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ix

It is an honour to be asked to write a foreword to this book, for I believe that it is a book 
destined ultimately to be recognized as one of the great books of the world.

The subject of probability is over two hundred years old and for the whole period of 
its existence there has been dispute about its meaning. At one time these arguments 
mattered little outside academia, but as the use of probability ideas has spread to so 
many human activities, and as probabilists have produced more and more sophisticated 
results, so the arguments have increased in practical importance. Nowhere is this more 
noticeable than in statistics, where the basic practices of the subject are being revised as 
a result of disputes about the meaning of probability. When a question has proved to be 
difficult to answer, one possibility may be that the question itself was wrongly posed 
and, consequently, unanswerable. This is de Finetti’s way out of the impasse. Probability 
does not exist.

Does not exist, that is, outside of a person: does not exist, objectively. Probability is a 
description of your (the reader of these words) uncertainty about the world. So this 
book is about uncertainty, about a feature of life that is so essential to life that we cannot 
imagine life without it. This book is about life: about a way of thinking that embraces all 
human activities.

So, in a sense, this book is for everyone; but necessarily it will be of immediate appeal 
to restricted classes of readers.

Philosophers have recently increased their interest in probability and will therefore 
appreciate the challenging ideas that the author puts forward. For example, those of the 
relationships between possibility and tautology. They will notice the continual concern 
with reality, with the use of the ideas in practical situations. This is a philosophy intended 
to be operational and to express the individual’s appreciation of the external world.

Psychologists are much concerned with the manner of this appreciation, and experi-
ments have been performed which show that individuals do not reason about uncer-
tainty in the way described in these volumes. The experiments provide a descriptive 
view of man’s attitudes: de Finetti’s approach is normative. To spend too much time on 
description is unwise when a normative approach exists, for it is like asking people’s 
opinion of 2 + 2, obtaining an average of 4 · 31 and announcing this to be the sum. It 
would be better to teach them arithmetic. I hope that this book will divert psycholo-
gists’ attentions away from descriptions to the important problem, ably discussed in this 
book, of how to teach people to assess probabilities.

Foreword
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Mathematicians will find much of interest. (Let me hasten to add that some people 
may approach the book with fear because of the amount of mathematics it contains. 
They need not worry. Much of the material is accessible with no mathematical skill: yet 
more needs only a sympathetic appreciation of notation. Even the more mathematical 
passages use mathematics in a sparse and yet highly efficient way. Mathematics is always 
the servant – never the master (see Section 1.9.1).) Nevertheless, the mathematician 
will appreciate the power and elegance of the notation and, in particular, the discussion 
of finite additivity. He will be challenged by the observation that ‘mathematics is an 
instrument which should conform itself strictly to the exigencies of the field in which it 
is to be applied’. He will enjoy the new light shed on the calculus of probabilities.

Physicists have long used probabilistic notions in their understanding of the world, 
especially at the basic, elementary‐particle level. Here we have a serious attempt to con-
nect their use of uncertainty with the idea as used outside physics.

Statisticians are the group I can speak about with greatest confidence. They have 
tended to adopt a view of probability which is based on frequency considerations and is 
too narrow for many applications. They have therefore been compelled to introduce 
artificial ideas, like confidence intervals, to describe the uncertainties they need to use. 
The so‐called Bayesian approach has recently made some significant impression, but de 
Finetti’s ideas go further still in replacing frequency concepts entirely – using his notion 
of exchangeability – and presenting an integrated view of statistics based on a single 
concept of uncertainty. A consequence of this is that the range of possible applications 
of statistics is enormously widened so that we can deal with phenomena other than 
those of a repeatable nature.

There are many other groups of people one would like to see reading these volumes. 
Operational research workers are continually trying to express ideas to management 
that involve uncertainty: they should do it using the concepts contained therein. One 
would like (is it a vain hope?) to see politicians with a sensible approach to uncer-
tainty  –  what a blessing it would be if they could appreciate the difference between 
prediction and prevision (p. 60).

The book should therefore be of interest to many people. As the author says (p. 12) ‘it 
is … an attempt to view, in a unified fashion, a group of topics which are in general 
considered separately, each by specialists in a single field, paying little or no attention to 
what is being done in other fields.’

The book is not a text on probability in the ordinary sense and would probably not be 
useful as a basis for a course of lectures. It would, however, be suitable for a graduate 
seminar wherein sections of it were discussed and analysed. Which sections were used 
would depend on the type of graduates, but with the continuing emphasis on unity, it 
would be valuable in bringing different disciplines together. No university should ignore 
the book.

It would be presumptuous of me to say how you should read the two volumes but a 
few words may help your appreciation. Firstly, do not approach it with preconceived 
ideas about probability. I address this remark particularly to statisticians, who can so 
easily interpret a formula or a phrase in a way that they have been used to, when de 
Finetti means something different. Let the author speak for himself. Secondly, the book 
does not yield to a superficial reading. The author has words of wisdom to say about 
many things and the wisdom often only appears after reflection. Rather, dip into parts 
of the book and read those carefully. Hopefully you will be stimulated to read the whole. 
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Thirdly, the style is refreshing – the translators have cleverly used the phrase ‘a whimsical 
fashion’ (Section 1.3.3) – so that every now and again delightful ideas spring to view; the 
idea that we shall all be Bayesian by 2020, or how‐to play the football pools. But, as I 
said, this is a book about life.

November 1973
University College London, 

D.V. Lindley
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I became a postgraduate student of statistics at University College London in 1968, 
soon after Dennis Lindley had moved there to become the head of the department. He 
was, at that time, one of the very few academic statisticians committed to the so‐called 
Bayesian approach to the subject. While I was a postgraduate, Lindley several times 
mentioned to me that his American colleague and fellow Bayesian, L.J. Savage, had 
encouraged him, and indeed anyone interested in the subjectivist approach to Bayesian 
statistics, to read the works of the Italian probabilist, actuary and philosopher, Bruno 
de Finetti.

But there was a problem for most of us at that time. Very little of his work had been 
translated into English and his 1970 magnum opus, the two‐volume Teoria Delle Probabilitá, 
was only available in Italian. The thought of struggling through several hundred pages of 
dense and difficult writing with the aid of a dictionary was simply too daunting.

In 1971, I left University College London to take up an academic post at the 
Mathematics Institute in the University of Oxford. Early in 1972, an Italian group 
theorist called Antonio Machí came to spend a year at the Institute. We became friends 
and at some stage I mentioned my interest in de Finetti and the frustrations of trying to 
get to grips with the Teoria Delle Probabilita. Antonio immediately suggested that we 
work together on translating the two‐volume work into English. Two years later, after 
many exchanges between Oxford and Rome, the first Wiley English edition appeared, 
with a Foreword by Dennis Lindley, with whom I subsequently gave a series of lectures 
in London to draw the attention of the wider statistics community to the importance of 
de Finetti’s ideas.

There was growing interest in Bayesian ideas throughout the 1970s, but it was still 
very much a minority view among academic statisticians. The first attempt by some of 
us to organize a specifically Bayesian international conference in 1978, the first of what 
were to become the four‐yearly Valencia Conferences, attracted around eighty partici-
pants. However, by the time we reached the ninth such meeting in 2011, the attendance 
had grown tenfold and Bayesian thinking had become a significant and influential fea-
ture of the statistical landscape.

De Finetti predicts in these volumes that we shall all be Bayesians by 2020. There is 
still some way to go, but if it proves to be so it will be due in no small measure to the 
influence of these wonderful volumes.

Adrian Smith

Preface
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1.1 Why a New Book on Probability?

There exist numerous treatments of this topic, many of which are very good, and others 
continue to appear. To add one more would certainly be a presumptuous undertaking if 
I thought in terms of doing something better, and a useless undertaking if I were to 
content myself with producing something similar to the ‘standard’ type. Instead, the 
purpose is a different one: it is that already essentially contained in the dedication to 
Beniamino Segre

[who about twenty years ago pressed me to write it as a necessary document for 
clarifying one point of view in its entirety.]

Segre was with me at the International Congress of the Philosophy of Science (Paris 
1949), and it was on the occasion of the discussions developed there on the theme of 
probability that he expressed to me, in persuasive and peremptory terms, a truth, per-
haps obvious, but which only since appeared to me as an obligation, difficult but 
unavoidable.

‘Only a complete treatment, inspired by a well‐defined point of view and collect-
ing together the different objections and innovations, showing how the whole 
theory results in coherence in all of its parts, can turn out to be convincing. Only 
in this way is it possible to avoid the criticisms to which fragmentary expositions 
easily give rise since, to a person who in looking for a completed theory interprets 
them within the framework of a different point of view, they can seem to lead 
unavoidably to contradictions.’

These are Segre’s words, or, at least, the gist of them.
It follows that the requirements of the present treatment are twofold: first of all to 

clarify, exhaustively, the conceptual premises, and then to give an essentially complete 
exposition of the calculus of probability and its applications in order to establish the 
adequacy of the interpretations deriving from those premises. In saying ‘essentially’ 
complete, I mean that what matters is to develop each topic just as far as is necessary to 
avoid conceptual misunderstandings. From then on, the reader could follow any other 

Introduction
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book without finding great difficulty in making those modifications that are needed in 
order to translate it, if such be desired, according to the point of view that will be taken 
here. Apart from these conceptual exigencies, each topic will also be developed, in 
terms of the content, to an extent sufficient for the treatment to turn out to be adequate 
for the needs of the average reader.

1.2 What are the Mathematical Differences?

1.2.1. If I thought I were writing for readers absolutely innocent of probabilistic–
statistical concepts, I could present, with no difficulty, the theory of probability in the 
way I judge to be meaningful. In such a case, it would not even have been necessary to 
say that the treatment contains something new and, except possibly under the heading 
of information, that different points of view exist. The actual situation is very different, 
however, and we cannot expect any sudden change.

My estimation is that another fifty years will be needed to overcome the present 
situation, but perhaps even this is too optimistic. It is based on the consideration 
that about thirty years were required for ideas born in Europe (Ramsey, 1926; de 
Finetti, 1931) to begin to take root in America (even though B.O. Koopman 
(1940) had come to them in a similar form). Supposing that the same amount of 
time might be required for them to establish themselves there, and then the same 
amount of time to return, we arrive at the year 2020.

It would obviously be impossible and absurd to discuss in advance concepts and, even 
worse, differences between concepts to whose clarification we will be devoting all of 
what follows; however, much less might be useful (and, anyway, will have to suffice for 
the time being). It will be sufficient to make certain summary remarks that are intended 
to exemplify, explain and anticipate for the reader certain differences in attitude that 
could disorientate him, and leave him undecided between continuing without under-
standing or, on the other hand, stopping reading altogether. It will be necessary to show 
that the ‘wherefore’ exists and to give at least an idea of the  ‘wherefore’, and of the 
‘wherefores’, even without anticipating the ‘wherefore’ of every single case (which can 
only be seen and gone into in depth at the appropriate time and place).

1.2.2. From a mathematical point of view, it will certainly seem to the reader that 
either by desire or through ineptitude I complicate simple things; introducing captious 
objections concerning aspects that modern developments in mathematical analysis 
have definitively dealt with. Why do I myself not also conform to the introduction of 
such developments into the calculus of probability? Is it a question of incomprehen-
sion? Of misoneism? Of affectation in preferring to use the tools of the craftsman in an 
era of automation which allows mass production even of brains  –  both electronic 
and human?

The ‘wherefore’, as I see it, is a different one. To me, mathematics is an instrument that 
should conform itself strictly to the exigencies of the field in which it is to be applied. 
One cannot impose, for their own convenience, axioms not required for essential 
reasons, or actually in conflict with them.
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I do not think that it is appropriate to speak of ‘incomprehension’. I have followed 
through, and appreciated, the reasons pro (which are the ones usually put forward), 
but I found the reasons contra (which are usually neglected) more valid, and even 
preclusive.

I do not think that one can talk of misoneism. I am, in fact, very much in favour of 
innovation and against any form of conservatism (but only after due consideration, and 
not by submission to the tyrannical caprice of fashion). Fashion has its use in that it 
continuously throws up novelties, guarding against fossilization; in view of such a func-
tion, it is wise to tolerate with goodwill even those things we do not like. It is not wise, 
however, to submit to passively adapting our own taste, or accepting its validity beyond 
the limits that correspond to our own dutiful, critical examination.

I do not think that one can talk of ‘affectation’ either. If anything, the type of ‘affecta-
tion’ that is congenial to my taste would consist of making everything simple, intuitive 
and informal. Thus, when I raise ‘subtle’ questions, it means that, in my opinion, one 
simply cannot avoid doing so.

1.2.3. The ‘wherefore’ of the choice of mathematical apparatus, which the reader 
might find irksome, resides, therefore, in the ‘wherefores’ related to the specific mean-
ing of probability, and of the theory that makes it an object of study. Such ‘wherefores’ 
depend, in part, on the adoption of this or that particular point of view with regard to 
the concept and meaning of probability, and to the basis from which derives the possi-
bility of reasoning about it, and of translating such reasoning into calculations. Many of 
the ‘wherefores’ seem to me, however, also to be valid for all, or many, of the different 
concepts (perhaps with different force and different explanations). In any case, the criti-
cal analysis is more specifically hinged on the conception that we follow here, and which 
will appear more and more clear (and, hopefully, natural) as the reader proceeds to the 
end – provided he or she has the patience to do so.

1.3 What are the Conceptual Differences?

1.3.1. Meanwhile, for those who are not aware of it, it is necessary to mention that in the 
conception we follow and sustain here only subjective probabilities exist – that is, the 
degree of belief in the occurrence of an event attributed by a given person at a given 
instant and with a given set of information. This is in contrast to other conceptions that 
limit themselves to special types of cases in which they attribute meaning to ‘objective 
probabilities’ (for instance, cases of symmetry as for dice etc., ‘statistical’ cases of 
‘repeatable’ events, etc.). This said, it is necessary to add at once that we have no inter-
est, at least for now, either in a discussion, or in taking up a position, about the ‘philo-
sophical’ aspects of the dispute; in fact, it would be premature and prejudicial because 
it would entangle the examination of each concrete point in a web of metaphysical 
misunderstandings.

Instead, we are interested, on the contrary, in clearly understanding what one means 
according to one’s own conception and in one’s own language, and learning to enter into 
this conception and language in its motivations and implications (even if provisionally, 
in order to be able to make pertinent criticism later on). This is, it seems to me, an invio-
lable methodological need.
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1.3.2. There is nothing more disappointing than to hear repeated, presented as ‘criti-
cisms’, clichés so superficial that it is not possible to infer whether the speaker has even 
read the arguments developed to confute them and clear them up, or has read them 
without understanding anything, or else has understood them back to front. The fault 
could be that of obscure presentation, but a somewhat more meaningful reaction would 
be required in order to be able to specify accurately, and to correct, those points which 
lend themselves to misunderstanding.

The fault may be the incompleteness of the preceding, more or less fragmentary, exposi-
tions, which, although probably more than complete if taken altogether, are  difficult to 
locate and hold in view simultaneously. If so, the present work should obviate the incon-
venience: unfortunately, the fact that it is published is not sufficient; the result depends on 
the fact that it is read with enough care to enable the reader to make pertinent criticisms.

I would like to add that I understand very well the difficulties that those who have 
been brought up on the objectivistic conceptions meet in escaping from them. I under-
stand it because I myself was perplexed for quite a while some time ago (even though I 
was free from the worst impediment, never having had occasion to submit to a ready‐
made and presented point of view, but only coming across a number of them while 
studying various books and works on my own behalf ). It was only after having analysed 
and mulled over the objectivistic conceptions in all possible ways that I arrived, instead, 
at the firm conviction that they were all irredeemably illusory. It was only after having 
gone over the finer details and developed, to an extent, the subjectivistic conception, 
assuring myself that it accounted (in fact, in a perfect and more natural way) for every-
thing that is usually accredited, overhastily, to the fruit of the objectivistic conception, 
it was only after this difficult and deep work, that I convinced myself, and everything 
became clear to me. It is certainly possible that these conclusions are wrong; in any case 
they are undoubtedly open to discussion, and I would appreciate it if they were discussed.

However, a dialogue between the deaf is not a discussion. I think that I am doing my 
best to understand the arguments of others and to answer them with care (and even 
with patience when it is a question of repeating things over and over again to refute 
trivial misunderstandings). It is seldom that I have the pleasure of forming the impres-
sion that other people make a similar effort; but, as the Gospel says, ‘And why beholdest 
thou the mote that is in thy brother’s eye, but considerest not the beam that is in thine 
own eye?’: if this has happened to me, or is happening to me, I would appreciate it if 
someone would enlighten me.

1.3.3. One more word (hopefully unnecessary for those who know me): I find it much 
more enlightening, persuasive, and in the end more essentially serious, to reason by 
means of paradoxes; to reduce a thesis to absurdity; to make use of images, even light‐
hearted ones provided they are relevant, rather than to be limited to lifeless manipula-
tions in technical terms, or to heavy and indigestible technical language. It is for this 
reason that I very much favour the use of colourful and vivid forms of expression, which, 
hopefully, may turn out to be effective and a little entertaining, making concrete, in a 
whimsical fashion, those things that would appear dull, boring or insipid and, therefore, 
inevitably badly understood, if formulated in an abstract way, stiffly or with affected 
gravity. It is for this reason that I write in such a fashion, and desire to do so; not because 
of ill‐will or lack of respect for other people, or their opinions (even when I judge them 
wrong). If somebody finds this or that sentence a little too sharp, I beg him to believe in 
the total absence of intention and animosity, and to accept my apologies as of now.
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1.4 Preliminary Clarifications

1.4.1. For the purpose of understanding, the important thing is not the difference in philo-
sophical position on the subject of probability between ‘objective’ and ‘subjective’, but 
rather the resulting reversals of the rôles and meanings of many concepts, and, above all, 
of what is ‘rigorous’, both logically and mathematically. It might seem paradoxical but the 
fact is that the subjectivistic conception distinguishes itself precisely by a more rigorous 
respect for that which is really objective, and which it calls, therefore, ‘objective’,1 There are 
cases in which, in order to define a notion, in formulating the problem, or in justifying the 
reasoning, there exists a choice between an unexceptionable, subjectivistic interpretation 
and a would‐be objectivistic interpretation. The former is made in terms of the opinions 
or attitudes of a given person; the latter derives from a confused transposition from this 
opinion to the undefinable complex of objective circumstances that might have contributed 
to its determination: in such cases there is nothing to do but choose the first alternative. 
The subjective opinion, as something known by the individual under consideration, is, at 
least in this sense, something objective and can be a reasonable object of a rigorous study. 
It is certainly not a sign of greater realism, of greater respect for objectivity, to substitute 
for it a metaphysical chimera, even if with the laudable intention of calling it ‘objective’ in 
order to be able to then claim to be concerned only with objective things.

There might be an objection that we are in a vicious circle, or engaged in a vacuous 
discussion, since we have not specified what is to be understood by ‘objective’. This 
objection is readily met, however: statements have objective meaning if one can say, on 
the basis of a well‐determined observation (which is at least conceptually possible), 
whether they are either TRUE or FALSE. Within a greater or lesser range of this delimi-
tation a large margin of variation can be tolerated, with one condition – do not cheat. 
To cheat means to leave in the statement sufficient confusion and vagueness to allow 
ambiguity, second‐thoughts and equivocations in the ascertainment of its being TRUE 
or FALSE. This, instead, must always appear simple, neat and definitive.

1.4.2. Statements of this nature, that is the only ‘statements’ in the true sense of the 
word, are the object of the logic of certainty, that is ordinary logic, which could also be 
in the form of mathematical logic, or of mathematics. They are also the objects to which 
judgements of probability apply (as long as one does not know whether they are true or 
false) and are called either propositions, if one is thinking more in terms of the expres-
sions in which they are formulated, or events, if one is thinking more in terms of the situ-
ations and circumstances to which their being true or false corresponds.

On the basis of the considerations now developed, one can better understand the 
statement made previously, according to which the fundamental difference between the 
subjectivistic conception and the objectivistic ones is not philosophical but methodo-
logical. It seems to me that no‐one could refute the methodological rigour of the subjec-
tivistic conception: not even an objectivist. He himself, in fact, would have unlimited 
need of it in trying to expose, in a sensible way, the reasons that would lead him to 
consider ‘philosophically correct’ this one, or that one, among the infinitely many pos-
sible opinions about the evaluations of probability. To argue against this can only mean, 

1 This fact has often been underlined by L.J. Savage (see Kyburg and Smokler (1964), p. 178, and elsewhere).
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even though without realizing it, perpetuating profitless discussions and playing on the 
ambiguities that are deeply rooted in the uncertainty.

At this stage, a few simple examples might give some preliminary clarification of the 
meaning and compass of the claimed ‘methodological rigour’ – under the condition, 
however, that one takes into account the necessarily summary character of these pre-
liminary observations. It is necessary to pay attention to this latter remark to avoid both 
the acceptance of such observations as exhaustive and the criticism of them that results 
from assuming that they claim to be exhaustive: one should realize, with good reason, 
that they are by no means such.

1.5 Some Implications to Note

1.5.1. We proceed to give some examples: to save space, let us denote by ‘O’ statements 
often made by objectivists, and by ‘S’ those with which a subjectivist (or, anyway, this 
author) would reply.

O: Two events of the same type in identical conditions for all the relevant circum-
stances are ‘identical’ and, therefore, necessarily have the same probability.2

S: Two distinct events are always different, by virtue of an infinite number of circum-
stances (otherwise how would it be possible to distinguish them?!). They are equally 
probable (for an individual) if – and so far as – he judges them as such (possibly by judg-
ing the differences to be irrelevant in the sense that they do not influence his judgement).
An even more fundamental objection should be added: the judgement about the prob-
ability of an event depends not only on the event (or on the person) but also on the state 
of information. This is occasionally recalled, but more often forgotten, by many 
objectivists.

O: Two events are (stochastically) independent3 if the occurrence of one does not 
influence the probability of the other.

S: I would say instead: by definition, two events are such (for an individual) if the 
knowledge of the outcome of one does not make him change the evaluation of probabil-
ity for the other.

O: Let us suppose by hypothesis that these events are equally probable, for example 
with probability p 1

2 , and independent, and so on.
S: It is meaningless to consider as an ‘hypothesis’ something that is not an objective 

statement. A statement about probability (the one given in the example or any other one 
whatsoever) either is the evaluation of probabilities (those of the speaker or of someone 
else), in which case there is nothing to do but simply register the fact, or it is nothing.

O: These events are independent and all have the same probability which is, however, 
‘unknown’.

2 The objectivists often use the word event in a generic sense also, using ‘trials’ (or ‘repetitions’) of the same 
‘event’ to mean single events, ‘identical’ or ‘similar’. From time to time we will say ‘trials’ (or ‘repetitions’) of a 
phenomenon, always meaning by event a single event. It is not simply a question of terminology, however: 
we use ‘phenomenon’ because we do not give this word any technical meaning; by saying ‘trials of a 
phenomenon’ one may allude to some exterior analogy but one does not mean to assume anything that 
would imply either equal probability, or independence, or anything else of probabilistic relevance.
3 Among events, random quantities, or random entities in general, it is possible to have various relations 
termed ‘independence’ (linear, logical, stochastic); it is better to be specific if there is any risk of ambiguity.



1 Introduction 7

S: This formulation is a nonsense in the same sense as the preceding one but to a 
greater extent. By interpreting the underlying intention (which, as an intention, is rea-
sonable) one can translate it (see Chapter 11) into a completely different formulation, 
‘exchangeability’, in which we do not have independence, the probabilities are known, 
and vary, precisely, in depending only on the number of successes and failures of which 
one has information.

One might continue in this fashion, and it could be said that almost the whole of what 
follows will be, more or less implicitly, a continuation of this same discussion. Rather, let 
us see, by gathering together the common factors, the essential element in all these 
contrapositions.

1.5.2. For the subjectivist everything is clear and rigorous when he is expressing 
something about somebody’s evaluation of probabilities; an evaluation which is, simply, 
what it is. For that somebody, it will have motivations that we might, or might not, 
know; share, or not share; judge4 more or less reasonable, and that might be more or less 
‘close’ to those of a few, or many, or all people. All this can be interesting, but it does not 
alter anything. To express this in a better way: all these things matter in so far as they 
determined that unique thing that matters, and that is the evaluation of probability to 
which, in the end, they have given rise.

From the theoretical, mathematical point of view, even the fact that the evaluation of 
probability expresses somebody’s opinion is then irrelevant. It is purely a question of 
studying it and saying whether it is coherent or not; that is whether it is free of, or affected 
by, intrinsic contradictions. In the same way, in the logic of certainty one ascertains the 
correctness of the deductions but not the accuracy of the factual data assumed as premises.

1.5.3. Instead, the objectivist would like to ignore the evaluations, actual or hypotheti-
cal, and go back to the circumstances that might serve as a basis for motivations which 
would lead to evaluations. Not being able to invent methods of synthesis comparable in 
power and insight to those of the human intuition, nor to construct miraculous robots 
capable of such, he contents himself, willingly, with simplistic schematizations of very 
simple cases based on neglecting all knowledge except a unique element which lends 
itself to utilization in the crudest way.

A further consequence is the following. The subjectivist, who knows how much cau-
tion is necessary in order to remain within the bounds of realism, will exercise great 
care in not going far beyond the consideration of cases immediately at hand and directly 
interesting. The objectivist, who substitutes the abstraction of schematized models for 
the changing and transient reality, cannot resist the opposite temptation. Instead of 
engaging himself, even though in a probabilistic sense (the only one which is valid), in 
saying something about the specific case of interest, he prefers to ‘race on ahead’, occu-
pying himself with the asymptotic problems of a large number of cases, or even playing 
around with illusory problems, contemplating infinite cases where he can try, without 
any risk, to pass off his results as ‘certain predictions’.5

4 With a judgment which is ‘subjective squared’: our subjective judgment regarding the subjective judgment 
of others.
5 Concerning the different senses in which we use the terms ‘prevision’ and ‘prediction’, see Chapter 3 (at 
the beginning and then in various places, in particular 3.7.3).
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1.6 Implications for the Mathematical Formulation

1.6.1. From these conceptual contrapositions there follows, amongst other things, an 
analogous contraposition in the way in which the mathematical formulation is conceived. 
The subjectivistic way is the one that it seems appropriate to call ‘natural’: it is possible to 
evaluate the probability over any set of events whatsoever; those for which it serves a 
purpose, or is of interest, to evaluate it; there is nothing further to be said. The objectivis-
tic way (and also the way most congenial to contemporary mathematicians, independently 
of the conception adopted regarding probability) consists in requiring, as an obligatory 
starting point, a mathematical structure much more formidable, complete and compli-
cated than necessary (and than it is, in general, reasonable to regard as conceivable).

1.6.2. Concerning a known evaluation of probability, over any set of events whatso-
ever, and interpretable as the opinion of an individual, real or hypothetical, we can only 
judge whether, or not, it is coherent.6 If it is not, the evaluator, when made aware of it, 
should modify it in order to make it coherent. In the same way, if someone claimed to 
have measured the sides and area of a rectangle and found 3 m, 5 m and 12 m2, we, even 
without being entitled, or having the inclination, to enter into the merits of the ques-
tion, or to discuss the individual measurements, would draw his attention to the fact 
that at least one of them is wrong, since it is not true that 3 × 5 = 12.

Such a condition of coherence should, therefore, be the weakest one if we want it to be 
the strongest in terms of absolute validity. In fact, it must only exclude the absolutely 
inadmissible evaluations; that is those that one cannot help but judge contradictory (in 
a sense that we shall see later).

Such a condition, as we shall see, reduces to finite additivity (and non‐negativity). It is 
not admissible to make it more restrictive (unless it turns out to be necessary if we dis-
cover the preceding statement to be wrong); it would make us exclude, erroneously, 
admissible evaluations.

1.6.3. What the objectivistic, or the purely formalistic, conceptions generally postulate 
is, instead, that countable additivity holds (as for Borel or Lebesgue measure), and that 
the field over which the probability is defined be the whole of a Boolean algebra. From 
the subjectivistic point of view this is both too much and too little: according to what 
serves the purpose and is of interest, one could limit oneself to much less, or even go 
further. One could attribute probabilities, finitely but not countably additive, to all, and 
only, those events that it is convenient to admit into the formulation of a problem and 
into the  arguments required for its solution. One might also go from one extreme to the 
other: referring to the analogy of events and probability with sets and measure, it might, 
at times, be convenient to limit oneself to thinking of a measure as defined on certain 
simple sets (like the intervals), or even on certain sets but not their intersections (for 
instance, for ‘vertical’ and ‘horizontal’ ‘stripes’ in the (x,y)‐plane (x′ ≤ x < x″, y′ ≤ y < y″) 
but not on the rectangles); and, at other times, to think of it instead as extended to all the 
sets that the above‐mentioned convention would exclude (like the ‘non‐Lebesgue‐meas-
ureable sets’).

6 See Chapter 3.
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1.6.4. In a more general sense, it seems that many of the current conceptions consider 
as a success the introduction of mathematical methods so powerful, or of tricks of for-
mulation so slick, that they permit the derivation of a uniquely determined answer to a 
problem even when, due to the insufficiency of the data, it is indeterminate. A capable 
geometer in order to conform to this aspiration would have to invent a formula for 
calculating the area of a triangle given two sides.

Attempts of this kind are to be found in abundance, mainly in the field of statisti-
cal induction (see some remarks further on in this Introduction, 1.7.6).

In the present case, the defect is somewhat hidden and consists in the following 
distinction between the two cases of measure and of probability.

To extend a mathematical notion (measure) from one field (Jordan–Peano) to 
another (Borel–Lebesgue) is a question of convention. If, however, a notion (like 
probability) already has a meaning (for each event, at least potentially, even if not 
already evaluated), one cannot give it a value by conventional extension of the 
probabilities already evaluated except for the case in which it turns out to be the 
unique one compatible with them by virtue of the sole conditions of coherence 
(conditions pertaining to the meaning of probability, not to motives of a mathe-
matical nature). The same would happen if it were a question of a physical quan-
tity like mass. If one thought of being able to give meaning to the notion of ‘mass 
belonging to any set of points of a body’ (for instance those with rational coordi-
nates), in the sense that it were, at least conceptually, possible to isolate such a 
mass and weigh it, then it would be legitimate, when referring to it, to talk about 
everything that can be deduced about it by mathematical properties that trans-
late necessary physical properties, and only such things. To say something more 
(and in particular to give it a unique value when such properties leave the value 
indeterminate between certain limits), by means of the introduction of arbitrary 
mathematical conventions, would be unjustified, and therefore inadmissible.

1.7 An Outline of the ‘Introductory Treatment’

1.7.1. The reader must feel as though he has been plunged alternately into baths of hot 
and cold water: in Section 1.5 he encountered the contraposed examples of the concep-
tual formulation, presented either as meaningful or as meaningless; in Section 1.6 the 
mathematical formulations, presented either as suitable or as academic. Following this, 
a simple and ordered presentation of the topics that will follow may provide a suitable 
relaxation, and might even induce a return to the preceding ‘baths’ in order, with a 
greater knowledge of the motives, to soak up some further meaning.

1.7.2. In Chapter 2 we will not talk of probability. Since we wish to make absolutely 
clear the distinction between the subjective character of the notion of probability and 
the objective character of the elements (events, or any random entities whatsoever) to 
which it refers, we will first treat only these entities. In other words, we will deal with 
the preliminary logic of certainty where there exist only:

 ● TRUE and FALSE as final answers;
 ● CERTAIN and IMPOSSIBLE and POSSIBLE as alternatives, with respect to the pre-

sent knowledge of each individual.
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In this way, the range of uncertainty, that is of what is not known, will emerge in 
outline. This is the framework into which the (subjective) notion of probability will be 
introduced as an indispensable tool for our orientation and decision making.

The random events, random quantities and any other random entities, will already be 
defined, however, before we enter the domain of probability, and they will simply 
be events, quantities, entities, well‐defined but with no particular features except the 
fact of not being known by a certain individual. For any individual who does not know 
the value of a quantity X, there will be, instead of a unique certain value, two, or several, 
or infinitely many, possible values of X. They depend on his degree of ignorance and are, 
therefore, relative to his state of information; nevertheless, they are objective because 
they do not depend on his opinions but only on these objective circumstances.

1.7.3. Up until now the consideration of uncertainty has been limited to the negative 
aspect of nonknowledge. In Chapter 3 we will see how the need arises, as natural and 
appropriate, to integrate this aspect with the positive aspect (albeit weak and temporary 
while awaiting the information that would give it certainty) given by the evaluation of 
probabilities. To any event in which we have an interest, we are accustomed to attribut-
ing, perhaps vaguely and unconsciously, a probability: if we are sufficiently interested 
we may try to evaluate it with some care. This implies introspection in depth by weigh-
ing each element of judgment and controlling the coherence by means of other evalua-
tions made with equal accuracy. In this way, each event can be assigned a probability, 
and each random quantity or entity a distribution of probability, as an expression of the 
attitude of the individual under consideration.

Let us note at once a few of the points that arise.
Others, in speaking of a random quantity, assume a probability distribution as already 

attached to it. To adopt a different concept is not only a consequence of the subjectivis-
tic formulation, according to which the distribution can vary from person to person, but 
also of the unavoidable fact that the distribution varies with the information (a fact 
which, in any case, makes the usual terminology inappropriate).

Another thing that might usefully be mentioned now is that the conditions of coher-
ence will turn out to be particularly simplified and clarified by means of a simple device 
for simultaneously handling events and random quantities (or entities of any linear 
space whatever). Putting the logical values ‘True’ and ‘False’ equal to the numbers ‘1’ 
and ‘0’, an event is a random quantity that can assume these two values: the function 
P(X), which for X = event gives its probability, is, for arbitrary X, the ‘prevision’ of X (i.e. 
in the usual terminology, the mathematical expectation).

The use of this arithmetic interpretation of the events, preferable to, but not exclud-
ing, the set‐theoretic interpretation, has its utility and motivation, as will be seen. The 
essential fact is that the linearity of the arithmetic interpretation plays a fundamental 
rôle (which is, in general, kept in the background), whereas the structure of the Boolean 
algebra enters rather indirectly.

1.7.4. After having extended these considerations, in Chapter 4, to the case of condi-
tional probabilities and previsions (encountering the notions of stochastic independence 
and correlation), we will, in Chapter 5, dwell upon the evaluation of probabilities. The 
notions previously established will allow us not only to apply the instruments for this 
evaluation, but also to relate them to the usual criteria, inspired by partial, objectivistic 
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‘definitions’. We will see that the subjectivistic formulation, far from making the valid ele-
ments in the ideas underlying these criteria redundant, allows the best and most complete 
use of them, checking and adapting, case by case, the importance of each of them. In 
contrast to the usual, and rather crude, procedure, which consists of the mechanical and 
one‐sided application of this or that criterion, the proposed formulation allows one to 
behave in conformity with what the miraculous robot, evoked in Section 1.5.3, would do.

1.7.5. Chapters 6–10 extend to give a panoramic vision of the field of problems with 
which the calculus of probabilities is concerned. Of course, it is a question of compro-
mising between the desire to present a relatively complete overall view and the desire 
to concentrate attention on a small number of concepts, problems and methods, whose 
rôle is fundamental both in the first group of ideas, to be given straightaway, and, even 
more, in further developments, which, here, we can at most give a glimpse of.

Also in these chapters, which in themselves are more concerned with content than 
critical appraisal, there are aspects and, here and there, observations and digressions 
that are relevant from the conceptual angle. It would be inappropriate to make detailed 
mention of them but, as examples, we could quote the more careful analysis of what the 
knowledge of the distribution function says, or does not say (also in connection with the 
‘possible’ values), and of the meaning of ‘stochastic independence’ (between random 
quantities), expressed by means of the distribution function.

1.7.6. The last two chapters, 11 and 12, deal briefly with the problems of induction (or 
inference) and their applications, which constitute mathematical statistics. Here we 
encounter anew the conceptual questions connected with the subjective conception, 
which, of course, bases all inference on the Bayesian procedure (from Thomas Bayes,7 
1763). In this way, the theory and the applications come to have a unified and coherent 
foundation: it is simply a question of starting from the evaluation of the initial probabili-
ties (i.e. before acquiring new information – by observation, experiment, or whatever) 
and then bringing them up to date on the basis of this new information, thus obtaining the 
final probabilities (i.e. those on which to base oneself after acquiring such information).

The objectivistic theories, in seeking to eschew the evaluation and use of ‘initial prob-
abilities’, lack an indispensable element for proceeding in a sensible way and appeal to a 
variety of empirical methods, often invented ad hoc for particular cases. We shall use 
the term ‘Adhockeries’, following Good8 (1965) who coined this apt expression, for the 
methods, criteria and procedures that, instead of following the path of the logical for-
mulation, try to answer particular problems by means of particular tricks (which are 
sometimes rather contrived).

7 One must be careful not to confuse Bayes’ theorem (which is a simple corollary of the theorem of 
compound probabilities) with Bayes’ postulate (which assumes the uniform distribution as a representation 
of ‘knowing nothing’). Criticisms of the latter, often mistakenly directed against the former, are not therefore 
valid as criticisms of the position adopted here.
8 Good’s position is less radical than I supposed when I interpreted ‘Adhockery’ as having a derogatory 
connotation. I gathered this from his talk at the Salzburg Colloquium, and commented to this effect in an 
Addendum to the paper I delivered there; Synthese 20 (1969), 2–16: ‘According to it, “adhockeries” ought 
not to be rejected outright; their use may sometimes be an acceptable substitute for a more systematic 
approach. I can agree with this only if – and in so far as – such a method is justifiable as an approximate 
version of the correct (i.e. Bayesian) approach. (Then it is no longer a mere “adhockery”.)’
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1.8 A Few Words about the ‘Critical’ Appendix

1.8.1. Many of the conceptual questions are, unfortunately, inexhaustible if one wishes 
to examine them thoroughly; and the worst thing is that, often, they are also rather 
boring unless one has a special interest in them.

A work that is intended to clarify a particular conceptual point of view cannot do 
without this kind of analysis in depth, but it certainly seems appropriate to avoid weigh-
ing down the text more than is necessary to meet the needs of an ordinary reader who 
desires to arrive at an overall view. For this reason, the most systematic and detailed 
critical considerations have been postponed to an Appendix. This is intended as a reas-
surance that there is no obligation to read it in order to understand what follows, nor to 
make the conclusions meaningful. This does not mean, however, that it is a question of 
abstruse and sophisticated matters being set aside for a few specialists and not to be 
read by others. It is a question of further consideration of different points that might 
appear interesting and difficult, to a greater or lesser extent, but which might always 
improve, in a meaningful and useful, though not indispensable, way, the awareness of 
certain questions and difficulties, and of the motives which inspire different attitudes 
towards them.

1.8.2. In any case, one should point out that it is a question of an attempt to view, in a 
unified fashion, a group of topics that are in general considered separately, each by 
specialists in a single field, paying little or no attention to what is being done in other 
fields. Notwithstanding the many gaps or uncertainties, and the many imperfections 
(and maybe precisely also for the attention it may attract to them), I think that such an 
attempt should turn out to be useful.

Among other things, we have tried to insert into the framework of the difficulties 
associated with the ‘verifiability’ of events in general, the question of ‘complementarity’ 
that arose in quantum physics. The answer is the one already indicated, in a summary 
fashion, elsewhere (de Finetti, 1959), and coinciding with that of B.O. Koopman (1957), 
but the analysis has been pursued in depth and related to the points of view of other 
authors as far as possible (given the margin of uncertainty in the interpretation of the 
thought of those consulted, and the impossibility of spending more time on this topic in 
attempting to become familiar with others).

1.8.3. Various other questions that are discussed extensively in the Appendix, are cur-
rently objects of discussion in various places: for instance, the relationships between 
possibility and tautology seem to be attracting the attention of philosophers (the inter-
vention of Hacking at a recent meeting, Chicago 1967); while the critical questions 
about the mathematical axioms of the calculus of probability (in the sense, to be under-
stood, of making it a theory strictly identical to measure theory, or with appropriate 
variations) are always a subject of debate.

Apart from the points of view on separate questions, the Appendix will also have as 
a main motive the proposal to model the mathematical formulation on the analysis of 
the actual needs of the substantive interpretation. Moreover, to do so with the greatest 
respect for ‘realism’, which the inevitable degree of idealization must purify just a little, 
but must never overwhelm or distort, neither for analytical convenience, nor for any 
other reason.
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1.9 Other Remarks

1.9.1. It seems appropriate here to draw attention also to some further aspects, all 
 secondary, even if only to underline the importance that attaches, in my opinion, to ‘secondary’ 
things.

One characteristic of the calculus of probability is that mathematical results are often 
automatically obtained because their probabilistic interpretations are obvious. In all 
these cases I think it is much more effective and instructive to consider as their proofs 
these latter expressive interpretations, and as formal verifications their translation into 
technical details (to be omitted, or left to the reader). This seems to me to be the best 
way of realizing the ideal expressed in the maxim that Chisini9 often repeated: ‘mathe-
matics is the art which teaches one how not to make calculations’.

It is incredible how many things are regularly presented in a heavy and obscure fash-
ion, arriving at the result through a labyrinth of calculations that make one lose sight of 
the meaning, whereas simple, synthetic considerations would be sufficient to reveal 
that, for those not wishing to behave as if handcuffed or blindfolded, results and mean-
ing are at hand, staring one in the face.

On numerous occasions one sees very long calculations made in order to prove results 
that are either wrong or obvious. The latter case is the more serious, without any 
 extenuating circumstances, since it implies lack of realization that the conclusion was 
obvious, even after having seen it. On the other hand, failing to get the result due to a 
casual mistake merits only half a reproach, since the lack of realization only applies 
before starting the calculations.

Instead, it is often sufficient to remark that two formulae are necessarily identical for 
the simple reason that they express the same thing in different ways, since they provide 
the result of the same process starting from different properties which characterize it, 
or for other similar reasons. Problems that can, more or less ‘surprisingly’, be reduced to 
synthetic arguments arise frequently in, amongst other things, questions connected 
with random processes (ranging from the game of Heads and Tails to cases involving 
properties of characteristic functions etc.). Often, on the other hand, it is an appropriate 
geometric representation that clarifies the situation and also suggests, without calcula-
tions and without any doubts, the solution in formulae.

1.9.2. In addition, however, there are even more secondary things which have their 
importance. These I would like to explain with a few examples so that it does not seem 
that some small innovation, perhaps in notation or terminology, has been introduced 
just for the sake of changing things, instead of with reluctance, overcome by the realiza-
tion that this was the only way of getting rid of many useless complications.

The very simple device, from which most of the others derive, is that mentioned 
already in 1.7.3. We identify an event E with the random quantity, commonly called the 
‘indicator of E’, which takes values 1 or 0 according to whether E is true or false. Not only 
can one operate arithmetically on the events (the arithmetic sum of many events = the 

9 Oscar Chisini, a distinguished and gifted pupil of Federigo Enriques, was Professor at the University of 
Milan where the author attended his course on Advanced Geometry. Chisini’s generalized definition of the 
concept of mean (see Chapter 2, Section 2.9) came about as a result of his occasionally being concerned 
with this notion in connection with secondary-school examinations.
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number of successes; E − p = the gain from a bet for a person who stakes a sum p in 
order to receive a sum 1 if E occurs etc.) but one operates with a unique symbol P in 
order to denote both probability and prevision (or ‘mathematical expectation’), thus 
avoiding duplication. The ‘theorem’ M(IE) = P(E), ‘the mathematical expectation of the 
indicator of an event is equal to the probability of the same event’, is rendered superfluous 
(it could only be expressed by P(E) = P (E)!).

1.9.3. The identification TRUE = 1, FALSE = 0 is also very useful as a simple conven-
tional device for denoting, in a straightforward and synthetic way, many mathematical 
expressions that usually require additional verbal explanation. Applying the same iden-
tifications to formulae expressing conditions, for instance, interpreting ‘(0 ⩽ x ⩽ 1)’ as a 
symbol with value 1 for x between 0 and 1, where the inequality is true, and value 0 
outside, where it is false, one can simply write expressions of the type

 
f x g x x0 1 

 
(and more complicated forms), which otherwise require verbal explanations, like ‘the 
function f(x) which coincides with g(x) for 0 ⩽ x ⩽ 1 and is zero elsewhere’, or writing in 
the cumbersome form

 

f x
x

g x x
x

0 0
0 1

0 1

for
for
for

,
,

.
 

 
It is easy to imagine many cases in which the utility of such a convention is much greater, 
but I think it is difficult to realize the number and variety of such cases (I am often 
surprised by new, important applications not previously foreseen).

1.9.4. Other simplifications of this kind, which can sometimes be used in conjunction 
with the above, result from a parallel (or dual) extension of the Boolean operations to 
the field of real numbers, coinciding, for the values 0 and 1, with the usual meaning for 
the events. This natural and meaningful extension will also reveal its utility in many 
applications10 (see Chapter 2, Sections 2.5 and 2.11).

1.9.5. A small innovation in notation is that of denoting the three most important 
types of convergence in the probabilistic field by:

symbol: type of convergence:

weak (in probability) (in measure)
strong (almost certain) (almost everywhere)

• quadratic (in mean‐square) (in mean (quadratic))

10 The advantages of these two conventions (0 and 1 for True–False, and ∨ and ∧ among numbers) are 
illustrated, somewhat systematically and with concise examples, in a paper in the volume in honour of O. 
Onicescu (75th birthday): ‘Revue roumaine de mathématiques pures et appliquées’, Bucharest (1967), XII, 9, 
1227–1233. An English translation of this appears in B. de Finetti, Probability, Induction and Statistics, John 
Wiley & Sons (1972).
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(this could also have value in function theory). The innovation seems to me appropriate 
not only to avoid abbreviations which differ from language to language but also for 
greater clarity, avoiding the typographic composition and deciphering of symbols that 
are either cumbersome or unreadable.

1.9.6. Another device which we will introduce with the intention of simplifying the 
notation does not have a direct relationship with the calculus of probability. For this 
reason we were even more hesitant to introduce it, but finally realized that without such 
a remedy there remained simple and necessary things which could not be expressed in 
a decently straightforward way.

The most essential is the device of obtaining symbols indicating functions, substi-
tuting for the variable (in any expression whatever) a ‘place‐name’ symbol: as such ◽ 
would seem suitable; it also suggests something which awaits filling in. The scope is the 
same as obtained by Peano by means of the notation ‘|x’, ‘varying x’, which, applied for 
instance to the expression (x sin x2 + √(3 – x))/log(2 + cos x) gives ƒ = {[(x sin x2 + 
√(3 – x))/log (2 + cos x)]|x}, where ƒ is the symbol of the function such that f(x) gives the 
expression above, and f(y), f(ax2 + b), f(ez), … is the same thing in which at each place 
where an x is found we substitute y, or ax2 + b, or ez, or whatever. This notation, 
however, does not lend itself to many cases where it would be required, and where, 
instead, the notation which puts the ‘place‐name’ for the variable, which is left at our 
disposal,11 is very useful. In the preceding example one would write

 
f
  



sin

log cos

2 3

2  
and to denote f(x), f(y), f(ax2 + b), f(ez), it would suffice to write on the right, within 
parentheses, (), the desired variable.

The greatest utility is perhaps obtained in the simplest cases: for instance, in order to denote 
by ◽, ◽2, ◽−1 the identity function, f(x) = x, or the quadratic, f(x) = x2, or the reciprocal, f(x) = 
1/x, when the ƒ must be denoted as the argument in a functional. For example, F(◽), F(◽2), 
might indicate the first and second moments of a distribution F (according to the conventions 
of which we shall speak in Chapter 6), and then for any others, F(◽n), F(|◽n|) and so on.

1.9.7. Finally, a secondary device is that of consistently denoting by K any multiplicative 
constant whatever and, if necessary, indicating its expression immediately afterwards, 
instead of writing it directly, in extensive form, in the formulae. Otherwise, it often hap-
pens that a function, of x say, has a rather complicated appearance and each symbol, even 
those in small print or in the exponents and so on, must be deciphered with care in order 
to see where x appears. Often one subsequently realizes that the function is very simple 
and that the complexity of the expression derives solely from having expressed the con-
stant in extensive form. We may have a normalizing constant which, at times, could even 
be ignored because it automatically disappears in the sequel, or can be calculated more 

11 In the case of many variables (for instance three) one could easily use the same device, putting in their 
places different ‘placenames’; for example, ◽1, ◽2, ◽3, with the understanding that f(x, y, z) or f(5, –1

2 , 0) or  
f(x + y, −1

2 x, 1 − 2y) etc., is what one obtains putting the 1st or 2nd or 3rd elements of the triple in the places 
indicated by the three ‘place names’ with indices 1, 2, 3.
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easily from the final formula. At times, in fact, it will be left as a ‘reminder’ of the exist-
ence of an omitted multiplicative factor, which will always be indicated by K, even if the 
value might change at each step: the reader should make careful note of this remark.

1.10 Some Remarks on Terminology

1.10.1. It is without doubt unreasonable, and rather annoying, to dwell at length on 
questions of terminology; on the other hand, a dual purpose glossary would be useful 
and instructive. In the first place, it could improve on a simple alphabetical index in 
aiding those who forget a definition, or remember it only vaguely; secondly, it could 
explain the motivation behind the choice, or sometimes the creation, of certain terms, 
or the fixing of certain conventions for their use.12 For those interested, such an expla-
nation would also provide an account of the wherefores of the choices. Such a glossary 
would, however, be out of place here and, in any case, the unusual terms are few and 
they will be explained as and when they arise.

1.10.2. More importantly, attention must be drawn to some generic remarks, like paying 
attention to the nuances of divergences of interpretation, which depend on differences in 
conception. The main one, that of registering that an event is always a single case, has 
already been underlined (Section 1.5.1); the same remark holds for a random quantity 
(Section 1.7.2), and for every kind of ‘random entity’. Two clarifications of terminology are 
appropriate at this juncture: the first to explain why I do not use the term ‘variable’; the 
second to explain the different uses of the terms ‘chance’, ‘random’ and ‘stochastic’.

To say ‘random (or “chance”) variable’ might suggest that we are thinking of the ‘statisti-
cal’ interpretation in which one thinks of many ‘trials’ in which the random quantity can 
vary, assuming different values from trial to trial: this is contrary to our way of understand-
ing the problem. Others might think that, even if it is a question of a unique well‐deter-
mined value, it is ‘variable’ for one who does not know it, in the sense that it may assume 
any one of the values ‘possible’ for him. This does not appear, however, to be a happy 
nomenclature, and, even less, does it appear to be necessary. In addition, if one wanted to 
adopt it, it would be logical to do so always, by saying: random variable numbers, random 
variable vectors, random variable points, random variable matrices, random variable dis-
tributions, random variable functions, …, random variable events, and not saying random 
vector, random point, random matrix, random distribution, random function, random 
event, and only in the case of numbers not to call it number any more, but variable.

With regard to the three terms –  ‘chance’, ‘random’, ‘stochastic’ –  there are no real 
problems: it is simply the convenience of avoiding indiscriminate usage by supporting 
the consolidation of a tendency that seems to me already present but not, as far as I 
know, expressly stated. Specifically, it seems to me preferable to use, systematically:

 ● ‘Random’ for that which is the object of the theory of probability (as in the preceding 
cases); I will, therefore, say random process, not stochastic process.

 ● ‘Stochastic’ for that which is valid ‘in the sense of the calculus of probability’: for 
instance, stochastic independence, stochastic convergence, stochastic integral; more 

12 A very good example would be that of the Dictionary at the end of the ‘book’ by Bourbaki (1939).
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generally, stochastic property, stochastic models, stochastic interpretation, stochastic 
laws; or also, stochastic matrix, stochastic distribution,13 and so on.

 ● ‘Chance’ is perhaps better reserved for less technical use: in the familiar sense of ‘by 
chance’, ‘not for a known or imaginable reason’, or (but in this case we should give 
notice of the fact) in the sense of ‘with equal probability’ as in ‘chance drawings from 
an urn’, ‘chance subdivision’, and similar examples.

1.10.3. Special mention should be made of what is perhaps the important change in 
terminology: prevision in place of mathematical expectation, or expected value and so 
on. Firstly, all these other nomenclatures have, taken literally, a rather inappropriate 
meaning and often, through the word ‘expectation’, convey something old‐fashioned 
and humorous (particularly in French and Italian, where ‘espérance’ and ‘speranza’ 
 primarily mean ‘hope’!). In any case, it is inconvenient that the expression of such a 
fundamental notion, so often repeated, should require two words. Above all, however, 
there was another reason: to use a term beginning with P, since the symbol P (from 
what we have said and recalled) then serves for that unique notion which in general 
we call prevision14 and, in the case of events, also probability.15

1.11 The Tyranny of Language

All the devices of notation and terminology and all the clarifications of the interpreta-
tions are not sufficient, however, to eliminate the fundamental obstacle to a clear and 
simple explication, adequate for conceptual needs: they can at most serve as palliatives, 
or to eliminate blemishes.

That fundamental obstacle is the difficulty of escaping from the tyranny of everyday 
language, whose viscosity often obliges us to adopt phrases conforming to current 
usage instead of meditating on more apt, although more difficult, versions. We all 
continue to say ‘the sun rises’ and I would not know which phrase to use in order not 
to seem an anachronistic follower of the Ptolemaic system. Fortunately the suspicion 
does not even enter one’s mind because nobody quibbles about the literal meaning of 
this phrase.

13 The case of matrices and distributions illustrates the difference well. A random matrix is a matrix whose 
entries are random quantities; a stochastic matrix (in the theory of Markov chains) is the matrix of 
‘transition probabilities’; i.e. well-determined quantities that define the random process. A random 
distribution (well-defined but not known) is that of the population in a future census, according to age, or 
that of the measures that will be obtained in n observations that are to be made; a stochastic distribution 
would mean distribution of probability (but it is not used, nor would it be useful).
14 Translators’ note. We have used prevision rather than foresight (as in Kyburg and Smokier, p. 93) 
precisely for the reasons given in 1.10.3.
15 SIn almost all languages other than Italian, the letter E is unobjectionable, and often a single word is 
sufficient: Expectation (English), Erwartung (German), Espérance mathématique (French), etc. However, 
the use of E is inconvenient because this is often used to denote an event and, in any case, it can hardly 
remain if one seeks to unify it with P. It is difficult to foresee whether this unification will command 
widespread support and lead to a search for terms with initial letter P in other languages (see footnote 
above), or other solutions. We say this to note that the proposed modification causes little difficulty in Italy, 
not only because of the existence and appropriateness of the term ‘Previsione’ but also because the 
international symbol E has not been adopted there.
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In the present exposition we shall often, for the sake of brevity, use incorrect 
language, saying, for example: ‘let the probability of E be 1

2 ’, ‘let the events A and B 
be (stochastically) independent’, ‘let the probability distribution of a random quan-
tity X be normal’, and so on. This is incorrect, or, more accurately, it is meaningless, 
unless we mean that it is a question of an abbreviated form to be completed by 
‘according to the opinion of the individual (for example You) with whom we are 
concerned and who, we suppose, desires to remain coherent’. The latter should be 
understood as the constant, though not always explicitly stated, intention and inter-
pretation of the present author.

This is stated, and explicitly repeated, wherever it seems necessary, due to the intro-
duction of new topics, or for the examination of delicate points—perhaps even too 
insistently, with the risk, and near certainty, of irritating the reader. Even so, notwith-
standing the present remark (even imagining that it has been read), I am afraid that the 
very same reader when confronted with phrases like those we quoted, instead of under-
standing implicitly those things necessary in order to interpret them correctly, could 
have the illusion of being in an oasis – in the ‘enchanted garden’ of the objectivists (as 
noted at the end of Chapter 7, 7.5.7) – where these phrases could constitute ‘statements’ 
or ‘hypotheses’ in an objective sense.

In our case, in fact, the consequences of the pitfalls of the language are much more 
serious than they are in relationship to the Copernican system, where, apart from the 
strong psychological impediments due to man’s egocentric geocentrism, it was simply a 
question of choosing between two objective models, differing only in the reference sys-
tem. Much more serious is the reluctance to abandon the inveterate tendency of savages 
to objectivize and mythologize everything;16 a tendency that, unfortunately, has been, 
and is, favoured by many more philosophers than have struggled to free us from it.17 
This has been acutely remarked, and precisely with reference to probability, by Harold 
Jeffreys:18

‘Realism has the advantage that language has been created by realists, and mostly 
very naïve ones at that; we have enormous possibilities of describing the inferred 
properties of objects, but very meagre ones of describing the directly known ones 
of sensations.’

16 The main responsibility for the objectivizationistic fetters inflicted on thought by everyday 
language rests with the verb ‘to be’ or ‘to exist’, and this is why we drew attention to it in the 
exemplifying sentences by the use of italics. From it derives the swarm of pseudoproblems from ‘to be 
or not to be’, to ‘cogito ergo sum’, from the existence of the ‘cosmic ether’ to that of ‘philosophical 
dogmas’.   
17 This is what distinguishes the acute minds, who enlivened thought and stimulated its progress, from the 
narrow-minded spirits who mortified it and tried to mummify it: those who took every achievement as the 
starting point to presage further achievement, or those, on the contrary, who had the presumption to use it 
as a starting point on which to be able to base a definitive systematization.

For the two types, the qualification given by R. von Mises seems appropriate (see Selected Papers, 
Vol. II, p. 544): ‘great thinkers’ (like Socrates and Hume) and ‘school philosophers’ (like Plato 
and Kant).
18 Jeffreys, a geophysicist, who as such was led to occupy himself deeply with the foundations of 
probability, holds a position similar in many aspects to the subjectivistic one. The quotation is taken from 
H. Jeffreys, Theory of Probability, Oxford (1939), p. 394.
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1.12 References

1.12.1. We intend to limit the present references to a bare minimum. The reader who wishes 
to study the topics on his own can easily discover elsewhere numerous books and references 
to books. Here the plan is simply to suggest the way which I consider most appropriate for 
the reader who would like to delve more deeply into certain topics, beyond the level reached 
here, without the inconvenience of passing from one book to another, with differences in 
notation, terminology and degree of difficulty.

1.12.2. The most suitable book for consultation according to this plan is, in my  opinion, 
that of Feller:

Willy Feller, An Introduction to Probability Theory and its Applications, in two  volumes: 
I  (1950) (2nd and 3rd edn, more and more enriched and perfected, in 1956 and 1968); 
II (1966); John Wiley & Sons, Inc., New York.

The treatment, although being on a high level and as rigorous as is required by the topic, 
is not difficult to read and consult. This is due to the care taken in abolishing useless compli-
cations, in making, as far as possible, the various chapters independent of each other while 
facilitating the links with cross‐references, and in maintaining a constant interplay between 
theoretical questions and expressive examples. Further discussion may be found in a review 
of it, by the present author, in Statistica, 26, 2 (1966), 526–528.

The point of view is not subjectivistic, but the mainly mathematical character of the treat-
ment makes differences of conceptual formulation relatively unobtrusive.

1.12.3. For the topics in which such differences are more important, that is those of infer-
ence and mathematical statistics (Chapter 11 and Chapter 12), there exists another work 
that is inspired by the concepts we follow here. Such topics are not expressly treated in Feller 
and thus, with particular reference to these aspects, we recommend the following work, and 
above all the second volume:

Dennis V. Lindley, Introduction to Probability and Statistics from a Bayesian viewpoint, in 
two volumes: I, Probability; II, Inference; Cambridge University Press (1965).

Complementing the present work with those of Feller and Lindley would undoubtedly 
mean to learn much more, and better, than from this work alone, except in one aspect; that 
is the coherent continuation of the work of conceptual and mathematical revision in con-
formity with the criteria and needs already summarily presented in this introductory chapter.

The above‐mentioned volumes are also rich in interesting examples and exercises, varied 
in nature and difficulty.
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2

2.1 Certainty and Uncertainty

2.1.1. In almost all circumstances, and at all times, we all find ourselves in a state of 
uncertainty.

Uncertainty in every sense.
Uncertainty about actual situations, past and present (this might stem from either a 

lack of knowledge and information, or from the incompleteness or unreliability of the 
information at our disposal; it might also stem from a failure of memory, either ours or 
someone else’s, to provide a convincing recollection of these situations).

Uncertainty in foresight: this would not be eliminated or diminished even if we accepted, 
in its most absolute form, the principle of determinism; in any case, this is no longer in 
fashion. In fact, the above‐mentioned insufficient knowledge of the initial situation and of 
the presumed laws would remain. Even if we assume that such insufficiency is eliminated, 
the practical impossibility of calculating without the aid of Laplace’s demon would remain.

Uncertainty in the face of decisions: more than ever in this case, compounded by the 
fact that decisions have to be based on knowledge of the actual situation, which is itself 
uncertain, to be guided by the prevision of uncontrollable events, and to aim for certain 
desirable effects of the decisions themselves, these also being uncertain.

Even in the field of tautology (i.e. of what is true or false by mere definition, indepen-
dently of any contingent circumstances), we always find ourselves in a state of uncer-
tainty. In fact, even a single verification of a tautological truth (for instance, of what is 
the seventh, or billionth, decimal place of π, or of what are the necessary or sufficient 
conditions for a given assertion) can turn out to be, at a given moment, to a greater or 
lesser extent accessible or affected with error, or to be just a doubtful memory.

2.1.2. It would therefore seem natural that the customary modes of thinking, reason-
ing and deciding should hinge explicitly and systematically on the factor uncertainty as 
the conceptually pre‐eminent and determinative element. The opposite happens, how-
ever: there is no lack of expressions referring to uncertainty (like ‘I think’, ‘I suppose’, 
‘perhaps’, ‘with difficulty’, ‘I believe’, ‘I consider it as probable’, ‘I think of it as likely’, 
‘I would bet’, ‘I’m almost certain’, etc.), but it seems that these expressions, by and large, 
are no more than verbal padding. The solid, serious, effective and essential part of 
 arguments, on the other hand, would be the nucleus that can be brought within the 

Concerning Certainty and Uncertainty
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language of certainty – of what is certainly true, or certainly false. It is in this ambit that 
our faculty of reasoning is exercised, habitually, intuitively and often unconsciously.

In reasoning, as in every other activity, it is, of course, easy to fall into error. In order to 
reduce this risk, at least to some extent, it is useful to support intuition with suitable super-
structures: in this case, the superstructure is logic (or, to be precise, the logic of certainty).

Whether it is a question of traditional verbalistic logic, or of mathematical logic, or of 
mathematics as a whole, the only difference in this respect is in the degree of extension, 
effectiveness and elegance. In fact, it is, in any case, a question of ascertaining the 
 coherence, the compatibility, of stating, believing, or imagining as hypotheses some set of 
‘truths’. To put it in a different way: thinking of a subset of these ‘truths’ as given (knowing, 
for instance, that certain facts are true, certain quantities have given values, or values in 
between given limits, certain shapes, bodies or graphs of given phenomena enjoy given 
properties, and so on), we will be able to ascertain which conclusions, among those of interest, 
will turn out to be – on the basis of the data – either certain (certainly true), or impossible 
(certainly false), or else possible. The qualification ‘possible’  –  which is an intermediate, 
generic and purely negative qualification – is applied to everything that does not fall into the 
two extreme limit cases: that is to say, it expresses one’s ignorance in the sense that, on the 
basis of what we know, the given assertion could turn out to be either true or false.

2.1.3. This definition of ‘possible’ itself reveals an excessive and illusory confidence in 
‘certainty’: in fact, it assumes that logic is always sufficient to separate clearly that which 
is determined (either true or false), on the basis of given knowledge, from that which is 
not. On the contrary (even apart from the possibility of deductions which are wrong, or 
whose correctness is in doubt), to the sphere of the logically possible (as defined above) 
one will always add, in practice, a fringe (not easily definable) of the personally possible; 
that is that which must be considered so, since it has not been established either that it 
is a consequence of one’s knowledge or that it is in conflict with it.

We have already said, in fact, that logic can reduce the risk of error, but cannot 
 eliminate it, and that tautological truths are not necessarily accessible. However, in 
order not to complicate things more than is required to guard against logical slips, we 
will always consider the case in which ‘possible’ can be interpreted as logically possible.1

2.2 Concerning Probability

2.2.1. The distinction between that which, at a certain moment, we are ignorant of, and 
that which, on the other hand, turns out to be certain or impossible, allows us to think 
about the range of possibility; that is, the range over which our uncertainty extends. 
However, this is not sufficient as an instrument and guide for orientation, decision or 
action: to this end –and this is what we are interested in – it will be necessary to base 
oneself on a further concept; the concept of probability.

1 Possibly by eliminating some knowledge. For instance, in the case of π it seems reasonable (for the 
problem under consideration) to imagine that one ignores the properties that permit the calculation of π, 
and to consider it as an ‘experimental constant’ whose decimal representation could only be known if 
somebody had determined it and published the result. I believe that for a mathematician, too, it would be 
reasonable to think that everything proceeds as if he were in such a state of ignorance.
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In this chapter we do not wish to talk about probabilities, however; they will 
be introduced in Chapter 3. This deferment is undoubtedly awkward: obviously, the 
 awkwardness consists in introducing preliminary notions without, at the same time, 
exhibiting their use. Didactically this is a bad mistake – one runs the risk of making 
boring and dull that which otherwise would appear clear and interesting. However, 
when it is important to emphasize an essential distinction, which otherwise would 
remain unnoticed and confused, a rigid separation is necessary – even if it seems to be 
artificial and pedantic. This is precisely the case here.

2.2.2. The study of the range of possibility, to which we shall here limit ourselves, 
involves learning how to know and recognize all that can be said concerning uncer-
tainty, while remaining in the domain of the logic of certainty; that is, in the domain of 
what is objective. Probability will be a further notion not belonging to that domain and, 
therefore, a subjective notion. Unfortunately, these two adjectives anticipate a question 
about which there could be controversial opinions – their use here is not intended to 
prejudice the conclusion, however. For the time being, what matters is to make clear a 
distinction that is methodologically fundamental: afterwards, one can discuss the 
 interpretation of the meaning of the two fields it delineates, the choice of nomenclature, 
and the points of view corresponding to them. It is precisely in order to be able to discuss 
them lucidly afterwards that it is necessary to avoid an immediate discussion of possi-
bility and probability together; the confusion so formed would be difficult to resolve.

Both the distinction and the connection between the two fields are easily clarified: the 
logic of certainty furnishes us with the range of possibility (and the ‘possible’ has no 
gradations); probability is an additional notion that one applies within the range of pos-
sibility, thus giving rise to gradations (‘more or less probable’) that are meaningless in 
the logic of certainty.

2.2.3. Since it is certain that everyone knows enough about probability to be able to inter-
pret these explanations in a less vague fashion, we can say that ‘probability is something 
that can be distributed over the field of possibility’. Using a visual image, which at a later 
stage might be taken as an actual representation, we could say that the logic of certainty 
reveals to us a space in which the range of possibilities is seen in outline, whereas the logic 
of the probable will fill in this blank outline by considering a mass distributed upon it.

There is no harm in anticipating the developments that the treatment will undergo 
from the next chapter onwards, provided that, from the fact that they are not talked 
about here, one understands that they do not belong in the domain that we now con-
sider it important to present as well‐delimited and distinct.

2.3 The Range of Possibility

2.3.1. Prologue. Let us introduce right away the use of ‘You’, following Good (Savage uses 
‘Thou’). The characterization of what is possible depends on the state of information. The 
state of information will be that (at a given moment) of a real individual, or it might even 
be useful to think of a fictitious individual (as an aid to fixing ideas). This individual, real or 
fictitious, in whose state of information – and, complementarily, of uncertainty – we are inter-
ested, we will denote by ‘You’. We do so in order that You, the reader, can better identify 
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yourself with the rôle of this character. This character – or, better, You – will play a much more 
important rôle after this chapter, when probabilities will enter the scene. For the moment, You 
are in the audience, because You have to limit yourself to passively recording what You know 
for certain, or what You do not know.2 All the same, it will be useful for You to at least get used 
to putting yourself in this character’s place, since, even if it is not yet time to speak our lines, 
we are about to walk onto the stage – that is to enter into the range of possible alternatives.

With regard to any situation or problem that You have to consider, there will always exist 
an enormous number of conceivable alternatives. Your information and knowledge will, in 
general, permit You to exclude some of them as impossible: that is, they will permit You – and 
this has been said to be the function of science – a ‘limitation of expectations’. All the others 
will remain possible for You; neither certainly true, nor certainly false. It will not happen that 
only one of them will be isolated as certain, except in special cases, or unless a rather crude 
analysis of the situation is given. Obviously, it is always sufficient to take all the possible alter-
natives and present them as a whole in order to obtain a single alternative which is ‘certain’.

The choice of which of the more or less sophisticated, detailed, particularized forms 
we need, or consider appropriate, in order to distinguish or subdivide such alternatives, 
according to the problems and the degree of refinement we require in considering them, 
depends on us, on our judgment. Also, we have available several possible languages in 
which we can express ourselves in this connection. It is convenient to introduce them 
straight away, and altogether, in order to show, at the same time, on the one hand their 
essential equivalence, and, on the other, the differences between them which render 
their use more or less appropriate in different cases.

2.3.2. Random events and entities. Everything can be expressed in terms of events 
(which is the simplest notion); everything can be expressed in terms of random entities 
(which is the most generic and general notion); and so on. One or other of these notions 
is sufficient as a starting point to obtain all of them. However, it is instructive to concen-
trate attention on four notions which immediately allow us to frame within the general 
scheme the most significant types of problems, important from both the conceptual 
and practical points of view.

We will consider:

random events,
random quantities,
random functions,
random entities.

Let us make clear the meaning that we give to ‘random’: it is simply that of ‘not known’ 
(for You), and consequently ‘uncertain’ (for You), but well‐determined in itself. Not even 
the circumstance of ‘not known’ is to be taken as obligatory; in the same way we could 
number constants among functions, though we will not call a constant a ‘function’ if 
there is no good reason. To say that it is well‐determined means that it is unequivocally 
individuated. To explain this in a more concrete fashion; it must be specified in such a 
way that a possible bet (or insurance) based upon it can be decided without question.

2 You would have a more personal and autonomous rôle if we took into account the faculty, which You 
certainly possess, of considering as ‘possible’ that which You could show to be impossible, but which 
demands too much deductive effort. However, we have stated, in Section 2.1.3, that, for the sake of 
simplicity, we omit consideration of such hypotheses.
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2.3.3. First, let us consider random quantities: this is an intermediate case from which 
we can pass more easily to the others, particularizing or generalizing as the case may be. 
We will denote a number, considered as a random quantity, by a capital letter; for exam-
ple X or Y, and so on. It might be an integer, a real number, or even a complex number; 
but the latter case should be specified explicitly. The true value is unique, but if You call 
it random (in a nonredundant usage) this means that You do not know the true value. 
Therefore, You are in doubt between at least two values (possible for You), and, in gen-
eral, more than two – a finite or infinite number (for instance, all the values of an inter-
val, or all the real numbers). We will denote by I(X) the set of possible values of X, and we 
will write, in abbreviated form, inf X and sup X for inf I(X) and sup I(X). It is particularly 
important to distinguish the cases of random quantities which are bounded (from above 
and below), that is inf X and sup X finite, and those which are only bounded from above, 
or only bounded from below, or unbounded, that is inf X = −∞, or sup X = +∞, or both.

To exemplify what we mean by well determined in the case of random quantities, let 
us put X = the year of death of Cesare Battisti.3 The true value is X = 1916. While he was 
alive this value was not known to anyone and all years from that time on were possible 
values (for everybody). After the event, it is only random for those who are ignorant of 
it: for instance, for those who know only that it happened during Italy’s participation in 
the World War I, the possible values are the four years 1915, 1916, 1917 and 1918.

Every function of a random quantity, Y = f(X) or of two (or more), Z = f(X, Y), and so 
on, is a random quantity (possibly ‘degenerate’, i.e. certain, if, for instance, ƒ(X) has the 
same value for all possible values of X).

2.3.4. An event (or proposition) admits only two values: TRUE and FALSE. In place of 
these two terms it is convenient to put the two values 1 and 0 (1 = TRUE, 0 = FALSE); 
in this way we simply reduce to a special case of the preceding, with an obvious, expres-
sive meaning. Thus, when we wish to interpret the convention in this way, the event is 
identified with a gain of 1 if the event occurs and with a gain of 0 if the event does not 
occur. Moreover, with this convention the logical calculus of the events is simplified.

We continue to denote events with capital letters; in the main, E, H, A, B,…. It is clear, 
for instance, that 1 − E is the negation of E, which is false if E is true, and vice versa (value 
0 if E = 1, and conversely): it is also clear that AB is the logical product of A and B, that 
is true if both A and B are true, and so on (this is merely an example, the topic will be 
developed later, in Section 2.5).

An event corresponds to a question which admits only two answers; YES or NO (YES = 1, 
NO = 0). It is clear that with a certain number of questions of this type we can obtain an 
answer to a question that involves any number of alternative answers. Given a partition 
into s alternatives (one, and only one, of which is true), we can consider, for instance, the 
s events (exclusive and exhaustive) which correspond to them. But even less is sufficient: 
with n events we can imagine 2n dispositions of YES–NO answers; we therefore have a 
partition into s = 2n alternatives if all these answers are possible, or into a smaller num-
ber, s < 2n, if some of them are impossible (see Section 2.7 for further details).

Abandoning the restriction to a ‘finite number’, it is clear that by means of events we 
can study every case, even those involving an infinite number of possibilities.

3 Cesare Battisti was deputy for Trento at the Vienna Parliament; he volunteered for the Italian army, was 
then taken prisoner and hanged by the Austrians in 1916.
(Trento, where the author once lived, is an Italian city which was, in Battisti’s time, a part of Austria.)
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2.3.5. By talking about random entities in general, we have a means of expressing in a 
synthetic form the situation presented by any problem whatever. It is a question of 
referring oneself at all times to the same perspective, the one already implicitly intro-
duced in the case of a random quantity, and which we now wish to make more precise 
and then to extend.

In the case of a random quantity, X, we can visualize the situation by considering as 
the ‘space of alternatives’, S, a line, the x‐axis,4 and on it the set, Q , of the only values 
(points) possible (for You). In this way we consider en masse, implicitly, all the events 
concerning X (that it belongs to a half‐line, X ⩽ x, or to an interval, x′ ⩽ X ⩽ x″, or to any 
arbitrary set, X ∈ I).5

But now it is obvious that the same representation holds in all cases (in a more intui-
tive sense, of course, in three, or fewer, dimensions). If we consider two random quanti-
ties, X and Y, we can think of the Cartesian plane, with coordinates x and y, as the space 
S in which we have a set Q of points (pairs of values for X and Y) possible (for You) 
for a random point (X, Y). Every event (proposition, statement) concerning X and Y 
corresponds to a set I of S : of course, only the intersection with Q is required, but it is 
simpler (and innocuous) to think of all sets I. The same could be said in the case of three 
random quantities X, Y, Z (in this case S is ordinary space), or for more than three.

Independently of the coordinate system, we could, in this geometric representation, 
formulate a problem straightaway. It might concern a random point on a plane (e.g. 
that point which would be hit in firing at a target), or in ordinary space (e.g. the posi-
tion, at a given instant, of a satellite with which we have lost contact). We find an 
appropriate representation for the situation of a particle (position and velocity) by 
using six‐dimensional space: the space of dimension 6n serves as ‘phase space’ for the 
case of n particles.

Independently of the geometrical meaning, or any meaning that suggests (in a natural 
way) a geometrical representation, we can always imagine, for any random entity, an 
abstract space S consisting of all possible alternatives (or, if convenient, a larger space 
of which these form a subset S ). We could consider, for example, random vectors, 
random matrices or random functions, and, thus far, the linear structure of the space 
continues to present itself as natural. But we could also consider random sets: for example, 
random curves (the path of a fly, or an aeroplane), random sets on surfaces (that part of 
the earth’s surface in shadow at a given instant, or on which rain fell in the last 24 hours); 
or we could think of random entities inadequate to give any structure to the space.

We can, therefore, accept this representation as the general one, despite some res-
ervations which will follow shortly (the latter are intended not as arguments against 
the representation, or for its rejection, but rather in favour of its acceptance ‘with a 
pinch of salt’).

4 We always denote by x(y, etc.) the axis on which X(Y, etc.) is represented.
5 We omit here critical questions relating to the possibility of giving, or not giving, a meaning to statements of 
an extremely delicate or sophisticated nature (or at least to the possibility of taking them into consideration). 
For example, the distinction between < and ⩽, the case of I ‘nonmeasurable’ in some sense or other, etc. It will 
be necessary to say something in Chapter 6; discussion of a critical character will be developed only in the 
Appendix, apart from brief anticipatory remarks here and there.
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2.3.6. There is no need to deal with random functions separately, by virtue of the 
particular position they hold with respect to the preceding considerations (just as 
events and arbitrary entities have extreme positions, and random quantities an inter-
mediate, but instrumentally fundamental, position). It is useful, however, to mention 
them explicitly for a moment. Firstly, in order to point out an example of applications 
which become more and more important from now on, and are largely new with respect 
to the range of problems traditionally recognized. Secondly, because we can allude, in a 
simple and intuitive way, to certain critical observations of the kind that will be reserved, 
in general, for the Appendix.

A random function is a function whose behaviour is unknown to You: we will denote 
it by Y(t), assuming for convenience of intuition that the variable t is time.6 If the func-
tion is known up to certain parameters, for instance Y(t) = A cos(Bt + C) with A, B, C 
random (i.e. unknown to You), the whole thing is trivial and reduces to the space of 
parameters. The case which, in general, we have in mind when we speak of a random 
function – or a random process, if we wish to place more emphasis on the phenomenon 
than on the mathematical translation – is that in which (to use the suggestive, if somewhat 
vague, phrase of Paul Lévy) the uncertainty exists at every instant (or, in his original 
expression, ‘chance operates instant by instant’).

This might mean, for example, that knowing the values of Y(t) at any number of instants, 
t = t1, t2,…, tn, however large the (finite) n, the value at a different instant t will still, in 
general, be uncertain. Sometimes, either for simplicity or in order to be ‘realistic’, we imag-
ine that it makes sense to measure Y at a finite (although unrestrictedly large) number of 
instants, without disposing of other sources of knowledge.7 In such cases, the space S can 
be thought of as that in which every function is a ‘point’, but in which the possibility of 
distinguishing whether or not a function belongs to a set is only possible for those sets 
defined by a finite number of coordinates: the latter, being observable, are actually events. 
The simplest form of these events occurs when we ask whether or not the values at given 
instants fall inside fixed intervals ah ⩽ Y(th) ⩽ bh, h = 1, 2,…, п. To give a visual interpreta-
tion, we ask whether or not the graph passes through a sequence of n ‘doors’, like a slalom.

2.4 Critical Observations Concerning the ‘Space 
of Alternatives’

2.4.1. Having reference to the ‘space of alternatives’ undoubtedly provides a useful 
 overall visualization of problems. Nevertheless, the systematic and, in a certain sense, 
indiscriminate use of it, which is fashionable in certain schools of thought, does have its 
dangers. One should learn to recognize these, and strive to avoid them.

In considering fields of problems of whatever complexity –  in which, for instance, 
random sets, functions, sequences of functions and so on can occur together – the most 

6 Our preference for Y(t), rather than the more usual X(t) as a notation for a generic random function, 
depends mainly on the fact that an X is often used as an ‘ingredient’ in the construction of Y(t) At other 
times, x is used as a variable in place of t, and, anyway, in the graphical representation it is always convenient 
to think of the ordinate as y, and the abscissa as t or x.
7 Like, for instance, velocity Y′(t) at an instant, measured with a speedometer; or the maximum or 
minimum of Y(t) in an interval (t′, t″), measured with instruments like a Max–Min thermometer.
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general way of interpreting and applying the concepts exhibited in Section  2.3.5 is 
always the same; that is the following.

One goes back to the finest possible partition into ‘atomic’ events – not themselves 
subdivisible for the purposes of the problem under consideration – and these are con-
sidered as points constituting the set Q of ‘possible outcomes’. This abstract space is the 
‘space of alternatives’, or the ‘space of outcomes’: in certain cases, such as the examples 
of Section 2.3, it may be convenient to think of it as embedded in a larger and more 
‘manageable’ space, and to regard this latter as the ‘space of alternatives’.

In this scheme of representation, each problem (by which we mean problem concern-
ing the alternatives Q ) reduces to considering ‘the true alternative’ (or ‘the one which 
will turn out to be verified’, or however one wants to express it), as a random point in S 
or, if we wish to be precise, in 2. Let us call this point Q: it expresses everything there is 
to be said. Were we to lump together in S all possible problems, this space would be the 
space of all possible histories of the universe (explained as far as the most unimaginably 
minute details), and Q would be that point representing the true history of the universe 
(explained as far as the most unimaginably minute details).

Each event in this scheme is evidently interpretable as a set of points. E is the set of all 
points Q for which E is true; for example, it is the set of all individual ‘histories of the 
universe’ in which E turns out to be true. With the interpretation 1 = TRUE, 0 = FALSE, 
one could also say that E is a function of the point Q with values 1 on points Q of the set 
E, and 0 elsewhere (the indicator8 function of the set E).

Similarly, each random quantity is interpretable as a real‐valued function of the points 
Q:X = X(Q) is the value which X assumes if the true point is Q. The preceding case, E = 
E(Q), is simply the particular case which arises when the function can only take on the 
values 0 and 1.

The same is true for random entities of any other kind: for example, a random vector 
is a vector which is a function of the point Q.

2.4.2. That all this can be useful and convenient as a form of representation is beyond 
question. But things are useful if and only if we retain the freedom to make use of them 
when, and only when, they are useful, and only up to the point where they continue to 
be useful. A scheme that is too rigid, too definitely adopted and taken ‘too seriously’, 
ends up being employed without checking the extent to which it is useful and sensible, 
and risks becoming a Procrustean bed.

This is what happens to those who refer themselves too systematically to this scheme. 
Pushing the subdivision as far as the ‘points’ perhaps goes too far, but stopping it there 
creates a false and misleading dichotomy between the problems belonging, and not 
belonging, to the field under present consideration. The logical inconvenience which 
this already creates in the range of possibility will become far more dangerous and 
insidious when probabilities are introduced into such a structure.

An analogy between events and sets exists, but it is nothing more than an analogy. 
A set is effectively composed of elements (or points) and its subdivision into subsets 

8 In a different terminology, the indicator function is also called the characteristic function: this term has 
many other meanings, and, in particular, in the calculus of probability it has a different and very important 
meaning for which it must be reserved (see Chapter 6).
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necessarily stops when subdivision reaches its constituent points. With an event, how-
ever, it is possible, at all times, to pursue the subdivision (although in any application it 
is convenient to stop as soon as the subdivision is sufficient for the study in progress, 
otherwise things get unnecessarily complicated). The elements of the ‘final subdivision’ 
we have interpreted as ‘points’, but any idea which does not take into account the rela-
tive, arbitrary and provisional nature of such a delimiting of the subdivision, which 
thinks of it as ‘indivisible’, or as ‘less subdivisible’, or in any way different from all other 
events, is without foundation and misleading. For instance, it would be illusory to wish 
to distinguish between events corresponding to ‘finite’ or ‘infinite’ sets, or belonging to 
finite or infinite partitions, as if this had some intrinsic meaning. There is even less 
justification for retaining, as necessary, topological properties which happen to be 
meaningful in S . The latter we referred to as ‘space’, instead of ‘set’, simply to use a more 
expressive language, and also because topological structures often exist and have inter-
est in certain spaces by virtue of the nature of the spaces themselves, even when not 
required for any reason pertaining to the logical or probabilistic meaning.

2.4.3. Other objections, which we will develop a little more in the Appendix, would 
lead us to impugn even more radically the validity of the above representative scheme 
(and of many other things that we have hitherto admitted and which, for the moment, 
we continue to admit). As an example, we note the fact that all sets (or the ‘points’ of 
them) must be accepted as having the meaning of events.

In general terms, it will always be a question of examining if, and in which sense, a 
statement really constitutes an ‘event’, permitting, in a more or less realistic and accept-
able form, and in a unique way, the ‘verification’ of whether it is ‘true’ or ‘false’.

What should be said concerning statements that are ‘verifiable’ only by means of an 
infinite number of observations, or by waiting an infinite length of time, or by attaining 
an infinite precision? A critical attitude in this respect could lead one not to consider as 
‘events’ the fact that X has exactly the value x, or belongs to a set of measure zero (e.g. is 
rational), but only the fact that X ∈ I for a set I ‘up to sets of measure zero’ (and this, 
although it eliminates some difficulties, introduces others), or ‘up to an error <δ, that 
can be chosen as small as desired, but nonzero’, and so on. Even more radical are the 
difficulties of ‘complementarity’, which appeared first in quantum physics but can be 
detected on a smaller scale in more everyday examples: A and B are events (observable), 
but it is not possible to observe both of them, and, therefore, it is not possible to call the 
product AB an event (observable).

All this, in addition to the specific reasons already given in the main text (and to 
which we return in the next paragraph), reduces the value of the reduction to ‘points’. 
Indeed, it is symptomatic that, precisely in connection with arguments of this kind, von 
Neumann developed a ‘geometry without points’ (in ‘Continuous geometries’, Proc. 
Nat. Acad., 22 (1936), 92–100 and exemplified Proc. Nat. Acad., 22 (1936), 101–108) 
where, as he says: ‘The point which we wish to stress is that the investigations described 
above show an unbroken trend away from the notion of the point’. The studies to which 
he alludes are those of K. Menger and G. Bergmann (on linear spaces), of F. Klein, G. 
Birkhoff and O. Ore (on lattices), and discussions with J.W. Alexander and H. Veblen.

Even more strictly in accordance with the considerations in the text, appear to be the 
studies of St Ulam (in the ‘von Neumann lecture’, Princeton (1963), still unpublished), 
since he also refers himself to structures open to the adjunction of new entities as new 
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circumstances arise. A ‘continuous geometry’ of von Neumann, on the other hand, is a 
closed structure, although very rich, containing linear systems of any dimension c, with 
c any real number between 0 and 1 (the empty and  complete systems, respectively). 
Ulam says: The indications are … that there are no atoms of simplicity and, which is 
most strange, one would almost be tempted to say that in the physical world the set‐
theory axiom of Regularity – that is to say, that every set contains a minimal element 
with respect to the relation of “belonging to a set” – does not hold!’.9

2.5 Logical and Arithmetic Operations

2.5.1. Having, through the convention 1 = TRUE, 0 = FALSE, given to events an 
interpretation that makes them particular random quantities, it becomes both possible 
and useful to take advantage of this unification in order to effect also an appropriate 
unification of the operations related to them. Usually, and inevitably, prior to such a 
convention,10 one considers two distinct series of operations: the (Boolean) logical 
operations

 logical product logical sum negation; ; ~  

applicable only to events; and the arithmetic operations

 product sum; ( : / )and their inverses and  

applicable only to numbers.
We have already touched upon the utility of certain applications of the arithmetic 

operations to events, automatically possible by the above convention (see Section 2.3.4, 
and also allusions in Chapter 1). We are now able not only to develop this extension 
systematically, but also to obtain a complete unification by extending, in the opposite 
direction, the logical operations into the field of numbers.

In fact, in the field of (real) numbers, we make the definitions:

 x y x y x y x y x x xmin( , ), max( , ), ~ ( ).1 

11 

It is immediate that the definitions agree with those known in the field of events (that is, 
of the idempotent numbers 0 and 1), whereas, obviously, the usual properties (which it 
would be beneficial to interpret and understand through examples in each of the two 
cases), always hold both for numbers and events:

9 The italics are present in the original for the last three words only.
10 Which, as I later discovered, had already been adopted by von Neumann in 1932 in his treatment of 
quantum mechanics; Appendix, Section 9.
11 As usual, we agree to place the tilde for ‘complementary to 1’ above, instead of in front, when dealing 
with a single letter. The same convention – using a bar rather than a tilde – was adopted by L. Dubins and 
L.J. Savage, How to Gamble if You Must, McGraw‐Hill (1965), p. 64, and found to be of frequent utility.
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(in addition to the obvious commutative and associative properties of ∧ and ∨).

2.5.2. Operations on events. By virtue of what has already been said, it is not a ques-
tion of making new definitions, but only of applying the general definitions to the case 
of the values 0 and 1; it remains only to establish agreement with the usual meaning.

By the logical product of two (or more) events A, B, we mean the event which is true 
if and only if all the factors are, and therefore false if at least one is false. If the factors 
can only be 0 and 1, both the arithmetic product and the operation min (∧) obviously 
enjoy the property that the result is 1 if and only if all the factors are 1. Therefore, in the 
field of events, the two operations of arithmetic product and logical product coincide; 
thus, we could always refer simply to the product of two events, without danger of ambi-
guity, and write E = AB. The symbol ∧ might be used for greater clarity only in compli-
cated cases; for instance,

 E X Y Z Y 54 12 , 
where the events are conditions (on random quantities X, Y, Z etc.), written as paren-
theses, and the fact that they are events and not numbers could be overlooked.

By the negation of an event A, we mean the event that is true if A is false and vice 
versa; obviously, we have ‘not A’ = ~A = Ã = 1 − A, because ~1 = 1 − 1 = 0, ~0 = 
1 − 0 = 1.

By the logical sum of two (or more) events A, B, we mean the event that is true if at 
least one of the summands is true, and therefore false if and only if they are all false. To 
this corresponds the operation max (∧), which gives 1 if at least one summand is 1, and 
0 if all summands are 0. It is also obvious and well known that, with respect to negation, 
the operation is dual to that of the product:

 A B BA~ . 

 

This follows also from the properties stated generally for  x y.
This allows us to obtain an arithmetic expression for the logical sum: taking complements 

and expanding, we obtain

 A B A B A B AB1 1 1 , (2.1)

and, similarly,

 

A B C A B C
A B C AB AC BC ABC
1 1 1 1

. 
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In general, for n summands,

 

E E E E E E

E E E E E E

n
i

i
ij

i j

ijh
i j h n

1 2

1 2 ,
 (2.2)

where the sums have to be taken over all the n events Ei over all the ( )2
n  products two at 

a time, over all the ( )3
n  products three at a time, and so on, with alternate signs, up to the 

last term which is the product of all n events with + if n is odd, − if n is even.
The arithmetic sum of two (or more) events A, B, is not, in general, an event, but a 

random number expressing the number of successes. In particular, A + B has either the 
value 0 (if they are both false), or 1 (if one is true and the other false), or 2 (if they are 
both true). In general, as in this case, the relation between logical sum and arithmetic 
sum is the following: both have the value 0 if every summand happens to be false (no 
successes), whereas, otherwise, if true summands (successes) exist and number 1, 2, 
3,…, in general m, the (arithmetic) sum is that number, whereas the logical sum always 
takes the value one; that is, does not take into account multiplicity,

 ( ) ( )logical sum arithmetic sum1  (2.3)

or, explictly,

 E E E E E En n1 2 1 21 . (2.3′)

The fact of having two distinct notions is not, therefore, inconvenient but, on the 
contrary, is an advantage because both have their raison d’être. We are still faced with 
the problem of eliminating the ambiguity of the terminology – since we do not wish to 
be obliged to say ‘logical sum’ or ‘arithmetic sum’ every time. For this purpose it is 
 sufficient to adopt the natural convention of using sum for the arithmetic sum, and 
event‐sum for the logical sum (because only this is an event).

2.5.3. We observe that the operations introduced induce, over the field of real 
 numbers, the structure of a lattice, with the operation ~ which enjoys many properties 
of the complement (in the algebraic sense), but is not exactly such, except in the field of 
events (the numbers 0 and 1). There, in fact, we have x ∨ x = l (because either x or x is 1, 
and the other 0), in addition to x x 1, which is also valid for any x.

In addition, we observe that the expressions in arithmetic form for ~ x, x ∧ y, x ∨ y 
coincide (in the field of events) with those of Stone, where the sum has to be taken ‘mod 
2’, however, in order to obtain a Boolean ring.

The conventions adopted here do not give rise to algebraic properties of this kind but 
seem to be the most suitable for expressing, simply and naturally, many things which are 
otherwise difficult to express.

We will give examples at the end of this chapter (Section 2.11) in order not to inter-
rupt the flow of the argument, and we will often use similar simplifications. It will be 
seen that it is not only a question of expressions concerning events or random quanti-
ties: for identical reasons, the same conventions meet requirements which also occur in 
other fields.
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2.5.4. We have mentioned, in Section 2.3, the set‐theoretic interpretation. It is clear 
that, by interpreting the events as sets, the operations ~, ∧, ∨, which we have introduced, 
correspond in that context to the set‐theoretic operations ~, ∩, ∪ (complementation, 
intersection, union). For random quantities, understood as functions of the ‘point’ Q, 
Z = X ∨ Y is the function that, at each point Q, assumes the larger of the two values X(Q) 
and Y(Q):

 Z Q X Q Y Q ( ).and similarly for  (2.4)

A geometrical representation (which is formally identical) is especially useful, particu-
larly for didactic purposes, even if a genuine set‐theoretic interpretation is lacking: it is 
that of the so‐called ‘Venn diagrams’. The events which one wishes to represent are drawn 
as areas of a rectangle, which itself represents the certain event. The areas are delimited 
with lines or, better, distinguished with different types of shading. In this way, one can 
illustrate visually the relationships that are supposed to exist among the different events: 
the existence, or not, of a certain intersection – distinguished by the overlapping of differ-
ent shadings – the inclusion of one event in another; and so on. Of course, it is only in 
rather simple examples that clear figures, whose areas are not too contorted, are possible.

Shown in Figure 2.1a and 2.1b are the cases of two and three events, respectively, 
where all the four (or eight) intersections are nonempty, that is are possible events; 
whereas in Figure 2.1c two of the pair‐wise intersections are not present.

2.6 Assertion, Implication; Incompatibility

2.6.1. We began this chapter by saying that, for You, every event, or proposition, can be 
either certain, or impossible, or possible. We then talked about possibility. The time has 
now come to translate these premises into a precise argument. We must make a distinc-
tion that, in the terminology proposed by B.O. Koopman,12 could be called a distinction 
between contemplated propositions and asserted propositions. As considered so far, a 
proposition E is always a contemplated proposition (for which You, or anyone else, 

(a) (b) (c)

A B
A B

C

A

B

C

Figure 2.1 Venn diagrams: the representations of events and their logical relationships in the 
set‐theoretic interpretation: (a), (b) the cases of two and, respectively, three events with all (4 and, 
respectively, 8) constituents possible; (c) an example in which only six of the eight combinations give 
(possible) constituents.

12 The Bases of Probability, in Kyburg and Smokler, pp. 161–172.
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could know whether it is true or false). Thus it remains, even if changed into E = 1, or 
~E = 0, or (E = 1) = 1, and so on, or, put into words, ‘E is true’, ‘not‐E is false’, ‘it is true 
that E is true’. Nothing is altered, because these are simply more or less extended ways 
of saying nothing more and nothing less than E.

To make an assertion, we have to step outside of the vicious circle by saying something 
extra‐logical; such as ‘I assert that E is true’, ‘For You, it is certain that E is impossible’, 
‘For me, E is possible’: that is something expressing not a logical relationship between 
propositions, but a relationship between the proposition and the speaker.

To denote this succinctly, the symbol ⊢ has been introduced. If E is a proposition, an 
event, then, by using ⊢ as a prefix, ⊢E becomes the assertion that ‘E is certain’ (for 
someone). Naturally, ⊢~E is the assertion that ‘E is impossible’, whereas by ~⊢E 
we mean to denote the assertion that ‘E is possible’ (i.e. the nonassertion of both E and 
of not‐E).

2.6.2. We shall not make much use of this symbol, because we think that, in general, 
the distinction will be clear from the context (for instance, by saying ‘certainly’). It is 
useful, however, to draw attention to the importance of the distinction, and to illustrate 
the use of the symbol by giving some examples in order to fix all this in the reader’s 
mind. In any case, these observations were necessary at this juncture in order to make 
it clear that certain expressions, which we will now introduce, have to be taken as 
assertions.

By saying that an event A implies the event B, or that A is contained in B, we mean to 
assert that A cannot occur unless B also occurs, or that AB  is impossible: in symbols 
⊢ ~ AB. Instead of ~ AB  one may also write A B or AB 0, or A ⩽ B, or B − A ⩾ 0 
(because the inequality is false only for 1 ⩽ 0, i.e. for A = 1 and B = 0). It is always a 
question of ways of expressing ~ AB , independently of the fact that it is certain, or 
impossible, or possible, and these give assertions, simply by making the assertions. In 
order to write that ‘A implies B’ with the meaning, as we have said, of assertion, it will 
be necessary to write, for example, ⊢ A ⩽ B. However, we will introduce some ad hoc 
symbols, to be understood as already having the value of assertions:

A ⊆ B. =.⊢ A ⩽ B, A implies B;
A ≡ B. =.⊢A = B, A is identical to B (or A ⊆ B ∧ B ⊆ A), or, A and B are 

either both certainly true or both certainly false: (certain) 
equality of A and B;

A ⊂ B. =.A ⊆ B ∧ ~A ≡ B, A strictly implies B.13

13 The equality, A = B, is the event that takes place if A and B are both true or both false, and this can 
happen for any A and B (except in the case of complementary events, B A ). However, in order not to make 
the language unnecessarily heavy, we will continue to say, as usual, ‘equal’, rather than ‘certainly equal’, and to 
write =, rather than ≡, except in ambiguous cases.

As regards strict implication, observe that it asserts that A ⩽ B with certainty, but that A = B is not 
certain. In other words, we exclude A > B, i.e. A true and B false, but we do not exclude the converse, A < B. 
Nothing is said concerning the possibility or impossibility of A and B being either both true, or both false. 
Observe that A ⊂ B means (A ⊆ B) ∧ ~(A ≡ B) or (⊢ A ⩽ B) ∧ (~⊢A = B), which is very different from 
  A B A B A B BA . ~  , which denotes the assertion that A is false and B is true.

The meaning of all these relationships is immediately, intuitively obvious under the set‐theoretic 
interpretation.
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2.6.3. The relationship of implication, which is clearly reflexive and transitive, induces, 
over any set of events, a partial ordering and in particular a lattice in which the opera-
tions ∧ and ∨ (in the sense of ‘maximal’ element contained in those given, and ‘minimal’ 
element containing the given ones) coincide with those of logical product and logical 
sum, already introduced. This is evident above‐all under the set‐theoretic interpreta-
tion A ⊆ B means that A is a subset of B, possibly coincident with B (this being excluded 
if we write A ⊂ B, affirmed if we write A ≡ B); hence the terms ‘contains’, ‘is contained 
in’, have the opposite meaning to ‘imply’, ‘is implied by’, instead of being synonymous as 
they might appear to be if one thought, for both terms, of the interpretation in terms of 
events.14 In other words, in the Venn diagram for two events, which ‘in general’ (more 
precisely, for A and B logically independent) has the appearance of Figure 2.1, the part 
of A not contained in B must be missing (empty); in other words, A must coincide with 
the doubly shaded area AB (as in Figure 2.2).

If both regions with single shading are missing we have the case A ≡ B, and if the other 
two regions (double shading and no shading) are missing we have A B. Two other 
important cases correspond to the absence of the doubly shaded area (case of incompat-
ibility: AB ≡ 0), or the absence of the nonshaded area (case of exhaustivity:  AB 0).15

2.6.4. Incompatibility. By saying that two events A and B are incompatible, we mean 
to assert that it is impossible for them both to occur; i.e. that AB is impossible: in sym-
bols ⊢ ~AB. Instead of ~AB we can write AB = 0, or  A B, or A + B = A ∨ B, or A + B ⩽ 1, 
or A B  , or B A  , always expressing the event ~AB, independently of the fact that it is 
certain or impossible or possible. Each of these forms expresses the incompatibility; if it 
is asserted, we can write, e.g., ⊢ A + B ⩽ 1, or  A B  , which can be expressed, by reduc-
tion to the implication, as A B . By saying that n events E1, E2,…,En are incompatible, 
we mean to assert that they are pairwise incompatible (⊢ EiEj = 0, i ≠ j); that is that at 
most one of them can occur. As a straightforward extension of ⊢ A + B ⩽ l, this can be 
expressed as ⊢ Y ⩽ 1, where Y = E1 + E2 + … + En is the number of ‘successes’; that is of 
the events Ei that are true. The same definition also holds for an infinite number of 
events: in this case, instead of a non‐negative integer, Y could also be an infinite cardinal 
(e.g. that of denumerability, or of the continuum, or any other aleph). We note also that 
the condition E1 + E2 + … + En ≡ E1 ∨ E2 ∨ … ∨ En, that is the coincidence of the logical 
and arithmetic sums,16 is always characteristic of the case of incompatibility.

A
B

Figure 2.2 Venn diagram: the case of implication (inclusion).

14 To avoid possible consequent mnemonic uncertainties about the meaning of ⊆ (and hence the opposite 
meaning for ⊇), it is sufficient to think of it as corresponding to ⩽ (⊇ then corresponds to ⩾), whose meaning is 
clear if we consider operations on the numbers 0 and 1 (events, indicator functions of sets).
15 The other cases are trivial: A or B or both would be determined, either certain or impossible.
16 For any non‐negative (random) numbers the same conclusion is obviously valid: such equality holds if 
and only if at most one of them can be nonzero.
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In other words, incompatible events are mutually exclusive; in the set‐theoretic inter-
pretation it is a question of disjoint sets, having an empty intersection (pairwise, and 
hence, a fortiori, for three or more).

2.6.5. Exhaustivity. By saying that two events A and B are exhaustive, we mean to 
assert that it is impossible for neither of them to occur; i.e. that  AB is impossible: in 
symbols ~  AB. Instead of ~  AB one can (as above) write  AB 0. or A ∨ B, or 
  A AB B (i.e. 2 − (A + B) = 1 − AB, A + B = 1 + AB), or A + B ⩾ 1, or A B  or B A ; 

another form for the exhaustivity is therefore, for instance, ⊢A + B ⩾ 1. This lends 
itself easily to the extension of the definition to the case of n events, or even to an 
infinite number. By saying that these are exhaustive (or, better, form an exhaustive 
family – but the phrase is cumbersome), we mean to assert that at least one of them 
must take place; that is, in the preceding notation, ⊢ Y ⩾ 1. This shows the relation-
ship between the two conditions. In the set‐theoretic interpretation, it is a question of 
a family of sets which covers the whole set Q of possible points (of course, there may 
be some overlapping); i.e. those sets of points for which the complement of the union 
is empty.17

2.7 Partitions; Constituents; Logical Dependence 
and Independence

2.7.1. Partitions. A partition is a family of incompatible and exhaustive events – that is for 
which it is certain that one and only one event occurs. The coexistence of the conditions 
⊢ Y ⩽ 1 and ⊢ Y ⩾ 1 means, in fact, ⊢ Y = 1. A partition can be finite or infinite: partitions 
(and, for the simplest conclusions, in particular finite partitions) have a fundamental 
importance in the calculus of probability (which, as already indicated, will consist in 
distributing a unit ‘mass’ of probability among the different events of each partition).

It is, therefore, of importance to see now if, and how, one can reduce the general case, 
in which one considers any finite number of events E1, E2,…, En, to that of a partition. 
We observe first of all that if, in particular, the Ei are already incompatible, but not 
exhaustive, it will be sufficient to add on the extra event

 E E E E E E E En n0 1 2 0 1 21 i e in another form. ., , .  

 

In the general case, we must consider the 2n products E E E1 2  where each Ei is 
either Ei, or its complement Eĩ; formally, we can obtain them as the individual terms of 
the expansion ( )( ) ( )E E E E E En n1 1 2 2   , which is identically 1, since each factor is 1. 
Some of the 2n terms may turn out to be impossible and do not have to be considered: 
those which remain, and are therefore possible, are called the constituents C1, C2, …, Cs 
of the partition determined by E1, E2, …, En, where s ⩽ 2n.

17 Suppose that, instead of considering Q – the space of possible points for You, now – one considers a 
larger space S which contains, in addition, certain points that are already known to be impossible (for 
instance, in the light of more recent information). In all the preceding cases, the statement that a set is 
empty must be replaced by empty of possible points – i.e. empty of points belonging to Q. In diagrams, one 
could think of the region S ~ Q as drawn in black, and consider it as ‘nonexistent’.
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By observing that the given expansion has value 1, we have already established that we 
are dealing with a partition; on the other hand, the fact is evident per se (even more so 
under the set‐theoretic interpretation). A partition is given by a family of disjoint sets 
that covers the space Q; or, in other words, into which Q is subdivided – in the same 
way, for instance, in which Italy is divided into municipalities. If, instead, we perform 
any other division whatsoever, the partition given by the constituents is that into the 
‘pieces’ resulting from such a subdivision. For instance, Italy east and west of the Monte 
Mario meridian, north and south of a given parallel, areas of altitude above and below 
500 metres, areas more or less than 50 kilometres from the sea, belonging to a province 
the name of whose capital or main city begins with a vowel or consonant, and so on.18

Sometimes it will also be useful to introduce the (clumsy) notion of a ‘multi‐event’ for 
cases in which (provided we do not restrict ourselves to meaning ‘event’ in a purely 
technical sense) a partition might correctly be called an ‘event with many alternatives’. 
Such is a game – a football game, for instance – with the three alternatives ‘victory’, 
‘draw’ and ‘defeat’ (and possibly a fourth, ‘not valid’ because of postponement etc.). The 
same holds in the case of drawings from an urn containing balls of three or more differ-
ent colours, for example ‘white’, ‘red’, ‘black’; or throwing a die, or two dice, with possible 
points in the range 1–6, or 2–12, respectively. A multi‐event with m alternatives – more 
briefly an ‘m‐event’ – can always be thought of as a random quantity with m possible 
values (e.g. 1, 2,…, m). In the case of a single die, the ‘points’ are precisely 1, 2,…, 6, 
whereas for the two dice it is irrelevant whether we use 2, 3,…, 12, or 1, 2,…, 11. The 
colours, or results of the game, could similarly be coded numerically. In speaking of an 
m‐event we want, essentially, to emphasize the qualitative aspects of the alternatives. 
It is then appropriate to use the mathematical interpretation of them as unit vectors 
(1, 0,…, 0), (0, 1, 0,…,0),…, (0, 0, 0,…, 1) in an m‐dimensional space. In this way, writing 
Eh (h = 1, 2,…,m) for the events19 which consist in the occurrence of the hth alternative, 
an m‐event can be identified with the random vector (E1, E2,…, Em). The (arithmetic) 
sum of multi‐events gives, therefore, the number of occurrences of the single results: for 
instance, (W, R, B) = the number of drawings of White, Red and Black balls. We observe 
the analogy with the case of events, which could be handled in this same way, by substi-
tuting (1, 0) for 0 and (0, 1) for 1 (if the advantage of the symmetry seemed to compen-
sate for the unnecessary introduction of the doubleton).

2.7.2. Logical dependence and independence of events. We define n events (necessarily 
possible) to be logically independent when they give rise to 2n possible constituents. This 
means that each of these events remains uncertain (possible) even after the outcomes of 
all the others, whatever they may be, are known: this explains the choice of terminology. 
In fact, let us suppose that one of the products is impossible, and therefore only a constitu-
ent in a formal sense – without loss of generality, take it to be E1E2 … En. E1 is possible, 
E1E2 may or may not be, and the same holds for E1E2E3, E1E2E3E4, and so on. If one of 
these products is impossible, obviously all the subsequent ones are; the last one – the 

18 Caution: do not think of separate parts of a unique nonconnected ‘piece’ as ‘pieces’ – the topology of the 
representation must be ignored. The ‘piece’ of Italy north‐east of Monte Mario with altitude below 500 
metres and more than 50 kilometres from the sea in a province beginning with a vowel is certainly 
composed of separated parts (for instance in the provinces of Ancona and Udine).
19 Necessarily incompatible and exhaustive.
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product of all the n events – is impossible by hypothesis, and therefore either it or one 
of the preceding ones must be the first to be impossible: suppose this is E1E2E3E4. This 
means that it is possible for events E1, E2 and E3 to occur and that, knowing this, we are 
in a position to exclude the possibility that E4 can be true. The events are therefore in 
this case – that is if the number of constituents is s < 2n – logically dependent.

Of course, if n events are logically independent the subsets of the n are, a fortiori, 
independent: the converse does not hold. Even if all their proper subsets exhibit logical 
independence n events can still be logically dependent. As a simple example, let all the 
constituents in which the number of successes is even be possible, and no others; this 
imposes no restrictions on the result of any n − 1 events whatsoever, but for each event 
the result is determined once we know the results of the others.

2.7.3. If one wishes to consider more specifically the dependence of a particular event 
E on certain others, E1, E2,…, En, it becomes necessary to consider several cases. It is, in 
fact, possible that E remains uncertain after we know the results of the Ei, whatever 
these may be: we then call it logically independent. On the other hand, it is possible that 
it will always be determined (either true or false), in which case we call it logically 
dependent. However, an intermediate case could also arise: the uncertainty or the deter-
mination of E might depend on the actual results of the Ei; this we will call logical semi-
dependence. We could be more precise and refer to logical semidependence from below, 
or from above, or two‐sided, according to whether there exist outcomes for the Ei which 
make E certain, or impossible, or whether there exist outcomes of both types.

In order to characterize the various types of event, with respect to the fixed Ei, it 
 suffices to consider the constituents determined by the Ei. We have C1 + C2 + … + Cs = 1, 
and each event E can, therefore, be decomposed into E = EC1 + EC2 + … + ECs. For any 
one of the summands, say ECh, there are three possibilities: either ECh = Ch (if Ch is 
contained in E), or ECh = 0 (if Ch is contained in E ̃), or else 0 ⊂ ECh ⊂ Ch (if both ECh and 
ẼCh are possible). The possible results for the Ei correspond to the occurrence of one of 
the constituents Ch: according to whether Ch is of the first, second or third type, E turns 
out to be certain, impossible or remains uncertain, respectively.

The conclusions are obvious.
E is logically dependent if constituents of the third type do not exist; that is if E is a sum of 

constituents (of the first type). We could also say that E is logically dependent on the Ei if and 
only if it is expressible as a function of them by means of logical operations: in this case we 
have dependence by definition. The value (true or false) of such an expression is, in fact, 
determined by the values of the variables appearing in it; conversely, every such expression 
reduces to a canonical form as a sum of constituents and, therefore, the condition is also 
necessary. In this case, constituents of both the first and second types exist; otherwise, E 
would have been either certain or impossible to begin with, contrary to hypothesis.

E is logically independent if all the constituents are of the third type, and logically 
semidependent if some, but not all, are of the third type: in the latter case, we have semi-
dependence from below if the others are all of the first type, from above if they are all of 
the second type, two‐sided if there are some of each type.

If we consider the two events

E′ = the sum of all the constituents of the first type, and
E″ = the sum of all the constituents of the first and third types,
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it clearly turns out that in each case E′ ⊆ E ⊆ E″, and E′ and E″ are, respectively, the 
maximal event certainly contained in E, and the minimal event that certainly contains 
it – that is the events giving the best possible bounds.

We can then say that: E is logically dependent if E′ = E″ (and hence = E); logically inde-
pendent if E′ ≡ 0 and E″ = 1; semidependent from below, from above, or two‐sided, if

 0 1 0 1 0 1E E E E E E, , , 
respectively.

2.7.4. These notions of logical dependence and independence are meaningful more 
generally; they apply not only to the case of events, as considered so far, but also to 
partitions, or random quantities, or any random entities whatsoever. We will present 
the development for the case of random quantities, which is the most intuitive; it will 
then suffice to remark that the concept is always the same.

Random quantities (suppose, to fix ideas, that there are three: X, Y, Z) are said to be 
logically independent if there are no circumstances in which the knowledge of some of 
them can modify the uncertainty concerning the others. This means that if X, Y, Z have, 
respectively, r possible values xi, s possible values yj, t possible values zh, then all the rst 
triples (xi, yj, zh) are possible for (X, Y, Z); that is the set Q of possible points (x, y, z) is the 
Cartesian product of the sets, Qx, Qy, Qz of possible values for X, Y, Z. In this form the 
definition is general: it is valid not only for n (instead of 3), but also if the random quanti-
ties have an infinite number of possible values (for instance, those of an interval), or in 
the case of random entities of other kinds, or, generically, for partitions,20 In other words, 
the condition means that nothing, no known interdependence, allows any further restric-
tion of the set Q of possible points over and above that resulting from the fact that the 
individual random quantities, or entities, must assume values in Q1, Q2, …, Qn.

2.7.5. The logical dependence of one (random) quantity on others (to fix ideas con-
sider the dependence of Z on X and Y) has exactly the meaning that it has in analysis: Z 
is a function (i.e. a one‐valued function) of X and Y, Z = ƒ(X, Y), the function z = ƒ (x, y) 
being defined for all the possible points (x, y) of (X, Y). Logical independence means that 
the set of possible values of Z conditional on the knowledge of the values of X and Y (any 
pair of possible values (x, y) for (X, Y)) is always the set of Q of all the (unconditionally) 
possible values of Z. Intermediate cases, which are not worth listing in further detail, 
always give logical semidependence.

2.7.6. A critical observation is appropriate at this point, both as a refinement of the 
present argument and to exemplify various cases in which it is useful to examine 
whether the logic needs to be taken with a pinch of salt (see Appendix).

We will confine ourselves to a single example. Suppose that X and Y have as possible 
values all the numbers between 0 and 1, with the condition that X + Y is irrational : then 
Q is the unit square with an infinite number of ‘scratches’ removed – parallel to the 
diagonal and corresponding precisely to the lines x + y = rational. For the partition into 

20 A partition can be reduced to a random quantity by considering as such, for example, the index i of Ei:X = i 
if Ei is true, provided the partition has at most the cardinality of the continuum, or is denumerable if we 
require integer values.
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points, logical independence does not hold; it would hold, however, for every partition 
into vertical or horizontal stripes, however small.

Is it advantageous to say that we do not have logical independence when its failure is 
attributable to subtleties of this kind? Clearly, there is no categorical answer. It seems 
obvious that, depending on the problem and on one’s intentions, one decides whether 
or not to take such subtleties into account (of course, one must be careful to be precise 
when such is required).

2.7.7. Finally, we make an observation which, strictly speaking, is unnecessary – being 
implicit in the very definition of ‘possibility’ – but which it is convenient to make and under-
line. All the notions we have encountered, or introduced – from incompatibility to logical 
dependence or independence – are relative to a given ‘state of information’. They are valid 
for You (or for me, or him) according to the knowledge, or the ignorance, determining the 
uncertainty; that is the extent of the range of the possible, of the set Q (yours, mine, his,…).

It is a question of relative and personal notions, but nonetheless objective, in the sense 
that they depend on what one knows, or does not know, and not on one’s opinion con-
cerning what one does not know, and what is, consequently, uncertain.

In order to avoid ambiguity, we must never forget that we are always speaking about 
uncertainty in the simple sense of ignorance. In particular, of course, we are dealing 
with matters traditionally attributed to ‘chance’ – a trace of this remains in the word 
‘random’,21 and in other expressions which we will be using. In general, however, we are 
concerned with any future matters whatsoever, and also of things in the past concerning 
which there is no information, or for which no information is available to You, or which 
You cannot remember exactly: we might even be concerned with tautologies. The vari-
ous cases differ in one important aspect: that is the existence and degree of possibility 
and facility of obtaining, in one way or another, further information, should one wish to 
do so. This fact will, of course, be relevant in determining behaviour in decision prob-
lems, where it could be convenient to condition on the acquisition of new information. 
But apart from this, basically, it is convenient to regard any distinctions of this kind as 
unimportant. The only essential element, which determines and characterizes our 
object of study, is the existence of imperfect information – of whatever kind – and the 
situations of uncertainty in which, consequently, You might find yourself.

There is a prejudice that uncertainty and probability can only refer to future matters, 
since these are not ‘determined’ – in some metaphysical sense attributed to the facts 
themselves instead of to the ignorance of the person judging them. In this connection, 
it is useful to recall the following observation of E. Borel: ‘One can bet on Heads or Tails 
while the coin, already tossed, is in the air, and its movement is completely determined; 
and one can also bet after the coin has fallen, with the sole proviso that one has not seen 
on which side it has come to rest’.

2.7.8. Remark. It might be useful to point out (or, for those who already know it, to 
recall the fact) that in the theory of probability one often uses the term ‘independence’ 
(without further qualification) to denote a different condition, that of stochastic 
 independence, which refers to probability and will be introduced in Chapter 4.

21 Translators’ note. The Italian word here is ’aleatorio’ (see French, aléatoire) from the Latin alea meaning 
die: ‘alea jacta est !’ – the die is cast !’ – as Caesar said when crossing the Rubicon.
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Be careful not to confuse it with logical independence  –  which we have just dis-
cussed – or with linear independence, which we will discuss in the next section. Both of 
these notions have an objective meaning; that is independent of the evaluation of the 
probabilities.

2.8 Representations in Linear form

2.8.1. Basic notions. When referring to the set Q of possible ‘points’ in the case of two 
random quantities X and Y, we tacitly interpreted the pair (x, y) as Cartesian coordi-
nates in the plane (which it was natural to take as the space of alternatives S). Similarly, 
for three or more points, we extend to ordinary space, or to spaces of any dimension 
(always in Cartesian coordinates).

This was simply a question of habit and, therefore, of convenience. One could have 
thought of any coordinate system; of a curved surface instead of a plane, or, in order to 
say more and in a better way, it is enough to think in terms of a space in a merely 
abstract sense, for which such distinctions of a geometric nature do not even make 
sense. With reference to the simplest case, it is sufficient that different pairs (x, y) are 
made to correspond to distinct ‘points’.

For further reasons, which we now wish to take into account – because, as we shall see 
in Chapter 3, they are essential for the theory of probability –  it becomes important 
instead to think of S as a linear (affine) space. We shall call it the linear ambit and denote 
it by A because at times it will be convenient to consider as the space S not the whole of 
A but a less extensive manifold which contains Q. For example: if A is ordinary space, 
and X, Y, Z are related by the equation X2 + Y2 + Z2 = R2, it might be convenient to think 
of S as the spherical surface on which one finds the possible points Q; these may consist 
of all the points of the surface, or a part of it, or just a few points, depending on other 
restrictions and circumstances and knowledge.

A representation that is linear with respect to certain random quantities (e.g. those 
considered initially) is such with respect to others that are linear combinations of them 
(but not with respect to the rest). If we require that linearity holds for the rest too, we 
have to extend the linear ambit A to new dimensions, as we shall see later.

The random quantities linearly represented in an ambit A themselves constitute a 
linear system, which we denote by S, and which is dual to A. One might ask whether it 
is useful to think of the two dual spaces, A and S, as superposed. In principle, the answer 
is no: in fact, only the affine notions have any meaning, and the metric, introduced sur-
reptitiously by means of such a superposition, would be dependent on the arbitrary 
choice of the coordinate system that has to be superposed onto its dual. In general, for 
this reason, it is not even practically convenient. A unique exception is perhaps that 
of the case we considered first, in which we start from events, and it is ‘natural’ to 
represent them with unit, orthogonal vectors. In any case, whether or not this possibility 
is useful in a particular case, it is important never to forget that it is only the affine 
properties which make sense.

These properties also underlie the notions and methods fundamental to the theory of 
probability. On the other hand, the things in question are very elementary, and are cur-
rently applied without first introducing this formulation and terminology  –  which 
might well be considered excessively theoretical and, for the purpose in hand, 
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disproportionately so. Nevertheless, if one is prepared to make the small effort  necessary 
to picture the question in terms of the present scheme, many aspects of what follows 
will appear obvious and well‐connected among themselves, instead of, as they might 
otherwise appear, unrelated and confused. So much so, that the preeminent  –  one 
might even say exclusive  –  rôle of linearity in the theory of probability has always 
remained very much in the background. This is, in part perhaps, because of the promi-
nence given to the Boolean operations, and because of the nonimmediacy of the arith-
metic operations on events when the latter are not identified with their ‘indicators’. The 
present treatment is intended to provide the framework within which these observa-
tions will find their justification and clarification.

2.8.2. Let us begin by considering events E1, E2,…, En, and, often, in order to be able to 
think in terms of ordinary space, we will, without essential loss of generality, take n to 
be three.

The linear ambit A is the affine vector space in n dimensions, with coordinate system 
x1, x2,…, xn, in which we will consider the values of the random quantities X1, X2, …, Xn. 
In this case, the latter are the events E1, E2,…, En, taking only the values 0 and 1: the set 
of ‘possible’ points consists at most, therefore, of the 2n points (8, if n = 3) with coordinates 
either 0 or 1, and may be a subset of these. One sees immediately – as was inevitable – that 
the ‘possible’ points correspond to the s (s ⩽ 2n) constituents.

Given the special rôle of these points, it is convenient to think of the prism, of which 
they are the vertices, as a cube (or hypercube) and, therefore, to think of the Cartesian 
coordinate system xi as orthogonal and of unit length – with the reservation that this 
metric not be taken too ‘seriously’.

The linear system L, of linear combinations of E1, E2,… En, consists of random quanti-
ties X = u1E1 + u2E2 + … + unEn,22 interpretable as the gain of someone who receives an 
amount u1 if E1 is true, plus an amount u2 if E2 is true, and so on (of course, the ‘gains’ 
may be positive or negative). The X possess at most as many (distinct) possible values as 
there are constituents – namely s – and the latter occurs if the corresponding ‘possible 
points’ are found on distinct hyperplanes i i iu x constant.

An important example is that where Y = the number of successes. In order to obtain this, 
it is sufficient to take all the ui = 1 – a gain of 1 for each event – obtaining, as we have 
already shown directly, Y = E1 + E2 + … + En. In this case, it is clearly not true that the 
possible points occur on distinct hyperplanes; if all the 2n vertices of the hypercube are 
possible, they are, in fact, distributed over the n + 1 hyperplanes Y = 0, 1, 2,…, n accord-
ing to the binomial coefficients ( , , ( ), , , ),( )1 1 11

2n n n n n
h  being the number of possible 

ways of obtaining h successes in n events.
For the case n = 3, we shall denote the Cartesian coordinates of the ambit A in 

the usual manner, by x, y, z, and those of the dual system L by и, v w. If X = uE1 + 
vE2 + wE3, then иx + vy + wz is the value which X would assume if E1 takes the value 
x, E2 the value y and E3 the value z. Given the meaning of the Ei such values can only 
be either 0 or 1, and the value of the random quantity X (e.g. gain) can only be one 
of those corresponding to the eight vertices of the cube (or to a part of it, if not all 
the vertices are possible).

22 In order to simplify this example we omit the constant u0 (see Section 2.8.3).
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Here are the coordinates of such vertices Q together with the corresponding 
 values of X:

 

Q        ( , , ), ( , , ), ( , , ), ( , , ), ( , , ), ( , , ),0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 (( , , ), ( , , ),
.

1 1 0 1 1 1
0

 
        X w v u v w u w u v u v w  

In particular, for и = v = w = 1, we see (as was obvious) that the number of successes 
is 0 in one case, 1 in three cases, 2 in three cases and 3 in one case. In addition (apart 
from the combinatorial meaning, (1 + 1)3 = 1 + 3 + 3 + 1 = 8), this shows that, when 
projected onto a diagonal, the vertices of the cube fall as follows: one at each end, and 
three each at  and  of the way along the diagonal.

