N2: nevertheless, the meaning of zero probability is
still exceptionally restrictive (much more so than in C, and even there it is too restric-
tive; see C4).

In fact, one should be able to define E* = the union of all events with zero probabilities =
the maximal event with zero probability (let us call it ‘the catastrophe’). Under the
noncatastrophic hypothesis (with probability = 1) one goes back to N’; only in the oppo-
site cases are events with zero probability no longer impossible (and, consequently, (II!)
can have any probability whatsoever).

3.11.5. C1 Cappears to be less logically plausible than A and N — we suspect ‘Adhockery
for mathematical convenience’ — because the distinction between finite and infinite has
without doubt a logical and philosophical relevance, whereas it might seem strange to
draw the crucial distinction between finite and nondenumerable on the one hand, and
countable on the other hand.

C2 A difficulty that derives from this is the following: given a partition (e.g. whose
cardinality is that of the continuum) into events of zero probability, what happens if as a
consequence of additional information one believes that only a countable infinity
remain possible? In particular, if one assumes them (II!) equally probable? Or under the
most general hypothesis?

E1 Initially, X has a uniform distribution over the real numbers between 0 and 1 (all
points equally probable (II')). Additional information reveals that X is rational.

E2 It seems obvious (but recall (II!)) that in this case — that is E1 after the given
‘additional information’ — the values which remain possible, that is the rational values of
[0, 1], are (still) equally probable (they define a ‘random choice’ from the original set).

If one thought of actually interpreting the problem geometrically, one might perhaps
doubt the judgment of all the rationales as equally probable, considering as ‘rather spe-
cial’ the end-points, mid-point, fractions with small denominator, decimal fractions
with only a few figures and so on.

This effect is lessened if one thinks of taking the ‘distance between two points chosen
at random’ (the first minus the second; if negative add 1, take the result mod 1).

It disappears altogether if one thinks in terms of a circle obtained by rolling up the
segment without indicating which is the ‘zero’ point.

C3 = N4 Objection C2 can also be raised in the countable case (and then it also con-
cerns N). Suppose that we have a countable infinity of possible cases, one with p = 1 (and
the others therefore with p = 0); assume we know that the first one has not occurred.

E3 Let N be the number of passages through the origin in a random walk for which
P(N > n) = 1 for all # (an example is Heads and Tails); information: N # oo,

33 This information could only be given by somebody who had explored the world as it appears after the
end of time.... Objections to ‘lack of realism’ would, however, be out of place here as it is merely a question
of logical compatibility. Where they are appropriate (and usually insufficiently dealt with), the exigencies of
realism will be examined here (especially in the Appendix), perhaps at greater length than hitherto, and
perhaps more than is reasonable. One cannot refute the exact nature of a conclusion based on the
examination of a ‘pathological’ curve (e.g. that of Helge van Koch) by the pretext that there exist neither
pencils, nor sheets of paper, nor hands, by means of which it could be drawn.
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E4 In general, in such cases it is plausible to say that the
P =P(N=h|N #»)

are all zero, and (II') each is infinitely greater than the preceding one. We limit ourselves
to a mere statement of this in order to be able to refer to this example without examin-
ing it deeply.

C4 The meaning of p = 0 is too restrictive even in C (although much less so than in N;
see N3). Expressed in a vague form, but one which corresponds exactly to the state of
things, this is the ‘essence’ of those considerations and examples already given (C2, C3,
E1, E2) and of those to come. The fact that, whereas, for any finite #, uniform partitions
are allowed (all p = 1/n), in the countable case only extremely unbalanced partitions are
allowed (under C and N), may serve as a ‘symptom; which makes this ‘restrictiveness’
appear pathological.

We shall see, on the one hand, just how unbalanced they are, and, on the other hand,
the objections to which this gives rise from a realistic point of view. The latter, of course,
will vary according to the conception one holds.

C5 = N5 By taking the sum of probabilities to be = 1 (suppose we denote the probabilities
by p1, pa--.» Pir..., in decreasing order), one necessarily has an inequality such that for
any € > 0, however small, a finite number of events — the first n. — together have
probability >1 - ¢, and the infinity of the others together have probability <e. (In such
circumstances, I am tempted to say that the events ‘are not countably infinite’ but ‘a
finite number — up to trifles’).

E5 The point made in C5 = N5 appears even more strange if we take as an example the
following observation.

If, instead of the whole infinity of events, one only had the first N = n/e (where € and
n = n.are as in the preceding case), there would be nothing to prevent one judging them
equally probable (or almost so) in accordance with some assumed reasons or opinions.
The total probability of the first # would then have been ¢ instead of 1 - €. Of course,
even the infinity of probabilities could have all been taken <1/N, but the enormity of the
inequality would reappear if we took some #n’ = n; and N’ = '/ to start with.

From a mathematical standpoint this is obvious What is strange is simply that a
formal axiom, instead of being neutral with respect to the evaluations (or, for those who
believe in them, with respect to the objective reasons), and only imposing formal condi-
tions of coherence, on the contrary, imposes constraints of the above kind without even
bothering about examining the possibility of there being a case against doing so.

3.11.6. Let us try to better imagine the reactions of individuals with different
points of view.

C6 = N6 Suppose we are given a countable partition into events E;, and let us put
ourselves into the subjectivistic position. An individual wishes to evaluate the p; = P(E));
he is free to choose them as he pleases, except that, if he wants to be coherent, he must
be careful not to inadvertently violate the conditions of coherence.

Someone tells him that in order to be coherent he can choose the p; in any way he
likes, so long as the sum = 1 (it is the same thing as in the finite case, anyway!).

The same thing?!!! You must be joking, the other will answer. In the finite case, this
condition allowed me to choose the probabilities to be all equal, or slightly different, or
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very different; in short, I could express any opinion whatsoever. Here, on the other
hand, the content of my judgments enter into the picture: I am allowed to express them
only if they are unbalanced to the extent illustrated in C5—-N5-E5. Otherwise, even if
think they are equally probable — as I would do in the case of E2 — I am obliged to pick
‘at random’ a convergent series, which, however I choose it, is in absolute contrast to
what I think. If not, you call me incoherent! In leaving the finite domain, is it I who has
ceased to understand anything, or is it you who has gone mad?

C7 = N7 In the same situation, an objectivist of the classical school finds himself fac-
ing case E2 (for him ‘in conditions of symmetry all possible cases are equally probable’).

This much is obvious: the infinite number of cases is equally probable and, therefore,
they all have probability 1/e0 = 0 (perhaps — he may think — I am not expressing myself
in an orthodox fashion; the conclusion, however, is this one). To the objection of the
teacher who wants a series with sum = 1, and who is not worried if one asks him whether
he really wants an opinion so unbalanced as to give rise to the points raised in E5, he too
will cry out: Is it I who has ceased to understand anything, or is it you who has
gone mad? And he will explain: ‘I swear that I find myself in the ideal conditions of
complete ignorance, with the absence of any reason to doubt whether any point has
objective probability greater than that of any other one. In no other case can I be so sure
of being able to state with precision that the objective probabilities are equal, because it
is only in this case, where I cannot even see or distinguish the rational points, that I have
reached the final sublime peak of total and unsurpassable ignorance. And now, what is
the use of it? What are the objective probabilities I must give the various points, and
how do I know which of them must be assigned a large probability, a small one, or a very
small one?.

C8 = N8 For the frequentist, this is even easier. If he thinks of a sequence of experiments
(an ideal version of roulette, reduced to a point-ball which can stop at any rational point
of the circle of E2) he will be in doubt as to whether a point will appear just a few times, or
many times, or even infinitely many times. It is unlikely, however, that he will think for a
moment that some point — and especially one which can be individuated right from the
beginning — will appear so often as to have a limit-frequency different from zero.

C9 = N9 Here is a new and genuine mathematical objection to countable additivity:
for those who conceive of probabilities as limit-frequencies (over a sequence, or, in von
Mises’ terminology, a ‘Collective’), the fact that limit-frequencies must satisfy finite
additivity, but not countable additivity, should be decisive.

(So far as I know, however, none of them has ever taken this observation into account,
let alone disputed it; clearly it has been overlooked, although it seems to me I have
repeated it on many occasions).

3.11.7. C10 A probability which is countably (but not perfectly) additive cannot be
defined on the power set of the infinite set of events under consideration.
Therefore, it is necessary:

a) either to introduce restrictions that only allow one to refer to events given by certain
‘subsets; excluding the others (in this case the logical justifications are not obvious,
and the mathematical ones, which require the creation of special events by endow-
ing the ‘space’ with topological properties, seem merely to have the status of
‘Adhockeries for mathematical convenience’);
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b) or to accept perfect additivity, that is N, which appears more logical than C, for this
reason in addition to that already given in C1 (but one encounters N2, and abandons
any treatment in the continuum, even by means of the measure-theoretic model
which is the actual aim of C);

c) or to accept finite additivity; that is A.

3.11.8. Do there exist objections to A (besides Al, which we have examined
already)? In all honesty — and I shall willingly change my mind if any contrary evi-
dence is brought to my attention — it seems to me that one should in general refer to
prejudices and habits, rather than to objections. Independently of the discussion of
specific aspects of the real problem (which are always neglected), it is these habits
and prejudices which lead one to consider as ‘natural, or ‘absurd; those things in
other branches of mathematics that are more or less customary, more or less up-to-
date, and, above all, more or less ‘convenient. We refer to those fields where, in the
absence of an intrinsic meaning, already existing and imposed from the outside onto
the possible translations into mathematical definitions and axioms, it is admissible
to choose those concepts and hypotheses that are most convenient, to choose them
‘for mathematical convenience’

We shall see something of these aspects and attitudes in Chapter 6 and in the
Appendix. (It is often difficult to analyse them because they are more psychological
than mathematical in character, and because one usually has to deduce things from odd
comments rather than from explicit and systematic explanations.) If one wants to pick
out an example of a sufficiently concrete position, having some validity,** I merely point
to the following.

A2 It seems to many people that a countable partition that is not unbalanced (i.e. not
reducing to cases ‘finite up to trifles; as we jokingly called them in C5) is ‘not feasible’
A positive integer N, unknown (random) and capable of taking on any value (between
0 and o, which is excluded), is always, in any practically or conceptually imaginable
example, almost certainly not too large (and an upper bound is not given solely in
order to avoid a more or less arbitrary choice). A partition of a set whose cardinality is
that of the continuum, for example an interval, into a countably infinite number of (Z-)
measurable sets, is necessarily such that all the measure (except an arbitrarily small
residual) is given by a finite number of them. They can be overlapping (as in the Vitali
case) but then they are not measurable and, therefore, not even ‘mentionable; and not
even susceptible of a constructive description independently of the axiom of choice.

It is necessary to reply to this from various viewpoints.

A2a From the subjectivistic point of view — since, subject to the conditions of
coherence, one has complete freedom of choice in evaluating the probabilities — one
can perfectly well assign greater probability to a set with only one point than to a set
which has very large measure, or is non-measurable. Conversely, can this line of
argument justify attributing large probability to sets consisting of a single point and
with small measure, and negligible probability to the large sets, leaving out the inter-
mediate cases?

34 I hope that the reader can himself demolish the frequent attempts to ‘prove’ countable additivity under
the tacit assumption of the validity of some property equivalent to it.
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A2b Do not these examples themselves (although in a slightly more sophisticated
manner) reveal the prejudice of assuming the measure-theoretic model as the univer-
sal one?

A3 Another plausible objection: all these examples and counterexamples are artificial,
with no practical interest; there is no reason to prefer a less convenient theory simply
because it allows us to take account of them.

A3a The examples have a critical function; to test the logical consistency of the vari-
ous points of view. To accept the point of view which (I hope) they reveal to be the logi-
cally correct one does not imply that one has to occupy oneself with matters of this
nature,” but only to avoid expressing oneself in a way that appears to be incorrect
(albeit with reference to ‘pathological’ examples).

A3b Indeed, in practice, it will probably turn out to be advisable to limit oneself to
even simpler ideas, sticking to the more elementary ambit (Jordan—Peano measure,
Riemann integral) where the conclusions are unexceptionable, rather than passing to
the more ‘modern’ set-up (Borel or Lebesgue measure, Lebesgue integral), given that
the usual extension is based on a convention which is inadmissible as a general axiom,
and difficult to justify in a realistic way as a particular hypothesis for individual practical
cases. It seems to me that it is difficult to justify not only its validity, but even that pos-
sible interpretations and applications to actual and practical problems are not illusory.

A3c If we are going to talk about which theory is ‘less convenient, we must distinguish
the sense in which ‘convenient’ is to be understood. The theory given by C'is, in general,
more convenient to handle, and is convenient because it provides a well-determined
answer in many cases where A just gives bounds. From the standpoint of 4, it is wrong
to substitute an exact answer in place of these bounds (and, anyway, inconvenient, since
it forces us to exclude all those examples that might appear artificial, but which are not
absurd). From some points of view, A is even more tractable; for example every limit of
a probability distribution is, in A, a probability distribution (possibly not proper): this is
not true in C. It is, in any case, a question of things which are logically relevant, not one
of mathematical convenience.

A4 One more objection (a little premature as far as the applications it refers to are
concerned, but not in terms of its formal meaning, nor for the understanding of exam-
ple E6 below).

Proofs made in the spirit of A in order to invalidate the interpretations of asymptotic
results (not yet discussed) as limit-results (deduced in accordance with concept C) often
make use of the device of introducing a number N, which is ‘chosen at random’ (zero
probability for each single # and finite segment N < #), assuming that from N onwards
a certain process proceeds in a different way from that foreseen in the scheme of
description.

This said, the objection is: That’s a different story: if the scheme changes, if there is a
violent change, then the conclusions established under the assumption that the scheme
remains unaltered, without foreseeing any possibility of a violent change, will certainly
break down.

35 Let us recall that the critical examples which Peano inserted into Genocchi’s lecture notes, in order to
show that certain ‘theorems’ did not always hold in ‘pathological’ cases, met with an exactly similar attitude
of disapproval and incomprehension.



3 Prevision and Probability

Ada Statements of this kind do not take account of the situation. The ‘scheme; as
usually described, does not explicitly foresee the possibility of a violent change, but it
does not exclude it either: it is entirely neutral. It is, therefore, improper to refer to a
‘violent change’: the question of a violent change arises only when one adds to the math-
ematical scheme something more in the way of interpretation, which would be difficult
to express. Indeed, if it were expressed, it would render trivial the result, which is beau-
tiful and true only if one assumes that countable additivity is less restrictive than would
appear from the following kind of example.

E6 As in E2, we can imagine ‘choosing at random’ a rational number in [0, 1] with a
finite number of decimal places (all with the same probability (II!)),** the number of
places being itself random, and not preassigned. If we think of a selection of the succes-
sive decimals (or of their successive deciphering or calculation, if they have been ‘drawn
all at once’ and can be worked out successively, as for 7), the process is clearly identical
to that of drawing any real number whatsoever. At each drawing, all 10 figures have the
same probability 15, whatever the previous results may have been.””

If by ‘catastrophe’ we mean the exceeding of the last nonzero figure, it is certain that
sooner or later this will happen. But it will not be a catastrophe: we will not be able to
realize it; nothing will change in the described scheme. Even after 100 or 1000000 or
10'° consecutive zeroes, provided we have no gift of divination, the probability that
the next figure will be zero is 1+, as for any other figure; the probability that the next 100
figures will all be zero is 107, as for any other 100-figure number; the probability that the
figures will continue to be zero for evermore is zero, exactly as it is at any other instant,
and after any arbitrary sequence of figures.

In this example, all the probabilistic assumptions explicitly stated for the process hold
exactly; these lead to the conclusion that, with probability = 1, the 10 figures will each show
up with limit-frequency 75 (whereas, the limit-frequency is here = 1 for the figure 0, and =
0 for the others). The only assumption that does not hold is that of countable additivity, but
if anyone considers it as an axiom, instead of a particular restriction (not valid in our exam-
ple), he has the right (?) to omit its explicit statement and to check whether it holds.

3.11.9. Conclusion (for the time being). 1 do not know whether, and to what extent, the
arguments put forward here have been persuasive. On the other hand, it is premature to
accept or reject them before encountering other aspects of them and having seen their
implications (in Section 3.12 following, at the end of Chapter 4, and in Chapter 6 and
elsewhere, more or less incidentally). In view of this, however, I would like to have suc-
ceeded in convincing the reader of one thing; that we are dealing with a complex of

36 If one wishes, instead of choosing from this set one can imagine the choice of any rational whatsoever, as
in E2. The rationals can be put together in ‘equivalence classes’ (where two numbers differ by a bounded
decimal fraction; i.e. they coincide from some point on) and in each class an identifiable representative can
be chosen; the one which is periodic right from the beginning. Every rational uniquely determines the
components r = p + d (p periodic, d decimal), and the sets I, (of the r with the same d) give rise to a partition
of the rationals into a countable number of sets superposable by translations (mod 1). To choose r is
therefore a way of choosing d.

The partition is similar to that of Vitali for the reals, but here, fortunately, an infinite number of choices is
not required.

37 We should refer to stochastic independence, but we shall come to it in the next chapter, Chapter 4, and
here content ourselves with just mentioning the idea.
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problems, connected and meaningful, concerning which there are many things to be
discussed under various headings: the conceptual, the mathematical, the practical. It is
not just, as might seem logical at first sight, a question of arbitrary conventions for the
subtleties involved, having no connection with real problems.

3.12 Random Quantities with an Infinite Number
of Possible Values

3.12.1. The above considerations obviously also apply to the case in which there are an
infinite number of possible values for a random quantity X. Some new features also
arise, however. We shall not concern ourselves with the general case until Chapter 6, but
in the meantime it is necessary to mention certain refinements, although only for the
more elementary case (elementary in a certain sense, at least) of a countable infinity of
possible values x;, (5 =1, 2, ...). To these will correspond — or rather can be attributed by
the person who evaluates them — probabilities py, either positive or zero (they might
even all be zero), with

So=1-p*<1(0<p*<1),
h

For any interval or set /, one could say, knowing only the x;, and pj, that P(X e ) = ¥,
pulxy € 1) if the set contains a finite number of points, but only that

;,.vh(xh e)<P(Xel)< Y py(x )+ p

if it contains an infinite number (given that the probability p* can always be imagined as
deriving solely from these).

3.12.2. In particular, if x is an accumulation point of the x;, (it does not matter whether
it is one of them or not), we can have nonzero adherent probabilities, the latter defined
to be the limit of P(x —e < X <x) or P(x < X <x + &) as € — 0 (¢ > 0), and their sum (if we
wish to distinguish, we refer to adherent from the left, adherent from the right). The
adherent probabilities (or masses) cannot exceed p* not even if we take them all
together, or even include those possibly adherent (from the left) to +e and (from the
right) to —e0.?® The adherent probabilities could not only have total probability <p* but
also zero (in other words, nonexistent), although p* was positive, or even p* = 1. As an

38 One can either allow +e and —co to also appear among the possible values, or one can exclude them.
Including them would entail thinking of X as a random point on the completed real line (compactified) with
the adjunction of the ‘extremes’ +o0 and —ec. There is nothing absurd about this, although it is not usual to
do and there is no point in insisting upon it. Every now and again we will make brief mention of such
eventualities, but without entering into any obligation to observe case by case whether what is said is valid
there also.

On the other hand, we must note a certain conflict of interest. As far as prevision is concerned (and here
the inequalities are essential), the values +o0 and — are distinct and very far apart (in fact, opposite). From
an analytic point of view, however, it would be more natural to consider them as a single value (except for
looking at it in terms of approaching from the left and right), thinking, for instance, of the complex sphere
(and, in that context, of the circle of real numbers) and of functions which are ‘continuous’ there, like y = 1/x
at x = 0 (see Matematica logico-intuitiva, 3rd edn, pp. 124—133).
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example: X = rational between 0 and 1, with the probability of each subinterval equal to
its length (the uniform distribution).

3.12.3. The argument concerning the prevision P(X) is new and specific to this case.
It is unnecessary to note that whatever one says concerning P(X) holds for any P(y(X)),
where Y = y(X) is any function of X, whose possible values are y;, = y(x;) with probabili-
ties py, (except that, if one of these values corresponds to an infinite number of the &y, its
probability may be, if p* > 0, greater than the sum of the p, instead of being equal to it).

What does the knowledge of the possible values x;, and their probabilities p;, allow us
to say concerning P(X)? Or rather, expressing ourselves in terms of what the question
means in a (subjective) probabilistic sense, what restrictions does the knowledge of the
xj, and an existing evaluation of the p;, (which we wish to remain coherent) impose on
us when it comes to evaluating the prevision of X?

It is convenient to begin with the case of a bounded random quantity X, and to con-
sider directly the minimum and the maximum of the accumulation points, which we
denote by x” and x”; we therefore have

—oo < inf X<o'<x"<sup X < +00.

Let us prove that if p*= 0 (i.e. if ¥;, p;, = 1, as it is if countable additivity holds) we must
have the unique result P(X) = ¥, pyxy, as in the finite case. Apart from this special case
we can only say that

2w+ p* X'SP(X )Y put + p* &
h h

Thus, if we are not in the above case, p* = 0, P(X) turns out to be uniquely determined
if and only if ' = x”; in other words, if the x; have a unique accumulation point, hence
a limit to which they converge.

Proof. For a given ¢ > 0, take N sufficiently large so that we have

2. (=N <z,
h

and put X = X; + X, + X3 with
X,=X=w,if h<N, and otherwise=0,
Xo=X=x,if h>2N and x,<x'—¢ or wx,>x"+¢,andotherwise=0,
X;=X=x,if h>N and x'—¢&<ux, <x"+¢,and otherwise =0.

We have
P(X1 ) = thxh (h < N) - thxh (xh bounded!);
h h
einf X<P(X,)<esupX,

because there are at most a finite number of possible values between inf X and x" — ¢,
and the same for those between x” + ¢ and sup X, and the total probability of those
between them with /2 > N is the sum of a finite number of the p;, for which the sum of
the series is <¢. Finally, we have

p(x'—&)<P(X3)<p*(x"+¢).
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All this holds for every € and hence, as € = 0, one obtains the given bounds.

Remark. It is most instructive and important to observe that these bounds cannot be
improved on; in other words, it is actually admissible to evaluate P(X) by giving it any
value whatsoever between the two end-points (inclusive). The p* resulting from infinite
zero probabilities (distributed on the possible xy; it does not matter if these already have
positive probabilities p;, > 0 or instead have pj;, = 0) could well be considered as deriving
from an infinite number of the x; converging towards x’, or towards x”, and in any
intermediate way.

(In addition, one notes that the proof neither presupposes nor establishes countable
additivity: it holds here — as it may hold elsewhere — by virtue of additional assumptions
implicit in the definition of the particular case.)

3.12.4. We pass from the case of bounded X to that of X unbounded. The case of
one-sided unboundedness must be considered separately, and we therefore begin with
the case of X unbounded from above (obviously, the analysis holds also for the other
case); the general case follows as a corollary.

We also suppose that with certainty X > 0 (i.e. inf X > 0); in the general case it is suf-
ficient to put X = X; - X5, X; =0V X, X5 = |0 A X|, in order to reduce everything to
random quantities which are certainly nonnegative.

Moreover — in order not to complicate the exposition by encountering anew the cir-
cumstances already seen in the finite case — we suppose that there do not exist finite
accumulation points. We can, therefore, suppose the x;, to be increasing, and tending to
+0 as 4 tends to infinity.*

Under these conditions, putting

P,=Y pn, P=limP,, p*=1-P, S, = pyx,
h=1 h=1
S=1lim§S,,
we have

P, =P(X<x,), 1-P,=P(X >x,),
p* = the mass adherent from the left at +co, or placed at x = +oo, or some here, some there;

Sy =P{X(X<x,)}, Sy +%,(1-P,) =P(X A x,)

(the previsions of X either ‘amputated’ or ‘truncated’ at x,; i.e. replaced, if X exceeds x,,
either by 0 or by x,, respectively).
Since each ‘truncated X’ is always <X, we necessarily have

39 Itis clear that the conclusions of this special case are essentially valid in general if one considers that

X' < X < X", where we set X’ = (the smallest integer < X), X” = X + 1 (and the unit of measurement can be
taken as small as we please); X’ and X' are automatically of the type considered (but to pursue this would
introduce things which we reserve for the treatment of the continuous case).

If X.. = +o0 exists among the possible values, it is not necessary that the finite possible values be
unbounded (and not even that they be infinite in number) in order for us to be in the unbounded case.
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P(X)=S, +x,(1-P,) for some ,and hence
P(X)=S+x,(1-P)=S+x,p* for somen

(because, if we let n increase in S, and P,, while keeping x, fixed, the expression
increases, but less than it would if x,, also were allowed to vary, and tends to the given
limit).

It necessarily follows straightaway from this that P(X) = oo if § = o (the series X pyxy,
diverges), or if p* # 0 (there exists a probability placed at, or adherent to, +oo),
or both.

In the opposite case, p* = 0 and S finite (the series of the p;, having sum = 1, and the
series of the pyx;, being convergent), admissible evaluations of P(X) are given by

P(X)=S= pyx,,orany greater value, including + oo
h=0

This is proved by continuity (and in the next section — Section 3.13 — we briefly
discuss that property of continuity which we shall make use of here).

First of all, we set X,, = X(X<x,) (X amputated) with 21 = Pi for h<n, pr, =0for h>n,
and pg :th (h>n)=P(X, =0); as n increases, all the p; =P(X, =h) tend to
P but P(X])=S, — S.

We then set X, = X, +a, (X > n), in other words, X", (like X,,) coincides with X if the
latter does not exceed x,, but when it does we replace it with a, instead of with 0; a,
denotes the first of the x;, for which x,p > n.*° The value 4, already gives a contribution
>n, hence we certainly have

P(X,)=n— .
We repeat the conclusions in a schematic form:
p*>0 P(X)=+OO;

inthecasey S =+o0 P(X)=+o;
PP s <0 S<P(X) <o

3.12.5. If X is unbounded from above and below, P(X) is completely undetermined.
This is obvious straightaway from the fact that we could always have ‘co — o’; one can
obtain this more rigorously by a passage to the limit in the previous cases (suitably
balancing the positive and negative terms).

However, one might consider as special the evaluation which consists in taking, both
for the positive part 0 v X and for the negative part 0 A X, the minimum (in absolute
value) admissible prevision — denoting it by P — and setting in general

B(X)=P(0V X)-P(|0A X|) (or, briefly, $=5" +5").

40 The argument, with a simple modification, also holds in the case in which pj, = 0 for all possible x;, from
a certain /1 = N on, so that py = 0. One could, for instance, let py = (%)” taking this probability away from one
or more of the pj, (for instance, from p; if p; = 0, starting from that # for which (%)" < pr)-
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‘Special’ is not used in a general sense but if, and so long as, one can consider that, in a
given case, the unbounded X is a theoretical schematization substituted for simplicity
in place of an actual X, which is in reality bounded, but whose bounds are very large and
imprecisely known.

This asymptotic prevision (as we shall call it for this reason) turns out to be:

finite, if S*and S”are;
Sgtis infinite, if one of the components is : +00 if $* = +o0;
=S"+

—o0if §7 =—o0;

undefined, if both are infinite.

3.13 The Continuity Property

The property says (and we shall make this precise and prove it) that coherence is
preserved in a passage to the limit. The property does not hold (without further conditions)
when we impose countable additivity. This turns out to be very useful as a tool in proofs
of admissibility like the ones just given above (Section 3.12.4).

Theorem. Let P (E) be the evaluations of (coherent) probabilities defined over the
same field of events £ (or over different fields of events having #in common), and put
P(E) = lim P,(E) when it exists (letting &’ C Z be the set of the E for which the limit
exists). In this field the P(E) itself constitutes a (coherent) evaluation of probability.

Remark. In place of the (more ‘familiar’) formulation above, it would be (mathemati-
cally) preferable to substitute that in which one speaks of the prevision of random quantities
rather than the probability of events, and hence of linear spaces (with appropriate
definitions and convergence) rather than ‘fields’

Proof. The conditions of coherence are expressed by linear equations (or inequalities)
involving a finite number of elements (events, or random quantities); in the passage to
the limit these are preserved.

Remark. In a more expressive formulation (and more precise, so long as one recalls that
the meaning of ‘convergence’ is that given above): an evaluation of probability P adhering
to a set 7 of coherent evaluations is coherent.
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Conditional Prevision and Probability

4.1 Prevision and the State of Information

We have all at times insisted on making clear the fact that every prevision and, in
particular, every evaluation of probability, is conditional; not only on the mentality or
psychology of the individual involved, at the time in question, but also, and especially,
on the state of information in which he finds himself at that moment.

Those who would like to ‘explain’ differences in mentality by means of the diversity of
previous individual experiences, in other words — broadly speaking — by means of the
diversity of ‘states of information, might even like to suppress the reference to the first
factor and include it in the second. A theory of this kind is such that it cannot be refuted,
but it seems (in our opinion) rather meaningless, being untestable, vacuous and meta-
physical; in fact, since two different individuals (even if they are identical twins) cannot
have had, instant by instant, the same identical sensations, any attempt at verification or
refutation assumes an absurd hypothesis. It is like asking whether or not it is true that
had I lived in the Napoleonic era and had participated in the Battle of Austerlitz I would
have been wounded in the arm.

As long as we are just referring to evaluations relative to the same individual and
state of information, there is no need to make any explicit mention of it; for example
instead of P(E), writing something like P(E|Hy), where Hy stands for ‘everything that is
part of that individual’s knowledge at that instant! Indeed, something which in itself
is so obvious, and yet so complicated and vague to put into words, is clearer if left to be
understood implicitly rather than if one thinks of it condensed into a symbol, like Hj.

Naturally, things change if we want to combine previsions that are relative to different
states of information, and we shall see later that one cannot do without this. In precise
terms, we shall write P(E|H) for the probability ‘of the event E conditional on the event H’
(or even the probability ‘of the conditional event E|H'), which is the probability that You
attribute to E if You think that in addition to your present information, that is the
H, which we understand implicitly, it will become known to You that H is true (and
nothing else). This H, on the other hand, may be a combination of ‘simpler’ events
(this is obvious, but it is better to point it out explicitly); in other words, it can denote,
in a condensed manner, a whole complex of new information, no matter how extensive
(so long as it is well delimited).

Theory of Probability: A Critical Introductory Treatment, First Edition. Bruno de Finetti.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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The above explanations may be useful as a preliminary guide to the meaning of
the concept of conditional probability, P(E|H) — and, more generally, of conditional
prevision, P(X|H) — which we are about to introduce. We ought to warn the reader,
however, against an overhasty acceptance of these initial explanations, which, of
necessity, skipped over certain important details, a discussion of which would have
been premature (see the Remarks given in Chapter 11, 11.2.2). Think, instead, in terms
of the definition that we are now going to give.

The definition is based on the same concepts and criteria that we met previously
(see Chapter 3), except for the additional assumption that any agreement made — that
is any bet or penalty clause — will remain without effect if H does not turn out to be true:
in other words, everything is conditional on the ‘hypothesis’ H. (Concerning the termi-
nology ‘hypothesis; see Section 4.4.2.)

The ‘first criterion’ provides an intuitive explanation, which we exploit only to antici-
pate the meaning of the ‘theorem of compound probabilities. By paying the price P(HE),
I can be sure of receiving one lira if HE occurs; but I can obtain the same result by paying
P(E|H) only if I know H is true, and I can arrange for this amount, S = P(E|H), in the case
of the occurrence of H by paying S. P(H) now; hence

P(HE)=P(H)-P(E|H). (4.1)

The same is true if, instead of an event E, I consider an arbitrary random quantity X;
it is sufficient to observe that HX coincides with X, or is zero, depending on whether
H is true or false, and the extension of the preceding argument to this case becomes
obvious.

4.2 Definition of Conditional Prevision (and Probability)

In order to give definitions of conditional probability and conditional prevision, and as
a foundation for rigorous proofs, we choose to base ourselves on the ‘second criterion’

Definition. Given a random quantity X and a possible event H, suppose it has been
decided that You are subject to a penalty

—\2
I H[X —-X j
k

(k fixed arbitrarily in advance), where ¥ is the value which You are at liberty to choose
as You like. (Note: we have L = 0if H= 0 = false; L=[(X _,7)/](]2 if H=1= true.)

P(X|H), the prevision of X conditional on H (in your opinion), is the value ¥ that You
choose for this purpose.

In particular, if X is an event, E, then P(E|H), so defined, is called the probability of
E conditional on H (in your opinion).

Coherence. 1t is assumed that (in normal circumstances) You do not prefer a given
penalty if You can choose a different one which is certainly smaller.

A necessary and sufficient condition for coherence in the evaluation of P(X|H), P(H)
and P(HX), is compliance with the relation

P(HX)=P(H)P(X/H), (4.2)
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in addition to the inequalities inf(X|H) < P(X|H) < sup(X|H), and 0 < P(H) < 1; in the
case of an event, X = E, relation (4.1),

P(HX)=P(H).P(E|H),

is called the theorem of compound probabilities, and the inequality for P(X|H) reduces
to 0 < P(E|H) < 1 (being = 0, or = 1, in the case where EH, or EH, respectively, is
impossible).

By inf(X|H) and sup(X|H), we denote the lower and upper bounds of the possible
values for X which are consistent with H; such values are simply the possible values of
HX, with the proviso that the value 0 is to be included only if X = 0 is compatible with H
(i.e. if HX can come from H = 1, X = 0, and not only, as is necessarily the case, from H =
0, with X arbitrary).

4.3 Proof of the Theorem of Compound Probabilities

Let us consider first the case of events, and denote by «, y, z the values we suppose to
be chosen, according to the given criterion, as evaluations of P(E|H), P(H), P(HE). In
this case, the theorem is expressed by (4.1), and, with the above notation, it states
that z = xy.

The penalty (taking the coefficient k = 1) turns out to be

L=H.(E-x) +(H-y)+(HE-z)’,
that is, in the three cases to be distinguished,

HE(H=E=HE=1), HE(H=1,E=HE=0)
and F(H = HE =0),

we have

HE: L:u:(l—x)z-i—(l—y)z—k(l—z)2
HE: L=v=2"+(1-y) + 22
H: L=w=y"+7

Geometrically (interpreting x, y, z as Cartesian coordinates) (Figure 4.1), the penal-
ties u, v, w, in the three cases, are the squares of the distances of the point (x, ¥, z)
from, respectively, the point (1, 1, 1), the point (0, 1, 0), and the x-axis (that is from the
point (x, 0, 0), the projection of (x, y, z) onto the axis). The four points lie in the same
plane if a fifth one, (x, 1, z/y), does also (this is the intersection of the line joining the
last two with the plane y = 1), and this therefore must coincide with (x, 1, x) — which
is on the line joining the first two points. In order for this to happen, we must have z = xy,
that is the point (x, y, z) must lie on this paraboloid (and, of course, inside the unit
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(a) z

yv\‘
(0,1,0)

Figure 4.1 The two diagrams illustrate, in two stages, the argument given in Section 4.3: (a) shows
why the prevision-point (x, y, zZ) must lie on a generator of the paraboloid z = xy (presenting visually
the argument of the text); (b) shows the set of all possible prevision-points (the part of the paraboloid
inside the unit cube).

cube): in this case, it is not possible to simultaneously shorten the three distances; in
other cases this is possible.!

Turning to the general case of an arbitrary random quantity X, let us again use the
notation x = P(X|H), y = P(H) and z = P(HX), and observe that the previous representa-
tion is still valid, except that, instead of the two points (1, 1, 1) and (0, 1, 0) on the line

1 A more detailed discussion can be found in B. de Finetti, ‘Probabilita composte e teoria delle decisioni,
Rendic. di Matematica (1964), 128—-134. An English translation of this appears in B. de Finetti, Probability.
Induction and Statistics, John Wiley & Sons (1972).
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y =1, z = x, we must consider all the points whose abscissae x are possible for X and
compatible with H. In fact, expanding (in canonical form) we have,

L=H.(X-x) +(H-y) +(HX -z’
=H[(X—x)2+(1—y)2+(X—z)2}+(1—H)(y2+22).

If (x, y, z) were not on the paraboloid z = xy (i.e. not in the plane through the line y =1,
z = x and the point (x, 0, 0)), one could, as before, make it approach, simultaneously,
both the x-axis and each point of the given line. In order that this should not be possible,
it is necessary, in addition, to restrict oneself to the area (a quadrilateral bounded by the
straight lines generating the paraboloid) given by

0<y<1 and inf(X|H)<x<sub(X|H).

The convenience of substituting y = 0 and y = 1 for any y < 0, or y > 1, respectively, is
obvious; that x must not be outside the bounds for (X|H) becomes clear (without spend-
ing time on the calculations) if one observes, in mechanical terms, that in order to
cancel out a force acting at the point (x, y, xy) directed towards (x, 0, 0) — that is tending
to make it approach the x-axis — it is necessary to have a force directed towards (x, 1, x),
which is opposite (or, alternatively, more than one, directed towards points which are
on both sides of this point on the line y = 1, z = x). If the possible points were all on one
side (and only in this case) all distances could be shortened by moving towards the
nearest bound.’

4.4 Remarks

4.4.1. Let us note first of all that, as we have already seen in passing, in questions con-
cerning the conditioned event, E|H, the event E itself does not actually enter the picture:
the cases to be distinguished are, in fact, HE, HE, H. Since H is called the ‘hypothesis’ of
the conditioned event, HE could be called the ‘thesis, HE the ‘antithesis, and H the
‘antihypothesis’ Every conditioned event E|H could then be written in the reduced form
‘thesis’| ‘hypothesis, HE|H (in fact, it does not matter whether one bets that if H occurs
E does, or that if H occurs both H and E do). One might consider E|H as a tri-event with
values 1|1 =1, 0|1 = 0, 0|0 = 1|0 = @, where 1 = true, 0 = false, @ = void, depending on
whether it leads to a win or a loss or a calling off of a possible conditional bet. More
generally, for a conditioned (random) quantity, X|H, one could put X|1 = X, X|0 = @ (if
@ is thought of as outside the real field, inf(X|H) and sup(X|H) automatically acquire the
desired meaning, introduced previously as a convention). The systematic use of algo-
rithms based on this set of ideas does not seem sufficiently worthwhile to compensate
for the bother of introducing them; however, this brief mention may suggest a few argu-
ments for which it might turn out to be suitable.

2 This conclusion might fail to hold if the possible points were all on the same side of (x, 1, x), but having
this point as a bound (lower or upper). We will dwell upon detailed considerations of this kind in the sequel.
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4.4.2. As far as the use of the term ‘hypothesis’ for H is concerned, it should be unnec-
essary to point out that it refers only to the position of H in E|H (or in X|H), and that,
apart from this, H is any event whatsoever. We say this merely to avoid any possible
doubts deriving from memories of obsolete terminologies (like ‘probability of the hypo-
theses’ or, even worse, ‘of the causes, a notion charged with metaphysical undertones.

4.4.3. This being so, together with E|H one can always consider H|E as well (where E
becomes the ‘hypothesis’); indeed, since EH = HE, we obtain immediately the relation-
ship between the probabilities of these two conditional events:

P(EH)=P(E)P(H|E)=P(H)P(E|H),
which implies that

P(H|E)
P(H)

this last formula is Bayes'’s theorem, whose fundamental réle will be seen over and over
again. Observe, however, that it is merely a different version, or corollary, of the theo-
rem of compound probabilities.

The fact that relationships of this kind are of interest, also shows why it is not conveni-
ent (contrary to appearances) to consider systematically the reduced form, HE|H (i.e.
E|H with EH = 0), which would simply give

P(E|H)=P(E) (provided P( )+ 0); (4.3)

P(E|H)=P(E)/P(H).

4.4.4. Anyway, on the basis of the theorem of compound probabilities, one can deduce
(provided P(H) = 0) that

P(E|H)=P(HE)/P(H); (4.4)

this shows that, from a formal standpoint, and assuming coherence, conditional probability
is not a new concept, since it can be expressed by means of the concept of probability that
we already possess. This observation is, in fact, made use of in the axiomatic treatments;
however, using this approach, one obtains the formula, not the meaning. For this reason
(and also so as not to leave out the case, albeit a limit-case, where P(H) = 0) we have consid-
ered it necessary to start from the essential definitions and prove the theorem of compound
probabilities (instead of reducing it to a definition, which could appear arbitrary).

4.5 Probability and Prevision Conditional on a Given
Event H

4.5.1. Let us examine how, for all the events E, and random quantities X, of interest,
one passes from probabilities P(E), and previsions P(X) (we will call them actual, in
order to distinguish them), to those conditional on a given event H. We already know
that P(E|H) = P(HE)/P(H) - let us suppose that P(H) # 0 — and, in general, that
P(X|H) = P(H|X)/P(H), but it is useful to think about this and give some illustrations,
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and in the meantime to observe also that P(-|-H) is additive, etc.; that is it is an admis-
sible P (an element of P in the linear ambit we started with). In fact,

P(X+Y|H)=P(HX+HY)/P(H)=P(HX)/P(H)+P(HY)/P(H);

in particular, for events A and B, P(A + B|H) = P(A|H) + P(B|H) and in the case of
incompatibility the same holds for P(A V B|H); we therefore have

P(E|H):1—P(E|H), and so on.

4.5.2. Decomposing E into EH + EH (incompatible parts, constrained to be in H and
in H, respectively) one sees immediately that it is the first part which gives rise to the
value P(E|H) = P(EH)/P(H) (i.e. it increases in the same ratio as P(H) to 1, and the same
is true for H, which goes from P(H) to P(H|H) = 1), whereas the contribution of the
second part is zero

P(EH | H)=P(EHH |H)=P(0| H)=0).

Interpreting the events as sets, and the probability as mass, one obtains for this case a
more effective and instructive image; considering the probability conditional on H implies:

o making all masses outside the set H (‘hypothesis’) vanish,
o normalizing the remaining masses (i.e. altering them, proportionately, so that the
total mass is again ‘one’).

The same rule holds for P(X|H), and could also be interpreted within this same
framework (but in a less obvious form and, for the time being anyway, unintuitively.

4.5.3. Mentioning this is not only convenient from the point of view of having the rule
of calculation easily at hand but, as we have said, it is conceptually instructive. If these
obvious considerations are well understood, confusions that are often irremediable will be
avoided. The acquisition of a further piece of information, H — in other words, experience,
since experience is nothing more than the acquisition of further information — acts always
and only in the way we have just described: suppressing the alternatives that turn out to be
no longer possible (i.e. leading to a more strict limitation of expectations). As a result of
this, the probabilities are the P(E|H) instead of the P(E), but not because experience has
forced us to modify or correct them, or has taught us to evaluate them in a better way (even
if statements of this kind might perhaps appear tolerable at the level of a crude populari-
zation): the probabilities are the same as before — even if in complicated cases this is less
evident and perhaps, at first sight, not even believable — except for the disappearance of
those which dropped out and the consequent normalization of those which remained.

4.6 Likelihood

4.6.1. Bayes'’s theorem — in the case of events E, but not random quantities X — permits us to
write P(-|H) in the form we met above, a form which is often more expressive and practical:

P(E|H)=P(E)P(H|E)/P(H)=K.P(E)P(H|E), (4.5)
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where the normalizing factor, 1/P(H), can be simply denoted by K, and, more often than
not, can be obtained more or less automatically without calculating P(H). For this rea-
son, it is often convenient to talk simply in terms of proportionality (i.e. by considering
P(-|H) only up to an arbitrary, nonzero, multiplicative constant, which can be deter-
mined, if necessary, by normalizing).

One could say that P(-|H) is proportional to P(-) and to P(H]|-), where the dot stands
for E, thought of as varying over the set of all the events of interest. More concisely, this
is usually expressed by saying that

‘final probability’ = K ‘initial probability’ x ‘likelihood’

where = K denotes proportionality, and we agree to call: the initial and final probabilities
those not conditional or conditional on H, respectively (i.e. evaluated before and
after having acquired the additional knowledge in question, H), and the likelihood of
H given E, the P(H|E) thought of as a function of E (and possibly multiplied by any
factor independent of E, e.g. 1/P(H), the use of which would allow the substitution of
‘="for ‘= K] or anything resulting from the omission of common factors, more or less
cumbersome, or constant, or dependent on H). The term ‘likelihood’ is to be under-
stood in the sense that a larger or smaller value of P(H|E) corresponds to the fact
that the knowledge of the occurrence of E would make H either more or less probable
(our meaning would be better conveyed if we spoke of the ‘likelihoodization’ of
HbyE).

4.6.2. This discussion leads to an understanding of how it should be possible to
pass from the initial probabilities to the final ones through intermediate stages,
under the assumption that we obtain, successively, additional pieces of information
H,, H,,..., H, (giving, altogether, H = H,H, ... H,). In fact, one can also verify
analytically that

P(E|H\H,)=P(EH,H,)/P(H,H,)
=[P(E)P(H,|E)P(H, | EH,) |/[ P(H, )P(H,|H,)]
—K.P(E). (H\|E).P(H,|EH,)

= (the probability of E) x (the likelihood of H; given E
x (the likelihood of H, given EH;).
In general,

P(E|H)=P(E|H,H,...H,)
=K .P(E).P(H,|E).P(H,|EH,).P(H;|EH H,)
P(H,|EH\H,...H, ;).

Although the introduction of the term ‘likelihood’ merely gives a name to a factor in
Bayes’s formula, which refers to its role in the formula (in addition to the existing
term, conditional probability, and apart from the indeterminacy we agreed to by
defining it up to multiplicative factors), it has the advantage of emphasizing this fac-
tor, which will be present in various forms in more and more complicated problems.
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4.7 Probability Conditional on a Partition .77

Let us consider a (finite®) partition .7 = (Hy, Hy,..., Hs), and the probabilities, P(E |H}), of
an arbitrary event E conditional on each of the H;. Since EH, + EH, + ... + EHs = E(H, +
Hy + ...+ Hy) = E1 = E, and P(EH)) = P(H))P(E|H)), one has

P(E):ZP(Hj)P(E|H,): (4.6)

in words, it is the weighted average, with weights P(H)), of the probabilities of E condi-
tional on the different H;. In particular, it lies between them:

minP(E|H;)<P(E)<maxP(E|H,) (4.7)

(and it coincides with them if they are all equal). We shall call this property (which is not
always valid for infinite partitions) the conglomerative property of conditional probability
(and prevision).

If we consider as a random quantity, and denote by P(E|.77), the quantity whose value
is P(E|H,) if H; occurs, and so on, in other words, in formulae,

P(E|&#)=HP(E|H,)+H,P(E|H,)+...+ HsP(E| Hy)

= ) HP(E|H), (4.8)
He#

we can write the expression above as

P(E)=P[P(E|H)] (4.9)
More generally, we have, of course,

P(X)=P[P(X|H)]. (4.10)

The procedure displayed above, obtaining a prevision by decomposing it into
previsions conditional on the alternatives in a partition (which may often be chosen in
such a way as to make the task easier, either through mathematical convenience, or
through psychological judgement), is very helpful in many cases. We shall see this in ad
hoc examples, and even more so in the frequent references we make to it in what follows.

4.8 Comments
The idea of considering P(E| #) as a random quantity requires some further comment.

4.8.1 As we have said, a random quantity X is a quantity that is well defined, in an
objective sense, although unknown. Does this mean then that, taking X = P(E|.7%) with
the meaning that X = P(E|H)) = «; if H; occurs, under such a hypothesis it is objectively
true that the value of the above-mentioned probability is x;? Certainly not; but the

3 This restriction cannot be removed without further conditions (see later: Section 4.19).
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possibility of this doubt must be removed. The problem is meaningful only after a par-
ticular evaluation of the probabilities P(E| H)) has been taken into consideration; whether
this is a subjective evaluation of a given individual, or a hypothetical evaluation. Given
this, independently of the fact that the x; have been determined as a result of these
actual or hypothetical evaluations, instead of by measuring magnitudes or by choosing
them at random, they are objectively determined numbers. That the value of X turns
out to be x; when Hj occurs is true in the sense that x; is the value that by definition has
been associated with H; The fact that the association is as an evaluation of P(E|H)),
made at a certain moment, by a certain individual, may or may not be of interest, but is
irrelevant to the definition.

4.8.2. For equation 4.9 (or 4.10) to be true, it is of course necessary that P always refers
to the same individual: the average of the P;(E|H)) of one individual weighted by the
P,(H)) of another does not give the P(E) of either of them; neither P;(E) nor P,(E).

4.8.3. The idea of considering P(E|. %) as a random quantity often leads to a tempta-
tion that one should be warned against: this is the temptation of saying that we are faced
with an ‘unknown probability, which is either x; or x; ... or x; but we do not know which
is the true value, x;, until we know which of the hypotheses H; is the true one. At any
moment, the probability is that relative to the information one has; it can refer, for
convenience, to different hypothetical pieces of information that can be arbitrarily cho-
sen in an infinite number of ways, thus obtaining an infinite number of different condi-
tional probabilities. None of them, and likewise none of the possible hypotheses, has
any special status entitling them to be regarded as more or less ‘true’ Any one of them
could be ‘true’ if one had the information corresponding to it; in the same way as the
one corresponding to one’s present information is true at the moment.

4.8.4. In those cases in which it turns out to be convenient to refer to a partition — and
these are the only cases in which the temptation meets needs which are essentially
meaningful — it is a question, as we have just made clear above, of ‘probabilities condi-
tional on unknown objective hypotheses’ As usual, by ‘convenient’ we are referring to
making an evaluation easier by taking one step at a time, and by choosing the easiest steps.

Probability is the result of an evaluation; it has no meaning until the evaluation has
been made and, from then on, it is known to the one who has made it.* For this obvious
reason alone, the phrase ‘unknown probabilities’ is already intrinsically improper, but
what is worse is that the improper terminology leads to a basic confusion of the issues
involved (or reveals it as already existing). This is the confusion that consists in thinking
that the evaluation of a probability can only take place in a certain ‘ideal state’ of informa-
tion, in some privileged state; in thinking that, when our information is different (as it
will be, in general), more or less complete, in part more so, in part less so, or different in
kind, we should abandon any probabilistic argument (and, perhaps, rely on adhockeries).