2.8.3. The sum i i iu x  (in particular иx + vy + wz) is a linear function both of X (i.e. 
of its components ui), and also of Q (i.e. of its coordinates xi). We will denote it both by 
X(Q) – thinking of it as ‘the value of a given X as Q varies’ – and also by Q(X) – thinking 
of it as ‘the value assigned to different X by the resultant Q’ The same operation, how-
ever, will still turn out to be useful independently of the fact that Q is a possible point 
(i.e. Q ∈ Q  ). That is, by replacing Q by any A in A, writing X(A) or A(X):

 A X X A u x
i

i i , 

where the ui are the coordinates of the X considered as points of L, or, better, the com-
ponents of X considered as vectors of L, and similarly the xi are coordinates (or compo-
nents) of the A considered as points (or vectors) of A.23 The expressions A(X) or X(A) 
then appear as products of vectors, A and X, belonging to the two dual spaces A and L.24

What we have said so far in this section is independent of the assumption that, rather 
than taking any random quantities whatsoever, we start with events, Xi = Ei (as we did in 
Section 2.8.2, in order to fix ideas). Since it is convenient to consider not only the homo-
geneous linear combinations, X u Xi ii , as we have up until now, but also complete 
combinations with an additional constant, say u0, we will always assume as added to the 
Xi a fictitious random quantity X0, taking the single value X0 ≡ 1 with certainty. The 
summand u0X0 has precisely the value u0, with no alteration to the formula; we have only 
to take into account that there is an additional, fictitious, variable, x0, and that, for all 
possible points (and, usually, also for every A to be considered), we will have x0 = 1.

2.8.4. Linear dependence and independence. We have considered u X i ni ii ( , , , )0 1 2 , 
linear combinations (either homogeneous or complete) of n random quantities Xi (i = 1, 
2,…, n); X is said to be linearly dependent on the Xi. It may be, however, that the Xi are 
already linearly dependent themselves; that is that one of their linear combinations is 
identically zero (or constant: due to the inclusion of X0 the two are essentially identical), 

23 Given that the point O (the origin) has meaning in both L and A, there is no risk of ambiguity in identifying 
points and vectors.
24 If one thinks of the two spaces as superposed – we have already said that, in general, this is not 
advisable – we would have the scalar product. In any case, one could write AX and XA, instead of A(X) and 
X(A), thinking in terms of the product rather than writing it as a ‘function’. The main application, however, 
will be when A = P (probability, prevision), and the omission of the parentheses in this case – although used 
by some authors – seems to give less emphasis to the structure of the formulae, and therefore to the meaning.



Theory of Probability: A Critical Introductory Treatment44

in which case at least one of the Xi is a linear combination of the others and can be elimi-
nated (because it already appears as a combination of the others). Geometrically, this 
means that the set Q of possible points belongs to a linear subspace A′ of A, and hence 
it is sufficient to confine attention to A′: the extension from A′ to A is illusory – one 
adds only points which are certainly impossible.

We observe that linear dependence is a special case of logical dependence – that is 
that linear dependence is a more restrictive condition. Conversely, it goes without say-
ing that logical independence is more restrictive than linear independence.

We now return, briefly, to the case of events, for even here the distinction between 
linear dependence and logical dependence is of fundamental importance for the theory 
of probability. The negation of E depends linearly on E: in fact, E E1 . On the other 
hand, the logical product E = AB, and the logical sum E = A ∨ B, do not depend linearly 
on A and B (except when, under the assumption that A and B are incompatible, the logi-
cal sum has the form A ∨ B = A + B). However, the logical sum does depend linearly on 
the two events and their product: A ∨ B = A+ B − AB. In general, the logical sum of three 
or more events depends linearly on the events themselves and on their products two at 
a time, three at a time,…, and finally the product of all of them (see Section 2.5.2). Apart 
from these cases of a general nature, however, it is possible that an event can be a linear 
combination of others ‘by chance’ (so to speak): an example can be found in Chapter 3, 
in connection with a probability problem, where an event E is expressed linearly as a 
function of others by the following formula

 E E E E E E E1
7 1 2 3 4 5 63 2 3 5 5 . 

How can one tell whether or not such a linear dependence exists? It is sufficient to 
express all events as sums of constituents and then to see whether the matrix (consisting 
entirely of zeroes and ones) is zero or not.

2.8.5. The above considerations refer to the system L, but linear dependence is still 
meaningful and important in the ambit A. The interest there lies in considering the 
barycentre P of two points Q1 and Q2 with ‘masses’ q1 and q2, where q1 + q2 = 1. By a 
well‐known property in mechanics – which is, on the other hand, an immediate conse-
quence of linearity – each linear function X assumes at P the value X(P) = q1X(Q1) + 
q2X(Q2), and the same holds for the barycentre of three, or (leaving ordinary space) any 
number of points whatsoever. The property even holds if some of the masses are nega-
tive, but the cases in which we are normally interested are those with non‐negative 
masses (usually, in fact, we will be dealing with probability).

The barycentre can, therefore, be any point25 belonging to the convex hull of the points 
Qh under consideration. Consideration of the convex hull determined by the ‘possible 
points’, Q ∈ Q or, in other words, the convex hull of Q will play a fundamental rôle in the 
calculus of probability. Dually (and this property too, well‐known and intuitive, will turn 
out to be meaningful in future applications), the convex hull is also the intersection of all 

25 If the points Qh are infinite in number, then in order for this to be true we must also allow ‘limit cases’ of 
barycentres (which, in other respects, correspond to actual requirements of the calculus of probability, at 
least according to the version we will follow, in which we do not assume ‘countable additivity’). Anyway, 
apart from questions of interpretation, this simply means that by convex hull we mean the set of barycentres 
completed by their possible adherent points.
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the half‐spaces containing Q  In other words, if a point P belongs to the convex hull K(I) of 
a set I, then it is on the same side as I with respect to any hyperplane not cutting the 
set – that is which leaves it all on the same side. On the other hand, if a point does not 
belong to the convex hull, there exists a hyperplane separating it from I – that is which 
does not cut the latter and leaves it all on the opposite side with respect to the point. 
Translating all this into an analytic form: every non‐negative linear function on I is also such 
on K(I); conversely, the property does not hold for any point not belonging to K(I).

2.8.6. Returning to the case of the cube (Section 2.8.2), we already have a meaningful 
example, although a little too simple, of the way in which the convex hull varies as we 
consider all eight vertices or a subset of them (see Chapter 3, where the probabilistic 
meaning will also appear).

With this example in mind, it is now possible to make an observation which, although 
trivial in this context, is useful for explaining in an intuitive way our immediate inten-
tions (Section 2.8.7) in cases where it could seem less obvious and perhaps strange.

In the space A we could represent the eight constituents by the vertices of the cube: 
we suppose that all eight actually exist, there is no need to consider other cases here. In 
the dual space L, however, we could only represent the random quantities depending 
linearly on E1,E2,E3. The eight constituents, considered as random quantities, could not 
be represented, and so neither could the random quantities derived from them line-
arly – unless these happened to be linearly dependent on the three fundamental events 
Ei. Does the method create a discrimination between events which have a representa-
tion as vectors in L and those which do not? If so, can we put the situation right?

The answer to the first question is no: the method creates no discrimination. The fact is 
that it enables us to consider more or fewer dimensions according to what we need. The 
representation in terms of the cube is sufficient for the separation of the eight constituents 
(as points of A), and for the consideration of random quantities linearly dependent on 
the three Eh. If we wished, we could even reduce to a single dimension by considering 
only the random quantity X = 4E1 + 2E2 + E3: this is sufficient to characterize the eight 
constituents, since X can assume the values 0, 1, 2, 3, 4, 5, 6, 7. These values, incidentally, 
are obtained by reading the triple of coordinates as a binary number – for example (1, 0, 1) = 
101 (binary) = 4 + 0 +1 = 5. If we were interested only in such an X (up to linear transforma-
tions, aX + b), and in distinguishing the constituents, this would be sufficient. Similarly, if 
in addition to X we are interested, for instance, in the number of successes Y = E1 + E2 + 
E3, and nothing else, we could pass to two dimensions. Suppose, however, that, for reasons 
which depend on the linearization, we are interested in studying, in L, either one of the 
constituents, or a linear combination of constituents not reducible to a linear combina-
tion of the Eh. In this case, it will be necessary to introduce a third dimension and then, if 
required, others…, up to seven. In general, if there are s constituents we require s − 1 
dimensions (s if we include a fictitious one for the constant X0 ≡ 1) in order that everything 
geometrically representable in A is also linearly interpretable in L.

In fact, if in our case (that of the cube) we consider an eight‐dimensional space, whose 
coordinates xh give the value of the constituents Ch, the possible points, Qh, are the 
points with abscissa 1 on one of the eight axes (because one, and only one, of the eight 
constituents must occur). They are linearly independent in the seven‐dimensional 
space x1 + x2 + … + x8 = 1: one of the xh is superfluous, but it makes no difference 
whether we leave it, or eliminate it and add a fictitious coordinate x0 ≡ 1. In terms of L, 
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we can therefore obtain all the X either as linear combinations h hu C , for h from 1 to 
8, or for h from 0 to 7 (excluding C8 but adding the fictitious C0 ≡ X0 ≡ 1).

Conclusion: everything can be represented linearly provided one takes a sufficient 
number of dimensions. It is possible, and this provides a simplification, to reduce this 
number by projecting onto a subspace (although in this way we give up the possibility of 
distinguishing between those things which have the same projection). Thus, for instance, 
different possible cases may be confounded into a single one, or even if we take care to 
avoid it, barycentres arising from different distributions of mass may be confounded. 
In the case of the cube, for example, each internal point can be obtained as the barycentre 
of ∞7−3 = ∞4 different distributions of mass on the eight vertices.

2.8.7. In the general case, considering any random quantities whatsoever, the same cir-
cumstance arises and has even greater interest. Suppose we consider the ambit A relative 
to n random quantities Xi (i = 1, 2,…, n) and, for simplicity, let us assume that all the real 
values are possible and compatible for the Xi: that is that all the points of A are possible 
(A = Q  ). It follows that every random quantity Z = ƒ(X1, X2,…, Xn) is geometrically indi-
viduated in A (to each point of A there corresponds, in a known way, a value of Z), but 
is not vectorially represented in L unless it is a linear function of the Xi. If such a vectorial 
representation for Z is needed, however, it is sufficient to add on a new dimension for it – that 
is to introduce an extra axis, z, or, if one prefers, xn + 1, on which Z can be represented.

To give an intuitive illustration: in the plane (x, y) every function z = ƒ (x, y) already 
has a geometrical representation (visually through contour lines), but in order for z to 
appear linearly in the representation it is necessary to introduce a new axis, z, and to 
transfer each contour line to the corresponding height, obtaining the surface z = ƒ (x, y).

As a practical example, in fact one which continuously finds application, an even sim-
pler case will suffice. We have a single random quantity, X: by taking the x‐axis as the 
ambit A, we represent, by means of its points, all the possibilities (values x) which 
determine, together with x, every function of x, ƒ(x). However, if we are interested in the 
linear representation of a given ƒ(x) we must introduce a new axis, y, and on it represent 
y = ƒ(x). The linear ambit A will be the plane (x, y), but for the space S we could more 
meaningfully consider the curve у = ƒ (x), whereas Q could be a set of points on such a 
curve (if not all values are possible for X). It will be, so to speak, the set Q, previously 
thought of on the x‐axis, projected onto the curve у = ƒ(x). We note, incidentally, that 
this illustrates the observation made in Section 2.8.1 regarding the nonidentification of 
A and S. The criterion which has been followed can be explained in the following way: 
we delimit S by taking into account the ‘essential’ circumstances, considering as such 
the fact of studying X together with a given Y = ƒ(X), whatever the random quantity X 
may be; we do not take into account the ‘secondary’ circumstances, considering as such 
the particular facts or knowledge which, in certain cases or at certain moments, lead us 
to exclude the possibility of X attaining certain values.

The most important practical case (which we have already mentioned) is the simplest 
one: that of X and Y = f(X) = X2. The curve is the parabola y = x2, and the linear system 
L consists of all the polynomials of second degree in X; aX2 + bX + c. Suppose that we 
are interested in barycentres of possible points Qh with given masses qh. If the points are 
taken on the parabola we obtain a point x y, , which is meaningful for both coordinates, 
whereas if we leave the points on the x‐axis the barycentre would give the same x , but 
no information about y .
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Obviously, if we were interested in considering Z = X3 also (i.e. extending L to polynomials 
of the third degree) it would be necessary to take the space (x, y, z) as the ambit A, the 
curve y = x2, z = x3 as the space S, and to project onto it the set Q already given; and so on.

2.9 Means; Associative Means

2.9.1. Within this representation, we will take the opportunity to present, in an abstract 
form, a notion which has great practical and conceptual importance in all fields, and 
which, in what follows, will above all prove useful in connection with probabilistic and 
statistical interpretations. The notion in question is that of a mean. This is usually 
defined in terms of mere formal properties of particular cases, but (as Oscar Chisini 
pointed out) it has a well‐defined and important meaning as a useful ‘summary’ or 
 ‘synthetic characteristic’ of something more complicated.

A prime example (already considered in the preceding pages) is that of the barycentre, 
or, arithmetically, that of the arithmetic mean (in general weighted) of the coordinates 
of the point masses. It is well known how, in mechanics, for many aspects and conse-
quences, everything proceeds as if the whole mass were concentrated at the barycentre. 
In the language of statistics (which we will encounter mainly in Chapters 11 and 12) one 
would say that knowledge of the barycentre (and of the mass) constitutes, for certain 
purposes, a sufficient statistic (i.e. an exhaustive summary). For other purposes, in 
mechanics, it is necessary to know in addition the moments of inertia, and the exhaus-
tive summary is then the collection of these items of information of first and second 
orders. It is convenient to point out in advance that knowledge of the second‐order 
characteristics will also play an important rôle in statistics and in the theory of probabil-
ity. Above all, it gives a powerful tool for studying problems in a way that is often 
sufficiently exhaustive, although summary.

2.9.2. Let us now consider the definition of mean according to Chisini, which is based 
precisely on this concept of an exhaustive summary. In this way we impart to the notion 
the relative functional meaning conveyed by ‘tailor‐made’ (better the German 
Zweckmässig, whose equivalent is missing in other languages: zweck = purpose, mässig = 
adequate). According to Chisini,26 ‘x is said to be the mean of n numbers x1, x2,…, xn, 
with respect to a problem in which a function of them f(x1, x2,…, xn) is of interest, if the 
function assumes the same value when all the xh are replaced by the mean value x: f(x1, 
x2,…, xn) = ƒ (x, x,…, x)’ Here we are considering the simplest case, without weighting, 
but the concept is still the same in the latter case, and in that  –  as we shall see in 
Chapter 6 – of distributions, even continuous ones.

2.9.3. The most important type of mean is the associative one. The defining property 
of associative means is that they are unchanged if some of the quantities are replaced by 
their mean (in the same way as, in order to find the barycentre, one can concentrate 
some of the masses at their barycentre). Independently, and almost simultaneously, 
Nagumo and Kolmogorov proved that the associative means are all, and only, the 

26 O. Chisini, ‘Sul concetto di media’, in Periodico di Matematiche (1929); the topic is taken up again in an 
article by B. de Finetti in Giorn. Ist. Ital. Attuari (1931). The proof of the theorem of Nagumo and 
Kolmogorov can also be found there.
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(increasing) transforms of the arithmetic mean. They are obtained by taking an increas-
ing function γ(x), and, given the values xh with respective weights p ph h 1 , instead 
of taking the barycentre, x p xh h h, one takes the barycentre of the corresponding yh 
= γ(xh), y p yh h h and then reverts to the ‘scale’ x by means of the inverse function 
m y1( ) thus obtaining the γ‐mean.

The procedure can be clearly ‘seen’ in the representation of the preceding paragraph. 
If we consider the example given there, we have у = γ(x) = x2, and, of course, we must 
limit ourselves to the positive semi‐axis in order that γ be increasing.27 It is a question 
of thinking of the masses ph as placed on the parabola; the barycentre is the point whose 
coordinates are x  and y , whereas x = mγ (obtained as shown in Figure 2.3) is the point 
to which corresponds (on the parabola) the same ordinate of the barycentre, the square 
root of the mean of the squares.

Considering the other function z = x3 (either by itself in the plane (x, z), or together with 
y = x2 in the space (x, y, z), as noted in Section 2.8.7), the barycentre would be x z, , respec-
tively, x y z, , , where z  = the mean of the cubes h h hp x3, and 3 z  = the cube root of the 
mean of the cubes = the cubic mean of the values xh with weights ph, and so on. In Chapter 6 
we will say something about the most important associative means: these correspond to 
γ(x) = powers (with any positive or negative real exponent whatsoever; if zero we have 
the limit case of the logarithm), and exponential. At this point, however, it is convenient 
to consider some general properties related to the notion of convexity of which we have 
spoken. This will also clarify a few questions which we will meet in Chapter 3.

2.9.4. The barycentre is always in the convex polyhedron (or, in general, the convex 
hull) determined by the point masses: in our example we can think of it both in the 
plane and in ordinary space. For the main conclusion of interest to us, the case of the 
plane is sufficient. If the masses are on a curve whose concavity is always in the same 
direction, or on a portion of the curve for which this is true, the barycentre is always in 
the area bounded by the concavity; hence: the γ‐mean is greater than the arithmetic 
mean if γ (increasing) is concave upwards. The quadratic mean is, therefore, greater 
than the arithmetic mean and so is the cubic mean: the question arises, can these two 

27 Or the negative one. In fact, as is easily seen, γ1(x) and γ2(x) are equivalent with respect to the mean if 
(and only if ) γ1 = aγ2 + b(a ≠ 0). If we change the sign of a (i.e. change increasing into decreasing) nothing is 
altered. It is clear from the diagram, in fact, that a change in у, either of scale or sign, or a vertical translation 
of the curve, makes no difference.

y

y

0 x x–

–

mγ

Figure 2.3 Comparison between associative (γ‐) 
means based on comparisons of the convexity 
of the functions γ(x) used to construct them.
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be compared? Of course; it is sufficient to project the curve y = x2, z = x3 (explicitly, z = 
y3/2) onto the plane (y, z): the concavity is upwards and so the cubic mean is greater.

Even without the graphical comparison, it is sufficient to take into account that 
‘greater relative concavity’ (in the sense that a diagram would display) corresponds, 
locally, to a greater value of γ″(x)/γ′(x) (in the interval of interest if the function is not 
everywhere invertible). In the above example, we have у″/у′ = 2/2x = 1/x, z″/z′ = 6x/3x2 = 
2/x and so, for x > 0, z″/z′ is always greater. More generally, since for the powers γ(x) = 
xc one has γ″/γ′ = c(c – 1)xc−2/cxc−1 = (c − 1)/x, the mean increases with the exponent; 
this also holds for log x (the limit case as c → 0: log x ≅ (xc − 1)/c): in fact, γ″/γ′ = –x−2/
x−1 = −1/x = (0 − 1)/x. This particular choice (c = 0, γ = log) gives the geometric mean, 
which, in the case of two, or more generally n, values with equal weights (the ‘simple’, 
unweighted case) assumes the more familiar forms: ( ), ( )x x x x xn

n1 2 1 2 , respectively. 
For c = 1, we have the harmonic mean, the reciprocal of the mean of the reciprocals.

From the fact that −1 < 0 < l <2 < 3 it follows that in the above‐mentioned cases, for 
example, we have:

 harmonic geometric arithmetic quadratic cubic. 

2.9.5. Remarks. Although it may seem strange to do so, we conclude by saying that the 
following observation is important: the barycentre of points which are on a curve (other 
than a straight line) is not a point on the curve – unless perhaps ‘bу chance’. In the same 
way, the barycentre of points on a surface (not a plane) is not, generally speaking, a 
point of the surface; and so on, in any dimension. The observation may seem strange 
because it is so obvious: its obviousness, however, results from the demonstration in 
terms of the above representation. How many people would recognize the fact before 
having their attention drawn to it? In facing real problems one often reasons as if what 
one considers strange, and even absurd, is precisely this fact!

2.10 Examples and Clarifications

2.10.1. Examples are always useful in order to give a sense of concreteness to concepts 
introduced in a general and abstract form. In this case, they will serve in addition to 
underline the meaning and importance of certain refinements, either already mentioned 
in passing or to be added soon, and also to introduce, before we yet talk about probability, 
a few of the kinds of situation which we will repeatedly come across in various problems.

Above all, by selecting widely differing examples we intend to remove any possible 
residual doubts that might lead to restrictive interpretations of the field of uncertainty 
to which we refer ourselves. The subject matter to which the uncertainty refers is irrel-
evant: political or economic events, meteorological phenomena, historical or scientific 
conjectures, judicial investigation, personal or everyday affairs, competition in sport, or 
any other field in which uncertainty and imperfect knowledge are present. This includes 
of course –and they in no way differ from the others – the traditional games of chance. 
This latter is, in fact, the least interesting case, because it leads to a standardized scheme 
in which all the conceptual and substantial aspects of the problem are made to disappear.

2.10.2. Examples of events. Will a given candidate, on a given occasion, succeed 
in getting elected (for instance, as a senator, a mayor, a member of a committee, 
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a president of a society or of the university), or in passing (for instance, a student sitting 
an examination), or in being the winner (in a contest or a lottery, at Bingo, in a sports 
competition, in a game of cards or chess, or anything else) and so on? Will a vote turn 
out to be favourable – for instance, for a given law, or for an issue of confidence facing a 
government and so on? Is the accused in a given trial really the murderer? And, in any 
case, will he be convicted as such? Is the approaching tram the one I am waiting for? Will 
the next child of a given couple be a boy? Will it rain tomorrow at a given place? Will the 
next attempt at a soft landing on the moon be successful?

In all cases, and in various ways, if we want to be more detailed, or to extend the 
questions, we often conveniently express ourselves in terms of random quantities. In 
the examples of elections and voting, we might ask the following sorts of questions. 
How many votes are favourable? How many against, invalid or abstentions? What is the 
percentage of those in favour? In the case of examinations, contests and competitions, 
what is the mark or position obtained? And when – what year, day or moment – will the 
event in question occur (moon launch, trial verdict, vote, birth of the particular baby 
etc.)? Or, alternatively, how many will succeed – among those participating in an exami-
nation, contest, sports event and so on? Which one among them – identified by entry 
number, or position in alphabetical order – will attain first place, or second place? Who, 
within a given age limit, will be best placed? In a competition with several stages, or 
legs, who among the entrants will maintain, or improve, or worsen, their position with 
respect to the previous placings?

In other cases one uses different terminology. Random point: for instance, the point of 
the lunar surface which will next be reached. Random set: the set of those who pass an 
examination, the set of points on the earth’s surface on which rain will fall tomorrow, the 
set of instants at which the temperature at a given place is below, above, or at, zero. 
Random function: the temperature at the above‐mentioned place, the score during a com-
petition, the number of votes of confidence since a certain date and so on, all  considered 
as functions of time. If one wishes to avoid reference to irrelevant items of information 
(for instance, by referring to an entry number rather than to the individual concerned) it 
is preferable to speak of a multi‐event, rather than a random quantity, and so on.

2.10.3. It is clear that in all cases it would be possible to go into more and more detail, 
and if all the cases we have mentioned were considered simultaneously we would arrive 
at even more minute subdivisions. And to these cases could be added others, ad infini-
tum. To arrive at a final subdivision into ‘points’ – not further divisible – would at least 
imply the construction of all possible ‘histories of the universe’, distinct in every detail. 
These would include, for example, the precise specification, instant by instant, of the 
position of every atom, and of the thoughts and moods of each individual – including, 
possibly, beings, more or less similar, living on other worlds. Even if we limit ourselves 
to much more restricted problems, an exhaustive description, though very much 
reduced in scale, would by no means turn out to be more realistic. Consider a single toss 
of a coin: unimaginable faculties would be needed if we wished to provide a description, 
with such absolute precision, of a single one of the possible ways in which a person 
tosses the coin, the air influences the movement, and every peculiarity of the ground 
and of the coin at the point and position of the latter’s fall gives rise to successive move-
ments, and so on, until the coin comes to rest. But this would still be nothing, because, 
instead, we must imagine and distinguish the totality of such ways.
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We have pushed ourselves to absurd lengths – in a way pointless in itself – but  perhaps 
this will serve to illustrate the thesis that it is inappropriate to distinguish between 
events represented by ‘points’, or by ‘sets’, thinking of it as something systematic, rather 
than being dependent on momentary conveniences of representation.

2.10.4. This has been said to emphasize the considerations already made (in Section 2.7.7 
and elsewhere), but it is even more necessary to underline the sense in which an event 
(random quantity etc.) has to be – as we said – something ‘well determined’. This means that 
the formulation must be unambiguous and complete, in such a way as to rule out any 
possibility of argument (for instance in the case of a bet which is based on it). To give an 
example: ‘A.N. Other wins the lottery’28 is an event only if the person A.N. Other, of whom 
we are speaking, is perfectly individuated, along with the circumstances that make the 
statement precise. Examples of the latter might be: win in next week’s drawing; or in the 
first week that he plays; or any week of this year; and so on. It should also be made precise, 
or understood, whether possible wins in partnership with others are to be included, or 
not, along with any other possible aspects allowing ambiguity. By changing the individual, 
or any of the circumstances or provisos, we obtain other events, all different from each 
other. We say this only to avoid the situation where, being familiar with other terminolo-
gies, someone might think that they should be called ‘identical events’ or, even worse, 
‘trials’ of ‘the same event’, which consists in ‘winning the lottery’.

Conversely, two events expressed in completely different ways are identical – that is they 
are the same event – if we know that the occurrence of either one of them implies the 
occurrence of the other. Suppose, for instance, that we know for certain that this week A.N. 
Other is going to play the ‘straight’ three numbers 21–63–82 on the Roman wheel, and 
nothing else: in this case, the two events ‘A.N. Other is going to win the lottery this week’ 
and ‘This week the numbers 21, 63 and 82 will come out on the Roman wheel’ are identical. 
On the other hand, in order to demonstrate that it would be wrong to think in terms of the 
identification of a ‘fact’, we note the following: ‘A.N. Other is going to win the next time he 
plays’ and ‘Next week the youngest person playing is going to win’ are two distinct events 
which might, by chance, turn out to be the same fact if next week A.N. Other plays and 
wins and, in addition, happens to be the youngest player. This example also serves the 
purpose of making clear that there is no need to identify explicitly the person and the draw-
ing (either by the date or, possibly, the wheel) so long as, by some means or other, it turns 
out that whether we must call the statement true or false is well determined.

2.10.5. One could object, with reason, that such a requirement is practically unrealiz-
able, and that, in fact, it is not even realized in the example which we have just given. For 
instance, how is the statement ‘A.N. Other is going to win the lottery the next time he 
plays’ to be evaluated if A.N. Other never plays again for the rest of his life? This should 
be made clear by means of some arbitrary convention. In most cases of this kind, how-
ever, we shall interpret the statement in a sense which falls outside the present concept 
of an event, but which leads to a generalization (conditional event) that we will consider 

28 Translators’ note. Every Saturday in Italy, at each of ten cities, a drawing takes place of 5 from 90 possible 
numbers. To enter the lottery, one places a bet, prior to the drawing, specifying which combination(s) of 
numbers (up to a maximum of 5) one thinks will be drawn in a chosen city. The device which produces the 
numbers is known as a ‘wheel’.
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explicitly later on (in Chapter 4). In addition to being true (=1) or false (=0) it could also 
be void (= Ø). In terms of a bet, this means that it could not only result in gain or loss, but 
could also, in certain cases, be called off. If these things are not made clear explicitly, in a 
systematic way, then even the statement ‘A.N. Other is going to win the lottery next week’ 
might appear ambiguous, because of the doubt as to whether we mean ‘false’ or ‘void’ if 
A.N. Other does not play: in such a case one implicitly assumes certain refinements, but 
without justification. We will not labour this point, postponing further discussion until 
the appropriate place. In the same way, we do not enter into discussion of certain other 
questions, like perhaps the preceding ones, which may appear sterile but which, if misun-
derstood, give rise to numerous possible ambiguities and errors. In contrast to the above, 
these questions can be put off until later. Let us merely remark – in order not to seem 
mysterious – that, above all, it is a question of discussing the actual possibility of obtain-
ing, within a given time and with greater or lesser certainty and precision, information 
concerning the events and quantities of interest, about which we are at present uncertain.

2.10.6. We now return to the examples that we considered before in order to draw 
attention to some of the kinds of problems that we will frequently meet in the future, 
and which will serve, for the time being, to illustrate the notions introduced in the pre-
ceding paragraph.

When we ask how many of the participants in an examination will succeed in passing, 
we have an example of a problem concerning the number of successes, Y = E1 + E2 + … + En, 
where Eh = ‘the success of participant h’ or, alternatively, one concerning the frequency, 
or percentage, of successes, Y/n. Other examples, chosen from the infinite number of 
possibilities, might include the following: the number of ‘white balls in n given drawings 
from an urn’; or of ‘males among the first n births registered in Orvieto next year’; or of 
‘those among the n participants in a competition with many stages who maintain, after 
a given stage, their previous position’.

Clearly, Y can only assume the values 0, 1, 2,…, n, and, obviously, these will all be actu-
ally possible if the events Eh are logically independent. This means that the set of all those 
who pass an examination can, in fact, be any one of the 2n subsets of candidates (includ-
ing the whole set and the empty set); that is for each h = 0, 1, 2,…, n, all the ( )n

h  subsets of 
h individuals are subsets for which Y = h. In the cases of examinations, drawings from an 
urn, births and so on, this will be true under most of the usual assumptions (and we shall 
see what these are shortly, when we turn to counterexamples). For the time being, however, 
we note that the n + 1 values can all be possible, even in cases where logical independ-
ence does not hold. Suppose, for instance, that Eh means that ‘the person placed in the 
hth position in a competition has reached some minimum prescribed score’ (or time in 
a race, distance with a throw, height with a jump). It is possible that all, or none, or any 
intermediate number h, will succeed; in the latter case these are obviously the first h and 
no others. We do not have logical independence since if Eh is true, all the preceding ones 
are necessarily true, and if false all the following ones are false.

At the other extreme, it is possible that Y is certain. This is the case, for instance, if E1, 
E2,…, En represent the drawing of white balls in n successive drawings without replace-
ment from n balls, h of which are white; then we certainly have Y = h, the number h 
being known with certainty at the present moment. But in every case (drawings with 
replacement, examinations, sex of births) we find ourselves in the same situation if we 
are acquainted with the outcome as a whole, even though ignorant of the results of 
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single drawings and so on. It is important to notice that the Eh are, in this case, not only 
logically, but also linearly, dependent (E1 + E2 + … + En = Y = h). The logical dependence 
assumes a concrete form in the fact that once all the white balls (or all the others) are 
out, the result of the subsequent drawings is certain (in any case, this is always so for the 
last drawing at least).

All intermediate hypotheses can be shown to be possible by the use of examples of a 
more or less artificial nature. The actual possibility of all n + 1 values is also compatible 
with linear dependence: if n ⩾ 3 we could have E1 = E2 with certainty if one thinks, for 
example, of the first two balls being drawn from an urn containing balls of the same 
colour in pairs. Restrictions on Y may exist in the case of competitive examinations with 
a maximum number of awards available, or in the case of drawings without replacement 
of n balls from an urn containing N balls of which H are white : in this case n − (N − H) 
⩽ Y ⩽ H, the restrictions being real if the limits are >0 and <n, respectively.

An important case, of some interest since it is rather less obvious, is that in which all 
values except n − 1 are possible. We meet it in the example of ‘maintaining rank in a clas-
sification’, which, more abstractly, consists in considering the elements that remain fixed 
under a permutation. One of the many well‐known different interpretations is the follow-
ing: we put, more or less haphazardly, n letters into n envelopes, and we consider the 
random quantity Y which denotes the number of letters correctly placed. Clearly, all out-
comes are possible, except that of making just one error: one letter cannot be misplaced if 
all the others are in their own envelopes, since only the correct envelope then remains.

2.10.7. In the case of three or more alternatives (for each of n multi‐events29) we must 
consider for each of them the number of successes or realizations: for instance, X, Y, Z, 
with X + Y + Z = n, X, Y, Z being the number of votes for, against or abstentions, out of 
n votes; or wins, draws and losses out of n games; or of bachelors, married men or 
widowers out of n males; and so on, and so forth. Similarly for cases involving many 
alternatives: for example X1 + X2 + … + X6 = n for occurrences of the points 1, 2,…, 6 
when we throw n dice, or a single die n times (or, in the previous example, if we distin-
guish marital status and sex).

Problems of this kind are called problems of subdivisions: here we have been dealing 
with the subdivisions of the integer n into a given number of (non‐negative) integer 
summands, but more generally we could consider subdivisions of a given quantity q into 
any kinds of summands whatsoever – non‐negative real values X1 + X2 + … + Xm = q. 
We often prefer to take q = 1, that is to reduce to percentages: in the preceding case we 
could also divide the numbers of occurrences by n, obtaining in this way the frequen-
cies. A classical example is the subdivision of an interval (into m parts with m − 1 divi-
sion points). One could also imagine, however, the masses of the m parts into which an 
object of mass q breaks on falling; or, alternatively, the masses of m materials from 
which it is constructed (for example m metals if we are dealing with an alloy). We shall 
meet these kinds of problems again.

It is of interest to note that in such cases the m random quantities are linearly dependent. 
Other quantities that have to be considered in connection with questions of this nature 

29 Of course, this is also valid in the case of only two alternatives; in this case, however, it is trivial to take 
into account the number of occurrences of each of them since Y = n − X.
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are also linearly dependent if they are linear combinations of them. As examples, we 
note the difference between votes for and against, or the total number of ‘points’ scored 
(taking 2 for a win, 1 for a draw). On the other hand, this would not be true, for example, 
for ratios, such as votes in favour divided by votes against, where one would have logical 
but not linear dependence.

2.10.8. In the above example of a ratio (Z = Y/X), and in others that will follow, the 
logical dependence will be functional dependence (in the clearest case, with f(Xl, X2,…, 
Xn) such that each Xh turns out to be uniquely determined within the permitted field). 
Naturally, the given definition does not imply anything of this kind. Not only may the 
uniqueness fail – as when we consider points on the spherical surface X2 + Y2 + Z2 = 1 
with admissible values not constrained to be non‐negative – but one might also con-
sider all points of the sphere as possible (by substituting ⩽ for =) without destroying the 
logical dependence. To see this, note that, given X = x and Y = y, the possible values of 
Z lie in the segment between ±√(1 − x2 − y2), which is a function of x and y. Given that 
X, Y, Z can all assume values between ±1, we have logical independence only for the 
case in which all the points of the cube −1 ⩽ x, y, z ⩽ +1 are possible: the exclusion of a 
single point, for example the origin, is sufficient to give logical dependence (to avoid it, 
we would have to exclude the points on the coordinate planes; i.e. the value 0 for each 
random quantity separately). One also has logical dependence if one excludes from the 
cube the points for which, for example, X + Y + Z (or XYZ, XY/Z, etc.) is rational, or 
transcendental, or whatever (to avoid it, one should instead exclude separately, X, for 
example, being rational, Y being transcendental, Z being zero).

2.10.9. A case of logical dependence, which is of practical importance and frequent 
occurrence, is the following: given a number of random quantities, say X, Y, Z, we 
denote, by definition, the smallest of these by X, the middle one by Y, the greatest by Z. 
In this case, we exclude all those points which are not included in the dihedron y − x ⩾ 
0, z − y ⩾ 0, even if the coordinates of the points are possible values for X, Y, Z (unless 
all the possible values for X are less than all the possible values for Y, and these are less 
than all the possible values for Z, in which case X ⩽ Y ⩽ Z does not constitute a restric-
tion). It is necessary to pay attention to circumstances of this kind, as the necessity of 
establishing and taking appropriate account of them could be overlooked.

If we take the example of a subdivision resulting from the splitting of a fallen 
object – let us say into three pieces, X, Y, Z – the situation differs according to whether 
the criterion by which we rank them is the order of magnitude, or something else not 
depending on it. For instance, we might take the angle formed between the half‐line 
starting from the point of fall and passing through the barycentre of the piece in ques-
tion and the direction North, the angle being taken in a counterclockwise direction.

The same thing holds in the example we are about to consider now, where X, Y, Z 
are the sides of a random prism (rectangle): for example, a block of stone, a building, 
a suitcase. We may or may not have more or less ‘natural’ circumstances which lead us 
to define, in each case, what we mean by ‘length’ (X), ‘breadth’ (Y) and ‘height’ (Z). 
Without getting bogged down in an analysis, which everyone can provide for them-
selves anyway, the answer seems to be easy for the suitcase, not always such for the 
building – the distinction between length and breadth may not be clear if there is no 
recognizable façade  –  and indeterminate for the block (unless we use conventions 
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based on how it is temporarily situated with respect to North, East and the zenith). If 
we agree to call the maximum side the length, and the minimum side the height, we 
are in the other situation.

Given this random prism – and however we think of the problem, with the sides X, Y, 
Z logically independent or not – let us consider its diagonal U, area V and volume W. In 
either case, these are random quantities that are logically (and even, in a unique way, 
functionally) dependent on the preceding ones: U = √(X2 + Y2 + Z2), V = 2(XY+ XZ + 
YZ), W = XYZ. Clearly, however, the dependence is not linear; when we return to the 
question, in Chapter 3, this example will serve to clarify, in an appropriate way, how, and 
why, certain reasonings about uncertainty, though seemingly obvious, are correct in 
some cases, but not in others (and this according to whether one has linear dependence 
or not).

2.11 Concerning Certain Conventions of Notation

2.11.1. As we announced in Section 2.5.3, and briefly mentioned in Chapter 1 (1.9.3 and 
1.9.4), we will demonstrate, by means of examples, the utility that can be derived in 
many cases from the use of conventions introduced in the present chapter for simplify-
ing the notation. To be explicit:

 ● the identification of TRUE and FALSE with 1 and 0;
 ● the ‘lattice’ operations for numbers.

2.11.2. The convention TRUE = 1 and FALSE = 0 turns out to be very useful also when 
applied outside of the field of events, to propositions or any ‘conditions’ whatsoever

Examples. (x ⩾ a) is the function which = 0 for x < a and = 1 for x ⩾ a; we could write 
such a function as F(x) = (x ⩾ a), and, more generally,

 
F x p x a

h
h h

 
is the step‐function with jumps ph at the points x = ah; assuming that the ah are in 
increasing order of magnitude, this could also be written

 
F x c a x a

h
h h h 1 ,

 
which denotes that in the given interval the value is

 
c p i h ph

i
i

i

h

i
1

.
30

 
In the last example we used the function (a ⩽ x < b), which is = 1 in the given interval 

and = 0 outside: more generally, we use (x ∈ I) to denote the indicator function of the 
set I (the function which = 1 if x is in I, and = 0 otherwise).

30 Given the purely illustrative purpose of these forms of notation, we omit all the possible refinements 
that should be added, case by case, in specific applications: for instance, here, hypotheses of convergence if 
we are dealing with series: in an opposite sense the convention an+1 = ∞ if an is the last term, etc. The 
notation ⩽ instead of < etc. will vary from case to case.
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Using such a function as a multiplier, one obtains immediately the restriction of a 
function to a given interval or set; for example,

 x x x for x2 20 0 0 0for and x ; 

f(x) = x(1 − x)(−1 ⩽ x ⩽ 1) = x(l − x)(|x| ⩽ 1) is equal to x(l − x) for x in [−1, 1], 0 
 otherwise; and, more generally, for a function with a different expression in different 
intervals, for example,

 

f x a x x b cx x

a x x

3 3 1 1 1

3 1 3

3 2

3

 

 ,

or even (for a large, or infinite, number of intervals)

 
f x f x h x h f x f x a x a

h
h

h
h h h 1 1, or

.

Remarks. The examples in which the functions are denoted by F(x) and f(x), respectively, 
can be interpreted as the distribution function (F) and the density function (ƒ = F′) of a 
distribution. These notions may already be familiar but will, in any case, be introduced 
in Chapter 6.

2.11.3. In the previous cases of summation, we have already seen the expression of the 
condition functioning as a multiplier in order to define each single sum‐function, or 
(under another equivalent interpretation) specifying, for a given x, which terms had to 
be summed. The systematic usage of such a convention to this end, even in the absence 
of a useful interpretation in the first sense, would seem to be very convenient, both for 
clarity and typographical convenience. It replaces, in an advantageous manner, either 
explanations in the text, or complicated instructions to be composed under the summation 
(or integral) sign and so on.

The meaning of the following examples is self‐evident:

 

a h H a b B a h a h k
a h k

f x n

h h h h hk

hk

, , , ,
,

0

2


dx xx n f x y x y r 2 1 2 2 2, ., dxdy  

2.11.4. Use of the Boolean operations. The Boolean operations ∨ and ∧ often serve 
(even better than the system given above) to denote ‘truncations’ and similar opera-
tions. For instance, the function F(x) = ‘x provided it is not less than zero or greater than 
one’ could be written in either of the two ways

 F x x x x x0 1 1 0 1  , 

and the second is clearly simpler. In general, the function which = f(x) but is never less 
than m or greater than M can be written as m ∨ ƒ(x) ∧ M, and similarly m(x) ∨ f(x) ∧ 
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M(x), so long as we always have m(x) < M(x) (otherwise we would not have (m ∨ ƒ) ∧ M = m ∨ 
(ƒ ∧ M), and the notation would not be admissible).

This notation, in our context, will serve in particular for random quantities: we pre-
sent here a few examples in both notations (and the Boolean form seems to be simpler):

 

X X X X X X
X X X X X X X
X X X

  

   

� � 
� � 
0 0 0 0

0 0 0 0
, ,

,
    

  

 

� �
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� 

0 0 0 0

0 0

X X X X

X X K K X K X K

X X K

;

,

K X K X K K X K
K

,
0

 

and so on.
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3

3.1 From Uncertainty to Prevision

3.1.1. So far, even in the way we presented the preceding examples, we have limited our-
selves to depicting and representing the situation facing You, when You are interested in 
distinguishing among a more or less extensive class of alternatives (all those which, in the 
present state of your information, appear possible to You). This preliminary topic, which 
we will have to consider more deeply in what follows, is still within the ambit of ordinary 
logic, the logic of certainty. One should always be careful to distinguish clearly between 
those things belonging to this domain and those belonging to the probabilistic domain – the 
ambit of the logic of uncertainty, the logic of prevision – to which we must now turn our 
attention. It was precisely in order to pin‐point this distinction that we decided upon this 
form of exposition, presenting concepts and related examples which reveal the situation as 
it is, while leaving undetermined all questions concerning the possible introduction of 
probability, its conceptual basis and its evaluation. It would certainly be easier, and seem-
ingly more instructive, to go right ahead and take the two steps together, instead of just the 
one. In other words, we could present right away, fused together in the examples and defi-
nitions, both the probability (which answers the need) and the uncertainty (from which the 
need arises), without first  making such a need ‘felt’, and then pausing to reflect upon it. It is 
precisely this latter course, however, which must be recommended.

The situation is this: having distinguished the possible cases, and having represented 
them in the way which seems to You most effective (or in any way convenient to You), if 
You then wish to restrict yourself to the logic of certainty You have to stop, and consider 
the question closed. Is this what You want to do? And can You do it?

For each one of us, it is often the case that we do not content ourselves (or are not able 
to content ourselves) with this, and therefore we proceed further. And, strictly speaking, 
to proceed further means to enter into what we have called the logic of prevision (in a 
sense that we will make clear in order to draw attention to the distinction between this 
and other interpretations, whose drawbacks must be pointed out).

3.1.2. Prevision, not prediction. In order to use this word, ‘prevision’, it will be neces-
sary to give an absolutely precise meaning to it (and to derived words) and to insist on 
this meaning and keep it in mind, consistently and scrupulously, in the sequel. It must 
be distinguished, and in fact contraposed, to another word, which, in everyday  language, 

Prevision and Probability
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is perhaps more commonly attributed to it, and for which we will reserve the alternative 
name, ‘prediction’.

To make a prediction would mean (using the term in the sense we propose) to venture 
to try to ‘guess’, among the possible alternatives, the one that will occur. This is an 
attempt often made, not only by would‐be magicians and prophets, but also by experts 
and such like who are inclined to precast the future in the forge of their fantasies.1 To 
make a ‘prediction’, therefore, would not entail leaving the domain of the logic of cer-
tainty, but simply including the statements and data which we assume ourselves capable 
of guessing, along with the ascertained truths and the collected data. It is not enough to 
tone down the ‘prophetic’ character of such pronouncements by taking precautions 
with feelings (‘I think’, ‘perhaps’, etc.) as we have already mentioned: either these artifi-
cial additions remain without any authentic meaning, or they need to be actually trans-
lated into probabilistic terms, substituting prevision in place of prediction.

If we remain within the logic of certainty, such additions not only have no authentic 
meaning in themselves, but, in point of fact, they render meaningless the entire discus-
sion. If the discussion affirms that something is true, and the ‘perhaps’ means that 
instead of being true it could also be false, this is equivalent to retracting the preceding 
statement, declaring it to be invalid and unfounded (cancelling it, disowning it). If not, 
then ‘perhaps’ should be erased as it might give a false impression of such a retraction.

Alternatively – and this is the approach indicated below, and which corresponds to 
the subjectivistic conception of probability – the ‘perhaps’ can be explained as an indi-
cation, even if crudely qualitative, of a degree of subjective probability which, if we 
wished, could be made more precise, and even quantified.

All this would be very clear if there did not exist, unfortunately, in the very field of 
probability and statistics, certain tendencies to avoid the choice, playing precisely on 
that ambiguity which we drew attention to earlier, and making it worse. In fact, the 
ambiguity of the ‘perhaps’ (which could be innocent, due to simple unwariness) is 
fraudulently concealed beneath a showy exterior. It is translated into technical terms 
like ‘accept’ and ‘reject’, which neither mean YES or NO with certainty, nor are to be 
interpreted in a probabilistic sense, but simply lay claim to be themselves ‘accepted’, 
rather than ‘rejected’, without giving to those terms any ‘acceptable’ meaning whatsoever.

3.1.3. Prevision, in the sense in which we have said we want to use this word, does not 
involve guessing anything. It does not assert – as prediction does – something that might 
turn out to be true or false, by transforming (over‐optimistically) the uncertainty into a 

1 Everyone will no doubt have noticed, and had occasion to notice, how often the ‘foresights of experts’ 
turn out to be completely different from the facts, sometimes spectacularly so. In the main, this is precisely 
because they are intended as predictions which ‘deduce’, more or less logically, a long chain of 
consequences – still considered necessarily plausible – from the assumed plausibility of an initial 
hypothesis. Interesting examples of the lack of connection between prevision and reality (in the political 
field) are pointed out and discussed by B. de Jouvenel in ‘Futuribles’, Bulletin Sedeis, 20 January 1962.

Here also one might note the irrelevant distinction, as far as prevision and prediction are concerned, 
between the future and the past: the hypothetical reconstructions of murders or historical facts made by 
detectives, scholars or novelists, based on scanty data and meriting varying degrees of respect, are, in the 
above sense, ‘predictions’.

It is useful to ask oneself, incidentally, whether such ‘facile fantasies’ are really ‘rich fantasies’, or rather 
‘poor fantasies’, in that ineptitude or laziness prevents us from seeing how many other possibilities there are, 
besides the first one we happened to think of.
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claimed, but worthless, certainty. It acknowledges (as should be obvious) that what is 
uncertain is uncertain: in so far as statements are concerned, all that can be said beyond 
what is said by the logic of certainty is illegitimate. If we think that something might be 
added, if we think, as we remarked above, that we can proceed further, it will necessarily 
be a question of entering into a completely new field and scheme of things, one which 
goes beyond the logic of certainty, even if it must be linked to it and superimposed upon it.

When we cease to content ourselves with the logic of certainty, in what sense do we 
go beyond it? In what sense do You go beyond it? Let us ask ourselves this question. Ask 
yourself. The thing we are not content with, and neither are You, is the agnostic and 
undifferentiated attitude towards all those things which, not being known to us with 
certainty, are uncertain, are possible. There are no degrees2 of possibility: it is possible 
(equall possible) that it snows on a winter or summer day; that a great champion or a 
novice wins the competition; that every student, whether well‐prepared or not, will pass 
an examination; that next Christmas You will find yourself at any place in the world. 
However, You do not content yourself with this, and, in fact, it is not your real attitude. 
Faced with uncertainty, one feels, and You feel too, a more or less strong propensity to 
expect that certain alternatives rather than others will turn out to be true; to think that 
the answer to a certain question is YES rather than NO; to estimate that the unknown 
value of a certain quantity is small rather than large.

These attitudes, of ours and of yours, do not lead us – as in the case of someone who 
claims to make a spot‐on prediction  –  to assert as certain or impossible something 
which, on the basis of the logic of certainty, is possible but uncertain, and which remains 
such whatever further assertions or thoughts might be added. Uncertain things remain 
uncertain, but we attribute to the various uncertain events a greater or lesser degree of 
that new factor which is extralogical, subjective and personal (mine, yours, his, any-
body’s), and which expresses these attitudes. In everyday language this is called proba-
bility, a concept that we shall have to clarify and study. Prevision, in the sense we give to 
the term and approve of (judging it to be something serious, well‐founded and neces-
sary, in contrast to prediction), consists in considering, after careful reflection, all the 
possible alternatives, in order to distribute among them, in the way which will appear 
most appropriate, one’s own expectations, one’s own sensations of probability.

We all of us enter into this ambit of prevision in a spontaneous fashion; sometimes 
without a specific need, for the sole reason that one is interested in the object of uncer-
tainty, that there are desires or hopes that certain alternatives occur, anxieties and fears 
regarding the occurrence of unfavourable alternatives, and that the weighing up of such 
hopes and fears matters to one. Sometimes, on the other hand, all one’s behaviour may 
necessarily depend on a comparative evaluation, albeit crude and perhaps unconscious, 
of the various impending risks, and of the various targets that one can set oneself. In this 
sense, and because of the enormous range of possibilities, one may find oneself com-
pelled to weigh up such evaluations, and to express the prevision. In the case of more 
important and conscious decisions, one might try to reason about each choice, and 
weigh up the pros and cons by means of some criterion or other.

2 In a certain sense, however, there exists a partial order since one could call, ‘not less possible’ than 
another, an event which is a consequence of it (in the same way as one could call, ‘not less extended’ than 
another one, a set containing it). In both cases, however, no step forward is made towards a comparability or 
measurability of the ‘possibilities’ or of the ‘extensions’.
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3.1.4. Coherence. It is precisely in investigating the connection that must hold between 
evaluations of probability and decision making under conditions of uncertainty that one 
can arrive at criteria for measuring probabilities, for establishing the conditions which they 
must satisfy, and for understanding the way in which one can, and indeed one must, ‘reason 
about them’. It turns out, in fact, that there exist simple (and, in the last analysis, obvious) 
conditions, which we term conditions of coherence: any transgression of these results in 
decisions whose consequences are manifestly undesirable (leading to certain loss).

The ‘one must’ is to be understood as ‘one must if one wishes to avoid these particular 
objective consequences’. It is not to be taken as an obligation that someone means to 
impose from the outside, nor as an assertion that our evaluations are always automati-
cally coherent. On the contrary, it is precisely because this is an area where it is particu-
larly easy to slip into incoherence that it is important to learn the art of prevision (to 
adapt the phrase Ars Conjectandi, used by James Bernoulli as the title of the first treatise 
on the calculus of probability).

Given any set of events whatsoever, the conditions of coherence impose no limits on 
the probabilities that an individual may assign, except that they must not be in contra-
diction amongst themselves. Without further delay, we will proceed to the construction 
of the theory of probability, using as a basis the theory of decision making. For the time 
being, this will be done in an extremely simplified form, as a preliminary clarification of 
ideas. In the next paragraph we will discuss certain other aspects of the problem, and 
then turn to the constructive formulation.

Within this framework, we obtain the greatest insight by considering as a starting 
point the case of random quantities (especially when we interpret them as random 
gains). With a more rigorous approach, inspired by decision‐theoretic considerations, it 
is essentially a question of returning to that problem of a fair evaluation, or estimation, 
which, in connection with similar problems of an economic nature, seems to have fore-
shadowed by centuries the beginnings of the calculus of probability. In this sense, the 
modern setting of the problem, within decision theory, constitutes, to some extent, a 
return to its origins.

The definition of the probability of an event will turn out to be contained automati-
cally in that given in the case of random quantities: we simply define events as particular 
random quantities. From a mathematical viewpoint also, this would appear the appropriate 
thing to do. In Chapter 2 we saw that in the case of events the most useful arguments, 
which are very simple if one considers the events as special points in the space of 
 random quantities, are not available if one thinks in terms of the set of events without 
reference to the space in which this set is ‘naturally’ embedded, and in which it is neces-
sary to see it embedded.

Let us proceed then to the matter in hand, starting with the consideration of a random 
gain X: by this we mean a random quantity X having the meaning of gain (the latter 
intended, of course, in an algebraic sense; a loss is a negative gain). The possible values 
of X could, therefore, also be negative, either in part, or entirely. We might ask an indi-
vidual, for example You, to specify the certain gain that is considered equivalent to X. 
This we might call the price (for You) of X (we denote it by P(X)3) in the sense that, on 

3 We could write Pi(X) to emphasize that we are dealing with the evaluation of a particular individual i. 
This is an unnecessary precaution, however, since it is understood that we are always referring ourselves to 
the evaluation of a given individual (real or fictitious).
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your scale of preference, the random gain X is, or is not, preferred to a certain gain x 
according to whether x is less than or greater than P(X). For every individual, in any 
given situation, the possibility of inserting the degree of preferability of a random gain 
into the scale of the certain gains is obviously a prerequisite condition of all decision‐
making criteria. Among the decisions that lead to different random gains, the choice 
must be the one that leads to the random gain with the highest price. Moreover, this is 
not a question of a condition but simply of a definition, since the price is defined only in 
terms of the very preference that it means to measure, and which must manifest itself in 
one way or another.

In general, it is not true that if one is prepared to buy an article A at the price P(A) 
and an article B at the price P(B), one must be prepared to buy both of them together 
at a price P(A) + P(B). It may happen that the purchase of one of them affects, in vari-
ous ways, the desirability of the other. Similar qualifications hold if instead of two 
articles A and B we consider two random gains X and Y; this case will be examined in 
the next paragraph. In both cases, however, additivity is something more than just an 
interesting simplifying hypothesis, which may be approximately valid. As we shall 
see later, provided we modify slightly the way in which the notion of price P(X) is 
introduced, additivity will turn out to be an exact property, the foundation of the 
whole treatment.

3.1.5. Properties of P. If You are indifferent to the exchange of X for P(X) and of Y 
for P(Y), then, if we assume the simplifying hypothesis given above, You are also 
indifferent to the exchange of X + Y for P(X) + P(Y). The value for which You are indif-
ferent to the exchange of X + Y is, however, by definition, P(X + Y); we therefore 
conclude that
a) the price P is an additive function:

 P P PX Y X Y . (3.1)

A second property, obvious, but equally fundamental, can be derived by noting that 
P(X) must not be less than the lower bound of the set of possible values for X, inf X, nor 
greater than the upper bound, sup X (otherwise the choice would allow a certain loss). 
Therefore,
b) the price P must satisfy the inequality:

 inf sup ;X X XP  (3.2)

obviously, this condition only imposes a restriction if the random quantity X is 
bounded in at least one direction (either inf X > −∞ or sup X < +∞). Generally, but 
not always, we will restrict our attention to the bounded case (i.e. bounded from 
above and below).

When we come to formulate and examine this set‐up in a more exhaustive fashion, we 
shall see that the two extremely simple conditions, (a) and (b), are not only necessary but 
also sufficient for coherence – that is for avoiding undesirable decisions. This is all that 
is needed for the foundation of the whole theory of probability: in fact, the definition of 
probability immediately reduces, as a special case, to that of a price P.

We observe, from (a) and (b), that the price P must also be a linear function, in the 
sense that for every real a we have
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 P PaX a X ,4 (3.3)

and therefore, more generally,

 P P P PaX bY cZ a X b Y c Z  (3.4)

for any finite number of summands.
Given this property, it is possible to extend the definition of P(X) to the case in which 

X is a random quantity (pure number), or a random magnitude not having the meaning 
of gain (for instance, time, length, etc.). In fact, it suffices to choose a coefficient a 
whose dimension is such that aX is a monetary value: for instance, in the cases of time 
and length we could take Lire/s and $/cm. We now define P(X) = (1/a)P(aX): this is well 
defined, since the expression is invariant with respect to the choice of a (we can substitute 
λa in place of a, where λ is a nonzero real number).

In the general case (where we do not have a monetary value), the term ‘price’ is no 
longer appropriate: we speak instead of the ‘prevision of X ’, valid in all cases,5 and, in 
particular, of the ‘probability of E’ when X = E is an event.

The probability P(E) that You attribute to an event E is, therefore, the certain gain p 
that You judge equivalent to a unit gain conditional on the occurrence of E: in order to 
express it in a dimensionally correct way, it is preferable to take pS equivalent to S con-
ditional on E, where S is any amount whatsoever, one Lira or one million, $20 or £75. 
Since the possible values for a possible event E satisfy inf E = 0 and sup E = 1, for such 
an event we have 0 ≤ P(E) ≤ 1, while necessarily P(E) = 0 for the impossible event, and 
P(E) = 1 for the certain event.6

3.2 Digressions on Decisions and Utilities

3.2.1. In Section 3.1, we have introduced the notions of prevision and probability by 
following the path laid down by certain decision‐theoretic criteria of an essentially eco-
nomic nature: the presentation was, however, in a simplified form.

It follows, therefore, that before going any further we should make some comments 
and give some further details about the theory of decision making, and above all about 
utility. The latter, together with probability, is one of the two notions on which the cor-
rect criterion of decision making depends. We warn the reader, however, that this is in 

4 This is obvious if a is rational, and the extension to every a is straightforward if X is always positive 
(because then if a lies between a′ and a″, we also have aX between a′X and a″X). But we can always write 
X = Y − Z, where Y = X (X ≥ 0) and Z = − X(X ≤ 0), and these numbers are always non-negative: Y = X if X > 0 
and zero otherwise, Z = −X if X < 0 and zero otherwise. The conclusion is therefore valid for Y and for Z, 
and hence for X = Y − Z.
5 This corresponds to ‘mathematical expectation’ in classical terminology, and to ‘mean value’ in more 
up-to-date usage. We prefer to reserve the term ‘mean value’ for objective distributions (e.g. statistical 
distributions).
6 These are the only cases in which the evaluation of the probability is predetermined, rather than 
permitting the choice of any value in the interval from 0 to 1 (end-points included). The predetermination 
that one meets in these cases arises because there exists no uncertainty and the use of the term probability 
is redundant. The same thing holds for prevision: P(X) necessarily has a given value x if and only if X has x 
as a unique possible value; i.e. if X is not really random. The above is the special case where either x = 0 
or x = 1.
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the nature of a digression and anyone not interested in the topic can skip it without any 
great loss: the details (of a noneconomic nature) that are given in Section 3.3, and in 
subsequent sections, will prove quite sufficient.

3.2.2. Operational definitions. In order to give an effective meaning to a notion – and 
not merely an appearance of such in a metaphysical–verbalistic sense – an operational 
definition is required. By this we mean a definition based on a criterion that allows us to 
measure it.7 We will, therefore, be concerned with giving an operational definition to 
the prevision of a random quantity, and hence to the probability of an event.

The criterion, the operative part of the definition which enables us to measure it, 
consists in this case of testing, through the decisions of an individual (which are observ-
able), his opinions (previsions, probabilities), which are not directly observable.

Every measurement procedure and device should be used with caution, and its results 
carefully scrutinized. This is true in physics, despite the degree of perfection attainable, 
and even more so in a field as delicate as ours, where similar and much more profound 
difficulties are encountered.

In the first place, if, as is implicit in what we have said so far, we identify, generically, 
decisions and preferences, then we are ignoring many of the extraneous factors that 
play a part in decision making. Nobody accepts all the opportunities or bets that he 
judges favourable, and perhaps we all sometimes enter into situations that we judge 
unfavourable. To reduce the influence of such factors it is convenient to effect the 
observations on the phenomena isolated in their most simple forms: this is in fact what 
we attempt to do when we construct measuring devices. For the purpose of a formal 
treatment of the topic, we will present (in the next section) two different procedures by 
means of which we try to force the individual to make conscious choices, releasing him 
from inertia, preserving him from whim. Of course, we have to establish that the two 
procedures are equivalent, and this we shall do.

A doubt might remain, however. Are the conclusions that we draw after observing the 
actual behaviour of an individual, directly making decisions in which he has a real inter-
est, more reliable than those based on the preferences which he expresses when con-
fronted with a hypothetical situation or decision? Both the direct interest and the lack 
of it might on the one hand favour, and on the other obstruct, the calmness and accu-
racy, and hence the reliability, of the evaluations. In any case, it is not really a mathemat-
ical question: it is useful to be aware of the problem, but it is mainly up to the 
psychologists to delve further into the matter. We merely note that between the two 
extreme hypotheses one could consider an intermediate one that might be of interest; 
the case of an individual being consulted about a decision in which others are inter-
ested. This might well lead to responsibility in the judgment without affecting the calm-
ness of the decision maker. In Chapter 5, 5.5.6, we encounter another example which is 
similar in spirit to the last one: this is where the accuracy of the evaluation is related to 
one’s self‐respect in some competitive situation (with prizes which are materially insig-
nificant, but which are related to the significance of the competition).

At this point, the reader may be wondering on what basis individuals do evaluate their 
probabilities or previsions: the question is not appropriate, however. Firstly, we must 

7 See P. Bridgman, The Logic of Modern Physics, Macmillan, New York (1927).
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attempt to discover opinions and to establish whether or not they are coherent. Only at 
the second stage, having acquired the necessary knowledge, could we also apply it to 
investigate these other aspects, and not until it was very much advanced could this be 
done in a sufficiently satisfactory way (up to and including the rather complicated justi-
fications for the case of evaluations based on frequencies, a case wrongly considered 
simple).

3.2.3. Reservations concerning rigidity. The main question that we have to face in these 
‘remarks’ is the one already mentioned when we expressed reservations about assuming 
additivity for the price of a random gain: recall that it is this hypothesis which underlies 
the definition of prevision, and the special case of probability.

It is well known, and indeed obvious, that usually this is not realistic because of the 
phenomenon of risk aversion (or occasionally its opposite, but we shall not bother with 
such cases). In fact, as we already noted in effect when we introduced it, the hypothesis 
of additivity expresses an assumption of rigidity in the face of risk. Let us now try to 
make this clear. As a preliminary, it will suffice to restrict ourselves to simple examples 
that are within our present scope. These will be sufficient to show that in order to obtain 
a formulation which is completely satisfactory from the economic point of view, it is 
necessary to eliminate such rigidity by introducing the notion of utility. On the other 
hand, they will also show that one is able to manage without this notion, except when 
occupied with applications of an expressly economic nature.

Suppose that You are faced with two eventualities that You judge equally probable: 
taking the standard example, it could be a question of Heads or Tails. Given the hypoth-
esis of rigidity in the face of risk, You should be indifferent between ‘receiving with 
certainty a sum S, or twice the sum if a particular one of the two possible cases occurs’: 
likewise, between ‘losing with certainty a sum S, or twice the sum if a particular one of 
the two possible cases occurs’; and similarly between ‘accepting or not accepting a bet 
which, in the two possible cases, would lead either to a loss, or to a gain, of the same sum 
S’ This much is obvious, but in any case we shall carry out the calculations as an exer-
cise. Let us denote by A and B the two events: A + B = 1 because one and only one of the 
two occurs. Their probabilities, being supposed equal, must each have the value 1

2 , since 
P(A) = P(B), and P(A) + P(B) = P (A + B) = P(1) = 1. It follows that cases of so‐called 
indifference simply imply the equality of the following: S and (2S)/2, −S and −(2S)/2, 0 
and 1

2 S + 1
2 (−S) (since, for instance, the gain 2S conditional on the event A is the  random 

quantity X = 2SA, P(X) = P(2SA) = 2SP(A) = 2S . 1
2 .

If instead, as is likely, You are risk averse, then in all cases You will prefer the certain 
alternative to the uncertain one (the form and extent of the aversion will depend upon 
your temperament, or perhaps be influenced by your current mood, or by some other 
circumstance). To arrive at the actual indifference, You would content yourself with 
receiving with certainty a sum S′ (less than S) in exchange for the hypothetical gain 2S; 
You would be disposed to pay with certainty a sum S″ (greater than S) in order to avoid 
the risk of a hypothetical loss 2S; You would pay a certain penalty K in order to be 
released from any bet where the gain and loss are, in monetary terms, symmetric.

This means, however, that by virtue of risk aversion one has symmetry in the scale in 
which one’s judgments of indifference are based: that is equal levels in passing from 0 to 
S′ and from S′ to 2S, or in passing from −2S to −S″ and from −S″ to 0, or in passing from −S 
to −K and from −K to S. The scale no longer coincides with the monetary one, as in the 
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case of rigidity. In short, as far as we are concerned, things proceed as if successive 
increments of equal monetary value had for You smaller and smaller subjective value or 
utility. This term – often used in a similar sense, but in a questionable form, in eco-
nomic science – has been rehabilitated and adopted with the specific meaning derived 
from the present considerations about risk.

3.2.4. The scale of utility. The above considerations enable us to construct a scale of 
utility; that is a function U(x), the utility of the gain x, whose increments, U(xi+1) − U(xi), 
are equal when, and only when, we are indifferent between the corresponding incre-
ments of monetary gain, xi+1 − xi. We could proceed, for instance, by dividing an inter-
val into two ‘indifferent increments’, in the way indicated in the examples above, and in 
the same way obtain subdivisions into 4, 8, 16,…, parts. It would be more appropriate, 
instead of considering the variable x representing the gain, to take f + x, where f is the 
individual’s ‘fortune’ (in order to avoid splitting hairs, inappropriate in this context, one 
could think of the value of his estate). Anyway, it would be convenient to choose a less 
arbitrary origin in order to take into account the possibility that judgments may alter 
because in the meantime variations have occurred in one’s fortune, or risks have been 
taken, and in order not to preclude for oneself the possibility of taking these things into 
account, should the need arise. Indeed, as a recognition of the fact that the situation will 
always involve risks, it would be more appropriate to denote the fortune itself by F 
(considering it as a random quantity), instead of with f (a definite given value).

What we have said concerning the scale of utility makes it intuitively clear – and 
this is sufficient for the time being – that if, in order to define ‘price’, we refer to this 
scale rather than to the monetary scale, then additivity holds. In fact, one might say 
that such a scale is by definition the monetary scale deformed in such a way as to 
compensate for the distortions of the case of rigidity which are caused by risk aver-
sion. The formulation put forward in the preceding paragraph could, therefore, be 
made watertight, and this we will do shortly by working in terms of the utility instead 
of with the monetary value. This would undoubtedly be the best course from the 
theoretical point of view, because one would construct, in an integrated fashion, a 
theory of decision making (of the criteria of coherent decisions, under conditions of 
certainty or uncertainty), whose meaning would be unexceptionable from an eco-
nomic viewpoint, and which would establish simultaneously and in parallel the prop-
erties of probability and utility on which it depends. The fundamental result lies, in 
fact, in recognizing that the criteria of coherent decision making are precisely those 
which consist of the choice of any evaluation of the probabilities and any utility func-
tion (with the necessary properties) and in fixing as one’s goal the maximization of the 
prevision of the utility. Of course, it is possible to behave coherently with respect to 
decisions and preferences without knowing anything about probability and utility. 
The fact is, however, that in this case one must behave as if one is acting in the above 
manner, as if obeying an evaluation of probability and a scale of utility underlying 
one’s way of thinking and acting (even if without realizing it). Provided one could 
succeed in exploring these activities in an appropriate way, it might be possible to 
trace back and individuate the two components.

This unified approach to an integrated formulation of decision theory in its two 
components was put forward by F.P. Ramsey (1926) and rigorously developed by L.J. 
Savage (1954). However, there are also reasons for preferring the opposite approach, 
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the one which we attempt here. This consists in setting aside, until it is expressly 
required, the notion of utility, in order to develop in a more manageable way the 
study of probability.

3.2.5. An alternative approach. The idea underlying this alternative approach stems 
from the observation that the hypothesis of rigidity, as considered above, is acceptable 
in practice – even if we stick to monetary values – provided the amounts in question are 
not ‘too large’. Of course, the proviso has a relative and approximate meaning: relative to 
You, to your fortune and temperament (in precise terms, to the degree of convexity of 
your utility function U); approximate because, in effect, we are substituting in place of 
the segment of the curve U which is of interest the tangent at the starting point. Clearly, 
the smaller the range considered, the more satisfactory is the approximation. With this 
in mind, we might consider replacing the previous definition of P(X) – which we tem-
porarily distinguish, denoting it by P*(X) – with a new one, which we define by means 
of the relationship:

 
P PX

a
aX

a
lim * .

0

1
 

Instead, we prefer a less orthodox but more natural and manageable solution, which 
consists of not changing anything, but merely remarking that in economic examples 
one must remain within appropriate limits (which, as an aid to understanding, we call 
‘everyday affairs’).

There are several reasons behind this choice (and, more generally, behind rejecting 
the standard method of considering both probability and utility together, right from the 
very beginning).

Firstly, on a purely formal level, there is an objection to taking the passage to the limit 
so seriously as to base a definition on it: in fact, if a becomes too small an evaluation 
loses, in practice, any reliability. This is the same phenomenon that one encounters 
when attempting to define density, although the underlying reasons are different. One 
needs to consider the ratios mass/volume for neighbourhoods small enough to avoid 
macroscopic inhomogeneities, but not so small as to be affected by discontinuities in 
the structure of matter. We accept that once we are in the area of mathematical idealiza-
tion we can leave out of consideration adherence to reality in every tiny detail: on the 
other hand, it seems rather too unrigorous to act in this way when formulating that very 
definition that should provide the connection with reality.

This does not mean that it is not useful to accept the form of the passage to the limit 
(as an innocuous and convenient assumption, although not appropriate to fulfil the 
function of a definition). In any case, let us suppose that we have introduced the linear 
prevision P(X), and that we know the utility function U, which, for the sake of simplicity, 
we now take to be expressed as a function of the gain x. Then the original P(X) as it 
actually turns out to be, assuming that the hypothesis of rigidity is not satisfied (this is 
denoted above by P*, but from now on we denote it by PU), can be expressed immedi-
ately as a transform of P by means of U:

 
P PU X U U X1 .  (3.5)
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In the standard case, where U is convex, we have PU(X) < P(X), as noted above, and as 
can be seen from the theory of associative means (Chapter 2, 2.9.3). In order to be able 
to distinguish between the two concepts, when referring to them, we will say that:

a transaction is  
depending on  
whether PU

indifferent,

remains constant,

advantageous,

or increases,

disadvantageous

or decreases;

a transaction is  
depending on  
whether

P fair,

remains constant,

favourable,

or increases,

unfavourable

or decreases.

A fair transaction is such for everyone agreeing on the same evaluation of probabili-
ties, even for the other contracting party (P(−X) = −P(X)); an indifferent transaction is 
not such as U varies, and cannot be such for both contracting parties if they both have 
convex utility functions (in this case PU(−X) < P(−X) = −P(X) < −PU(X)).

3.2.6. Some further remarks. Finally, let us turn to the other reasons for preferring this 
approach: these are essentially concerned with simplicity. The separation of probability 
from utility, of that which is independent of risk aversion from that which is not, has 
first of all the same kind of advantages as result from treating geometry apart from 
mechanics, and the mechanics of so‐called rigid bodies without taking elasticity into 
account (instead of starting with a unified system).

The main motivation lies in being able to refer in a natural way to combinations of bets, 
or any other economic transactions, understood in terms of monetary value (which is 
invariant). If we referred ourselves to the scale of utility, a transaction leading to a gain of 
amount S if the event E occurs would instead appear as a variety of different transactions, 
depending on the outcome of other random transactions. These, in fact, cause variations 
in one’s fortune, and therefore in the increment of utility resulting from the possible addi-
tional gain S: conversely, suppose that in order to avoid this one tried to consider bets, or 
economic transactions, expressed, let us say, in ‘utiles’ (units of utility, definable as the 
increment between two fixed situations). In this case, it would be practically impossible to 
proceed with transactions, because the real magnitudes in which they have to be expressed 
(monetary sums or quantity of goods, etc.) would have to be adjusted to the continuous 
and complex variations in a unit of measure that nobody would be able to observe.

Essentially, our assumption amounts to accepting as practically valid the hypothesis 
of rigidity with respect to risk: in other words, the identity of monetary value and util-
ity8 within the limits of ‘everyday affairs’. One should be concerned, however, to check 
whether this assumption is sufficiently realistic within a wide enough range: actually, it 
seems safe to say that under the heading of ‘everyday affairs’ one can consider all those 
transactions whose outcome has no relevant effect on the fortune of an individual (or 
firm, etc.), in the sense that it does not give rise to substantial improvements in the 
 situation, nor to losses of a serious nature.

There is no point in prolonging this discussion, but it seems appropriate to mention 
an analogy from economics, and one from insurance: these – in the same spirit as the 

8 Except for (obviously inessential) changes of origin and unit of measurement.
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preceding geometrical–mechanical analogy – are sufficient to clarify the question, both 
from a conceptual and practical point of view. Using the prices P(X) as they appear in 
our hypothesis of rigidity is to do the same thing as one does in economics when one 
considers the total price of a set of goods, of given amounts, on the basis of the unit 
prices in force at the time, without taking into account the variation that a possible 
transaction would cause by changing the supply and demand situation. On the other 
hand, these variations are only noticeable if the quantities under consideration are suf-
ficiently large. Even more apposite is the example of actuarial mathematics: indeed, the 
latter is nothing other than a special case of the theory we are discussing. In the main, it 
is traditionally concerned with the terms of an insurance under fair conditions (‘pure’ is 
the usual terminology: pure premium, etc.), and only in special cases – for instance, the 
theories dealing with the risk of the insurer, or with the advantage for those exposed to 
risk in insuring themselves – does one speak in terms of utility (or something equiva-
lent, if such a notion is not introduced explicitly). Notwithstanding the fact that this 
stems less from deliberate choice than from a tradition that lacks an awareness of the 
questions involved, the ‘rigid’ approximation has turned out to be satisfactory for the 
greater part of this most classical field of application of the calculus of probability to 
economic questions. We intend to use only the simplified version; the above considera-
tions suggest that this is a reasonable thing to do.9

On the other hand, we shall see (in Chapter  5) how, although starting from the 
hypothesis of rigidity, one can arrive at the evaluation of probabilities by means of cri-
teria which are neutral with respect to it. The method, which takes as its basis the most 
meaningful concept, and then clarifies it by means of this simplifying hypothesis, there-
fore achieves its objective without prejudicing the conclusions.

3.3 Basic Definitions and Criteria

3.3.1. We must now translate into actual definitions and proofs those things that we 
have hitherto put forward in an introductory form, bringing in any necessary refine-
ments, and beginning the developments.

We have given some idea of what a prevision function P is, and what conditions it 
must satisfy in order to be coherent. The function P represents the opinion of an indi-
vidual who is faced with a situation of uncertainty. To each random magnitude X, there 
corresponds the individual’s evaluation P(X), the prevision of X, whose meaning, operation-
ally, reduces, in terms of gain, to that of the (fair) price of X. This includes, in particular, 
the special case of probability (which is the more specific name given to prevision when 
X is an event). A prevision function P is coherent if its use cannot lead to an inadmissible 
decision (i.e. such that a different possible decision would have certainly led to better 
results, whatever happened). We have remarked already that coherence reduces to lin-
earity and convexity.

3.3.2. In order to fix the formulation in a precise way, we will now put forward 
two criteria (in the sense of devices or instruments for obtaining a measurement). 
Each one furnishes an operational definition of probability or prevision P, and, 

9 For all these topics see de Finetti–Emanuelli (1967), Part I.
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together with the corresponding conditions of coherence, can be taken as a founda-
tion for the entire theory of probability.

Let us recall that the term ‘operational’ applies to those definitions that allow us to 
reduce a concept not merely to sentences, which might have only an apparent meaning, 
but to actual experiences, which are at least conceptually possible. Think of Einstein’s 
definition of ‘simultaneity’ by means of signals: until that time no‐one had even doubted 
that the term lacked an absolute meaning. That definitions should be operational is one 
of the fundamental needs of science, which has to work with notions of ascertained 
validity, in a pragmatic sense, and which must not run the risk of taking as concepts 
illusory combinations of words of a metaphysical character.

In our case, for the definition of P(X), it is a question of stating exactly what ‘the rules 
of the game’ are. To state, in other words, what, in the application of a given criterion, 
are the practical consequences that You know You must accept, and which You do 
accept, when You enunciate your evaluation of P(X) (whose meaning as ‘price’ is already 
essentially given). From a conceptual point of view, in the case of coherence too the 
pointers given in Section 3.1.5 are sufficient in themselves. To make them explicit in a 
compact form for specific criteria provides, however, a more incisive schematization of 
the theory by reducing it to a really small nucleus of initial assumptions.

3.3.3. As far as the extension of the domain of definition of a function of prevision P is 
concerned, we assume that in principle P could be evaluated (by You, by anybody) for every 
event E or random quantity X: this is in contrast to what is assumed in other theories and 
so it is appropriate to point it out explicitly. It will be sufficient for You to place yourself 
under the restriction of a certain criterion, which we shall soon make explicit, and being 
forced to answer – that is to make a choice among the alternatives at your disposal – to 
reveal your evaluation of P(X) (or, in particular, of P(E)). This is valid, as we have said, 
in principle: in other words, we intend not to acknowledge any distinction according to 
which it would make sense to speak of probability for some events, but not for others.10 On 
the other hand, however, we certainly do not pretend that P could actually be imagined as 
determined, by any individual, for all events (among which those mentioned or thought of 
during the whole existence of the human race only constitute an infinitesimal fraction, 
even though an immense number). On the contrary, we can at each moment, and in every 
case, assume or suppose P as defined or known for all (and only) the random quantities (or, 
in particular, events) belonging11 to some completely arbitrary set 𝒳: for instance, those for 
which we know the evaluation explicitly expressed by the individual under consideration.

Without leaving this set, whatever it may be, we can recognize whether or not P includes 
any incoherence; if so, the individual, when made aware of this fact, should eliminate it, 
modifying his evaluations after reconsideration. The evaluation is then coherent and can 
be extended to any larger set whatsoever: the extension will be uniquely determined up to 
the point that the coherence demands and is, to a large extent, more or less arbitrary 
outside that range. One can only proceed, therefore, by interrogating the individual and 
alerting him if he violates coherence with respect to the preceding evaluations.

10 For instance, the two following distinctions are quite common: yes for ‘repeatable’ events, no for ‘single’ 
instances; yes if X belongs to a measurable set I, no otherwise. See Appendix.
11 And not, necessarily, belonging to something reducible to a ring (or to a σ-ring) of events. Again, see 
Appendix.
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Among the answers that do not make sense, and cannot be admitted, are the following: 
‘I do not know’, ‘I am ignorant of what the probability is’, ‘in my opinion the probability 
does not exist’. Probability (or prevision) is not something that in itself can be known or 
not known: it exists in that it serves to express, in a precise fashion, for each individual, 
his choice in his given state of ignorance. To imagine a greater degree of ignorance that 
would justify the refusal to answer would be rather like thinking that in a statistical 
survey it makes sense to indicate, in addition to those whose sex is unknown, those for 
whom one does not even know ‘whether the sex is unknown or not’.

Other considerations and restrictions may enter in if we consider functions of prob-
ability defined other than as an expression of the opinion of a given individual. If, for 
instance, after having considered and interrogated many individuals, we want to study 
‘their common opinion’, P, this will only exist in the domain of those X for which all the 
Pi(X) coincide (in this way defining P(X)), and will not exist elsewhere. We can also 
confine ourselves (there is nothing to prevent us) to evaluations which conform to more 
restrictive criteria to which one would prefer to limit the investigation, excluding in this 
way events for which one would like to say that the probability ‘does not exist’ or ‘is not 
known’, knowing all along that such motivations remain, nonetheless, meaningless 
within the present formulation. I may please a friend of mine by not inviting along with 
him a person whom he judges ‘a jinx’, without myself believing that such things exist, 
nor understanding how others can believe in it.

As far as coherence is concerned, we will again underline here in what sense the 
notion is and must be objective. The conditions of coherence must exclude the pos-
sibility of certain consequences whose unacceptability appears expressible and rec-
ognizable to everyone, independently of any opinions or judgments they may have 
regarding greater or lesser ‘reasonableness’ in the opinions of others. Let this be 
said in order to make clear that such conditions, although normative, are not (as 
some critics seem to think) unjustified impositions of a criterion that their promot-
ers consider ‘reasonable’: they merely assert that ‘you must avoid this if you do not 
want …’ (and there follows the specification of something which is obviously unde-
sirable). We will see this immediately  – note it well!  –  in the two criteria we are 
about to put forward.

3.3.4. Criteria for the evaluations. We now present the details of the two criteria 
 mentioned above; each will consist of the following:

 ● a scheme of decisions to which an individual (it could be You) can subject himself in 
order to reveal – in an operational manner – that value which, by definition, will be 
called his prevision of X, or in particular his probability of E,

 ● and a condition of coherence that enables one to distinguish (so that the distinction 
has an objective meaning) whether an individual’s set of previsions is coherent, and 
therefore acceptable, or, conversely, intrinsically contradictory.

In both cases, the prevision of X will be a value x , which can be chosen at will as an 
‘estimate’ of X; along with such a choice goes the necessity of making precise, according 
to which scheme is used, the otherwise completely indeterminate12 meaning of the 

12 Or, even worse, open to being interpreted as ‘prediction’!
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word ‘estimate’. To anticipate the outcome in words, both criteria start by considering 
the random magnitude given by the difference, or deviation, X − x , between the actual 
value X and that chosen by You. Both lead to the same x  if applied coherently.

The first criterion stipulates that You must accept a bet proportional to X − x , in 
whatever sense chosen by your opponent (i.e. positively proportional either to X − x  or 
to x  − X). This means that there is no advantage to You in deviating, one way or the 
other, from the value that makes the two bets indifferent for You; otherwise, one or 
other would be unfavourable to You, and the opponent could profit from this by an 
appropriate choice.13

The second criterion stipulates that You will suffer a penalty (positively) proportional 
to the square of the deviation (X − x )2, increasing as one deviates in either direction 
from the actual value.

This is evident if one recalls the properties of the barycentre (stable equilibrium, 
minimum of the moment of inertia), which give an analogy and, in fact, a perfect inter-
pretation. Those who already know something about probability or statistics will be 
well acquainted with the fact that these properties characterize P(X). The latter is usu-
ally called ‘(mathematical) expectation’, or ‘mean value’, and is denoted by E(X) or M(X): 
the only novelty lies in making use of it as an operational and direct definition of P(X), 
and in particular of probability. Given the probabilities of all possible values (if they are 
finite in number), it is clear how P(X) can be expressed as a function of them: the exten-
sion of this result to the general case will be immediate when we introduce the notion 
of a ‘probability distribution’ (see Chapter  6). In the latter approach, however, one 
 introduces the simpler notion (that of ‘prevision’) by means of the more complicated 
one (that of ‘distribution’), which itself becomes a prerequisite, and forces us to use 
more advanced mathematical tools (Stieltjes integrals) than necessary. The same thing 
happens in the case of a solid body: the barycentre is easily determined and, it might be 
said, is always useful; the exact distribution of mass can never be determined in prac-
tice, and is of relatively little interest.

Two further remarks. Firstly, let us recall ‘the hypothesis of rigidity with respect to 
risk’, which we continue to assume in what follows (not without noting where appropri-
ate, under the heading of ‘Remarks’, any implications of this hypothesis at those points 
where it merits attention). In order to fulfil more easily the resulting requirement of 
considering only ‘moderate amounts’, and to omit certain delicate points which are bet-
ter reconsidered later on (in Section 3.11, etc.), we restrict ourselves for the time being 
to bounded random magnitudes (i.e. those whose possible values are contained in some 
interval; in other words, −∞ < inf X, sup X < +∞).

Concerning preferences for one or other of the two criteria of definition, it is merely 
a question of individual taste, since – as we have stated, and will later show – the two 
definitions (together with their respective conditions of coherence) are equivalent. The 
first has a meaning that is slightly more immediately intuitive, but, as far as actual 
deductions are concerned, the second is more meaningful and fits better into a decision‐
theoretic framework. A third criterion, which has useful applications, will be derived in 
Chapter 5, but does not lend itself to an autonomous presentation.

13 This is the same criterion as ‘divide the cake into two parts and I will choose the larger’, which ensures 
that the person dividing it does so into parts he judges to be equal.
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3.3.5. The first criterion. Given a random quantity (or random magnitude) X, You are 
obliged to choose a value x , on the understanding that, after making this choice, You are 
committed to accepting any bet whatsoever with gain c(X − x ), where c is arbitrary 
(positive or negative) and at the choice of an opponent.

Definition. P(X), the prevision of X according to your opinion, is by definition the 
value x  that You would choose for this purpose.

Coherence. It is assumed that You do not wish to lay down bets which will with cer-
tainty result in a loss for You.14 A set of your previsions is, therefore, said to be coherent 
if among the combinations of bets which You have committed yourself to accepting 
there are none for which the gains are all uniformly negative.15

Analytic conditions. Expressed mathematically, this means that we must choose the 
values x i = P(Xi) such that there is no linear combination

 Y c X x c X x c X xn n n1 1 1 2 2 2  
with sup Y negative (conversely, inf Y cannot be positive, because then sup (−Y) = −inf 
Y would be negative).

Remark. Observe the objective character of these conditions, revealed by the fact that 
only ‘possible values’ are referred to.

3.3.6. The second criterion. You suffer a penalty L16 proportional to the square of the 
difference (or deviation) between X and a value x , which You are free to choose for this 
purpose as you please:

 
L X x

k

2

 

(where k, arbitrary, is fixed in advance, possibly differing from case to case).17

Definition. P(X), the prevision of X according to your opinion, is the value x  which 
You would choose for this purpose.

Coherence. It is assumed that You do not have a preference for a given penalty if You 
have the option of another one which is certainly smaller. Your set of previsions is there-
fore said to be coherent if there is no other possible choice which would certainly lead to 
a uniform reduction in your penalty.

Analytic conditions. The definition of coherence implies that there exist no values xi* 
which, when substituted for the chosen x i = P(Xi), lead to the penalty

14 Giving rise to what is sometimes called a ‘Dutch Book’.
15 The reason why we cannot simply say ‘all negative’ (i.e. <0), but must add ‘uniformly’ (i.e. < −ε with ε 
positive) will be given later (for the time being we do not worry about the finer points). By ‘combinations’ we 
always mean linear combinations of a finite number of the bets even if there are infinitely many of them).
16 From Loss, the terminology introduced by A. Wald.
17 It is convenient to think of k as being homogeneous with X, so that the expression turns out to be a pure 
number; with the further understanding that we multiply by a monetary unit u, L has the dimension of a 
monetary value. This avoids the complication of writing it, or assuming it as included in k, by conjuring up a 
strange factor of dimension u1/2.
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for any possible points (Xi, X2, …, Xn); that is belonging to the set 𝒬.

Remark. As for the first criterion.

3.3.7. The equivalence of the two criteria. The identity of the previsions given by the 
two criteria can be verified immediately.

Let x  be the prevision of X based on the first criterion, and x  that based on the 
second; this implies, respectively, that:

i) in the first case, the random gain X is judged equivalent to the certain gain x  (hence: 
preferable to each x < x , but not to any x > x );

ii) in the second case, the gain −(X − x )2  –  negative, since a penalty !  –  is judged 
preferable to any other −(X − x)2 with x ≠ x ; in other words, the gain

 
G X x X x2 2

 

is preferred to 0 (for all x ≠ x ).

More generally, let us compare preferences between the penalties corresponding to 
any two values of x, say x = a and x = b, and let us denote by c =1

2 ( )a b  the mid‐point of 
the interval [a, b].

The choice of a is preferred to that of b, if the gain G = (X − b)2 − (X − a)2 if preferred 
to 0; in other words, expanding, if

 

G X bX b X aX a a b X a b
a b X c

2 2 2 2 2 22 2 2
2  

is preferred to 0. Preferring G to 0 means that P(G) > 0; on the basis of the first criterion 
it turns out that P(G) = 2(a − b)( x  − c), an expression which is positive if a > b and x  > c, 
or, conversely, if a < b and x  < c. In other words, in either case, if x  lies in the subinter-
val between c and a; that is if x  is closer to a than it is to b.

Our assertion is an obvious corollary of this result (which it seemed useful to put 
forward in this more general form): the optimal choice, x = x , is given by x x .

The equivalence of the conditions of coherence can also be verified by expansions 
of this sort (and we shall do so, writing them out in full, for those who would like to 
check them and apply them directly). Conceptually, however, we can make everything 
incomparably easier, and intuitively meaningful, by presenting an obvious geometrical 
interpretation.
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3.4 A Geometric Interpretation: The Set 𝓟 of Coherent 
Previsions

3.4.1. Any prevision in the linear ambit A of the n random quantities X1, X2,…, Xn con-
sists in fixing, in the n‐dimensional space with coordinates x1, x2,…, xn (the linear ambit 
A ), the n values x x xn1 2, , , , where x Xi iP( ), and hence corresponds to a point in the 
said space. The conditions of coherence state – as we shall immediately verify –  that 
the set P  of coherent previsions is the closed convex hull of the set Q of possible points.

For the first criterion: in a form that is more directly suited to the purpose in hand, the 
necessary and sufficient condition for coherence can be expressed by saying that every 
linear relation (or inequality) between the random quantities Xi

 
c X c X c X c cn n1 1 2 2 or 

 

must be satisfied by the corresponding previsions P(Xi):

 
c X c X c X c cn n1 1 2 2P P P or  .

 

Geometrically, a point P represents a coherent prevision if and only if there exists no 
hyperplane separating it from the set Q of possible points; this characterizes the points of 
the convex hull.

For the second criterion: here one introduces into the (affine!) linear ambit A a metric 
of the form 2 2x ki ii / , setting

 

2‘penalty’
‘the square of the distance between the prevision
-point and the outcome-point , according to the given metric’.

L P Q

P Q  

The necessary and sufficient condition for coherence requires, in geometrical terms, 
that P cannot be moved in such a way as to reduce the distance from all points Q; this is 
another characterization of the convex hull.18 Further explanations, and diagrams in the 
simple cases, are given in Chapter 5, Section 5.4.

3.4.2. Other interpretations. Every prevision‐point P, which is admissible in terms 
of  coherence, is a barycentre of possible points Qj with suitable weights (or is a 

18 If we move the point P to another position P*, its distance from a generic point A increases or decreases 
depending on whether A is on the same side as P or P*, with respect to the hyperplane that bisects the 
segment PP* orthogonally.

If P is not in the convex hull of Q there exists a hyperplane separating it from Q . Moving P to P*, its 
orthogonal projection onto such a hyperplane, diminishes its distance from all points Q in 𝒬 (which are on 
the opposite side). More precisely, the diminution of the penalty, L − L*, i.e. the square of the distance, is 
always at least (P – P*)2: in fact, (Q – P)2 – (Q – P*)2 = [(Q – P*) – (P – P*)]2 – (Q – P*)2 = (P – P*)2 – 2(Q – P*) × 
(P – P*), and this scalar product is negative, since the component of the first vector parallel to the second is 
in the opposite direction.

Suppose instead that P belongs to the convex hull of Q . Then to whatever point P* we move P, it always 
follows that for some point Q the distance increases: if, with respect to the bisecting hyperplane, they were 
all on the same side as P*, the point P would be separated from the convex hull of Q, contrary to the 
hypothesis.
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limit‐case19). On the other hand, the possible points are themselves particular cases of 
previsions; degenerate cases, in that the probability is concentrated at a unique point Qj. 
In words, one could say, according to this interpretation, that a prevision turns out to be 
a mixture of possibilities.

Of course, one can also form linear combinations of different coherent previsions 
(with non‐negative weights, summing to 1) again obtaining coherent previsions. More 
generally, if P  0 is any set of coherent previsions, then its closed convex hull is also a set 
of coherent previsions, the mixtures of those in P  0. Let us denote it by P  1.

3.5 Extensions of Notation

It is convenient, in addition to being natural (and also useful for compactness of notation), 
to exploit the linear structure of P in order to extend the range of applicability of this 
symbol to any random elements whatsoever belonging to a linear space (vectors, matri-
ces, n‐tuples of numbers or magnitudes, functions, etc.), or even just to a linear manifold 
(a linear subspace which also contains the zero: for example, the points of a space in which 
the differences between points u = A − B, constitute a linear space of vectors).

As a formal definition, it is sufficient to state that P is always intended to be linear, so 
that if f is any linear function – that is f (A) is a scalar linear function of the points or 
elements A of our linear space or manifold – we have f(P(A)) = P(f(A)). For practical 
purposes, it is enough to note that P operates on the components or coordinates, so 
that, if

 A X Y Z or A X Y Z0 i j k , , , , , in conventional notation   
we could write

 P P i P j P k i j kA X Y Z x y z  
(in other words, P(X, Y, Z) = (P(X), P(Y), P(Z))).

A case of particular importance is the following: if Z is a complex random quantity, 
and we denote by X and Y, respectively, the real and imaginary components, its prevision 
will be

 P P P PZ X Y X Y x yi i i .  
As a practical rule, it is sufficient to replace the random component X by the 
corresponding prevision x ; for example:

 P PX X X x x x X xn n rs rs1 2 1 2, , , etc, , , , . 

19 To be precise: either they can be obtained as barycentres of most n + 1 points Qj (in the n-dimensional 
space), or they are adherent points of Q (but not belonging to Q  ). For instance, we could think of Q as the 
set of points on the circumference of a circle, having rational angular distance from one of its points (with 
respect to the complete angle). We are in the plane, n = 2, and each point inside the circle is inside triangles 
with vertices in Q  : hence it is the barycentre of 3 = n + 1 points (two would suffice if it were on chords 
connecting rational points, and only one if it coincided with such a point). The points, which are on the 
circumference, but not rational, are required in order to complete the closed convex hull: they are adherent 
points of Q (i.e. there are points of Q in each of their neighbourhoods).
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In the case of a random function X(t) (where t is the independent variable; for example, 
time) it would appear to be an unnecessary subtlety (but it is not) to say that one could 
write f = P(X) to mean that f is the function which for each t gives f(t) = P(X(t)). It would 
be a little more explicit to write ƒ(·) = P(X(·)) in order to indicate that it is a question of 
operating on a variable whose position is denoted by the point. Here, however (at least 
if one does not want to be limited to considering not more than a finite number of th at 
once), one would step outside of the ambit in which, for the time being, we have 
expressed our intention of remaining.

3.6 Remarks and Examples

3.6.1. The properties that we have established in Section 3.4 could be said to contain the 
whole calculus of probability, even though we have not as yet mentioned probability, 
except to point out that it is a special case of prevision. Sections 3.8 and 3.9 will be 
devoted to this special case, giving it the attention it merits. However, from our point of 
view it turns out to be better formulated and much clearer if embedded in the general 
case, where the basic properties present themselves as simple, clear and ‘practical’. It is 
precisely for this reason (and certainly not because of any dubious motive of wishing to 
start, come what may, by showing off, with no justification, the greatest generality and 
abstraction) that we did not begin the discussion with the case of events, and have still 
not stopped to consider it. Otherwise, we would have found ourselves, at this moment, 
having defined P(E) and not P(X), in more difficulty than if we had defined a unique 
concept, and with the unavoidable problem of producing P(X) as something not equally 
immediate, but as the combination of the P(E) and who knows what mathematical defi-
nition of integral.

3.6.2. Some remarks concerning the two criteria. Every operational definition, if one 
wants to take it too seriously as an actual method of measurement, carries with it the 
difficulty that the discussions of principle become mixed up with the doubts deriving 
from the practical imperfections inherent in any tool or procedure (these, however, 
often arise for reasons which may be important). Let us accept that this difficulty is 
unavoidable but that it is by no means a tragedy, since the definition deals with an ideal-
ized case, or limit‐case, of conceptually possible experiments. Having said this, and 
having repeated that it is always infinitely better than any attempt at a mere verbal 
 definition, emptily ‘philosophical’, there remains, nonetheless, the necessity of making 
oneself aware of the weak points in order to keep in mind the appropriate precautions.

We have already discussed, in Section 3.2, ‘rigidity in the face of risk’; in other words, 
the temporary identification of utility and monetary value. At this juncture, a brief men-
tion, with specific reference to the two criteria that we have put forward, will suffice. 
They both assume, implicitly, the hypothesis of rigidity. In the first place, they take the 
different bets, which are used as ‘tests’, to be summable; to be rigorous, the stipulation 
of any one of them should modify slightly the conditions for the stipulations of the oth-
ers; secondly, by virtue of having a homogeneous character, in the sense that the proce-
dure itself presupposes that P(aX) = aP(X) (this adds no further restrictions, it is the 
same rigidity). This is useful if one attempts to limit the bets to be of moderate size; it is 
dangerous to allow it to be used indiscriminately. In the first criterion one has to think 
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that in practice the opponent cannot impose excessively large bets (although the explicit 
inclusion of this kind of regulation in the definition would lead to a hybrid and tediously 
wordy exposition).

3.6.3. A defect of the first criterion is, in any case, the intervention of an ‘opponent’: 
this can make it difficult to avoid the risk, or at least the suspicion, of other factors 
intruding (such as the possibility of taking advantage of differences in information, 
competence, or shrewdness). By and large, such possibilities are in ‘his’ favour (he being 
the one who decides how much to bet, and in which direction; especially if he is the 
same person who has chosen the events for which the evaluation of probability is 
required). Sometimes, however, they can be in your favour (for instance, if, imagining 
the opponent to have a very distorted opinion, You enunciate an evaluation which 
induces him to stipulate a bet in a way that You judge favourable20).

3.6.4. Under the second criterion these negative features are not present (apart from 
that inherent in thinking of the various bets as summable). However, given that by choice 
of the coefficients ki one can arrange the sizes of the penalties in whatever way one con-
siders most appropriate, even this consequence of ‘rigidity’ becomes practically negligi-
ble. Observe, on the other hand, that the (arbitrary) choice of such coefficients – that is 
of the metric – has no influence at all on the implications of the criterion, since these are 
always based on merely affine notions: the notion of barycentre, and therefore its prop-
erty of yielding a minimum for the moment, remains invariant under whatever metric 
one introduces for other purposes, and which occurs in the definition of the moment.

Another doubt arises: one might ask whether there is any good reason for considering 
the minimization of a penalty L, rather than the maximization of a prize K − L. Formally, 
there is no difference, but if one wants to fix K greater than any possible value of L (in 
order that the ‘prize’ always turns out to be positive) one is faced with an annoying limi-
tation (which is impossible anyway if X is not bounded). There is, moreover, an histori-
cal reason: when introducing a similar theory in statistical applications, Wald found it 
natural to posit a Loss in the case of ‘wrong decisions’ (zero for correct decisions). 
Finally, one might exercise more care in attempting to prudently minimize a loss (which, 
in any case, involves uneasiness and disappointment), than in assuring oneself, in a rea-
sonable manner, of the highest level of gain (in this context, the temptation to take a 
chance is often irresistible; naturally enough, since one cannot lose whatever happens).

3.6.5. One further remark, which is so deeply rooted in what we have said over and 
over again about the subjective meaning of probability that it is perhaps unnecessary. 
The two criteria are operational in the sense that they provide a means by which the 
opinions that an individual carries within himself, whatever they may be, turn out to be 
observable from the outside. There is no connection with questions like ‘what is the true 
value of the probability?’ – a question whose meaning finds no place within the present 

20 On the eve of a certain football match, You attribute a probability of 40% to the victory of team A, but 
You think that your opponent, being a supporter of team A, evaluates it at 70%. You can then enunciate a 
probability of 65%, confident that he will hasten to pay 65 for that which to You is worth 40, but to him 70. 
But be careful! If he evaluates the probability at 50% instead, and decides to bet in the opposite way, he will 
pay You 35 for that which is worth 60 to You, and 50 to him – not 30 as You thought.
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formulation, and whose meaning I was unable to discover in the attempts made by other 
theories to provide one – and not even with questions like ‘how well founded, or how 
reasonable, are certain evaluations and their associated motivations?’.

This last question can, in a certain sense, be dealt with by reflecting on various 
 problems that will present themselves from time to time as we proceed to study prob-
ability, and to examine various attitudes to both concrete applications and conceptual 
questions. However, it is mainly a question of arguments (of a rather psychological 
nature) concerning the choice of a single prevision, P, from among the infinite set of 
coherent previsions, P (which are equally acceptable from the mathematical point of 
view). The question does not concern mathematics, except in that it may give a still 
more enriched description of the various aspects of each choice, so that such a choice, 
always made absolutely freely, can be made by each individual after an accurate and 
straightforward examination of everything that in his personal judgment appears rele-
vant for his decision.

3.7 Prevision in the Case of Linear and Nonlinear 
Dependence

3.7.1. Let us return to the two examples already introduced (Chapter 2, Section 10) 
under the guise of the logic of certainty. They lend themselves not only to illustrat-
ing in practice the application of the two criteria and the consequences of the 
properties we have established, but above all to developing necessary and instruc-
tive insights of a general character. First of all, one notes the essential connection 
between linearity and prevision (and the way in which this makes inapplicable to 
prevision certain arguments which would be valid for prediction). In this connection, 
it will become clearer how and why it is appropriate to extend the linear ambit A 
in relation to the questions to be examined (see the brief explanations given in 
Chapter 2, Section 2.8).

In the case of a ballot with n voters, we denoted by X, Y, Z, the number of votes cast 
in favour, against or abstaining, and considered in addition the difference and the ratio 
of votes for and against, which we denote by U = X − Y, V = X/Y.

If invited to make a prevision of the outcomes – on the basis of the first or second of 
the criteria put forward  –  you provide values x y z u v, , , , . These are based on your 
knowledge, information, impressions or conjectures, about the inclinations or 
moods of the voters. If your values constituted a prediction, or if You intended to put 
them  forward as sure, they would have to be chosen as integers, satisfying 
x y z n u x y v x y, ,  / . In a prevision they might not even be integers: would 
the three relations hold? Is it valid to argue that they necessarily hold because they must 
hold for the true values? In fact, it might seem completely obvious that if the votes for 
and against are x and у (in reality, or in a prediction, or an estimation, or any prevision 
whatever) then their difference is x − y, and their ratio is x/y, whereas the number 
abstaining is n − x − y. For the two linear relations, given the linearity of P, this is cer-
tainly true, and, considering the ambit A of (x, у, u) – respectively, of (x, y, z) – is easily 
interpreted as follows: Q  is the set of points with non‐negative integer coordinates x and 
y with sum ⩽ n in the plane и = x − у – respectively, in the plane z = n − x − у – and a 
barycentre of such points (with arbitrary weights) can only be some point in the given 
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plane, in the triangle defined by x ⩾ 0, у ⩾ 0, x + у ⩽ n. If, however, we consider the A 
of (x, y, v), the points Q  are those having the same x, y, but now on the surface (hyper-
bolic paraboloid) v = x/y, and the conclusion is no longer valid.21

In the case of a random prism with sides X, Y, Z, we denoted the diagonal by U, the 
area by V, and the volume by W. Since these are not linear functions of the sides, one 
would not expect that, having evaluated the previsions of the three sides as x y z, , , 
those of the other elements, say u v w, , , would satisfy the same relations as those hold-
ing between the true magnitudes. In other words, in the (six‐dimensional) linear ambit 
A of (x, y, z, u, v, w), in which Q  is the three‐dimensional manifold with equations u2 = 
x2 + y2 z2, v = 2(xy + yz + zx), w = xyz (with x, y, z, и positive), one would not necessarily 
expect a barycentre of points of Q to lie in this manifold. It could be any point P 
 whatsoever of P , the convex hull of the given Q  : once we have evaluated x y z, , , the 
previsions u v w, ,  can only turn out to be some point of the intersection of P 
with x x y y z z, , .

If one were interested in a complete solution to the problem, it would be necessary to 
determine P , or this intersection with it. More generally, one should consider the same 
problem with certain restrictions on Q  : for instance, we might we aware of restrictions 
like a′ ⩽ X ⩽ a″, b′ ⩽ Y ⩽ b″, c′ ⩽ Z ⩽ c″, or d′ ⩽ X + Y + Z ⩽ d″, X ⩽ Y ⩽ 2X, Y ⩽ Z ⩽ 2Y, 
or that only integer values are admissible for X, Y, Z, or that there are only a finite num-
ber of values (xi, yi, zi), and so on. For the purpose of illustration, a simpler version will 
do: let us suppose that Z is known, Z = a say, and let us consider the restrictions that, 
given x  and y , result for u , v  and w, separately, instead of jointly. In this way, everything 
is represented each time in a three‐dimensional ambit A, which is directly ‘visible’.

In the ambit of (X, Y, U) the possible points Q  lie on the circular hyperboloid u2 = a2 + 
x2 + y2; in fact, if there are no further restrictions, they are all the points on the ‘quarter’ 
x ⩾ 0, y ⩾ 0 of the sheet u ⩾ 0; otherwise, they are a subset of these. The barycentre of 
masses placed on this surface necessarily falls in the convex region that it encompasses 
(except in the trivial case where the mass is concentrated at a single point, a case where 
nothing is really random). In a coherent prevision, the diagonal must therefore neces-
sarily be estimated longer than it would be if the lengths of the sides coincided exactly 
with their respective previsions. In the absence of other constraints, given x  and y , all 
the values lying between that minimum and a x y  are in fact admissible for ū: one 
approaches a x y  asymptotically by placing two small masses, x k/  and y k/ , at the 
points (k, 0) and (0, k), with the rest at the origin, and then letting k become arbitrar-
ily large.

In the ambit of (X, Y, W) the possible points Q  lie instead on the hyperbolic paraboloid 
w = axy (on the ‘quarter’ x ⩾ 0, у ⩾ 0). In the absence of other restrictions, the convex hull 
P   is the entire positive orthant, since the barycentre can lie anywhere in this region. In 
other words, given x  and y , w  can either coincide with w ax y , or can be less (but 
bounded below by zero), or can be greater (with no constraint). The two limit‐cases can 
be approached by simply placing all the mass at the origin, with the exception, in the first 
case, of two masses x k/  and y k/  at the points (k, 0) and (0, k), respectively, and, in the 
second case, a single mass 1/k at the point ( , )kx ky . The case w ax y  occurs, 

21 In this example, provided we do not evaluate the probability that Y = 0 as zero, we actually have v = P(V ) = +∞. 
This is of more use in showing how one can encounter, in a natural way, cases where the hypothesis of 
boundedness does not hold, than in illustrating the proposition, which will be clearer after the following example.
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for example, under a very important assumption – that of stochastic independence – 
which we are not yet in a position to discuss. The case of V reduces immediately (having 
set Z = a) to that of W; in fact, 2(XY + aX + aY) = 2W/a + 2a(X + Y).

The different behaviour in the two cases we looked at is due to that fact that the points 
of the first surface were all elliptic, always presenting the concavity in the same direc-
tion (delimiting in this way its convex hull), whereas for the second surface, whose 
points were all hyperbolic, the convex hull of each of its parts is necessarily formed of 
two parts, adhering to the two faces.

3.7.2. Functional dependence and linear dependence. In this context, the representa-
tion we have already introduced (Chapter 2, Section 2.8) by means of the dual spaces, 
A and L, is appropriate, and provides some insight. A(X ) denotes the value which X = 
f(X1, X2,…, Xn) would assume if the Xh (belonging to L) assumed the values xh (the 
coordinates of the point A of A): in other words, A(X) = f(x1, x2,…, xn). This is only 
meaningful if A is one of the possible points Q of 𝒬: that is the values xh of the Xh are 
not incompatible. However, we now know that the other points in A  –  that is the 
points P of P the convex hull of Q – can be interpreted as previsions,22 and one might 
ask whether P(X) (understood as above, with P = A) is actually the prevision of X. It is 
clear that this only holds if X belongs to L; in other words, if it is a linear function 
in the ambit A, or, alternatively, if X is given not just by any function f of the Xh, 
but  in fact by a linear function X u X h nh h ( , , , )0 1 . The extension is only 
valid in this case, and that is why we always confine ourselves to using the notation 
A(X). The above considerations give us another way of exhibiting the importance and 
the  compass of the linearity. A point P (an admissible prevision) can be either a Q 
(that is a possible point) in the linear ambit A, or a barycentre of possible points. The 
knowledge of the barycentre is sufficient, however, to determine only those things 
which remain invariant under any choice of the points Q and distribution of mass 
over them so long as one keeps the barycentre fixed.

In other words; one has always to recall that a P, defined on any set of random quanti-
ties X whatsoever (or, in particular, on any set of events E  ), is uniquely extendible – and 
therefore defined – only on the linear space L of the (finite) linear combinations of X, or, 
dually, in the corresponding linear ambit A. If L (or A) is enlarged, one can determine 
P more precisely by more or less arbitrary extensions. So long as we remain in a given 
ambit A, each point P represents, in a manner of speaking, all the P* in some larger 
ambit which have P as their projection onto A. This also holds in the infinite‐dimen-
sional case, but we postpone any explicit discussion until the Appendix. In order to clear 
up the simplest cases – one‐ or two‐dimensions – it is sufficient to recall the examples 
already given in Section 3.7.1 and to examine these further aspects in that context.

3.7.3. Conclusion. We conclude, therefore, that whereas it is well known that coherent 
previsions preserve linear dependence, this only happens, in fact, in this case. In any 
other case it does not (unless by chance, or under suitable additional hypotheses) 
because the barycentre of masses lying in a given manifold need not itself belong to the 

22 Moreover, it is possible to see that it can even be meaningful to consider an A(X) where A does not 
belong to Q, and not even to P. For example, one might be interested in the difference between two 𝒫, A(X) 
= P1(X) − P2(X), and A = P1 − P2 certainly does not belong to P since we have A(1) = 0 instead of A(1) = 1.
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manifold (except in the trivial case of linearity). In fact, it is sometimes impossible for it 
to do so (if Q  is the boundary of a convex region).23

It is important to always bear in mind details of this kind and to reflect upon them. 
This is not only, and not mainly, because of their intrinsic importance – however nota-
ble this may be – but above all because one has to learn to free oneself from the ever 
present danger of confusing prevision and prediction. In a prediction any dependence 
should obviously be preserved (because it reduces to the choice of a point in A, and not 
the barycentre of masses distributed over Q  ). The type of argument which, in the exam-
ples given, turned out to be wrong if applied to prevision, would, on the other hand, be 
valid for a prediction. Despite knowing, and remembering, that the arguments do not 
hold for prevision, anyone (even You, even I) can inadvertently fall into error, applying 
them without sufficient thought in some particular problem, or in some small corner of 
the formulation of some particular problem.

There will be many and frequent occasions to warn against errors, misunderstand-
ings, distortions, obscurities, contradictions and the other endless troubles that are so 
difficult to avoid when dealing with probability, and which are always essentially the 
result of ignoring the same warning: prevision is not prediction! It would not be a bad 
idea to imagine constantly in front of you an admonitory card – as is used by a certain 
well‐known organization – bearing the message, ‘Think!’, but with an explanatory rider 
suited to the needs of probability theory and its applications:

 !'‘ :Think prevision is not prediction  

There is an anecdote, concerning another such maxim, which may perhaps serve to 
make this recommendation more forceful. It reveals the fallacy of resorting to the self‐
deception of ‘accepting for certain’ the alternative on the basis of which one ‘decides to 
act’; a vain attempt to replace a meaningful probability argument by an impossible 
translation of it into the inadequate logic of certainty. The anecdote is related by Grayson 
(on p. 52 of a book concerning which we shall have more to say: Chapter 5, 5.5.3) in the 
following way:

 Holes that are going to be dry shouldn t be drilled’  

‘is printed on a sign hanging in one operator’s office. This would truly be a “golden rule” 
if any oil or gas firm could live by it. Unfortunately, no one can – not even this particular 
operator who drilled 30 consecutive dry holes a few years ago.’

3.8 Probabilities of Events

3.8.1. The properties of probabilities of events are simply special cases of the properties 
of previsions of random quantities. It will be sufficient to establish them quickly, and to 
illustrate their meaning within the form of representation that we have introduced.

23 If we wished to be precise, we should exclude the points on the boundary where one does not have strict 
convexity: in other words, those which are barycentres of other points; or, alternatively, those through which 
there is no hyperplane which leaves all the other points of Q on the same side.



Theory of Probability: A Critical Introductory Treatment84

The theorem of ‘total probability’. This is the name given to the theorem that trans-
lates, into the field of probability, the additive property of prevision.

The case of incompatibility. If two events A and B are incompatible then, as we have 
already noted, their logical and arithmetic sums coincide: E = A ∨ B = A + B, so that, if 
P P(E) = P(A) + P(B). The same result holds for the (logical and arithmetic) sum of 
any finite number of incompatible events: E = E1 ∨ E2 ∨ … ∨ En = E1 + E2 + … + En, 
and hence

 P P P PE E E En1 2 .  

We can state this formally:

Theorem. In the case of incompatible events, the probability of the event‐sum must be 
equal to the sum of the probabilities.

The case of (finite) partitions. In particular, for a partition in which, in addition, the 
sum E = 1, and hence P(E) = 1, one has the following:

Theorem. In a (finite) partition the probabilities must sum to 1.
In particular, for two complementary events E and E ⁓ (a partition with n = 2), it turns 

out that P(E) + P(E ⁓) = 1; that is to say, P(E ⁓) = 1 – P(E) = ~P(E); or, in yet another form, 
if P(E) = p, then P(E ⁓) = p.

In words:

Theorem. The probabilities of two complementary events must themselves be 
complementary.

Recalling the properties of the constituents, one can state immediately the following:

Corollary. In order that the probabilities of all the events E which are linearly depend-
ent on E1, …, En should be determined, it is necessary and sufficient to attribute probabilities 
to all the constituents C1 … Cs. These probabilities must sum to 1; the P(E) depend linearly 
upon them.

3.8.2. Sufficiency of the conditions. The preceding statements tell us how ‘we must’ – 
or ‘You must’ – evaluate probabilities; in other words, they impose necessary condi-
tions for coherence. In fact  –  with the obvious restriction that the probabilities be 
non‐negative – they are also sufficient, in the sense that an evaluation satisfying them 
is coherent, no matter how You choose it. We have already seen this in general in 
Section 3.4; it may be useful to repeat the argument in this particular case where it is 
very simple and clear.

Suppose that to the events E1 … En of a finite partition You have attributed non‐negative 
probabilities p1 … pn, summing to 1, and that I (thinking in terms of ‘The first criterion’ 
of Section 3.3) try to force You into a bet which assures me of certain gain. I have to fix 
the amounts ci for the bets on the individual Ei in such a way that the resulting bet

 X c E p c E p c E pn n n1 1 1 2 2 2  

is certainly positive; in other words,

 c E c E c E c p c p c pn n n n1 1 2 2 1 1 2 2  
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no matter which of the Ei occurs. If Ei occurs, however, the left‐hand side has the value 
ci, and it is impossible for this to be always greater than the right‐hand side, since the 
latter is itself a weighted average of the ci.

3.8.3. The case of compatibility; inequality. For any arbitrary set of events, that is 
 without making the assumption of incompatibility, we have

 E E E E E E E E E En n n1 2 1 2 1 21   

and hence

 P P P PE E E En 1 2 .  (3.6)

Stated formally:

Theorem. The probability of the event‐sum must be less than or equal to the sum of the 
probabilities.

This is even more evident if one puts it in the form

 P PE E E En 1 2 ;  

that is that the probability of the event‐sum must be less than or equal to the prevision 
of the number of successes (one only has to consider that the latter takes into account 
multiplicities, whereas the former does not).

Expressions in terms of products. In the case of compatible events nothing can be said 
about P(E) other than the preceding inequality based just on the P(Ei). If we introduce 
other elements, and evaluate them, then, of course, things change. In terms of constitu-
ents, the only one we require is

 C E C E CE E En   1 2 1because , .P P  

Making use of the products of the Ei (two at a time, three at a time, etc.), and the 
expansion

 
E E E E E E E E E E

i
i

ij
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ijh
i j h n1 2 ,  (3.7)

we have at once the following:
Theorem. For the probability of the event‐sum we must always have
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Observe that the expression is linear in the probabilities of the products. Note also the 
special cases of two and three events:
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P P P P P P

A B A B AB
A B C A B C AB BC

,
P PAC ABC . 
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3.8.4. Extensions. The same formula serves to express the probability that out of n 
events a given h occur, and no others; and hence the probability that exactly h occur (no 
matter which ones). The occurrence of E1E2 … Eh, and no others, can be written as:

 

E E E E E E
E E E E E E E E

h h h n

h
i

h h i
ij

1 2 1 2

1 2 1 2 1

1 1 1
EE E E E E E Eh h i h j n2 1 2

 (3.9)

(where, as can be seen, the sum with k indices is the sum of the products of h + k 
events; the given h together with k of the others). The event Y = h, the number of 
successes = h, is the sum of h

n  events of the above kind; in other words, the sum of all 
the corresponding expressions. In this sum, the products h at a time appear only once, 
those h + 1 at a time appear h + 1 times (once for each combination h at a time of their 
h + 1 factors), and so on; in general, the products h + k at a time each appear h

h k  
times. For this reason, denoting the sum of the products r at a time by ( )r  for con-
venience, we have
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 (3.10)

If in place of the ( )r  we substitute the sum of the probabilities of the products, 
P( )E E E pi i i i i ir r1 2 1 2 , which we denote by Sr for short, the same formula gives the 
probability
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Note in particular:
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(where ± stands for (−1)n, and ∓ for −(−1)n).

Example. A classical and instructive problem is that of matching, which lends itself to 
amusing formulations. If one has n letters and their respective envelopes, what is the 
probability that if the letters are inserted into the envelopes at random one has none, or one, 
or two, …, or n ‘matchings’; that is letters in their own envelopes? The same problem 
arises if one pairs up at random right and left shoes from n pairs, or the husbands and 
wives of n couples, or the jackets and trousers of n suits, and so on. Alternatively, if one 
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gives back at random to n people their passports, the keys of their hotel rooms, hats left 
in the cloakroom, and so on. More standard versions are given by the matchings in 
position among playing cards from two identical decks (for instance by placing them at 
random in two rows), or between the number of the drawing from an urn of numbered 
balls and the number of the ball drawn.

The probability of a matching at any given position is obviously 1/n, of two matchings 
at two given positions is 1/[n(n − 1)], and, in general, of r matchings at r given posi-
tions is

 

1
1 1n n n r

n r
n

!
!

 

(in fact: only one out of the n objects, or only one out of the n(n – 1) pairs, …, or only 
one out of the n!/(n – r)! arrangements r at a time, is favourable)

The Sr are therefore the sum of r
n  terms all equal to (n – r)!/n!, so that Sr = 1/r! 

(independent of n), from which, denoting the number of matchings by Y, we obtain
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(in particular: P(Y = n − 1) = 0, P(Y = n) = 1/n!). Expressed numerically, e−1 = 0·367879.
In the limit, as n increases, the distribution tends to that in which

 
P Y h he 1 / !

 

(as we shall see later, Chapter 6, 6.11.2, this is the Poisson distribution with prevision P(Y) = 1).
Observe that for the matching problem one could establish immediately by a direct 

argument that P(Y) = 1 (i.e. that, in prevision, there is only one matching, whatever n is). 
We have only to note that it is given by P(Y) = n.(1/n), since the prevision (probability) 
of a matching at any one of the n places is 1/n.

Observe also that the relation P(Y = n − 1) = 0 is obvious: in fact, n − 1 is not a possible 
value for Y because if we have matchings in n − 1 positions the last one cannot fail to 
give a matching (it is as well to point out this fact since it is easily overlooked!).

3.8.5. Entropy. Given a partition into events with probabilities p1, p2,…, pn, we define 
the entropy to be the number

 h
h h h hp p p plog log log / log ,2 2 2

 

24 Rn is the remainder of the series 1/ !k  from the term 1 1/ ( )!n  onwards: it is approximately equal to 
this first omitted term (which exceeds it in absolute value). With respect to e–1 it is practically negligible, 
except when n (respectively n – h) is very small (even for n = 10 or n – h = 10, the correction does not affect 
the decimal expression given for e–1).
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which represents the prevision of the number of YES–NO questions required to iden-
tify the true event.

This is immediate in the case of n = 2m equally probable events: m YES–NO questions 
are necessary and sufficient to know with certainty to which half, quarter, eighth,…, of 
the partition the true event belongs, and finally to know precisely which one it is. If we 
have nine events with probabilities 1

12
1
8

1
8

1
8

1
32

1
32

1
32

1
64

1
64, , , , , , , , , one question suffices if the 

first one is true; if not (with probability 1
2
) another two questions are sufficient to decide 

which one of the next three is true, or whether the true event is one of the remaining 
five; finally (with probability 1

8 ), another two questions are necessary, plus (with proba-
bility 1

32) a further one to decide between the last two events. The entropy in this exam-
ple is therefore given by

 1 2 2 2 2 281
2

1
8

1
32

9
32 .  

If it is not possible to proceed by successive halvings, some fraction is wasted (unless 
some device is available: for the time being, however, this brief introduction will suffice).

The unit of entropy is called a bit (contraction of ‘binary digit’): in the example above, 
the entropy was 2·28 bits; in the case of 1024 = 210 equally probable cases it is 10 bits. 
For a given n, the entropy is maximized by an equipartition (ph = 1/n): the reader might 
like to verify this as an exercise.

An item of information that leads to the exclusion of certain of the possible outcomes 
causes a decrease in entropy: this decrease is called the amount of information, and, like 
the entropy, is measured in bits (it is, in fact, the same thing with the opposite sign: 
some even call it negative entropy). We note that, for the time being, we are not in a 
position to provide a complete explanation of our assertion that an increase in informa-
tion causes a decrease in entropy.

3.8.6. Probability as measure or as mass. In the set‐theoretic interpretation of the 
events, it appears natural to think of probability  –  a non‐negative, additive function 
taking the value 1 on the whole space – either as a measure, or as a mass.

The most widely used approach at the present time is the systematic identification of 
events as sets, and probability as measure (with all the advantages  –  as well as the 
risks! – that derive from a mechanical transposition of all the concepts, procedures and 
results of measure theory into the calculus of probability). To those reservations that we 
have already repeatedly expressed in connection with the systematic adoption of the 
set‐theoretic interpretation of events, others must be added (in our opinion) concern-
ing the further inflexibility introduced by the identification of probability with measure. 
This can, in fact, lead one to think that the representation in a space furnished with a 
measure binds events and random entities inseparably to a well‐determined evaluation 
of probability. In the most elementary case, where we use Venn diagrams, the figures 
should be drawn in such a way that the area of each section be equal to its probability 
(taking the basic rectangle to have unit area). This, on the other hand, is in accordance 
with those points of view in which to each event (set) there corresponds an objectively 
(or, in any case, uniquely) determined probability.