4.8.5. On the contrary, there are innumerable possible partitions, which might appear
more or less special in character. In order to restrict ourselves to a single example, let us

4 For me, someone else’s evaluation may be unknown, etc.; however, it is for me an objective fact (an
evaluation), independently of the subjective reasons which, within him, have led to its determination.
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assume that we have to make a drawing from an urn containing 100 balls. We do not know
the respective numbers of white and black balls but, for the sake of simplicity, let us sup-
pose that we attribute equal probabilities to symmetric compositions, and equal probabil-
ity to each of the 100 balls: the probability of drawing a white ball is therefore = 5. Someone
might say, however, that the true probability is not J but 5/100, where b denotes the
(unknown) number of white balls: the true probability is thus unknown, unless one knows
how many white balls there are. Another person might observe, on the other hand, that
1000 drawings have been made from that urn and, happening to know that a white ball
has been drawn B times, one could say that the true probability is B/1000. A third party
might add that both pieces of information are necessary, as the second one could lead him
to deviate slightly from attributing equal probabilities to all the balls (accepting it, in the
absence of any facts, as a frequency, somewhat divergent from the actual composition).
A fourth person might say that he would consider the knowledge of the position of each
ball in the urn at the time of the drawing as constituting complete information (in order
to take into account the habits of the individual doing the drawing; his preference for
picking high or low in the urn): alternatively, if there is an automatic device for mixing
them up and extracting one, the knowledge of the exact initial positions which would
allow him to obtain the result by calculation (emulating Laplace’s demon).”

Only in this case (given the ability) would one arrive, at last, at the true, special parti-
tion, which is the one in which the theory of probability is no longer of any use because
we have reached a state of certainty. The probability, ‘true but unknown, of drawing a
white ball is 100% under the hypothesis that the ball to be drawn is white, and 0% under
the hypothesis that it is black.

But uncertainty is what it is; information is the information that one actually has (until
we can obtain more, and so reduce uncertainty). If one wants to make use of the theory of
probability one can only apply it to the actual situation; if one wants to make a plaything
of it, little problems can be invented on which it is imagined that one can pin the label
‘objective’ in a facile fashion; one must not mix up the two things, however: even Don
Quixote did not consider venturing forth upon the world astride a rocking-horse.

49 Stochastic Dependence and Independence; Correlation

4.9.1. The probability of E conditional on H, P(E|H), can be either equal to P(E), or
greater, or less. This means that the knowledge (or the assumption) that H is true either
does not change our evaluation of probability for E, or leads us to increase it, or to
diminish it, respectively. In the first case, one says that E is stochastically independent of
H (or uncorrelated with H); in the other cases, E is said to be stochastically dependent
on H; more precisely, either positively or negatively correlated with H.
We observe straightaway that the property is symmetrical: the theorem of compound
probabilities enables us to write down immediately (for P(E) and P(H) nonzero)
P(E|H) P(H|E) P(EH)
- = (4.11)
P(E)  P(H) P(E)P(H)

5 In practice, the various partitions which may present themselves as ‘reasonable’ are, in fact, much more
numerous than in this example, which is already quite ‘traditional’ in itself.
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and hence it turns out that the ratio by which the probability of E increases or decreases
when conditioned on H is the same as that for H conditioned on E, and it is also equal to
the ratio between the probability of EH and the product of the probabilities of E and H.
Obviously, in the case of stochastic independence, this product is P(EH); in fact,

P(EH)=P(H)P(E|H)=P(H)P(E) assuming P(E|H)=P(E). (4.12)

Therefore, we may also say, in a symmetric form, that two events are stochasti-
cally independent (uncorrelated) or are negatively or positively correlated (with each
other). It is clear that if E and H are positively correlated the same is true for E and H,
whereas the reverse is true for E and H, and for E and H: if one of the pairs is
stochastically independent (uncorrelated) the same is true in all four cases. (Verify
this as an exercise.)

Remarks. This symmetry in behaviour between positive correlation and negative cor-
relation no longer holds, however, when more than two events are considered. Although
positive correlations, however strong, are always possible, negative correlations are not
possible unless they are very weak (at least on average), the more so the greater the
number of events.

The proof will be given (for the general case of random quantities) in Section 4.17.5:
at the present time we do not even have the concepts required to express the statement,
except in the informal way given above. At this juncture, it is necessary to point out the
conceptually significant aspects of the matter rather than leaving it until the technical
exposition to which we referred. In that exposition, Figures 4.3a and 4.3b reveal the
reason, in an intuitive fashion, by means of the following analogy: it is possible to imag-
ine as many vectors as we wish forming arbitrarily small angles, but not forming angles
which are all ‘rather’ obtuse:®

4.9.2. For more than two events, Ej, Es, ..., E,, say, we could, of course, consider pair-
wise stochastic independence, P(E:E;) = P(E,)P(E)), i = j, but, in fact, they are termed
stochastically independent only if

P(Eil E, ...E, ) —P(E, )P(E, )...P(E;) (4.13)
holds for any arbitrary product of the events E;: this condition is, as we shall see later,
more restrictive. This property, if it holds for the E; also holds if some of them are
replaced by their negations E; as we have already observed in the case of two events. We
therefore have, for stochastically independent events E;, whose probabilities are denoted
by p;, that the probability of a product, such as E\E,EsE4Es, is obtained by simply writing
p in place of E; thus py py p3 psPs, that is (1 — p1)(1 - po)pspa(l — ps). More generally,
for any event E, which is logically dependent on the E;, and expressed arithmetically in

6 This sentence is rather vague, but rather than make it complicated it is preferable to ask the reader to
accept it for now, simply as a reference to what we shall see in more detail shortly.
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terms of them in canonical form (with +,.and ~), the probability is expressible in terms
of the p; by the same formula.” For example, if

E= (El \Y% EzEg)(E4 \% ESE6 ),
expanding, we obtain
E = (El + E2E3 - E1E2E3 )(E4 + E5E6 - E4E5§6 ),

and so on, and finally one could substitute p for E. In fact, since no E appears repeated
in both parentheses, we can substitute straightaway (without arriving at a single sum of
products) and write

P(E) = (Pl t+ paps— pP1P2bs )(134 + PsPe — PaPsPe )

4.9.3. A particular, celebrated case, and one which has been extensively studied, is that
of stochastically independent and equally probable events, p; = p; this is the Bernoulli
scheme, also referred to as that of ‘repeated trials. For every E, logically dependent on n
such events, the probability P(E) turns out to be expressed by a polynomial in p (of
degree at most n); for example, the E considered above (depending on the six events
E; ... Eg) would have the probability

P(E)=(p+p*-p)(p+pb-pB)=p(1+p-P*)(1-p+P" - P’
=p-p'+p' =207+ p".
Less obvious algebraically, but more meaningful, would be the analogous expression as
a homogeneous polynomial of degree » in the two variables p and p=(1-p); it is
obtained, in an obvious fashion, by multiplying each term by a suitable power of

(p+ p)=1 In the previous example, operating in the two factors right from the begin-
ning, one has, for example,®

P(E)=p|(p+B) +p(p+5)- 1" |B|(p+5) +p(p+5)- 1B
=pp° +5p°p* +9p°p° +8p* P’ +2p° p.

7 The reduction to canonical form is not necessary: it is only required to draw attention to the fact

that, when we expand, powers E,k, with & > 1, do not appear formally; to these would correspond
probabilities p) instead of p; as must be the case by virtue of the idempotence of the E;, EX. For example, if
E= (El VE, )(El \% Eg) =(E,+E,—-EE, )(El +E, - E,E,;) and we substituted straightaway, we would wrongly
obtain P(E) = (pl 2 V2 )(pl TP PP ) = p?ﬁzﬁs Z (i’zp3 2y ) + p, P, whereas, in place of the
first factor, p;, we should have p,. As a general rule, one might consider substituting the p; for the E;
suppressing the exponents at the end: this procedure could be dangerous, however, since if the p; were
equal, for example, and were replaced straightaway by p, one would make a mistake in the opposite
direction.

8 By introducing the ratio, r = p/p (see Chapter 5), we have p" p"" = p"r", and therefore the polynomial in
pand p can be written as 3" x a polynomial in r; in the example given, we would have P(E) = p°(r + 577 +
9% + 8t + 27°).
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The significance of this lies in the following: the coefficients denote the number of
constituents of E corresponding to the different frequencies of the E;. In precise
terms, the coefficient of p” 5" is the number of constituents in which 4 of the E;
occur, and # — & do not: in other words, with /% factors of the form E; and n - & of the
form E;. In the example given, one sees that there is one constituent with a single
occurrence (i.e. (1 V 0. 0) (0v 0.0)), five with two, nine with three, eight with four and
two with five (this is easily verified because the two factors each have five favourable
constituents, of which those containing 0, 1, 2, 3 occurrences number, respectively,
0,1,3,1and 1, 2, 2, 0).

4.9.4. An even more special case is that in which p =% This is usually referred to as the
case of Heads and Tails (although we could also think in terms of any other interpreta-
tion and application, and although the case of Heads and Tails is an exceptional one,
where some ‘objective circumstance’ forces us to adopt this evaluation of probability).
In this case, each constituent has probability p” p" " = (%)n and P(E) = (%) x the sum of
the coefficients of the polynomial in p and p (or in r), which is, in other words, the ratio
between the number of constituents (or cases) which are favourable to E, and the total

number (2") of constituents.

4.10 Stochastic Independence Among (Finite) Partitions

4.10.1 There is an obvious and immediate extension of the notion of stochastic
independence from the case of events to that of (finite) partitions; in other words,
if one wants to use such terminology, to multi-events, like E'=(E},E},...,E,, ) and
E" =(Ef,E£,...,E,”nn), and, in particular, to random quantities with a finite number
of possible values. It will simply imply that every event of a partition is stochasti-
cally independent of every event of the other one: P(E,E; )=P(E; )P(E;) (h = 1,
2,...., m'; k=1, 2,..., m"), and, in particular, for random quantities X and Y it will

mean that

P[(X,Y)= (2,6 ) | =P[(X =2,).(Y =y ) | =P(X = ).(Y = ). (4.14)

And so on for three or more partitions or random quantities (referring always to the
finite case).

4.10.2. Let us now prove that pairwise stochastic independence is, as we said, a neces-
sary but not sufficient condition for the stochastic independence of n events (and,
a fortiori, of n partitions): two examples will suffice.

Let A, B, C, D be the events of a partition, to each of which we attribute proba-
bility  The events E; = D + A, E; = D + B, E3 = D + C are pairwise independent
(EiEj = D, P(E:E) = § are P(E;)P(E)) = +-1), but are not so when taken three at a
time, since E1E;E3 = D, and the probability of the product of all three of them is
still 1 instead of §.

Similarly, considering A + B, B + C, C + A, the products two at a time would have
probability 4, but the product of all three is impossible and therefore has probability
zero and not {.
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More generally, one can have stochastic independence up to a given order, ‘m by
m’ say, but riot beyond this, as the following example (a generalization of the previ-
ous ones) shows. Let Ej, Es,..., E,, be stochastically inglependent events each of
probability 1 (i.e. every ‘constituent’ has probability (%) ), and let E be the event
which consists of the fact that among the E; there are an odd number of false ones:
E:(El +E,+..+E, =odd). It is clear that E is logically dependent on the E; (by
definition, and, on the other hand, EE; ... E,, = 0 with certainty, since either some of
the E; are 0, or all of the E; and their sum are 0, hence not odd, so that E = 0), but is
stochastically independent of m — 1 of them (conditionally on any results of these,
E coincides either with the omitted event or with its negation).

4.10.3. Suppose we have two partitions, into ' events E; ... E,, and into m” events
E/ ...E,, respectlvely To say that in each of them the probabilities of the different
events are equal (to p’ = 1/m’ and p” = 1/m”, respectively) and that they are stochasti-
cally independent, implies that the m = m'm" events E, E; of the product-partition all
have the same probability, p = p’p” = 1/(m'm") = 1/m; conversely, this property implies
the two previous ones. The same obviously holds for three or more partitions. We shall
come back to this fact, which is the basis for many applications of the combinato-

rial type.

4.10.4. If we have different partitions, or multi-events, which are stochastically
independent and have equally distributed probability (e.g. successive drawings
with replacement from an urn, with fixed probabilities of drawings for balls of m
different colours, p; + p3 + ... + p = 1), we have an extension of the Bernoulli
scheme given above; ‘repeated trials’ for multi-events. It is clear how the considera-
tions made in the previous case could be generalized: for every event E which is
logically dependent on n m-events, the probability P(E) can be expressed as a
polynomial X.cp,p, pi e ...pl (the sum being over all m-tuples of non-negative
integers with sum = #). The coefficients give the number of favourable constituents
containing the ith result /; times (i = 1, 2,..., m). In the case of equal probabili-
ties (p1 = p2 = ... p = 1/m), a generalization of Heads and Tails (m = 2), the prob-
abilities are

P(E) = (l/m" ) x the sum of the coefficients of the polynomial

= the ratio of the number of constituents(or cases)

(4.15)
favourable to E and the total number(m” )of

all constituents (possible cases ) .

4.11 On the Meaning of Stochastic Independence

4.11.1. It is absolutely essential to continue to underline the fact that the notion of
stochastic independence does not belong to the domain of the logic of certainty, but to
that of prevision, and that therefore — like probability and prevision — it has a subjective
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meaning. After presenting the necessary details in an abstract setting, we shall need to
dwell upon the various considerations required to illustrate them in practice. This is of
paramount importance if one takes into account that people usually seem to think — or,
at least, allow it to be thought, since objections are rarely put forward — that the mean-
ing of stochastic independence is self-evident and objective, and that this property
always holds, except for special cases of interdependence. So much so that in applica-
tions to many practical problems’ one often comes across notions and formulae that are
valid if the hypothesis of stochastic independence is adopted, but where this hypothesis
does not turn out to be justified and is not, in fact, introduced explicitly, but only tacitly,
and perhaps inadvertently. The habit of simply saying ‘independence; as if it were a
unique notion, plays a part in obscuring the special nature of the notion of stochastic
independence. For the sake of brevity, we shall also adopt this habit when there is no
ambiguity, or when it is not required to underline the sense: we shall only do it, however,
after having given warning of this, and of the existence of other notions which are, in a
certain sense, similar. We have already met those of linear and logical independence
(whose meaning resides within the logic of certainty), and the notion of things being
uncorrelated (which, in the case of events, is synonymous with pairwise stochastic inde-
pendence, but which, in the case of random quantities, will turn out to be different, as
we shall shortly see).

4.11.2. The definition of stochastic independence depends on the evaluation of prob-
ability; that is on the choice of a particular P. If A and B are two logically independent
events, an individual can evaluate P(4), P(B) and P(AB) in any way whatsoever, provided
that (see Chapter 3, 3.9.4) P(AB) turns out to be not less than P(A) + P(B) - 1, and not
greater than either of P(4) and P(B) (which, in any case, are all numbers between 0 and 1).
The ratio P(AB)/P(A)P(B) can, therefore, assume all non-negative values, depending on
the appraisal of the person making the evaluation.'

Even if, for the sake of brevity, we shall occasionally say that two events (or parti-
tions, etc.) are stochastically independent, it must be remembered that this is ‘with
respect to a given P’; in other words, ‘according to the opinion of the person who has
chosen the evaluation P’ is to be understood. In particular, in the case of logically
independent events or partitions, however the probabilities are evaluated, the evalua-
tion extended on the basis of the hypothesis of independence is coherent. If, on the
other hand, we do not have logical independence, that is some product is impossible,
for example E = ELE}Eh (three elements of three partitions), we necessarily have
P(E) = 0: we can have the relation P(E)zP(E;)P(E;)P(E;') if at least one of the

9 As H. Bithlmann observes (in a report at the ASTIN Congress in Trieste, 1963), the condition of
independence is often understood and assumed to be valid when it is not valid at all. He refers to the field of
insurance and actuarial mathematics (but what he says is unfortunately true in many other fields).
Sometimes, rather than tacitly stating, or considering as obvious, the condition of independence, one
considers that ‘not knowing much about the interdependence’ provides a justification for it. This is
tantamount to saying that if we do not know much about the behaviour of a function we can argue as if we
knew that it were a constant.

10 After having evaluated P(A) = a and P(B) = b, the ratio P(AB)/P(A)P(B) can still assume all non-negative
values if a2 + b < 1, and all values not less than 1 — (6~lb~/ﬂb) otherwise. In any case, the three cases of positive,
zero and even negative correlation (since this minimum is always less than 1) remain possible.
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factors is zero, the relations P(E|E£E; ) = P(E,'," | E,E]) =P(E, ) (and similar ones) only
if all the factors are zero. In other words, the given arithmetic conditions of stochastic
independence cannot hold, except in the limit cases mentioned above, which do not
fall within the definition given in the form of a product, and the more extreme cases,
which do not even fall within the definition given in terms of conditional probability.
Rather than accept this anomaly, it is preferable to eliminate it by including logical
independence as a prerequisite for the definition of stochastic independence. The
justification of this is that it is equivalent to taking into account the difference between
possible events to which zero probability is attributed and impossible events. This is
the same distinction as that between empty sets and nonempty sets of measure zero;
a much more fundamental distinction than that between nonempty sets with zero or
nonzero measure.

Given these considerations about limit-cases, we can now say (in the case of finite
partitions) that stochastic independence presupposes logical independence (but
certainly not vice versa). As far as linear dependence is concerned, we recall that it
is a particular form of logical dependence and, therefore, it excludes stochastic
independence.

In order to complete this hierarchy of notions, let us say at this point that absence of
correlation will be a subjective notion weaker than stochastic independence (but when
applied under more and more restrictive conditions it may lead to it).

4.12 Stochastic Dependence in the Direct Sense

Let us now illustrate some of the kinds of factors that may often influence our judg-
ments of whether events are stochastically independent or dependent. It is necessary to
learn how to think carefully about the presence of these factors in order to avoid assum-
ing too readily the hypothesis of stochastic independence, a practice we have already
criticized. In putting forward these few cases, we are not attempting an exhaustive
treatment, and the mention of these cases is not meant to correspond to a classification
having any theoretical value (indeed, the distinctions which we shall make, with the sole
aim of drawing together a few examples, might become empty, nebulous abstractions if
taken too seriously).

Anyway, without any intention of becoming theoretical, let us call, informally, sto-
chastic dependence in the direct sense, the case that arises in the most evident form, and
in the most obvious and common examples in treatments from all conceptual view-
points. This is the case in which the occurrence of an event changes the circumstances
surrounding the occurrence of another one (in a way considered relevant to the evalua-
tion of the probability). Standard examples are: drawings from an urn without replace-
ment (where the drawing of a white ball decreases the percentage of white balls for the
next drawing); contagious diseases (where a diseased individual increases the probabil-
ity that people close to him catch the illness); the breakdown of machines and so on
(where the difficulties caused by a breakdown of one of them precipitates the break-
down of others); the outcomes of successive trials in a competition (where, due to the
initial results, the objective conditions for the succeeding trials change; for example the
height of the bar in a high jump competition), and so on.
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Examples of this kind draw attention to dependence ‘in one direction’ — chronologi-
cally (dependence of what happens afterwards on what has happened before). This
corresponds to the interpretation — often, in fact, referred to when considering cases
of this kind — based on the idea of ‘cause’ That this is irrelevant is seen by observing
that the relationship of dependence or independence is symmetric. Anyway, we take
this opportunity of remarking that, for ‘conditional’ bets too, it is of no importance
whether the ‘fact’ refers to the future or the past and, in particular, whether, chrono-
logically, it follows or precedes the other ‘fact’ assumed as the hypothesis for the valid-
ity of the bet. One could very well bet on the occurrence of a certain event today,
stipulating that the bet will be effective only if some other event takes place in a
month’s time.

Our desire to discuss this case of ‘direct’ dependence was not so much because it
needed attention drawing to it, but, on the contrary, to make the reader subsequently
aware of the incompleteness of discussions which mention only this form of depend-
ence, and lead one to believe that, apart from such cases, there is no reason to depart
from the formulation in terms of stochastic independence. We therefore proceed now
to consider certain other examples.

4.13 Stochastic Dependence in the Indirect Sense

By this we mean, in an informal way, as above, those cases in which the occurrence of
an event has no influence on the occurrence of another one, but in which there are some
circumstances that can influence both events. In other words — if one wishes to speak
in terms of ‘causes’ — there is a ‘cause’ common to these events, but there is no direct
‘causal’ relationship between them. For example, in considering (the possibility of) two
ships both being wrecked in the same area, on the same day (even without assuming
collisions or any direct interference of this kind), one might rightly imagine a positive
correlation, since both probabilities are influenced in the same way by common circum-
stances (like the state of the sea; calm or stormy). The same holds true for the deaths of
two individuals during next winter, since, if it is very cold, the probability of death will
increase for both of them. In the same way, if we ask whether two participants in a
competition will achieve better results than some other participant, the result obtained
by the latter will influence the two events in the same way, even if one judges the three
results to be stochastically independent. This latter example can also be given an inter-
pretation in terms of a game of chance in which A and B ‘win’ if they obtain a greater
score than the ‘bank’ does. Interpreting the score as that obtained by throwing a die,
then, in terms of the ‘score’ obtained by the ‘bank; the probabilities of wins for A or B,
or both, are given by

the ‘bank’s’ score (H): 1 2 3 4 5 6
P(A|H) = P(B|H) = 5/6 4/6 3/6 2/6 1/6 0
P(AB|H) = 25/36 16/36 9/36 4/36 1/36 0

and averaging (assuming that each of the six cases has probability = 1/6)
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P(A)=P(B)=15/36=5/12=41-67%
P(A)P(B)=25/144=75/432=17-36%
P(AB)=55/216=110/432=25-45%>P(A)P(B).

This example shows that conditional on each of the possible hypotheses for the
‘bank’s’ score, H = (‘points’ = &) with & = 1, 2,..., 6, the two events are stochastically
independent, but that this independence conditional on each event of a partition does
not imply stochastic independence. We will return shortly to an explicit consideration of
this notion and this result, to which the case of indirect dependence essentially reduces.

There is one case, however, which derives even less from ‘objective’ circumstances.

4.14 Stochastic Dependence through an Increase
in Information

If it is true (as it is, in fact) and if one can justify (as we have, for the moment, simply
assumed) that the probability of an event is often evaluated on the basis of observed
frequencies of more or less similar events, then this fact implies a stochastic depend-
ence. In fact, observed events provide a certain amount of experience capable of modi-
fying, as time goes on, the evaluations of probabilities based on frequencies. Indeed, it
is precisely the analysis based on these present considerations that will lead later
(Chapter 11) to an explanation of why and under what conditions such a criterion of
evaluation turns out to be justified.

The situation to which we refer is obviously relevant in the case of ‘new’ phenomena;
that is those about which there is little past experience: think, for instance, of the suc-
cess or failure of the first space launches; of the first trials employing a new drug, or
something of that kind; of the probability of death in a species of animal never before
observed; of the risks attached to nuclear experimentation, and so on. Putting on one
side the hypothesis of ‘new; the situation does not change in essence but does change
quantitatively, as a few, or even many, trials cannot produce any substantial alteration of
a frequency arrived at after a great many previous trials. This is so unless one is led to
behave as if faced with a ‘new’ phenomenon: thinking, for instance, that because of a
change in circumstances (or for whatever other reason) the future frequency of an ‘old’
phenomenon (like mortality, fire, hail, or anything else) will closely resemble the fre-
quency suggested by a small number of recent experiences, rather than the frequency
observed in a large number of less recent experiences."!

In a certain sense, the situation is the same as that of drawings with replacement from
an urn of unknown composition: the probabilities of white balls at successive drawings
turn out to be interdependent because the results, as they are obtained, make one’s
ideas about the composition of the urn more precise (and the smaller the past experi-
ence, the greater the influence it has on our ideas). This case could really have been
included among the previous examples of indirect dependence (dependence on the

11 This is the problem studied by American actuaries under the heading of ‘Credibility Theory’; see the two
lectures by A.L. Mayerson and B. de Finetti containing information and discussion about this topic: Giorn.
Ist. Ital. Attuari (1964).
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unknown composition of the urn); the only difference — an irrelevant one — is the fact
that here the composition is an unknown but pre-existent datum, whereas in the other
examples we were dealing with the influence of future events, uncertain at the moment
when the question was posed. Instead, in the given examples of ‘new phenomena’ our
disposition to review the evaluation was not attributed to ignorance of circumstances,
or of specific, objectively determined magnitudes, but, in a general way, to a lack of
familiarity with the phenomenon. There may be those who would like to say that such
an ‘objective magnitude’ is the ‘constant, but unknown, probability’. We have explained
many times, however, that it is not admissible to speak in this way, and we shall also see
that it is unnecessary, because, by arguing in a sensible way about meaningful notions,
one comes to the same conclusions as would be obtained by meaningless arguments,
introducing meaningless notions. Anyway, this means that none of the cases present
any essential differences, neither conceptually nor mathematically, notwithstanding the
external differences which required us to look at them separately in order to avoid an
over-restricted view.

The temptation to proceed further with these considerations, which could not be
completed here, is best resisted: we recall that their purpose was simply to persuade
the reader that, in a certain sense, it is stochastic independence which constitutes a
rather idealized limit-case, and that dependence is the norm, rather than the con-
trary (whose acceptance is the bad habit referred to by Bithlmann; see Section 4.11.1,
footnote).

4.15 Conditional Stochastic Independence

4.15.1. In the previous examples, we have encountered the notion of conditional sto-
chastic independence (conditional on an event, on a partition); it is necessary to add
something more systematic in this connection.

We shall say that E; ... E, are stochastically independent with respect to H (or with
respect to each H = H; of a partition) if they are such with respect to the function (or in
general the functions) P of the type P(-) = P(-|H) (i.e. P(E\E;|H) = P(E,|H) - P(E,|H), etc.).

In the example (of beating the ‘bank’ when throwing dice), we found that A and B,
stochastically independent with respect to a partition, turned out to be positively cor-
related; P(AB) > P(A)P(B). We now want to examine the question in general, beginning
with a very simple example (less restrictive than the previous one, in the sense that the
probabilities of the two events are not assumed to be equal). Let us consider just two
hypotheses, H and H, with probabilities ¢ and ¢; let the events A and B have probabili-
ties @’ and b’ conditional on H, and a” and b” conditional on H. The probability of AB
will be

P(AB)=c-P(AB|H)+¢&-P(AB|H)=ca'b'+éa'}’, (4.16)
whereas, in order that A and B be independent, it should have been

P(AB)=P(A)-P(B)=(ca'+ca")(cb'+cb")

=c’a'b' +cé(a'b"+a'b')+¢%a"b";
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the difference is

P(AB)—P(A)P(B)Z(C—cz)a'b'—cc a'b"+a'b") ( )"b”
cila (4.17)

=Cc~(arbl+dﬂbn rb" nb) ( )( ”)'
One therefore has stochastic independence only in the trivial cases:c=0or 1,0ora’ = a”,

or b’ = b”; in other words, if the two hypotheses do not have zero probability, only if A
(or B) is stochastically independent of them:

P(A)=P(A|H)=P(A|H).

If this does not happen, one has positive or negative correlation according to whether
the probabilities of A and B vary in the same or the opposite sense when conditional on
H rather than H. This is what we would have expected.

4.15.2. The same problem, with a partition into s hypotheses H; ... H; instead of two,
with probabilities ¢; ... ¢, and with

P(A|H;)=a;, P(B|H;)=
gives:
chal’ =b= chbl’ ZC/
=Zc,»a,~bj=ch-[a+(aj—aﬂ[b+(bj—b)}

=ab+3 c;(a;~a)(b;~b),
P(AB)-P(A)P(B)=3 c;(a;~a)(b; ~b).

(4.18)

One can easily see directly from this expression that if when the a; increase the b;
increase as well, the difference is positive; that is A and B turn out to be positively cor-
related (negatively if the change is in the opposite direction): this generalizes the previ-
ous conclusion. In particular, if (conditional on each Hj) A and B have equal probabilities,
a; = bj, they are positively correlated (so that the conclusion of the example concerning
the die and the bank was necessary, not just incidental). More generally, once we have
defined correlation between random quantities, we shall see that the expression
obtained above will correspond to the following statement: A and B are positively or
negatively correlated, or uncorrelated, according to the sense in which the random
quantities X = P(A|.7%) and Y = according to
whether P(XY) Z P(X)P(Y).

4.15.3. The case of conditional stochastic independence gives rise to a particularly
interesting case of inductive argument; that is of determining the probabilities of the
different possible hypotheses conditional on the information regarding the outcomes of
any events which are judged to be stochastically independent of each other, conditionally
on each of the above mentioned ‘hypotheses.
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This is — to refer to the standard example of the classical variety — the case of drawings
with replacement from an urn of unknown composition: the hypotheses are the different
compositions of the urn (e.g. percentages of white and black balls), the events are the
drawing of a white ball on given trials. On the other hand, in order to demonstrate the
importance of this in less academic examples, this is often the form of argument used to
evaluate the probability of the two hypotheses of the guilt or innocence of an accused
man on the basis of the ascertainment of a certain number of facts having the status
of ‘circumstantial evidence; or ‘proof’ If the latter facts differ as much as possible they
can, therefore, be taken as stochastically independent of each other, conditional on both
hypotheses, and with different probabilities conditionally on the two hypotheses.

It goes without saying that jurors and magistrates would reject with horror the idea of
a verdict as an evaluation of probability: in order to have their feet on solid ground, they
feel obliged to present as the ‘truth; or as a ‘certainty, some version which, through the
procedures provided, has qualified as the official and compulsory version (and which,
therefore, cannot be open to correction, even if an individual who was officially mur-
dered many years ago shows up looking very much alive'?). It is sad, to say the least, to
see such an unconscientious preference for a ‘certainty, which is almost always ficti-
tious, rather than a responsible and accurate evaluation of probability. Perhaps the sad-
dest thing, however, is the thought that the world will probably remain for quite some
time at the mercy of a mentality so distorted and arrogant that it neither retracts nor
hesitates even when faced with the most grotesque absurdities."

One more example: Heads and Tails using a coin that we think may be ‘imperfect’ (i.e. it
may ‘favour’ one side more than the other). As different ‘hypotheses’ in this case, one often
considers the ‘hypothesis of an imperfection giving rise to a probability p of heads; a differ-
ent ‘hypothesis’ for each value of p, or for a certain number of values pj; for example, in
order to simplify matters, increments of 1%. This formulation is not very satisfactory
because the definition of a hypothesis on the basis of an evaluation of probability is a non-
sense; however, before seeing (in Chapter 11) the way in which an equivalent, and correct,
formulation can be given, based on the notion of ‘exchangeable events; without speaking of
such ‘hypotheses, one can accept this image, for the time being, as a ‘temporary formula-
tion This is acceptable on account of the above observation that it is equivalent in its actual
conclusions to the correct formulation, even if it is, strictly speaking, meaningless.

4.15.4. Formally, the particular case we are referring to reduces to the obvious simpli-
fication introduced in the expression for P(E|H) (given in Section 4.6.2), if the items of
information Hj;, which make up H, are stochastically independent of each other condi-
tional on the events E. Then, in fact, P(H,|EH;) reduces to P(H,|E), P(Hs3|EHH>)
reduces to P(Hs|E), and so on, and, finally, the likelihood for the information H; H, ... H,

12 As happened recently in Sicily.
13 Some even assert that in the absence of proofs sufficient for conviction the accused should always be
discharged ‘for not having committed the crime’ On the other hand, it can well happen that it is certain that
one of two suspects is guilty, e.g. one or other, or both, of a married couple (like in the ‘Bebawi case; Rome
1966). Judicial wisdom, which ignores common sense, and, therefore, probability, would then have to assert,
in effect, that all the inhabitants of the world are under suspicion apart from two people, one of whom is the
murderer, who are officially free and protected from any possibility of suspicion.

Translators’ note. The Bebawis were a married couple appearing in a murder trial, who were each accusing the
other of the murder. They were both acquitted on the grounds that the cases against them were insufficiently proved.
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(the product of the H;) is nothing other than the product of the likelihoods for the single
H;, so that:

P(E|H)=P(E|H\H,...H,)=KP(E)P(H, |E)P(H,|E)..P(H,|E). (419)

In a form which is sometimes more expressive, given two events E (E; and Ej, say) we
can write

P(Eh|H):P(Eh)_P(H1|Eh)_P(H2|Eh)mP(H,,|Eh) (.19
P(E.|H) P(E,) P(H|E) P(H,|E) P(H,|E) ’

In other words: the ratio of the final probabilities (of any two events E) is given by the
ratio between their initial probabilities times the ratios of the likelihoods for each item
of information H;. Ope should note the particular case in which, in place of Ej, we sub-
stitute the negation Ej, of Ej: put more succinctly, E;, = E and Ex = E = 1 — E, and then one
obtains a relationship between the initial and final ratios P(E)/P(E), and the ratios
P(H}|E)/P(H;|E), which we might call ratios of probability and ratios of likelihood,
respectively: we shall talk about this explicitly in Chapter 5, 5.2.4-5.2.5.

This result expresses — at least in the Bayesian version'* — the ‘Likelihood Principle’:

‘For the purpose of inferences concerning the events E, the information obtained from
the occurrence of the H; can be arrived at from the knowledge of the likelihoods P(E,|Hj)
(or of their ratios).

It is, however, necessary (in order to avoid possible misunderstandings) to underline
that this is true only if the conditions specified above hold; we will discuss this in greater
detail in Chapter 11.

In the meantime, let us point out a qualitative and expressive formulation of one par-
ticular conclusion that corresponds to many practical situations:

‘Suppose a thesis (e.g. the guilt of an accused man) is supported by a great deal of cir-
cumstantial evidence of different forms, but in agreement with each other; then even if
each piece of evidence is in itself insufficient to produce any strong belief the thesis is
decisively strengthened by their joint effect!

This statement is known as ‘Cardinal Newman’s principle; since it was he (taking it
over from previous authors) who made it famous as the basis of his mode of argument
in his work the ‘Grammar of Assent’

4.15.5. Remarks. In the case of independence also we find ambiguity, as already illus-
trated in Section 4.8. There, it was a question of considering as the ‘true’ probability not
that relative to the actual state of information, but a different one, unknown, conditional
on some idealized form of unacquired information. Here, it is a question of calling
‘independent’ those events that are such conditional on a certain ‘ideal’ partition. Again,
a typical example is that of drawings from an urn of unknown composition, which are
independent conditional on the knowledge of the composition (or on any assumption

14 The reservation expressed by this parenthetical clause is due to the fact that some people believe that
the sense in which this ‘principle’ is understood by non-Bayesian authors, and in particular by Allan
Birnbaum who has written about it and supported it, is different. Thus far, I have been unable to discover
what these supposed essential differences are (apart from the interpretation; subjectivistic or
nonsubjectivistic).
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about it), but are not independent for someone ignorant of the composition.'® Precisely
because of the interdependence induced by this ignorance, the successive information
about the outcomes of the drawings serves to modify the evaluations of probability (in
the sense of Section 4.14). In the case of independence, all such information would, by
definition, have no effect.'®

4.15.6. The previous example takes on an even more ‘paradoxical’ air (for those who
cannot distinguish dependence and conditional independence, or, at any rate, do not
always remember that everything is relative to a given state of information) if the draw-
ings are made without replacement.

This is the case of a ‘lucky-dip: N tickets are for sale (and before being sold their
markings are unknown), # of them are winning tickets (and one checks this by examin-
ing each ticket one has bought), which give one the right to a prize: we suppose, to avoid
complications, that the prizes are identical. Conditional on the knowledge of the num-
ber of prizes, n, for a given number of tickets sold one’s probability of buying a winning
ticket is /ess, the more prizes that have been won. If, initially, one were very uncertain
about the percentage of winning tickets (i.e. distributed the probability to be attributed
to the various hypotheses over a wide range, for example, as a limit-case, gave equal
probabilities to all the hypotheses n =0, 1, 2,..., N), the more frequent the occurrence of
winning tickets, the more one’s probability increases for the tickets yet to be sold. Under
the intermediate assumption, which consists in knowing that the number # has been
determined by casting a die N times and taking # = the number of times a ‘6’ occurs, the
probability would remain constant (= %) independently of any information concerning
tickets sold and prizes won. (This is obvious; it is the same thing as actually playing dice:
in any case, it would be a useful exercise to check the conclusion without using this
direct argument.)

Examples of this kind (dice, urns, roulette etc.) are convenient because they are
reduced to standard schemes. Precisely for this reason, however, they have little use or
significance and, hence, it is desirable to give a more concrete and practical interpreta-
tion of the same example.

From a box containing 1000 specimens of a certain gadget, about 100 were drawn and
used: 15 of them did not work properly (whereas, according to the standard specifica-
tion, this should have been around five). Should one use the others or throw them away
(assuming, for example, that if more than 10% were defective their use would cause
more damage than the cost of throwing them away)? We shall limit ourselves to the
conceptual aspects: the exact calculations, with precisely specified hypotheses, could
be made now, but we shall reserve this until Chapters 11 and 12.

15 An even better way of putting it is to say that they are ‘exchangeable’: we will talk about this in

Chapter 11.

16 Lindley (in the 2nd volume of Probability and Statistics), in order not to diverge too much from existing
terminology, chose to continue to talk of independence (without, in cases of this kind, adding ‘conditional’).
He told me that a student once objected: ‘How, then, can an experience be informative?. This means (I
observed) that your teaching is so good that it leads people to a correct understanding despite the incorrect
terminology. However, it is better to use the correct terminology in order that nobody becomes confused, or
has to make a strenuous mental effort in order not to be confused.
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The data given say nothing except in relation to what we know, or imagine, regarding
systems of production and packing. If, for packing them into boxes, the gadgets are chosen
at random, there is no reason to be less (or more) confident about the remaining articles:
the fact of them being together with other articles that are defective in a greater or lesser
percentage is purely fortuitous. If, on the other hand, one believes that the contents of a box
come from the production of a given machine at a given time, the conclusion may be dif-
ferent, in either sense. If one thinks that the defects are due to a machine being temporarily
out of adjustment, then the usual attitude of fearing that the high percentage of defectives
might also be found in the rest of the box is reasonable. If, instead, one thinks that there is
a periodic cause (in an extreme case, that the seventh article in every series of 20 turns out
to be defective), it is almost certain that each box contains almost exactly 50 defective
pieces (at any rate, with less imprecision than under the first hypothesis). The conclusion is
then the opposite one: having already removed 15 defective articles, instead of five, it is to
be expected that 35 remain, rather than 45 (and the bad initial outcomes improve the pros-
pects for the remainder, rather than making them worse).

4.16 Noncorrelation; Correlation (Positive or Negative)

4.16.1. The condition P(AB) = P(A)P(B) for events was referred to as both the condition
for stochastic independence and the condition for noncorrelation; in the case of two
random quantities, X and Y, the same condition P(XY) = P(X)P(Y) will still be called the
condition for noncorrelation (or of positive or negative correlation if either > or < is
substituted for =), whereas by stochastic independence one implies a more restrictive
condition, which, for the time being has only been introduced for the case of random
quantities with a finite number of possible values.

One can show straightaway that the above-mentioned condition is more restrictive;
in other words, that stochastic independence implies noncorrelation (but not con-
versely, except in the case of two random quantities with only two possible values, and
hence, in particular, for events). Let x; (i = 1, 2,..., m’) denote the possible values for X,
and p; =P(X =x;) their probabilities; similarly, let y; and p] denote the m” possible
values and probabilities for Y. We denote the probability of the pair (x;, ;) by p;; that is
P, = P[(X = x;)(Y = y,)], and we observe that the p;;, given the p; and pj , can be any of
the m'm” values (lying in [0, 1]) satisfying the m’ + m” — 1 linear conditions
z}, pij = Pi» zi p; =p" (one which is superfluous, since Z pi= z pj =1). They are
therefore determined up to

m'm"—(m'+m"—1)=(m'-1)(m"-1)

degrees of freedom (except in boundary cases, where some of the p; or p; are = 0). The
condition for noncorrelation gives a further equation in the p;;:

P(XY)~B(X)R(¥)= Yy, (p; - ip}) =0,

which is clearly satisfied in the case of stochastic independence (we always have

ron

pij = pip;),) and still allows (m’ - 1)(m"” — 1) - 1 degrees of freedom. In other words, it
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permits infinitely many other solutions — that is schemes of noncorrelation without
stochastic independence — unless m’ = m” = 2; q.e.d.

4.16.2. As for the statement that by ‘strengthening’ noncorrelation one can obtain
stochastic independence, we were referring to the possibility of considering, besides
the noncorrelation between X and Y, the same relation between arbitrary functions
of Xand Y, X' = a(X) and Y’ = B(Y), say: P(X'Y") = P(X")P(Y"), that is P[a(X)p(Y)] =
Pla(X)]P[A(Y)] In the case of X and Y with a finite number of possible values
(the only case for which we have so far defined stochastic independence) it is obvi-
ous that such a relation holds, whatever the functions @ and f are, if X and Y are
stochastically independent (with the above notation, if pj = pipj, we have
Zpiia(xi)ﬁ(yj)ZZPEP"a(xi)ﬁ(y;)~ Conversely, it follows that (m’' - 1) (m” - 1) - 1
suitable (i.e. linearly independent), additional conditions of this kind will suffice to
imply stochastic independence. For the general case (an infinite number of possible
values), similar conclusions will hold, except that we shall require the adjunction of
infinitely many conditions of this kind, and, in addition, clarification of the meaning
of the definition by means of suitable critical considerations (see Chapter 6).

4.16.3. If, for X1, Xs,..., X;, we not only have
P(X.X;)=P(X;)P(X;)
but also
P(X,X;X,)=P(X;)P(X;)P(X;), etc,

we could, of course, define, and look at, noncorrelation of order three (or greater) for any
arbitrary distinct X. Equivalently (and perhaps more simply), we can say that, when
P(X;) = 0, noncorrelation of order k means that P(Z) = 0 for each Z which is the product
of 1 < k distinct factors Xj; the general case can be reduced to this one by saying that it
implies noncorrelation of order k of the X; — P(X;). However — with a convention oppo-
site to that for stochastic independence — when we simply say ‘noncorrelation; ‘pairwise’
should always be understood. This is both because this is the case of most frequent
interest, and in order to be able to use, in the case of events, the two convenient and
easily distinguishable terms, ‘(stochastically) independent’ and ‘uncorrelated; without
having to specify ‘independent, that is to say, independent of every order’ and ‘uncorre-
lated, that is to say, pairwise uncorrelated, respectively.

4.16.4. Pairwise noncorrelation (unlike independence) has, in fact, an autonomous
and fundamental meaning, no matter how many random quantities are being consid-
ered together. More generally, a measure of correlation is of interest, and this will be
provided by the correlation coefficient, r(X, Y), between two random quantities (to be
defined by equation 4.24 in Section 4.16.6). In the same way as knowledge of the previ-
sions P(X;) was sufficient in order to know the prevision of every linear function of the
X, X =X a;X;, knowledge of the prevision of the squares, P(Xiz) (in addition to that of
the P(X;)), and of the correlation coefficients r; = r(X;, X)), is sufficient to determine the
prevision of every quadratic function of the X;:
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X= {a second —degree polynomial in the X i}
= ﬂl’]'XL'X]' +zaiXi +ZﬂiXi +610,17

i

P(X):Z“iiP(XtXf)ﬂ“ZﬂiP(X;Fﬂo. (4.20)

g

Knowledge of the second-order previsions is often sufficient for the solution of many
problems (if not completely, by giving some bounds). If one thinks of the image (still not
made precise, but intuitively clear) of probability as distribution of mass, the knowledge
of the previsions is equivalent to the knowledge of the barycentre, and that of the sec-
ond-order previsions (or second-degree characteristics of the distribution) is equivalent
to knowledge of the moments of inertia.

The reasons for the importance of such knowledge, albeit limited, of the distribution
in the calculus of probability (as in statistics), are, essentially, the same as those which
determine their importance in mechanics (although, in general, not as precisely as is the
latter case, due to the connection with energy, etc.).

4.16.5. Separations and deviations. It is often convenient to write
X=x+(X-x)

where x = m = P(X), or some other special value (like the median or the mode, which we
shall discuss in Chapter 6, 6.6.6), or even with a generic x (representing an arbitrary
given number). We shall call the difference X - x the separation (of X from x); if we take
the absolute value (as is often useful), | X - x| is called the deviation.

As far as the second-order previsions are concerned, it is clear that, in general, it is
convenient to take them relative to the barycentre, x; = m; = P(X;), the point with respect
to which the moments are smallest.

P(X —x)' =P[(X -~m)~(x—m)]
:P(X—m)2 +(x—m)2 —{Z(x—m)P(X—m)},

but the final term vanishes (P(X - m) = m — m = 0) and we have the following result, well
known in mechanics: the moment with respect to a point x is the moment about the
barycentre (the first term) plus the square of the distance from the barycentre (the second
term: here the mass = 1), and clearly the minimum is at x = m.

P(X — m)* is called the variance of X, and its square root (in mechanics, the radius of
gyration; the distance at which the mass should be concentrated in order to preserve the
moment of inertia'®) is called the mean standard deviation or, more briefly, the standard
deviation. It is denoted by

17 The first summation will suffice if we include the index 0 corresponding to the fictitious random
quantity Xy = 1 (see Chapter 2, Section 2.8.3); in this case, a; becomes a; + a; and ay becomes ag,.
Moreover, it is, of course, irrelevant whether we take as zero the a;; with i > j, or conversely with i < j, or
instead take a;; = a;; or whatever, according to the circumstances: the only relevant thing is a;; + a;.

18 This is an example of a mean according to Chisini’s definition! See Chapter 2, Section 2.9.2.
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19

o'(X)z\/[P(X_m)z]:\/[P()ﬂ)—sz (m=P(X)), (4.21)

or sometimes ox (or simply o if there is no ambiguity). The variance will be denoted by
6(X), 0% or o~

The separation (and the deviation) from m, divided by the standard deviation, are
called the standardized separation, (X - m)/o, and the standardized deviation
|X - m|/o.

In this way, we can express the square terms of Section 4.16.4 by means of previsions
and variances (i.e. by means of previsions and standard deviations):

P(X.X;)= P(Xf) =o?(X,)+P*(X;)=c? +m? (4.22)

(where P*(X)= [P(X)]2 ),
and similarly the cross-product terms, P(X;X;) with i = j;
P(XlX} ) =m;m; +P|:(X, —I’l’ll)<X1 —m; ):| =m;m; +0—ij1 (4.23)

where oy, so defined, is called the covariance of X; and Xj,zo and, writing o;; = 0,073, we
arrive at the introduction of the correlation coefficient, as mentioned above.

4.16.6. In order to define the correlation coefficient we denote by X and Y the two
random quantities, and suppose that P(X) = P(Y) = 0; then setting

P(XY)=0(X)o(Y)r(X,Y),
we have, by definition,

P(XY)

) St0e0my

(4.24)

It was clear from the very beginning that the correlation coefficient would be zero,
positive or negative, according to whether X and Y are uncorrected, positively corre-
lated, or negatively correlated. It is equally obvious that if ¥ = X, then r = 1, and that if
Y = -X, then r = -1, and it is also clear that multiplying X and/or Y by constants does
not change r, except possibly in sign:

r(aX,bY):ir(X, Y),

+ or —, according to the sign of ab. If a = 0, or b = 0, then aX = 0 or bY = 0 and r has no
meaning; the previous observation can therefore be completed by saying that if ¥ = aX,
then r(X, Y) = £1 (sign of a).

19 ois boldface when it is an operator (and the same holds for r).
20 In particular, for consistency, o;; = ol
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It is already intuitively obvious from the above that  can assume all values between
+1, but no others, and we shall now prove this: it will suffice to restate the standard
argument about quadratics. We always have (Y - £X)? > 0 (or zero, in the limit-case
where for some ¢ = ¢, we have the identity Y = £X), and hence £X2 - 2uXY + Y2 > 0;
taking its prevision, £P(X?) - 2tP(XY) + P(¥?) > 0, and so, since the discriminant must
be negative, |[P(XY)|* < P(XH)P(Y?); q.e.d.

In order to extend the definition to the case in which we do not have P(X) = P(Y) = 0,
it suffices to observe that the separations from the prevision, X — my and Y - my, must
be substituted for X and Y, and P(XY) therefore replaced by

P[(X —my )(Y —my )| =P(XY)—myxmy.

It is useful to remark that a different extension of the definition could have been
obtained by leaving P(XY) as the numerator, and changing the denominator to
Po(X)P(Y), where Po(X) = VP(X?) = quadratic prevision of X. The same properties and
proofs would hold, but the meaning would be different: if we denote this alternative
coefficient (temporarily) by 7, 7 = 0 would imply P(XY) = 0, instead of =mymy, and 7 =
+1 would follow from Y = aX instead of from Y - my = a(X - my).

The meaning of all this will be clear under the geometric interpretation which we are
now about to introduce.

Remarks. 'We cannot (as a rule) say that in order to have Po(X) = 0 we must have
X = 0, but only that all the probability must be at least adherent to 0. To have P(X) = 0,
we must obviously have P(|X| > ¢) = 0 for all € > 0 (if this were equal to p > 0, we would
in fact have P3(X)> pe®), but this does not exclude the possibility of P(X # 0) being
>0 or even = 1 (e.g. if the only possible values are the sequence x,, = 1/n, each with zero
probability). Anyway, we shall say, if Po(X) = 0, that X coincides with 0, and write X = 0;
similarly, we say that X and Y coincide, X =Y, if X - Y=o.

4.17 A Geometric Interpretation

4.17.1. We have already considered (Chapter 2, 2.8.1) the linear space & if of random
quantities X: it is an affine vector space (whose origin is the ‘random’ quantity which is
identically = 0) in which each X is represented by a vector (and linear combinations by
linear combinations). We also agreed to denote by X, the ‘random’ quantity whose value
is identically 1, and by x, the axis on which the ‘certain’ (constant) quantities lie.

Once we have introduced a prevision P, we know that P(X) is a linear function of the
vector X, with P(cX;) = ¢ (on the axis representing certainty, coinciding with the abscissa
¢). To give P is to give the plane of the fair random quantities (with P(X) = 0): to find P(X)
= m means, in fact, to find that m for which P(X — m) = 0; in other words, to decompose
Xinto m + (X - m), the sum of a vector m Xy, known with certainty (m = mX;), and a fair
vector. One might prefer to think of xy = m as the point of intersection of the axis of
certainty with the plane parallel to the fair plane, passing through the point X (where ‘the
point X’ is short for O + X, the end point of the vector X which starts from O).