If, instead, one wishes to distinguish between, on the one hand, the representation of 
the logical situation and, on the other hand, the introduction of whatever coherent 
evaluation of probability one wants to make, it turns out to be preferable to think of 
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probability as mass. The mass can, in fact, be distributed at will, without altering the 
geometric support and the ‘measure’, which might in that context appear more natu-
ral.25 In the Venn diagram, without changing the figure in any way, there is no difficulty 
in imagining the possible ways of distributing a unit mass among the various parts (it 
does not matter if we put large masses on small pieces) and in imagining those ways that 
various individuals, real or hypothetical, would have chosen as their own opinion, or 
those we think they might choose.

Another advantage is the following: if one gives to the space of the representation the 
structure of the linear ambit, A, then the well‐known implications of the mechanical 
meaning of mass make clear all those probabilistic properties that can be translated in 
terms of knowledge of the barycentre of a distribution (as we have already had occasion 
to see), or of moments of inertia, and so on.26

We shall see shortly some particularly significant applications of this concept in the 
linear ambit determined by n events (in the sense explained in Chapter 2, 2.8, where the 
‘possible points’ are finite in number, since they correspond to the constituents). 
Meanwhile, before concluding these comments on the set‐theoretic interpretation, it is 
perhaps instructive to point out the simple, but not obvious, meaning that the expres-
sion of the probability of the event‐sum acquires under this interpretation. We will 
consider the case of three events, where

 E A B C A B C AB AC BC ABC .  

In the Venn diagram, Chapter 2, Figure 2.1b, the area of the union of the pieces A, B, C 
(or, alternatively, the mass contained in them) is calculated in the following way: firstly, 
we sum the areas of A, B and C; in this way, however, those of AB ABC BCC A , ,  (doubly 
shaded) are counted twice, and that of ABC (triply shaded) is counted three times; sub-
tracting those of AB, AC and BC, we re‐establish the correct contribution for those 
originally counted twice; however, ABC is now counted three times less (since it belongs 
to AB and AC and BC) and therefore turns out to be ignored altogether; if we add it in, 
everything turns out as it should be.

3.9 Linear Dependence in General

3.9.1. The straightforward theorems concerning ‘total probability’, which we established 
at the beginning of the previous section, certainly require no further explanations. It is, 
however, convenient to introduce the use of the representation with the spaces A and 
L  by means of the simple cases, before proceeding to others of a less trivial nature.

25 It is not that different distributions of ‘mass’ could not equally well be called different ‘measures’. It is, 
however, a fact that when talking in terms of measure one tends to make of it something fixed, with a special 
status, whereas when talking in terms of mass there is the physical feeling of being able to move it in 
whatever way one likes.
26 The suggestion has even been put forward that one could always think just in terms of the mass (or 
measures, or area) rather than in terms of the original meaning of probability: in this way we avoid the 
questions and doubts of a conceptual nature to which such a notion of probability can give rise. In general, 
however, in addition to removing the doubts this would also remove the raison d’être of the problems 
themselves (unless these only involve formal aspects, capable of being isolated from the context which 
provides them with meaning and content).
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We shall restrict ourselves, in general, to the three‐dimensional case, which is the 
most obviously intuitive: the extension to n dimensions (which we shall occasionally 
mention) presents no difficulty for the reader who is familiar with such things, whereas 
for those who lack this familiarity it is better to be clear about the simpler case than to 
acquire confused and formal notions in a less accessible field.

Let E1, E2, E3 be three events (which, for the moment, we take to be logically inde-
pendent; we shall introduce various assumptions as we go on), and let (x, y, z) be the 
Cartesian reference system on which we superpose the linear ambit A and the linear 
space L. The eight vertices of the unit cube

 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1, , , , , , , , , , , , , , , , , 

thought of as points of A, represent the constituents Qi forming Q  ;

 
Q Q Q Q Q Q Q Q
E E E E E E E E E E E

0 1 2 3 1 2 3 0

1 2 3 1 2 3 1 2 3 1        22 3 1 2 3 1 2 3 1 2 3 1 2 3E E E E E E E E E E E E E  

 

(where negations correspond to the zeros, affirmations to the ones); thought of as points 
(or vectors) of L, they represent the random quantities

 0 1 2 3 2 3 1 3 1 2 1 2 3E E E E E E E E E E E E  

(where the presence of a summand corresponds to the ones).
The generic point (x, y, z), thought of as a point of A, would mean that E1 takes the 

value x, and similarly E2 = y and E3 = z (which is invalid, since the random quantities Ei 
cannot take on values other than 0, 1). This can be valid, however, as prevision, in the 
sense that P(E1) = x, P(E2) = y, P(E3) = z; in other words, (x, y, z) represents the prevision 
P which attributes to E1, E2, E3 the probabilities (p1, p2, p3) = (x, y, z), and which is also 
expressible as the barycentre of the points Qi with suitable weights (masses) qi. Thought 
of as a point (or vector) of L, (x, y, z) represents the random quantity X = uE1 + vE2 + 
wE3 with coefficients (u, v, w) = (x, y, z). Since P(X) = up1 + vp2 + wp3 = иx + vy + wz, 
P(X) can be interpreted as the inner product of the (dual) vectors P (or P − 0) of A and 
X (or X − 0) of L; or, alternatively, as P(X) = (P − 0) × (X − 0) in the metric space on which 
A and A have been superposed.

Until we state precisely the assumptions made concerning the Ei, that is establish 
which among the eight products are actually possible constituents, all this remains 
rather general and introductory in character; simply a repetition of things we know 
already, with a few additional details.

3.9.2. The case of partitions. If the Ei constitute a partition, there are three constitu-
ents. Q1 = (1, 0, 0), Q2 = (0, 1, 0), Q3 = (0, 0, 1). We know that the pi can be any three 
non‐negative numbers summing to 1. In other words, the admissible P = (x, y, z) belong 
to the plane x + y + z = 1. More precisely, they belong to the triangle having as its verti-
ces the three possible points Q1, Q2, Q3, and are, in fact, uniquely expressible as barycen-
tres of these points, P = q1Q1 + q2Q2 + q3Q3, with weights q1 = x, q2 = y, q3 = z. This 
triangle constitutes the space P  of admissible previsions, and is precisely the convex 
hull of the set Q of possible outcomes (which reduces in this case to the three 
given   vertices). Representing the triangle by a figure in the plane, one sees that the 
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probabilities x, y, z, turn out to be the barycentric coordinates of the point P with respect 
to the Qi. Since the triangle is equilateral, one has the standard ‘ternary diagram’ (as is 
used, for example, to indicate the composition of ternary alloys) in which x, y, z also 
have a more immediate interpretation as the distances of the point from the sides, taking 
as unity the height of the triangle (to which the sum of the three distances is always 
equal). It is also clear that a point outside of the triangle (not in the plane, or in the plane 
but outside the triangle) can be brought nearer to all the three vertices – that is to all the 
points of Q – by transporting it into the triangle. This can be accomplished by project-
ing it onto the plane, and then, if the projection falls outside the triangle, by transport-
ing it to the nearest point on the boundary. This is related to the ‘second criterion’, if we 
think of the penalty as being the square of the ordinary distance in this representation.

If we think in terms of L, we could say, instead, that the point (1, 1, 1) represents the 
random quantity that is certainly equal to 1, given that E1 + E2 + E3 = 1. The fact that for 
the coordinates of P we must have x + y + z = 1 is then interpreted on the basis of the 
scalar product: P(1) = x · 1 + y · 1 + z · 1 = 1.

3.9.3. The case of incompatibility. If the Ei are incompatible (but not exhaustive) there 
are four constituents: the previous three and Q0 = (0, 0, 0); that is Q0, Q1, Q2, Q3. The above 
considerations still hold, except that we now have the relation x + y + z ⩽ 1 (instead of = 1). 
We still have P expressible uniquely as a barycentre, P = q0Q0 + q1Q1 + q2Q2 + q3Q3, of the 
Qi, with weights q0 = 1 − x − y − z, q1 = x, q2 = y, q3 = z, and the space P (which was the 
triangle with vertices Q1, Q2, Q3) is now the tetrahedron having in addition the vertex Q0.

3.9.4. The case of a product. Let E1 and E2 be logically independent, and E3 be their 
product: E3 = E1E2. The constituents are then the following four: Q0 = (0, 0, 0), Q1 = (1, 
0, 0), Q2 = (0, 1, 0) and Q0 = (1, 1, 1). The first three are in the plane z = 0, the last three 
are on z = x + y − 1; the other two groups of three are on z = y and z = x, respectively. 
The space P  is, therefore, the tetrahedron z ⩾ 0, z ⩾ x + y − 1, z ⩽ x, z ⩽ y, or, in other 
words, expressed compactly using ∧ and ∨,

 [max( , ) ] ( ) min( , ) .[ ]0 1 0 1x y x y z x y x y   

These are the restrictions under which one can arbitrarily choose the probabilities of two 
logically independent events and that of their product.

Here also, P is uniquely expressible as a barycentre

 P q Q q Q q Q q Q0 0 1 1 2 2 0 0 

of the Q with weights q0 = 1 − x − y + z, q1 = x – z, q2 = y – z, q0 = z.

3.9.5. The case of the event‐sum. This proceeds as above, except that E3 = E1 ∨ E2 
(instead of E1E2). Since the event‐sum is E1 + E2 − E1E2, this case reduces straightaway 
to the preceding ones. The constituents are Q0, Q1, Q2, Q0; the inequalities for the tetra-
hedron P  having these vertices are

 max min , ;x y x y z x y x y,  1 1  

the weights which give P = (x, y, z) as a barycentre in terms of the Q are

 q z q z y q z x q x y z0 1 2 01 , , , . 



Theory of Probability: A Critical Introductory Treatment92

Remark. In the preceding cases each P was derived as a barycentre of the Q with 
uniquely determined weights q; it is important to note (and we shall return to this later) 
that this circumstance is exceptional. To be more precise, this happens when and only 
when the Q are linearly independent – in the examples above we had, in fact, either three 
noncollinear, or 4 noncoplanar – or when they are (as events) expressible as a linear com-
bination of the given events. In fact, they were, in the first case, E1, E2, E3; in the second, 1 
− E1 − E2 − E3, E1, E2, E3; in the third, 1 − E1 − E2 + E3, E1 − E3, E2 − E3, E3; and in the fourth, 
1 − E3, E3 − E2, E3 − E1, E1 + E2 − E3. In other words, the Q (as events) belonged in these 
cases to L. Observe that the expressions for the Q in terms of the E are the same as those 
for the weights q in terms of x, y, z. In the following examples this will no longer happen.

3.9.6. The case of exhaustivity. If we specify only that E1, E2, E3 are exhaustive, then 
there are seven constituents; the eight minus Q0 = (0, 0, 0), which is excluded. This latter 
vertex of the cube being missing, the convex hull P  is the cube itself minus the tetrahe-
dron defined by this vertex and the three adjacent ones; that is the part of the cube 0 ⩽ 
x, y, z ⩽ 1 which satisfies the inequality x + y + z ⩾ 1. Each of its points P can be 
expressed – in an infinite number of ways – as a barycentre of points Q (unless the point 
coincides with a vertex, or belongs to an edge, or a triangular face, in which case the 
number of representations is finite). In fact, all we have to do is to choose non‐negative 
weights q, summing to 1, such that

 
q q q q x q q q q y

q q q q z
1 2 3 0 2 1 3 0

3 1 2 0

, ,
 

(4 equations and 7 unknowns).

3.9.7. The case where the negations are also exhaustive. If we exclude both the extreme 
constituents, that is in addition to Q0 = (0, 0, 0) we also exclude Q1 = (1, 1, 1), then six 
constituents remain. The cube has now had removed from it the two opposite tetrahe-
drons, and the remaining part P is that defined by the double inequality 1 ⩽ x + y + 
z ⩽ 2.27 Other considerations are as above.

A useful example is given by the comparisons between three random quantities, X, Y, Z; 
in other words, by considering the three events E1 = (X > Y), E2 = (Y > Z), E3 = (Z > X) (we 
assume excluded, or at least as practically negligible, the case of equality). By transitivity, 
the three events cannot turn out to be either all true or all false; there remain the other six 
constituents, corresponding to the 6 = 3! possible permutations. As an application, one 
might think, for example, of comparing the weights (or temperatures, etc.) of three objects.

Other cases. The following cases are similar (and are useful as exercises): E3 ⊂ E1E2 (5 
constituents); E1 and E2 incompatible, E3 ⊂ (E1 = E2) (6 constituents); and so on. Another 
example with four (independent!) constituents is given by E3 ≡ (E1 = E2).

3.9.8. The case of logical independence. All eight constituents exist; P is the whole 
cube. This is the most complete and ‘normal’ case; there is little to say apart from think-
ing about it in the light of remarks concerning more elaborate cases.

27 The case x + y + z = 2 (with constituents Q1, Q2, Q3) is similar to that of the partition (x + y + z = 1), and 
is obtained if   E E E1 2 3, ,  form a partition.
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The same case in any number of dimensions. If E1, E2,…, En are logically independ-
ent events, we will have 2n constituents Qi, the vertices of the unit hypercube; that 
is the points (x1, x2,…, xn) in the linear ambit A with xi = 1 or 0. The admissible 
previsions P are those of the cube P , 0 ⩽ xi ⩽ 1, which is the convex hull of the set 
of the vertices Q . The linear space L is formed by the random quantities X = u1E1 + 
u2E2 + … + unEn, which are linearly dependent (homogeneously, but it is easy to take 
into account separately an additive constant) on the events Ei. Conceptually, every-
thing that has been stated for n = 2 and n = 3 also holds for arbitrary n (this saves us 
repeating everything in a more cumbersome notation and so making the exposition 
rather heavy going).

3.9.9. General comments. Each particular case differs from the final one by virtue of 
the exclusion of some of the constituents: instead of 2n there are only s < 2n. These 
determine a linear space of dimension d(d ⩽ n, log2 s ⩽ d ⩽ s − 1); if d < n, the n events 
Ei are linearly dependent. In fact, if all the Q satisfy a linear relation xii const. the 
same holds for the Ei. For instance, in the above examples x + y + z = 1, x + y + z = 2 gives 
E1 + E2 + E3 = 1 (or 2), so that we need only consider two events, for example E1 and E2, 
setting E3 = 1 − E1 − E2 or E3 = 2 − E1 − E2, respectively (this also holds in the general 
case). If we consider the unnecessary Ei as eliminated (since they are linearly dependent 
on the others), we can always arrange that d = n; in any case, P  is the convex hull (d‐
dimensional polyhedron) having as vertices the points Q which form Q .

Given some P (in A), in other words, having evaluated the probabilities P(Ei) of the 
given events, P turns out to be determined for all those random quantities X which are 
linearly dependent on the Ei, and for no others; that is for those belonging to L. In 
particular, the probability of an event E is determined if and only if E is one of these X.28 
This statement takes into account all the obvious cases: for example, the probability of 
A ∨ B is not determined by P(A) and P(B) (unless we assume incompatibility), but is 
determined if we include P(AB), since we have the relation A + B = AB + A ∨ B. It is 
useful to see an example of how nontrivial events can be found among the X of L (i.e. 
the X that only have two possible values; which we can always represent as 0 and 1). We 
shall see then that, if E is not linearly dependent on the Ei, one can only say that p′ ⩽ 
P(E) ⩽ p″, where p′ = sup P(X) for the X of L which are certainly ⩽E, and p″ = inf P(X) 
for the X of L which are certainly ⩾E.

3.9.10. A nonobvious example of linear dependence. Suppose that A, B, C, D, F, G are 
the participants in a competition, and that six other individuals each choose from 
among the participants their three ‘favourites’ (a prize being offered to all those who 
have included the winner among their ‘favourites’). Suppose also that we know the 
choices to be: C, D, G for the first individual; B, C, G for the second; A, D, F for the third; 
B, F, G for the fourth; A, C, D for the fifth; D, F, G for the sixth. Finally, a seventh indi-
vidual – suppose it is You – has chosen A, B, C. Is your guess, the event E say, linearly 

28 This does not exclude the possibility that for certain evaluations (limit-cases in which an inequality 
reduces to an equality) P(E) can turn out to be determined for E which are not linearly dependent on the Ei 
we started with (and perhaps not even logically dependent). For instance, if neither of A and B is logically 
dependent on A ∨ B, then knowing P(A ∨ B) is not sufficient to determine P(A) and P(B); if, however, P(A ∨ B) = 0, 
it follows necessarily that P(A) and P(B) are also zero.
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dependent on the events E1,…, E6, which denote the guesses of the others, or not? This 
question might be important, for example, in the following situation: there is an expert 
in whom You have great confidence, so far as judging the competition and the partici-
pants is concerned, and whose opinion concerning your probability of winning is of 
interest to You. However, You do not know this directly (since You do not know what 
probability of winning he attributes to each participant) but only indirectly (because 
You happen to know what probabilities he attributes to the guesses of the others turning 
out to be correct); is this enough?

We have the system of equations:

 

1

1

2

3

4

5

6

A B C D F G
E C D G
E B C G
E A D F
E B F G
E A C D
E D FF G
E A B C  

(the first equation states, as we have seen, that the six cases are the only ones possible, 
and are incompatible). One could work out the determinant (and, by virtue of its being 
zero, could verify linear dependence), but instead we note (and leave the reader to verify 
it by working out the sum) that we have the relation

 

2 3 5 5 7
3 3

1 2 3 4 5 6E E E E E E E
A B C D F G ,  

from which

 
E E E E E E E1

7
3 2 3 5 51 2 3 4 5 6 .

 

Hence, if I know the pi = P(Ei) of the guesses, I can conclude that in the expert’s opinion 
(assumed coherent) p = P(E) must be

 
p p p p p p p1

7
3 2 3 5 51 2 3 4 5 6 .

 

In a similar way one could, of course, see whether the p1 … p6 are admissible (compat-
ible with probabilities ⩾0 for the partition A, B, C, D, F, G, and if, in any case, they 
determine them, etc.). It may be a useful exercise to develop these questions in the 
context of this example (as it stands, or modifying it in some way).

3.10 The Fundamental Theorem of Probability

3.10.1. We turn now to proving and illustrating the general conclusion that we stated 
before, and which, in a more complete and precise form, constitutes the following:
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Theorem. Given the probabilities P(Ei) (i = 1, 2,…, n) of a finite number of events, the 
probability, P(E), of a further event E, either

a) turns out to be determined (whatever P is) if E is linearly dependent on the Ei (as we 
already know); or

b) can be assigned, coherently, any value in a closed interval p′ ⩽ P(E) ⩽ p″ (which can 
often give an illusory restriction, if p′ = 0 and p″ = 1, or in limit‐cases for particular 
P, give a well‐determined result p = p′ = p″).

More precisely, p′ is the upper bound, sup P(X), of the evaluations from below of the 
P(X) given by the random quantities X of L (i.e. linearly dependent on the Ei) for which 
we certainly have X ⩽ E. If E is not logically dependent on the Ei, observe that X ⩽ E can 
be more usefully replaced by X ≤ E′ where E′ is the largest event logically dependent on 
the Ei contained in E (see Chapter 2, 2.7.3). The same can be said for p″ (replacing sup by 
inf, maximum by minimum, E′ by E″, and changing the direction of the inequalities, etc.).

Proof. If Q1 … Qs denote the constituents, relative to E1 … En, and E is logically (but 
not linearly) dependent on the Ei, then the linear ambit A′ obtained by the adjunction 
of E (i.e. by adding a new coordinate x to the preceding x1 … xn) has the same constitu-
ents Qh, but now placed at the vertices of a cube in n + 1 dimensions instead of n. Each 
Q = (x1, x2,…, xn) is either left as it was (with x = 0), or moved onto the parallel Sn (x = 1), 
becoming either (x1, x2,…, xn, 0) or (x1, x2,…, xn, 1), according to whether Q is contained 
in E⁓ or in E. The convex hull P  ′ in Sn+1 (in A′) has as its projection onto the preceding 
Sn (A ) the preceding P . For each admissible P in the latter (with coordinates pi = P(Ei)), 
the admissible extensions in A′ are the points P′ that project onto P and belong to P′; 
that is. belong to the segment p′ ⩽ x ⩽ p″ which is the intersection of the ray (p1, p2, …, 
pn, x) with P  ′. The extreme points (x = p′, x = p′) are on the boundary of P  ′, that is on 
one of the hyperplanes (in n dimensions) that constitute its faces (they could be on more 
than one – vertices, edges, etc. – but this does not affect the issue). Suppose the hyper-
plane is given by ∑uixi + иx = c; in other words, suppose that the relation ∑uiEi + uE = c 
holds on it, that is that E = (c – ∑uiEi)/u: then the X in L defined by the right‐hand side 
has the given property, and yields p′ = P(X). Similarly for p″.

3.10.2. Applications. Let us generalize some of the examples considered previously in 
S3. Those concerning the number of successes,

 Y E E E1 2 3 ,  

now become the consideration of Y = E1 + E2 + … + En, and we can look at various sub-
cases. Suppose that either Y is known, Y = y (0 ⩽ y ⩽ n) (as in the previous cases where 
Y =1 and Y = 2), or certainly lies between two given extreme values y′ and у″ (0 ⩽ у′ ⩽ 
у″ ⩽ n) (as in the previous cases, where 1 ⩽ Y ⩽ 2). The interpretation of this last exam-
ple, as given in Section 3.9.7, will now be extended (in different ways) to comparisons 
between n objects: finally, the case of the event‐sum will require all the products.

3.10.3. Knowledge about frequency. This first example is noteworthy in that it consti-
tutes the first and most elementary link in the long chain of conclusions which, as we 
proceed, will clarify and enrich our insight into the relationship that holds between 
probability and frequency. This is important both for what the conclusions do say and, 
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perhaps even more so (in some situations at least), in order to get used to not interpret-
ing them as saying something which they do not say.

The simplest case is that in which the number of successes, Y = E1 + E2 + … + En, is 
known (for certain);that is the frequency Y/n is known (for certain). Let Y = y, so that 
Y/n = y/n. The following are possible examples: in an election, out of n candidates we 
know that y are to be elected; in an examination, y candidates out of n passed (but we 
are still ignorant of which ones); in a drawing of the lottery, out of n = 90 numbers y = 5 
will be drawn; at n = 90 successive drawings of all the balls in Bingo, all the y = 15 num-
bers on your card will come out.

As an extension, we have the case in which we know the limits between which Y must 
lie; y′ ⩽ Y ⩽ y″ (and hence that the frequency must be between y′/n and y″/n). In the 
preceding examples: it may be that the electoral system allows the number elected to 
vary between y′ and y″; that on the basis of partial information about the examinations 
one knows that at least y′ have passed and at least n – y″ have not; if we consider 10 
drawings of the lottery instead of one (for instance, all the 10 ‘wheels’ on the same day), 
then of the n = 90 numbers the total of different numbers drawn can vary between y′ = 
5 (all the sets of five identical) and y″ = 50 (no number repeated).

It is obvious that, as in the case n = 3, the sum of the P(Ei), that is P(Y), must give in 
the first case y, and in the second a value y′ ⩽ P(Y) ⩽ y″. Put more forcefully; dividing by 
n, the probabilities P(Ei) must be such that their arithmetic mean coincides with the 
known frequency y/n, or falls between the extreme values, y′/n and y″/n, that the fre-
quency can assume (end‐points included). This is all that can be said on the basis of the 
given information. In general, one might say more: for example, that each number in the 
lottery has probability 5

90
 of coming up in a given drawing, and not different probabili-

ties with mean 5
90

. This could only be done, however, on the basis of additional knowl-
edge or considerations which must be kept separate.

3.10.4. The linear ambit of events logically dependent on n given events. For the 
 purpose in hand, it is obviously sufficient to consider the linear ambit, let us call it A *, 
generated by the s constituents Qh (these form a partition, and so the dimension is actu-
ally s − 1, given the identity Q1 + Q2 + … + Qs = 1). We could also generate it by means 
of the Ei and their products (two at a time, three at a time, etc.). We saw, in Section 3.8.3, 
that in this way one can express the event‐sum linearly, and we shall now see that it is 
possible to express all the constituents linearly, and hence all the events which are logi-
cally dependent on the Ei. We will suppose that the Ei are logically independent, so that 
s = 2n; in the other case, the treatment is equally valid, except that the constituents and 
the products which turn out to be impossible have to be omitted.

Let us illustrate the situation by referring to the case of three logically independent 
events and their products; for convenience we denote the three events by A, B, C (instead 
of E1, E2, E3) and their products by F = AB, G = AC, H = BC and E = ABC. We have seven 
events that are linearly independent because there exists only one linear relation 
between the 23 = 8 constituents (the sum =1). Some inequalities (implications) hold 
among them, however; for instance, A ⩾ AB ⩾ ABC so that A ⩾ F ⩾ E (as is obvious if 
one considers that of the 27 = 128 vertices of the cube in seven dimensions only the eight 
corresponding to the constituents relative to A, B, C, are possible).

We list the constituents, giving their coordinates in the ambit A *, and the linear 
expressions in the dual space L  *:
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These expressions, and the analogous ones for each of the events logically dependent 
on A, B, C, are obtained as shown in the following example:

 
 ABC A B C B AB BC ABC B F H E1 1 . 

The necessary and sufficient condition for coherence is that the probabilities of the 
constituents are non‐negative (they automatically turn out to sum to 1), and therefore 
the following inequalities (where, for simplicity, we denote the probability of an event by 
the corresponding lower case letter) are necessary and sufficient:

e ⩾ 0, f, g, h ⩾ e, a ⩾ f + g −e, b ⩾ f + h − e,
c ⩾ g +h − e, (a + b +c) − (f + g +h)+ e ⩽ 1.

3.10.5. A canonical expression for random quantities. By analogy, we indicate here 
how, in the same manner, each random quantity

 X c c E c E c En n0 1 1 2 2 ,  

linearly expressible in terms of the events Ei, can be put in a meaningful canonical form 
by reducing it to a linear combination

 X x C x C x Cs s1 1 2 2  

of the constituents Ch (the xh are the possible values of X, assumed in correspondence 
to the occurrence of the Ch). As an example: if we denote two logically independent 
events by A and B, and the constituents by Q1 = AB, Q2 = A B, Q3 = ÃB, Q4 =  AB, where 
1 = Q1 + Q2 + Q3 + Q4, A = Q1 + Q2, B = Q1 + Q3, we have, for instance, for X = 3 – 4A + B:

 

X Q Q Q Q Q Q Q Q
Q Q Q Q

3 4
0 1 4 3

1 2 3 4 1 2 1 3

1 2 3 4 .  

X assumes the possible values −1, 0, 3, 4, corresponding to Q2, Q1, Q4, Q3.

3.10.6. Comment. The above considerations are intended to familiarize the reader (in 
the case of events) with the crucially important idea of the relations of linearity and 
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inequality, and to stress a fact and a criterion that will be of use in what follows, and 
more generally.

The fact is the possibility of expressing all that can legitimately be said by arguing 
solely in terms of the events (and random quantities) whose prevision is known. That is 
to say, without leaving the linear ambit determined by the latter, without imagining 
already present a probability distribution over larger ambits, those in which the exten-
sion is possible, albeit in an infinite number of ways.

The criterion lies in the commitment to systematically exploiting this fact; the com-
mitment considered as the expression of a fundamental methodological need in the 
theory of probability (at least in the conception which we here maintain). All this is not 
usually emphasized.

These considerations should go some way to excusing the length of the exposition, 
which is certainly excessive in comparison with what would be desirable if this topic 
were well enough known in general to permit us to restrict ourselves to a few brief 
remarks.

3.10.7. The case of an infinite number of events (or random quantities). The funda-
mental theorem of probability (and prevision), given in Section 3.10.1, permits us – even 
in countably infinite or nondenumerable cases where, of course, the number of choices 
is infinite – to proceed to attribute to all the events and random quantities that we wish, 
one after the other, probabilities and previsions coherent with the preceding ones. The 
arguments presented do not become invalid when we pass to the infinite case, because 
the conditions of coherence always refer just to finite subsets: see Appendix, Section 15.

This demonstrates the theorem of the unconditional existence and extendibility of 
coherent previsions of events and random quantities in any (open)29 field. In other words:

If within the field in which they are made, the previsions do not already give rise to 
incoherence, no incoherence arises to prevent the existence of coherent previsions 
in any field whatever, coinciding with the preceding ones whenever these apply.

3.11 Zero Probabilities: Critical Questions

3.11.1. In both the criteria put forward in order to define probability there was a point 
whose clarification we held over to the sequel. It was the same point in both cases; the 
wherefore of the precaution taken in excluding the possibilities of gains being all uni-
formly negative, but not that of gains being all negative (without the ‘uniformity’ condi-
tion). Another matter, connected with this, is the removal of the reservations regarding 
the prevision of unbounded random quantities.

We are dealing with critical questions and, if we only wished to consider those aspects 
relating to applications, they could be omitted, or confined to the Appendix. This, how-
ever, is not possible. In Chapter 6, we have to study distributions, and to throw light on 
the conceptual differences and their wherefores, introduced in accordance with the 

29 ‘Open’ is meant in the sense of not being preconstituted, not constrained, not a ‘Procrustean bed’, not a 
Borel field, not consisting of events, etc., that have a given meaning or structure, but a field in which we can, 
at any moment, insert whatever might come to mind.
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present viewpoint, it is better to focus right from the beginning on those aspects which 
will play a fundamental rôle.

The fact is that a logical construction is such in so far as it is a whole in which ‘tout se 
tient’ [‘everything fits together’]; otherwise, it is nothing of the sort. Questions that are 
seemingly completely otiose and insignificant can have, and do have, interconnections 
with all the rest and are essential for an understanding of them. To ignore them, or 
merely to mention them in passing, is dangerous, especially when they impinge on deli-
cate and controversial matters: too many ideas then remain rather vague and give rise 
to an accumulation of doubts.

For this reason, having reached the end of Chapter 3, we shall now consider the ques-
tions of a critical nature that have arisen; we shall do the same at the end of Chapter 4, 
coming back to these same questions under a new guise; finally, at the end of Chapter 5, 
we shall arrive at the same kind of considerations, although with respect to topics that 
are less technical and more general. We shall attempt to confine ourselves to the 
 minimum necessary discussion, expressed as simply as possible. The few additional 
clarifications or examples will be recognizable ‘at a glance’ by virtue of the small print.

3.11.2. It would not be accurate to say that all the problems reduce to the presence of 
zero probabilities but, in order to have a guideline to follow, it is convenient to think in 
these terms (just as it is not only suggestive but also appropriate to mention them in the 
section heading).

It seems impossible that there is anything at all to be said about zero probabilities. 
Instead, we have the following basic questions:

i) Can a possible event have zero probability? If so:
ii) Is it possible to compare the zero probabilities of possible events (to say if they are 

equal, or what their relation is, etc.)?
iii) Can a union of events with zero probabilities have a positive probability (in particu-

lar, can it be the certain event)?
iv) Are there any connections with problems concerning random quantities, and in 

particular with the problem of prevision for unbounded random quantities?

Question (II) crops up again within the topics of Chapter  4 and will be discussed 
there; we had to mention it, not only to put it in its natural position as a ‘question’ but 
also to give prior warning that any incidental comments that we make here for conveni-
ence will be clarified at the appropriate place: we will draw attention to this by writing ‘(II!)’.

Questions (I) and (III) can be bracketed and discussed together straightaway; afterwards 
we shall pass on to (IV). However, there was a reason for putting the two questions (I) and 
(III) separately. Question (III), which evidently requires to be put in the context of infinite 
partitions, might lead one to think and state that one can only have possible events with 
zero probability if they belong to infinite partitions (!). This is monstrous. If E has probabil-
ity p (in particular = 0) it is an event with probability p (in particular with zero probability) 
both when considered in itself, or in the dichotomy E and E⁓, or in any other partition into 
few, many or an infinite numbers of events, obtained by partitioning in any way whatso-
ever. Unfortunately, this propensity to see each event embedded in some scheme, together 
with others usually studied with it, gives rise to serious confusions both in theoretical 
matters (as is the case here) and practically (as in the examples in Chapter 5, 5.8.7).
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This having been said as an appropriate warning, we can pose question (III) once 
again by asking whether in an infinite partition one can attribute zero probability to all 
the events. In this form, the question becomes essentially equivalent to that concerning 
the different types of additivity: finite, only for a finite sum; countable, for the denumer-
able case; perfect, if the additivity always holds.

There are precisely three answers, corresponding to these three types (with a varia-
tion, which is related to (I)):

A = Affirmative, N = Negative (N′ and N″), C = Conditional
(and in what follows, we shall denote them and the corresponding points of view with 
the initials A, N and C, or, if necessary, A, N′, N″ and C).

A: Yes. Probability is finitely additive. The union of an infinite number of incompatible 
events of zero probability can always have positive probability, and can even be the 
certain event.

N: No. Probability is perfectly additive. In any partition there is a finite, or countable, 
number of events with positive probabilities, summing to one: the others have zero 
probability both individually and together.

C: It depends. The answer is NO if we are dealing with a countable partition, because 
probability is countably additive; the sum of a countable number of zeroes is zero. The 
answer is YES if we are dealing with an uncountable infinity,30 because probability is 
not perfectly additive: the sum of an uncountable infinity of zeroes can be positive.

In the case of the answer N, there are, however, two subcases to be distinguished with 
reference to question (I) (for which, in cases A and C, the answer can only be YES).

N′: Probability zero implies impossibility. What has been said above is a consequence of 
this identification.

N″: Probability zero does not imply impossibility. However, the behaviour is the same: 
even if we take the union of them all, the events of probability zero form an event with 
zero probability.

3.11.3. Let me say at once that the thesis we support here is that of A, finite additivity; 
explicitly, the probability of a union of incompatible events is greater than or equal to the 
supremum of the sums of a finite number of them. Apart from the present author, it 
would seem that only B.O. Koopman (1940) has systematically adopted and developed 
this thesis. Others, like Good (1965), admit only finite additivity as an axiom, but do 
nothing to follow up this observation. Others again, like Dubins and Savage (1965), 
make use of finite additivity for special purposes and topics.

The thesis N is supported, as far as I know, only by certain logicians, such as Carnap, 
Shimony and Kemeny (as a consequence of a definition of ‘strict coherence’).31

30 I do not know whether this corresponds exactly to the conception of the supporters of this thesis (often 
one only talks about the case of the continuum).
31 In addition to these serious authors, there is no point in mentioning the large number who refer to zero 
probability as impossibility, either to simplify matters in elementary treatments, or because of confusion, or 
because of metaphysical prejudices.
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The thesis C is the one most commonly accepted at present; it had, if not its origin, its 
systematization in Kolmogorov’s axioms (1933). Its success owes much to the mathe-
matical convenience of making the calculus of probability merely a translation of 
 modern measure theory (we shall say a lot more about this in Chapter 6). No‐one has 
given a real justification of countable additivity (other than just taking it as a ‘natural 
extension’ of finite additivity); indeed, many authors do also take into account cases in 
which it does not hold, but they consider them separately, not as absurd, but nonethe-
less ‘pathological’, outside the ‘normal’ theory.

3.11.4. Let us review, briefly, the main objections to the various theses (we number 
them: A1, A2,…; N1, N2,…; C1, C2,…). Our point of view is, of course, represented by 
the objections to N and C, and by the answers (A1a, A1b,…; A2a, A2b,…) to the objec-
tions raised against A. We will also interpolate some examples (E1, E2,…).

A1 This is an objection from the standpoint of N (or rather N′): it is not sufficient to 
exclude as inadmissible those bets with gain X certainly negative (⟝ X < 0: weak coher-
ence); it is necessary to exclude them if the gain is certainly nonpositive (⟝ X ⩽ 0: strict 
coherence). This means that ‘zero probability’ is equivalent to ‘impossibility’.

The most decisive reply will be objection N2, but it is better not to evade a reply that 
clarifies the points (perhaps persuasive) put forward in A1; this reply will constitute a 
preliminary refutation of N (N1).

A1a It should be unnecessary to point out that the inadmissibility of a bet is always 
relative to the set of choices offered by a given scheme. It is obvious that if among the 
possible choices there was the choice ‘do not make a bet at all’, nobody would choose an 
alternative that could only lead to losses (this, however, means nothing).

A1b In the simplest scheme, let X = −E (loss = 1 if E occurs; e.g. the risk we are facing), 
and consider the appropriateness of insuring oneself by paying a premium p. Let us 
suppose that one is willing to pay 1

2
n (and no more) if p = 1

2
n; for example E = all heads 

in n tosses. If E = all heads in an infinite number of tosses, I will not be willing to pay 
more than zero (every ε > 0 is 1

2
n for sufficiently large n, and would be too much even 

if the risk were infinitely greater). The lesser evil, therefore, is not to insure oneself; in 
other words, to act in this respect (but not in others) as if E were impossible.

A1c There is more, however. The condition of coherence is and must be (as we estab-
lished in Sections 3.3.5 and 3.3.6) even weaker32 than the one criticized in A1, allowing in 
addition bets in which one can only lose! Let us suppose that an individual is subjected to 
a certain loss of a sum 1/N (where N is an ‘integer chosen at random’, with equal – and 
therefore zero – probabilities for each value, and hence for each finite segment N ⩽ n (II!)). 
There is no advantage in paying a sum ε (however small) to avoid this certain loss, because 
it would always be practically certain that the loss avoided would be very much smaller.

N1 = A1d Summarizing and concluding, we have the following. The variants (from 
the weakest to the strongest) consist in excluding X if

sup X < 0, sup X ⩽ 0, with X = 0 impossible, sup X ⩽ 0,
Objection A1 criticizes the middle statement, and supports the last one. In A1c we 

explained why, on the contrary, we think it necessary to support the first one.

32 If we wished to give this condition a name, we might call it sufficient coherence (in contrast to weak and 
strict coherence).
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N2 The variant N′ is logically absurd unless one excludes the possibility of considering 
a partition with an uncountable infinity of possible cases (e.g. the continuum). In the 
denumerable case objections arise which also apply to C (C3 = N4, and so on).

N3 The variant N″ does away with N2: nevertheless, the meaning of zero probability is 
still exceptionally restrictive (much more so than in C, and even there it is too restric-
tive; see C4).

In fact, one should be able to define E* = the union of all events with zero probabilities = 
the maximal event with zero probability (let us call it ‘the catastrophe’). Under the 
 noncatastrophic hypothesis (with probability = 1) one goes back to N′; only in the oppo-
site cases are events with zero probability no longer impossible (and, consequently, (II!) 
can have any probability whatsoever).

3.11.5. C1 C appears to be less logically plausible than A and N – we suspect ‘Adhockery 
for mathematical convenience’ – because the distinction between finite and infinite has 
without doubt a logical and philosophical relevance, whereas it might seem strange to 
draw the crucial distinction between finite and nondenumerable on the one hand, and 
countable on the other hand.

C2 A difficulty that derives from this is the following: given a partition (e.g. whose 
cardinality is that of the continuum) into events of zero probability, what happens if as a 
consequence of additional information one believes that only a countable infinity 
remain possible? In particular, if one assumes them (II!) equally probable? Or under the 
most general hypothesis?

E1 Initially, X has a uniform distribution over the real numbers between 0 and 1 (all 
points equally probable (II!)). Additional information reveals that X is rational.

E2 It seems obvious (but recall (II!)) that in this case  –  that is E1 after the given 
 ‘additional information’ – the values which remain possible, that is the rational values of 
[0, 1], are (still) equally probable (they define a ‘random choice’ from the original set).

If one thought of actually interpreting the problem geometrically, one might perhaps 
doubt the judgment of all the rationales as equally probable, considering as ‘rather spe-
cial’ the end‐points, mid‐point, fractions with small denominator, decimal fractions 
with only a few figures and so on.

This effect is lessened if one thinks of taking the ‘distance between two points chosen 
at random’ (the first minus the second; if negative add 1, take the result mod 1).

It disappears altogether if one thinks in terms of a circle obtained by rolling up the 
segment without indicating which is the ‘zero’ point.

C3 = N4 Objection C2 can also be raised in the countable case (and then it also con-
cerns N). Suppose that we have a countable infinity of possible cases, one with p = 1 (and 
the others therefore with p = 0); assume we know that the first one has not occurred.

E3 Let N be the number of passages through the origin in a random walk for which 
P(N > n) = 1 for all n (an example is Heads and Tails); information: N ≠ ∞.33

33 This information could only be given by somebody who had explored the world as it appears after the 
end of time…. Objections to ‘lack of realism’ would, however, be out of place here as it is merely a question 
of logical compatibility. Where they are appropriate (and usually insufficiently dealt with), the exigencies of 
realism will be examined here (especially in the Appendix), perhaps at greater length than hitherto, and 
perhaps more than is reasonable. One cannot refute the exact nature of a conclusion based on the 
examination of a ‘pathological’ curve (e.g. that of Helge van Koch) by the pretext that there exist neither 
pencils, nor sheets of paper, nor hands, by means of which it could be drawn.
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E4 In general, in such cases it is plausible to say that the

 p N h Nh P |  

are all zero, and (II!) each is infinitely greater than the preceding one. We limit ourselves 
to a mere statement of this in order to be able to refer to this example without examin-
ing it deeply.

C4 The meaning of p = 0 is too restrictive even in C (although much less so than in N; 
see N3). Expressed in a vague form, but one which corresponds exactly to the state of 
things, this is the ‘essence’ of those considerations and examples already given (C2, C3, 
E1, E2) and of those to come. The fact that, whereas, for any finite n, uniform partitions 
are allowed (all p = 1/n), in the countable case only extremely unbalanced partitions are 
allowed (under C and N), may serve as a ‘symptom’, which makes this ‘restrictiveness’ 
appear pathological.

We shall see, on the one hand, just how unbalanced they are, and, on the other hand, 
the objections to which this gives rise from a realistic point of view. The latter, of course, 
will vary according to the conception one holds.

C5 = N5 By taking the sum of probabilities to be = 1 (suppose we denote the probabilities 
by p1, p2,…, pi,…, in decreasing order), one necessarily has an inequality such that for 
any ε > 0, however small, a finite number of events  –  the first nε  –  together have 
 probability >1 − ε, and the infinity of the others together have probability <ε. (In such 
circumstances, I am tempted to say that the events ‘are not countably infinite’ but ‘a 
finite number – up to trifles’).

E5 The point made in C5 = N5 appears even more strange if we take as an example the 
following observation.

If, instead of the whole infinity of events, one only had the first N = n/ε (where ε and 
n = nε are as in the preceding case), there would be nothing to prevent one judging them 
equally probable (or almost so) in accordance with some assumed reasons or opinions. 
The total probability of the first n would then have been ε instead of 1 − ε. Of course, 
even the infinity of probabilities could have all been taken <1/N, but the enormity of the 
inequality would reappear if we took some n′ = n  and N′ = n′/ε to start with.

From a mathematical standpoint this is obvious What is strange is simply that a 
 formal axiom, instead of being neutral with respect to the evaluations (or, for those who 
believe in them, with respect to the objective reasons), and only imposing formal condi-
tions of coherence, on the contrary, imposes constraints of the above kind without even 
bothering about examining the possibility of there being a case against doing so.

3.11.6. Let us try to better imagine the reactions of individuals with different 
points of view.

C6 = N6 Suppose we are given a countable partition into events Ei, and let us put 
ourselves into the subjectivistic position. An individual wishes to evaluate the pi = P(Ei); 
he is free to choose them as he pleases, except that, if he wants to be coherent, he must 
be careful not to inadvertently violate the conditions of coherence.

Someone tells him that in order to be coherent he can choose the pi in any way he 
likes, so long as the sum = 1 (it is the same thing as in the finite case, anyway!).

The same thing?!!! You must be joking, the other will answer. In the finite case, this 
condition allowed me to choose the probabilities to be all equal, or slightly different, or 
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very different; in short, I could express any opinion whatsoever. Here, on the other 
hand, the content of my judgments enter into the picture: I am allowed to express them 
only if they are unbalanced to the extent illustrated in C5–N5–E5. Otherwise, even if I 
think they are equally probable – as I would do in the case of E2 – I am obliged to pick 
‘at random’ a convergent series, which, however I choose it, is in absolute contrast to 
what I think. If not, you call me incoherent! In leaving the finite domain, is it I who has 
ceased to understand anything, or is it you who has gone mad?

C7 = N7 In the same situation, an objectivist of the classical school finds himself fac-
ing case E2 (for him ‘in conditions of symmetry all possible cases are equally probable’).

This much is obvious: the infinite number of cases is equally probable and, therefore, 
they all have probability 1/∞ = 0 (perhaps – he may think – I am not expressing myself 
in an orthodox fashion; the conclusion, however, is this one). To the objection of the 
teacher who wants a series with sum = 1, and who is not worried if one asks him whether 
he really wants an opinion so unbalanced as to give rise to the points raised in E5, he too 
will cry out: Is it I who has ceased to understand anything, or is it you who has 
gone mad?’ And he will explain: ‘I swear that I find myself in the ideal conditions of 
complete ignorance, with the absence of any reason to doubt whether any point has 
objective probability greater than that of any other one. In no other case can I be so sure 
of being able to state with precision that the objective probabilities are equal, because it 
is only in this case, where I cannot even see or distinguish the rational points, that I have 
reached the final sublime peak of total and unsurpassable ignorance. And now, what is 
the use of it? What are the objective probabilities I must give the various points, and 
how do I know which of them must be assigned a large probability, a small one, or a very 
small one?’.

C8 = N8 For the frequentist, this is even easier. If he thinks of a sequence of experiments 
(an ideal version of roulette, reduced to a point‐ball which can stop at any rational point 
of the circle of E2) he will be in doubt as to whether a point will appear just a few times, or 
many times, or even infinitely many times. It is unlikely, however, that he will think for a 
moment that some point – and especially one which can be individuated right from the 
beginning – will appear so often as to have a limit‐frequency different from zero.

C9 = N9 Here is a new and genuine mathematical objection to countable additivity: 
for those who conceive of probabilities as limit‐frequencies (over a sequence, or, in von 
Mises’ terminology, a ‘Collective’), the fact that limit‐frequencies must satisfy finite 
additivity, but not countable additivity, should be decisive.

(So far as I know, however, none of them has ever taken this observation into account, 
let alone disputed it; clearly it has been overlooked, although it seems to me I have 
repeated it on many occasions).

3.11.7. C10 A probability which is countably (but not perfectly) additive cannot be 
defined on the power set of the infinite set of events under consideration.

Therefore, it is necessary:

a) either to introduce restrictions that only allow one to refer to events given by certain 
‘subsets’, excluding the others (in this case the logical justifications are not obvious, 
and the mathematical ones, which require the creation of special events by endow-
ing the ‘space’ with topological properties, seem merely to have the status of 
‘Adhockeries for mathematical convenience’);
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b) or to accept perfect additivity, that is N, which appears more logical than C, for this 
reason in addition to that already given in C1 (but one encounters N2, and abandons 
any treatment in the continuum, even by means of the measure‐theoretic model 
which is the actual aim of C);

c) or to accept finite additivity; that is A.

3.11.8. Do there exist objections to A (besides A1, which we have examined 
already)? In all honesty – and I shall willingly change my mind if any contrary evi-
dence is brought to my attention – it seems to me that one should in general refer to 
prejudices and habits, rather than to objections. Independently of the discussion of 
specific aspects of the real problem (which are always neglected), it is these habits 
and prejudices which lead one to consider as ‘natural’, or ‘absurd’, those things in 
other branches of mathematics that are more or less customary, more or less up‐to‐
date, and, above all, more or less ‘convenient’. We refer to those fields where, in the 
absence of an intrinsic meaning, already existing and imposed from the outside onto 
the possible translations into mathematical definitions and axioms, it is admissible 
to choose those concepts and hypotheses that are most convenient, to choose them 
‘for mathematical convenience’.

We shall see something of these aspects and attitudes in Chapter  6 and in the 
Appendix. (It is often difficult to analyse them because they are more psychological 
than mathematical in character, and because one usually has to deduce things from odd 
comments rather than from explicit and systematic explanations.) If one wants to pick 
out an example of a sufficiently concrete position, having some validity,34 I merely point 
to the following.

A2 It seems to many people that a countable partition that is not unbalanced (i.e. not 
reducing to cases ‘finite up to trifles’, as we jokingly called them in C5) is ‘not feasible’. 
A positive integer N, unknown (random) and capable of taking on any value (between 
0 and ∞, which is excluded), is always, in any practically or conceptually imaginable 
example, almost certainly not too large (and an upper bound is not given solely in 
order to avoid a more or less arbitrary choice). A partition of a set whose cardinality is 
that of the continuum, for example an interval, into a countably infinite number of (L‐) 
measurable sets, is necessarily such that all the measure (except an arbitrarily small 
residual) is given by a finite number of them. They can be overlapping (as in the Vitali 
case) but then they are not measurable and, therefore, not even ‘mentionable’, and not 
even susceptible of a constructive description independently of the axiom of choice.

It is necessary to reply to this from various viewpoints.
A2a From the subjectivistic point of view  –  since, subject to the conditions of 

coherence, one has complete freedom of choice in evaluating the probabilities – one 
can perfectly well assign greater probability to a set with only one point than to a set 
which has very large measure, or is non‐measurable. Conversely, can this line of 
argument justify attributing large probability to sets consisting of a single point and 
with small measure, and negligible probability to the large sets, leaving out the inter-
mediate cases?

34 I hope that the reader can himself demolish the frequent attempts to ‘prove’ countable additivity under 
the tacit assumption of the validity of some property equivalent to it.
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A2b Do not these examples themselves (although in a slightly more sophisticated 
manner) reveal the prejudice of assuming the measure‐theoretic model as the univer-
sal one?

A3 Another plausible objection: all these examples and counterexamples are artificial, 
with no practical interest; there is no reason to prefer a less convenient theory simply 
because it allows us to take account of them.

A3a The examples have a critical function; to test the logical consistency of the vari-
ous points of view. To accept the point of view which (I hope) they reveal to be the logi-
cally correct one does not imply that one has to occupy oneself with matters of this 
nature,35 but only to avoid expressing oneself in a way that appears to be incorrect 
(albeit with reference to ‘pathological’ examples).

A3b Indeed, in practice, it will probably turn out to be advisable to limit oneself to 
even simpler ideas, sticking to the more elementary ambit (Jordan–Peano measure, 
Riemann integral) where the conclusions are unexceptionable, rather than passing to 
the more ‘modern’ set‐up (Borel or Lebesgue measure, Lebesgue integral), given that 
the usual extension is based on a convention which is inadmissible as a general axiom, 
and difficult to justify in a realistic way as a particular hypothesis for individual practical 
cases. It seems to me that it is difficult to justify not only its validity, but even that pos-
sible interpretations and applications to actual and practical problems are not illusory.

A3c If we are going to talk about which theory is ‘less convenient’, we must distinguish 
the sense in which ‘convenient’ is to be understood. The theory given by C is, in general, 
more convenient to handle, and is convenient because it provides a well‐determined 
answer in many cases where A just gives bounds. From the standpoint of A, it is wrong 
to substitute an exact answer in place of these bounds (and, anyway, inconvenient, since 
it forces us to exclude all those examples that might appear artificial, but which are not 
absurd). From some points of view, A is even more tractable; for example every limit of 
a probability distribution is, in A, a probability distribution (possibly not proper): this is 
not true in C. It is, in any case, a question of things which are logically relevant, not one 
of mathematical convenience.

A4 One more objection (a little premature as far as the applications it refers to are 
concerned, but not in terms of its formal meaning, nor for the understanding of exam-
ple E6 below).

Proofs made in the spirit of A in order to invalidate the interpretations of asymptotic 
results (not yet discussed) as limit‐results (deduced in accordance with concept C) often 
make use of the device of introducing a number N, which is ‘chosen at random’ (zero 
probability for each single n and finite segment N ⩽ n), assuming that from N onwards 
a certain process proceeds in a different way from that foreseen in the scheme of 
description.

This said, the objection is: That’s a different story: if the scheme changes, if there is a 
violent change, then the conclusions established under the assumption that the scheme 
remains unaltered, without foreseeing any possibility of a violent change, will certainly 
break down.

35 Let us recall that the critical examples which Peano inserted into Genocchi’s lecture notes, in order to 
show that certain ‘theorems’ did not always hold in ‘pathological’ cases, met with an exactly similar attitude 
of disapproval and incomprehension.
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A4a Statements of this kind do not take account of the situation. The ‘scheme’, as 
usually described, does not explicitly foresee the possibility of a violent change, but it 
does not exclude it either: it is entirely neutral. It is, therefore, improper to refer to a 
‘violent change’: the question of a violent change arises only when one adds to the math-
ematical scheme something more in the way of interpretation, which would be difficult 
to express. Indeed, if it were expressed, it would render trivial the result, which is beau-
tiful and true only if one assumes that countable additivity is less restrictive than would 
appear from the following kind of example.

E6 As in E2, we can imagine ‘choosing at random’ a rational number in [0, 1] with a 
finite number of decimal places (all with the same probability (II!)),36 the number of 
places being itself random, and not preassigned. If we think of a selection of the succes-
sive decimals (or of their successive deciphering or calculation, if they have been ‘drawn 
all at once’ and can be worked out successively, as for π), the process is clearly identical 
to that of drawing any real number whatsoever. At each drawing, all 10 figures have the 
same probability 1

10 , whatever the previous results may have been.37

If by ‘catastrophe’ we mean the exceeding of the last nonzero figure, it is certain that 
sooner or later this will happen. But it will not be a catastrophe: we will not be able to 
realize it; nothing will change in the described scheme. Even after 100 or 1 000 000 or 
101000 consecutive zeroes, provided we have no gift of divination, the probability that 
the next figure will be zero is 1

10 , as for any other figure; the probability that the next 100 
figures will all be zero is 10−100, as for any other 100‐figure number; the probability that the 
 figures will continue to be zero for evermore is zero, exactly as it is at any other instant, 
and after any arbitrary sequence of figures.

In this example, all the probabilistic assumptions explicitly stated for the process hold 
exactly; these lead to the conclusion that, with probability = 1, the 10 figures will each show 
up with limit‐frequency 1

10  (whereas, the limit‐frequency is here = 1 for the  figure 0, and = 
0 for the others). The only assumption that does not hold is that of countable additivity, but 
if anyone considers it as an axiom, instead of a particular restriction (not valid in our exam-
ple), he has the right (?) to omit its explicit statement and to check whether it holds.

3.11.9. Conclusion (for the time being). I do not know whether, and to what extent, the 
arguments put forward here have been persuasive. On the other hand, it is premature to 
accept or reject them before encountering other aspects of them and having seen their 
implications (in Section 3.12 following, at the end of Chapter 4, and in Chapter 6 and 
elsewhere, more or less incidentally). In view of this, however, I would like to have suc-
ceeded in convincing the reader of one thing; that we are dealing with a complex of 

36 If one wishes, instead of choosing from this set one can imagine the choice of any rational whatsoever, as 
in E2. The rationals can be put together in ‘equivalence classes’ (where two numbers differ by a bounded 
decimal fraction; i.e. they coincide from some point on) and in each class an identifiable representative can 
be chosen; the one which is periodic right from the beginning. Every rational uniquely determines the 
components r = p + d (p periodic, d decimal), and the sets Id (of the r with the same d) give rise to a partition 
of the rationals into a countable number of sets superposable by translations (mod 1). To choose r is 
therefore a way of choosing d.
The partition is similar to that of Vitali for the reals, but here, fortunately, an infinite number of choices is 
not required.
37 We should refer to stochastic independence, but we shall come to it in the next chapter, Chapter 4, and 
here content ourselves with just mentioning the idea.
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problems, connected and meaningful, concerning which there are many things to be 
discussed under various headings: the conceptual, the mathematical, the practical. It is 
not just, as might seem logical at first sight, a question of arbitrary conventions for the 
subtleties involved, having no connection with real problems.

3.12 Random Quantities with an Infinite Number 
of Possible Values

3.12.1. The above considerations obviously also apply to the case in which there are an 
infinite number of possible values for a random quantity X. Some new features also 
arise, however. We shall not concern ourselves with the general case until Chapter 6, but 
in the meantime it is necessary to mention certain refinements, although only for the 
more elementary case (elementary in a certain sense, at least) of a countable infinity of 
possible values xh (h = 1, 2, …). To these will correspond – or rather can be attributed by 
the person who evaluates them – probabilities ph, either positive or zero (they might 
even all be zero), with

 h
hp p p1 1 0 1* , * .  

 

For any interval or set I, one could say, knowing only the xh and ph, that P(X ∊ I) = ∑h 
ph(xh ∊ I) if the set contains a finite number of points, but only that

 
h

h h
h

h hp x I X I p x I p P * 

if it contains an infinite number (given that the probability p* can always be imagined as 
deriving solely from these).

3.12.2. In particular, if x is an accumulation point of the xh (it does not matter whether 
it is one of them or not), we can have nonzero adherent probabilities, the latter defined 
to be the limit of P(x − ε < X < x) or P(x < X < x + ε) as ε → 0 (ε > 0), and their sum (if we 
wish to distinguish, we refer to adherent from the left, adherent from the right). The 
adherent probabilities (or masses) cannot exceed p*; not even if we take them all 
together, or even include those possibly adherent (from the left) to +∞ and (from the 
right) to −∞.38 The adherent probabilities could not only have total probability <p* but 
also zero (in other words, nonexistent), although p* was positive, or even p* = 1. As an 

38 One can either allow +∞ and −∞ to also appear among the possible values, or one can exclude them. 
Including them would entail thinking of X as a random point on the completed real line (compactified) with 
the adjunction of the ‘extremes’ +∞ and −∞. There is nothing absurd about this, although it is not usual to 
do and there is no point in insisting upon it. Every now and again we will make brief mention of such 
eventualities, but without entering into any obligation to observe case by case whether what is said is valid 
there also.
 On the other hand, we must note a certain conflict of interest. As far as prevision is concerned (and here 
the inequalities are essential), the values +∞ and −∞ are distinct and very far apart (in fact, opposite). From 
an analytic point of view, however, it would be more natural to consider them as a single value (except for 
looking at it in terms of approaching from the left and right), thinking, for instance, of the complex sphere 
(and, in that context, of the circle of real numbers) and of functions which are ‘continuous’ there, like у = 1/x 
at x = 0 (see Matematica logico-intuitiva, 3rd edn, pp. 124–133).
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example: X = rational between 0 and 1, with the probability of each subinterval equal to 
its length (the uniform distribution).

3.12.3. The argument concerning the prevision P(X) is new and specific to this case. 
It is unnecessary to note that whatever one says concerning P(X) holds for any P(γ(X)), 
where Y = γ(X) is any function of X, whose possible values are yh = γ(xh) with probabili-
ties ph (except that, if one of these values corresponds to an infinite number of the xh, its 
probability may be, if p* > 0, greater than the sum of the ph instead of being equal to it).

What does the knowledge of the possible values xh and their probabilities ph allow us 
to say concerning P(X)? Or rather, expressing ourselves in terms of what the question 
means in a (subjective) probabilistic sense, what restrictions does the knowledge of the 
xh and an existing evaluation of the ph (which we wish to remain coherent) impose on 
us when it comes to evaluating the prevision of X?

It is convenient to begin with the case of a bounded random quantity X, and to con-
sider directly the minimum and the maximum of the accumulation points, which we 
denote by x′ and x″; we therefore have

 inf sup .X x x X    

Let us prove that if p* = 0 (i.e. if ∑h ph = 1, as it is if countable additivity holds) we must 
have the unique result P(X) = ∑h phxh, as in the finite case. Apart from this special case 
we can only say that

 
h

h h
h

h hp x p x X p x p x* * . P  

Thus, if we are not in the above case, p* = 0, P(X) turns out to be uniquely determined 
if and only if x′ = x″; in other words, if the xh have a unique accumulation point, hence 
a limit to which they converge.
Proof. For a given ε > 0, take N sufficiently large so that we have

 
h

hp h N ,  

and put X = X1 + X2 + X3 with

 

X X x h N
X X x h N x x x x

h

h h h

1

2

0if and otherwise
if and or

, ,
, ,

,
and otherwise

if and and otherwi
0

3X X x h N x x xh h sse 0.  

We have

 

P

P

X p x h N p x x

X X X
h

h h
h

h h h1

2

bounded! ;

inf sup ,   
because there are at most a finite number of possible values between inf X and x′ − ε, 
and the same for those between x″ + ε and sup X, and the total probability of those 
between them with h ⩾ N is the sum of a finite number of the ph for which the sum of 
the series is <ε. Finally, we have

 p x X p x* * . P 3  
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All this holds for every ε and hence, as ε → 0, one obtains the given bounds.

Remark. It is most instructive and important to observe that these bounds cannot be 
improved on; in other words, it is actually admissible to evaluate P(X) by giving it any 
value whatsoever between the two end‐points (inclusive). The p* resulting from infinite 
zero probabilities (distributed on the possible xh; it does not matter if these already have 
positive probabilities ph > 0 or instead have ph = 0) could well be considered as deriving 
from an infinite number of the xh converging towards x′, or towards x″, and in any 
intermediate way.

(In addition, one notes that the proof neither presupposes nor establishes countable 
additivity: it holds here – as it may hold elsewhere – by virtue of additional assumptions 
implicit in the definition of the particular case.)

3.12.4. We pass from the case of bounded X to that of X unbounded. The case of 
one‐sided unboundedness must be considered separately, and we therefore begin with 
the case of X unbounded from above (obviously, the analysis holds also for the other 
case); the general case follows as a corollary.

We also suppose that with certainty X ⩾ 0 (i.e. inf X ⩾ 0); in the general case it is suf-
ficient to put X = X1 − X2, X1 = 0 ∨ X, X2 = |0 ∧ X|, in order to reduce everything to 
random quantities which are certainly nonnegative.

Moreover – in order not to complicate the exposition by encountering anew the cir-
cumstances already seen in the finite case – we suppose that there do not exist finite 
accumulation points. We can, therefore, suppose the xh to be increasing, and tending to 
+∞ as h tends to infinity.39

Under these conditions, putting

 

P p P P p P S p x

S S

n
h

n

h n n
h

n

h h

n

1 1
1, lim , * , ,

lim ,  

we have

 
P X x P X xn n n nP P , ,1

 

p* = the mass adherent from the left at +∞, or placed at x = +∞, or some here, some there;

 
S X X x S x P X xn n n n n nP P , 1

 

(the previsions of X either ‘amputated’ or ‘truncated’ at xn; i.e. replaced, if X exceeds xn, 
either by 0 or by xn, respectively).

Since each ‘truncated X’ is always ⩽X, we necessarily have

39 It is clear that the conclusions of this special case are essentially valid in general if one considers that  
X′ ⩽ X ⩽ X″, where we set X′ = (the smallest integer ⩽ X), X’′ = X + 1 (and the unit of measurement can be 
taken as small as we please); X′ and X′ are automatically of the type considered (but to pursue this would 
introduce things which we reserve for the treatment of the continuous case).
 If X∞ = +∞ exists among the possible values, it is not necessary that the finite possible values be 
unbounded (and not even that they be infinite in number) in order for us to be in the unbounded case.
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P
P

X S x P n
X S x P S x p

n n n

n n




1
1

for some and hence
for s

,
* oome n  

(because, if we let n increase in Sn and Pn, while keeping xn fixed, the expression 
increases, but less than it would if xn also were allowed to vary, and tends to the given 
limit).

It necessarily follows straightaway from this that P(X) = ∞ if S = ∞ (the series ∑h phxh 
diverges), or if p* ≠ 0 (there exists a probability placed at, or adherent to, +∞), 
or both.

In the opposite case, p* = 0 and S finite (the series of the ph having sum = 1, and the 
series of the phxh being convergent), admissible evaluations of P(X) are given by

 P X S p x
h

h h
0

, .or any greater value, including  

This is proved by continuity (and in the next section  –  Section  3.13  –  we briefly 
 discuss that property of continuity which we shall make use of here).

First of all, we set X X X xn n( )  (X amputated) with p ph h for h n p h nh , 0 for , 
and p p h n Xh n0 0( ) ( )P ; as n increases, all the p X hh nP( ) tend to 
ph, but P( )X S Sn n .

We then set X X a X nn n n( ), in other words, X Xn n( )like  coincides with X if the 
latter does not exceed xn, but when it does we replace it with an instead of with 0; an 
denotes the first of the xh for which xhp0 ⩾ n.40 The value an already gives a contribution 
⩾n, hence we certainly have

 P X nn  . 

We repeat the conclusions in a schematic form:

 
in the case

p X

p
S X
S S X

* ;

*
;
;

0

0

P

P
P  

3.12.5. If X is unbounded from above and below, P(X) is completely undetermined. 
This is obvious straightaway from the fact that we could always have ‘∞ − ∞’; one can 
obtain this more rigorously by a passage to the limit in the previous cases (suitably 
balancing the positive and negative terms).

However, one might consider as special the evaluation which consists in taking, both 
for the positive part 0 ∨ X and for the negative part 0 ∧ X, the minimum (in absolute 
value) admissible prevision – denoting it by P̂ – and setting in general

 
ˆ 0 0 or, brieflˆ y .ˆ,ˆX X X S S SP P PÚ Ù

 

40 The argument, with a simple modification, also holds in the case in which ph = 0 for all possible xh from 
a certain h = N on, so that p0 = 0. One could, for instance, let p n

0
1
2( )  taking this probability away from one 

or more of the ph (for instance, from p1 if p1 = 0, starting from that n for which ( )1
2 1

n p ).
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‘Special’ is not used in a general sense but if, and so long as, one can consider that, in a 
given case, the unbounded X is a theoretical schematization substituted for simplicity 
in place of an actual X, which is in reality bounded, but whose bounds are very large and 
imprecisely known.

This asymptotic prevision (as we shall call it for this reason) turns out to be:

, if and are;

, if one of the components is : if ;

if ;
, if both are infini

ˆ

te.

finite S S

infinite S
S S S

S
undefined

3.13 The Continuity Property

The property says (and we shall make this precise and prove it) that coherence is 
 preserved in a passage to the limit. The property does not hold (without further conditions) 
when we impose countable additivity. This turns out to be very useful as a tool in proofs 
of admissibility like the ones just given above (Section 3.12.4).

Theorem. Let Pn(E) be the evaluations of (coherent) probabilities defined over the 
same field of events E (or over different fields of events having E in common), and put 
P(E) = lim Pn(E) when it exists (letting E  ′ ⊆ E be the set of the E for which the limit 
exists). In this field the P(E) itself constitutes a (coherent) evaluation of probability.

Remark. In place of the (more ‘familiar’) formulation above, it would be (mathemati-
cally) preferable to substitute that in which one speaks of the prevision of random quantities 
rather than the probability of events, and hence of linear spaces (with appropriate 
 definitions and convergence) rather than ‘fields’.

Proof. The conditions of coherence are expressed by linear equations (or inequalities) 
involving a finite number of elements (events, or random quantities); in the passage to 
the limit these are preserved.

Remark. In a more expressive formulation (and more precise, so long as one recalls that 
the meaning of ‘convergence’ is that given above): an evaluation of probability P adhering 
to a set P  of coherent evaluations is coherent.
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4

4.1 Prevision and the State of Information

We have all at times insisted on making clear the fact that every prevision and, in 
 particular, every evaluation of probability, is conditional; not only on the mentality or 
psychology of the individual involved, at the time in question, but also, and especially, 
on the state of information in which he finds himself at that moment.

Those who would like to ‘explain’ differences in mentality by means of the diversity of 
previous individual experiences, in other words – broadly speaking – by means of the 
diversity of ‘states of information’, might even like to suppress the reference to the first 
factor and include it in the second. A theory of this kind is such that it cannot be refuted, 
but it seems (in our opinion) rather meaningless, being untestable, vacuous and meta
physical; in fact, since two different individuals (even if they are identical twins) cannot 
have had, instant by instant, the same identical sensations, any attempt at verification or 
refutation assumes an absurd hypothesis. It is like asking whether or not it is true that 
had I lived in the Napoleonic era and had participated in the Battle of Austerlitz I would 
have been wounded in the arm.

As long as we are just referring to evaluations relative to the same individual and 
state of information, there is no need to make any explicit mention of it; for example 
instead of P(E), writing something like P(E|H0), where H0 stands for ‘everything that is 
part of  that individual’s knowledge at that instant’. Indeed, something which in itself 
is so obvious, and yet so complicated and vague to put into words, is clearer if left to be 
understood implicitly rather than if one thinks of it condensed into a symbol, like H0.

Naturally, things change if we want to combine previsions that are relative to different 
states of information, and we shall see later that one cannot do without this. In precise 
terms, we shall write P(E|H) for the probability ‘of the event E conditional on the event H’ 
(or even the probability ‘of the conditional event E|H’), which is the probability that You 
attribute to E if You think that in addition to your present information, that is the 
H0  which we understand implicitly, it will become known to You that H is true (and 
nothing else). This H, on the other hand, may be a combination of ‘simpler’ events 
(this is obvious, but it is better to point it out explicitly); in other words, it can denote, 
in a condensed manner, a whole complex of new information, no matter how extensive 
(so long as it is well delimited).

Conditional Prevision and Probability
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The above explanations may be useful as a preliminary guide to the meaning of 
the  concept of conditional probability, P(E|H)  –  and, more generally, of conditional 
prevision, P(X|H)  –  which we are about to introduce. We ought to warn the reader, 
however, against an overhasty acceptance of these initial explanations, which, of 
necessity, skipped over certain important details, a discussion of which would have 
been premature (see the Remarks given in Chapter 11, 11.2.2). Think, instead, in terms 
of the definition that we are now going to give.

The definition is based on the same concepts and criteria that we met previously 
(see Chapter 3), except for the additional assumption that any agreement made – that 
is any bet or penalty clause – will remain without effect if H does not turn out to be true: 
in other words, everything is conditional on the ‘hypothesis’ H. (Concerning the termi
nology ‘hypothesis’, see Section 4.4.2.)

The ‘first criterion’ provides an intuitive explanation, which we exploit only to antici
pate the meaning of the ‘theorem of compound probabilities’. By paying the price P(HE), 
I can be sure of receiving one lira if HE occurs; but I can obtain the same result by paying 
P(E|H) only if I know H is true, and I can arrange for this amount, S = P(E|H), in the case 
of the occurrence of H by paying S. P(H) now; hence

 P P PHE H E H| . (4.1)

The same is true if, instead of an event E, I consider an arbitrary random quantity X; 
it is sufficient to observe that HX coincides with X, or is zero, depending on whether 
H  is true or false, and the extension of the preceding argument to this case becomes 
obvious.

4.2 Definition of Conditional Prevision (and Probability)

In order to give definitions of conditional probability and conditional prevision, and as 
a foundation for rigorous proofs, we choose to base ourselves on the ‘second criterion’.

Definition. Given a random quantity X and a possible event H, suppose it has been 
decided that You are subject to a penalty

 
L H X x

k

2

 
(k fixed arbitrarily in advance), where x  is the value which You are at liberty to choose 
as You like. (Note: we have L = 0 if H = 0 = false; L X x k/ 2 if H = 1 = true.)
P(X|H), the prevision of X conditional on H (in your opinion), is the value x  that You 

choose for this purpose.
In particular, if X is an event, E, then P(E|H), so defined, is called the probability of 

E conditional on H (in your opinion).

Coherence. It is assumed that (in normal circumstances) You do not prefer a given 
 penalty if You can choose a different one which is certainly smaller.

A necessary and sufficient condition for coherence in the evaluation of P(X|H), P(H) 
and P(HX), is compliance with the relation

 P P PHX H X H. / , (4.2)
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in addition to the inequalities inf(X|H) ≤ P(X|H) ≤ sup(X|H), and 0 ≤ P(H) ≤ 1; in the 
case of an event, X = E, relation (4.1),

 P P PHX H E H. | , 

is called the theorem of compound probabilities, and the inequality for P(X|H) reduces 
to 0 ≤ P(E|H) ≤ 1 (being = 0, or = 1, in the case where EH, or E ͂H, respectively, is 
impossible).

By inf(X|H) and sup(X|H), we denote the lower and upper bounds of the possible 
values for X which are consistent with H; such values are simply the possible values of 
HX, with the proviso that the value 0 is to be included only if X = 0 is compatible with H 
(i.e. if HX can come from H = 1, X = 0, and not only, as is necessarily the case, from H = 
0, with X arbitrary).

4.3 Proof of the Theorem of Compound Probabilities

Let us consider first the case of events, and denote by x, y, z the values we suppose to 
be chosen, according to the given criterion, as evaluations of P(E|H), P(H), P(HE). In 
this case, the theorem is expressed by (4.1), and, with the above notation, it states 
that z = xy.

The penalty (taking the coefficient k = 1) turns out to be

 L H E x H y HE z. ,2 2
 

that is, in the three cases to be distinguished,

 HE H E HE HE H E HE1 1 0, ,

 

 and H H HE 0 , 

we have

 

HE L u x y z

HE L v x y z

H L w y z

:

:

:

1 1 1

1

2 2 2

2 2 2

2





22
 

Geometrically (interpreting x, y, z as Cartesian coordinates) (Figure 4.1), the penal
ties u, v, w, in the three cases, are the squares of the distances of the point (x, y, z) 
from, respectively, the point (1, 1, 1), the point (0, 1, 0), and the x‐axis (that is from the 
point (x, 0, 0), the projection of (x, y, z) onto the axis). The four points lie in the same 
plane if a fifth one, (x, 1, z/y), does also (this is the intersection of the line joining the 
last two with the plane у = 1), and this therefore must coincide with (x, 1, x) – which 
is on the line joining the first two points. In order for this to happen, we must have z = xy, 
that is the point (x, y, z) must lie on this paraboloid (and, of course, inside the unit 
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cube): in this case, it is not possible to simultaneously shorten the three distances; in 
other cases this is possible.1

Turning to the general case of an arbitrary random quantity X, let us again use the 
notation x = P(X|H), y = P(H) and z = P(HX), and observe that the previous representa
tion is still valid, except that, instead of the two points (1, 1, 1) and (0, 1, 0) on the line 

1 A more detailed discussion can be found in B. de Finetti, ‘Probabilità composte e teoria delle decisioni’, 
Rendic. di Matematica (1964), 128–134. An English translation of this appears in B. de Finetti, Probability. 
Induction and Statistics, John Wiley & Sons (1972).

(0, 1, 0)

y

x

z

(0, 0, 0)
(1, 0, 0)

(1, 1, 1)

(0, 1, 0)

y

x

z

(0, 0, 0)
(x, 0, 0)

(x, 1, x)

(1, 1, 1)

(a)

(b)

(x,y,z)

Figure 4.1 The two diagrams illustrate, in two stages, the argument given in Section 4.3: (a) shows 
why the prevision‐point (x, y, z) must lie on a generator of the paraboloid z = xy (presenting visually 
the argument of the text); (b) shows the set of all possible prevision‐points (the part of the paraboloid 
inside the unit cube).
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y = 1, z = x, we must consider all the points whose abscissae x are possible for X and 
compatible with H. In fact, expanding (in canonical form) we have,

 

L H X x H y HX z

H X x y X z H y

. 2 2 2

2 2 21 1 22 2z .
 

If (x, y, z) were not on the paraboloid z = xy (i.e. not in the plane through the line y = l, 
z = x and the point (x, 0, 0)), one could, as before, make it approach, simultaneously, 
both the x‐axis and each point of the given line. In order that this should not be possible, 
it is necessary, in addition, to restrict oneself to the area (a quadrilateral bounded by the 
straight lines generating the paraboloid) given by

 0 1y X H x X Hand subinf | | . 

The convenience of substituting y = 0 and y = 1 for any y < 0, or y > 1, respectively, is 
obvious; that x must not be outside the bounds for (X|H) becomes clear (without spend
ing time on the calculations) if one observes, in mechanical terms, that in order to 
cancel out a force acting at the point (x, y, xy) directed towards (x, 0, 0) – that is tending 
to make it approach the x‐axis – it is necessary to have a force directed towards (x, l, x), 
which is opposite (or, alternatively, more than one, directed towards points which are 
on both sides of this point on the line y = 1, z = x). If the possible points were all on one 
side (and only in this case) all distances could be shortened by moving towards the 
nearest bound.2

4.4 Remarks

4.4.1. Let us note first of all that, as we have already seen in passing, in questions con
cerning the conditioned event, E|H, the event E itself does not actually enter the picture: 
the cases to be distinguished are, in fact, HE, HE ͂, H . Since H is called the ‘hypothesis’ of 
the conditioned event, HE could be called the ‘thesis’, HE͂ the ‘antithesis’, and H  the 
‘antihypothesis’. Every conditioned event E|H could then be written in the reduced form 
‘thesis’| ‘hypothesis’, HE|H (in fact, it does not matter whether one bets that if H occurs 
E does, or that if H occurs both H and E do). One might consider E|H as a tri‐event with 
values 1|1 = 1, 0|1 = 0, 0|0 = 1|0 = Ø, where 1 = true, 0 = false, Ø = void, depending on 
whether it leads to a win or a loss or a calling off of a possible conditional bet. More 
generally, for a conditioned (random) quantity, X|H, one could put X|1 = X, X|0 = Ø (if 
Ø is thought of as outside the real field, inf(X|H) and sup(X|H) automatically acquire the 
desired meaning, introduced previously as a convention). The systematic use of algo
rithms based on this set of ideas does not seem sufficiently worthwhile to compensate 
for the bother of introducing them; however, this brief mention may suggest a few argu
ments for which it might turn out to be suitable.

2 This conclusion might fail to hold if the possible points were all on the same side of (x, 1, x), but having 
this point as a bound (lower or upper). We will dwell upon detailed considerations of this kind in the sequel.
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4.4.2. As far as the use of the term ‘hypothesis’ for H is concerned, it should be unnec
essary to point out that it refers only to the position of H in E|H (or in X|H), and that, 
apart from this, H is any event whatsoever. We say this merely to avoid any possible 
doubts deriving from memories of obsolete terminologies (like ‘probability of the hypo
theses’ or, even worse, ‘of the causes’, a notion charged with metaphysical undertones.

4.4.3. This being so, together with E|H one can always consider H|E as well (where E 
becomes the ‘hypothesis’); indeed, since EH = HE, we obtain immediately the relation
ship between the probabilities of these two conditional events:

 P P P P PEH E H E H E H| | , 

which implies that

 
P P

P
P

P 0E H E
H E

H
H|

|
provided ; (4.3)

this last formula is Bayes’s theorem, whose fundamental rôle will be seen over and over 
again. Observe, however, that it is merely a different version, or corollary, of the theo
rem of compound probabilities.

The fact that relationships of this kind are of interest, also shows why it is not conveni
ent (contrary to appearances) to consider systematically the reduced form, HE|H (i.e. 
E|H with EH  = 0), which would simply give

 P P PE H E H| / . 

4.4.4. Anyway, on the basis of the theorem of compound probabilities, one can deduce 
(provided P(H) ≠ 0) that

 P P PE H HE H| / ; (4.4)

this shows that, from a formal standpoint, and assuming coherence, conditional probability 
is not a new concept, since it can be expressed by means of the concept of probability that 
we already possess. This observation is, in fact, made use of in the axiomatic treatments; 
however, using this approach, one obtains the formula, not the meaning. For this reason 
(and also so as not to leave out the case, albeit a limit‐case, where P(H) = 0) we have consid
ered it necessary to start from the essential definitions and prove the theorem of compound 
probabilities (instead of reducing it to a definition, which could appear arbitrary).

4.5 Probability and Prevision Conditional on a Given 
Event H

4.5.1. Let us examine how, for all the events E, and random quantities X, of interest, 
one passes from probabilities P(E), and previsions P(X) (we will call them actual, in 
order to distinguish them), to those conditional on a given event H. We already know 
that P(E|H) = P(HE)/P(H)  –  let us suppose that P(H) ≠ 0  –  and, in general, that 
P(X|H) = P(H|X)/P(H), but it is useful to think about this and give some illustrations, 
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and in the meantime to observe also that P(∙|−H) is additive, etc.; that is it is an admis
sible P (an element of P in the linear ambit we started with). In fact,

 P P P P P P PX Y H HX HY H HX H HY H| / / / ; 
in particular, for events A and B, P(A + B|H) = P(A|H) + P(B|H) and in the case of 
incompatibility the same holds for P(A Ú B|H); we therefore have

 P 1 PE H E H| | , .and so on  
4.5.2. Decomposing E into EH + EH  (incompatible parts, constrained to be in H and 

in H , respectively) one sees immediately that it is the first part which gives rise to the 
value P(E|H) = P(EH)/P(H) (i.e. it increases in the same ratio as P(H) to 1, and the same 
is true for H, which goes from P(H) to P(H|H) = 1), whereas the contribution of the 
second part is zero

 P P PEH H EHH H H | | | ).0 0  
Interpreting the events as sets, and the probability as mass, one obtains for this case a 

more effective and instructive image; considering the probability conditional on H implies:

 ● making all masses outside the set H (‘hypothesis’) vanish,
 ● normalizing the remaining masses (i.e. altering them, proportionately, so that the 

total mass is again ‘one’).

The same rule holds for P(X|H), and could also be interpreted within this same 
framework (but in a less obvious form and, for the time being anyway, unintuitively.

4.5.3. Mentioning this is not only convenient from the point of view of having the rule 
of calculation easily at hand but, as we have said, it is conceptually instructive. If these 
obvious considerations are well understood, confusions that are often irremediable will be 
avoided. The acquisition of a further piece of information, H – in other words, experience, 
since experience is nothing more than the acquisition of further information – acts always 
and only in the way we have just described: suppressing the alternatives that turn out to be 
no longer possible (i.e. leading to a more strict limitation of expectations). As a result of 
this, the probabilities are the P(E|H) instead of the P(E), but not because experience has 
forced us to modify or correct them, or has taught us to evaluate them in a better way (even 
if statements of this kind might perhaps appear tolerable at the level of a crude populari
zation): the probabilities are the same as before – even if in complicated cases this is less 
evident and perhaps, at first sight, not even believable – except for the disappearance of 
those which dropped out and the consequent normalization of those which remained.

4.6 Likelihood

4.6.1. Bayes’s theorem – in the case of events E, but not random quantities X – permits us to 
write P(∙|H) in the form we met above, a form which is often more expressive and practical:

 P P P P P PE H E H E H K E H E| | / . | , (4.5)



Theory of Probability: A Critical Introductory Treatment 120

where the normalizing factor, 1/P(H), can be simply denoted by K, and, more often than 
not, can be obtained more or less automatically without calculating P(H). For this rea
son, it is often convenient to talk simply in terms of proportionality (i.e. by considering 
P(∙|H) only up to an arbitrary, nonzero, multiplicative constant, which can be deter
mined, if necessary, by normalizing).

One could say that P(∙|H) is proportional to P(∙) and to P(H|∙), where the dot stands 
for E, thought of as varying over the set of all the events of interest. More concisely, this 
is usually expressed by saying that

 ‘final probability’  ‘initial probability’ ‘likelihood’K  

where = K denotes proportionality, and we agree to call: the initial and final probabilities 
those not conditional or conditional on H, respectively (i.e. evaluated before and 
after having acquired the additional knowledge in question, H), and the likelihood of 
H given E, the P(H|E) thought of as a function of E (and possibly multiplied by any 
factor independent of E, e.g. 1/P(H), the use of which would allow the substitution of 
‘ = ’ for ‘= K’, or anything resulting from the omission of common factors, more or less 
cumbersome, or constant, or dependent on H). The term ‘likelihood’ is to be under
stood in the sense that a larger or smaller value of P(H|E) corresponds to the fact 
that the knowledge of the occurrence of E would make H either more or less probable 
(our meaning would be better conveyed if we spoke of the ‘likelihoodization’ of 
H by E).

4.6.2. This discussion leads to an understanding of how it should be possible to 
pass from the initial probabilities to the final ones through intermediate stages, 
under the assumption that we obtain, successively, additional pieces of information 
H1, H2,…, Hn (giving, altogether, H = H1H2 … Hn). In fact, one can also verify 
 analytically that

 

P P P

P P P P P

E H H EH H H H

E H E H EH H

|

| /
1 2 1 2 1 2

1 2 1 1

/

| HH H
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|
|. . . |P P P  

 = (the probability of E) × (the likelihood of H1 given E
 × (the likelihood of H2 given EH1).
 In general,

 

P P
P P P P
P

E H E H H H
K E H E H EH H EH H

n| |
. . | . | . |

1 2

1 2 1 3 1 2

HH EH H Hn n| .1 2 1  

Although the introduction of the term ‘likelihood’ merely gives a name to a factor in 
Bayes’s formula, which refers to its rôle in the formula (in addition to the existing 
term, conditional probability, and apart from the indeterminacy we agreed to by 
defining it up to multiplicative factors), it has the advantage of emphasizing this fac
tor, which will be present in various forms in more and more complicated problems.
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4.7 Probability Conditional on a Partition 

Let us consider a (finite3) partition  = (H1, H2,…, HS), and the probabilities, P(E|Hj), of  
an arbitrary event E conditional on each of the Hj. Since EH1 + EH2 + … + EHS = E(H1 + 
H2 + … + Hs) = E.1 = E, and P(EHj) = P(Hj)P(E|Hj), one has

 
P P PE H E Hj j

j
| : (4.6)

in words, it is the weighted average, with weights P(Hj), of the probabilities of E condi-
tional on the different Hj. In particular, it lies between them:

 min | |P P PE H E E Hj jmax  (4.7)

(and it coincides with them if they are all equal). We shall call this property (which is not 
always valid for infinite partitions) the conglomerative property of conditional probability 
(and prevision).

If we consider as a random quantity, and denote by P(E| ), the quantity whose value 
is P(E|H1) if H1 occurs, and so on, in other words, in formulae,

 
(4.8)

we can write the expression above as

 P P PE E | .H  (4.9)

More generally, we have, of course,

 P P PX X | .H  (4.10)

The procedure displayed above, obtaining a prevision by decomposing it into 
 previsions conditional on the alternatives in a partition (which may often be chosen in 
such a way as to make the task easier, either through mathematical convenience, or 
through psychological judgement), is very helpful in many cases. We shall see this in ad 
hoc examples, and even more so in the frequent references we make to it in what follows.

4.8 Comments

The idea of considering P(E| ) as a random quantity requires some further comment.

4.8.1 As we have said, a random quantity X is a quantity that is well defined, in an 
objective sense, although unknown. Does this mean then that, taking X = P(E| ) with 
the meaning that X = P(E|Hj) = xj if Hj occurs, under such a hypothesis it is objectively 
true that the value of the above‐mentioned probability is xj? Certainly not; but the 

3 This restriction cannot be removed without further conditions (see later: Section 4.19).
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possibility of this doubt must be removed. The problem is meaningful only after a par
ticular evaluation of the probabilities P(E|Hj) has been taken into consideration; whether 
this is a subjective evaluation of a given individual, or a hypothetical evaluation. Given 
this, independently of the fact that the xj have been determined as a result of these 
actual or hypothetical evaluations, instead of by measuring magnitudes or by choosing 
them at random, they are objectively determined numbers. That the value of X turns 
out to be xj when Hj occurs is true in the sense that xj is the value that by definition has 
been associated with Hj The fact that the association is as an evaluation of P(E|Hj), 
made at a certain moment, by a certain individual, may or may not be of interest, but is 
irrelevant to the definition.

4.8.2. For equation 4.9 (or 4.10) to be true, it is of course necessary that P always refers 
to the same individual: the average of the P1(E|Hj) of one individual weighted by the 
P2(Hj) of another does not give the P(E) of either of them; neither P1(E) nor P2(E).

4.8.3. The idea of considering P(E| ) as a random quantity often leads to a tempta
tion that one should be warned against: this is the temptation of saying that we are faced 
with an ‘unknown probability’, which is either x1 or x2 … or xs but we do not know which 
is the true value, xj, until we know which of the hypotheses Hj is the true one. At any 
moment, the probability is that relative to the information one has; it can refer, for 
convenience, to different hypothetical pieces of information that can be arbitrarily cho
sen in an infinite number of ways, thus obtaining an infinite number of different condi
tional probabilities. None of them, and likewise none of the possible hypotheses, has 
any special status entitling them to be regarded as more or less ‘true’. Any one of them 
could be ‘true’ if one had the information corresponding to it; in the same way as the 
one corresponding to one’s present information is true at the moment.

4.8.4. In those cases in which it turns out to be convenient to refer to a partition – and 
these are the only cases in which the temptation meets needs which are essentially 
meaningful – it is a question, as we have just made clear above, of ‘probabilities condi
tional on unknown objective hypotheses’. As usual, by ‘convenient’ we are referring to 
making an evaluation easier by taking one step at a time, and by choosing the easiest steps.

Probability is the result of an evaluation; it has no meaning until the evaluation has 
been made and, from then on, it is known to the one who has made it.4 For this obvious 
reason alone, the phrase ‘unknown probabilities’ is already intrinsically improper, but 
what is worse is that the improper terminology leads to a basic confusion of the issues 
involved (or reveals it as already existing). This is the confusion that consists in thinking 
that the evaluation of a probability can only take place in a certain ‘ideal state’ of informa
tion, in some privileged state; in thinking that, when our information is different (as it 
will be, in general), more or less complete, in part more so, in part less so, or different in 
kind, we should abandon any probabilistic argument (and, perhaps, rely on adhockeries).

4.8.5. On the contrary, there are innumerable possible partitions, which might appear 
more or less special in character. In order to restrict ourselves to a single example, let us 

4 For me, someone else’s evaluation may be unknown, etc.; however, it is for me an objective fact (an 
evaluation), independently of the subjective reasons which, within him, have led to its determination.
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assume that we have to make a drawing from an urn containing 100 balls. We do not know 
the respective numbers of white and black balls but, for the sake of simplicity, let us sup
pose that we attribute equal probabilities to symmetric compositions, and equal probabil
ity to each of the 100 balls: the probability of drawing a white ball is therefore 1

2. Someone 
might say, however, that the true probability is not 1

2  but b/100, where b denotes the 
(unknown) number of white balls: the true probability is thus unknown, unless one knows 
how many white balls there are. Another person might observe, on the other hand, that 
1000 drawings have been made from that urn and, happening to know that a white ball 
has been drawn B times, one could say that the true probability is B/1000. A third party 
might add that both pieces of information are necessary, as the second one could lead him 
to deviate slightly from attributing equal probabilities to all the balls (accepting it, in the 
absence of any facts, as a frequency, somewhat divergent from the actual composition). 
A fourth person might say that he would consider the knowledge of the position of each 
ball in the urn at the time of the drawing as constituting complete information (in order 
to take into account the habits of the individual doing the drawing; his preference for 
picking high or low in the urn): alternatively, if there is an automatic device for mixing 
them up and extracting one, the knowledge of the exact initial positions which would 
allow him to obtain the result by calculation (emulating Laplace’s demon).5

Only in this case (given the ability) would one arrive, at last, at the true, special parti
tion, which is the one in which the theory of probability is no longer of any use because 
we have reached a state of certainty. The probability, ‘true but unknown’, of drawing a 
white ball is 100% under the hypothesis that the ball to be drawn is white, and 0% under 
the hypothesis that it is black.

But uncertainty is what it is; information is the information that one actually has (until 
we can obtain more, and so reduce uncertainty). If one wants to make use of the theory of 
probability one can only apply it to the actual situation; if one wants to make a plaything 
of it, little problems can be invented on which it is imagined that one can pin the label 
‘objective’ in a facile fashion; one must not mix up the two things, however: even Don 
Quixote did not consider venturing forth upon the world astride a rocking‐horse.

4.9 Stochastic Dependence and Independence; Correlation

4.9.1. The probability of E conditional on H, P(E|H), can be either equal to P(E), or 
greater, or less. This means that the knowledge (or the assumption) that H is true either 
does not change our evaluation of probability for E, or leads us to increase it, or to 
diminish it, respectively. In the first case, one says that E is stochastically independent of 
H (or uncorrelated with H); in the other cases, E is said to be stochastically dependent 
on H; more precisely, either positively or negatively correlated with H.

We observe straightaway that the property is symmetrical: the theorem of compound 
probabilities enables us to write down immediately (for P(E) and P(H) nonzero)

 

P
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H

EH
E H

| |
.

 (4.11)

5 In practice, the various partitions which may present themselves as ‘reasonable’ are, in fact, much more 
numerous than in this example, which is already quite ‘traditional’ in itself.
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and hence it turns out that the ratio by which the probability of E increases or decreases 
when conditioned on H is the same as that for H conditioned on E, and it is also equal to 
the ratio between the probability of EH and the product of the probabilities of E and H. 
Obviously, in the case of stochastic independence, this product is P(EH); in fact,

 P P P P P P PEH H E H H E E H E. | | .assuming  (4.12)

Therefore, we may also say, in a symmetric form, that two events are stochasti
cally independent (uncorrelated) or are negatively or positively correlated (with each 
other). It is clear that if E and H are positively correlated the same is true for E͂ and H , 
whereas the reverse is true for E and H , and for E ͂ and H: if one of the pairs is 
 stochastically independent (uncorrelated) the same is true in all four cases. (Verify 
this as an exercise.)

Remarks. This symmetry in behaviour between positive correlation and negative cor-
relation no longer holds, however, when more than two events are considered. Although 
positive correlations, however strong, are always possible, negative correlations are not 
possible unless they are very weak (at least on average), the more so the greater the 
number of events.

The proof will be given (for the general case of random quantities) in Section 4.17.5: 
at the present time we do not even have the concepts required to express the statement, 
except in the informal way given above. At this juncture, it is necessary to point out the 
conceptually significant aspects of the matter rather than leaving it until the technical 
exposition to which we referred. In that exposition, Figures 4.3a and 4.3b reveal the 
reason, in an intuitive fashion, by means of the following analogy: it is possible to imag-
ine as many vectors as we wish forming arbitrarily small angles, but not forming angles 
which are all ‘rather’ obtuse:6

4.9.2. For more than two events, E1, E2, …, En, say, we could, of course, consider pair
wise stochastic independence, P(EiEj) = P(Ei)P(Ej), i ≠ j, but, in fact, they are termed 
stochastically independent only if

 
P P P PE E E E E Ei i i i i ik k1 2 1 2

 (4.13)

holds for any arbitrary product of the events Ei: this condition is, as we shall see later, 
more restrictive. This property, if it holds for the Ei also holds if some of them are 
replaced by their negations E ͂i as we have already observed in the case of two events. We 
therefore have, for stochastically independent events Ei, whose probabilities are denoted 
by pi, that the probability of a product, such as E͂1E͂2E3E4E͂5, is obtained by simply writing 
p in place of E; thus   p p pp p1 2 3 4 5, that is (1 − p1)(1 − p2)p3p4(1 − p5). More generally, 
for any event E, which is logically dependent on the Ei, and expressed arithmetically in 

6 This sentence is rather vague, but rather than make it complicated it is preferable to ask the reader to 
accept it for now, simply as a reference to what we shall see in more detail shortly.



4 Conditional Prevision and Probability 125

terms of them in canonical form (with +, . and ~), the probability is expressible in terms 
of the pi by the same formula.7 For example, if

 E E E E EE E1 2 3 4 5 6  , 

expanding, we obtain

 E E E E E E E E E EE E E1 2 3 1 2 3 4 5 6 4 5 6   , 

and so on, and finally one could substitute p for E. In fact, since no E appears repeated 
in both parentheses, we can substitute straightaway (without arriving at a single sum of 
products) and write

 P E p p p p p p p p pp p p1 2 3 1 2 3 4 5 6 4 5 6   . 

4.9.3. A particular, celebrated case, and one which has been extensively studied, is that 
of stochastically independent and equally probable events, pi = p; this is the Bernoulli 
scheme, also referred to as that of ‘repeated trials’. For every E, logically dependent on n 
such events, the probability P(E) turns out to be expressed by a polynomial in p (of 
degree at most n); for example, the E considered above (depending on the six events 
E1 … E6) would have the probability

 

P E p p p pp pp p p p p p p

p p p

p2 3 2 2 2 3

3 4

1 1

2

  

pp p5 6 .  

Less obvious algebraically, but more meaningful, would be the analogous expression as 
a homogeneous polynomial of degree n in the two variables p and 

p p( )1 ; it is 
obtained, in an obvious fashion, by multiplying each term by a suitable power of 
( )p p 1. In the previous example, operating in the two factors right from the begin
ning, one has, for example,8

 

P E p p p p p p p p p p p p p pp

pp

     



2 2 2

5 5 9 8 22 4 3 3 4 2 5p p p pp p p p    .  

7 The reduction to canonical form is not necessary: it is only required to draw attention to the fact 
that, when we expand, powers Ei

k, with k > 1, do not appear formally; to these would correspond 
probabilities pi

k instead of pi as must be the case by virtue of the idempotence of the Ei, Ei
k. For example, if 

E E E E E E E E E E E E E1 2 1 3 1 2 1 2 1 3 1 3  and we substituted straightaway, we would wrongly 
obtain P E p p p p p p p p p p p p p p pp p pi1 2 1 2 1 3 1 3 1

2
2 3 2 3 2 3 2   33, whereas, in place of the 

first factor, p1
2, we should have p1. As a general rule, one might consider substituting the pi for the Ei, 

suppressing the exponents at the end: this procedure could be dangerous, however, since if the pi were 
equal, for example, and were replaced straightaway by p, one would make a mistake in the opposite 
direction.
8 By introducing the ratio, r = p/ p (see Chapter 5), we have p p rph n h n h

  , and therefore the polynomial in 
p and p can be written as 

pn × a polynomial in r; in the example given, we would have P(E) = p6(r + 5r2 + 
9r3 + 8r4 + 2r5).



Theory of Probability: A Critical Introductory Treatment 126

The significance of this lies in the following: the coefficients denote the number of 
constituents of E corresponding to the different frequencies of the Ei. In precise 
terms, the coefficient of p ph n h

  is the number of constituents in which h of the Ei 
occur, and n − h do not: in other words, with h factors of the form Ei and n − h of the 
form E ͂i. In  the example given, one sees that there is one constituent with a single 
occurrence (i.e. (1 Ú 0. 0) ( . ) 0 00 ), five with two, nine with three, eight with four and 
two with five (this is easily verified because the two factors each have five favourable 
constituents, of which those containing 0, 1, 2, 3 occurrences number, respectively, 
0, 1, 3, 1 and 1, 2, 2, 0).

4.9.4. An even more special case is that in which p 1
2  This is usually referred to as the 

case of Heads and Tails (although we could also think in terms of any other interpreta
tion and application, and although the case of Heads and Tails is an exceptional one, 
where some ‘objective circumstance’ forces us to adopt this evaluation of probability). 
In this case, each constituent has probability p ph n h n



1
2  and P(E) = 1

2
n
 × the sum of 

the coefficients of the polynomial in p and p (or in r), which is, in other words, the ratio 
between the number of constituents (or cases) which are favourable to E, and the total 
number (2n) of constituents.

4.10 Stochastic Independence Among (Finite) Partitions

4.10.1 There is an obvious and immediate extension of the notion of stochastic 
independence from the case of events to that of (finite) partitions; in other words, 
if one wants to use such terminology, to multi‐events, like E E E Em1 2, , ,  and 
E E E Em1 2, , , , and, in particular, to random quantities with a finite number 
of possible values. It will simply imply that every event of a partition is stochasti
cally independent of every event of the other one: P P PE E E Eh k h h  (h = 1, 
2,…, m′; k = 1, 2,…, m″), and, in particular, for random quantities X and Y it will 
mean that

 P P PX Y x y X x Y y X x Y yh k h k h k, , . . .   (4.14)

And so on for three or more partitions or random quantities (referring always to the 
finite case).

4.10.2. Let us now prove that pairwise stochastic independence is, as we said, a neces
sary but not sufficient condition for the stochastic independence of n events (and, 
a fortiori, of n partitions): two examples will suffice.

Let A, B, C, D be the events of a partition, to each of which we attribute proba
bility 1

4  The events E1 = D + A, E2 = D + B, E3 = D + C are pairwise independent 
(EiEj = D, P(EiEj) = 1

4  are P(Ei)P(Ej) = 1
2

1
2), but are not so when taken three at a 

time, since E1E2E3 = D, and the probability of the product of all three of them is 
still 1

4  instead of 1
8 .

Similarly, considering A + B, B + C, C + A, the products two at a time would have 
probability 1

4 , but the product of all three is impossible and therefore has probability 
zero and not 1

8 .
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More generally, one can have stochastic independence up to a given order, ‘m by 
m’ say, but riot beyond this, as the following example (a generalization of the previ
ous ones) shows. Let E1, E2,…, Em be stochastically independent events each of 
probability 1

2   (i.e. every ‘constituent’ has probability 1
2

m
), and let E be the event 

which consists of the fact that among the Ei there are an odd number of false ones: 
E E EE m  1 2 odd . It is clear that E is logically dependent on the Ei (by 
definition, and, on the other hand, EE1 … Em = 0 with certainty, since either some of 
the Ei are 0, or all of the E ͂i and their sum are 0, hence not odd, so that E = 0), but is 
stochastically independent of m − 1 of them (conditionally on any results of these, 
E coincides either with the omitted event or with its negation).

4.10.3. Suppose we have two partitions, into m′ events E Em1  and into m″ events 
E Em1 , respectively. To say that in each of them the probabilities of the different 
events are equal (to p′ = 1/m′ and p″ = 1/m″, respectively) and that they are stochasti
cally independent, implies that the m = m′m″ events E Eh k  of the product‐partition all 
have the same probability, p = p′p″ = 1/(m′m″) = 1/m; conversely, this property implies 
the two previous ones. The same obviously holds for three or more partitions. We shall 
come back to this fact, which is the basis for many applications of the combinato
rial type.

4.10.4. If we have different partitions, or multi‐events, which are stochastically 
independent and have equally distributed probability (e.g. successive drawings 
with replacement from an urn, with fixed probabilities of drawings for balls of m 
different colours, p1 + p2 + … + pm = 1), we have an extension of the Bernoulli 
scheme given above; ‘repeated trials’ for multi‐events. It is clear how the considera
tions made in the previous case could be generalized: for every event E which is 
 logically dependent on n m‐events, the probability P(E) can be expressed as a 
 polynomial c p p ph h h

h h
m
h

m
m

1 2
1 2

1 2  (the sum being over all m‐tuples of non‐negative 
integers with sum = n). The coefficients give the number of favourable constituents 
containing the ith result hi times (i = 1, 2,…, m). In the case of equal probabili
ties (p1 = p2 = … pm = 1/m), a generalization of Heads and Tails (m = 2), the prob
abilities are

 

P E mn1/ the sum of the coefficients of the polynomial
tthe ratio of the number of constituents or cases

favourablle to  and the total number of
all constituents possibl

E mn

ee cases .

 (4.15)

4.11 On the Meaning of Stochastic Independence

4.11.1. It is absolutely essential to continue to underline the fact that the notion of 
 stochastic independence does not belong to the domain of the logic of certainty, but to 
that of prevision, and that therefore – like probability and prevision – it has a subjective 
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meaning. After presenting the necessary details in an abstract setting, we shall need to 
dwell upon the various considerations required to illustrate them in practice. This is of 
paramount importance if one takes into account that people usually seem to think – or, 
at least, allow it to be thought, since objections are rarely put forward – that the mean
ing of stochastic independence is self‐evident and objective, and that this property 
always holds, except for special cases of interdependence. So much so that in applica
tions to many practical problems9 one often comes across notions and formulae that are 
valid if the hypothesis of stochastic independence is adopted, but where this hypothesis 
does not turn out to be justified and is not, in fact, introduced explicitly, but only tacitly, 
and perhaps inadvertently. The habit of simply saying ‘independence’, as if it were a 
unique notion, plays a part in obscuring the special nature of the notion of stochastic 
independence. For the sake of brevity, we shall also adopt this habit when there is no 
ambiguity, or when it is not required to underline the sense: we shall only do it, however, 
after having given warning of this, and of the existence of other notions which are, in a 
certain sense, similar. We have already met those of linear and logical independence 
(whose meaning resides within the logic of certainty), and the notion of things being 
uncorrelated (which, in the case of events, is synonymous with pairwise stochastic inde
pendence, but which, in the case of random quantities, will turn out to be different, as 
we shall shortly see).

4.11.2. The definition of stochastic independence depends on the evaluation of prob
ability; that is on the choice of a particular P. If A and B are two logically independent 
events, an individual can evaluate P(A), P(B) and P(AB) in any way whatsoever,  provided 
that (see Chapter 3, 3.9.4) P(AB) turns out to be not less than P(A) + P(B) − 1, and not 
greater than either of P(A) and P(B) (which, in any case, are all numbers between 0 and 1). 
The ratio P(AB)/P(A)P(B) can, therefore, assume all non‐negative values, depending on 
the appraisal of the person making the evaluation.10

Even if, for the sake of brevity, we shall occasionally say that two events (or parti
tions, etc.) are stochastically independent, it must be remembered that this is ‘with 
respect to a given P’; in other words, ‘according to the opinion of the person who has 
chosen the evaluation P’ is to be understood. In particular, in the case of logically 
independent events or partitions, however the probabilities are evaluated, the evalua
tion extended on the basis of the hypothesis of independence is coherent. If, on the 
other hand, we do not have logical independence, that is some product is impossible, 
for example E E E Ei j h  (three elements of three partitions), we necessarily have 
P(E)  = 0: we can have the relation P P P PE E E Ei i h  if at least one of the 

9 As H. Bühlmann observes (in a report at the ASTIN Congress in Trieste, 1963), the condition of 
independence is often understood and assumed to be valid when it is not valid at all. He refers to the field of 
insurance and actuarial mathematics (but what he says is unfortunately true in many other fields). 
Sometimes, rather than tacitly stating, or considering as obvious, the condition of independence, one 
considers that ‘not knowing much about the interdependence’ provides a justification for it. This is 
tantamount to saying that if we do not know much about the behaviour of a function we can argue as if we 
knew that it were a constant.
10 After having evaluated P(A) = a and P(B) = b, the ratio P(AB)/P(A)P(B) can still assume all nonnegative 
values if a + b ≤ 1, and all values not less than 1 – ( )

ab ab/  otherwise. In any case, the three cases of positive, 
zero and even negative correlation (since this minimum is always less than 1) remain possible.
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factors is zero, the relations P P PE E E E E E Ei j h i j h| |  (and similar ones) only 
if all the factors are zero. In other words, the given arithmetic conditions of stochastic 
independence cannot hold, except in the limit cases mentioned above, which do not 
fall within the definition given in the form of a product, and the more extreme cases, 
which do not even fall within the definition given in terms of conditional probability. 
Rather than accept this anomaly, it is preferable to eliminate it by including logical 
independence as a prerequisite for the definition of stochastic independence. The 
justification of this is that it is equivalent to taking into account the difference between 
possible events to which zero probability is attributed and impossible events. This is 
the same distinction as that between empty sets and nonempty sets of measure zero; 
a much more fundamental distinction than that between nonempty sets with zero or 
nonzero measure.

Given these considerations about limit‐cases, we can now say (in the case of finite 
partitions) that stochastic independence presupposes logical independence (but 
 certainly not vice versa). As far as linear dependence is concerned, we recall that it 
is a particular form of logical dependence and, therefore, it excludes stochastic 
independence.

In order to complete this hierarchy of notions, let us say at this point that absence of 
correlation will be a subjective notion weaker than stochastic independence (but when 
applied under more and more restrictive conditions it may lead to it).

4.12 Stochastic Dependence in the Direct Sense

Let us now illustrate some of the kinds of factors that may often influence our judg
ments of whether events are stochastically independent or dependent. It is necessary to 
learn how to think carefully about the presence of these factors in order to avoid assum
ing too readily the hypothesis of stochastic independence, a practice we have already 
criticized. In putting forward these few cases, we are not attempting an exhaustive 
treatment, and the mention of these cases is not meant to correspond to a classification 
having any theoretical value (indeed, the distinctions which we shall make, with the sole 
aim of drawing together a few examples, might become empty, nebulous abstractions if 
taken too seriously).

Anyway, without any intention of becoming theoretical, let us call, informally, sto
chastic dependence in the direct sense, the case that arises in the most evident form, and 
in the most obvious and common examples in treatments from all conceptual view
points. This is the case in which the occurrence of an event changes the circumstances 
surrounding the occurrence of another one (in a way considered relevant to the evalua
tion of the probability). Standard examples are: drawings from an urn without replace
ment (where the drawing of a white ball decreases the percentage of white balls for the 
next drawing); contagious diseases (where a diseased individual increases the probabil
ity that people close to him catch the illness); the breakdown of machines and so on 
(where the difficulties caused by a breakdown of one of them precipitates the break
down of others); the outcomes of successive trials in a competition (where, due to the 
initial results, the objective conditions for the succeeding trials change; for example the 
height of the bar in a high jump competition), and so on.
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Examples of this kind draw attention to dependence ‘in one direction’ – chronologi
cally (dependence of what happens afterwards on what has happened before). This 
corresponds to the interpretation – often, in fact, referred to when considering cases 
of this kind – based on the idea of ‘cause’. That this is irrelevant is seen by observing 
that the relationship of dependence or independence is symmetric. Anyway, we take 
this opportunity of remarking that, for ‘conditional’ bets too, it is of no importance 
whether the ‘fact’ refers to the future or the past and, in particular, whether, chrono
logically, it follows or precedes the other ‘fact’ assumed as the hypothesis for the valid
ity of the bet. One could very well bet on the occurrence of a certain event today, 
stipulating that the bet will be effective only if some other event takes place in a 
month’s time.

Our desire to discuss this case of ‘direct’ dependence was not so much because it 
needed attention drawing to it, but, on the contrary, to make the reader subsequently 
aware of the incompleteness of discussions which mention only this form of depend
ence, and lead one to believe that, apart from such cases, there is no reason to depart 
from the formulation in terms of stochastic independence. We therefore proceed now 
to consider certain other examples.

4.13 Stochastic Dependence in the Indirect Sense

By this we mean, in an informal way, as above, those cases in which the occurrence of 
an event has no influence on the occurrence of another one, but in which there are some 
circumstances that can influence both events. In other words – if one wishes to speak 
in terms of ‘causes’ – there is a ‘cause’ common to these events, but there is no direct 
‘causal’ relationship between them. For example, in considering (the possibility of ) two 
ships both being wrecked in the same area, on the same day (even without assuming 
collisions or any direct interference of this kind), one might rightly imagine a positive 
correlation, since both probabilities are influenced in the same way by common circum
stances (like the state of the sea; calm or stormy). The same holds true for the deaths of 
two individuals during next winter, since, if it is very cold, the probability of death will 
increase for both of them. In the same way, if we ask whether two participants in a 
competition will achieve better results than some other participant, the result obtained 
by the latter will influence the two events in the same way, even if one judges the three 
results to be stochastically independent. This latter example can also be given an inter
pretation in terms of a game of chance in which A and B ‘win’ if they obtain a greater 
score than the ‘bank’ does. Interpreting the score as that obtained by throwing a die, 
then, in terms of the ‘score’ obtained by the ‘bank’, the probabilities of wins for A or B, 
or both, are given by

the ‘bank’s’ score (H): 1 2 3 4 5 6
P(A|H) = P(B|H) = 5/6 4/6 3/6 2/6 1/6 0
P(AB|H) = 25/36 16/36 9/36 4/36 1/36 0

and averaging (assuming that each of the six cases has probability = 1/6)
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This example shows that conditional on each of the possible hypotheses for the 
‘bank’s’ score, H = (‘points’ = h) with h = 1, 2,…, 6, the two events are stochastically 
independent, but that this independence conditional on each event of a partition does 
not imply stochastic independence. We will return shortly to an explicit consideration of 
this notion and this result, to which the case of indirect dependence essentially reduces.

There is one case, however, which derives even less from ‘objective’ circumstances.

4.14 Stochastic Dependence through an Increase 
in Information

If it is true (as it is, in fact) and if one can justify (as we have, for the moment, simply 
assumed) that the probability of an event is often evaluated on the basis of observed 
frequencies of more or less similar events, then this fact implies a stochastic depend
ence. In fact, observed events provide a certain amount of experience capable of modi
fying, as time goes on, the evaluations of probabilities based on frequencies. Indeed, it 
is precisely the analysis based on these present considerations that will lead later 
(Chapter 11) to an explanation of why and under what conditions such a criterion of 
evaluation turns out to be justified.

The situation to which we refer is obviously relevant in the case of ‘new’ phenomena; 
that is those about which there is little past experience: think, for instance, of the suc
cess or failure of the first space launches; of the first trials employing a new drug, or 
something of that kind; of the probability of death in a species of animal never before 
observed; of the risks attached to nuclear experimentation, and so on. Putting on one 
side the hypothesis of ‘new’, the situation does not change in essence but does change 
quantitatively, as a few, or even many, trials cannot produce any substantial alteration of 
a frequency arrived at after a great many previous trials. This is so unless one is led to 
behave as if faced with a ‘new’ phenomenon: thinking, for instance, that because of a 
change in circumstances (or for whatever other reason) the future frequency of an ‘old’ 
phenomenon (like mortality, fire, hail, or anything else) will closely resemble the fre
quency suggested by a small number of recent experiences, rather than the frequency 
observed in a large number of less recent experiences.11

In a certain sense, the situation is the same as that of drawings with replacement from 
an urn of unknown composition: the probabilities of white balls at successive drawings 
turn out to be interdependent because the results, as they are obtained, make one’s 
ideas about the composition of the urn more precise (and the smaller the past experi
ence, the greater the influence it has on our ideas). This case could really have been 
included among the previous examples of indirect dependence (dependence on the 

11 This is the problem studied by American actuaries under the heading of ‘Credibility Theory’; see the two 
lectures by A.L. Mayerson and B. de Finetti containing information and discussion about this topic: Giorn. 
Ist. Ital. Attuari (1964).
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unknown composition of the urn); the only difference – an irrelevant one – is the fact 
that here the composition is an unknown but pre‐existent datum, whereas in the other 
examples we were dealing with the influence of future events, uncertain at the moment 
when the question was posed. Instead, in the given examples of ‘new phenomena’ our 
disposition to review the evaluation was not attributed to ignorance of circumstances, 
or of specific, objectively determined magnitudes, but, in a general way, to a lack of 
familiarity with the phenomenon. There may be those who would like to say that such 
an ‘objective magnitude’ is the ‘constant, but unknown, probability’. We have explained 
many times, however, that it is not admissible to speak in this way, and we shall also see 
that it is unnecessary, because, by arguing in a sensible way about meaningful notions, 
one comes to the same conclusions as would be obtained by meaningless arguments, 
introducing meaningless notions. Anyway, this means that none of the cases present 
any essential differences, neither conceptually nor mathematically, notwithstanding the 
external differences which required us to look at them separately in order to avoid an 
over‐restricted view.

The temptation to proceed further with these considerations, which could not be 
completed here, is best resisted: we recall that their purpose was simply to persuade 
the reader that, in a certain sense, it is stochastic independence which constitutes a 
rather idealized limit‐case, and that dependence is the norm, rather than the con
trary (whose acceptance is the bad habit referred to by Bühlmann; see Section 4.11.1, 
footnote).

4.15 Conditional Stochastic Independence

4.15.1. In the previous examples, we have encountered the notion of conditional sto
chastic independence (conditional on an event, on a partition); it is necessary to add 
something more systematic in this connection.

We shall say that E1 … En are stochastically independent with respect to H (or with 
respect to each H = Hj of a partition) if they are such with respect to the function (or in 
general the functions) P of the type P(∙) = P(∙|H) (i.e. P(E1E2|H) = P(E1|H) ∙ P(E2|H), etc.).

In the example (of beating the ‘bank’ when throwing dice), we found that A and B, 
stochastically independent with respect to a partition, turned out to be positively cor
related; P(AB) > P(A)P(B). We now want to examine the question in general, beginning 
with a very simple example (less restrictive than the previous one, in the sense that the 
probabilities of the two events are not assumed to be equal). Let us consider just two 
hypotheses, H and H , with probabilities c and c ; let the events A and B have probabili
ties a′ and b′ conditional on H, and a″ and b″ conditional on H . The probability of AB 
will be

 P P PAB c AB H c AB H ca b ca b| | ,





 (4.16)

whereas, in order that A and B be independent, it should have been

 

P P PAB A B ca ca cb cb

c a b cc a b a

 



2 b c a b

2 ;  
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the difference is

 

P P PAB A B c c a b cc a b a b c a bc2 2
 

ccc a b a b a b a b cc a a b b  .

 
(4.17)

One therefore has stochastic independence only in the trivial cases: c = 0 or 1, or a′ = a″, 
or b′ = b″; in other words, if the two hypotheses do not have zero probability, only if A 
(or B) is stochastically independent of them:

 P P PA A H A H| | .  

If this does not happen, one has positive or negative correlation according to whether 
the probabilities of A and B vary in the same or the opposite sense when conditional on 
H rather than H . This is what we would have expected.

4.15.2. The same problem, with a partition into s hypotheses H1 … Hs instead of two, 
with probabilities c1 … cs, and with

 P PA H a B H bj j j j| , | , 

gives:

 

P P
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j j j j j

, , ,1

b b b
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AB A B c a a
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j j j

j j

,
P P P b bj .

 (4.18)

One can easily see directly from this expression that if when the aj increase the bj 
increase as well, the difference is positive; that is A and B turn out to be positively cor
related (negatively if the change is in the opposite direction): this generalizes the previ
ous conclusion. In particular, if (conditional on each Hj) A and B have equal probabilities, 
aj = bj, they are positively correlated (so that the conclusion of the example concerning 
the die and the bank was necessary, not just incidental). More generally, once we have 
defined correlation between random quantities, we shall see that the expression 
obtained above will correspond to the following statement: A and B are positively or 
negatively correlated, or uncorrelated, according to the sense in which the random 
quantities X = P(A| ) and Y = (B| ) are correlated; in other words, according to 
whether P(XY) ⪌ P(X)P(Y).

4.15.3. The case of conditional stochastic independence gives rise to a particularly 
interesting case of inductive argument; that is of determining the probabilities of the 
different possible hypotheses conditional on the information regarding the outcomes of 
any events which are judged to be stochastically independent of each other, conditionally 
on each of the above mentioned ‘hypotheses’.
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This is – to refer to the standard example of the classical variety – the case of drawings 
with replacement from an urn of unknown composition: the hypotheses are the different 
compositions of the urn (e.g. percentages of white and black balls), the events are the 
drawing of a white ball on given trials. On the other hand, in order to demonstrate the 
importance of this in less academic examples, this is often the form of argument used to 
evaluate the probability of the two hypotheses of the guilt or innocence of an accused 
man on the basis of the ascertainment of a certain number of facts having the status 
of ‘circumstantial evidence’, or ‘proof ’. If the latter facts differ as much as possible they 
can, therefore, be taken as stochastically independent of each other, conditional on both 
hypotheses, and with different probabilities conditionally on the two hypotheses.

It goes without saying that jurors and magistrates would reject with horror the idea of 
a verdict as an evaluation of probability: in order to have their feet on solid ground, they 
feel obliged to present as the ‘truth’, or as a ‘certainty’, some version which, through the 
procedures provided, has qualified as the official and compulsory version (and which, 
therefore, cannot be open to correction, even if an individual who was officially mur
dered many years ago shows up looking very much alive12). It is sad, to say the least, to 
see such an unconscientious preference for a ‘certainty’, which is almost always ficti
tious, rather than a responsible and accurate evaluation of probability. Perhaps the sad
dest thing, however, is the thought that the world will probably remain for quite some 
time at the mercy of a mentality so distorted and arrogant that it neither retracts nor 
hesitates even when faced with the most grotesque absurdities.13

One more example: Heads and Tails using a coin that we think may be ‘imperfect’ (i.e. it 
may ‘favour’ one side more than the other). As different ‘hypotheses’ in this case, one often 
considers the ‘hypothesis of an imperfection giving rise to a probability p of heads’, a differ
ent ‘hypothesis’ for each value of p, or for a certain number of values ph; for example, in 
order to simplify matters, increments of 1%. This formulation is not very satisfactory 
because the definition of a hypothesis on the basis of an evaluation of probability is a non
sense; however, before seeing (in Chapter 11) the way in which an equivalent, and correct, 
formulation can be given, based on the notion of ‘exchangeable events’, without speaking of 
such ‘hypotheses’, one can accept this image, for the time being, as a ‘temporary formula
tion’. This is acceptable on account of the above observation that it is equivalent in its actual 
conclusions to the correct formulation, even if it is, strictly speaking, meaningless.

4.15.4. Formally, the particular case we are referring to reduces to the obvious simpli
fication introduced in the expression for P(E|H) (given in Section 4.6.2), if the items of 
information Hi, which make up H, are stochastically independent of each other condi
tional on the events E. Then, in fact, P(H2|EH1) reduces to P(H2|E), P(H3|EH1H2) 
reduces to P(H3|E), and so on, and, finally, the likelihood for the information H1 H2 … Hn 

12 As happened recently in Sicily.
13 Some even assert that in the absence of proofs sufficient for conviction the accused should always be 
discharged ‘for not having committed the crime’. On the other hand, it can well happen that it is certain that 
one of two suspects is guilty, e.g. one or other, or both, of a married couple (like in the ‘Bebawi case’, Rome 
1966). Judicial wisdom, which ignores common sense, and, therefore, probability, would then have to assert, 
in effect, that all the inhabitants of the world are under suspicion apart from two people, one of whom is the 
murderer, who are officially free and protected from any possibility of suspicion.

Translators’ note. The Bebawis were a married couple appearing in a murder trial, who were each accusing the 
other of the murder. They were both acquitted on the grounds that the cases against them were insufficiently proved.
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(the product of the Hi) is nothing other than the product of the likelihoods for the single 
Hi, so that:

 P P P P P PE H E H H H K E H E H E H En n| | | | | .1 2 1 2  (4.19)

In a form which is sometimes more expressive, given two events E (Eh and Ek, say) we 
can write

 

P
P

P
P

P
P

P
P

E H
E H

E
E

H E
H E

H E
H E

h

k

h

h

h

k

h

k

|
|

|
|

|
|

1

1

2

2


P
P

H E
H E

n h

n k

|
|

. (4.19′)

In other words: the ratio of the final probabilities (of any two events E) is given by the 
ratio between their initial probabilities times the ratios of the likelihoods for each item 
of information Hj. One should note the particular case in which, in place of Ek, we sub
stitute the negation E ͂h of Eh: put more succinctly, Eh = E and Ek = E ͂ = 1 − E, and then one 
obtains a relationship between the initial and final ratios P(E)/P(E͂), and the ratios 
P(Hj|E)/P(Hj|E͂), which we might call ratios of probability and ratios of likelihood, 
respectively: we shall talk about this explicitly in Chapter 5, 5.2.4–5.2.5.

This result expresses – at least in the Bayesian version14 – the ‘Likelihood Principle’:
‘For the purpose of inferences concerning the events E, the information obtained from 

the occurrence of the Hj can be arrived at from the knowledge of the likelihoods P(Eh|Hj) 
(or of their ratios).’

It is, however, necessary (in order to avoid possible misunderstandings) to underline 
that this is true only if the conditions specified above hold; we will discuss this in greater 
detail in Chapter 11.

In the meantime, let us point out a qualitative and expressive formulation of one par
ticular conclusion that corresponds to many practical situations:

‘Suppose a thesis (e.g. the guilt of an accused man) is supported by a great deal of cir-
cumstantial evidence of different forms, but in agreement with each other; then even if 
each piece of evidence is in itself insufficient to produce any strong belief the thesis is 
decisively strengthened by their joint effect.’