Functions of the second degree in random quantities belonging to & — that is arbitrary
numbers of linear combinations of products XY, of which the squares, X?, are special
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cases (Y = X) — do not belong to %.*' We can, however, still give P(XY) a geometric
interpretation by transforming .2 geometrically from an affine space into a Euclidean
metric space, with a metric defined by the P(XY), interpreted as the scalar product of
the vectors X and Y: that is by interpreting P(X) as the length of the vector X (limiting
ourselves to some £ * C Z'if for X ¢ £ '* we have P(X) = o).

In fact, P(XY) satisfies the necessary and sufficient conditions for a scalar product
(and therefore generates a Euclidean metric):it is linear in X and ¥, and symmetric

(XY =YX, X(Y; +Y;) = XY, + XY,, P is linear);

it is positive definite (P(XX) = P3(X) > 0 if we do not have X = 0).

Remarks. Notice that, for the metric under consideration, it is appropriate to think of
coincident random quantities as represented by the same vector (if one wished, one
could say that it represents an ‘equivalence class’ with respect to ‘coincidence’). If not,
we would have nonzero vectors with zero length.

Under this metric, the length of X would be Py(X) = V(m* + 6%), and X and Y would be
orthogonal if P(X Y) = 0: in general, the cosine of the angle between them would be 7.
Fairness implies orthogonality to the axis of certainty. The metric that we use (most
often) is not this one but another: it was, however, convenient to begin with this as it is
the most natural starting point.*

4.17.2. The metric that serves our purpose is the same as the preceding one (in accord-
ance with the given definition of correlation) but applied to the separations, X — P(X),
instead of to the X themselves. The simplest illustration (which is connected with the
previous considerations) consists of saying that one takes into consideration only the
projections onto the fair plane; that is the component orthogonal to the axis of certainty
(X - m, with m = P(X)), disregarding the parallel component, which is in fact m, or ‘mXj)

Under this metric, the length of X is ¢(X); that is the length of the projection of X
(under the previous metric). The cosine of the angle between X and Y (taking the pro-
jections onto the fair plane) is r(X, Y) and we have, therefore: noncorrelation (r = 0)
corresponds to orthogonality (of the projections onto the fair hyperplane); positive cor-
relation (0 < r < 1) and negative correlation (-1 < r < 0) correspond to acute and obtuse
angles, respectively (always between the projections). The extreme cases (r = £1) cor-
respond to parallelism, in the same or opposite direction (again between projections).

In order to avoid constant repetition of the fact that it is the projections that are
involved, one could always bear in mind that, in this ambit, if we take as norm (or length,
or distance) the standard deviation instead of the quadratic prevision, all random quanti-
ties differing by certain constants are identified with one and the same vector of the fair
hyperplane, the projection of the original (writing, e.g. X = Y). One must be careful not
to become confused, and think in these terms when it is not possible to do so (e.g. in the
case of mean-square convergence the norm must be Py(X) and not ¢(X)).

21 They could all belong to L, if the latter were infinite dimensional; otherwise, a few of them could belong.
Anyway, the appearance of X2, in addition to X, is superfluous (unless one is interested in P(X*), P(X° Y), etc.).
22 In some cases, we shall actually find it necessary to refer to the metric generated by P(X Y): e.g. in
connection with mean-square convergence (see Chapter 6).
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4.17.3. The vectorial-geometrical interpretation makes obvious and meaningful all
properties relating to previsions of the second order. If we suppose that all the random
quantities considered in the following are fair (P(X) = 0), we have, for instance:

for the decomposition of X into a component parallel to an arbitrary (nonzero) Y and
a component orthogonal, the former will be 6(X)r(X, Y) (the length times the cosine)
multiplied by the unit vector in the direction of Y (i.e. Y/6(Y)), in other words,

X'=Y-[r(X,Y)o(X)/s(Y)], (4.25)

and the latter (which is obviously X” = X — X’) has length ¢(X)V(1 - ) (length times
sine). It is also characterized by the fact of having the smallest length of all vectors of the
form X — aY;

in the same way, in order that X’ be contained in, and X” be orthogonal to, a given
linear space (for simplicity, we take it to be two-dimensional — linear combinations of ¥’
and Z), we will have X’ = aY + bZ such that

X'=X-X'=X-aY-bZ

is orthogonal to Y and Z; hence

P(X"Y)=P(XY)-aP(Y?)-bP(YZ)=0,
P(X"Z)=P(XY)-aP(YZ)-bP(Z*)=0,
and, if Y'and Z are taken to be orthogonal, P(YZ) = 0, and unitary;, P(Y?) =1=P(Z%, we
have straightaway
a=P(XY)=c(X)r(X,Y),
b=P(XZ)=0(X)r(X,Z),
X'=o(X)[ Ye(X,Y )+ zx(X, Z) |
with a standard procedure (similar to the above), given any linearly independent X;,
Xs, ..., X, one can carry out the orthogonalization by substituting Y3, Y5, ..., ¥}, the Y;
being orthogonal to each other (and, if we wish, unitary). Proceeding in order (i = 1,
2,..., n), it suffices to add to X;,, a suitable linear combination of Xj,..., X; in order to
make it orthogonal to these vectors and, if necessary, to normalize (dividing by the

length), obtaining Y;,1;
and so on.

4.17.4. The standard deviation of the sum of two or more random quantities is
particularly important. For two summands, we have

o’ (X+Y)=P(X+Y)" =P(X*)+P(Y?)+2P(XY)

=% (X)+0?(Y)+2r(X,Y )o(X)a(Y), (26

and it is easy to recognize the expression as the length of the sum of two vectors (as it
had to be): that is the side of a triangle given the other two sides and the (external) angle
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between them; ¢* = a® + b* + 2ab cos 6 (this is Carnot’s theorem; if cos 6 = 0, orthogonality,
we have Pythagoras’ theorem: in the limit cases, cos 6 = * 1, that is parallelism, ¢ = the
sum or difference of a and b). It is important to remember the following: in the case of
orthogonality (noncorrelation), the variances are added (the standard deviations obey
Pythagoras’ theorem); in the case of positive correlation, the variance and the standard
deviation of the sum turn out to be greater, and in the case of negative correlation less,
than in the case of noncorrelation (the standard deviations of the summands being the
same) (Figure 4.2).

The same holds for more than two summands. In this case, of course, one may have
correlations which are in part positive, in part negative, and the effect of either the
former or the latter may prevail. The general formula is clearly as follows (written
directly for a general linear form, always assuming P(X;) = 0):

62[2611')(;']:[) Z&lianiXi :Zala]P(XlXI):Zﬂlﬂlalcln/’ (4‘27)

g y y

the squared terms (r; = 1) yield Ziafaiz ; excluding i = j in the general summation, one
obtains the contribution of the cross-product terms (zero in the case of orthogonality,
positive or negative according to the prevailing correlations between the summands
a;X; — not the X; ! — whose signs are those of a;a;r;; — not of r;}).

The covariance matrix, with entries 6;;, of the random quantities X; (which we assume
to have zero prevision) completely determines the second-order characteristics in the
space &Z of linear combinations of the X; (geometrically, in &, it gives the length and
angles of the vectors representing the X;). The correlation matrix, with entries r;(r; =
0;i/0,0j, 0; = Voi;, ;i = 1) can be derived from it, giving the angles (r; is the cosine) but not
the lengths. It can still be regarded as a covariance matrix for the standardized X;; that
is for the X;/o; (geometrically one is considering the unit vectors rather than the vectors).

4.17.5. A fact that is of conceptual and practical importance — and for this reason
mentioned already in the Remarks in Section 4.9.1. for the case of events — is that the
size of the negative correlation (unlike the positive) must be bounded. More precisely,
given n random quantities, the arithmetic mean of their (;’) correlation coefficients r;
(i # /) cannot be less than —1/(n -1): in particular, the r;; cannot all be less than -1/(n - 1);
in the extreme case (as we shall see) they can all be equal to this limit value.

Without loss of generality, we can assume the X; normalized, P(X;) = 0 and P(X 2y=1,
so that r;; = P(X;Y)): we consider their sum, X = X; + X5 + ... + X,,, and evaluate its variance

()

X

Figure 4.2 (a) Negative correlation. (b) Noncorrelation (orthogonality). (c) Positive correlation.
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ij i*j

=n+2r,j :n+n(n—1)7:n[l+(n—1)7},

i#j

o’ (X)=P(X*)= P[;Xix, =2 P(XiX;)= Zi:P(XiZ)+ZP(Xin)

where we have set 7 = the arithmetic mean of the r;, that is

Fo Ly,
' _n(n—l)zll

i#j

The variance is non-negative, however, and therefore 7 > -1(n — 1); q.e.d. We note
that the extreme value is attained if and only if the sum is identically = 0 (or, if we want
to be absolutely precise, = 0, using the notation of Section 4.17.2): that is if the # unit
vectors have zero resultant.?? In particular, the r;; could have the common value r = -1/
(n — 1) only if the unit vectors were arranged like the straight lines joining the centre of
aregular (n — 1)-dimensional simplex to the vertices. Figure 4.3 illustrates the case of
n = 3 (equilateral triangle) and # = 4 (regular tetrahedron). We give the basic facts for

these cases (and also for n = 5, 6, 7, 8):

n=3,r=—1/2=cos120° n=6,r=—1/5=cos101°32’
n=4,r=-1/3=cosl08° 16’ n=7,r=-1/6=c0s99°36’
n=5r=-1/4=cos104°29’ n=8,r=-1/7=cos 98°12'

Approximately, the angle is a right angle plus 1/(# - 1) (in radians); in other words, in
a possibly more convenient form, plus 3438/(n — 1) minutes (for # = 8 the error is already
of the order of 1’). These numerical examples serve to make clear that one cannot go
much beyond orthogonality among random quantities when there are more than just a
few of them.

1
Figure 4.3 (a) The maximum negative correlation for three vectors:r =cos¢ = —E. (b) The maximum

. . 1
negative correlation for four vectors: r = cos¢ = -3

23 Observe that they are, therefore, linearly dependent.
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4.17.6. All that we have considered so far (Sections 4.17.2—4.17.5) has been in terms
of the conventional representation of the X; (and of the X linearly dependent on them)
in the abstract space Z. If, instead, we wish to consider the meaningful interpretation
in terms of the distribution of probability as distribution of mass — an interpretation
whose importance was indicated at the end of Section 4.16.4 — we must transfer to the
linear ambit &/ (the space S,, with coordinates x1, x,, x,, where a point represents
the outcomes of X3, Xs,..., X), since it is over this space that the mass is distributed. The
P(X;) = x; identify the barycentres of such distributions (and we again assume the bar-
ycentre coincident with the origin, in order to avoid useless petty complications in the
notation), and the P(X;X)) = 6;; identify the moments of inertia; that is the ellipsoid (or
kernel) of inertia (and in our case it could be called of covariance, like the corresponding
matrix).

For our purposes, it is much more meaningful and useful (although the two things are
formally equivalent) to consider what we shall call the ellipsoid of representation,™*
which is the reciprocal of the other. With reference to the principal axes (common to
the two ellipsoids), the semi-axes measure the corresponding standard deviations, oy, in
the ellipsoid of representation, whereas, for the ellipsoid of covariance, they give the
reciprocals, 1/6y, (or K/oy; one can take an arbitrary multiplicative constant).

In Mechanics, the latter has been employed (Cauchy—Poinsot), although the former
has also been proposed (MacCullach). Part of the reason for preferring this one seems
also to hold for Mechanics; in our case, however, there are also rather special and more
decisive circumstances (e.g. the fact that we are interested in moments with respect
to planes, that is, in general, to hyperplanes S,_;, rather than moments with respect to
straight lines).

The ellipsoid of representation has a concrete meaning: it is the model of a solid
having the same moments as the given distribution (assuming it to be homogeneous,
and giving it a mass increased in the ratio 1 to 7 + 2 — three on the line, four in the plane,
five in ordinary space and so on — or, alternatively, increasing the size in the linear scale
1 to V(r + 2)). This is obvious if one thinks of the case of the sphere, to which one can
always reduce the problem by imposing a suitable metric on the affine space & (unless
it already has one, either because of an actual geometrical meaning, or because the
arbitrariness has already been exploited by reducing to a sphere some ellipsoid previ-
ously considered). For the unit sphere (in S,) the moment about the centre is

1 1
Ipzp"ldp/jp"ldp =r/(r+2),
0 0

but it is also  times the moment about a diametrical hyperplane, and hence the latter is
1/(r + 2). In order to make this equal to 1, it is sufficient to increase either the mass or
the radius in the above mentioned way.

In the case of probability and statistics, this reduction to a homogeneous distribution
is not the most appropriate procedure: the standard example of the (r-dimensional)

24 Of course, we speak of ‘ellipsoids’ in S,, even if r > 3, or r = 2 (ellipses), or r = 1 (segments). As far as
I know, terminology of this kind does not exist in mechanics; statisticians at times refer to the ‘ellipsoid of
concentration’
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normal distribution is much more meaningful (well- known as the ‘distribution of
errors’). As we shall see when we come to discuss it (Chapter 7, 7.6.7 and Chapter 10,
10.2.4), to each distribution over S, there corresponds a unique normal distribution
having the same second-order characteristics (same covariance matrix), and the
ellipsoid of representation characterizes it in the most directly expressive manner.

These brief comments may have led to an appreciation of how many interesting con-
clusions, although incomplete, of course, can be drawn from incomplete assumptions
(even as incomplete and crude as in the case under consideration).

4.17.7. Inequalities. We must now establish certain inequalities that are both neces-
sary for the topic in hand and also serve as simple illustrations of what can be said more
generally.®

Tchebychev’s inequality gives an upper bound, 1/ for the probability that |X] is
greater than tP(X); in particular, for the probability that the standardized deviation is
greater than t. For example, the probability that | X]| is greater than some multiple of the
quadratic prevision is: <i for twice; < % for three times; < 2—15 for five times; < ﬁ for ten
times and so on. Without further conditions, this bound is the best possible; however,
the bounds are normally crude (the probability is much smaller: we have here placed
ourselves in the least favourable position).

The proof is obvious if one thinks in terms of mass. If a mass >1/£* were placed at a
distance from the origin >a, it would have moment of inertia >a’/#*; altogether, the
moment of inertia is Pé(X) and hence a < tPo(X). Placing two masses 1/28 at + P o(X)
and the rest at 0, one obtains the limit-case (provided that ¢ > 1).

Cantelli’s inequality is the one-sided analogue of the preceding one: 1/(1 + £ is the
upper bound for the probability that the separation in a given direction is greater than
to (X > m + to, or X < m - to, respectively, with ¢ > 0). If the mean is not fixed, the question
does not arise, the inequality would then be the same as the first one; the improvement

is notable only for small £:£ =1, p = 2 instead of 1; ¢ = 2, p = 1t instead of 1;£ = 1, p = § instead
1

of 1;t = %, p= % instead of %; t=2,p=< instead of i; for t = 3 the difference is already
hardly noticeable: p = 1—10 instead of %

The proof can be given in a similar way to the above. In order to balance a mass p at
m + to, one can place the residual mass 1 - p at m - top/(1 - p), and this gives a moment
of inertia equal to APp + (1 - p)p*/(1- p)*; £[...] cannot be greater than 1, [...] = p/(1- p),
£ < (1 -p)/p = -1+ 1/p and so on. If the balancing mass is dispersed, the situation can
only be made worse.

Although it is outside of our present realm of interest (second-order characteristics),
it is worthwhile pointing out how the argument used in proving Tchebychev’s inequality
can be applied, without any difficulty, to much more general cases. If y(x) is an increas-
ing function (0 < x < ), we necessarily have P{|X - m| > a} < P{y(|X - m|)}/y(a)
because a mass >p, placed at a distance a from m, alone contributes to P{y(|X — m|)} a
quantity >py(a) (which cannot be greater than the whole thing), and the situation is
even worse if the distance is greater.

25 More general cases than those considered here are developed in the works of E. Volpe (using this
geometrical representation): Ernesto Volpe di Prignano, ‘Calcolo di limitazioni di probabilité mediante
involucri convessi, Pubbl. n. 16 dell’lst. Matern. Finanz. Univ. di Trieste (1966).
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For example, taking absolute moments of any order r, we have
p(|x|>a)<p(X]") 14",

the Markov inequality: for r = 2 this is the Tchebychev case, seen above.

4.18 On the Comparability of Zero Probabilities

4.18.1. When we were considering (at the end of Chapter 3) countable additivity and
zero probabilities, the question often arose as to whether it makes sense to compare the
latter; for example, saying that, if all cases are equally probable, the probability of the
union of 12 of them is twice that of the union of six, and three times that of the union of
four, even if all these probabilities are zero (as in the example of ‘an integer N chosen at
random’). We assumed this in order to give the statements of a few examples in a more
suggestive form; as we indicated then, this is now the time to examine the question.

For the purpose of removing the most radical objection, and as a better means of
presenting the sense of the question, a geometrical analogy will suffice. The objection is
that zero stands for nothing, and that nothing is simply nothing: this is one of many
such vacuous statements on the basis of which certain philosophers pontificate about
things of which they understand nothing.?

A set can have measure zero in terms of volume without being empty; it could, for
instance, be a part of a surface and have a measure in terms of area (and two areas can
be compared). A measure in terms of area could be zero without the set being empty;
it could be an arc of a curve and have a measure in terms of length. A linear set might
also have measure zero in terms of length (in some sense or other: Jordan—Peano,
Borel, Lebesgue) without being empty, but some comparison could also be made in
this case (even if it only distinguished sets with single points or 2 or 3,..., or an infinite
number).

All this would be even more expressive and persuasive if put in terms of more general
concepts of measure (with intermediate dimensions also, not just integer) as in
Borchardt, Minkowski, Peano, Hausdorff and so on. The example closest to our theme
is that in which one defines ‘the measure m of dimension o’ of a set I to be that for which
V(i) ~ mp>* (I, = the set of points of three-dimensional space with distance < p from
I, V = volume, the asymptotic expression to hold as p — 0).

4.18.2. In any case, so far as probability is concerned, a direct meaning exists and we
have no need of analogies to provide a justification (they may, on occasion, provide
encouragement in showing us that our situation is not unique and strange, and may help
us by providing visually intuitive models).

Given two events A and B, it is clear that if one has to decide between them — that
is if one makes the assumption that one of the two is true — a comparison of their

26 Translators note. The author is here referring to what he considers the deleterious influence of Croce’s
idealism upon Italian culture.
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probabilities must be made. Expressed mathematically, if we consider their probabil-
ities P(A|H), P(B|H) conditional on the ‘hypothesis’ H = A V B, their sum is > 1, and
their comparison is easy. It could be said that this is the same thing as comparing
P(A) and P(B): if P(H), and, a fortiori, P(A) and P(B), are small, however, the pro-
posed alternative is perhaps psychologically more appropriate as it presumably
induces one to weigh up the evaluation more accurately by fixing attention on the
two cases separately, whereas the reliability of the ratio of two very small num-
bers — attributed as part of an overall evaluation, in which A and B had no special
significance — might well be doubted. When the events A and B (and hence H) have
zero probabilities, however, the alternative approach becomes essential. With the
direct comparison the ratio of the two probabilities would have the form 0/0. This
does not mean that the ratio is meaningless, but that the method of comparison is
not the right one.”

From an axiomatic viewpoint, the extension of the condition of coherence to cover
the present case requires a stronger form: we assume tacitly that this has been done (but
we will discuss it in the Appendix, Section 16).

Hence, with any event A as reference point, any other event E has a certain ratio of
probability with A (a finite positive number, or zero, or infinity): in this way, innumer-
able ‘layers’ of events having probabilities ‘of the same order’ (that is with finite ratio)
can appear, the ‘layers’ being ordered in such a way that every event in a higher layer has
infinitely greater probability than any event in a lower layer.

4.18.3. An example will suffice as a clarification, both of the general situation, and of
the implicit applications mentioned in Chapter 3: this is the example of a ‘positive
integer N chosen at random.

We have a partition into an infinite number of events, E;, = (N = k), all with zero
probabilities, P(E;) = 0 (k = 1, 2,...). This says very little, however; it merely excludes
a single case (X;p; > 0) which, from this viewpoint, is ‘pathological’ (in the sense
that, if we think of a function as having been chosen among the entire, unrestricted
class of functions of a real variable, to be continuous, even at a single point, is a
pathological case). To say that ‘all the events Ej are equally probable’ is a rather
substantial addition: nevertheless, it only suffices to enable us to conclude the fol-
lowing: if A and B are finite unions of the Ej, for example of m and n, respectively,
then the ratio of their probabilities is m/n; if A is the complement of a finite set we
certainly have P(A) = 1; if A and its complement are infinite, then P(A) is infinitely
greater than any of the P(E;), but can be any p > 0 (even p = 1, or p = 0) located
somewhere in the scale of the ‘layers’

At first sight, it might seem that one could say something more (perhaps by consider-
ing frequencies for the first # numbers and then passing to the limit): for example that
the probability of obtaining N even is =, of obtaining N prime is = 0, nonprime = 1. In
fact, this is not a consequence of the assumption of equiprobability at all; it is sufficient
to observe that, by altering the order, these limits change but the equiprobability does

27 The knowledge that on a day when a housewife has not bought any sugar she has spent 0, does not allow
us to conclude that the price of sugar is meaningless because it is 0/0; it merely indicates that the
information available is not sufficient to determine it.
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not; on the other hand, the possible evaluations are not only those of the limit-fre-
quency type, up to rearrangements.*®

The assumption that P(E) = lim P(E|N < ») (and possibly, more generally, P(A)/P(B) =
lim [P(A|N < n)/P(B|N < n)]; i.e. the limit of the ratio of the numbers of occurrences of
A to those of B in the first n integers) is neither compulsory nor ruled out (for any E, or
pairs A, B) where the limit exists. One certainly obtains a coherent evaluation (by con-
tinuity; see Chapter 3, 3.13) in the field where the limit exists, extendable everywhere
(Chapter 3, 3.10.7). However, one makes the arbitrary choice from among the infinite
possible ones, and automatically satisfying the conditions lim inf P(E|N < n) < P(E) <
lim sup P(E|N < n).

This choice has no special status from a logical standpoint but it could be so from a
psychological point of view if the order has some significance (e.g. chronological); and
indeed it is so if the formulation in terms of an infinite number of possible cases is
thought of as, more or less, an idealization of the asymptotic study of the finite problem,
with a very large number of cases #.

One can observe, by means of this example, just how rich the ‘scale’ of layers’ can be
(perhaps more than one would imagine at first sight). For every function ¢(n), tending
to zero as n — oo, we can construct an event (a sequence of integers, a; < a < ... <y, ...)
in such a way that the frequency (n/a,) tends to zero like ¢(n). It is sufficient to insert
into the sequence, as the term a,,,;, the number m if otherwise n/m would be less than
¢(m). If we consider ¢p(n) = n™* (a > 0), we obtain, for example, an event E,, and each E,
has infinitely greater probability than those with a larger a (and, as is well known, the
scale is far from being complete: one could insert the E,, g corresponding to ¢(n) =
n~*(log n)’; and so on).

4.18.4. The method of taking limits, either starting from finite partitions (e.g. p" =1/n
for h =1, 2,..., n), or countably additive ones (e.g. p,(q") =Ka", a=1-1/n,K=n*(n-1),
h=1,2,..),with limits which are not countably additive, is, in any case, the most con-
venient way of constructing distributions that are not countably additive. We must bear
in mind, however, that it is a procedure for obtaining some coherent distributions in the
field in which they are defined by the passage to the limit (since finite additivity is pre-
served), and not necessarily a procedure expressing anything significant.

In particular, one should not think (even inadvertently):

that, assuming the pé”) are probabilities conditional on an hypothesis H, (e.g. N < n,
in the first example), the p, =lim pﬁ,’” (and the distribution over infinite subsets
which derives from these) give probabilities that are conditional on the hypoth-
esis H = lim H,, (e.g. referring still to the first example, H = 1);

or, even worse, the converse;or that the events for which probabilities are defined by
virtue of the passage to the limit have any special role, or that their probabilities have a

28 If while progressively attributing probability to infinite subsets of events (as in Chapter 3, Section 3.10.7)
we always attribute probability = 1 (provided it is not necessarily = 0 by virtue of previous choices), we
obtain an ultrafilter of events with probability = 1, whereas all the others have probability = 0. Linear
combinations of distributions of this ‘ultrafilter type’ form a much wider class, still disjoint, however, from
those of the limit-frequency type.
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different meaning from those of the other events (apart from the trivial observation that
the former are consequences of the evaluations made by deciding to base oneself, on the
passage to the limit, whereas the latter require a separate evaluation: it could have been
the other way around if we had started with a different procedure).

4.18.5. Procedures of this kind have often been employed, more or less as a result of
interpretations of the type we have here rejected. The most systematic treatments
known to me are those by A. Lomnicki (Fundamenta Mathematicae, 1923) and by A.
Rényi (in many recent works; see, for example, Ann. Inst. Poincaré (1964): prior to this,
in German, 1954).

Rényi’s approach is constructed with the aim of making considerations of initial prob-
abilities for partitions which are not countably additive fall within the range of the usual
formulations, by concealing the nonadditivity by means of the passage to the limit. The
device consists in accepting that, for the partitions under consideration, countable addi-
tivity must be respected, but, in the passage to the limit, the total probability may
become infinite instead of one. The importance of this is mainly in connection with the
inductive argument, so we will return to this topic more explicitly in Chapter 11.

4.19 On the Validity of the Conglomerative Property

4.19.1. If, conditional on every event H; of a finite partition, the probability P(E|H)) of a
given event E is p (or, respectively, lies between p’ and p”), then we also have P(E) = p
(or, respectively, P(E) lies between p’ and p”). In fact, we have

P(E)=P(EH, + EH, +...+EHn)=ZP(E|Hj)P(H,-)=pZP(H/«)zp; (4.28)

the same holds even if the H; form an infinite partition, so long as the sum of their
probabilities is = 1. In fact, if we put

H,=1-(H,+Hy+...+ H,),

we have

P(E)=3P(E| H,)P(H,)(j<n)+P(EH,)= p|:1—P(H:, )}+P(EH;), (4.29)

and hence P(E) = p because P( Hn) and, a fortiori, P( EH;) tends to 0 as # increases.

4.19.2. Indeed, it would appear natural that this (conglomerative) property should
hold for logical reasons, overriding all mathematical demonstrations or justifications,
especially if one interprets literally a phrase like ‘conditional on each of the possible
hypotheses the probability of E is p, and so the fact that P(E) = p is proved.

Two counterexamples will demonstrate that this is not so.

Taking an infinite partition of the integers into finite classes (each of three elements)
we consider the events Ay, = Ej, + Eyj, + Egj.0, with 1 = 1, 3, 5,... odd; conditional on each
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of the Ay, the probability that N be even is %; the analogous partition By, = Ej,,1 + Ey,_1 +
Ey;,1 would instead give % (the asymptotic evaluation gives %).

Consider an infinite partition of the integers into infinite classes, with A, (4 odd)
containing the number / and all multiples of 2" which are not multiples of 2"*% condi-
tional on every Ay, the probability that N be even is = 1 (independently of any conven-
tions like asymptotic evaluations, there is only one odd number versus an infinite
number of even ones and they are all equally probable). Of course, it suffices to change
Ninto N + 1 in order to obtain the opposite conclusion: the probability that N = even is
0 conditional on every Aj,.

When we are in a position to discuss independence and dependence for general
random quantities (Chapter 6, 6.9.5; see also Chapter 12, 12.4.3), we shall meet an
example which is more meaningful, both from an intuitive and practical point of view
(the latitude and longitude of a point of the earth’s surface ‘chosen at random’).



5

The Evaluation of Probabilities

5.1 How should Probabilities be Evaluated?

In order to say something about this subject without running the risk of being misun-
derstood, it is first of all necessary to rule out the extreme dilemma that a mathematical
treatment often poses: that of either saying everything, or of saying nothing. As far as
the evaluation of probabilities is concerned, one would be unable to avoid the dilemma
of either imposing an unequivocal criterion, or, in the absence of such a criterion, of
admitting that nothing really makes sense because everything is completely arbitrary.

Our approach, in what follows, is entirely different. We shall present certain of the
kinds of considerations that do often assist people in the evaluation of their probabili-
ties, and might frequently be of use to You as well. On occasion, these lead to evalua-
tions that are generally accepted: You will then be in a position to weigh up the reasons
behind this and to decide whether they appear to You as applicable, to a greater or lesser
extent, to the cases which You have in mind, and more or less acceptable as bases for
your own opinions. On other occasions, they will be vaguer in character, but nonethe-
less instructive. However, You may want to choose your own evaluations. You are
completely free in this respect and it is entirely your own responsibility; but You should
beware of superficiality. The danger is twofold: on the one hand, You may think that the
choice, being subjective, and therefore arbitrary, does not require too much of an effort
in pinpointing one particular value rather than a different one; on the other hand, it
might be thought that no mental effort is required, as it can be avoided by the mechani-
cal application of some standardized procedure.

5.2 Bets and Odds

5.2.1. One activity which frequently involves the numerical evaluation of probabilities is
that of betting. The motivation behind this latter activity is not usually very serious-
minded or praiseworthy, but this is no concern of ours here. We should mention, however,
that such motivations (love of gambling, the impulse to bet on the desired outcome, etc.)
may to some extent distort the evaluations. On the other hand, motives of a different kind
lead to similar effects in the case of insurance, where the first objection does not apply.

However, with all due reservation, it is worthwhile starting off with the case of betting,
since it leads to simple and useful insights.

Theory of Probability: A Critical Introductory Treatment, First Edition. Bruno de Finetti.
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5.2.2. An important aspect of the question (one to which we shall frequently return) is
the necessity of ‘getting a feeling’ for numerical values. Many people if asked how long it
takes to get to some given place would either reply ‘five minutes’ or ‘an hour; depending
on whether the place is relatively near, or relatively far away: intermediate values are
ignored. Another example arises when people are unfamiliar with a given numerical scale:
a doctor, although able to judge whether a sick man has a high temperature or not, simply
by touching him, would be in trouble if he had to express that temperature on a scale not
familiar to him (Fahrenheit when he is used to Centigrade, or vice versa). Likewise, in
probability judgments, there are also those who ignore intermediate possibilities and pro-
nounce ‘almost impossible’ to everything that to them does not appear ‘almost certain’ If
neither YES nor NO appears sufficiently certain to them, they simply add ‘fifty-fifty’ or
some similar expression. In order to get rid of such gaps in our mental processes it is
necessary to be fully aware of this and to get accustomed to an alternative way of thinking.

In this respect, betting certainly provides useful experience. In order to state the
conditions for a bet, which have to be precise, it is necessary to have a sufficiently sensi-
tive feeling for the correspondence between a ‘numerical evaluation’ and ‘awareness’ of
a degree of belief. In becoming familiar with judging whether it is fair to pay 10, 45, 64 or
97 lire in order to receive 100 lire if a given event occurs, You will acquire a ‘feeling’ for
what 10%, 45%, 64% or 97% probabilities are. Together with this comes an ability to
estimate small differences and a sharpening of that ‘feeling for numerical values; which
must be improved for the purpose, of course, of analysing actual situations.

5.2.3. These two aspects come together in the particularly delicate question of
evaluating very small probabilities (and, complementarily, those very close to 1).
Approximations that are adequate (according to the circumstances and purposes
involved) in the vicinity of p = % (e.g. 50% 5%, £ 1%, +0.1%) are different from those
required in the case of very small probabilities: here, the problem concerns the order of
magnitude (whether, for example, a small probability is of the order of 107, or 1077, or
107%,...). In this connection, it is convenient to recall Borel’s suggestion of calling ‘prac-
tically impossible, with reference to ‘human, earthly, cosmic and universal scales,
respectively, events whose probabilities have the orders of magnitude of 107, 107",
107 and 107'%°, This is instructive if one wishes to give an idea of how small such
numbers (and therefore such probabilities) are, provided that no confusion (in words or,
worse, in concepts) with ‘impossibility” arises."

5.2.4. On the use of ‘odds’ In the jargon used by gamblers, the usual way of expressing
numerical evaluations is somewhat different, although, of course, equivalent. Instead of
referring to the probability p, which (in the sense we have given) is the amount of a bet,
we refer to the odds,

1 Borel himself, and other capable writers, fail to avoid this misrepresentation when they give the status of a
principle — ‘Cournot’s principle’ — to the confusion (or the attempt at a forced identification) between ‘small
probabilities, which, by convention, could be termed ‘almost impossibility, and ‘impossibility’ in the true
sense. What is overlooked here is that ‘prevision’ is not ‘prediction’ The topic is dealt with in E. Borel, Valeur
pratique et philosophie des probabilités (p. 4 and note IV), part of the great Traité du Calcul des Probabilités
which he edited; Gauthier—Villars, Paris (1924) (and subsequent editions).
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2 %, % %

0 1 2 3 4 5

Figure 5.1 The relation between probability (p) and odds (r): r=p/(1 -p).

r=pl(1-p)=plp.

These are usually expressed as a fraction or ratio, r=h/k=h:k (h and k integers, preferably
small), by saying that the odds are ‘% to k on’ the event, or ‘k to h against’ the event. Of
course, given r, that is the odds, or, as we shall say, the probability ratio, the probability
can immediately be obtained by

p=rl(r+l), ie (ifr is written as h/k) p=hl(h+k). (5.1)

A few examples of the correspondence between probabilities and probability ratios,
and vice versa, are shown below and illustrated in Figure 5.1:

(check)
p p/p =r =h/k in words h/th+k)=p
0.20 20/80 =0.25 =1/4 ‘4 to 1 against’ 1/(1+4)=0.20
2/7=0.286 28.6/71.4 =0.40 =2/5 ‘5 to 2 against’ 2/(2+5)=0.286
0.50 50/50 =1 =1/1 ‘evens’ 1/(1+1)=0.50
0.75 75/25 =3 =3/1 3to1on’ 3(3+1)=0.75

Observe that to the complementary probability, p = 1 - p, there corresponds the recip-
rocal ratio, p/p=1/(p/p)=1/r (i.e. to ‘h to k on’ there corresponds the symmetrical
phrase ‘k to /1 on’).2

5.2.5. Extensions. Probability is preferable by far as a numerical measure (additivity is
an invaluable property for any quantity to possess!).> However, there are cases in which
it is advisable to employ the probability ratio (especially in cases involving likeli-
hood — Chapter 4 — which are often considered in the form of ‘Likelihood Ratio’) and it

2 It would perhaps be better to introduce a notation to indicate that we are passing from probability to
‘odds’; similar to that used for ‘complementation’ (¥ = 1-p). An analogous approach would be to take

p= pIP (and if p = P(E) to use therefore P(E) = P(E)/P(E) = P(E)/~ P(E)). We prefer merely to draw attention
to the possibility without introducing and experimenting with more new ideas than prove to be absolutely
necessary. To avoid any difficulties, or risks of confusion in notation, we denote the odds more clearly by
writing O(x) = x/(1-x), O[P(E)] = P(E)/P(E).

3 A newspaper, in considering three candidates for the American presidential election, attributed odds
of 2 to 1 on, 3 to 1 against and 5 to 1 against; these are equivalent to probabilities of 3735, with sum
(8+3+2)/12=13/12> 1. It is difficult for a slip of this nature to pass unnoticed when expressed in terms of
probabilities; using percentages especially, it would certainly not escape notice that 67% +25% + 17% = 109%
was inadmissible.
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is useful to indicate, at this juncture, the way in which we shall generalize its use (or, in
a certain sense, substitute for it) in cases where the need arises.

In accordance with, and in addition to, the conventions introduced in Chapter 3,
Section 3.5, concerning the use of the symbol P, we can denote that r = /1/k by writing

p(E, E)z(h/(h + k), k(B k)) (5.2)
=(i k)1 (h + k)= K(h, k)=(h:k)=P(E: E),

where we have successively and implicitly made the following conventions:

a common factor, such as 1/(h+k), can be taken outside the parentheses; that is
m(a, b) = (ma, mb);

such a factor may be taken as understood, denoting it by K, to simply mean that
proportionality holds;

the same thing may be indicated by simply using the ‘colon’ (:) as the dividing sign,
rather than the comma. This means that two n-tuples of numbers (a1, ay,..., a,) and (b1,
b,,..., b,), not all zero, are said to be proportional if b; = Ka; where K is a nonzero con-
stant. Proportionality is sometimes denoted by the sign « (which is not very good), and
can also be expressed by = K. We make the convention — once and for all — that K denotes
a generic coefficient of proportionality, whose value is not necessarily the same, not
even for the duration of a given calculation: we can write, for example, (2,1,3) = K(4,2,
6) =K(6, 3,9). The equals sign is sufficient on its own if the n-tuple with " in place of 7 is
interpreted as ‘up to a coefficient of proportionality’ (like homogeneous coordinates);
that is as a multi-ratio. Hence, for example, (2:1:3) = (4:2:6) = (6:3:9).

Sometimes the omission of the proportionality factor is irrelevant because it is deter-
mined by normalization: for example, if it is known that E;... E, constitute a partition,
and we write

P(E :Ey:...:E,)=(m:my:...cm,), (5.3)

it is clear that P(E;) =m;/m, m=m;+my+... + m,, because the sum must equal 1. In
other cases (for any E; whatsoever, even if they are compatible), one can make the com-
mon divisor m enter in explicitly, for example by adding in 1 =the certain event:

P(Ei:Ey:...:E,:1)=(my :my:...omy, :m). (5.4)

The resulting convenience is most obvious when the m; are small integers. For example,
if A, B, C form a partition (A + B+ C=1), by writing P(A:B:C) = (1:5:2)(even without the
refinement P(A:B:C:1) = (1:5:2:8)) it becomes obvious that

P(A)=1/8=12-5%, P(B)=5/8=62-5%, P(C)=2/8=25%.

At this point we shall also introduce the operation of the term-by-term product of
multiratios, denoting it by *:

(ar:ay:...iay)*(biiby:...ib,)=(aby i azby :... a,by). (5.5)

This frequently provides some advantage in handling small numbers or simple expres-
sions in a long series of calculations, and will turn out to be particularly useful for the
applications to likelihood which we mentioned above.

The time has now come to end this digression concerning methods of numerically
denoting probabilities and to return to questions of substance.
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5.3 How to Think about Things

5.3.1. In discussing the central features of the analysis which must underlie each evalu-
ation, it will be necessary to go over many things which, although obvious, cannot be
left out, and to add a few other points concerning the calculus of probability.

The following recommendations are obvious, but not superfluous:

o to think about every aspect of the problem;

e to try to imagine how things might go, or, if it is a question of the past, how they might
have gone (one must not be content with a single possibility, however plausible and
well thought out, since this would involve us in a prediction: instead, one should
encompass all conceivable possibilities, and also take into account that some might
have escaped attention);

o to identify those elements which, compared with others, might clarify or obscure
certain issues;

o to enlarge one’s view by comparing a given situation with others, of a more or less
similar nature, already encountered;

o to attempt to discover the possible reasons lying behind those evaluations of other
people with which, to a greater or lesser extent, we are familiar, and then to decide
whether or not to take them into account. And so on.

In particular, in those cases where bets are made in public (e.g. horse races, boxing
matches — in some countries even presidential elections) some sort of ‘average public opin-
ion’ is known by virtue of the existing odds. More precisely, this ‘average opinion’ is that which
establishes a certain ‘marginal balance’ in the demand for bets on the various alternatives.
This might be taken into consideration in order to judge, after due consideration, whether we
wish to adopt it, or to depart from it, and if so in which direction and by how much.

5.3.2. In order to provide something by way of an example, let us consider a tennis
match between two champions, A and B.* You will cast your mind back to previous
matches between them (if any); or You will recall matches they had with common
opponents (either recently, or a long time ago, under similar or different conditions);
You will consider their respective qualities (accuracy, speed, skill, strength, fighting
spirit, temper, nerves, style, etc.) and the variation in these since the last occasion of
direct or indirect comparison; You will compare their state of health and present form,
and so on; You will try to imagine how each quality of the one might affect, favourably
or otherwise, his opponent’s capacity to settle into the game, to fight back when behind,
to avoid losing heart, and so on. For instance, you may think that B, although on the
whole a better player, will lose, because he will soon become demoralized as a result of
A’s deadly service. However, it would be naive to stop after this first and lone supposi-
tion: it would mean to aspire to making a prediction rather than a prevision. You will go
on next to think of what might happen if this initial difficulty for B does not materialize,

4 This example has already been discussed by Borel and again by Darmois (see p. 93 of the Borel work
mentioned previously, and again on p. 165 Darmois’ note VI). As is clear from this and other examples

(like his discussion, again on p. 93, of the evaluation of a weight — similar to our example in Chapter 3,
Section 3.9.7), Borel seems to be inspired — in the greater part of his writings — by the subjectivistic concept
of probability: he can thus be regarded as one of the great pioneers, although incompatible statements and
interpretations crop up here and there, as was pointed out in the footnote to Section 5.2.3.
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or is overcome, and little by little You will obtain a summary view — but not a one-sided
or unbalanced one — of the situation as a whole. Your ideas about the values to attribute
to the winning probabilities for A and B will in this way become more precise. You may
have the opportunity to compare your ideas and previsions with those of other people
(in whose competence and information You have a greater or lesser confidence, and
whom You may possibly judge to be more or less optimistic about their favourite). In the
light of all this, You might think over your own point of view and possibly modify it.

5.3.3. Our additional remarks concerning the calculus of probability consist in point-
ing out that the conditions of coherence, even if they impose no limits on the freedom
of evaluation of any probability, do in practice very much limit the possibility of ‘extreme’
evaluations. More precisely, an isolated eccentric evaluation turns out to be impossible
(the same thing happens, for instance, to a liar, who, in order to back up a lie, has to
make up a whole series of them; or to a planner, who must modify his entire plan if one
element is altered).

It is easy to say ‘in my opinion, the probability of E is, roughly speaking, twice what
the others think it is! However, if You say this, I might ask ‘what then do You consider
the probabilities of A, B, C to be?; and, after You answer, I may say ‘so do You think the
probability of H is as small as this; - of what is generally accepted?, and so on. If You
remain secure in your coherent view, You will have a complete and coherent opinion
that others may consider ‘eccentric’ (with as much justification as You would have in
calling the common view ‘eccentric’) but will not otherwise find defective. However, it
will more often happen that as soon as You face the problem squarely, in all its complex-
ity and interconnections, You come to find yourself in disagreement not only with the
others but also with yourself, by virtue of your eccentric initial evaluation.

We have been talking in terms of bets and the evaluations of probability, and not of
previsions of random quantities, although they are the same thing in our approach. This
was simply a question of the convenience of fixing ideas in the case where the probabil-
istic aspect is most easily isolated: however, one should note that the same considera-
tions could in fact be extended to the general situation.

5.4 The Approach Through Losses

The betting set-up is related to the ‘first criterion’ of Chapter 3, Section 3.3; the scheme
we are now going to discuss is based on the ‘second criterion’: it is this latter — as we
remarked previously, and will shortly see — which turns out to be the more suitable.

First of all, we shall find it convenient to present this scheme right from the beginning
again, referring ourselves now to the case of events. Because this is the simplest case,
and because we are treading an already familiar path — which we shall illustrate clearly
with diagrams — everything should appear both more straightforward and of wider
application.

5.4.1. Instead of some general random quantity X, You must now think in terms of an
event E, such that You are free to choose a value x, bearing in mind that You face a loss

L=L,=(E-x)". (5.6)
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Expanding this (remembering that E2 = E), one obtains the following alternative expres-
sions (in the last one, p is any number whatsoever):
(a) L, :x2+(1—2x)E,
(b)  =x2’E+(1-x)E, (5.7)
(c)  =E(-p)+(p-x) +(E-p)(p—2x).

They all reveal (5.7b most explicitly) that L, equals x* or (1 -x)* according to whether
E=0=false or E=1=true.

Since we have already used the criterion as a definition — and hence already know
what the probability p = P(E) of E is — we can, ‘being wise after the event, examine how
the criterion behaves by looking at P(L,), considered as a function of a value x and of a
probability p, assumed to be arbitrary (so we adopt the notation L,(p)). Putting E=p in
equations 5.7a, 5.7b, and 5.c (which are linear in E) we obtain:

(a) Lx(p):x2+(1—2x)p
(b) =x’p+&°p,
(c) =p(1-p)+(p—=) =pp+(p-=)".

(5.8)

5.4.2. We now examine the variation in L,(p) as p varies, x being an arbitrary fixed
value. As might have been expected (5.8a shows this up most clearly), L, varies linearly
from L,(0) =x? to L,(1) = #* (which are the two possible values for L,, depending on the
occurrence of either E(p=0) or E(p=1)). The straight lines in Figure 5.2, connecting
these extreme values, give a visual impression of how they go together: that is of how, in
order to reduce the penalty resulting in one case, one must increase it in the other.”

The figure also shows, in an indirect way, the variation of L,(p) for varying x, with p
fixed. Geometrically, one can see (and equation 5.8c) presents it explicitly) that the
straight lines are the tangents to the parabola y=p(1-p)=pp, and that none of them
can go beneath their envelope (this is within the interval [0, 1]: the others would corre-
spond to values x <0 and x > 1; see footnote 5). Given p, the best one can do is to take the
tangent at p, obtained (as we already know!) by choosing x = p: this gives L,(p) its mini-
mum value (as x varies), L,(p) = pp. Choosing a different x gives rise, in prevision, to an
additional loss (x — p)* that is the square of the distance from x to p: equation 5.8c shows
this explicitly, by splitting the linear function L,(p) into the sum of p(1 - p) (the parabola)
and (x-p)?® (the deviation from the parabola of the tangent at p =x). We observe also,
and this confirms what has been said already, that this deviation is the same for all the
tangents (starting, of course, from their respective points of contact).

The maximum loss is 1, and this is achieved by attributing probability zero to the case
that actually occurs: the minimum loss is 0, and is achieved when a probability of 1 (or
100%) is attributed to this case. For any given x, the loss varies between x* and %> (as we
have seen already). For a given p, we already know that the minimum is pp (for x = p), and
it is readily seen that the minimum is p vV p: more precisely, if p < % itis 1 —p, obtained by
choosingx=1;ifp > % it is p, obtained by choosing x=0.If p = %, we have the maximum of

5 This is for 0 < x < 1: we already know, and can also see, that, in every case, x<0 or x> 1 is worse than x=0
or x =1, respectively, and is thus automatically ruled out (without need of any convention).
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Figure 5.2 The straight lines correspond to the combinations of penalties among which the method
allows a choice (the penalty can be reduced in one of the two cases at the expense of increasing it in
the other: lowering the ordinate at one end raises it at the other). The ordinate of a particular straight
line at the point p is the prevision of the loss for the person who chooses that line and attributes
probability p to the event under consideration. In this case, the minimum value that can be attained is
given by the ordinate of the parabola (no straight line passes beneath it!), and the optimal choice of
straight line is the tangent to the parabola at the point with abscissa p.

.1
the minimum (pp = %), and the minimum of the maximum (p v # = <), and hence the larg-

est discrepancy (max - min = 3 —+ = 1); in general, the discrepancy is ¥* v &%, that is the

maximum of x> and (1 - x)? and attains its maximum (=1) for x=0 and x=1.°

5.4.3. The case of many alternatives. We can deal with the case of many alternatives
(of a multi-event, of a partition), and the more general case of any number of arbitrary
but not incompatible events, by applying the previous scheme to each event separately.
In this way, things reduce to the treatment given in Chapter 3, and to the geometric
representation which was there illustrated. Here, we simply wish to review the approach
in the spirit of the above considerations, and then to look at a few modifications.

It will suffice to consider a partition into three events (such as Ej, E; and Ej3 of
Chapter 3, 3.9.2). We shall call them A, B and C (A+B+C=1) and represent them as
points, A=(1,0,0), B=(0, 1,0) and C=(0, 0, 1), in an orthogonal Cartesian system. For
the time being, we shall distinguish the probabilities, p =P(A), g=P(B) and r=P(C),
attributed to them, from the values x, y and z chosen in accordance with the second
criterion (we know they must coincide but we want to investigate what happens if we
choose them to be different, either through whim, oversight or ignorance).

6 Among other decision criteria that are employed (inspired by points of views which differ from ours) is
one which is called the ‘minimax’ criterion: it consists in taking that decision that minimizes the maximum
possible loss. Observe that, in the above situation, this criterion would have us always choose x = § (then, in
fact, the loss would = i, with certainty, whereas every other choice would give a smaller loss in one of the
two cases, although greater in the other). Since it is incoherent to attribute probability  to all events, such a
criterion is absurd (in this kind of application; not so, however, in the theory of games — see Chapter 12,
Section 12.7.4 — where it provides a solution in situations of a different kind, nor even in this situation under
an hypothesis of an extremely convex utility function where it would no longer lead to the choice of p = 1).
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Figure 5.3 The triangles of points such that x+y+z=1 (x, ¥, Z non-negative) seen in (a) space, and (b) in
the plane. It is clear from geometrical considerations that the choice of a loss rule corresponding to the
point (x, y, z) is inadmissible (in the case of three incompatible events) if it is not within the given triangle.
Moreover, if one attributes the probabilities (p, g, r) to the three events, it pays then to choose x=p, y=q,
and z=r. In other words, the method rewards truthfulness in expressing one’s own evaluations.

We shall denote by P the prevision-point P=(p, ¢, r); the decision-point will be
denoted by P, P” = (x, y, z) (Figure 5.3).
The total loss will then be

L=(A-x)" +(B-y) +(C-z2) (5.9)
and

P(L)=[pp+qq+r7] +[(1!9—x)2 +(q-») +(r—Z)2J; (5.10)

in other words,

P(L)= (first term involving only the prevision — point P) +(P"- P)2 ,
the latter being the square of the distance between P” and P. Hence, in order to avoid an
extra loss, whose prevision is equal to the square of the distance between P” and P, the
point P” must be made to coincide with P.

The argument given previously (Chapter 3, 3.9.2) was saying the same thing, but
without reference to a preselected prevision P. Given a point P” = (x, ¥, z), outside the
plane of A, Band C (i.e. with x + y + z = 1), its orthogonal projection P’ onto this plane has
distance less than P” from A, B and C; if P’ falls outside the triangle ABC, the above-
mentioned distances decrease if one moves from P’ to the nearest point P on the boundary.
This shows that only the points of the triangles are admissible (in the sense of Pareto
optimality; there are no other points giving better results in all cases). The present
argument is less fundamental, but more conclusive, because — assuming the notion of
probability to be known in some way (e.g. on the basis of the first criterion) — it shows
how and why the evaluations x, , z of the second criterion must be chosen to coincide
with the probabilities p, g, 7 of A, B and C.
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5.4.4. We have here dealt with the most formally immediate case, that of applying to
the different events (A4, B, C) one and the same scheme with the same maximum loss,
namely unity. We know, however (see Chapter 3, 3.3.6), that, so far as the evaluation of
probabilities is concerned, and this is what interests us, no modifications would be
required were we to use different coefficients: for instance, if one were to take

Lzaz(A—x)z+l)2(B—y)2+c2(C—z)2

with arbitrary a, b, c. Geometrically, the three orthogonal unit vectors, A- O, B-0,
C - O, must now be taken to have lengths 4, b and c. This implies — and it is this aspect
which may be of interest to us — that the loss, which always equals the square of the
distance, is given by (4 - B)> = a®+ b?, if in prevision all the probability is concentrated
on A, and B actually occurs (and conversely): similarly for (A- C)?=a’+c¢* and
(B- C)*=b*+ % In the plane of A, B and C, the triangle ABC can be any acute-angled
triangle (in the limit, if one of the coefficients is zero, it can be right-angled): in fact,
a’=(B-A)x(C-A) = AB . AC. cos BAC, cos BAC > 0, and so on. In any case, the
scheme would work in the same way even if ABC were taken to be any triangle what-
soever, although if it were obtuse-angled, we could not obtain it as we just did in
orthogonal coordinates (merely by changing the three scales). This is obvious by
virtue of the affine properties, a point we have made repeatedly. In the general case,

the only condition imposed on the three losses AB*, AC?,BC? is the triangle inequal-

ity for AB,AC,BC.

5.4.5. Why are we bothering about the possibility of modifying the shape of the trian-
gle: that is the ratios of the losses in the different cases? After all, this is irrelevant from
the point of view of evaluating probabilities. Despite this, it may sometimes be appro-
priate to draw a distinction between the more serious ‘mistakes; and the less ‘serious’
(the former to be punished by greater losses), in those cases in which the losses could
also serve as a useful means of comparison when considering how things turn out for
different individuals (as we shall see shortly).

A good example, and one to which we shall subsequently return, is that of a football
match (or some similar game) in which the following three results are possible:
A =victory, B=draw, C=defeat. In the most usual case (triangle ABC equilateral), one
considers it ‘equally bad’ if either a draw or defeat results when one has attributed 100%
probability to victory. If, on the other hand, the distance between victory and defeat is
considered greater than the distance between each of these and a draw, we could take an
isosceles triangle with the angle B greater than 60°; if we take this angle <90°, we have a
combination of three losses for the three results, and the loss for victory—defeat will be
less than twice the loss for draw—defeat (or for draw—victory). For a right angle, this
ratio will be exactly double (the ratio of the sides=V2) and the scheme will only be
applicable to the events victory and defeat (a draw is only taken into account as comple-
mentary to the other two). For angles between 90 and 180°, the interpretation as com-
binations of losses for the three events no longer holds; for the case of a draw, the loss
would have to be negative in order for things to proceed smoothly! The 180° case means
that we are effectively considering prevision in terms of ‘points’ (0 for a defeat, 1 for a
draw, 2 for a victory), in the sense that previsions like (0,1,0) and (%, 0, %) — that is of
being certain of a draw, or of equal probabilities for victory and defeat, excluding a
draw — are considered identical.
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5.5 Applications of the Loss Approach

5.5.1. The employment of this method (or something similar) by various people for
evaluating probabilities should be given great emphasis and, for many, many reasons,
deserves wide publicity.

Sometimes, one is interested in knowing the opinion of a given individual, or of vari-
ous individuals, concerning the probabilities of certain events under consideration.
Sometimes, in order to make some kind of psychological analysis, one is interested in
knowing how the various individuals react to information, or other new factors. In cer-
tain other cases, it might be interesting to be able to judge, in a more precise fashion, the
extent of the ‘partial knowledge’ of individuals under examination: for instance, one
might discourage them from ‘guessing.” And so on.

In all these cases, one should take into account the no less important value of repeated
experiences of this kind. They greatly aid one in acquiring the ‘feeling for numerical
values’ with which one expresses ‘degrees of belief; and hence they contribute to build-
ing up a keen and accurate understanding of the problems of prevision, and of the
spirit — not cut-and-dried — in which probability theory must approach them.

5.5.2. With this aim in mind, we must now supply all the details of the method. It must
be understood that it is preferable to express one’s own evaluations sincerely and accu-
rately, and that otherwise one suffers a loss, equal, in prevision (in one’s own evalua-
tion), to the square of the distance between one’s own true evaluation and the one
expressed. In addition, there is a definite advantage in obeying the conditions of coher-
ence (in our example; x, ¥, z > 0, x + y + z=1): to do otherwise is to arrange to suffer one
part of the loss with certainty. If, instead, one wishes to check — in a decision-theoretic
sense — the ability of a given individual to do the right thing without having a systematic
knowledge of the situation and of the theory, the characteristic features of the method
should not be revealed (except for mentioning what losses are). This is a different prob-
lem, however; a far cry from those for which we have introduced the method under
present discussion (and it seems unlikely, anyway, that anyone could come to sensible
decisions without knowing and applying — with great care! — the theory of probability).®

Let us now proceed to some concrete examples of various types of applications.

5.5.3. The opinions of experts. It often happens that one turns to the experts for infor-
mation. This is, in actual fact, nothing other than an evaluation of probability. One is

7 By ‘guessing, we mean ‘guessing at random’ This should not be confused with the usage conveyed in
Pdlya’s ‘Let us teach guessing, where it means to make useful conjectures (first guess, then prove!).

8 Experiments of this kind, which are made in order to check the extent to which actual behaviour conforms to
the norms derived from the theory of probability, are often considered as ‘proving’ or ‘disproving’ the validity of
probability theory (or of the related theory of decision making under conditions of uncertainty). This would be
so if such theories were to be regarded as empirical-psychological theories of actual behaviour, but, in fact, it is
completely at odds with what we are considering here: a normative theory for coherent behaviour.

Many criticisms derive from this confusion (or from the refusal to accept that a subjectivistic theory can
distinguish incoherent and coherent behaviour, rather than just being an acritical, empirical observation of
actual behaviour as it happens to be). This kind of empirical evidence is also of interest from our standpoint, but
in the same way as a mathematician might find the mistakes of laymen, students, or even other mathematicians,
interesting. He does not modify mathematics by incorporating these ‘mistakes; as though, simply because
someone has enunciated them, they ‘should’ be included by virtue of their being part of some psychological
truth, or of the indiscriminate collection of mathematical statements made in the course of history.
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not always in a position to weigh-up for oneself all the probabilities relevant to a given
situation; this then is the time to behave like the Prince, who, according to Machiavelli,
‘sometimes understands things by himself, sometimes through the understanding of
others: while the former is excellent, the latter is also very good.

An example, one of thousands, is given by the case of a geologist who is asked to give
an opinion as to whether it is worth drilling a hole at a particular site during an oil
search. This is a useful example to consider, since it has, to some extent, been treated by
Grayson,” and so the interested reader can delve deeper into those aspects which we
shall not discuss. The geologist himself does not have any say in the final decision of
whether or not to drill: this decision must be taken (by the ‘decision maker’) after con-
sideration of all the various pieces of information, of which that of the geologist is just
one. He, for his part, cannot state categorically that oil is present or not present (thus
making a prediction rather than a prevision), nor can he sin in the opposite direction
and merely list the information about the geology of the area (reliable, but analytical),
leaving to others the task of synthesis and drawing some conclusions. The synthesizing
and the conclusions about the probable outcome of the drilling — given from a geologi-
cal standpoint — are precisely what his expertise is called upon to provide.

In actual fact, the geologist’s report does provide this answer, but usually couched in
extremely vague adjectives or phrases (such as: fairly good prospects, or good, favourable,
uncertain, promising, etc.; sometimes preceded by little words like ‘very; ‘not very, ‘quite;
‘rather; and followed cautiously by ‘unless anything unexpected happens; ‘perhaps, ‘it’s dif-
ficult to say, ‘in my humble opinion;..., ‘God only knows’). The only solution worthy of seri-
ous consideration is to have the geologist express the probabilities numerically, and some
companies actually do this. The objection could be raised (and often is) that the knowledge
of the geologist is too vague to be represented numerically. It would certainly be unwise and
overzealous to assert that the probability of striking oil at a given site is 0.1307594, but to
state that the probability is 0.131, or 0.13, or even simply 10-15%, is always preferable to a
string of adjectives whose vagueness depends upon the nature of the opinion itself, on the
inadequacy of language, and, perhaps, on a desire to state the conclusions in the least com-
promising way — that is essentially ambiguous, but not appearing to be.'

5.5.4. There remains the problem, however: how can we interest the expert — in our
case the geologist — in giving an honest answer; in expressing accurately his deep-felt
belief? This problem was examined by Grayson in the light of the ‘first criterion; without
any satisfactory solution being obtained. The method we suggest here — that of the
‘second criterion’ — would seem to give a perfectly satisfactory solution, and is precisely
what Grayson requires; ‘a system to discourage falsification’ For the practical applica-
tion at present under consideration, it would be sufficient to agree that some part of the
agreed fee (neither insignificant, nor excessive; say, 5-10%) be held back until the even-
tual outcome was known, and then the loss deducted (up to a maximum of the amount
held back) before payment. In certain cases, however, like those of experts who are

9 C.J. Grayson, Decisions Under Uncertainty: Drilling Decisions by Oil and Gas Operators, Harvard
Business School (1960).

10 Someone made the acute observation that often the ability to make accurate predictions consists in
expressing them in a sufficiently imprecise fashion (this principle is mentioned on p. 213 of Good’s
anthology — see footnote 12 — and also in a review article of mine; see Civilta delle macchine, No. 1 (1963),
71-72). On the other hand, the limit-case of Sibylline predictions (‘Ibis, redibis,...) is well known.
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consulted regularly, or who hold positions within the firm, one might also add up the
losses — expressed as ‘scores’ — in order to make global comparisons (of the ‘goodness’
of the previsions of two individuals based on comparisons of the cases examined by
both of them). These comparisons could be made separately according to ‘type’ of prob-
lem, time period and so on, and could be taken into account when considering the
merits of someone in connection with appointments, promotion and so on.

The following discussion is useful both in real-life and as an example.

5.5.5. Forecasting sports results. We consider sports results, football in particular,
because they give plenty of scope for experiments of this kind: they can be observed
regularly (e.g. every weekend) and sufficiently often; the outcomes are clear-cut (in
football, the home team either wins, loses or draws), officially ratified, and the situation
is well known to most people. In addition, there is considerable background informa-
tion and comment in the newspapers. However, leaving aside the convenience (for the
reasons given above) of sports results, we could consider forecasting in any area (e.g.
politics, economics, meteorology, everyday affairs, culture, judicial or sanitary matters,
personal or business affairs, etc.).

There are, as is well known, various organized pools for betting on football and horse
racing. These, however, are motivated by the concept of ‘prediction; in that they reward
those who guess all (or almost all) of the results. Moreover, the sensitivity of the system
is completely distorted by the practice of sharing out the available prize money among
the winners. Indeed, the net result of all this is as follows: those who write down ridicu-
lous forecasts, that by chance turn out to be correct, receive fantastic prizes; whereas
those who write down forecasts which could reasonably be thought probable receive, if
they win, only very small amounts, since the prize, in this case, will presumably have to
be shared with many others.'* Consequently, the ‘most reasonable’ way to gamble would
not be to bet on the result for which the probability of occurrence is highest but, instead,
to consider the probability multiplied by the prevision of the reciprocal of the number
of people betting on it, and to bet on the result for which this is highest.

The betting approach that we discussed previously, illustrating its merits and
demerits, is in line with the notion of prevision (as opposed to prediction). The
scheme we are now going to present is intended to build on the merits and eliminate
the demerits. It should, therefore, permit us to achieve those goals that we have
already mentioned: to develop a feeling for what a prevision (not a prediction) is, and
a feeling for the numerical scale on which it is to be expressed; to teach one how to
take into account the relevant circumstances, bearing in mind one’s own level of com-
petence. Moreover, all this is achieved within the agreeable format of a competition,
there being the additional opportunity to reflect and to compare, after the event, one’s
own previsions with those of others, and with the results themselves. It will be neces-
sary to consider rather carefully the latter point; that is ‘being wise after the event. We
shall do so in Sections 5.9 and 5.10 of this chapter, and will come back to it on several
occasions later in the book.

11 This brings to mind a rather tragic story: a man died, overwhelmed with joy, on learning that he had
guessed correctly all the 13 football results on the Italian football pools. In fact, he was lucky, because
otherwise he would have died of disappointment the next day on learning that his winnings were so small
(about 3000 Lire), owing to the predictability of the results, which were therefore foreseen by many others
besides himself.
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5.5.6. One could organize a competition more or less along the following lines (this
has already been tried, although on a small scale).'? The participants have to hand in,
each week, previsions for the forthcoming matches, giving, for each match, the prob-
abilities (expressed in percentages) of the three possible outcomes (in the order: win,
draw, defeat); writing, for instance, 50-30-20, 82-13-05, 32—-36—32 and so on. Given
the results, one can evaluate, game by game, the losses and the total losses for the day
(and, possibly, a prize for the day), as well as the cumulative sum needed for the final
classification. This final classification must be seen as the primary objective. If there
are prizes, the largest should be reserved for the final placements, and, in order to
conform to the spirit of the competition, the prizes must complement losses; that is
they should depend on them in a linearly decreasing fashion.'®

The lessons of experience tell us much about the necessity of avoiding the mentality
of prediction when making previsions. It is true that total success — that is no pen-
alty — is achieved if and only if the whole probability, 100%, is attributed to the case
which actually occurs. For this reason, many find it tempting, especially at first, to
attempt to get the result spot-on, with evaluations which ignore the possibility of uncer-
tainty (i.e. 100-00—00, 00—100—00 or 00—00-100, which are equivalent, in the notation
of the football pools, to the ‘predictions’ ‘1, ‘X; 2’). However, these participants come to
realize very quickly that they have fallen behind — this happens on the individual days,
but shows up most in the final classification — relative to those who distribute probabil-
ity in a sensible way: they soon modify their approach.

‘We shall come back to this example later.

5.5.7. Replies to multiple-choice questions. One is often required in a ‘quiz, or even
in an examination (especially in America), to choose from among a few given answers
the one which one believes to be correct. The exact details may differ somewhat: one
may either have to tick one and only one answer; or be allowed to choose none; or to
choose a subset within which the correct answer is thought to lie (and, in this case,
there are two variants, according to whether one indicates an order of preference or
not). In any case, there must be an agreed method of scoring according to the way in
which the answers given compare with the correct answers. A problem arises from
the necessity of discouraging people from ‘guessing’; this is often dealt with by esti-
mating statistically what the effect of the assumed presence of ‘guessing’ would be, in
a mass of people.

12 It was tried twice, in 1960-1961 and 1961-1962, in the Economics Faculty of Rome University. There
were about 30 participants (students and a few teachers) on each occasion, and the study centred on the
nine football matches played every week in the first division of the Italian league. Some discussion of this
can be found in B. de Finetti, ‘Does it make sense to speak of “good probability appraisers”?’ in the volume
entitled The Scientist Speculates: An Anthology of Partly-baked Ideas (edited by 1.]. Good) Heinemann,
London (1962). The experiment was repeated again in Rome (Faculty of Science) from 1966 on, and
experiments of this kind have recently been made in the United States.

13 If, for example, no prize is to be awarded to those who come last (by whatever ruling is proposed), not
only do the tail-enders have no motivation to exercise care in their evaluations but, on the contrary, they
have a vested interest in trying outlandish evaluations, which they presume to be different from those of
individuals in a better position. This is their only hope of overtaking them and getting a prize. If the first
prize were extremely large, the temptation to behave in this way would be greatest for those in second
place on the next to last day. In any case, such a distortion of interest occurs whenever linearity is
abandoned.
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This latter problem is completely resolved if one applies the method under considera-
tion.'* Observe that, in this context, there is no question of events which could be con-
sidered ‘uncertain’ in some ‘objective’ sense. For example: it is clear that if we ask which
of A = Antonio, B=Brutus, C=Caesar said the famous line ‘Alea jacta est, we are not
asking for any sort of testimony or opinion concerning the fact that some great man
uttered the phrase in the course of his life; we simply wish to check whether the exami-
nee knows that the phrase relates to Caesar and the crossing of the Rubicon. In the same
way, if we ask whether log x + log y equals

Az(log(x+y)), B:(log xy) or C=(log(e"+ey));

or whether V26 is A =rational, B=algebraic or C=transcendental; or whether, at the
battle of Waterloo, Napoleon A =won, B=lost or C=drew; or whether the city of Bahia
is in A = Argentina, B = Brazil or C=Chile; and so on; in all these cases, the probability,
the doubt to be measured, comes solely from the ignorance, uncertain knowledge or
bad memory of the person questioned.

In every other respect, on the other hand, the situation is identical to that of the
football pools: for the person who judges, for the person concerned with his state of
doubt, there is no difference. It is sufficient to realize that a person could forecast the
football results on a Sunday evening, when the facts are part of the past and are known
to everybody (provided they are not known to him), or even a year later, provided that
he then recollects them with something less than certainty.

5.5.8. The adoption of the proposed system in the case of multiple-choice questions
would turn out to be instructive, in addition to the reasons that hold generally (i.e. learn-
ing how to express one’s own opinion by translating it into numerical values), for the
‘lesson’” which would show how it is also advantageous (where sensible rather than stupid
rules are in use) to strive for the greatest honesty and accuracy in expressing one’s own
doubts or lacunae. Conversely, stupid rules (like stupid laws) encourage dishonesty and
reticence, encourage that complex of underhand and stupid actions which are euphemis-
tically described by the phrase ‘trying to be clever’; in our case, they encourage ‘guessing’

For the examiners too, it would be extremely useful to have precise information about
those who ‘know’ (e.g. those who write down Antonio 00%, Brutus 00%, Caesar 100%),
with the suspicion of ‘guessing’ now removed, and even more to be able to make a
detailed analysis, on the basis of precise and meaningful data, of the frequency, intensity
and nature of the doubts (possibly with a view to investigating their origin and suggest-
ing ways of dealing with inadequacies in the teaching). In addition, they would be able
to examine the degree of accuracy with which the evaluations are made (e.g. not simply
using 50%—-50% if there is uncertainty between two alternatives). In the case under
consideration, there could, of course, be any number of alternatives whatsoever; in
the examples above, we considered three for convenience, and in order to be able to
retain the analogy with football results, and the possibility of imagining the situation
as always representable in terms of Figure 5.3.

14 The betting approach, on the other hand, could not be used. Anyone in a state of some doubt would
certainly lose against an opponent (e.g. the examiner) who knows the right answer.
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5.5.9. Applications in economics. In the field of economics, the importance of proba-
bility is, in certain respects, greater than in any other field. Not only is uncertainty a
dominant feature but the course of events is itself largely dependent on people’s behav-
iour, which is itself determined, in a more or less unconscious and confused fashion, by
evaluations and arguments of a probabilistic nature. It is, therefore, probability theory,
in the broadest and most natural sense, that best aids understanding in this area (and
not those fragments of the theory which never progress beyond the drawing of ‘equally
likely’ balls from an urn, or ‘stable’ frequencies).

This point of view was presented in a clear and authoritative manner by T. Haavelmo
in a celebrated critical speech delivered as president of the Econometric Society,"
where he stated that previsions and evaluations of subjective probabilities ‘are realities
in the minds of people’ and that it was to be hoped that ‘ways and means can and will he
found to obtain actual measurements of such data’

Another point, of particular importance for applications in operational research, is the
possibility of making use of those evaluations of probability which represent a decision-
maker’s own opinions. For example, only the decision maker himself can say what probabili-
ties he attributes to the different reactions of his most direct competitors to possible
decisions of his. How, though, are we to interrogate him? Indirect approaches are necessary;
questions about his preferences under some hypothetical sets of conditions should be posed
in such a way as to provide, in turn, both a complete picture and a check of consistency.
These are, however, expedients to make up for the lack of training in expressing oneself in
terms of probabilities; the difficulty would not exist if such training became general practice.

Finally (in order not to dwell on too many other aspects'®), there are important appli-
cations to the more theoretical field of econometric models. As E. Malinvaud says, in his
treatise on statistical methods in econometrics,"” the justification of the introduction of
random models into econometrics rests, in his view, on an appeal to subjective probabili-
ties, so that Tétablissement d’'une statistique subjectiviste qui reposerait sur le principe
de Bayes’ would be desirable (even though, in his opinion, research in this direction is, as
yet, not sufficiently advanced to make a systematic application possible: on the other
hand, there are those, for example A. Zellner,'® who are attempting to do this).

5.6 Subsidiary Criteria for Evaluating Probabilities

Having analysed the meaning and the method of evaluating probabilities that a person
might be led or compelled to make in order to sort out his ideas about what might
occur, and to choose wisely any decision that has to be made, we are now in a position,

15 Trygve Haavelmo, The réle of the econometrician in the advancement of economic theory, Presidential
Address, Meeting of the Econometric Society, Philadelphia, 29 Dec. 1957; see Econometrica, 26 (1958), 351-357.
16 I have recently provided a wide ranging discussion of these topics (with a fairly mathematical treatment)
in ‘L'incertezza nell'economia; part I of: B. de Finetti and F. Emanuelli, Economia delle assicurazioni, Vol.
XVI of Trattato italiano di economia (Edited by C. Arena and G. Del Vecchio), Utet, Torino (1967).

17 Edmond Malinvaud, Méthodes statistiques dans I'économétrie, Dunod, Paris (1964).

18 Arnold Zellner, An Introduction to Bayesian Inference in Econometrics, John Wiley & Sons (1970). It should
be noted, however, that, although the treatment is Bayesian, the interpretation is not subjectivistic. The choice
of the initial distribution does not derive from a case-by-case consideration of the factual circumstances, but
from adopting once and for all a mathematically convenient form for each type of problem.
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and are in fact obliged, to return to the essence of the problem of evaluation. We wish
to discover whether the task of translating more or less vague impressions and opinions
into numerical form could be facilitated by using some suitable subsidiary criterion.
Fortunately, this turns out to be the case.

This happy circumstance derives, in general, from the observation that in many cases in
the calculus of probability, under restrictions that are often very natural, certain probabili-
ties, which are calculated on the basis of certain others, vary very little as one’s evaluations
of these other probabilities are varied. Consequently, even if the latter seem, to a given
individual, rather vague, the former may very well appear to him capable of being evalu-
ated with sufficient precision and confidence. As a brief aside on the question of interper-
sonal comparisons, we note that this explains why individuals often make practically
identical judgments of prevision, even though they start off with very different opinions.

These general considerations will become clearer as we proceed further. For the time
being, we restrict ourselves to illustrating the two subsidiary criteria which are of the
greatest and most immediate interest: the first one we shall deal with in a reasonably
detailed manner; the second, which, from a logical point of view, is based on material
we shall meet much later on, is dealt with in a necessarily superficial way.

5.7 Partitions into Equally Probable Events

5.7.1. Every quantitative measurement is made both easier and more precise when it is
possible to reduce it to a qualitative comparison. For example; it is much easier to say
that A.N. Other has eaten % (i.e. about 22-2 %) of a cake knowing that it was divided into
18 pieces, which could be taken as equal, and that he has eaten four of them, than to
directly estimate that his portion was 22-2 % of the whole, undivided cake. In precisely
the same way, it is obvious that if I judge # events of a partition to be equally likely,
I cannot avoid attributing probability p = 1/n to each of them (because the sum of the
n terms, each equal to p, must be 1). Judgments of this kind arise rather frequently: it is
sufficient that, given the present state of information, one finds oneself in a situation of
symmetry. This will often, although not necessarily always, reduce to a state of symmetry
regarding certain physical, or at any rate external, circumstances, which we regard as
essential and relevant elements of our state of information.

When tossing a coin, we usually attribute the same probability 3 to both faces and,
similarly, probability X to each of the six faces of a die. If we have # balls in an urn, we
again, in general, attribute the same probability 1/# to any particular one of them being
drawn: in this case, if we also know that m of the balls are white, we have no choice but
to attribute probability 71/n to the drawing of a white ball. This judgment of equiproba-
bility (relative to a single toss, throw or drawing — this is not the place to consider more
complicated cases) reflects a symmetric situation which is often made objectively precise
by stating that the balls must be identical, the coin and the die perfect (physically sym-
metric) and so on. However, the criterion remains essentially subjective, because the
choice, of a more or less arbitrary character, of those more or less objective requirements
which are to be included in this concept of ‘identical, reflects the subjective distinction
drawn by each individual of what is, and what is not, a circumstance that influences his
opinion. It was necessary to point this out, in order to avoid giving the impression that in
problems of this kind we are dealing with a different kind of probability; objective rather
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than subjective. It is true, however, that in this context opinions generally do coincide
(although the agreement is less strong and unconditional than one would tend to think).
Independently of all this, we can always talk about the case of equiprobability, provided
we state (or take it as implicit) that this simply means that You (or the individual con-
cerned) attribute the same values to the probabilities in question.

5.7.2. Returning to our examples, we observe that by means of these kinds of set-ups — it
might be sufficient just to consider drawings from an urn — we can easily obtain a represen-
tation of events of any given probability (to be more precise, any rational m/n). For example,
if one wants to get an idea of the magnitude of a probability expressed to two or three deci-
mal places, for example expressed in percentage terms like 13% or 13-2%, it is sufficient to
think of an urn with 100 balls, 13 of which are white (or 1000 balls, 130 or 132 of which are
white). One can avoid talking about colours, and changing the percentage of white balls, by
simply thinking of the balls as numbered consecutively (from 1 to 100 or 1 to 1000): this
enables one to say — albeit in less suggestive language — that 13% is the probability of draw-
ing a number not exceeding 13 (out of 100; or 130 out of 1000) and so on.

Using the ‘representations’ of this ‘scale’ one can — if the method seems easier — reduce
the evaluation of any probability to comparison with cases of this kind, and forget all
about both the betting approach and that in terms of losses. In order to translate into
figures the probability — according to You — of striking oil by drilling at a given spot, it
is sufficient that You decide how many balls, out of 1000, should be white, in order to
obtain the same probability of drawing a white ball; if You think the number should be
131, this implies that You think the probability of striking oil is 13-1%.

It is convenient to express all this formally:

Theorem. Ifthe n events of a partition are considered as equally probable, the probability
of each of them is 1/n, and the probability of an event which is the sum of m of them is m/n.

The classical statement is that, under these conditions, the probability is given by the
ratio of the ‘number of favourable cases (m) to the ‘total number of possible cases’ (n).

5.7.3. Criterion of comparison (or ‘third criterion’ — following the two in Chapter 3,
Section 3.3). Having at one’s disposal a model of a partition into n events, which are
judged equally probable (e.g. an urn), the probability of any event E can be evaluated, by
comparison with events composed of sums of events of the partition, with an error of less
than 1/n. In fact, if E,, and E,,,; are sums of m and m + 1 events, each of probability 1/n,
and if one judges P(E,;) < P(E) < P(E,,;;1), then m/n < P(E) < (m + 1)/n. In order to make
the comparison operational, it is sufficient to express it by saying that You would rather
receive one lira if £ occurs than one lira if E,, occurs, but vice versa if the comparison is
made with E,,,;. In this way, its subjective nature is clear; it remains somewhat in the
shade when we speak of ‘comparison’ in the abstract, with no precise meaning.

There are many points, both historical and critical, that one could raise at this junc-
ture, but they would require overlong, and in part untimely, digressions: they will be
considered instead at the end of the Appendix.

Let us just say something, however, in order to make the above a little more precise, at
least in its essential features. Evaluations made on the grounds of symmetry are generally
accepted as a basis for problems concerning games, drawings from an urn, lotteries, dice
and so on, and one often regards as ‘equally probable cases’ certain outcomes which are
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‘combined’ (like the 6'° possible sequences obtained by tossing a die 10 times, or the 90
1/85! possible sets of five numbers on the Lottery, or the 90! permutations in a drawing of all
the 90 numbers at Bingo etc.), rather than elementary (like the score obtained at the next
throw of a given die, or the number ‘drawn first’ at a given Lottery wheel next Saturday).
Recall the remarks made in Chapter 4, 4.10.3, which are relevant to this procedure.

5.7.4. We note, however, that it is not just in examples of games of chance that
considerations of symmetry can act as a guide but, in fact, in any practical problem
whatsoever. For example: if we consider the maximum annual temperature (at a given
location) in three consecutive years, then it can either:

e increase (type 1-2-3, where 1, 2 and 3 schematically denote the three temperatures
in increasing order),

e decrease (3—2-1),

o be maximal in the middle year (types 1-3-2 and 2—-3-1), or be minimal in the middle
year (types 2—-1-3 and 3—-1-2).

Now, whatever one’s evaluations of the probabilities of more or less high summer
temperatures might be, under certain conditions it may very well be natural for us to
attribute the same probability (%) to each of the possible cases.

Example A. Increases and decreases in agricultural production. This is a (true!) example
of a fallacious analysis, based on the observation that, by comparing agricultural pro-
duction in successive years, the numbers of inversions of trend (i.e. the number of times
in which an increase was followed by a decrease, or vice versa) was about twice the
number of permanences (i.e. repetitions of an increase or of a decrease). An agricultural
expert argued that rich and poor crops alternate, and it required a statistician to point
out the mistake (the numbers are in agreement with what we have just seen above).

Example B. Breaking an existing record. In connection with temperatures, agricul-
tural production, or even the results in an annual competition, for example the winning
throw in the national discus championships (assuming the given hypotheses continue
to hold: i.e. there exists no reason to expect an improvement due to better training,
more participants etc.), one can pose the following sorts of problems: what is the prob-
ability that in the nth year (of the competition, of keeping temperature records etc.) a
new record is set up? (Ans. 1/n); that the record (set in the first year) be broken for the
first time? (Ans. 1/n(n—1)); that the previous record had stood for /4 years (h=n-1,
n-2,...,3,2,1)? (Ans. 1/(n-1) for any 4); what is the prevision of the number of times
the record was broken in the first # years? (Ans. X(1/h)(1 < & < n)"log n); and what is
the prevision of the number of years that the record lasts until the next improvement?
(Ans. +0). As an exercise, verify these answers and pose yourself some further problems
(these are easy to find, although not always easy to solve).

5.8 The Prevision of a Frequency

5.8.1. When considering events Ej, E,,..., E,, it may happen that we know with certainty
what the number of successes Y'=E; + E; +... + E, (or, equivalently, the frequency Y/n)
must be: Y=y, say; that is Y/n=y/n. Clearly (see Chapter 3, 3.10.3), the sum of the
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pi=P(E;) must be equal to y (i.e. their arithmetic mean must be equal to y/n); in particular,
if the E; are judged to be equally probable, p;=p, then we must have p =y/n (the proba-
bility equal to the known frequency: for y=1 we have the case of a partition, as considered
previously). However, even if the frequency is not known with certainty, the relation still
holds if we substitute the prevision of the frequency: the sum of the probabilities must
equal the prevision of the number of successes. In other words, dividing by n, we have

Theorem. The arithmetic mean of the probabilities must equal the prevision of the
frequency:

(pr+p2+..+p,)n=P(Y/n)=P(Y)/n. (5.11)

In particular, if the E; are judged equally probable, p;=p, we have p=P(Y/n) =P(Y)/n:
the probability (common to all the events) is equal to the prevision of the frequency.

5.8.2. In order that correct use be made of this theorem, we must make very clear that
it is essentially trivial: otherwise, we run the risk of goodness knows what being read
into it. Observe first of all that the E; can be any events whatsoever, however diverse, so
long as the number of successes is given by addition: for example success in an examina-
tion, a victory for one’s favourite football team, finding a traffic-light green, throwing a
double six at dice, and anything else, however dissimilar. The ‘theorem’ is an identity: it
imposes no restrictions, apart from informing us that the same thing, written in two
ways, remains one and the same thing (rather like the sum of a double-entry table,
which can be taken either over rows or over columns).

Well then: it is in this very thing — and in nothing else — that the value of any theorem in
the calculus of probability lies, and it cannot be otherwise. It is to tell us whether, in making
the same evaluation in two different ways, we arrive at different conclusions, and, in this
case, to invite us to think again and to rectify the situation by modifying one or the other.

There is no unique way of doing this: we do not begin with one side already fixed and
the other to be ‘deduced’ Instead, we have on both sides evaluations that should agree,
and which must be modified if they do not. How should this be done? Generally speak-
ing, one of the evaluations usually seems to be more immediate, so one is inclined to
look for a modification of the other; however, one should be open-minded about it,
since appearance might well be only appearance.

5.8.3. Turning now to our particular case, You might find that the probabilities which You
have evaluated, when added together give, for instance, a value which is greater than the
number of successes, P(Y), which, in prevision, seems to You reasonable. You must then
ask yourself: ‘have I given the p; values which are on average too large, or are the values
which I thought of for the number of successes Y (or the frequency Y/n) too low? It is fairly
difficult to answer this if the events are rather disparate, but when they are more alike, and
especially if we know the frequency of other similar events, which have already been
observed, it often happens that one places greater confidence in prevision of the future
frequency (under the assumption that it will remain close to that previously observed).

Why is this so? The answer to this cannot be given at present (see Chapter 11) but, even
without going into the whys and wherefores, the idea that there is a degree of stability in
the frequency of occurrence of events usually grouped together as ‘similar’ is one which
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seems quite intuitive to most people. At the present time, this phenomenon may even be
somewhat exaggerated as a result of overly simple and rigid formulations current among
many statisticians. However, it rests on a very real foundation, since this is how things
appear, even to the naive layman (who, for example, is really surprised if in a given period
certain phenomena re-occur with an unusual frequency). Let us accept things as they are.

As a particular case, suppose the events under consideration are so similar that one
judges them equally probable: it will turn out that their probability p will be evaluated
on the basis of a frequency f observed among similar events in the past, and that p will
be close to f. Notice that in this case the evaluation is based not only on the prevision
of a frequency, but also requires a judgment of equal probabilities.*

5.8.4. Some examples. Statistics show that the percentage (or frequency) of males
among live births is always about 51-7% (hence, a few more males than females); that,
according to the Italian tabulations for 1950-1953 and 1954—1957, respectively, the
percentages of deaths in the first year were 6-75% and 5-49% for males, 5-88% and
4.-67% for females; that the overall annual percentage of deaths in Italy in 1960 attribut-
able to cancer was 1-51%, but broken down into age groups it was

Age: 0-5 5-25 25-55 55-75 over 75
% 0-013 0-009 0-078 0-524 1-131

and into regions (not distinguishing age groups) it varied from 0-220% in Liguria, 0-210%
in Tuscany, to 0-089 % in Puglia and 0-073% in Basilicata and Calabria. To change the
subject completely, statistics also show that the results of championship football matches
are distributed (in terms of home fixtures) as 50% wins, 30% draws, 20% defeats.

Thinking of such frequencies as stable, we could adopt them universally as probabilities
for any similar events, or future cases; or, at least, we could evaluate the probabilities of
individual cases in such a way as to make them compatible, in arithmetic mean, to these
frequencies. However

5.8.5. The need for realism. Even though we have expressed our previous considera-
tions with a certain amount of caution (which itself might appear overdone and unnec-
essary to anyone accustomed to a different approach), it is necessary, in fact, to go still
further and provide additional warnings in emphasis of that caution. We seek to reduce
everything to three questions (and in answering these we shall delve deeper).

5.8.6. The first question: are we justified, in real applications, in attributing the same
probability to all the events of a given type? This question is equally relevant to both of
the subsidiary criteria; that is symmetric partitions and frequencies. However, we must
first point out that it is meaningless unless we bear in mind that the probability is not an
external fact relating to the event, but, instead, relating to your state of information
regarding the event, and the previsions which You derive from this state of information.
If You know the innate qualities, the past records and the degree of preparedness of

19 This is often overlooked: if, for example, one speaks of ‘the probability of a newly born baby being a boy,
it is not made explicit that one is dealing with one unspecified event out of infinitely many ill-defined
events, each of which is understood to be equally probable.
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every student, your evaluation of the probability of passing an examination will vary
from student to student. Even with all this background information, however, if You
only know the students by sight (i.e. are ignorant of the name of any given student) and
are asked name by name to give the probabilities, then your evaluations will all be equal
(the same would be true if knowledge by sight or by name were the other way around).
In much the same way, your probabilities for the results of different football matches on
a given day will be different if You know the merits of the respective teams, and are in a
position to express a prevision for each match. However, if You had to fill in a pools
coupon knowing what the matches were, but not the order in which they were listed,
You could only assign the same probabilities to them all (the averages of those for the
individual matches). For example, it might be 40-20—40 if in about half of the matches
the away teams are first-rate and favourite to win, or, if You had to fill it in without even
knowing what matches were being played that day, You might adopt a standard average
probability like 50—30-20. Even in the near legendary case of drawings from an urn, for
instance drawing one from among 90 identical balls (numbered from 1 to 90), equality
would not necessarily hold if one knew the position of each ball in the urn at the instant
before the drawing took place (You might know, or believe, that the person drawing the
ball has a habit of drawing from the top, or from the left-hand side, and so on, and tak-
ing this into account might lead You to judge the probabilities to be different).

5.8.7. The second question: if 1 wish to make use of a frequency, which one should I
base my opinions on? Given an event E in which You are interested, there are usually
several classes of events already observed, which are, in different ways, more or less
directly similar to yours, but with each class providing a different frequency: the choice
is largely arbitrary.

Let us consider, for example, the problem of life insurance for a certain individual (for
simplicity, suppose it is a question of a capital sum being provided if he dies within a
year). How shall we determine the ‘premium’; that is the probability of his death within
the year (not taking into account any ‘extras’ — for expenses, etc.). We could check the
statistics of the deaths of individuals in the same country (or region, county, city, dis-
trict, etc.), of the same age (sex, class, etc.), having the same profession (income, degree,
etc.), of similar constitution (height, weight, etc.), same name or initial of surname, or
house number, or born in the same month, and so on: or we could group together some
number (large or small) of these sort of characteristics, or any others. Each grouping
will yield a different frequency, and this forces us to adopt a reasoned evaluation rather
than a mechanical one; one which takes into account those classifications which it
appears most reasonable to assume related to the phenomenon (for instance, age), and
not the others (like the person’s name). What is ‘reasonable’ depends not only on
whether and to what extent this or that circumstance influences the phenomenon, but
also on how it has an influence. If, for example, it appears reasonable (on general
grounds, and on the basis of corroborative evidence) to think that the death rate
increases with age (once we pass childhood), one would be inclined to stick to this when
evaluating the probabilities of death in the immediate future, even for those countries
for which the most up-to-date statistics would show oscillations from year to year. One
would appeal to some sort of smoothing procedure, in an attempt to preserve the gen-
eral outline, which is considered significant, and to eliminate what are thought of as
misleading perturbations.
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Finally, one is always faced with the aspect we have already spoken of; that of individual
differences (which the insurance companies take into account through the results of the
medical examination).

This is a general situation and examples are easy to come by. We shall consider just
one other, which shows how meaningful variations in frequency, for appropriately cho-
sen subdivisions, can occur, even in those situations where it appears to be more correct
to view the probability as invariant with respect to any of the background circumstances.
Given that the frequency of males among new-born babies is almost completely invari-
ant over time, races, or countries, there would seem to be no possibility of differentiat-
ing probabilities on the basis of frequency statistics selected according to some factor or
other. On the contrary, the research of Gini (using Geissler’s data on Saxony, 1876—1885)
brought to light a differentiation on the basis of families: there were too many families
with an excess of either males or females for it to be ‘attributed to chance!?® Presumably,
one could always find some differentiation if one could succeed in finding appropriate
factors on which to base a classification. On the other hand, clearly, as a kind of converse,
for those for whom every attempt at picking out significant factors is unsuccessful,
every combination of cases automatically appears uniform (even if this is not so for
those who do succeed in picking out such factors).

5.8.8. The third question: are we justified in expecting frequencies to be stable? The
remarks concerning the second question have already led us to consider the differences
in frequencies when we refer to subgroups (e.g. in questions concerning people, age
groups, regional groupings, etc.), not to mention individual differences (as discussed in
the first question). The stability of all these frequencies is an hypothesis, incompatible
with the variability exhibited by the overall composition in terms of subgroupings (e.g.
dividing the population according to age, region, etc.). In actual fact, in practice, we can
usually assume that the overall composition changes rather slowly and, therefore, that
the incompatibility is not obvious over a short time period: from a logical point of view,
however (and in some cases from a practical one too), the objection is completely valid.
On the other hand, even if we leave all this out of consideration, there may be — and
there usually are — causes of variation resulting from the evolution of the situation itself.
For example, if we consider mortality, there has been great progress in sanitation, medi-
cine, general living standards and so on, as a result of which mortality has progressively
declined significantly (this can be seen even from the snippets of data we reported
above, relating to very close time periods like 1950-1953, 1954—1957). It might, there-
fore, appear reasonable, in evaluating a future probability, to extrapolate the rate of
improvement rather than base oneself on the hypothesis of the preservation of the pre-
sent level.” In any case, the force of the ‘stability of frequencies’ as a probabilistic or
statistical principle is completely illusory, and without solid foundation.

Similar considerations apply, of course, in other fields. We could add the obvious
examples of frequencies of car accidents, and similar matters in connection with

20 C. Gini, I sesso dal punto di vista statistico, Sandron (1908), Ch. X, ‘La variabilita individuate nella
tendenza a produrre i due sessi’ (pp. 371-393). I do not know whether there has been any more recent research
confirming these results: in any case, it is the argument which is of interest here rather than the facts.

21 Questions of this nature have been discussed with particular reference to the actuarial field; see R.D.
Clarke, “The concept of probability; . Inst. Actuaries, 1954.
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technical or economic development. In the case of football, the changing character of
systems of play, tactics, and many other things, may alter the influence of playing at
home or away, and therefore the probabilities of the three results. In addition, even
without changes of this kind, frequencies will be altered if the imbalance between ‘top’
teams and ‘bottom’ teams is altered.*

5.9 Frequency and‘Wisdom after the Event’

5.9.1. Let us repeat an earlier remark, whose function is to prevent a certain confusion;
one which we have already warned against, but to which we are particularly vulnerable
in the case of previsions of frequencies.

Previsions are not predictions, so there is no point in comparing the previsions with
the results in order to discuss whether the former have been ‘confirmed’ or ‘contra-
dicted; as if it made sense, being ‘wise after the event; to ask whether they were ‘right’ or
‘wrong’ For frequencies, as for everything else, it is a question of prevision not predic-
tion. It is a question of previsions made in the light of a given state of information; these
cannot be judged in the light of one’s ‘wisdom after the event, when the state of informa-
tion is a different one (indeed, for the given prevision, the latter information is complete:
the uncertainty, the evaluation of which was the subject under discussion no longer
exists). Only if one came to realize that there were inadequacies in the analysis and use
of the original state of information, which one should have been aware of at that time
(like errors in calculation, oversights which one noticed soon after, etc.), would it be
permissible to talk of ‘mistakes’ in making a prevision.

Any reluctance one feels in accepting these obvious explanations is possibly accounted
for by their seeming to preclude any possibility of taking past experiences into account
when thinking about the future. This is not so, however: the latter is rather different
from ‘correcting previous evaluations. One must emphasize that this phrase is wrong,
even though it may only be a confused way of expressing an actual need. It is not, how-
ever, a harmless inaccuracy: in actual fact, it distorts the basic question, and generates a
tangle of confusions and obscurities.

This should be made absolutely clear. If, on the basis of observations, and, in particu-
lar, observed frequencies, one formulates new and different previsions for future events,
or for events whose outcome is unknown, it is not a question of a correction. It is simply
a question of a new evaluation, cohering with the previous one, and making use — by
means of Bayes’s theorem — of the new results which enrich one’s state of information,
drawing out of this the evaluations corresponding to this new state of information. For
the person making them (You, me, some other individual), these evaluations are as
correct now, as were, and are, the preceding ones, thought of then. There is no contra-
diction in saying that my watch is correct because it now says 10.05 p.m., and that it was
also correct four hours ago, although it then said 6.05 p.m.

5.9.2. Discussions and refinements of this kind, which might seem rather pointless
when made in the abstract and reduced to mere phrases, are not only of genuine

22 If, for example, one half of the teams were so much stronger than the others that they beat them with
certainty, then about half the matches would have the assigned result; if the frequencies 50—30—20 were retained
for the other half, we would have, overall, the frequencies 50—15-35 (the averages of 50—00—50 and 50—30-20).
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relevance to the conceptual and mathematical construction of the theory of probability,
but they also have implications which demand the attention of everyone; even those not
interested in topics of this nature.

The meaning which attaches to statements about ‘being wise after the event’ does not
seem to correspond in a unique way to attitudes either for or against the considerations
just made. It is often both different and opposite. This happens when the sentence is
uttered as a reproach to someone who belatedly admits that ‘he was wrong’ — as if to tell
him ‘tu as voulu...” [‘it is your own fault..]. It is conceivable that in some situations this
reproach is justified: one often makes mistakes through lack of concentration, or because
one was unable to resist the temptation, although fully aware of being in the wrong.

However, the reproach is often made when there is no fault — apart from that of failing
to be a prophet. Judgment by results, the notion that someone’s merit should be meas-
ured in terms of his successes, is often passed off as ‘realism’: to dwell upon the ifs and
buts is considered meaningless. Of course, it is meaningless as far as the facts are con-
cerned; no-one doubts that these cannot be reversed or modified by any ifs and buts.
The facts themselves are not open to question, but when we turn to judgments based on
those facts, evaluations of personal responsibility, appreciation or criticism of someone’s
actions, it is a different matter. In these matters, it is by no means true that the facts
provide any definite answers; in fact, they provide no answers at all. Their only value
might be in helping one towards a better understanding of the range of ifs and buts. It is
precisely these which allow one to judge someone’s actions in the one way that makes
any sense: that is taking into account, moment by moment, the context, the situation
and the state of information in which the actions took place.

It would perhaps be overstating the case to suggest, for these reasons, the removal of
any distinction between — let us say — being found guilty of murder and of attempted
murder. It could happen that ‘missing’ killing someone was evidence of a lesser inten-
tion of doing so; but if everything hinges on a miraculous piece of surgery, how is the
offence in any way less serious, or the culprit more deserving of leniency? Anyway, since
legal matters are somewhat of a mystery to me, I do not wish to pursue the question.

Something that can be criticized with more certainty is what seems to me the deplor-
able habit of picking on someone as a scapegoat when something goes wrong. Apart
from being unfair, the practice encourages people to avoid taking on responsibility, so
that one gets the worst of all worlds. Those who acted loyally, in a sensible manner,
cannot be reproached if, by chance, the outcome was unfavourable; those who blun-
dered (in an honest fashion) are advised to learn from the experience and take more
care in the future. In contrast, those who had not done everything possible, in terms of
organization, control and efficiency, to reduce the risk of unfavourable outcomes are
punished — whether or not anyone was responsible.

To set against such stupidity, there is an alternative practice, which can be taken as an
example of the beneficial effect of a mode of thinking based on operational research. It was
brought to my attention by Pasquale Saraceno,” and is established practice in the indus-
trial group of which he is one of the leading figures. When examining the actions of the
various companies, and especially those with unfavourable outcomes, the analysis is based
on drawing a distinction between that which could and should have been foreseen, on the

23 Translators note. Italian economist; former head of the LR.I. (the state controlled Institute for Industrial
Reconstruction).
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basis of the information at hand, and that which could not possibly have been foreseen.
This sort of calm criticism and self-examination is undoubtedly what is required in order
to encourage a sense of responsibility in a climate of honesty and mutual confidence.

5.9.3. The remarks above were made in order to underline the importance of breaking
away from these destructive hangovers of the confusion between prediction and previ-
sion: this is important from a general — one might even say moral — point of view. Let us
turn to a technical aspect of the problem, which should help to remove such confusion.
I say ‘should; because I know only too well that such errors (these, it seems, more than
most) are difficult to eliminate; like the Hydra with a thousand heads. Were it not for
this, I would have simply said, as it seems to me, that each objection raised is decisive in
itself, and should be sufficient.

In order to combat the idea that the influence of the facts, or, to be more precise, of
information regarding the facts, on prevision should be interpreted as a mechanism for
refutation and correction (and also to point out the inadequacy and awkwardness of
language which gives this impression), we observed that the ‘new’ opinion, far from
being new, was already contained in the ‘old; which, far from being refuted, was used
when we took over as the ‘new’ the opinion it had already provided as appropriate for
such an eventuality (as for any other possible outcome).

Let us note at this point that such an ‘opinion implicitly contained’ in the initial one,
and already provided for such a contingency, is integrated with it to such an extent that
it practically lends itself to being used without even the occurrence of the facts under
consideration.

5.9.4. The ‘device of imaginary observations, put forward, in particular, by Good
(1950), is a method of evaluating probabilities, and, as such, deserves mention in the
present chapter. It is a device that is particularly useful for evaluating very small prob-
abilities, and which is more accurate in this context than the direct approach. A simple
example will suffice to make the notion clear.

A person claims that he is able to guess in which hand you are concealing a certain object;
You do not believe him. If You are invited to be more precise and say what probability p You
attach to the possibility that he really can do what he says, You reply ‘very small, but are not
really in a position to sort out the different implications of saying 1072, or 10™°, or some
other value. Then, according to Good, one can do better by reformulating the question in
the following way. Imagine that You put him to the test, and that he guesses correctly three
times in a row, or ten times, or fifty times, ...; after how many consecutive correct guesses
would You consider as equally likely (probabilities - and 1) the two possibilities that either
his claims are justified, or that he has guessed correctly by chance?

It is easily seen that at each trial where he guesses correctly the probability ratio in
favour of his claims doubles (likelihood ratio 1:% = 2:1); after n such trials it is 2", If, after

1

n trials, the ratio of the probabilities has become 1 : 1 = 1, it must mean that initially it

was given by p:p = 27" in other words, we have approximately, p=(3)" = 1071827 10~
For example: if 7 = 10, we have p =107 =0.1%; if n =30, p=10"% if =50, p=107".
There is no doubt that, with this interpretation available, a comparison between the
meaning of answers such as p=10"%,0r p=10"'%, is no longer unattainable (although a
certain vagueness or unfamiliarity is inherent in questions of this kind, and cannot be

removed altogether; any method or device of this kind is intended as an aid, not a panacea:
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once one gets to a certain stage, there is nothing to do but try to sharpen the feeling for
numerical values of probabilities, including the very small ones).