This statement is known as ‘Cardinal Newman’s principle’, since it was he (taking it 
over from previous authors) who made it famous as the basis of his mode of argument 
in his work the ‘Grammar of Assent’.

4.15.5. Remarks. In the case of independence also we find ambiguity, as already illus
trated in Section 4.8. There, it was a question of considering as the ‘true’ probability not 
that relative to the actual state of information, but a different one, unknown, conditional 
on some idealized form of unacquired information. Here, it is a question of calling 
‘independent’ those events that are such conditional on a certain ‘ideal’ partition. Again, 
a typical example is that of drawings from an urn of unknown composition, which are 
independent conditional on the knowledge of the composition (or on any assumption 

14 The reservation expressed by this parenthetical clause is due to the fact that some people believe that 
the sense in which this ‘principle’ is understood by nonBayesian authors, and in particular by Allan 
Birnbaum who has written about it and supported it, is different. Thus far, I have been unable to discover 
what these supposed essential differences are (apart from the interpretation; subjectivistic or 
nonsubjectivistic).
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about it), but are not independent for someone ignorant of the composition.15 Precisely 
because of the interdependence induced by this ignorance, the successive information 
about the outcomes of the drawings serves to modify the evaluations of probability (in 
the sense of Section 4.14). In the case of independence, all such information would, by 
definition, have no effect.16

4.15.6. The previous example takes on an even more ‘paradoxical’ air (for those who 
cannot distinguish dependence and conditional independence, or, at any rate, do not 
always remember that everything is relative to a given state of information) if the draw
ings are made without replacement.

This is the case of a ‘lucky‐dip’: N tickets are for sale (and before being sold their 
markings are unknown), n of them are winning tickets (and one checks this by examin
ing each ticket one has bought), which give one the right to a prize: we suppose, to avoid 
complications, that the prizes are identical. Conditional on the knowledge of the num
ber of prizes, n, for a given number of tickets sold one’s probability of buying a winning 
ticket is less, the more prizes that have been won. If, initially, one were very uncertain 
about the percentage of winning tickets (i.e. distributed the probability to be attributed 
to the various hypotheses over a wide range, for example, as a limit‐case, gave equal 
probabilities to all the hypotheses n = 0, 1, 2,…, N), the more frequent the occurrence of 
winning tickets, the more one’s probability increases for the tickets yet to be sold. Under 
the intermediate assumption, which consists in knowing that the number n has been 
determined by casting a die N times and taking n = the number of times a ‘6’ occurs, the 
probability would remain constant 1

6  independently of any information concerning 
tickets sold and prizes won. (This is obvious; it is the same thing as actually playing dice: 
in any case, it would be a useful exercise to check the conclusion without using this 
direct argument.)

Examples of this kind (dice, urns, roulette etc.) are convenient because they are 
reduced to standard schemes. Precisely for this reason, however, they have little use or 
significance and, hence, it is desirable to give a more concrete and practical interpreta
tion of the same example.

From a box containing 1000 specimens of a certain gadget, about 100 were drawn and 
used: 15 of them did not work properly (whereas, according to the standard specifica
tion, this should have been around five). Should one use the others or throw them away 
(assuming, for example, that if more than 10% were defective their use would cause 
more damage than the cost of throwing them away)? We shall limit ourselves to the 
conceptual aspects: the exact calculations, with precisely specified hypotheses, could 
be made now, but we shall reserve this until Chapters 11 and 12.

15 An even better way of putting it is to say that they are ‘exchangeable’: we will talk about this in 
Chapter 11.
16 Lindley (in the 2nd volume of Probability and Statistics), in order not to diverge too much from existing 
terminology, chose to continue to talk of independence (without, in cases of this kind, adding ‘conditional’). 
He told me that a student once objected: ‘How, then, can an experience be informative?’. This means (I 
observed) that your teaching is so good that it leads people to a correct understanding despite the incorrect 
terminology. However, it is better to use the correct terminology in order that nobody becomes confused, or 
has to make a strenuous mental effort in order not to be confused.
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The data given say nothing except in relation to what we know, or imagine, regarding 
systems of production and packing. If, for packing them into boxes, the gadgets are chosen 
at random, there is no reason to be less (or more) confident about the remaining articles: 
the fact of them being together with other articles that are defective in a greater or lesser 
percentage is purely fortuitous. If, on the other hand, one believes that the contents of a box 
come from the production of a given machine at a given time, the conclusion may be dif
ferent, in either sense. If one thinks that the defects are due to a machine being temporarily 
out of adjustment, then the usual attitude of fearing that the high percentage of defectives 
might also be found in the rest of the box is reasonable. If, instead, one thinks that there is 
a periodic cause (in an extreme case, that the seventh article in every series of 20 turns out 
to be defective), it is almost certain that each box contains almost exactly 50 defective 
pieces (at any rate, with less imprecision than under the first hypothesis). The conclusion is 
then the opposite one: having already removed 15 defective articles, instead of five, it is to 
be expected that 35 remain, rather than 45 (and the bad initial outcomes improve the pros
pects for the remainder, rather than making them worse).

4.16 Noncorrelation; Correlation (Positive or Negative)

4.16.1. The condition P(AB) = P(A)P(B) for events was referred to as both the condition 
for stochastic independence and the condition for noncorrelation; in the case of two 
random quantities, X and Y, the same condition P(XY) = P(X)P(Y) will still be called the 
condition for noncorrelation (or of positive or negative correlation if either > or < is 
substituted for =), whereas by stochastic independence one implies a more restrictive 
condition, which, for the time being has only been introduced for the case of random 
quantities with a finite number of possible values.

One can show straightaway that the above‐mentioned condition is more restrictive; 
in other words, that stochastic independence implies noncorrelation (but not con
versely, except in the case of two random quantities with only two possible values, and 
hence, in particular, for events). Let xi (i = 1, 2,…, m′) denote the possible values for X, 
and p X xi iP( ) their probabilities; similarly, let yj and pj  denote the m″ possible 
 values and probabilities for Y. We denote the probability of the pair (xi, yj) by pij; that is 
Pij = P[(X = xi)(Y = yj)], and we observe that the pij, given the pi  and pj , can be any of 
the m′m″ values (lying in [0, 1]) satisfying the m′ + m″ − 1 linear conditions 

p p p pij ij iji,  (one which is superfluous, since p pi j 1). They are 
therefore determined up to

 m m m m m m1 1 1  

degrees of freedom (except in boundary cases, where some of the pi  or pj  are = 0). The 
condition for noncorrelation gives a further equation in the pij:

 
P P PXY X Y x y p p p

ij
i j ij i j 0,

 

which is clearly satisfied in the case of stochastic independence (we always have 
p p pij i j ),) and still allows (m′ − l)(m″ − 1) − 1 degrees of freedom. In other words, it 
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permits infinitely many other solutions  –  that is schemes of noncorrelation without 
stochastic independence – unless m′ = m″ = 2; q.e.d.

4.16.2. As for the statement that by ‘strengthening’ noncorrelation one can obtain 
stochastic independence, we were referring to the possibility of considering, besides 
the noncorrelation between X and Y, the same relation between arbitrary functions 
of X and Y, X′ = α(X) and Y′ = β(Y), say: P(X′Y′) = P(X′)P(Y′), that is P[α(X)β(Y)] = 
P[α(X)]P[β(Y)] In the case of X and Y with a finite number of possible values 
(the only case for which we have so far defined stochastic independence) it is obvi
ous that such a relation holds, whatever the functions α and β are, if X and Y are 
stochastically independent (with the above notation, if p p pij i j , we have 

p x y p p x yij i j i i j( ) ( )( ) ( ) . Conversely, it follows that (m′ − 1) (m″ − 1) − 1 
suitable (i.e. linearly independent), additional conditions of this kind will suffice to 
imply stochastic independence. For the general case (an infinite number of possible 
values), similar conclusions will hold, except that we shall require the adjunction of 
infinitely many conditions of this kind, and, in addition, clarification of the meaning 
of the definition by means of suitable critical considerations (see Chapter 6).

4.16.3. If, for X1, X2,…, Xr, we not only have

 P P PX X X Xi j i j  

but also

 P P P PX X X X X Xi j h i j h , .,etc  

we could, of course, define, and look at, noncorrelation of order three (or greater) for any 
arbitrary distinct X. Equivalently (and perhaps more simply), we can say that, when 
P(Xi) = 0, noncorrelation of order k means that P(Z) = 0 for each Z which is the product 
of h ≤ k distinct factors Xi; the general case can be reduced to this one by saying that it 
implies noncorrelation of order k of the Xi − P(Xi). However – with a convention oppo
site to that for stochastic independence – when we simply say ‘noncorrelation’, ‘pairwise’ 
should always be understood. This is both because this is the case of most frequent 
interest, and in order to be able to use, in the case of events, the two convenient and 
easily distinguishable terms, ‘(stochastically) independent’ and ‘uncorrelated’, without 
having to specify ‘independent, that is to say, independent of every order’ and ‘uncorre
lated, that is to say, pairwise uncorrelated’, respectively.

4.16.4. Pairwise noncorrelation (unlike independence) has, in fact, an autonomous 
and fundamental meaning, no matter how many random quantities are being consid
ered together. More generally, a measure of correlation is of interest, and this will be 
provided by the correlation coefficient, r(X, Y), between two  random quantities (to be 
defined by equation 4.24 in Section 4.16.6). In the same way as knowledge of the previ
sions P(Xi) was sufficient in order to know the  prevision of every linear function of the 
Xi, X a Xi i, knowledge of the prevision of the squares, P Xi

2  (in addition to that of 
the P(Xi)), and of the correlation coefficients rij = r(Xi, Xj), is sufficient to determine the 
prevision of every quadratic function of the Xi:
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X X
a X X a X

i

ij
ij i j

i
i j

a second degree polynomial in the 

i
i ia X a0

17,
17 

 
P P PX a X X a X a

ij
ij i j

i
i j 0 . (4.20)

Knowledge of the second‐order previsions is often sufficient for the solution of many 
problems (if not completely, by giving some bounds). If one thinks of the image (still not 
made precise, but intuitively clear) of probability as distribution of mass, the knowledge 
of the previsions is equivalent to the knowledge of the barycentre, and that of the sec
ond‐order previsions (or second‐degree characteristics of the distribution) is equivalent 
to knowledge of the moments of inertia.

The reasons for the importance of such knowledge, albeit limited, of the distribution 
in the calculus of probability (as in statistics), are, essentially, the same as those which 
determine their importance in mechanics (although, in general, not as precisely as is the 
latter case, due to the connection with energy, etc.).

4.16.5. Separations and deviations. It is often convenient to write

 X x X x  

where x = m = P(X), or some other special value (like the median or the mode, which we 
shall discuss in Chapter 6, 6.6.6), or even with a generic x (representing an arbitrary 
given number). We shall call the difference X − x the separation (of X from x); if we take 
the absolute value (as is often useful), |X − x| is called the deviation.

As far as the second‐order previsions are concerned, it is clear that, in general, it is 
convenient to take them relative to the barycentre, xi = mi = P(Xi), the point with respect 
to which the moments are smallest.

P P
P P

X x X m x m
X m x m x m X m

2 2

2 2 2 , 

but the final term vanishes (P(X − m) = m − m = 0) and we have the following result, well 
known in mechanics: the moment with respect to a point x is the moment about the 
barycentre (the first term) plus the square of the distance from the barycentre (the second 
term: here the mass = 1), and clearly the minimum is at x = m.
P(X − m)2 is called the variance of X, and its square root (in mechanics, the radius of 

gyration; the distance at which the mass should be concentrated in order to preserve the 
moment of inertia18) is called the mean standard deviation or, more briefly, the standard 
deviation. It is denoted by

17 The first summation will suffice if we include the index 0 corresponding to the fictitious random 
quantity X0 ≡ 1 (see Chapter 2, Section 2.8.3); in this case, ai becomes ai0 + a0i and a0 becomes a00.
Moreover, it is, of course, irrelevant whether we take as zero the aij with i > j, or conversely with i < j, or 
instead take aij = aji or whatever, according to the circumstances: the only relevant thing is aij + aji.
18 This is an example of a mean according to Chisini’s definition! See Chapter 2, Section 2.9.2.
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2 22 ,X m m XX m XP P P 19

 (4.21)

or sometimes σX (or simply o if there is no ambiguity). The variance will be denoted by 
σ2(X), X

2  or σ2.
The separation (and the deviation) from m, divided by the standard deviation, are 

called the standardized separation, (X − m)/σ, and the standardized deviation  
|X − m|/σ.

In this way, we can express the square terms of Section 4.16.4 by means of previsions 
and variances (i.e. by means of previsions and standard deviations):

 P P PX X X X X mi i i i i i i
2 2 2 2 2 (4.22)

 
whereP P2 2X X ,

 

and similarly the cross‐product terms, P(XiXj) with i ≠ j;

 P PX X m m X m X m m mj i j i i j j i j iji , (4.23)

where σij, so defined, is called the covariance of Xi and Xj,20 and, writing σij = σiσjrij, we 
arrive at the introduction of the correlation coefficient, as mentioned above.

4.16.6. In order to define the correlation coefficient we denote by X and Y the two 
random quantities, and suppose that P(X) = P(Y) = 0; then setting

 
P rXY X Y X Y, ,

 

we have, by definition,

 
r

P
X Y

XY
X Y

, . (4.24)

It was clear from the very beginning that the correlation coefficient would be zero, 
positive or negative, according to whether X and Y are uncorrected, positively corre
lated, or negatively correlated. It is equally obvious that if Y = X, then r = 1, and that if 
Y = −X, then r = −1, and it is also clear that multiplying X and/or Y by constants does 
not change r, except possibly in sign:

 r raX bY X Y, , , 

+ or −, according to the sign of ab. If a = 0, or b = 0, then aX = 0 or bY = 0 and r has no 
meaning; the previous observation can therefore be completed by saying that if Y = aX, 
then r(X, Y) = ±1 (sign of a).

19 σ is boldface when it is an operator (and the same holds for r).
20 In particular, for consistency, ij i

2.
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It is already intuitively obvious from the above that r can assume all values between 
±1, but no others, and we shall now prove this: it will suffice to restate the standard 
argument about quadratics. We always have (Y − tX)2 ≥ 0 (or zero, in the limit‐case 
where for some t = t0 we have the identity Y = t0X), and hence t2X2 − 2tXY + Y2 ≥ 0; 
taking its prevision, t2P(X2) − 2tP(XY) + P(Y2) ≥ 0, and so, since the discriminant must 
be negative, |P(XY)|2 < P(X2)P(Y2); q.e.d.

In order to extend the definition to the case in which we do not have P(X) = P(Y) = 0, 
it suffices to observe that the separations from the prevision, X − mX and Y − mY, must 
be substituted for X and Y, and P(XY) therefore replaced by

 P PX m Y m XY m mX Y X Y . 

It is useful to remark that a different extension of the definition could have been 
obtained by leaving P(XY) as the numerator, and changing the denominator to 
PQ(X)PQ(Y), where PQ(X) = √P(X2) = quadratic prevision of X. The same properties and 
proofs would hold, but the meaning would be different: if we denote this alternative 
coefficient (temporarily) by r̂, r̂ = 0 would imply P(XY) = 0, instead of =mXmY, and r̂ = 
±1 would follow from Y = aX instead of from Y − mY = a(X − mX).

The meaning of all this will be clear under the geometric interpretation which we are 
now about to introduce.

Remarks. We cannot (as a rule) say that in order to have PQ(X) = 0 we must have 
X = 0, but only that all the probability must be at least adherent to 0. To have PQ(X) = 0, 
we must obviously have P(|X| ≥ ε) = 0 for all ε > 0 (if this were equal to p > 0, we would 
in fact have PQ X p2 2 ), but this does not exclude the possibility of P(X ≠ 0) being  
>0 or even = 1 (e.g. if the only possible values are the sequence xn = 1/n, each with zero 
probability). Anyway, we shall say, if PQ(X) = 0, that X coincides with 0, and write X 


 0; 

similarly, we say that X and Y coincide, X 

 Y, if X − Y 


 0.

4.17 A Geometric Interpretation

4.17.1. We have already considered (Chapter 2, 2.8.1) the linear space ℒ if of random 
quantities X: it is an affine vector space (whose origin is the ‘random’ quantity which is 
identically = 0) in which each X is represented by a vector (and linear combinations by 
linear combinations). We also agreed to denote by X0 the ‘random’ quantity whose value 
is identically 1, and by x0 the axis on which the ‘certain’ (constant) quantities lie.

Once we have introduced a prevision P, we know that P(X) is a linear function of the 
vector X, with P(cX0) = c (on the axis representing certainty, coinciding with the abscissa 
c). To give P is to give the plane of the fair random quantities (with P(X) = 0): to find P(X) 
= m means, in fact, to find that m for which P(X – m) = 0; in other words, to decompose 
X into m + (X − m), the sum of a vector mX0, known with certainty (m = mX0), and a fair 
vector. One might prefer to think of x0 = m as the point of intersection of the axis of 
certainty with the plane parallel to the fair plane, passing through the point X (where ‘the 
point X’ is short for O + X, the end point of the vector X which starts from O).

Functions of the second degree in random quantities belonging to ℒ – that is arbitrary 
numbers of linear combinations of products XY, of which the squares, X2, are special 
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cases (Y = X) – do not belong to .21 We can, however, still give P(XY) a geometric 
interpretation by transforming  geometrically from an affine space into a Euclidean 
metric space, with a metric defined by the P(XY), interpreted as the scalar product of 
the vectors X and Y: that is by interpreting PQ(X) as the length of the vector X (limiting 
ourselves to some  * ⊂  if for X ∉  * we have PQ(X) = ∞).

In fact, P(XY) satisfies the necessary and sufficient conditions for a scalar product 
(and therefore generates a Euclidean metric):it is linear in X and Y, and symmetric

 XY YX X Y Y XY XY, ,   is linear ;1 2 1 2 P  

it is positive definite (P(XX) = PQ X2 0( )  if we do not have X ≐ 0).

Remarks. Notice that, for the metric under consideration, it is appropriate to think of 
coincident random quantities as represented by the same vector (if one wished, one 
could say that it represents an ‘equivalence class’ with respect to ‘coincidence’). If not, 
we would have nonzero vectors with zero length.

Under this metric, the length of X would be PQ(X) = √(m2 + σ2), and X and Y would be 
orthogonal if P(X Y) = 0: in general, the cosine of the angle between them would be r̆. 
Fairness implies orthogonality to the axis of certainty. The metric that we use (most 
often) is not this one but another: it was, however, convenient to begin with this as it is 
the most natural starting point.22

4.17.2. The metric that serves our purpose is the same as the preceding one (in accord
ance with the given definition of correlation) but applied to the separations, X − P(X), 
instead of to the X themselves. The simplest illustration (which is connected with the 
previous considerations) consists of saying that one takes into consideration only the 
projections onto the fair plane; that is the component orthogonal to the axis of certainty 
(X − m, with m = P(X)), disregarding the parallel component, which is in fact m, or ‘mX0’.

Under this metric, the length of X is σ(X); that is the length of the projection of X 
(under the previous metric). The cosine of the angle between X and Y (taking the pro
jections onto the fair plane) is r(X, Y) and we have, therefore: noncorrelation (r = 0) 
corresponds to orthogonality (of the projections onto the fair hyperplane); positive cor-
relation (0 < r < 1) and negative correlation (−1 < r < 0) correspond to acute and obtuse 
angles, respectively (always between the projections). The extreme cases (r = ±1) cor
respond to parallelism, in the same or opposite direction (again between projections).

In order to avoid constant repetition of the fact that it is the projections that are 
involved, one could always bear in mind that, in this ambit, if we take as norm (or length, 
or distance) the standard deviation instead of the quadratic prevision, all random quanti
ties differing by certain constants are identified with one and the same vector of the fair 
hyperplane, the projection of the original (writing, e.g. X 


 Y). One must be careful not 

to become confused, and think in these terms when it is not possible to do so (e.g. in the 
case of mean‐square convergence the norm must be PQ(X) and not σ(X)).

21 They could all belong to L, if the latter were infinite dimensional; otherwise, a few of them could belong. 
Anyway, the appearance of X2, in addition to X2, is superfluous (unless one is interested in P(X4), P(X2 Y), etc.).
22 In some cases, we shall actually find it necessary to refer to the metric generated by P(X Y): e.g. in 
connection with mean-square convergence (see Chapter 6).
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4.17.3. The vectorial–geometrical interpretation makes obvious and meaningful all 
properties relating to previsions of the second order. If we suppose that all the random 
quantities considered in the following are fair (P(X) = 0), we have, for instance:

for the decomposition of X into a component parallel to an arbitrary (nonzero) Y and 
a component orthogonal, the former will be σ(X)r(X, Y) (the length times the cosine) 
multiplied by the unit vector in the direction of Y (i.e. Y/σ(Y)), in other words,

 X Y X Y X Yr , ,/  (4.25)

and the latter (which is obviously X″ = X − X′) has length σ(X)√(1 − r2) (length times 
sine). It is also characterized by the fact of having the smallest length of all vectors of the 
form X − aY;

in the same way, in order that X′ be contained in, and X″ be orthogonal to, a given 
linear space (for simplicity, we take it to be two‐dimensional – linear combinations of Y 
and Z), we will have X′ = aY + bZ such that

 X X X X aY bZ 

is orthogonal to Y and Z; hence

 

P P P P

P P P P

X Y XY a Y b YZ

X Z XY a YZ b Z

2

2

0,

00, 

and, if Y and Z are taken to be orthogonal, P(YZ) = 0, and unitary, P(Y2) = 1 = P(Z2), we 
have straightaway

 

a XY X X Y

b XZ X X Z

X X Y X Y Z X Z

P r

P r

r r

, ,
, ,

, , ; 

with a standard procedure (similar to the above), given any linearly independent X1, 
X2, …, Xn, one can carry out the orthogonalization by substituting Y1, Y2, …, Yn, the Yi 
being orthogonal to each other (and, if we wish, unitary). Proceeding in order (i = 1, 
2,…, n), it suffices to add to Xi+1 a suitable linear combination of X1,…, Xi in order to 
make it orthogonal to these vectors and, if necessary, to normalize (dividing by the 
length), obtaining Yi+1;

and so on.

4.17.4. The standard deviation of the sum of two or more random quantities is 
 particularly important. For two summands, we have

 

2 2 2 2

2 2

2

2

X Y X Y X Y XY

X Y X Y X

P P P P

r , Y ,
 (4.26)

and it is easy to recognize the expression as the length of the sum of two vectors (as it 
had to be): that is the side of a triangle given the other two sides and the (external) angle 
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between them; c2 ≡ a2 + b2 + 2ab cos θ (this is Carnot’s theorem; if cos θ = 0, orthogonality, 
we have Pythagoras’ theorem: in the limit cases, cos θ = ± 1, that is parallelism, c = the 
sum or difference of a and b). It is important to remember the following: in the case of 
orthogonality (noncorrelation), the variances are added (the standard deviations obey 
Pythagoras’ theorem); in the case of positive correlation, the variance and the standard 
deviation of the sum turn out to be greater, and in the case of negative correlation less, 
than in the case of noncorrelation (the standard deviations of the summands being the 
same) (Figure 4.2).

The same holds for more than two summands. In this case, of course, one may have 
correlations which are in part positive, in part negative, and the effect of either the 
 former or the latter may prevail. The general formula is clearly as follows (written 
directly for a general linear form, always assuming P(Xi) = 0):

 

2

i
i i

ij
i j i j

ij
i j i j

ij
i ja X a a X X a a X X a aP P i j ijr ; (4.27)

the squared terms (rij = 1) yield 2 2
ii ia a ; excluding i = j in the general summation, one 

obtains the contribution of the cross‐product terms (zero in the case of orthogonality, 
positive or negative according to the prevailing correlations between the summands 
aiXi – not the Xi ! – whose signs are those of aiajrij – not of rij!).

The covariance matrix, with entries σij, of the random quantities Xi (which we assume 
to have zero prevision) completely determines the second‐order characteristics in the 
space ℒ of linear combinations of the Xi (geometrically, in ℒ, it gives the length and 
angles of the vectors representing the Xi). The correlation matrix, with entries rij(rij = 
σij/σiσj, σi = √σii, rii = 1) can be derived from it, giving the angles (rij is the cosine) but not 
the lengths. It can still be regarded as a covariance matrix for the standardized Xi; that 
is for the Xi/σi (geometrically one is considering the unit vectors rather than the vectors).

4.17.5. A fact that is of conceptual and practical importance – and for this reason 
mentioned already in the Remarks in Section 4.9.1. for the case of events – is that the 
size of the negative correlation (unlike the positive) must be bounded. More precisely, 
given n random quantities, the arithmetic mean of their 2

n  correlation coefficients rij 
(i ≠ j) cannot be less than −1/(n −1): in particular, the rij cannot all be less than −1/(n − 1); 
in the extreme case (as we shall see) they can all be equal to this limit value.

Without loss of generality, we can assume the Xi normalized, P(Xi) = 0 and P(Xi
2) = 1, 

so that rij = P(XiYj): we consider their sum, X = X1 + X2 + … + Xn, and evaluate its variance

Y

X

� � �
Y

X

Y

X

Z=X+Y Z=X+Y
Z=X+Y

(a) (b) (c)

Figure 4.2 (a) Negative correlation. (b) Noncorrelation (orthogonality). (c) Positive correlation.
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where we have set r  = the arithmetic mean of the rij, that is

 
r

n n
r

i j
ij

1
1

.
 

The variance is non‐negative, however, and therefore r  ≥ −1(n − 1); q.e.d. We note 
that the extreme value is attained if and only if the sum is identically = 0 (or, if we want 
to be absolutely precise, 



 0, using the notation of Section 4.17.2): that is if the n unit 
vectors have zero resultant.23 In particular, the rij could have the common value r = −1/
(n − 1) only if the unit vectors were arranged like the straight lines joining the centre of 
a regular (n − l)‐dimensional simplex to the vertices. Figure 4.3 illustrates the case of 
n = 3 (equilateral triangle) and n = 4 (regular tetrahedron). We give the basic facts for 
these cases (and also for n = 5, 6, 7, 8):

 

n r
n r

n r

3 1 2 120
4 1 3 108

5 1 4 104 29
1

, / cos
, / cos

, / cos
6

6 1 5 101 32
7 1 6 99 36
8 1 7

n r
n r
n r

, / cos
, / cos
, / cos 998 12  

Approximately, the angle is a right angle plus l/(n − 1) (in radians); in other words, in 
a possibly more convenient form, plus 3438/(n − 1) minutes (for n = 8 the error is already 
of the order of 1′). These numerical examples serve to make clear that one cannot go 
much beyond orthogonality among random quantities when there are more than just a 
few of them.

23 Observe that they are, therefore, linearly dependent.

� �

(a) (b)

Figure 4.3 (a) The maximum negative correlation for three vectors: r cos
1
2

. (b) The maximum 

negative correlation for four vectors: r cos
1
3

.
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4.17.6. All that we have considered so far (Sections 4.17.2–4.17.5) has been in terms 
of the conventional representation of the Xi (and of the X linearly dependent on them) 
in the abstract space ℒ. If, instead, we wish to consider the meaningful interpretation 
in terms of the distribution of probability as distribution of mass – an interpretation 
whose importance was indicated at the end of Section 4.16.4 – we must transfer to the 
linear ambit 𝒜 (the space Sr, with coordinates x1, x2, xr, where a point represents 
the outcomes of X1, X2,…, Xr), since it is over this space that the mass is distributed. The 
P(Xi) = xi identify the barycentres of such distributions (and we again assume the bar
ycentre coincident with the origin, in order to avoid useless petty complications in the 
notation), and the P(XiXj) = σij identify the moments of inertia; that is the ellipsoid (or 
kernel) of inertia (and in our case it could be called of covariance, like the corresponding 
matrix).

For our purposes, it is much more meaningful and useful (although the two things are 
formally equivalent) to consider what we shall call the ellipsoid of representation,24 
which is the reciprocal of the other. With reference to the principal axes (common to 
the two ellipsoids), the semi‐axes measure the corresponding standard deviations, σh, in 
the ellipsoid of representation, whereas, for the ellipsoid of covariance, they give the 
reciprocals, 1/σh (or K/σh; one can take an arbitrary multiplicative constant).

In Mechanics, the latter has been employed (Cauchy–Poinsot), although the former 
has also been proposed (MacCullach). Part of the reason for preferring this one seems 
also to hold for Mechanics; in our case, however, there are also rather special and more 
decisive circumstances (e.g. the fact that we are interested in moments with respect 
to planes, that is, in general, to hyperplanes Sr−1, rather than moments with respect to 
straight lines).

The ellipsoid of representation has a concrete meaning: it is the model of a solid 
 having the same moments as the given distribution (assuming it to be homogeneous, 
and giving it a mass increased in the ratio 1 to r + 2 – three on the line, four in the plane, 
five in ordinary space and so on – or, alternatively, increasing the size in the linear scale 
1 to √(r + 2)). This is obvious if one thinks of the case of the sphere, to which one can 
always reduce the problem by imposing a suitable metric on the affine space 𝒜 (unless 
it already has one, either because of an actual geometrical meaning, or because the 
arbitrariness has already been exploited by reducing to a sphere some ellipsoid previ
ously considered). For the unit sphere (in Sr) the moment about the centre is

 0

1
2 1

0

1
1 2r r r rd / d / ,

 

but it is also r times the moment about a diametrical hyperplane, and hence the latter is 
l/(r + 2). In order to make this equal to 1, it is sufficient to increase either the mass or 
the radius in the above mentioned way.

In the case of probability and statistics, this reduction to a homogeneous distribution 
is not the most appropriate procedure: the standard example of the (r‐dimensional) 

24 Of course, we speak of ‘ellipsoids’ in Sr, even if r > 3, or r = 2 (ellipses), or r = 1 (segments). As far as 
I know, terminology of this kind does not exist in mechanics; statisticians at times refer to the ‘ellipsoid of 
concentration’.
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normal distribution is much more meaningful (well‐ known as the ‘distribution of 
errors’). As we shall see when we come to discuss it (Chapter 7, 7.6.7 and Chapter 10, 
10.2.4), to each distribution over Sr there corresponds a unique normal distribution 
having the same second‐order characteristics (same covariance matrix), and the 
 ellipsoid of representation characterizes it in the most directly expressive manner.

These brief comments may have led to an appreciation of how many interesting con
clusions, although incomplete, of course, can be drawn from incomplete assumptions 
(even as incomplete and crude as in the case under consideration).

4.17.7. Inequalities. We must now establish certain inequalities that are both neces
sary for the topic in hand and also serve as simple illustrations of what can be said more 
generally.25

Tchebychev’s inequality gives an upper bound, 1/t2, for the probability that |X| is 
greater than tPQ(X); in particular, for the probability that the standardized deviation is 
greater than t. For example, the probability that |X| is greater than some multiple of the 
quadratic prevision is: 1

4  for twice; 1
9 for three times; 1

25  for five times; 1
100  for ten 

times and so on. Without further conditions, this bound is the best possible; however, 
the bounds are normally crude (the probability is much smaller: we have here placed 
ourselves in the least favourable position).

The proof is obvious if one thinks in terms of mass. If a mass >1/t2 were placed at a 
distance from the origin >a, it would have moment of inertia >a2/t2; altogether, the 
moment of inertia is PQ X2 ( ) and hence a < tPQ(X). Placing two masses 1/2t2 at ± tPQ(X) 
and the rest at 0, one obtains the limit‐case (provided that t ≥ 1).

Cantelli’s inequality is the one‐sided analogue of the preceding one: 1/(1 + t2) is the 
upper bound for the probability that the separation in a given direction is greater than 
tσ (X > m + tσ, or X < m − tσ, respectively, with t > 0). If the mean is not fixed, the question 
does not arise, the inequality would then be the same as the first one; the improvement 
is notable only for small t: t = 1

2
, p = 4

5 instead of 1; t = 3
4, p = 64

100 instead of 1; t = 1, p = 1
2  instead 

of 1; t = 3
2 , p = 4

13  instead of 4
9 ; t = 2, p = 1

5  instead of 1
4
; for t = 3 the difference is already 

hardly noticeable: p = 1
10  instead of 1

9
The proof can be given in a similar way to the above. In order to balance a mass p at 

m + tσ, one can place the residual mass 1 − p at m − tσp/(1 − p), and this gives a moment 
of inertia equal to σ2t2[p + (1 − p)p2/(l − p)2]; t2[…] cannot be greater than 1, […] = p/(l − p), 
t2 ≤ (1 − p)/p = −1 + 1/p and so on. If the balancing mass is dispersed, the situation can 
only be made worse.

Although it is outside of our present realm of interest (second‐order characteristics), 
it is worthwhile pointing out how the argument used in proving Tchebychev’s inequality 
can be applied, without any difficulty, to much more general cases. If γ(x) is an increas
ing function (0 ≤ x ≤ ∞), we necessarily have P{|X − m| ≥ a} ≤ P{γ(|X − m|)}/γ(a) 
because a mass >p, placed at a distance a from m, alone contributes to P{γ(|X − m|)} a 
quantity >pγ(a) (which cannot be greater than the whole thing), and the situation is 
even worse if the distance is greater.

25 More general cases than those considered here are developed in the works of E. Volpe (using this 
geometrical representation): Ernesto Volpe di Prignano, ‘Calcolo di limitazioni di probabilité mediante 
involucri convessi’, Pubbl. n. 16 dell’Ist. Matern. Finanz. Univ. di Trieste (1966).
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For example, taking absolute moments of any order r, we have

 
P PX a X ar r� � | ,

 

the Markov inequality: for r = 2 this is the Tchebychev case, seen above.

4.18 On the Comparability of Zero Probabilities

4.18.1. When we were considering (at the end of Chapter 3) countable additivity and 
zero probabilities, the question often arose as to whether it makes sense to compare the 
latter; for example, saying that, if all cases are equally probable, the probability of the 
union of 12 of them is twice that of the union of six, and three times that of the union of 
four, even if all these probabilities are zero (as in the example of ‘an integer N chosen at 
random’). We assumed this in order to give the statements of a few examples in a more 
suggestive form; as we indicated then, this is now the time to examine the question.

For the purpose of removing the most radical objection, and as a better means of 
presenting the sense of the question, a geometrical analogy will suffice. The objection is 
that zero stands for nothing, and that nothing is simply nothing: this is one of many 
such vacuous statements on the basis of which certain philosophers pontificate about 
things of which they understand nothing.26

A set can have measure zero in terms of volume without being empty; it could, for 
instance, be a part of a surface and have a measure in terms of area (and two areas can 
be compared). A measure in terms of area could be zero without the set being empty; 
it could be an arc of a curve and have a measure in terms of length. A linear set might 
also have measure zero in terms of length (in some sense or other: Jordan–Peano, 
Borel, Lebesgue) without being empty, but some comparison could also be made in 
this case (even if it only distinguished sets with single points or 2 or 3,…, or an infinite 
number).

All this would be even more expressive and persuasive if put in terms of more general 
concepts of measure (with intermediate dimensions also, not just integer) as in 
Borchardt, Minkowski, Peano, Hausdorff and so on. The example closest to our theme 
is that in which one defines ‘the measure m of dimension α’ of a set I to be that for which 
V(Iρ) ~ mρ3−α (Iρ = the set of points of three‐dimensional space with distance ⩽ ρ from 
I, V = volume, the asymptotic expression to hold as ρ → 0).

4.18.2. In any case, so far as probability is concerned, a direct meaning exists and we 
have no need of analogies to provide a justification (they may, on occasion, provide 
encouragement in showing us that our situation is not unique and strange, and may help 
us by providing visually intuitive models).

Given two events A and B, it is clear that if one has to decide between them – that 
is if one makes the assumption that one of the two is true – a comparison of their 

26 Translators’ note. The author is here referring to what he considers the deleterious influence of Croce’s 
idealism upon Italian culture.
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probabilities must be made. Expressed mathematically, if we consider their probabil
ities P(A|H), P(B|H) conditional on the ‘hypothesis’ H = A Ú B, their sum is ≥ 1, and 
their comparison is easy. It could be said that this is the same thing as comparing 
P(A) and P(B): if P(H), and, a fortiori, P(A) and P(B), are small, however, the pro
posed alternative is perhaps psychologically more appropriate as it presumably 
induces one to weigh up the evaluation more accurately by fixing attention on the 
two cases separately, whereas the reliability of the ratio of two very small num
bers – attributed as part of an overall evaluation, in which A and B had no special 
significance – might well be doubted. When the events A and B (and hence H) have 
zero probabilities, however, the alternative approach becomes essential. With the 
direct comparison the ratio of the two probabilities would have the form 0/0. This 
does not mean that the ratio is meaningless, but that the method of comparison is 
not the right one.27

From an axiomatic viewpoint, the extension of the condition of coherence to cover 
the present case requires a stronger form: we assume tacitly that this has been done (but 
we will discuss it in the Appendix, Section 16).

Hence, with any event A as reference point, any other event E has a certain ratio of 
probability with A (a finite positive number, or zero, or infinity): in this way, innumer
able ‘layers’ of events having probabilities ‘of the same order’ (that is with finite ratio) 
can appear, the ‘layers’ being ordered in such a way that every event in a higher layer has 
infinitely greater probability than any event in a lower layer.

4.18.3. An example will suffice as a clarification, both of the general situation, and of 
the implicit applications mentioned in Chapter  3: this is the example of a ‘positive 
 integer N chosen at random’.

We have a partition into an infinite number of events, Eh = (N = h), all with zero 
probabilities, P(Eh) = 0 (h = 1, 2,…). This says very little, however; it merely excludes 
a single case (∑hph > 0) which, from this viewpoint, is ‘pathological’ (in the sense 
that, if we think of a function as having been chosen among the entire, unrestricted 
class of functions of a real variable, to be continuous, even at a single point, is a 
pathological case). To say that ‘all the events Eh are equally probable’ is a rather 
substantial addition: nevertheless, it only suffices to enable us to conclude the fol
lowing: if A and B are finite unions of the Eh, for example of m and n, respectively, 
then the ratio of their probabilities is m/n; if A is the complement of a finite set we 
certainly have P(A) = 1; if A and its complement are infinite, then P(A) is infinitely 
greater than any of the P(Eh), but can be any p ≥ 0 (even p = 1, or p = 0) located 
somewhere in the scale of the ‘layers’.

At first sight, it might seem that one could say something more (perhaps by consider
ing frequencies for the first n numbers and then passing to the limit): for example that 
the probability of obtaining N even is = 1

2 , of obtaining N prime is = 0, nonprime = 1. In 
fact, this is not a consequence of the assumption of equiprobability at all; it is sufficient 
to observe that, by altering the order, these limits change but the equiprobability does 

27 The knowledge that on a day when a housewife has not bought any sugar she has spent 0, does not allow 
us to conclude that the price of sugar is meaningless because it is 0/0; it merely indicates that the 
information available is not sufficient to determine it.
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not; on the other hand, the possible evaluations are not only those of the limit‐fre
quency type, up to rearrangements.28

The assumption that P(E) = lim P(E|N ⩽ n) (and possibly, more generally, P(A)/P(B) = 
lim [P(A|N ⩽ n)/P(B|N ⩽ n)]; i.e. the limit of the ratio of the numbers of occurrences of 
A to those of B in the first n integers) is neither compulsory nor ruled out (for any E, or 
pairs A, B) where the limit exists. One certainly obtains a coherent evaluation (by con
tinuity; see Chapter 3, 3.13) in the field where the limit exists, extendable everywhere 
(Chapter 3, 3.10.7). However, one makes the arbitrary choice from among the infinite 
possible ones, and automatically satisfying the conditions lim inf P(E|N ⩽ n) ⩽ P(E) ⩽ 
lim sup P(E|N ⩽ n).

This choice has no special status from a logical standpoint but it could be so from a 
psychological point of view if the order has some significance (e.g. chronological); and 
indeed it is so if the formulation in terms of an infinite number of possible cases is 
thought of as, more or less, an idealization of the asymptotic study of the finite problem, 
with a very large number of cases n.

One can observe, by means of this example, just how rich the ‘scale’ of layers’ can be 
(perhaps more than one would imagine at first sight). For every function ϕ(п), tending 
to zero as n → ∞, we can construct an event (a sequence of integers, a1 < a2 < … < an, …) 
in such a way that the frequency (n/an) tends to zero like ϕ(п). It is sufficient to insert 
into the sequence, as the term an+l, the number m if otherwise n/m would be less than 
ϕ(т). If we consider ϕ(п) = n~α (α > 0), we obtain, for example, an event Eα, and each Eα 
has infinitely greater probability than those with a larger α (and, as is well known, the 
scale is far from being complete: one could insert the Eα, β corresponding to ϕ(п) = 
n−α(log n)β; and so on).

4.18.4. The method of taking limits, either starting from finite partitions (e.g. p nh
n( ) 1/  

for h = 1, 2,…, n), or countably additive ones (e.g. p Kah
n h( ) , a = 1 − 1/n, K = n2/(n − 1), 

h = 1, 2, …), with limits which are not countably additive, is, in any case, the most con
venient way of constructing distributions that are not countably additive. We must bear 
in mind, however, that it is a procedure for obtaining some coherent distributions in the 
field in which they are defined by the passage to the limit (since finite additivity is pre
served), and not necessarily a procedure expressing anything significant.

In particular, one should not think (even inadvertently):

that, assuming the ph
n( ) are probabilities conditional on an hypothesis Hn (e.g. N ≤ n, 

in the first example), the p ph h
nlim ( ) (and the distribution over infinite subsets 

which derives from these) give probabilities that are conditional on the hypoth
esis H = lim Hn (e.g. referring still to the first example, H = 1);

or, even worse, the converse;or that the events for which probabilities are defined by 
virtue of the passage to the limit have any special rôle, or that their probabilities have a 

28 If while progressively attributing probability to infinite subsets of events (as in Chapter 3, Section 3.10.7) 
we always attribute probability = 1 (provided it is not necessarily = 0 by virtue of previous choices), we 
obtain an ultrafilter of events with probability = 1, whereas all the others have probability = 0. Linear 
combinations of distributions of this ‘ultrafilter type’ form a much wider class, still disjoint, however, from 
those of the limitfrequency type.
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different meaning from those of the other events (apart from the trivial observation that 
the former are consequences of the evaluations made by deciding to base oneself, on the 
passage to the limit, whereas the latter require a separate evaluation: it could have been 
the other way around if we had started with a different procedure).

4.18.5. Procedures of this kind have often been employed, more or less as a result of 
interpretations of the type we have here rejected. The most systematic treatments 
known to me are those by A. Lomnicki (Fundamenta Mathematicae, 1923) and by A. 
Rényi (in many recent works; see, for example, Ann. Inst. Poincaré (1964): prior to this, 
in German, 1954).

Rényi’s approach is constructed with the aim of making considerations of initial prob
abilities for partitions which are not countably additive fall within the range of the usual 
formulations, by concealing the nonadditivity by means of the passage to the limit. The 
device consists in accepting that, for the partitions under consideration, countable addi
tivity must be respected, but, in the passage to the limit, the total probability may 
become infinite instead of one. The importance of this is mainly in connection with the 
inductive argument, so we will return to this topic more explicitly in Chapter 11.

4.19 On the Validity of the Conglomerative Property

4.19.1. If, conditional on every event Hj of a finite partition, the probability P(E|Hj) of a 
given event E is p (or, respectively, lies between p′ and p″), then we also have P(E) = p 
(or, respectively, P(E) lies between p′ and p″). In fact, we have

 
P P P P PE EH EH EH E H H p H pn

j
j j

j
j1 2 | ; (4.28)

the same holds even if the Hj form an infinite partition, so long as the sum of their 
 probabilities is = 1. In fact, if we put

 H H H Hn n
* ,1 1 2  

we have

 
P P P P P PE E H H j n EH p H EH

j
j j n n n| ,* * *   1  (4.29)

and hence P(E) = p because P Hn
*  and, a fortiori, P EHn

*  tends to 0 as n increases.

4.19.2. Indeed, it would appear natural that this (conglomerative) property should 
hold for logical reasons, overriding all mathematical demonstrations or justifications, 
especially if one interprets literally a phrase like ‘conditional on each of the possible 
hypotheses the probability of E is p, and so the fact that P(E) = p is proved’.

Two counterexamples will demonstrate that this is not so.
Taking an infinite partition of the integers into finite classes (each of three elements) 

we consider the events Ah = Eh + E2h + E2h+2, with h = 1, 3, 5,… odd; conditional on each 
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of the Ah, the probability that N be even is 2
3 ; the analogous partition Bh = Eh+1 + E2h−1 + 

E2h+1 would instead give 1
3  (the asymptotic evaluation gives 1

2
).

Consider an infinite partition of the integers into infinite classes, with Ah (h odd) 
containing the number h and all multiples of 2h which are not multiples of 2h+2; condi
tional on every Ah, the probability that N be even is = 1 (independently of any conven
tions like asymptotic evaluations, there is only one odd number versus an infinite 
number of even ones and they are all equally probable). Of course, it suffices to change 
N into N + 1 in order to obtain the opposite conclusion: the probability that N = even is 
0 conditional on every Ah.

When we are in a position to discuss independence and dependence for general 
 random quantities (Chapter  6, 6.9.5; see also Chapter  12, 12.4.3), we shall meet an 
example which is more meaningful, both from an intuitive and practical point of view 
(the latitude and longitude of a point of the earth’s surface ‘chosen at random’).
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5

5.1 How should Probabilities be Evaluated?

In order to say something about this subject without running the risk of being misun-
derstood, it is first of all necessary to rule out the extreme dilemma that a mathematical 
treatment often poses: that of either saying everything, or of saying nothing. As far as 
the evaluation of probabilities is concerned, one would be unable to avoid the dilemma 
of either imposing an unequivocal criterion, or, in the absence of such a criterion, of 
admitting that nothing really makes sense because everything is completely arbitrary.

Our approach, in what follows, is entirely different. We shall present certain of the 
kinds of considerations that do often assist people in the evaluation of their probabili-
ties, and might frequently be of use to You as well. On occasion, these lead to evalua-
tions that are generally accepted: You will then be in a position to weigh up the reasons 
behind this and to decide whether they appear to You as applicable, to a greater or lesser 
extent, to the cases which You have in mind, and more or less acceptable as bases for 
your own opinions. On other occasions, they will be vaguer in character, but nonethe-
less instructive. However, You may want to choose your own evaluations. You are 
completely free in this respect and it is entirely your own responsibility; but You should 
beware of superficiality. The danger is twofold: on the one hand, You may think that the 
choice, being subjective, and therefore arbitrary, does not require too much of an effort 
in pinpointing one particular value rather than a different one; on the other hand, it 
might be thought that no mental effort is required, as it can be avoided by the mechani-
cal application of some standardized procedure.

5.2 Bets and Odds

5.2.1. One activity which frequently involves the numerical evaluation of probabilities is 
that of betting. The motivation behind this latter activity is not usually very serious‐
minded or praiseworthy, but this is no concern of ours here. We should mention, however, 
that such motivations (love of gambling, the impulse to bet on the desired outcome, etc.) 
may to some extent distort the evaluations. On the other hand, motives of a different kind 
lead to similar effects in the case of insurance, where the first objection does not apply.

However, with all due reservation, it is worthwhile starting off with the case of  betting, 
since it leads to simple and useful insights.

The Evaluation of Probabilities
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5.2.2. An important aspect of the question (one to which we shall frequently return) is 
the necessity of ‘getting a feeling’ for numerical values. Many people if asked how long it 
takes to get to some given place would either reply ‘five minutes’ or ‘an hour’, depending 
on whether the place is relatively near, or relatively far away: intermediate values are 
ignored. Another example arises when people are unfamiliar with a given numerical scale: 
a doctor, although able to judge whether a sick man has a high temperature or not, simply 
by touching him, would be in trouble if he had to express that temperature on a scale not 
familiar to him (Fahrenheit when he is used to Centigrade, or vice versa). Likewise, in 
probability judgments, there are also those who ignore intermediate possibilities and pro-
nounce ‘almost impossible’ to everything that to them does not appear ‘almost certain’. If 
neither YES nor NO appears sufficiently certain to them, they simply add ‘fifty‐fifty’ or 
some similar expression. In order to get rid of such gaps in our mental processes it is 
necessary to be fully aware of this and to get accustomed to an alternative way of thinking.

In this respect, betting certainly provides useful experience. In order to state the 
 conditions for a bet, which have to be precise, it is necessary to have a sufficiently sensi-
tive feeling for the correspondence between a ‘numerical evaluation’ and ‘awareness’ of 
a degree of belief. In becoming familiar with judging whether it is fair to pay 10, 45, 64 or 
97 lire in order to receive 100 lire if a given event occurs, You will acquire a ‘feeling’ for 
what 10%, 45%, 64% or 97% probabilities are. Together with this comes an ability to 
estimate small differences and a sharpening of that ‘feeling for numerical values’, which 
must be improved for the purpose, of course, of analysing actual situations.

5.2.3. These two aspects come together in the particularly delicate question of 
evaluating very small probabilities (and, complementarily, those very close to 1). 
Approximations that are adequate (according to the circumstances and purposes 
involved) in the vicinity of p = 1

2  (e.g. 50% ±5%, ± 1%, ±0.1%) are different from those 
required in the case of very small probabilities: here, the problem concerns the order of 
magnitude (whether, for example, a small probability is of the order of 10−3, or 10−7, or 
10−20,…). In this connection, it is convenient to recall Borel’s suggestion of calling ‘prac-
tically impossible’, with reference to ‘human, earthly, cosmic and universal scales’, 
respectively, events whose probabilities have the orders of magnitude of 10−6, 10−15, 
10−50 and 10−1000. This is instructive if one wishes to give an idea of how small such 
numbers (and therefore such probabilities) are, provided that no confusion (in words or, 
worse, in concepts) with ‘impossibility’ arises.1

5.2.4. On the use of ‘odds’. In the jargon used by gamblers, the usual way of expressing 
numerical evaluations is somewhat different, although, of course, equivalent. Instead of 
referring to the probability p, which (in the sense we have given) is the amount of a bet, 
we refer to the odds,

1 Borel himself, and other capable writers, fail to avoid this misrepresentation when they give the status of a 
principle – ’Cournot’s principle’ – to the confusion (or the attempt at a forced identification) between ‘small 
probabilities’, which, by convention, could be termed ‘almost impossibility’, and ‘impossibility’ in the true 
sense. What is overlooked here is that ‘prevision’ is not ‘prediction’. The topic is dealt with in E. Borel, Valeur 
pratique et philosophie des probabilités (p. 4 and note IV), part of the great Traité du Calcul des Probabilités 
which he edited; Gauthier–Villars, Paris (1924) (and subsequent editions).
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 r p p p p/ /1  . 

These are usually expressed as a fraction or ratio, r = h/k = h:k (h and k integers, preferably 
small), by saying that the odds are ‘h to k on’ the event, or ‘k to h against’ the event. Of 
course, given r, that is the odds, or, as we shall say, the probability ratio, the probability 
can immediately be obtained by

 p r r r h k p h h k/ i e if is written as /1 , . . / . (5.1)

A few examples of the correspondence between probabilities and probability ratios, 
and vice versa, are shown below and illustrated in Figure 5.1:

p p/ p = r = h/k in words
(check)
h/(h + k) = p

0.20 20/80 =0.25 =1/4 ‘4 to 1 against’ 1/(1 + 4) = 0.20
2/7 = 0.286 28.6/71.4 =0.40 =2/5 ‘5 to 2 against’ 2/(2 + 5) = 0.286
0.50 50/50 =1 =1/1 ‘evens’ 1/(1 + 1) = 0.50
0.75 75/25 =3 =3/1 ‘3 to 1 on’ 3(3 + 1) = 0.75

Observe that to the complementary probability, p = 1 − p, there corresponds the recip-
rocal ratio, p/p = 1/(p/ p) = 1/r (i.e. to ‘h to k on’ there corresponds the symmetrical 
phrase ‘k to h on’).2

5.2.5. Extensions. Probability is preferable by far as a numerical measure (additivity is 
an invaluable property for any quantity to possess!).3 However, there are cases in which 
it is advisable to employ the probability ratio (especially in cases involving likeli-
hood – Chapter 4 – which are often considered in the form of ‘Likelihood Ratio’) and it 

2 It would perhaps be better to introduce a notation to indicate that we are passing from probability to 
‘odds’; similar to that used for ‘complementation’ ( p = 1 − p). An analogous approach would be to take 



p pp/  (and if p = P(E) to use therefore 


P(E) = P(E)/P( E) = P(E)/~ P(E)). We prefer merely to draw attention 
to the possibility without introducing and experimenting with more new ideas than prove to be absolutely 
necessary. To avoid any difficulties, or risks of confusion in notation, we denote the odds more clearly by 
writing O(x) = x/(1 − x), O[P(E)] = P(E)/P( E).
3 A newspaper, in considering three candidates for the American presidential election, attributed odds 
of 2 to 1 on, 3 to 1 against and 5 to 1 against; these are equivalent to probabilities of 2

3
1
4

1
6, , , with sum 

(8 + 3 + 2)/12 = 13/12 > 1. It is difficult for a slip of this nature to pass unnoticed when expressed in terms of 
probabilities; using percentages especially, it would certainly not escape notice that 67% + 25% + 17% = 109% 
was inadmissible.
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Figure 5.1 The relation between probability (p) and odds (r): r = p/(1 − p).



Theory of Probability: A Critical Introductory Treatment156

is useful to indicate, at this juncture, the way in which we shall generalize its use (or, in 
a certain sense, substitute for it) in cases where the need arises.

In accordance with, and in addition to, the conventions introduced in Chapter  3, 
Section 3.5, concerning the use of the symbol P, we can denote that r = h/k by writing

 

P

P

E E h h k k h k

h k h k K h k h k E E

, / , /

/ : :



, , ,

 (5.2)

where we have successively and implicitly made the following conventions:
a common factor, such as 1/(h + k), can be taken outside the parentheses; that is 

m(a, b) = (ma, mb);
such a factor may be taken as understood, denoting it by K, to simply mean that 

 proportionality holds;
the same thing may be indicated by simply using the ‘colon’ (:) as the dividing sign, 

rather than the comma. This means that two n‐tuples of numbers (a1, a2,…, an) and (b1, 
b2,…, bn), not all zero, are said to be proportional if bi = Kai where K is a nonzero con-
stant. Proportionality is sometimes denoted by the sign ∝ (which is not very good), and 
can also be expressed by = K. We make the convention – once and for all – that K denotes 
a generic coefficient of proportionality, whose value is not necessarily the same, not 
even for the duration of a given calculation: we can write, for example, (2,1,3) = K(4,2, 
6) = K(6, 3,9). The equals sign is sufficient on its own if the n‐tuple with ‘:’ in place of ‘,’ is 
interpreted as ‘up to a coefficient of proportionality’ (like homogeneous coordinates); 
that is as a multi‐ratio. Hence, for example, (2:1:3) = (4:2:6) = (6:3:9).

Sometimes the omission of the proportionality factor is irrelevant because it is deter-
mined by normalization: for example, if it is known that E1… En constitute a partition, 
and we write

 P E E E m m mn n1 2 1 2: : : : : : , (5.3)

it is clear that P(Ei) = mi/m, m = m1 + m2 + … + mn, because the sum must equal 1. In 
other cases (for any Ei whatsoever, even if they are compatible), one can make the com-
mon divisor m enter in explicitly, for example by adding in 1 = the certain event:

 P E E E m m m mn n1 2 1 21: : : : : : : : . (5.4)

The resulting convenience is most obvious when the mi are small integers. For example, 
if A, B, C form a partition (A + B + C = 1), by writing P(A:B:C) = (1:5:2)(even without the 
refinement P(A:B:C:1) = (1:5:2:8)) it becomes obvious that

 P P PA B C1 8 12 5 5 8 62 5 2 8 25/ %, / %, / %. 
At this point we shall also introduce the operation of the term‐by‐term product of 

multiratios, denoting it by *:

 a a a b b b a b a b a bn n n n1 2 1 2 1 1 2 2: : : * : : : : : : . (5.5)

This frequently provides some advantage in handling small numbers or simple expres-
sions in a long series of calculations, and will turn out to be particularly useful for the 
applications to likelihood which we mentioned above.

The time has now come to end this digression concerning methods of numerically 
denoting probabilities and to return to questions of substance.
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5.3 How to Think about Things

5.3.1. In discussing the central features of the analysis which must underlie each evalu-
ation, it will be necessary to go over many things which, although obvious, cannot be 
left out, and to add a few other points concerning the calculus of probability.

The following recommendations are obvious, but not superfluous:

 ● to think about every aspect of the problem;
 ● to try to imagine how things might go, or, if it is a question of the past, how they might 

have gone (one must not be content with a single possibility, however plausible and 
well thought out, since this would involve us in a prediction: instead, one should 
encompass all conceivable possibilities, and also take into account that some might 
have escaped attention);

 ● to identify those elements which, compared with others, might clarify or obscure 
certain issues;

 ● to enlarge one’s view by comparing a given situation with others, of a more or less 
similar nature, already encountered;

 ● to attempt to discover the possible reasons lying behind those evaluations of other 
people with which, to a greater or lesser extent, we are familiar, and then to decide 
whether or not to take them into account. And so on.

In particular, in those cases where bets are made in public (e.g. horse races, boxing 
matches – in some countries even presidential elections) some sort of ‘average public opin-
ion’ is known by virtue of the existing odds. More precisely, this ‘average opinion’ is that which 
establishes a certain ‘marginal balance’ in the demand for bets on the various alternatives. 
This might be taken into consideration in order to judge, after due consideration, whether we 
wish to adopt it, or to depart from it, and if so in which direction and by how much.

5.3.2. In order to provide something by way of an example, let us consider a tennis 
match between two champions, A and B.4 You will cast your mind back to previous 
matches between them (if any); or You will recall matches they had with common 
 opponents (either recently, or a long time ago, under similar or different conditions); 
You will consider their respective qualities (accuracy, speed, skill, strength, fighting 
spirit, temper, nerves, style, etc.) and the variation in these since the last occasion of 
direct or indirect comparison; You will compare their state of health and present form, 
and so on; You will try to imagine how each quality of the one might affect, favourably 
or otherwise, his opponent’s capacity to settle into the game, to fight back when behind, 
to avoid losing heart, and so on. For instance, you may think that B, although on the 
whole a better player, will lose, because he will soon become demoralized as a result of 
A’s deadly service. However, it would be naïve to stop after this first and lone supposi-
tion: it would mean to aspire to making a prediction rather than a prevision. You will go 
on next to think of what might happen if this initial difficulty for B does not materialize, 

4 This example has already been discussed by Borel and again by Darmois (see p. 93 of the Borel work 
mentioned previously, and again on p. 165 Darmois’ note VI). As is clear from this and other examples 
(like his discussion, again on p. 93, of the evaluation of a weight – similar to our example in Chapter 3, 
Section 3.9.7), Borel seems to be inspired – in the greater part of his writings – by the subjectivistic concept 
of probability: he can thus be regarded as one of the great pioneers, although incompatible statements and 
interpretations crop up here and there, as was pointed out in the footnote to Section 5.2.3.
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or is overcome, and little by little You will obtain a summary view – but not a one‐sided 
or unbalanced one – of the situation as a whole. Your ideas about the values to attribute 
to the winning probabilities for A and B will in this way become more precise. You may 
have the opportunity to compare your ideas and previsions with those of other people 
(in whose competence and information You have a greater or lesser confidence, and 
whom You may possibly judge to be more or less optimistic about their favourite). In the 
light of all this, You might think over your own point of view and possibly modify it.

5.3.3. Our additional remarks concerning the calculus of probability consist in point-
ing out that the conditions of coherence, even if they impose no limits on the freedom 
of evaluation of any probability, do in practice very much limit the possibility of ‘extreme’ 
evaluations. More precisely, an isolated eccentric evaluation turns out to be impossible 
(the same thing happens, for instance, to a liar, who, in order to back up a lie, has to 
make up a whole series of them; or to a planner, who must modify his entire plan if one 
element is altered).

It is easy to say ‘in my opinion, the probability of E is, roughly speaking, twice what 
the others think it is’. However, if You say this, I might ask ‘what then do You consider 
the probabilities of A, B, C to be?’, and, after You answer, I may say ‘so do You think the 
probability of H is as small as this; 1

10  of what is generally accepted?’, and so on. If You 
remain secure in your coherent view, You will have a complete and coherent opinion 
that others may consider ‘eccentric’ (with as much justification as You would have in 
calling the common view ‘eccentric’) but will not otherwise find defective. However, it 
will more often happen that as soon as You face the problem squarely, in all its complex-
ity and interconnections, You come to find yourself in disagreement not only with the 
others but also with yourself, by virtue of your eccentric initial evaluation.

We have been talking in terms of bets and the evaluations of probability, and not of 
previsions of random quantities, although they are the same thing in our approach. This 
was simply a question of the convenience of fixing ideas in the case where the probabil-
istic aspect is most easily isolated: however, one should note that the same considera-
tions could in fact be extended to the general situation.

5.4 The Approach Through Losses

The betting set‐up is related to the ‘first criterion’ of Chapter 3, Section 3.3; the scheme 
we are now going to discuss is based on the ‘second criterion’: it is this latter – as we 
remarked previously, and will shortly see – which turns out to be the more suitable.

First of all, we shall find it convenient to present this scheme right from the beginning 
again, referring ourselves now to the case of events. Because this is the simplest case, 
and because we are treading an already familiar path – which we shall illustrate clearly 
with diagrams  –  everything should appear both more straightforward and of wider 
application.

5.4.1. Instead of some general random quantity X, You must now think in terms of an 
event E, such that You are free to choose a value x, bearing in mind that You face a loss

 L L E xx
2 . (5.6)
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Expanding this (remembering that E2 = E), one obtains the following alternative expres-
sions (in the last one, p is any number whatsoever):

 

a

b

c

L x x E

x E x E

E p p x E p p

x
2

2 2

2

1 2

1

1

,

,

2x .

 (5.7)

They all reveal (5.7b most explicitly) that Lx equals x2 or (1 − x)2 according to whether 
E = 0 = false or E = 1 = true.

Since we have already used the criterion as a definition – and hence already know 
what the probability p = P(E) of E is – we can, ‘being wise after the event’, examine how 
the criterion behaves by looking at P(Lx), considered as a function of a value x and of a 
probability p, assumed to be arbitrary (so we adopt the notation Lx(p)). Putting E = p in 
equations 5.7a, 5.7b, and 5.c (which are linear in E) we obtain:
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L p x x p
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,
2 .

 (5.8)

5.4.2. We now examine the variation in Lx(p) as p varies, x being an arbitrary fixed 
value. As might have been expected (5.8a shows this up most clearly), Lx varies linearly 
from Lx(0) = x2 to Lx(1) = x2 (which are the two possible values for Lx, depending on the 
occurrence of either E⁓(p = 0) or E(p = 1)). The straight lines in Figure 5.2, connecting 
these extreme values, give a visual impression of how they go together: that is of how, in 
order to reduce the penalty resulting in one case, one must increase it in the other.5

The figure also shows, in an indirect way, the variation of Lx(p) for varying x, with p 
fixed. Geometrically, one can see (and equation 5.8c) presents it explicitly) that the 
straight lines are the tangents to the parabola y = p(1 − p) = p p, and that none of them 
can go beneath their envelope (this is within the interval [0, 1]: the others would corre-
spond to values x < 0 and x > 1; see footnote 5). Given p, the best one can do is to take the 
tangent at p, obtained (as we already know!) by choosing x = p: this gives Lx(p) its mini-
mum value (as x varies), Lx(p) = p p. Choosing a different x gives rise, in prevision, to an 
additional loss (x − p)2; that is the square of the distance from x to p: equation 5.8c shows 
this explicitly, by splitting the linear function Lx(p) into the sum of p(1 − p) (the parabola) 
and (x − p)2 (the deviation from the parabola of the tangent at p = x). We observe also, 
and this confirms what has been said already, that this deviation is the same for all the 
tangents (starting, of course, from their respective points of contact).

The maximum loss is 1, and this is achieved by attributing probability zero to the case 
that actually occurs: the minimum loss is 0, and is achieved when a probability of 1 (or 
100%) is attributed to this case. For any given x, the loss varies between x2 and x2 (as we 
have seen already). For a given p, we already know that the minimum is p p (for x = p), and 
it is readily seen that the minimum is p ∨ p: more precisely, if p ⩽ 1

2
 it is 1 − p, obtained by 

choosing x = 1; if p ⩾ 1
2
 it is p, obtained by choosing x = 0. If p = 1

2 , we have the maximum of 

5 This is for 0 ⩽ x ⩽ 1: we already know, and can also see, that, in every case, x < 0 or x > 1 is worse than x = 0 
or x = 1, respectively, and is thus automatically ruled out (without need of any convention).
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the minimum (p p 1
4), and the minimum of the maximum (p ∨ p

1
2), and hence the larg-

est discrepancy (max − min = 1
2

1
4

1
4); in general, the discrepancy is x2 ∨ x2, that is the 

maximum of x2 and (1 − x)2, and attains its maximum (=1) for x = 0 and x = 1.6

5.4.3. The case of many alternatives. We can deal with the case of many alternatives 
(of a multi‐event, of a partition), and the more general case of any number of arbitrary 
but not incompatible events, by applying the previous scheme to each event separately. 
In this way, things reduce to the treatment given in Chapter 3, and to the geometric 
representation which was there illustrated. Here, we simply wish to review the approach 
in the spirit of the above considerations, and then to look at a few modifications.

It will suffice to consider a partition into three events (such as E1, E2 and E3 of 
Chapter 3, 3.9.2). We shall call them A, B and C (A + B + C = 1) and represent them as 
points, A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1), in an orthogonal Cartesian system. For 
the time being, we shall distinguish the probabilities, p = P(A), q = P(B) and r = P(C), 
attributed to them, from the values x, у and z chosen in accordance with the second 
criterion (we know they must coincide but we want to investigate what happens if we 
choose them to be different, either through whim, oversight or ignorance).

6 Among other decision criteria that are employed (inspired by points of views which differ from ours) is 
one which is called the ‘minimax’ criterion: it consists in taking that decision that minimizes the maximum 
possible loss. Observe that, in the above situation, this criterion would have us always choose x = 1

2  (then, in 
fact, the loss would = 1

4 , with certainty, whereas every other choice would give a smaller loss in one of the 
two cases, although greater in the other). Since it is incoherent to attribute probability 1

2
 to all events, such a 

criterion is absurd (in this kind of application; not so, however, in the theory of games – see Chapter 12, 
Section 12.7.4 – where it provides a solution in situations of a different kind, nor even in this situation under 
an hypothesis of an extremely convex utility function where it would no longer lead to the choice of p = 1

2 ).

Figure 5.2 The straight lines correspond to the combinations of penalties among which the method 
allows a choice (the penalty can be reduced in one of the two cases at the expense of increasing it in 
the other: lowering the ordinate at one end raises it at the other). The ordinate of a particular straight 
line at the point p is the prevision of the loss for the person who chooses that line and attributes 
probability p to the event under consideration. In this case, the minimum value that can be attained is 
given by the ordinate of the parabola (no straight line passes beneath it!), and the optimal choice of 
straight line is the tangent to the parabola at the point with abscissa p.
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We shall denote by P the prevision‐point P = (p, q, r); the decision‐point will be 
denoted by P″, P″ = (x, y, z) (Figure 5.3).

The total loss will then be

 L A x B y C z2 2 2 (5.9)

and

 
P L pp qq rr p x q y r z  

2 2 2 ; (5.10)

in other words,

 
P L P P Pfirst term involving only the prevision point 2 ,

 

the latter being the square of the distance between P″ and P. Hence, in order to avoid an 
extra loss, whose prevision is equal to the square of the distance between P″ and P, the 
point P″ must be made to coincide with P.

The argument given previously (Chapter  3, 3.9.2) was saying the same thing, but 
 without reference to a preselected prevision P. Given a point P″ = (x, y, z), outside the 
plane of A, B and C (i.e. with x + y + z ≠ 1), its orthogonal projection P′ onto this plane has 
distance less than P″ from A, B and C; if P′ falls outside the triangle ABC, the above‐
mentioned distances decrease if one moves from P′ to the nearest point P on the boundary. 
This shows that only the points of the triangles are admissible (in the sense of Pareto 
optimality; there are no other points giving better results in all cases). The present 
argument is less fundamental, but more conclusive, because – assuming the notion of 
probability to be known in some way (e.g. on the basis of the first criterion) – it shows 
how and why the evaluations x, y, z of the second criterion must be chosen to coincide 
with the probabilities p, q, r of A, B and C.

Q3 Q3

P
P2 P1

P3

Q2Q1Q2
Q1

X2

X1

P″

P

X3(a) (b)

Figure 5.3 The triangles of points such that x + y + z = 1 (x, y, z non‐negative) seen in (a) space, and (b) in 
the plane. It is clear from geometrical considerations that the choice of a loss rule corresponding to the 
point (x, y, z) is inadmissible (in the case of three incompatible events) if it is not within the given triangle. 
Moreover, if one attributes the probabilities (p, q, r) to the three events, it pays then to choose x = p, y = q, 
and z = r. In other words, the method rewards truthfulness in expressing one’s own evaluations.
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5.4.4. We have here dealt with the most formally immediate case, that of applying to 
the different events (A, B, C) one and the same scheme with the same maximum loss, 
namely unity. We know, however (see Chapter 3, 3.3.6), that, so far as the evaluation of 
probabilities is concerned, and this is what interests us, no modifications would be 
required were we to use different coefficients: for instance, if one were to take

 L a A x b B y c C z2 2 2 2 2 2
 

with arbitrary a, b, c. Geometrically, the three orthogonal unit vectors, A − O, B − O, 
C − O, must now be taken to have lengths a, b and c. This implies – and it is this aspect 
which may be of interest to us – that the loss, which always equals the square of the 
distance, is given by (A − B)2 = a2 + b2, if in prevision all the probability is concentrated 
on A, and B actually occurs (and conversely): similarly for (A − C)2 = a2 + c2 and 
(B − C)2 = b2 + c2. In the plane of A, B and C, the triangle ABC can be any acute‐angled 
triangle (in the limit, if one of the coefficients is zero, it can be right‐angled): in fact, 
a2 = (B − A) × (C − A) = AB AC. . cos BAC , cos BAC  > 0, and so on. In any case, the 
scheme would work in the same way even if ABC were taken to be any triangle what-
soever, although if it were obtuse‐angled, we could not obtain it as we just did in 
orthogonal coordinates (merely by changing the three scales). This is obvious by 
 virtue of the affine properties, a point we have made repeatedly. In the general case, 
the only condition imposed on the three losses AB AC BC2 2 2, ,  is the triangle inequal-
ity for AB AC BC, , .

5.4.5. Why are we bothering about the possibility of modifying the shape of the trian-
gle: that is the ratios of the losses in the different cases? After all, this is irrelevant from 
the point of view of evaluating probabilities. Despite this, it may sometimes be appro-
priate to draw a distinction between the more serious ‘mistakes’, and the less ‘serious’ 
(the former to be punished by greater losses), in those cases in which the losses could 
also serve as a useful means of comparison when considering how things turn out for 
different individuals (as we shall see shortly).

A good example, and one to which we shall subsequently return, is that of a football 
match (or some similar game) in which the following three results are possible: 
A =  victory, B = draw, C = defeat. In the most usual case (triangle ABC equilateral), one 
considers it ‘equally bad’ if either a draw or defeat results when one has attributed 100% 
probability to victory. If, on the other hand, the distance between victory and defeat is 
considered greater than the distance between each of these and a draw, we could take an 
isosceles triangle with the angle B greater than 60°; if we take this angle <90°, we have a 
combination of three losses for the three results, and the loss for victory–defeat will be 
less than twice the loss for draw–defeat (or for draw–victory). For a right angle, this 
ratio will be exactly double (the ratio of the sides = √2) and the scheme will only be 
applicable to the events victory and defeat (a draw is only taken into account as comple-
mentary to the other two). For angles between 90 and 180°, the interpretation as com-
binations of losses for the three events no longer holds; for the case of a draw, the loss 
would have to be negative in order for things to proceed smoothly! The 180° case means 
that we are effectively considering prevision in terms of ‘points’ (0 for a defeat, 1 for a 
draw, 2 for a victory), in the sense that previsions like (0,1,0) and (1

2 , 0, 1
2 ) – that is of 

being certain of a draw, or of equal probabilities for victory and defeat, excluding a 
draw – are considered identical.
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5.5 Applications of the Loss Approach

5.5.1. The employment of this method (or something similar) by various people for 
evaluating probabilities should be given great emphasis and, for many, many reasons, 
deserves wide publicity.

Sometimes, one is interested in knowing the opinion of a given individual, or of vari-
ous individuals, concerning the probabilities of certain events under consideration. 
Sometimes, in order to make some kind of psychological analysis, one is interested in 
knowing how the various individuals react to information, or other new factors. In cer-
tain other cases, it might be interesting to be able to judge, in a more precise fashion, the 
extent of the ‘partial knowledge’ of individuals under examination: for instance, one 
might discourage them from ‘guessing’.7 And so on.

In all these cases, one should take into account the no less important value of repeated 
experiences of this kind. They greatly aid one in acquiring the ‘feeling for numerical 
values’ with which one expresses ‘degrees of belief ’, and hence they contribute to build-
ing up a keen and accurate understanding of the problems of prevision, and of the 
spirit – not cut‐and‐dried – in which probability theory must approach them.

5.5.2. With this aim in mind, we must now supply all the details of the method. It must 
be understood that it is preferable to express one’s own evaluations sincerely and accu-
rately, and that otherwise one suffers a loss, equal, in prevision (in one’s own evalua-
tion), to the square of the distance between one’s own true evaluation and the one 
expressed. In addition, there is a definite advantage in obeying the conditions of coher-
ence (in our example; x, y, z ⩾ 0, x + y + z = 1): to do otherwise is to arrange to suffer one 
part of the loss with certainty. If, instead, one wishes to check – in a decision‐theoretic 
sense – the ability of a given individual to do the right thing without having a systematic 
knowledge of the situation and of the theory, the characteristic features of the method 
should not be revealed (except for mentioning what losses are). This is a different prob-
lem, however; a far cry from those for which we have introduced the method under 
present discussion (and it seems unlikely, anyway, that anyone could come to sensible 
decisions without knowing and applying – with great care! – the theory of probability).8

Let us now proceed to some concrete examples of various types of applications.

5.5.3. The opinions of experts. It often happens that one turns to the experts for infor-
mation. This is, in actual fact, nothing other than an evaluation of probability. One is 

7 By ‘guessing’, we mean ‘guessing at random’. This should not be confused with the usage conveyed in 
Pólya’s ‘Let us teach guessing’, where it means to make useful conjectures (first guess, then prove!).
8 Experiments of this kind, which are made in order to check the extent to which actual behaviour conforms to 
the norms derived from the theory of probability, are often considered as ‘proving’ or ‘disproving’ the validity of 
probability theory (or of the related theory of decision making under conditions of uncertainty). This would be 
so if such theories were to be regarded as empirical–psychological theories of actual behaviour, but, in fact, it is 
completely at odds with what we are considering here: a normative theory for coherent behaviour.

Many criticisms derive from this confusion (or from the refusal to accept that a subjectivistic theory can 
distinguish incoherent and coherent behaviour, rather than just being an acritical, empirical observation of 
actual behaviour as it happens to be). This kind of empirical evidence is also of interest from our standpoint, but 
in the same way as a mathematician might find the mistakes of laymen, students, or even other mathematicians, 
interesting. He does not modify mathematics by incorporating these ‘mistakes’, as though, simply because 
someone has enunciated them, they ‘should’ be included by virtue of their being part of some psychological 
truth, or of the indiscriminate collection of mathematical statements made in the course of history.
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not always in a position to weigh‐up for oneself all the probabilities relevant to a given 
situation; this then is the time to behave like the Prince, who, according to Machiavelli, 
‘sometimes understands things by himself, sometimes through the understanding of 
others: while the former is excellent, the latter is also very good’.

An example, one of thousands, is given by the case of a geologist who is asked to give 
an opinion as to whether it is worth drilling a hole at a particular site during an oil 
search. This is a useful example to consider, since it has, to some extent, been treated by 
Grayson,9 and so the interested reader can delve deeper into those aspects which we 
shall not discuss. The geologist himself does not have any say in the final decision of 
whether or not to drill: this decision must be taken (by the ‘decision maker’) after con-
sideration of all the various pieces of information, of which that of the geologist is just 
one. He, for his part, cannot state categorically that oil is present or not present (thus 
making a prediction rather than a prevision), nor can he sin in the opposite direction 
and merely list the information about the geology of the area (reliable, but analytical), 
leaving to others the task of synthesis and drawing some conclusions. The synthesizing 
and the conclusions about the probable outcome of the drilling – given from a geologi-
cal standpoint – are precisely what his expertise is called upon to provide.

In actual fact, the geologist’s report does provide this answer, but usually couched in 
extremely vague adjectives or phrases (such as: fairly good prospects, or good, favourable, 
uncertain, promising, etc.; sometimes preceded by little words like ‘very’, ‘not very’, ‘quite’, 
‘rather’, and followed cautiously by ‘unless anything unexpected happens’, ‘perhaps’, ‘it’s dif-
ficult to say’, ‘in my humble opinion’,…, ‘God only knows’). The only solution worthy of seri-
ous consideration is to have the geologist express the probabilities numerically, and some 
companies actually do this. The objection could be raised (and often is) that the knowledge 
of the geologist is too vague to be represented numerically. It would certainly be unwise and 
overzealous to assert that the probability of striking oil at a given site is 0.1307594, but to 
state that the probability is 0.131, or 0.13, or even simply 10–15%, is always preferable to a 
string of adjectives whose vagueness depends upon the nature of the opinion itself, on the 
inadequacy of language, and, perhaps, on a desire to state the conclusions in the least com-
promising way – that is essentially ambiguous, but not appearing to be.10

5.5.4. There remains the problem, however: how can we interest the expert – in our 
case the geologist –  in giving an honest answer; in expressing accurately his deep‐felt 
belief? This problem was examined by Grayson in the light of the ‘first criterion’, without 
any satisfactory solution being obtained. The method we suggest here  –  that of the 
‘second criterion’ – would seem to give a perfectly satisfactory solution, and is precisely 
what Grayson requires; ‘a system to discourage falsification’. For the practical applica-
tion at present under consideration, it would be sufficient to agree that some part of the 
agreed fee (neither insignificant, nor excessive; say, 5–10%) be held back until the even-
tual outcome was known, and then the loss deducted (up to a maximum of the amount 
held back) before payment. In certain cases, however, like those of experts who are 

9 C.J. Grayson, Decisions Under Uncertainty: Drilling Decisions by Oil and Gas Operators, Harvard 
Business School (1960).
10 Someone made the acute observation that often the ability to make accurate predictions consists in 
expressing them in a sufficiently imprecise fashion (this principle is mentioned on p. 213 of Good’s 
anthology – see footnote 12 – and also in a review article of mine; see Civilta delle macchine, No. 1 (1963), 
71–72). On the other hand, the limit-case of Sibylline predictions (‘Ibis, redibis,…’) is well known.
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consulted regularly, or who hold positions within the firm, one might also add up the 
losses – expressed as ‘scores’ – in order to make global comparisons (of the ‘goodness’ 
of the previsions of two individuals based on comparisons of the cases examined by 
both of them). These comparisons could be made separately according to ‘type’ of prob-
lem, time period and so on, and could be taken into account when considering the 
merits of someone in connection with appointments, promotion and so on.

The following discussion is useful both in real‐life and as an example.

5.5.5. Forecasting sports results. We consider sports results, football in particular, 
because they give plenty of scope for experiments of this kind: they can be observed 
regularly (e.g. every weekend) and sufficiently often; the outcomes are clear‐cut (in 
football, the home team either wins, loses or draws), officially ratified, and the situation 
is well known to most people. In addition, there is considerable background informa-
tion and comment in the newspapers. However, leaving aside the convenience (for the 
reasons given above) of sports results, we could consider forecasting in any area (e.g. 
politics, economics, meteorology, everyday affairs, culture, judicial or sanitary matters, 
personal or business affairs, etc.).

There are, as is well known, various organized pools for betting on football and horse 
racing. These, however, are motivated by the concept of ‘prediction’, in that they reward 
those who guess all (or almost all) of the results. Moreover, the sensitivity of the system 
is completely distorted by the practice of sharing out the available prize money among 
the winners. Indeed, the net result of all this is as follows: those who write down ridicu-
lous forecasts, that by chance turn out to be correct, receive fantastic prizes; whereas 
those who write down forecasts which could reasonably be thought probable receive, if 
they win, only very small amounts, since the prize, in this case, will presumably have to 
be shared with many others.11 Consequently, the ‘most reasonable’ way to gamble would 
not be to bet on the result for which the probability of occurrence is highest but, instead, 
to consider the probability multiplied by the prevision of the reciprocal of the number 
of people betting on it, and to bet on the result for which this is highest.

The betting approach that we discussed previously, illustrating its merits and 
demerits, is in line with the notion of prevision (as opposed to prediction). The 
scheme we are now going to present is intended to build on the merits and eliminate 
the demerits. It should, therefore, permit us to achieve those goals that we have 
already mentioned: to develop a feeling for what a prevision (not a prediction) is, and 
a feeling for the numerical scale on which it is to be expressed; to teach one how to 
take into account the relevant circumstances, bearing in mind one’s own level of com-
petence. Moreover, all this is achieved within the agreeable format of a competition, 
there being the additional opportunity to reflect and to compare, after the event, one’s 
own previsions with those of others, and with the results themselves. It will be neces-
sary to consider rather carefully the latter point; that is ‘being wise after the event’. We 
shall do so in Sections 5.9 and 5.10 of this chapter, and will come back to it on several 
occasions later in the book.

11 This brings to mind a rather tragic story: a man died, overwhelmed with joy, on learning that he had 
guessed correctly all the 13 football results on the Italian football pools. In fact, he was lucky, because 
otherwise he would have died of disappointment the next day on learning that his winnings were so small 
(about 3000 Lire), owing to the predictability of the results, which were therefore foreseen by many others 
besides himself.
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5.5.6. One could organize a competition more or less along the following lines (this 
has already been tried, although on a small scale).12 The participants have to hand in, 
each week, previsions for the forthcoming matches, giving, for each match, the prob-
abilities (expressed in percentages) of the three possible outcomes (in the order: win, 
draw, defeat); writing, for instance, 50–30–20, 82–13–05, 32–36–32 and so on. Given 
the results, one can evaluate, game by game, the losses and the total losses for the day 
(and, possibly, a prize for the day), as well as the cumulative sum needed for the final 
classification. This final classification must be seen as the primary objective. If there 
are prizes, the largest should be reserved for the final placements, and, in order to 
conform to the spirit of the competition, the prizes must complement losses; that is 
they should depend on them in a linearly decreasing fashion.13

The lessons of experience tell us much about the necessity of avoiding the mentality 
of prediction when making previsions. It is true that total success  –  that is no pen-
alty –  is achieved if and only if the whole probability, 100%, is attributed to the case 
which actually occurs. For this reason, many find it tempting, especially at first, to 
attempt to get the result spot‐on, with evaluations which ignore the possibility of uncer-
tainty (i.e. 100–00–00, 00–100–00 or 00–00–100, which are equivalent, in the notation 
of the football pools, to the ‘predictions’ ‘1’, ‘X’, ‘2’). However, these participants come to 
realize very quickly that they have fallen behind – this happens on the individual days, 
but shows up most in the final classification – relative to those who distribute probabil-
ity in a sensible way: they soon modify their approach.

We shall come back to this example later.

5.5.7. Replies to multiple‐choice questions. One is often required in a ‘quiz’, or even 
in an examination (especially in America), to choose from among a few given answers 
the one which one believes to be correct. The exact details may differ somewhat: one 
may either have to tick one and only one answer; or be allowed to choose none; or to 
choose a subset within which the correct answer is thought to lie (and, in this case, 
there are two variants, according to whether one indicates an order of preference or 
not). In any case, there must be an agreed method of scoring according to the way in 
which the answers given compare with the correct answers. A problem arises from 
the necessity of discouraging people from ‘guessing’; this is often dealt with by esti-
mating statistically what the effect of the assumed presence of ‘guessing’ would be, in 
a mass of people.

12 It was tried twice, in 1960–1961 and 1961–1962, in the Economics Faculty of Rome University. There 
were about 30 participants (students and a few teachers) on each occasion, and the study centred on the 
nine football matches played every week in the first division of the Italian league. Some discussion of this 
can be found in B. de Finetti, ‘Does it make sense to speak of “good probability appraisers”?’ in the volume 
entitled The Scientist Speculates: An Anthology of Partly-baked Ideas (edited by I.J. Good) Heinemann, 
London (1962). The experiment was repeated again in Rome (Faculty of Science) from 1966 on, and 
experiments of this kind have recently been made in the United States.
13 If, for example, no prize is to be awarded to those who come last (by whatever ruling is proposed), not 
only do the tail-enders have no motivation to exercise care in their evaluations but, on the contrary, they 
have a vested interest in trying outlandish evaluations, which they presume to be different from those of 
individuals in a better position. This is their only hope of overtaking them and getting a prize. If the first 
prize were extremely large, the temptation to behave in this way would be greatest for those in second 
place on the next to last day. In any case, such a distortion of interest occurs whenever linearity is 
abandoned.
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This latter problem is completely resolved if one applies the method under considera-
tion.14 Observe that, in this context, there is no question of events which could be con-
sidered ‘uncertain’ in some ‘objective’ sense. For example: it is clear that if we ask which 
of A = Antonio, B = Brutus, C = Caesar said the famous line ‘Alea jacta est’, we are not 
asking for any sort of testimony or opinion concerning the fact that some great man 
uttered the phrase in the course of his life; we simply wish to check whether the exami-
nee knows that the phrase relates to Caesar and the crossing of the Rubicon. In the same 
way, if we ask whether log x + log у equals

 A x y B xy C e ex ylog , log log ;or  

or whether √26 is A = rational, B = algebraic or C = transcendental; or whether, at the 
battle of Waterloo, Napoleon A = won, B = lost or C = drew; or whether the city of Bahia 
is in A = Argentina, B = Brazil or C = Chile; and so on; in all these cases, the probability, 
the doubt to be measured, comes solely from the ignorance, uncertain knowledge or 
bad memory of the person questioned.

In every other respect, on the other hand, the situation is identical to that of the 
football pools: for the person who judges, for the person concerned with his state of 
doubt, there is no difference. It is sufficient to realize that a person could forecast the 
football results on a Sunday evening, when the facts are part of the past and are known 
to everybody (provided they are not known to him), or even a year later, provided that 
he then recollects them with something less than certainty.

5.5.8. The adoption of the proposed system in the case of multiple‐choice questions 
would turn out to be instructive, in addition to the reasons that hold generally (i.e. learn-
ing how to express one’s own opinion by translating it into numerical values), for the 
‘lesson’ which would show how it is also advantageous (where sensible rather than stupid 
rules are in use) to strive for the greatest honesty and accuracy in expressing one’s own 
doubts or lacunae. Conversely, stupid rules (like stupid laws) encourage dishonesty and 
reticence, encourage that complex of underhand and stupid actions which are euphemis-
tically described by the phrase ‘trying to be clever’; in our case, they encourage ‘guessing’.

For the examiners too, it would be extremely useful to have precise information about 
those who ‘know’ (e.g. those who write down Antonio 00%, Brutus 00%, Caesar 100%), 
with the suspicion of ‘guessing’ now removed, and even more to be able to make a 
detailed analysis, on the basis of precise and meaningful data, of the frequency, intensity 
and nature of the doubts (possibly with a view to investigating their origin and suggest-
ing ways of dealing with inadequacies in the teaching). In addition, they would be able 
to examine the degree of accuracy with which the evaluations are made (e.g. not simply 
using 50%–50% if there is uncertainty between two alternatives). In the case under 
 consideration, there could, of course, be any number of alternatives whatsoever; in 
the examples above, we considered three for convenience, and in order to be able to 
retain the analogy with football results, and the possibility of imagining the situation 
as always representable in terms of Figure 5.3.

14 The betting approach, on the other hand, could not be used. Anyone in a state of some doubt would 
certainly lose against an opponent (e.g. the examiner) who knows the right answer.
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5.5.9. Applications in economics. In the field of economics, the importance of proba-
bility is, in certain respects, greater than in any other field. Not only is uncertainty a 
dominant feature but the course of events is itself largely dependent on people’s behav-
iour, which is itself determined, in a more or less unconscious and confused fashion, by 
evaluations and arguments of a probabilistic nature. It is, therefore, probability theory, 
in the broadest and most natural sense, that best aids understanding in this area (and 
not those fragments of the theory which never progress beyond the drawing of ‘equally 
likely’ balls from an urn, or ‘stable’ frequencies).

This point of view was presented in a clear and authoritative manner by T. Haavelmo 
in a celebrated critical speech delivered as president of the Econometric Society,15 
where he stated that previsions and evaluations of subjective probabilities ‘are realities 
in the minds of people’ and that it was to be hoped that ‘ways and means can and will he 
found to obtain actual measurements of such data’

Another point, of particular importance for applications in operational research, is the 
possibility of making use of those evaluations of probability which represent a decision‐
maker’s own opinions. For example, only the decision maker himself can say what probabili-
ties he attributes to the different reactions of his most direct competitors to possible 
decisions of his. How, though, are we to interrogate him? Indirect approaches are necessary; 
questions about his preferences under some hypothetical sets of conditions should be posed 
in such a way as to provide, in turn, both a complete picture and a check of consistency. 
These are, however, expedients to make up for the lack of training in expressing oneself in 
terms of probabilities; the difficulty would not exist if such training became general practice.

Finally (in order not to dwell on too many other aspects16), there are important appli-
cations to the more theoretical field of econometric models. As E. Malinvaud says, in his 
treatise on statistical methods in econometrics,17 the justification of the introduction of 
random models into econometrics rests, in his view, on an appeal to subjective probabili-
ties, so that ‘l’établissement d’une statistique subjectiviste qui reposerait sur le principe 
de Bayes’ would be desirable (even though, in his opinion, research in this direction is, as 
yet, not sufficiently advanced to make a systematic application possible: on the other 
hand, there are those, for example A. Zellner,18 who are attempting to do this).

5.6 Subsidiary Criteria for Evaluating Probabilities

Having analysed the meaning and the method of evaluating probabilities that a person 
might be led or compelled to make in order to sort out his ideas about what might 
occur, and to choose wisely any decision that has to be made, we are now in a position, 

15 Trygve Haavelmo, The rôle of the econometrician in the advancement of economic theory, Presidential 
Address, Meeting of the Econometric Society, Philadelphia, 29 Dec. 1957; see Econometrica, 26 (1958), 351–357.
16 I have recently provided a wide ranging discussion of these topics (with a fairly mathematical treatment) 
in ‘L’incertezza nell’economia’, part I of: B. de Finetti and F. Emanuelli, Economia delle assicurazioni, Vol. 
XVI of Trattato italiano di economia (Edited by C. Arena and G. Del Vecchio), Utet, Torino (1967).
17 Edmond Malinvaud, Méthodes statistiques dans l’économétrie, Dunod, Paris (1964).
18 Arnold Zellner, An Introduction to Bayesian Inference in Econometrics, John Wiley & Sons (1970). It should 
be noted, however, that, although the treatment is Bayesian, the interpretation is not subjectivistic. The choice 
of the initial distribution does not derive from a case-by-case consideration of the factual circumstances, but 
from adopting once and for all a mathematically convenient form for each type of problem.
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and are in fact obliged, to return to the essence of the problem of evaluation. We wish 
to discover whether the task of translating more or less vague impressions and opinions 
into numerical form could be facilitated by using some suitable subsidiary criterion. 
Fortunately, this turns out to be the case.

This happy circumstance derives, in general, from the observation that in many cases in 
the calculus of probability, under restrictions that are often very natural, certain probabili-
ties, which are calculated on the basis of certain others, vary very little as one’s evaluations 
of these other probabilities are varied. Consequently, even if the latter seem, to a given 
individual, rather vague, the former may very well appear to him capable of being evalu-
ated with sufficient precision and confidence. As a brief aside on the question of interper-
sonal comparisons, we note that this explains why individuals often make practically 
identical judgments of prevision, even though they start off with very different opinions.

These general considerations will become clearer as we proceed further. For the time 
being, we restrict ourselves to illustrating the two subsidiary criteria which are of the 
greatest and most immediate interest: the first one we shall deal with in a reasonably 
detailed manner; the second, which, from a logical point of view, is based on material 
we shall meet much later on, is dealt with in a necessarily superficial way.

5.7 Partitions into Equally Probable Events

5.7.1. Every quantitative measurement is made both easier and more precise when it is 
possible to reduce it to a qualitative comparison. For example; it is much easier to say 
that A.N. Other has eaten 2

9
 (i.e. about 22 · 2 %) of a cake knowing that it was divided into 

18 pieces, which could be taken as equal, and that he has eaten four of them, than to 
directly estimate that his portion was 22 · 2 % of the whole, undivided cake. In precisely 
the same way, it is obvious that if I judge n events of a partition to be equally likely, 
I cannot avoid attributing probability p = 1/n to each of them (because the sum of the 
n terms, each equal to p, must be 1). Judgments of this kind arise rather frequently: it is 
sufficient that, given the present state of information, one finds oneself in a situation of 
symmetry. This will often, although not necessarily always, reduce to a state of symmetry 
regarding certain physical, or at any rate external, circumstances, which we regard as 
essential and relevant elements of our state of information.

When tossing a coin, we usually attribute the same probability 1
2  to both faces and, 

similarly, probability 1
6
 to each of the six faces of a die. If we have n balls in an urn, we 

again, in general, attribute the same probability 1/n to any particular one of them being 
drawn: in this case, if we also know that m of the balls are white, we have no choice but 
to attribute probability m/n to the drawing of a white ball. This judgment of equiproba-
bility (relative to a single toss, throw or drawing – this is not the place to consider more 
complicated cases) reflects a symmetric situation which is often made objectively precise 
by stating that the balls must be identical, the coin and the die perfect (physically sym-
metric) and so on. However, the criterion remains essentially subjective, because the 
choice, of a more or less arbitrary character, of those more or less objective requirements 
which are to be included in this concept of ‘identical’, reflects the subjective distinction 
drawn by each individual of what is, and what is not, a circumstance that influences his 
opinion. It was necessary to point this out, in order to avoid giving the impression that in 
problems of this kind we are dealing with a different kind of probability; objective rather 
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than subjective. It is true, however, that in this context opinions generally do coincide 
(although the agreement is less strong and unconditional than one would tend to think). 
Independently of all this, we can always talk about the case of equiprobability, provided 
we state (or take it as implicit) that this simply means that You (or the individual con-
cerned) attribute the same values to the probabilities in question.

5.7.2. Returning to our examples, we observe that by means of these kinds of set‐ups – it 
might be sufficient just to consider drawings from an urn – we can easily obtain a represen-
tation of events of any given probability (to be more precise, any rational m/n). For example, 
if one wants to get an idea of the magnitude of a probability expressed to two or three deci-
mal places, for example expressed in percentage terms like 13% or 13 · 2%, it is sufficient to 
think of an urn with 100 balls, 13 of which are white (or 1000 balls, 130 or 132 of which are 
white). One can avoid talking about colours, and changing the percentage of white balls, by 
simply thinking of the balls as numbered consecutively (from 1 to 100 or 1 to 1000): this 
enables one to say – albeit in less suggestive language – that 13% is the probability of draw-
ing a number not exceeding 13 (out of 100; or 130 out of 1000) and so on.

Using the ‘representations’ of this ‘scale’ one can – if the method seems easier – reduce 
the evaluation of any probability to comparison with cases of this kind, and forget all 
about both the betting approach and that in terms of losses. In order to translate into 
figures the probability – according to You – of striking oil by drilling at a given spot, it 
is sufficient that You decide how many balls, out of 1000, should be white, in order to 
obtain the same probability of drawing a white ball; if You think the number should be 
131, this implies that You think the probability of striking oil is 13 · 1%.

It is convenient to express all this formally:

Theorem. If the n events of a partition are considered as equally probable, the probability 
of each of them is 1/n, and the probability of an event which is the sum of m of them is m/n.

The classical statement is that, under these conditions, the probability is given by the 
ratio of the ‘number of favourable cases’(m) to the ‘total number of possible cases’ (n).

5.7.3. Criterion of comparison (or ‘third criterion’ – following the two in Chapter 3, 
Section 3.3). Having at one’s disposal a model of a partition into n events, which are 
judged equally probable (e.g. an urn), the probability of any event E can be evaluated, by 
comparison with events composed of sums of events of the partition, with an error of less 
than 1/n. In fact, if Em and Em+1 are sums of m and m + 1 events, each of probability 1/n, 
and if one judges P(Em) ⩽ P(E) ⩽ P(Em+1), then m/n ⩽ P(E) ⩽ (m + 1)/n. In order to make 
the comparison operational, it is sufficient to express it by saying that You would rather 
receive one lira if E occurs than one lira if Em occurs, but vice versa if the comparison is 
made with Em+1. In this way, its subjective nature is clear; it remains somewhat in the 
shade when we speak of ‘comparison’ in the abstract, with no precise meaning.

There are many points, both historical and critical, that one could raise at this junc-
ture, but they would require overlong, and in part untimely, digressions: they will be 
considered instead at the end of the Appendix.

Let us just say something, however, in order to make the above a little more precise, at 
least in its essential features. Evaluations made on the grounds of symmetry are  generally 
accepted as a basis for problems concerning games, drawings from an urn, lotteries, dice 
and so on, and one often regards as ‘equally probable cases’ certain  outcomes which are 
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‘combined’ (like the 610 possible sequences obtained by tossing a die 10 times, or the 90 
!/85! possible sets of five numbers on the Lottery, or the 90! permutations in a drawing of all 
the 90 numbers at Bingo etc.), rather than elementary (like the score obtained at the next 
throw of a given die, or the number ‘drawn first’ at a given Lottery wheel next Saturday). 
Recall the remarks made in Chapter 4, 4.10.3, which are relevant to this procedure.

5.7.4. We note, however, that it is not just in examples of games of chance that 
considerations of symmetry can act as a guide but, in fact, in any practical problem 
whatsoever. For example: if we consider the maximum annual temperature (at a given 
location) in three consecutive years, then it can either:

 ● increase (type 1–2–3, where 1, 2 and 3 schematically denote the three temperatures 
in increasing order),

 ● decrease (3–2–1),
 ● be maximal in the middle year (types 1–3–2 and 2–3–1), or be minimal in the middle 

year (types 2–1–3 and 3–1–2).

Now, whatever one’s evaluations of the probabilities of more or less high summer 
temperatures might be, under certain conditions it may very well be natural for us to 
attribute the same probability (1

6 ) to each of the possible cases.

Example A. Increases and decreases in agricultural production. This is a (true!) example 
of a fallacious analysis, based on the observation that, by comparing agricultural pro-
duction in successive years, the numbers of inversions of trend (i.e. the number of times 
in which an increase was followed by a decrease, or vice versa) was about twice the 
number of permanences (i.e. repetitions of an increase or of a decrease). An agricultural 
expert argued that rich and poor crops alternate, and it required a statistician to point 
out the mistake (the numbers are in agreement with what we have just seen above).

Example B. Breaking an existing record. In connection with temperatures, agricul-
tural production, or even the results in an annual competition, for example the winning 
throw in the national discus championships (assuming the given hypotheses continue 
to hold: i.e. there exists no reason to expect an improvement due to better training, 
more participants etc.), one can pose the following sorts of problems: what is the prob-
ability that in the nth year (of the competition, of keeping temperature records etc.) a 
new record is set up? (Ans. 1/n); that the record (set in the first year) be broken for the 
first time? (Ans. 1/п(п − 1)); that the previous record had stood for h years (h = n − 1, 
n − 2,…, 3, 2, 1)? (Ans. 1/(n − 1) for any h); what is the prevision of the number of times 
the record was broken in the first n years? (Ans. ∑(1/h)(1 ⩽ h ⩽ n) ″ log n); and what is 
the prevision of the number of years that the record lasts until the next improvement? 
(Ans. +∞). As an exercise, verify these answers and pose yourself some further problems 
(these are easy to find, although not always easy to solve).

5.8 The Prevision of a Frequency

5.8.1. When considering events E1, E2,…, En, it may happen that we know with certainty 
what the number of successes Y = E1 + E2 + … + En (or, equivalently, the frequency Y/n) 
must be: Y = у, say; that is Y/n = у/п. Clearly (see Chapter  3, 3.10.3), the sum of the 



Theory of Probability: A Critical Introductory Treatment172

pi = P(Ei) must be equal to y (i.e. their arithmetic mean must be equal to y/n); in particular, 
if the Ei are judged to be equally probable, pi = p, then we must have p = y/n (the proba-
bility equal to the known frequency: for y = 1 we have the case of a partition, as considered 
previously). However, even if the frequency is not known with certainty, the relation still 
holds if we substitute the prevision of the frequency: the sum of the probabilities must 
equal the prevision of the number of successes. In other words, dividing by n, we have

Theorem. The arithmetic mean of the probabilities must equal the prevision of the 
frequency:

 p p p n Y n Y nn1 2 / / /P P . (5.11)

In particular, if the Ei are judged equally probable, pi = p, we have p = P(Y/n) = P(Y)/n: 
the probability (common to all the events) is equal to the prevision of the frequency.

5.8.2. In order that correct use be made of this theorem, we must make very clear that 
it is essentially trivial: otherwise, we run the risk of goodness knows what being read 
into it. Observe first of all that the Ei can be any events whatsoever, however diverse, so 
long as the number of successes is given by addition: for example success in an examina-
tion, a victory for one’s favourite football team, finding a traffic‐light green, throwing a 
double six at dice, and anything else, however dissimilar. The ‘theorem’ is an identity: it 
imposes no restrictions, apart from informing us that the same thing, written in two 
ways, remains one and the same thing (rather like the sum of a double‐entry table, 
which can be taken either over rows or over columns).

Well then: it is in this very thing – and in nothing else – that the value of any theorem in 
the calculus of probability lies, and it cannot be otherwise. It is to tell us whether, in making 
the same evaluation in two different ways, we arrive at different conclusions, and, in this 
case, to invite us to think again and to rectify the situation by modifying one or the other.

There is no unique way of doing this: we do not begin with one side already fixed and 
the other to be ‘deduced’. Instead, we have on both sides evaluations that should agree, 
and which must be modified if they do not. How should this be done? Generally speak-
ing, one of the evaluations usually seems to be more immediate, so one is inclined to 
look for a modification of the other; however, one should be open‐minded about it, 
since appearance might well be only appearance.

5.8.3. Turning now to our particular case, You might find that the probabilities which You 
have evaluated, when added together give, for instance, a value which is greater than the 
number of successes, P(Y), which, in prevision, seems to You reasonable. You must then 
ask yourself: ‘have I given the pi values which are on average too large, or are the values 
which I thought of for the number of successes Y (or the frequency Y/n) too low?’ It is fairly 
difficult to answer this if the events are rather disparate, but when they are more alike, and 
especially if we know the frequency of other similar events, which have already been 
observed, it often happens that one places greater confidence in  prevision of the future 
frequency (under the assumption that it will remain close to that previously observed).

Why is this so? The answer to this cannot be given at present (see Chapter 11) but, even 
without going into the whys and wherefores, the idea that there is a degree of  stability in 
the frequency of occurrence of events usually grouped together as ‘similar’ is one which 



5 The Evaluation of Probabilities 173

seems quite intuitive to most people. At the present time, this phenomenon may even be 
somewhat exaggerated as a result of overly simple and rigid formulations current among 
many statisticians. However, it rests on a very real foundation, since this is how things 
appear, even to the naïve layman (who, for example, is really surprised if in a given period 
certain phenomena re‐occur with an unusual frequency). Let us accept things as they are.

As a particular case, suppose the events under consideration are so similar that one 
judges them equally probable: it will turn out that their probability p will be evaluated 
on the basis of a frequency f observed among similar events in the past, and that p will 
be close to ƒ. Notice that in this case the evaluation is based not only on the prevision 
of a frequency, but also requires a judgment of equal probabilities.19

5.8.4. Some examples. Statistics show that the percentage (or frequency) of males 
among live births is always about 51 · 7% (hence, a few more males than females); that, 
according to the Italian tabulations for 1950–1953 and 1954–1957, respectively, the 
percentages of deaths in the first year were 6 · 75% and 5 · 49% for males, 5 · 88% and 
4 · 67% for females; that the overall annual percentage of deaths in Italy in 1960 attribut-
able to cancer was 1 · 51%, but broken down into age groups it was

Age: 0–5 5–25 25–55 55–75 over 75
% 0 · 013 0 · 009 0 · 078 0 · 524 1 · 131

and into regions (not distinguishing age groups) it varied from 0 · 220% in Liguria, 0 · 210% 
in Tuscany, to 0 · 089 % in Puglia and 0 · 073% in Basilicata and Calabria. To change the 
subject completely, statistics also show that the results of championship football matches 
are distributed (in terms of home fixtures) as 50% wins, 30% draws, 20% defeats.

Thinking of such frequencies as stable, we could adopt them universally as probabilities 
for any similar events, or future cases; or, at least, we could evaluate the probabilities of 
individual cases in such a way as to make them compatible, in arithmetic mean, to these 
frequencies. However

5.8.5. The need for realism. Even though we have expressed our previous considera-
tions with a certain amount of caution (which itself might appear overdone and unnec-
essary to anyone accustomed to a different approach), it is necessary, in fact, to go still 
further and provide additional warnings in emphasis of that caution. We seek to reduce 
everything to three questions (and in answering these we shall delve deeper).

5.8.6. The first question: are we justified, in real applications, in attributing the same 
probability to all the events of a given type? This question is equally relevant to both of 
the subsidiary criteria; that is symmetric partitions and frequencies. However, we must 
first point out that it is meaningless unless we bear in mind that the probability is not an 
external fact relating to the event, but, instead, relating to your state of information 
regarding the event, and the previsions which You derive from this state of information. 
If You know the innate qualities, the past records and the degree of preparedness of 

19 This is often overlooked: if, for example, one speaks of ‘the probability of a newly born baby being a boy’, 
it is not made explicit that one is dealing with one unspecified event out of infinitely many ill-defined 
events, each of which is understood to be equally probable.
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every student, your evaluation of the probability of passing an examination will vary 
from student to student. Even with all this background information, however, if You 
only know the students by sight (i.e. are ignorant of the name of any given student) and 
are asked name by name to give the probabilities, then your evaluations will all be equal 
(the same would be true if knowledge by sight or by name were the other way around). 
In much the same way, your probabilities for the results of different football matches on 
a given day will be different if You know the merits of the respective teams, and are in a 
position to express a prevision for each match. However, if You had to fill in a pools 
coupon knowing what the matches were, but not the order in which they were listed, 
You could only assign the same probabilities to them all (the averages of those for the 
individual matches). For example, it might be 40–20–40 if in about half of the matches 
the away teams are first‐rate and favourite to win, or, if You had to fill it in without even 
knowing what matches were being played that day, You might adopt a standard average 
probability like 50–30–20. Even in the near legendary case of drawings from an urn, for 
instance drawing one from among 90 identical balls (numbered from 1 to 90), equality 
would not necessarily hold if one knew the position of each ball in the urn at the instant 
before the drawing took place (You might know, or believe, that the person drawing the 
ball has a habit of drawing from the top, or from the left‐hand side, and so on, and tak-
ing this into account might lead You to judge the probabilities to be different).

5.8.7. The second question: if I wish to make use of a frequency, which one should I 
base my opinions on? Given an event E in which You are interested, there are usually 
several classes of events already observed, which are, in different ways, more or less 
directly similar to yours, but with each class providing a different frequency: the choice 
is largely arbitrary.

Let us consider, for example, the problem of life insurance for a certain individual (for 
simplicity, suppose it is a question of a capital sum being provided if he dies within a 
year). How shall we determine the ‘premium’; that is the probability of his death within 
the year (not taking into account any ‘extras’ – for expenses, etc.). We could check the 
statistics of the deaths of individuals in the same country (or region, county, city, dis-
trict, etc.), of the same age (sex, class, etc.), having the same profession (income, degree, 
etc.), of similar constitution (height, weight, etc.), same name or initial of surname, or 
house number, or born in the same month, and so on: or we could group together some 
number (large or small) of these sort of characteristics, or any others. Each grouping 
will yield a different frequency, and this forces us to adopt a reasoned evaluation rather 
than a mechanical one; one which takes into account those classifications which it 
appears most reasonable to assume related to the phenomenon (for instance, age), and 
not the others (like the person’s name). What is ‘reasonable’ depends not only on 
whether and to what extent this or that circumstance influences the phenomenon, but 
also on how it has an influence. If, for example, it appears reasonable (on general 
grounds, and on the basis of  corroborative evidence) to think that the death rate 
increases with age (once we pass  childhood), one would be inclined to stick to this when 
evaluating the probabilities of death in the immediate future, even for those countries 
for which the most up‐to‐date statistics would show oscillations from year to year. One 
would appeal to some sort of smoothing procedure, in an attempt to preserve the gen-
eral outline, which is considered significant, and to eliminate what are thought of as 
misleading perturbations.



5 The Evaluation of Probabilities 175

Finally, one is always faced with the aspect we have already spoken of; that of individual 
differences (which the insurance companies take into account through the results of the 
medical examination).

This is a general situation and examples are easy to come by. We shall consider just 
one other, which shows how meaningful variations in frequency, for appropriately cho-
sen subdivisions, can occur, even in those situations where it appears to be more correct 
to view the probability as invariant with respect to any of the background circumstances. 
Given that the frequency of males among new‐born babies is almost completely invari-
ant over time, races, or countries, there would seem to be no possibility of differentiat-
ing probabilities on the basis of frequency statistics selected according to some factor or 
other. On the contrary, the research of Gini (using Geissler’s data on Saxony, 1876–1885) 
brought to light a differentiation on the basis of families: there were too many families 
with an excess of either males or females for it to be ‘attributed to chance’.20 Presumably, 
one could always find some differentiation if one could succeed in finding appropriate 
factors on which to base a classification. On the other hand, clearly, as a kind of  converse, 
for those for whom every attempt at picking out significant factors is unsuccessful, 
every combination of cases automatically appears uniform (even if this is not so for 
those who do succeed in picking out such factors).

5.8.8. The third question: are we justified in expecting frequencies to be stable? The 
remarks concerning the second question have already led us to consider the differences 
in frequencies when we refer to subgroups (e.g. in questions concerning people, age 
groups, regional groupings, etc.), not to mention individual differences (as discussed in 
the first question). The stability of all these frequencies is an hypothesis, incompatible 
with the variability exhibited by the overall composition in terms of subgroupings (e.g. 
dividing the population according to age, region, etc.). In actual fact, in practice, we can 
usually assume that the overall composition changes rather slowly and, therefore, that 
the incompatibility is not obvious over a short time period: from a logical point of view, 
however (and in some cases from a practical one too), the objection is completely valid. 
On the other hand, even if we leave all this out of consideration, there may be – and 
there usually are – causes of variation resulting from the evolution of the situation itself. 
For example, if we consider mortality, there has been great progress in sanitation, medi-
cine, general living standards and so on, as a result of which mortality has progressively 
declined significantly (this can be seen even from the snippets of data we reported 
above, relating to very close time periods like 1950–1953, 1954–1957). It might, there-
fore, appear reasonable, in evaluating a future probability, to extrapolate the rate of 
improvement rather than base oneself on the hypothesis of the preservation of the pre-
sent level.21 In any case, the force of the ‘stability of frequencies’ as a probabilistic or 
statistical principle is completely illusory, and without solid foundation.

Similar considerations apply, of course, in other fields. We could add the obvious 
examples of frequencies of car accidents, and similar matters in connection with 

20 C. Gini, Il sesso dal punto di vista statistico, Sandron (1908), Ch. X, ‘La variabilità individuate nella 
tendenza a produrre i due sessi’ (pp. 371–393). I do not know whether there has been any more recent research 
confirming these results: in any case, it is the argument which is of interest here rather than the facts.
21 Questions of this nature have been discussed with particular reference to the actuarial field; see R.D. 
Clarke, ‘The concept of probability’, J. Inst. Actuaries, 1954.
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technical or economic development. In the case of football, the changing character of 
systems of play, tactics, and many other things, may alter the influence of playing at 
home or away, and therefore the probabilities of the three results. In addition, even 
without changes of this kind, frequencies will be altered if the imbalance between ‘top’ 
teams and ‘bottom’ teams is altered.22

5.9 Frequency and ‘Wisdom after the Event’

5.9.1. Let us repeat an earlier remark, whose function is to prevent a certain confusion; 
one which we have already warned against, but to which we are particularly vulnerable 
in the case of previsions of frequencies.

Previsions are not predictions, so there is no point in comparing the previsions with 
the results in order to discuss whether the former have been ‘confirmed’ or ‘contra-
dicted’, as if it made sense, being ‘wise after the event’, to ask whether they were ‘right’ or 
‘wrong’. For frequencies, as for everything else, it is a question of prevision not predic-
tion. It is a question of previsions made in the light of a given state of information; these 
cannot be judged in the light of one’s ‘wisdom after the event’, when the state of informa-
tion is a different one (indeed, for the given prevision, the latter information is complete: 
the uncertainty, the evaluation of which was the subject under discussion no longer 
exists). Only if one came to realize that there were inadequacies in the analysis and use 
of the original state of information, which one should have been aware of at that time 
(like errors in calculation, oversights which one noticed soon after, etc.), would it be 
permissible to talk of ‘mistakes’ in making a prevision.

Any reluctance one feels in accepting these obvious explanations is possibly accounted 
for by their seeming to preclude any possibility of taking past experiences into account 
when thinking about the future. This is not so, however: the latter is rather different 
from ‘correcting previous evaluations’. One must emphasize that this phrase is wrong, 
even though it may only be a confused way of expressing an actual need. It is not, how-
ever, a harmless inaccuracy: in actual fact, it distorts the basic question, and generates a 
tangle of confusions and obscurities.

This should be made absolutely clear. If, on the basis of observations, and, in particu-
lar, observed frequencies, one formulates new and different previsions for future events, 
or for events whose outcome is unknown, it is not a question of a correction. It is simply 
a question of a new evaluation, cohering with the previous one, and making use – by 
means of Bayes’s theorem – of the new results which enrich one’s state of information, 
drawing out of this the evaluations corresponding to this new state of information. For 
the person making them (You, me, some other individual), these evaluations are as 
 correct now, as were, and are, the preceding ones, thought of then. There is no contra-
diction in saying that my watch is correct because it now says 10.05 p.m., and that it was 
also correct four hours ago, although it then said 6.05 p.m.

5.9.2. Discussions and refinements of this kind, which might seem rather pointless 
when made in the abstract and reduced to mere phrases, are not only of genuine 

22 If, for example, one half of the teams were so much stronger than the others that they beat them with 
certainty, then about half the matches would have the assigned result; if the frequencies 50–30–20 were retained 
for the other half, we would have, overall, the frequencies 50–15–35 (the averages of 50–00–50 and 50–30–20).
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relevance to the conceptual and mathematical construction of the theory of probability, 
but they also have implications which demand the attention of everyone; even those not 
interested in topics of this nature.

The meaning which attaches to statements about ‘being wise after the event’ does not 
seem to correspond in a unique way to attitudes either for or against the considerations 
just made. It is often both different and opposite. This happens when the sentence is 
uttered as a reproach to someone who belatedly admits that ‘he was wrong’ – as if to tell 
him ‘tu l’as voulu…’ [‘it is your own fault…’]. It is conceivable that in some situations this 
reproach is justified: one often makes mistakes through lack of concentration, or because 
one was unable to resist the temptation, although fully aware of being in the wrong.

However, the reproach is often made when there is no fault – apart from that of failing 
to be a prophet. Judgment by results, the notion that someone’s merit should be meas-
ured in terms of his successes, is often passed off as ‘realism’: to dwell upon the ifs and 
buts is considered meaningless. Of course, it is meaningless as far as the facts are con-
cerned; no‐one doubts that these cannot be reversed or modified by any ifs and buts. 
The facts themselves are not open to question, but when we turn to judgments based on 
those facts, evaluations of personal responsibility, appreciation or criticism of someone’s 
actions, it is a different matter. In these matters, it is by no means true that the facts 
provide any definite answers; in fact, they provide no answers at all. Their only value 
might be in helping one towards a better understanding of the range of ifs and buts. It is 
precisely these which allow one to judge someone’s actions in the one way that makes 
any sense: that is taking into account, moment by moment, the context, the situation 
and the state of information in which the actions took place.

It would perhaps be overstating the case to suggest, for these reasons, the removal of 
any distinction between – let us say – being found guilty of murder and of attempted 
murder. It could happen that ‘missing’ killing someone was evidence of a lesser inten-
tion of doing so; but if everything hinges on a miraculous piece of surgery, how is the 
offence in any way less serious, or the culprit more deserving of leniency? Anyway, since 
legal matters are somewhat of a mystery to me, I do not wish to pursue the question.

Something that can be criticized with more certainty is what seems to me the deplor-
able habit of picking on someone as a scapegoat when something goes wrong. Apart 
from being unfair, the practice encourages people to avoid taking on responsibility, so 
that one gets the worst of all worlds. Those who acted loyally, in a sensible manner, 
cannot be reproached if, by chance, the outcome was unfavourable; those who blun-
dered (in an honest fashion) are advised to learn from the experience and take more 
care in the future. In contrast, those who had not done everything possible, in terms of 
organization, control and efficiency, to reduce the risk of unfavourable outcomes are 
punished – whether or not anyone was responsible.

To set against such stupidity, there is an alternative practice, which can be taken as an 
example of the beneficial effect of a mode of thinking based on operational research. It was 
brought to my attention by Pasquale Saraceno,23 and is established practice in the indus-
trial group of which he is one of the leading figures. When examining the actions of the 
various companies, and especially those with unfavourable outcomes, the analysis is based 
on drawing a distinction between that which could and should have been foreseen, on the 

23 Translators’ note. Italian economist; former head of the I.R.I. (the state controlled Institute for Industrial 
Reconstruction).
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basis of the information at hand, and that which could not possibly have been foreseen. 
This sort of calm criticism and self‐examination is undoubtedly what is required in order 
to encourage a sense of responsibility in a climate of honesty and mutual confidence.

5.9.3. The remarks above were made in order to underline the importance of breaking 
away from these destructive hangovers of the confusion between prediction and previ-
sion: this is important from a general – one might even say moral – point of view. Let us 
turn to a technical aspect of the problem, which should help to remove such confusion. 
I say ‘should’, because I know only too well that such errors (these, it seems, more than 
most) are difficult to eliminate; like the Hydra with a thousand heads. Were it not for 
this, I would have simply said, as it seems to me, that each objection raised is decisive in 
itself, and should be sufficient.

In order to combat the idea that the influence of the facts, or, to be more precise, of 
information regarding the facts, on prevision should be interpreted as a mechanism for 
refutation and correction (and also to point out the inadequacy and awkwardness of 
language which gives this impression), we observed that the ‘new’ opinion, far from 
being new, was already contained in the ‘old’, which, far from being refuted, was used 
when we took over as the ‘new’ the opinion it had already provided as appropriate for 
such an eventuality (as for any other possible outcome).

Let us note at this point that such an ‘opinion implicitly contained’ in the initial one, 
and already provided for such a contingency, is integrated with it to such an extent that 
it practically lends itself to being used without even the occurrence of the facts under 
consideration.

5.9.4. The ‘device of imaginary observations’, put forward, in particular, by Good 
(1950), is a method of evaluating probabilities, and, as such, deserves mention in the 
present chapter. It is a device that is particularly useful for evaluating very small prob-
abilities, and which is more accurate in this context than the direct approach. A simple 
example will suffice to make the notion clear.

A person claims that he is able to guess in which hand you are concealing a certain object; 
You do not believe him. If You are invited to be more precise and say what probability p You 
attach to the possibility that he really can do what he says, You reply ‘very small’, but are not 
really in a position to sort out the different implications of saying 10−2, or 10−10, or some 
other value. Then, according to Good, one can do better by reformulating the question in 
the following way. Imagine that You put him to the test, and that he guesses correctly three 
times in a row, or ten times, or fifty times, …; after how many consecutive correct guesses 
would You consider as equally likely (probabilities 1

2  and 1
2 ) the two possibilities that either 

his claims are justified, or that he has guessed correctly by chance?
It is easily seen that at each trial where he guesses correctly the probability ratio in 

favour of his claims doubles (likelihood ratio 1:1
2  = 2:1); after n such trials it is 2n. If, after 

n trials, the ratio of the probabilities has become 1
2

1
2:  = 1, it must mean that initially it 

was given by p: p = 2−n; in other words, we have approximately, p = (1
2 )n = 10−nlog2 ″ 10−(0 3)n. 

For example: if n = 10, we have p = 10−3 = 0.1%; if n = 30, p = 10−9; if n = 50, p = 10−15.
There is no doubt that, with this interpretation available, a comparison between the 

meaning of answers such as p = 10−3,or p = 10−100, is no longer unattainable (although a 
certain vagueness or unfamiliarity is inherent in questions of this kind, and cannot be 
removed altogether; any method or device of this kind is intended as an aid, not a panacea: 
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once one gets to a certain stage, there is nothing to do but try to sharpen the feeling for 
numerical values of probabilities, including the very small ones).

The conclusion regarding the principle of this method seems to derive further support, 
psychologically speaking, from a consideration of the paradoxical – I would even say 
grotesque – position that a contrary point of view leads one into. Its formulation would 
have to be along the following lines (any attempt at spicing it up in order to increase its 
paradoxical and mind‐bending flavour would only spoil it):

‘My initial evaluation was p’ = (1
2 )n;

‘it was based on consideration of a hypothetical possibility; that of a succession of 
n experiments, in which the person claiming to be able to guess obtains successes on every 
trial, and on my reaction to such a hypothetical result, consisting precisely in the fact that 
my final evaluation would then have been p″ = 1

2
p;

‘now, the eventuality considered as the hypothesis has actually occurred, and my 
 reaction has been precisely the presupposed one, therefore…

‘the initial evaluation, which was, and still is, a logical consequence of these assumptions 
(actual or hypothetical)… WAS FALSE!’.

5.10 Some Warnings

5.10.1. It is necessary to point out a number of pitfalls. Although it is premature to talk 
about the dangers before we understand their causes, some pointers must be given in 
order to guard against the doubts and distortions that might get mixed up with what we 
have said concerning the evaluation of probabilities, giving rise to confused and contra-
dictory notions.

The following remarks should, in one sense, be unnecessary. All the dangers have already 
been mentioned and the details already given at the appropriate time would be sufficient to 
render these additional comments superfluous, if – and this is the  difficulty – they remained 
firmly implanted in one’s mind, together with all their ramifications, and with such clarity 
that any dangers reappearing, in whatever disguise, could be dealt with just as effectively as 
when they were first encountered. This not being the case, it is preferable, and perhaps 
necessary, to repeat ourselves; to go over the details mentioned above, in their different 
variants and versions, pointing out the many forms the dangers may assume. (There are 
such a number of them that perhaps some, even important ones, will be overlooked; hope-
fully, though, the pattern‐book of  objections and counter‐objections will be sufficiently 
representative for the reader to be able to answer, by analogy, possible objections not 
covered, by means of suitable counter‐objections.)