The conclusion regarding the principle of this method seems to derive further support,
psychologically speaking, from a consideration of the paradoxical — I would even say
grotesque — position that a contrary point of view leads one into. Its formulation would
have to be along the following lines (any attempt at spicing it up in order to increase its
paradoxical and mind-bending flavour would only spoil it):

‘My initial evaluation was p’=(3)";

‘it was based on consideration of a hypothetical possibility; that of a succession of
n experiments, in which the person claiming to be able to guess obtains successes on every
trial, and on my reaction to such a hypothetical result, consisting precisely in the fact that
my final evaluation would then have been p" = % b

‘now, the eventuality considered as the hypothesis has actually occurred, and my
reaction has been precisely the presupposed one, therefore...

‘the initial evaluation, which was, and still is, a logical consequence of these assumptions
(actual or hypothetical)... WAS FALSE.

5.10 Some Warnings

5.10.1. It is necessary to point out a number of pitfalls. Although it is premature to talk
about the dangers before we understand their causes, some pointers must be given in
order to guard against the doubts and distortions that might get mixed up with what we
have said concerning the evaluation of probabilities, giving rise to confused and contra-
dictory notions.

The following remarks should, in one sense, be unnecessary. All the dangers have already
been mentioned and the details already given at the appropriate time would be sufficient to
render these additional comments superfluous, if — and this is the difficulty — they remained
firmly implanted in one’s mind, together with all their ramifications, and with such clarity
that any dangers reappearing, in whatever disguise, could be dealt with just as effectively as
when they were first encountered. This not being the case, it is preferable, and perhaps
necessary, to repeat ourselves; to go over the details mentioned above, in their different
variants and versions, pointing out the many forms the dangers may assume. (There are
such a number of them that perhaps some, even important ones, will be overlooked; hope-
fully, though, the pattern-book of objections and counter-objections will be sufficiently
representative for the reader to be able to answer, by analogy, possible objections not
covered, by means of suitable counter-objections.)

5.10.2. It might be argued that the kind of problems we have considered in this treatment,
and for which we have discussed the appropriate methods of evaluating probabilities,
are outside the ‘true’ ambit of the calculus of probability, or, at most, they constitute a
small and specialized part of it.

The arguments put forward will be, by and large, the standard ones; however, if they
are given with reference to physics, for instance, they may appear novel, or at least more
substantial and difficult to refute.

There are cases where the probabilities in physics are given by combinatorial arguments,
in accordance with the ‘classical’ idea of ‘equally likely cases’; that is, they are given by
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the Maxwell-Boltzmann, Bose—Einstein, Fermi—Dirac ‘statistics’ (to use the jargon of
physicists): for further details, see Chapter 10, Section 10.3. Who can argue in this case
that we are dealing with a probability whose value is objectively determined by ‘a priori’
considerations? It is precisely this example (as Feller observed, vol. I, pp. 5 and 21) which
shows how fallacious any a priori conclusion would be: nobody could have foreseen that
the computation of ‘equally likely cases’ had to be carried out using completely different
methods in problems where different ‘statistics’ apply (and the explanation only came
later, through the distinction between particles with integer or semi-integer spin).

5.10.3. Everyone will probably agree, therefore, that it makes no sense to be willing to
deduce properties of phenomena, or previsions regarding their outcomes, basing one-
self solely on superficial, preconceived ideas. The confirmation of experience is required,
and this, certainly, leads on to an objective conclusion. One might well say that, for the
physicist, probability coincides with frequency.

And this statement is, in a certain sense, true. However, this form of expression is
completely wrong from a conceptual point of view, even if at first sight it presents no
difficulties.

Let us swiftly demolish, one by one, the main arguments put forward with the inten-
tion of transforming probability from being subjective to being objective, by means of
more or less overt confusion or connection of the notion with that of frequency.

5.10.4. Firstly, we present an objection frequently raised against the notion of the
probability of an individual event: either this event occurs or it does not, and therefore
it either has probability one or zero; it makes no sense to attribute to it an intermediate
probability p. I accept this argument completely, in that it refers to an objective probability
p: but I observe that the same argument holds even in cases where my opponent forgets
that it does — when he says that in # ‘individual cases’ there is an objective meaning to
p because np of them will occur. This is not true: either zero, or one, or two,..., or all n
of them occurs, and the objective probability (if one prefers to use this term as a useless
and misleading synonym for frequency) is one of the n+1 values 0, 1/n, 2/n,..., h/n,...,
(n - 1)/n, 1, although it is not known which one.

It is only in a subjective sense that it makes sense to speak of p, as the arithmetic mean
of these n+ 1 possible values, taking as weights the subjective probabilities of the single
frequencies (still ‘individual cases’).

5.10.5. It might be objected that in many cases (those to which an opponent would limit
himself) the probability is concentrated near a certain frequency p, which could be defined as
objective probability. But here, and in every case in which something ‘very probable’ is said to
be ‘practically certain’ (or even ‘certain, for the sake of brevity), and, symmetrically, something
‘very improbable’ is said to be ‘practically impossible’ (or even ‘impossible’), an either—or must
be clearly established. In fact, such sentences can either say something obvious, with which
one has no choice but to agree, or, alternatively, they can completely falsify the meaning of
things. The field of probability and statistics is then transformed into a Tower of Babel, in
which only the most naive amateur claims to understand what he says and hears, and this
because, in a language devoid of convention, the fundamental distinctions between what is
certain and what is not, and between what is impossible and what is not, are abolished.
Certainty and impossibility then become confused with high or low degrees of a subjective
probability, which is itself denied precisely by this falsification of the language.



5 The Evaluation of Probabilities

On the contrary, the preservation of a clear, terse distinction between certainty and
uncertainty, impossibility and possibility, is the unique and essential precondition for
making meaningful statements (which could be either right or wrong), whereas the
alternative transforms every sentence into a nonsense.

5.10.6. We have already made abstract reference to this confusion (Section 5.2.3), so let
us confine ourselves here to an illustration in the context of physics (with the warning that
we are anticipating things to come for the purpose of preventive therapy; later, Chapter 7,
we will be concerned with the true meaning of ‘laws of large numbers’ and suchlike).

It cannot be denied that two different explanations of the same phenomenon may
turn out to be indistinguishable in practice; particularly when one explanation is deter-
ministic and the other probabilistic. One thinks immediately of the diffusion of heat, or
any other similar phenomenon, which can either be considered in terms of a differential
equation, describing the continuous development of the phenomenon in a manner gov-
erned precisely by deterministic laws, or as a random process in which elementary
phenomena occur in a nondeterministic way, but such that there is a high probability of
the phenomenon developing at a macroscopic level in a manner practically identical to
that indicated by the deterministic theory.

However, this in no way implies that the two explanations are similar, and even less
that they are the same, or substitutable. On the contrary, they are exact opposites;
diametrically opposed and absolutely incompatible. The deterministic explanation
makes certain assumptions which preclude any departure from predetermined behav-
iour. Any similar explanation, albeit less rigid, which laid down that some conclusion
was compulsory and certain, would, at the very least, require some sort of self-regula-
tory mechanism, some sort of ‘feedback’. The probabilistic explanation makes no
assumptions of this kind: it states nothing other than that everything is possible. If it
appears to state something more, it is only because such a statement, which may seem
quite precise, corresponds to a property common to ‘almost all’ the possible cases.

A probabilistic explanation of the diffusion of heat must take into account the fact that
heat could accidentally move from a cold body to a warmer one, making the former even
colder, the latter even warmer (in Jeans’ example: water being frozen rather than boiled
when put on the stove). That this is very improbable is merely due to the fact that the ‘unor-
dered’ possibilities (heat equally diffused) are far more numerous than the ‘ordered’ possi-
bilities (all the heat in one direction), and not because the former enjoy some special status.

To rule out the possibility of those cases which seem ‘exceptional, in no way improves
the probabilistic explanation, by somehow making it simpler, or more scientific: on the
contrary, it negates it. Acceptance of the probabilistic explanation has the following
implications: it means that what we state about the phenomenon must not be regarded
as necessary, but, instead, must be attributed to ‘chance; and, hence, regarded as only
approximate and probable. It means that one must regard it as essential to deny the
existence of certain and exact laws which are obeyed only apparently; it means that one
must consider as necessary the possibility of studying departures from any rigid law,
fluctuations, the effects of discontinuities (the shot effect), and all that a cursory identi-
fication with a different form of explanation would sweep away without a thought.

5.10.7. What we just said is itself open to misinterpretation. It would be a mistake to
infer that an explanation based on a ‘tendency to disorder’ takes care of every applica-
tion of probabilistic concepts and not merely the particular example given above.

181



182

Theory of Probability: A Critical Introductory Treatment

‘Chance’ (if we can adopt this convenient terminology as a summary of complicated and
uncertain factors without its being taken too seriously) plays a no less important réle in
biological and social processes, where the outcome depends on highly ordered and
organized structures, like chromosomes, cells and human beings (and also in physics, in
processes like crystallization).

The following needs to be said in order to disprove the thesis which considers a level-
ling down into a debased chaos (entropic death) to be an inevitable consequence of the
validity of this or that ‘law’ of probability. The calculus of probability can say absolutely
nothing about reality; in the same way as reality, and all sciences concerned with it, can
say nothing about the calculus of probability. The latter is valid whatever use one makes
of it, no matter how, no matter where. One can express in terms of it any opinion whatso-
ever, no matter how ‘reasonable’ or otherwise, and the consequences will be reasonable,
or not, for me, for You, or anyone, according to the reasonableness of the original
opinions of the individual using the calculus. As with the logic of certainty, the logic of
the probable adds nothing of its own: it merely helps one to see the implications con-
tained in what has gone before (either in terms of having accepted certain facts, or
having evaluated degrees of belief in them, respectively).

Physics can make greater or lesser use of the calculus of probability, but the relation-
ship between the two is simply the relationship between a certain field of research,
which remains itself, no matter what tools it uses, and a logical tool, unconditionally
valid, which remains itself, whatever use is made of it, in whatever field.

5.10.8. Let us return to the necessity of avoiding the dangers implicit in attempts to
confuse certainty with ‘high probability. We have to stress this point because these
attempts assume many forms and are always dangerous. In one sentence: to make a
mistake of this kind leaves one inevitably faced with all sorts of fallacious arguments
and contradictions whenever an attempt is made to state, on the basis of probabilistic
considerations, that something must occur, or that its occurrence confirms or disproves
some probabilistic assumptions.

From such a point of view, the calculus of probability seems to be regarded, more or
less explicitly, as a nothingness; saying nothing when the probabilities in question are
intermediate in value, but capable of miraculous transformation into a warrantor of
absolute truths when the probabilities are very large or very small, since, in these cases,
the difference can be ignored and one can simply say that something is true or false.
One thus has a mechanism that is considered to be useless when it says that which it is
capable of saying, and wishes to say, but is blindly trusted when the things one wants to
make it say are not the things it does say or could say.

5.10.9. We present three examples of this form of observation.

First example. The statement that ‘an event of small probability does not occur’ is some-
times made, under the heading of ‘Cournot’s principle’ (Section 5.2.3). A kind of corollary
or special case of this is referred to as the ‘empirical law of chance’ (meaning that frequency
and probability actually behave in many cases according to the ‘law of large numbers).

Second example. In accordance with the identification of small probability with
impossibility, Neyman finds a contradiction in the behaviour of an individual who trav-
els by aeroplane and at the same time takes out insurance. If he considers it possible to
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have an accident, why does he travel? If he does not, why does he insure himself? The
paradox here specifically relates to ‘decision theory; which, in the restricted sense to
which it is often reduced by ‘objectivist’ statisticians, considers only the question ‘what
decision is appropriate given the accepted hypothesis’ and not ‘what decision is appro-
priate in the given state of uncertainty.

Third example. Again, in this context (of ‘objectivist statisticians’), one aspires to ‘accept’
or ‘reject’ an hypothesis on the basis of an experiment, instead of considering how its
outcome modifies the initial probabilities (which one wants to do without!) in order to give
the final probabilities (which therefore cannot be obtained!). Here the absurdity reaches
new heights, because it cannot even be claimed that ‘accept’ and ‘reject’ correspond to the
minimal requirement of the probabilities being large or small. The use of these two words
is a meaningless convention; an apparent attempt to answer a question by disregarding
everything that makes it a meaningful question in the first place.

It is as if, in comparing two weights, we were to decide upon which was the heavier by
choosing the one which tilted the balance to its side, without taking into account, and,
indeed, refusing to consider it legitimate to take into account, any difference between
the arms of the balance, even knowing that the difference could be considerable.

5.11 Determinism, Indeterminism, and other‘lsms’

5.11.1. Continuing with the same theme, there is a clear philosophical point to be made.
It derives from the strange fact that precisely the same disposition to accept an objective
probability is often justified in two completely opposite ways.

For some people, the ideal instrument for producing an objective probability with
value p would be a totally invariable device, working under strictly unchangeable condi-
tions, and for which the tendency to produce successes with frequency p would be a
‘built-in property, or, more specifically, a ‘dispositional property’ (following, for exam-
ple, Hacking). Any perturbations would result in a deviation from the desired result;
that is, from the realization of a frequency close to p.

For others, whole-hearted determinists, any such device could but yield the same result;
always successes or always failures. The fact that both successes and failures occur implies
that there exists something causing perturbations. In general, it is assumed that there are
a great number of small, accidental, causal factors, which are largely unknown. The fact
that the frequency is expected to be around p would be an effect of the combined and
random actions of these causal factors (following, for example, Paul Lévy).

So far as the subjectivistic conception is concerned, it has the advantage and, indeed,
the preoccupation of remaining outside of disputes of this kind. The thing that really
matters, and which justifies, in fact requires, our arguing on the basis of probabilistic
logic, is the impossible nature of the situation in which we find ourselves when we
attempt to foresee a given outcome with certainty. This is so whatever the reason:
whether it be ignorance of certain deterministic laws; or the nonexistence of such laws;
or an inability to perform the requisite calculations even though we know the laws; or
an inability to obtain precise data (or the impossibility of doing so). At any given time, it
does not matter. It is only with respect to the prospects for the advance of science in the
future that it matters, and, even here, only in a minor way, since reference to such rigid
and preconceived positions seems rather unnecessary anyway.
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From time to time, as scientific prospects change, this or that particular mental
attitude may be useful, in that it facilitates the formulation of theories which — for the
moment — give better agreement with this or that point of view. However, nothing
remains for ever unchanged; nothing is absolute. The particular mould in which one
sets is not so important: what matters far more is not to set too firmly in any one pat-
tern. To set fast is to no longer be alive.

5.11.2. These same remarks need repeating more generally, in connection with all
those ways devised to saddle probability with an objective something (meaning, inter-
pretation, justification, definition or whatever). In the first place, it is a fact that these
attempts are not successful, and cannot be so, since, having the resolve to express mat-
ters relating to uncertainty in terms of the logic of certainty, they force themselves, ab
initio, into a vicious circle, with no means of escape — ‘per la contradizion che no’l
consente’* It is as if someone were to wish to hoist himself up by his bootlaces. Logic
only permits the exposure of a tautology on the basis of what is taken as known; a previ-
sion, however, is not simply a tautological consequence of what is already known. To be
thus, would be to constitute something implicitly known, and would not involve uncer-
tainty and, therefore, would not give rise to prevision.

However, even if we were to consider someone’s arguments to constitute an accepta-
ble basis for an objective meaning of probability (and, in general, such arguments will be
different and concerned with special and different types of event, according to the
different points of view), our thesis consists in believing that these arguments would
be irrelevant anyway. All such conceptions, all the ‘isms’ they reduce to, are rejected
here, but not in support of yet another ‘ism’ (as might be thought; e.g. ‘subjectivism’ or
‘solipsism’), which one wants to put forward and contrapose to the others. The latter are
rejected because, whatever the explanation of the uncertainty might be (attributing it to
‘chance; ‘fate; ‘hidden laws, ‘Providence; or ‘statistical regularities, or to something
else — or ... words(?)...), the sole concrete fact which is beyond dispute is that someone
(me, You, somebody else) feels himself in a state of uncertainty, and has to decide on and
adopt some point of view as a basis for previsions and related decisions.

5.11.3. This subjective meaning is an objective and unquestionable fact: all the rest
(even if there were no dispute about it) is, in any case, something of an extra, which, at
best, serves to help fix one’s ideas. It is analogous to a vivid piece of writing that suc-
ceeds in forming something like an idea in our minds, although its meaning is not clear,
and an analysis of the sentence in fact shows it to be inconsistent.

It is the case, however, that this view of the logic of uncertainty, complete and clear as
it is, is far from achieving general acceptance. Why is this? Perhaps it is only the state of
being certain which appears to most people as worthy of consideration and fit to be part
of the edifice of science (which, according to the prevailing view, appears to express or
aspire to omniscience — notwithstanding the fact that all progress, pushing back as it
does the frontier of what is known, makes the horizon of what can be seen as unknown
even broader). Perhaps the unknown and the uncertain disturb and annoy us, and

24 Translators’ note. Ruled out by the principle of contradiction. (The line is from Dante’s Inferno: canto
XXVII, line 120.)
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provoke those who are most upset to attempt to suppress them, or at least to make them
disappear. There is not much point in philosophical arguments or speculations of this
kind: they do provide, however, a possible explanation of why these different attitudes
exist (we had to mention them, or, at least, to give some indication of how a person who
finds our point of view natural could try to understand its lack of acceptance).

These different attitudes are, essentially, only variations on the same theme: the
attempt to avoid the problems of uncertainty by simply pretending to overcome it;
restricting the treatment to cases in which it can be presented in such a watered down
way that it looks like something else.

The classical variant limits itself to cases like those of games of chance (where prob-
ability should acquire an objective meaning by virtue of the ‘definition’ based upon
‘equally likely cases’). In the view of the most rigid supporters of this position, every
application of the theory of probability outside this field would only be a questionable
transposition by analogy.

The position that is at present most widely accepted restricts itself to cases of a certain
statistical type (where probability should acquire an objective meaning by virtue of the
‘definition’ based upon ‘frequency’). According to its most rigid adherents, the term ‘prob-
ability; when used outside this context, has no more in common with its ‘scientific’ mean-
ing than the ‘energy’ of a team leader has with the same term as applied to physical motion.”

Other approaches, which, having the aim of acting as guides in decision making, follow
less rigid notions, attempt nevertheless to avoid those components of the argument which
many find unpalatable (like the ‘initial probabilities’ required for Bayesian induction).?

Others adopt an eclectic attitude, accepting that one can base one’s thinking on ‘that
probability which we evaluate for previsions and decisions’ (i.e. the one corresponding
to the conception of the present author), but, on the other hand, asserting that ‘there is
also another type of probability, the one with which statistics is concerned’ (or, alterna-
tively, ‘the type valid in games of chance; or both).”

We should point out, here and now, that the mathematical treatment is unaffected (or,
at most, very little affected) by these disagreements. In this sense, we can give a reassur-
ance that everything we shall say mathematically is independent of questions of this
kind, and should be acceptable to everyone. However, the interpretation is often differ-
ent; there are certain nuances which, when looked into closely, completely change the
spirit in which a given statement (perhaps expressible, in the same words, in the impre-
cise manner of everyday language) is to be understood.

So far as our own attitude is concerned, we wish to make clear that it is not utterly
opposed to the attitude we have termed ‘eclectic; even though it differs from it in a very
real sense.

It is not utterly opposed because we recognize the importance of the problems, con-
cepts and criteria that are the object of the various practical theories, even though we

25 The phrases given here, in characterizing the two attitudes, are due to Castelnuovo (transposition by
‘analogy’) and von Mises (‘energy’ and energy), respectively.

26 The followers of ‘objectivistic statistics’ in its various schools, including that of A. Wald (who we
particularly have in mind here, as the nearest in approach to the Bayesian school).

27 The quotations are from V. Castellano. Typical examples of the eclectic attitude are provided by

R. Carnap (who differentiates between ‘probability,” logical, and ‘probability,, statistical) and 1.J. Good who
admits the possible value of distinguishing many ‘kinds of probability’ (although in the context of a
conception which is essentially subjectivistic).

185



186

Theory of Probability: A Critical Introductory Treatment

study them within the framework of the general theory. Only by renouncing their
alleged autonomy is it possible to compensate for those deficiencies in the foundations
of the particularistic theories which render their conclusions meaningless, and the
interpretation of them arbitrary.

It differs from it because we do not accept the existence of probabilities of different
kinds, nor the autonomous validity of theories which set out to consider them, leaving
aside some of the assumptions of the general theory, all of which are at all times essential.

All this has been summed up in an expressive manner by L.]J. Savage (in a rather more
specialized context): it is as though one wished to make a probabilistic omelette without
breaking probabilistic eggs. There are two possible outcomes: either the result is not an
omelette; or the eggs have in fact been used, either surreptitiously or inadvertently. All
comments that we shall have occasion to make concerning ‘other points of view’ will
essentially be continuations of the above analogy.
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Distributions

6.1 Introductory Remarks

6.1.1. Thus far, we have been occupied with the conceptual aspects of the formulation,
and the thoroughness of the treatment reflects what the material seemed to us to
require. Likewise, we have chosen to deal with the simplest topics and problems, whose
meaning was not obscured by the need to involve complicated mathematics (but in fact
contributed by appearing in a clear and simple light).

The time has now come, however, to abandon these self-imposed limitations. We must
examine whether, and to what extent, we can implement, in any domain whatsoever, the
study of probability in terms of the image most often thought of (in an informal man-
ner); that of the ‘distribution of mass. In actual fact, of course, it is well known that the
notion of a probability distribution (the precise mathematical translation of this image)
is taken directly as the starting point in many approaches, particularly modern ones.
The aim of the present chapter is to introduce this notion and the requisite mathemati-
cal tools, tying them in rigorously with our previous formulation and making any neces-
sary modifications or limitations.

There are, therefore, two different aims to bear in mind in what follows: on the one
hand, to provide a knowledge of the mathematical tools required in further study of the
calculus of probability; on the other hand, to give the mathematical and conceptual
details which derive from our previously established formulation and point of view.

6.1.2. We shall try to satisfy the first aim as concisely as possible, quoting, with a
minimum of explanation, and without proof, those things that can be found in any book
on probability, or whose proof can be obtained either with a standard knowledge of
analysis or on an intuitive basis. Alternatively, if the reader wishes, the proofs can be
taken for granted and this will not affect applications or further reading.

6.1.3. Our second aim, one of a critical nature, will need a more careful treatment,
at greater length. Although we do not wish to dwell upon it more than we have to, any
omission or incompleteness in what is necessary would certainly cause misunder-
standing and incomprehension (especially among those readers who, by interpreting
certain sentences in the standard way, would find them, and quite rightly so, either
incomprehensible, or, misunderstanding them, wrong). For this reason, we strongly
recommend the reader, and especially those who think that they already know enough

Theory of Probability: A Critical Introductory Treatment, First Edition. Bruno de Finetti.
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about the topic of this chapter, not to skip it, and to dwell, in particular, upon the
details relating to the differences, slight but important, between this and the standard
interpretations.*

6.2 What we Mean by a‘Distribution’

6.2.1. An abstract and general explanation would, at this stage, appear rather vague and
colourless. It is more appropriate to consider here the simplest and most important
special case, that of distributions on the real line, together with their various interpreta-
tions. These interpretations should all be kept in mind, in order that the most conveni-
ent one can be called upon in any particular instance. This special case will eventually
be revealed to have a relationship with that of random quantities in general.

Proceeding in the usual way, we introduce immediately, as a starting point, and as the
main mathematical tool for the definition of a distribution, a function F(x), increasing®
from 0 (as x > —o0) to 1 (as x — +o0), and called a distribution function.

6.2.2. As a first interpretation, the most intuitive one, we have that of a distribution of
mass on the real line (with the assumption that ‘total mass’ = 1). F(x) is the mass to the
left of a point %, 1 — F(x) the mass to the right; the increment F(x") — F(x') is the mass in
the interval " < x < x”. If there is a mass, py, concentrated at the point xy, F is discon-
tinuous at x, and py, is its jump; F(x;, + 0) — Fx;, — 0).2 There is at most a finite or countable
number of such jumps, and F is continuous elsewhere.

A distribution that only has concentrated masses (X;p;, = 1) is called discrete; one without
concentrated masses is called continuous. The most familiar case of the latter is that of abso-
lutely continuous distributions; those admitting a density function, fix) = F'(x), such that

F(x)= ]if(x) dx.

In actual fact, when the term ‘continuous’ is used, it is this special case which is often
understood. There is, however, an intermediate case between the discrete and abso-
lutely continuous; that of continuous but not absolutely continuous. In 6.2.3 we shall
make this idea concrete by means of an example (and this example will also have an
interesting interpretation in a problem in probability). For the time being, we shall limit
ourselves to the definition and the basic properties.

6.2.3. To say that F(x) is continuous means, as everyone knows, that for each ¢,
however small, every interval whose length is less than some suitable § contains a

1 Recall the warnings given already in Chapter 1 (1.2.1).
2 We use ‘increasing’ to mean ‘nondecreasing’; we shall use ‘strictly increasing’ if the function is not
constant in any interval.
3 These two values must be distinguished when considering F(x) if there is a jump at the point x (and we have
a choice according on whether the mass at x is to be considered together with those on the left or those on the
right). For various reasons (see 6.5.1), we prefer to avoid those conventions which make F(x) one-to-one at
the discontinuity points (by saying that it assumes all the values y, F(x — 0) <y < F(x + 0). However, when
dealing with statistical distributions, where some convention is necessary, we shall take F(x) = F(x + 0) (as is
necessary if ‘individuals with / children’ is to mean ‘including those with exactly / children’).

We apologize for the awful notation F(x + 0); it is, however, concise and unambiguous.
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mass <é&. To say that it is absolutely continuous (Vitali) means something more: that
the same is true of the mass contained in any arbitrary number of intervals of total
length less than 8.*

Every distribution F(x) can be decomposed into partial distributions of masses of the
three types. We first of all set

F(x)=ack:(x)+agFs(x)+asFa(x) (ac+ap+as=1) (6.1)
where:

ac = Xy py is the sum of the concentrated masses (masses of type C),
acFc(x) = ¥, pu(xy, < x) is the sum of these masses in [0, x].

We now consider the residual partial distribution,
FAB (x) = F(x)—ﬂcFC (x),
that is, F(x) without the concentrated masses; it follows that:

ap = ‘total mass of type B’ = upper limit of the mass of F45(x) which can be enclosed
within intervals of arbitrarily small total length,
apFp(x) = total mass of type B in [—oo, x] (detailed definition as above).

We are left with a,F(x) = F(x) — acFc(x) — agFp(x), and this is the absolutely continuous
part of the distribution (the masses of the first two types, which do not fulfill the condi-
tion of absolute continuity, having been removed).

It is easy to see that, in a linear combination of distributions,

F(x)=cF(x)+ch(x) (a+c=1),

the various types are preserved. It follows, therefore, that the Fc, Fp, F4 of an arbitrary
linear combination are the linear combinations of the corresponding parts of the sum-
mands (in particular, a particular type of mass exists in the linear combination if and
only if it exists in at least one of the summands). If we say that a distribution is of type
A, B, C, AB, AC, BC, ABC, to indicate the pure types involved in it, we can express our
conclusion by saying that in a linear combination the letters of the types combine (e.g.
from AC and BC we get ABC).

An example of a type B distribution. The following procedure can be used to con-
struct the well-known Cantor set (of measure zero, even in the Jordan—Peano sense)
and a distribution on it (which is therefore of type B).

Let us divide the interval [0, 1] into three equal parts. In the middle interval, [%,%], we
set F(x) = %, so that no mass is placed there, and half the mass is placed in each of the
first and third intervals. This operation is then repeated in these latter two intervals. In

4 It makes no difference whether we consider the number of intervals as finite or infinite (countable: it
cannot be uncountable). It is understood that £ > 0 and § > 0.

5 Obviously, if a; = 0 (i.e. one of the components is missing) the corresponding F; is missing. The meanings
of the letters are: C = concentrated; A = absolutely continuous; B = intermediate case between C and A.
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Figure 6.1 The Cantor distribution.

each of them we will have three subintervals (of length (%)2 = %), and we set F(x) = %
(respectively, = 2) on the central intervals, thus excluding masses there. The mass is
then placed on the four residual intervals, % on each.

Proceeding in this manner (Figure 6.1), after n steps F(x) is defined (with values which
are multiples of (%)n) on the whole interval [0, 1], except for the 2" residual parts, each
of length (%)n, where all the mass resides ((%)n on each residual interval). In the limit, F(x)
is defined everywhere and is continuous. It is not, however, absolutely continuous: after
n steps the mass is contained within the 2" intervals each of length (%)n, and (%)n in total.
It can, therefore, be contained within a finite number of intervals of total length less
than any given ¢ > 0.

A probabilistic interpretation. It might be thought that the above construction merely
serves to provide a critical comment; giving a pathological example with no practical
meaning. On the contrary, we can give a simple practical example of a problem in prob-
ability where such a distribution arises.

Suppose we wish to pick a real number in [0, 1] by successively drawing from an urn
the digits of its decimal representation:

X =00 X, X, X5... X,..., ie. X=XX, /B”(B:base;e.g. 10).

If a ball representing a figure is missing, all the numbers containing it become impos-
sible (i.e. some intervals are excluded, as in the example given). The above example
corresponds to the assumption that B = 3, with the figure 1 missing (only the numbers
with 0 and 2 are possible, like 0-22020002020022202....).

It is rather surprising to note that this happens even if the balls are all present (unless
all of them have the same probability 1/B).° If one of the figures has probability p < 1/B,
and we take c between p and 1/B, and N sufficiently large, the set of numbers X in which

6 This observation is too obvious to be novel; however, I do not remember having seen it before, and I had
not thought of it prior to adding it here to the usual example.
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that figure appears in the first N places with frequency >c has measure arbitrarily close
to 1 and mass arbitrarily close to 0.”

6.2.4. Let us observe now how a different interpretation of F permits us to extend
considerably its applicability and effectiveness. Given any interval / (with extreme points
x" and x"), it suffices to set F(I) = F(x") — F(x’) to obtain F as an additive function for the
intervals. If we identify the intervals with their indicator functions (I(x) = (' ¥ <x") =1
or 0 depending on whether x belongs to I or not), we obtain F as a linear functional,
defined for every y(x) = ¥, yulj (step functions with values yj, on the disjoint intervals I;)
by F(y) = X, yiF(I1). This can be extended to all functions y(x) which can be approximated,
in an appropriate way, from above or below, by means of step functions. More precisely,
F(y) is determined if, thinking of y’ and y” as generic step functions such that

v'(x)<r (#)<y" (%)

everywhere, we have sup F(y') = inf F(y”), hence F(y) necessarily has that same value
since sup F(y') < F(y) < inf F(y").

In actual fact, what we have defined, in a direct and somewhat abstract way, is nothing
other than the integral

8(7)= [ (+)4F ()= () (x)x [I represens | J 62

—00

where the first expression (one which always holds) is the Riemann-Stieltjes integral,
and the second (which only holds for absolutely continuous distributions) is the
Riemann integral.

As an example, suppose we consider the two functions

y(x)=x=0(x) and y(x)=a"=0(x).

In this case, F(O) = the abscissa of the barycentre, and F(5*) the moment of inertia
(about the origin) of the mass distribution. In integral form,

F(O)= Ix dF (x)= Ixf(x)dx, F(DZ): Ixz dF(x)= Ixzf(x) dx.

As possible interpretations of the function, y(x), one might, for instance, think of it as
representing (for the mass at x) the reciprocal of the density, or the percentage by weight
of a given component (e.g. of a given metal if we are dealing with an alloy whose
composition varies with x), or the (absolute) temperature. In these three cases, the inte-
gral, apart from constant terms, will yield the total volume, the weight of the given
component, and the quantity of heat, respectively.

6.2.5. A second interpretation is the statistical one. It is convenient to mention it here
in order to draw attention to the practical importance of the notion of distribution in
the field of statistics. This is not only closely connected and related to the probabilistic
notion but also provides it with problems and applications. However, we shall reserve
discussion of this until later.

7 This assertion will be seen as obvious as soon as we encounter the basic ideas of ‘laws of large numbers’
(Chapter 7, Section 5).
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In the final analysis, the image is the same as before: that of a mass distribution. In fact,
the distribution of a population of # individuals, on the basis of any quantitative charac-
teristic whatsoever, can be thought of as obtained, in the case of number of children, for
example, by placing a mass 1/# at the point x = / for each individual with / children (2 =
0,1, 2,...), or, in the case of height, at the points x = x; (distinct if the measurements are
sufficiently precise), denoting by i = 1, 2, ..., n the n individuals, and by x; their heights.

In the first example, we have masses pj, = n,/n concentrated at the points x = & (ny,
denotes the number of individuals with / children) and therefore:

F(x)= Z(nh /n)(hgx)
h
=the percentage of individuals with not more than x children.

In the second example (let us assume that the individuals have been indexed in order of
increasing height), we have a jump of 1/# at each point x; (and, if # were large, one could
in practice consider the distribution to be continuous — if necessary by ‘smoothing’),
and the distribution function is given by

F(x)=(1/n) max i (xi < x) (thatis: F(x)=i/n, for x; < x < x,ﬂ).

Alternatively, one might be interested in performing some kind of ‘weighting’ instead
of simply ‘counting’ the individuals (for example: instead of 1/n throughout, a ‘weight’
might be chosen proportional to income, average number of bus journeys per day, cups
of coffee consumed, etc., depending on what was of interest). The ‘population’ might
consist of objects, or events, or anything but it is customary to retain the terms ‘popula-
tion’ and ‘individuals! If a generic and neutral term is required, one can use ‘statistical
units’ In the general case, units may be counted straightforwardly, or with some appro-
priate ‘weighting’

This will suffice for the present. We merely recall (see Chapter 5, Sections 5.8—5.10)
that a statistical distribution is not a probability distribution, although it can, in various
ways, give rise to one.

6.2.6. In order to clarify, from a different angle, certain aspects of the above (and,
more importantly, to mention some further extensions) it is useful at this point to intro-
duce a third interpretation. An additive function (non-negative, and with its maxi-
mum = 1) is also called a measure; the change in nomenclature, from mass to measure,
is of no importance, but the fact that we have at hand a natural way of looking at such a
‘measure’ — or, to be precise, the ‘F-measure’ — in terms of its own scale (of length) is
important.

One works in terms of this scale by looking at y = F(x) instead of at x (as was clear
from the definition). We have only to observe that, by drawing the graph of the distribu-
tion function (Figure 6.2a), we establish an (ordered) correspondence between the
points of the x-axis (all of it) and those of the interval [0, 1]. The mass of any arbitrary
interval on the x-axis is then measured by the length of its image on the y-axis. Of
course, the correspondence is not necessarily one to one (it will be so if F(x) is strictly
increasing from —co to +o0). To a point of discontinuity on the x-axis there corresponds,
on the y-axis, an interval whose length equals the mass which is concentrated at that
point; to any interval of the x-axis on which F(x) is constant (no mass) there
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Figure 6.2 The graphs of (a) the distribution function and (b) its inverse: y = F(x) and x = F"1(y).

In addition to the present (measure theoretic) interpretation, we have also seen that the statistical
interpretation, as graph of the distribution, is of interest (and is the most useful from the point of view
of applications). In Section 6.4 we shall further consider the probabilistic setting, in which the above
admits the following interpretation: one can always construct a random quantity with a preassigned
distribution F starting from a Y with a uniform distribution on [0, 1] (or, conversely, Y = F(x) has a
uniform distribution on [0, 1] if X has distribution F; some device is necessary in order to make it
uniform at the jumps).

corresponds a single point of the y-axis. Apart from the interpretation in mechanical
terms, this is also clear geometrically. Observe that in both cases the graph y = F(x)
(conveniently thought of as containing, for discontinuity points x, all the y’s between
F(x + 0)) contains, respectively, vertical or horizontal segments which project to a single
point of the orthogonal axis.

In order to concentrate attention on the measure, and to make it easier to visualize
developments based upon it, we find it convenient to reverse the roles of the x- and
y-axes, and to look instead at the graph of x = F~'(y) (Figure 6.2b).

Note that the change of variable from x to y transforms, for example, the Stieltjes
integrals into ordinary integrals:

F(y)=[r(x)dF(x)=[y(F(y))dy = (x)dy.

6.2.7. We shall see later that this form of representation is also useful for visualizing
many problems and situations in the theory or probability and statistics (see, for exam-
ple, Section 6.6). What is of immediate interest, however, is to exploit the fact that we
have, on the y-axis, the F-measure ‘on its natural scale’ in order to look, succinctly, and
without formulae, at the question of possible further extensions.

In terms of y, F(y) corresponds to the ordinary (Riemann) integral, and therefore F(I)
(where I = set, thought of as identified with its indicator function, I(x) = (x € I)) can be
interpreted as the Jordan—Peano measure of the image set of  on the y-axis. The F-measure
(apart from the given transformation) is the /-P measure (that is, Jordan—Peano), and
the F-measurable sets are those whose image, on the y-axis, is a J-P-measurable set.

6.3 The Parting of the Ways

6.3.1. At this point we are faced with a choice.
It is well known that there exists a unique extension of the J-P measure to a much
larger class of sets. The methods used are due to Borel and Lebesgue, and the basic idea
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(put rather crudely) is to argue about a countably infinite collection of sets as if they
were a finite collection; in particular, one invokes countable additivity (valid not only
for the sum in the ordinary sense, but also for the sum of convergent series). Similar
considerations apply to the extension of the notion of integral.

From the viewpoint of the pure mathematician — who is not concerned with the ques-
tion of how a given definition relates to the exigencies of the application, or to anything
outside the mathematics — the choice is merely one of mathematical convenience and
elegance. Now there is no doubt at all that the availability of limiting operations under the
minimum number of restrictions is the mathematician’s ideal. Amongst their other
exploits, the great mathematicians of the nineteenth century made wise use of such opera-
tions in finding exact results involving sums of divergent series: first-year students often
inadvertently assume the legitimacy of such operations and fail the examination when
they imitate these exploits. At the beginning of this century it was discovered that there
was a large area in which the legitimacy of these limiting operations could be assumed
without fear of contradictions, or of failing examinations: it is not surprising therefore that
the tide of euphoria is now at its height. Two quotations, chosen at random, will suffice to
illustrate this®: “The definition is therefore justified ultimately by the elegance and useful-
ness of the theory which results from it’; ‘Conditions about the continuity of (the integral)
are really essential if the operation is to be a useful tool in analysis — there would not be
much of analysis left if one could not carry out at least sequential limiting operations!

6.3.2. Are there any reasons for objecting to this from a mathematical standpoint?
Rather than ‘objections; I think it would be more accurate to speak of ‘reservations’;
there are, I believe, two reasons for such reservations.

The first concerns what happens outside of that special field which results from the
above approach. It has been proved (by Vitali, and afterwards, in more general con-
texts, by Banach, Kuratowski and Ulam) that if one is not content with finite additivity,
but insists on countable additivity, then it is no longer possible to extend the ‘measure’
to all the sets (whereas there is nothing to prevent the extension to all sets of a finitely
additive function which coincides — when they exist — with the J-P measure, or the
L-measure).

Countable additivity cannot, therefore, be conceived of as a general principle which
leads us safely around within the special field, and allows us to roam outside, albeit in an
undirected manner, with an infinite number of choices. On the contrary, it is like a
good-luck charm which works inside the field, but which, on stepping outside, becomes
an evil geni, leading us into a labyrinth with no way out.’

8 From J.E.C. Kingman and S.J. Taylor, Introduction to Measure and Probability, Cambridge University
Press (1966), pp. 75 and 101 (the italics are mine).
9 This image of a labyrinth with no way out is an exact description of the situation. In fact, if one wishes to
extend the definition of L-measure to nonmeasureable sets, respecting countable additivity, this can always
be done step by step (choosing, for a given set, a value at random between the two extremes of inner and
outer measure as determined by the extension so far made). After an infinite number of steps, however, a
contradiction can arise, and sooner or later (before exhausting all the sets) it certainly arises. (As an
analogy; a convergent series remains such if we add 1 onto a finite number of terms, no matter how far we
go ..., but not if we add 1 onto all the terms!)

This observation renders even more artificial the distinction between those sets which are L-measurable
and those which are not (none of them has any particular feature which makes it unsuitable).
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Never mind, it might be argued: measurable sets will suffice. But from what point of
view? Practically speaking, the intervals themselves were perhaps sufficient. From a
theoretical standpoint, however, is there any justification for this discrimination
between sets of different status; the orthodox which we are permitted to consider, and
the heretical which must be avoided at all costs? Would it be too far-fetched to suggest
an analogy with real numbers, some of which still bear the name irrational because their
existence had so scandalized the Pythagoreans?

6.3.3. The second reason for the reservation spoken of earlier concerns what happens
inside the special field. Here the rules are more restrictive and permit us only to follow
a uniquely defined path — like a runway for an automatic landing. This may be a fine
thing but must one be compelled to invoke this aid in all possible cases? Is it too absurd
to believe that soap may sometimes have its uses despite the existence of an infinite
number of detergents, each of which washes infinitely whiter than any of the others?

We can, happily, provide mathematical analogies in this case, and these will be more
illuminating than the whimsical variety (although the latter may help in suggesting in
advance the sense of the mathematics).

First a trivial example: if the value of a function is given at a finite number of points
(or at a countably infinite number) I can complete it in an infinite number of ways — even
under additional conditions (like continuity, etc.). Given # values, I know that the prob-
lem has one and only one solution if I add the condition that the function is a polyno-
mial of degree n — 1 (if n = -, and I add the condition that the function be analytic, there
is either one solution or no solution): is this a good reason for limiting oneself to this
particular solution; or for considering it as ‘special’?

A further example seems to me rather relevant. There exist methods for summing
series — for example, that of Cesaho — which often give a uniquely determined answer in
cases where the usual method of summation leads only to (different) upper and lower
limits. Is it right that as a result we should always interpret ‘sum of a series’ as meaning
Cesaro sum, and to banish as ‘outmoded’ the usual notion of convergence? Of course, the
compass of the Cesaro procedure (even iterated) is not comparable to that of other inno-
vations, like that of Lebesgue, but, even assuming it to be such, would it then be justified?
And would it not be possible that in certain cases there would be interest in ascertaining
whether, in fact, the series were convergent according to the old definition (which,
although out of date, has not become meaningless)? What if we wanted to know, in that
sense, the upper and lower limits? In my opinion, this example is apposite in every
respect. In the case of Lebesgue measure, as for Cesaro summability, there is a procedure
that (because of additional conditions) often yields a unique answer instead of bounding
it inside an interval within which it is not determined. Whether one solution is more
useful than the other depends on further analysis, which should be done case by case,
motivated by issues of substance, and not — as I confess to having the impression — by a
preconceived preference for that which yields a unique and elegant answer even when the
exact answer should instead be any value lying between these limits’.

6.3.4. The above remarks, made from a purely mathematical standpoint, are not
designed to prove anything other than that the case for consigning the Riemann integral
to the attic now that the Lebesgue integral is available has not itself been proved.
The Riemann integral can still be a necessary tool; not in spite of its indeterminacy, but
precisely because of it: this indeterminacy may very well have an essential meaning.
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On the other hand, from a mathematical point of view I would by no means presume
to discuss topics in analysis which I only know in the context of what I need. In the case
of the calculus of probability, however, these questions relate to a fundamental need of
the theory. We have already seen (in Chapter 3) the general kinds of reasons which
prevent us from accepting countable additivity as an axiom. We shall come across other
reasons which, taken with the above considerations, suggest that the use of Lebesgue
measure and integration over the special field is not valid. (That is, of course, unless
specific conditions are introduced in particular examples in order to meet the condi-
tions which would allow such an application. The distinction, however, is that illustrated
by the difference between saying ‘I am applying this method because all functions are
continuous; and ‘I am applying this method because the function that I have chosen is
continuous’)

I do not know whether similar reservations and objections have a sound basis in
regard to applications in other fields. In the case of mass, such a degree of detailed
analysis is inappropriate (for instance, how could mass at rational points be separated
off, or even considered as conceptually distinguishable?). The same thing could be said,
in fact even more so, for statistical distributions. Everything leads us, therefore, to the
conclusion that, apart from rather indirect issues,'® the question is irrelevant in this area.

On the other hand, it is not really surprising if real objections only arise in the field of
probability. In fact, we have, in the other fields, empirical assumptions, which are there-
fore approximate and necessarily lead to some arbitrariness in the mathematical ideali-
zation. The probabilistic interpretation, however, must confront logic face to face; this
is its sole premise. Logic does not claim that it reaches out to some sort of precision (nor
even to a higher level of approximation than is necessary), but neither does it allow the
construction of a formally complete structure which does not respect the logical
exigencies of a purely logical field of application; nor can it accept one constructed by
someone else.

6.4 Distributions in Probability Theory

6.4.1. Let us now turn to the topic of direct interest to us: that is the application of these
mathematical tools within the calculus of probability. Roughly speaking, the application
takes the following form: for any random quantity X, one can imagine a distribution of
probability over the x-axis by assigning to the distribution function the interpretation
F(x) = P(X < x) = the probabilistic ‘mass’ on [-o, x]. It follows that F(/) = P(X € I), and
F(y) = P(y(X)), for any set I and function y for which the notation is applicable.

This formulation, which is deliberately rather vague and neutral, is intended as a
curtain-raiser to the questions we shall have to consider later (perhaps it would be more
accurate to say that we shall consider them in relation to our particular position). These
basically concern the alternatives of either continuing with the Riemann framework, or
abandoning it for that of Lebesgue. We shall, however, leave the way open for any further
modifications that may be required.

10 Like that concerning the precise meaning of a differential equation expressing a physical law; or the
definition of the integral on a contour having cusps (this topic has given rise to discussion about the Kutta
and Joukowski theorem); and so on.



6 Distributions

It is worth giving here and now a brief sketch of the two opposed positions. In order
to pin a label on them, we might use the term strong for those who, as a result of accepting
the validity of the Lebesgue procedures in this field, draw stricter and more sophisti-
cated conclusions from the data; and weak for those who accept only the conclusions
which derive from some smaller number of assumptions, carefully considered, and
accepted only after due consideration.

The fact that we do not accept (as an axiom) countable additivity commits us to
support of the weak position (as we have already mentioned, this is one of the main
planks in our programme; see Chapter 1, 1.6.2-1.6.4). The present discussion, apart
from giving more insight into the implications of not adopting countable additivity, will
consider its relation to other topics, and, although confining itself to the simplest case of
distributions on the real line, will, in fact, reveal the general import of the conclusions.

6.4.2. The strong formulation. Once we know F(x) we know everything about the prob-
ability distribution of a random quantity X. Everything that can be defined in terms of F(x)
(and with the Lebesgue extension) has a meaning: nothing else does. The probability that
X € 1 is either given by F(I), if the set I is F-measurable (Lebesgue—Stieltjes), or has no
meaning if / is not F-measurable. The same holds for the prevision of y(X): either the func-
tion y(x) is F-measurable, in which case P(y(X)) = F(y), or the concept has no meaning. The
set of possible values for X is also determined by F: it is the set of points for which F is
increasing (i.e. the set of points not contained in an interval over which Fis constant.'?)

In this approach, one operates entirely within the confines of a rigid formulation,
prescribed in advance: it was to this type of structure that we applied the description
‘Procrustean bed. Within its confines, ‘that which is not compulsory is forbidden’.

6.4.3. The weak formulation. Knowledge of F(x) is only one of the many possible forms
of partial knowledge of the probability distribution of a random quantity X (although, in
practice, it is one of the most important).

Complete knowledge would demand a ‘complete distribution”: in other words, a
(finitely additive) extension of F(y) to every function y (and, in particular, to every set )
with no restrictions (on integrability, measurability, or whatever) and such that

F(r)=P(r(x))

always holds (in particular F(J) = P(X € I)). Of course, we are talking of a theoretical
abstraction, which can never actually be attained, but we have to make this the starting
point, the landmark from which to get our bearings, in order to be in a position to
consider all cases of partial knowledge without attributing to any of them some preor-
dained special status.

Knowledge of F(x), which we shall call distributional knowledge (or, sometimes, as is
more common, knowledge of the distribution, albeit in the restrictive sense explained
above), can turn out either to be more than we require, or less than we require, both

11 Even from this point of view, there would appear to be no difficulty in allowing something less rigid (e.g.
the possibility of excluding a set of measure zero): I do not recall, however, ever having seen this kind of
thing done explicitly. Perhaps this is the result of a psychological factor, which causes us to see distributions
as prefabricated theoretical schemes, ready for attaching to random quantities, rather than regarding them
as deriving from those random quantities, and from the particular circumstances which, depending on the
case under consideration, derive from the underlying situation.
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from the point of view of the possibility of determining it realistically, and in relation to
the needs of the situation under study. Sometimes, P(X), or P(X) and P(X?) together, or
some other summary, may be sufficient; in such cases there is no need to look upon the
distribution as the basic element from which all else follows. On other occasions,
the distribution itself is not enough: this is the case whenever we wish to rid ourselves
of the restrictions implicit in the properties of F(x) as commonly accepted; restrictions
which are not always appropriate.

In contrast to the strong formulation, the argument in the weak case is always devel-
oped with a great deal of freedom of action: there is no obligation to fill in more details of
the picture than are strictly necessary, and, on the other hand, there is no limit to the exten-
sions one can choose to make — even up to the (idealized) case of complete knowledge.

6.4.4. Setting the discussion into motion. We introduce straightaway some useful nota-
tion. Its present purpose is to enable us to distinguish between the various extensions
we shall consider in relation to a given F; but it will also enable us to avoid repeated,
detailed explanations, whose tendency (despite the intention of avoiding ambiguities) is
rather to create confusion.