5.10.2. It might be argued that the kind of problems we have considered in this treatment, 
and for which we have discussed the appropriate methods of evaluating probabilities, 
are outside the ‘true’ ambit of the calculus of probability, or, at most, they constitute a 
small and specialized part of it.

The arguments put forward will be, by and large, the standard ones; however, if they 
are given with reference to physics, for instance, they may appear novel, or at least more 
substantial and difficult to refute.

There are cases where the probabilities in physics are given by combinatorial arguments, 
in accordance with the ‘classical’ idea of ‘equally likely cases’; that is, they are given by 
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the Maxwell–Boltzmann, Bose–Einstein, Fermi–Dirac ‘statistics’ (to use the jargon of 
physicists): for further details, see Chapter 10, Section 10.3. Who can argue in this case 
that we are dealing with a probability whose value is objectively determined by ‘a priori’ 
considerations? It is precisely this example (as Feller observed, vol. I, pp. 5 and 21) which 
shows how fallacious any a priori conclusion would be: nobody could have foreseen that 
the computation of ‘equally likely cases’ had to be carried out using  completely different 
methods in problems where different ‘statistics’ apply (and the explanation only came 
later, through the distinction between particles with integer or semi‐integer spin).

5.10.3. Everyone will probably agree, therefore, that it makes no sense to be willing to 
deduce properties of phenomena, or previsions regarding their outcomes, basing one-
self solely on superficial, preconceived ideas. The confirmation of experience is required, 
and this, certainly, leads on to an objective conclusion. One might well say that, for the 
physicist, probability coincides with frequency.

And this statement is, in a certain sense, true. However, this form of expression is 
completely wrong from a conceptual point of view, even if at first sight it presents no 
difficulties.

Let us swiftly demolish, one by one, the main arguments put forward with the inten-
tion of transforming probability from being subjective to being objective, by means of 
more or less overt confusion or connection of the notion with that of frequency.

5.10.4. Firstly, we present an objection frequently raised against the notion of the 
probability of an individual event: either this event occurs or it does not, and therefore 
it either has probability one or zero; it makes no sense to attribute to it an intermediate 
probability p. I accept this argument completely, in that it refers to an objective probability 
p: but I observe that the same argument holds even in cases where my opponent forgets 
that it does – when he says that in n ‘individual cases’ there is an objective meaning to 
p because np of them will occur. This is not true: either zero, or one, or two,…, or all n 
of them occurs, and the objective probability (if one prefers to use this term as a useless 
and misleading synonym for frequency) is one of the n + 1 values 0, 1/n, 2/n,…, h/n,…, 
(n – 1)/n, 1, although it is not known which one.

It is only in a subjective sense that it makes sense to speak of p, as the arithmetic mean 
of these n + 1 possible values, taking as weights the subjective probabilities of the single 
frequencies (still ‘individual cases’!).

5.10.5. It might be objected that in many cases (those to which an opponent would limit 
himself) the probability is concentrated near a certain frequency p, which could be defined as 
objective probability. But here, and in every case in which something ‘very probable’ is said to 
be ‘practically certain’ (or even ‘certain’, for the sake of brevity), and, symmetrically, something 
‘very improbable’ is said to be ‘practically impossible’ (or even ‘impossible’), an either–or must 
be clearly established. In fact, such sentences can either say something obvious, with which 
one has no choice but to agree, or, alternatively, they can completely falsify the meaning of 
things. The field of probability and statistics is then transformed into a Tower of Babel, in 
which only the most naïve amateur claims to understand what he says and hears, and this 
because, in a language devoid of convention, the fundamental distinctions between what is 
certain and what is not, and between what is impossible and what is not, are abolished. 
Certainty and impossibility then become confused with high or low degrees of a subjective 
probability, which is itself denied precisely by this falsification of the language.
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On the contrary, the preservation of a clear, terse distinction between certainty and 
uncertainty, impossibility and possibility, is the unique and essential precondition for 
making meaningful statements (which could be either right or wrong), whereas the 
alternative transforms every sentence into a nonsense.

5.10.6. We have already made abstract reference to this confusion (Section 5.2.3), so let 
us confine ourselves here to an illustration in the context of physics (with the warning that 
we are anticipating things to come for the purpose of preventive therapy; later, Chapter 7, 
we will be concerned with the true meaning of ‘laws of large numbers’ and suchlike).

It cannot be denied that two different explanations of the same phenomenon may 
turn out to be indistinguishable in practice; particularly when one explanation is deter-
ministic and the other probabilistic. One thinks immediately of the diffusion of heat, or 
any other similar phenomenon, which can either be considered in terms of a differential 
equation, describing the continuous development of the phenomenon in a manner gov-
erned precisely by deterministic laws, or as a random process in which elementary 
phenomena occur in a nondeterministic way, but such that there is a high probability of 
the phenomenon developing at a macroscopic level in a manner practically identical to 
that indicated by the deterministic theory.

However, this in no way implies that the two explanations are similar, and even less 
that they are the same, or substitutable. On the contrary, they are exact opposites; 
 diametrically opposed and absolutely incompatible. The deterministic explanation 
makes certain assumptions which preclude any departure from predetermined behav-
iour. Any similar explanation, albeit less rigid, which laid down that some conclusion 
was compulsory and certain, would, at the very least, require some sort of self‐regula-
tory mechanism, some sort of ‘feedback’. The probabilistic explanation makes no 
assumptions of this kind: it states nothing other than that everything is possible. If it 
appears to state something more, it is only because such a statement, which may seem 
quite precise, corresponds to a property common to ‘almost all’ the possible cases.

A probabilistic explanation of the diffusion of heat must take into account the fact that 
heat could accidentally move from a cold body to a warmer one, making the former even 
colder, the latter even warmer (in Jeans’ example: water being frozen rather than boiled 
when put on the stove). That this is very improbable is merely due to the fact that the ‘unor-
dered’ possibilities (heat equally diffused) are far more numerous than the ‘ordered’ possi-
bilities (all the heat in one direction), and not because the former enjoy some special status.

To rule out the possibility of those cases which seem ‘exceptional’, in no way improves 
the probabilistic explanation, by somehow making it simpler, or more scientific: on the 
contrary, it negates it. Acceptance of the probabilistic explanation has the following 
implications: it means that what we state about the phenomenon must not be regarded 
as necessary, but, instead, must be attributed to ‘chance’, and, hence, regarded as only 
approximate and probable. It means that one must regard it as essential to deny the 
existence of certain and exact laws which are obeyed only apparently; it means that one 
must consider as necessary the possibility of studying departures from any rigid law, 
fluctuations, the effects of discontinuities (the shot effect), and all that a cursory identi-
fication with a different form of explanation would sweep away without a thought.

5.10.7. What we just said is itself open to misinterpretation. It would be a mistake to 
infer that an explanation based on a ‘tendency to disorder’ takes care of every applica-
tion of probabilistic concepts and not merely the particular example given above. 
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‘Chance’ (if we can adopt this convenient terminology as a summary of complicated and 
uncertain factors without its being taken too seriously) plays a no less important rôle in 
biological and social processes, where the outcome depends on highly ordered and 
organized structures, like chromosomes, cells and human beings (and also in physics, in 
processes like crystallization).

The following needs to be said in order to disprove the thesis which considers a level-
ling down into a debased chaos (entropic death) to be an inevitable consequence of the 
validity of this or that ‘law’ of probability. The calculus of probability can say absolutely 
nothing about reality; in the same way as reality, and all sciences concerned with it, can 
say nothing about the calculus of probability. The latter is valid whatever use one makes 
of it, no matter how, no matter where. One can express in terms of it any opinion whatso-
ever, no matter how ‘reasonable’ or otherwise, and the consequences will be reasonable, 
or not, for me, for You, or anyone, according to the reasonableness of the original 
 opinions of the individual using the calculus. As with the logic of certainty, the logic of 
the probable adds nothing of its own: it merely helps one to see the implications con-
tained in what has gone before (either in terms of having accepted certain facts, or 
having evaluated degrees of belief in them, respectively).

Physics can make greater or lesser use of the calculus of probability, but the relation-
ship between the two is simply the relationship between a certain field of research, 
which remains itself, no matter what tools it uses, and a logical tool, unconditionally 
valid, which remains itself, whatever use is made of it, in whatever field.

5.10.8. Let us return to the necessity of avoiding the dangers implicit in attempts to 
confuse certainty with ‘high probability’. We have to stress this point because these 
attempts assume many forms and are always dangerous. In one sentence: to make a 
mistake of this kind leaves one inevitably faced with all sorts of fallacious arguments 
and contradictions whenever an attempt is made to state, on the basis of probabilistic 
considerations, that something must occur, or that its occurrence confirms or disproves 
some probabilistic assumptions.

From such a point of view, the calculus of probability seems to be regarded, more or 
less explicitly, as a nothingness; saying nothing when the probabilities in question are 
intermediate in value, but capable of miraculous transformation into a warrantor of 
absolute truths when the probabilities are very large or very small, since, in these cases, 
the difference can be ignored and one can simply say that something is true or false. 
One thus has a mechanism that is considered to be useless when it says that which it is 
capable of saying, and wishes to say, but is blindly trusted when the things one wants to 
make it say are not the things it does say or could say.

5.10.9. We present three examples of this form of observation.

First example. The statement that ‘an event of small probability does not occur’ is some-
times made, under the heading of ‘Cournot’s principle’ (Section 5.2.3). A kind of corollary 
or special case of this is referred to as the ‘empirical law of chance’ (meaning that frequency 
and probability actually behave in many cases according to the ‘law of large numbers’).

Second example. In accordance with the identification of small probability with 
impossibility, Neyman finds a contradiction in the behaviour of an individual who trav-
els by aeroplane and at the same time takes out insurance. If he considers it possible to 
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have an accident, why does he travel? If he does not, why does he insure himself? The 
paradox here specifically relates to ‘decision theory’, which, in the restricted sense to 
which it is often reduced by ‘objectivist’ statisticians, considers only the question ‘what 
decision is appropriate given the accepted hypothesis’ and not ‘what decision is appro-
priate in the given state of uncertainty’.

Third example. Again, in this context (of ‘objectivist statisticians’), one aspires to ‘accept’ 
or ‘reject’ an hypothesis on the basis of an experiment, instead of considering how its 
outcome modifies the initial probabilities (which one wants to do without!) in order to give 
the final probabilities (which therefore cannot be obtained!). Here the absurdity reaches 
new heights, because it cannot even be claimed that ‘accept’ and ‘reject’ correspond to the 
minimal requirement of the probabilities being large or small. The use of these two words 
is a meaningless convention; an apparent attempt to answer a question by disregarding 
everything that makes it a meaningful question in the first place.

It is as if, in comparing two weights, we were to decide upon which was the heavier by 
choosing the one which tilted the balance to its side, without taking into account, and, 
indeed, refusing to consider it legitimate to take into account, any difference between 
the arms of the balance, even knowing that the difference could be considerable.

5.11 Determinism, Indeterminism, and other ‘Isms’

5.11.1. Continuing with the same theme, there is a clear philosophical point to be made. 
It derives from the strange fact that precisely the same disposition to accept an objective 
probability is often justified in two completely opposite ways.

For some people, the ideal instrument for producing an objective probability with 
value p would be a totally invariable device, working under strictly unchangeable condi-
tions, and for which the tendency to produce successes with frequency p would be a 
‘built‐in property’, or, more specifically, a ‘dispositional property’ (following, for exam-
ple, Hacking). Any perturbations would result in a deviation from the desired result; 
that is, from the realization of a frequency close to p.

For others, whole‐hearted determinists, any such device could but yield the same result; 
always successes or always failures. The fact that both successes and failures occur implies 
that there exists something causing perturbations. In general, it is assumed that there are 
a great number of small, accidental, causal factors, which are largely unknown. The fact 
that the frequency is expected to be around p would be an effect of the combined and 
random actions of these causal factors (following, for example, Paul Lévy).

So far as the subjectivistic conception is concerned, it has the advantage and, indeed, 
the preoccupation of remaining outside of disputes of this kind. The thing that really 
matters, and which justifies, in fact requires, our arguing on the basis of probabilistic 
logic, is the impossible nature of the situation in which we find ourselves when we 
attempt to foresee a given outcome with certainty. This is so whatever the reason: 
whether it be ignorance of certain deterministic laws; or the nonexistence of such laws; 
or an inability to perform the requisite calculations even though we know the laws; or 
an inability to obtain precise data (or the impossibility of doing so). At any given time, it 
does not matter. It is only with respect to the prospects for the advance of science in the 
future that it matters, and, even here, only in a minor way, since reference to such rigid 
and preconceived positions seems rather unnecessary anyway.
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From time to time, as scientific prospects change, this or that particular mental 
 attitude may be useful, in that it facilitates the formulation of theories which – for the 
moment  –  give better agreement with this or that point of view. However, nothing 
remains for ever unchanged; nothing is absolute. The particular mould in which one 
sets is not so important: what matters far more is not to set too firmly in any one pat-
tern. To set fast is to no longer be alive.

5.11.2. These same remarks need repeating more generally, in connection with all 
those ways devised to saddle probability with an objective something (meaning, inter-
pretation, justification, definition or whatever). In the first place, it is a fact that these 
attempts are not successful, and cannot be so, since, having the resolve to express mat-
ters relating to uncertainty in terms of the logic of certainty, they force themselves, ab 
initio, into a vicious circle, with no means of escape  –  ‘per la contradizion che no’l 
consente’.24 It is as if someone were to wish to hoist himself up by his bootlaces. Logic 
only permits the exposure of a tautology on the basis of what is taken as known; a previ-
sion, however, is not simply a tautological consequence of what is already known. To be 
thus, would be to constitute something implicitly known, and would not involve uncer-
tainty and, therefore, would not give rise to prevision.

However, even if we were to consider someone’s arguments to constitute an accepta-
ble basis for an objective meaning of probability (and, in general, such arguments will be 
different and concerned with special and different types of event, according to the 
 different points of view), our thesis consists in believing that these arguments would 
be irrelevant anyway. All such conceptions, all the ‘isms’ they reduce to, are rejected 
here, but not in support of yet another ‘ism’ (as might be thought; e.g. ‘subjectivism’ or 
‘solipsism’), which one wants to put forward and contrapose to the others. The latter are 
rejected because, whatever the explanation of the uncertainty might be (attributing it to 
‘chance’, ‘fate’, ‘hidden laws’, ‘Providence’, or ‘statistical regularities’, or to something 
else – or … words(?)…), the sole concrete fact which is beyond dispute is that someone 
(me, You, somebody else) feels himself in a state of uncertainty, and has to decide on and 
adopt some point of view as a basis for previsions and related decisions.

5.11.3. This subjective meaning is an objective and unquestionable fact: all the rest 
(even if there were no dispute about it) is, in any case, something of an extra, which, at 
best, serves to help fix one’s ideas. It is analogous to a vivid piece of writing that suc-
ceeds in forming something like an idea in our minds, although its meaning is not clear, 
and an analysis of the sentence in fact shows it to be inconsistent.

It is the case, however, that this view of the logic of uncertainty, complete and clear as 
it is, is far from achieving general acceptance. Why is this? Perhaps it is only the state of 
being certain which appears to most people as worthy of consideration and fit to be part 
of the edifice of science (which, according to the prevailing view, appears to express or 
aspire to omniscience – notwithstanding the fact that all progress, pushing back as it 
does the frontier of what is known, makes the horizon of what can be seen as unknown 
even broader). Perhaps the unknown and the uncertain disturb and annoy us, and 

24 Translators’ note. Ruled out by the principle of contradiction. (The line is from Dante’s Inferno: canto 
XXVII, line 120.)
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provoke those who are most upset to attempt to suppress them, or at least to make them 
disappear. There is not much point in philosophical arguments or speculations of this 
kind: they do provide, however, a possible explanation of why these different attitudes 
exist (we had to mention them, or, at least, to give some indication of how a person who 
finds our point of view natural could try to understand its lack of acceptance).

These different attitudes are, essentially, only variations on the same theme: the 
attempt to avoid the problems of uncertainty by simply pretending to overcome it; 
restricting the treatment to cases in which it can be presented in such a watered down 
way that it looks like something else.

The classical variant limits itself to cases like those of games of chance (where prob-
ability should acquire an objective meaning by virtue of the ‘definition’ based upon 
‘equally likely cases’). In the view of the most rigid supporters of this position, every 
application of the theory of probability outside this field would only be a questionable 
transposition by analogy.

The position that is at present most widely accepted restricts itself to cases of a certain 
statistical type (where probability should acquire an objective meaning by virtue of the 
‘definition’ based upon ‘frequency’). According to its most rigid adherents, the term ‘prob-
ability’, when used outside this context, has no more in common with its ‘scientific’ mean-
ing than the ‘energy’ of a team leader has with the same term as applied to physical motion.25

Other approaches, which, having the aim of acting as guides in decision making, follow 
less rigid notions, attempt nevertheless to avoid those components of the argument which 
many find unpalatable (like the ‘initial probabilities’ required for Bayesian induction).26

Others adopt an eclectic attitude, accepting that one can base one’s thinking on ‘that 
probability which we evaluate for previsions and decisions’ (i.e. the one corresponding 
to the conception of the present author), but, on the other hand, asserting that ‘there is 
also another type of probability, the one with which statistics is concerned’ (or, alterna-
tively, ‘the type valid in games of chance’, or both).27

We should point out, here and now, that the mathematical treatment is unaffected (or, 
at most, very little affected) by these disagreements. In this sense, we can give a reassur-
ance that everything we shall say mathematically is independent of questions of this 
kind, and should be acceptable to everyone. However, the interpretation is often differ-
ent; there are certain nuances which, when looked into closely, completely change the 
spirit in which a given statement (perhaps expressible, in the same words, in the impre-
cise manner of everyday language) is to be understood.

So far as our own attitude is concerned, we wish to make clear that it is not utterly 
opposed to the attitude we have termed ‘eclectic’, even though it differs from it in a very 
real sense.

It is not utterly opposed because we recognize the importance of the problems, con-
cepts and criteria that are the object of the various practical theories, even though we 

25 The phrases given here, in characterizing the two attitudes, are due to Castelnuovo (transposition by 
‘analogy’) and von Mises (‘energy’ and energy), respectively.
26 The followers of ‘objectivistic statistics’ in its various schools, including that of A. Wald (who we 
particularly have in mind here, as the nearest in approach to the Bayesian school).
27 The quotations are from V. Castellano. Typical examples of the eclectic attitude are provided by 
R. Carnap (who differentiates between ‘probability1’ logical, and ‘probability2’, statistical) and I.J. Good who 
admits the possible value of distinguishing many ‘kinds of probability’ (although in the context of a 
conception which is essentially subjectivistic).
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study them within the framework of the general theory. Only by renouncing their 
alleged autonomy is it possible to compensate for those deficiencies in the foundations 
of the particularistic theories which render their conclusions meaningless, and the 
interpretation of them arbitrary.

It differs from it because we do not accept the existence of probabilities of different 
kinds, nor the autonomous validity of theories which set out to consider them, leaving 
aside some of the assumptions of the general theory, all of which are at all times essential.

All this has been summed up in an expressive manner by L.J. Savage (in a rather more 
specialized context): it is as though one wished to make a probabilistic omelette without 
breaking probabilistic eggs. There are two possible outcomes: either the result is not an 
omelette; or the eggs have in fact been used, either surreptitiously or inadvertently. All 
comments that we shall have occasion to make concerning ‘other points of view’ will 
essentially be continuations of the above analogy.
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6

6.1 Introductory Remarks

6.1.1. Thus far, we have been occupied with the conceptual aspects of the formulation, 
and the thoroughness of the treatment reflects what the material seemed to us to 
require. Likewise, we have chosen to deal with the simplest topics and problems, whose 
meaning was not obscured by the need to involve complicated mathematics (but in fact 
contributed by appearing in a clear and simple light).

The time has now come, however, to abandon these self‐imposed limitations. We must 
examine whether, and to what extent, we can implement, in any domain whatsoever, the 
study of probability in terms of the image most often thought of (in an informal man-
ner); that of the ‘distribution of mass’. In actual fact, of course, it is well known that the 
notion of a probability distribution (the precise mathematical translation of this image) 
is taken directly as the starting point in many approaches, particularly modern ones. 
The aim of the present chapter is to introduce this notion and the requisite mathemati-
cal tools, tying them in rigorously with our previous formulation and making any neces-
sary modifications or limitations.

There are, therefore, two different aims to bear in mind in what follows: on the one 
hand, to provide a knowledge of the mathematical tools required in further study of the 
calculus of probability; on the other hand, to give the mathematical and conceptual 
details which derive from our previously established formulation and point of view.

6.1.2. We shall try to satisfy the first aim as concisely as possible, quoting, with a 
 minimum of explanation, and without proof, those things that can be found in any book 
on probability, or whose proof can be obtained either with a standard knowledge of 
analysis or on an intuitive basis. Alternatively, if the reader wishes, the proofs can be 
taken for granted and this will not affect applications or further reading.

6.1.3. Our second aim, one of a critical nature, will need a more careful treatment, 
at greater length. Although we do not wish to dwell upon it more than we have to, any 
omission or incompleteness in what is necessary would certainly cause misunder-
standing and incomprehension (especially among those readers who, by interpreting 
certain  sentences in the standard way, would find them, and quite rightly so, either 
incomprehensible, or, misunderstanding them, wrong). For this reason, we strongly 
recommend the reader, and especially those who think that they already know enough 

Distributions
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about the topic of this chapter, not to skip it, and to dwell, in particular, upon the 
details relating to the differences, slight but important, between this and the standard 
interpretations.1

6.2 What we Mean by a ‘Distribution’

6.2.1. An abstract and general explanation would, at this stage, appear rather vague and 
colourless. It is more appropriate to consider here the simplest and most important 
special case, that of distributions on the real line, together with their various interpreta-
tions. These interpretations should all be kept in mind, in order that the most conveni-
ent one can be called upon in any particular instance. This special case will eventually 
be revealed to have a relationship with that of random quantities in general.

Proceeding in the usual way, we introduce immediately, as a starting point, and as the 
main mathematical tool for the definition of a distribution, a function F(x), increasing2 
from 0 (as x → −∞) to 1 (as x → +∞), and called a distribution function.

6.2.2. As a first interpretation, the most intuitive one, we have that of a distribution of 
mass on the real line (with the assumption that ‘total mass’ = 1). F(x) is the mass to the 
left of a point x, 1 − F(x) the mass to the right; the increment F(x″) − F(x′) is the mass in 
the interval x′ ⩽ x ⩽ x″. If there is a mass, ph, concentrated at the point xh, F is discon-
tinuous at xh and ph is its ‘jump’, F(xh + 0) − F(xh − 0).3 There is at most a finite or countable 
number of such jumps, and F is continuous elsewhere.

A distribution that only has concentrated masses (∑hph = 1) is called discrete; one without 
concentrated masses is called continuous. The most familiar case of the latter is that of abso-
lutely continuous distributions; those admitting a density function, f(x) = F′(x), such that

 
F x f x x

x

d .
 

In actual fact, when the term ‘continuous’ is used, it is this special case which is often 
understood. There is, however, an intermediate case between the discrete and abso-
lutely continuous; that of continuous but not absolutely continuous. In 6.2.3 we shall 
make this idea concrete by means of an example (and this example will also have an 
interesting interpretation in a problem in probability). For the time being, we shall limit 
ourselves to the definition and the basic properties.

6.2.3. To say that F(x) is continuous means, as everyone knows, that for each ε, 
 however small, every interval whose length is less than some suitable δ contains a 

1 Recall the warnings given already in Chapter 1 (1.2.1).
2 We use ‘increasing’ to mean ‘nondecreasing’; we shall use ‘strictly increasing’ if the function is not 
constant in any interval.
3 These two values must be distinguished when considering F(x) if there is a jump at the point x (and we have 
a choice according on whether the mass at x is to be considered together with those on the left or those on the 
right). For various reasons (see 6.5.1), we prefer to avoid those conventions which make F(x) one-to-one at 
the discontinuity points (by saying that it assumes all the values y, F(x − 0) ⩽ y ⩽ F(x + 0). However, when 
dealing with statistical distributions, where some convention is necessary, we shall take F(x) = F(x + 0) (as is 
necessary if ‘individuals with h children’ is to mean ‘including those with exactly h children’).

We apologize for the awful notation F(x + 0); it is, however, concise and unambiguous.
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mass <ε. To say that it is absolutely continuous (Vitali) means something more: that 
the same is true of the mass contained in any arbitrary number of intervals of total 
length less than δ.4

Every distribution F(x) can be decomposed into partial distributions of masses of the 
three types. We first of all set

 F x a F x a F x a F x a a aC C B B A A C B A 1 5 (6.1)

where:

 aC = ∑h ph is the sum of the concentrated masses (masses of type C),
aCFC(x) = ∑h ph(xh ⩽ x) is the sum of these masses in [−∞, x].

We now consider the residual partial distribution,

 F x F x a F xAB C C , 

that is, F(x) without the concentrated masses; it follows that:

aB =  ‘total mass of type B’ = upper limit of the mass of FAB(x) which can be enclosed 
within intervals of arbitrarily small total length,

aBFB(x) = total mass of type B in [–∞, x] (detailed definition as above).

We are left with aAFA(x) = F(x) − aCFC(x) − aBFB(x), and this is the absolutely continuous 
part of the distribution (the masses of the first two types, which do not fulfill the condi-
tion of absolute continuity, having been removed).

It is easy to see that, in a linear combination of distributions,

 F x c F x c F x c c1 1 2 2 1 2 1 , 

the various types are preserved. It follows, therefore, that the FC, FB, FA of an arbitrary 
linear combination are the linear combinations of the corresponding parts of the sum-
mands (in particular, a particular type of mass exists in the linear combination if and 
only if it exists in at least one of the summands). If we say that a distribution is of type 
A, B, C, AB, AC, BC, ABC, to indicate the pure types involved in it, we can express our 
conclusion by saying that in a linear combination the letters of the types combine (e.g. 
from AC and BC we get ABC).

An example of a type B distribution. The following procedure can be used to con-
struct the well‐known Cantor set (of measure zero, even in the Jordan–Peano sense) 
and a distribution on it (which is therefore of type B).

Let us divide the interval [0, 1] into three equal parts. In the middle interval, [ , ]1
3

2
3 , we 

set F(x) = 2
3 , so that no mass is placed there, and half the mass is placed in each of the 

first and third intervals. This operation is then repeated in these latter two intervals. In 

4 It makes no difference whether we consider the number of intervals as finite or infinite (countable: it 
cannot be uncountable). It is understood that ε > 0 and δ > 0.
5 Obviously, if ai = 0 (i.e. one of the components is missing) the corresponding Fi is missing. The meanings 
of the letters are: C = concentrated; A = absolutely continuous; B = intermediate case between C and A.
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each of them we will have three subintervals (of length 1
3

2 1
9
), and we set F(x) = 1

4
(respectively, = 3

4) on the central intervals, thus excluding masses there. The mass is 
then placed on the four residual intervals, 1

4  on each.
Proceeding in this manner (Figure 6.1), after n steps F(x) is defined (with values which 

are multiples of 1
2

n
) on the whole interval [0, 1], except for the 2n residual parts, each 

of length 1
3

n
, where all the mass resides ( 1

2
n
 on each residual interval). In the limit, F(x) 

is defined everywhere and is continuous. It is not, however, absolutely continuous: after 
n steps the mass is contained within the 2n intervals each of length 1

3
n
, and 2

3
n
 in total. 

It can, therefore, be contained within a finite number of intervals of total length less 
than any given ε > 0.

A probabilistic interpretation. It might be thought that the above construction merely 
serves to provide a critical comment; giving a pathological example with no practical 
meaning. On the contrary, we can give a simple practical example of a problem in prob-
ability where such a distribution arises.

Suppose we wish to pick a real number in [0, 1] by successively drawing from an urn 
the digits of its decimal representation:

 X X X X X X X B Bn n
n0 101 2 3• . . . . . . , . . / ; . .i e base e g . 

If a ball representing a figure is missing, all the numbers containing it become impos-
sible (i.e. some intervals are excluded, as in the example given). The above example 
corresponds to the assumption that B = 3, with the figure 1 missing (only the numbers 
with 0 and 2 are possible, like 0·22020002020022202.…).

It is rather surprising to note that this happens even if the balls are all present (unless 
all of them have the same probability 1/B).6 If one of the figures has probability p < 1/B, 
and we take c between p and 1/B, and N sufficiently large, the set of numbers X in which 

6 This observation is too obvious to be novel; however, I do not remember having seen it before, and I had 
not thought of it prior to adding it here to the usual example.
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Figure 6.1 The Cantor distribution.
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that figure appears in the first N places with frequency ⩾c has measure arbitrarily close 
to 1 and mass arbitrarily close to 0.7

6.2.4. Let us observe now how a different interpretation of F permits us to extend 
 considerably its applicability and effectiveness. Given any interval I (with extreme points 
x′ and x″), it suffices to set F(I) = F(x″) − F(x′) to obtain F as an additive function for the 
intervals. If we identify the intervals with their indicator functions (I(x) = (x′ ⩽ x ⩽ x″) = 1 
or 0 depending on whether x belongs to I or not), we obtain F as a linear functional, 
defined for every γ(x) = ∑h yhIh (step functions with values yh on the disjoint intervals Ih) 
by F(γ) = ∑h yhF(Ih). This can be extended to all functions γ(x) which can be approximated, 
in an appropriate way, from above or below, by means of step functions. More precisely, 
F(γ) is determined if, thinking of γ′ and γ″ as generic step functions such that

 x x x   
everywhere, we have sup F(γ′) = inf F(γ″), hence F(γ) necessarily has that same value 
since sup F(γ′) ⩽ F(γ) ⩽ inf F(γ″).

In actual fact, what we have defined, in a direct and somewhat abstract way, is nothing 
other than the integral

 
x F x x f x xd d represents , (6.2)

where the first expression (one which always holds) is the Riemann–Stieltjes integral, 
and the second (which only holds for absolutely continuous distributions) is the 
Riemann integral.

As an example, suppose we consider the two functions

 x x x x x x and .2 2
 

In this case, F() = the abscissa of the barycentre, and F(§2) the moment of inertia 
(about the origin) of the mass distribution. In integral form,

 F x F x xf x x F x F x x f x x d d d d ., 2 2 2
 

As possible interpretations of the function, γ(x), one might, for instance, think of it as 
representing (for the mass at x) the reciprocal of the density, or the percentage by weight 
of a given component (e.g. of a given metal if we are dealing with an alloy whose 
 composition varies with x), or the (absolute) temperature. In these three cases, the inte-
gral, apart from constant terms, will yield the total volume, the weight of the given 
component, and the quantity of heat, respectively.

6.2.5. A second interpretation is the statistical one. It is convenient to mention it here 
in order to draw attention to the practical importance of the notion of distribution in 
the field of statistics. This is not only closely connected and related to the probabilistic 
notion but also provides it with problems and applications. However, we shall reserve 
discussion of this until later.

7 This assertion will be seen as obvious as soon as we encounter the basic ideas of ‘laws of large numbers’ 
(Chapter 7, Section 5).
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In the final analysis, the image is the same as before: that of a mass distribution. In fact, 
the distribution of a population of n individuals, on the basis of any quantitative charac-
teristic whatsoever, can be thought of as obtained, in the case of number of children, for 
example, by placing a mass 1/n at the point x = h for each individual with h children (h = 
0, 1, 2,…), or, in the case of height, at the points x = xi (distinct if the measurements are 
sufficiently precise), denoting by i = 1, 2, …, n the n individuals, and by xi their heights.

In the first example, we have masses ph = nh/n concentrated at the points x = h (nh 
denotes the number of individuals with h children) and therefore:

 

F x n n h x
h

h / 

the percentage of individuals with not more thaan children.x  

In the second example (let us assume that the individuals have been indexed in order of 
increasing height), we have a jump of 1/n at each point xi (and, if n were large, one could 
in practice consider the distribution to be continuous – if necessary by ‘smoothing’), 
and the distribution function is given by

 
F x n i x x F x i n x x xi i i1 1/ max : / ,  that is for .

 

Alternatively, one might be interested in performing some kind of ‘weighting’ instead 
of simply ‘counting’ the individuals (for example: instead of 1/n throughout, a ‘weight’ 
might be chosen proportional to income, average number of bus journeys per day, cups 
of coffee consumed, etc., depending on what was of interest). The ‘population’ might 
consist of objects, or events, or anything but it is customary to retain the terms ‘popula-
tion’ and ‘individuals’. If a generic and neutral term is required, one can use ‘statistical 
units’. In the general case, units may be counted straightforwardly, or with some appro-
priate ‘weighting’.

This will suffice for the present. We merely recall (see Chapter 5, Sections 5.8–5.10) 
that a statistical distribution is not a probability distribution, although it can, in various 
ways, give rise to one.

6.2.6. In order to clarify, from a different angle, certain aspects of the above (and, 
more importantly, to mention some further extensions) it is useful at this point to intro-
duce a third interpretation. An additive function (non‐negative, and with its maxi-
mum = 1) is also called a measure; the change in nomenclature, from mass to measure, 
is of no importance, but the fact that we have at hand a natural way of looking at such a 
‘measure’ – or, to be precise, the ‘F‐measure’ – in terms of its own scale (of length) is 
important.

One works in terms of this scale by looking at y = F(x) instead of at x (as was clear 
from the definition). We have only to observe that, by drawing the graph of the distribu-
tion function (Figure  6.2a), we establish an (ordered) correspondence between the 
points of the x‐axis (all of it) and those of the interval [0, 1]. The mass of any arbitrary 
interval on the x‐axis is then measured by the length of its image on the y‐axis. Of 
course, the correspondence is not necessarily one to one (it will be so if F(x) is strictly 
increasing from −∞ to +∞). To a point of discontinuity on the x‐axis there corresponds, 
on the y‐axis, an interval whose length equals the mass which is concentrated at that 
point; to any interval of the x‐axis on which F(x) is constant (no mass) there 
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corresponds a single point of the y‐axis. Apart from the interpretation in mechanical 
terms, this is also clear geometrically. Observe that in both cases the graph y = F(x) 
(conveniently thought of as containing, for discontinuity points x, all the y’s between 
F(x ± 0)) contains, respectively, vertical or horizontal segments which project to a single 
point of the orthogonal axis.

In order to concentrate attention on the measure, and to make it easier to visualize 
developments based upon it, we find it convenient to reverse the rôles of the x‐ and 
y‐axes, and to look instead at the graph of x = F−1(y) (Figure 6.2b).

Note that the change of variable from x to y transforms, for example, the Stieltjes 
integrals into ordinary integrals:

 F x F x F y y x yd d d .1
 

6.2.7. We shall see later that this form of representation is also useful for visualizing 
many problems and situations in the theory or probability and statistics (see, for exam-
ple, Section 6.6). What is of immediate interest, however, is to exploit the fact that we 
have, on the y‐axis, the F‐measure ‘on its natural scale’ in order to look, succinctly, and 
without formulae, at the question of possible further extensions.

In terms of y, F(γ) corresponds to the ordinary (Riemann) integral, and therefore F(I ) 
(where I = set, thought of as identified with its indicator function, I(x) = (x ∊ I )) can be 
interpreted as the Jordan–Peano measure of the image set of I on the y‐axis. The F‐measure 
(apart from the given transformation) is the J–P measure (that is, Jordan–Peano), and 
the F-measurable sets are those whose image, on the y‐axis, is a J–P‐measurable set.

6.3 The Parting of the Ways

6.3.1. At this point we are faced with a choice.
It is well known that there exists a unique extension of the J–P measure to a much 

larger class of sets. The methods used are due to Borel and Lebesgue, and the basic idea 
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Figure 6.2 The graphs of (a) the distribution function and (b) its inverse: y = F(x) and x = F−1(y). 
In addition to the present (measure theoretic) interpretation, we have also seen that the statistical 
interpretation, as graph of the distribution, is of interest (and is the most useful from the point of view 
of applications). In Section 6.4 we shall further consider the probabilistic setting, in which the above 
admits the following interpretation: one can always construct a random quantity with a preassigned 
distribution F starting from a Y with a uniform distribution on [0, 1] (or, conversely, Y = F(x) has a 
uniform distribution on [0, 1] if X has distribution F; some device is necessary in order to make it 
uniform at the jumps).
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(put rather crudely) is to argue about a countably infinite collection of sets as if they 
were a finite collection; in particular, one invokes countable additivity (valid not only 
for the sum in the ordinary sense, but also for the sum of convergent series). Similar 
considerations apply to the extension of the notion of integral.

From the viewpoint of the pure mathematician – who is not concerned with the ques-
tion of how a given definition relates to the exigencies of the application, or to anything 
outside the mathematics –  the choice is merely one of mathematical convenience and 
elegance. Now there is no doubt at all that the availability of limiting operations under the 
minimum number of restrictions is the mathematician’s ideal. Amongst their other 
exploits, the great mathematicians of the nineteenth century made wise use of such opera-
tions in finding exact results involving sums of divergent series: first‐year students often 
inadvertently assume the legitimacy of such operations and fail the examination when 
they imitate these exploits. At the beginning of this century it was discovered that there 
was a large area in which the legitimacy of these limiting operations could be assumed 
without fear of contradictions, or of failing examinations: it is not surprising therefore that 
the tide of euphoria is now at its height. Two quotations, chosen at random, will suffice to 
illustrate this8: ‘The definition is therefore justified ultimately by the elegance and useful-
ness of the theory which results from it’; ‘Conditions about the continuity of (the integral) 
are really essential if the operation is to be a useful tool in analysis – there would not be 
much of analysis left if one could not carry out at least sequential limiting operations’.

6.3.2. Are there any reasons for objecting to this from a mathematical standpoint? 
Rather than ‘objections’, I think it would be more accurate to speak of ‘reservations’; 
there are, I believe, two reasons for such reservations.

The first concerns what happens outside of that special field which results from the 
above approach. It has been proved (by Vitali, and afterwards, in more general con-
texts, by Banach, Kuratowski and Ulam) that if one is not content with finite additivity, 
but insists on countable additivity, then it is no longer possible to extend the ‘measure’ 
to all the sets (whereas there is nothing to prevent the extension to all sets of a finitely 
additive function which coincides – when they exist – with the J–P measure, or the 
L‐measure).

Countable additivity cannot, therefore, be conceived of as a general principle which 
leads us safely around within the special field, and allows us to roam outside, albeit in an 
undirected manner, with an infinite number of choices. On the contrary, it is like a 
good‐luck charm which works inside the field, but which, on stepping outside, becomes 
an evil geni, leading us into a labyrinth with no way out.9

8 From J.F.C. Kingman and S.J. Taylor, Introduction to Measure and Probability, Cambridge University 
Press (1966), pp. 75 and 101 (the italics are mine).
9 This image of a labyrinth with no way out is an exact description of the situation. In fact, if one wishes to 
extend the definition of L-measure to nonmeasureable sets, respecting countable additivity, this can always 
be done step by step (choosing, for a given set, a value at random between the two extremes of inner and 
outer measure as determined by the extension so far made). After an infinite number of steps, however, a 
contradiction can arise, and sooner or later (before exhausting all the sets) it certainly arises. (As an 
analogy; a convergent series remains such if we add 1 onto a finite number of terms, no matter how far we 
go … , but not if we add 1 onto all the terms!)

This observation renders even more artificial the distinction between those sets which are L-measurable 
and those which are not (none of them has any particular feature which makes it unsuitable).
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Never mind, it might be argued: measurable sets will suffice. But from what point of 
view? Practically speaking, the intervals themselves were perhaps sufficient. From a 
theoretical standpoint, however, is there any justification for this discrimination 
between sets of different status; the orthodox which we are permitted to consider, and 
the heretical which must be avoided at all costs? Would it be too far‐fetched to suggest 
an analogy with real numbers, some of which still bear the name irrational because their 
existence had so scandalized the Pythagoreans?

6.3.3. The second reason for the reservation spoken of earlier concerns what happens 
inside the special field. Here the rules are more restrictive and permit us only to follow 
a uniquely defined path – like a runway for an automatic landing. This may be a fine 
thing but must one be compelled to invoke this aid in all possible cases? Is it too absurd 
to believe that soap may sometimes have its uses despite the existence of an infinite 
number of detergents, each of which washes infinitely whiter than any of the others?

We can, happily, provide mathematical analogies in this case, and these will be more 
illuminating than the whimsical variety (although the latter may help in suggesting in 
advance the sense of the mathematics).

First a trivial example: if the value of a function is given at a finite number of points 
(or at a countably infinite number) I can complete it in an infinite number of ways – even 
under additional conditions (like continuity, etc.). Given n values, I know that the prob-
lem has one and only one solution if I add the condition that the function is a polyno-
mial of degree n − 1 (if n = ∞, and I add the condition that the function be analytic, there 
is either one solution or no solution): is this a good reason for limiting oneself to this 
particular solution; or for considering it as ‘special’?

A further example seems to me rather relevant. There exist methods for summing 
series – for example, that of Cesàho – which often give a uniquely determined answer in 
cases where the usual method of summation leads only to (different) upper and lower 
limits. Is it right that as a result we should always interpret ‘sum of a series’ as meaning 
Cesàro sum, and to banish as ‘outmoded’ the usual notion of convergence? Of course, the 
compass of the Cesàro procedure (even iterated) is not comparable to that of other inno-
vations, like that of Lebesgue, but, even assuming it to be such, would it then be justified? 
And would it not be possible that in certain cases there would be interest in ascertaining 
whether, in fact, the series were convergent according to the old definition (which, 
although out of date, has not become meaningless)? What if we wanted to know, in that 
sense, the upper and lower limits? In my opinion, this example is apposite in every 
respect. In the case of Lebesgue measure, as for Cesàro summability, there is a procedure 
that (because of additional conditions) often yields a unique answer instead of bounding 
it inside an interval within which it is not determined. Whether one solution is more 
useful than the other depends on further analysis, which should be done case by case, 
motivated by issues of substance, and not – as I confess to having the impression – by a 
preconceived preference for that which yields a unique and elegant answer even when the 
exact answer should instead be ‘any value lying between these limits’.

6.3.4. The above remarks, made from a purely mathematical standpoint, are not 
designed to prove anything other than that the case for consigning the Riemann integral 
to the attic now that the Lebesgue integral is available has not itself been proved. 
The Riemann integral can still be a necessary tool; not in spite of its indeterminacy, but 
precisely because of it: this indeterminacy may very well have an essential meaning.
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On the other hand, from a mathematical point of view I would by no means presume 
to discuss topics in analysis which I only know in the context of what I need. In the case 
of the calculus of probability, however, these questions relate to a fundamental need of 
the theory. We have already seen (in Chapter  3) the general kinds of reasons which 
prevent us from accepting countable additivity as an axiom. We shall come across other 
reasons which, taken with the above considerations, suggest that the use of Lebesgue 
measure and integration over the special field is not valid. (That is, of course, unless 
specific conditions are introduced in particular examples in order to meet the condi-
tions which would allow such an application. The distinction, however, is that illustrated 
by the difference between saying ‘I am applying this method because all functions are 
continuous’, and ‘I am applying this method because the function that I have chosen is 
continuous’.)

I do not know whether similar reservations and objections have a sound basis in 
regard to applications in other fields. In the case of mass, such a degree of detailed 
analysis is inappropriate (for instance, how could mass at rational points be separated 
off, or even considered as conceptually distinguishable?). The same thing could be said, 
in fact even more so, for statistical distributions. Everything leads us, therefore, to the 
conclusion that, apart from rather indirect issues,10 the question is irrelevant in this area.

On the other hand, it is not really surprising if real objections only arise in the field of 
probability. In fact, we have, in the other fields, empirical assumptions, which are there-
fore approximate and necessarily lead to some arbitrariness in the mathematical ideali-
zation. The probabilistic interpretation, however, must confront logic face to face; this 
is its sole premise. Logic does not claim that it reaches out to some sort of precision (nor 
even to a higher level of approximation than is necessary), but neither does it allow the 
construction of a formally complete structure which does not respect the logical 
 exigencies of a purely logical field of application; nor can it accept one constructed by 
someone else.

6.4 Distributions in Probability Theory

6.4.1. Let us now turn to the topic of direct interest to us: that is the application of these 
mathematical tools within the calculus of probability. Roughly speaking, the application 
takes the following form: for any random quantity X, one can imagine a distribution of 
probability over the x‐axis by assigning to the distribution function the interpretation 
F(x) = P(X ⩽ x) = the probabilistic ‘mass’ on [−∞, x]. It follows that F(I) = P(X ∊ I), and 
F(γ) = P(γ(X)), for any set I and function γ for which the notation is applicable.

This formulation, which is deliberately rather vague and neutral, is intended as a 
 curtain‐raiser to the questions we shall have to consider later (perhaps it would be more 
accurate to say that we shall consider them in relation to our particular position). These 
basically concern the alternatives of either continuing with the Riemann framework, or 
abandoning it for that of Lebesgue. We shall, however, leave the way open for any  further 
modifications that may be required.

10 Like that concerning the precise meaning of a differential equation expressing a physical law; or the 
definition of the integral on a contour having cusps (this topic has given rise to discussion about the Kutta 
and Joukowski theorem); and so on.
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It is worth giving here and now a brief sketch of the two opposed positions. In order 
to pin a label on them, we might use the term strong for those who, as a result of accepting 
the validity of the Lebesgue procedures in this field, draw stricter and more sophisti-
cated conclusions from the data; and weak for those who accept only the conclusions 
which derive from some smaller number of assumptions, carefully considered, and 
accepted only after due consideration.

The fact that we do not accept (as an axiom) countable additivity commits us to 
 support of the weak position (as we have already mentioned, this is one of the main 
planks in our programme; see Chapter 1, 1.6.2–1.6.4). The present discussion, apart 
from giving more insight into the implications of not adopting countable additivity, will 
consider its relation to other topics, and, although confining itself to the simplest case of 
distributions on the real line, will, in fact, reveal the general import of the conclusions.

6.4.2. The strong formulation. Once we know F(x) we know everything about the prob-
ability distribution of a random quantity X. Everything that can be defined in terms of F(x) 
(and with the Lebesgue extension) has a meaning: nothing else does. The probability that 
X Î I is either given by F(I), if the set I is F‐measurable (Lebesgue–Stieltjes), or has no 
meaning if I is not F‐measurable. The same holds for the prevision of γ(X): either the func-
tion γ(x) is F‐measurable, in which case P(γ(X)) = F(γ), or the concept has no meaning. The 
set of possible values for X is also determined by F: it is the set of points for which F is 
increasing (i.e. the set of points not contained in an interval over which F is constant.11)

In this approach, one operates entirely within the confines of a rigid formulation, 
prescribed in advance: it was to this type of structure that we applied the description 
‘Procrustean bed’. Within its confines, ‘that which is not compulsory is forbidden’.

6.4.3. The weak formulation. Knowledge of F(x) is only one of the many possible forms 
of partial knowledge of the probability distribution of a random quantity X (although, in 
practice, it is one of the most important).

Complete knowledge would demand a ‘complete distribution’: in other words, a 
(finitely additive) extension of F(γ) to every function γ (and, in particular, to every set I) 
with no restrictions (on integrability, measurability, or whatever) and such that

 F XP  

always holds (in particular F(I) = P(X Î I)). Of course, we are talking of a theoretical 
abstraction, which can never actually be attained, but we have to make this the starting 
point, the landmark from which to get our bearings, in order to be in a position to 
consider all cases of partial knowledge without attributing to any of them some preor-
dained special status.

Knowledge of F(x), which we shall call distributional knowledge (or, sometimes, as is 
more common, knowledge of the distribution, albeit in the restrictive sense explained 
above), can turn out either to be more than we require, or less than we require, both 

11 Even from this point of view, there would appear to be no difficulty in allowing something less rigid (e.g. 
the possibility of excluding a set of measure zero): I do not recall, however, ever having seen this kind of 
thing done explicitly. Perhaps this is the result of a psychological factor, which causes us to see distributions 
as prefabricated theoretical schemes, ready for attaching to random quantities, rather than regarding them 
as deriving from those random quantities, and from the particular circumstances which, depending on the 
case under consideration, derive from the underlying situation.
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from the point of view of the possibility of determining it realistically, and in relation to 
the needs of the situation under study. Sometimes, P(X), or P(X) and P(X2) together, or 
some other summary, may be sufficient; in such cases there is no need to look upon the 
distribution as the basic element from which all else follows. On other occasions, 
the distribution itself is not enough: this is the case whenever we wish to rid ourselves 
of the restrictions implicit in the properties of F(x) as commonly accepted; restrictions 
which are not always appropriate.

In contrast to the strong formulation, the argument in the weak case is always devel-
oped with a great deal of freedom of action: there is no obligation to fill in more details of 
the picture than are strictly necessary, and, on the other hand, there is no limit to the exten-
sions one can choose to make – even up to the (idealized) case of complete knowledge.

6.4.4. Setting the discussion into motion. We introduce straightaway some useful nota-
tion. Its present purpose is to enable us to distinguish between the various extensions 
we shall consider in relation to a given F; but it will also enable us to avoid repeated, 
detailed explanations, whose tendency (despite the intention of avoiding ambiguities) is 
rather to create confusion.

The general notation is as follows: if G is a given set of functions γ(γ ∊ G ), then F, 
thought of as defined on G, will be denoted by FG; for every γ not in G, there will be for 
F(γ) (used to denote a generic extension) a bound of the form FG ( ) ⩽ F(γ) ⩽ FG ( ) (we 
do not dwell here upon the details of this : the interpretation is as set out in Chapter 3, 
3.10.1 and 3. 10.7, and which will be of use to us later in 6.5.3). We shall adopt, for the 
time being, as special cases, the following notations for distinguishing the ambit over 
which F is thought of as defined:

FR : if relative to the Riemann field;
FB : if relative to the Lebesgue field;12

FC  : if relative to the complete field; and, finally,
F : if used in a generic sense.

More precisely: FB always denotes an F which has been extended to mean

 F x F xB d  

(in the Lebesgue–Stieltjes sense) where this makes sense; undefined otherwise. We 
could, however, denote the upper and lower integrals† by FB  and FB  and simply express 
the bounds FB ( ) ⩽ F(γ) ⩽ FB ( ). In the above, FB according to the strong formulation, 
is all and everything: the terms in the inequality do not even have a meaning within this 
framework. In the weak formulation, even if one considers an F which (‘by chance’, or for 
some particular reason – any reason – but not by virtue of some postulate) is countably 
additive over the Lebesgue field, the bounds would still have a meaning.

12 We shall use B instead of L (which was already used, see Chapter 2, for ‘linear space’): B, standing for 
Borel, is currently in use with a similar meaning to this (referring to Borel measure, which only differs from 
Lebesgue measure in so far as the latter extends it wherever it is uniquely defined by the two-sided bound). 
In our case B coincides with L (taken as meaning Lebesgue) because the extension is already implicit in 
our formulation (FG (γ) is not only defined for γ ∊ G, but for every γ such that FG ( ) = FG ( )).
†For the time being, we are considering only those functions γ which are bounded (over the range on which 
F varies, namely the x for which 0 < F(x) < 1). The other case will be dealt with specifically in Section 6.5.4.
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FC denotes any F whatsoever, finitely additive, and thought of as defined for all 
 functions γ (the ideal case, thought of in the weak formulation as the basic landmark). 
In this case, it is clear that bounds on the indeterminacy do not make sense; neither is 
there any possibility of extension.

When it makes sense (when it does not we consider FR and FR),

 F x F xR d , 

in the Riemann–Stieltjes sense, expresses all that one can obtain from F; that is, distri-
butional knowledge, according to the weak formulation:

 F F FR R  . 

We should make this more precise, but this first requires the following summary.
We summarize briefly the two opposing points of view which present (in terms of the 

notation introduced above) a choice between:

(strong): for a given X, an FB is to be chosen, and there is nothing more to be said;
(weak): for a given X, an FC should be chosen; in fact, one limits oneself to some partial FG 

that serves the purpose; often, one chooses a distribution function F(x), and then it 
follows that FR is in R, and that the bound, which lies between FR and FR is not in R.

6.4.5. Once more a word of warning. When referring to distributions, or distribution 
functions, F, it is useful to think of them as mathematical entities (e.g. the function 
F(x) = ½ + (1/π) arctan x), which are available for representing the probability distribu-
tion of any random quantity X, as required. In other words, it is better not to think of 
them as associated with any given X. This distinction is of a psychological nature rather 
than a point of substance – which explains why the explanation is vague and somewhat 
confused – but our aim is to warn against misunderstandings that can (and frequently 
do) arise through some sort of ‘identification’ of an F(x), an abstract entity, with P(X ⩽ x), 
which, although equal to it, is a concept dependent on the specific random quantity X 
that figures in it. A typical example of the misunderstandings to be avoided is the confu-
sion between limit properties of a sequence of distributions and similar behaviour of 
random quantities which could be associated with those distributions.

6.4.6. Why the ‘Procrustean bed’? A preliminary question which it might be useful to 
discuss (although more for conceptual orientation than as a real question) is the follow-
ing. Why is it that, at times, some people prefer (as in the strong formulation) to adopt 
a fixed frame of reference, within which one assumes complete knowledge of every-
thing, all the details, no matter how complicated, no matter how delicate, and irrespec-
tive of whether they are relevant or not? This, despite the fact that the system is only 
used to draw particular conclusions, which could have been much more easily obtained 
by a direct evaluation. All this would appear to be a purely academic exercise; far 
removed from realism or common sense.

In seeking the reason for this, one should probably go back to the time when fear was 
the order of the day, and all manner of paradoxes and doubts resulted. The only hope of 
salvation was to take refuge within paradox‐proof structures – and this was no doubt 
right, at the time.

We must consider, however, whether it is reasonable, or sensible, to force those who 
are now strolling across a quiet park to take the same precautions as the pioneers who 
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originally explored the area when it was wild and overgrown, and were ever fearful of 
poisonous snakes in the grass?

Let us note the following in connection with a specific example:

the use of transfinite induction (Chapter 3, 3.10.7) assures us that we can always 
proceed in an ‘open‐ended’ way, adding in new events and random entities from 
outside any prefabricated scheme;

this method of proceeding is the only sensible one; at any moment new prob-
lems arise, and the thought of someone having to unscramble the enormous 
Boolean algebra that he has fixed in his mind, together with the probabilities 
which are stuck on all over the place, and having to construct a new edifice in 
order to include each new event, each new piece of information, and to update all 
his probabilities before sticking them back in, this thought is horrifying;

in evaluating probabilities (or a probability distribution), one should also  proceed 
step by step, making them, little by little, more and more precise, for as long as it 
seems worth continuing. Even Ovid did not record the sudden appearance of a 
complete Boolean algebra, armed with all its probabilities, and springing from the 
head of Jove, disguised as Minerva, or rising, like Venus, from the foaming sea.

These remarks have been expressed in a manner which accords with the subjectivistic 
point of view; they would seem, however, to reflect fully the requirements of any realistic 
point of view, although perhaps not in such a clear‐cut manner.

6.4.7. The absence of anything having a special status. We have already said (in 6.4.3) 
that no partial knowledge was to be accorded special status: not even that provided by 
F(x). It seems strange to deny special status to probabilities associated with the ‘most 
basic’ sets, like intervals (or with continuous functions, as opposed to sets or functions of 
a ‘pathological’ nature). Is this objection well founded? Nothing can really be said about 
this without first considering and analysing the sense in which something has to be ‘true’, 
and in what sense, and on what basis, things appear to us as strange or pathological.

With regard to our own enquiry, we must distinguish that which has a logical character 
from that which draws its meaning from other sources; this is necessary, because it is only 
differences of a logical nature which can lead to the possibility of different treatment from 
a logical point of view. We note, therefore, that, from a logical point of view, in this repre-
sentation every event corresponds to a set of points, and the only property that is relevant 
is the fact that one can tell (on the basis of the occurrence of X) whether the ‘true’ point 
belongs to the set or not. In this sense, there is nothing that can give rise to special forms 
of treatment: the above‐mentioned property is assumed to be valid everywhere by defini-
tion, and other properties do not enter into consideration. From a logical point of view, 
no other aspects are relevant; for example, topological structures, or some other kind of 
structures that the space may happen to have for reasons which do not concern us.

Only differences of a logical nature could possibly justify special treatment in a proba-
bilistic context. In general, there is no reason to discriminate between sets, and, in 
 particular, this applies to sets which have, with respect to the outcomes of a random 
quantity X, the form of intervals, or anything else, however ‘pathological’. There is no 
justification for thinking that some events merit the attributing of a probability to them, 
and others do not; or that over some particular partitions into events countable additivity 
holds, but not over others; and so on.
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6.4.8. The argument concerning what happens ‘outside B ’. We know that countable 
additivity cannot hold over the entire field C (of all events X Î I and random quantities 
γ(X) which can be defined in terms of a random quantity X, in correspondence with all 
sets I and functions γ). In fact, this was proved by Vitali under the additional assumption 
of invariance for the measures of superposable sets; an assumption which was removed 
in the extensions mentioned previously.

The above could be taken in itself as a sufficient reason for rejecting countable additiv-
ity as a methodologically absurd condition (as a general, axiomatic kind of property) 
since it sets itself against the absence of any logical distinctions, which alone could 
 justify discrimination between events.13 This would be the case even if we disregarded 
the reasons we have already put forward (Chapter 3, 3.11, and Chapter 4, 4.18), reasons 
which, in fact, cannot be disregarded.

6.4.9. The argument about what happens ‘inside B ’. In the particular case of L‐ 
measurable sets, where we know that countable additivity can be assumed without giv-
ing rise to any contradictions, there is no reason to assume automatically that countable 
additivity must hold (or that it is entitled to be accepted for some particular reason). 
Every distinction between measurable and nonmeasurable sets disappears when we no 
longer take the topology of the real line into account (imagine reshuffling the points as 
though they were grains of sand). We present straightaway some counterexamples (they 
can be disposed of only on the grounds of a prejudice to do so just because they are 
counterexamples14).

Here is one of them. Let X be a rational number between 0 and 1, and let us further 
assume that no rational between 0 and 1 can either, on the basis of our present knowl-
edge, be rejected as impossible, or appear sufficiently probable to merit assigning a 
nonzero probability to it. In this case, we have a continuous distribution function F(x): 
we could also limit ourselves to considering the special case of the uniform distribution, 
F(x) = x (0 ⩽ x ⩽ 1). According to the strong formulation, one would conclude that, with 
probability 1, the rational number X belongs … to the set of irrational numbers!

This, and other similar examples (which we shall make use of shortly for other pur-
poses), also show, among other things, that precisely the same distribution function can 
correspond to random quantities having different ranges of possible values. This will be 
dealt with in Sections 6.5.2–6.5.3.

6.4.10. Partial knowledge. Every piece of partial knowledge will be the knowledge of 
the complete distribution FC (γ) restricted to some subset or other of the functions γ 
(it does not matter whether they are functions, sets, or a mixture of the two). For exam-
ple, one might know F(x) at some particular points (i.e. for a certain partition into inter-
vals) and/or γ for some individual functions. To use the standard examples, these might 

13 More precisely, the discrimination would only be justified if one concentrated the whole probability (=1) 
on a finite or countable set (of points with positive probabilities. with sum 1). It is absurdly restrictive to 
pretend this should always be the case; even, e.g., if the ‘points’ of our field are ‘all the possible histories of 
the universe’ (but let us leave aside such extralogical and personal judgements). The fact is, that no 
continuous measure – in the mild sense of being, like Lebesgue measure, effectively spread over an 
uncountable set – can satisfy our requirement.
14 This is the tactic of ‘monsterbarring’, according to the terminology of Imre Lakatos, in “Proofs and 
refutations”, Brit. J. Philosophy of Science, 14 (1963–64), 53–56.



Theory of Probability: A Critical Introductory Treatment202

be the prevision and variance (as direct data, and not based on the assumption, either 
implicit or explicit, of the existence of the distribution of which the prevision is the 
barycentre etc., as is usually the case). It would, however, be equally admissible (although, 
generally speaking, of little interest, and not really practicable) to provide, instead, 
probabilities for certain pathological sets only (e.g. numbers whose decimal expansions 
never involve more than n zeroes in the first 2n places), or the previsions of some patho-
logical functions (e.g. continuing with the same example, γ(x) = sup of the percentage of 
zeroes in the first n places as n varies).

In short, it is open to us to assume or require that either everything, a little or a great 
deal is known about the probabilities and previsions relating to X. Do not lose sight of 
the fact (even though it is not convenient to repeat it too frequently) that, in using 
‘known’ or ‘not known’ when thinking in terms of the mathematical formulation (in fact, 
when thinking of the actual meaning), we mean ‘evaluated’ or ‘not evaluated’.

Of course, it could be, as a special case, that the partial knowledge of the complete 
distribution is that defined over the intervals: in other words, that given by F(x), known 
for all x. This is what we have called knowledge of the distribution through the distribu-
tion function. It is a form of partial knowledge like all the others but it is of particular 
interest and we shall wish to, and have to, consider it at greater length, in order to clarify 
the rôle played (in the present formulation) by F(x).

F(x) remains a standard tool, but re‐evaluated (one might say cut down to size) in a 
manner and for reasons that we shall explain. It does not play any special, privileged 
rôle de jure, but only de facto: that is, in relation to the interpretation of X as a magni-
tude, which is what is of interest in practice, and to the geometric representation on the 
line, which is what enables it to be visualized. It is for these reasons that it plays a special 
rôle, by reason of the applications, and from the psychological point of view; despite the 
fact that they cannot justify its special status from the logical standpoint.

6.4.11. The re‐evaluation is not solely, however, in this conceptual specification; nor 
in the fact that knowledge conveyed by F(x) no longer appears complete in that we 
require something further (F(γ) lying outside the Lebesgue ambit of F), whereas it 
remains what it is. But it does not remain what it was: it is more restricted. It remains 
what it was only in the Riemann ambit of F; outside of this (with no further discrimina-
tion between that which is inside or outside the Lebesgue ambit of F) it only provides 
the bounds we have already encountered

 F F FR R  . 

These give the limits for any evaluation of F(γ) compatible with knowledge of F in the 
distributional sense (i.e. knowledge of F(x)). We are, of course, dealing with the upper 
and lower integrals in the Riemann sense; in particular (in the case of sets) we have 
inner and outer Jordan–Peano measure. This indeterminacy does not imply any fault in 
the capacity of the concepts to produce a unique answer; on the contrary, as we shall see 
later in more detail, the indeterminacy turns out to be essential (given our assump-
tions), in the sense that all and only the values of the interval are in fact admissible (and 
all equally so). Any of them can be chosen, either by direct evaluation, or by an evalua-
tion which derives from some additional considerations, which must then be set out 
one by one (and cannot just consist of the assumption of countable additivity, for which 
one must, case by case, make the choice of the family of partitions on which its validity 
is to be assumed, and state the choice explicitly).
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What we have said so far concerning the rôle of F(x) is more or less the translation and 
explication in concrete form of the two ‘reservations’ that we previously put forward in 
the abstract. But the abandonment of countable additivity implies yet another revision 
of the meaning of F(x): it is no longer true that a jump at x must correspond to a con-
centration of probability at the point x (it may only adhere to the point, and the point 
itself might not even belong to the set of possible points). It is also no longer true that 
F(x) must vary from 0 to 1 (we only require that 0 ⩽ F(−∞) ⩽ F(+∞) ⩽ 1), or that the 
possible points are those at which F(x) is increasing.

A single observation will suffice. Suppose that the possible points, judged equally 
likely, form a sequence (e.g. x0 − 1, x0 − 1

2
, …, x0 − 1/n, …) which tends to a given point 

x0 from below. In this case F(x) will have a jump of 1 at x = x0, just as if X = x0 with 
 certainty (all the mass concentrated at x0). In fact, we have F(x) = (x ⩾ x0) = 0 for x < x0, 
and = 1 for x ⩾ x0, because to the left of any point on the left of x0 there is at most a finite 
number of possible points, each of which has zero probability; whereas to the left of x0 
(and, a fortiori, to the left of any point on the right of x0) we find all the possible points.

This implies that, in general, if F(x) has a jump ph at a point xh, it is always possible 
(apart from the case when there are no possible points in some left or right neighbour-
hood of xh) to decompose ph, in some way, in the form p p p ph h h h

0 , where ph
0 is the 

mass actually concentrated at x0, and the other two parts are adherent to it on the left 
and on the right (in the manner illustrated in the example).

This fact alone would seem to provide support for the usefulness of the convention 
of regarding the value of F(x) to be indeterminate at points of discontinuity (see foot-
note 3). We shall, however, consider this in the next section (6.5.1), where the argu-
ments will be more decisive when put in the context of some further ideas.

The previous example (if we consider sequences tending to −∞ or to +∞) suffices to 
show that we can, in a similar fashion, have probabilities adherent to −∞ and to +∞. 
These are given by F(−∞) and 1 − F(+∞). Those distributions for which (as we have so 
far assumed, in accordance with the standard formulations) these probabilities are zero 
we shall call proper, and we note that F then actually does vary between 0 and 1; all 
others will be called improper (and we can further specify whether the impropriety is 
from below from above or two‐sided).

Our previous remark concerning possible points is also clear, given the possibility of 
substituting for any point a sequence which converges to it; this topic will be considered 
further in due course (see 6.5.2).

6.5 An Equivalent Formulation

6.5.1. Knowledge of F(x) (apart from points of discontinuity), in other words, what we 
are calling distributional knowledge, is equivalent  –  in the case of a proper F15  –  to 
knowledge of F(γ) for all continuous functions γ, which are bounded over the entire 
x‐axis, from −∞ to + ∞. More precisely, these, and only these, functions are F‐integrable 
whatever F might be; conversely, knowledge of F(γ) for all continuous γ is sufficient, 
whatever F might be, to determine F(x) for all x, apart from discontinuity points.

15 Otherwise one requires in addition the existence of a finite limit for γ(x) as x→ −∞, or x → +∞, or both.
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Of course, to say that knowledge of F(x) is equivalent to knowledge of F(γ) for all 
continuous γ does not mean that it has to be known for every such γ. It will be sufficient 
to know it for a basis in terms of whose linear combinations any continuous function 
can be approximated. This remark will serve as the foundation for more analytical kinds 
of treatment (in particular, that for characteristic functions); here it merely serves to 
assuage possible doubts.

Let us consider the following in more detail, further considering the possibility of 
‘adherent masses’, which we noted above. If F(x) has a jump ph at the point x = xh, and it 
were assumed that the mass ph were concentrated at the point xh, then (as in the case of 
the usual assumption of countable additivity) we would take the contribution of this 
mass to F(γ) to be phγ(xh). Without the assumption of concentration, however, we can 
do no more than note that the contribution lies between the maximum and minimum 
of the five values

 
p x p xh h hand

max
min lim

 

as x → xh from the left or right, respectively. Proceeding differently (and more simply) 
it is sufficient to exclude points of discontinuity as subdivision points (this is always 
possible – there are only a countable number of them).

From this, it is clear that any function γ(x) that has even a single discontinuity point is 
not integrable for all F, since, if we take an F with a jump at this point, the contribution 
of this mass to the integral is indeterminate. Conversely, if we know F(γ) for the continu-
ous functions γ, we can evaluate F(x0) from below and above as follows: we take a func-
tion γ1(x) which = 1 from −∞ to x0 − ε, and = 0 from x0 to + ∞, and decreases continuously 
from 1 to 0 within the small interval x0 − ε to x0, and a function γ2(x) = γ1(x − ε), which 
is the same as γ1, except that the decreasing portion is now between x0 and x0 ± ε. 
The difference between the two functions is ⩽1 between x0 ± ε and zero elsewhere; we 
therefore have that

 F F F x F x2 1 0 0( ) , etc. 

Everything goes through smoothly, except when we have a discontinuity at x = x0.
The mathematical argument, which seems to me to show conclusively that we should 

consider F(x) as indeterminate at discontinuity points x, is the following: it is more 
meaningful to consider the continuous γ, than to consider indicator functions of half‐
lines or intervals. What seemed to be an ad hoc restriction when starting from the 
intervals, is, instead, rather natural when one considers continuous functions; in this 
case, one would need an ad hoc convention to eliminate it.

On the other hand, this mathematical argument is closely bound up with the point 
that I consider to be most persuasive both from the point of view of fundamental issues 
and of applications: the need for some degree of realism when we assume the impossi-
bility of measuring X with absolute certainty. We shall consider in the Appendix 
(Section 7) limitations imposed on ‘possible occurrences’ of events due to these kinds of 
imprecisions; it is clear, however (and we shall confine ourselves to this one observation 
at present), that to consider F(x) as completely determined, apart from discontinuity 
points, is equivalent to thinking that X can be measured with as small an error as is 
desired, but cannot be measured exactly with error = 0. This suffices to render the case 
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X = x0 with certainty indistinguishable from the case where the mass is adherent to x0 
(e.g. it is certainly at x0 − 1/n, where n is any positive integer whose probability of being 
less than any preassigned N is equal to zero).16

6.5.2. The distribution and the possible points. We have already seen, when examining 
the special case of a discontinuity point, that there is a lot of arbitrariness concerning 
the possible points which ‘carry’ the mass corresponding to the jump; they do not have 
to enclose the jump‐point, they only have to be dense in any neighbourhood of it. Before 
proceeding any further, we have to examine the general relationship between the set 2 
of possible points for a random quantity X – which we shall call the logical support of 
X – and F(x), the distribution function of X; more specifically, the relationship between 
this set 2 and the set D of points at which F(x) is increasing – which we shall call the 
support of the distribution F (or the distributional support of X). Formally, this is the set 
of x such that, for any ε > 0, we have

 F x F x 0. 

Every neighbourhood of x has positive probability; it is therefore possible, and hence 
contains possible points. It therefore follows that D is contained in the closure of 2; 
moreover, this condition is sufficient because, whatever partition one considers (parti-
tion, that is, of the line into intervals), no contradiction is possible (every interval with 
positive mass contains possible points to which it can be attributed).

It is convenient to consider separately the various cases. Let us begin with the inter-
vals on which F(x) is constant (at most a countable collection): these may contain no 
possible points but there is nothing that debars them from doing so (they could consist 
entirely of possible points), so long as the total probability attributed to them is zero. At 
the other extreme, we have the intervals over which F(x) is strictly increasing. Here, it is 
necessary and sufficient that the possible points are everywhere dense (it could be that 
all points are possible). As an example, think of the uniform distribution on [0, 1], with 
either all points possible, or just the rationals. An isolated point of increase is necessar-
ily a jump‐point (but not vice versa), and we have already discussed this case; either the 
point itself must be possible, or there must exist an infinite number of possible points 
adherent to it (of which it is a limit point). Finally, suppose that a point of increase of 
F(x) is such because each neighbourhood of it contains intervals, or isolated jump‐
points, where F(x) is increasing. This fact tells us that the given point is an accumulation 
point of possible points; we can go no further in this case.

We are especially interested in the end‐points of the above‐mentioned sets. We have 
adopted (ever since Chapter 3) the notation inf X and sup X for the limits of the logical 
support; let us now denote by inf F and sup F the limits of the distributional support. 
These are, respectively, the maximum value of x such that F(x) = 0, and minimum value 

16 Without going into the theoretical justifications (or attempts at justifications), it is a fact that the different 
conventions reveal practical drawbacks that make their adoption inadvisable. The convention F(x) = F(x + 0) 
(or, conversely, F(x) = F(x − 0)) makes the equation F1(x) = 1 − F(x) (used in passing from X to −X) invalid; 
writing F x F x F x( ) [ ( ) ( )]1

2 0 0  avoids this difficulty, but (see the end of 6.9.6) one sometimes needs to 
consider F2(x) = [F(x)]2, and it is not true that { [ ( ) ( )]} [ ) )]( (1

2
2 1

2
2 20 0 0 0F x F x F x F x ; and so on. 

In contrast, the convention we are proposing here remains coherent within itself; moreover, it gives a 
straightforward interpretation of the appropriateness of completing the diagram of Figure 6.2a (Figure 6.2b) 
with vertical (horizontal) segments.
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such that F(x) = 1 (if F is unbounded – from below, from above, or from both sides – or 
improper, the values are ±∞). By virtue of what we said previously, we necessarily have 
inf X ⩽ inf F ⩽ sup F ⩽ sup X. It is important to note that logical support is a bound for 
distributional support, but not conversely.

More generally, it is important to realize just how weak the relation between the two 
forms of support can be. If we are given the distribution, all we can say is that each point 
of the support is either a possible point, or is arbitrarily close to possible points; in addi-
tion to this, possible points (with total probability zero) could exist anywhere and even 
fill up the whole real line. On the other hand, given the logical support, we can state that 
the distribution could be anything, so long as it remains constant over intervals not 
containing any possible points. We are here merely reiterating, in an informal and rather 
imprecise way, what we have already stated precisely. In this way, however, we may be 
able to better uncover the intuition lying behind the conclusions. On the one hand, that, 
corresponding to the concept of being able to take measurements as precisely as one 
wishes, but not exactly, one is indifferent to the fact that what is regarded as possible 
can be: either a point or a set of points arbitrarily close to it, respectively; either all the 
points of an interval or those of a set everywhere dense in it, respectively. On the other 
hand, that possible points with total probability zero do not affect the distribution, but 
are not considered as having no importance (and we shall see below that they are 
important when it comes to considering prevision).

6.5.3. Conclusions reached about sets lead immediately to conclusions regarding their 
probabilities. In fact, we can see straightaway that P(X ∊ I), the probability of a set I, can 
actually assume any value lying between the inner and outer F‐measure (in the Jordan–
Peano sense).

Let D be the set of points for which F(x) is increasing, and partition it into D1, the 
intersection of D with the closure of I (that is, the set of points of D  having points of I in 
every neighbourhood), and D2, its complement (points within intervals containing no 
points of I). Let us assume that in the closure of D 1 only points of I are possible (either 
all of them, or a subset which is everywhere dense there); only in the intervals contain-
ing no points of I do we have recourse to other points in order to obtain the ‘possible 
points’ required for D2. In this way, I turns out to have the maximum possible probabil-
ity; that is, the outer F‐measure (we attribute to I the measure of every interval in which 
I is dense). By applying the same idea to the complement of I, we obtain the other 
extreme (the minimum probability for I, given by the inner F‐measure; in this case only 
those intervals containing solely points of I are considered). Clearly, all intermediate 
cases can be arrived at by mixtures (for example, for a direct interpretation, consider the 
fact that, without changing the distribution, possible points are taken either to be those 
of the first version or the second, depending on whether an event E is true or false; by 
varying the value p = P(E), 0 ⩽ p ⩽ 1, we obtain all possible mixtures).

This fact reveals another aspect of the ‘re‐evaluation’ of the nature of distributional 
knowledge: it says very little about what, from a logical viewpoint, is the most important 
global feature of the distribution; that is, about the logical support.

6.5.4. The restriction of boundedness. There remains the question of our restriction to 
the bounded case: it is an important topic in its own right and we have rather passed it 
over (each topic should really come before all the others, and that is just not on). We shall 
meet a further aspect (the last one!) of the ‘re‐evaluation’ of the role of the distribution 
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function and we shall be forced to make (and offer to the reader) some sort of make‐
shift choice, not entirely satisfactory, in order to be able to draw attention to certain 
necessary distinctions, without too many annoying notational complications, and with-
out running too many risks of ambiguity.

We have already seen (Chapter  3, 3.12.4–3.12.5) that, without the assumption of 
countable additivity, there are no upper (lower) bounds for the prevision of a random 
quantity which is unbounded from above (below). This was seen in the case of discrete 
random quantities; what happens when we pass from this to the general case?

The question is an extremely deceptive one when looked at in the light of what distri-
butional knowledge is able to tell us. Starting from the knowledge of F(x), the conclu-
sion that we can derive a certain value, F(), which ‘ought to be’ that of P(X), will be 
more acceptable if not only the distribution F, but also the logical support of X, is 
bounded (and knowledge of F gives us no information about this). We shall put this 
conclusion more precisely, and also examine more closely the value of the partial knowl-
edge that we can obtain in this connection.

First of all, it is convenient to specialize to the case of non‐negative random quantities 
(inf X ⩾ 0): given any X, we can, of course, decompose it into the difference of two 
non‐negative random quantities by setting

 
X X X X X� �0 0 ,

 
or, in a different but equivalent form,

 X X X0 0 . 

In either case, the first summand has value X if X ⩾ 0, and zero otherwise; and the sec-
ond summand has value X if X ⩽ 0 and zero otherwise (and is therefore always nonposi-
tive: in order to obtain the difference of nonnegative values explicitly, it suffices to write 
1st − (−2nd) instead of 1st + 2nd).

For X non‐negative and bounded, we certainly have

 P X F x F x d . 

A non‐negative X that is unbounded can be turned into a bounded quantity by either 
‘amputating’ or ‘truncating’ it.17 We shall apply the first method, which is simpler. We have

 
P PX X X K F K x F x

K

� � � 

0

d ;
 

this holds for any K, and hence

 
P X x F x F

0

d ,

 

where this defines F() by convention in this case. The integral may be either conver-
gent or divergent: in the latter case, we must have P(X) = F() = +∞, whereas, in the 

17 To ‘amputate’ means to put Y = X(X ⩽ K): to ‘truncate’ means to set Z = X ∧ K; in other words, Y = Z = X, 
so long as X ⩽ K, but Y = 0 and Z = K otherwise. Clearly we have Y ⩽ Z ⩽ X (Y = Z = X if X ⩽ K, and Y < Z < X 
when X > K, since 0 < K < X).
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former, we can only say that all values in the range F() to +∞ are possible for P(X) 
(including the two extremes). Note that the case of convergence also includes the case 
where the distribution is bounded (sup F < ∞), but arbitrarily large possible values of X 
(with total probability 0) are permitted.

6.5.5. We have adopted as a convention the definition F() = ∫ x dF(x); this holds even 
when the integral is improper (it has to be extended up to +∞) and only makes sense, as 
a limit, when it converges. This convention can be extended to the general case (to a 
distribution unbounded either way) with a similar interpretation; that is, with the 
understanding that

 

0

0

,
 

if both integrals exist. We have to stress the interpretation we give to our convention, in 
order to draw a distinction between it and the interpretation it has in the usual formula-
tion (that is, in the strong formulation). In the latter, the convention is taken as a defini-
tion of the prevision P(X) of a random quantity X with distribution F(X): if one of the two 
integrals diverges, we either have P(X) = ∞ or P(X) = −∞; if both diverge, P(X) has no 
meaning.

So far as we are concerned, P(X) will from henceforward have the meaning we have 
assigned to it; it will not make sense to set up new conventions in order to redefine it for 
this or that special case. Given the knowledge of F(x) one could work out possible 
bounds for P(X) – always on the basis of the (weak) conditions of coherence – but one 
must be careful not to add any further restrictions and not to interpret the acceptable 
ones as being in any way more restrictive than they actually are. Not a single one of the 
values that can be attributed to P(X) without violating coherence should be ruled out as 
unacceptable. This would be a mistake; excusable if due to an oversight, but inexcusable 
if due to carelessness, or an inability to understand the demands of logical rigour.

Our convention should be interpreted entirely differently. It defines F() – and, similarly, 
F(γ), for any γ – as information relating to the distribution F (considered as a mathematical 
entity); in order to avoid any confusion, it would perhaps be better to call F() the mean 
value of the distribution F, rather than the prevision (a notion concerning a random 
quantity X). Such a mean value is of interest when we are considering the previsions of 
random quantities X, Y, Z, all having the same distribution F; it is almost never possible, 
however, to simply state that the previsions must all be equal and coincide with F().

This conventional mean value does, however, play an important role for the following 
three reasons. In the first place, it serves to provide the logical conditions that charac-
terize the set of admissible values for P(X). Secondly, it always provides a particular 
admissible evaluation of P(X), whose acceptance can often be justified by making an 
additional, meaningful assumption. Thirdly, it turns out that simultaneously accepting 
this additional assumption for several random quantities cannot lead one into 
incoherence.

If there is no additional knowledge, there are no logical conclusions to be drawn in 
passing from F(x) to P(X). Fortunately, knowledge is available concerning a basic fact of 
a logical nature: that of the logical support of X (the set of possible values), or simply 
knowledge of the extremes, inf X and sup X, or, even more simply, knowledge of whether 
they are finite or infinite. If they are both infinite, nothing more can be said about 



6 Distributions 209

P(X) – all values −∞ ⩽ P(X) ⩽ +∞ are admissible. If they are both finite, we must cer-
tainly have P(X) = F(). If only one of the extremes is infinite, all values between it and 
F() are admissible; in other words, if inf X = −∞, we have −∞ ⩽ P(X) ⩽ F(), and, if sup 
X = +∞, we have F() ⩽ P(X) ⩽ +∞. In just one special case we also have a uniquely 
determined value: if F() = +∞ and inf X > −∞, then we certainly have P(X) = +∞ (and, 
similarly, if F() = −∞, and sup X < +∞, then P(X) = −∞).

Turning to the case of arbitrary functions, γ(x), there are no essential changes to be 
made, but there are a couple of details.

In order to remain within the domain of distributional knowledge, we must limit our-
selves to considering FR (integrals in the Riemann–Stieltjes sense etc.) and, hence, to 
consideration of γ which are continuous (see 6.5.1), or, alternatively, to considering the 
two values FR ( ) ⩽ FR ( ) (which are, in general, different). We shall always adopt the 
latter course, and, consequently, we will omit the R. Extension to unbounded γ(x) has 
to proceed as above; by separating into positive and negative parts, γ(x) = [0 ∨ γ(x)] +  
[0 ∧ γ(x)], and then amputating each of the parts (considering, for example, [0 ∨ 
γ(x)]·[γ(x) ⩽ K] instead of 0 ∨ γ(x); we shall call this γK(x)): we then take F−(γK) and F+(γK) 
relative to these, and obtain F −(0 ∨ γ) and F +(0 ∨ γ) as limits as K → ∞. Similarly, we 
deal with 0 ∧ γ, taking K < 0 and tending to −∞. Summing, we obtain F−(γ) = F–(0 ∨ γ) + 
F −(0 ∧ γ) (and similarly for F +). If the sum is of the form ∞ − ∞, it must obviously be 
understood as −∞ for F −(γ) and + ∞ for F +(γ).

The second detail (perhaps it would be better to call it a remark) concerns a simplifi-
cation that can arise in the case of an arbitrary γ(x), in comparison with the simplest 
case, γ(x) = (x) = x, considered above. In fact, if the function y is bounded (|γ (x)| ⩽ K 
for all x) then γ(x) is certainly also bounded (and the same holds for semi‐boundedness). 
If γ(x) is not bounded, and all the values of x (−∞ ⩽ x ⩽ +∞) are possible for X, then the 
random quantity γ(X) is also unbounded, in the same manner. It is only in the case of 
γ(X) unbounded and X having a more restricted support that the question of the bound-
edness of γ(X) cannot be settled immediately, but only by examining the values that γ(X) 
assumes on the support of X (it will often, however, be sufficient to check whether it is 
bounded on the interval inf X ⩽ x ⩽ sup X; only if it does not turn out to be bounded 
there will it be necessary to proceed to a more detailed analysis).

6.5.6. This having been said, our previous conclusions, apart from obvious changes, 
can now be restated, a little more concisely, in the general case.

The admissible values for P[γ(x)] are those which satisfy the inequality

 F X F P  

when γ(X) is bounded (that is, if −∞ < inf γ(X), sup γ(X) < +∞); with F−(γ) replaced by −∞ 
if inf γ(X) = −∞; with F+(γ) replaced by +∞ if sup γ(X) = +∞.

In other words: in the double inequality, the right‐hand side, left‐hand side, or both, must 
be suppressed according to whether we have unboundedness on the left, right or both.

In particular, we obtain a uniquely determined value for P(X) only if F(γ) exists (that 
is, F−(γ) = F+(γ)). This value is finite if γ(X) is bounded; infinite (−∞ or +∞) if γ(X) is 
semi‐bounded (the direction of the boundedness is obvious).

To see how the present statement contains the previous one as a special case, observe 
that if both the integrals (from −∞ to 0 and from 0 to +∞) diverge, then F−() = −∞ and 
F+() = +∞.
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6.5.7. Prevision viewed asymptotically. If F(x) = P(X ⩽ x), the mean value of the distri-
bution F, in addition to its logical interpretation within the confines discussed above, 
may often have a reasonable claim to be taken as the value of P(X), even if there are no 
circumstances compelling one to make this choice.

This is the case when we choose to deal with an unbounded distribution (either one‐
sided or two‐sided), but where the choice might reasonably be seen as an idealized 
approach to something that, had we been more realistic, should be considered as bounded. 
To put it more straightforwardly: we think that F(x) represents pretty well our idea of the 
distribution throughout the range a ⩽ x ⩽ b, which, practically speaking, includes all the 
possible values; to also include the ‘tail’ to infinity is both convenient from a mathematical 
point of view, and also in practice, since we would not really know just where to set the 
limits a and b (but this latter point should not be taken too seriously). The most appropri-
ate ‘model’ is to conceive of using the bounded distribution as ‘a limit case of distributions 
amputated or truncated to intervals, whose limits are so large that an asymptotic expres-
sion is appropriate’ (that is, for a → −∞ and b → +∞, in whatever way).

From among the logically admissible values for P(X) we shall often select this one 
when such justifications of asymptotic kind appear to be valid. Sometimes we shall 
denote this value by ˆ( )XP : the accent will simply signify that this particular choice has 
been made (it serves as a shorthand) and will not imply that P has been thus marked 
because it is a special value of some sort.

We have stated already that there is no danger of contradiction resulting from the 
systematic use of P̂; this means that P̂ is additive.

(We observe that in choosing values for P(X), P(Y) and P(Z), it is not enough merely 
to ensure that each of them is admissible – for example, if we have Z = X + Y with cer-
tainty, then our choice must satisfy P(Z) = P(X) + P(Y).)

That this condition is satisfied for P̂ follows from the additivity of the integral. We are, 
however, dealing with a two‐dimensional distribution, and we shall therefore deal with 
this later (in Sections 6.9.1–6.9.2).

In order to avoid unnecessary complications, we shall, unless otherwise stated, adopt 
the convention that we shall always take ˆP P (exceptions will be made when there is 
some critical remark worth making). Important points will be made in Section 6.10.3, 
and in Chapter 7, 7.7.4, concerning the connection with characteristic functions and 
Khintchin’s theorem.

6.5.8. Probability distributions and distributional knowledge. We are now in a position 
to summarize the conclusions we have reached as a result of following through the weak 
formulation in a coherent fashion, and also the conventions that have proved necessary 
in order to make the formalism and the language conform to the requirements of the 
formulation. In fact, we shall not merely provide a summary, but also fill in some more 
details, mentioning in an integrated manner certain points hitherto made only inciden-
taily: in this way, we shall build up the complete picture.

The distinction, originally presented as if it were a small difference in attitude, 
between a complete distribution, attached to a random quantity and containing all the 
information about it, and a distribution function as a mathematical entity, useful for 
providing a partial indication of the form of a random quantity, is now much more 
sharply drawn. We have seen, in fact, a number of ways in which the latter form 
is  incomplete and not sufficiently informative; this became clear as we proceeded to 
‘re‐evaluate’ the notion.
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Distributional knowledge, as we introduced it (in a way we considered appropriate to 
make of it an instrument whose range of application was properly defined), is sufficient 
to obtain a description of the image of a ‘distribution of probability mass’ within well‐
determined ‘realistic’ limits. One can ask how much mass is contained in an interval 
(but without being able to state precisely whether the mass adherent to the end‐points 
is inside or outside the interval, and with no possibility of saying anything with respect 
to a set having a complicated form, or not expressible in terms of intervals). One can ask 
for the mean value of any continuous function with respect to the mass distribution 
(but not for functions in general, unless one assumes some further conditions). Nothing, 
however, can be known precisely concerning which points are possible and, without 
this knowledge, we cannot even say whether or not the mean value of the distribution is 
the prevision of an X having that particular distribution function.

To summarize: distributional knowledge is only partial, and has to be made precise 
before it provides complete knowledge. By making it precise, one can obtain many 
 different probability distributions from it; they all have in common, so to speak, those 
features that are apparent at first sight, without examining the details more closely 
under a microscope.

Given this analysis, one can now pick out those properties which the strong formula-
tion obtains from the distribution function by virtue of the assumption of countable 
additivity. These properties might or might not hold (by chance), and might also hold 
for nonmeasurable sets or functions (should these be of interest). Above all, one needs 
to state precisely what one means by ‘possible points’.

In order to avoid any misunderstandings or ambiguity, and to pay close attention to 
the distinctions we have drawn, it would be better if we reserved the term ‘probability 
distribution’ for the complete distribution, FC, and always used ‘distribution function’ 
for what, in an abstract sense, should be called ‘the equivalence class of all the probabil-
ity distributions which are the same if we confine ourselves to FR’ (to put it briefly, and 
more intuitively, ‘when we look at them with the naked eye’), and which, in the final 
analysis, can be said to be F(x). This would be (perhaps?) a little overdone, compared 
with the standard practice of always saying ‘distribution’. At times (when it seems neces-
sary to emphasize the point), we shall be more precise and say ‘in the sense of a distribu-
tion function’; however, it will generally be left unstated, and clear from the context. 
What is important is that the reader always bears in mind ‘as a matter of principle’ that 
it is necessary to draw a distinction between those things which depend only on F(x), 
and those which do not.

6.5.9. A decisive remark. We have been led, for various reasons, to rule out the assump-
tion of countable additivity. Although it is not directly relevant to our specific purpose, 
we ought perhaps to give some thought to the reasons why most people are quite happy 
to accept this assumption as not unreasonable.

Leaving aside the question of analytic ‘convenience’, seen within the Lebesgue frame-
work (which, in any case, appeared on the scene afterwards), I think the reason lies in our 
habit of representing everything on the real line (or in finite‐dimensional spaces), and in 
the fact that the line (and these kinds of spaces) does not lend itself to being intuitively 
divided up into pieces other than those which get included ‘by the skin of their teeth’.

To see this, note that the partitions actually made are those which are easiest to make: 
the ‘whole’ (length, area, mass etc.) is divided into a finite number of separate parts, 
with an epsilonth left over; in order to obtain an infinite partition, one carries on 
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dividing up that epsilonth. If one has to share out a cake among n persons, one could 
always give 1

2  to the first one, 1
4
 to the second, 1

8
 to the third, …, 1

2
1n  to the last two; if 

there were a countable infinity of persons, one could cope with them all by this method. 
But would they be satisfied? Protests would quite likely arise by the time one reached n = 3, 
and, as one proceeded, the number who came to regard this as some kind of practical 
joke rather than a ‘genuine’ method of distribution would increase, as would, quite 
understandably, their anger.

A ‘genuine’ method, in this sense, for subdividing an interval into a countable parti-
tion, is that used by Vitali, in proving the theorem we referred to earlier. The set Ih is 
formed from points of the form a + rh, where r0 = 0, r1, r2, …, rn, … are the rationals 
(ordered as a sequence), and the a are the irrational numbers of I0, chosen so that one 
and only one representative from each set of irrationals which differ among themselves 
by rationals is taken. This example has a pathological flavour, however, as a reshuffing 
of the points, not to mention its evident appeal to the axiom of choice.

In contrast, if we considered a space with a countable number of dimensions, the 
matter would be obvious. If a point is ‘chosen at random’ on the sphere xhh

2 1 in the 
space of elements with countably many coordinates xh, all zero except – at most – a 
finite number, then there is equal probability (zero – see Chapter 4, and the appendix, 
Section 18) that any of the half‐lines xh (positive or negative) will be ‘the closest half‐
line’. Leaving aside the ‘random choice’, the countably many ‘pieces’ of the sphere, Ih and 
Ih, defined by ‘xh is the greatest coordinate – in absolute value – and is positive (I′) or 
negative (I″)’ are entirely ‘symmetric’ and ‘intuitive’ (the number of dimensions is, of 
course, so much greater than three).

The essence of the remark can be put, rather more briefly, in another way. By a set of 
measure zero, the currently fashionable measure theory means a set that is too empty to 
serve as an element of a countable partition. This is a direct consequence of imposing 
countable additivity as an axiom. This implies, in fact, that a union of a countable num-
ber of sets of measure zero (in the Lebesgue sense) is still of measure zero. It is no 
wonder that in such a docile set‐up any kind of process consisting in taking limits is 
successful, once all the necessary safety devices have been incorporated in the 
definitions!

6.6 The Practical Study of Distribution Functions

6.6.1. What we are going to say here holds for any kind of distribution: one can, if one 
wishes to form a particularly meaningful image, think of mass distributions; or (bearing 
in mind that we are dealing with the ‘distribution function’) one can think in terms of 
the probability distribution, which is the thing we are specifically interested in. It will, 
however, be most useful, particularly for the more practical aspects, to think mainly in 
terms of the statistical distribution.

In studying a distribution, we may, roughly speaking, distinguish three kinds of ideas 
and tools:

descriptive properties,
synthetic characteristics,
analytic characteristics.
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6.6.2. Many of the properties already mentioned are descriptive properties. As exam-
ples, we have the following: whether a distribution is bounded or not; proper or 
improper; whether F() is finite, infinite (negative or positive) or indeterminate (∞ − ∞); 
whether or not there are masses of each type A, B and C (6.2.3), and, in particular, in 
case A, whether the density is bounded, continuous or analytic; whether this density (or, 
in case C, the concentrated masses, for example with integer possible values) is increas-
ing, decreasing, or increases to a maximum and then decreases (unimodal distribution), 
or whether the behaviour is different again (for example, bimodal etc.); whether the 
distribution is symmetric about the origin (F(−x) + F(x) = 1) or about some other value 
x = ξ (F(ξ – x) + F(ξ + x) = 1; if the density exists, f(ξ − x) = f(ξ + x), and, in particular, 
f(−x) = f(x) if ξ = 0).

We could continue in this way but it is sufficient to say that one should note how 
useful it can be to provide sketches showing these various aspects. Sometimes these 
alone will be enough for one to draw simple conclusions; more frequently, they provide 
useful background knowledge to be considered along with quantitative data.

6.6.3. In order to be able to interpret what we shall say later by making use of various 
graphical devices (and, in this way, to better appreciate both the meanings of the differ-
ent notions, and the properties and particular advantages of each method), we will 
mention briefly the principal graphical techniques used.

We shall present them using the language of the statistical distribution (for N ‘indi-
viduals’) but they are completely general (if we consider the cases of continuous distri-
butions as covered by taking N very large, or, in mathematical terms, mentally taking 
the ‘limit as N → ∞’). For convenience, we shall only deal with bounded distributions 
over the positive real line (F(0) = 0, F(K) = 1, K = sup F <∞). This will be useful for fixing 
ideas, necessary for some of the points we shall make, and quite sufficient to show how 
the same things go through in the general case, with appropriate modifications.

The graph of the distribution function, y = F(x), is given in Figure 6.2a; in the statistical 
case this becomes a step function (which in the limit is a curve), called the cumulative 
frequency curve, with a step of 1/N at each point xh, the value, for the hth of the N indi-
viduals, taken by the quantity under consideration (for example: age, height, income 
etc.). F(x) gives the frequency, that is the percentage,18 n(x)/N, of the individuals (out of 
the total of N) for whom the quantity has a value not exceeding x.

As we already pointed out (6.2.5), the ‘individuals’ must sometimes be counted with 
different ‘weights’ ph (instead of each with 1/N); it could also happen that several indi-
viduals may have the same value xh (and we then have a mass at that point of, 

p x xk k hk ( ), or, in particular, n/N if the masses are equal and n values coincide). We 
shall concentrate on the simplest case, however, in order to fix ideas concerning certain 
aspects of importance, without prejudicing the extension to the more general case.

The graph of the inverse function, x = F−1(γ), which we considered already in 
Section  6.2.6 (Figure  6.2b), is not widely used. It is, however, a meaningful concept 
known as the gradation curve (Galton); its interpretation is best illustrated in the case 

18 By ‘percentage’, we mean the proportion (not the proportion multiplied by 100 as is customary): in other 
words, 27% = 0·27, 27·58% = 0.2758 etc. Nothing is altered (we could mention that this way of writing it is 
convenient in that it avoids zeroes on the left, and is more expressive when it comes to reading it): the 
symbol % is a conventional form of ‘/100’ (divided by 100), as a right operator on any number.
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of heights – it is the profile obtained by lining up the individuals in increasing order of 
height (a kind of ‘Right dress!’).

When income is the quantity of interest, one could think, for instance, of a pile of 
equal coins rather than of the individuals. This image is useful for clarifying the concept 
required in cases like the present one, where an obvious meaning attaches to the sum of 
the xh values of the various individuals; here, the total income of a certain group of 
individuals. The area under the curve, and relative to a given interval γ′ ⩽ y ⩽ y″, repre-
sents the total income (reduced, on that scale, from 1 to 1/N) of the individuals belong-
ing to the group of those for whom the percentage point of ‘the least rich among them’ 
lies between γ′ and y″. In any case, dividing by the length of the segment, one always 
obtains the mean value (arithmetic mean) of that group of individuals, and this also 
makes some sense in the case of age and height etc., although the meaning is rather one 
of convention, since the sum does not have a straightforward interpretation. In any 
interval (and, in particular, for the whole interval [0, 1]) the mean value is, therefore, the 
height of the rectangle of equivalent area (in other words, in more visual terms, leaving 
equal areas above and below).

In those cases where the sum has an obvious meaning (as in the case of income), a 
third graphical device is also useful and meaningful. It is known as the ‘concentration 
curve’, and is the cumulative version of the previous one (with the total area taken to be 
unity by convention: e.g. total income = 1). Figure 6.3 shows the concentration curve 
z = G(y) (Lorentz), and the gradation curve x = F−1(y) displayed together, with total 
income and average income, respectively, taken as the units of measure. By definition, 
G(y) represents the fraction of the total income owned by the fraction y of least wealthy 
individuals. In the case of a uniform distribution (all incomes equal) the curve would 
be the diagonal of the square G(y) = y; in general, the area between the curve and this 
diagonal – called the area of concentration – when divided by the maximum possible 
area, 1

2  (corresponding to all income in the hands of one of the N individuals, N large) 
is called the concentration ratio, and gives an idea of the inequality of distribution 
(Gini). At each point, the slope of z = G(y) is given by x = F−1(y); the mean corresponds 
to the point of maximum distance from the diagonal (where G′(y) = 1, we have a tan-
gent parallel to the diagonal).

6.6.4. The representation by means of the density curve is widely used; in the statisti-
cal case this is called the frequency curve. It is this representation which best shows up 
the features of behaviour that we were discussing earlier.

We must point out, however, that the density is often (and, strictly speaking, in the 
statistical interpretation always) a fiction, or a mathematical idealization. Any actual 
statistical distribution (with a finite number of individuals, N) must be discrete: we 
either have N masses ph (possibly equal – ph = 1/N – possibly not) with phh 1, or 
fewer than N if several individual values are equal. Even in the actual case of a distribu-
tion of mass, we would find similar discontinuities once we descended to the atomic 
scale, or even indeterminacy because of thermo‐agitation and so on, which would pre-
vent us localizing the masses precisely.

In actual fact, even in physics, the density is acknowledged to be a sensible tool if we 
consider the ratios of mass/volume for neighbourhoods of a point which are not too large, 
so that macroscopic inhomogeneity has little effect, and not too small, so that the effects 
of structural discontinuity are avoided. In any case, if we make the transition from step 
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function to distribution function without attributing to the latter any unnecessary irregu-
larities of slope, then f(x) = F′(x) can, to a large extent, be considered as determined. 
On the other hand, the curve is sometimes smoothed; that is, modified in order to simplify 
it, possibly into a more tractable analytic form, more or less of a standard type.

It is sometimes stated, in this context, that one is attempting to remove ‘accidental 
irregularities’. This, however, can only be done from a probabilistic angle and in the 
necessary depth. For this reason, we shall not go into the question here. anything we 
might say would only tend to give rise to superficial and misleading ideas, which can 
come about easily enough, even without our saying anything (we shall come back to this 
in Chapters 11 and 12; we hinted at the underlying idea in Chapter 5, 5.8.7).

The most elementary and, at the same time, the best way of introducing the density 
in practice (and of constructing the density curve) consists of considering the average 
density over intervals of some appropriate subdivision (neither too coarse nor too fine, 
for reasons stated already). Unless there is any reason to do otherwise, we usually take 
equal subintervals (for convenience). The average density in the general interval  
[ξi, ξi+1], is the incremental ratio of F(x), [F(ξi+1) − F(ξi)]/(ξi+1 − ξi). Figure 6.4, formed by 
rectangles whose bases are the subintervals, and whose height is the average density, is 
called the histogram19 (sometimes called a column diagram). Here also, by smoothing, 
one can pass to a continuous curve.

6.6.5. The synthetic characteristics are the quantitative aspects, which often provide 
useful information, enabling us to find out all we need to know about the distribution in 

19 Note that it is essential to indicate the subdivisions between the rectangles (and that it is not sufficient 
merely to provide the upper contour). In fact, it is essential to distinguish the case of two (or more) consecutive 
rectangles of equal height from the case of a single rectangle given by their union. In the first instance there is 
more information, since we know that the average density is the same in the different subintervals.

0

1

1

0 1

Z=G(y)

z

x

m

y

y

x=F–1(y)

Figure 6.3 The concentration curve z = G(y); for 
example, in the case of incomes, to the fraction y of the 
least wealthy, there corresponds the fraction G(y) of 
total income, which is represented on the graph below 
(the gradation curve: see Figure 6.2b and the 
discussion in 6.2.6) by the fraction of the total area to 
the left of y; that is, including all incomes ⩽x = m dz/dy 
(m = average income). Observe, in particular, that x = m 
at the point where the curve z = G(y) has slope = 1 (the 
tangent is parallel to the diagonal; it is therefore the 
point of maximum distance from the diagonal). The 
diagonal, z = y, corresponds to the case of equal 
distribution; in all other cases, we must have z < y, z 
increasing and concave.
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so far as it relates to a particular problem. It is sufficient to recall Chisini’s definition of 
a mean (Chapter 2, Section 2.9), in order to understand how the knowledge of a ‘mean’ 
of a distribution can meet our needs. Often, this will be the mean value (arithmetic 
mean), given by F(), or some other associative mean, γ−1F(γ), with γ increasing, 
 corresponding, in the probabilistic interpretation, to the prevision, P(X) = F(), or, 
more generally, to the γ‐prevision:

 P PX X1 . (6.3)

Sometimes, in addition to the mean (or prevision), one requires the separation, X − ξ, 
or the deviation, |X − ξ| (the absolute value of the separation), of X from a given pointe 
ξ (which may be anything). On occasions, it will be particular choices of ξ which are 
important, as we have already seen in the case of the standard deviation – the quadratic 
prevision of |X − ξ| with ξ = P(X) – because it is with this choice of ξ that it assumes its 
minimum value and maximum significance. Leaving aside the probabilistic interpreta-
tion, to consider the separation is simply to consider shifting (from 0 to −ξ) the origin of 
the distribution; to consider the deviation is to turn over that part of the distribution on 
the negative axis and superimpose it on the positive axis.

Finally, we note that there are other synthetic characteristics which cannot be viewed 
as means (at least, not without distorting their meanings).

6.6.6. According to the purpose in hand, one can distinguish between measures of 
location and measures of dispersion (or spread), which are useful in giving some idea of 
‘whereabouts’ the distribution tends to be concentrated, and ‘to what extent’ it is con-
centrated (these are often the two features of greatest interest). Other characteristics 
which one occasionally attempts to measure by some kind of indices are, for example, 
the asymmetry, the ‘kurtosis’, and so on. A brief remark or two will suffice.20

20 For a more extensive treatment, see M.G. Kendall, and A. Stuart, The Advanced Theory of Statistics 
(3rd edn), vol. I, Griffin, London (1969), pp. 32–93.

Figure 6.4 An example of a histogram. 
(It represents the distribution of families in 
Italy in 1951, according to the number 
in each.)
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The most meaningful measures of location are, generally speaking, the means (in 
which the Chisini sense; precisely because of the property expressed by his definition). 
Most often, however, one is interested in measures which behave sensibly under trans-
lation (and we implicitly mean homogeneous: in other words, if X transforms to aX + b, 
the measure is multiplied by a and increased by b). In general, this property does not 
hold: for example, among associative means only the arithmetic mean has the property.21

Examples of measures of location which do have the required property are the com-
monly used median (or median value) and mode (or modal value) of a distribution.

The mode is the value for which the density is a maximum. It is clearly defined and 
meaningful in the case of distributions whose densities have regular behaviour, and 
which are unimodal (that is, have a unique maximum), especially when defined in terms 
of simple functions. The more we depart from such well‐behaved situations, the less 
clearly defined and meaningful it becomes.

The median is the central value of the distribution, the value which splits it in half; 
that is, such that F(x) = 1

2
 (or, more explicitly, x = F−1(1

2 )). It is of the value which has the 
property of minimizing P[|X − ξ|], the prevision of the deviation.22

The median is a special case – the most important‐ of a positional value, or quantile, 
of a distribution. The definition of the p‐quantile (0 ⩽ p ⩽ 1) follows along the same 
lines; xp = F−1(p), that is, the value which divides up the distribution into a mass p on the 
left, and 1 − p on the right. For p = 0 and p = 1, we have inf X and sup X (making the 
natural convention of choosing one of these values rather than any value <inf X or >sup 
X). These values have the translation property, but are not suitable (for p ≠ 1

2
) as really 

meaningful measures of location; they are useful as ‘milestones’, well suited to describ-
ing the distribution in terms of intuitive subdivisions, especially when considering 
quartiles (p = 1

4  or p = 3
4), deciles and centiles (p multiples of 1

10  or 1
100), or for furnishing 

measures of dispersion (as we shall see).
In the case of measures of dispersion (or, if looked at in the opposite sense, measures 

of concentration), it will also prove important to consider a homogeneity property (simi-
lar to the translation property considered above). For the most important measures, 
when we consider aX + b the measure is multiplied by a (and b has no effect).

Let us consider the special case of a distribution transformed into its ‘normalized’ (or 
standardized) form, by taking the mean value as the origin, and the standard deviation 
as the unit (m = 0, σ = 1). If we denote by α* the index for the normalized distribution, 
then, after transformation, the translation property would lead to α = m + σα*, and the 
homogeneity property to α = σα*. If α = α* (in other words, invariance under translation 
and change of scale) the index could be called morphological, because it expresses a 
characteristic of the form of the distribution, that is, of the kind of distribution (this 
terminology is often useful for denoting all those distributions which differ from each 
other only by changes of origin and scale; in other words, the F(ax + b) for given F and 

21 It holds for the others if the scale is transformed by y = γ(x).
22 This is obvious if one thinks about it. Shifting ξ to ξ + dξ(dξ > 0) increases by dξ the deviation for all masses 
to the left of ξ, and decreases by the same amount the deviation for those on the right. It is therefore sensible to 
move towards the median, at which point the masses on the left and right are equal. This property (with an 
appropriate modification) allows us to eliminate the indeterminacy which occurs in F(ξ) = 1

2  throughout some 
interval. One can define (D. Jackson, 1921) the median as the limit as ε → 0 of ξ(ε) = the value at which the 
prevision of the deviation to the power l + ε (ε > 0) is minimal.
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any a and b; sometimes, we are limited to a > 0 and/or b = 0). Observe that we carried 
out the normalization using m and σ, but this is by no means the only possibility, nor is 
it even always possible (σ may be infinite, or m indeterminate); we used this method 
because it is the most common, and the most useful from several points of view. As an 
example of the other possibilities, we mention the possibility of taking the median and 
the interquartile range, in place of m and σ (this has the advantage that it is always 
meaningful, and avoids the oversensitivity of σ to the ‘tails’ of the distribution; its disad-
vantage is that it is rather crude).

Examples of morphological properties are provided by asymmetry and kurtosis, for 
which one can take as indices the cubic and quartic means of the separation – P[(X – m)n]1/n 
for n = 3 and n = 4, respectively, divided by σ.23 The first index is equal to 0 in the case of 
symmetry (or of deviations from symmetry which cancel each other out),24 and is positive 
or negative according to whether the left‐hand or right‐hand tail is more pronounced. 
Kurtosis, measured by the second index, is the property of whether the density is sharp or 
flat around its maximum, and its main use is in  discovering whether a density which 
appears to be normal (see 6.11.3) is, instead, leptokurtic or platykurtic; that is, more 
peaked or more flat than it should be around the maximum. The index given distinguishes 
between the three cases depending on whether it is =, >, <4 3.

Let us now go back to the case of dispersion and mention, in addition to the mean 
deviations (from m or any other value), the means of the differences, P[|X − Y|] or Pγ 
[|X − Y|], where X and Y are independent random quantities having the distribution 
under consideration. The mean difference,25 P[|X − Y|], is expressible (for distributions 
on the positive axis) in terms of the area of concentration (see 6.6.3, Figure 6.3); the 
quadratic mean difference, PQ[|X − Y|], does not give us anything new, it is clearly equal 
to √2σ (√(σ2 + σ2)). Other indices can be set up in terms of quantiles: the interquartile 
range and the intersecile range are, respectively, the differences between the quantiles 
with p 1

4 and p 1
3 , and with p 1

10  and p 9
10 ; the limits, p = 0 and p = 1, give the range 

of the distribution; sup − inf.
A somewhat different concept of dispersion lies behind the function l(p), (0 ⩽ p ⩽ 1) 

defined by l(p) = ‘the minimum length of a segment containing mass (probability) p’ = 
inf {λ supx[F(x + λ) − F(x)] ⩾ p}. Clearly, l(p) = 0 for p ⩽ ‘the maximum jump’ (the maxi-
mum probability concentrated at a point; in particular, if there are no concentrated 
masses then l(p) = 0 only when p = 0); l(p) is increasing, and tends to the range of the 
distribution as p → 1. If l′(0) = c > 0, the distribution has a bounded density, and its 
maximum is 1/c (and conversely).

23 More usually, powers are used: it seems preferable and more meaningful to take ratios of means of 
dimensionality 1 with respect to the variable.
24 Observe how this cancelling out depends on the particular choice of the index. In general, any index 
which translates an essentially qualitative property into a quantitative measure introduces a degree of 
arbitrariness. One should take account of this both by exercising caution in interpreting the conclusions, 
and also by avoiding abstract verbal discussions concerning the ‘preferability’ of various indices; this 
question should, if at all, be examined in relationship to the concrete needs of the problem.
25 In the case of the statistical distribution (with N individuals) one considers mean differences with and 
without repetition. The latter implies that one excludes X and Y referring to the same individual (excluding 
the fact that it can be drawn twice) and the index is then multiplied by N/(N − 1). In fact, the probability of a 
repeat drawing is 1/N; hence, we have ‘index with’ = (1 − 1/N). “index without” (1/N).0 (0 being the 
difference between X and Y when they coincide).
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6.7 Limits of Distributions

6.7.1. We have had occasion to note that certain properties and synthetic character-
istics of the distribution function are rather insensitive to ‘small changes in the form 
of the distribution’, while others are very sensitive. To make this more precise, we 
must first say what we mean by a ‘small change’; at the very least, this implies saying 
what we mean by a sequence of distributions, Fn(x), tending to a given distribution 
F(x) as n → ∞. Better still, when this is possible, it means defining a notion of 
 ‘distance’ between two distributions, allowing us to recast Fn → F in the form dist 
(Fn, F) → 0.

Fortunately, there is little doubt about what form of convergence is appropriate in the 
case of proper distributions (and we shall limit ourselves to this case). To say that Fn → F 
will always mean convergence of Fn(x) to F(x) at all continuity points of F (or, alterna-
tively, convergence of Fn(γ) to F(γ) for every bounded and continuous γ). An equivalent 
formulation is expressed by the condition:

given any ε > 0, the inequalities

 
F x F x F x xn     (6.4)

are satisfied for all n greater than some N.
A condition of this form makes it evident that the smallest value of e for which it holds 

can be defined as the distance, dist (Fn, F), between Fn and F (geometrically, this is the 
greatest distance between the curves y = Fn(x) and y = F(x) in the direction of the bisec-
tor y = −x). We shall not prove this; we merely observe that this corresponds to the idea 
that a given imprecision is tolerated not only in the ordinates (a small change in the 
mass, in the probability), but also in the abscissae (small changes in the position of the 
mass, even the concentrated mass).

It often happens that a sequence Fn does not tend to a particular distribution F, 
but only to a distribution of the same kind as F (as defined in 6.6.6). In other words, 
Fn(anx + bn) tends to F if we choose the constants an and bn in an appropriate manner. 
The most common case is that of the normalized distribution Fn([x − mn]/σn) (with an = 
1/σn and bn = −mn/σn), but this is not the only one, and is not always applicable, even 
when all the variances (of the Fn and of F) are finite and convergence to F occurs (by 
choosing the constants differently).26

6.7.2. We can straightaway make some important points.
Every distribution can be approximated to any desired degree by means of discrete 

distributions, or by means of absolutely continuous distributions.
It suffices to observe that this follows, for example, if we set

 F x n F x nn the largest multiple of which is less than ,1 1 2/ /  (6.5)

26 The masses which move away (as n increases) and which die away (as n → ∞) without changing the limit 
of the distributions may, for example, change the σn.

Example. Let Fn have masses 1
2 1 1( / )n  at ± 1 and masses 1

2 n at ± n; we have σn ~ √n → ∞; the normalized 
Fn would have two masses ~ 1

2
 at ± xn, xn ~ 1/√n → 0 (and two which become negligible) and would tend to a 

distribution concentrated at 0; the Fn (unnormalized) tend, on the other hand, to F, with masses 1
2  at ± 1.
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or, respectively,

 
F x F x u n un

0

1

/ d , (6.6)

from which it follows that

 f x F x n F x n F x nn n 1/  . (6.6′)

As a result :

A property which has been established only for discrete distributions (or only in 
the absolutely continuous case, or simply for cases with bounded density) holds for 
all distributions if that property is continuous (a property is continuous if it holds 
for F whenever it holds for the Fn such that Fn → F ).

It is easy to show that continuity usually holds for most of the properties that are 
required. It is much less long‐winded to write out the proof (even if it follows the same 
lines) in one or other of the special cases, whichever is convenient for our purpose.

It is useful to bear in mind that in order for a sequence Fn to be convergent (assuming 
that the Fn tend to a proper limit F ) it is necessary that the Fn be equally proper (in the 
sense that Fn(x) − Fn(−x) tends to 1 as x → ∞, uniformly with respect to n); and, 
 conversely, that this condition is sufficient to ensure the sequence Fn, or at least a subse-
quence, tends to a proper limit distribution. (Ascoli’s theorem).

6.8 Various Notions of Convergence for 
Random Quantities

6.8.1. In the most natural interpretation, the notion of convergence deals with sequences 
of random quantities. However, although for the sake of simplicity we shall deal with 
sequences X1, X2,…, Xn,… (n → ∞), nothing would be altered were we to deal with Xt 
with t → t0 (real parameter), or, similarly, with Xt associated with elements t of any space 
whatsoever (in which t → t0 makes sense). Instead of a sequence, we might be dealing 
with a series (but this amounts to the same thing when we consider the sequence of 
partial sums); instead of a random quantity, we might be dealing with random points in 
general (for example, ‘vectors’ or n‐tuples of random quantities), provided that in these 
spaces the concepts involved also make sense.

Here we are merely concerned with setting out the basic ideas, and noting, in particu-
lar, the numerous points at which the weak conception, to which we adhere, leads to 
formulations and conclusions different from those usually obtained as a result of 
 following the strong conception.27

27 It is not a question, of course, of declaring a preference for weak convergence or strong convergence 
(although the identity of the terminology does reflect a relationship between the concepts). In both the weak 
and strong formulations these and other notions of convergence exist, and each might present some 
difficulties of interpretation in one or the other formulation.
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6.8.2. In the first place, it is possible to have definite convergence, uniform or nonuni-
form, either with a definite limit or not; by definite we mean independent of the evalu-
ation of the probabilities; in other words, something that can be decided purely on the 
basis of what is known to be possible or impossible.

As an example of definite, uniform convergence to a definite limit, consider the total 
gain in a sequence of coin tosses (Heads and Tails). A ‘success’ is defined by the occur-
rence of a Head, or by 100 consecutive Tails following the last success; the gain is 1

2
n
 

for the nth success, and 0 for a failure. The total possible gain is 1, and it is certain that 
after at most 100n tosses the first n terms will have been summed.

Definite, uniform convergence, but to an uncertain (random) limit, occurs in 
a  sequence of coin tosses if the successive gains are 1

2
1
2

2 1
2

3 1
2, , , , ,

n
  

(+ for Heads, − for Tails); the remaining gain after n tosses is (in absolute value) cer-
tainly ⩽(½)n but the limit could be any number between −1 and +1.

In the following example, convergence is definite, non‐niform, and may be either to a 
definite or to an uncertain (random) limit. We have an urn containing 2N balls, a finite 
number, but for which no upper bound is known. There are N + X white balls and N − X 
black balls, where X = x may be known (certain; e.g. x = 0), or may be unknown (e.g. any 
number between ±100).

The balls are drawn without replacement, and the gains are ±1(+ for white, − for 
black). After all drawings, the gain will be 2X and will remain so thereafter (we assume, 
to avoid nuances of language, that when the urn is empty some other fictitious draw-
ings, all of gain 0, are made). The limit is 2X, either known or unknown, but objectively 
determined right from the very beginning.

So far, probabilities have not entered onto the scene (nor, therefore, have probabilistic 
kinds of properties, like stochastic independence). One might ask, however, whether 
knowing the limit X (as a certain value, x), or attributing to it some probability distribu-
tion F(x) (if it is uncertain), imposes some constraints on the evaluations of the proba-
bility distributions Fn(x) of the Xn (or conversely: it amounts to the same thing).28

In the case of uniform convergence the answer is yes: if we are to have |Xn – X| < εn 
with certainty, then Fn and F must be ‘close to each other’ in the sense that Fn(x – εn) 
< F(x) < Fn(x + εn) (and conversely: F(x – εn) < Fn(x) < F(x + εn)). In particular, if X = x0 
with certainty, we must have Fn(x0 – εn) = 0, Fn(x0 + εn) = 1. When we are dealing with 
non‐uniform convergence, this does not hold in general (unless we accept countable 
additivity). In the example of the urn, if 2N has an improper distribution (for example, 
equal probabilities (zero) for each N) then the probabilities of the behaviour of the gain 
in the first n tosses (however large n is) are the same as for the game of Heads and Tails 
(whether the difference between the number of white and black balls is known, e.g. = 0, 
or bounded, e.g. between ± 100 with certainty). Whatever happens, until the urn is 
emptied (and we know that there is no forewarning that this is about to happen) noth-
ing can be said about the limit (if it is not already known), and knowledge of this limit 
(if we have it) does not modify the Fn.

6.8.3. Notions of convergence in the probabilistic sense carry a meaning very different 
from just saying that (with greater or lesser probability) Xn → X (in the analytic sense of 

28 in general, one should consider the joint probability distribution for X1, X2,…, Xn, for every n; the 
mention of this fact will suffice here.
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being numbers),29 and from saying that Fn → F (this can be true for the distributions of 
Xn and X, without the latter having anything in common).30

We give straightaway the three most important types of convergence.

 ● Convergence in quadratic mean. Xn is said to converge to X in quadratic mean, and we 
write X X X Xn Q n , )(if P 0 as n → ∞ (or, equivalently, if P(Xn – X)2 → 0). This 
notion is the simplest, and the most useful in practice; it is related to what we have 
already said concerning second‐order previsions.

 ● Weak convergence (or convergence in probability). Xn is said to converge weakly to X, 
and we write X Xn , if, for any ε > 0,

 P X X nn 0 as . 

More explicitly (in order to make a more clear‐cut comparison with the case to be 
considered next) we can state it in the form: for any given ε > 0 and θ > 0, and for all n 
greater than some appropriately chosen N, all the probabilities P(|Xn − X| > ε) are <θ, 
or (alternatively) all probabilities P(|Xn − X| < ε) are >1 − θ.

 ● Strong convergence (or almost sure convergence).31 Xn is said to converge strongly to X, 
and we write X Xn , if for any ε > 0, θ > 0, and for all n greater than some appropri-
ately chosen N, we not only have all the probabilities P(|Xn − X| > ε) that each devia-
tion separately is greater than ε being < θ, but we also have the same holding for the 
probability of even a single one out of an arbitrarily large finite number of deviations 
from N onwards (n, n + 1, n + 2,…, n +k, …, n + K; n ⩾ N, K arbitrary) being > ε. 
Expressed mathematically,

 
P V V for ,

k

K

n k
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k

K

n kX X
0

1
 

(∏ = product (arith. = logical) of the events (|Xn+k − X| < ε).)
Put briefly: the probability of any of the deviations being greater than ε must be <θ; in 
other words, the probability that they are all less than ε must be > 1 − θ.

29 In connection with the terminological distinction between stochastic and random (Chapter 1, 1.10.2), 
we offer here a remark which seems to clarify the various considerations about the Xn (concerning their 
‘convergence’ in various senses), and at the same time to clarify the terminological question. The fact of the 
numbers Xn, when they are known, tending or not tending to a limit (in some sense or another; convergence 
pure and simple, Cesàro, Hölder, etc.) can either be certain (true or false with certainty), or uncertain, given 
the present state of information: the convergence is then said to be random.

Convergence in the probabilistic sense (either the variants we are going to consider, or others) is called 
stochastic convergence because it is not concerned with the values of the Xn, but with circumstances which 
relate to the evaluation of probabilities (concerning the Xn and possibly an X, which may or may not be their 
limit in some sense) made by someone in his present state of information. This is something relating not to 
the facts, but to an opinion about them based on a certain state of information.
30 A warning against confusing these two notions is necessary, not because in themselves they are open to 
confusion, but because of the dangers of using inappropriate terminology (such as ‘random variable’: see 
Chapter 1, 1.7.2 and 1.10.2).
31 A form of terminology which is inaccurate in the weak formulation; see the remark to follow and footnote 29.
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Remark. In the strong formulation the definition can be more simply stated by talking 
of ‘all the deviations from N on’, rather than of a finite number (K), however large. From 
a conceptual viewpoint, the question becomes a rather delicate one because an infinite 
number of events are involved. As usual, this modification is only admissible if counta-
ble additivity is assumed.

6.8.4. The Borel–Cantelli Lemmas. For a sequence of events Ei, it is required to 
provide bounds for the probabilities of having at least one success, or no successes, or 
at least h successes (that is, if Y denotes the number of successes, Y ⩾ 1, Y = 0, Y ⩾ h); 
all that can be assumed is knowledge of the pi = P(Ei). In the weak version, this will 
only make sense if we limit ourselves to finite subsets (with, of course, the  possibility 
of considering asymptotic results when these subsets cover the whole infinite range). 
In the strong version (as originally considered by Cantelli and Borel, and still stand-
ard) the asymptotic results should be interpreted as conclusions about the total num-
ber of  successes out of the infinite number of events which form the sequence.