The general notation is as follows: if Zis a given set of functions y(y € ), then F,
thought of as defined on %, will be denoted by Fy; for every y not in G, there will be for
F(y) (used to denote a generic extension) a bound of the form F, (y) < F(y) < F/ (y) (we
do not dwell here upon the details of this : the interpretation is as set out in Chapter 3,
3.10.1 and 3. 10.7, and which will be of use to us later in 6.5.3). We shall adopt, for the
time being, as special cases, the following notations for distinguishing the ambit over
which F is thought of as defined:

F . if relative to the Riemann field;

F 4 if relative to the Lebesgue field;'?

Fy : if relative to the complete field; and, finally,
F :if used in a generic sense.

More precisely: F »always denotes an F which has been extended to mean
Ey(r)=]r(x) dF (x)

(in the Lebesgue—Stieltjes sense) where this makes sense; undefined otherwise. We
could, however, denote the upper and lower integrals’ by F; and F; and simply express
the bounds F(y) < F(y) < F5(y). In the above, F 5 according to the strong formulation,
is all and everything: the terms in the inequality do not even have a meaning within this
framework. In the weak formulation, even if one considers an F which (‘by chance; or for
some particular reason — any reason — but not by virtue of some postulate) is countably
additive over the Lebesgue field, the bounds would still have a meaning.

12 We shall use .Zinstead of % (which was already used, see Chapter 2, for ‘linear space’): .7, standing for
Borel, is currently in use with a similar meaning to this (referring to Borel measure, which only differs from
Lebesgue measure in so far as the latter extends it wherever it is uniquely defined by the two-sided bound).
In our case .% coincides with .#'(taken as meaning Lebesgue) because the extension is already implicit in
our formulation (Fi(y) is not only defined for y € & but for every y such that F (y) = F7 (y)).

For the time being, we are considering only those functions y which are bounded (over the range on which
Fvaries, namely the x for which 0 < F(x) < 1). The other case will be dealt with specifically in Section 6.5.4.
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F denotes any F whatsoever, finitely additive, and thought of as defined for all
functions y (the ideal case, thought of in the weak formulation as the basic landmark).
In this case, it is clear that bounds on the indeterminacy do not make sense; neither is
there any possibility of extension.

When it makes sense (when it does not we consider F, and F),

Ey(r)=[r(x) dF(x),

in the Riemann-Stieltjes sense, expresses all that one can obtain from F; that is, distri-
butional knowledge, according to the weak formulation:

Ex(v) < F(y) < EL(y)

We should make this more precise, but this first requires the following summary.
We summarize briefly the two opposing points of view which present (in terms of the
notation introduced above) a choice between:

(strong): for a given X, an F »is to be chosen, and there is nothing more to be said;

(weak): for a given X, an Fzshould be chosen; in fact, one limits oneself to some partial Fy
that serves the purpose; often, one chooses a distribution function F(x), and then it
follows that F 5 is in .72, and that the bound, which lies between F, and F}, is not in .72.

6.4.5. Once more a word of warning. When referring to distributions, or distribution
functions, F, it is useful to think of them as mathematical entities (e.g. the function
F(x) = % + (1/x) arctan x), which are available for representing the probability distribu-
tion of any random quantity X, as required. In other words, it is better not to think of
them as associated with any given X. This distinction is of a psychological nature rather
than a point of substance — which explains why the explanation is vague and somewhat
confused — but our aim is to warn against misunderstandings that can (and frequently
do) arise through some sort of ‘identification’ of an F(x), an abstract entity, with P(X < x),
which, although equal to it, is a concept dependent on the specific random quantity X
that figures in it. A typical example of the misunderstandings to be avoided is the confu-
sion between limit properties of a sequence of distributions and similar behaviour of
random quantities which could be associated with those distributions.

6.4.6. Why the ‘Procrustean bed’? A preliminary question which it might be useful to
discuss (although more for conceptual orientation than as a real question) is the follow-
ing. Why is it that, at times, some people prefer (as in the strong formulation) to adopt
a fixed frame of reference, within which one assumes complete knowledge of every-
thing, all the details, no matter how complicated, no matter how delicate, and irrespec-
tive of whether they are relevant or not? This, despite the fact that the system is only
used to draw particular conclusions, which could have been much more easily obtained
by a direct evaluation. All this would appear to be a purely academic exercise; far
removed from realism or common sense.

In seeking the reason for this, one should probably go back to the time when fear was
the order of the day, and all manner of paradoxes and doubts resulted. The only hope of
salvation was to take refuge within paradox-proof structures — and this was no doubt
right, at the time.

We must consider, however, whether it is reasonable, or sensible, to force those who
are now strolling across a quiet park to take the same precautions as the pioneers who

199



200 | Theory of Probability: A Critical Introductory Treatment

originally explored the area when it was wild and overgrown, and were ever fearful of
poisonous snakes in the grass?
Let us note the following in connection with a specific example:

the use of transfinite induction (Chapter 3, 3.10.7) assures us that we can always
proceed in an ‘open-ended’ way, adding in new events and random entities from
outside any prefabricated scheme;

this method of proceeding is the only sensible one; at any moment new prob-
lems arise, and the thought of someone having to unscramble the enormous
Boolean algebra that he has fixed in his mind, together with the probabilities
which are stuck on all over the place, and having to construct a new edifice in
order to include each new event, each new piece of information, and to update all
his probabilities before sticking them back in, this thought is horrifying;

in evaluating probabilities (or a probability distribution), one should also proceed
step by step, making them, little by little, more and more precise, for as long as it
seems worth continuing. Even Ovid did not record the sudden appearance of a
complete Boolean algebra, armed with all its probabilities, and springing from the
head of Jove, disguised as Minerva, or rising, like Venus, from the foaming sea.

These remarks have been expressed in a manner which accords with the subjectivistic
point of view; they would seem, however, to reflect fully the requirements of any realistic
point of view, although perhaps not in such a clear-cut manner.

6.4.7. The absence of anything having a special status. We have already said (in 6.4.3)
that no partial knowledge was to be accorded special status: not even that provided by
F(x). It seems strange to deny special status to probabilities associated with the ‘most
basic’ sets, like intervals (or with continuous functions, as opposed to sets or functions of
a ‘pathological’ nature). Is this objection well founded? Nothing can really be said about
this without first considering and analysing the sense in which something has to be ‘true,
and in what sense, and on what basis, things appear to us as strange or pathological.

With regard to our own enquiry, we must distinguish that which has a logical character
from that which draws its meaning from other sources; this is necessary, because it is only
differences of a logical nature which can lead to the possibility of different treatment from
a logical point of view. We note, therefore, that, from a logical point of view, in this repre-
sentation every event corresponds to a set of points, and the only property that is relevant
is the fact that one can tell (on the basis of the occurrence of X) whether the ‘true’ point
belongs to the set or not. In this sense, there is nothing that can give rise to special forms
of treatment: the above-mentioned property is assumed to be valid everywhere by defini-
tion, and other properties do not enter into consideration. From a logical point of view,
no other aspects are relevant; for example, topological structures, or some other kind of
structures that the space may happen to have for reasons which do not concern us.

Only differences of a logical nature could possibly justify special treatment in a proba-
bilistic context. In general, there is no reason to discriminate between sets, and, in
particular, this applies to sets which have, with respect to the outcomes of a random
quantity X, the form of intervals, or anything else, however ‘pathological’ There is no
justification for thinking that some events merit the attributing of a probability to them,
and others do not; or that over some particular partitions into events countable additivity
holds, but not over others; and so on.
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6.4.8. The argument concerning what happens ‘outside .77, We know that countable
additivity cannot hold over the entire field Z (of all events X € I and random quantities
7(X) which can be defined in terms of a random quantity X, in correspondence with all
sets  and functions y). In fact, this was proved by Vitali under the additional assumption
of invariance for the measures of superposable sets; an assumption which was removed
in the extensions mentioned previously.

The above could be taken in itself as a sufficient reason for rejecting countable additiv-
ity as a methodologically absurd condition (as a general, axiomatic kind of property)
since it sets itself against the absence of any logical distinctions, which alone could
justify discrimination between events.'> This would be the case even if we disregarded
the reasons we have already put forward (Chapter 3, 3.11, and Chapter 4, 4.18), reasons
which, in fact, cannot be disregarded.

6.4.9. The argument about what happens ‘inside 77" In the particular case of L-
measurable sets, where we know that countable additivity can be assumed without giv-
ing rise to any contradictions, there is no reason to assume automatically that countable
additivity must hold (or that it is entitled to be accepted for some particular reason).
Every distinction between measurable and nonmeasurable sets disappears when we no
longer take the topology of the real line into account (imagine reshuffling the points as
though they were grains of sand). We present straightaway some counterexamples (they
can be disposed of only on the grounds of a prejudice to do so just because they are
counterexamples'?).

Here is one of them. Let X be a rational number between 0 and 1, and let us further
assume that no rational between 0 and 1 can either, on the basis of our present knowl-
edge, be rejected as impossible, or appear sufficiently probable to merit assigning a
nonzero probability to it. In this case, we have a continuous distribution function F(x):
we could also limit ourselves to considering the special case of the uniform distribution,
F(x) = x (0 < x < 1). According to the strong formulation, one would conclude that, with
probability 1, the rational number X belongs ... to the set of irrational numbers!

This, and other similar examples (which we shall make use of shortly for other pur-
poses), also show, among other things, that precisely the same distribution function can
correspond to random quantities having different ranges of possible values. This will be
dealt with in Sections 6.5.2-6.5.3.

6.4.10. Partial knowledge. Every piece of partial knowledge will be the knowledge of
the complete distribution Fy(y) restricted to some subset or other of the functions y
(it does not matter whether they are functions, sets, or a mixture of the two). For exam-
ple, one might know F(x) at some particular points (i.e. for a certain partition into inter-
vals) and/or y for some individual functions. To use the standard examples, these might

13 More precisely, the discrimination would only be justified if one concentrated the whole probability (=1)
on a finite or countable set (of points with positive probabilities. with sum 1). It is absurdly restrictive to
pretend this should always be the case; even, e.g,, if the ‘points’ of our field are ‘all the possible histories of
the universe’ (but let us leave aside such extralogical and personal judgements). The fact is, that no
continuous measure — in the mild sense of being, like Lebesgue measure, effectively spread over an
uncountable set — can satisfy our requirement.

14 This is the tactic of ‘monsterbarring; according to the terminology of Imre Lakatos, in “Proofs and
refutations’, Brit. J. Philosophy of Science, 14 (1963—64), 53—56.
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be the prevision and variance (as direct data, and not based on the assumption, either
implicit or explicit, of the existence of the distribution of which the prevision is the
barycentre etc., as is usually the case). It would, however, be equally admissible (although,
generally speaking, of little interest, and not really practicable) to provide, instead,
probabilities for certain pathological sets only (e.g. numbers whose decimal expansions
never involve more than # zeroes in the first 2n places), or the previsions of some patho-
logical functions (e.g. continuing with the same example, y(x) = sup of the percentage of
zeroes in the first # places as n varies).

In short, it is open to us to assume or require that either everything, a little or a great
deal is known about the probabilities and previsions relating to X. Do not lose sight of
the fact (even though it is not convenient to repeat it too frequently) that, in using
‘known’ or ‘not known’ when thinking in terms of the mathematical formulation (in fact,
when thinking of the actual meaning), we mean ‘evaluated’ or ‘not evaluated’

Of course, it could be, as a special case, that the partial knowledge of the complete
distribution is that defined over the intervals: in other words, that given by F(x), known
for all x. This is what we have called knowledge of the distribution through the distribu-
tion function. It is a form of partial knowledge like all the others but it is of particular
interest and we shall wish to, and have to, consider it at greater length, in order to clarify
the role played (in the present formulation) by F(x).

F(x) remains a standard tool, but re-evaluated (one might say cut down to size) in a
manner and for reasons that we shall explain. It does not play any special, privileged
role de jure, but only de facto: that is, in relation to the interpretation of X as a magni-
tude, which is what is of interest in practice, and to the geometric representation on the
line, which is what enables it to be visualized. It is for these reasons that it plays a special
role, by reason of the applications, and from the psychological point of view; despite the
fact that they cannot justify its special status from the logical standpoint.

6.4.11. The re-evaluation is not solely, however, in this conceptual specification; nor
in the fact that knowledge conveyed by F(x) no longer appears complete in that we
require something further (F(y) lying outside the Lebesgue ambit of F), whereas it
remains what it is. But it does not remain what it was: it is more restricted. It remains
what it was only in the Riemann ambit of F; outside of this (with no further discrimina-
tion between that which is inside or outside the Lebesgue ambit of F) it only provides
the bounds we have already encountered

Fu(y) < F(y) < Fi(y).

These give the limits for any evaluation of F(y) compatible with knowledge of F in the
distributional sense (i.e. knowledge of F(x)). We are, of course, dealing with the upper
and lower integrals in the Riemann sense; in particular (in the case of sets) we have
inner and outer Jordan—Peano measure. This indeterminacy does not imply any fault in
the capacity of the concepts to produce a unique answer; on the contrary, as we shall see
later in more detail, the indeterminacy turns out to be essential (given our assump-
tions), in the sense that all and only the values of the interval are in fact admissible (and
all equally so). Any of them can be chosen, either by direct evaluation, or by an evalua-
tion which derives from some additional considerations, which must then be set out
one by one (and cannot just consist of the assumption of countable additivity, for which
one must, case by case, make the choice of the family of partitions on which its validity
is to be assumed, and state the choice explicitly).
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What we have said so far concerning the role of F(x) is more or less the translation and
explication in concrete form of the two ‘reservations’ that we previously put forward in
the abstract. But the abandonment of countable additivity implies yet another revision
of the meaning of F(x): it is no longer true that a jump at x must correspond to a con-
centration of probability at the point x (it may only adhere to the point, and the point
itself might not even belong to the set of possible points). It is also no longer true that
F(x) must vary from 0 to 1 (we only require that 0 < F(-c0) < F(+o0) < 1), or that the
possible points are those at which F(x) is increasing.

A single observation will suffice. Suppose that the possible points, judged equally
likely, form a sequence (e.g. xo — 1, % — %, ..y X0 — 1/m, ...) which tends to a given point
%o from below. In this case F(x) will have a jump of 1 at x = xy, just as if X = xg with
certainty (all the mass concentrated at x). In fact, we have F(x) = (x > x¢) = 0 for x < x,,
and = 1 for x > x, because to the left of any point on the left of x, there is at most a finite
number of possible points, each of which has zero probability; whereas to the left of x
(and, a fortiori, to the left of any point on the right of x,) we find all the possible points.

This implies that, in general, if F(x) has a jump pj, at a point xy, it is always possible
(apart from the case when there are no possible points in some left or right neighbour-
hood of x;,) to decompose py, in some way, in the form p;, = pj, + pj, + pii, where pj, is the
mass actually concentrated at x,, and the other two parts are adherent to it on the left
and on the right (in the manner illustrated in the example).

This fact alone would seem to provide support for the usefulness of the convention
of regarding the value of F(x) to be indeterminate at points of discontinuity (see foot-
note 3). We shall, however, consider this in the next section (6.5.1), where the argu-
ments will be more decisive when put in the context of some further ideas.

The previous example (if we consider sequences tending to —e or to +) suffices to
show that we can, in a similar fashion, have probabilities adherent to —e and to +co.
These are given by F(—e0) and 1 — F(+0). Those distributions for which (as we have so
far assumed, in accordance with the standard formulations) these probabilities are zero
we shall call proper, and we note that F then actually does vary between 0 and 1; all
others will be called improper (and we can further specify whether the impropriety is
from below from above or two-sided).

Our previous remark concerning possible points is also clear, given the possibility of
substituting for any point a sequence which converges to it; this topic will be considered
further in due course (see 6.5.2).

6.5 An Equivalent Formulation

6.5.1. Knowledge of F(x) (apart from points of discontinuity), in other words, what we
are calling distributional knowledge, is equivalent — in the case of a proper F*> — to
knowledge of F(y) for all continuous functions y, which are bounded over the entire
x-axis, from —oo to + co. More precisely, these, and only these, functions are F-integrable
whatever F might be; conversely, knowledge of F(y) for all continuous y is sufficient,
whatever F might be, to determine F(x) for all x, apart from discontinuity points.

15 Otherwise one requires in addition the existence of a finite limit for y(x) as x— —eo, or x — +eo, or both.
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Of course, to say that knowledge of F(x) is equivalent to knowledge of F(y) for all
continuous y does not mean that it has to be known for every such y. It will be sufficient
to know it for a basis in terms of whose linear combinations any continuous function
can be approximated. This remark will serve as the foundation for more analytical kinds
of treatment (in particular, that for characteristic functions); here it merely serves to
assuage possible doubts.

Let us consider the following in more detail, further considering the possibility of
‘adherent masses, which we noted above. If F(x) has a jump p, at the point x = x, and it
were assumed that the mass pj, were concentrated at the point xy, then (as in the case of
the usual assumption of countable additivity) we would take the contribution of this
mass to F(y) to be p;y(x,). Without the assumption of concentration, however, we can
do no more than note that the contribution lies between the maximum and minimum
of the five values

max

phy(xh ) and min}limph;/(x)

as x — x, from the left or right, respectively. Proceeding differently (and more simply)
it is sufficient to exclude points of discontinuity as subdivision points (this is always
possible — there are only a countable number of them).

From this, it is clear that any function y(x) that has even a single discontinuity point is
not integrable for all F, since, if we take an F with a jump at this point, the contribution
of this mass to the integral is indeterminate. Conversely, if we know F(y) for the continu-
ous functions y, we can evaluate F(x,) from below and above as follows: we take a func-
tion y;1(x) which = 1 from —e to x — €, and = 0 from x to + <o, and decreases continuously
from 1 to 0 within the small interval xq — € to xo, and a function y»(x) = y;1(x — &), which
is the same as y;, except that the decreasing portion is now between x and x + .
The difference between the two functions is <1 between x, * ¢ and zero elsewhere; we
therefore have that

F(72)—F(y1) <F (%0 +€&)—F(x—¢), etc.

Everything goes through smoothly, except when we have a discontinuity at x = x,,.

The mathematical argument, which seems to me to show conclusively that we should
consider F(x) as indeterminate at discontinuity points x, is the following: it is more
meaningful to consider the continuous y, than to consider indicator functions of half-
lines or intervals. What seemed to be an ad hoc restriction when starting from the
intervals, is, instead, rather natural when one considers continuous functions; in this
case, one would need an ad hoc convention to eliminate it.

On the other hand, this mathematical argument is closely bound up with the point
that I consider to be most persuasive both from the point of view of fundamental issues
and of applications: the need for some degree of realism when we assume the impossi-
bility of measuring X with absolute certainty. We shall consider in the Appendix
(Section 7) limitations imposed on ‘possible occurrences’ of events due to these kinds of
imprecisions; it is clear, however (and we shall confine ourselves to this one observation
at present), that to consider F(x) as completely determined, apart from discontinuity
points, is equivalent to thinking that X can be measured with as small an error as is
desired, but cannot be measured exactly with error = 0. This suffices to render the case
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X = xo with certainty indistinguishable from the case where the mass is adherent to x,
(e.g. it is certainly at xy — 1/n, where 7 is any positive integer whose probability of being
less than any preassigned N is equal to zero).'

6.5.2. The distribution and the possible points. We have already seen, when examining
the special case of a discontinuity point, that there is a lot of arbitrariness concerning
the possible points which ‘carry’ the mass corresponding to the jump; they do not have
to enclose the jump-point, they only have to be dense in any neighbourhood of it. Before
proceeding any further, we have to examine the general relationship between the set
of possible points for a random quantity X — which we shall call the logical support of
X — and F(x), the distribution function of X; more specifically, the relationship between
this set 2 and the set & of points at which F(x) is increasing — which we shall call the
support of the distribution F (or the distributional support of X). Formally, this is the set
of x such that, for any € > 0, we have

F(x+¢)—F(x—¢g)>0.

Every neighbourhood of x has positive probability; it is therefore possible, and hence
contains possible points. It therefore follows that & is contained in the closure of 4
moreover, this condition is sufficient because, whatever partition one considers (parti-
tion, that is, of the line into intervals), no contradiction is possible (every interval with
positive mass contains possible points to which it can be attributed).

It is convenient to consider separately the various cases. Let us begin with the inter-
vals on which F(x) is constant (at most a countable collection): these may contain no
possible points but there is nothing that debars them from doing so (they could consist
entirely of possible points), so long as the total probability attributed to them is zero. At
the other extreme, we have the intervals over which F(x) is strictly increasing. Here, it is
necessary and sufficient that the possible points are everywhere dense (it could be that
all points are possible). As an example, think of the uniform distribution on [0, 1], with
either all points possible, or just the rationals. An isolated point of increase is necessar-
ily a jump-point (but not vice versa), and we have already discussed this case; either the
point itself must be possible, or there must exist an infinite number of possible points
adherent to it (of which it is a limit point). Finally, suppose that a point of increase of
F(x) is such because each neighbourhood of it contains intervals, or isolated jump-
points, where F(x) is increasing. This fact tells us that the given point is an accumulation
point of possible points; we can go no further in this case.

We are especially interested in the end-points of the above-mentioned sets. We have
adopted (ever since Chapter 3) the notation inf X and sup X for the limits of the logical
support; let us now denote by inf F and sup F the limits of the distributional support.
These are, respectively, the maximum value of x such that F(x) = 0, and minimum value

16 Without going into the theoretical justifications (or attempts at justifications), it is a fact that the different
conventions reveal practical drawbacks that make their adoption inadvisable. The convention F(x) = F(x + 0)
(or, conversely, F(x) = F(x — 0)) makes the equation Fj(x) = 1 — F(x) (used in passing from X to —X) invalid;
writing F(x) = 1 [F(x +0) + F(x — 0)] avoids this difficulty, but (see the end of 6.9.6) one sometimes needs to
consider Fy(x) = [F(x)]% and it is not true that {%[F(x +0)+ F(x-0)]}* = %[Fz(x +0)+ F*(x—0)]; and so on.

In contrast, the convention we are proposing here remains coherent within itself; moreover, it gives a
straightforward interpretation of the appropriateness of completing the diagram of Figure 6.2a (Figure 6.2b)
with vertical (horizontal) segments.
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such that F(x) = 1 (if F is unbounded — from below, from above, or from both sides — or
improper, the values are o). By virtue of what we said previously, we necessarily have
inf X < inf F < sup F < sup X. It is important to note that logical support is a bound for
distributional support, but not conversely.

More generally, it is important to realize just how weak the relation between the two
forms of support can be. If we are given the distribution, all we can say is that each point
of the support is either a possible point, or is arbitrarily close to possible points; in addi-
tion to this, possible points (with total probability zero) could exist anywhere and even
fill up the whole real line. On the other hand, given the logical support, we can state that
the distribution could be anything, so long as it remains constant over intervals not
containing any possible points. We are here merely reiterating, in an informal and rather
imprecise way, what we have already stated precisely. In this way, however, we may be
able to better uncover the intuition lying behind the conclusions. On the one hand, that,
corresponding to the concept of being able to take measurements as precisely as one
wishes, but not exactly, one is indifferent to the fact that what is regarded as possible
can be: either a point or a set of points arbitrarily close to it, respectively; either all the
points of an interval or those of a set everywhere dense in it, respectively. On the other
hand, that possible points with total probability zero do not affect the distribution, but
are not considered as having no importance (and we shall see below that they are
important when it comes to considering prevision).

6.5.3. Conclusions reached about sets lead immediately to conclusions regarding their
probabilities. In fact, we can see straightaway that P(X € I), the probability of a set /, can
actually assume any value lying between the inner and outer F-measure (in the Jordan—
Peano sense).

Let & be the set of points for which F(x) is increasing, and partition it into &, the
intersection of Zwith the closure of I (that is, the set of points of & having points of / in
every neighbourhood), and %, its complement (points within intervals containing no
points of /). Let us assume that in the closure of &7; only points of I are possible (either
all of them, or a subset which is everywhere dense there); only in the intervals contain-
ing no points of I do we have recourse to other points in order to obtain the ‘possible
points’ required for %. In this way, I turns out to have the maximum possible probabil-
ity; that is, the outer F-measure (we attribute to I the measure of every interval in which
I is dense). By applying the same idea to the complement of I, we obtain the other
extreme (the minimum probability for I, given by the inner F-measure; in this case only
those intervals containing solely points of I are considered). Clearly, all intermediate
cases can be arrived at by mixtures (for example, for a direct interpretation, consider the
fact that, without changing the distribution, possible points are taken either to be those
of the first version or the second, depending on whether an event E is true or false; by
varying the value p = P(E), 0 < p < 1, we obtain all possible mixtures).

This fact reveals another aspect of the ‘re-evaluation’ of the nature of distributional
knowledge: it says very little about what, from a logical viewpoint, is the most important
global feature of the distribution; that is, about the logical support.

6.5.4. The restriction of boundedness. There remains the question of our restriction to
the bounded case: it is an important topic in its own right and we have rather passed it
over (each topic should really come before all the others, and that is just not on). We shall
meet a further aspect (the last one!) of the ‘re-evaluation’ of the role of the distribution
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function and we shall be forced to make (and offer to the reader) some sort of make-
shift choice, not entirely satisfactory, in order to be able to draw attention to certain
necessary distinctions, without too many annoying notational complications, and with-
out running too many risks of ambiguity.

We have already seen (Chapter 3, 3.12.4-3.12.5) that, without the assumption of
countable additivity, there are no upper (lower) bounds for the prevision of a random
quantity which is unbounded from above (below). This was seen in the case of discrete
random quantities; what happens when we pass from this to the general case?

The question is an extremely deceptive one when looked at in the light of what distri-
butional knowledge is able to tell us. Starting from the knowledge of F(x), the conclu-
sion that we can derive a certain value, F((J), which ‘ought to be’ that of P(X), will be
more acceptable if not only the distribution F, but also the logical support of X, is
bounded (and knowledge of F gives us no information about this). We shall put this
conclusion more precisely, and also examine more closely the value of the partial knowl-
edge that we can obtain in this connection.

First of all, it is convenient to specialize to the case of non-negative random quantities
(inf X > 0): given any X, we can, of course, decompose it into the difference of two
non-negative random quantities by setting

X=X(X > o) + X(X < 0),
or, in a different but equivalent form,
X:(o v X)+(o A X)‘

In either case, the first summand has value X if X = 0, and zero otherwise; and the sec-
ond summand has value X if X < 0 and zero otherwise (and is therefore always nonposi-
tive: in order to obtain the difference of nonnegative values explicitly, it suffices to write
1st — (-2nd) instead of 1st + 2nd).

For X non-negative and bounded, we certainly have

P(X)=F(0)= [« dF(x).

A non-negative X that is unbounded can be turned into a bounded quantity by either
‘amputating’ or ‘truncating’ it."” We shall apply the first method, which is simpler. We have

P(X) > P|X(X < k)| = FlO(O < 1<)J:Ix dF (x);

this holds for any K, and hence
P(X) > [x dF(x) = F(D),
0

where this defines F({(J) by convention in this case. The integral may be either conver-
gent or divergent: in the latter case, we must have P(X) = F() = +oo, whereas, in the

17 To ‘amputate’ means to put ¥ = X(X < K): to ‘truncate’ means to set Z = X A K; in other words, Y =Z = X,
so long as X < K, but Y= 0 and Z = K otherwise. Clearlywe have YS Z< X (Y=Z=Xif X< K and Y<Z< X
when X > K, since 0 < K < X).
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former, we can only say that all values in the range F({J) to +e- are possible for P(X)
(including the two extremes). Note that the case of convergence also includes the case
where the distribution is bounded (sup F < ), but arbitrarily large possible values of X
(with total probability 0) are permitted.

6.5.5. We have adopted as a convention the definition F((I) = / x dF(x); this holds even
when the integral is improper (it has to be extended up to +<) and only makes sense, as
a limit, when it converges. This convention can be extended to the general case (to a
distribution unbounded either way) with a similar interpretation; that is, with the
understanding that

0 +00

i1

—0 0
if both integrals exist. We have to stress the interpretation we give to our convention, in
order to draw a distinction between it and the interpretation it has in the usual formula-
tion (that is, in the strong formulation). In the latter, the convention is taken as a defini-
tion of the prevision P(X) of a random quantity X with distribution F(X): if one of the two
integrals diverges, we either have P(X) = o or P(X) = —eo; if both diverge, P(X) has no
meaning.

So far as we are concerned, P(X) will from henceforward have the meaning we have
assigned to it; it will not make sense to set up new conventions in order to redefine it for
this or that special case. Given the knowledge of F(x) one could work out possible
bounds for P(X) — always on the basis of the (weak) conditions of coherence — but one
must be careful not to add any further restrictions and not to interpret the acceptable
ones as being in any way more restrictive than they actually are. Not a single one of the
values that can be attributed to P(X) without violating coherence should be ruled out as
unacceptable. This would be a mistake; excusable if due to an oversight, but inexcusable
if due to carelessness, or an inability to understand the demands of logical rigour.

Our convention should be interpreted entirely differently. It defines F((T) — and, similarly,
F(y), for any y — as information relating to the distribution F (considered as a mathematical
entity); in order to avoid any confusion, it would perhaps be better to call F({(J) the mean
value of the distribution F, rather than the prevision (a notion concerning a random
quantity X). Such a mean value is of interest when we are considering the previsions of
random quantities X, Y, Z, all having the same distribution F; it is almost never possible,
however, to simply state that the previsions must all be equal and coincide with F({J).

This conventional mean value does, however, play an important role for the following
three reasons. In the first place, it serves to provide the logical conditions that charac-
terize the set of admissible values for P(X). Secondly, it always provides a particular
admissible evaluation of P(X), whose acceptance can often be justified by making an
additional, meaningful assumption. Thirdly, it turns out that simultaneously accepting
this additional assumption for several random quantities cannot lead one into
incoherence.

If there is no additional knowledge, there are no logical conclusions to be drawn in
passing from F(x) to P(X). Fortunately, knowledge is available concerning a basic fact of
a logical nature: that of the logical support of X (the set of possible values), or simply
knowledge of the extremes, inf X and sup X, or, even more simply, knowledge of whether
they are finite or infinite. If they are both infinite, nothing more can be said about
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P(X) — all values —e> < P(X) < +eo are admissible. If they are both finite, we must cer-
tainly have P(X) = F(O). If only one of the extremes is infinite, all values between it and
F(O) are admissible; in other words, if inf X = —c0, we have —eo < P(X) < F((O), and, if sup
X = +oo, we have F(O) < P(X) < +eo. In just one special case we also have a uniquely
determined value: if F(J) = +e0 and inf X > —eo, then we certainly have P(X) = +o (and,
similarly, if F((D) = —eo, and sup X < +eo, then P(X) = —).

Turning to the case of arbitrary functions, y(x), there are no essential changes to be
made, but there are a couple of details.

In order to remain within the domain of distributional knowledge, we must limit our-
selves to considering F (integrals in the Riemann—Stieltjes sense etc.) and, hence, to
consideration of y which are continuous (see 6.5.1), or, alternatively, to considering the
two values F(y) < F5(y) (which are, in general, different). We shall always adopt the
latter course, and, consequently, we will omit the .72. Extension to unbounded y(x) has
to proceed as above; by separating into positive and negative parts, y(x) = [0 V y(x)] +
[0 A y(x)], and then amputating each of the parts (considering, for example, [0 V
y(x)]-[y(x) < K] instead of 0 V y(x); we shall call this yx(x)): we then take F~(yx) and F*(yx)
relative to these, and obtain F7(0 V y) and F*(0 V 7) as limits as K — oo. Similarly, we
deal with 0 A vy, taking K < 0 and tending to —eo. Summing, we obtain F (y) = F (0 Vy) +
F7(0 A y) (and similarly for F*). If the sum is of the form oo — oo, it must obviously be
understood as —oo for F~(y) and + o for F*(y).

The second detail (perhaps it would be better to call it a remark) concerns a simplifi-
cation that can arise in the case of an arbitrary y(x), in comparison with the simplest
case, y(x) = O(x) = %, considered above. In fact, if the function y is bounded (|y (x)| < K
for all x) then y(x) is certainly also bounded (and the same holds for semi-boundedness).
If y(x) is not bounded, and all the values of x (oo < x < +0) are possible for X, then the
random quantity y(X) is also unbounded, in the same manner. It is only in the case of
y(X) unbounded and X having a more restricted support that the question of the bound-
edness of y(X) cannot be settled immediately, but only by examining the values that y(X)
assumes on the support of X (it will often, however, be sufficient to check whether it is
bounded on the interval inf X < x < sup X; only if it does not turn out to be bounded
there will it be necessary to proceed to a more detailed analysis).

6.5.6. This having been said, our previous conclusions, apart from obvious changes,
can now be restated, a little more concisely, in the general case.
The admissible values for Py(x)] are those which satisfy the inequality

F (y)<Ply(X)] < F'(y)

when y(X) is bounded (that is, if —e < inf y(X), sup y(X) < +o0); with F (y) replaced by —
if inf y(X) = —oo; with F'(y) replaced by + if sup y(X) = +co.

In other words: in the double inequality, the right-hand side, left-hand side, or both, must
be suppressed according to whether we have unboundedness on the left, right or both.

In particular, we obtain a uniquely determined value for P(X) only if F(y) exists (that
is, F (y) = F'(y)). This value is finite if y(X) is bounded; infinite (—oo or +oo) if y(X) is
semi-bounded (the direction of the boundedness is obvious).

To see how the present statement contains the previous one as a special case, observe
that if both the integrals (from - to 0 and from 0 to +o) diverge, then F ((J) = —e0 and
F'(O) = +eo.
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6.5.7. Prevision viewed asymptotically. If F(x) = P(X < x), the mean value of the distri-
bution F, in addition to its logical interpretation within the confines discussed above,
may often have a reasonable claim to be taken as the value of P(X), even if there are no
circumstances compelling one to make this choice.

This is the case when we choose to deal with an unbounded distribution (either one-
sided or two-sided), but where the choice might reasonably be seen as an idealized
approach to something that, had we been more realistic, should be considered as bounded.
To put it more straightforwardly: we think that F(x) represents pretty well our idea of the
distribution throughout the range a < x < b, which, practically speaking, includes all the
possible values; to also include the ‘tail’ to infinity is both convenient from a mathematical
point of view, and also in practice, since we would not really know just where to set the
limits @ and b (but this latter point should not be taken too seriously). The most appropri-
ate ‘model’ is to conceive of using the bounded distribution as ‘a limit case of distributions
amputated or truncated to intervals, whose limits are so large that an asymptotic expres-
sion is appropriate’ (that is, for 2 — —eo and b — +oo, in whatever way).

From among the logically admissible values for P(X) we shall often select this one
when such justifications of asymptotic kind appear to be valid. Sometimes we shall
denote this value by P(X): the accent will simply signify that this particular choice has
been made (it serves as a shorthand) and will not imply that P has been thus marked
because it is a special value of some sort.

We have stated already that there is no danger of contradiction resulting from the
systematic use of P; this means that P is additive.

(We observe that in choosing values for P(X), P(Y) and P(2), it is not enough merely
to ensure that each of them is admissible — for example, if we have Z = X + Y with cer-
tainty, then our choice must satisfy P(Z) = P(X) + P(Y).)

That this condition is satisfied for P follows from the additivity of the integral. We are,
however, dealing with a two-dimensional distribution, and we shall therefore deal with
this later (in Sections 6.9.1-6.9.2).

In order to avoid unnecessary complications, we shall, unless otherwise stated, adopt
the convention that we shall always take P = P (exceptions will be made when there is
some critical remark worth making). Important points will be made in Section 6.10.3,
and in Chapter 7, 7.7.4, concerning the connection with characteristic functions and
Khintchin’s theorem.

6.5.8. Probability distributions and distributional knowledge. We are now in a position
to summarize the conclusions we have reached as a result of following through the weak
formulation in a coherent fashion, and also the conventions that have proved necessary
in order to make the formalism and the language conform to the requirements of the
formulation. In fact, we shall not merely provide a summary, but also fill in some more
details, mentioning in an integrated manner certain points hitherto made only inciden-
taily: in this way, we shall build up the complete picture.

The distinction, originally presented as if it were a small difference in attitude,
between a complete distribution, attached to a random quantity and containing all the
information about it, and a distribution function as a mathematical entity, useful for
providing a partial indication of the form of a random quantity, is now much more
sharply drawn. We have seen, in fact, a number of ways in which the latter form
is incomplete and not sufficiently informative; this became clear as we proceeded to
‘re-evaluate’ the notion.
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Distributional knowledge, as we introduced it (in a way we considered appropriate to
make of it an instrument whose range of application was properly defined), is sufficient
to obtain a description of the image of a ‘distribution of probability mass’ within well-
determined ‘realistic’ limits. One can ask how much mass is contained in an interval
(but without being able to state precisely whether the mass adherent to the end-points
is inside or outside the interval, and with no possibility of saying anything with respect
to a set having a complicated form, or not expressible in terms of intervals). One can ask
for the mean value of any continuous function with respect to the mass distribution
(but not for functions in general, unless one assumes some further conditions). Nothing,
however, can be known precisely concerning which points are possible and, without
this knowledge, we cannot even say whether or not the mean value of the distribution is
the prevision of an X having that particular distribution function.

To summarize: distributional knowledge is only partial, and has to be made precise
before it provides complete knowledge. By making it precise, one can obtain many
different probability distributions from it; they all have in common, so to speak, those
features that are apparent at first sight, without examining the details more closely
under a microscope.

Given this analysis, one can now pick out those properties which the strong formula-
tion obtains from the distribution function by virtue of the assumption of countable
additivity. These properties might or might not hold (by chance), and might also hold
for nonmeasurable sets or functions (should these be of interest). Above all, one needs
to state precisely what one means by ‘possible points.

In order to avoid any misunderstandings or ambiguity, and to pay close attention to
the distinctions we have drawn, it would be better if we reserved the term ‘probability
distribution’ for the complete distribution, Fy; and always used ‘distribution function’
for what, in an abstract sense, should be called ‘the equivalence class of all the probabil-
ity distributions which are the same if we confine ourselves to F’ (to put it briefly, and
more intuitively, ‘when we look at them with the naked eye’), and which, in the final
analysis, can be said to be F(x). This would be (perhaps?) a little overdone, compared
with the standard practice of always saying ‘distribution’ At times (when it seems neces-
sary to emphasize the point), we shall be more precise and say ‘in the sense of a distribu-
tion function’; however, it will generally be left unstated, and clear from the context.
What is important is that the reader always bears in mind ‘as a matter of principle’ that
it is necessary to draw a distinction between those things which depend only on F(x),
and those which do not.

6.5.9. A decisive remark. We have been led, for various reasons, to rule out the assump-
tion of countable additivity. Although it is not directly relevant to our specific purpose,
we ought perhaps to give some thought to the reasons why most people are quite happy
to accept this assumption as not unreasonable.

Leaving aside the question of analytic ‘convenience;, seen within the Lebesgue frame-
work (which, in any case, appeared on the scene afterwards), I think the reason lies in our
habit of representing everything on the real line (or in finite-dimensional spaces), and in
the fact that the line (and these kinds of spaces) does not lend itself to being intuitively
divided up into pieces other than those which get included ‘by the skin of their teeth’

To see this, note that the partitions actually made are those which are easiest to make:
the ‘whole’ (length, area, mass etc.) is divided into a finite number of separate parts,
with an epsilonth left over; in order to obtain an infinite partition, one carries on
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dividing up that epsilonth. If one has to share out a cake among # persons, one could
always give 1 to the first one, 1 to the second, 1 to the third, ..., (1 " to the last two; if
8 2
there were a countable infinity of persons, one could cope with them all by this method.
But would they be satisfied? Protests would quite likely arise by the time one reached n = 3,
and, as one proceeded, the number who came to regard this as some kind of practical
joke rather than a ‘genuine’ method of distribution would increase, as would, quite
understandably, their anger.

A ‘genuine’ method, in this sense, for subdividing an interval into a countable parti-
tion, is that used by Vitali, in proving the theorem we referred to earlier. The set I, is
formed from points of the form a + rj, where ro = 0, ry, 1, ..., ¥, ... are the rationals
(ordered as a sequence), and the a are the irrational numbers of Iy, chosen so that one
and only one representative from each set of irrationals which differ among themselves
by rationals is taken. This example has a pathological flavour, however, as a reshuffing
of the points, not to mention its evident appeal to the axiom of choice.

In contrast, if we considered a space with a countable number of dimensions, the
matter would be obvious. If a point is ‘chosen at random’ on the sphere Z hxﬁ =1in the
space of elements with countably many coordinates xy, all zero except — at most — a
finite number, then there is equal probability (zero — see Chapter 4, and the appendix,
Section 18) that any of the half-lines x;, (positive or negative) will be ‘the closest half-
line, Leaving aside the ‘random choice; the countably many ‘pieces’ of the sphere, I;, and
I,,, defined by ‘x is the greatest coordinate — in absolute value — and is positive () or
negative (/") are entirely ‘symmetric’ and ‘intuitive’ (the number of dimensions is, of
course, so much greater than three).

The essence of the remark can be put, rather more briefly, in another way. By a set of
measure zero, the currently fashionable measure theory means a set that is foo empty to
serve as an element of a countable partition. This is a direct consequence of imposing
countable additivity as an axiom. This implies, in fact, that a union of a countable num-
ber of sets of measure zero (in the Lebesgue sense) is still of measure zero. It is no
wonder that in such a docile set-up any kind of process consisting in taking limits is
successful, once all the necessary safety devices have been incorporated in the
definitions!

6.6 The Practical Study of Distribution Functions

6.6.1. What we are going to say here holds for any kind of distribution: one can, if one
wishes to form a particularly meaningful image, think of mass distributions; or (bearing
in mind that we are dealing with the ‘distribution function’) one can think in terms of
the probability distribution, which is the thing we are specifically interested in. It will,
however, be most useful, particularly for the more practical aspects, to think mainly in
terms of the statistical distribution.

In studying a distribution, we may, roughly speaking, distinguish three kinds of ideas
and tools:

descriptive properties,
synthetic characteristics,
analytic characteristics.
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6.6.2. Many of the properties already mentioned are descriptive properties. As exam-
ples, we have the following: whether a distribution is bounded or not; proper or
improper; whether F(O) is finite, infinite (negative or positive) or indeterminate (co — o0);
whether or not there are masses of each type A, B and C (6.2.3), and, in particular, in
case A, whether the density is bounded, continuous or analytic; whether this density (or,
in case C, the concentrated masses, for example with integer possible values) is increas-
ing, decreasing, or increases to a maximum and then decreases (unimodal distribution),
or whether the behaviour is different again (for example, bimodal etc.); whether the
distribution is symmetric about the origin (F(-x) + F(x) = 1) or about some other value
x = & (F(€ - x) + F(& + x) = 1; if the density exists, A& — x) = A€ + x), and, in particular,
fl—x) = flx) if £ = 0).

We could continue in this way but it is sufficient to say that one should note how
useful it can be to provide sketches showing these various aspects. Sometimes these
alone will be enough for one to draw simple conclusions; more frequently, they provide
useful background knowledge to be considered along with quantitative data.

6.6.3. In order to be able to interpret what we shall say later by making use of various
graphical devices (and, in this way, to better appreciate both the meanings of the differ-
ent notions, and the properties and particular advantages of each method), we will
mention briefly the principal graphical techniques used.

We shall present them using the language of the statistical distribution (for N ‘indi-
viduals’) but they are completely general (if we consider the cases of continuous distri-
butions as covered by taking N very large, or, in mathematical terms, mentally taking
the ‘limit as N — «’). For convenience, we shall only deal with bounded distributions
over the positive real line (F(0) = 0, F(K) = 1, K = sup F <eo). This will be useful for fixing
ideas, necessary for some of the points we shall make, and quite sufficient to show how
the same things go through in the general case, with appropriate modifications.

The graph of the distribution function, y = F(x), is given in Figure 6.2a; in the statistical
case this becomes a step function (which in the limit is a curve), called the cumulative
frequency curve, with a step of 1/N at each point x;, the value, for the /sth of the N indi-
viduals, taken by the quantity under consideration (for example: age, height, income
etc.). F(x) gives the frequency, that is the percenta\ge,18 n(x)/N, of the individuals (out of
the total of N) for whom the quantity has a value not exceeding x.

As we already pointed out (6.2.5), the ‘individuals’ must sometimes be counted with
different ‘weights’ p;, (instead of each with 1/N); it could also happen that several indi-
viduals may have the same value x;, (and we then have a mass at that point of,
z « Pr (xx =xy,), or, in particular, n/N if the masses are equal and # values coincide). We

shall concentrate on the simplest case, however, in order to fix ideas concerning certain
aspects of importance, without prejudicing the extension to the more general case.
The graph of the inverse function, x = F '(y), which we considered already in
Section 6.2.6 (Figure 6.2b), is not widely used. It is, however, a meaningful concept
known as the gradation curve (Galton); its interpretation is best illustrated in the case

18 By ‘percentage;, we mean the proportion (not the proportion multiplied by 100 as is customary): in other
words, 27% = 027, 27-58% = 0.2758 etc. Nothing is altered (we could mention that this way of writing it is
convenient in that it avoids zeroes on the left, and is more expressive when it comes to reading it): the
symbol % is a conventional form of /100’ (divided by 100), as a right operator on any number.
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of heights — it is the profile obtained by lining up the individuals in increasing order of
height (a kind of ‘Right dress!).

When income is the quantity of interest, one could think, for instance, of a pile of
equal coins rather than of the individuals. This image is useful for clarifying the concept
required in cases like the present one, where an obvious meaning attaches to the sum of
the x;, values of the various individuals; here, the total income of a certain group of
individuals. The area under the curve, and relative to a given interval y’ <y <y”, repre-
sents the total income (reduced, on that scale, from 1 to 1/N) of the individuals belong-
ing to the group of those for whom the percentage point of ‘the least rich among them’
lies between y’ and y”. In any case, dividing by the length of the segment, one always
obtains the mean value (arithmetic mean) of that group of individuals, and this also
makes some sense in the case of age and height etc., although the meaning is rather one
of convention, since the sum does not have a straightforward interpretation. In any
interval (and, in particular, for the whole interval [0, 1]) the mean value is, therefore, the
height of the rectangle of equivalent area (in other words, in more visual terms, leaving
equal areas above and below).

In those cases where the sum has an obvious meaning (as in the case of income), a
third graphical device is also useful and meaningful. It is known as the ‘concentration
curve) and is the cumulative version of the previous one (with the total area taken to be
unity by convention: e.g. total income = 1). Figure 6.3 shows the concentration curve
z = G(y) (Lorentz), and the gradation curve x = F '(y) displayed together, with total
income and average income, respectively, taken as the units of measure. By definition,
G(y) represents the fraction of the total income owned by the fraction y of least wealthy
individuals. In the case of a uniform distribution (all incomes equal) the curve would
be the diagonal of the square G(y) = y; in general, the area between the curve and this
diagonal — called the area of concentration — when divided by the maximum possible
area, 5 (corresponding to all income in the hands of one of the N individuals, N large)
is called the concentration ratio, and gives an idea of the inequality of distribution
(Gini). At each point, the slope of z = G(y) is given by x = F"!(y); the mean corresponds
to the point of maximum distance from the diagonal (where G'(y) = 1, we have a tan-
gent parallel to the diagonal).

6.6.4. The representation by means of the density curve is widely used; in the statisti-
cal case this is called the frequency curve. It is this representation which best shows up
the features of behaviour that we were discussing earlier.

We must point out, however, that the density is often (and, strictly speaking, in the
statistical interpretation always) a fiction, or a mathematical idealization. Any actual
statistical distribution (with a finite number of individuals, N) must be discrete: we

either have N masses p;, (possibly equal — p;, = 1/N — possibly not) with z W on=1or

fewer than N if several individual values are equal. Even in the actual case of a distribu-
tion of mass, we would find similar discontinuities once we descended to the atomic
scale, or even indeterminacy because of thermo-agitation and so on, which would pre-
vent us localizing the masses precisely.

In actual fact, even in physics, the density is acknowledged to be a sensible tool if we
consider the ratios of mass/volume for neighbourhoods of a point which are not too large,
so that macroscopic inhomogeneity has little effect, and not too small, so that the effects
of structural discontinuity are avoided. In any case, if we make the transition from step
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Figure 6.3 The concentration curve z = G(y); for z
example, in the case of incomes, to the fraction y of the
least wealthy, there corresponds the fraction G(y) of 1
total income, which is represented on the graph below
(the gradation curve: see Figure 6.2b and the
discussion in 6.2.6) by the fraction of the total area to
the left of y; that is, including all incomes <x = m dz/dy
(m = average income). Observe, in particular, that x=m
at the point where the curve z = G(y) has slope = 1 (the
tangent is parallel to the diagonal; it is therefore the
point of maximum distance from the diagonal). The
diagonal, z =y, corresponds to the case of equal
distribution; in all other cases, we must havez< y, z
increasing and concave. \

function to distribution function without attributing to the latter any unnecessary irregu-
larities of slope, then flx) = F'(x) can, to a large extent, be considered as determined.
On the other hand, the curve is sometimes smoothed; that is, modified in order to simplify
it, possibly into a more tractable analytic form, more or less of a standard type.

It is sometimes stated, in this context, that one is attempting to remove ‘accidental
irregularities’ This, however, can only be done from a probabilistic angle and in the
necessary depth. For this reason, we shall not go into the question here. anything we
might say would only tend to give rise to superficial and misleading ideas, which can
come about easily enough, even without our saying anything (we shall come back to this
in Chapters 11 and 12; we hinted at the underlying idea in Chapter 5, 5.8.7).

The most elementary and, at the same time, the best way of introducing the density
in practice (and of constructing the density curve) consists of considering the average
density over intervals of some appropriate subdivision (neither too coarse nor too fine,
for reasons stated already). Unless there is any reason to do otherwise, we usually take
equal subintervals (for convenience). The average density in the general interval
[£5 £ii1], is the incremental ratio of F(x), [F(§i,1) — F(§)1/ (81 — &). Figure 6.4, formed by
rectangles whose bases are the subintervals, and whose height is the average density, is
called the histogram"® (sometimes called a column diagram). Here also, by smoothing,
one can pass to a continuous curve.

6.6.5. The synthetic characteristics are the quantitative aspects, which often provide
useful information, enabling us to find out all we need to know about the distribution in

19 Note that it is essential to indicate the subdivisions between the rectangles (and that it is not sufficient
merely to provide the upper contour). In fact, it is essential to distinguish the case of two (or more) consecutive
rectangles of equal height from the case of a single rectangle given by their union. In the first instance there is
more information, since we know that the average density is the same in the different subintervals.
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4 Figure 6.4 An example of a histogram.
(It represents the distribution of families in
7— Italy in 1951, according to the number

7 in each.)