For a finite number of events, with probabilities p1, p2,…, pn, if we put y Y piP( )  
prevision of the number of successes, we have (unconditionally) an upper bound on the 
probability of the number of successes:

 
P P PY E y Y h y hi� � � �1 event sum of the ., /

 

(In fact, hP(Y ⩾ h) = P[h(Y ⩾ h)] and h(Y ⩾ h), which is = 0 if 0 ⩽ Y<h and is = h if Y ⩾ h, 
is always ⩽ Y: ⊢h(Y ⩾ h) ⩽ Y)

We therefore have that if for the sequence Ei the sum of the pi converges, let us say 
∑pi = a < ∞, then y  ⩽ a for any finite subset, and the previous bounds are valid a fortiori 
(with a in place of y ). One can now say that for any ε > 0, and for h ⩾ a/ε, we have a 
probability <ε of obtaining more than h successes among the first K events of the 
sequence (it does not matter how large K is). In addition, if we only use the bound for h = 1, 
and we start with an n sufficiently large for the rest of the series to be <ε(∑i > npi < ε), we 
can say that the probability of finding even a single success out of K events (K arbitrarily 
large, but finite) from En on is always <ε.

In the strong version we have the following: if the series of probabilities converges, it is 
practically certain (the probability = 1) that the number of successes is finite.

This is the Cantelli lemma; the Borel lemma states the converse, but with the additional 
condition of stochastic independence.32 In the strong version, the divergence of ∑i pi 
implies that the number of successes is infinite; the weak version is much the same in 
this case, because Y, if not infinite, must be a completely improper random quantity 
(with distribution adherent to +∞).

The bound that is required can be established immediately using the elementary 
inequality ex ⩾ 1 + x; the probability of no successes in n independent events is

 

P Y p p p en
p p p

p p p

n

n
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1 2

 e e
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32 It is obvious that this would not hold without any extra condition: think of the case in which the Ei are all 
incompatible with some E having P(E) ⩾ a > 0, such that E implies no successes; i.e. Y = 0 (and, in particular 
Yn = 0 out of the first n of the Ei), so that P(Y = 0) and P(Yn = 0) are both ⩾ a > 0 (instead of = 0 and → 0, 
respectively). If, however, the series of the pi = P(Et) diverges, the Ei cannot then be independent (see the 
following inequality for P(Yn = 0)).
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stated explicitly,

 P PY Yy y0 1 1� � �e e ,,  

and, more generally, we have the similar result

 P Y h y y h yy h pi e e .1 11
2

2 / ! , max
 

If the series ∑i pi diverges, y , relative to the first K events, tends to + ∞ as K increases, 
and this is also true if we start from the nth event. The conclusion is that there is a prob-
ability → 1 of finding at least one success starting from any arbitrary n, and, hence, a 
number exceeding any bound. Alternatively, this can be established directly from the 
fact that P(Y ⩽ h) also tends to 0, for any h.

6.8.5. A corollary for strong convergence. In order that strong convergence holds, it is 
sufficient that the P(|Xn − X| > ε) constitute the terms of a convergent series33 (and do 
not merely tend to 0, as required for weak convergence). This condition is also neces-
sary if the |Xn − X| are stochastically independent (or if the events |Xn − X| > ε are). 
This  is seldom so in cases of interest but one can often obtain the negative result by 
finding a subsequence of terms, which are sufficiently far apart to be ‘practically inde-
pendent’, for which the series of probabilities diverges (when we consider something 
being  ‘sufficiently independent’, we are thinking of some condition or other to be trans-
lated into a rigorous form as appropriate for the case in question).

6.8.6. Relationships between the different types of convergence. Weak convergence is 
implied both by strong convergence (as is obvious from the definition) and by conver-
gence in quadratic mean (by virtue of Tchebychev’s inequality, Chapter  4, 4.17.7). 
Neither of the latter two implies the other.

In addition to convergence in quadratic mean (also known as convergence in 2nd‐order 
mean, or in mean‐square), one also considers, though less frequently, convergence in pth‐
order mean (where p is any positive number), defined by P(|Xn − X|p > ε) → 0; the condi-
tion becomes more restrictive as p increases, and always implies weak convergence.

Definite uniform convergence implies all the above.
Convergence of distributions is implied by weak convergence (and so, a fortiori, by all 

the others).
It is sufficient to note that if the random quantities X and Y are ‘sufficiently close to 

each other’ in the sense that P(|X − Y| > ε) < θ (for given ε, θ > 0), then their distributions 
F and G are ‘sufficiently close to one another’34 in the sense that (for all x) F(x − ε) – θ ⩽ 
G(x) ⩽ F(x + ε) + θ. In fact, in order that X ⩽ x − ε, it suffices that either Y ⩽ x or |X − Y| 
⩾ ε. Expressed mathematically,

33 A fortiori, it is sufficient that the series ∑P(Xn − X) converges.
34 It is clear that we could define a distance between random quantities conforming to this idea (completely 
analogous to what we did for distributions in 6.7.1): dist (X, Y) = ‘the minimum value that can be given to e 
and ε for which the given condition remains satisfied’. Note that there is a difficulty with regard to the 
dimensionality (θ is a probability, a pure number, and ε is in general a length): however (as in many such cases, 
for example the one given in 6.7.1, where this fact was disguised by denoting both θ and ε in the same way, 
by ε) this difficulty is irrelevant, because changes in ‘distance’ due to expressing ε in different units, does not 
alter the thing which interests us; that is, the topology based on ‘dist → 0’.
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taking probabilities, it follows that F(x − ε) ⩽ G(x) + P(|X − Y| ⩾ ε), and the final term 
is <θ, by assumption. This proves the first half of the inequality; the other half follows 
by symmetry.

In the case of weak convergence, however we take ε and θ, the inequalities hold for Xn 
and X from some n = N on, and hence Fn → F.

6.8.7. Mutual convergence (or Cauchy convergence). Suppose that for a given sequence 
Xn we know that Xn − Xm → 0 (in some sense) as m, n → ∞: what can be said about the 
convergence (in the same sense) of Xn to some random quantity X? If we adopt the strong 
formulation, we can say that such an X exists. For all the types of convergence that we 
have considered, ‘il n’y a pas lieu de distinguer la convergence mutuelle et la convergence 
vers une limite’ (to quote P. Lévy, Addition, p. 58, Th. 18) [‘It is not necessary to distin-
guish between mutual convergence and convergence to a limit’].

The answer is even more conclusively yes if we are dealing with a random quantity 
which is a measureable function X(ω) of the points of a space Ω (and, in this case, we 
should just mention that the various probabilistic notions, and in particular the notions 
of convergence, reduce to concepts in analysis – apart from changes in terminology: for 
example, convergence in probability instead of in measure; almost certain convergence 
instead of almost everywhere).

Without the assumption of countable additivity, and with no reference to a ‘space of 
points’ (see the quotations from von Neumann and Ulam, Chapter 2, 2.4.3), we might 
well say that an Xn for which, for example, P(Xn − Xm)2 < ε for all but a finite number of 
Xm, ‘represents the limit to within ε’. There is no possibility, however, of thinking 
of defining X by the given passage to the limit.

In order to be able to talk about X, it is necessary that it be a well‐defined quantity, 
independently of the incidental fact of whether it is known or not (and then, in this 
sense, a random quantity). There are various possibilities (which we distinguish for the 
purpose of giving examples, not because of fundamental differences): X could be ran-
dom on account of circumstances logically independent of the Xn (and therefore, in 
principle, capable of being measured or known through relevant procedures or infor-
mation); it could be definable as some function of a finite number of the Xn (as an 
example, to underline the absence of any restriction on the possibilities, rather than 
because it makes any sense, one could think of
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or anything else that comes to mind), and these also might depend on some further 
random factors (e.g. on a random quantity Y which may or may not have any connection 
with the problem); finally, it might depend on all the Xn (and possibly on other things as 
well; for instance a Y such as we just mentioned).

In particular, it could in this case be

 X
X values Xn nlim if the sequence of the of the turn out to be convergentt

otherwise0  
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(and, if one wished, convergence could be taken in the Cesàro sense, or some other). 
Here too, X is in fact a well‐defined quantity (although it can actually only be known 
after we know the values of all the Xn).

The sentence concerning convergence would only make sense, however, if for such 
an X, actually defined independently of the incidental circumstance of what is at present 
known or unknown, it were possible to show that, in the condition of ignorance deriving 
from these given circumstances, our present evaluation of probabilities for the Xn and X are 
such as to imply Xn → X in some probabilistic sense (quadratic mean, weak, strong, …). 
On the contrary, we know that this is not the case in general, not even when lim Xn = X, 
and still less can it be assumed for an undefinable X which has to appear, phantom‐like, 
from the Cauchy property, and then miraculously materialize.

However, mutual convergence (in the weak sense, and a fortiori in other, more restric-
tive, cases) does determine, if not a random quantity X, the limit distribution F. The 
discussion given above (at the end of 6.8.6) establishes, in fact, that the distributions Fn 
and Fm, of Xn and Xm, become arbitrarily ‘close’, and therefore close to one and the same 
well‐defined F, for n and m sufficiently large. In order to be able to state that there exists 
a limit distribution F such that Fn → F, it is sufficient, for example, to prove that 
P(Xn – Xm)2 → 0 as m and n tend to ∞.

6.8.8. Zero‐one law (Kolmogorov). We must at least give a mention of a phenomenon 
that was present in the Borel lemma, and is of a general character, constantly cropping 
up. In order to be brief (since we only want to deal with it in passing), we shall express 
ourselves in terms of the strong formulation.

Given an infinite number of independent events, Ei, the probability that only a finite 
number of them occur (Y < ∞) is always 1 if the sum of the probabilities converges, and 
is always 0 if the sum diverges; intermediate probabilities are not possible.

We shall not give a proof, but the main idea is contained in the following: suppose that 
an event A (such as Y < ∞ in the above) is independent of any property An which depends 
only on the first n trials (for example, whether Y is finite cannot be altered by consider-
ing a finite number of trials), but is defined, in the limit as n → ∞, by the An. Because of 
independence, P(AnA) = P(An)P(A); taking the limit An → A, we have

 P P P P PAA A A A A 2

 

which implies P(A) = [P(A)]2, and hence the only possible values are 0 and 1.

6.9 Distributions in Two (or More) Dimensions

6.9.1. Everything we have said in the one‐dimensional case extends straightforwardly to 
two dimensions (or more: in general, we shall present the extension for n = 2, and indi-
cate how to proceed to n = 3 etc.). The extension has to be considered now because, 
even if we only wished to deal with random quantities, as soon as we consider two of 
them we have to deal with the distribution of the pair (X, Y) as a random point in the 
plane (x, y). This will not, however, be the only kind of application.

A distribution (always to be interpreted as distribution function) over the (x, y)‐plane 
will always be defined by a joint distribution function.
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F(x, y) = ‘the mass contained in the quadrant SW of the point (x, у)’;35 the mass in the 
rectangle x′ ⩽ x ⩽ x″, у′ ⩽ у ⩽ y″ is then given by

 
F x y F x y F x y F x y, , , , ; (6.7)

see Figure  6.5: rectangle = whole quadrant − hatched quadrants + double‐hatched 
quadrant (since this was taken away twice). The relation can be interpreted as an opera-
tion involving masses, or probabilities, or, more basically, a linear combination of the 
four events ‘belonging to the various quadrants under consideration’.

It may be that the masses are concentrated at points, or distributed in an absolutely 
continuous manner; there are, however, a great variety of intermediate cases (think, for 
example, of a mass distributed continuously along a line!).

The density (if and when it exists) is given by

 
f x y F

x y
,

2
 (6.8)

(the limit of the probability given above, with x″ = x′ + h and y″ = y′ + k, divided by the 
area hk as h and k → 0).

We can define F(γ) for functions γ(x, y) of two variables, always in the Riemann–
Stieltjes sense (and, if γ is not integrable, we have F−(γ) < F+(γ); the probabilistic inter-
pretation is as the bound for P[γ(X, Y)], and, in particular, if F(γ) exists, as its evaluation: 
throughout, the boundedness conditions for the possible values are to be understood, 
or, if not, the choice of P̆ is understood etc.).

In particular, if γ(x, y) represents a set I (γ = 1 on I and γ = 0 outside), F(γ) = P(I).
Important examples. If Z = X + Y, the distribution function of Z is given by

 

P Z z F x y z
F

 
the half plane to the SW of the line xx y z

 (6.9)

35 Adopting the practical terminology favoured by economists, we label the 1st, 2nd, 3rd and 4th quadrants 
as NE, NW, SW and SE (and use these also in referring to directions etc.; the intuitive reference is to a map 
with N oriented upwards, as usual). Here we implicitly consider F as undefined where it is discontinuous, 
and so on. Let us simply remark that all the same conceptual details, which we have discussed at length in 
the one-dimensional case, can be filled in: we shall only do so when some new feature arises, which is 
something other than a more or less obvious extension of what has gone before.

–

– +

+

y

x
0

Figure 6.5 Quadrants of the 
(x, y)‐plane, in terms of which the 
joint distribution function F(x, y) is 
defined (SW quadrants), and a 
method of indicating the rectangles 
with their linear combinations (and, 
hence, their probabilities in terms of 
linear combinations of the values 
F(x, y) at the vertices).
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(in other words, ‘the mass contained there’). If Z = X Y, we have

 P Z z F xy z   (6.10)
= F (the region bounded36 by the hyperbola xy = z)

(in other words, ‘the mass contained there’). If Z = Y/X, we have:

 P Z z F y x z F y zx x y zx x� � � �/ 0 0  (6.11)

= F (the NW and SE corner regions between the y‐axis and the line y = zx)

(in other words, ‘the mass contained there’). If Z = √(X2 + Y2), we have

 

P Z z F x y z
F

 2 2 2

0the disc centred at with radius zz
 (6.12)

(in other words, ‘the mass contained there’).
And it would be easy to continue in this manner.

6.9.2. Let us now see how to obtain these results more explicitly. The standard 
method – integration, using Cartesian coordinates – requires us to make the inequality 
explicit in terms of one of the variables, y, say. In the examples given we have:

 

sum y z x
product y z x x y z x x
quotient

, ;
, / / ;
�
� �0 0

,, ;

,

y zx x y zx x

distance y z x

� �

�

0 0
2 2 .  

In these four cases, the integrals (always either ∫dF or ∫ƒ(x, у) dx dy) will be

 
d d ;x y

z x

 (6.9′)

 

0

0

d d d d ;x y x y
z x

z x

/

/

 (6.10′)

 

0

0

d d d d ;x y x y
zx

zx

 (6.11′)

 z

z

z x

z x

x yd d
2 2

2 2

. (6.12′)

In general, if Z = γ(X, Y) we have P(Z ⩽ z) = F(γ(x, y) ⩽ z) = Fγ(z) (say), and if the inequality 
can easily be made explicit with respect to y, obtaining, in the simplest case, y ⩽ g(x, z) 
(or, possibly, g1(x, z) ⩽ y ⩽ g2(x, z)), we

36 ‘Interior’ or ‘exterior’ region, according to whether z > 0 or < 0.
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shall have

 
F z x y

g x z

g x z

d d
,

,

1

2

.
 

Clearly, it may sometimes be more convenient to adopt other coordinate systems (e.g. 
polar coordinates), remembering, of course, to multiply by the Jacobian.

Let us indicate also how one obtains directly the density fγ(z) = dFγ(z)/dz (in those 
cases where everthing goes through smoothly). From the expression for Fγ(z), assuming 
that F(x, y) has a density ƒ (x, y), we obtain

 
F z

z
x f x y y

g x z

g x zd
d

d , d
,

,

1

2

 

 
d , the same thing forx f x g x z

z
g x z g, ,2 2 1 .

 

For the examples we have considered, this gives

 
sum g g z x f x f x z x xs: , ; ,1 2 d ; (6.9″)

 

product x g z x g x g
x g g z x g

: : , , ;
: , ,

0 1
0

1 1 2

1 2 2

/ /
/ 11

1

/

/ d ;

x

f z
x

x z x xp

;

,

 (6.10″)

 

quotient x x

f z x f x zx xq

: as above, with in place of /

, d ;

1
 

(6.11″)

 

distance g g z x

g g z x

: ;1 2
2 2

1 2
2 2z ;

 (6.12″)

 
f z z

z x
f x z x f x z x xd

z

z

2 2
2 2 2 2, , d .

 

The first example, the simplest, should be noted well, since the case of the sum is basic 
for most theoretical developments and applications.

We add one last example, where the answer comes out directly: for the maximum, 
Z = X ∨ Y, the distribution function is given by

 F z F z z Z z X Y z X z Y z, in fact,     ; (6.13)
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similarly, for the minimum, Z = X ∧ Y, the distribution function is given by

 F z F z F z F z z, , , . (6.14)

By means of F(γ), we can also, in this case, express various ‘synthetic characteristics’ 
of distributions of two variables. For example, for the moments we take γ(x, y) = xryr and 
obtain Mr,s = P(X rY r) = ∫ xrys dF = ∫ xrysf (x, y) dx dy. We have already seen the first‐ and 
second‐order moments with respect to the origin: P(X) and P(Y), the coordinates of the 
barycentres; P(X2), P(Y2) and P(XY), the second‐order terms (the moments with respect 
to the barycentres are

 P P P P P P PX X Y Y XY X Y2 2 2 2, and , 

the variances and the covariance). We already know that, in terms of second‐order prop-
erties, these moments completely characterize the distribution: in particular, we have 
seen that the cancelling out of the mixed barycentric moment (P(XY) − P(X)P(Y) = 0, 
that is P(XY) = P(X)P(Y), the property referred to as noncorrelation) is a necessary 
 condition for X and Y to be stochastically independent.

6.9.3. Stochastic independence of random quantities. The time has come for us to 
 consider the notion of stochastic independence in the context of random quantities 
(and, essentially, in the most general case, since the delicate issues have a unique char-
acter). Up until now, the concept has only been defined (in Chapter 4) for events (4.9.2) 
and for random quantities with only a finite number of possible values (4.10.1). The 
extension to the general case is essentially intuitive; we mentioned this (in 4.16.2), where 
we also pointed out that a detailed and critical approach was required.

The meaning of stochastic independence was: ‘that whatever one learns or assumes 
about X does not modify one’s opinion about Y’; put more ‘technically’, ‘every event 
concerning Y is stochastically independent of every event concerning X’.

Naturally, when it comes to considering n random quantities, these (like events) will 
not be called independent if the independence is merely pairwise, but only if each of 
them is independent of anything one knows or assumes concerning all the others simul-
taneously (that is, of each event concerning all these other random quantities).

Once again we are faced with the question: which events do we include in this defini-
tion? We might be tempted to say ‘all of them’ (and so refer ourselves to FC ; but we know 
that this is a rather unimaginable abstraction); we might say (along with the supporters 
of the ‘strong’ formulation) ‘all those of the Lebesgue field, or at least the Borel field’ 
(thus referring ourselves to FB ; but this runs counter to the objections we have made 
against countable additivity and the strong formulation); we might limit ourselves to the 
intervals (and things expressible in terms of them; this leaves us in the field FR). Note, 
however, that the question does not require a discussion and a decision as to which 
answer provides the correct definition: the best solution would probably be to consider 
all three definitions (or perhaps none of these), drawing a distinction between ‘com-
plete’, ‘strong’ and ‘weak’ independence. We shall limit ourselves, however, to the weak 
definition since it is the only one which does not make too unrealistic assumptions 
about our knowledge. In fact, it is the usual definition, apart from the fact that this 
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notion has a completed appearance when the unique extension to the Lebesgue field is 
assumed, along with non‐existence outside it.

The assumption that events of the form X ⩽ x are independent of those of the 
form Y ⩽ y (for any x and y) is sufficient to imply that F(x, y) = F1(x)F2(y), where F1(x) =  
F(x, +∞) and F2(y) = F(+∞, y) are the distribution functions of X and Y (with the usual 
qualification of indeterminacy at jump points). It follows immediately that there is also 
 independence for the intervals:

 

P[( ) ]x X x y Y y
F x F y F x F y

   

1 2 1 2 F x F y F x F y

F x F x F y
1 2 1 2

1 1 2. F y2 .  

This implies independence for step functions of the single variables x or y, and hence 
for continuous functions. We conclude that the condition defined by

 
F x y x y, products of functions involving only and only, (6.15)

is also equivalent to the following condition:
for any product of continuous functions, γ(x, y) = γ1(x)γ2(y), we have

 F F F1 2 , (6.15′)

in other words,

 P P1 2 1 2X Y X Y . (6.15″)

6.9.4. Observe, however, how far removed this condition is from the intuitive notion 
of stochastic independence. We can always assume that the possible points are those of 
the set of Ar,s, with coordinates xr,s = r + s√2, yr,s = r + s√3 (a countable set, since the 
points are defined in terms of two rationals r and s).

This set is, in fact, everywhere dense in the plane and can be the logical support of any 
distribution function; in particular, of a distribution which makes X and Y stochastically 
independent. But, on the other hand, to each possible value for X there corresponds a 
unique possible value for Y, and conversely (because, given x, there exists at most one pair 
of rational values r and s giving x = r + s√2; if there were another pair, so that x = r′ + s′√2, 
we would have √2 = (r − r′)/(s − s′), an absurdity).37 We can thus have logical dependence 
(even one‐to‐one and onto) at the same time as (distributional) stochastic independence. 
We must bear in mind just how unsatisfactory this definition is from a logical viewpoint, 
even if it seems difficult to improve on it within the ambit of realistic possibilities.

Remark. Observe that such ‘paradoxes’ can also occur in the discrete case, if the prob-
abilities are thought of not as being concentrated at the points (xh, yk), but as adherent 
to them (which is excluded, as in Chapter 4, 4.10.1, if we talk of a ‘finite number of 

37 From this it also follows that y = ƒ(x) is additive, where it is defined: f(x′ + x″) = ƒ(x′) + ƒ(x″) but not 
linear (for s = 0, ƒ(x) = x; for r = 0, ƒ(x) = √(3/2)x); and the graph of such a function is dense in the whole 
plane (see for example, B. de Finetti, Mathematica logico-intuitiva, No. 40, ‘Sulla propriété distributiva’, in 
particular, Figure 30, pp. 91–92 in the 3rd edn, Cremonese, Rome (1959)).



Theory of Probability: A Critical Introductory Treatment232

possible values’ – but this subtlety might be overlooked). Therefore, the decision (here 
in 6.9.3) ‘not to give a precise value to F at jump points’ is essential.

If a point (xh, yk) is not a possible point, but instead (or also) a limit point of a sequence 
of possible points, each having zero probability, but with positive total probability, a 
great number of different cases of distributional independence ( )p p phk h k  are possible 
but other kinds are not (not even logical independence).

6.9.5. On the other hand, we ought to point out that paradoxes (of nonconglomerability; 
see Chapter 4, 4.19.2) arise in connection with ‘stochastic independence’ without any 
need to look at pathological examples (or, as some would say, to make them up). The 
following is a well‐known example: if we choose a point ‘at random’ on the surface of a 
sphere, equal areas have equal probabilities; and if we happen to know which great 
 circle the point has landed on, then equal arcs will have equal probabilities; if, in addi-
tion, we have a system of geographical coordinates (latitude and longitude, say, as on the 
earth) these coordinates are independent.

In fact, distributional independence holds; the surface element whose latitude lies 
between ø and ø + dø, and whose longitude lies between λ and λ + dλ, has area cos ø dø 
dλ, and (apart from the normalization constant) this is also its probability. Longitude 
has a uniform distribution (1/(2π) between ±π), and latitude has a distribution whose 
density is given by ƒ(ø) = 1

2  cos ϕ (between ±π/2); the density for the area (in the λ, 
ø‐plane) is the product

 
1

2
1
2

1
4

. cos cos .
 

But then, because of the other assumptions, even if we know the longitude precisely – in 
other words, the meridian to which the point belongs – the probability distribution of 
the latitude should always have density 1

2  cos ø; on the other hand, since we are dealing 
with (half ) a great circle, the density should be uniform (=1/π).

The paradox is easily resolved if we argue in terms of ‘imprecision’. If, instead of think-
ing of the point lying exactly on that curve, one thinks in terms of the fact having been 
ascertained to within some margin of error, however small, one sees that the two 
answers are coherent. We give two different versions: if the imprecision concerns λ, 
then, instead of a meridian curve, we have a zone which narrows from the equator to the 
poles as cos ø; if, instead, we think in terms of having measured the distance from a 
plane passing through the centre of the earth (that is, the distance from the great circle) 
then (finding the distance to be 0) we have a zone of constant width.

It is easy to avoid paradoxes by avoiding any reference to limit‐cases, except when 
considering these explicitly as such (never speak of ‘the probability of something condi-
tional on X = x0’, but ‘conditional on X = x0 + ε’, perhaps giving the limit as ε → 0). Many 
authors (the first of them being, I think, Kolmogorov in 1933) explicitly state that the 
problem only makes sense under this restriction (since, otherwise, conditional probabil-
ity would formally be given by expressions of the form 0/0). From a theoretical point of 
view, viewed from the standpoint to which we adhere, such a conclusion seems rather 
drastic (although it avoids some difficulties, others take their place). Theoretically, it 
does not seem possible to avoid the necessary comparisons among the zero probabilities 
which would yield an actual probability for the ‘precise’ fact, rather than the zero prob-
ability usually attributed (see Chapter 4, 4.18); practically speaking, it is convenient to 
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attempt to use the Kolmogorov limit argument, by considering it in conjunction with 
what is empirically known about the imprecision (when actually present) and not merely 
as a convention or a dogma. We shall mention this again later (Chapter 12, 12.4.3).

6.9.6. Operations on stochastically independent random quantities: Convolutions. Let 
us now return to consideration of a random quantity Z = γ(X, Y), a function of two other 
random quantities (as in 6.9.2), in the rather special case where X and Y are stochasti-
cally independent. This implies that F(x, y) = F1(x)F2(y) and f(x, y) = f1(x)f2(y) (if these 
exist), and we have dF(x, y) = dF1(x) dF2(y) = f1(x) f2(y) dx dy.

The fundamental case, which we shall encounter and make use of over and over again, 
is that of the sum, Z = X + Y, for which F(z) and f (z) = F′(z) are given by

 

F z F x F y F z x F x

F z x

z x

d d d1 2 2 1

2 f x x1 d ,
 (6.16)

 
f z f x f z x x1 2 d , (6.17)

The rôles of F1 and F2 can, of course be interchanged (choose the simplest way!) and, 
as usual, we make the qualification that the expressions in terms of densities only hold 
when the latter exist.

The operations on the distributions which gives F in terms of F1 and F2, and f in terms 
of f1 and f2, are called convolutions. They are usually denoted by the symbols * and *, and 
we write F = F1 * F2, f = f1 * f2.

The operation can clearly be repeated to give the distribution of the sum of three 
independent random quantities (and so on for any finite sum). It follows from the defi-
nition that convolution is associative, commutative and even distributive. In the special 
case where all the summands are identically distributed (that is, have the same distribu-
tion function F), the convolution is denoted by F*n (and ƒ*n).

The following is a brief summary of the other cases we considered:

 

product F z F z x F x

f z
x

f x f z x x

: / , 

/

0
2 1

1 2
1

d

d ;;
 (6.18)

 

quotient F z F zx F x

f z x f x f zx x

: , 
0

2 1

1 2

d

d ;

38

 (6.19)

38 For the sake of brevity, the term 
0

 (anti-symmetric) is omitted; if X is not certainly positive, it must be 
included.
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distance F z F z x F z x F x

f z

z

z
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2 2

2
2 2

1d
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z z
z x

f x f z x

f z x x

2 2 1 2
2 2

2
2 2

[

]d ;

 (6.20)

 maximum F z F z F z f z F z f z F z f z: ,1 2 1 2 2 1 . (6.21)

6.9.7. Synthetic characteristics for sums of independent random quantities. Let Z be 
the sum of two or more independent random quantities; we shall include both Z = X + Y 
and Z = X1 + X2 + … + Xn in order to draw attention both to the notationally simplest 
case and to the general one.

We shall consider now some of the points that can be made concerning their  synthetic 
characteristics. We shall use the indices i = 1, 2,…, n for aspects concerning the 
 summands, and n | for what concerns the sum of n terms; when the summands are 
identically distributed, we shall drop the indices.

In the case of the prevision, m = P(X), we have additivity (in all circumstances); for the 
variance, σ2 = P(X − m)2, additivity holds when the summands are uncorrelated (and, 
a fortiori, when they are independent):

 
m m m m n mn n| .1 2  (6.22)

 n n nn n| |;2
1
2

2
2 2 2 . (6.23)

For the third‐order moments, we have

 
P P P P P PZ X Y X X Y XY Y3 3 3 2 2 33 3 ,

 
and, in the case of independence,

 P P P P P P PZ X X Y X Y Y3 3 2 2 33 3 . 

For Z = ∑Xi, with the summands independently and identically distributed, if we 
denote by

 M m X M m X M X1 2
2 2 2

3
3P P P, ,  

the moments (of 1st, 2nd and 3rd orders, respectively) of the summands, and by ( ) |M n3  
that of the sum, we have similarly

 
M X X X nM n n M M n n n Mn

i jh
i j h3 3 1 2 1

33 1 1 2| P . (6.24)

On the basis of this formula, the reader can see how things proceed in the general 
case by noting the following simple points (and these will not apply only to M3, with 
summands not identically distributed, but to moments of any order, whether the sum-
mands are identically distributed or not):
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the 3rd power (or the general rth power) of a sum of n terms is the sum of the n3 (or nr) 
products (including repetitions) of the summands three at a time (or r at a time);

the prevision of each product is (M3) if it contains precisely the same factor Xi three times; 
(M2)i(M1)j if the product is XiXiXj; (M1)i(M1)j(M1)k if the product is XiXjXk (with distinct 
factors); for r summands, things become more complicated, but the idea is the same;

in the case of identically distributed summands, it is sufficient to suppress the indices i, 
j and k, and count up the number of the three kinds of term M M M M3 2 1 1

3, ,  (and there 
are n choices for i; 3n(n − 1) ways of putting a j in one of the three positions and an i ≠ j 
in the remaining two; n(n − 1)(n − 2) ways of arranging the n elements three at a 
time); for a general r, we have products of the form 1 2

a b m
nM M M , with a + 2b + 3c + 

… + mn = n, if the product contains a single factors, b which appear twice, c which 
appear three times,…, and m (either 0 or 1) n‐tuples.

As far as the extreme values, inf Z and sup Z, are concerned, in the case of independ-
ence we can definitely say that inf Z = Σinf Xi and sup Z = Σsup Xi (in general one can 
only note the obvious inequalities, ⩾ and ⩽, respectively).

6.9.8. One obvious additional result is that for the sum of independent random quan-
tities (i.e. the convolution of distributions) the range of variation of the distribution 
must increase: if F = F1 * F2,
 sup sup ;F F F Finf inf1 1

 

(with equality only in the trivial case of F2 concentrated at a single point).
The same conclusion holds, however, in a much more general context: the dispersion 

l(p) must also increase (for all 0 < p ⩽ 1; the above corresponds to the extreme case p = 1). 
Suppose that in the distribution F there is an interval of length l enclosing a mass ⩾p; let 
the interval be a, a + l: if we assume that in F1 every interval of length l contains a mass <p 
(see 6.6.6) we are led to the following absurd conclusion:

 

p F a l F a

F a l x F a x F x p F x



1 1 2 2d d pp.
 

It follows, as an important corollary, that, for the convolution, ‘regularity’ must 
increase: the resulting distribution enjoys all those regularity properties enjoyed by at 
least one of the component distributions. For example: the property of not having any 
masses greater than some given p; the property of continuity; or of being absolutely 
continuous; or of having a density never greater than some given bound; properties of 
existence or bounds for successive derivatives; or the property of being analytic.

It can easily be seen, for instance, that the mathematics used in 6.7.2 to construct a 
continuous distribution ‘close’ to some given one, was essentially an application of the 
following: given any random quantity, in order to obtain a distribution with density 
⩽1/ε, it is sufficient to add to it a random quantity with a uniform distribution in the 
interval [0, ε] (for example, a ‘rounding error’). An ‘accidental’ error with a normal 
 distribution – which we shall meet soon – is sufficient to make the distribution analytic.

In addition to the moments, γ = r, which we have already considered, there is another 
class of previsions F(γ) of great importance: that of the exponential functions γ = a. 
The basic property of these functions yields, for Z = X + Y (or Z = ΣXi),
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 a a a a a a a az X Y X Y Z X X X Xi i n, 1 2 , 
so that, in the case of independence,

 P P P P P P Pa a a a a a aZ X Y Z X X Xn, 1 2 . (6.25)

We shall see shortly how this property can be exploited.

6.10 The Method of Characteristic Functions

6.10.1. The synthetic characteristics provide partial information of varying usefulness 
and interest; we have examined some of the most important kinds. One could ask, 
 however, whether it is possible for a sufficiently rich set of ‘synthetic characteristics’ to 
be sufficient to completely characterize a distribution?

In terms of the F(γ), the answer (in a general form) has already been given (in 6.4.4), 
since, in order to determine F(γ), we said that it was sufficient to know F(γ) for all 
 continuous γ (it is also sufficient to know it for a subset which permits approximation 
to any desired degree of accuracy from above and below). It is known that in certain 
cases (for example, for bounded distributions) this can even be obtained by means of 
polynomials, and hence knowledge of (all) the moments, F(r), r = 1, 2, …, n, …, turns 
out to be sufficient (and, in fact, the researches of Tchebychev and others have dealt 
with this topic; Castelnuovo’s treatise gives a masterly account of the research in this 
field). On the other hand, this method of moments also appears in the approach that 
we shall adopt.

This is the approach based on the property of the exponential function that we noted 
above. It consists in considering the prevision for the exponential function as the base 
varies in an appropriately chosen set (the reals, or, better still, complex values with abso-
lute value =1). The method is called that of generating functions, or characteristic  functions 
(according to the variant adopted). In order to avoid using more than one term (which is 
often misleading, since it prevents one seeing the essential identity of things expressed in 
slightly different forms) we shall always use the name ‘characteristic function’.

This powerful technique has a rather curious history:39 it has entered into consistent 
and systematic usage only recently (especially following the brilliant applications of it 
made by P. Lévy in about 1925), after having been discovered, applied, abandoned and 
then rediscovered in a variety of applications and circumstances (from De Moivre to 
Lagrange, from Laplace to Poisson).

6.10.2. In the simplest case (the original application of De Moivre), the method 
 consists in noting that if X is a random integer, and t any real (or complex), then P(tX) = 
∑h phth is a polynomial in which the coefficient of th is the probability of obtaining the 
value X = h (h an integer, often – but not necessarily – positive). One also notes – and 
this is the fundamental property that we mentioned – that if X and Y are stochastically 
independent random quantities, so are tX and tY, and hence

39 A clear, concise and essentially complete account can be found in H.L. Seal, ‘The historical development 
of the use of generating functions in probability theory’, Bull. Ass. Actuaires Suisses, 49 (1949), 209–228.
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 P P P Pt t t t tX Y X Y X Y . (6.26)

If P(tX) = ∑h phth and P(tY) = ∑k qktk, and we take the product

 hk
h k

h k

i

i

h
h i hp q t t p q , (6.27)

we have an ‘automatic’ way of computing the probabilities

 r X Y i p qi
h

h i hP ; (6.28)

that is, of obtaining the distribution of the sum, Z = X + Y.
This fundamental property (that is, that the product P(tX)P(tY)) corresponds to the 

sum (X + Y) clearly holds even if X and Y are not integer, so long as tX and tY continue to 
make sense. In order that this be so, one could limit oneself to t on the positive real axis, 
or, alternatively, write t = ez, with the convention that in place of tX = (ez)X one considers 
ezX(= e(zX)), which always makes sense.40

Instead of P(tX) we therefore consider P(ezX) (which is equivalent when t is real and 
positive and z is real, and more general in that it allows the removal of these restric-
tions). If X has an unbounded distribution, P(ezX) could diverge; this could never  happen 
if z were purely imaginary (since then |ezX| = 1). In order to map the imaginary axis 
(which has this nice property we have just mentioned) onto the real axis (which is more 
convenient as the standard support for representing functions of a real variable) we set 
z = iu, and then t = ez = eiu; in this way P(eiuX) becomes a function of u, which is certainly 
defined for all u on the real axis (where, however, it will in general assume complex 
values), and possibly outside it as well.

But, in the general case, will knowledge of P(eiuX) be sufficient to determine the 
 probability distribution? We shall see that the answer to this is yes. The answer is uncon-
ditional if we know P(eiuX) for all real u (or if we know P(ezX) for all purely imaginary z); 
under suitable conditions, it also holds for P(tX) and P(ezX) and for t > 0 and z real.

This justifies the name characteristic function given to

 u uXP ei  (6.29)

(and sometimes also to P(ezX)); and the name generating function given to g(t) = P(tX). 
We shall always use ϕ(и) = P(eiuX), permitting ourselves to write (when X is an integer, 
and it is convenient to do so) ϕ(и) = (an expression in t) implying that t ≡ eiu (and we 
shall not speak of generating functions: one of the two terms is superfluous).

In the case of discrete distributions (masses ph at the points xh) or of distributions 
admitting a density function f(x), the characteristic function can be expressed in the form

 
u p

h
h

uxhei  (6.30′)

or

 u f x xuxe d ,i  (6.30″)

40 To the infinity of values z = z0 + 2kiπ, having values ez which coincide for a given t, there correspond 
different values for the nonexistent ‘tx’, i.e. e i( )z k x0 2 .
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respectively: in the general case, we have (using the Riemann–Stieltjes integral)

 
u F x F eux ue d .i i   (6.30)

Of course, if one prefers to avoid the imaginary number under the prevision and inte-
gral signs, or if one wishes rather to give the real and imaginary parts separately, it suf-
fices to recall that eix = cos x + i sin x and to write

 u uX uX ux F x ux F xP Pcos sin cos sini d i d . (6.29′)

6.10.3. There is a one‐to‐one, onto and continuous correspondence between charac-
teristic functions ϕ(и) and proper distributions F(x). The inverse relation (in the sim-
plest case, where

 
u ud

 

and ƒ(x) is then continuous and bounded) is given by

 
f x u uux1

2

*
e di 41 (6.31)

and has a symmetric relationship with equation 6.30″; this remarkable fact will be 
important in applications. By continuity we mean that the convergence of ϕп(и) → ϕ(и), 
uniformly in any bounded interval, is equivalent to the convergence of Fn(x) → F(x) for all 
x (except for the discontinuity points of F).

The fundamental property that we began with states that: to the convolution of distri-
butions, F = F1 * F2 (or of densities f = f1 * f2) there corresponds the product, ϕ = ϕ1ϕ2, of 
characteristic functions.

Moreover, to any linear combination, F c Fh hh
, there corresponds the same linear 

combination, ch hh . These properties in themselves are sufficient to solve many 
problems; they are also useful for deriving new distributions and for modifying distri-
butions in order to make formulae like equation 6.31 applicable (by means of approxi-
mations) in cases where they are not directly applicable.

It is useful to bear in mind the following properties (for proofs and details see, for 
example, Feller, II, pp. 472 ff.): ϕ(и) is continuous; ϕ(0) = 1 and |ϕ(и)| ⩽ 1; the real part 
of ϕ(и) is even and the imaginary part odd; ϕ(и) is real if and only if the distribution is 
symmetric; changing X into aX, changes F(x) into F(x/a), and ϕ(и) into ϕ(aи).

For the moments P(Xh) = Mh (where P = P̆!) which exist, the following expansion 
is valid

 u uM u M u M u M hh
h1 2 31

2
2

3
3i i i/ ! / ! / !  

41 The asterisk at the upper limit of the integral sign means that the principal value (in the Cauchy sense) is 
to be understood: i.e. lim as .

a

a
a  

Formula 6.31 is the classical Fourier inversion theorem.
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(and corresponds, formally, to P P( ( / ! ))e iiuX uX u X1 22 2 ). If all the moments 
exist, the series has a nonzero radius of convergence ρ, and ϕ(и), and therefore the 
 distribution is completely determined by the sequence of moments.42

These and other properties reveal a relationship to be borne in mind in the following 
qualitative sense: the smaller the ‘tails’ of the distribution at infinity (i.e. the faster F(x) tends 
to 0 or 1), the more regular the behaviour of ϕ(и) near the origin; the smoother (in terms of 
differentiability etc.) the distribution is, the more regular is the behaviour of ϕ(и) at infinity.

6.10.4. Geometrical representation of the mathematical nature of the problems. We 
note that the functions of u, z and t that we have been considering are the transforma-
tions of the distribution function known in analysis as the Fourier, Laplace and Mellin 
transforms, respectively. As we have already indicated (but reiterate for the sake of any-
one who has come across these transforms separately and has not noticed the fact), we 
are always dealing with precisely the same transform, apart from a change of variable. 
Figure 6.6 indicates, schematically, the planes of the (complex) variables u, z = iu and 
t = ez; the line on which the function is always defined is marked in heavily (the real axis 
in the case of u, the imaginary axis for z, and the unit circle for t), and the striped region 
indicates where it is defined in the analytic case:

 I Ru z t t t, || 43
 

(where 0 0 1     , ; t te e ).

42 Since 1/ρ = lim sup ( / )
n

ne n M , a necessary and sufficient condition for the function to be analytic is 
that 

n
nM , the mean of order n, does not increase faster than n (i.e. remains ⩽ Kn with K finite). The 

necessary and sufficient condition for the distribution to be determined by the moments is that the sum of 
the reciprocals, 1/

n
nM , diverges (Carleman). This is a little less restrictive than the above, which implies 

that the sum of the reciprocals, ⩾ 1/Kп = K-1(1/n), diverges almost as rapidly as the harmonic series.
43 The annulus of convergence for the Laurent series (Figure 6.6a); the strips for the Dirichlet series 
(Figure 6.6b and, changing axes, Figure 6.6c). R and I denote the real and imaginary parts.

0

(a) (b) (c)
zt u

0 01

Figure 6.6 The planes of the three variables t, z and u, in terms of which the characteristic function 
can be expressed, together with the lines or regions where it is defined. Usually we operate in terms of 
u (the Fourier transform); z = iu and t = ez = eiu are occasionally to be preferred (the Laplace and Mellin 
transforms, respectively).
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We have so far seen illustrations of the complex planes of the three variables (t, z, u). 
In order to ‘visualize’ the meaning and the properties of the characteristic function ϕ(и) 
(for и real) in the complex plane of w = ϕ(и), we draw it (Figure 6.7) indicating the unit 
circle, |w| = 1, and the tangent at the point w = 1 (the straight line R(w) = 1). This point 
is denoted by 0x, because it is the origin of the x coordinate, thought of both as the 
abscissa on this tangent line and as parameter (angle or arc length) on the circumfer-
ence. In order to avoid confusion, the origin w = 0 has been denoted by 0w.

If we think of the distribution of X as located on the x‐axis, then eiX has the same 
distribution ‘wrapped around the unit circle’, and similarly for uX and eiuX (with only a 
modification of scale from 1 to и, reflected if и is negative). The characteristic function 
ϕ(и) = P(eiuX) is the barycentre (necessarily inside the circle, unless the distribution is 
concentrated at a single point), and it follows therefore that |ϕ(и)| ⩽ 1. If и = 0, we 
always have, of course, ϕ(и) = 1; in general, however, we have |ϕ(и)| < 1, the only other 
exceptional cases being the following. Firstly, a trivial case consisting of a single mass 
concentrated at x = a; in this case we always have ϕ(и) = eiua, and, hence, |ϕ(и)| = 1. The 
second exception is that of a distribution concentrated at the points of an arithmetic 
progression, x = c ± 2kπ/u0; clearly |ϕ(и0)| = 1, and the same will hold for all multi-
ples of u0.

If we think in terms of the graph of w = ϕ(и), many properties (those we have already 
mentioned and others) become obvious. As an example, the change from X to −X 
implies that the distribution (on the line, or wrapped around the circle) is reflected in 
the real axis; the same is also true for the barycentre, so that the characteristic function 
of −X is the conjugate of the ϕ(и) corresponding to X; ϕ(−и) = ϕ*(и). An important 
corollary follows: given any ϕ(и), we can obtain a symmetric characteristic function, 
|ϕ(и)|2 = ϕ(и)ϕ*(и). The corresponding distribution is called the symmetrized44 version 
of the F(x) we started with, and is obtained from the convolution of F(x) and 1 − F(−x); 

44 Another form of symmetric distribution is obtained by taking the average of the given distribution F(x) 
and its reflection 1 − F(−x); this gives a distribution function 1

2 [1 + F(x) − F(−x)] with characteristic function 
1
2

[ϕ(u) + ϕ(− u)]. It is the distribution we obtain when we toss a coin before deciding whether to take +|X| 
or −|X|.

w

x

Ox

Ow

φ(u)

W

W

Figure 6.7 The plane of w = ϕ(и), and the 
interpretation of ϕ(и) as the barycentre of the 
distribution ‘wrapped around the circumference 
|w| = 1’.
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it is the distribution of the difference X1 − X2, where X1 and X2 are independent, both 
with distribution F(x).45

For и purely imaginary (and we shall write и = iv, with real v, so that v = iи = z), we 
have, separating the contribution of the probability distribution on the negative  semi‐
axis from that on the positive axis, and from that concentrated at the origin, if any 
(p0 = F(+0) − F(−0)),

 
i e d e d e d .v F x F x F x pvx vx vx

0

0
0  (6.32)

The contribution in [−∞, 0] is clearly finite for v ⩾ 0, and possibly for negative v between 
0 and some −α′ (everywhere if α′ = ∞); by symmetry, the contribution in [0, ∞] is finite 
for v ⩽ 0, and possibly for positive v between 0 and some α″ (everywhere if α″ = ∞). If it 
exists in the interval [−α′, α″] of the imaginary axis, ϕ is positive, real and concave 
(upwards), like each of the evx of which it is a mixture. The meaning of the bounds, −α′ 
and α″, and some other aspects, becomes clear if we introduce the notion of twinned46 
distributions, a notion which is of interest in its own right.

The twins of F(x) (and the relationship is mutual) are defined to be those Fv(x) 
for which

 d e d with i ;F x K F x K vv
vx , /1  (6.33)

this defines distributions whenever ϕ(−iv) makes sense.
When the densities exist, we have

 f x K f xv
vxe , (6.34)

and the meaning may be clearer (because the notation is more familiar). We see imme-
diately that the characteristic function of Fv(x) is given by ϕv(и) = Kϕ(и + iv) (where ϕ = ϕ0 
is the characteristic function of F(x)), and it follows that ϕ(и) is defined throughout the 
strip −α′ < I (u) < α″ (in other words, there is no further restriction due to singularities 
outside the imaginary axis for и; in particular, if α′ and α″ are both positive, ϕ(и) is 
analytic, and the minimum of the two bounds is the radius of convergence).

Expressed in a nonmathematical way, the conclusion is that ϕ(iv) exists (and hence 
so does ϕ(и) over the entire line I (u) = v) if the twin distribution Fv(x) exists, and 
that this happens if the tail of F(x) on the positive semi‐axis (for positive v; conversely 
for negative v) is thinner than the tail of the exponential distribution ƒ(x) = Ke−vx; α′ 
and α″ are zero, infinite or finite, depending on whether the tail (on the left or on the 
right) is fatter or thinner than every exponential, or comparable with an exponential, 
respectively.

45 Symmetrized distributions are also considered in the statistical context. The prevision of X1 − X2 is zero, 
but the quadratic prevision and that of |X1 − X2| constitute ‘indices of variability’ (the first one is clearly 
simply σ(X) multiplied by √2); P(|X1 − X2|) turns out to be the concentration ratio multiplied by 2P(X), 
which, for a given P(X), is the maximum possible value: see 6.6.3.
46 The term conjugate (see Keilson, 1965) is used in other contexts (see, for example Chapter 12, 12.4.2). 
I therefore suggest the term given in the text. Feller (II, p. 410) refers to the property in question as the 
translation principle (but, as far as I know, does not give a name to such distributions).
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6.11 Some Examples of Characteristic Functions

6.11.1. This is a convenient point at which to note and calculate explicitly the characteristic 
functions of some common distributions. In part, these will be cases of importance for 
applications; in part, they will be examples whose main purpose is to show how one can 
often avoid direct calculation with shrewd use of the properties of characteristic functions, 
keeping an eye on their interpretations. Until we actually illustrate these ideas with refer-
ence to the applications, the sense of this must inevitably remain somewhat unclear, but 
just a brief mention of the nature of the applications will suffice to give the basic idea.

6.11.2. In the case of an event E (with probability p = P(E)), or for a bet s(E − p*) on E 
(with gain s if E occurs, loss p*s if it does not  –  the bet is fair if p* = p), we have, 
respectively,

 ( ) ( ) ( ),u p p puE u u uP e e e ei i i i


0 1 1 1  (6.35)

 

( ) ( ) ( ) [ ( )]
(

( *) * *u pus E p usp usE usp usP Pe e e e ei i i i i1 1
1 p pusp us p) * ( *)e ei i 1

 (6.36)

(here, and elsewhere, it is sufficient to apply the property relating to additive and multi-
plicative constants: P P( () )( )e e ei i iu cX k uk cuX , in other words, change ϕ(и) into eiukϕ(cи)).

In the particular case where s = 2, p = p* = 1
2 , we have a fair bet at the game of Heads 

and Tails with gains ±1: the above reduces to

 
u uu u1

2
e e ,i i cos  (6.37)

whereas

 
P e e .i iuE u1

2
1  (6.37′)

In the case of n independent tosses, the gain 2Y − n, and the number of successes Y = 
E1+ E2 + … + En, have characteristic functions

 u uncos , (6.38)

and

 
u u

n1
2

1 e ,i  (6.38′)

respectively (the sum of independent random quantities = convolution = product of char-
acteristic functions; in particular, this becomes a power if the distributions are identical).

Similarly, if p is now taken to be general (and we continue to assume stochastic inde-
pendence), the number of successes, Y has the characteristic function

 
u p u n

1 1e .i  (6.38″)

This is the so‐called Bernoulli distribution: the limit‐case, obtained by letting n tend to 
∞ with the prevision np = a held constant, is called the Poisson distribution. This gives 
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ph = e–aah/h!, and hence its characteristic function is given by

 
u a

n
u

n
a u

lim 1 1 1e e .i ei

 (6.39)

In all cases where the possible values are non‐negative integers (like the above, relat-
ing to Y, ‘the number of successes’) the characteristic function is a polynomial (or a 
power series) in t = eiu with coefficients ph = P(Y = h):

 
u p t p

h
h

h

h
h

uhe .i

 

Knowing this, we could have obtained equations 6.38′, 6.38″ and 6.39 directly from the 
knowledge of the ph; conversely, to find the latter from the characteristic function we 
expand in powers of eiu.

Let us have another look at three distributions of this type (having integer values); we 
consider the uniform, geometric and logarithmic.

For the uniform distribution (ph = 1/n; 1 ⩽ h ⩽ n) one has

 

u n
n

n

h

n
uh

u n u
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un
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1
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e
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e .
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sin

sin

 (6.40)

For the geometric distribution (ph = Kqh, 0 < q < 1, K = 1 − q; 0 ⩽ h < ∞) one has

 
u q q K q q q

h

h uh u u1 1 1 1
0

e e e .i i i/ /  (6.41)

For the logarithmic distribution (ph = Kqh/h, 0 < q < 1, K = −log(1 − q); 1 ⩽ h < ∞) 
one has

 
u K q h K q q q

h

h uh u u

1
1 1 1e e e .i i i/ log log / log  (6.42)

6.11.3. Let us now turn our attention to some continuous distributions: we shall 
 present the density functions f(x) and the characteristic functions ϕ(и), always expressed 
in the most convenient standard form (since any transformation from X to cX + k can 
be easily dealt with).

The normal distribution (sometimes known as the ‘error’ distribution) will be well 
known to everyone, although we have not yet dealt with it explicitly. We shall give a 
more extensive treatment in Chapter 7 (Section 7.6).

The standardized, or normalized, distribution, with prevision = 0 and variance = 1, 
has density and characteristic function given by47

47 That this is the value of the normalization constant is well known from analysis. We shall, in any case, 
prove this (Chapter 7, 7.6.7) at a more appropriate and meaningful time.
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f x K K

x
e ,

1
2

2 1
2

 (6.43)

 u
u

e .
1
2

2

 (6.44)

Direct calculation is straightforward (if we operate in the complex field, using the sub-
stitution у = x − iu; a little less straightforward if we proceed differently, or if we do not 
assume the form we want).

A convolution of normal distributions is also a normal distribution (in other words, 
the sum of independent random quantities having normal distributions also has a nor-
mal distribution). We express this fact by saying that the normal distribution is stable. 

In fact, one has e e e
1
2

1
2

1
2

2 2 2au bu cu
; in other words.

 au bu cu c a b, where .2 2  (6.45)

The scale parameters (a, b, c) are, in fact, the standard deviations, so it follows that the 
composition should take place according to Pythagoras’ theorem (as is always the case 
for a finite sum). Observe also that

 
n u n u.  (6.46)

and that

 
t u t u.  (6.46′)

for any positive real t (and not only for integer n). The fact that ϕt(и) is always a charac-
teristic function means that the distribution is infinitely divisible (e.g. into (ϕ1/п(и))п). 
We have already encountered another example of an infinitely divisible distribution 
(although we did not point it out at the time), the Poisson, whose characteristic function 
(equation 6.39), contains an arbitrary constant as exponent (in equation 6.39 it was 
denoted by a). We shall soon come across other examples; the general form of infinitely 
divisible distributions, and the subclass of the stable distributions, will be given in 
Chapter 8, along with some of the important properties.

The uniform distribution (taken over [−1, +1]) has

 
f x x1

2
1 , (6.47)

 
u

u

u

sin
. (6.48)

The calculation is straightforward (it can also be obtained from the discrete case, equa-
tion 6.40), by letting n → ∞ with nu = constant, along with obvious changes of origin 
and scale).

For the sum of two (independent) random quantities having this distribution we obtain

 
f x x x1

2
1 1

2
2 , (6.49)
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u u usin /

2 2 ; (6.50)

which is called the ‘triangular distribution’, on account of the form of the graph of the 
density function (this could be deduced from the definition without any need for calcu-
lations: it is the orthogonal projection onto the diagonal of a square of a mass uniformly 
distributed on it; Figure 6.8).

The characteristic function is positive: it follows immediately, therefore, that, 
 conversely, there is a distribution (on −∞ ⩽ x ⩽ +∞) with density and characteristic 
function given by

 
f x

x

x
1

2

2

sin
, (6.51)

 
u u u1 1

2
2 . (6.52)

This distribution is not, in itself, very interesting. It is, however, of great importance in 
that one can immediately deduce from it conclusions of some generality. By means of 
mixtures of triangular distributions (on different ranges) we can obtain any distribution 
whose density has a polygonal graph (symmetric with respect to the origin, decreasing 
and concave upwards on either side of the origin). In the limit, we can obtain any curve 
with these kind of properties. By inversion, any function having such behaviour is a 
characteristic function: this is Pólya’s criterion. The fact that in this way we can obtain 
characteristic functions which are zero outside a finite interval is also of some impor-
tance (Figure 6.9).

In a similar way, we obtain ϕ(и) = (sin u)n/un as the characteristic function of the sum 
of n independent random quantities which are uniformly distributed in [−1, +1]; this 
corresponds to the density of the projection onto the diagonal of an n‐dimensional cube 
of a mass uniformly distributed on it, and is represented by polynomials of degree n − 1 
which vary on each of the n intervals of length 2 into which the interval [−n, + n] is 
divided by the projections of the vertices of the cube. Think of the ordinary cube, n = 3 
(the areas of the sections are first triangular, then hexagonal, then triangular again). 

x+y

x+y=2

x

x+y=–2

y

√2

1

1

–1

–1

x

y+dy
y

0

dxdy

x+dx

Figure 6.8 The convolution of uniform 
distribution.
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The inversion (as for n = 2) can be made for any even n (since then the characteristic 
function has to be positive).

For the exponential distribution,

 f x xxe 0  (6.53)

and

 u u1 1/ i ; (6.54)

this is a special case (t = 1) of the gamma distribution, defined by

 

f x Kx x K t

t x x t

t x

t x

1

0

1
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1

e with

e d f

 / ,

! oorinteger ,t t, 0
 (6.55)

 u u t1 1/ i . (6.56)

The fact that t appears as an exponent in ϕ(u) (or, more precisely, in ϕt(и)) implies that 
these distributions have the property of being infinitely divisible.

By symmetrization of the gamma distribution, we obtain distributions whose charac-
teristic functions are given by

 
u u u ut t t

1 1 1 1 1 1 2/ / * /i i  (6.57)

(and these are also infinitely divisible). In particular, for t = 1, we have the two‐sided 
exponential distribution, with

 
f x x1

2
e , (6.58)

 u u1 1 2/ . (6.59)

0
u

ϕ(u) Figure 6.9 Characteristic functions 
constructed on the basis of Pólya’s argument.
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By inversion, we obtain

 
f x x1 1 2/ , (6.60)

 u ue ; (6.61)

the Cauchy distribution. This is infinitely divisible (for t > 0, (e−|u|)t = e−|tu| is the char-
acteristic function of f(x) = K/(1 + (x/t)2)) and, since f(x) remains invariant (apart from 
changes of scale), the distribution is also stable (like the normal). Its invariance is infi-
nite, as can be seen directly (from ƒ(x) being of second‐order smallness) or from the 
irregularity of ϕ(u) at the origin.

6.11.4. Knowing the characteristic functions of certain distributions enables us – using 
products, powers, conjugation, linear combinations, limits and so on – to obtain innu-
merable others, as required for various applications, and corresponding to distributions 
whose densities cannot in many cases be expressed explicitly.

Let us examine some of the more interesting examples of mixtures; those given by the 
sum of N independent, identically distributed random quantities Xh when N itself is also 
random. If at each step there is a probability p of stopping and q = 1 − p of continuing, 
the N has a geometric distribution; that is,

 p N n Kq K qn
nP 1 . 

If it turned out that N = n, the characteristic function of the sum would be χn(u), where 
χ(u) denotes the characteristic function of each Xh; the characteristic function of the 
unconditional sum is hence given by the mixture

 
u Kq u K q u q q u

n

n n

0
1 1 1/ / . (6.62)

Formally, it is sufficient to substitute in equation 6.41, replacing the characteristic func-
tion eiu of each of the summands ‘1’ by the characteristic function χ(u) of Xh. Following 
the same rule in the general case, one obtains.

 u p u
n

n
n , (6.63)

and, in the particular cases of N having the Bernoulli or Poisson distribution, we have 
(see equations 6.38″ and 6.39)

 u p u
m

1 1  (6.64)

and

 u a ue ,1  (6.65)

respectively. In equation 6.64 we used m in the exponent rather than n (which is now used 
to denote particular values of N); the interpretation (for example in the case of a game) is 
as follows: an individual has the right to m trials, each having probability p of success; he 
then has n successes (0 ⩽ n ⩽ m), and receives a random prize Xh for each success. The 
Poisson case can, for the present, be regarded as a limit‐case (but will be seen to have a 
much more interesting interpretation when viewed as a ‘random process’; see Chapter 8).
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When a characteristic function χ(u) is infinitely divisible, that is, χt(u) is a character-
istic function for any t > 0 (not only for t integer), one need not limit oneself to mixtures 
involving integer powers (equation 6.61), but can also consider sums of the form
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n

n , for any ,0  (6.66)

or even
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6.11.5. If we take a random quantity X and add on a random quantity Δ, which is small 
and has appropriate regularity properties, then X + Δ will differ only slightly from X (it 
is as though we intentionally measure X with a small error), but will enjoy the regularity 
properties possessed by Δ (and perhaps some others as well). As we shall see, this can 
turn out to be very useful.

For example, suppose Δ is chosen to have a uniform distribution between ±δ, with 
density 1/2δ. In this case, X + Δ will always have a density ⩽1/2δ, whatever the distribu-
tion of X (see 6.9.8). If we take a triangular distribution for Δ(f(x) = K(1 − |x|/δ):K = 1/δ), 
X + Δ will have a density which is ⩽l/δ everywhere, and the derivatives of the density 
will also be ⩽l/δ2 (in absolute value). Similar bounds obtain when Δ is taken to be 
 normal (m = 0, σ = δ).

In terms of characteristic functions, this results in ϕ(и), the characteristic function of 
X, being multiplied by the characteristic function of Δ; in the cases mentioned above, 
we consider
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This device often enables us to reduce problems posed in terms of general distribu-
tions to a framework in which suitable regularity conditions are obeyed.

In particular, we observe that if Δ is assumed to have the first form mentioned above 
(uniform over ±δ then fδ(x) the density of X + Δ, is precisely the average density of X in 
the interval x ± δ; in other words,

 f x F x F x / 2 .48

Informally, this formula says the following: the probability of X + Δ lying between x ± 
1
2 dx is the probability (of the necessary condition) that X lies inside x ± δ, since, condi-
tional on X = x0 (x0 any point in x ± δ) the density of X + Δ at x is always the same, 1/2δ. 
More formally, considering the convolution for X + Δ (see 6.9.6), we have
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 d
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48 The fact that fδ(x) is discontinuous and undefined at those points (at most a countable number) at distance 
δ (to the left or right) from discontinuity points of F(x) (points with concentrated mass for X) is irrelevant.
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(clearly, we could have considered the general case straightaway, by writing dF(x) instead 
of f(x) dx). This formula may be used to obtain F(x″) − F(x′) for a preassigned interval 
(x′, x″). In fact, it suffices to put z = 1

2 (x′ + x″), δ = 1
2 (x″ − x′). In particular, to obtain 

F(x) − F(0), it is enough to put z = δ = 1
2 x. We have, therefore,
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The characteristic function of fδ(x) is given by ϕ(u)(sin δu)/δu, so that we obtain the 
following inversion formula for passing from the characteristic function ϕ(и) to the 
distribution function F(x):
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This (or one of the alternative forms) is the standard result, usually proved on the 
basis of the Dirichlet integral; this is a more laborious method and, in the words of Feller 
(II, p. 484), ‘detracts from the logical structure of the theory’.

6.11.6. A more intuitive and expressive way of interpreting and explaining this is as 
follows: we think of the characteristic function  –  and let us take the simplest case, 

( )u ph
uxhei  – as a mixture of oscillations of various frequencies xh and intensities ph 

(the variable и being thought of as time). The formula for determining the components 
of the mixture given ϕ(и) (or, if we think in terms of light, for separating it into its 
monochromatic components), corresponds to a device capable of filtering out lines or 
bands. In order to discover whether a component of frequency x0 exists, and in this case 
to isolate it and determine its intensity p0, we must have a monochromatic filter. This is 
precisely what is achieved by the operation of computing the mean value (over a long 
period) of ϕ(и) multiplied by e iux0 ; in more precise terms, the operation of computing
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We see immediately, however, that if x0 ≠ xh the mean value (over any period, and 
hence asymptotically, on any very long interval [−a, a]) is zero. Only if x0 coincides with 
one of the xh does the integrand reduce to eiu0 ≡ 1, the mean value to 1, and the result to 
p0 (that is, the ph for which xh is our x0).

The other operations can be regarded as band filters, used to obtain the sum of the ph 
corresponding to frequencies xh contained in some given interval [x′, x″] and so on.

6.12 Some Remarks Concerning the Divisibility 
of Distributions

A distribution obtained by the convolution of others is said to be divisible into the latter 
(its factors); G is a factor of F if we can write F = G * H (for some suitable H). In terms of 
characteristic functions, this means that ϕ(и) can be expressed as a product of functions 
ϕh(и), each of which is also a characteristic function.
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We have already seen the example of infinitely divisible distributions that can be 
defined (in the simplest, but also the most meaningful way) as those for which ϕ(и) = 
[ϕ(и)1/п]п for any n (that is, ϕ(и)1/п is a characteristic function for every n). Although we 
shall have no reason to give a systematic treatment of this topic, we shall, from time to 
time, come across problems where divisibility enters in. For this reason, it is appropriate 
at this stage to briefly mention it, for the sole purpose of warning against the errors that 
can arise if one proceeds by analogy with factorization as it occurs in arithmetic or 
algebra. Anyone interested in pursuing the subject more deeply should read P. Lévy 
(1937), pp. 190–195, and the references cited there, or the recent survey by M. Fisz, in 
Ann. Math. Stat. (1962), 68–84; the latter contains a bibliography.

There exist distributions that are not divisible: for example, it is clear that a distribu-
tion with only four possible values, 0, a, b and c (in increasing order) cannot be divisible 
unless c = a + b (in which case we must have Z = X + Y, with 0 and a the possible values 
for X, 0 and b the possible values for Y); given this fact, we see that the four probabilities 
p0, pa, pb and pc cannot be chosen arbitrarily (subject only to their sum =1), because they 
must be of the form p0 = (1 − α)(l − β), pa = α(1 − β), pb = (1 − α)β and pc = αβ (where 
α = P(X = a) and β = P(X = b); an extra condition must hold, leaving two degrees of 
freedom instead of three).

In general, there are no uniqueness type properties for factorizations; a distribution 
always admits a decomposition into an infinitely divisible distribution and indivisible 
ones (Khintchin’s theorem); there may be infinitely many of the latter, or none; or it may 
be that the former is not present. We can also have, in general, various, different factori-
zations, combining different factors, without even a sharp dividing line between the 
factor which is infinitely divisible and the others. In fact, it can happen that an infinitely 
divisible distribution turns out to be a product of indivisible factors when factorized in 
a particular way.

There are, however, important cases in which the factorization is unique, and, in fact, 
reduces to the trivial factorization – the decomposition into factors [ )]u th  (with th > 0, 

th 1) with ϕ(и) infinitely divisible. This is the case for the normal distribution (so 
that, if X + Y = Z has a normal distribution and X and Y are independent, then X and Y 
both have normal distributions; Cramèr’s theorem), and also for the Poisson distribu-
tion (same result; Raikov’s theorem).

Finally, if we turn to the question of factorizations of infinitely divisible distributions 
which remain in the ambit of infinitely divisible distributions (i.e. we require that the 
factors also be such), we can say straightaway that in this case the answer is straightfor-
ward and complete. We shall deal with this in Chapter 8, 8.4 (at the present time we do 
not have at our disposal the concepts required for taking this any further).

It is instructive to point out the following rather surprising fact: given a factorization 
ϕ(и) = ϕ1(и)ϕ2(и), this does not imply that if one factor is kept fixed the other is uniquely 
determined (in other words, we can also have ϕ(и) = ϕ1(u)ϕ3(u), with ϕ3 ≠ ϕ2). Clearly, 
we can only have ϕ3(и) ≠ ϕ2(и) when ϕ1(u) = 0; but we have already seen that a charac-
teristic function can be zero (like the triangular case, 1 −1

2 |u|; see 6.11.3) outside an 
interval (in this example, for |u| ⩾ 2). In fact, the counter example given by Khintchin 
consists precisely in taking ϕ1 to be such a triangular function; for ϕ2 and ϕ3, one can 
take, for example, concave polygonal functions (see Pólya’s theorem) which are the 
same in (−2 ⩽ u ⩽ 2) but differ outside.
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7

7.1 Why a Survey at this Stage?

7.1.1. Our discussion of the requirements of the conceptual formulation of the theory 
of probability has already revealed its wide range of application. It applies, in fact, when
ever the factor of uncertainty is present. The range of problems encountered is also 
extensive. Diverse in nature and in complexity, these problems require a corresponding 
range of mathematical techniques for their formulation and analysis, techniques which 
are provided by the calculus of probability. For a number of reasons, it is useful to give 
a preliminary survey, illustrating these various aspects. In setting out our reasons, and 
by inviting the reader to take note of certain things, we shall be able to draw attention to 
those points which merit and require the greatest emphasis.

First of all, we note that individual topics acquire their true status and meaning only 
in relation to the subject as a whole. This is probably true of every subject, but it is 
particularly important in the case of probability theory. In order to explore a particular 
area, it pays to get to know it in outline before starting to cover it in great detail (although 
this will be necessary eventually), so that the information from the detailed study can be 
slotted into its rightful place. If we were to proceed in a linear fashion, we would not 
only give an incomplete treatment but also a misleading one, in that it would be difficult 
to see the connections between the various aspects of the subject. The same would be 
true of even the most straightforward problems if we had to deal with them without, at 
any given point, referring to any feature whose systematic treatment only came later 
(e.g. we would not be able to mention the connections with ‘laws of large numbers’, 
‘random processes’ or ‘inductive inference’). Nor would it be reasonable (either in 
 general or in this particular case) to assume that individual chapters are approached 
only after all the preceding ones have been read, and their contents committed to 
 memory. For an initial appreciation, it is necessary and sufficient to be clear about basic 
problems and notions rather than attempting to acquire a detailed knowledge. Moreover, 
the difficulties associated with this approach are easily avoided. It is sufficient to learn 
from the outset how to understand what these problems and concepts are about by 
concentrating on a small number of simple but meaningful examples. Although 
 elementary and summary in nature, the approach is then both clear and concrete, and 
can be further developed by various additional comments and information.

A Preliminary Survey
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7.1.2. In this preliminary survey, we shall, for this reason, concentrate on the case of 
Heads and Tails. This example, examined from all possible angles, will serve as a basic 
model, although other variants will be introduced from time to time (more for the sake 
of comparison and variety than from necessity). These simple examples will shed light 
on certain important ideas that crop up over and over again in a great many problems, 
even complex and advanced ones. This, in turn, facilitates the task of analysing the lat
ter in greater depth. In fact, it often turns out that the result of such an analysis is simply 
the extension of known and intuitive results to those more complex cases. This also 
reveals that the detailed complications which distinguish such cases from the simple 
ones are essentially irrelevant.

Another reason for providing a survey is the following. Everybody finds problems in 
the calculus of probability difficult (nonmathematicians, mathematicians who are 
unfamiliar with the subject, even those who specialize in it if they are not careful1). The 
main difficulty stems, perhaps, from the danger of opting for the apparently obvious, 
but wrong, conclusion, whereas the correct conclusion is usually easily established, 
provided one looks at the problem in the right way (which is not  –  until one spots 
it – the most obvious). In this respect, the elementary examples provide a good basis for 
discussion and advice (which, although useful, is inadequate unless one learns how to 
proceed by oneself for each new case). Many of the comments we shall make, however, 
are not intended solely for the purpose of avoiding erroneous or cumbersome argu
ments when dealing with simple cases. More generally, they are made with the intention 
of clarifying the conceptual aspects themselves, and of underlining their importance, in 
order to avoid any misunderstandings or ambiguities arising in other contexts going 
beyond those of the examples actually used. In other words, we shall be dealing with 
matters which, as far as the present author is concerned, have to be treated as an inte
gral part of the formulation of the foundations of the subject, and which could have 
been systematically treated as such were it not for the risk that one might lose sight of 
the direct nature of the actual results and impart to the whole enterprise a suggestion of 
argument for argument’s sake, or of literary–philosophical speculation.

7.1.3. It turns out that the aims that we have outlined above are best achieved by con
centrating mainly on examples of the ‘classical’ type – that is those based on combinatorial 
considerations. In fact, even leaving aside the need to mention such problems anyway, 
many of these combinatorial problems and results are particularly instructive and intui
tive by virtue of their interpretations in the context of problems in probability. Indeed, it 
was once thought that the entire calculus of probability could be reduced essentially to 
combinatorial considerations by reducing everything down to the level of ‘equiprobable 
cases’. Although this idea has now been abandoned, it remains true that combinatorial 

1 Feller, for example, repeatedly remarks on the way in which certain results seem to be surprising and even 
paradoxical (even simple results concerning coin tossing, such as those relating to the periods during which 
one gambler has an advantage over the other; Chapter 8, 8.7.6). He remarks on ‘conclusions that play havoc 
with our intuition’ (p. 68), and that ‘few people will believe that a perfect coin will produce preposterous 
sequences in which no change of lead occurs for millions of trials in succession, and yet this is what a good 
coin will do rather regularly’ (p. 81). Moreover, he can attest to the fact that ‘sampling of expert opinion has 
revealed that even trained statisticians feel that’ certain data are really surprising (p. 85).
All this is from W. Feller, An Introduction to Probability Theory and its Applications, 2nd edn, John Wiley & 
Sons, Inc., New York (1957). Many of the topics mentioned in the present chapter are discussed in detail by 
Feller (in Chapter 3, in particular), who includes a number of original contributions of his own.
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considerations do play an important rôle, even in cases where such considerations are not 
directly involved (see the examples that were discussed in Chapter 5, 5.7.4).

Given our stated purpose in this ‘preliminary survey’, it will naturally consist more of 
descriptive comments and explanations than of mathematical formulations and proofs 
(although in cases where the latter are appropriate we shall provide them). In the first 
place, we shall deal with those basic, straightforward schemes and analyses which pro
vide the best means of obtaining the required ‘insights’. Secondly, we shall take the 
opportunity of introducing (albeit in the simplest possible form) ideas and results that 
will be required in later chapters, and of subjecting them to preliminary scrutiny 
(although without providing a systematic treatment). Finally, we shall consider certain 
rather special results which will be used later (here they link up rather naturally with one 
of the examples, whereas introduced later they would appear as a tiresome digression).

7.2 Heads and Tails: Preliminary Considerations

7.2.1. Unless we specifically state otherwise, we shall, from now on, be considering events 
which You judge to have probability 1

2  and to be stochastically independent. It follows that 
each of the 2n possible results for n such events all have the same probability, ( )1

2
n 

Conversely, to judge these 2n results to be all equally probable implies that You are attri
buting proba bility 1

2  to each event and judging the events to be stochastically independent.
The events E1, E2,…, Em,… will consist of obtaining Heads on a given toss of a coin 

(we could think in terms of some preassigned number of tosses, n, or of a random 
number – for example ‘until some specified outcome is obtained’, ‘those tosses which 
are made today’ and so on – or of a potentially infinite number). We shall usually take 
it that we are dealing with successive tosses of the same coin (in the order, E1, E2,…), 
but nothing is altered if one thinks of the coin being changed every now and then, or 
even after every toss. In the latter case, we could be dealing with the simultaneous 
tossing of n coins, rather than n successive tosses (providing we establish some crite
rion other than the chronological one – which no longer exists – for indexing the Ei). 
We could, in fact, consider situations other than that of coin tossing. For example: 
obtaining an even number on a roll of a die, or at bingo; or drawing a red card from a 
full pack, or a red number at roulette (excluding the zero) and so on. We shall soon 
encounter further examples, and others will be considered later.

7.2.2. In order to represent the outcomes of n tosses (i.e. a sequence of n outcomes 
resulting in either Heads or Tails), we can either write HHTHTTTHT, or, alternatively, 
110100010 (where Heads = 1, Tails = 0).2

A. How many Heads appear in the n tosses? This is the most common question. 
We know already that out of the 2n possibilities the number in which Heads appear  
h times is given by ( )h

n . The probability, h
n( ) of h successes out of n events is therefore 

( )/h
n n2 . We shall return to this question later, and develop it further.

2 It should be clear that expressions like HHT (denoting that three consecutive outcomes – e.g. the first, 
second and third, or those labelled n, n + 1, n + 2 – are Head–Head–Tail) are merely suggestive ‘shorthand’ 
representations. The actual logical notation would be E E En n n1 2  (or HnHn+1 Tn+2, if one sets Hi = Ei and 
T Ei i ). Let everyone be clear about this, so that no one inadvertently performs operations on HHT as 
though it were simply a product (it would be as though one thought that the year 1967, like abed, being the 
product of four ‘factors’, that is 1, 9, 6, 7, were equal to 378).
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B. How many runs of consecutive, identical outcomes are there? In the sequence given 
above, there were six runs: HH/T/H/TTT/H/T. It is clear that after the initial run we obtain a 
new run each time an outcome differs from the preceding one. The probability of obtaining 
h + 1 runs is, therefore, simply that of obtaining h change‐overs, and so we consider:

C. How many change‐overs are there? In other words, how many times do we obtain an 
outcome which differs from the preceding one? For each toss, excluding the initial one, 
asking whether or not the toss gives the same outcome as the previous one is precisely the 
same as asking whether it gives Heads or Tails. The question reduces, therefore, to (A), 
and the probability that there are h change‐overs in the n tosses is equal to h

n n1 12/ .

D. Suppose we know that out of n = r + s tosses, r are to be made by Peter and s by Paul. 
What is the probability that they obtain the same number of successes? Arguing system
atically, we note that the probability of Peter obtaining h successes and Paul obtaining k 
is equal to ( )( )/h

r
k
s n2 . It follows that the probability of each obtaining the same number of 

successes is given by 2
1 n

h
r

h
s

h( )( ) (the sum running from 0 to the minimum of r and s). 
As is well‐known, however (and can be verified directly by equating coefficients in  
(1 + x)r. (1 + x)s = (1 + x)r+s), this sum is equal to ( ) ( )r

n
s
n , and the probability that we are 

looking for is identical to that of obtaining r (or s) successes out of n tosses.
This result could have been obtained in an intuitive manner, and without calculation, 

by means of a similar device to that adopted in the previous case. We simply note that the 
problem is unchanged if ‘success’ for Paul is redefined to be the outcome Tails rather 
than Heads. To obtain the same number of successes (h say) now reduces to obtaining  
s Heads and r Tails overall; s = h + (s − h), r = (r −h) + h. Without any question, this is 
the most direct, natural and instructive proof of the combinatorial identity given above.

E. What is the probability that the number of successes is odd? There would be no 
difficulty in showing this to be 1

2 , by plodding through the summation of the binomial 
coefficients involved (the sums of those corresponding to evens and odds are equal!). If 
n were odd, it would be sufficient to observe that an odd number of Heads entails an 
even number of Tails, and so on.

A more direct and intuitive argument follows from noting that we need only concern 
ourselves with the final toss. The probability of a success is 1

2  (no matter what happened 
on the preceding tosses), and hence the required probability is 1

2
. The advantage of this 

argument is that we see, with no further effort, that the same conclusion holds under 
much weaker conditions. It holds, in fact, for any events whatsoever, logically or sto
chastically independent, and with arbitrary probabilities, provided that one of them has 
probability 1

2 , and is independent of all combinations of the others (or, at least, of the fact of 
whether an odd or an even number of them occur).3

We shall return to this topic again in Section 7.6.9.

3 Pairwise independence (which we consider here in order to show how much weaker a restriction it is) 
would not entitle us to draw these conclusions. We can obtain a counterexample by taking just three events, 
A, B, C, and supposing them all to be possible, with the four events ‘only A’ ‘only B’ ‘only C’ and ‘all three’ 
(ABC) equally probable ( )p 1

4 . It is easily seen that A, B, C each have probability 1
2  and are pairwise 

independent, but that the number of successes is certainly odd (either 1 or 3). If we had argued in terms of 
the complements, it would certainly be even (either 0 or 2).
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7.2.3. Some comments. The main lesson to be learned from these examples is the 
following. In the calculus of probability, just as in mathematics in general, to be able 
to recognize the essential identity of apparently different problems is not only of great 
practical value but also of profound conceptual importance.

In particular, arguments of this kind often enable us to avoid long and tedious combina
torial calculations; indeed, they constitute the most intuitive and ‘natural’ approach to 
establishing combinatorial identities.4 Moreover, they should serve, from the very begin
ning, to dispel any idea that there might be some truth in certain of the specious arguments 
one so often hears repeated. For example: that there is some special reason (in general, that 
it is advantageous) to either always bet on Heads, or always on Tails; or, so far as the lot
tery is concerned, to always bet on the same number, perhaps one which has not come up 
for several weeks! All this, despite the fact that, by assumption, all the sequences are 
equally probable. It is certainly true that the probability of no Heads in ten successive 
tosses is about one in a thousand (2−10 = 1/1024), and in twenty tosses about one in a 
million (2−20 = 1/1048576), but the fact of the matter is that the probability of not winning 
in ten (or twenty) tosses if one always sticks to either Heads or Tails is always exactly the 
same (that given above). This is the case no matter whether or not the tosses are consecu
tive, or whether or not one always bets on the same face of the coin, or whether one 
alternates in a regular fashion, or decides randomly at every toss. To insist on sticking to 
one side of the coin, or to take the consecutive nature of the tosses into account, is totally 
irrelevant.

7.2.4. F. What is the probability that the first (or, in general, the rth) success (or failure) 
occurs on the hth toss? The probability of the first success occurring on the hth toss is 
clearly given by ( )1

2
h (the only favourable outcome out of all the 2h is given by 000…0001). 

Note that this probability, ( )1
2

h, is the same as that of obtaining no successes in h tosses; 
that is of having to perform more than h tosses before obtaining the first success.5 The 
probability of the rth success occurring at the hth toss is given by ( ) ( )1

2 1
1h

r
h , because this 

is the probability of exactly r −1 successes in the first h −1 tosses multiplied by the prob
ability ( )1

2  of a further success on the final (hth) toss.

G. A coin is alternatively tossed, first by Peter and then by Paul, and so on. If the winner 
is the one who first obtains a Head, what are their respective probabilities of winning? 
A dull, long‐winded approach would be to sum the probabilities ( )1

2
h for h odd (to obtain 

Peter’s probability of winning), or h even (for Paul’s probability), and this would present 
no difficulties. The following argument is more direct (although its real advantage 
shows up better in less trivial examples). If Peter has probability p, Paul must have 

4 My ‘philosophy’ in this respect is to consider as a natural proof that which is based on a combinatorial argument, 
and as a more or less dull verification that which involves algebraic manipulation. In other fields, too, certain things 
strike me as mere ‘verifications’. For example: proofs of vectorial results which are based upon components; 
properties of determinants established by means of expansions (rather than using the ideas of alternating products, 
volume or, as in Bourbaki, smoothly generated by means of an exterior power). Indeed, this applies to anything 
which can be proved in a synthetic, direct and (meaningfully) instructive manner, but which is proved instead by 
means of formal machinery (useful for the bulk of the theory, but not for sorting out the basic ideas).
5 We observe that the probability of no successes in n tosses tends to zero as n increases. This is obvious, 
but it is necessary to draw attention to it, and to make use of it, if certain arguments are to be carried 
through correctly (see the Comments following (G)).
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probability p p1
2 , because he will find himself in Peter’s shoes if the latter fails to win 

on the first toss; we therefore have p p2
3

1
3,  .

Comments. We have tacitly assumed that one or other of them certainly ends up by 
winning. In actual fact, we should have stated beforehand that, as we pointed out in the 
footnote to (F), the probability of the game not ending within n tosses tends to zero as n 
increases. In examples where this is not the case, the argument would be wrong.

7.2.5. H. What is the probability of obtaining, in n tosses, at least one run of h successes 
(i.e. at least h consecutive successes)? Let An denote the number of possible sequences 
of n outcomes which do not contain any run of h Heads. By considering one further 
trial, one obtains a set of 2An sequences, which contains all the An+1 sequences with no 
run of h Heads in n + 1 trials, plus those sequences where the last outcome – which is 
therefore necessarily a Head – forms the first such sequence. There are An−h of these, 
because they must be obtained by taking any sequence of n − h trials with no run of h 
Heads, and then following on with a Tail and then h Heads. We therefore obtain the 
recurrence relation An+1 = 2An − An−h, in addition to which we know that A0 = 1, An = 2n 
for n < h, Ah = 2h − 1 and so on.

We are dealing here with a difference equation. It is well known (and easy to see) that 
it is satisfied by xn, where x is a root of the (characteristic) equation xh+1 − 2xh +1 = 0. 
The general solution is given by

 A a a x a x a xn
n n

h h
n

0 1 1 2 2 ,  
where 1, x1,…, xh are the h + 1 roots, and the constants are determined by the initial 
conditions.

We shall confine attention to the case h = 2. The recurrence relation An+1 = 2An − An−2 
can be simplified6 so that it reduces to that of the Fibonacci numbers (each of which is 
the sum of the two preceding ones); that is An+1 = An + An−1. In fact, however, a direct 
approach is both simpler and more meaningful. Those of the An+1 sequences ending in 
Tails are the An followed by a Tail; those ending in Heads are the An−1 followed by Tail–
Head; the formula then follows immediately.

Using the fact that A0 = 1, A1 = 2, A2 = 3, we find that A3 = 5, A4 = 8, A5 = 13, A6 = 21, 
A7 = 34, A8 = 55, and so on, and hence that the required probability is 1 − An/2n. For four 
trials this gives 1 8

16
1
2, for eight trials 1 0 78555

256 , and so on. To obtain the analytic 
expression, we find the roots of x2 − x − 1 = 0 (noting that

 x x x x x3 2 22 1 1 1 0), 
obtaining x1,2 = (1 ± √5)/2, and hence

 
An

n n n1 5 1 5 2 51 1 1 .
 

A similar argument will work for any h > 1. The An+1 are of the form AnT, Aп−1 TH, An−2 
THH,…, An−h+1 THHH … H (with h − 1 Heads), where the notation conveys that an An−k 
is followed by a Tail and then by k Heads. It follows that An+1 = the sum of the h preceding 
terms (and this is clearly a kind of generalization of the Fibonacci condition).

6 By writing it in the form An+l – An – An–1 = An – An–1 – An–2, we see that the expression is independent of 
n; for n = 2, we have A2 – A1 – A0 = 3 – 2 – 1 = 0.
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The equation one arrives at (1 + x + x2 + x3 + … + xh = xh+1) is the same as the one 
above, divided by x − 1 (i.e. without the root x = 1).

Comments. We have proceeded by induction; that is with a recursive method. This is 
a technique that is often useful in probability problems – keep it in mind!

Note that in considering the An–h we have discovered in passing the probability that a 
run of h successes is completed for the first time at the (n + l)th trial. This is given by 
An−h/2n+1. It is always useful to examine the results that become available as byproducts. 
Even if they do not seem to be of any immediate interest, they may throw light on novel 
features of the problem, suggest other problems and subsequently prove valuable 
(You never know!).

On the other hand, this probability (i.e. that something or other occurs for the first 
time on the (n + 1)th trial) can always be obtained by subtracting the probability that it 
occurs at least once in the first n + 1 trials from the probability that it occurs at least 
once in the first n (or by subtracting the complementary probabilities).

This remark, too, is obvious, but it is important, nonetheless. It often happens that 
the idea is not used, either because it is not obviously applicable, or because it simply 
does not occur to one to use it.

7.2.6. I. What is the probability that a particular trial (the nth say) is preceded by 
exactly h outcomes identical to it, and followed by exactly k? In other words, what is the 
probability that it forms part of a run of (exactly) h + k + 1 identical outcomes (either all 
Heads or all Tails) of which it is the (h + 1)th (we assume that h < n − 1).7 The probability 
is, in fact, equal to ( )1

2
2h k . We simply require the h previous outcomes and the k following 

to be identical, and the outcome of the trial preceding this run, and the one following it, 
to be different (in order to enclose the run).

J. What is the probability that the nth trial forms part of a run of (exactly) m trials 
having identical outcomes? This, of course, reduces to the previous problem with h and 
k chosen such that h + k + 1 = m (naturally, we assume m ⩽ n − 1). For each individual 
possible position, the probability is ( )1

2
1m , and there are m such cases since the nth trial 

could either occupy the 1st, 2nd,…, or the mth position in the run (i.e. we must 
have one of

 h m0 1 2 1, , , , ). 
The required probability is therefore m/2m+1.

In particular, the probability of a particular trial being isolated (i.e. a Tail sandwiched 
between two Heads, or vice versa) is equal to 1

4 ; the same is true for a run of length two, 
and we have 3

16  for a run of length three, 4
32

1
8
 for a run of length four, 5

64
 for a run of 

length five and so on.

K. What is the probability that some ‘given’ run, the nth say, has (exactly) length m? 
The nth run commences with the (n − l)th change‐over, and has length m if the following 
m − 1 outcomes are identical and the mth is different. The probability of this is given by 
( )1

2
m. For lengths 1, 2, 3, 4, 5, we therefore have probabilities 1

2
1
4

1
8

1
16

1
32, , , , , and so on.

7 We exclude the (possible) case h = n – 1, which would give a different answer (( )1
2

1h k : Why?).
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Comments. It might appear that (J) and (K) are asking the same question: that is in both 
cases one requires to know the probability that a run (or ‘a run chosen at random’) has 
length m. The problem is not well defined, however, until a particular run has been speci
fied. The two methods of doing so – on the one hand demanding that the run  contain 
some given element, on the other hand that it be the run with some given label – lead to 
different results, yet both methods could claim to be ‘choosing a run at random’. We shall 
often encounter ‘paradoxes’ of this kind and this example (together with the develop
ments given under (L)) serves precisely to draw attention to such possibilities.

Warning. All the relevant circumstances (and, at first sight, many of them often do not 
seem relevant!) must be set out very clearly indeed, in order to avoid essentially different 
problems becoming confused. The phrase ‘chosen at random’ (and any similar expres
sion) does not, as it stands, have any precise meaning. On the contrary, assuming it to 
have some uniquely determined intrinsic meaning (which it does not possess) is a com
mon source of error. Its use is acceptable, however, provided it is always understood as 
indicating something which subsequently has to be made precise in any particular case. 
(For example, it may be that at some given instant a person decides that ‘choosing a run 
at random’ will have the meaning implicit in ( J ), or it may be that he decides on that of 
(K), or neither, preferring instead some other interpretation.) In order not to get led 
astray by the overfamiliar form of words, one might substitute in its place the more 
neutral and accurate form ‘chosen in some quite natural and systematic way (which will 
be made precise later)’.8

7.2.7. L. What is the prevision of the length of a run (under the conditions given in  
(J) and (K), respectively)? Let us begin with (K). It might appear that the random quantity 
L = ‘length of the run’ can take on possible values 1, 2,…, m,… with probabilities 1

2
, 1

4
,…, 

( )1
2

m ,… and that, therefore, its prevision is given by /2mm . But are we permitting 
ourselves the use of the series, considering the sequence as infinitely long (a possibility 
we previously excluded, for the time being anyway), or should we take the boundedness 
of the sequence into account (by assuming, for instance, that the number of trials does 
not exceed some given N)? It seems to be a choice between the devil and the deep blue 
sea, but we can get over this by thinking of N as finite, but large enough for us to ignore 
the effect of the boundedness. In other words, we accept the series in an unobjection
able sense; that is as an asymptotic value as N increases. Although in this particular case 
the series mx x xm / 1 2 presents no difficulties (we see immediately that it gives 
P(L) = 2), there are often more useful ways of proceeding. Given that prevision is 
additive, and given that the length L is the sum of as many 1s as there are consecutive 
identical outcomes (the first of which is certain, the others having probabilities 1

2
1
4, , …, 

etc., as we saw above), we obtain

 
P L

m

1 1
2

1
4

1
2

2.
 

8 See, for instance, the remarks in Chapter 5, 5.10.2 concerning the notion of ‘equiprobable’ in quantum 
physics, and those in Chapter 10, 10.4.5 concerning the ‘random choice’ of subdivision point of an interval, 
or in a Poisson process.
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Alternatively, and even more directly (using an argument like that in (G)), we note that 
we must have P PL L1 1

2  (and hence P(L) = 2), since, if the second outcome is the 
same as the first (with probability 1

2 ), the length of the run starting with it has the same 
prevision P(L).

Going through the same process in case ( J ), we would have

 
P L m m m x x x xm m/ / / for ,2 2 1 2 1 3 1

2
1 2 1 3

 
but the argument could be simplified even more by recalling that L had the value 1 + the 
prevision of the identical outcomes to the right (which was also 1), and that here we 
should add the same value 1 as a similar prevision to the left, so that we obtain 1 + 1 + 1 = 3. 
Of course, we must also assume n large, but, in any case, it would be easy to evaluate the 
rest of the series in order to put bounds on the error of the asymptotic formula were the 
accuracy to be of interest.

It turns out, therefore, that the previsions resulting from the two different methods of 
choosing the runs are different, 2 and 3, respectively (as one might have expected, given 
that the smaller values were more probable in the first case, and conversely for the oth
ers). If we ignore the certain value 1 for the initial outcome, the additional length turns out 
to be double in the second case (2 instead of 1), because the situation is the same on both 
sides (independently of the fact that there is no actual continuation to the left, since, by 
hypothesis, the initial term is the first one in the run; this in no way changes the situation 
on the right, however: ‘the later outcomes neither know nor care about this fact’).

Comment. A sentence like the above, or, equivalently, ‘the process has no memory’ 
(as in the case of stochastic independence), is often all that is required to resolve a paradox, 
or to avoid mistakes (like those implicit in the well‐known specious arguments which we 
mentioned in our Comments following (E)).

M. Suppose we toss a coin n times: what are the previsions of the number of successes
(Heads);
change‐overs (Head followed by Tail, or vice versa);
runs;
runs of length m;
tosses up to and including the hth success;
tosses up to and including the completion for the first time of a run of successes of length 

2 (or, in general, of length h)?

Most questions of this kind are much easier than the corresponding questions involving 
probabilities (as one would expect, given the additivity of prevision).

So far as successes are concerned, at each toss the probability of success is 1
2
, and 

hence the prevision of the number of successes in n tosses is 1
2 n.

For the change‐overs, the same argument applies (apart from the case of the first toss), 
and we have 1

2 1( )n .
For runs, we always have 1 more than the number of change‐overs, and hence the 

prevision is 1
2 1( )n .

For runs of length m, we shall give, for simplicity, the asymptotic expression for n 
large in comparison to m (see (L)). For each toss (and, to be rigorous, we should modify 
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this for the initial and final m tosses), we have probability m/2m+1 of belonging to a run 
of length m, and so, in prevision, there are nm/2m+1 such tosses out of n; there are, 
therefore, n/2m+1 runs of this kind (since each consists of m tosses). In particular, we 
have, in prevision, n/4 isolated outcomes, n/8 runs of length two, and so on.

From (F), we can say that the prevision of the number of tosses required up to and 
including the hth success is given by k h

k k
1
1 2/  (the sum being taken over 1 to ∞, and, 

as usual, thought of as an asymptotic value). It is sufficient, however, to restrict attention 
to the very simple case h = 1. The prevision of the number of tosses required for the first 
success is 2 (the probability of it occurring on the first toss is 1

2 , at the second 1
4 , etc.); that 

is it is given by /2mm  as in the first variant discussed under (L). It follows that the previ
sion of the number of tosses required for the hth success is 2h (and that this is therefore 
the value of the summation given above, a result which could be verified directly).

For the final problem, we note that the probability of the first run of two Heads being 
completed at the nth toss is given by An

n
2 1 2/  (where the A denote Fibonacci numbers), 

and that the prevision is therefore given by nAn
n

3 2/ . There is a useful alternative 
method of approach, however. Let us denote this prevision by P(L), and note the follow
ing: if the first two tosses both yield Heads, we have L = 2 (and this is the end of the 
matter); if they yield Head–Tail, we have P(L|HT) = 2 + P(L), because the situation after 
the first two tosses reverts back to what it was at the beginning; if the first toss results in 
a Tail, we have, similarly, P(L|T) = 1 + P(L). Since the probabilities of these three cases 
are 1

4
1
4

1
2, , , respectively, we obtain

 
P P P PL L L L1

4
2 1

4
2 1

2
1 3

2
3
4

. ,
 

which implies that 1
4

3
2P L , and hence that P(L) = 6.

The argument for the first run of h Heads proceeds similarly. Let us briefly indicate 
how it goes for the case h = 3: first three tosses Head–Head–Head, probability 1

8 , L = 3; 
first three tosses Head–Head–Tail, probability 1

8 , P(L|HHT) = 3 + P(L); first two tosses 
Head–Tail, probability 1

4
, P(L|HT ) = 2 + P(L); first toss Tail, probability 12 , P(L|T ) = 1 + P(L). 

Putting these together, we obtain P(L) = 14. For h = 4, we obtain P(L) = 30; the general 
result is given by P(L) = 2h+1 − 2 (prove it!).

7.2.8. Remarks. Let us quickly run through some other possible interpretations, and, 
in so doing, draw attention to certain features of interest. Instead of simply dealing with 
the Head and Tail outcomes themselves, we could consider their ‘matchings’ with some 
given ‘comparison sequence’, * * *

1 2, , , ,nE E E  For example, if the comparison sequence 
were chosen to be the alternating sequence HTHTHT…, and we used 1 to denote a 
matching, 0 otherwise, then we obtain a 1 whenever a Head appears on an odd toss, 
or a Tail on an even. In this way, any problem concerning ‘runs’ can be reinterpreted 
directly as one concerning ‘alternating runs’. The comparison sequence could be the 
sequence in which a gambler ‘bets’ on the outcome of the tosses: for example, 
HHTHTTTHT = ‘he bets on Heads at the 1st, 2nd, 4th and 8th tosses, and he bets on 
Tails at the 3rd, 5th, 6th, 7th and 9th tosses’. The outcomes 1 and 0 then denote that ‘he 
wins’ or ‘he loses’, respectively. It follows, in this case, with no distinction drawn between 
Heads or Tails, that ‘runs’ correspond to runs of wins or losses, whereas if ‘runs’ refer to 
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Heads only, say (as in (H)), then they correspond to runs of wins only (and conversely, if 
‘runs’ refer to Tails only). The comparison sequence could even be random. For exam
ple, it might have arisen as the result of another sequence of coin tosses, or from some 
other game or experiment (double six when rolling two dice; the room temperature 
being below 20°C; whether or not the radio is broadcasting music; whether at least 1

3  of 
those present have blond hair, etc.). This other experiment may or may not be performed 
simultaneously and could depend on the outcomes of the sequence itself (for example, 
if E En n

*
 1 we obtain the case of ‘change‐overs’ as in (C)). The only condition is that Eh

*  
be stochastically independent of Eh (for each h). In fact, if, conditional on any outcome 
for the Ei(i ≠ h), Eh has probability 1

2 , then the same holds for ( )*E Eh h , no matter what 
the event Eh

*  is, provided that it is independent of Eh (this can be seen as a special case 
of (E) for n = 2, but there it is obvious anyway).

7.3 Heads and Tails: The Random Process

7.3.1. In Section 7.2, we confined ourselves to a few simple problems concerning the 
calculation of certain probabilities and previsions in the context of coin tossing. This 
provided a convenient starting point for our discussion, but now we wish to return to 
the topic in a more systematic manner. In doing so, we shall get to know many of the 
basic facts, or, at least, become acquainted with some of them, and we shall also encounter 
concepts and techniques that will later come to play a vital rôle. In particular, we shall 
see how second‐order previsions often provide a fruitful way of getting at important 
results and we shall encounter various distributions, random9 processes, asymptotic 
properties and so on. Let us proceed straightaway to a consideration of why it is useful, 
even when not strictly necessary, to formulate and place these problems in a dynamic 
framework, as random processes, or as random walks.

An arbitrary sequence of events E1, E2,…, En,… (which, unless we state otherwise, 
could be continued indefinitely) can, should one wish to do so, be considered as already 
constituting in itself a random function, En = Y(n),10 assigning either 1 or 0 to each posi
tive integer n. To obtain more meaningful representations, one could, for instance, 
consider the number of successes Y(n) = Sn = E1 + E2 + … + En, or the excess of successes 
over failures

 Y n S n E E E E E En n n2 1 2 1 2   . 

The latter could also be considered as the total gain,

 Y n X X Xn1 2 ,  
if Xi = 2Ei − 1 = Ei − Eĩ is defined to be the gain at each event; that is Xi = ±1 (one gains 
1 or loses 1 depending on whether Ei is true or false; put in a different way, one always 
pays 1 and receives 2 if the event occurs, receives 1 and pays 2 if it does not).

9 See Chapter 1, 1.10.2, for a discussion of the use of the words ‘random’ and ‘stochastic’.
10 We shall usually write Y(n), Y(t), only when the variable (e.g. time) is continuous. When it is discrete we 
shall simply write Yn, Yt, except, as here, when we wish to emphasize that we are thinking in terms of the 
random process, rather than of an individual Yn.
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If it should happen (or if we make the assumption) that events occur after equal (and 
unit) time intervals, then we can say that Y(t) is the number (or we could take the excess) of 
successes up to time t (i.e. Y(t) = Y(n) if t = n, and also if n ⩽ t < n + 1). For the time being, 
this merely serves to provide a more vivid way of expressing things (in terms of ‘time’ rather 
than ‘number of events’), but later on it will provide a useful way of showing how one 
passes from processes in discrete time to those in continuous time (even here this step 
would not be without meaning if events occurred at arbitrary time instants t1 < t2 < … < tn 
< …, especially if randomly, as, for instance, in the Poisson process; Chapter 8, 8.1.3).

7.3.2. The representation which turns out to be most useful, and which, in fact, we shall 
normally adopt, is that based on the excess of successes over failures, Y(n) = 2Sn − n. This 
is particularly true in the case of coin tossing, but to some extent holds true more generally.

The possible points for (n, Y(n)) in the (t, y)‐plane are those of the lattice shown in 
Figure 7.1a. They have integer coordinates, which are either both even or both odd  
(t = n ⩾ 0, −t ⩽ y ⩽ t). It is often necessary, however, to pick out the point which corre
sponds to the number of successes in the first n events, and, in order to avoid the  notational 
inconvenience of (n, 2h − n), we shall, by convention, denote it by [n, h]: in other words,  
[t, z] = (t, 2z − t) (t, y) = [t, 1

2 (y + t)]. As can be seen from Figure 7.1b, this entails referring 
to the coordinate system (t, z), with vertical lines (t = constant), and downward sloping 
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Figure 7.1 The lattice of possible points for the coin‐tossing process. Coordinates: time t = n = 
number of tosses (in both cases), together with: in (a): y = gain = h − (n − h) = number of successes 
minus number of failures; in (b): z = h = number of successes = (n + y)/2. The notations (t, y) and [t, z] 
refer, respectively, to the coordinate systems of (a) and (b). For the final point of the path given in the 
diagrams, we have, for example,

19 5 19 12 19 12 7 12 7 5, , t n h n h y, , ,
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lines (making a 45° angle; z = constant), in which the points of the lattice are those with 
integer coordinates (and the possible ones are those for which t ⩾ 0, 0 ⩽ z ⩽ t11).

The behaviour of the gain Y(n) (and of the individual outcomes) can be represented 
visually by means of its path: that is the jagged line joining the vertices (n, Y(n)) as 
in Figure 7.1a, where each ‘step’ upwards corresponds to a success, and each step 
downwards to a failure.12 Each path of n initial steps on the lattice of Figure 7.213 

11 In Figure 7.1b, if we take the two bisecting lines (with respect, that is, to the axes of Figure 7.1a), and 
therefore take as coordinates

1
2 7 1( ) ( , . )t y znumber of successes in Figure b

and
1
2 7 1( ) ( , . ),t y t znumber of failures in Figure b

we have a system often used in other contexts (for example, in batch testing: a horizontal dash for a ‘good’ 
item, a vertical dash for a ‘defective’ item). This is convenient in this particular case, but has the 
disadvantage (a serious one if one wishes to study the random process) of not showing up clearly the 
independent variable (e.g. time), which one would like to represent along the horizontal axis.
12 We observe, however, that this representation does not preserve the meaning of Y(t), as given above, 
which requires it to change by a jump of ± 1 at the end of any interval (n, n + 1) (and not linearly). The use of 
the jagged line is convenient, however, not only visually, and for the randomwalk interpretation (see below, 
in the main text), but also for drawing attention to interesting features of the process. It is convenient, for 
example, to be able to say that one is in the lead or behind when the path is in the positive or negative 
halfplane, respectively (in other words, not according to the sign of Y(n), which could be zero, but according 
to the sign of Y(n) + Y(n + 1), where the two summands either have the same sign or one of them is zero).
13 This representation also enables us to show clearly the probabilities at each step, and this is particularly useful 
when they vary from step to step (see, in particular, the end of Chapter 11, 11.4.1; the case of ‘exchangeability’). All one 
has to do is the following: at each vertex, draw a vector, emanating from the vertex, and with components (1, 2p – 1), 
the prevision vector of the next step (downwards or upwards; i.e. (1, –1) or (1, 1) with probabilities 1 – p and p).
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Figure 7.2 The lattice of the ‘random walk’ for coin tossing (and similar examples). The point Q can only be 
reached from Q′ or Q″ (this trivial observation often provides the key to the formulation of problems). It follows, 
therefore, that it can only be reached from within the angular region shown. Similarly, the other angular region 
shows the points that can be reached from P. The vectorial representation at A provides a way of indicating the 
probabilities of going to A′ rather than to A″ (reading from the bottom upwards, we have probabilities p = 0·2, 
0·5, 0·7). The other example of vectors at B, B′ and B″ (meeting at C) will be of interest in Chapter 11, 11.4.1.
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(from 0 to a vertex on the nth vertical line) corresponds to one of the 2n possible 
sequences of outcomes of the first n events.

The interpretation as a random walk is now immediate. The process consists in start
ing from the origin 0, and then walking along the lattice, deciding at each vertex whether 
to step upwards or downwards, the decision being made on the basis of the outcomes of 
the successive events. The same interpretation could, in fact, be made on the y‐axis 
(each step being one up or one down), and this would be more direct, although less clear 
visually than the representation in the plane. When we think, in the context of ‘random 
walk’, of Yn as the distance of the moving point from the origin (on the positive or nega
tive part of the y‐axis) at time t = n, we are, in fact, using this representation: Yn = 0 then 
corresponds to passage through the origin, and so on.

In fact, when one talks in terms of random walks, time is usually regarded as a parameter 
of the path (as for curves defined by parametric equations), so that, in general, we do not 
have an axis representing ‘time’ (and, if there is one, it is a waste of a dimension – even 
though visually useful). Normally, one uses the plane only for representing the random 
walk as a pair of (linearly independent) random functions of time (and the same holds in 
higher dimensions). An example of a random walk in two (or three) dimensions is given by 
considering the movement of a point whose coordinates at time n represent the gains of 
two (or three) individuals after n tosses (where, for example, each of them bets on Heads or 
Tails in any way he likes, with gains ±1).

We have mentioned several additional points which, strictly speaking, had little to 
do with our particular example, but will save us repeating ourselves when we come to 
less trivial situations. Moreover, it should be clear by now that the specific set‐up we 
have considered will be suitable for dealing with any events whatsoever, no matter 
what their probabilities are, and no matter what the probability distributions of the 
random functions are.

7.3.3. If we restrict ourselves to considering the first n steps (events), the 2n probabilities, 
non‐negative, with sum 1, of the 2n paths (i.e. of the 2n products formed by sequences 
like E E EE E En n1 2 3 4 1   ) could be assigned in any way whatsoever. Thinking in terms of 
the random walk, the probabilities of the (n + l)th step being upward or downward will 
be proportional to the probabilities of the two paths obtained by making En+1 or En 1 
follow that determined by the n steps already made.

The image of probability as mass might also prove useful. The unit mass, initially 
placed at the origin 0, spreads out over the lattice, subdividing at each vertex in the 
manner we have just described (i.e., in general, depending on the vertex in question 
and the path travelled in order to reach it). One could think of the distribution of 
traffic over a number of routes which split into two forks after each step (provided the 
number of vehicles N is assumed large enough for one to be able to ignore the round
ing errors which derive from considering multiples of 1/N). The mass passing through 
an arbitrary vertex of the lattice, (t, y) say, comes from the two adjacent vertices on the 
left, (t − 1, y − 1) and (t − 1, y + 1) (unless there is only one, as happens on the bounda
ries y = ±t) and proceeds by distributing itself between the two adjacent vertices on 
the right, (t + 1, y − 1) and (t + 1, y + 1). Thinking of the random walk as represented 
on the y‐axis, all the particles are initially at the point 0 (or in the zero position), and 
after each time interval they move to one or other of the two adjacent points (or posi
tions); from y to y − 1 or y + 1. Consequently, whatever the probabilities of such 
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movements are, the mass is alternatively all in the even positions or all in the odd: in 
any case, we have some kind of diffusion process (and this is more than just an image). 
In many problems, it happens, for example, that under certain conditions the process 
comes to a halt, and this might correspond to the mass being stopped by coming up 
against an absorbing barrier.

7.3.4. Further problems concerning Heads and Tails. There are many interesting 
problems that we shall encounter where the probabilities involved are of a special, 
simple form. The most straightforward case is, of course, that in which the events En are 
independent; a further simplification results if they are equally probable. The simplest 
case of all is that of only two possible outcomes, each with probability 1

2 , and this is 
precisely the case of Heads and Tails that we have been considering.

The mass passing through a point always divides itself equally between the two 
adjacent points to the right. As a result of this, each possible path of n steps always has 
the same probability, ( )1

2
n, and every problem concerning the probabilities of this process 

reduces to one of counting the favourable paths.
Basing ourselves upon this simple fact, we can go back and give a systematic treat

ment of Heads and Tails, thinking of it now as a random process.14 It is in this context 
that we shall again encounter well‐known combinatorial ideas and results, this time in 
a form in which they are especially easy to remember, and which provides the most 
meaningful way of interpreting and representing them.

Prevision and standard deviation. For the case of Heads and Tails, the individual 
gains, Xi = 2Ei − 1 = ±1, are fair, and have unit standard deviations: in other words,

 P P PX Xi i0 1 1 12, . 
The process itself is also fair, and the standard deviation of the gain in n tosses (which 
is, therefore, the quadratic prevision) is equal to √n: in other words,

 P Y Y nn n0, . 
The total number of successes is given by Sn = 1

2 (n + Yn) and so we have

 
P S n S nn n

1
2

1
2

, .
 

Successes in n tosses. We already know (case (A), Section 7.2.2) that the probability of 
h successes in n tosses is given by

 h
n

h
n n h n/ .2 0 1 2, , , ,  (7.1)

14 Figure 7.3 shows the results of successive subdivisions, ( , ),( , , ),( , , , )1
2
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1
8  etc. Figure 7.4 shows a 

simple apparatus invented by Bittering. It is a box with two sets of divisions into compartments, one set 
being on top of the other and shifted through half the width of a compartment. The middle section of the 
bottom half of the box is filled with sand and then the box is turned upside down. The sand now divides 
itself between the two central compartments of what was the top half and is now the bottom. By repeatedly 
turning the box over (shaking it each time to ensure a uniform distribution of the sand within the 
compartments), one obtains successive subdivisions (the ones we have referred to above – those of Heads 
and Tails). By arranging the relative displacement of the overlapping compartments to be in the ratio p:1 – p, 
one can obtain any required Bernoulli distribution (see Section 7.4.2).
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This corresponds to the fact that ( )h
n  is the number of paths which lead from the origin 

0 to the point [n, h].15

To see this, consider, at each point of the lattice, the number of paths coming from 0. 
This number is obtained by summing the numbers corresponding to the two points 
adjacent on the left, since all relevant paths must pass through one or other of these. 
‘Stiefel’s identity’, ( ) ( ) ( )h

n
h

n
h
n

1
1 1 , provides the key and leads one to the binomial coeffi

cients of ‘Pascal’s triangle’. That the total number of paths is 2n follows directly from the 
fact that at each step each path has precisely two possible continuations.

The identity which we mentioned in example (D) of Section 7.2.2 also finds an imme
diate application. Each of the ( )H

N  jagged lines which lead to a given point [N, H] must 
pass through the vertical at n at some point [n, h], where, since n is less than N, h = Sn 
must necessarily satisfy

 H n N h H   

15 Recall that, in our notation, [n, h] represents the fact that Sn = h; in other words, it represents the point 
(n, 2h – n), where Yn = 2Sn – n = 2h – n.
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Figure 7.3 Subdivision of the probability for the game of Heads and Tails.
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Figure 7.4 Bittering’s apparatus. Probabilities of Heads and Tails: below, after four tosses; above, after 
three tosses.
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(because, between n and N, there can be no reduction in either the number of successes 
or of failures). There are ( )h

n  paths from the origin arriving at [n, h], and H h
N n  paths 

leading from this point to [N, H ]. There are, therefore, ( )h
n

H h
N n 16 paths from the origin to 

[N, H ] which pass through the given intermediate point [n, h]; summing over the appropri
ate values of h, we must obtain H

N , thus establishing the identity. Further, we see that

 
n
h

N n
H h H

N/
 

is the probability of passing through the given intermediate point conditional on arriving 
at the given final destination (in other words, we obtain

 P PY h n Y H N S h S Hn N n N2 2| ( | )or ; 

we shall return to this later).
The rth success. Problem (F ) of 7.2.4 can be tackled in a similar fashion, by reasoning 

in terms of crossings of sloping lines rather than vertical ones. In fact, the rth success is 
represented by the rth step upward; that is, the step which takes one from the line y =  
2r − 2 − t to the line y = 2r − t (i.e. from the rth to the (r + l)th downward sloping line of 
the lattice, starting from y = −t). It is obvious that the rth failure can be dealt with by 
simply referring to upward sloping lines rather than downward ones. We have already 
shown the probability of the rth success at the hth toss to be r

h h
1
1 2/ . We note that the 

favourable paths are those from 0 to [h, r] whose final step is upward, that is passing 
through [h − 1, r − 1], and that there are, in fact, r

h
1
1  of these.

If one is interested in considering the problem conditional on the path terminating at 
[N, H], it is easily seen that there are r

h
H r
N h

1
1  paths in which the rth success occurs at 

the hth toss (they must go from 0 to [h − 1, r −1], and then, with a compulsory step, to 
[h, r], and finally on to [N, H]). As above, we can sum over all possibilities to obtain  

h
n 17 (the sum being taken over r ⩽ h ⩽ N − H + r, since r successes cannot occur until 

at least r trials have been made, nor can there be more than H − r failures in the final 
H − r trials).

Dividing the sum by the total, we obtain, in this case also, the conditional probabilities 
(of the rth success at the hth toss, given that out of N tosses there are H successes; we 
must have r ⩽ h ⩽ H N − H + r). These are given by

16 It is often not sufficiently emphasized that the basic operation of combinatorial calculus is the product; 
this should always be borne in mind, using this and many similar applications as examples.
17 In this way, we arrive at meaningful interpretations of two wellknown identities involving products of 
binomial coefficients:
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N n n

h H n N

n H

0
(holding for each fixed with, 11

1
1

 n N

H
N

r
h

H r
N h

h r

N H r

).

(holding for each fixed rr r H, )with .1  

These simply give the number of paths from 0 to [N, H], expressed in terms of the points at which they cross 
vertical (1st identity) or sloping (2nd identity) lines.
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|

| NN H N2 . 
This result will also be referred to again later.

Gambler’s ruin. The problem of the crossings of horizontal lines is more complicated, 
as, unlike the previous cases, more than one crossing is possible (in general, an unlim
ited number). It is, however, a very meaningful and important topic, and, in particular, 
relates to the classical gambler’s ruin problem.

If a gambler has initial fortune c, then his ruin corresponds to his gain reaching −c. 
Similar considerations apply if two gamblers with limited fortunes play against each 
other. Here, we confine ourselves to just this brief comment but we note that, for this 
and for other similar problems (some of them important), arguments in terms of paths 
will turn out to be useful. In particular, we shall make use of appropriate symmetries of 
paths by means of Desiré André’s celebrated reflection principle (in particular, Chapter 8 
will deal with topics of this kind).

7.4 Some Particular Distributions

7.4.1. Before we actually begin our study of random processes, we shall, on the basis of 
our preliminary discussions, take the opportunity to examine a few simple problems in 
more detail, and to consider some particular distributions.

In order to avoid repetition later (and for greater effectiveness), we shall consider 
these distributions straightaway, both in the special forms that are appropriate for 
Heads and Tails, and in the more general forms. It should be noted that although the 
form of representation which we have adopted is a valid and useful one, the property of 
fairness (together with the principle of reflection and the equal probabilities of the 
paths) only holds for the special case of Heads and Tails.

In order to achieve some uniformity in notation, we shall always use X to denote the 
random quantity under consideration, and ph = P(X = xh) to denote the probability concen
trated at the point xh.18 In the examples we shall consider, however, it turns out that the 
possible values of xh are always integer (apart from changes in scale, xh = h). For the particu
lar case of the ‘number of successes’, we shall always use h

n
nS hP( ) for the ph.

7.4.2. The Bernoulli (or binomial) distribution. This is the distribution of Sn = E1 + 
E2 + … + En (or of Yn = 2Sn − n, or of the frequency Sn/n – they are identical apart from 
an irrelevant change of scale) when the events Eh are independent and have equal prob-
abilities, P(Eh) = p. When p = 1

2 , as in the case of Heads and Tails, we have the symmetric 
Bernoulli distribution. The distributions are, of course, different for different n and p. 
Given n, the possible values are xh = h = 0, 1, 2,…, n (or xh = a + hb = a, a + b, a + 2b,…, 
a + nb), and their probabilities are given by

 
p h

n p p p h
nph

h n h
h

n
 ( ),if /1

2
2  (7.2)

that is the h
n( ) of the process.

18 We shall use concentrated rather than adherent (see Chapter 6) because, in these problems, the possible 
values can only be, by definition, the xh themselves (finite in number, and, in any case, discrete).
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For the case p = 1
2
, we know that P(X) = n/2, and σ(X) = √n/2 (see Section 7.3.4). Similarly, 

for arbitrary p, we see that P(X) = np, σ(X) = √(np p), because for each summand we have

 P P P PE E p E E E p p ppi i i i i
2 2 2 2 2,  . 

Hence, using the second‐order properties, we obtain, without calculation,

 

2

0

2

0

X h
n p p h np npp

X h
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(in addition to P nn p p h nph n h
 ).

 (7.3)

The behaviour of the ph h
n( ) in the case p = 1

2
 is governed by that of the binomial 

coefficients ( )h
n . These are largest for central values (h ≃ n/2) and decrease rapidly as one 

moves away on either side. Unless one looks more carefully19 at ratios like ph+1/ph, 
however, it is difficult to get an idea of how rapidly they die away:
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in general for .,


 (7.4)

The same conclusions hold for general p, except that the maximum is attained for some 
h ≃ np (instead of ≃ 12  n).

In fact, a consideration of Tchebychev’s inequality suffices to show that the probabil
ity of obtaining values far away from the prevision is very small. Those h which differ 
from np by more than nε (ε > 0), that is corresponding to frequencies h/n not lying 
within p ± ε, have, in total, a probability less than σ2(X)/(nε)2 = np p/(nε)2 = p p/nε2 (and 
this is far from being an accurate bound, as will be clear from the asymptotic evalua
tions which we shall come across shortly; equation 7.20 of Section 7.5.4).

Comments. The ph can be obtained as the coefficients of the expansion of

 
p pt p t tn

h

n

h
h

h

n

h
n h

0 0  

(the alternative notation being chosen to avoid any ambiguity in the discussion which 
follows). It suffices to observe that the random quantity

 i

n

i iE tE
1



 
is the sum of the constituents multiplied by th, where h is the number of positive 
outcomes (giving, therefore, Sn = h). Its value is thus given by

 h

n

n
h SnS h t t

0
,
 

19 As is done, for the purpose of providing an elementary exposition, in B. de Finetti and F. Minisola, La 
matematica per le applicazioni economiche, Chapter 4. See also a brief comment later (in Section 7.6.3).
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and its prevision, that is the characteristic function φ(и) with t = eiu (or u = −i log t), by

 P Pt S h tSn n
h . (7.5)

A generalization. In the same way, we observe that the result holds even if the Ei 
(always assumed stochastically independent) have different probabilities pi. In this case, 
the h

n( ) are given by

 h

n

h
n h

i

n

i it p tp
0 1

 . (7.6)

On the other hand, this only expresses the obvious fact that h
n( ) is the sum of the 

products of h factors involving the pi, and n − h involving the complements pi.
In particular, we see that 2 S p pn i ii

 , and that this formula (like np p, of which it is 
an obvious generalization) continues to hold, even if we only have pairwise independence. 
(Recall that this is not sufficient for many other results concerning the distribution.)

7.4.3. The hypergeometric distribution. As in the previous case, we are interested in 
the distribution of X = Sn (or Yn = 2Sn − n, or Sn/n, which, as we have already remarked, 
only differ in scale). The difference is that we now condition on the hypothesis that, for 
some given N > n, we have SN = H.

In deriving the required distribution, it suffices that the H
N  paths from 0 to [N, H] 

appear equally probable to us. It does not matter, therefore, whether we choose to think 
in terms of Heads and Tails (where initially all 2N paths were equally probable, and the 
paths compatible with the hypothesis remain such), or in terms of events which, prior to 
the hypothesis, were judged independent and equally probable, but with 1

2p  (because 
in the latter case all the remaining H

N  paths have the same probability, p pH N H
 ).

Instead of thinking in terms of these representations (whose main merit is that they 
show the links with what has gone before), it is useful to be able to refer to something 
rather more directly relevant. The following are suitable examples: drawings without 
replacement from an urn (containing N balls, H of which are white); counting votes (where 
a total of N have been cast, H of which are in favour of some given candidate); ordering N 
objects, H of which are of a given kind (N playing cards, H of which are ‘Hearts’; N con
testants, H of whom are female). In all these cases, the N! possible permutations are all 
considered equally probable. (Or, at least, all H

N  possible ways of arranging the two 
different kinds of objects must be regarded as equally probable; it is these which corre
spond to the H

N  paths involving H upward steps and N − H downward steps.)
Under the given assumptions (or information), each event Ei(i ⩽ N) has probability 

P(Ei) = H/N20 (and, for convenience, we shall write H/N = q). These events are not 
independent; in fact, we shall see later that they are negatively correlated.

20 Given that we assume the hypothesis SN = H to be already part of our knowledge or information, we take 
P(E) to mean P(E|SN = H). In this situation, the Ei have probability q = H/N, but are not stochastically 
independent (even if they are the outcomes of coin tossing, or rolling a die etc., where, prior to the 
information about the frequency of successes out of N tosses, they were judged independent and equally 
probable). In particular, ph = h

n( ) = P(Sn = h) in this case is what we would have written as P(Sn = h|SN = H) in 
the previous case.
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Observe that, as a result of changes in the state of information, problems which were 
initially distinct may come to be regarded as identical, and assumptions about equal 
probabilities, or independence, may cease to hold (or conversely in some cases). These 
and other considerations will appear obvious to those who have entered into the spirit 
of our approach. Those who have come to believe (either through ignorance or misun
derstanding) that properties like stochastic independence have an objective and abso
lute meaning that is inherent in the phenomena themselves, will undoubtedly find these 
things rather strange and mystifying.

The distribution that concerns us (for example, that of the number of white balls 
appearing in the first n drawings  –  or something equivalent in one of the other 
examples) will be different for every triple n, N and H (or, equivalently, n, N, q). For 
q = 1

2 , that is for H = N − H = 1
2 N, the distribution is symmetric; P(Sn = h) = P(Sn = 

n − h). The possible values are the integers xh = h, where 0 ∨ H − (N − n) ⩽ h ⩽ n ∧ 
H (or xh = a + hb; e.g. = 2h − n, or = h/n) and their probabilities are, as we saw 
already in 7.3.4,
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 (7.7)

The interpretation of the four different forms is as follows.
The first form (as we already know) enumerates the paths.
The second form enumerates those n‐tuples, out of the total of H

N  that can be drawn 
from N events, which contain h out of the H, and n − h out of the N − H.

The third form (which can be derived from the previous two) can be interpreted 
directly, observing that the probability of first obtaining h successes, and then n − h 
failures, is given by the product of the ratios (of white balls, and then of black balls) 
remaining prior to each drawing:
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But this is also the probability for any other of the ( )h
n  orders of drawing this number of 

successes and failures (even if the ratios at each drawing vary, the result merely involves 
permuting the factors in the numerator, and is, therefore, always the same).

We see already that, provided n is small in comparison to N, H and N − H, all the 
ratios differ little from q (the drawings already made do not seriously alter the composi
tion of the urn). The results will, therefore, not differ much from the Bernoulli case 
(drawings from the same urn with replacement).

The fourth form shows the relation between the two cases explicitly, by displaying the 
correction factor.

The behaviour of the ph in this case is similar to that of the Bernoulli case, and can be 
studied in the same way (by considering ratios ph+1/ph). The maximum is obtained by 
the largest h which does not exceed

 nq N H N1 2 2 3 2/ /  
(the reader should verify this!), and as one moves further and further away on each side, 
the ph decrease. Compared with the Bernoulli case, the terms around the maximum are 
larger, and those far away are smaller. Some insight into this can be obtained by looking 
at the final formula.21

For the prevision, we have, of course, P(X) = nq = nH/N. The standard deviation σ(X), 
on the other hand, is a little smaller than √(np p) (the result for the case of independence), 
and is given by

 
2 1 1 1X nqq n N / . 

In fact, if we evaluate the correlation coefficient r between two events (r = r(Ei, Ej), i ≠ j) 
we obtain r = −1/(N − 1). More specifically,

 P E E H N H N q H Ni j / / / / ,1 1 1 1 1 12 /  

from which it follows that

 

r E E E E E E

q N H N N q
i j i j i jP P P /

/ /2 1 1 q N1 1/ . 

21 For this correction factor, the variant of Stirling’s formula (equation 7.28) which is given in equation 30 
(see 7.6.4) yields the approximation (for n ≪ N)
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N
n n

 
,

where we have set η = H/N and ξ = h/n (i.e. the percentage of white balls in the urn, and the frequency of 
white balls drawn in a sample of n, respectively). In the special case η = 1

2  (H = 1
2 N; half the balls in the urn 

are white, half black), the expression simplifies considerably to give

 
exp .1

2
1 4 1

2

2n
N

n

On the basis of this, we conclude that (approximately) the distribution gives higher probabilities than the 
Bernoulli distribution in the range where h lies between ηη ± √[nη(1 – η)] (i.e. between m ± σ), with a 
maximum at nη, and lower values outside this interval.
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It is possible, however, to avoid the rather tiresome details (which we have skipped over) 
by using the argument already encountered in Chapter 4, 4.17.5, and observing that

 
2 2 2 1 1S nqq n rqq nqq n rn    . 

For n = N, we have σ(SN) = 0, because (SN = H) = the certain event, and hence

 1 1 0 1 1N r r N, / . (7.8)

Remarks. Note how useful it can be to bear in mind that apparently different problems 
may be identical, and how useful it can be to have derived different forms of expression 
for some given result, to have found their probabilistic interpretations, and to be in a 
position to recognize and use the simplest and most meaningful form in any given situ
ation. Note, also, that one should be on the lookout for the possibility of reducing more 
complicated problems to simpler ones, both heuristically and, subsequently, by means of 
rigorous, detailed, analytical arguments, either exact or approximate.

In the case considered, we can go further and note that, by virtue of their interpreta
tions within the problem itself, we have h

n
H h
N n( ) ( ). In other words, for given N and H, 

the distributions for complementary sample sizes n and N − n are identical if we reverse 
h = 0, 1,…, H to H,…, 1, 0 (and this can be seen immediately by glancing at the formula). 
It follows that, among other things, what is claimed to hold for ‘small n must also hold 
for large n’ (i.e. n close to N). The approximation does not work for central values (n ~ 1

2N) 
and we note, in particular, that, for n lying between N and N − H, not all the values  
h = 0, 1,…, n are possible (since they themselves must lie between H and n − (N − H).

7.4.4. The Pascal distribution. This is the distribution of X = ‘the number of tosses 
required before the rth Head is obtained’ (more generally, it arises for any independent 
events with arbitrary, constant probability p). Alternatively, it is the distribution of X 
such that SX = r > SX−1. By changing the scale, we could, of course, consider X′ = a + bX. 
One example of this which often crops up is X′ = X − r = ‘the number of failures preceding 
the rth success’, but many of the other forms, such as those considered in the previous 
case, do not make sense in this context.

A new feature is that the distribution is unbounded, the possible values being xh =  
h = r, r + 1, r + 2,… (up to infinity, and, indeed, +∞ must be included as a possible value, 
along with all the integers, since it corresponds to the case where the infinite set of trials 
result in less than r successes). In line with our previous policy, we shall avoid critical 
questions by deciding that if the rth success is not obtained within a maximum of  
N trials (where N is very large compared with the other numbers in question) we shall 
set X = N. (To be precise, we shall consider X′ = X ∧ N instead of X) Were we to 
 consider X′ = X − r, the possible values would be 0, 1, 2,… (and this is one of the reasons 
why this formulation is often preferred; another reason will be given in the discussion 
that follows; see equation 7.15).

For each r and p, we have, of course, a different distribution:
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(7.9)

In fact (as we saw in (F ), 7.2.4, for the special case p = 12  in order to obtain X = h, we must 
have r − 1 successes in the first h − 1 trials, together with a success on the hth trial. 
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In terms of the random process representation, we are dealing with the crossing of the 
line y = 2r − x (or, if one prefers, with the mass that ends up there if the line acts as an 
absorbing barrier).

Note that the series ∑ph sums up to 1. It must, of course, be convergent with sum ⩽1 
by its very meaning; the fact that it is = 1, and not < 1, ensures that, as n increases, the 
probability that X > n tends to zero (and, in particular, the probability that X = ∞ is 0).

So far as the behaviour of the distribution is concerned, the ph again increase until 
they reach a maximum (attained for the greatest h ⩽ r/p), and then decrease to zero 
(asymptotically, like a geometric progression with ratio p). A more intuitive explanation 
of the increase is that it continues so long as the prevision of the number of successes, 
P(Sh) = hp, does not exceed the required number of successes, r.

The geometric distribution. For r = 1, the Pascal distribution reduces to the special 
case of the geometric distribution:

 p pph
h r
 , (7.10)

forming a geometric progression (p1 = p, with ratio p = 1 − p). If, for example, the first 
failure corresponds to elimination from a competition, this gives the probability of 
being eliminated at the hth trial, when the probability of failure at each trial is p. (N.B. 
For the purposes of this particular example, we have, for the time being, interchanged 
‘success’ and ‘failure’.) In particular, it gives the probability that a machine first goes 
wrong the hth time it is used, or that a radioactive atom disintegrates in h years time and 
so on, where the probability of occurrence is p on each separate occasion. (If the prob
ability of death were assumed to be constant, rather than increasing with age, this would 
also apply to the death of an individual in h years time.)

The property of giving the same probability, irrespective of the passing of time, or of 
the outcomes of the phenomenon in the past, is known as the lack of memory property 
of the geometric distribution. The waiting time for a particular number to come up on 
the lottery22 has, under the usual assumptions, a geometric distribution (the ratio is 
p 17

18 94 44%, for a single city; p 17
18

10
 = 56% for the whole set of ten cities). This 

provides further confirmation, if such were needed, of the absurdity of believing 
that numbers which have not come up for a long time are more likely to be drawn in 
future.

To put this more precisely: it is absurd to use the small probabilities of long waiting 
times, which are themselves evaluated on the basis of the usual assumptions, and are 
given by the geometric distribution (or to invoke their comparative rarity, statistically 
determined in accordance with it), to argue, on the basis of independence, against the 
very assumptions with which one started – that is the lack of memory property. If, on 
the other hand, someone arrived at a coherent evaluation of the probabilities by a 
different route, we might not judge him to be reasonable, but this would simply be a 
matter of opinion.

Finally, let us give the explicit expression for the case r = 2 (again, this could be thought 
of as elimination from a competition, but this time at the second failure): it 
reduces to p h p ph

h1 2 2
 .

22 Translators’ note. See footnote 28 in Chapter 2.
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Prevision and standard deviation. In order to calculate P(X) and σ(X), it turns out to 
be sufficient to do it for the case r = 1. We obtain

 
P X p h p pp p

h

h

1

1 21 1 / / , (7.11)
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/pp p p p3 21 2/ /

 (7.12)

(verify this!), and hence,

 
2 2 2 21X X X p pP P / . 

For general r, it suffices to note that

 P X r p/ , (7.13)

 
2 21X r p p/ , (7.14)

because (as we already observed for P(X) in the case p = 1
2 ; see (M), 7.2.7) we can 

consider X as the sum of r terms, X1 + X2 + … + Xr, stochastically independent, and each 
corresponding to r = 1 (Xi = the number of trials required after the (i − l)th failure until 
the ith failure occurs).

Comments. This technique will also be useful in what follows: note that it can also be 
used for X′ = X − r if we consider r summands of the form X Xi i 1.

In this context (i.e. with h transformed into h + r), the ph are given by

 
p p p pp p ph r

h r r h
h

h r r h h
h
r r h

1
1 1 1   , (7.15)

where the definition ( )h
x  = x(x − 1)… (x − h + 1)/h! is extended to cover any real x (not 

necessarily integer, not necessarily positive).
If we do this, the distribution then makes sense for any real r > 0. This generalized 

form of the Pascal distribution (which has integer r) is called the negative binomial 
distribution (simply because it involves the notation ( )h

r ). For r = 0, the distribution is 
concentrated at the origin (p0 = 1, ph = 0, h ≠ 0); for r ~ 0, we have p rp hh

h� � /  (h ≠ 0) (the 
logarithmic distribution; see Chapter 6, 6.11.2), and hence

 
p r p h r p

h

h
0

1
1 1 1� � / / .log  (7.16)

We shall make use of this later on, and the significance of the extension to noninteger 
r will also be explained.

The prevision in this case is clearly given by

 P PX X r r pp / , (7.17)
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whereas the standard deviation, rp p / , is unaltered; this also holds for noninteger r.
Another form. We have already seen (Section 7.3) that, if SN = H is assumed to be 

known, the problem of the location, h, of the rth success leads to the distribution

 ph r
h

H r
N h

H
N

1
1 / , (7.18)

rather than to the Pascal distribution. For an example where this distribution occurs, 
consider an election in which N votes have been cast and are counted one at a time. 
Suppose further that a candidate is to be declared elected (or a thesis accepted) when r 
votes in favour have been counted. Given that a total of H ⩾ r out of N were actually 
favourable, equation 7.18 gives the probability that success is assured by the counting of 
the hth vote. (Another example, with N = 90 and H = r = 15, is given by the probability 
of completing a ‘full house’ at bingo with the hth number called.)

We shall restrict ourselves to considering the particularly simple case of H = r = 1, a 
case which is nonetheless important (and a study of the general case is left as an exercise 
for the reader). Clearly (even without going through the algebra), we have ph = 1/N for 
h = 1, 2,…, N. If there has only been one success in N trials (or there is only one favour
able vote in the ballot box, or only one white ball in the urn, or only one ball marked 
‘90’), there is exactly the same probability of finding it on the first, second,…, or Nth 
(final) trial.

7.4.5. The discrete uniform distribution. This is the name given to the distribution of 
an X which can only take on a finite number of equally spaced possible values, each with 
the same probability: for example xh = h, h = 1, 2,…, n (or xh = a + bh), with all the ph = 
1/п. As examples, we have a fair die (n = 6), a roulette wheel (n = 37) or the game of 
bingo (n = 90).

It is easily seen that

 
P PX n X n n n n1

2
1 1 2 4 6 2 122 2 2 2 2, / / ,

 

from which (subtracting 1
2

1 3 6 3 12
2

2n n n / ) we obtain

 
2 2 21 12 12 1 1 12X n X n n n/ / / / .,   

A random process (Bayes–Laplace, Pólya). Using this distribution as our starting 
point, we can develop a random process similar to that which led to the hypergeometric 
distribution. In fact, we consider successive drawings (without replacement) from an 
urn containing N balls, with the possible number of white balls being any of 0, 1, 2,…, N, 
each with probability l/(N +1). (This could arise, for example, if the urn were chosen 
from a set of N + 1 urns, ranging over all possible compositions, and there were no 
grounds for attributing different probabilities to the different possible choices.)

Let us assume, therefore, that H
N N H N( ) ( )( , , , )1 1 0 1 2/ , and that (as in the case 

of a known composition, H/N) all the permutations of the possible orders of drawing 
the balls are equally probable: in other words, that all the dispositions of H white and N 
− H black balls (i.e. all the paths from 0 ending up at the same final point [N, H]) are 
equally probable. Each of these paths therefore has probability 1 1/( )( )H

N N .
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We shall now show that, under these conditions, the distribution for every Sn (n < N) 
is uniform, just as we assumed it to be for SN: that is

 h
n n h n1 1 0 1 2/ ., , , ,

 

It can be verified, in a straightforward but tedious fashion, that

 H

N

h
n

H n
N n

H
N N n0

1
1

1
1

 

(the probabilities of the paths terminating at [N, H] multiplied by the number of them 
that pass through [n, h], the sum being taken over H). The proof by induction (from N 
to N − 1, N − 2,…, etc.) is much simpler, however, and more instructive. It will be 
sufficient to establish the step from N to N − 1. The probability h

N( )1  that SN−1 = h is 
obtained by observing that this can only take place if H = h and the final ball is black, 
or if H = h + 1 and the final ball is white; each of these two hypotheses has probability 
1/(N + 1) and the probabilities of a black ball under the first hypothesis and a white ball 
under the second are given by (N − h)/N and (h + 1)/N, respectively. It follows that

 
h

N

N
N h

N
h

N N
1 1

1
1 1 .  (7.19)

Expressed in words: if all compositions are equally probable, so are all the frequencies 
at any intermediate stage. This property ( ( ))( )

h
n n1 1/  can also hold for all n (without 

them being bounded above by some pre‐assigned N), and leads to the important 
Bayes–Laplace process (which we shall meet in Chapter 11, 11.4.3) or, with a different 
interpretation, to the Pólya process (Chapter 11, 11.4.4) with which it will be compared.

7.5 Laws of ‘Large Numbers’

7.5.1. We now return to our study of the random process of Heads and Tails (as well 
as some rather less special cases) in order to carry out a preliminary investigation of 
what happens when we have ‘a large number’ of trials. This preliminary investigation 
will confine itself to qualitative aspects of the order of magnitude of the deviations. 
In a certain sense, it reduces to simple but important corollaries of an earlier result, 
which showed that the order of magnitude increases as the square root of n (the number 
of trials).

In the case of Heads and Tails p 1
2  the prevision of the gain, Yn, is zero (the process 

is fair; P(Yn) = 0), and its standard deviation σ(Yn) (which, in a certain sense, measures 
‘the order of magnitude’ of |Yn|) is equal to √n. The number of successes (Heads) is 
denoted by Sn and has prevision 1

2 n; its standard deviation (the order of magnitude, 
measured by σ) is equal to 1

2 n. For the frequency of successes, Sn/n, the prevision and 
standard deviation are those we have just given, but now divided by n; that is 1

2  and  
1
2 / n, respectively. In a similar way, one might be interested in the average gain (per toss), 
Yn/n; this has prevision 0 and standard deviation 1/√n.
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The fact that

 
P S

n n
n 1

2
1

4
0

2

 
is expressed by saying that the frequency converges in mean‐square to 1

2
. This implies 

(see Chapter 6, 6.8.3) that it also converges in probability. Similarly, the average gain 
converges to 0 (both in mean‐square and in probability).

We recall that convergence in probability means that, for positive ε and θ (however 
small), we have, for all n greater than some N,

 
P S

n
n 1

2
.
 

A straightforward application of Tchebychev’s inequality shows that the probability in 
our case is less than 2 2 21 4/ / n .

7.5.2. When referring to this result, one usually says, in an informal manner, that after a 
large number of trials it is practically certain that the frequency becomes practically equal 
to the probability. Alternatively, one might say that ‘the fluctuations tend to cancel one 
another out’. One should be careful, however, to avoid exaggerated and manifestly absurd 
interpretations of this result (a common trap for the unwary). Do not imagine, for exam
ple, that convergence to the probability is to be expected because future discrepancies 
should occur in such a way as to ‘compensate’ for present discrepancies by being in the 
opposite direction. Nor should one imagine that this holds for the absolute deviations. It 
is less risky to gamble just a few times (e.g. ten plays at Heads and Tails at 1000 lire a time) 
than it is to repeat the same bet many times (e.g. a 1000 plays are 10 times more risky; 
10 = √(1000/10)). On the other hand, it would be less risky to bet 1000 times at 10 lire a 
time. Furthermore, if at a certain stage one is losing – let us say 7200 lire – the law of large 
numbers provides no grounds for supposing that one will ‘get one’s own back’.23 In terms 
of prevision, this loss remains forever at the same level, 7200 lire. The future gain (positive 
or negative) has prevision zero but, as one proceeds, the order of magnitude becomes 
larger and larger and, eventually, it makes the loss already suffered appear negligible. It is 
in this sense, and only in this sense, that the word ‘compensate’ might reasonably be used, 
since one would then avoid the misleading impression that it usually conveys. The fact 
remains, however, that the loss has already been incurred.

Observe once again how absurd it would be to imagine, a priori, some sort of 
 correlation – which would be a consequence of laws and results derived on the basis 
of an assumption of independence!

7.5.3. In addition to this, one should note that the property we have established 
 concerns the probability of a deviation >ε between the probability and the frequency for 

23 The illusory nature and pernicious influence of such assumptions are referred to in a popular, witty 
saying (possibly Sicilian in origin), in itself rather remarkable, given that popular prejudice seems on the 
whole to incline towards the opposite point of view. The saying concerns the answer given by a woman to a 
friend, who has asked whether it was true that her son had lost a large amount of money gambling: ‘Yes, it’s 
true’, she replies, ‘But that’s nothing: what is worse is that he wants to get his own back!’.
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an individual n (although it can be for any n ⩾ N). This clearly does not imply – although 
the fact that it does not can easily escape one’s notice – that the probability of an ‘excep
tional’ deviation occurring at least once for an n between some N and an N + K greater 
than N is also small.

It is especially easy to overlook this if one gets into the habit of referring to events with 
small probability as ‘impossible’ (and even worse if one appears to legitimize this bad habit 
by giving it a name – like ‘Cournot’s principle’, Chapter 5, 5.10.9). In fact, if an ‘exception’ 
were impossible for every individual case n ⩾ N, it would certainly be impossible to have 
even a single exception among the infinite number of cases from n = N onwards.

If one wanted to use the word ‘impossible’ in this context without running into these 
problems, it would be necessary to spell out the fact that it should not be understood as 
meaning ‘impossible’, but rather ‘very improbable’. However, anyone who states that 
‘horses are potatoes’, making it clear that when it refers to horses the meaning of ‘potato’ 
is not really that of ‘potato’ (but rather that of ‘horse’), would probably do better not 
to create useless terminological complications in the first place (since, in order for it 
not to be misleading, it must be immediately followed by a qualification which takes 
away its meaning).

Now let us return to the topic of convergence. If the probability of a deviation |Sn/n − 1
2 |  

at Heads and Tails being greater than ε were actually equal to 1/4nε2, then, for any N, in 
some interval from N to a sufficiently large N + K the prevision of the number of 
‘exceptions’ (deviations >ε) would be arbitrarily large (approximately (l/4ε2) log(1 + K/N)). 
This follows from the fact that the series ∑1/n is divergent and the sum between N and 
N + K is approximately equal to log(l + K/N). In fact, as we shall see later, the result we 
referred to at the beginning of 7.5.3 does hold. It just so happens that the Tchebychev 
inequality, although very powerful in relation to its simplicity, is not sufficient for this 
more delicate result. Stated mathematically, we have, for arbitrary positive ε and θ,

 
P max

N n N K

nS
n 

1
2

,
 

provided N is sufficiently large (K is arbitrary).24 This form of stochastic convergence is 
referred to as strong convergence and the result is known as the ‘strong law of large 
numbers’. By way of contrast, the word ‘strong’ is replaced by ‘weak’ when we are refer
ring to convergence in probability, or to the previous form of the law of large numbers.

7.5.4. In order to fix ideas, we have referred throughout to the case of Heads and Tails. 
Of course, the results also hold for p ≠ 1

2  (except that we then have to write 2 pp , 
which is 1

4  unless p = 1
2 ) and even in the case where the pi = P(Ei) vary from event to 

event (provided i ip p  diverges, which may not happen if the pi get too close to the 
extreme values 0 and 1). In the latter case, our statement would, in general, assert that 
the difference between the frequency Sn/n in the first n trials and the arithmetic mean 
of the probabilities, ( p1 + p2 + … + pn)/n, tends to zero (in mean‐square and in probability). 
Only if the arithmetic mean tends to a limit p (or, as analysts would say, if the pi are a 

24 Were it not for our finitistic scruples (see Chapter 6 and elsewhere), we could do as most people do, and 
write sup(n ⩾ N) in place of max(N ⩽ n ⩽ N + K), saying that it is ‘almost certain’ (i.e. the probability = 1) 
that lim(Sn/n) =1

2
 (in the sense given).
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sequence converging to p in the Cesàro sense) does the previous statement in terms of 
deviation from a fixed value hold (and the fixed value would then be the limit p).

We can, however, say a great deal more on the basis of what we have established so far. 
The only properties we have made use of are those of the previsions and standard devia
tions of the gains of individual bets, 2Ei − 1, and of their sums, Yn. It is easy to convince 
oneself that for the conclusion (weak convergence) to hold we only require that the 
gains Xi (i = 1, 2,…) have certain properties. For example, it suffices that they have zero 
prevision and are (pairwise) independent with constant, finite standard deviations. 
More generally, we only require that they are (pairwise) uncorrected and that the 
standard deviations σ(Xi) = σi are bounded, and such that i

2  diverges. Considering 
the case of zero prevision for convenience, we have

 
Y n X X X nn n/ / and hence .1 2 0 0

 

Expressed in words: the (weak) law of large numbers holds for sums of uncorrelated 
random quantities under very general conditions, in the sense that the arithmetic mean, 
Yn/n, tends to 0 in quadratic prevision, and the probability of its having an absolute 
value >ε (an arbitrary, preassigned positive value) also tends to 0.

The strong law of large numbers also holds under very general conditions. The argu
ment which ensures its validity if the sum of the probabilities ph of ‘exceptions’ (devia
tions |Yh/h| > ε) converges, turns out to be sufficient if these probabilities are evaluated 
on the basis of the normal distribution, and this will be the case if the Xh are assumed to 
be independent with standard unit normal distributions (m = 0, σ = 1). Asymptotically, 
however, this property also holds in the case of Heads and Tails, and for any other Xh 
which are identically distributed with finite variances (let us assume σ = 1).25 We shall, 
as we mentioned above, restrict ourselves to the proof based on the convergence of ∑ph. 
Afterwards, we shall mention the possibility of modifications which make the proce
dure much more powerful.

Since the distribution function of the (standard unit) normal cannot be expressed in 
a closed form, it is necessary, in problems of this kind, to have recourse to an asymptotic 
formula (which can easily be verified – by L’Hospital’s rule, for example):
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It follows, since Yh has standard deviation √h, that |Yh/h| > ε can be thought of as 
|Yh/√h| > ε√h = ε√h × the standard deviation of the standardized distribution, and, 
therefore,
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25 That the normal distribution frequently turns up is a fact which is well known, even to the layman 
(though the explanation is often not properly understood). The case we are referring to here will be dealt 
with in Section 7.6; we shall not, therefore, enter into any detailed discussion at present.
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The geometric series e ch converges, however, and hence, a fortiori, so does the 
series hp , with the terms divided by √h. The remainder, from some appropriate N 
onwards, is less than some preassigned θ, and this implies that the probability of even a 
single ‘exceptional deviation’, |Yh/h| > ε, for h lying between N and an arbitrary N + M, 
is less than θ. (If countable additivity were admitted, one would simply state the result 
‘for all h ⩾ N’.)

The conclusion can easily be strengthened by observing that convergence still holds 
even if the constant ε is replaced by some ε(h) decreasing with h; for example,

 h a h h a2 1log / , with . 

We then have hε2 = 2a log h, and

 
p Y h h K a h hh h

a h aP / / log log2 e .
 

But the terms (…) tend to zero, the series ∑ h−a (a > 1) converges, and, a fortiori, ∑ph 
converges. Expressed informally, this implies that, from some N on, it is ‘almost certain 
that Yh will remain between ±c√(2h log h)’ for c > l.

The argument that follows exemplifies the methods that could be used to further 
strengthen the conclusions. Indeed, we shall see precisely how it is that one arrives at a 
conclusion which is, in a certain sense, the best possible (‘we shall see’, in the sense that 
we will sketch an outline of the proof without giving the details).

We note that were we to consider only the possible exceptions (Yh lying outside the 
interval given above) at the points h = 2k, instead of at each h, we could obtain the same 
convergent series by taking

 
h h a k a h a h2 2 2log ~ log log , loginsteadof .

 

A conclusion that only applies to the values h = 2k is, of course, of little interest, but it is 
intuitively obvious that we certainly do not require a check on all the h. The graph of  
y = Y(h) can scarcely go beyond the preassigned bounds if one checks that it has 
remained within them by scanning a sufficiently dense sequence of ‘check points’. Well, 
one can show that the check points h = 2k (for example) are sufficiently dense for one to 
be able to conclude that – again expressed informally – it is almost certain that all the 
Yh from some N on (an N which cannot be made precise), will, in fact, remain within 
much smaller bounds of the form ±c√(2h log log h), for c > 1.

What makes this result important is that, conversely, if c < 1, it is ‘practically certain 
that these bounds will be exceeded, however far one continues’. This is the celebrated 
law of the iterated logarithm, due to Khintchin.

Note that, in order to prove the converse which we have just stated, the divergence of 
the series is not sufficient, unless the events are independent (Borel–Cantelli lemma). 
In the case under consideration, we do not have independence. We do, however, have 
the possibility of reducing ourselves to the latter case, because, if h″ is much larger than 
h′ the contribution of the increment between h′ and h″ (which is independent of Y(h′)) 
is the dominating term in Y(h″) = Y(h′) + [Y(h″) − Y(h′)].

All these problems can be viewed in a more intuitive light (and can be dealt with using 
other techniques, developed on the basis of other approaches) if we base ourselves on 
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random processes on the real line (and, so far as the results we have just mentioned are 
concerned, in particular on the Wiener–Lévy process). It will be a question of studying 
the graph у = Y(t) of a random function in relation to regions like |y| ⩽ y(t) (a preas
signed function), by studying the probability of the graph entering or leaving the region, 
either once, or several times, or indefinitely.

Finally, let us just mention the standard set of conditions which are sufficient for the 
validity of the strong law. The Xh are required to be independent, and such that h h2 2/  
converges (the Kolmogorov condition). The proof, which is based on an inequality due 
to Kolmogorov, one which, in a certain sense, strengthens the Tchebychev inequality 
and on the truncation of the ‘large values’ of the Xh, goes beyond what we wanted to 
mention at this stage.

In the classical case (that of independent events with equal probabilities), the weak 
and strong laws of large numbers are also known as the Bernoulli and Cantelli laws, 
respectively.

7.5.5. The meaning and value of such ‘laws’. In addition to their intrinsic meaning, 
both mathematically and probabilistically, the laws of large numbers, and other asymp
totic results of this kind, are often assigned fundamental rôles in relation to questions 
concerning the foundations of statistics and the calculus of probability. It seems appro
priate to provide some discussion of this fact, both in order to clarify the various posi
tions, and, in particular, to clarify our own attitude.

For those who seek to connect the notion of probability with that of frequency, results 
which relate probability and frequency in some way (and especially those results like the 
‘laws of large numbers’) play a pivotal rôle, providing support for the approach and for 
the identification of the concepts. Logically speaking, however, one cannot escape from 
the dilemma posed by the fact that the same thing cannot both be assumed first as a 
definition and then proved as a theorem; nor can one avoid the contradiction that arises 
from a definition which would assume as certain something that the theorem only 
states to be very probable. In general, this point is accepted, even by those who support 
a statistical‐frequency concept of probability; the attempts to get around it usually take 
the form of singling out, separating off, and generally complicating, particular concepts 
and models.

An example of this is provided by the ‘empirical law of chance’. A phrase created for 
the purpose of affirming the actual occurrence of something the ‘law of large numbers’ 
states to be very probable comes to be presented as an experimental fact. Another 
example is provided by ‘Cournot’s principle’: this states, as we mentioned in Chapter 5, 
5.10.9, that ‘an event of small probability does not occur’, and covers the above, implic
itly, as a special case. Sometimes, the qualification ‘never, or almost never’ is added, but 
although this removes the absurdity, in doing so it also takes away any value that the 
original statement may have had.

In any case, this kind of thing does nothing to break the vicious circle. It only succeeds in 
moving it somewhere else, or disguising it, or hiding it. A veritable labour of Sisyphus! It 
always ends up as a struggle against irresolvable difficulties, which, in a well‐chosen phrase 
of B.O. Koopman, ‘always retreat but are never finally defeated, unlike Napolean’s Guard’.

In order for the results concerning frequencies to make sense, it is necessary that the 
concept of probability, and the concepts deriving from it that appear in the statements 
and proofs of these results, should have been defined and given a meaning beforehand. 
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In particular, a result that depends on certain events being uncorrelated, or having equal 
probabilities, does not make sense unless one has defined in advance what one means by 
the probabilities of the individual events. This requires that probabilities are attributed to 
each of the given events (or ‘trials’), that these all turn out to be equal and that, in addition, 
probabilities are attributed to the products of pairs of events, such that these are all equal 
and, moreover, equal to the square of the individual probabilities. In using the word 
‘attributed’, we have, of course, used a word which fits in well with the subjectivistic point 
of view; in this context, however, it would make no difference if we were to think of such 
probabilities as ‘existing’, in accordance with the ‘logical’ or ‘necessary’ conception. In fact, 
the criticisms of the frequentistic interpretation made by Jeffreys, for instance, and the 
case against it which he puts forward (closely argued, and, I would say, unanswerable26), 
are in complete accord with the views we have outlined above. We acknowledge, of course, 
that there are differences between the necessary and subjectivistic positions (the latter 
denies that there are logical grounds for picking out one single evaluation of probability as 
being objectively special and ‘correct’), but we regard this as of secondary importance in 
comparison with the differences that exist between, on the one hand, conceptions in 
which probability is probability (and frequency is just one of the ingredients of the 
‘ outside world’ which might or might not influence the evaluation of a probability) and, on 
the other hand, conceptions in which probability is, to a greater or lesser extent, a deriva
tive of frequency, or is an idealization or imitation of it.

7.5.6. From our point of view, the law of large numbers forms yet another link in the 
chain of properties which justify our making use of expected or observed frequencies in 
our (necessarily subjective) evaluations of probability. We now see how to make use of 
the prevision of a frequency in this connection. The law of large numbers says that, 
under certain conditions, the value of the probability is not only equal to the prevision 
P(X) of a frequency X, but, moreover, we are almost certain that X will be very close to 
this value (getting ever closer, in a way that can be made precise, as one thinks of an 
even larger number of events).

This really completes the picture for the special case we have considered. Rather than 
introducing new elements into the situation (something we shall come across when we 
deal with exchangeable events in Chapter 11, and in similar contexts), we shall use these 
results in order to consider rather more carefully the nature of this special case: that is 
independent events with equal probabilities. It is important to realize that these assump
tions, so apparently innocuous and easily accepted, contain unsuspected implications. 
To judge a coin to be ‘perfectly fair so far as a single toss is concerned’, means that one 
considers the two sides to be equally probable on this (the first) toss, or on any other 
toss for which one does not know the outcomes of the previous tosses. To judge a coin 
to be ‘perfectly fair so far as the random process of Heads and Tails is concerned’ is a 
very different matter.

The latter is, in fact, an extremely rash judgement that commits one to a great deal. 
It commits one, for example, to evaluating the probabilities as 1

2
 at each toss, even if all 

26 See. Harold Jeffreys, Scientific Inference, Cambridge University Press; 1st edn (1931), 2nd edn (1957) and 
Theory of Probability, Oxford University Press; 1st edn (1938), 2nd edn (1948), 3rd edn (1961). Particularly 
relevant are the following: Section 9.21 of the first work, entitled ‘The frequency theories of probability’, and 
Sections 7.03–7.05 of the second, in Chapter 7, ‘Frequency definitions and direct methods’.
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the previous tosses (a thousand, or a million, or 101000,…) were all Heads, or Heads and 
Tails alternately, and so on. Another consequence (although one which is well beyond the 
range of intuition) is that, for a sufficiently large number of tosses, one considers it advan
tageous to bet on the frequency lying between 0·49999 and 0·50001 rather than elsewhere 
in the interval [0, 1] (and the same holds for 0·5 ± 10−1000 etc.). I once remarked that ‘the 
main practical application of the law of large numbers consists of persuading people how 
unrealistic and unreasonable it is, in practice, to make rigid assumptions of stochastic 
independence and equal probabilities’. The remark was taken up by L.J. Savage, to whom 
it was made, and given publicity in one of his papers. It was intended to be witty, in part 
facetious and paradoxical, but I think that it is basically an accurate observation.

Notwithstanding its great mathematical interest, there is clearly even less to be said 
from a realistic and meaningful point of view concerning the strong law of large numbers.

7.5.7. Explanations based on ‘homogeneity’. First of all, it is necessary to draw attention to 
the upside‐down nature of the very definitions of notions (or would‐be notions) like those 
of homogeneous events, perfect coins and so on. Any definition that is framed in objective, 
physical terms, or whatever, is not suitable, because it cannot be used to prove that a given 
probabilistic opinion is a logical truth, nor can it justify its imposition as an article of faith.

If one wants to make use of these, or similar, notions, it is clear, therefore, that their 
meanings can only come about and be made precise as expressions of particular 
instances of probabilistic opinions (opinions which, had one already attributed to these 
notions a metaphysical meaning, preceding these personal opinions, one would have 
called a consequence of it).

I recall a remark, dating from about the time of my graduation, which has remained 
engraved upon my memory, having struck me at the time as being very accurate. A 
friend of mine used to say, half‐jokingly, and in a friendly, mocking way, that it was 
never enough for me to define a concept, but that I needed to ‘definettine’ it. In actual 
fact, I had, by and large, adopted the mode of thinking advocated by authors like Vailati 
and Calderoni (or perhaps it would be more accurate to say that I found their approach 
to be close to my own). Papini used to say of Calderoni that ‘what he wanted to do was 
to show what precautions one ought to take, and what procedures one ought to use, in 
order to arrive at statements which make sense’.27 On the other hand, it was precisely 
this form of reasoning which, in successive waves, from Galileo to Einstein, from 
Heisenberg to Born, freed physics  –  and with it the whole of science and human 
thought  –  from those superstructures of absurd metaphysical dross which had con
demned it to an endless round of quibbling about pretentious vacuities.

At the same time, and for the reasons we have just given, any attempt to define a coin 
as ‘perfect’ on the basis of there being no objective characteristics that prevent the 
probability of Heads from being p 1

2 , or different tosses from being stochastically inde
pendent, is simply a rather tortuous way of making it appear that the above‐mentioned 
objective circumstances play a decisive rôle. In fact, they are mere window dressing. 
The real meaning only becomes clear when these circumstances are pushed on one side 
and one simply proceeds as follows (and, in doing so, discovers that there are two pos
sible meanings of ‘perfect’): we shall use the expression perfect coin in the weak sense as 
a shorthand statement of the fact that we attribute equal probabilities 1

2  to each of the 

27 G. Papini, Stroncature, No. 14: ‘Mario Calderoni’; G. Vailati, Scritti (in particular, see those works quoted 
in the footnotes to Chapter 11, 11.1.5).
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two possible outcomes of a toss; we use the expression in the strong sense if we attribute 
equal probabilities 1

2
n  to each of the 2n possible outcomes of n tosses, for any n. This 

does not mean, of course, that in making such a judgment it is not appropriate (or, even 
less, that it is not admissible) to take into account all those objective circumstances that 
one considers relevant to the evaluation of probability. It merely implies that the evalu
ation (or, equivalently, the identification and listing of the circumstances that might 
‘reasonably’ influence it) is not a matter for the theory itself, but for the individual 
applying it. From his knowledge of the theory, the individual will have at his disposal 
various auxiliary devices to aid him in sharpening his subjective analysis of individual 
cases; the standard schemes will serve as reference points for his idealized schemes. 
There is no way, however, in which the individual can avoid the burden of responsibility 
for his own evaluations. The key cannot be found that will unlock the enchanted garden 
wherein, among the fairy rings and the shrubs of magic wands, beneath the trees laden 
with monads and noumena, blossom forth the flowers of Probabilitas realis. With these 
fabulous blooms safely in our button‐holes we would be spared the necessity of forming 
opinions, and the heavy loads we bear upon our necks would be rendered superfluous 
once and for all.

7.5.8. Having dealt with the logical aspect, it remains to consider, in a more detailed 
fashion, the criticisms of those discussions based upon homogeneity, both from a practi
cal point of view and from the point of view of the ‘realism’ of such a notion in relation 
to actual applications. It is curious to observe that these kinds of properties (independ
ence with equal probabilities) are even less realistic than usual in precisely those cases 
that correspond to the very empirical–statistical interpretation which claims to be the 
most ‘realistic’ (i.e. those attributing the ‘stability of the frequency’ to quasi‐‘physical’ 
peculiarities of some phenomenon possessing ‘statistical regularity’).

Can we really believe that a coin – ‘perfect’ so far as we can see – provides the perfect 
example of a phenomenon possessing these ‘virtues’? There appears to be room for doubt. 
Is it not indeed likely that ‘suspicious’ outcomes would lead us to re‐evaluate the proba
bility, somehow doubting its perfection, or the manner of tossing, or something else?

By way of contrast, we would have less reason for such suspicions and doubts if, from 
time to time, or even at each toss, the coin were changed. This would be even more true 
if coins of different denomination were used and the person doing the tossing were 
replaced, and more so again if the successive events considered were completely differ
ent in kind (for example: whether we get an even or odd number with a die, or with two 
dice, or in drawing a number at bingo, or for the number plate of the first car passing by, 
or in the decimal place of the maximum temperature recorded today and so on; whether 
or not the second number if greater than the first when we consider number plates of 
cars passing by, ages of passers‐by, telephone numbers of those who call us up and so 
on; it is open to anyone to display their imagination by inventing other examples). Under 
these circumstances, it seems very unlikely that a ‘suspicious’ outcome, whatever it was, 
would lead one to expect similar strange behaviour from future events, which lack any 
similarity or connection with those that have gone before.28

28 We have used the qualification ‘suspicious’ only after careful consideration (we have avoided, for 
example, ‘exceptional’, or ‘strange’, or ‘unlikely’). Now is not the appropriate time for a detailed examination 
of this question, however. This will come later (in Chapter 11, 11.3.1), and will clarify the meaning of this 
term and the reasons why it was chosen.
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This demonstrates that the homogeneity of the events (the fact of their being, in some 
sense, ‘trials of the same phenomenon’, endowed with would‐be statistical virtues of a 
special kind) is by no means a necessary prerequisite for the possible acceptance of the 
properties of independence with equal probabilities. In fact, it is a positive obstacle to 
such an acceptance. If, in such a case, the above properties are accepted, it is not that 
they should be thought of as valid because of homogeneity but, if at all, in spite of homo-
geneity (and it is much easier to accept them in other cases because of heterogeneity).29 
Despite all this, we continue to hear the exact opposite, repeated over and over, with the 
tiresome insistence of a silly catchphrase.

The ‘laws of chance’ (although it is rather misleading to refer to them in this way) 
express, instead, precisely that which one can expect from a maximum of disorder, in 
which any kind of useful knowledge is lacking. Any increase in one’s knowledge of the 
phenomena and of their ‘properties’ would, if it were to be at all useful, lead one to favour 
some subset of the 2n possible outcomes, and hence would lead to an evaluation of prob
abilities which are better in this specific case (with respect to the judgment of the individual 
who makes his evaluation after taking it into account) than those which would be valid in 
the absence of any information of this kind. There exists no information, knowledge, or 
property, that can strengthen or give ‘physical’ (or philosophical, or any other) meaning to 
the situation which corresponds to a perfect symmetry of ignorance.30

7.6 The ‘Central Limit Theorem’; The Normal Distribution

7.6.1. If one draws the histograms of the distribution of Heads and Tails (the binomial 
distribution with p 1

2) and compares them for various values of n (the number of 
tosses), one sees that the shape remains the same (apart from discontinuities and trunca
tion of the tails, features which arise because of the discreteness, and tend to vanish as n 
increases). The shape, in fact, suggests that one is dealing with the familiar normal distri
bution (the Gaussian distribution, or ‘distribution of errors’, which we mentioned briefly 
in Chapter 6, 6.11.3, and will further treat in Section 7.6.6; see Figure 7.6). Figure 7.5 gives 
the histogram for n = 9 (which is, in fact, a very small n!), together with the density curve. 
The agreement is already quite good, and the curve and the boundary of the histogram 
would rapidly become indistinguishable if we took a larger n (not necessarily very large).

In order to adjust the histograms to arrive at a unique curve, it is, of course, necessary 
to make an appropriate change of scale (we are concerned with convergence to a type of 
distribution; see Chapter 6, 6.7.1). The standard procedure of transforming to m = 0 and 
σ = 1 (Chapter 6, 6.6.6) is convenient and this is what we have done in the figure.31

29 A fuller account of this may be found in ‘Sulla “compensazione” tra rischi eterogenei’, Giorn. Ist. Ital. 
Attuari (1954), 1–21.
30 The following point has been made many times, and should be unnecessary. We are not speaking of 
exterior symmetries (which could exist), nor of ‘perfect ignorance’ (which cannot exist – otherwise, we 
would not even know what we were talking about), but about symmetry of judgment as made by the 
individual (in relation to the notion of indifference which he had prior to obtaining information, whether a 
great deal or only a small amount).
31 This holds for the actual distribution (discrete: the mass of every small rectangle concentrated at the 
centre). If one thinks of it as diffused, one must modify this slightly (an increase) as we shall see shortly (see 
7.6.2, the case of Fn

I).
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If we were, in fact, to consider the representation in terms of the natural scale (the 
gain Yn, or the number of successes Sn) it would flatten out more and more, since the 
deviation behaves like √n. (One could think in terms of Bittering’s apparatus, in which 
less and less sand would remain in each section as one continued to overturn it; see 
Figure 7.4: on the other hand, a large number of sections would be needed if one were 
to continue for very long.) In contrast to this, if one were to represent it in relative terms 
(the mean gain per toss, Yn/n, or the frequency, Sn/n) the curve would shrink like 1/√n, 
and would rise up to a peak in the centre. The remainder outside this central interval 
would tend to zero by virtue of the Tchebychev inequality. An appropriate choice is 
somewhere in between; as we have seen, one can take Yn/√n (i.e. the standardized devia
tion, both of the gain, and of the frequency from its prevision, 1

2 ).
A somewhat more detailed study of the distribution of Heads and Tails will show us 

straightaway that the convergence to the normal distribution which is suggested by a 
visual inspection does, in fact, take place. In this case, too, however, the conclusions are 
valid more generally. They are valid not only for any binomial process with p ≠ 0 (the 
effect of any asymmetry tends to vanish as n increases32) but also for sums of arbitrary, 
independent random quantities, provided that certain conditions (which will be given 
at the end of the chapter) are satisfied.

7.6.2. The limit distribution F of a sequence of distributions is to be understood in the 
sense defined in Chapter 6, 6.7.1: Fn → F means that, in terms of the distribution func
tions, Fn(x) → F(x) at all but at most a countable set of points (more precisely, at all but 
the possible discontinuity points of F(x)). This does not imply, of course, that if the 
densities exist we must necessarily also have fn(x) → f(x); even less does it imply that if 
the densities are themselves differentiable we must have f x f xn( ) ( ). Conversely, 
however, it is true that these properties do imply the convergence of the distributions 
(indeed, in a stronger and stronger, and intuitively meaningful way; one only has to 
think in terms of the graph of the density function).

32 We mention this case explicitly since many people seem to doubt it (notwithstanding the fact that it is 
clearly covered by the general theorem). Perhaps this is the result of a misleading prejudice deriving from 
too much initial emphasis on Heads and Tails (?).

–9 –7 –5 –3 –1 +1 +3 +5 +7 +9

Figure 7.5 The binomial distribution: Heads and Tails p 1
2  with n tosses, n = 9. The possible values 

for the gain run through the ten odd numbers from −9 to +9, and the height of the column indicates 
the probability concentrated on each of these numbers. To give a more expressive picture, the values 
are assigned uniformly within ±1 of each point; this makes much clearer the approach of the binomial 
to the normal distribution, which will, in fact, be shown to be the limit distribution (as n → ∞).
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In our case, we can facilitate the argument by first reducing ourselves to the case just 
mentioned (albeit with a little trickery along the way). In fact, our distributions are 
discrete, standardized binomial with p 1

2  and hence with probabilities ph h
n n( )/ 2  

concentrated at the points x h n nn ( )/2  (distance 2/√n apart, lying between ±√n). In 
order to obtain a distribution admitting a density, it is necessary to distribute each mass, 
ph, uniformly over the interval xh ± 1/√n; or, alternatively, with a triangular distribution 
on xh ± 2/√n. In this way, we obtain a continuous density (in the first case, the density is 
a step function; in the second, the derivative is a step function): we shall denote these 
two distributions by Fn

I  and Fn
II , respectively.

We can also give a direct interpretation in terms of random quantities. The distribu
tions arise if, instead of considering Yn/√n, we consider (Yn + X)/√n, where X is a 
random quantity independent of Yn, having the appropriate distribution (in the 
cases we mentioned, f x x( ) ( )1

2 1 , or f x x x( ) ( ) ( )1
4 2 2 , respectively33). We 

observe immediately that, since no mass is shifted by more than 1/√n (or 2/√n, respec
tively) in one direction or the other, Fn

I  and Fn
II  will, for each x, from some n = N on, 

lie entirely between Fn(x − ε) and Fn(x + ε) (in fact, it suffices that ε > 2/√n; i.e. n > N = 
4/ε2). It follows that, so far as the passage to the limit is concerned, it will make no 
difference if we use these variants in place of the actual Fn (for notational convenience, 
we shall not make any distinctions in what follows; we shall simply write Fn. The 
change in the standard deviation also makes no difference, and can be obtained 
immediately, without calculation, from the previous representation: X has standard 
deviation 1/√3 in the case of a uniform distribution (between ±1), and √(2/3) for a 
triangular distribution (between ±2), and it therefore follows that the addition of X 
either changes the standard deviation to √(1 + 1/3n) or to √(1 + 2/3n) (i.e., asymptoti
cally to 1 + l/6n and 1 + 1/3n).

Having given these basic details, we can proceed rather more rapidly, arguing in terms 
of the more convenient modified distribution.

By distributing the mass ph uniformly over the interval xh ± 1/√n, we obtain a density 
f x p n p n nn h h h h

n n( ) / ( / ) ( )/2 21
2

1
2 . By distributing it in a triangular fashion, the 

density at xh remains the same, but, in every interval [xh, xh+1], instead of preserving in 
the first and second half the values of the first and second end‐points, respectively, it 
varies linearly (the graph = the jagged line joining the ordinates at the points x = xh). In 
fact, the contribution of ph decreases from xh on, until it vanishes at xh + 1 (and the 
contribution of ph+1 behaves in a symmetric fashion).

In the interval xh < x < xh+1, the derivative of the density, f xn( ), will therefore be 
constant:

 
f x p p n n n p pn h h h h1 1

1
2

2 1
4

. / / . (7.21)

Recalling from 7.4.2 that ph+1/ph = (n − h)/(h + 1), and from the expressions for fn(xh) 
and xh that h n x nh

1
2 ( ) (and similarly for xh+1), we have the two alternative 

expressions

33 In the first case, X has a uniform distribution over |x| ⩽ 1; in the second case, X = X1 + X2, where X1 and 
X2 are stochastically independent, and each has this uniform distribution.
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This proves that the logarithmic derivative f x f xn n( )/ ( ) (which clearly has its own 
extreme values to the right of the left‐hand end‐point, and to the left of the right‐hand 
end‐point) always satisfies the equation

 f x f x
x

f x x xn n n/ d
d

log 1  (7.22)

(where, as n increases, ε(x) tends uniformly to 0 in any finite interval which has a neigh
bourhood of the origin removed; e.g. we have ε(x) < ε, for some n, throughout the inter
val 2ε/√n < |x| < √n/2ε; the apparent irregularity at the origin merely stems, however, 
from the fact that both x and ƒ′(x) go to zero, and the equation is automatically satisfied 
without there being any need to consider the ratio).

The limit distribution must, therefore, satisfy

 f x f x x/ , (7.23)

from which we obtain

 
log ., /f x x f x K K

x1
2

1 22
1
2

2

const e .  (7.24)

The conclusion is therefore as follows: the standardized binomial distribution (the case 
of Heads and Tails, p 1

2) tends, as n → ∞, to the standardized normal distribution. The 
same conclusion holds, however, in more general cases and, because of its importance, 
is known as the central limit theorem of the calculus of probability. We see immediately 
that the conclusion holds in the binomial case for 1

2p  (except that we now require 
different coefficients in order to obtain the standardized form).

7.6.3. It is convenient at the beginning to dwell upon the rather special example of 
Heads and Tails, since this provides an intuitive and straightforward illustration of 
many concepts and techniques, which themselves have a much broader compass, but 
whose essential meaning could otherwise be obscured by the technical details of the 
general case.

The proof we have just given (based on a technique used by Karl Pearson for this and 
other examples) is probably the easiest (even more so if one omits the details of the 
 inequalities and simply makes the heuristic observation that, for large enough n, f′(x)/ƒ (x) 
is practically equal to −x).
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Remark. Geometrically, this means that the subtangent – 1/x of the graph of y = f(x) is 
inversely proportional to the abscissa. The tail beyond x is, approximately, an exponen
tial distribution, with density ƒ(ξ) = K e−xξ34 and prevision 1/x; this is, in fact, as we can 
see asymptotically from equation 7.20), the prevision of the excess of X over x (provided 
it does exceed it). This means, essentially, that if an error X (with a standardized normal 
distribution) exceeds some large given value x, it is almost certain that it exceeds it by 
very little (about 1/x): for example, if it exceeds 10σ (or 100σ), we can expect that it 
exceeds it by σ/10 (or σ/100).

Note that this is precisely what happens for the deviations of Heads and Tails (see the 
footnote to equation 7.4 of Section 7.4.2), provided we make appropriate allowances for 
the discreteness. If we know that Heads have occurred in more than 75% of the trials, 
the probabilities that it has occurred 1, 2, 3, 4, or more than 4 times beyond this limit 
are 0·67, 0·22, 0·074, 0·025, 0·012, respectively, no matter how many tosses n have been 
made. This means that for n = 100 it is almost certain that (with the probabilities given 
above) the number of successes is one of 76, 77, 78, 79, whereas, for n = 1000, the same 
holds for 751, 752, 753, 754, for n = 1,000,000, for 750,001, 750,002, 750,003, 750,004!

We shall present other (and more general) proofs of this theorem later and it will be 
instructive to see it tackled from different standpoints. For the moment, however, we 
shall consider a useful corollary of it.

Using the fact that f x f xn( ) ( ) , and recalling the relation with ph, we find that

 
h

n
h n h hp n f x n f x n

n
h n 2 2 2 1

2
2 2/ / / exp . (7.25)

In particular, for x = 0, we obtain the maximum term, that is the central one (h = 1
2 n if 

n = even, or either of h = 1
2 (n ± 1) if n = odd). We shall always denote this by a special 

symbol, un, and the formula we have arrived at gives the asymptotic expression un ≃ 
√(2/πn); that is, in figures, un ≃ 0·8/√n (this makes clear the meaning of the coefficient 
√(2/π), which it is important to keep in mind). In fact, the probability un (the maximum 
probability among the h

n( )  of the Heads and Tails case) will crop up in many problems 
(a partial summary of which will be given in Chapter 8, 8.7.4). For the present, we shall 
just indicate a few of its properties.

In fact, we have
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 (7.26)

The equality of the un for successive pairs of values (each odd one with the next even 
one) is obvious from the definition. In order that the gain after 2m tosses be zero, it is 
necessary that it was either +1 or −1 at the preceding toss and that the final toss had 

34 We have exp 1
2

2 1
2

2 1
2

2( ) exp( )exp( )exp( )x x x , but only the first factor remains because 

the second is constant (with respect to ξ), and is incorporated into K, and the third is ≃1 (for small ξ).
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the outcome required to bring it to 0; both possibilities have probability u2m−1·1
2
, and 

their sum gives

 
u u um m m2 2 1 2 12 1

2
.
 

The same argument can be carried out for the binomial coefficients by applying Stiefel’s 
formula. The central term, ( )m

m2 , for n = 2m = even, is the sum of the two adjacent ones 
which are themselves equal,

 m
m

m
m

1
2 1 2 1 ,

 
and is therefore twice their value; in order to obtain the probability, however, we must 
divide by 22m rather than by 22m−1, so u2m = u2m−1. We obtain, therefore,
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7.6.4. We see from this that the factor √(2/π;), hitherto regarded simply as the 
normalization factor for the standardized normal distribution, also has a link with the 
combinatorial calculus. This connection is given by Stirling’s formula, which provides 
an asymptotic expression for the factorial and which enables us to arrive at the central 
limit theorem for the binomial distribution by a different route (one that is more labori
ous but is often used and is, in any case, useful to know).

Stirling’s formula expresses n! as follows:

 
where 0; more precisely, 0 1/1 1 †! e 2 1n n

n nn nn n n 35. (7.28)

Since the formula is used so often, we shall give a quick proof of it. We have
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and we observe that the difference between the sum and the integral converges (substituting 
log n in place of

 n

n

x x
1
2

1
2

log d ,

 

35 Note that, if we neglect εn, Stirling’s formula gives n! with smaller and smaller relative error, but with 
greater and greater absolute error (i.e. the ratio tends to 1, but the difference between n! and the 
approximation tends to +∞). In practical terms, for n ≃ 10k we have n! with about the first k + 1 digits 
correct; but n! (for large k) has about 10k digits, and the error has not many less. In any case, what matters in 
applications is the relative approximation, and this is adequate even for small values.



Theory of Probability: A Critical Introductory Treatment292

we see immediately that we have an error of order 1/n2). From this, it follows that 
n! ≃ Knn 1

2 e−n (a result known to De Moivre). As for the fact that K = √(2π) (discovered 
by Stirling in 1730), we shall consider it as being established heuristically by virtue of the 
fact that, were we to leave it indeterminate, the limit of the fn(x) would be given by

 f x K
x

1
1
2

2

/ e  

and we know that this multiplicative factor must be 1/√(2π).
Let us just evaluate un by this method (n even: n = 2m): we obtain
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In order to evaluate
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it is more convenient to make use of an alternative form of Stirling’s formula, one 
which will turn out to be useful in a number of other cases. It is based on evaluating 
products of the form (1 + a) (1 + 2a)… (1 + ka), with k large, and ka = c small; in our case, 
[m!/(m − k)!]/[(m + k)!/m!] can be written as

 1 1 1 2 1 1 1 1 2 1. a a k a a a ka  
by dividing both ratios by mk, and setting 1/m = a.

Taking the logarithm, we have

 

log log log

log

h

k

h

k
ah ah

a
x x

a
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1 1 1

1 1 1

 d

,
 

with ( )k a1
2 ,36 and, expanding in a series, we have
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36 The simpler form λ = ka is practically equivalent to the effect of an individual evaluation. In the case of 
products or ratios of a number of expressions of this kind, however, it can happen (and does in the example 
of Section 7.4.3) that it is the contributions deriving from the ‘+½’ which are important, because the main 
contributions cancel out.
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It follows that

 1 1 2 1
1
2

1
2

1
2

2
2

a a ka
k a ak

 e e . (7.30)

In our case, with a = ± 1/m, the two products equal e e
1
2

2 2 2ak k m/  and their ratio is

 e e e e ek m k m k m h m m h n n2 2 2 2 2
2 2 2 2/ / / / //  

(since k = h − m and m n1
2 ). We thus obtain the result (which, of course, we already knew).

7.6.5. Relation to the diffusion problem. We give here a suggestive argument (due to 
Pólya), which is entirely heuristic, but is very useful as a basis for discussions and devel
opments. The relation between random processes of the kind we have just exemplified 
with Heads and Tails and diffusion processes, which we shall meet later, will, in fact, 
provide a basis for interpreting the latter and even identifying them with the kinds of 
process already studied. The Wiener–Lévy process (see Chapter 8) can, with reference 
to our previous work, be thought of as a Heads and Tails process involving an enormous 
number of tosses with very small stakes, taking place at very small time intervals. This 
process has also been referred to (by P. Lévy) as the Brownian motion process, because 
it can be used (although only for certain aspects of the problem) to represent and study 
the phenomenon of the same name (which is, as is well known, a diffusion process).

The Heads and Tails process can be thought of as a diffusion process in which a mass 
(a unit mass, initially – i.e. at t = 0 – concentrated at the origin) moves, with respect to 
time t, through the lattice of Figure 7.2, splitting in half at each intersection (encoun
tered at times t = integer). The mass (which represents the probability) would, accord
ing to this representation, divide up in a certain (i.e. deterministic) manner, and, 
formally, everything goes through (indeed, it will be even simpler than this).

A more meaningful interpretation, however, and one more suited to our purpose, 
derives from consideration of a random process of the statistical type. Assume that, 
initially, a very large number of particles (N, say) are concentrated at the origin, and 
move at equal and constant rates to the right, through the lattice. At each time instant 
t = integer, they meet an intersection, and each chooses its direction independently of 
the others. Equivalently, we could think of them as moving with constant speed on the 
y‐axis, choosing directions at random at each time instant t = integer (i.e. each time a 
point y = integer is reached); alternatively, we could think of them at rest, but making a 
jump of ±1 at each t = integer.

Taking the total mass = 1, the mass crossing a given point can no longer be deter
mined with certainty: where, in the deterministic case, it was ω, we can now only say 
that we have prevision ω and that the number of particles has prevision Nω, but could 
take any value h, lying between 0 and N, with probability ( ) ( )h

N h N h1 . If we want to 
give a rough idea of what happens, we could say (quoting the prevision ± the standard 
deviation) that the number of particles will be

 N N 1  
(≃Nω ± √(Nω) for small ω; the Poisson approximation).

This is what we are interested in: a normal distribution being attained as a result of a 
statistical diffusion process.
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For the purposes of the mathematical treatment (whatever the interpretation), the mass 
crossing the point (vertex) (t, y), where t and y are integer, both even or both odd, is, as usual,

 P Y y t yt t y
t

/2 , , 
given by one half of that which has crossed (t − 1, y − 1) or (t − 1, y + 1):

 
t y t y t y, , ,1

2
1 1 1 1 .

 
The notation ω(t, y) has been introduced in order to allow us to think of the function 

as defined everywhere (no matter what the interpretation), even on those points where 
it has no meaning in the actual problem; in particular, for t and y integer, but t + y odd, 
like ω(t − 1, y). Subtracting this value from both sides of the previous equation, we obtain

 
t y

1
2

2  (7.31)

and, in the limit,

 t y
1
2

2

2 ,  (7.32)

provided that (taking the units of t and у to be very small) one considers it legitimate to 
pass from the discrete to the continuous.

Let us restrict ourselves here to simply pointing out that, in this way, one arrives at the 
correct solution. In fact, the general solution of the heat equation, (7.32), is given by

 t y K t
y t

, / e ,
1
2

2 /  (7.33)

a well‐known result that can easily be verified.

7.6.6. The form of the normal distribution is well known, and is given in Figure 7.6 
(where we show the density y = ƒ(x)). We also provide a table of numerical values for 
both the density and the distribution function (the latter giving the probabilities of 
belonging to particular half‐lines or intervals).

0–1 1 2–2

y

x

1
2

1
2

Figure 7.6 The standardized normal distribution (m = 0, σ = 1): the density function. The subdivisions 
(0, ±1, ±2, ±3) correspond to σ, 2σ, 3σ; at ±1 we have points of inflection, between which the density is 
convex. The rectangle of height 1

2 shows, for comparative purposes, the uniform distribution on the 
interval [−1, +1] (which might well be called the ‘body’ of the distribution; see Chapter 10, 10.2.4). 
Note that the vertical scale is, in fact, four times the horizontal one, in order to avoid the graph 
appearing very flat (as it is, in fact), and hence not displaying the behaviour very clearly.
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We shall confine ourselves to calling attention to a few points of particular importance.
The density function is symmetric about its maximum, which is at the origin, and 

decreases away from it, being convex (upwards) in the interval [−1, +1], and concave 
outside this interval. As x ± ∞, it approaches the x‐axis, the approach being very rapid, 
as we already pointed out in 7.6.3 (the ‘tails’ are ‘very thin’). In fact, the subtangent 
decreases, in our case, like l/|x| (if f(x) tends to 0 like a power, |x|−n, with n arbitrarily 
large, the subtangent, in absolute value, increases indefinitely as |x| increases; if the 
function decreases exponentially, the subtangent is constant).

The graph has two points of inflection at ±1 (corresponding to the change from 
convexity to concavity that we already mentioned). The ordinate at these points is about 
0·6 of the maximum value (the table gives 0·60652, but it is better to keep an approxi
mate round figure in mind; this is enough to prevent one from making the all too usual 
distortions when sketching it – on the blackboard, for example). The subtangents are 
equal to ∓1; that is the slope is such that the tangents cross the x‐axis at the points ±2.

Since the tails are ‘very thin’, it is clear that the probabilities of the occurrence of 
extreme values beyond some given x are, in the case of the normal distribution, much 
smaller than is usual (in the case of densities decreasing like powers, or exponentially). 
They are, therefore, much smaller than the values provided by Tchebychev’s inequality, 
which is valid under very general conditions.

We give below a few examples of the probabilities of |X| exceeding kσ (or, in the 
standardized case, σ = 1, of exceeding k), for k = 1, 2, 3 and 31

2 : 

Absolute value greater than: σ 2σ 3σ 3 1
2

Probability
normal distribution:
Tchebychev inequality:

31·74%
⩽100·00%

4·55%
⩽25·00%

0·27%
⩽11·11%

0·05%
⩽8·16%

The table is not only useful for numerical applications but it should also be used in 
order to commit to memory a few of the significant points (e.g. a few ordinates and, 
more importantly, the areas corresponding to abscissae 1, 2 and 3; i.e. to σ, 2σ and 3σ).

The reader is invited to refer to equation 7.20 in Section  7.5.4, and to the Remarks of 
Section 7.6.3, where we looked at asymptotic expressions for such probabilities (

 K xe
1
2

2

/x, 
K = 1/√(2π) ≃ 0·4037), and at the order of magnitude for possible exceedances (prevision ≃1/x).

Table of values for the standardized normal (Gaussian) distribution
Abscissa Ordinate (density) Area (∫ƒ(x) dx) in %

X
(1)

f x x( )
( )
1
2

1
2

2

e

(2)

f(x) as % of 
central 
ordinate from x to +∞

(4)

in the individual 
intervals given
(5)

2 × (5)
(6)(3)

0·0
0·1
0·2
0·3
0·4
0·5

0·398942
0·396952
0·391043
0·381388
0·368270
0·352065

100·0
99·50
98·02
95·60
92·31
88·25

50·0
46·0172
42·0740
38·2089
34·4978
30·8538

19·15 38·30

37 Writing K(1 + Θ/x2), with 0 ⩽ Θ ⩽ 1, in place of K, we have an exact bound (and Θ ~ 1 − 3/x2).
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Abscissa Ordinate (density) Area (∫ƒ(x) dx) in %

X
(1)

f x x( )
( )
1
2

1
2

2

e

(2)

f(x) as % of 
central 
ordinate from x to +∞

(4)

in the individual 
intervals given
(5)

2 × (5)
(6)(3)

0·6
0·7
0·8
0·9
1·0

0·333225
0·312254
0·289692
0·266085
0·241971

83·53
78·27
72·61
66·70
60·652

27·4253
24·1964
21·1855
18·4060
15·8654

14·98 29·96

1·1
1·2
1·3
1·4
1·5

0·217852
0·194186
0·171369
0·149727
0·129518

54·61
48·68
42·96
37·53
32·47

13·5666
11·5070
9·6800
8·0756
6·6807

9·19 18·38

1·6
1·7
1·8
1·9
2·0

0·110921
0·094049
0·078950
0·065616
0·053991

27·80
23·57
19·79
16·45
13·53

5·4799
4·4565
3·5930
2·8717
2·2750

4·405 8·810

2·5
3·0

0·017528
0·004432

4·39
1·11

0·6210
0·1350 2·140 4·280

3·5
∞

0·0008727
0·0

0·22
0

0·02326
0·0 0·135 0·270

Since the binomial distribution (and many others) approximates, under given condi
tions, as n increases to the normal, the table of the latter can also be used in other 
contexts (with due care and attention38). Such tables are often used in the case of empirical 
distributions (statistical distributions), under the confident assumption that the 
latter behave (at least approximately) like normal distributions. It is easily shown (see 
Section 7.6.9) that this confidence is often not, in fact, justified.

7.6.7. In order to deal with certain other instructive and important features of the 
normal distribution, we shall have to refer to the multidimensional case (either just two 
dimensions, the plane, or some arbitrary number n; or even the asymptotic case, n → ∞).

It will suffice to limit our discussion to the case of spherical symmetry, where the 
density has the form

 
f x x x K x x xr r1 2 2 2

1
2

2
2 21

2
, , , .exp ,

 
This corresponds to assuming the Xh to be standardized (m = 0, σ = 1) and stochastically 

independent (for which, in the case of normality, it is sufficient that they be uncorrelated). 
In fact, we can always reduce the general situation to this special case provided we 
apply to Sr the affine transformation that turns the covariance ellipsoid into a ‘sphere’ 
(see Chapter 4, 4.17.6). In other words, we change from the Xh to a set of Yk which are 

38 If one were not careful, one might conclude that the probability of obtaining more than n Heads in n 
tosses(!) is very small, but not zero (about 2·4 × 10−23 for n = 100; about 10−2173 for n = 10, 000).



7 A Preliminary Survey 297

standardized and uncorrelated (and are linear combinations of the Xh). We shall have 
more to say about this later (Chapter 10, 10.2.4).

For the moment, let us evaluate the normalizing constant of the standardized normal 
distribution (which we have already stated to be K = 1/√(2π)). Integrating over the plane, 
we obtain

 e e d d e d d ,
1
2

1
2

1
2

2 2 2

2
x y

x y  

which is also equal to e d
1
2

2 2x x . It follows that K = l/2π in the plane (r = 2), K ( )2
1
2  

over the real line (r = 1), and, for general r, K r( )2
1
2 .39

There are another two important, interesting properties to note. They involve the 
examination of two conditions, closely linked with one another, each of which provides 
a meaningful characterization of the normal distribution. In both cases, it is sufficient 
to deal with the case of the plane.

The first of them is summarized in the following: the only distribution over the plane 
which has circular symmetry, and for which the abscissa X and the ordinate Y are 
stochastically independent (orthogonal), is that in which X and Y have normal distribu
tions with equal variances (and zero prevision, assuming the symmetry to be about the 
origin). The second property concerns the stability of distributions (which we discussed 
in Chapter 6, 6.11.3). If we require, in addition, that the variance be finite, then stability 
is the exclusive property of the normal distribution.

For the first property, if we denote by ƒ(·,·), f1(·), f2(·) the joint density for (X, Y), and 
the marginal densities for X and Y, respectively, the given conditions may be expressed 
as follows:

a) rotational symmetry; f(x, y) = const, for x2 + y2 = ρ2 = const., from which it follows 
immediately that ƒ(x, y) = ƒ(ρ, 0) = ƒ(0, ρ) for ρ = √(x2 + y2);

b) independence; ƒ(x, y) = f1(x)f2(y).

In our case, given the symmetry, we can simply write ƒ(·) instead of f1(·) and f2(·), and 
hence obtain a single condition,

 f x y f x f y f f, 0  
In other words,

 

f x
f

f y
f

f
f0 0 0

,
 

and, if we put f(x)/f(0) = ψ(x2), this gives the functional equation

 x y x y2 2 2 2 2 . 

39 We should make it clear (because it is customary to do so – it is, in fact, obvious) that the integral of a 
positive function taken over the plane does not depend on how one arrives at the limit (by means of circles, 
ρ < R, or squares, |x| ∨ |y| < R, or whatever); it is always the supremum of the values given on the 
bounded sets.
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Taking logarithms, this gives the additive form

 log log logx y x y2 2 2 2 . 
Under very weak conditions, which are usually satisfied, this implies linearity (e.g. it is 
sufficient that ψ is non‐negative in the neighbourhood of some point; here, this holds 
over the whole positive real line). It follows that

 log , ,x kx x f x fkx kx2 2 2
2 2

0e e  

(and, normalizing, that k= −l/2σ2 and f(0)= 1/√(2π)σ); the required property is therefore 
established.

In certain cases, this property is in itself sufficient to make the assumption of a 
normal distribution plausible. A celebrated example is that of the distribution of the 
velocity of the particles in Maxwell’s kinetic theory of gases. If one assumes: (a) isotropy 
(the same distribution for components in all directions) and (b) stochastic independence 
of the orthogonal components, then the distribution of each component is normal (with 
zero previsions and equal variances). In other words, the distribution of the velocity 
vector is normal and has spherical symmetry (with density Ke

1
2

2 2/ ).
Given the assumptions, the above constitutes a mathematical proof. But however 

necessary they are as a starting point, the question of whether or not these (or other) 
assumptions should be taken for granted, or regarded as more or less plausible, is one 
which depends in part upon the actual physics, and in part upon the psychology of the 
author concerned.

The second property referred to above reduces to the first one. We must first of all 
restrict ourselves to the finite variance case (otherwise, we already know the statement 
to be false; see the stable, Cauchy distribution, mentioned at the end of Chapter  6, 
6.11.3), and we might as well assume unit variance. We therefore let ƒ(x) denote the 
density of such a distribution (with m = 0, σ = 1), and X and Y be two stochastically 
independent random quantities having this distribution.

In order for there to be stability, Z = aX + bY must, by definition, have the same 
distribution (up to a change of scale, since σ2 = a2 + b2). If, by taking a2 + b2 = 1, we make 
Z = X cos α + Y sin α, we can avoid even the change of scale, and we can conclude that 
all projections of the planar distribution, ƒ(x, y) = f(x)f(y), in whatever direction, must 
be the same. In other words, the projections must possess circular symmetry and it can 
be shown that a necessary condition for this (and clearly a sufficient one also) is that the 
density has circular symmetry (as considered for the first property).40

The conclusion is, therefore, the same: the property characterizes the normal distri
bution. The result contains within it an implicit justification (or, to be more accurate, a 
partial justification) of the ‘central limit theorem’. In fact, if the distribution (standardized, 
with σ = 1) of the gain from a large number of trials at Heads and Tails follows, in prac
tice, some given distribution, then the latter must be stable (and the same is true for any 
other case of stochastically independent gains). It is sufficient to note that if Y′ and Y″ 
are the gains from large numbers of trials, n′ and n″, respectively, then, a fortiori, 

40 This is intuitively entirely ‘obvious’. The proof, which is rather messy if one proceeds directly, follows 
immediately from the properties of characteristic functions of two variables (Chapter 10, 10.1.2).
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Y = Y′ + Y″ is the gain from n =n′ + n″ trials. If the two independent summands belong 
to the limit distribution family, then so does their sum: this implies stability.

The justification is only partial because the above argument does not enable us to say 
whether, and in which cases (not even for that of Heads and Tails), there is convergence 
to a limit distribution. It does enable us to say, however, that if a limit distribution exists 
(with a finite standard deviation, and if the process is additive with independent 
 summands – all obvious conditions) it is necessarily the normal distribution.

7.6.8. An interpretation in terms of hyperspaces. It is instructive to bear in mind, as an 
heuristic, but meaningful, interpretation, that which can be given in terms of 
 hyperspaces. Compared with the previous example, it constitutes even less of a ‘partial 
justification’ of the appearance of the normal distribution under the conditions of the 
central limit theorem (sums of independent random quantities), but, on the other hand, 
it reveals how the result is often the same, even under very different conditions.

Let us begin by considering the uniform distribution inside the sphere (hypersphere) of 
unit radius in Sr, and the projection of this distribution onto the diameter, −1 ⩽ x ⩽ +1. The 
section at x has radius √(l − x2), ‘area’ equal to [√(l − x2)]r−1, and hence the density is given by

 f x K x
r

1 2 1 2/
. (7.34)

In particular, we have K√(1 − x2) for r = 2 (projection of the area of the circle); K(1 − x2) 
for r = 3 (projection of the volume of the sphere); and so on.

As r increases, the distribution concentrates around the origin (as happened in the 
case of frequencies at Heads and Tails). In order to avoid this and to see what, asymp
totically, happens to the ‘shape’ of the distribution, it is necessary (again, as in the 
case of Heads and Tails) to expand it in the ratio 1: √r (i.e. by replacing x by x/√r). 
We then obtain

 
f x K x

r
K

r
x

1
2 1 2 1

2
2/

e .
 

In the limit, this gives the normal distribution, but without any of the assumptions of 
the central limit theorem. What is more surprising, however, is that the same conclu
sion holds under circumstances even less similar to the usual ones. For example, it also 
holds if one considers a hollow sphere, consisting of just a small layer between 1 − ε and 
1 (ε > 0 arbitrary). It is sufficient to note that the mass inside the smaller sphere contains 
(1 − ε)r of the total mass. This tends to 0 as r increases, and hence its contribution to the 
determination of the shape of f(x) becomes negligible.

Well: the central limit theorem, also, can be seen as a special case of, so to speak, this 
kind of tendency for distributions in higher dimensions to have normally distributed 
projections onto a certain straight line.

The case of Heads and Tails shows that one obtains this projection (asymptotically, 
for large n) by projecting (onto the diagonal) a distribution of equal masses 1

2
n on the 

2n vertices of an n‐dimensional hypercube. The same holds, however, for projections 
onto any other axis (provided it does not belong entirely to a face having only a small 
number of dimensions compared with n) and also if one thinks of the cube as a solid 
(with uniformly distributed mass inside it), or with a uniform distribution on the 
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surface, and so on. To summarize; the interpretation in terms of hyperspaces holds in all 
cases where the central limit theorem holds (although it cannot be of any help in picking 
out these cases, except in those cases where there exists an heuristic argument by 
analogy with some known case).

More specifically useful is the conclusion that can be drawn in the opposite sense: 
namely, that of convergence to the normal distribution in many more cases than 
those, already numerous, which fall within the ambit of sums of independent random 
quantities, the case we are now considering (having started with the case of Heads 
and Tails). The solid cube does fall within such an interpretation (summands chosen 
independently and with a uniform distribution between ±1), but that of a distribution 
on the surface (or on edges, or m‐dimensional faces) does not, and this would be even 
less true for the case of the hypersphere (solid, or hollow).

A wide‐ranging generalization of the central limit theorem was given by R. von 
Mises,41 and shows that even the distributions of nonlinear ‘statistical functions’ may 
be normal (under conditions which, in practice, are not very restrictive). Examples of 
nonlinear statistical functions of the observed values X1, X2,…, Xn are the means (other 
than the arithmetic mean, or their deviations from it), the moments and the functions 
of the moments (e.g. 2 3

3 2/ , or ( )/4 2
2 3, where the μh are the moments about the 

mean and the expressions are used as indices of asymmetry and ‘kurtosis’, respectively; 
see Chapter 6, 6.6.6), the concentration coefficient (of Gini; see Chapter 6, the end of 
6.6.3), and so on. In general, they are the functions that can be interpreted as function
als of the Fn(x) = (1/n) ∑(Xh ⩽ x) (jump 1/n for x = X1, X2,…, Xn), that is of the statistical 
distribution, under conditions similar to differentiability (i.e. of local linearity’). 
In essence (the actual formulation is quite complicated and involves long preliminary 
explanations before one can even set up the notation), one requires that the first deriv
ative (in the sense of Volterra, for ‘fonctions de ligne’) satisfies the conditions for the 
validity of the ‘central limit theorem’ in the linear case and that the second derivative 
satisfies a complementary condition.

This generalization, wide ranging though it is, does not, however, include the cases that 
we considered in the hyperspace context. This emphasizes even further just how general 
is the ‘tendency’ for the normal distribution to pop up in any situation involving ‘chaos’.

7.6.9. Order out of chaos. We shall postpone what we consider to be a valid proof of 
the central limit theorem until the next section (from a mathematical viewpoint it is a 
stronger result). Let us consider first the notion of ‘order generated out of chaos’, which 
has often been put forward in connection with the normal distribution (as well as in 
many other cases).

A general observation, which is appropriate at this juncture, concerns a phenomenon 
that often occurs in the calculus of probability; that of obtaining conclusions which are 
extremely precise and stable, in the sense that they hold unchanged even when we start 
from very different opinions or situations. This is the very opposite of what happens in 
other fields of mathematics and its applications, where errors pile up and have a cumu
lative effect, with the risk of the results becoming completely invalidated, no matter 

41 R. von Mises, Selected Papers, Vol. II, Providence (1964); see various papers, among which (pp. 388–394) 
the lectures given in Rome (Institute of Advanced Mathematics) provide one of the most up to date 
expositions (for an exposition of a more illustrative kind, see pp. 246–270).
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how carefully the initial data were evaluated and the calculations carried out. This 
particular phenomenon compensates for the disadvantages inherent in the calculus of 
probability due to the subjective and often vague nature of the initial data. It is because 
of this peculiarity (which is, in a certain sense, something of a miracle, but which, after 
due consideration, can be seen, in a certain sense, as natural) that a number of conclu
sions appear acceptable to everyone, irrespective of inevitable differences in initial 
evaluations and opinions. This is a positive virtue, notwithstanding the drawbacks 
which stem from a too indiscriminate interpretation of it, leading one to accept as 
objective those things whose roots are, in fact, subjective, but have not been explicitly 
recognized as such.

In this connection, we shall now put forward an example that is basically trivial but, 
nonetheless, instructive (because it is clear what is going on; the central limit theorem 
is less self‐evident). We return to case (E) of Section 7.2.2 and consider the probability 
of an odd number of successes out of n events, E1, E2,…, En. If we assume them to be 
stochastically independent with probabilities p1, p2,…, pn, the probability in question is 
given by

 
q pn

h

n

h
1
2

1 2
1  

(which can be verified by induction). As n increases, the difference between qn and 1
2  

decreases (in absolute value). In other words, if one is interested in obtaining a probability 
close to 1

2 , it is always better to add in (stochastically independent) events, whatever the 
probabilities ph might be, because the above‐mentioned difference is multiplied by 
2 1

2( )ph , which is ⩽ 1 in absolute value, and the smaller the difference is, the closer ph 
is to 1

2 : if ph
1
2, the difference becomes zero (as we remarked at the time). Suppose we 

now consider a cube or a parallelepiped that we wish to divide into two equal parts as 
accurately as possible. Making use of the above, instead of performing only one cut 
(parallel to a face) we could perform three cuts (parallel to the three pairs of faces) and 
then make up a half with the four pieces that satisfy one or all of the three conditions of 
being ‘above’, ‘in front’, or ‘on the left’ (and the other half with the four pieces satisfying 
two or none of these conditions). (What is the point of these digressions? They are an 
attempt to show that phenomena of this kind do not derive from the principles or 
assumptions of probability theory  –  in which case one might well have called them 
‘miraculous’. They may show up, in their own right, in any kind of applications whatso
ever. The fact is simply that the exploitation and the study of methods based on disorder 
is more frequent and ‘relevant’ in probability theory than elsewhere.)

This should give some idea (as well as, in a sense, some of the reasons) of why it is, in 
complicated situations where some kind of ‘disorder’ prevails, that something having 
the appearance of ‘order’ often emerges.

A further fact, which serves to ‘explain’ why it is that this ‘order generated out of 
chaos’ often has the appearance of a normal distribution, is that out of all distributions 
having the same variance the normal has maximum entropy (i.e. the minimum amount 
of information).

Among the discrete distributions with preassigned possible values xh and prevision 
p x mh h , those which maximize p p p p xh h h h h| log |( ,thesums 1  and 2

h hp x  
being fixed) are obtained by setting the ∂/∂ph of p p Q xh hlog ( )  equal to 0, where 
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Q(x) is a second degree polynomial. In other words, we set −log ph + Q(x) = 0, from 
which it follows that

 
p Q x K x mh exp exp 1

2
2 .

 

If we choose the xh to be equidistant from each other, and then let this distance tend to 
zero, we obtain the normal distribution.

In Chapter 3, 3.8.5, we briefly mentioned the idea of information but without going at 
all deeply into it. In the same way here, without going into the relevant scientific theory, 
we merely note that, when considering the distribution of velocities in the kinetic theory 
of gases, ‘the same variance’ corresponds to ‘kinetic energy being constant’ (and this 
may suggest new connections with Maxwell’s conclusions; see Section 7.6.7, above).

We could continue in a like manner: there appear to be an endless variety of ways in 
which the tendency for the normal distribution to emerge occurs.42

It is easy to understand the wonder with which its appearance in so many examples of 
statistical distributions (e.g. in various characteristics of animal species etc.) was 
regarded by those who first came across the fact, and it is also easy to understand the 
great, and somewhat exaggerated, confidence in its universal validity that followed.

A typical expression of this mood is found in the following passage of Francis Galton’s 
(it appears in his book Natural Inheritance, published in 1889, in the chapter entitled, 
‘Order in apparent chaos’, and the passage is reproduced by E.S. Pearson in one of his 
‘Studies in the history of probability and statistics’ (Biometrika (1965), pp. 3–18), which 
also contains a number of other interesting and stimulating quotations):

‘I know of scarcely anything so apt to impress the imagination as the wonderful 
form of cosmic order expressed by the “Law of Frequency of Error”. The Law would 
have been personified by the Greeks and deified, if they had known of it. It reigns 
with serenity and in complete self‐effacement amidst the wildest confusion. The 
huger the mob, and the greater the apparent anarchy, the more perfect is its sway. 
It is the supreme law of Unreason. Whenever a large sample of chaotic elements are 
taken in hand and marshalled in the order of their magnitude, an unsuspected and 
most beautiful form of regularity proves to have been latent all along. The tops of 
the marshalled row form a flowing curve of invariable proportions; and each ele
ment, as it is sorted into place, finds, as it were, a pre‐ordained niche, accurately 
adapted to fit it. If the measurement of any two specified Grades in the row are 
known, those that will be found at every other Grade, except towards the extreme 
ends, can be predicted in the way already explained, and with much precision.’

Are statements of this kind acceptable? It seems to me the answer can be both yes and 
no. It depends more on the nuances of interpretation than on any general principle of 
whether such statements are correct or not.

42 A similar ‘tendency’ for the normal distribution to appear operates, although in a different manner, in 
problems of statistical inference, as a result of more and more information being acquired. We mention this 
now merely to make the above survey complete, and in no way to anticipate what will be said later 
(Chapter 11, 11.4.6–11.4.7, and Chapter 12, 12.6.5).
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The idea that all natural characteristics have to be normally distributed is one that can 
no longer be sustained: it is a question that must be settled empirically.43 What we are 
concerned with in the present context, however (and not only in relation to the passage 
above but also to the numerous other statements, of a more or less similar nature, that 
one comes across practically everywhere), are the attitudes adopted in response to the 
‘paradox’ of a ‘law’ governing the ‘accidental’, which surely obeys no rules.

Perhaps the following couple of sentences will suffice as a summary of the circum
stances capable of differentiating and revealing the attitudes which I, personally, would 
characterize as ‘distorted’ or ‘correct’, respectively:

a) there exist chance phenomena which are really under control, in that they follow the 
‘rules of chance phenomena’, and there are others which are even more chancy, acci
dental in a more extreme sense, irregular and unforeseeable, occurring ‘at random’, 
without even obeying the ‘laws of chance phenomena’;

b) chance phenomena – the completely accidental, those which are to a large extent 
irregular or unforeseeable, those occurring ‘at random’ – are those which presuma
bly ‘obey the laws of chance phenomena’; these laws express no more and no less 
than that which can be expected in the absence of any factor which allows one to a 
large extent to foresee something falling outside the ambit formed by the over
whelming majority of the vast number of possible situations of chaos.

Even when expressed in this way, the two alternatives are very vague (and it would be 
difficult to avoid this – I certainly did not succeed). They may be sufficient, however, to 
remove some of the ambiguity from Galton’s position, because they show up what the 
essential ambiguity is that has to be overcome.

Having said this, it remains for me to make clear that I consider (a), the first interpre
tation, to be ‘distorted’, and (b), the second interpretation, to be the correct one.

The reasons for this are those that have been presented over and over again in the 
context of concrete problems. There is no need to repeat them here, nor is there any 
point in adding further general comments or explanations; these, I am afraid, would 
inevitably remain at a rather vague level.

7.7 Proof of the Central Limit Theorem

7.7.1. We now give the proof of the central limit theorem. This is very short if we make 
use of the method of characteristic functions – although this has the disadvantage of 
operating with purely analytic entities, having nothing to do with one’s intuitive view of 
the problem. It has the advantage, however, that the very simple proof that can be given 
for the case of Heads and Tails (confirming something that we have already established 
in a variety of alternative ways) will turn out to be easily adapted, with very little effort, 
to provide a proof for very much more general cases.

43 One must not adopt the exaggerated view that all, or almost all, statistical distributions are normal 
(a habit which is still widespread, although not so much as it was in the past). Around 1900, Poincaré made 
the acute observation that ‘everyone believes in it: experimentalists believing that it is a mathematical 
theorem, mathematicians believing that it is an empirical fact’.
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For the gain at a single trial of Heads and Tails (Xi = ± 1 with pi
1
2  the characteristic 

function is given by

 
1
2

e e .i iu u ucos
 

For the sum Yn of n such trials (stochastically independent summands), we have (cos u)n. 
In the standardized form, Yn/√n, this becomes [cos(u/√n)]n, with logarithm equal to n 
log cos(u/√n).

Since log cos x x x1
2

2 1[ ] (where ε(x) → 0 as x → 0), we have n log 
cos( / ) ( ) [ ( )] [ ( )]u n n u n u n u u n n1

2
2 1

2
2 1

2
21 1/ / / , and, passing from 

the logarithm back to the characteristic function, we obtain

 cos u n n
n u

/ e as .
1
2

2

 (7.35)

This is precisely the characteristic function of the standard normal distribution, and so 
the theorem is proved.

But this does not merely hold for the case of Heads and Tails. The essential property 
that has been used in the proof is not the fact that the characteristic function of the 
individual gain is given by φ(и) = cos u, but only that its qualitative behaviour in the 
neighbourhood of the origin is

 
log u u u1

2
12 .

 
This requires only that the variance be finite (the value 1 is merely due to the convention 
adopted previously).

Therefore: the central limit theorem holds for sums of independent, identically distributed 
random quantities provided the variance is finite.44

It is clear, however, that the conclusion does not require the distributions to be iden-
tical, nor the variances to be equal: given the qualitative nature of the circumstances 
which ensure the required asymptotic behaviour, purely qualitative conditions should 
suffice.

It is perhaps best to take one step at a time, in order to concentrate attention on the 
two different aspects separately. Let us begin with the assumption that the distributions 
do not vary but that the variances may differ from trial to trial (to be accurate, we should 
say that the type of distribution does not vary; for the sake of simplicity, we shall continue 
to assume the prevision to be zero).

44 If the variance is infinite, the central limit theorem can only hold in what one might call an anomalous 
sense; that is by not dividing Yn by √n, as would be the case for the normal distribution itself, but rather, if at 
all, through some other kind of standardization procedure, (Yn ◻ An)/Bn, with A and B appropriate functions 
of n. This holds (see Lévy, Addition, p. 113) for those distributions for which the mass outside ±x, if assumed 
concentrated at these points, has a moment of inertia about the origin which is negligible compared to that 
of the masses within ±x (i.e. the ratio tends to zero as x → ∞). These distributions, plus those with finite 
variances, constitute the ‘domain of attraction’ of the normal distribution.

There exist other stable distributions (with infinite variances), each having its own domain of attraction 
(see Chapter 8, Section 8.4).
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In other words, we continue to consider the Xi to be independently and identically 
distributed, standardized random quantities (P(Xi) = 0, P(X2) =1), but with the summands 
Xi replaced by σiXi (with σi > 0, and varying with i). Explicitly, we consider the sums

 Y X X Xn n n1 1 2 2 .  

We again let ϕ(и) denote the characteristic function of the Xi and ε(u) the correction 
term defined by log ( ) ( ( ))u u u1

2
2 1 . The characteristic function of σiXi is then 

given by ϕ(σiu), with

 
log i i i iu u u1

2
2 2 2 .

 

By taking the product of the ϕ, and the sum of the logarithms, we obtain, for the sum Yn,
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 (7.36)

where sn
2  denotes the variance of Yn; that is

 
s Yn n

i

n

i
2 2

1

2P .
 

For the standardized Yn, that is Yn/sn, we have (substituting u/sn for u)

 

1
2

12

1
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n

i

n
, (7.37)

and, hence, the validity of the central limit theorem depends on the fact that the ‘correc
tion term’, given by the sum, tends to 0 as n → ∞.

The sum in question is a weighted mean (with weights i
2 ) of the ε(σiu/sn). Each term 

tends to 0 as n increases, provided sn → ∞, because then we will have (σiu/sn) → 0. This 
means that the series formed by summing the variances i

2  must diverge (and this 
becomes the first condition). This is not sufficient, however. For example, if we took 
each σi very much greater than the previous ones we could make the ratios σn/sn 
arbitrarily close to 1 and tending to 1, and the correction term would be ε(u); this would 
not be improved by dividing и by sn. The same problem arises if all the ratios, or an 
infinite number of them, are greater than some given positive number. To ensure that 
the correction term tends to 0, it is therefore necessary to have σn/sn → 0; this also turns 
out to be sufficient45 (and will be the second condition).

45 This is intuitively obvious but it is perhaps best to give the proof, because it is a little less immediate than it 
might appear at first sight. Fixing ε > 0, we have σn/sn < ε for all n greater than some given N; each σi will therefore 
satisfy σi, < εsi < εsn for n > i > N, and σi < si ⩽ sN for i ⩽ N. Given that sn → ∞, for all n greater than some given M 
we have sn > sN/ε, that is sN/sn < ε, and hence we have, for i < N, also σi/sn < si/sn < sN/sn < ε.
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To summarize: the central limit theorem holds for sums of independent random quan-
tities whose distributions, apart from the variances,46 are the same, provided the total 
variance diverges (sn → ∞) and the ratios σn/sn → 0. In other words, the theorem holds 
if, roughly speaking, the contribution of each term becomes negligible compared with 
that of the total of the preceding terms.

7.7.2. In particular, this holds for bets on Heads and Tails (or at dice, or other games 
of chance; trials with 1

2p ) when we allow the stakes, Si to vary from trial to trial. The 
individual random gains are Si(Ei − p), the variance is i iS pp( ) , and the standardized 
random quantity is

 X E p ppi i /   

(for p 1
2 , i iS1

2  and X E Ei i i2 2 11
2( ) , as is always used in the case of Heads and 

Tails).
In order to fix ideas, we can develop considerations of more general validity in the 

context of this case; this should clarify the result we have obtained. Recall that the σi, are 
the same as the Si, apart from a change in the unit of measurement.

If the sum of the i
2  were convergent, it would be like having a sum with a finite 

number of terms (one could stop when the ‘remainder’ becomes negligible when modi
fying the distribution obtained). Not only would the argument used to prove that such 
a distribution is normal not then be valid any longer, but a different argument would 
even allow one to exclude it being so (except in the trivial case in which all the sum
mands are normal).47 The condition sn → ∞ is therefore necessary.

So far as the condition σn/sn → 0 is concerned, notice that it is satisfied, in particular, if 
the σn are bounded above (in the above example, this would be the case if the stakes could 
not exceed some given value) and that this is the only case in which the conclusion holds 
independently of the order of summation. Were this not the case, one could, in fact, alter 
the original order, (σ1, σ2,…, σn,…, in such a way as to every now and again (and hence 
infinitely often) make the ratio n ns2 2/  greater than 1

2  (say). One possible procedure would 
be the following: after, say, 100 terms, if the next one (σ101) is too small to give 101

2
101
2 1

2/s , 
insert between the 100th and the 101st the first of the succeeding σ which is >s101·√2. 
Proceed for 100 more terms, and then repeat the operation; and so on.48

The conclusion is, therefore, the following: if we have a countable number of summands with 
no preassigned order, then only the more restrictive condition of bounded variance (all 
the σi ⩽ K) ensures the validity of the central limit theorem (the integers serve as sub
scripts, but these are merely used by convention to distinguish the summands). On the 
other hand, if the order has some significance – for example, chronological – then things are 
different, and the previous conclusion (sn → ∞, σn/sn → 0) is, in fact, valid and less restrictive.49

46 See the statement of the theorem for the full meaning of this phrase.
47 By virtue of Cramèr’s theorem (Chapter 6, Section 6.12).
48 There is no magic in the figure 100; it was chosen in this example because it seemed best to have a 
number neither too large, nor too small. The rule must guarantee that all the terms of the original sequence 
appear in the rearranged sequence (part of the original sequence might be permanently excluded if at each 
place one term were chosen on the basis of the exigencies of magnitude, or whatever).
49 It seems to be important, both from a conceptual and practical point of view, to distinguish the two cases. 
In general, however (and, indeed, always, so far as I know), it seems that one only thinks in terms of the case of 
ordered sequences. It is always necessary to ask oneself whether the symbols actually have a genuine meaning.
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If, in particular, we wish to consider the case in which all the stakes (and, therefore, the 
variances) are increasing, the condition means that the σn, must increase more slowly 
than any geometric progression (‘eventually’; i.e. at least from some given point on).

The reason for such bounds is also obviously intuitive. In fact, if a very large bet arises, 
it, by itself, will influence the shape of the distribution in such a way as to destroy the 
approach to the normal which might have resulted from all the preceding bets.

It remains to consider now what happens if we let not only the σi vary, but also the 
(standardized) distributions of the Xi. All the expressions that we wrote down in the 
previous case remain unaltered, except that, in place of ϕ(σiu) and ε(σiu), we must now 
write ϕ(σiu) and ε(σiu), allowing for the fact that the distribution (and hence the ϕ and ε) 
may vary with i.

All that we must do, then, is to examine the ‘correction term’ in the final expression. The 
single ε is now replaced by the εi and, in order to be able to draw the same conclusion, it 
will be sufficient to require that the εi(u) all tend to zero in the same way as μ → 0. In other 
words, it is sufficient that there exists a positive ε(u) tending to 0 as μ → 0, which provides 
an upper bound for the εi(u); |εi(u)| ⩽ ε(u).

As far as the meaning of this condition is concerned, it requires that (for the standardized 
summands, Xi) the masses far away from the origin tend to zero in a sufficiently rapid, 
uniform manner. More precisely, it requires that P(|Xi| ⩾ x) be less than some G(x), the 
same for all the Xi which is decreasing and tending to zero rapidly enough for ∫x2|  
dG(x)| < ∞ (see Lévy, Addition, p. 106).

A sufficient condition is that of Liapounov, which is important from a historical point 
of view in that it provided the basis of the first rigorous proof of the central limit theo
rem under fairly unrestrictive conditions (1901). The condition requires that, for at 
least one exponent 2 + δ > 2, the moment exists for all the Xi

 P X ai i
2  (7.38)

and that

 a a a s nn n1 2
2 0/ as . 

7.7.3. All that remains is to ask whether the three conditions

 s s u un n n i, / ,0  
that we know to be sufficient for the validity of the central limit theorem are also neces
sary. The answer, a somewhat unusual one, perhaps, but one whose sense will become 
clearer later, is that they are not necessary, but almost necessary.

The necessary and sufficient conditions constitute the so‐called Lindeberg–Feller 
theorem. This improves upon the version which we gave above, and which is known 
as the Lindeberg–Lévy theorem. The range of questions involved is very extensive 
and has many aspects, the theory having been developed, more or less independently, 
and in various ways, by a number of authors, especially in the period 1920–1940. In a 
certain sense, Lindeberg was the one who began the enterprise, and Lévy and Feller 
produced the greatest number of contributions (along with Cramèr, Khintchin and 
many others). Our treatment has looked at just a few of the most important, but 
straightforward, aspects of the theory. The presentation is original, however, in that 
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we have made an effort to unify everything (arguments, choice of notation and termi
nology, emphasis on what is fundamental, and what is peripheral), and because of the 
inclusion of examples and comments, perhaps novel, but, in any case, probably useful, 
at least for clarification.

This digression, in addition to providing some historical background, serves to give 
warning of the impossibility of giving a brief, complete clarification of the phrase, ‘not 
necessary, but almost necessary’, which constituted our temporary answer. Not only 
would we need to include even those things which we intended to omit, but we would 
also need to give the reasons why we intended omitting them. As an alternative, we shall 
give the gist of the matter, together with a few examples: the gist is that the conditions 
only need be weakened a little –  ‘tinkered with’ rather than substantially altered. We 
have already seen the trivial case (summands all normal) which holds without requiring 
sn → ∞; the necessary and sufficient conditions are analogous to the necessary ones but 
refer to the sums, Yn, rather than to the summands (allowance is therefore made for 
intuitive cases of compensation among the effects of different summands, or, for an 
individual summand, of compensation between a large value of σi and a very small εi(u), 
that is an Xi with a distribution which is almost exactly normal).

An extension of a different kind is provided by the following, which seems, for a vari
ety of reasons, worth mentioning: a sum of Xh with infinite variances can also tend to a 
normal distribution (although within pretty narrow confines, and with rather peculiar 
forms of normalization). The condition (for Xh with the same distribution F and previ
sion 0) is that U a x

a

a
( ) 2  dF ‘varies slowly’ as a → ∞ (that is for every k > 0 we must have

 U ka U a a/ ,1 as , 

although, by hypothesis, U(a) → ∞). This implies, however, that, for every α < 2, the 
moments of order α are finite (this involves the same integral as above, but with |x|α 
replacing x2), and that one does not have convergence for the distributions of the Yn/√n 
(but instead for some other sequence of constants, to be determined for each case 
separately). These are the two remarks we made above; note that the second takes up 
and clarifies the remarks of Chapter 6, 6.7.1, and the first footnote of that section: an 
example of this is provided by f(x) = 2|x|−3 log|x|(|x| ⩾ 1), where the normalization is 
given by Yn/(√n log n) (see Feller, Vol. II, in several places).

7.7.4. A complement to the ‘law of large numbers’. This complement (and we present 
here the important theorem of Khintchin) is included at this point simply for reasons of 
exposition. In fact, the method of proof is roughly the same as that given above.

We know that for the arithmetic mean, Yn/n, of the first n random quantities, Xi with 
P(Xi) = 0, we have Y nn /  0 , and hence Y nn / 0 (the quadratic and weak laws of large 
numbers, respectively), provided that the variances i

2  are bounded and have a diver
gent sum. Khintchin’s result states that Y nn / 0  also holds if the variances are not 
finite, provided the Xi all have the same distribution. (Other cases also go through, 
under appropriate restrictions.)

If P(Xi) = 0, we have log ϕ(и) = uε(u), with ε(u) → 0 as u → 0. For Yn/n, the logarithm 
of the characteristic function is therefore

 n u n u n u u n n. ./ / / as ,0  
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and hence the characteristic function tends to e0 = 1, and the distribution to F(x) = 
(x > 0) (all the mass concentrated at the origin): in other words, the limit of Yn/n (in the 
weak sense) is 0; Y nn / 0.

If the distributions of the Xi are not all equal, the ϕi(и), and therefore the εi(u), will be 
different. The logarithm of the characteristic function of Yn/n will then be equal to (u/n) 
∑εi(u/n) = и × the (simple) arithmetic mean of the εi(u/n). Here, too, it suffices to assume 
that the εi(u) tend to 0 in the same way; that is for all i we must have |εi(u)| < ε(u), with 
ε(u) positive and tending to zero as и → 0. The condition concerning the distributions 
of the Xi is similar to the previous one (except that it entails the first moment rather than 
the second): P(|Xi| ⩾ x) all bounded by one and the same G(x), decreasing and tending 
to 0 rapidly enough to ensure that ∫x|dG(x)| < ∞. Clearly, this is a much less restrictive 
condition than the previous one: the present condition concerns the influence of the far 
away masses on the evaluation of the prevision (whereas the variance can be infinite); 
the previous condition was concerned with the influence on the evaluation of the vari-
ance (which had to exist, or, perhaps better, to be finite).

In order to understand the Khintchin theorem, it is necessary to recollect that we here 
assume for P(X) the value given by ˆ( )XP  (by virtue of the convention we adopted in 
Chapter 6, 6.5.6).

The theorem states that the mean Yn/n of X1, X2,…, Xn,… (independent, with the same 
distribution F), converges in a strong way to a constant a if and only if the mean value 


ˆ( ) ( )F XP  of F exists and equals a (weak convergence can hold even without this 
condition).50

This property shows P̂ to have an interesting probabilistic significance and hence to 
appear as something other than merely a useful convention.

50 More general results, with simple proofs, are given in Feller, Vol. II (1966), pp. 231–234.
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8

8.1 Introduction

8.1.1. In Chapter 7, we saw that viewing Heads and Tails as a random process enabled 
us to present certain problems (laws of large numbers, the central limit theorem) in a 
more expressive form – as well as giving us insights into their solution. It was, essen-
tially, a question of obtaining a deeper understanding of the problems by looking at 
them from an appropriate dynamic viewpoint.

This same dynamic viewpoint lends itself, in a natural way, to the study of a number 
of other problems. Not only does it serve as an aid to one’s intuition, but also, and more 
importantly, it reveals connections between topics and problems that otherwise appear 
unconnected (a common circumstance, which results in solutions being discovered 
twice over, and hence not appearing in their true perspective); in so doing, it provides 
us with a unified overall view.

We have already seen, in the case of Heads and Tails, how the representation as a 
process enabled us to derive, in an elegant manner, results which could then easily be 
extended to more general cases. We now proceed by following up this idea in two dif-
ferent, but related, directions:

making precise the kind of process to be considered as a first development of the case 
of Heads and Tails;

considering (first for the case of Heads and Tails, and then in the wider ambit men-
tioned above) problems of a more complicated nature than those studied so far.

8.1.2. The random processes that we shall consider first are those with independent 
increments,1 and we shall pay special attention to the homogeneous processes. This will 
be the case both for processes in discrete time (to which we have restricted ourselves so 
far) and for those in continuous time.

In discrete time (where t assumes integer values), the processes will be of the same 
form as those already considered: Y(t) = X1 + X2 + … + Xt, the sum of independent 
 random quantities (increments) Xi. In terms of the Y, one can describe the process by 

1 Here, and in what follows, independent always means stochastically independent.

Random Processes with Independent Increments
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saying that the increments in Y(t) over disjoint time intervals are independent: that is 
Y(t2) − Y(t1) and Y(t4) − Y(t3) are independent for t1 < t2 ⩽ t3 < t4. The increments are, 
in fact, either the Xs themselves, or sums of distinct Xs, according to whether we are 
dealing with unit time, or with a longer time interval.

Such a process is called homogeneous if all the Xi have precisely the same distribution, 
F. More generally, all increments Y(t + τ) − Y(t) relating to intervals with the same 
length, τ, have exactly the same distribution (given by the convolution Fτ*).

In continuous time (a case which we have so far only mentioned in passing) the above 
conditions, expressed in terms of the increments of Y(t), remain unchanged; except that 
now, of course, they must hold for arbitrary times t (instead of only for integer values, 
as in the discrete time case). This makes the conditions much more restrictive. The 
consequence of this is that whereas in the discrete case all distributions were possible for 
the Xs (and all distributions decomposable into a t‐fold convolution were admissible 
for  the Y(t)), in continuous time we can only have, for the Y(t) and their increments 
Y(t  + τ) − Y(t), those distributions whose decomposition can be taken a great deal 
 further: in other words, the infinitely divisible distributions (which we mentioned in 
Chapter 6, 6.11.3).2

In such a process, the function Y(t) can be thought of as decomposed into two com-
ponents, Y(t) = YJ(t) + YC(t), the first of which varies by jumps, and the second continu-
ously. The arguments we shall use, based on this idea, incomplete though they are at 
the moment, are essentially correct so far as the conclusions are concerned, although 
critical comments are required at one point (Section  8.3.1) in connection with the 
 interpretation of these conclusions and the initial concepts.

The conclusion will be that the distribution of Y(t) (or of the increment Y(t + τ) − Y(t), 
respectively) can be completely and meaningfully expressed by considering the two 
components YJ and YC separately:

in order to characterize the distribution of YJ(t) it is necessary and sufficient to give the 
prevision, over the interval [0, t] ([t, t + τ], respectively), of the number of jumps of 
various sizes;

in order to characterize the distribution of YC(t) it is necessary and sufficient to give the 
prevision and the variance of the continuous component (since, as we shall see, its 
distribution is necessarily normal);

taken together, these characterize Y(t).

All the previsions are additive functions of the intervals and, except for that of the 
increment of the continuous component, YC, they are essentially non‐negative, and 
therefore nondecreasing.

In the homogeneous case, they depend only on the length of the interval, and are 
therefore proportional to it.

8.1.3. We shall illustrate straightaway, by presenting some of the most important 
cases, the structure that derives from what we have described as the most general form 

2 These statements are not quite correct as they stand. Firstly, Xi could be a certain number; secondly, the 
jumps might occur at known instants. These are trivial special cases, however, which could be considered 
separately (see Section 8.1.4).
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of random process with independent increments. Although this will only be a summary, 
it should help to make clear the scope of our investigation and also give an idea of the 
kinds of problems we shall encounter.

Let us first restrict ourselves to the homogeneous case (it will be seen subsequently 
(Section 8.1.4) that the extension to the general case is reasonably straightforward and 
only involves minor additional considerations).

It is convenient to indicate and collect together at this point the notation that will be 
used in what follows. This will be given for the homogeneous case; hence a single distri-
bution suffices for the increments Y(t0 + t) − Y(t0). This will depend on t but not on t0 
and will also be the distribution of Y(t) if the initial condition Y(0) = 0 is assumed (as will 
usually be convenient). The distribution function, density (if any) and characteristic 
function of this distribution will be denoted by F t(y), f  t(y) and ϕt(и) respectively. The 
t is, in fact, an exponent of ϕ(и) (as is obvious from the homogeneity and the independ-
ence of the increments) and is used as a superscript for F and f both for uniformity and 
to leave room for possible subscripts. Its use is also partially justified by the fact that F t 
and f t are, actually t‐fold convolutions, (F1)t* and (ƒ1)t*, of F 1 and f 1 with themselves, 
provided that the concept (where it makes sense, as is the case here for all t, because of 
infinite divisibility) is suitably extended to the case of noninteger exponent t. The distri-
bution and density (if any) of the jumps will be denoted by F(x) and ƒ(x), respectively 
(with no superscripts), and the characteristic function by χ(u).

Let us examine now the various cases.
The simplest example, and the one which forms the basis for the construction of all 

the random processes of the type under consideration, is that of the Poisson process. 
This is a jump process, all jumps being of the same size, x; for the time being, we shall 
take x = 1, so that Y(t) = N(t) = the number of jumps in [0, t] (see Figure 8.1). We shall 
denote by μ the prevision of the number of jumps occurring per unit time (i.e. µt is the 
prevision of the number of jumps in a time interval of length t). In an infinitesimal time, 
dt, the prevision of the number of jumps is μdt; up to an infinitesimal quantity of greater 
order, this is also the probability that one jump occurs within the small time interval (the 
probability of more than one jump occurring is, in comparison, negligible). We call μ 
the intensity of the process.

The distribution of N(t), the number of jumps occurring before time t, is Poisson, with 
prevision a = µt (see Chapter 6, 6.11.2, equation 6.39, for the explicit form of the prob-
abilities and the characteristic function).

We recall that the variance in this case is also equal to µt. It is better, however, to note 
explicitly that the prevision is xμt, and the variance is x2µt, where x is the magnitude of 
the jump. In this way, one avoids the ambiguities which arise from ignoring dimensional 
questions (i.e. taking x = pure number) and, subsequently, from assuming the special 
value x = 1 (for which x = x2).

A superposition of several Poisson processes, having jumps of different sizes, xk, 
and different intensities, μk (k = 1, 2,…, m), is also a jump process, homogeneous with 
independent increments, Y(t) = Σxk Nk(t). It also has an alternative interpretation as 
a process of intensity μ = μ1 + μ2 + … + μm, where each jump has a random size X 
(independently of the others), X taking the value xk with probability μk/μ.

Instead of considering the sum of a finite number of terms, we could also consider an 
infinite series, or even an integral (in general, a Stieltjes integral). Provided the total 
intensity remains finite, the above interpretations continue to apply (except that X now 
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has an arbitrary distribution, rather than the discrete one given above). This case is 
referred to as a compound Poisson process and provides the most general homogeneous 
process with independent increments and discrete jumps (i.e. finite in number in any 
bounded interval).

Using the same procedure, one can also obtain the generalized Poisson processes: that 
is those with everywhere dense jumps (discontinuity points), with μ = ∞. It is necessary, 
of course, to check that the process does not diverge: for this, we require that the inten-
sity με of jumps X with |X| > ε(ε > 0) remains finite, diverging only as ε → 0, and then not 
too rapidly.

The Poisson processes, together with the compound and generalized forms, exhaust 
all the possibilities for the jump component YJ(t).

It remains to consider the continuous component YC(t). In every case, Y(t) could be 
considered as the sum of N increments (N arbitrary), corresponding to the N small 
intervals of length t/N into which the interval [0, t] could be decomposed. If one makes 
precise the idea of separating off the ‘large’ increments (large in absolute value), which 
correspond to the jumps, it can be shown that the others (the ‘small’ increments) satisfy 
the conditions of the central limit theorem, and hence the distribution is necessarily 
normal (as we mentioned above).

As we have already stated, its prevision varies in a linear fashion, P[YC(t)] = mt, and 
the same is true of the variance, P[{YC(t) − mt}2] = σ2t (where m and σ2 denote the previ-
sion and variance corresponding to t = 1).3 In some cases, it may also turn out to be 
convenient to separate the certain linear function, mt, and the fair component (with 
zero prevision), YC(t) − mt (whose variance is still σ2t).

The set‐up we have just described is called the Wiener–Lévy process (see also 
Chapter 7, 7.6.5).

8.1.4. So far as the increment over some given interval is concerned, the conclusions 
arrived at in the homogeneous case carry over without modification to the general case. 
This is clear, because the conclusions depend on the prevision (of the number of certain 
jumps etc.) over such an interval as a whole, and not on the way the prevision is distributed 

3 These formulae hold, of course, for every Y(t) that is homogeneous with independent increments (with 
finite m and σ2). We mention them here, for the particular case of YC, only because of their importance in 
specifying the distribution in this case.
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over the subintervals. In the inhomogeneous case, the only new feature is that, within an 
interval, each prevision can be increasing in an arbitrary way, not necessarily linearly.

The one thing that is required is that one exclude (or, better, consider separately, if 
they exist) the points of discontinuity for such a prevision. In fact, at such points one 
would have a nonzero probability of discontinuity (a ‘fixed discontinuity’; see the remark 
in the footnote to Section 8.1.2). This is equivalent to saying that at these points Y(t) 
receives a random (instantaneous) increment, incompatible with the nature of the ‘pro-
cess in continuous time’, because (being instantaneous) it is not decomposable, and 
therefore does not have to obey the ‘infinite divisibility’ requirement. In what follows, 
we shall always tacitly assume that such fixed discontinuities have been excluded.

Observe that, if all the previsions are proportional to one another, the process can be 
said to be homogeneous with respect to a different time scale (one which is propor-
tional to them). In general, however, the previsions will vary in different ways, and then 
we have no recourse to anything of this kind.

8.1.5. Let us now consider more specifically some of the problems that one 
 encounters.  These are of interest for a number of reasons : by virtue of their 
 probabilistic significance and their range of application; because of the various 
 mathematical aspects involved; and, above all, because of the unified and intuitively 
meaningful presentation that can be given of a vast collection of seemingly distinct 
problems. The problems that we shall mention are only a tiny sample from this 
 collection and the treatment that we shall give will only touch upon some of the more 
essential topics, presenting them in their simplest forms.

First of all, we have to translate into actual mathematical terms (through the distribu-
tion, by means of the characteristic function) the characterization of the general process 
with independent increments, and hence of the most general infinitely divisible distri-
bution (which we have already given above, in terms of the intensities of the jumps and 
the normal component).

Particular attention must be paid, however, to the limiting arguments that lead to the 
generalized Poisson process, since the latter gives rise to rather different problems. For 
example, in our preliminary remarks we did not mention that sometimes convergence 
can only be achieved by ‘compensating’ the jumps by means of a certain linear function 
and that, in this case, the intuitive idea of behaviour similar to that of the discrete case 
(apart from minor details) must undergo a radical change.

Even the behaviour of the continuous component (the Wiener–Lévy process), despite 
what one might at first sight be led to expect from the regular and familiar shape of the 
normal distribution, turns out to be extremely ‘pathological’. The study of the behaviour 
of the function (or, more precisely, the behaviour which it ‘almost certainly’ enjoys) is, 
however, a more advanced problem. We shall begin by saying something about the 
distribution.

How does the distribution of Y(t) behave as t increases? We already know that it tends 
to normality in the case of finite variances, but there also exist processes (of the general-
ized Poisson type) with infinite variances. The answer in this case in that there exist 
other types of stable distribution, all corresponding to generalized Poisson processes 
(more precisely, as we shall see in Sections 8.4.1−8.4.4, there are a doubly infinite collec-
tion of them, reducible, essentially, to a single infinite collection). The processes which 
are not stable either tend to a stable form, or do not tend to anything at all.
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The key to the whole question lies in the behaviour at the other extreme, as t → 0. This 
is directly connected with the intensity of the jumps of different sizes: one has stability 
if the intensity of the jumps >x or <−x decreases proportionally to x−α(x > 0, 0 < α < 2); 
one has a tendency to a stable form if the process, in some sense, approximately satisfies 
this condition. Referring back to a remark made previously, we note that the ‘sum of the 
jumps’ does not require ‘compensation’ if α < 1, but does if α > 1 (α = 1 constitutes a 
subcase of its own). It follows that the stable distributions generated by just the positive 
(negative) jumps extend only over the positive (negative) values if α < 1, whereas they 
extend over all positive and negative values if α ⩾ 1.

An important special case is that of ‘lattice’ processes, in which Y(t) can only assume 
integer values (or those of an arithmetic progression; there is no essential difference). 
They must, of course, be compound Poisson processes, but this does not mean that they 
cannot tend to a stable (continuous distribution as t increases. Indeed, if the variances 
are finite they necessarily tend to the normal distribution (as we already saw, in the first 
instance, in the case of Heads and Tails).

8.1.6. The study of the way in which the distribution of Y(t) varies with t does not 
necessarily entail the study of the behaviour of the actual process Y(t) (i.e. of the 
 function Y(t)). The essential thing is to examine the characteristics of the behaviour 
of  the latter, which are of interest to us, behaviour which can only be studied by the 
simultaneous consideration and comparison of values of Y(t) at different times t (pos-
sibly a large or infinite number of them).

So far as the phrase ‘infinite number’ is concerned, we should make it clear at once that 
it means ‘an arbitrarily large, but finite, number’ (unless, in the case under consideration, 
one makes some additional assumption, such as the validity of countable  additivity, or 
gives some further explanation). However, in order to avoid making heavy weather of the 
presentation with subtle, critical arguments, we shall often resort to intuitive explana-
tions of this kind (as well as to the corresponding ‘practical’ justifications).

Problems that have already been encountered in the discrete cases – like that of the 
asymptotic behaviour of Y(t)/t (as t → ∞), to which the strong law of large numbers 
gives the solution – are restated and shown to have, generally speaking, similar solu-
tions in the continuous case. One also meets, in the latter case, problems that are, in a 
certain sense, reciprocal; involving what happens as t → 0 (‘local’ behaviour – like ‘con-
tinuity’ etc. – at the origin and, hence, in the homogeneous case, at any arbitrary point 
in time). In the Wiener–Lévy process, the two problems correspond exactly to one 
another by reciprocity.

If one confines attention to considerations based on the Tchebychev inequality, the 
conclusions hold for every homogeneous process with independent increments for 
which the variance is finite. One such process, viewing the jumps and possible horizontal 
segments ‘in the large’ (i.e. with respect to large time intervals and intervals of the ordi-
nate), in such a way as to make them imperceptible, is the Wiener–Lévy process. Indeed, 
Lévy calls it a Brownian motion process, which corresponds to the perception of an 
observer who is not able to single out the numerous, tiny collisions that, in any impercep-
tibly small time interval, suddenly change the motion of the particle under observation.

More generally, even for arbitrary random processes (provided they have finite vari-
ance), answers can be obtained to a number of problems, even though, in general, they 
may only be qualitative and based on second‐order characteristics (as in the case of a 
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single random quantity, or of several). Here, the random quantities to be considered are 
the values Y(t) and the characteristics to be used are the previsions, variances and 
covariances (or, equivalently, P[Y(t)], P[Y2(t), P[Y(t1)Y(t2)]). In our case, this is trivial: 
evaluated at t = 0, the prevision and variance of Y(t) are, as we know, mt and σ2t, and the 
covariance of Y(t1) and Y(t2) is σ2t1 (if t1 ⩽ t2); the correlation coefficient is, therefore, 
r(t1, t2) = σ2t1/σ√t1 .σ√t2 = √(t1/t2) (it is sufficient to observe that Y(t2) = Y(t1) + [Y(t2) − 
Y(t1)], and that the two summands are independent).

There are other problems, however, that require one to take all the characteristics into 
account and to have recourse to new methods of approach. (This also applies to the 
problems considered previously, if one wishes to obtain conclusions that are more pre-
cise, in a quantitative sense, and more specifically related to the particular process 
under consideration.) A concept that can usefully be applied to a number of problems is 
that of a barrier (a line in the (t, y)‐plane on which у = Y(t) is represented). One observes 
when the barrier is first reached, or when it is subsequently reached, or, sometimes, one 
assumes that the barrier modifies the process (it may be absorbing – i.e. the process 
stops – or reflecting, and so on).

The classical problem of this kind, and one that finds immediate application, is that of 
the ‘gambler’s ruin’ (corresponding to the point when his gain reaches the level −c, 
where c is his initial capital). There are a number of obvious variants: one could consider 
the capital as being variable (an arbitrary barrier rather than the horizontal line у = −c), 
or one could think of two gamblers, both having a bounded initial capital (or variable 
capital), and so on.

In addition to this and other interesting and practical applications, problems of this 
kind also find application in studying various aspects of the behaviour of the function 
Y(t). In particular, and this question has been studied more than any other, they are 
useful for specifying the asymptotic behaviour, indicating which functions tend to zero 
too rapidly, or not rapidly enough, to provide a (practically certain) bound for Y(t)/t 
from some point t = T on (and similarly as t → 0).

Reflecting barriers, and others which modify the process, take us beyond the scope 
of this present chapter. In any case, they will enter, in a certain sense, into the consid-
erations we shall make later, and will provide an instructive and useful technique. 
In particular, they will enable us to make use of the elegant and powerful arguments of 
Desiré André (and others) based on symmetries.

8.2 The General Case: The Case of Asymptotic Normality

8.2.1. Let us first give a precise, analytic statement of what we have hitherto presented 
in a descriptive form concerning the structure and properties of the general homoge-
neous process with independent increments.

When the intensity of the jumps, μ, and the variance, σ2, are finite, the process is 
either normal (if μ = 0), or asymptotically normal (as we have already seen from the 
central limit theorem). In other words, we either have the Wiener–Lévy process, 
or  something which approximates to it asymptotically. We are not saying that the 
restrictions made are necessary for such behaviour: the restriction on μ, that is μ < ∞, 
has no direct relevance, and the restriction σ2 < ∞ could be weakened somewhat (see 
Chapter  7, 7.7.3). However, for our immediate purpose it is more appropriate to 
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concentrate attention on the simplest case, avoiding tiresome complications which do 
not really contribute anything to our understanding.

Our first task, once we have set up the general analytical framework, is to provide 
insight into the way in which, and in what sense, processes of this kind (i.e. those which 
are asymptotically normal) can be considered as an approximation, on some suitable 
scale, to the Wiener–Lévy process, and conversely. In this way, any conclusion estab-
lished for a special case, for example, that of Heads and Tails, turns out to be necessarily 
valid (in the appropriate asymptotic version) in the general case. Note that this enables 
us, among other things, to establish properties of the Wiener–Lévy process by means 
of elementary combinatorial techniques, which are, in themselves, applicable only to 
the case of Heads and Tails. Conversely, it enables us to derive properties of the latter, 
and of similar examples, that cannot be obtained directly (for example, asymptotic 
properties) by using approaches – often much simpler – which deal with the limit case 
of the Wiener–Lévy process (itself based on the normal distribution). This is just one 
example, out of many, where the possibility exists of advantageously switching from a 
discrete schematization to a continuous one, or vice versa, as the case may be.

8.2.2. The Wiener–Lévy process can be derived as the limit case of the Heads and Tails 
process (in discrete time).

Suppose, in fact, that we change the scale, performing tosses at shorter time intervals, 
and with smaller stakes, so that the variance per unit time remains the same. For this to 
be so, if the stake is reduced by a factor of N (a = 1/N) the number of tosses per unit time 
must be increased to N2 (with time intervals τ = 1/N 2). To see this, note that the vari-
ance for each small time interval τ is a2 = (1/N)2, and in order for it to be equal to 1 per 
unit time, the number of small intervals by which it has to be multiplied must be N2.

By taking N sufficiently large, one can arrange things in such a way that the increment 
per unit time has a distribution arbitrarily close to that of the standardized normal. 
Taking N even larger, one can arrange for the same properties to hold, also, for the small 
intervals. In other words, one can arrange for the distribution of Y(t)/√t to be arbitrarily 
close, to any preassigned degree, to the standardized normal, for every t exceeding some 
arbitrarily chosen value. This could also be expressed by saying that the Heads and Tails 
process can be made to resemble (with a suitable change of scale) a process in discrete 
time with normally distributed jumps, and (with a more pronounced change of scale) 
even to resemble the Wiener–Lévy process (provided, of course, that one regards as 
meaningless any claim that the scheme is valid, or, anyway, observable, for arbitrarily 
small time periods).

In terms of the characteristic function, these considerations reduce, in the first case, 
to the straightforward and obvious observation that if we substitute e u2

 for cos и then 
[cos(u/√n]n → e u2

 becomes the identity e e/u n
n

u
2 2

; whereas, in the second 
case, they simply repeat the procedure used in Chapter 7, 7.7.1. In the Heads and Tails 
process, Y(t) has characteristic function ϕt(и) = (cos u)t (t = integer); under the above‐
mentioned change of scale, this becomes cos u N

tN
/

2

 (t = integer/N2) and in the limit 
(as N → ∞) it becomes e u2

 (t arbitrary).