7 7

7
.

»

so far as it relates to a particular problem. It is sufficient to recall Chisini’s definition of
a mean (Chapter 2, Section 2.9), in order to understand how the knowledge of a ‘mean’
of a distribution can meet our needs. Often, this will be the mean value (arithmetic
mean), given by F(CJ), or some other associative mean, y 'F(y), with y increasing,
corresponding, in the probabilistic interpretation, to the prevision, P(X) = F(O), or,
more generally, to the y-prevision:

P, (X)=y"'[P(y(X))]- (6.3)

Sometimes, in addition to the mean (or prevision), one requires the separation, X - &,
or the deviation, | X - £| (the absolute value of the separation), of X from a given pointe
& (which may be anything). On occasions, it will be particular choices of £ which are
important, as we have already seen in the case of the standard deviation — the quadratic
prevision of | X — £| with & = P(X) — because it is with this choice of £ that it assumes its
minimum value and maximum significance. Leaving aside the probabilistic interpreta-
tion, to consider the separation is simply to consider shifting (from 0 to —-¢) the origin of
the distribution; to consider the deviation is to turn over that part of the distribution on
the negative axis and superimpose it on the positive axis.

Finally, we note that there are other synthetic characteristics which cannot be viewed
as means (at least, not without distorting their meanings).

6.6.6. According to the purpose in hand, one can distinguish between measures of
location and measures of dispersion (or spread), which are useful in giving some idea of
‘whereabouts’ the distribution tends to be concentrated, and ‘to what extent’ it is con-
centrated (these are often the two features of greatest interest). Other characteristics
which one occasionally attempts to measure by some kind of indices are, for example,
the asymmetry, the ‘kurtosis, and so on. A brief remark or two will suffice.”’

20 For a more extensive treatment, see M.G. Kendall, and A. Stuart, The Advanced Theory of Statistics
(3rd edn), vol. I, Griffin, London (1969), pp. 32-93.
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The most meaningful measures of location are, generally speaking, the means (in
which the Chisini sense; precisely because of the property expressed by his definition).
Most often, however, one is interested in measures which behave sensibly under trans-
lation (and we implicitly mean homogeneous: in other words, if X transforms to aX + b,
the measure is multiplied by a and increased by b). In general, this property does not
hold: for example, among associative means only the arithmetic mean has the property.*

Examples of measures of location which do have the required property are the com-
monly used median (or median value) and mode (or modal value) of a distribution.

The mode is the value for which the density is a maximum. It is clearly defined and
meaningful in the case of distributions whose densities have regular behaviour, and
which are unimodal (that is, have a unique maximum), especially when defined in terms
of simple functions. The more we depart from such well-behaved situations, the less
clearly defined and meaningful it becomes.

The median is the central value of the distribution, the value which splits it in half;
that is, such that F(x) = % (or, more explicitly, x = F 1(%)). It is of the value which has the
property of minimizing P[|X — £|], the prevision of the deviation.**

The median is a special case — the most important- of a positional value, or quantile,
of a distribution. The definition of the p-quantile (0 < p < 1) follows along the same
lines; x,, = F!(p), that is, the value which divides up the distribution into a mass p on the
left, and 1 - p on the right. For p = 0 and p = 1, we have inf X and sup X (making the
natural convention of choosing one of these values rather than any value <inf X or >sup
X). These values have the translation property, but are not suitable (for p = %) as really
meaningful measures of location; they are useful as ‘milestones; well suited to describ-
ing the distribution in terms of intuitive subdivisions, especially when considering
quartiles (p = i orp = %), deciles and centiles (p multiples of % or ﬁ), or for furnishing
measures of dispersion (as we shall see).

In the case of measures of dispersion (or, if looked at in the opposite sense, measures
of concentration), it will also prove important to consider a homogeneity property (simi-
lar to the translation property considered above). For the most important measures,
when we consider aX + b the measure is multiplied by a (and b has no effect).

Let us consider the special case of a distribution transformed into its ‘normalized’ (or
standardized) form, by taking the mean value as the origin, and the standard deviation
as the unit (m = 0, o = 1). If we denote by a* the index for the normalized distribution,
then, after transformation, the translation property would lead to a = m + ca* and the
homogeneity property to a = ca* If a = a* (in other words, invariance under translation
and change of scale) the index could be called morphological, because it expresses a
characteristic of the form of the distribution, that is, of the kind of distribution (this
terminology is often useful for denoting all those distributions which differ from each
other only by changes of origin and scale; in other words, the F(ax + b) for given F and

21 It holds for the others if the scale is transformed by y = y(x).

22 This is obvious if one thinks about it. Shifting £ to £ + d&(d¢ > 0) increases by d¢ the deviation for all masses
to the left of &, and decreases by the same amount the deviation for those on the right. It is therefore sensible to
move towards the median, at which point the masses on the left and right are equal. This property (with an
appropriate modification) allows us to eliminate the indeterminacy which occurs in F(§) = % throughout some
interval. One can define (D. Jackson, 1921) the median as the limit as ¢ — 0 of £(¢) = the value at which the
prevision of the deviation to the power | + € (¢ > 0) is minimal.
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any 4 and b; sometimes, we are limited to 4 > 0 and/or b = 0). Observe that we carried
out the normalization using 7 and o, but this is by no means the only possibility, nor is
it even always possible (6 may be infinite, or m indeterminate); we used this method
because it is the most common, and the most useful from several points of view. As an
example of the other possibilities, we mention the possibility of taking the median and
the interquartile range, in place of m and o (this has the advantage that it is always
meaningful, and avoids the oversensitivity of ¢ to the ‘tails’ of the distribution; its disad-
vantage is that it is rather crude).

Examples of morphological properties are provided by asymmetry and kurtosis, for
which one can take as indices the cubic and quartic means of the separation — P[(X —m1)"] Ln
for n = 3 and n = 4, respectively, divided by .* The first index is equal to 0 in the case of
symmetry (or of deviations from symmetry which cancel each other out),** and is positive
or negative according to whether the left-hand or right-hand tail is more pronounced.
Kurtosis, measured by the second index, is the property of whether the density is sharp or
flat around its maximum, and its main use is in discovering whether a density which
appears to be normal (see 6.11.3) is, instead, leptokurtic or platykurtic; that is, more
peaked or more flat than it should be around the maximum. The index given distinguishes
between the three cases depending on whether it is =, >, <*+/3.

Let us now go back to the case of dispersion and mention, in addition to the mean
deviations (from m or any other value), the means of the differences, P[|X - Y]] or P,
[|X - Y]], where X and Y are independent random quantities having the distribution
under consideration. The mean difference,” P[|X — Y]], is expressible (for distributions
on the positive axis) in terms of the area of concentration (see 6.6.3, Figure 6.3); the
quadratic mean difference, P[| X — Y]], does not give us anything new, it is clearly equal
to V20 (V(6? + 6%)). Other indices can be set up in terms of quantiles: the interquartile
range and the intersecile range are, respectively, the differences between the quantiles
with p=+and p =1, and with p = and p = 7; the limits, p = 0 and p = 1, give the range
of the distribution; sup - inf.

A somewhat different concept of dispersion lies behind the function I(p), (0 < p < 1)
defined by /(p) = ‘the minimum length of a segment containing mass (probability) p’ =
inf {4 sup,[F(x + 1) — F(x)] > p}. Clearly, I(p) = 0 for p < ‘the maximum jump’ (the maxi-
mum probability concentrated at a point; in particular, if there are no concentrated
masses then [(p) = 0 only when p = 0); /(p) is increasing, and tends to the range of the
distribution as p — 1. If I'(0) = ¢ > 0, the distribution has a bounded density, and its
maximum is 1/¢ (and conversely).

23 More usually, powers are used: it seems preferable and more meaningful to take ratios of means of
dimensionality 1 with respect to the variable.

24 Observe how this cancelling out depends on the particular choice of the index. In general, any index
which translates an essentially qualitative property into a quantitative measure introduces a degree of
arbitrariness. One should take account of this both by exercising caution in interpreting the conclusions,
and also by avoiding abstract verbal discussions concerning the ‘preferability’ of various indices; this
question should, if at all, be examined in relationship to the concrete needs of the problem.

25 In the case of the statistical distribution (with N individuals) one considers mean differences with and
without repetition. The latter implies that one excludes X and Y referring to the same individual (excluding
the fact that it can be drawn twice) and the index is then multiplied by N/(N - 1). In fact, the probability of a
repeat drawing is 1/N; hence, we have ‘index with’ = (1 — 1/N). “index without” (1/N).0 (0 being the
difference between X and Y when they coincide).
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6.7 Limits of Distributions

6.7.1. We have had occasion to note that certain properties and synthetic character-
istics of the distribution function are rather insensitive to ‘small changes in the form
of the distribution, while others are very sensitive. To make this more precise, we
must first say what we mean by a ‘small change’; at the very least, this implies saying
what we mean by a sequence of distributions, F,(x), tending to a given distribution
F(x) as n — oo. Better still, when this is possible, it means defining a notion of
‘distance’ between two distributions, allowing us to recast F,, — F in the form dist
(Fy, F) — 0.

Fortunately, there is little doubt about what form of convergence is appropriate in the
case of proper distributions (and we shall limit ourselves to this case). To say that F, - F
will always mean convergence of F,(x) to F(x) at all continuity points of F (or, alterna-
tively, convergence of F,(y) to F(y) for every bounded and continuous y). An equivalent
formulation is expressed by the condition:

given any € > 0, the inequalities
F(x—g)—¢ < F,(x) < F(x+¢) + ¢ (—oo <x< oo) (6.4)

are satisfied for all n greater than some N.

A condition of this form makes it evident that the smallest value of e for which it holds
can be defined as the distance, dist (F),, F), between F, and F (geometrically, this is the
greatest distance between the curves y = F,,(x) and y = F(x) in the direction of the bisec-
tor y = —x). We shall not prove this; we merely observe that this corresponds to the idea
that a given imprecision is tolerated not only in the ordinates (a small change in the
mass, in the probability), but also in the abscissae (small changes in the position of the
mass, even the concentrated mass).

It often happens that a sequence F, does not tend to a particular distribution F,
but only to a distribution of the same kind as F (as defined in 6.6.6). In other words,
F,(a,x + b,) tends to F if we choose the constants a,, and b, in an appropriate manner.
The most common case is that of the normalized distribution F,([x — m,]/0,,) (with a,, =
1/6, and b, = -m,/0,), but this is not the only one, and is not always applicable, even
when all the variances (of the F, and of F) are finite and convergence to F occurs (by
choosing the constants differently).?®

6.7.2. We can straightaway make some important points.

Every distribution can be approximated to any desired degree by means of discrete
distributions, or by means of absolutely continuous distributions.

It suffices to observe that this follows, for example, if we set

F,(x) = the largest multiple of 1/# which is less than F(x)+1/2n, (6.5)

26 The masses which move away (as # increases) and which die away (as # — o) without changing the limit
of the distributions may, for example, change the o,,.

Example. Let F, have masses %(1 —1/mn)at + 1 and masses %n at + 1; we have 6, ~ Vi1 = oo; the normalized
F, would have two masses ~ 1 at + #,, &, ~ 1/Vn — 0 (and two which become negligible) and would tend to a
distribution concentrated at 0; the F, (unnormalized) tend, on the other hand, to F, with masses % at+ 1.
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or, respectively,

1
E, (x)z.[F(x+u/n)du, (6.6)
0
from which it follows that
I (x):F,; (x)zn[F(x+l/n)—F(x)] < m (6.6")
As aresult:

A property which has been established only for discrete distributions (or only in
the absolutely continuous case, or simply for cases with bounded density) holds for
all distributions if that property is continuous (a property is continuous if it holds
for F whenever it holds for the F, such that F,, - F).

It is easy to show that continuity usually holds for most of the properties that are
required. It is much less long-winded to write out the proof (even if it follows the same
lines) in one or other of the special cases, whichever is convenient for our purpose.

It is useful to bear in mind that in order for a sequence F, to be convergent (assuming
that the F, tend to a proper limit F) it is necessary that the F, be equally proper (in the
sense that F,(x) — F,(-x) tends to 1 as x — oo, uniformly with respect to #); and,
conversely, that this condition is sufficient to ensure the sequence F,, or at least a subse-
quence, tends to a proper limit distribution. (Ascoli’s theorem).

6.8 Various Notions of Convergence for
Random Quantities

6.8.1. In the most natural interpretation, the notion of convergence deals with sequences
of random quantities. However, although for the sake of simplicity we shall deal with
sequences Xj, Xy,..., Xy,,... (n = o), nothing would be altered were we to deal with X;
with ¢ — £, (real parameter), or, similarly, with X; associated with elements ¢ of any space
whatsoever (in which ¢ — £, makes sense). Instead of a sequence, we might be dealing
with a series (but this amounts to the same thing when we consider the sequence of
partial sums); instead of a random quantity, we might be dealing with random points in
general (for example, ‘vectors’ or n-tuples of random quantities), provided that in these
spaces the concepts involved also make sense.

Here we are merely concerned with setting out the basic ideas, and noting, in particu-
lar, the numerous points at which the weak conception, to which we adhere, leads to
formulations and conclusions different from those usually obtained as a result of
following the strong conception.”

27 Itis not a question, of course, of declaring a preference for weak convergence or strong convergence
(although the identity of the terminology does reflect a relationship between the concepts). In both the weak
and strong formulations these and other notions of convergence exist, and each might present some
difficulties of interpretation in one or the other formulation.



6 Distributions

6.8.2. In the first place, it is possible to have definite convergence, uniform or nonuni-
form, either with a definite limit or not; by definite we mean independent of the evalu-
ation of the probabilities; in other words, something that can be decided purely on the
basis of what is known to be possible or impossible.

As an example of definite, uniform convergence to a definite limit, consider the total
gain in a sequence of coin tosses (Heads and Tails). A ‘success’ is defined by the occur-
rence of a Head, or by 100 consecutive Tails following the last success; the gain is (%)n
for the nth success, and 0 for a failure. The total possible gain is 1, and it is certain that
after at most 100# tosses the first # terms will have been summed.

Definite, uniform convergence, but to an uncertain (random) limit, occurs in
a sequence of coin tosses if the successive gains are +,+ (%) ,+ (—) - (%)n yer
(+ for Heads, — for Tails); the remaining gain after # tosses is (in absolute value) cer-
tainly <(%)" but the limit could be any number between -1 and +1.

In the following example, convergence is definite, non-niform, and may be either to a
definite or to an uncertain (random) limit. We have an urn containing 2N balls, a finite
number, but for which no upper bound is known. There are N + X white balls and N - X
black balls, where X = x may be known (certain; e.g. x = 0), or may be unknown (e.g. any
number between +100).

The balls are drawn without replacement, and the gains are +1(+ for white, — for
black). After all drawings, the gain will be 2X and will remain so thereafter (we assume,
to avoid nuances of language, that when the urn is empty some other fictitious draw-
ings, all of gain 0, are made). The limit is 2X, either known or unknown, but objectively
determined right from the very beginning.

So far, probabilities have not entered onto the scene (nor, therefore, have probabilistic
kinds of properties, like stochastic independence). One might ask, however, whether
knowing the limit X (as a certain value, x), or attributing to it some probability distribu-
tion F(x) (if it is uncertain), imposes some constraints on the evaluations of the proba-
bility distributions F,(x) of the X,, (or conversely: it amounts to the same thing).28

In the case of uniform convergence the answer is yes: if we are to have |X,, — X| < ¢,
with certainty, then F, and F must be ‘close to each other’ in the sense that F,,(x — €,)
< F(x) < F,(x + &,) (and conversely: F(x — ¢,) < F,(x) < F(x + &,)). In particular, if X = x,
with certainty, we must have F,(xo — €,) = 0, F,(xo + €,) = 1. When we are dealing with
non-uniform convergence, this does not hold in general (unless we accept countable
additivity). In the example of the urn, if 2N has an improper distribution (for example,
equal probabilities (zero) for each N) then the probabilities of the behaviour of the gain
in the first z tosses (however large n is) are the same as for the game of Heads and Tails
(whether the difference between the number of white and black balls is known, e.g. = 0,
or bounded, e.g. between + 100 with certainty). Whatever happens, until the urn is
emptied (and we know that there is no forewarning that this is about to happen) noth-
ing can be said about the limit (if it is not already known), and knowledge of this limit
(if we have it) does not modify the F,.

6.8.3. Notions of convergence in the probabilistic sense carry a meaning very different
from just saying that (with greater or lesser probability) X,, — X (in the analytic sense of

28 in general, one should consider the joint probability distribution for X3, Xy,..., X,,, for every n; the
mention of this fact will suffice here.
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being numbers),?® and from saying that F,, — F (this can be true for the distributions of
X, and X, without the latter having anything in common).*°
We give straightaway the three most important types of convergence.

o Convergence in quadratic mean. X,, is said to converge to X in quadratic mean, and we
write X,, > X, if Po(X,, — X) — 0 as n — o (or, equivalently, if P(X,, — X)*> - 0). This
notion is the simplest, and the most useful in practice; it is related to what we have
already said concerning second-order previsions.

o Weak convergence (or convergence in probability). X,, is said to converge weakly to X,
and we write X, > X, if, for any € > 0,

P(|XH—X|>8)—>0 as n— .

More explicitly (in order to make a more clear-cut comparison with the case to be
considered next) we can state it in the form: for any given € > 0 and 6 > 0, and for all »
greater than some appropriately chosen N, all the probabilities P(|X,, — X| > ¢) are <6,
or (alternatively) all probabilities P(|X,, — X| < €) are >1 - 6.

o Strong convergence (or almost sure convergence).*! X, is said to converge strongly to X,
and we write X,, > X, if for any € > 0, @ > 0, and for all n greater than some appropri-
ately chosen N, we not only have all the probabilities P(|X,, — X| > €) that each devia-
tion separately is greater than ¢ being < 6, but we also have the same holding for the
probability of even a single one out of an arbitrarily large finite number of deviations
from N onwards (n, n + 1, n + 2,..., n +k, ..., n + K; n > N, K arbitrary) being > ¢.
Expressed mathematically,

s K
P k\/ |X,,+k—X|>g}<9(kV =max fork=0,1,...,1<j,
=0 =0

or

P|[](1%0 —X|<5)} >1-0
L k=0

(IT = product (arith. = logical) of the events (| X, — X| < €).)

Put briefly: the probability of any of the deviations being greater than & must be <6; in
other words, the probability that they are all less than ¢ must be > 1 - 6.

29 In connection with the terminological distinction between stochastic and random (Chapter 1, 1.10.2),
we offer here a remark which seems to clarify the various considerations about the X, (concerning their
‘convergence’ in various senses), and at the same time to clarify the terminological question. The fact of the
numbers X,,, when they are known, tending or not tending to a limit (in some sense or another; convergence
pure and simple, Cesaro, Holder, etc.) can either be certain (true or false with certainty), or uncertain, given
the present state of information: the convergence is then said to be random.

Convergence in the probabilistic sense (either the variants we are going to consider, or others) is called
stochastic convergence because it is not concerned with the values of the X,,, but with circumstances which
relate to the evaluation of probabilities (concerning the X, and possibly an X, which may or may not be their
limit in some sense) made by someone in his present state of information. This is something relating not to
the facts, but to an opinion about them based on a certain state of information.

30 A warning against confusing these two notions is necessary, not because in themselves they are open to
confusion, but because of the dangers of using inappropriate terminology (such as ‘random variable’: see
Chapter 1, 1.7.2 and 1.10.2).

31 A form of terminology which is inaccurate in the weak formulation; see the remark to follow and footnote 29.
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Remark. In the strong formulation the definition can be more simply stated by talking
of ‘all the deviations from N on, rather than of a finite number (K), however large. From
a conceptual viewpoint, the question becomes a rather delicate one because an infinite
number of events are involved. As usual, this modification is only admissible if counta-
ble additivity is assumed.

6.8.4. The Borel-Cantelli Lemmas. For a sequence of events E;, it is required to
provide bounds for the probabilities of having at least one success, or no successes, or
at least /1 successes (that is, if Y denotes the number of successes, Y > 1, Y =0, Y > h);
all that can be assumed is knowledge of the p; = P(E;). In the weak version, this will
only make sense if we limit ourselves to finite subsets (with, of course, the possibility
of considering asymptotic results when these subsets cover the whole infinite range).
In the strong version (as originally considered by Cantelli and Borel, and still stand-
ard) the asymptotic results should be interpreted as conclusions about the total num-
ber of successes out of the infinite number of events which form the sequence.

For a finite number of events, with probabilities py, ps,..., p,, if we put y=PY)=Xp, =
prevision of the number of successes, we have (unconditionally) an upper bound on the
probability of the number of successes:

P(Y >1)=P(event - sum of the £; <7, P(Y>h) <y/h.

(In fact, iP(Y = h) = P[h(Y > h)] and h(Y > h), whichis = 0if0 < Y<handis=hif Y > h,
isalways < Y:HFH(Y2 h) < Y)

We therefore have that if for the sequence E; the sum of the p; converges, let us say
Ypi=a <, theny < a for any finite subset, and the previous bounds are valid a fortiori
(with a in place of y). One can now say that for any ¢ > 0, and for / > a/e, we have a
probability <e of obtaining more than % successes among the first K events of the
sequence (it does not matter how large K'is). In addition, if we only use the bound for /2 = 1,
and we start with an # sufficiently large for the rest of the series to be <&(¥;. ,p; < €), we
can say that the probability of finding even a single success out of K events (K arbitrarily
large, but finite) from E, on is always <e.

In the strong version we have the following: if the series of probabilities converges, it is
practically certain (the probability = 1) that the number of successes is finite.

This is the Cantelli lemma; the Borel lemma states the converse, but with the additional
condition of stochastic independence.®” In the strong version, the divergence of ¥; p;
implies that the number of successes is infinite; the weak version is much the same in
this case, because Y, if not infinite, must be a completely improper random quantity
(with distribution adherent to +).

The bound that is required can be established immediately using the elementary
inequality e” > 1 + x; the probability of no successes in # independent events is

P(Y=0)=(1-p)(1-p2)...(1-p,)<e Pe?*..e

_ ef(p,+p2+..4+pn) _ e—i;

32 It is obvious that this would not hold without any extra condition: think of the case in which the E; are all
incompatible with some E having P(E) > a > 0, such that E implies no successes; i.e. Y = 0 (and, in particular
Y, = 0 out of the first  of the E;), so that P(Y = 0) and P(Y,, = 0) are both > a > 0 (instead of = 0 and — 0,
respectively). If, however, the series of the p; = P(E,) diverges, the E; cannot then be independent (see the
following inequality for P(Y,, = 0)).
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stated explicitly,
P(Y=0)<e”, P(Y>1)>1-¢7,
and, more generally, we have the similar result
P(Y <h)<e”| 14(ay)+H(aF) +...+1/m(aF)" | a=e™.,

If the series Y; p; diverges, ¥, relative to the first K events, tends to + < as K increases,
and this is also true if we start from the nth event. The conclusion is that there is a prob-
ability — 1 of finding at least one success starting from any arbitrary #, and, hence, a
number exceeding any bound. Alternatively, this can be established directly from the
fact that P(Y < /) also tends to 0, for any 4.

6.8.5. A corollary for strong convergence. In order that strong convergence holds, it is
sufficient that the P(|X# — X| > &) constitute the terms of a convergent series> (and do
not merely tend to 0, as required for weak convergence). This condition is also neces-
sary if the |X,, - X]| are stochastically independent (or if the events | X, — X| > ¢ are).
This is seldom so in cases of interest but one can often obtain the negative result by
finding a subsequence of terms, which are sufficiently far apart to be ‘practically inde-
pendent; for which the series of probabilities diverges (when we consider something
being ‘sufficiently independent; we are thinking of some condition or other to be trans-
lated into a rigorous form as appropriate for the case in question).

6.8.6. Relationships between the different types of convergence. Weak convergence is
implied both by strong convergence (as is obvious from the definition) and by conver-
gence in quadratic mean (by virtue of Tchebychev’s inequality, Chapter 4, 4.17.7).
Neither of the latter two implies the other.

In addition to convergence in quadratic mean (also known as convergence in 2nd-order
mean, or in mean-square), one also considers, though less frequently, convergence in pth-
order mean (where p is any positive number), defined by P(|X,, — X|” > €) — 0; the condi-
tion becomes more restrictive as p increases, and always implies weak convergence.

Definite uniform convergence implies all the above.

Convergence of distributions is implied by weak convergence (and so, a fortiori, by all
the others).

It is sufficient to note that if the random quantities X and Y are ‘sufficiently close to
each other’ in the sense that P(|X — Y| > ¢) < € (for given ¢, € > 0), then their distributions
Fand G are ‘sufficiently close to one another’* in the sense that (for all x) F(x — &) — 0 <
G(x) < F(x + €) + 6. In fact, in order that X < x — ¢, it suffices that either Y < x or | X - Y]
> ¢e. Expressed mathematically,

33 A fortiori, it is sufficient that the series YP(X,, — X) converges.

34 ltis clear that we could define a distance between random quantities conforming to this idea (completely
analogous to what we did for distributions in 6.7.1): dist (X, Y) = ‘the minimum value that can be given to e
and ¢ for which the given condition remains satisfied! Note that there is a difficulty with regard to the
dimensionality (€ is a probability, a pure number, and ¢ is in general a length): however (as in many such cases,
for example the one given in 6.7.1, where this fact was disguised by denoting both 6 and ¢ in the same way,

by ) this difficulty is irrelevant, because changes in ‘distance’ due to expressing ¢ in different units, does not
alter the thing which interests us; that is, the topology based on ‘dist — 0.
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(X<x-e)<(Y<x)v(X-Y|ze)<(Y<a)+(X-Y|>¢);

taking probabilities, it follows that F(x — &) < G(x) + P(|X - Y] > ¢), and the final term
is <6, by assumption. This proves the first half of the inequality; the other half follows
by symmetry.

In the case of weak convergence, however we take € and 6, the inequalities hold for X,
and X from some # = N on, and hence F,, - F.

6.8.7. Mutual convergence (or Cauchy convergence). Suppose that for a given sequence
X,, we know that X,, — X, » 0 (in some sense) as n1, n — oo: what can be said about the
convergence (in the same sense) of X, to some random quantity X? If we adopt the strong
formulation, we can say that such an X exists. For all the types of convergence that we
have considered, ‘il n’y a pas lieu de distinguer la convergence mutuelle et la convergence
vers une limite’ (to quote P. Lévy, Addition, p. 58, Th. 18) [‘It is not necessary to distin-
guish between mutual convergence and convergence to a limit’].

The answer is even more conclusively yes if we are dealing with a random quantity
which is a measureable function X(w) of the points of a space Q (and, in this case, we
should just mention that the various probabilistic notions, and in particular the notions
of convergence, reduce to concepts in analysis — apart from changes in terminology: for
example, convergence in probability instead of in measure; almost certain convergence
instead of almost everywhere).

Without the assumption of countable additivity, and with no reference to a ‘space of
points’ (see the quotations from von Neumann and Ulam, Chapter 2, 2.4.3), we might
well say that an X, for which, for example, P(X,, - X,,.)? < € for all but a finite number of
X ‘represents the limit to within & There is no possibility, however, of thinking
of defining X by the given passage to the limit.

In order to be able to talk about X, it is necessary that it be a well-defined quantity,
independently of the incidental fact of whether it is known or not (and then, in this
sense, a random quantity). There are various possibilities (which we distinguish for the
purpose of giving examples, not because of fundamental differences): X could be ran-
dom on account of circumstances logically independent of the X, (and therefore, in
principle, capable of being measured or known through relevant procedures or infor-
mation); it could be definable as some function of a finite number of the X,, (as an
example, to underline the absence of any restriction on the possibilities, rather than
because it makes any sense, one could think of

1
X = E()(1577 + X7814 ) + ﬂXGZ (eX54 _ exmz% )

or anything else that comes to mind), and these also might depend on some further
random factors (e.g. on a random quantity Y which may or may not have any connection
with the problem); finally, it might depend on all the X, (and possibly on other things as
well; for instance a Y such as we just mentioned).

In particular, it could in this case be

lim X, (if the sequence of the values of the X, turn out to be convergent)

0 (otherwise)
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(and, if one wished, convergence could be taken in the Cesaro sense, or some other).
Here too, X is in fact a well-defined quantity (although it can actually only be known
after we know the values of all the X,,).

The sentence concerning convergence would only make sense, however, if for such
an X, actually defined independently of the incidental circumstance of what is at present
known or unknown, it were possible to show that, in the condition of ignorance deriving
from these given circumstances, our present evaluation of probabilities for the X,, and X are
such as to imply X,, - X in some probabilistic sense (quadratic mean, weak, strong, ...).
On the contrary, we know that this is not the case in general, not even when lim X, = X,
and still less can it be assumed for an undefinable X which has to appear, phantom-like,
from the Cauchy property, and then miraculously materialize.

However, mutual convergence (in the weak sense, and a fortiori in other, more restric-
tive, cases) does determine, if not a random quantity X, the limit distribution F. The
discussion given above (at the end of 6.8.6) establishes, in fact, that the distributions F,
and F,, of X,, and X,,,, become arbitrarily ‘close; and therefore close to one and the same
well-defined F, for n and m sufficiently large. In order to be able to state that there exists
a limit distribution F such that F, — F, it is sufficient, for example, to prove that
P(X, - X,,)* = 0 as m and n tend to .

6.8.8. Zero-one law (Kolmogorov). We must at least give a mention of a phenomenon
that was present in the Borel lemma, and is of a general character, constantly cropping
up. In order to be brief (since we only want to deal with it in passing), we shall express
ourselves in terms of the strong formulation.

Given an infinite number of independent events, E;, the probability that only a finite
number of them occur (Y < o) is always 1 if the sum of the probabilities converges, and
is always 0 if the sum diverges; intermediate probabilities are not possible.

We shall not give a proof, but the main idea is contained in the following: suppose that
an event A (such as Y < « in the above) is independent of any property A, which depends
only on the first # trials (for example, whether Y'is finite cannot be altered by consider-
ing a finite number of trials), but is defined, in the limit as # — oo, by the A,,. Because of
independence, P(4,4) = P(4,)P(A); taking the limit A,, - A, we have

P(AA)=P(4)=P(4)P(A)=[P(4)]

which implies P(4) = [P(4)]% and hence the only possible values are 0 and 1.

6.9 Distributions in Two (or More) Dimensions

6.9.1. Everything we have said in the one-dimensional case extends straightforwardly to
two dimensions (or more: in general, we shall present the extension for # = 2, and indi-
cate how to proceed to #n = 3 etc.). The extension has to be considered now because,
even if we only wished to deal with random quantities, as soon as we consider two of
them we have to deal with the distribution of the pair (X, Y) as a random point in the
plane (x, ). This will not, however, be the only kind of application.

A distribution (always to be interpreted as distribution function) over the (x, y)-plane
will always be defined by a joint distribution function.
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Figure 6.5 Quadrants of the

(x, y)-plane, in terms of which the
joint distribution function F(x, y) is
defined (SW quadrants), and a
method of indicating the rectangles
with their linear combinations (and,
hence, their probabilities in terms of
linear combinations of the values
F(x, y) at the vertices).
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F(x, y) = ‘the mass contained in the quadrant SW of the point (x, y)’;35 the mass in the
rectangle x’ <x < x”,y’ <y <y” is then given by

F(x", y”)—F(x”,y')—F(x’,y")+F(x',y'); (6.7)

see Figure 6.5: rectangle = whole quadrant — hatched quadrants + double-hatched
quadrant (since this was taken away twice). The relation can be interpreted as an opera-
tion involving masses, or probabilities, or, more basically, a linear combination of the
four events ‘belonging to the various quadrants under consideration’

It may be that the masses are concentrated at points, or distributed in an absolutely
continuous manner; there are, however, a great variety of intermediate cases (think, for
example, of a mass distributed continuously along a line!).

The density (if and when it exists) is given by

O*F

6.8
0x0y (68)

f(xy)=

(the limit of the probability given above, with x” = x" + hand y” =y’ + k, divided by the
area hk as hand k — 0).

We can define F(y) for functions y(x, y) of two variables, always in the Riemann—
Stieltjes sense (and, if y is not integrable, we have F (y) < F'(y); the probabilistic inter-
pretation is as the bound for P[y(X, Y)], and, in particular, if F(y) exists, as its evaluation:
throughout, the boundedness conditions for the possible values are to be understood,
or, if not, the choice of P is understood etc.).

In particular, if y(x, y) represents a set I (y = 1 on I and y = 0 outside), F(y) = P(J).

Important examples. If Z = X + Y, the distribution function of Z is given by

P(Z<z)=F(x+y<z)
= F(the half — plane to the SW of theline x + y=z)

35 Adopting the practical terminology favoured by economists, we label the 1st, 2nd, 3rd and 4th quadrants
as NE, NW, SW and SE (and use these also in referring to directions etc.; the intuitive reference is to a map
with N oriented upwards, as usual). Here we implicitly consider F as undefined where it is discontinuous,
and so on. Let us simply remark that all the same conceptual details, which we have discussed at length in
the one-dimensional case, can be filled in: we shall only do so when some new feature arises, which is
something other than a more or less obvious extension of what has gone before.
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(in other words, ‘the mass contained there’). If Z = X Y, we have
P(Z<z)=F(xy<z) (6.10)
= F (the region bounded® by the hyperbola xy = 2)
(in other words, ‘the mass contained there’). If Z = Y/X, we have:
P(Z<z)=F(ylx<z)=F[(y<zx)(x>0)+(y>zx)(x<0)] (6.11)
= F (the NW and SE corner regions between the y-axis and the line y = zx)
(in other words, ‘the mass contained there’). If Z = V(X* + Y?), we have
P(z<z)=F(x" +y <2)

(6.12)
= F(the disc centred at 0 with radius z)

(in other words, ‘the mass contained there’).
And it would be easy to continue in this manner.

6.9.2. Let us now see how to obtain these results more explicitly. The standard
method - integration, using Cartesian coordinates — requires us to make the inequality
explicit in terms of one of the variables, y, say. In the examples given we have:

sum, YL Z—X;

product, (y<z/x)(x>0)+(y>z/x)(x<0);
quotient,(y <zx)(x>0)+(y>zx)(x <0);
distance, |y| < \/(z2 —x° )

In these four cases, the integrals (always either [dF or [f(x, y) dx dy) will be

dezrdy. . (6.9
0 +00 +oo  z/x

J'dxjdy...+ jdxjdy...; (6.10")
-0 z/x 0 —o0

deTdy...+deTdy...; (6.11)
-0 zZx 0 -

2 +\/( z—xz)

fdx [ dy... (6.12')
-z —\/(zz—xz)

In general, if Z = y(X, Y) we have P(Z < z) = F(y(x, ) < 2) = F\(2) (say), and if the inequality
can easily be made explicit with respect to y, obtaining, in the simplest case, y < g(x, z)
(or, possibly, g1(x, z) < y < ;lx, 2)), we

36 ‘Interior’ or ‘exterior’ region, according to whether z > 0 or < 0.
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shall have
o &(x2)
= I dx J dy....
-0 g(xz)

Clearly, it may sometimes be more convenient to adopt other coordinate systems (e.g.
polar coordinates), remembering, of course, to multiply by the Jacobian.

Let us indicate also how one obtains directly the density f(z) = dF)(z)/dz (in those
cases where everthing goes through smoothly). From the expression for F)(z), assuming
that F(x, y) has a density f (x, y), we obtain

&%)
:—J.de‘fxy

“ % ale)
0 .
= Idx f(% g (%2 ))8—g2 (%, z)—the same thing for g; |.
z
For the examples we have considered, this gives

sum: gy =-0,g =z—%; f;(x ‘[f %,z —x)dx; (6.9

—00

product: x<0:g, =z/x, g =1/x, gy = +00;
x>0:g, =-00, g, =2z/x, g5 =1/x; (6.10")

f,(2)= j| |(x,z/x)dx,

—00

quotient : (as above, with x in place of l/x)

z)= J|x|f(x,zx)dx; (6.11")

distance: — g, = gz—\/(z _xz); (6.12")

fd(z)=:[\/+{f(x,\/(z2 —xz))+f(x,—\/(z2 —xz))} dx.

The first example, the simplest, should be noted well, since the case of the sum is basic
for most theoretical developments and applications.

We add one last example, where the answer comes out directly: for the maximum,
Z = X Vv Y, the distribution function is given by

F(z) = F(z, z) (in fact, (Z < z) = [(X v Y) < z] = (X < z)(Y < z)); (6.13)
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similarly, for the minimum, Z = X A Y, the distribution function is given by
F(z)=F(z,+%)+F(+x,z)-F(z,z). (6.14)

By means of F(y), we can also, in this case, express various ‘synthetic characteristics’
of distributions of two variables. For example, for the moments we take y(x, y) = x"y" and
obtain M, ; = P(X"Y") = [ x'y* dF = [ &"y’f (x, y) dx dy. We have already seen the first- and
second-order moments with respect to the origin: P(X) and P(Y), the coordinates of the
barycentres; P(X*), P(Y?) and P(XY), the second-order terms (the moments with respect
to the barycentres are

P(x?)-[P(X)], P(y?)-[P(Y)] and P(XY)-P(X)P(Y),

the variances and the covariance). We already know that, in terms of second-order prop-
erties, these moments completely characterize the distribution: in particular, we have
seen that the cancelling out of the mixed barycentric moment (P(XY) - P(X)P(Y) = 0,
that is P(XY) = P(X)P(Y), the property referred to as noncorrelation) is a necessary
condition for X and Y to be stochastically independent.

6.9.3. Stochastic independence of random quantities. The time has come for us to
consider the notion of stochastic independence in the context of random quantities
(and, essentially, in the most general case, since the delicate issues have a unique char-
acter). Up until now, the concept has only been defined (in Chapter 4) for events (4.9.2)
and for random quantities with only a finite number of possible values (4.10.1). The
extension to the general case is essentially intuitive; we mentioned this (in 4.16.2), where
we also pointed out that a detailed and critical approach was required.

The meaning of stochastic independence was: ‘that whatever one learns or assumes
about X does not modify one’s opinion about Y’; put more ‘technically; ‘every event
concerning Yis stochastically independent of every event concerning X'

Naturally, when it comes to considering n random quantities, these (like events) will
not be called independent if the independence is merely pairwise, but only if each of
them is independent of anything one knows or assumes concerning all the others simul-
taneously (that is, of each event concerning all these other random quantities).

Once again we are faced with the question: which events do we include in this defini-
tion? We might be tempted to say ‘all of them’ (and so refer ourselves to F; but we know
that this is a rather unimaginable abstraction); we might say (along with the supporters
of the ‘strong’ formulation) ‘all those of the Lebesgue field, or at least the Borel field’
(thus referring ourselves to F »; but this runs counter to the objections we have made
against countable additivity and the strong formulation); we might limit ourselves to the
intervals (and things expressible in terms of them; this leaves us in the field F ;). Note,
however, that the question does not require a discussion and a decision as to which
answer provides the correct definition: the best solution would probably be to consider
all three definitions (or perhaps none of these), drawing a distinction between ‘com-
plete; ‘strong’ and ‘weak’ independence. We shall limit ourselves, however, to the weak
definition since it is the only one which does not make too unrealistic assumptions
about our knowledge. In fact, it is the usual definition, apart from the fact that this
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notion has a completed appearance when the unique extension to the Lebesgue field is
assumed, along with non-existence outside it.

The assumption that events of the form X < x are independent of those of the
form Y < y (for any x and y) is sufficient to imply that F(x, y) = F;(x)F5(y), where F;(x) =
F(x, +0) and F5(y) = F(+<0, y) are the distribution functions of X and Y (with the usual
qualification of indeterminacy at jump points). It follows immediately that there is also
independence for the intervals:

P(x' < X <a")(y' <Y <y")]
=h (x")F2 (J’”)_ k (xﬂ)Fz (J”)_ k (x')F2 (J’") +h (x')F2 (J’()
=[R(x")-E(x) ][ B(")]-E()

This implies independence for step functions of the single variables x or y, and hence
for continuous functions. We conclude that the condition defined by

F (x, y) = products of functions involving x only and y only, (6.15)

is also equivalent to the following condition:
for any product of continuous functions, y(x, y) = y1(x)y2(y), we have

F(y)=F(y1)F(r2), (6.15')
in other words,
P{y (X)r2(Y)}=P{r(X)r:(Y)}. (6.15")

6.9.4. Observe, however, how far removed this condition is from the intuitive notion
of stochastic independence. We can always assume that the possible points are those of
the set of A,;, with coordinates x,; = r + sV2, Vs =T + sV3 (a countable set, since the
points are defined in terms of two rationals r and s).

This set is, in fact, everywhere dense in the plane and can be the logical support of any
distribution function; in particular, of a distribution which makes X and Y stochastically
independent. But, on the other hand, to each possible value for X there corresponds a
unique possible value for Y; and conversely (because, given x, there exists at most one pair
of rational values r and s giving x =  + sV2; if there were another pair, so that x = 7 + s'V2,
we would have V2 = (r — )/(s - §'), an absurdity).37 We can thus have logical dependence
(even one-to-one and onto) at the same time as (distributional) stochastic independence.
We must bear in mind just how unsatisfactory this definition is from a logical viewpoint,
even if it seems difficult to improve on it within the ambit of realistic possibilities.

Remark. Observe that such ‘paradoxes’ can also occur in the discrete case, if the prob-
abilities are thought of not as being concentrated at the points (xy, yx), but as adherent
to them (which is excluded, as in Chapter 4, 4.10.1, if we talk of a ‘finite number of

37 From this it also follows that y = f(x) is additive, where it is defined: flx’ + x”) = f(x') + f(x”) but not
linear (for s = 0, f(x) = x; for r = 0, f(x) = V(3/2)x); and the graph of such a function is dense in the whole
plane (see for example, B. de Finetti, Mathematica logico-intuitiva, No. 40, ‘Sulla propriété distributiva, in
particular, Figure 30, pp. 91-92 in the 3rd edn, Cremonese, Rome (1959)).
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possible values’ — but this subtlety might be overlooked). Therefore, the decision (here
in 6.9.3) ‘not to give a precise value to F at jump points’ is essential.

If a point (xy, y4) is not a possible point, but instead (or also) a limit point of a sequence
of possible points, each having zero probability, but with positive total probability, a
great number of different cases of distributional independence (px = pj, pi ) are possible
but other kinds are not (not even logical independence).

6.9.5. On the other hand, we ought to point out that paradoxes (of nonconglomerability;
see Chapter 4, 4.19.2) arise in connection with ‘stochastic independence’ without any
need to look at pathological examples (or, as some would say, to make them up). The
following is a well-known example: if we choose a point ‘at random’ on the surface of a
sphere, equal areas have equal probabilities; and if we happen to know which great
circle the point has landed on, then equal arcs will have equal probabilities; if, in addi-
tion, we have a system of geographical coordinates (latitude and longitude, say, as on the
earth) these coordinates are independent.

In fact, distributional independence holds; the surface element whose latitude lies
between ¢ and ¢ + dg, and whose longitude lies between A and A + d4, has area cos ¢ d¢g
d4, and (apart from the normalization constant) this is also its probability. Longitude
has a uniform distribution (1/(27) between *x) and latitude has a distribution whose
density is given by f(¢) = % cos ¢ (between *7x/2); the density for the area (in the 4,
¢-plane) is the product

1
cos¢ =—cosg.
4r

N |-

1
27
But then, because of the other assumptions, even if we know the longitude precisely — in
other words, the meridian to which the point belongs — the probability distribution of
the latitude should always have density 1 cos ¢; on the other hand, since we are dealing
with (half) a great circle, the density should be uniform (=1/7).

The paradox is easily resolved if we argue in terms of ‘imprecision’ If, instead of think-
ing of the point lying exactly on that curve, one thinks in terms of the fact having been
ascertained to within some margin of error, however small, one sees that the two
answers are coherent. We give two different versions: if the imprecision concerns 4,
then, instead of a meridian curve, we have a zone which narrows from the equator to the
poles as cos ¢; if, instead, we think in terms of having measured the distance from a
plane passing through the centre of the earth (that is, the distance from the great circle)
then (finding the distance to be 0) we have a zone of constant width.

It is easy to avoid paradoxes by avoiding any reference to limit-cases, except when
considering these explicitly as such (never speak of ‘the probability of something condi-
tional on X = x, but ‘conditional on X = x, + €, perhaps giving the limit as ¢ - 0). Many
authors (the first of them being, I think, Kolmogorov in 1933) explicitly state that the
problem only makes sense under this restriction (since, otherwise, conditional probabil-
ity would formally be given by expressions of the form 0/0). From a theoretical point of
view, viewed from the standpoint to which we adhere, such a conclusion seems rather
drastic (although it avoids some difficulties, others take their place). Theoretically, it
does not seem possible to avoid the necessary comparisons among the zero probabilities
which would yield an actual probability for the ‘precise’ fact, rather than the zero prob-
ability usually attributed (see Chapter 4, 4.18); practically speaking, it is convenient to
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attempt to use the Kolmogorov limit argument, by considering it in conjunction with
what is empirically known about the imprecision (when actually present) and not merely
as a convention or a dogma. We shall mention this again later (Chapter 12, 12.4.3).

6.9.6. Operations on stochastically independent random quantities: Convolutions. Let
us now return to consideration of a random quantity Z = (X, Y), a function of two other
random quantities (as in 6.9.2), in the rather special case where X and Y are stochasti-
cally independent. This implies that F(x, y) = Fi(x)F,(y) and flx, y) = fi(x)fa(y) (if these
exist), and we have dF(x, y) = dF,(x) dF,(y) = fi(x) fo(y) dx dy.

The fundamental case, which we shall encounter and make use of over and over again,
is that of the sum, Z = X + Y, for which F(z) and f (z) = F'(z) are given by

)= [dR (%) [ 4B (5)= [ F(z-x)d ()
= o b (6.16)
= :[ E(z—x) fi(x)dx,

ffl ) f2(z—x)dx, (6.17)

The roles of F; and F, can, of course be interchanged (choose the simplest way!) and,
as usual, we make the qualification that the expressions in terms of densities only hold
when the latter exist.

The operations on the distributions which gives F in terms of F; and F,, and fin terms
of fi and f;, are called convolutions. They are usually denoted by the symbols * and *, and
we write F = F; *F), f=fi *f5.

The operation can clearly be repeated to give the distribution of the sum of three
independent random quantities (and so on for any finite sum). It follows from the defi-
nition that convolution is associative, commutative and even distributive. In the special
case where all the summands are identically distributed (that is, have the same distribu-
tion function F), the convolution is denoted by F** (and f*").

The following is a brief summary of the other cases we considered:

product : F(z):TFz (z/x)dE (%),
(6.18)
I| |f1 ) fo(z/x)dx

quotient : F(z)= JFZ(zx dF (x
(6.19)

£(2)= [ i () o ()b

0
38 For the sake of brevity, the term I (anti-symmetric) is omitted; if X is not certainly positive, it must be
included. —0
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distance:  F(2)= [ B V(2 ) - B ([ - ")) |4 (x),

z

jz Y ) () (V(z*-#7) ) (6.20)

+f2(—\/(z -x ))]dx;

maximum : F(z)=F(z)E(z), f(2)=F(2) f2(2)+E(z) fi(z). (6.21)

6.9.7. Synthetic characteristics for sums of independent random quantities. Let Z be
the sum of two or more independent random quantities; we shall include both Z =X + Y
and Z = X; + X, + ... + X,, in order to draw attention both to the notationally simplest
case and to the general one.

We shall consider now some of the points that can be made concerning their synthetic
characteristics. We shall use the indices i = 1, 2,..., n for aspects concerning the
summands, and 7 | for what concerns the sum of »n terms; when the summands are
identically distributed, we shall drop the indices.

In the case of the prevision, m = P(X), we have additivity (in all circumstances); for the
variance, o> = P(X - m)?% additivity holds when the summands are uncorrelated (and,
a fortiori, when they are independent):

My =1+ +...+m, (: n.m) (6.22)
(772,|2612+0'22+...+O'3 (ZﬂO‘Z;sz\/I’lO'). (6.23)
For the third-order moments, we have
P(2°)=p(X + Y)3 =P(X*)+3P(X2y )+3P(Xr?)+P(Y?),
and, in the case of independence,
P(2%)=P(xX?)+3P(X*)P(Y)+3P(X)P(Y?)+P(Y?).
For Z = ¥X;, with the summands independently and identically distributed, if we
denote by
My =m=P(X), My=m"+0” =P(X*), Ms =P(X*)

the moments (of 1st, 2nd and 3rd orders, respectively) of the summands, and by (M3)g
that of the sum, we have similarly

(M, )ﬁ| =Y P(X;:X; X)) =nMs +3n(n—1) MMy +n(n—1)(n—2)M; . (6.24)
ijh

On the basis of this formula, the reader can see how things proceed in the general
case by noting the following simple points (and these will not apply only to M3, with
summands not identically distributed, but to moments of any order, whether the sum-
mands are identically distributed or not):
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the 3rd power (or the general rth power) of a sum of # terms is the sum of the 7> (or 1)
products (including repetitions) of the summands three at a time (or r at a time);

the prevision of each product is (Ms3) if it contains precisely the same factor X; three times;
(M,){(M,); if the product is X;:X;Xj; (M,)(M,);(M, ) if the product is X;X;X; (with distinct
factors); for » summands, things become more complicated, but the idea is the same;

in the case of identically distributed summands, it is sufficient to suppress the indices i,
j and k, and count up the number of the three kinds of term Ms, M, M;, M (and there
are # choices for i; 3n(n — 1) ways of putting a j in one of the three positions and an i # j
in the remaining two; n(n — 1)(n — 2) ways of arranging the n elements three at a
time); for a general r, we have products of the form MM .. . M" witha +2b + 3¢ +
... + mn = n, if the product contains a single factors, b which appear twice, ¢ which
appear three times,..., and m (either 0 or 1) n-tuples.

As far as the extreme values, inf Z and sup Z, are concerned, in the case of independ-
ence we can definitely say that inf Z = Xinf X; and sup Z = Zsup X; (in general one can
only note the obvious inequalities, > and <, respectively).

6.9.8. One obvious additional result is that for the sum of independent random quan-
tities (i.e. the convolution of distributions) the range of variation of the distribution
must increase: if F = F; * F,,

sup F —inf F >sup F, —inf F;

(with equality only in the trivial case of F, concentrated at a single point).

The same conclusion holds, however, in a much more general context: the dispersion
I(p) must also increase (for all 0 < p < 1; the above corresponds to the extreme case p = 1).
Suppose that in the distribution F there is an interval of length / enclosing a mass >p; let
the interval be g, a + I: if we assume that in F; every interval of length / contains a mass <p
(see 6.6.6) we are led to the following absurd conclusion:

ng(a+l)—F(a)

- [{R(@s1-9)- F(a-)ar(e) < p [ ()= .

—00 —00

It follows, as an important corollary, that, for the convolution, ‘regularity’ must
increase: the resulting distribution enjoys all those regularity properties enjoyed by at
least one of the component distributions. For example: the property of not having any
masses greater than some given p; the property of continuity; or of being absolutely
continuous; or of having a density never greater than some given bound; properties of
existence or bounds for successive derivatives; or the property of being analytic.

It can easily be seen, for instance, that the mathematics used in 6.7.2 to construct a
continuous distribution ‘close’ to some given one, was essentially an application of the
following: given any random quantity, in order to obtain a distribution with density
<1/g, it is sufficient to add to it a random quantity with a uniform distribution in the
interval [0, €] (for example, a ‘rounding error’). An ‘accidental’ error with a normal
distribution — which we shall meet soon — is sufficient to make the distribution analytic.

In addition to the moments, y = (", which we have already considered, there is another
class of previsions F(y) of great importance: that of the exponential functions y = a".
The basic property of these functions yields, for Z = X + Y (or Z = XX)),
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le =ﬂX+Y =aXaY’ (ZZ =aZ,X; =aX1X2 ...(lX",
so that, in the case of independence,
P(az ) = P(ax )P(aY ), P(az ) = P(ax‘ )P(&zx2 ) . P(ax" ) (6.25)

We shall see shortly how this property can be exploited.

6.10 The Method of Characteristic Functions

6.10.1. The synthetic characteristics provide partial information of varying usefulness
and interest; we have examined some of the most important kinds. One could ask,
however, whether it is possible for a sufficiently rich set of ‘synthetic characteristics’ to
be sufficient to completely characterize a distribution?

In terms of the F(y), the answer (in a general form) has already been given (in 6.4.4),
since, in order to determine F(y), we said that it was sufficient to know F(y) for all
continuous y (it is also sufficient to know it for a subset which permits approximation
to any desired degree of accuracy from above and below). It is known that in certain
cases (for example, for bounded distributions) this can even be obtained by means of
polynomials, and hence knowledge of (all) the moments, F((I'), r =1, 2, ..., n, ..., turns
out to be sufficient (and, in fact, the researches of Tchebychev and others have dealt
with this topic; Castelnuovo’s treatise gives a masterly account of the research in this
field). On the other hand, this method of moments also appears in the approach that
we shall adopt.

This is the approach based on the property of the exponential function that we noted
above. It consists in considering the prevision for the exponential function as the base
varies in an appropriately chosen set (the reals, or, better still, complex values with abso-
lute value =1). The method is called that of generating functions, or characteristic functions
(according to the variant adopted). In order to avoid using more than one term (which is
often misleading, since it prevents one seeing the essential identity of things expressed in
slightly different forms) we shall always use the name ‘characteristic function’

This powerful technique has a rather curious history:* it has entered into consistent
and systematic usage only recently (especially following the brilliant applications of it
made by P. Lévy in about 1925), after having been discovered, applied, abandoned and
then rediscovered in a variety of applications and circumstances (from De Moivre to
Lagrange, from Laplace to Poisson).

6.10.2. In the simplest case (the original application of De Moivre), the method
consists in noting that if X is a random integer, and t any real (or complex), then P =
Y put” is a polynomial in which the coefficient of # is the probability of obtaining the
value X = /1 (h an integer, often — but not necessarily — positive). One also notes — and
this is the fundamental property that we mentioned — that if X and Y are stochastically
independent random quantities, so are t“and ¢¥, and hence

39 A clear, concise and essentially complete account can be found in H.L. Seal, “The historical development
of the use of generating functions in probability theory, Bull. Ass. Actuaires Suisses, 49 (1949), 209-228.
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P(t)”Y ) = P(tXtY ) - P(tx )P(tY ) (6.26)
P =2, phth and P(¢Y) = 5 qktk, and we take the product

> it =Y pudgions (6.27)
Ik T h

we have an ‘automatic’ way of computing the probabilities

6.28
X+Y_l th% hs ( )

that is, of obtaining the dzstrzbutton of the sum, Z =X + Y.

This fundamental property (that is, that the product P(P()) corresponds to the
sum (X + Y) clearly holds even if X and Y are not integer, so long as t* and #* continue to
make sense. In order that this be so, one could limit oneself to ¢ on the positive real axis,
or, alternatively, write ¢ = %, with the convention that in place of # = (%" one considers
e (= ), which always makes sense."’

Instead of P(¢£X) we therefore consider P(e?) (which is equivalent when ¢ is real and
positive and z is real, and more general in that it allows the removal of these restric-
tions). If X has an unbounded distribution, P(e*") could diverge; this could never happen
if z were purely imaginary (since then [e*| = 1). In order to map the imaginary axis
(which has this nice property we have just mentioned) onto the real axis (which is more
convenient as the standard support for representing functions of a real variable) we set
z=iu, and then ¢ = e = ¢ in this way P(e"*) becomes a function of u, which is certainly
defined for all # on the real axis (where, however, it will in general assume complex
values), and possibly outside it as well.

But, in the general case, will knowledge of P(e"*) be sufficient to determine the
probability distribution? We shall see that the answer to this is yes. The answer is uncon-
ditional if we know P(e™) for all real  (or if we know P(e%) for all purely imaginary z);
under suitable conditions, it also holds for P(¢") and P(¢*") and for ¢ > 0 and z real.

This justifies the name characteristic function given to

¢(u)= P(e”‘x) (6.29)

(and sometimes also to P(e™)); and the name generating function given to g(t) = P(£").
We shall always use ¢(u) = P(e"X), permitting ourselves to write (when X is an integer,
and it is convenient to do so) ¢(u) = (an expression in t) implying that t = e (and we
shall not speak of generating functions: one of the two terms is superfluous).

In the case of discrete distributions (masses py, at the points x;) or of distributions
admitting a density function flx), the characteristic function can be expressed in the form

u)= thei“x‘“ (6.30")
W

or

u)= Ie”‘"f(x)dx, (6.30")

40 To the infinity of values z = z; + 2kir, having values e* which coincide for a given ¢, there correspond
different values for the nonexistent ‘#*, i.e. e 2%,

237



238 | Theory of Probability: A Critical Introductory Treatment

respectively: in the general case, we have (using the Riemann-—Stieltjes integral)
+00
¢(u)=_[e‘”"d]—"(x):F(e'”D)U:Jj. (6.30)

Of course, if one prefers to avoid the imaginary number under the prevision and inte-
gral signs, or if one wishes rather to give the real and imaginary parts separately, it suf-
fices to recall that € = cos x + i sin x and to write

¢(u)=P(cos uX)+iP(sinuX)= Icos ux dF(x)+iIsin ux dF (x). (6.29")

6.10.3. There is a one-to-one, onto and continuous correspondence between charac-
teristic functions ¢ () and proper distributions F(x). The inverse relation (in the sim-
plest case, where

J |¢(u)|du <o
and f () is then continuous and bounded) is given by
= LT g )t 6.31
f(x)—gj‘_ooe ¢(u)du (6.31)

and has a symmetric relationship with equation 6.30”; this remarkable fact will be
important in applications. By continuity we mean that the convergence of ¢, (u) — ¢(u),
uniformly in any bounded interval, is equivalent to the convergence of F,(x) — F(x) for all
x (except for the discontinuity points of F).

The fundamental property that we began with states that: to the convolution of distri-
butions, F = F) * F, (or of densities f = f * f5) there corresponds the product, ¢ = ¢1¢s, of
characteristic functions.

Moreover, to any linear combination, F = Z JCnFs there corresponds the same linear

combination, ¢ = Z ,Cndn- These properties in themselves are sufficient to solve many

problems; they are also useful for deriving new distributions and for modifying distri-
butions in order to make formulae like equation 6.31 applicable (by means of approxi-
mations) in cases where they are not directly applicable.

It is useful to bear in mind the following properties (for proofs and details see, for
example, Feller, IL, pp. 472 ff.): ¢(u) is continuous; ¢(0) = 1 and |¢p(u)| < 1; the real part
of ¢(u) is even and the imaginary part odd; ¢(u) is real if and only if the distribution is
symmetric; changing X into aX, changes F(x) into F(x/a), and ¢(u) into ¢(au).

For the moments P(X") = M, (where P = P!) which exist, the following expansion
is valid

() =1+ iUy, —u® My | 21— it® My 131+ ...+ (i) M, [ B+ ...

41 The asterisk at the upper limit of the integral sign means that the principal value (in the Cauchy sense) is
to be understood: i.e. lim f as a— .

Formula 6.31 is the classical Fourier inversion theorem.
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(b) (c)

v
v

Figure 6.6 The planes of the three variables t, zand u, in terms of which the characteristic function
can be expressed, together with the lines or regions where it is defined. Usually we operate in terms of
u (the Fourier transform); z = iu and t = €* = e" are occasionally to be preferred (the Laplace and Mellin
transforms, respectively).

(and corresponds, formally, to P(e"") =P(1+iuX —u*X?/2!-...). If all the moments
exist, the series has a nonzero radius of convergence p, and ¢(u), and therefore the
distribution is completely determined by the sequence of moments.*?

These and other properties reveal a relationship to be borne in mind in the following
qualitative sense: the smaller the ‘tails’ of the distribution at infinity (i.e. the faster F(x) tends
to 0 or 1), the more regular the behaviour of ¢(x) near the origin; the smoother (in terms of
differentiability etc.) the distribution is, the more regular is the behaviour of ¢(u) at infinity.

6.10.4. Geometrical representation of the mathematical nature of the problems. We
note that the functions of u, z and ¢ that we have been considering are the transforma-
tions of the distribution function known in analysis as the Fourier, Laplace and Mellin
transforms, respectively. As we have already indicated (but reiterate for the sake of any-
one who has come across these transforms separately and has not noticed the fact), we
are always dealing with precisely the same transform, apart from a change of variable.
Figure 6.6 indicates, schematically, the planes of the (complex) variables u, z = ix and
t = €% the line on which the function is always defined is marked in heavily (the real axis
in the case of u, the imaginary axis for z, and the unit circle for ), and the striped region
indicates where it is defined in the analytic case:

—a' <7 (u)=2(z)<a", |t'|<[f|<|t"®

(where 0< a',a" <+00;0<|t'| = e’ <1<e” = ¢ <o0).

42 Since 1/p = lim sup (e/ )V \Mn , a necessary and sufficient condition for the function to be analytic is
that v \MV, , the mean of order n, does not increase faster than # (i.e. remains < Kn with K finite). The
necessary and sufficient condition for the distribution to be determined by the moments is that the sum of
the reciprocals, 1/ V \Mn , diverges (Carleman). This is a little less restrictive than the above, which implies
that the sum of the reciprocals, > 1/Kn = K'(1/n), diverges almost as rapidly as the harmonic series.

43 The annulus of convergence for the Laurent series (Figure 6.6a); the strips for the Dirichlet series
(Figure 6.6b and, changing axes, Figure 6.6¢). .72 and .7denote the real and imaginary parts.
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X Figure 6.7 The plane of w = ¢(u), and the
Tw t interpretation of ¢(u) as the barycentre of the
4 distribution ‘wrapped around the circumference
w |w| =1
i
i lo
D s » W
| Ox
I
—1 p(u)

We have so far seen illustrations of the complex planes of the three variables (¢, z, u).
In order to ‘visualize’ the meaning and the properties of the characteristic function ¢(u)
(for u real) in the complex plane of w = (), we draw it (Figure 6.7) indicating the unit
circle, |w| = 1, and the tangent at the point w = 1 (the straight line .72(w) = 1). This point
is denoted by 0,, because it is the origin of the x coordinate, thought of both as the
abscissa on this tangent line and as parameter (angle or arc length) on the circumfer-
ence. In order to avoid confusion, the origin w = 0 has been denoted by 0,,.

If we think of the distribution of X as located on the x-axis, then e has the same
distribution ‘wrapped around the unit circle] and similarly for z”* and e (with only a
modification of scale from 1 to u, reflected if u is negative). The characteristic function
P(u) = P(e") is the barycentre (necessarily inside the circle, unless the distribution is
concentrated at a single point), and it follows therefore that |p(u)| < 1. If u = 0, we
always have, of course, ¢(u) = 1; in general, however, we have |¢(u)| < 1, the only other
exceptional cases being the following. Firstly, a trivial case consisting of a single mass
concentrated at x = a; in this case we always have ¢(u) = e and, hence, |p(ur)| = 1. The
second exception is that of a distribution concentrated at the points of an arithmetic
progression, x = ¢ + 2kn/ug; clearly |¢(ug)| = 1, and the same will hold for all multi-
ples of u.

If we think in terms of the graph of w = ¢(u), many properties (those we have already
mentioned and others) become obvious. As an example, the change from X to -X
implies that the distribution (on the line, or wrapped around the circle) is reflected in
the real axis; the same is also true for the barycentre, so that the characteristic function
of —X is the conjugate of the ¢(u) corresponding to X; ¢(-u) = ¢*(u). An important
corollary follows: given any ¢(u), we can obtain a symmetric characteristic function,
|q5(u)|2 = ¢p(u)¢p*(u). The corresponding distribution is called the symmetrz’zed44 version
of the F(x) we started with, and is obtained from the convolution of F(x) and 1 — F(-x);

44 Another form of symmetric distribution is obtained by taking the average of the given distribution F(x)
and its reflection 1 — F(-x); this gives a distribution function %[1 + F(x) — F(—x)] with characteristic function
%[qﬁ(u) + ¢(- u)]. It is the distribution we obtain when we toss a coin before deciding whether to take +|X]|
or -|X|.
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it is the distribution of the difference X; — X,, where X; and X, are independent, both
with distribution F(x).%®
For u purely imaginary (and we shall write u = iv, with real v, so that v = iu = z), we
have, separating the contribution of the probability distribution on the negative semi-
axis from that on the positive axis, and from that concentrated at the origin, if any
(po = F(+0) - F(-0)),
© 0 ©
¢(—iv)= [e"dF(x)= [e"dF(x)+ [e"dF (x)+ po. (6.32)

—0 —0 0

The contribution in [-eo, 0] is clearly finite for v > 0, and possibly for negative v between
0 and some —a’ (everywhere if a’ = o0); by symmetry, the contribution in [0, ] is finite
for v < 0, and possibly for positive v between 0 and some a” (everywhere if @” = o). If it
exists in the interval [-a’, a”] of the imaginary axis, ¢ is positive, real and concave
(upwards), like each of the e'* of which it is a mixture. The meaning of the bounds, —-a’
and a”, and some other aspects, becomes clear if we introduce the notion of twinned™
distributions, a notion which is of interest in its own right.

The twins of F(x) (and the relationship is mutual) are defined to be those F,(x)
for which

dFv(x)zKe”dF(x), withl/K:¢(—iv); (6.33)

this defines distributions whenever ¢(-iv) makes sense.
When the densities exist, we have

fo(x)=Ke"™ f(x), (6.34)

and the meaning may be clearer (because the notation is more familiar). We see imme-
diately that the characteristic function of F,(x) is given by ¢,(u) = K¢p(u + iv) (Where ¢ = ¢y
is the characteristic function of F(x)), and it follows that ¢(x) is defined throughout the
strip —a’ < A(u) < a” (in other words, there is no further restriction due to singularities
outside the imaginary axis for u; in particular, if ' and a” are both positive, ¢(u) is
analytic, and the minimum of the two bounds is the radius of convergence).

Expressed in a nonmathematical way, the conclusion is that ¢(iv) exists (and hence
so does ¢p(u) over the entire line 7(u) = v) if the twin distribution F,(x) exists, and
that this happens if the tail of F(x) on the positive semi-axis (for positive v; conversely
for negative v) is thinner than the tail of the exponential distribution f(x) = Ke™; o’
and a” are zero, infinite or finite, depending on whether the tail (on the left or on the
right) is fatter or thinner than every exponential, or comparable with an exponential,
respectively.

45 Symmetrized distributions are also considered in the statistical context. The prevision of X; — X is zero,
but the quadratic prevision and that of |X; — X;| constitute ‘indices of variability’ (the first one is clearly
simply o(X) multiplied by V2); P(|X; — X3|) turns out to be the concentration ratio multiplied by 2P(X),
which, for a given P(X), is the maximum possible value: see 6.6.3.

46 The term conjugate (see Keilson, 1965) is used in other contexts (see, for example Chapter 12, 12.4.2).

I therefore suggest the term given in the text. Feller (I, p. 410) refers to the property in question as the
translation principle (but, as far as I know, does not give a name to such distributions).
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6.11 Some Examples of Characteristic Functions

6.11.1. This is a convenient point at which to note and calculate explicitly the characteristic
functions of some common distributions. In part, these will be cases of importance for
applications; in part, they will be examples whose main purpose is to show how one can
often avoid direct calculation with shrewd use of the properties of characteristic functions,
keeping an eye on their interpretations. Until we actually illustrate these ideas with refer-
ence to the applications, the sense of this must inevitably remain somewhat unclear, but
just a brief mention of the nature of the applications will suffice to give the basic idea.

6.11.2. In the case of an event E (with probability p = P(E)), or for a bet s(E - p*) on E
(with gain s if E occurs, loss p*s if it does not — the bet is fair if p* = p), we have,
respectively,

d(u) =P ) = pe™® + pe"! =1+ p(e™ - 1), (6.35)

Blu) = P(E(E7) = e P(eHE ) = 14 ple 1) (636)
_ (1 _ p)e—iusp* + peius(l—p*)

(here, and elsewhere, it is sufficient to apply the property relating to additive and multi-
plicative constants: P(e™(“X*K)) = e p(elX') in other words, change ¢(u) into e p(cu)).

In the particular case where s = 2, p = p* = 7, we have a fair bet at the game of Heads
and Tails with gains +1: the above reduces to

¢(u):%<ei" +e_i“):cos u, (6.37)
whereas
P(ei“E ) = %(1+ei” ) (6.37")

In the case of n independent tosses, the gain 2Y - #, and the number of successes Y =
Ei+ E; + ... + E,,, have characteristic functions

¢(u) =cos" u, (6.38)

and
¢(u)=B(1+ei“ )} (6.38)

respectively (the sum of independent random quantities = convolution = product of char-
acteristic functions; in particular, this becomes a power if the distributions are identical).

Similarly, if p is now taken to be general (and we continue to assume stochastic inde-
pendence), the number of successes, Y has the characteristic function

o(w)=[1+ p(e" -1)]". (6.38")

This is the so-called Bernoulli distribution: the limit-case, obtained by letting # tend to
oo with the prevision np = a4 held constant, is called the Poisson distribution. This gives
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pn = e “a"/h!, and hence its characteristic function is given by

¢(u)= lim[l + E(e“‘ - 1)} —e ), (6.39)

n

In all cases where the possible values are non-negative integers (like the above, relat-
ing to Y, ‘the number of successes’) the characteristic function is a polynomial (or a
power series) in ¢ = e with coefficients p;, = P(Y = h):

¢(u)=>put" => pre.
h h

Knowing this, we could have obtained equations 6.38’, 6.38” and 6.39 directly from the
knowledge of the pj; conversely, to find the latter from the characteristic function we
expand in powers of e,

Let us have another look at three distributions of this type (having integer values); we
consider the uniform, geometric and logarithmic.

For the uniform distribution (p;, = 1/n; 1 < h < n) one has

iu(n+1) _eiu

_ < iuh_e
¢(u)—1/nhzz;e _—n(ei" _1)

liun —liun 1 (6.40)
1 iul(nJrl) e2 —e 2 iul(nﬂ) Smgnu
= —e 2 —_— e 2 —_—_—
" 2 nsin -
2" a2 =
e e 5
For the geometric distribution (p, = Kg",0 < g < 1, K=1 - q; 0 < }1 < =) one has
o(u)=(1-9)Yq"e" =K/ (l—qe‘“ ) - (1—q)/(1—qe”’ ) (6.41)
=0

For the logarithmic distribution (p;, = Kq"/h,0< g<1,K= —log(1 - g); 1 < h < )
one has

¢(u)= I(iqhei”h /h=-Klog(1-ge™ ) =log(1-ge™ ) /log(1-q). (6.42)
h=1

6.11.3. Let us now turn our attention to some continuous distributions: we shall
present the density functions f{x) and the characteristic functions ¢(u), always expressed
in the most convenient standard form (since any transformation from X to ¢X + k can
be easily dealt with).

The normal distribution (sometimes known as the ‘error’ distribution) will be well
known to everyone, although we have not yet dealt with it explicitly. We shall give a
more extensive treatment in Chapter 7 (Section 7.6).

The standardized, or normalized, distribution, with prevision = 0 and variance = 1,
has density and characteristic function given by*’

47 That this is the value of the normalization constant is well known from analysis. We shall, in any case,
prove this (Chapter 7, 7.6.7) at a more appropriate and meaningful time.
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F(x)=Ke 2" (K - @j (6.43)

1
77',{2

¢(u)=e 2, (6.44)

Direct calculation is straightforward (if we operate in the complex field, using the sub-
stitution y = x — iy; a little less straightforward if we proceed differently, or if we do not
assume the form we want).

A convolution of normal distributions is also a normal distribution (in other words,
the sum of independent random quantities having normal distributions also has a nor-
mal distribution). We express this fact by saying that the normal distribution is stable.

Naw) (buf | ew)
In fact, one hase 2 e 2 =e 2 ' ;in other words.
g/)(au)(ﬁ(bu):d)(cu), where c:\/(a2 +b2). (6.45)

The scale parameters (a, b, ¢) are, in fact, the standard deviations, so it follows that the
composition should take place according to Pythagoras’ theorem (as is always the case
for a finite sum). Observe also that

¢”(u)=¢(Vn‘u) (6.46)
and that
¢t(u)=¢(\/t-u) (6.46")

for any positive real ¢ (and not only for integer 7). The fact that ¢‘(«) is always a charac-
teristic function means that the distribution is infinitely divisible (e.g. into (P " (w))").
We have already encountered another example of an infinitely divisible distribution
(although we did not point it out at the time), the Poisson, whose characteristic function
(equation 6.39), contains an arbitrary constant as exponent (in equation 6.39 it was
denoted by a). We shall soon come across other examples; the general form of infinitely
divisible distributions, and the subclass of the stable distributions, will be given in
Chapter 8, along with some of the important properties.
The uniform distribution (taken over [-1, +1]) has

f(%) =%(|x|<1), (6.47)
sinu
¢(u)= — (6.48)

The calculation is straightforward (it can also be obtained from the discrete case, equa-
tion 6.40), by letting n — < with nu = constant, along with obvious changes of origin
and scale).

For the sum of two (independent) random quantities having this distribution we obtain

f(%) :%(1—%|x|)(|x|<2), (6.49)
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Figure 6.8 The convolution of uniform

Z

distribution. Xty
V2
dxdy
Pray=t=S, Xry=2
V3
T 0 1
X x+<
X+y=—2 o=
G
¢(u):(sinu) lu*; (6.50)

which is called the ‘triangular distribution; on account of the form of the graph of the
density function (this could be deduced from the definition without any need for calcu-
lations: it is the orthogonal projection onto the diagonal of a square of a mass uniformly
distributed on it; Figure 6.8).

The characteristic function is positive: it follows immediately, therefore, that,
conversely, there is a distribution (on —e < x < +o0) with density and characteristic
function given by

1 (sinx)2
f(x)=;x—2, (6.51)

¢(u)z(1—%|u|)(|u|<2). (6.52)

This distribution is not, in itself, very interesting. It is, however, of great importance in
that one can immediately deduce from it conclusions of some generality. By means of
mixtures of triangular distributions (on different ranges) we can obtain any distribution
whose density has a polygonal graph (symmetric with respect to the origin, decreasing
and concave upwards on either side of the origin). In the limit, we can obtain any curve
with these kind of properties. By inversion, any function having such behaviour is a
characteristic function: this is PSlya’s criterion. The fact that in this way we can obtain
characteristic functions which are zero outside a finite interval is also of some impor-
tance (Figure 6.9).

In a similar way, we obtain ¢(u) = (sin u)"/u" as the characteristic function of the sum
of n independent random quantities which are uniformly distributed in [-1, +1]; this
corresponds to the density of the projection onto the diagonal of an #-dimensional cube
of a mass uniformly distributed on it, and is represented by polynomials of degree n — 1
which vary on each of the # intervals of length 2 into which the interval [-n, + n] is
divided by the projections of the vertices of the cube. Think of the ordinary cube, n = 3
(the areas of the sections are first triangular, then hexagonal, then triangular again).
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¢(u) Figure 6.9 Characteristic functions
A constructed on the basis of Pélya’s argument.

The inversion (as for # = 2) can be made for any even n (since then the characteristic
function has to be positive).
For the exponential distribution,

f(x):e_x(x>0) (6.53)

and
¢(u)=1/(1-iu); (6.54)

this is a special case (¢ = 1) of the gamma distribution, defined by

f(x)=Kx'"e*(x>0) with K=1/T(t),

2 6.55
I(t)= J.xHe”‘dx =(¢=1)! forintegert, ¢ >0, e
0
¢(u)=1/(1-iu)". (6.56)

The fact that # appears as an exponent in ¢(u) (or, more precisely, in ¢‘()) implies that
these distributions have the property of being infinitely divisible.

By symmetrization of the gamma distribution, we obtain distributions whose charac-
teristic functions are given by

o(w)=[ 1/ (=) [[17(1=iw) =1/ (1+02) (6.57)

(and these are also infinitely divisible). In particular, for ¢ = 1, we have the two-sided
exponential distribution, with

f(x)= %e_‘x‘, (6.58)

P(u)=1/(1+4"). (6.59)
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By inversion, we obtain
f(#)=1/]x(1+4?)], (6.60)

p(u)=e " (6.61)

the Cauchy distribution. This is infinitely divisible (for ¢ > 0, (e"”')t = e 1"l is the char-
acteristic function of flx) = K/(1 + (x/t)%)) and, since flx) remains invariant (apart from
changes of scale), the distribution is also stable (like the normal). Its invariance is infi-
nite, as can be seen directly (from f(x) being of second-order smallness) or from the
irregularity of ¢(u) at the origin.

6.11.4. Knowing the characteristic functions of certain distributions enables us — using
products, powers, conjugation, linear combinations, limits and so on — to obtain innu-
merable others, as required for various applications, and corresponding to distributions
whose densities cannot in many cases be expressed explicitly.

Let us examine some of the more interesting examples of mixtures; those given by the
sum of N independent, identically distributed random quantities X, when N itself is also
random. If at each step there is a probability p of stopping and g = 1 - p of continuing,
the N has a geometric distribution; that is,

pn=P(N=n)=Kq" (K=(1-q)).

If it turned out that N = #, the characteristic function of the sum would be y"(u), where
x(u) denotes the characteristic function of each Xj; the characteristic function of the
unconditional sum is hence given by the mixture

¢(u) = il(q"x" (u) =K /[1 —qx(u)] = (l—q)/[l —qx(u)} (6.62)

Formally, it is sufficient to substitute in equation 6.41, replacing the characteristic func-
tion " of each of the summands ‘1’ by the characteristic function y(u) of X;. Following
the same rule in the general case, one obtains.

$(u)=> pux" (u), (6.63)

and, in the particular cases of N having the Bernoulli or Poisson distribution, we have
(see equations 6.38” and 6.39)

¢(u):[1+p(x(u)—l)]m (6.64)
and
p(u)=e A, (6.65)

respectively. In equation 6.64 we used m in the exponent rather than # (which is now used
to denote particular values of N); the interpretation (for example in the case of a game) is
as follows: an individual has the right to m trials, each having probability p of success; he
then has # successes (0 < n < m), and receives a random prize X}, for each success. The
Poisson case can, for the present, be regarded as a limit-case (but will be seen to have a
much more interesting interpretation when viewed as a ‘random process’; see Chapter 8).
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When a characteristic function y(x) is infinitely divisible, that is, ¥*() is a character-
istic function for any ¢ > 0 (not only for ¢ integer), one need not limit oneself to mixtures
involving integer powers (equation 6.61), but can also consider sums of the form

q/)(u)zan;(t" (u), foranyt, >0, (6.66)
or even
$() = [p(e) () e [with p(£)>0, [p(t)de = 1}. (6:67)
0 0

6.11.5. If we take a random quantity X and add on a random quantity A, which is small
and has appropriate regularity properties, then X + A will differ only slightly from X (it
is as though we intentionally measure X with a small error), but will enjoy the regularity
properties possessed by A (and perhaps some others as well). As we shall see, this can
turn out to be very useful.

For example, suppose A is chosen to have a uniform distribution between +6, with
density 1/26. In this case, X + A will always have a density <1/28, whatever the distribu-
tion of X (see 6.9.8). If we take a triangular distribution for A(flx) = K(1 - |x|/5):K = 1/6),
X + A will have a density which is <1/6 everywhere, and the derivatives of the density
will also be <1/8* (in absolute value). Similar bounds obtain when A is taken to be
normal (m = 0, 6 = §).

In terms of characteristic functions, this results in ¢(u), the characteristic function of
X, being multiplied by the characteristic function of A; in the cases mentioned above,
we consider

_1(5,4)2

¢(u)(sin5u)/5u, ¢(u)(sin5u>2 /(5u)2,¢(u)e 2

This device often enables us to reduce problems posed in terms of general distribu-
tions to a framework in which suitable regularity conditions are obeyed.

In particular, we observe that if A is assumed to have the first form mentioned above
(uniform over 1§ then fi(x) the density of X + A, is precisely the average density of X in
the interval x £ §; in other words,

fs(x)=[F(x+8)-F(x-8)]/25.%

Informally, this formula says the following: the probability of X + A lying between x +
%dx is the probability (of the necessary condition) that X lies inside x + &, since, condi-
tional on X = xy (%o any point in x + §) the density of X + A at x is always the same, 1/26.
More formally, considering the convolution for X + A (see 6.9.6), we have

S5 (x)=1f(x).(1/25)(]z - x/<5) dx

=(1/25) j‘f(x)dx:1/26[F(z+5)—F(z—5)]

48 The fact that f5(x) is discontinuous and undefined at those points (at most a countable number) at distance
4 (to the left or right) from discontinuity points of F(x) (points with concentrated mass for X) is irrelevant.
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(clearly, we could have considered the general case straightaway, by writing dF(x) instead
of flx) dx). This formula may be used to obtain F(x") — F(x') for a preassigned interval
(%', x”). In fact, it suffices to put z = %(x’ +x"), 8 = 3(x” - x). In particular, to obtain
F(x) — F(0), it is enough to putz = § = %x We have, therefore,

FE)-F)=( =) G(x'+x")j, F(3)-F(0)= 1, ij

The characteristic function of f5(x) is given by ¢(u)(sin 6u)/6u, so that we obtain the
following inversion formula for passing from the characteristic function ¢(u) to the
distribution function F(x):

1 40 L sin—ux 400 el _
F(x)—F(0)=E.[_OO e? ¢(u) 12 du=‘[_oo¢(u) ”
—ux

du. (6.68)

This (or one of the alternative forms) is the standard result, usually proved on the
basis of the Dirichlet integral; this is a more laborious method and, in the words of Feller
(II, p. 484), ‘detracts from the logical structure of the theory’

6.11.6. A more intuitive and expressive way of interpreting and explaining this is as
follows: we think of the characteristic function — and let us take the simplest case,
¢(u) =3 p,e™ — as a mixture of oscillations of various frequencies x;, and intensities p,
(the variable u being thought of as time). The formula for determining the components
of the mixture given ¢(u) (or, if we think in terms of light, for separating it into its
monochromatic components), corresponds to a device capable of filtering out lines or
bands. In order to discover whether a component of frequency x, exists, and in this case
to isolate it and determine its intensity py, we must have a monochromatic filter. This is
precisely what is achieved by the operation of computing the mean value (over a long

period) of ¢(«) multiplied by e "*; in more precise terms, the operation of computing
16 i 1 ¢ oiu(a,-

lim — | ¢(u)e " du=lim — [ s=)qy, 6.69
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We see immediately, however, that if xy # x; the mean value (over any period, and
hence asymptotically, on any very long interval [-a, 4]) is zero. Only if x, coincides with
one of the x;, does the integrand reduce to "’ = 1, the mean value to 1, and the result to
Po (that is, the py, for which xy, is our x;).

The other operations can be regarded as band filters, used to obtain the sum of the pj,
corresponding to frequencies x;, contained in some given interval [x’, x”] and so on.

6.12 Some Remarks Concerning the Divisibility
of Distributions

A distribution obtained by the convolution of others is said to be divisible into the latter
(its factors); G is a factor of F if we can write F = G * H (for some suitable H). In terms of
characteristic functions, this means that ¢(«) can be expressed as a product of functions
¢n(u), each of which is also a characteristic function.
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We have already seen the example of infinitely divisible distributions that can be
defined (in the simplest, but also the most meaningful way) as those for which ¢ (i) =
()" for any # (that is, @(u)V" is a characteristic function for every n). Although we
shall have no reason to give a systematic treatment of this topic, we shall, from time to
time, come across problems where divisibility enters in. For this reason, it is appropriate
at this stage to briefly mention it, for the sole purpose of warning against the errors that
can arise if one proceeds by analogy with factorization as it occurs in arithmetic or
algebra. Anyone interested in pursuing the subject more deeply should read P. Lévy
(1937), pp. 190-195, and the references cited there, or the recent survey by M. Fisz, in
Ann. Math. Stat. (1962), 68—84; the latter contains a bibliography.

There exist distributions that are not divisible: for example, it is clear that a distribu-
tion with only four possible values, 0, 4, b and ¢ (in increasing order) cannot be divisible
unless ¢ = a + b (in which case we must have Z = X + Y, with 0 and a the possible values
for X, 0 and b the possible values for Y); given this fact, we see that the four probabilities
Po P P and p, cannot be chosen arbitrarily (subject only to their sum =1), because they
must be of the form py = (1 - a)(1 - ), p.=a(l - p), pp = (1 — @) and p. = aff (where
a =P(X = a) and f = P(X = b); an extra condition must hold, leaving two degrees of
freedom instead of three).

In general, there are no uniqueness type properties for factorizations; a distribution
always admits a decomposition into an infinitely divisible distribution and indivisible
ones (Khintchin’s theorem); there may be infinitely many of the latter, or none; or it may
be that the former is not present. We can also have, in general, various, different factori-
zations, combining different factors, without even a sharp dividing line between the
factor which is infinitely divisible and the others. In fact, it can happen that an infinitely
divisible distribution turns out to be a product of indivisible factors when factorized in
a particular way.

There are, however, important cases in which the factorization is unique, and, in fact,
reduces to the trivial factorization — the decomposition into factors [¢( u)]* (with ¢, > 0,
Yt, =1) with ¢(u) infinitely divisible. This is the case for the normal distribution (so
that, if X + ¥ = Z has a normal distribution and X and Y are independent, then X and Y
both have normal distributions; Crameér’s theorem), and also for the Poisson distribu-
tion (same result; Raikov’s theorem).

Finally, if we turn to the question of factorizations of infinitely divisible distributions
which remain in the ambit of infinitely divisible distributions (i.e. we require that the
factors also be such), we can say straightaway that in this case the answer is straightfor-
ward and complete. We shall deal with this in Chapter 8, 8.4 (at the present time we do
not have at our disposal the concepts required for taking this any further).

It is instructive to point out the following rather surprising fact: given a factorization
@ (1) = ¢p1(1)po(u), this does not imply that if one factor is kept fixed the other is uniquely
determined (in other words, we can also have ¢(u) = ¢1(u)p3(u), with ¢3 = ¢,). Clearly,
we can only have ¢b3() = ¢o(u) when ¢1(u) = 0; but we have already seen that a charac-
teristic function can be zero (like the triangular case, 1 —1|ul; see 6.11.3) outside an
interval (in this example, for |u#| > 2). In fact, the counter example given by Khintchin
consists precisely in taking ¢; to be such a triangular function; for ¢, and ¢s3, one can
take, for example, concave polygonal functions (see Pélya’s theorem) which are the
same in (-2 < u < 2) but differ outside.
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A Preliminary Survey

7.1  Why a Survey at this Stage?

7.1.1. Our discussion of the requirements of the conceptual formulation of the theory
of probability has already revealed its wide range of application. It applies, in fact, when-
ever the factor of uncertainty is present. The range of problems encountered is also
extensive. Diverse in nature and in complexity, these problems require a corresponding
range of mathematical techniques for their formulation and analysis, techniques which
are provided by the calculus of probability. For a number of reasons, it is useful to give
a preliminary survey;, illustrating these various aspects. In setting out our reasons, and
by inviting the reader to take note of certain things, we shall be able to draw attention to
those points which merit and require the greatest emphasis.

First of all, we note that individual topics acquire their true status and meaning only
in relation to the subject as a whole. This is probably true of every subject, but it is
particularly important in the case of probability theory. In order to explore a particular
area, it pays to get to know it in outline before starting to cover it in great detail (although
this will be necessary eventually), so that the information from the detailed study can be
slotted into its rightful place. If we were to proceed in a linear fashion, we would not
only give an incomplete treatment but also a misleading one, in that it would be difficult
to see the connections between the various aspects of the subject. The same would be
true of even the most straightforward problems if we had to deal with them without, at
any given point, referring to any feature whose systematic treatment only came later
(e.g. we would not be able to mention the connections with ‘laws of large numbers;
‘random processes’ or ‘inductive inference’). Nor would it be reasonable (either in
general or in this particular case) to assume that individual chapters are approached
only after all the preceding ones have been read, and their contents committed to
memory. For an initial appreciation, it is necessary and sufficient to be clear about basic
problems and notions rather than attempting to acquire a detailed knowledge. Moreover,
the difficulties associated with this approach are easily avoided. It is sufficient to learn
from the outset how to understand what these problems and concepts are about by
concentrating on a small number of simple but meaningful examples. Although
elementary and summary in nature, the approach is then both clear and concrete, and
can be further developed by various additional comments and information.

Theory of Probability: A Critical Introductory Treatment, First Edition. Bruno de Finetti.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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7.1.2. In this preliminary survey, we shall, for this reason, concentrate on the case of
Heads and Tails. This example, examined from all possible angles, will serve as a basic
model, although other variants will be introduced from time to time (more for the sake
of comparison and variety than from necessity). These simple examples will shed light
on certain important ideas that crop up over and over again in a great many problems,
even complex and advanced ones. This, in turn, facilitates the task of analysing the lat-
ter in greater depth. In fact, it often turns out that the result of such an analysis is simply
the extension of known and intuitive results to those more complex cases. This also
reveals that the detailed complications which distinguish such cases from the simple
ones are essentially irrelevant.

Another reason for providing a survey is the following. Everybody finds problems in
the calculus of probability difficult (nonmathematicians, mathematicians who are
unfamiliar with the subject, even those who specialize in it if they are not careful'). The
main difficulty stems, perhaps, from the danger of opting for the apparently obvious,
but wrong, conclusion, whereas the correct conclusion is usually easily established,
provided one looks at the problem in the right way (which is not — until one spots
it — the most obvious). In this respect, the elementary examples provide a good basis for
discussion and advice (which, although useful, is inadequate unless one learns how to
proceed by oneself for each new case). Many of the comments we shall make, however,
are not intended solely for the purpose of avoiding erroneous or cumbersome argu-
ments when dealing with simple cases. More generally, they are made with the intention
of clarifying the conceptual aspects themselves, and of underlining their importance, in
order to avoid any misunderstandings or ambiguities arising in other contexts going
beyond those of the examples actually used. In other words, we shall be dealing with
matters which, as far as the present author is concerned, have to be treated as an inte-
gral part of the formulation of the foundations of the subject, and which could have
been systematically treated as such were it not for the risk that one might lose sight of
the direct nature of the actual results and impart to the whole enterprise a suggestion of
argument for argument’s sake, or of literary—philosophical speculation.

7.1.3. It turns out that the aims that we have outlined above are best achieved by con-
centrating mainly on examples of the ‘classical’ type — that is those based on combinatorial
considerations. In fact, even leaving aside the need to mention such problems anyway,
many of these combinatorial problems and results are particularly instructive and intui-
tive by virtue of their interpretations in the context of problems in probability. Indeed, it
was once thought that the entire calculus of probability could be reduced essentially to
combinatorial considerations by reducing everything down to the level of ‘equiprobable
cases. Although this idea has now been abandoned, it remains true that combinatorial

1 Feller, for example, repeatedly remarks on the way in which certain results seem to be surprising and even
paradoxical (even simple results concerning coin tossing, such as those relating to the periods during which
one gambler has an advantage over the other; Chapter 8, 8.7.6). He remarks on ‘conclusions that play havoc
with our intuition’ (p. 68), and that ‘few people will believe that a perfect coin will produce preposterous
sequences in which no change of lead occurs for millions of trials in succession, and yet this is what a good
coin will do rather regularly’ (p. 81). Moreover, he can attest to the fact that ‘sampling of expert opinion has
revealed that even trained statisticians feel that’ certain data are really surprising (p. 85).

All this is from W. Feller, An Introduction to Probability Theory and its Applications, 2nd edn, John Wiley &
Sons, Inc., New York (1957). Many of the topics mentioned in the present chapter are discussed in detail by
Feller (in Chapter 3, in particular), who includes a number of original contributions of his own.
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considerations do play an important role, even in cases where such considerations are not
directly involved (see the examples that were discussed in Chapter 5, 5.7.4).

Given our stated purpose in this ‘preliminary survey; it will naturally consist more of
descriptive comments and explanations than of mathematical formulations and proofs
(although in cases where the latter are appropriate we shall provide them). In the first
place, we shall deal with those basic, straightforward schemes and analyses which pro-
vide the best means of obtaining the required ‘insights. Secondly, we shall take the
opportunity of introducing (albeit in the simplest possible form) ideas and results that
will be required in later chapters, and of subjecting them to preliminary scrutiny
(although without providing a systematic treatment). Finally, we shall consider certain
rather special results which will be used later (here they link up rather naturally with one
of the examples, whereas introduced later they would appear as a tiresome digression).

7.2 Heads and Tails: Preliminary Considerations

7.2.1. Unless we specifically state otherwise, we shall, from now on, be considering events
which You judge to have probability 1 and to be stochastically independent. It follows that
each of the 2" possible results for # such events all have the same probability, ()"
Conversely, to judge these 2" results to be all equally probable implies that You are attri-
buting probability 1 to each event and judging the events to be stochastically independent.

The events E;, E,,..., E,,,... will consist of obtaining Heads on a given toss of a coin
(we could think in terms of some preassigned number of tosses, 1, or of a random
number — for example ‘until some specified outcome is obtained, ‘those tosses which
are made today’ and so on — or of a potentially infinite number). We shall usually take
it that we are dealing with successive tosses of the same coin (in the order, Ej, Ej,...),
but nothing is altered if one thinks of the coin being changed every now and then, or
even after every toss. In the latter case, we could be dealing with the simultaneous
tossing of # coins, rather than # successive tosses (providing we establish some crite-
rion other than the chronological one — which no longer exists — for indexing the E;).
We could, in fact, consider situations other than that of coin tossing. For example:
obtaining an even number on a roll of a die, or at bingo; or drawing a red card from a
full pack, or a red number at roulette (excluding the zero) and so on. We shall soon
encounter further examples, and others will be considered later.

7.2.2. In order to represent the outcomes of # tosses (i.e. a sequence of n outcomes
resulting in either Heads or Tails), we can either write HHTHTTTHT, or, alternatively,
110100010 (where Heads = 1, Tails = 0).>

A. How many Heads appear in the n tosses? This is the most common question.
We know already that out of the 2" possibilities the number in which Heads appear
h times is given by (i). The probability, o{" of & successes out of 1 events is therefore
()/2". We shall return to this question later, and develop it further.

2 It should be clear that expressions like HHT (denoting that three consecutive outcomes — e.g. the first,
second and third, or those labelled #, n + 1, n + 2 — are Head—Head-Tail) are merely suggestive ‘shorthand’
representations. The actual logical notation would be E, E, .1 E,..» (or HyHy,1 Thyo, if one sets H; = E; and

T; = E;). Let everyone be clear about this, so that no one inadvertently performs operations on HHT as
though it were simply a product (it would be as though one thought that the year 1967, like abed, being the
product of four ‘factors; that is 1, 9, 6, 7, were equal to 378).
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B. How many runs of consecutive, identical outcomes are there? In the sequence given
above, there were six runs: HH/T/H/TTT/H/T. 1t is clear that after the initial run we obtain a
new run each time an outcome differs from the preceding one. The probability of obtaining
h + 1 runs is, therefore, simply that of obtaining /1 change-overs, and so we consider:

C. How many change-overs are there? In other words, how many times do we obtain an
outcome which differs from the preceding one? For each toss, excluding the initial one,
asking whether or not the toss gives the same outcome as the previous one is precisely the
same as asking whether it gives Heads or Tails. The question reduces, therefore, to (A),
and the probability that there are # change-overs in the # tosses is equal to ( n- )/ 2",

D. Suppose we know that out of n = r + s tosses, r are to be made by Peter and s by Paul.
What is the probability that they obtain the same number of successes? Arguing system-
atically, we note that the probability of Peter obtaining / successes and Paul obtaining k
is equal to (5, ) (3 )/2". It follows that the probability of each obtaining the same number of
successes is given by ( 5 )n z ,(1)() (the sum running from 0 to the minimum of r and s).
As is well-known, however (and can be verified directly by equating coefficients in
(1+%)" (1 +x)°=(1 +x)"), this sum is equal to (}) = (), and the probability that we are
looking for is identical to that of obtaining r (or s) successes out of # tosses.

This result could have been obtained in an intuitive manner, and without calculation,
by means of a similar device to that adopted in the previous case. We simply note that the
problem is unchanged if ‘success’ for Paul is redefined to be the outcome Tails rather
than Heads. To obtain the same number of successes (% say) now reduces to obtaining
s Heads and r Tails overall; s = & + (s — h), r = (r —h) + h. Without any question, this is
the most direct, natural and instructive proof of the combinatorial identity given above.

E. What is the probability that the number of successes is odd? There would be no
difficulty in showing this to be £, by plodding through the summation of the binomial
coefficients involved (the sums of those corresponding to evens and odds are equal!). If
n were odd, it would be sufficient to observe that an odd number of Heads entails an
even number of Tails, and so on.

A more direct and intuitive argument follows from noting that we need only concern
ourselves with the final toss. The probability of a success is 1 (no matter what happened
on the preceding tosses), and hence the required probability is 1. The advantage of this
argument is that we see, with no further effort, that the same conclusion holds under
much weaker conditions. It holds, in fact, for any events whatsoever, logically or sto-
chastically independent, and with arbitrary probabilities, provided that one of them has
probability %, and is independent of all combinations of the others (or, at least, of the fact of
whether an odd or an even number of them occur).?

We shall return to this topic again in Section 7.6.9.

3 Pairwise independence (which we consider here in order to show how much weaker a restriction it is)
would not entitle us to draw these conclusions. We can obtain a counterexample by taking just three events,
A, B, C, and supposing them all to be possible, with the four events ‘only A’ ‘only B’ ‘only C’ and ‘all three’
(ABC) equally probable (p = 7). It is easily seen that A, B, C each have probability 1 and are pairwise
independent, but that the number of successes is certainly odd (either 1 or 3). If we had argued in terms of
the complements, it would certainly be even (either O or 2).
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7.2.3. Some comments. The main lesson to be learned from these examples is the
following. In the calculus of probability, just as in mathematics in general, to be able
to recognize the essential identity of apparently different problems is not only of great
practical value but also of profound conceptual importance.

In particular, arguments of this kind often enable us to avoid long and tedious combina-
torial calculations; indeed, they constitute the most intuitive and ‘natural’ approach to
establishing combinatorial identities.* Moreover, they should serve, from the very begin-
ning, to dispel any idea that there might be some truth in certain of the specious arguments
one so often hears repeated. For example: that there is some special reason (in general, that
it is advantageous) to either always bet on Heads, or always on Tails; or, so far as the lot-
tery is concerned, to always bet on the same number, perhaps one which has not come up
for several weeks! All this, despite the fact that, by assumption, all the sequences are
equally probable. It is certainly true that the probability of no Heads in ten successive
tosses is about one in a thousand (27'° = 1/1024), and in twenty tosses about one in a
million (272° = 1/1048576), but the fact of the matter is that the probability of not winning
in ten (or twenty) tosses if one always sticks to either Heads or Tails is always exactly the
same (that given above). This is the case no matter whether or not the tosses are consecu-
tive, or whether or not one always bets on the same face of the coin, or whether one
alternates in a regular fashion, or decides randomly at every toss. To insist on sticking to
one side of the coin, or to take the consecutive nature of the tosses into account, is totally
irrelevant.

7.2.4. E What is the probability that the first (or, in general, the rth) success (or failure)
occurs on the hth toss? The probability of the first success occurring on the Ath toss is
clearly given by (1) (the only favourable outcome out of all the 2"is given by 000...0001).
Note that this probability, (%)h, is the same as that of obtaining no successes in h tosses;
that is of having to perform more than / tosses before obtaining the first success.” The
probability of the rth success occurring at the Ath toss is given by (2)" (1), because this
is the probability of exactly r —1 successes in the first /1 -1 tosses multiplied by the prob-
ability (3) of a further success on the final (/th) toss.

G. A coin is alternatively tossed, first by Peter and then by Paul, and so on. If the winner
is the one who first obtains a Head, what are their respective probabilities of winning?
A dull, long-winded approach would be to sum the probabilities (2)" for 4 odd (to obtain
Peter’s probability of winning), or % even (for Paul’s probability), and this would present
no difficulties. The following argument is more direct (although its real advantage
shows up better in less trivial examples). If Peter has probability p, Paul must have

4 My ‘philosophy’ in this respect is to consider as a na