8.2.3. The Wiener–Lévy process can be obtained in an analogous manner from the 
Poisson version of the Heads and Tails process (a compound Poisson process, with 
the intensity of the jumps given by μ = 1, and with jumps ± 1, each with probability 1

2 ). 
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The difference is that instead of there certainly being a toss after each unit time 
 interval the tosses occur at random, with a prevision of one per unit time (the probability 
being given by dt in each infinitesimal time interval of length dt). Alternatively (as we 
mentioned already in Section 8.1.3), we can say that Y(t) = Y1(t) − Y2(t), where Y1 and Y2 
are the number of positive and negative gains, respectively, both occurring at random 
and independently, each with intensity 1

2 .
The distribution of Y(t) in such a process is the Poisson mixture of the distributions 

of Heads and Tails. In terms of the characteristic function, ϕt(и) is the Poisson mixture 
(with ‘weights’ given by the probabilities e /t nt n! of there being n jumps in [0, t]) of the 
(cos u)n (the characteristic functions of the sums of n jumps; i.e. of Y(t), assuming that 
there are n jumps up until time t):

 
t t n t uu t u ne / ecos ! .cos 1  (8.1)

In this case, too, the same change of scale (jumps reduced by 1/N, and the intensity 
increased by N2) leads to the Wiener–Lévy process. In fact, as N → ∞, the characteristic 
function exp{tN2[cos(u/N) − 1]} tends to e tu2

.
We therefore obtain the conclusion mentioned above, and it is worth pausing to 

 consider what it actually means. It establishes that the distribution of the gain in a game 
of Heads and Tails is, after a sufficiently long period of time has elapsed, practically 
the same, no matter whether tosses were performed in a regular fashion (one after each 
unit time period), or were randomly distributed (with a Poisson distribution, yielding, 
in prevision, one toss per each unit time period).

8.2.4. The three examples given above (the Heads and Tails process, in both the  regular, 
discrete case and its Poisson variant, and the normally distributed jump process in discrete 
time) provide the simplest approaches to approximate representations of the Wiener–Lévy 
process and should be borne in mind in this connection. If we wished, we could also include 
a fourth such example; the Poisson variant of the normal jump process:

 
t t u n

uu t n te e / e 
2 2

1! exp . (8.2)

Strictly speaking, however, if one ignores the psychological case for presenting these 
introductory examples, the above discussion is entirely superfluous. We have merely 
anticipated, in a few special cases, ideas which can be examined with equal facility in 
the general case.

Let us now turn, therefore, to a systematic study of the general case. We begin 
with the Poisson process, and then proceed to a study of the compound Poisson 
processes.

8.2.5. The (simple) Poisson process deals with the number of occurrences, N(t), of 
some given phenomenon within a time period [0, t]. In other words, it counts the 
jumps, each considered as being of unit size (like a meter that clicks once each time it 
records a phenomenon – such as the beginning of a telephone conversation, a particle 
hitting a screen, a visitor entering a museum, or a traveller entering an underground 
station etc.).

The conditions given in Section  8.1.3 simply mean that we must be dealing with 
a homogeneous process with independent increments, and with jumps all of unit size. 
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It is instructive to go back to these conditions and, in the context of the present problem 
of deriving the probabilities of the Poisson distribution, to provide two alternative 
 derivations in addition to that given in Chapter 6, 6.11.2.

First method. Let a (a = μ) be the prevision of the number of jumps occurring in a 
given interval (of length t, where μ denotes the intensity). If we subdivide the interval 
into n equal parts (n large, so that a/n is small compared with 1; i.e. a/n < ε, for some 
preassigned ε > 0), then a/n is the prevision of the number of jumps occurring in each 
small interval. We also have (a/n) = qnmn, where qn is the probability of at least one jump 
occurring in a small time interval of length t/n, and mn is the prevision of the number of 
jumps occurring in intervals containing at least one jump. It follows that we must have 
mn → 1 (as n → ∞). If this were not so, it would mean that each discontinuity point had 
a positive probability of having further jumps in any arbitrarily small neighbourhood of 
itself; in other words, practically speaking, of being a multiple jump (contrary to the 
hypothesis that all jumps are of unit size).4

The probability that h out of the n small intervals contain discontinuities, and n − h 
do not, is given by h

n
n
h

n
n hq q1 . As n → ∞, the probability that there are small 

 intervals containing more than one jump becomes negligible (so that h gives the actual 
number of jumps). On the other hand, we also have qn ≃ a/n and, therefore

 
p t a

n
a
nh h

n
h n h

lim .1
 

In this way, we reduce to the formulation and procedure that we have already seen (in 
Chapter 6, 6.11.2) for so‐called ‘rare events’ (which the occurrences of jumps in very 
small intervals certainly are).

Second method. We can establish immediately that p0(t), the probability of no jumps 
in a time interval of length t, must be of the form e−kt. To see this, we note that, because 
of the independence assumption,

 p t t p t p t0 0 0  

and this relation characterizes the exponential function. The probability that the 
waiting time, T1, until the occurrence of the first jump does not exceed t is given by 
F(t) = 1 − p0(t) = 1 − e−kt (which is equivalent to saying that it is not the case that no 
jump occurred between 0 and t). From the distribution function F(t), we can derive 
the density function f(t) = k e−kt, and we then know that the characteristic function 
is given by

 u ku1 1/ . 

4 It would certainly be more direct to impose an additional condition requiring that the probability p*(t) = 1 
– p0(t) – p1(t) of there being two or more jumps in an interval of length t be an infinitesimal of second order 
or above. This is, in fact, the approach adopted in many treatments, but it carries the risk of being 
interpreted as an additional restriction, without which there could be different processes, each compatible 
with the initial assumptions.



8 Random Processes with Independent Increments 321

We recall (although, in fact, it follows directly from the above) that the gamma distribu-
tion is obtained by convolution:
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This, therefore, gives the distribution of Sh, the waiting time for the occurrence of the 
hth jump, which is the sum of the first h waiting times (independent, and exponentially 
distributed):

 S T T Th h1 2 . 
This method of approach is, in a sense, the converse of the first one. The connection 

is provided by noting that N(t) < h is equivalent to Sh > t (‘less than h jumps in [0, t]’ = 
‘the hth jump takes place after time t’), and that N(t) = h is equivalent to

 N t h N t h S t S th h1 1 . 
From this we see that

 p t N t h S t S t kt hh h h
kt hP P P1 e / !, (8.3)

again yielding the Poisson distribution. Given that its prevision is kt, it turns out that k, 
introduced as an arbitrary constant, is actually μ: imagine the latter in place of k, there-
fore, in the preceding formulae.

Third method. This is perhaps the most intuitive approach and the most useful in 
that it can be applied to any scheme involving passages through different ‘states’ with 
intensities μij, constant or variable, where μij dt = the probability that from an initial 
state ‘i’ at time t one passes to state ‘j’ within an infinitesimal time dt.

Let us denote by ph(t) the functions (assumed to be unknown) that express the 
 probabilities of being in state h at time t (in the Poisson process, state h at time t corre-
sponds to N(t) = h, h = 0, 1, 2, …). In the general case, the probability of a passage from 
i to j in an infinitesimal time dt is given by pi(t)μij dt (the probability of two passages, 
from i to some h, and then from h to j, within time dt, is negligible, since it is an infini-
tesimal of the second order). The change in ph(t) is given by dph = ph dt and consists of 
the positive contribution of all the incoming terms (from all the other i to h), and the 
negative contribution of the outgoing terms (from h to all the other j). One has, there-
fore, in the general case (which has been mentioned merely to provide a proper setting 
for the case of special interest to us), a system of differential equations (which requires 
the addition of suitable initial conditions).

Our case is much simpler, however: we have only one probability, that of passing from 
an h to the next h + 1, the intensity remaining constant throughout. F or h = 0, we have 
only the outgoing term, −µp0(t) dt, whereas for h > 0, we have, in addition to −µph(t) dt, 
the incoming term µph−1(t) dt. This reduces to the (recursive) system of equations

 p t p t p t p t p th h h0 0 1, , (8.4)

together with the initial conditions, p0(0) = 1, ph(0) = 0 (h ≠ 0).
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From the first equation, we obtain immediately that p0(t) = e−μt and, hence, from the 
second equation we obtain

 p t t t
1 e , 

and so on. If (realizing from the first terms that it is convenient to extract the factor e−µt) 
we set ph(t) = e−µtgh(t) (with g0(t) = 1, and gh(0) = 0 for h ≠ 0), we can virtually eliminate 
any need for calculations: the recursive relation for the gh(t) reduces to the extremely 
simple form g t g th h( ) ( )1 , so that g t t hh

h( ) ( ) !/ .

8.2.6. As an alternative to the method used in Chapter 6, 6.11.2, the characteristic 
function of the Poisson distribution can be obtained by a direct calculation:

 
t

h

t h uh uu t h te e / ei i! exp .1  (8.5)

So far as the random process is concerned, it is very instructive and meaningful to 
observe that, as t → 0, we have, asymptotically,

 
t u uu t t t1 1 1e ei i

 
(probability 1 − µt of 0, and µt of 1). This is the ‘infinitesimal transformation’ from 
which the process derives. The simplest way of seeing this is, perhaps, to observe that

 
t

n

u
n

u
n

tlim .1 1 1ei

 
The Poisson process also tends to a normal form (as is obvious, given that it has finite 

variance); in other words, asymptotically it approximates the Wiener–Lévy process. 
However, the prevision is no longer zero, but equals µt (as does the variance). In order 
to obtain zero prevision, that is in order to have a finite process, it is necessary to 
 subtract off a linear term and to consider a new process consisting of N(t) − µt: instead 
of the number of jumps, one considers the difference between this number and its 
 prevision. The behaviour of

 Y t N t t  
gives rise to the saw‐tooth appearance of Figure 8.4:5 all the jumps are equal to +1, and 
the segments in between have slope −μ. With the introduction of the correction term 
−µt, the characteristic function is multiplied by e−iµtu, and we obtain

 
exp .t uue ii 1  (8.6)

This was obvious: when we take the logarithm of the characteristic function, the linear 
term in u must vanish, and we have

 
e i asiu u u u u u1 1 0 01

2
2 .

 

5 Figure 8.4 has been placed later in the text (Section 8.4.3), in order to emphasize its connection with 
Figure 8.5.
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Replacing и by и/√(µt), in order to obtain the standardized distribution, we obtain

 
exp .t u t u t

u1
2

2
1
21

2

/ / e
 

This provides, if required, a fifth approach to approximating the Wiener–Lévy pro-
cess. Simple though it is, we thought it worth spending some time on this  example, 
because the idea of adjusting (in the mean) the jumps by a certain linear term, that is of 
considering jumps with respect to an inclined line rather than a horizontal one, turns 
out, in a number of cases, to be necessary in order to ensure the convergence of certain 
procedures (and we shall see examples of this in Sections 8.2.7 and 8.2.9).

8.2.7. The compound Poisson process can be developed along the same lines as were 
followed in the case of the (simple) Poisson process. The analysis of the most general 
cases can then be attempted, recognizing that these are, in fact, the generalized Poisson 
processes.

In the case of a compound Poisson process – with intensity μ, and each jump X having 
distribution function F(x) and characteristic function χ(u) = P(eiuX) – the characteristic 
function ϕt(и) is obtained in exactly the same way as for the simple Poisson process: 
that is by substituting χ(u) in place of eiu (the latter being the χ(u) of the simple case, 
where X = 1 with certainty; that is F(x) consists of a single mass concentrated at the 
point x = 1).

This is immediate: one can either note that the ‘infinitesimal transformation’ is now 
1 + µt[x(u) − 1] = (1 − µt) + μtχ(u) (probability 1 − µt of 0, and probability µt distributed 
according to the distribution of a jump), from which it follows that

 
t

n

n

u
n

t u t ulim exp ,1 1 1 1  (8.7)

or one can simply observe that, conditional on the number of jumps N(t) being equal to 
h, the characteristic function is given by χh(u), and hence that ϕt(и) is a mixture of the 
latter, with weights equal to the probabilities of the individual h. In other words,

 
t

h

t h h t

h

hu e t h u t u h
0 0

/ e /! !, (8.8)

which is the series expansion of the form given in (8.7). Here too, of course, we are 
merely rewriting (8.5) with χ(u) substituted in place of eiu.

If one wishes to give an expression in terms of the distribution of the jumps, F(x), one 
can write the characteristic function in the form

 
t ux uxu t F x t F xexp exp ,e d e di i1 1  (8.9)

or, alternatively,

 
t uxu t M xexp ,e di 1  (8.10)
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where M(x) = μF(x). As another alternative (in order to deal more satisfactorily with the 
arbitrariness of the additive constant), we could take

 

M x F x x

M x F x F x x

for

for

0

1 1 0

,

,
 (8.11)

so that, to make the situation clear in words,
M(x) = The intensity of jumps having the same sign as x, and greater then x in 

 absolute value, taken with the opposite sign to that of x.
With this definition, M(x″) − M(x′) is always the intensity of jumps whose magnitude 

lies between x′ and x″, provided they have the same sign and x″ > x′. For x = 0, M(x) has 
a jump M(+0) − M(−0) = −μ, because M(−0) is precisely the intensity of negative jumps, 
and M(+0) is (with a minus sign) the intensity of positive jumps. The intensity of jumps 
between some x′ < 0 and x″ > 0 is given by M(x″) − M(x′) + μ (but, usually, one needs to 
consider separately jumps of opposite sign).

Remark. One can always assume (and we shall always do so, unless we state to the 
contrary) that there does not exist a probability concentrated at x = 0 (i.e. that one 
can speak of F(0) without having to distinguish between ‘+0’ and ‘−0’, as we have 
tacitly done when stating that M(+0) − M(−0) = −μ[1 − F(0)] − μF(0) = −μ). In actual 
fact, so far as any effect on the process is concerned, a ‘jump of magnitude x = 0’ and 
‘no jump’ are the same thing. Mathematically speaking, an increment of F (and hence 
of M) at x = 0 gives a contribution of zero to the integral in equation 8.9, since the 
integrand vanishes at that point. Sometimes, however, one may make the convention 
of including in N(t) occurrences of a phenomenon ‘able to give rise to a jump’, even if 
the jump does not take place, or, so to speak, is zero. An example of this arises in the 
field of motor car insurance: if the process Y(t) of interest is the total compensation 
per accident occurring before time t, it is quite natural (as well as more convenient 
and meaningful) to count up all accidents, or, to be technical, all claims arising from 
accidents, without picking out, and excluding, the occasional case for which the 
compensation was zero. The same principle applies if the process of interest con-
cerns the number of dead, or injured, or those suffering damage to property, 
and so on.

Formally, in this case one would merely replace μ (the intensity of the jumps) by μ + 
μ0 (where μ0 is the intensity of the phenomenon with ‘zero jumps’), including in M(x) a 
jump μ0 at x = 0, and consequently altering F(x) and the characteristic function χ(u), 
which would be replaced by a mixture of χ(u) and 1, with weights μ and μ0. This would 
be irrelevant, as it must be, since the product μ[χ(u) − 1] remains unchanged, and this is 
all that really matters.

Recall (from Chapter  6, 6.11.6, equation 6.69) that, in order to obtain expres-
sions  in  normal form (μ0 = 0), it is necessary and sufficient that we have 
1 2 0/ d asa u u a

a

a
( ) ( ). Were the limit to equal c ≠ 0 (necessarily >0), it would 

suffice to remove χ(u) and replace it by [χ(u) − c]/(1 − c).
In the case of a compound process, consisting of a finite number of simple processes 

(like that considered in Section 8.1.3, the notation of which we continue to use), we have 
the following:
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the dM(x) are the masses (intensities) μk concentrated at the values xk;
M(x) is the sum of the μk corresponding to the xk lying between x and +∞ if x > 0, and to 

those lying between −∞ and x if x < 0 (in this case, with the sign changed);
F(x) is the same sum, but running always from −∞ to x, and normalized (i.e. divided by 

μ = μ1 + μ2 + … + μn);
the characteristic function for the jumps is given by u

k

ux
k

kei / , that of the 
process by

 
t

k
k

uxu t kexp ,ei 1  (8.12)

which, as is obvious, can also be obtained as the product of the characteristic functions 
of the superimposed simple processes; that is of the exp t k

uxkei 1 .
Equation 8.10 has the same interpretation in the case of an arbitrary compound 

Poisson process: it reveals it to be a mixture of simple processes, but no longer neces-
sarily a finite mixture.

Finally, we observe that the prevision P[Y(t)], and the variance σ2[Y(t)], both exist and 
are determined by the distribution (both in the strict sense, and in terms of P̂; see 
Chapter 6, 6.5.7), so long as the same holds true for the jumps; that is if P(X) and σ2(X), 
respectively, exist (in the same sense). In this case, we have

 P P 2 2Y t t X Y t t X,  

(where P can be replaced by P̂, provided we do so on both sides).
If the prevision makes sense, it also makes sense to consider the process minus the 

prevision; in other words, modified by subtracting the certain linear function µtP(X), so 
that we obtain a process with zero prevision (i.e. a finite process). In other words, one 
considers Y(t) − µtP(X), which is the amount by which Y(t) exceeds the prevision, as in 
the simple case of equation 8.6. The characteristic function is also similar to that of the 
latter case, and has the form

 
t ux uxu t e ux F x t ux M xexp ( ) exp .i ii d e i d1 1  (8.13)

8.2.8. We are now in a position to characterize the most general form of homogene-
ous process with independent increments; that is to say, the most general infinitely 
divisible distribution (see Chapter 6, 6.11.3 and 6.12). In fact, in either formulation it is 
a question of characterizing the characteristic functions ϕ(и) for which [ϕ(и)]t turns out 
to be a characteristic function for any arbitrary t > 0.6

We have already encountered an enormous class of infinitely divisible characteristic 
functions; those of the form ϕ(и) = exp{a[χ(u) − 1]}, where χ(u) is a characteristic function 

6 For any t < 0, this is impossible (except in the degenerate case ϕ(и) = eiua, in which |ϕ(и)| = 1; in other 
cases, for some и we have |ϕ(и)| < 1, and then, for t  0, we would have |ϕ(и)|t > 1). Moreover, it is sufficient 
to verify the condition for the sequence t = 1/n (or any other sequence tending to zero), rather than for all t. 
In fact, it holds for all multiples, and hence for an everywhere dense set of values; by the continuity property 
of Chapter 6, 6.10.3, it therefore holds for all t > 0.
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(the ϕt(и) of the compound Poisson processes). A function that is a limit of characteristic 
functions of this kind (in the sense of uniform convergence in any bounded interval) is 
again an infinitely divisible characteristic function. To see this, note that the limit of char-
acteristic functions is again a characteristic function, and if some sequence of ϕп(и), such 
that ϕп → ϕ, are infinitely divisible, then n

t is a characteristic function,  n
t t , and hence 

ϕt is a characteristic function (for every t > 0); in other words, ϕ is infinitely divisible. 
Conversely, it can be shown that an infinitely divisible characteristic function is necessar-
ily either of the ‘compound Poisson’ form, or is a limit case; that is the set of infinitely 
divisible characteristic functions coincides with the closure of the set of characteristic func-
tions of the form ϕ(и) = exp{a[χ(u) − 1]}, where χ(u) is a characteristic function.

In order to prove this, it is sufficient to observe that if [ϕ(и)]t is a characteristic 
function for every t, then ϕп(и) = exp{п[[ϕ(и)]1/п − 1]} is also a characteristic function 
of the compound Poisson type, and tends to ϕ(и) (in fact, we are dealing with the 
well‐known elementary limit n(x1/n − 1) → log x). The process ϕt(и) is thus approxi-
mated by means of the processes  n

t u( ) having, perhaps only apparently (see the 
Remark in Section 8.2.7), intensities μn = n, and jump distributions χn(u) = [ϕ(и)]1/п. 
More precisely, this ‘apparently’ holds in the cases we have already considered (the 
compound Poisson processes) and actually holds in the new limit cases which we are 
trying to characterize. In fact, in the compound Poisson cases, with finite intensity μ, 
the probability

 
p Y t a u u at

a

a
t0 0 1 2P lim / d as

 

(the mass concentrated at 0 in the distribution having characteristic function ϕt(и)) is 
⩾e−µt (which is the probability of no jump occurring before time t).7 In this case, all the 
χn(u) = ϕ1/n(и) contain a constant term at least equal to e−μ/n (corresponding to the mass 
at 0) and the actual intensity, instead of being μn = n, is at most n(1 − e−μ/n) ~ μ (and it is 
easily verified that it actually tends to μ, as we might have guessed).

The new cases arise, therefore, when Y(t) = 0 has zero probability for every t > 0, no 
matter how small; that is when there is zero probability of Y(t) remaining unchanged 
during any finite time interval, however small. We must have either a continuous varia-
tion, or a variation whose jumps are everywhere dense; that is with infinite intensity. 
In the approximation we have considered, the μn will all actually be equal to n.

These remarks and the treatment to follow are rather informal. We shall subsequently 
often have occasion to dwell somewhat more closely on certain critical aspects of the 
problem, but for the more rigorous mathematical developments we shall refer the 
reader to other works (for example, Feller, Vol. II, Chapter XVII, Section 2).

7 We have pt(0) > e–µt if and only if there are jump values having nonzero probabilities (concentrated 
masses in the distribution whose characteristic function is χ(u)) and some sum of them is 0. For example, 
in the case of Heads and Tails, values ±1, we have 1 + (−1) = 0 (i.e. we can return to 0 after two jumps). If, 
in this same example, the gains had been fixed at +2 and −3, then it would be possible to return to 0 after 

5 jumps (2 + 2 + 2 − 3 − 3 = 0) etc. In general, p N t h X X Xt
h

h( ) ( ) ( )0 0
2

1 2P P , where 

P[N(t) = h) = e-µt(µt)h/h!, and P(X1 + X2 + … + Xh = 0) is the mass concentrated at 0 in the distribution 

whose characteristic function is [χ(u)]h.
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8.2.9. As a first step in getting to grips with the general case, let us begin by extending 
to this case the considerations concerning the distribution of the intensity of the jumps, 
M(x), as defined in Section 8.2.7 for the compound Poisson process. A definition which 
(making the previous considerations more precise) would be equivalent and which is 
also directly applicable to the general case is the following: M(x) (taken with a plus or 
minus sign opposite to that of x) is the prevision of the number of increments having the 
same sign as x, and greater than x in absolute value, that occur in a unit time interval 
(subdivided into a large number of very small time intervals). More simply, and more 
concretely, we shall restrict ourselves to considering the subdivision into n small 
subintervals, each of length 1/n, subsequently passing to the limit as n → ∞.

The increment of Y(t) in any one of these subintervals,

 Y t n Y t1/ , 
has distribution function F 1/n(y) (see Section 8.1.3). The probability that it is greater than 
some positive x is 1 − F 1/n(x) and the prevision of the number of increments greater than 
x is n[l − F 1/n(x)], or, if one prefers, [1 − F t(x)]/t. Similarly, for increments ‘exceeding’ some 
negative x (i.e. negative, and greater in absolute value), the probability and prevision are 
given by F t(x) and F t(x)/t (t = 1/n). We define M(x) as the limit (as t = 1/n → 0) of − [1 − 
F t(x)]/t for positive x, and of F t(x)/t for negative x. Assuming (as is, in fact, the case) that 
these limits exist, we can say, to a first approximation, that, for t ~ 0, we have F t(x) = 1 + 
tM(x) (for x > 0) and F t(x) = tM(x) (for x < 0). In other words (in a unified form),

 F x F x tM xt 0 , 

where F 0(x) (the limit case for t = 0) represents the distribution concentrated at the 
origin (F 0(x) = 0 for x < 0, and = 1 for x > 0).

This agrees intuitively with the idea that M(x) is the intensity of the jumps ‘exceeding’ 
x, and, in particular, in the compound Poisson case, with M(x) = μ[F(x) − F0(x)]. In the 
general case, the meaning is the same, except that M(−0) and M(+0) can become infi-
nitely large (either M(−0) = + ∞, or M(+0) = −∞, or both), as shown in Figure 8.2.

The passage to the limit, which enables one to obtain the generalized Poisson pro-
cesses, thus reduces to the construction of the ϕt(и) on the basis of formulae 8.10 and 
8.13 of Section 8.2.7, allowing the function M(x) to become infinite as x → ±0, along 
with appropriate restrictions to ensure that the function converges, and that the process 
it represents makes sense (but we limit ourselves here to simply indicating how this can 
be done, and that it is, in fact, possible).

8.2.10. A new form, intermediate between the two previous forms in so far as it pro-
vides compensation only for the small jumps, proves more suitable as a basis for a uni-
fied account. This is defined by equation 8.14 below, and has to be constructed (within 
largely arbitrary limits) in such a way that it turns out to be equivalent to equation 8.13 
in the neighbourhood of x = ±0, and to equation 8.10 in the neighbourhood of x = ±∞. 
We consider

 
 

t uxu t ux x M xexp . ,e i di 1  (8.14)

where τ(x) is an arbitrary bounded function, tending to 1 as x → 0, and to 0 as x → ±∞.
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Possible choices are :

 
1 i.e. 1 in[ 1,1], and 0 else where; P.Lévy ,x x

 

or

 x x1 1 2/ ,Khintchin  

or

 x x xsin ./ Feller 8
 

A necessary and sufficient condition for the expression 8.14 (with any τ(x) whatso-
ever) to make sense as the characteristic function of a random process – and, in this 
way, to provide all the infinitely divisible distributions, apart from the normal, which 
derives from it as a limit case – is that the contribution to the variance from the ‘small 
jumps’ be finite. In other words, we must have x M x2d  (the integral being taken, 
for example, over [−1, 1]; the actual interval does not matter, provided it is finite, and 
contains the origin).9 We note that, in the more regular case in which the intensity 
admits a density M′(x), and in which it makes sense to speak of an ‘order of infinity’ as 
it tends to 0 (from the left or right), the necessary and sufficient condition is that this 
order of infinity (from both sides) be <2: if

 M x x1 2/ , 

things go through; if M′(x) ~ 1/x2, they no longer do.

8 Some authors prefer, in place of dM(x) as the differential element in the integral, to adopt variants like 
dK(x) = [x/(1 + x2)]dM(x) (Khintchin), or dH(x) = x dM(x) (Feller). These have distinct formal advantages, 
but do not seem to me to compensate for the loss of direct meaning (see Feller, Vol. II, p. 536 et passim, and 
P. Lévy (1965), p. 141).
9 See P. Lévy and Feller, loc. cit.
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•

M(–0) = +∞

M(–0) ≥ 0
(finite)

M(+∞) = 0

x

M(+ 0) = –∞

M(–∞) = 0

M(+0) ≤ 0
(finite)

Figure 8.2 Distribution of the intensity of 
the jumps.
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Having said this, it is now easy to make precise the circumstances under which, and 
the reasons why, the expression in equation 8.14 can be replaced by one or other of 
the  two simpler forms given previously. These can be considered as special cases 
of equation 8.14, in which τ(x) (instead of satisfying the imposed conditions) is set equal 
to 0 for equation 8.10 (the term iux is omitted), and equal to 1 for equation 8.13 (the 
term iux is always present).

The term iux is innocuous (it merely produces an addition to Y(t) of a certain linear 
function ct) so long as it is applied to jumps that are neither too large nor too small (e.g. for 
ε < |x| < 1/ε, with ε > 0 arbitrarily small). When applied in a neighbourhood of x = 0, it 
is either innocuous or useful; when applied in a neighbourhood of ∞ (e.g. for l/|x| < ε), it is 
either innocuous or harmful. It can be useful, and indeed necessary, when the small jumps, 
if not ‘compensated’, do not lead to convergence; this happens if ƒ |x| dM(x) diverges in 
[−1, 1] (or, equivalently, in any neighbourhood of 0). It can be harmful, because the 
‘compensation’ of the ‘big jumps’ destroys convergence if they give too large a contribution, 
and this happens precisely when the previous integral diverges over |x| ⩾ 1. Observe, also, 
that this may very well happen even in a compound Poisson process (μ finite); it is enough 
that the distribution of the jumps should fail to have a ‘mean value’ (as, for example, with 
the Cauchy distribution). This does not affect the process, but any attempt to pass to the 
limit for the ‘compensated’ jumps would destroy the convergence rather than assist it.

In conclusion: the condition x M x2d ( )  over [−1, 1] is necessary and sufficient, 
and expression 8.14 always holds if the condition is satisfied. Both of the simple forms 
equations 8.10 and 8.13 can be applied if x M xd ( )  over [−∞, +∞] (and we observe 
that this condition implies the general condition and is, therefore, itself sufficient). If, 
instead, the integral diverges, it is necessary to distinguish whether this is due to contri-
butions in the neighbourhood of the origin, or in the neighbourhood of ±∞; in the first 
case equation 8.10 is ruled out, and in the second equation 8.13 is ruled out (and both 
are if there is trouble both at the origin and at infinity).

8.3 The Wiener–Lévy Process

8.3.1. We now turn to an examination of the continuous component of a homogeneous 
random process with independent increments, which we described briefly in 
Section 8.1.3: this is the Wiener–Lévy process. The points already made, together with 
some further observations, will suffice here to provide a preliminary understanding of 
the process and will be all that is required for the discussion to follow.

Let us first make clear what is meant by calling the process ‘continuous’. It amounts to 
saying that, for any preassigned ε > 0, if we consider the increments of Y(t) in 0 ⩽ t ⩽ 1, 
divided up into N equal intervals, the probability that even one of the increments is, in 
absolute value, greater than ε, that is the possibility that |Y(t + 1/N) − Y(t)| > ε for some 
t = h/N < 1, tends to 0 as N increases. In short, we are dealing with ‘what escapes the 
sieve laid down for the selection of the jumps’. There is no harm in thinking (on a super-
ficial level) of this as being equivalent to the continuity of the function Y(t). From a 
conceptual point of view, however, this would be a distortion of the situation, as can be 
seen from the few critical comments we have already made, and from the others we 
shall be presenting later, albeit rather concisely, in a more systematic form (see, for 
example, Section 8.9.1; especially the final paragraph).
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We shall usually deal with the standardized Wiener–Lévy process, having zero previ-
sion, m(t) = 0, unit variance per unit time period, σ2(t) = t, and initial condition Y(0) = 0.

In this case, the density f t(y) and the characteristic function ϕt(и) (both at time t) are 
given by

 f y K Kt
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, (8.15)
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The general case (Y(0) = y0, m(t) = mt, σ2(t) = tσ2) can be reduced to the standardized 
form by noting that it can be written as a + mt + σY(t), where Y(t) is in standardized 
form. If we wish to consider it explicitly in the general form, we have
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(where, for greater clarity, the terms depending on the initial value, y0, and those 
depending on the process, i.e. on t, are written separately).

8.3.2. The same approach holds good when we wish to examine the random process 
and its behaviour, rather than just isolated values assumed by it. In fact, the joint distri-
bution of the values of Y(t) at an arbitrary number of instants t1, t2…, tn, is also a normal 
distribution, with density!10 given by

 
f y y y Kn

Q y y yn

1 2

1
2 1 2

, , , e
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,
 

where Q is a positive definite quadratic form determined by the covariances 
P[Y(ti)Y(tj)] = σiσjrij (if i = j, rii = 1, and covariance = variance = i

2). We have already 
seen (in Section  8.1.6) that (if ti ⩽ tj) the covariance is ti

2, and therefore rij = √(ti/tj); 
this gives all the information required for any application.

It is simpler and more practical, however, to observe that all the Y(ti) can be expressed 
in terms of increments, Δi = Y(ti) − Y(ti−1), which follow consecutively and are inde-
pendent: Y(ti) = Δ1 + Δ2 + … + Δi. But Δi has a centred normal distribution, with vari-
ance (ti − ti−1), and Q, as a function of the variables (yi − yi−1), is a sum of squares:

 
Q y y y y y t tn

i
i i i i1 2 1

2
1, , , / . (8.17)

We shall now make use of this to draw certain conclusions, which we shall require in 
what follows.

10 We assume that m = 0, σ = 1 (the standardized case); only trivial modifications are required for the 
general case.
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What we have been considering so far, to be absolutely precise, is the Wiener–Lévy 
process on the half‐line t ⩾ 0, given that Y(0) = 0; the case of t ⩾ t0, given that Y(t0) = y0, 
is identical (and the same is true for t ⩽ 0, t ⩽ t0, respectively).11

In order to consider the case in which several values are given (at t = t1, t2,…), it is 
sufficient to consider the problem inside one of the (finite) intervals; on the unbounded 
intervals things proceed as above. Let us, therefore, consider the process over the 
 interval (t1, t2), given the values Y(t1) = y1 and Y(t2) = y2 at the end‐points. In order 
to characterize it completely, it will suffice, in this case also, to determine the prevision 
(no longer necessarily zero!) and the variance of Y(t) for each t1 ⩽ t ⩽ t2, and the 
covariance (or correlation coefficient) between Y(t′) and Y(t″) for each pair of instants 
t1 ⩽ t′ ⩽ t″ ⩽ t2.

We now decompose Y(t) into the sum of a certain linear component (a straight line 
through the two given points) and the deviation from it:

 Y t y t t t t y y Y t1 1 2 1 2 1 0/ , 

where Y0(t) corresponds to the same problem with y1 = y2 = 0. We now consider the two 
components as if the end‐points were not yet fixed, so that the increments Δ1 = Y− Y1 
and Δ2 = Y2 − Y are independent, with standard deviations 1 1( )t t  and 2 2( ).t t  
The linear component is then the random quantity

 1 2 1 2 1 1 2/ t t t t Y t t Y , 

and, by subtraction, Y0(t) is given by

 Y t t t t t t t0 2 1 2 1 1 21/ . 

It is easily seen that Y0(t) has zero prevision (as was obvious) and standard deviation 
given by

 Y t t t t t t t0 1 2 2 1/ ; (8.18)

moreover, it is uncorrelated with the linear component

 Y t t t t1 1 2 1 1 2/  

(and hence, by normality, they are independent). In fact, we have

 

covariance K t t t t t t

K t t

1 2 1
2

1
2

2
2

2 1

P P
22

1 2
2 0t t .  

It can be seen (as a check, and in order to realize the difference between this and √(t − t1), 
which would apply in the absence of the condition on the second end‐point) that the 

11 Provided that the process is assumed to make sense, even in the past, and that, in fact, no knowledge of 
the past leads us to adopt different previsions (these assumptions are not, in general, very realistic).
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standard deviation of the linear component (considering the value of the first end‐point, 
Y1, as fixed) is given by

 
t t t t t t t t t t1 2 1 1 2

2
1 1 2 1/ . /P .

 

Summing the squares of the standard deviations of the two summands, we obtain the 
square of σ1 = √(t − t1) (as, indeed, we should). It is useful to note that, as is shown in 
Figure 8.3, the standard deviation (equation 8.18) of Y(t) given the values at t1 and t2, is 
represented by the (semi) circle resting on the segment (t1, t2) (provided the appropriate 
scale is used; i.e. taking the segment t2 − t1 on the t‐axis equal to the unit of measure on 
the y‐axis: on the other hand, this is really irrelevant, except as an aid to graphical rep-
resentation and description). If we consider the parabolae that represent, in a similar 
fashion, σ(t) given only Y1 (i.e. у =√(t − t1)), or given only Y2 (i.e. у = √(t2 − t)), we see that 
the product of these two functions is represented by the circle, which, therefore, touches 
the parabolae (at the end‐points), because when one of the two factors vanishes, the 
other has value 1.

We can determine, in a similar manner, the covariance between

 Y t Y t t t t tand , .1 2  

We denote the successive, independent increments by

 1 1 2 3 2Y t Y t Y t Y t Y t Y t, , ; 

y=M(t)±σ(t)

y= √(t– t1)y= √(t2– t)

y= √[(t– t1) (t2– t)]

Y (t2)

Y (t1)

t1 t2 t

Figure 8.3 Interpolation between two 
known points in the Wiener–Lévy process 
(straight line and semi‐ellipses: graphs of 
prevision and prevision ± standard 
deviation). The lower diagram represents 
the behaviour of the standard deviation 
given the point of origin, the final point, 
or both.
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Y0(t) will be the same as before, but writing y2 − = y1 = Δ1 + Δ2 + Δ3, T = t2 − t1 and 
assuming, simply for notational convenience, that t1 = 0 and y1 = 0, we have

 Y t t T t t t0 1 1 2 3 1 2 3 , 

 Y t t T t T t t0 1 2 1 2 3 1 2 3 , 

and hence

 Y t Y t T t T t t T t t t0 0 1
2

2
2

3
2
 

+ cross‐product terms (in ΔiΔj, i j , with zero prevision).

Taking prevision, and bearing in mind that the previsions of the 2
i  are, respectively, 

1
2 t , 2

2 t t , 3
2 T t  we have

 

Convar t t T t T t t t T t t t t t T, tt

t T t T t t t t t T t T .  

Dividing by t T t T/  and t T t T/ , we obtain, finally, the cor-
relation coefficient

 
r t t

t T t
T t t

t t t t
t

, 1 2

2 tt t t1
, (8.19)

and, in this way, we return to our original notation.

8.3.3. It will certainly be no surprise to find that if we put t2  we reduce to the results 
obtained in the case of the single condition at t1. This is, however, simply a special case of 
a remarkable fact first brought to light by P. Lévy, and which is often useful for inverting 
this conclusion by reducing general cases (with two fixed values) to the special limit case 
(with only one fixed value). The fact referred to is the projective invariance of problems 
concerning processes of this kind,12 and derives from the expression under the square 
root in r(t′, t″) being the cross‐ratio of the four instants involved. It therefore remains 
invariant under any homographic substitution for the time t, provided the substitution 
does not make the finite interval [t1, t2) correspond to the complement of a finite interval 
(but instead, to either a finite interval, or to a half‐line; in other words, the inequalities 
t t t t1 2    must either be all preserved, or all inverted). Consequently, the stochastic 
nature of the function Y(t) remains invariant if we ignore multiplication by a certain arbi-
trary function; invariance holds for any random function of the form Z(t) = g(t)Y(t), or, in 
particular, for the standardized process (always having σ = 1) that can be obtained by taking

 g t Y t t1 1/ / . (8.20)

12 The meaning of this is most easily understood by introducing the projective coordinate

( ) ( )( ) ( )( );t t t t t t t t t2 2/

i.e. (as is obvious) taking t′, t2 and t″ to 0, 1 and : ( )t 0, 2 2 1( )t , ( )t .
It follows that r 1, where 1 1( )t  is the abscissa of the point t1 after the projective transformation has 
been performed.
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This device will prove useful for, among other things, reducing the study of the 
asymptotic behaviour of Y(t) in the neighbourhood of the origin (for 0 < t < ε, ε → 0) to 
that at infinity (for t > T, T → ∞); see Section 8.9.7.

The basic properties of the Wiener–Lévy process will be derived later, in contexts 
where they correspond to actual problems of interest.

8.4 Stable Distributions and Other Important Examples

8.4.1. We have already encountered (in Chapter 6, 6.11.3) two families of stable distribu-
tions: the normal (which, in Chapter 7, 7.6.7, we saw to be the only stable distribution 
having finite variance) and the Cauchy (which has infinite variance).

We are now in a position to determine all stable distributions. It is clear – and we shall 
see this shortly  –  that they must be infinitely divisible. Our study can, therefore, be 
restricted to a consideration of distributions having this latter property and, since we 
know what the explicit form of their characteristic functions must be, this will not be a 
difficult task.

Knowledge of these new stable distributions will also prove useful for clarifying the 
various necessary conditions and other circumstances occurring in the study of the 
asymptotic behaviour of random processes.

We begin by observing that the convolution of two compound or generalized Poisson 
distributions, represented by the distributions of the intensities of the jumps, M1(x) and 
M2(x), is obtained by summing them: M(x) = M1(x) + M2(x). In fact, M(x) determines 
the logarithm of the characteristic function in a linear fashion, and the sum in this case 
corresponds to the product of the characteristic functions; that is to the convolution.

This makes clear, conversely, what the condition for an infinitely divisible distribution 
to be a factor in the decomposition of some other distribution (also infinitely divisible) 
must be. The distribution defined by M1(x) ‘divides’ the distribution defined by M(x) if 
and only if the difference

 M x M x M x2 1  
is also a distribution function of intensities. This implies that it must never decrease, so 
that every interval receives positive mass (or, at worst, zero mass), and this implies, 
simply and intuitively, that in any interval (of the positive or negative semi‐axis) M1(x) 
must have an increment not exceeding that of M(x). In particular, the concentrated 
masses and the density (if they exist) must, at every individual point, not exceed those 
of M(x). If one wishes to include in the statement the case in which a normal component 
exists (and then we have the most general infinitely divisible distribution) it is sufficient 
to state that here, too, this component must be the smaller (as a measure, one can take 
the variance).13

In order to prove that stability implies infinite divisibility, it is sufficient to observe 
that, in the case of stability, the sum of n independent random quantities that are 

13 Note that what we have said concerns divisibility within the class of infinitely divisible distributions. 
However, there may exist indivisible factors of infinitely divisible distributions (and, of course, conversely), 
as we mentioned already in Chapter 6, 6.12.
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identically distributed has again the same distribution (up to a change of scale). It is 
itself, therefore, a convolution product of an arbitrary number, n, of identical factors, 
and is therefore infinitely divisible. If, for each factor, the distribution of the intensities 
of the jumps is M(x), then for the convolution of n factors it is nM(x).

For stability it is necessary and sufficient that the distribution defined by nM(x) 
belongs to the same family as that defined by M(x). This requires that it differs only by 
a (positive) scale factor λ(n): that is nM(x) = M(λ(n)x). It follows immediately that

 knM x kM n x M k n x M kn x ; 
in other words, λ(k)λ(n) = λ(kn) for k and n integer. The same relation also holds for 
rationals if we set λ(1/n) = 1/λ(n) and hence λ(m/n) = λ(m)/λ(n). By continuity, we then 
have λ(v) for all positive reals v. The functional equation λ(v1)λ(v2) = λ(v1 v2) character-
izes powers, so we have an explicit expression for λ:

 v v n n1 1/ /; , .in particular  (8.21)

We have written the exponent in the form −1/α, because it is the reciprocal, −α, which 
appears as the exponent in the expression for M(x), and which will be of more direct use 
in what follows. It is for this reason that α is known as the ‘characteristic exponent’ of 
the distribution for which we have

 
nM x M n x vM x M v x v1 1 0/ /, , , .and in general  (8.22)

In fact, we can immediately obtain an explicit expression for M(x). When x = 1, the 
above expression reduces to vM(1) = M(v−1/α), and when x= v−1/α, we have M(x) = −Kx−α, 
where – K = M(1), a constant: this holds for all positive x (running from 0 to +∞ as v 
varies in the opposite direction from +∞ to 0). Setting x = −1 (instead of +1), we can 
obtain the same result for negative x, except that we must now write |x|−α in place of x−α. 
Allowing for the fact that the constant K could assume different values on the positive 
and negative semi‐axes, we have, finally,

 M x K x x K x x K x0 0 , (8.23)

where K + and K − are positive, and are therefore written preceded by the appropriate 
sign (this ensures that M(x) is increasing, in line with what we said in Section 8.2.9). 
It  is obviously unnecessary to write |x| when x is positive, but it serves to stress the 
identical nature of the expressions over the two semi‐axes: K ± is merely a compact way 
of writing either −K + or +K − for x ≷ 0 (it could be written in the form K ± = K −(x < 0) 
− K +(x > 0)).

It remains to examine which values are admissible for the characteristic exponent, We 
see immediately that these are the α for which 0 < α ⩽ 2, and it turns out that there are 
good reasons for considering these as four separate subcases;

 0 1 1 1 2 2, , , . 
The value α = 1 is a somewhat special case, and corresponds to the Cauchy distribution 
(we have already met this in Chapter  6, 6.11.3; the correspondence is established by 
examining the characteristic function given in equation 6.59 of the section mentioned).
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8.4.2. For α = 2, we cannot proceed in the above manner –  the expression for the 
characteristic function diverges – but we can consider it as a limit case (or we could 
include it by using the kind of procedures mentioned in the footnote 8). The limit case 
turns out to be the by now familiar normal distribution.

In fact, this corresponds to the characteristic exponent

 
2 1 1

2or, /
 

because the scale factor (in this case, the standard deviation) for the sum Yn of n identi-
cally distributed summands is multiplied by √n, that is n½ (and hence, for the mean Yn/n 
we multiply by n−½).

More generally, even in the case of distributions from the same family but with 
 different scale factors, the well‐known formula for the standard deviation (for sums of 
independent quantities) holds for the normal distribution,

 1
2

2
2 2

1
2n , (8.24)

and also for all stable distributions if adapted to the appropriate characteristic 
 exponent α. Explicitly, if X1, X2,…, Xn have distributions all belonging to the same family 
(stable, with characteristic exponent α), and, a1, a2,…, an are the respective scale factors, 
then the random quantity defined by the sum aX = a1X1 + a2X2 + … + anXn again has 
a distribution belonging to this family, with scale factor given by

 
a a a a i e a an i1 2

1/
. . . (8.25)

In particular, if all the ai are equal to 1,

 a n1/ . (8.26)

This is an immediate consequence of the expression for M(x) given in equation 8.23; 
setting v = v1 + v2 in vM(x)=M(v−1/αx), we obtain

 M v x M v x M v x1
1

1
2

1/ / / . 

We began with the case α = 2, not only because of its importance and familiarity but 
also because it enables us to establish immediately that values α > 2 are not admissible. 
This is not only because, a fortiori, the integral would diverge; there is another, elemen-
tary, or, at least, familiar, reason (which we shall just mention briefly). If the variance is 
finite, the formula for standard deviations holds when α = 2; if it is infinite, we must 
have α ⩽ 2, because α = 2 holds for any bounded portion of the distribution (consider-
ing, for example, the truncated Xh; −K ∨ Xh ∧ K).

In connection with the idea of compensation (e.g. for errors of measurement), there 
is, by virtue of the (magic?) properties of the arithmetic mean, a point of some concep-
tual and practical importance which is worth making. (Of course, we are dealing with a 
mathematical property which we would have had to mention anyway, in order to deal 
with an important aspect of the behaviour of the means Yn/n, of n summands, each of 
which follows a stable distribution with some exponent α.)
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The form given in equation 8.26 asserts that, compared with the individual sum-
mands, Yn has scale factor n1/α; it follows, therefore, that, for the arithmetic mean Yn/n, 
the scale factor is n(1/α)−1.

Taking for example, the factor is
/ /

,
2 3 2 4 3 1 3

4
1
2

1
4

1
2

1
3

1
4n n n 11

2 0 707 0 793 0 841 1 1 189 2 8
1

1
4 3n n n

n
ngiving forexample for, , 00 0 316 0 464 0 681 1 1 779 10 1000

The usual amount of ‘compensation’ (i.e. an increase in precision in the ratio 1: √n 
for the mean of n values) is only attained for α = 2; the increase diminishes as α moves 
from 2 to 1, and for α = 1 (the Cauchy distribution) the precision is unaltered, imply-
ing no advantage (or disadvantage) in using a mean based on several values rather 
than just using a single value; for α < 1, the situation is reversed and worsens very 
rapidly as we approach zero (a limit value which must be excluded since it would 
give ∞!). The values given above should be sufficient to provide a concrete numerical 
feeling for the situation.

One should not conclude, however, that in these latter cases there is no advantage in 
having more information (this would be a narrow, short‐sighted mistake, resulting from 
the assumption that the only way to utilize repeated observations is by forming their 
mean). There is always an advantage in having more observations (there is more infor-
mation!) but, to make the most of it, it is necessary to pose the problem properly, in a 
form corresponding to the actual circumstances. This kind of  problem of mathematical 
statistics is dealt with by the Bayesian formulation given in Chapters 11 and 12.

8.4.3. For α < 2, we have, in fact, a generalized Poisson distribution, with M(x) corre-
sponding to the distribution function of the intensities of the jumps. Moreover, since 
M(x) = K+.|x|−α, the density exists and is given by

 M x K x 1 . (8.27)

It is simpler and clearer (apart from an exceptional case which arises for α = 1) to con-
sider separately the distribution generated by the positive jumps (the other is symmetric). 
We then have, taking K+ = −1/α in order to obtain the simplest form of the density,

 M x x M x x M x x x1 1 1/ d d /, , . (8.27′)

It is here that we meet the circumstance which forces us to distinguish between the 
two cases of α less than or greater than 1 (the case α = 1 will appear later on). The fact 
is that in the first case we have convergence without requiring the correction term iux 
in equation 8.13, whereas in the second case this term is required. The reason for this is 
(roughly speaking) that eiux − 1 ~ iux is an infinitesimal of the first order in x for x ~ 0; 
if multiplied by dM(x) = dx/xα + 1, it gives dx/xα, and the integral converges or diverges 
as x → 0, according to whether α < 1 or α > 1. This is not merely a question of analysis, 
however; there is a point of substance involved here. For α < 1, the generalized Poisson 
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random process produced by the positive jumps only, with distribution of intensities 
M(x) = Kx−α (which is therefore always increasing), makes sense. For α > 1, however, 
only the compensated sum of the jumps makes sense. With reference to Figures  8.4 
and 8.5,14 we can give some idea of this behaviour by saying that (as more and more of 
the numerous very small jumps are added) the sum of the jumps (per unit time) becomes 
infinite, but the sloping straight line from which we start also becomes infinitely inclined 
downwards. The process, under these conditions, cannot have monotonic behaviour 
(in any time interval; no matter how short).

8.4.4. Notwithstanding the diversity of their behaviour, both mathematically and in 
terms of the actual processes, there are no differences in the form of the characteristic 
functions. Simple qualitative considerations will suffice to establish that they must have 
the form exp(C|u|α) (where C is replaced by its complex conjugate, C*, if u is negative). 
Detailed calculation (see, for example, P. Lévy (1965), p. 163) shows that in the case of 
positive jumps we have

 
u uexp ,e

i1
2  (8.28)

14 Figure 8.4 shows a simple Poisson process with its prevision subtracted off (see Section 8.2.6). Figure 8.5 
shows what happens in compound processes obtained by superposing, successively, on top of the previous 
one, simple processes having, in each case, a smaller jump. If one imagines, following on from the three 
shown, a fourth step, a fifth step, …, and so on, with the slope of the straight line of the prevision increasing 
indefinitely, one gets some idea of the generalized Poisson processes with only positive jumps.
Note that, in order not to make the diagram too complicated, it has been drawn as if all the additional 
processes vanish at the instants of the preceding jumps (this is very unlikely, but does not alter the accuracy 
of the visual impression; we merely wish to warn those who realize that this device has been adopted not to 
imagine that it reflects some actual property of the processes in question).
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Figure 8.4 The simple, compensated 
Poisson process (prevision = 0).
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with ±, depending on the sign of u, whereas for negative jumps the ∓ signs in the 
 exponent are interchanged. In the general case, it is sufficient to replace α or −α in 
the exponent by an intermediate value; in particular, in the symmetric case, by 0.

For α = 1, the symmetric case gives the Cauchy distribution. The latter can, therefore, 
be thought of as generated by a generalized Poisson process in which the distribution of 
the intensities of the jumps is given by

 M x x1/ , 

with density M′(x) = 1/x2. In this case, however, we can only ensure convergence by 
having recourse to the form given in equation 8.14 (this is because the term iux is neces-
sary in the neighbourhood of the origin, but gives trouble at infinity). By doing this, 
however, we effect a partial compensation in the jumps and this reintroduces a certain, 
arbitrary, additive constant, which prevents the distribution from being stable (follow-
ing Lévy, we could term it quasi‐stable; the convolution involves not merely a change of 
scale, but also a translation). In the symmetric case, we obtain stability by using the 
same criterion of compensation for the contributions of both negative and positive 
jumps (or by implicitly compensating, by first integrating between ±a and then letting 
a → ∞).

Apart from the two cases α = 2 (normal) and α = 1 (Cauchy), the densities of stable 
distributions cannot, in general, be expressed in simple forms (although they exist, and 
are regular). One exception is the case 1

2, to which corresponds, as an increasing 
process (positive jumps; x > 0),

 M x x M x x M x x x2
1
2

3
2 3, , / ,d d  

y= �(t)
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y=–�t

t

yFigure 8.5 The compound Poisson 
process with successive sums from 
simple, compensated Poisson processes.
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and the density

 f x Kx x
3
2 1 2e / . (8.29)

Finally, we should also mention the case α = 3
2 , which is important on account of an 

interpretation of it given by Holtsmark in connection with a problem in astronomy (and 
by virtue of the fact that it precedes knowledge of the problem on the part of mathema-
ticians): the case α = 4

3  can be given an analogous interpretation (in a four‐dimensional 
world). (See Feller, Vol. II, pp. 170, 215.)

8.4.5. Other important examples of Poisson‐type processes are the gamma processes 
(and those derived from them), and those of Bessel and Pascal.

The gamma distribution (see equations 6.55 and 6.56 in Chapter 6, 6.11.3) has density 
and characteristic function defined by

 
f x Kx x K

t
t t x1 0 1e  , , (8.30)

 
t tu u1 1/ i . (8.31)

As t → 0, f t(x)/t → e−x/x, and so the gamma process, in which Y(t) has a gamma distribu-
tion with exponent t, derives from jumps whose intensities have the distribution

 
M x x x M x x

x

x xe / d e /, . (8.32)

In interpreting this, we note the connection with the Poisson process: f t(x), for t = 
h integer, gives the distribution of the waiting‐time, Th, for the hth occurrence of the 
phenomenon. We can also obtain this by arguing in terms of the ph(t) (see Section 8.2.5); 
this makes it completely obvious, because for h = 1 we have the exponential distribu-
tion (for T1, and, independently, for any waiting time Th − Th−1) and for an arbitrary 
integer h we have the convolution corresponding to the sum Th of the h individual 
waiting times.

It is interesting to note that one possible interpretation of the gamma process is as the 
inverse of the (simple) Poisson process. To see this, we interchange the notation, writing 
this process as t = T(y), the inverse of the other, for which we keep the standard nota-
tion, y = Y(t). The inverse function y = T −1(t) (which, of course, does not give a process 
with independent increments), considered only at those points for which y = integer (or 
taking Y(t) = the integral part of y = T−1(t)), gives precisely the simple Poisson process 
(with μ = 1).

Remark. We obtain a perfect interpretation if we think, for example, of y = T −1(t) as 
representing the number of turns (or fractions thereof ) made by a point moving in a 
series of jerks around the circumference of a circle. The standard Poisson situation then 
corresponds to that of someone who is only able to observe the point when it passes 
certain given marks.
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We are in no way suggesting, however, that this mathematical possibility of consider-
ing an ‘explanation’ in terms of some ‘hidden mechanism’ provides any automatic justi-
fication for metaphysical flights of fancy leading on to assertions about its ‘existence’ 
(whereas it may, of course, be useful to explore the possibility if there are some concrete 
reasons for considering it plausible). There are a number of cases (but not, so far as I 
know, the present one) in which these kinds of metaphysical interpretation (or so they 
appear to me, anyway) are accepted, or, at any rate, seriously discussed.

More generally, changing the scale and intensity, we have

 f x Kx x K tt t x t1 0e , / , (8.33)

  
t tu1 i / . (8.34)

Moreover, we can also reflect the distribution onto the negative axis; f t(x) is unchanged, 
apart from writing |x| in place of x and changing the final term to (x < 0), and the char-
acteristic function is given by

  
t tu1 i / . (8.35)

By convolution, we can construct other processes corresponding to sums of gamma 
processes. The most important case is that obtained by symmetrization (see equations 
6.57 and 6.59 in Chapter 6, 6.11.3), which, for t = 1, gives the double‐exponential distri-
bution. The general case is obtained from products of the form

  
t t t

n
tu u u n1 1 11 2

2i / i / i /  

(where the signs can be either − or +; we could, alternatively, say that the λh can be posi-
tive or negative); the symmetric case arises when the products are taken in pairs with 
opposite signs: that is

  
t t

n
t

u u
n

1 12
1
2 2 21

/ / . 

8.4.6. The Bessel process acquires its name because the form of the density involves a 
Bessel function, It(x) (for x > 0):
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; (8.36)

the characteristic function is given by

 
 

t
t

u u u1 1 12i i . (8.37)

The process deserves mentioning because it has the same interpretation as we put 
forward for the simple Poisson process, but referred instead to the Poisson variant of 
the Heads and Tails process (each occurrence of the phenomenon consists of a toss 
giving a gain of ±1). Using the same notation, t = T(y) and y = T−1(t) for the inverse 
function, we could say that the points at which y = an integer correspond to the instants 
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at which the gain Y(t) first reaches level y (or that the ‘integer part of y = T −1(t)’ is the 
maximum of Y(t) in [0, t], where Y(t) is a Poisson Heads and Tails process).

8.4.7. The Pascal process is that for which Y(t) has, for t = 1, a geometric distribution; 
for t = integer, a Pascal distribution; and, for general t, a negative binomial distribution 
(see Chapter  7, 7.4.4). Our previous discussion reveals that we are dealing with a 
compound Poisson process having a logarithmic distribution of jumps (see Chapter 6, 
6.11.2) and having the positive integers as the set of possible values (with intensity μ = 1).

The interpretation is similar to that of the two previous cases, except that here we do 
not have a density but, instead, concentrated masses (at the integer values). For t = 
integer, Y(t) is the number of failures (in a Bernoulli process with probability p, where p 
is the factor in the geometric distribution corresponding to t = 1) occurring before 
the tth success. In any interval of unit length (from t to t + 1), the increment has the geo-
metric distribution; here, it can be thought of as generated by logarithmically distrib-
uted jumps, one per interval ‘on average’. A noninteger t could be interpreted as ‘the 
number of successes already obtained, plus the elapsed fraction of the next one’; Y(t) 
would then be the number of failures that had actually occurred so far.

Of course, the remark made in the context of the gamma process (Section  8.4.5) 
applies equally to the other two processes (Sections 8.4.6 and 8.4.7).

8.5 Behaviour and Asymptotic Behaviour

8.5.1. We now turn to a probabilistic study of various aspects of the behaviour of the 
function Y(t); as we pointed out in Section 8.1.6, these are, in fact, the most important 
questions. They might be concerned with the behaviour of Y(t) in the neighbourhood of 
some given instant t (local properties), or in an interval [t1, t2], or in the neighbourhood 
of t = ∞ (asymptotic properties). We might ask, for instance, whether Y(t) vanishes 
somewhere in a given interval (and, if so, how many times), or if it remains bounded 
above by some given value M1, or below by M2 (or, more generally, by functions M1(t) 
and M2(t) rather than constants), and so on. Asymptotically, we might ask whether 
these or other circumstances will occur from some point on, or locally, or only in the 
neighbourhood of some particular instant.

Phrases such as we have used here will have to be interpreted with due care, especially 
if one is not admitting the assumption of countable additivity. Particular attention must 
then be paid to expressing things always in terms of a finite number of instants (which 
could be taken arbitrarily large) and not in terms of an infinite number.

We have already come across a typical example of just this kind of question in 
Chapter 7, 7.5.3. This was the strong law of large numbers, which, in the case of a dis-
crete process, consisted in the study of the asymptotic validity of inequalities of the 
form C1 ⩽ Y(t)/t ⩽ C2, or, equivalently,

 C t Y t C t1 2  . 
We shall see now how this problem, and generalizations of it, together with a number of 
other problems of a similar kind, can be better formulated, studied and appreciated by 
setting them within the more general context of the study of random processes. In the 
most straightforward and intensively studied cases, the processes that will turn out to 
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be useful are precisely those which we have been considering; specifically, the homo-
geneous processes with independent increments and, from time to time, the Wiener–
Lévy process (in situations where it is valid as an asymptotic approximation).

It is both interesting and instructive to observe how the conjunction of the two differ-
ent modes of presentation and approach serves to highlight conceptual links which 
are otherwise difficult to uncover, and to encourage the use of the most appropriate 
methods and techniques for each individual problem. In particular, later in this chapter 
(in which we shall only deal with the simplest cases) we shall see how the studies of the 
Heads and Tails process (developed directly using a combinatorial approach) and of 
the Wiener–Lévy process (which can be considered in a variety of ways) complement 
each other, enabling us in each case to use the more convenient form, or even to use 
both together.

8.5.2. We now consider two sets of questions, each set related to the other, and each 
collecting together, in a unified form, problems of different kinds which admit a variety 
of interpretations and applications, both theoretical and practical.

The first set brings together problems that reduce to the consideration of whether or 
not the path y = Y(t) leaves some given region. In other words, whether or not it crosses 
some given barrier (the region may consist of a strip, C1 ⩽ y ⩽ C2, or C1(t) ⩽ y ⩽ C2(t), 
or one of the bounds may not be present; i.e. C1 = −∞ or C2 = +∞). For this kind of 
problem, what we are usually interested in knowing is whether or not the process leaves 
the region and, if so, when this occurs for the first time, and if the process then comes 
to a halt. In the latter case, we have a so‐called absorbing barrier. In general, however, it 
is useful to argue as if the process were to continue.

An analysis of this kind will serve to make the strong law of large numbers more 
precise, by examining the rate of convergence that can be expected (we shall, of course, 
have to make clear what we mean by this !). From the point of view of applications, there 
will be a number of possible interpretations, among which we note: the gambler’s ruin 
problem (which could be thought of in the context of an insurance company); the ter-
mination of a sequential decision‐making process because sufficient information has 
been acquired; the end of a random walk – for example, the motion of a particle – due 
to arrival at an absorbing barrier, and so on.

The second set of problems are all concerned with recurrence and involve the repeti-
tion of some given phenomenon (such as return to the origin, passing a check point 
etc.). We shall see that in this case the process divides rather naturally into segments 
and that it may be of interest to study various characteristics of these segments, which, 
in turn, often shed new light on the original recurrence problems.

In both cases, we shall first consider the Heads and Tails process and the Wiener–
Lévy process, afterwards extending the study to the asymptotically normal cases. We 
shall also have occasion to consider other processes (the Bernoulli process with 1

2p , 
stable processes with α < 2 and the Poisson process), mainly in order to have the oppor-
tunity of presenting further points of possible interest (explanations of unexpected 
behaviour, drawing attention to unexpected properties, and so on).

8.5.3. The three cases that we shall consider first involve the comparison of |Y(t)| with 
y = C, y = Ct, y = C√t (c > 0). Even though we shall dwell, in each case, on possible 
interpretations in an applied context, developing each topic as required, it will be useful 
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to bear in mind that these are in the way of preliminaries, enabling us subsequently to 
determine the foreseeable order of increase of Y(t).

The first case, that of comparison with a constant, is the one of greatest practical 
interest and corresponds to the gambler’s ruin problem under the assumption of fixed 
capital (i.e. with no increases or decreases, other than those caused by the game). We 
shall now consider the complex of problems which arise in this case, beginning with the 
simplest.

We first observe that the probability of Y(t) lying between ±C tends to zero at least 
as fast as K/√t (if Y(t) has finite variance σ2 per unit time, it tends to zero as K/√t, with 
K = 2C/[√(2π)σ]; if the process has infinite variance, then, whatever K may be, it tends 
faster than K/√t). The same holds if we are dealing with just a single t. If σ = 1, we have, 
in a numerical form, K = 0·8C (see Chapter 7, 7.6.3) and, for ease of exposition, we shall, 
as a rule, refer to this case (the bound is 0·8C/√t, and is approximately attained if σ = 1; 
if σ = ∞, we have strict inequality). The same holds for every interval [a − C, a + C] of 
length 2C.

To see this, note that, for t = n, in the case of Heads and Tails the maximum 
 probability is given by un ≃ 0·8/√n and there are 2C integers lying between ±C (give or 
take ± 115). In the normal case (Wiener–Lévy), the maximum density is 1/[√(2π)σ(t)], 
and σ(t) = √t. In the general case, with σ < ∞ (and, without loss of generality, we assume 
σ = 1), we have, asymptotically, the same process.

If σ = ∞, the bound corresponding to an arbitrary finite σ is a fortiori satisfied from a 
certain point onwards. Suppose a > 0 and arbitrary, but such that

 P X a ph 0, 
further, let us distinguish the increments Xh = Y(h) − Y(h − 1) according to whether they 
are <a or >a in absolute value; Y(n) = ΣXh then contains about np summands which are 
<a (truncated distribution, with σ < a finite), and the sum is already practically normal 
with density <1/[√(2π)σ/t]. Adding the sum of the other terms, we have, a fortiori, the 
same circumstance holding (theorem of the increase in dispersion; Chapter 6, 6.9.8).

What matters more than the quantitative result, is the qualitative conclusion: however 
large C is chosen to be, the probability that |Y(t)| (or |Yn|) is greater than C differs from 
1 by less than any given ε > 0, provided that t (respectively, n) is taken sufficiently large 
(more precisely, from

 t n C2 2 2/ /  
onwards).

A fortiori, it follows that the probability of |Y(τ)| > C (or Yh > C) for at least one τ ⩽ t, 
or h ⩽ n = t, tends to 1 (more rapidly). In terms of the gambler’s ruin problem, this 
implies that in a game composed of identical and independent trials between two gam-
blers each having finite initial capital, provided the game goes on long enough, the 
probability of it ending with the ruin of one of them tends to 1. Equivalently, the prob-
ability that the game does not come to an end is zero.

15 In order for this difference not to matter, it is, of course, necessary that C be much greater than 1. 
In general, in the case of lattice distributions, or distributions of similar kind, it is necessary that C be 
large enough for the concentrated masses to be regarded as a ‘density’.
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8.5.4. A warning against superstitious interpretations of the ‘laws of large numbers’. 
It is not only true that the absolute deviations, that is the gains and losses (unlike the 
relative gains, the average gains per toss), do not tend to offset one another and, in fact, 
tend to increase indefinitely in quadratic prevision, but also that it is ‘practically certain 
that, for large, they will be large’ (and it is only in the light of the above considerations 
that we are now able to see this).

One should be careful, however, not to exaggerate the significance of this statement, 
turning it, too, into something misleading or superstitious. It holds for each individual 
instant t (or number of tosses n), but not for a number of them simultaneously. In fact, 
it does not exclude the possibility (and, indeed, we shall see that this is practically cer-
tain) of the process returning to equilibrium (and hence of there being segments in 
which |Y(t)| < C) every now and again (and although this happens more and more 
rarely, it is a never‐ending process).

8.6 Ruin Problems; the Probability of Ruin; the Prevision 
of the Duration of the Game

8.6.1. We shall use ph and qn to denote the probabilities of ruin at the hth trial, or before 
the nth, respectively

 
q p p p p q qn n h h h1 2 1, .

 

In the case of two gamblers, G1 and G2, we shall use ph and p qh n,  and qn for the 
 probabilities of ruin of G1 and G2, respectively

 
p p p q q qh h h n n n, ,

 

and c′ and c″ for their respective initial fortunes.
By q′ and q″ (or q  and q ), we shall denote the probabilities of ruin within an infinite 

time, to be interpreted as limits as n → ∞: under the assumptions of Section 8.5.3, we 
have q qn n 1, and therefore q′ + q″ = 1.

The probability of ruin, in a fair game, is an immediate consequence of the fair-
ness condition: the previsions of the gains of the two gamblers must balance; that 
is q′c′ = q″c″, from which we deduce that q′ = K/c′, q″ = K/c″ (K = c′c″/(c′ + c″)). 
In  other words, the probabilities of ruin are inversely proportional to the initial 
fortunes. More explicitly,

 q c c c q c c c/ , / . (8.38)

Comments. In these respects, we might also apply the term ‘fair game’ to a nonhomo-
geneous process with nonindependent increments, provided that the prevision condi-
tional on any past behaviour is zero (such processes are called martingales). One could 
think, for example, of the game of Heads and Tails with the stakes depending in some 
way on the preceding outcomes. With these assumptions, any mode of participation in 
the game is always fair: it does not matter if one interrupts the play in order to alter the 
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stakes, or even if one decides to stop playing on account of a momentary impulse, or 
when something happens – such as someone’s ruin.

The relation q′c′ = q″c″ is an exact one if ruin is taken to mean the exact loss of the 
initial capital with no unpaid residue; in the latter case, it would be necessary to take this 
into account separately. If, for example, the jumps which are disadvantageous to G1 and 
G2 cannot exceed Δ′ and Δ″, respectively, then c’ must be replaced by some c′ + θ′Δ′ 
(0 ⩽ θ′ ⩽ 1), with a similar substitution for c″; the error is negligible if the probable 
 residues are small compared with the initial capital.

The conclusion holds exactly for the Wiener–Lévy process because the continuity of 
Y(t) ensures that it cannot exceed c′ and c″ by jumping past them. The same holds true 
for the Heads and Tails process – including the Poisson variant – provided c′ and c″ are 
integers (because it is then not possible, with steps of ±1, to jump over them).

It is clear, particularly if we use the alternative form

 q c c1 1 1/ / , 

that the probability of G1’s ruin tends to 1 if the opponent has a fortune that is always 
greater than his. If he plays against an opponent with infinite capital, the probability of 
ruin is, therefore, q′ = 1 (and this is also true if one plays against the general public – who 
cannot be ruined). This is the theorem of gambler’s ruin (for fair games).

The case of unfair games reduces to the previous case if one employs a device that 
goes back to De Moivre: in place of the process Y(t), we consider Z(t) = exp[λY(t)]. If λ 
is chosen in such a way as to make the prevision of Z(t) constant (=1, say), then the 
process Z(t) is fair, and ruin (starting from Z(0) = 1, which corresponds to Y(0) = 0) 
occurs when one goes down by c  = 1 − exp(−λc’), or up by

 c cexp .1  

The probabilities of ruin are, therefore, inversely proportional to c  and c . It only 
remains to say how λ is determined. We observe that exp[λY(t)] = ϕt (−iλ) and that, if it 
exists (see Chapter 6, 6.10.4), ϕ is real and concave on the imaginary axis, taking the 
value 1 (apart from at the origin) only at the point u = −iλ, with λ positive if the game is 
unfavourable (P[Y(t)] < 0).

Example. We consider the case of Heads and Tails with an unfair coin (p ≠ 12 ) and with 
gains ±1. We have exp[λY(1)] = peλ + pe−λ = 1, in other words (putting x = eλ), px2 − x + 
(1 – p) = 0 for x = 1 and x = p/p; x = eλ = 1 would yield λ = 0 (which is meaningless), so 
we take eλ = p/p, e−λc′ = ( p/p)−c′, eλc″ = ( p/p)c″ from which we obtain
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p p c/
. (8.39)

If one plays against an infinitely rich opponent, the passage to the limit as c″ → ∞ 
gives two different results, according to whether the game is favourable, ( p/p) < 1, or 
unfavourable ( p/p) > 1; in the latter case, q′ = 1 (as was obvious a fortiori; ruin is practi-
cally certain in the fair case); if, instead, the game is favourable, the probability of ruin is 
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q p p c
/  and 1 1q p p c

/  is the probability that the game continues 
indefinitely.

8.6.2. The prevision P(T) of the duration T of the game until ruin occurs can also be 
determined in an elementary fashion for the game of Heads and Tails (even for the 
unfair case) and then carried over to the Wiener–Lévy process.

Instead of merely determining P(T) (starting from Y(0) = 0), it is convenient to deter-
mine the prevision of the future duration for any possible initial value у (−c′ ⩽ у ⩽ c″) 
using a recursive argument; we denote this general prevision by Py(T). Obviously, we 
must have Py(T) = 0 at the end‐points (у = −c′, y = c″) because there ruin has already 
occurred. For у in the interval between the end‐points, we have, instead, the relation

 P P Py y yT T T1 1
2 1 1  

(because we can always make a first toss, and then the prevision of the remaining dura-
tion can be thought of as starting from either у +1 or у −1, each with probability 1

2 ). We 
then obtain a parabolic form of behaviour (the second difference is constant!) with 
zeroes at the end‐points; explicitly, we obtain

 P P Py T y c y c T T c c, .and hence 0  (8.40)

As c″ increases, P(T) tends to ∞ no matter what c′ > 0 is; it follows that P(T) = ∞ for a 
game against an infinitely rich opponent, so that although ruin is practically certain 
(q′ = 1), the expected time before it occurs is infinite.

Even in the case where c′ and c″ are finite, the expected duration of the game, although 
finite, is much longer than one might at first imagine. For example, in the symmetric 
case, c′ = c″ = c, the expected duration of the game is c2 tosses: 100 tosses if each gam-
bler starts with 10 lire; 40 000 tosses if each starts with 200 lire; 25 million tosses if each 
starts with 5000 lire. In the most extremely asymmetric case, c′ = 1, c″ = c, the expected 
duration is c tosses; 1000 tosses if initially the fortunes are 1 lira versus 1000 lire; 1 mil-
lion if initially we have 1 lira versus 1 million. One should note, however, that in this 
asymmetric case the gambler whose initial fortune is 1 lira always has the same (high) 
probabilities of coming to grief almost immediately, whatever the initial capital of his 
opponent (be it finite or infinite), provided that it is sufficient to preclude the oppo-
nent’s ruin within a few tosses. Specifically, the probability is 75% that the gambler with 
1 lira is ruined within 10 tosses, 92% that he is ruined within 100 (in general, 1 − un ≃ 1 
− 0·8/√n); in these cases, fortunes of 10 or 100 lire, respectively, will ensure that the 
opponent cannot be ruined within this initial sequence of tosses. On the other hand, 
there is a chance, albeit very small, that the opponent will be the one who is ruined (this 
is about 1/c; one thousandth if c = 1000, for example). In order for this to happen, it is 
necessary that the gambler who begins with 1 lira reaches a situation of parity (500 
versus 500) without being ruined; after this, the expected duration of the game will be 
5002 = 250 000 tosses, there then being equal probabilities of ruin for the two  parties. 
There is, therefore, a probability of two in a thousand of reaching parity but, in such a 
case, the subsequent duration of the game is almost certainly very long. As always, one 
should remember that prevision is not prediction.
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For the Wiener–Lévy process, thinking of it as a limit case of Heads and Tails, one 
sees immediately that exactly the same conclusion holds. It is sufficient to observe 
that the change of scale (1/N for the stakes, 1/N2 for the intervals between tosses) 
leaves the duration unchanged: the initial capitals are Nc′ and Nc″, the duration 
N2c′c″, with 1/N2 as unit. More generally, we can say that, roughly speaking, the con-
clusion holds for all processes with finite variances (σ = 1 per unit time; otherwise, 
P(T) = c′c″/σ2) provided c′ and c″ are large enough to make the ruin very unlikely after 
a few large jumps.

In the case of games which are not fair, one can apply the same argument, but 
the result is different. In the case of Heads and Tails with an unfair coin (p ≠ 1

2 ) the 
relation

 P P Py y yT p T p T1 1 1 1  

reduces to the characteristic equation py2 − у + (1 − p) = 0, with roots 1 and (1 − p)/p, 
which gives A + B( p/p)y as the solution of the homogeneous equation. It is easily seen 
that y(1 − 2p) (or y/( p − p)) is a particular solution of the complete equation and, taking 
into account the fact that Py(T) = 0 for у = −c′ and у = c″, we have
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(8.41)

For the extension to the Wiener–Lévy process (and, more or less as we have said, 
to cases which approximate to it), it is sufficient to observe that, in the case we have 
studied, m = 2p − 1, σ2 = 1 − m2, from which we obtain p = 1

2  + 1
2 m/√(m2 + σ2). Given the 

m and σ of a Wiener–Lévy process (or a general process), it suffices to evaluate p in 
this way.

If one plays against an infinitely rich opponent (c″ = ∞), we have P(T) = ∞, provided 
the game is advantageous (p > 1

2 ), and given that, with nonzero probability, it can last 
indefinitely. If it is disadvantageous (p < 1

2 ) only the first term remains:

 P T c p/ .1 2  (8.42)

8.6.3. The probabilities of ruin within given time periods (i.e. within time t, or within 
n = t tosses) provide the most detailed answer to the problem. Let us consider, for the 
time being, the case of one barrier (c′ = c, c″ = ∞), and let us begin with Heads and Tails. 
We shall attempt to determine the probability, qn, of ruin within n tosses; that is the 
probability that Yh = −c for at least one h ⩽ п.

The solution is obtained by making use of the celebrated, elegant argument of Desiré 
André. In the case of the game of Heads and Tails, we adopt the following procedure for 
counting the number of paths (out of the 2n possible paths between 0 and n) which 
reach the level у = −c at some stage. First of all, we consider those which terminate 
beyond that level, Y(n) < −c, and we note that there are exactly the same number for 
which Y(n) > −c, since any path in this latter category can be obtained in one and only 
one way from one of the paths in the former category by reflecting (in the straight line 
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у = −c) the final segment starting from the instant t = k at which the level у = −c is 
reached for the first time. In other words, we use the reflection

 
Y t c Y t c k t n* . 

 

Finally, we note that (if n − c is even) there are some paths for which Y(n) = −c. In terms 
of the probability (the number of paths divided by 2n), the first group contribute to 
P(Yn < −c) and, because of the symmetry revealed by André’s reflection principle, so do 
the second group; the final group contribute to P(Yn = −c). Expressing the result in 
terms of c rather than −c, we have therefore

 
q Y c Y c Y c Y cn n n n n2 1

2P P P P| | .  (8.43)

The basic idea is illustrated most clearly in Figure  8.6; to any path which having 
reached у = −c finds itself at t = n above that level, there corresponds, by symmetry, 
another path which terminates below it (and, indeed, if the first path terminates at −c + d, 
the second will terminate at −c − d; the reader should interpret this fact). Essentially, we 
could say that reflection corresponds to exchanging the rôles of Heads and Tails (from 
the instant of ruin onwards), a device that we have already come across (in example (D) 
of Chapter 7, 7.2.2).

A further principle – similar to that of Desiré André – was introduced by Feller (Vol. 
I, p. 20) under the heading of the duality principle; we prefer to call it the reversal prin-
ciple, because the other term suggests connections, which do not actually exist, with 
other, unrelated, notions of ‘duality’. The idea is that one reverses the time order; that is 

2c

c

y

t

A

A′

0

Figure 8.6 Desiré André’s argument in the 
case of a single barrier. The paths which, 
after having reached level c, are below it at 
the end of the interval of interest (point A), 
correspond in a one‐to‐one manner, by 
symmetry, to those terminating at A′ 
(symmetric with respect to the barrier y = c). 
It follows (in a symmetric process) that the 
probability of ending up at A′, or at A, having 
reached level c, is the same. 
 The point 2c on the y‐axis has been 
marked in because it corresponds to the 
‘cold source’ in Lord Kelvin’s method 
(Section 8.6.7).
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the ordered events E1 … En become En … E1, by setting Ei = En−i+1. The reversed gain 
is then

 Y h Y n Y n h* , 

and the path is reversed (i.e. rotated by 180°) with respect to the central point  
(1

2 n, 1
2 Y(n)).

The argument and the result given above have a far more general range of application. 
Indeed, the only facts about the distribution of the increments that we have used are its 
symmetry (Y(t0 + t) – Y(t0) has equal probability of being >a or <−a, and, in particular, 
of being ≶0), and the fact that the level у = −c cannot be exceeded by ‘skipping’ it (i.e. 
anything exceeding it must actually pass through it). This holds for the Heads and Tails 
process if c = integer,16 and for the Wiener–Lévy process (assuming it to be continuous) 
for arbitrary c. For other cases, it may have approximate, or asymptotic, validity (as in 
the Remark of Section 8.6.1), provided that the jumps in the direction in which the fixed 
level must be exceeded are small, or, at any rate, the large jumps are relatively rare (this 
brief comment will suffice; we do not wish to complicate matters by going into all the 
details).

Some further terminology and notation will be needed for certain more general prob-
lems and results that we wish to consider. The maximum of Y(τ) in 0 < τ ⩽ t17 will be 
denoted by ∨Yn (an abbreviated form of Y1 ∨ Y2 ∨ … ∨ Yn

18) in the discrete case, and by 
∧Y(t) in the continuous case; similarly, ∧Yn and ∧Y(t) denote the minimum;

 Y t Y t Y t  

is the absolute value of the minimum, and we shall refer to it as |minimum|.
With this notation, the qn (or, to be more accurate, the qn(c)) of equation 8.43 deter-

mine the probability distribution of ∨ Yn (and of |∧ Yn|; it is the same, by symmetry);

 q c Y c Y cn n nP P    � � . 

By subtraction, we obtain the probabilities

 

P P
P P

Y c Y c q c q c
Y c Y c

n n n n

n n

1
1

 (8.43′)

16 The set of levels which cannot be skipped may take various forms: either all c (positive, negative, or 
both) if Y(t) varies continuously (nondecreasing, nonincreasing, or completely general); or all multiples of 
some given k (positive, negative, or both) if all positive jumps are = k, and the negative ones are multiples of 
k (or conversely, or if they are all ±k); in all other cases there are no such levels.
17 We refer to 0 < τ (instead of 0 ⩽ τ) in order to facilitate comparison with the discrete case (although the 
distinction loses its meaning in the continuous case); what is important is to stress that τ = t is to be 
included, and, indeed, we should stress that Y(t) is to be understood as Y(t + 0) (i.e. taking into account a 
possible jump occurring exactly at t).
18 The omission of Y0 is irrelevant, except when it is useful to distinguish two cases that otherwise would 
both yield ∨Yn = 0 (all Yn ⩽ 0); with the convention adopted, we have, instead, ∨Yn = –1, if Y1 = –1, and the 
successive values are all ⩽–1 (or, in general, stepping outside the example of Heads and Tails, ∨Yn can be an 
arbitrary negative value).
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(only one of the two summands is ever present; the first if n and c have an even sum, the 
second if the sum is odd). Finally, we obtain

 
P Y cn h

n n

h

n2 ,
 

where either 2h − n = c, or 2h − n = c + 1.
It is important to pay particular attention to the cases ∧Yn = 0 and ∧Yn = −1. They are 

not contained in the general case (which is based on the assumption c > 0) but they can 
easily be reduced to the appropriate form. For c = 1, we have P(∨Yn < 1) = un (i.e. P(Yn = 
0) or 1

2P(|Yn| = 1), according to whether n is even or odd), and the two cases ∨Yn = 0 and 
∨Yn = −1 are equally probable if n is even (and they do not differ by very much if n is 
odd). More precisely, we have P(∨Yn = −1) = 1

2 un−1 (the first step is −1, and we do not 
then go up by +1), and, by subtraction

 
P Y u un n n0 1

2 1 

(un = un−1 if n is even; otherwise un−1 = unn/(n − 1)). In words (for n even): un is also 
the probability that Yh remains non‐negative in 0 < t ⩽ n (and a similar argument holds 
for the nonpositive case).

Let us also draw attention to the following (interesting) interpretation of equa-
tion 8.43′.

The probability of attaining у = c (c > 0) as the maximum level for t ⩽ n is precisely the 
same as that of attaining the same level c (or c + 1, according to whether we are dealing 
with the even or odd case) at t = n (but not, in general, as the maximum level).

To put it another way: the probability 2 h
n  that |Yn| assumes the value c = 2h − n  

(h > n/2) splits into two halves for ∨Yn; one half remains at c and the other at c − 1. If this 
partial shift of one is negligible in a given problem (as it is, in any case, asymptotically) we 
may say that the distributions of the absolute value, ∨Yn, of the maximum, ∨Yn, and of 
the |minimum|, |∧Yn|, are all identical. Obviously, the maximum and the |minimum| 
are nondecreasing functions, and hence we can define their inverses. We denote by T(y) 
(у ⩾ 0) the inverse of ∨Y(t) and by T(−y) the inverse of ∨(−Y(t)) (they also have the same 
probability distribution as processes; however, T(y) for у ≶ 0 is not to be understood as 
a single process for −∞ < у < +∞ but rather as a unified notation for two symmetric but 
distinct processes):

T(y) = the minimum t for which

 Y t y y Y t y y  or0 0, , 

so that

 T y t Y t y y Y t y y� � �0 0 . 

For every y, T(y) is the random quantity expressing the instant (or, equivalently, the 
waiting time) either until ruin occurs, or until the first arrival at level (or point) у occurs, 
or until a particle is absorbed by a possible absorbing barrier placed at, and so on.
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With the present notation, we can express, in a direct form, the probabilities of ruin 
(or of absorption etc.) as obtained in equation 8.43 on the basis of Desiré André’s 
argument:

 

P P P P
P P

Y t y Y t y T y t T y t
Y t c Y t2 c

Y t c Y t cP P1
2

.

 (8.44)

We omit the term corresponding to Y(t) = c, which is only required in order to obtain 
exact expressions for the Heads and Tails case, and which is either zero or negligible in 
general (for the exact expressions of the Wiener–Lévy process, the asymptotic expres-
sions for Heads and Tails, and for other cases). If we denote by Ft(y) and ft(y) the distri-
bution function and the density (if it exists) of Y(t19), then the distribution function 
and the density of |Y(t)| and therefore (either exactly or approximately) of ∨Y(t) and 
∨(−Y(t)) are given by

 2 1 0 2 0F y y f y yt t( ), .( )for for  (8.45)

8.6.4. Substituting the exact forms for the Heads and Tails case into equations 8.44 or 
8.45, we would have

 
q h n c n cn

n

h
h
n n

n c
n1

2
1 1

2
1
2 20 / if is even . (8.46)

It is more interesting, however, to consider the approximation provided by the normal 
distribution; this will, of course, be exact for the Wiener–Lévy process and will hold 
asymptotically in the case of Heads and Tails, and for any other case with finite variance 
(which we shall always assume to be 1 per unit time). We have (for y > 0)

 

q t p y Y t y T y t

Y t y

y t

y t

P P

P

� �

�2 2
1

/ e 22
2x

xd .
20

 (8.47)

Clearly, the form of equation 8.47, interpreted either as a function of у (with t as a 
parameter) or, alternatively, as a function of t (with y as a parameter), provides the dis-
tribution function of |Y(t)| and ∨Y(t) and that of T(y) and T(−y). It is often useful to have 
this expressed in terms of both the parameters y and t; it can then be interpreted 

19 This would also be valid for processes other than those which are homogeneous with independent 
increments (satisfying the conditions stated for Desiré André’s argument) where there is less justification for 
writing F t and f  t. In fact, however, we shall not be dealing with the general case.
20 For y large (compared with √t), the approximation given by equation 7.20 (in Chapter 7, 7.5.4) can be 
used, and gives

 q t p y K t y Ky t
y t

 / e /
2 2 2 0 8/ , . (8.47′)
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according to whichever is appropriate. With this notation, we shall denote it in all cases 
by P(∨Y(t) ⩾ y) (even in the Heads and Tails context).

The distribution of the maximum (or |minimum|) ∨Y(t) (or |∧Y(t)|), and of |Y(t)|, is 
clearly the semi‐normal (the normal distribution confined to the positive real axis), 
whose density is given by

 
f x Kt x K

x t1
2

1
2

2

0 2 0 8e /
/

, .   (8.48)

This is half of the normal distribution with m = 0 and 2 = t; the mean and variance 
are given by m = √(2/π) 21 and σ = √(1 − 2/π) ; that is, numerically, m ≃ 0·8  and 
σ ≃ 0·6  (these should not be confused!).

On the other hand, T(y) (or T(−y)) has density

 
f t Kyt t K

y t3
2

1
2

2

0 1 2 0 4e /
/

, .   (8.49)

This is the stable distribution with characteristic exponent 1
2 (which we men-

tioned in Section 8.4.4); in other words, it corresponds to jumps x whose density of 
intensity is x

3
2 . Since α < 1, it has infinite prevision (in line with what we established 

directly in Section 8.6.2).
The fact that T(y) had to have the stable distribution with 1

2 could have been 
deduced directly from the fact that

 T y y T y T y y T y T y T y1 2 1 1 2 1 1 2 . 

The time required in order to reach level y1 + y2 is, in fact, that required to reach y1 plus 
that then required to proceed further to y1 + у2. However, given that, by the continuity 
of the Wiener–Lévy process, the level y1 is reached (and not bypassed) at T(y1) with a 
jump, it is a question of going up by another y2 under the same conditions as at the 
beginning. By virtue of the homogeneity, however, the distribution can only depend on 
y2/t (and the density, in terms of y2/t, could therefore only be – as, in fact, it actually 
is – a function of y2/t divided by t).

We shall return (in Section  8.7.9) to the exact form for the Heads and Tails case, 
 having encountered (for Ballot problems, in Section 8.7.1) an argument which enables 
us to establish it in a straightforward and meaningful way.

8.6.5. In the case where we consider two gamblers, G1 and G2 (with initial fortunes c′ 
and c″, where c′ + c″ = c*), Desiré André’s argument still applies, but now, of course, in 
a more complicated form. If we denote by A and B passages through levels c′ and c″, 
respectively, a path whose successive passages are ABABAB … signifies the ruin of G1; 
if the sequence begins with B, it signifies the ruin of G2. (It does not matter how many 

21 m x x x2 2 1
20

2/ dexp ;
it can easily be shown that the integral is equal to one.
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times A is followed by B or B by A, nor does it matter whether the sequence ends in 
an  A or a B; successive passages through the same level are not counted; e.g. 
ABBAAABAABB = ABABAB.) Desiré André’s argument (as applied in the one‐sided 
case) does not directly enable one to count the paths {A} which signify G1’s ruin, nor the 
paths {B} which signify G2’s ruin, nor the paths {0} which indicate that neither is ruined 
(all belonging to the 2n paths in the interval [0, n]). It does, however, enable one to count 
those of ‘tуpe (A)’ ‘type (B)’ ‘tуpe (AB)’, ‘tуpe (BA)’, ‘tуpe (ABA)’ and so on, where these 
refer to paths containing, in the sequence, the groups of letters indicated (which might 
be sandwiched between any number of letters).

Everything then reduces to the previous case of only one gambler; in other words, to

 
p y p y Y yt nP  .

 

The probability of paths of ‘tуpe (A)’ is, in fact, p(c′); that of paths of ‘Tуpe (AB)’ is 
p(c′ + c*) (because to first reach −c′ and then to reach −c″ requires a zigzag path along 
c′ + (c′ + c″); this amounts to reflecting the path with respect to у = −c′, starting from 
the instant it reaches this level and continuing up until when it reaches c″); for ‘tуpe 
(ABA)’ we have p(c′ + 2c*), and so on. Similarly, for ‘types’ (B), (BA), (BAB), …, we have

 p c p c c p c c, * , * , ,2  

and in this way we arrive at the required conclusion.
The paths {A} are, in fact, those given by

 A BA ABA BABA ABABA  

(i.e. we start with those reaching −c′ and we exclude those first reaching c″; in this way, 
however, we exclude those that reach −c′ prior to c″; and so on). The same thing holds 
for {B}; the {0} are those remaining (i.e. neither {A} nor {B}) (see Figure 8.7).

It follows that the probabilities of ruin within n tosses are, for G1, given by

 q p c p c c p c c p c cn * * *2 3  (8.50)

or (in terms of c″),

 
p c c p c c p c c p c c* * * *3 3  (8.50′)

(there are a finite number of terms because p(y) = 0 when y > n).
The probabilities qn (of ruin for G2) are obviously expressed by the same formulae, 

provided we interchange the rôles of c′ and c″.
In particular, in the symmetric case, c′ = c″ = c, we have

 q q p c p c p c p cn n 3 5 7  (8.51)

8.6.6. In the case of the Wiener–Lévy process (and, asymptotically, for Heads and 
Tails and for the asymptotically normal processes), we shall restrict ourselves, for 
 simplicity and ease of exposition, to the symmetric case, which provides us with the 
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distribution of ∨|Y(t)|, the maximum of the absolute values of Y in [0, t]. The ruin of one 
of the two gamblers within time t means, in fact, that, in the interval in question, 
Y reaches ±y; that is that |Y| reaches y.

In the case of Heads and Tails, we have

 
P Y t y q q p h yn n

h

h 2 1 2 1  (8.52)

(there are, in fact, only a finite number of terms as we saw above). In the Wiener–Lévy 
case, p(y) is given by equation 8.47 in Section 8.6.4, and hence
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I

Figure 8.7 Desiré André’s argument in the case of two barriers. The barriers are the straight lines 
bounding the white strip around the origin 0; the other strips are the proper images (white strips) and 
reversed images (dark strips) with the respective hot (black) and cold (white) sources (corresponding to 
Lord Kelvin’s method; see Section 8.6.7). The actual path is indicated by the solid black line; its four 
successive crossings are denoted by A(1st), B(2nd), A(3rd), B(4th) (consecutive repeat crossings of A or B 
are not counted). 
 The final image of the path (obtained by repeated application of André’s reflection principle) is 
indicated by the heavy broken line; it follows the same path up until A(1st) and is then given by the 
reflection (I) of it with respect to the 1st level. Then, after B(2nd), it is given by the reflection (II) of (I) with 
respect to the 2nd level, and so on. The continuations of the reflected paths (after the section in which 
they constitute the final image) are indicated by the lighter, dashed line. The image paths reaching the 1st, 
2nd, 3rd levels, etc., correspond to paths of types A, AB, ABA, etc. (instant by instant); the same is true in 
the opposite direction (1st, 2nd, 3rd levels, etc. in the negative halfplane) for paths of types BA, BAB, etc.
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Differentiating with respect to у, we obtain the density
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 (8.54)

8.6.7. It is instructive to compare the present considerations, based on Desiré André’s 
argument, with those, essentially identical, based on Lord Kelvin’s method of images, 
which is often applied to diffusion problems. We have already observed (Chapter  7, 
7.6.5) that the Heads and Tails process can be seen, in a heuristic fashion, to approach 
a diffusion process, and that the analogy becomes an identity when we consider the 
passage to the limit which transforms the Heads and Tails process into the Wiener–
Lévy process.

In order to use the method to formulate the problem of the ruin of one gambler 
(occurring when level y = c is reached), it suffices to find the solution of the diffusion 
equation (given by equation 7.32 of Chapter  7, 7.6.5) in the region у ⩽ c (where we 
assume c > 0), satisfying the initial condition of concentration at the origin, together 
with the condition that it vanishes at у = c. By virtue of the obvious symmetry (giving a 
physical equivalent to Desiré André’s argument), it suffices to place initially, at the point 
y = 2c, a mass equal and opposite to that at the origin (the ‘cold source’); this gives a 
process that is identical to the other, but opposite in sign, and symmetric with respect 
to the line y = 2c instead of to y = 0. On the intermediate line, у = c, the two functions 
therefore cancel one another out and their sum provides the desired solution. The prob-
ability of ruin at any instant can be interpreted in terms of the flux of heat out past the 
barrier, together with an incoming cold flux; and so on.

In the case of two gamblers (i.e. barriers at ±c, and the initial position of the mass 
at у = 0, or at у = a, |a| < c22), if we are to use the same trick we have to introduce an 
infinite number of sources, alternatively hot and cold – like alternate images of the 
face and the back of the head in a barber’s shop with two mirrors on opposite walls. 
We have an infinite number of images of the mirrors (lines у = (2k + 1)c, k being an 
integer between −∞ and +∞) and in between them an infinite number of strips 
(proper and reversed images of the shop), and inside each of these strips the image 
(‘hot’ or ‘cold’) of the source. If the source is at the centre (y = 0), the others are at 
у = 2kc (hot if k is even, cold if k is odd); otherwise – if it is at у = a – the hot sources 
are at 2kc + a and the cold ones at 2kc − a (still with hot corresponding to k even, cold 
to k odd).

Using the techniques of this theory (Green’s functions etc.) one can obtain solutions 
to even more complicated problems of this nature (e.g. those with curved barriers), 
where this kind of intuitive interpretation would necessitate one thinking in terms of 
something like a continuous distribution of hot and cold sources.

22 This is just a more convenient way of saying that one starts from 0 but places barriers at c – a and c + a.
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8.7 Ballot Problems; Returns to Equilibrium; Strings

8.7.1. We turn now to what we referred to in Section  8.5.2 as the second group of 
 questions concerning random processes; those in which the study of the process 
reduces to an examination of certain segments into which it may be useful to subdivide 
it. More precisely, we shall consider the decomposition into strings; that is into the seg-
ments between successive returns to equilibrium (i.e. between successive zeroes of Y(t)).

Over and above their intrinsic interest, these questions often point the way to the 
formulation, understanding and solution of other problems that entail recurrence in 
some shape or form. In other words, problems relating to processes that, after every 
repetition of some given phenomenon (in this case, the return to equilibrium), start all 
over again, with the same initial conditions (or with modifications thereof which are 
easily taken into account).

The simplest scheme involving the notion of recurrence is that of events Eh forming a 
recurrent sequence23 (such as the Eh = (Yh = 0) in our example) for which, when the 
outcomes of the preceding events are known, the probabilities depend on the number 
of events since the last success. In other words, the index (or ‘time’) T (k) of the kth 
 success is the sum of the k independent waiting times Tt, T2,…, Tk: the T are integers in 
this case, but this is merely a special feature of this simple scheme.

We now provide a brief account of the most important aspects of the theory (for a 
fuller account, see Feller, Vol. I, Chapter XIII). We denote by fh the probability that Eh is 
the first success (or, equivalently, that, following on from the last success obtained, the 
first success occurs in the hth place); in other words, fh = P(T = h), where T = waiting 
time. It follows immediately that either ƒ = ∑fh = 1, or it is <1 (if the probability of a 
success does not tend to certainty as the number of trials increases indefinitely). We 
adopt the convention of denoting the difference 1 − ƒ by f∞ (the probability that the 
waiting time is infinite).

By convolution, we obtain the probabilities fh
2  of Eh being the second success, and so 

on for fh
3  and the rest. In general, we have

 f f f f f f fh
r

h
r

h
r

h
r

1 1
1

2 2
1

1 1
1 . (8.55)

Summing over r, we obtain the probability uh of Eh being a success (without taking 
into account whether it was the first, second, …, or whatever; as above, this holds also 
for a success at the hth place following on from some success already obtained, assum-
ing that nothing is known about successes for subsequent events):24

 
u f f f f f r hh h h h h

h
h

r2 3 0obviously for, . (8.56)

23 These are usually called ‘recurrent events’, but this terminology does not fit in with ours (nor, in a certain 
sense, with the point of view we have adopted).
24 I would prefer to write P(Eh) = ph (instead of uh) as usual, in order not to make it appear that we are 
dealing with a special case, and in order to avoid confusion with the standard use of un (as the maximum 
probability for Heads and Tails). The reason we have used uh is for the convenience of the reader who wishes 
to pursue this topic (which we are only scratching the surface of ) using Feller: however, it only occurs in this 
section, so that there should be no cause for any confusion.
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The sum of the fh
r  gives f r (=1 or <1, the same as ƒ), and provides the probability that 

an rth repetition takes place. The sum

 f f f f r2 3
 

therefore gives the prevision of the total number of successes (finite or infinite, accord-
ing to whether ƒ < 1 or ƒ = 1). The same prevision can be expressed in a different way, 
however, by the sum of the uh; we therefore obtain

 u u u u f fh1 2 1/ , (8.57)

 f u u/ .1  (8.57′)

If ƒ = 1, и = ∞, the events Eh are called persistent; in the opposite case, ƒ < 1, и < ∞, 
they are called transient. In the case of persistent events,25 if we denote the prevision 
of the waiting time by τ, that is

 
f f f hfh1 2 32 3 which could be , (8.58)

then, as h increases, the probability uh of success tends to the limit

 
u u uh1 0/ , .in particlar if  (8.59)

Let us now return to the central topic of this section and explain how the ‘Ballot 
problem’ enters into the picture. This is simply a traditional way of referring to, and 
interpreting, a set of problems similar to those encountered under the heading of ‘gam-
bler’s ruin’, but relating now to drawings from an urn without replacement (which pro-
vides a model for the process of counting votes). The results also find application in 
statistics, where they form the basis of certain criteria (due to Kolmogorov and Smirnov) 
for considering the deviation of an empirical distribution function from a given hypo-
thetical theoretical distribution. Anyway, although we shall refer to Ballot problems as 
a convenient aid to intuition, we shall think of this new case always in the context of 
Heads and Tails.

In fact, we shall study problems of Heads and Tails conditional on the knowledge of 
the number of successes, H, occurring in the N trials with which we are concerned (we 
have seen this argument before in Chapter 7, 7.4.3, where we used it to derive the hyper-
geometric distribution). Proceeding in this way, it is evident that, among other things, 
the graphical representation of this problem consists simply of the rectangular portion 
of the Heads and Tails lattice having opposite vertices at the origin (the starting point) 
and at [N, H] = (N, 2H – N) (the point where the process terminates).

There are H
N  possible paths joining these two points (Figure  8.8); in order to fix 

ideas, we assume that YN = 2H − N ⩾ 0, that is H ⩾ N − H. For 0 < y < Yn, all paths either 

25 The complication of ‘periodic events’ (Eh only possible for a multiple of some ‘period’ λ) can be avoided 
(and we assume this done) by confining attention to events Ehλ. Of course, this might not always be 
convenient in practice (e.g., if a sequence defined in terms of another sequence An, which is not periodic, 
turns out to be periodic: see Heads and Tails; returns to zero are only possible for n even).



8 Random Processes with Independent Increments 359

cross or touch each barrier of the form y = constant. For the case y = 0 (and у = YN) 
we wish to consider how many paths touch it (either crossing it or not) after the initial 
Y0 = 0 (or before the final YN = N, respectively). The same question (without the 
 qualifications at the end‐points) also arises for levels y = YN + c (c > 0), or, equivalently,26 
for у = −c.

(A) The case у = 0, the Ballot problem, is the simplest one (we restrict ourselves to 
YN > 0 for now, postponing the case of YN = 0 to Section 8.7.3). All paths whose first step 
is downward must cross у = 0 again and, by reflecting the initial segment up to the first 
crossing, one obtains (with a one‐to‐one correspondence) all those having an upward 
first step which subsequently touch у = 0. But the first step has (like any other step) 
probability (N − H)/N of being one of the N − H downward steps; the probability of the 
eventual winner not being in the lead at some stage during the counting is therefore 
equal to twice this value, 2(N − H)/N, and the probability that he is always in the lead 
during the counting is given by

 1 2 2( ) .( )N H N H N N Y NN/ / /  (8.60)

(B) If we turn to the case y = YN + c (or у = −c), c > 0, the principle of reflection (Desiré 
André) shows immediately that there are H c

N
 paths which touch this barrier in 

0 ⩽ t ⩽ N (either crossing it or not, as the case may be). This is the number which 
finish up at the point whose ordinate is (2H − N) + 2c = 2(H + c) − N, the symmetric 
image of the given final point with respect to the barrier. In fact, these paths are 
obtained from the others (in a one‐to‐one onto fashion) by reflecting, with respect 
to the barrier, the final portion, starting from when the barrier is first reached (for 
t = h; Yh = YN + c).

26 This is an obvious application of the reversal principle; see Section 8.6.3.

y

t

A

0

Figure 8.8 Desiré André’s argument: 
the Ballot problem (i.e. the 
hypergeometric distribution). Paths 
from 0 to A which begin with a 
downward step correspond in a 
one‐to‐one fashion to those which 
start off upwards and then 
subsequently touch the t‐axis (by 
symmetry in the interval before the 
t‐axis is first reached).
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The probability sc of reaching (and possibly going beyond) level y = YN + c (or у = −c) 
is therefore given by

 
s

N H N H N H N H c
H H Hc H c

N
H
N/ ( )

1 2 1
1 2 3 H c

. (8.61)

The explicit expression is particularly useful when c is small (note that for c = 1 we have 
s1 = (N − H)/(H + 1)), and is instructive in that it shows how the successive ratios 
(N − H − c + 1)/(H + c) give the probability of reaching the required level (YN + c) given 
that one knows that the level immediately below it (i.e. YN + c − 1) has been reached. 
The complementary probability is

 2 2 1H N c H c/ , 

and so the probability rc−1 that the maximum level reached is YN + c − 1 is given by the 
formula for sc with (2H − N + 2c − 1) replacing

 N H c 1  

in the final factor; this is also the probability that the minimum level is −(c − 1)  
(alternatively, one can obtain this by noting that rc−1 = sc−1 − sc). Observe that sc = 0 for 
c ⩾ N − H + 1 (Why is this so?).

(C) The case of two barriers. In the case of two barriers at levels y = −c′ and у = YN + 
c″ (c′ and c″ positive), by performing successive reflections, as in the previous case, one 
obtains the paths terminating at the image points of the given final point (YN = 2H − N) 
with respect to the two barriers (thought of as parallel mirrors: there are an infinite 
number of images, but only those with ordinates lying between ±N can be reached). 
Setting c* = Yn + c′ + c″, the distance between the barriers, the ordinates of the images 
are given by

 2 1k c c c* . 

(N.B.: for k = 0, we have c* − c′ − c″ = YN = 2H − N, the given final point, and

 c c c Y c H c NN* ,2 2  

the unique image in the case of a single barrier у = YN + c″; in that case, we used c 
instead of c″.)

It follows that the probability of the lower barrier being reached first is given by

 
qN H

N
H c

N
H c

N
H c c

N
H c

N1 2 3/ * * *  (8.62)

(where we argue as in Section  8.6.5): the result for qN  is similar (with c″ in place 
of  c′). The sum, qN = qN  + qN , gives the probability of reaching a barrier (not 
 distinguishing which, or which was reached first), and 1 − qN that of not reaching 
either of them.
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8.7.2. When studying a random process, it is often useful to consider it as subdivided 
into successive strings; that is into segments within which it retains the same sign. In our 
case,27 this means those segments separated by successive zeroes, Yt = 0, and necessarily 
having even length (since Yt can only vanish for t even). Strings are either positive or 
negative (i.e. paths on the positive or negative half‐plane, Yt > 0 or Yt < 0; see footnote 
12 in Chapter  7, 7.3.2) and between any two strings the path has a zero at which it 
either touches the t‐axis or crosses it, according to whether the two strings have equal 
or opposite signs.

If one thinks in terms of gains, that is of the excess of the number of successes over 
the  number of failures, a zero represents a return to equilibrium (equal numbers of 
 successes and failures; gain zero), and the string represents a period during which one 
of the players has a strict lead over the other. Omitting the word ‘strict’ and including 
the zeroes, we obtain periods in which one or other player does not lose the lead 
(i.e. the union of several consecutive strings having the same sign). One might also be 
interested in knowing the length of time, within some given period up to t = N, during 
which either player has had the lead. If one thinks of a random walk, the zero is a return 
to the origin and a string is a portion of the walk between two returns to the origin.

The above discussion, together with the results obtained so far, leads us directly into 
this kind of question, either with reference to the special case of Heads and Tails, or to 
that of the Ballot problem (which reduces to the former, if one thinks of YN = 2H − N as 
being known).

8.7.3. The Ballot problem in the case of parity: YN = 0, that is there are equal numbers, 
H = N − H = N/2, of votes for and against. What is the probability that one of the two 
candidates has been in the lead throughout the count? In our new terminology, this 
means that the process forms a single string; that is there are no zeroes except at the 
end‐points (if we are thinking in terms of a particular one of the candidates, the string 
must be of a given sign and the probability will be one half of that referred to in the 
question above).

This can easily be reduced to the form of case (A) considered in Section 8.7.1. In terms 
of the candidate who is leading before the last vote is counted, we must have YN−1 = 1 
(since we know that at the final step the lead disappears, and we end up with YN = 0); 
it follows that the required probability is given by

 Y N NN 1 1 1 1/ /  

This is the probability that one of the two candidates (no matter which) remains 
strictly ahead until the final vote is counted; the probability of this happening for a 
particular candidate is 1/2(N − 1).

8.7.4. What is the probability that in a Heads and Tails process – or, more generally, 
in an arbitrary Bernoulli process – the first zero (return to equilibrium, passage through 

27 That of processes with jumps of ±1, with paths on a lattice, and (for convenience) starting at the origin, 
Y0 = 0. In other cases, one could have changes in sign without passages through zero occurring (and one 
could even have, in continuous time, a discontinuous process Y(t) with an interval in which changes of sign 
occur within neighbourhoods of each point).
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the origin) occurs at time t = n (where n, of course, is even)? For this to happen, it is first 
of all necessary that Yn = 0; the problem is then that considered in Section 8.7.3. The 
probability that if a zero occurs it is the first one is therefore equal to 1/(n − 1). 
The probability of the first zero at t = n is thus P(Yn = 0)/(n − 1). In other words, this is 
the probability that the first string (and hence any string, since the process can be 
thought of as starting all over again after every zero) has length n.

(A) In the case of Heads and Tails, we have P(Yn = 0) = un, so the probability of the first 
zero occurring at t = n is given by

 u n n n nn / / / .1 0 8 0 8
3
2

  

The probability that the string is of length n and has a given sign (i.e. is to the advantage 
of a particular one of two gamblers) is one half of this.

More precisely, we have (setting n = 2m)
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we can verify at once that un = un−2(n − 1)/n.
This establishes the following important conclusions:

(a) un is also the probability that there are no zeros up to and including t = n (this is 
true for u2 = 1

2 , and hence is true by induction, since un−2 − un is the probability 
of the first zero occurring at t = n);28

 (a′) as in the footnote;
(b) since un → 0, the probability that (as the process proceeds indefinitely) there is at 

least one return to equilibrium tends to 1 (and the same is therefore true for two, 
three or any arbitrary k returns to equilibrium);

(c) the form un−2/n tells us that 1/n is the probability that the string terminates at 
t = n (since Yn becomes 0), assuming that it did not terminate earlier (since un−2 
is the probability that Yt ≠ 0 for t = 1, 2, …, n − 2, and this is necessarily so for 
t = n − 1 = odd);

28 It follows that the probability of Yt (0 < t ⩽ n) being always positive (or always negative) is un/2. If, 
instead, one requires only that (a′) is non-negative (or nonpositive), the probability is double: i.e. it is still un 
(as can be seen from Section 8.6.3; special cases of equation 8.43′ for c = 0 and c= –1).
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(d) from this, we can deduce that un can be written in the form

 
u nn 1 1

2
1 1

4
1 1

6
1 1

8
1 1/ ;

29

 (8.63)

in other words,

 
u u

n
u n

nn n n2 1 1
2

1
2  

(as a product of complementary probabilities; a demographic analogy goes as fol-
lows: the probability of being alive at age n can be expressed as a product of the 
probabilities of not dying at each previous age);

(e) a further meaningful expression for un is given by

 
u u

k
u k k nn

k

k
n k1

the sum being over , ;  (8.64)

observe that, in fact, each summand expresses the probability that the first zero is 
at t = k, and that there is another zero at t = n (i.e. after time n − k); for k = n (the 
final summand), we must take u0 = 1, and hence un/(n − 1), a term which can be 
taken over to the left‐hand side to give the explicit expression un = [(n − 1)/(n − 2)] 
Σ′ (where Σ′ denotes the same sum, but without the final term).

We shall encounter further properties of un and un/(n − 1) later.
(B) In the general case (the Bernoulli process with p ≠ 1

2 ) we have instead

 P Y pp u pp u pp ppn m
m m

n
m

n
n

0 4 2 2 12
   , . 

The probability of the first zero at t = n is, therefore,

 
u n pp u n nn

n
n/ / even1 2 1 , (8.65)

and the sum of such probabilities is <1.
The remaining probability, P, given by P(x) = 1 − Σn[un/(n − 1)] (1 − x)n with x − 1 − 4p p, 

is the probability that a string has infinite length (which, with probability = 1, will be to 
the advantage of the favourite; i.e. the player with p 1

2 ). At the beginning of each new 

29 We note that this enables us to establish Wallis’s formula; from
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we obtain
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where π has its usual meaning, given by the double integral of Chapter 7, 7.6.7:
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string, there is probability (1 − P) of a finite string, advantageous to one or other of the 
players, and probability P that the favourite embarks on an infinite string. The probabil-
ity that the kth string turns out to be infinite is given by P(1 − P)k−1.

Note, in particular, that property (b) only holds in the case of Heads and Tails (i.e. only 
if we have p 1

2 ). Otherwise, it is not at all asymptotically certain that a return to 
 equilibrium takes place (and even less is it certain that such a return to equilibrium 
takes place an arbitrarily large number of times). On the contrary, it is asymptotically 
certain that the favourite (the player with p 1

2 ) maintains his lead from some given 
time onwards.

Remark. We have introduced the phrase ‘asymptotically certain’ to mean that some 
given fact – for example, in the case under consideration, the occurrence of a return to 
equilibrium, or of k returns to equilibrium – has a probability tending to 1 of occurring 
in a random process, provided the process goes on indefinitely; that is if pN is the 
 probability that it occurs before time N, then pN → 1 as N → ∞.

We note that if some given fact is asymptotically certain, then its occurrence k 
times (k arbitrary) is also asymptotically certain, provided (as in our case) that each 
time it occurs we find ourselves with the same initial conditions.30 Without this lat-
ter stipulation, the conclusion of (b) – ‘and the same is therefore true for two, …’ – no 
longer holds (this is obvious but was not mentioned explicitly in (b) for the sake 
of brevity).

We note also that ‘asymptotically certain’ in no way (logically) implies ‘certain’ pro-
vided the process continues indefinitely (not even if we were to assume that we could 
examine the process in its entirety, placing ourselves beyond the end of time). It is even 
more important to note that the fact that the occurrence of an event k times (with k 
arbitrarily large) is asymptotically certain does not imply that, in a process of infinite 
duration, its occurrence an infinite number of times is certain (necessary), nor even that 
it has probability 1 (nor even that it is probable, or even possible). We can only say that 
this number of repetitions N (assuming that it makes sense to speak about it) is a ran-
dom quantity (either integer or +∞), which has probability 0 of taking on any individual 
finite value, and hence of belonging to any given finite subset of integers, such as those 
less than some preassigned integer k. It could, however, be certainly finite, like an ‘inte-
ger chosen at random’ (see Chapter 4, 4.18.3).

8.7.5. What is the prevision of the length L of a string (i.e. of the waiting time t = L until 
the first zero)? In the case of Heads and Tails, we see immediately that P(L) is infinite. In 
fact, n(un−2/n) = un−2; that is the contribution to the prevision corresponding to L = n 

tends to zero like n
1
2 , and the sum diverges.

As we remarked above (see the discussion following equation 8.65), if p ≠ 1
2  this no 

longer happens (because of the presence of the factor 2 1pp  in the geometric 
 progression): the (finite) strings have, in prevision, finite length. However, the prevision 
becomes infinite if we take into account the fact that each string could be the final one, 

30 We are referring, therefore, to a recurrent sequence of events (see Section 8.7.1).
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of infinite31 length (but, if we distinguish between the two players, this only happens for 
the favourite: the first player if p 1

2 ).

Remark. The result that we are interested in (for Heads and Tails) is more conveni-
ently expressed in the following form (which also gives us the opportunity to make an 
observation of a more general character). Each string consists, in prevision, of 1

2  a 
string of length 2, of 1

8  a string of length 4, …, of un/(n − 1) a string of length n, and so 
on. In terms of the prevision of length, we have, in contrast, 2/2 = 1 for strings of 
length 2, 4/8 = 1

2  for strings of length 4, …, n(un−2/n) for strings of length n and so on. 
Observe, in particular, that, for an individual string, the prevision of long strings 
is negligible (i.e. the prevision of strings >n is less than any given ε > 0, provided n is 
taken sufficiently large), whereas, for the prevision of length (which is infinite), the 
prevision of the length of short strings (i.e. of those less than some preassigned, arbi-
trary, finite n) is negligible. It makes no difference if one makes the same statements 
but multiplies by 1000 (or a million, or whatever): ‘out of 1000 strings, in prevision 
500 have length 2, and their total length is, in prevision, 1000’, and so on. Usually, one 
says ‘on average’. We shall see later (Section 8.8.4) that there are dangers in using this 
form of expression.

8.7.6. For the Ballot problem in the case of parity, what is the probability that one of the 
two candidates has never been behind during the count? This is almost the same ques-
tion as we asked in Section 8.7.3, except that we are here asking for something less: we 
admit the possibility that at some stages during the count the votes for the two candi-
dates may also have been equal. It is sufficient that the lead of the candidate in question 
never becomes negative; that is that it never reaches the level у = −1. As in Section 8.7.3, 
we assume YN−1 = 1; we are then back in case (B) of Section 8.7.1 and we can apply sc for 
the case c = 1, which we have already given explicitly:

 s N H Hc / ,1  

where we have to put N − 1 in place of N and N/2 in place of H (since Yn − 1 = 2H − 
(N − 1) = 1). We hence obtain

 N N N2 2 1 4 2/ /  

for the probability that level y = −1 is reached and 4/(N + 2) is then the required prob-
ability. If we are thinking in terms of one particular candidate, the probability that the 
lead is never negative is one half of this, that is 2/(N + 2).

Since the probability of the lead always being positive is l/2(N − 1) (case (A) in 
Section  8.7.1), we obtain, by subtraction, the probability that the lead is always 
non‐negative, but sometimes zero: this probability is equal to the previous one 
multiplied by

 3 2 2N N/ . 

31 It seems out of place here to complicate such expressions in order to repeat critical comments of the 
kind mentioned in the previous ‘Remark’ (following (B)).



Theory of Probability: A Critical Introductory Treatment366

In a different form, assuming that the lead is always non‐negative, the probability 
that it is always positive is (N + 2)/4(N − 1), and the probability that it is zero is  
3(N − 2)/4(N − 1) (i.e., for large N, they are practically equal to 1

4  and 3
4 , 

respectively).

Remark. We have seen that 2/(N + 2) is the probability of a given candidate being 
ahead (whether strictly or not) either always or never (i.e. for N or 0 steps, paths either 
all in the positive or all in the negative half‐plane). The possible values for the number 
of steps when he is in the lead are

 0 2 4 2, , , , , ,N N  

and since there are (N + 2)/2 possible values, their average probability must be 2/(N + 2). 
But this is the probability in the two extreme cases we have considered and, moreover, 
by an obvious symmetry, the probabilities for h and N − h are equal. It follows that either 
they are all equal, or they have a strange wavy behaviour – with at least three turning 
points. Actually, they are all equal: in other words, we have a discrete uniform distribu-
tion over the steps spent in the lead. The proof is not as straightforward as the state-
ment and will be omitted,32 in order not to interrupt the discussion and overcomplicate 
matters. A further justification for this is that the previous considerations have already 
made the conclusion highly plausible.

8.7.7. What is the probability that in the Heads and Tails process (or, more generally, 
in any Bernoulli process) the first crossing of y = 0 (i.e. the first zero where the path does 
not simply touch the axis) occurs at time t = n (where n, of course, is even)? In other 
words, we are asking for the probability that the duration of the initial period during 
which one of the players never falls behind is equal to n; that is that this is the sum of the 
lengths of the initial consecutive strings whose sign is that of the first string. In order for 
this to happen, it is first of all necessary that Yn = 0, and that no crossings have taken 
place for t < n; in addition, we require that the first toss after t = n (i.e. the (n + l)st) is 
opposite in sign to the very first toss (and thus to the strings already obtained). The 
probability we seek is therefore given by

 P Y n ppn 0 4 2 2. . ,/   

where 4/(n + 2) is the probability of no crossing occurring (as determined in 
Section 8.7.6), and 2p p is the probability that the first and (n + l)st tosses have opposite 
signs. In the case of Heads and Tails, p p 1

2, this reduces to 2un/(n + 2) (or to un/(n + 2) 
if one specifies which of the two players is to be ahead initially). In the general case 

p 1
2 , the probabilities (for each finite n) are smaller and one has the residual proba-

bility of the lead being maintained indefinitely (by the favourite, as for the strings). 
Apart from a comment of this kind – made for comparative purposes – we shall restrict 
ourselves to the case of Heads and Tails.

32 We merely note that it follows from equation 8.64 of Section 8.7.4(e), and that the arguments are similar 
to those mentioned in Section 8.7.10 (for the arc sine distribution).
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If we compare the result obtained for the length L of a string with that for the lead, 
V say, we have

 P PL n u n V n u nn n2 2 2/ /, ; 

from this it is clear that

 P PV n L n2 2 , 

and hence that

 
P PV n L n un 2 2 2 .

 

It is instructive to consider the implications of this; on the one hand for the first few 
values (small values, corresponding to short strings) and, on the other hand, asymptoti-
cally (large values, corresponding to long periods of lead).

In the case of the first few possible (even) values, we have:

 

n

un

2 4 6 8 10
1
2

3
8

5
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35
128
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256  

and hence

 
P L n u nn / 1 1
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and

 
P V n u nn2 2 1
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/
 

As we know from the last remark, the values in the final line are twice those of the 
penultimate line each shifted one place to the left (except for the final one, which 
equals 1

2 ; doubling the remaining values, whose sum is 1
2 , we obtain again the total 

probability 1). This direct comparison shows that for n = 2 the probability for L is 
greater (as is obvious: in order to have V = 2, we must have L = 2 and, moreover, 
the subsequent string must be of opposite sign). For n = 4, they are equal, and subse-
quently the probabilities for V become greater 1

16
4

64
5

64
5

128
7

128
7

256
14
512

21
512; ; . 

All this could be seen directly, by simply noting that the ratio 2(n − 1)/(n + 2) is equal 
to 2 − 6/(n + 2).

For large values, this ratio is (asymptotically) equal to 2, and, in any case, 
P P( ) ( ) ( ) ( )V n L n n n  2 2 0 8 0 8 4/ / / . This can be expressed by saying that, in 
a sense, long periods in the lead are four times as long as long strings (more precisely, 
this is true in the sense that V has the same probability of reaching some (long) length n 
as L has of reaching length n/4).
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8.7.8. For the Ballot problem in the case of parity, what is the probability distribution 
of the maximum lead attained during the count by a particular candidate? What is 
the probability distribution of the absolute value of the lead? And why does it become 
conditional on the fact that a given candidate never lost the lead throughout the count? 
Or was strictly in the lead throughout the count? Clearly, if we drop the reference to the 
Ballot problem, we see that we are dealing with the most general question of the prob-
ability distribution of ∨YN, or of V|YN| (either for Heads and Tails, or for any Bernoulli 
process), assuming YN = 0, and possibly, also, Yt ⩾ 0, or even Yt > 0, for 0 < t < N. This 
last assumption is the most restrictive and it amounts to seeking the probability distri-
bution of the maximum in a single string. Under the next to last assumption, we could 
be dealing with a segment composed either of a single string or of several consecutive 
strings all having the same sign. In the general case, on the other hand, the segment 
might consist of a single string or of several, with arbitrary signs: it is only in this latter 
case that we need to distinguish between ∨YN and V|YN|.

In fact, these are simply variants of problems (A) and (B) in Section 8.7.1. We shall 
consider them separately.

(a) The only assumption is that YN = 0 and we seek the distribution of the maximum 
of Yt. From (B) of Section 8.7.1, we see, taking H = N/2, that s0 = 1, and, for c ⩾ 1,
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 (8.66)
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(in particular, r0 = 2/(N + 2), as we already know). Applying Stirling’s formula as given 
in equation 7.30 of Chapter 7, 7.6.4, we have, approximately (for c large, but 2c/N small, 
i.e. N much larger still), s e r c Nc

c N
c

c N


2 22 2

4/ // e, .
(b) Continuing with YN = 0 as the only assumption, we seek the distribution of the 

maximum of |Yt|. Arguing as in (C) of Section 8.7.1 but also taking into account the 
symmetry (N = 2H; i.e. YN = 0, c′ = c″ = c, c* = 2c), we find that the probability sc  of either 
reaching or crossing ±c (which was denoted in (C) by q q qN N N , here q qN N ) is 
given by
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(8.68)

Expressed more simply, using the sc from (a) above, we have

 s s s s sc c c c c3 5 7 , (8.68′)

and similarly

 r r r r rc c c c c3 5 7 . 
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Asymptotically, we therefore see from the previous expression that
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(c) Let us now assume, in addition to YN = 0, that Yt has not changed sign throughout 
0 ⩽ t ⩽ N and, in order to fix ideas, let us assume that it is non‐negative. It therefore 
makes no difference whether we talk in terms of the maximum of |Yt| or of Yt (or of −Yt, 
had we made the opposite assumption). We again argue as in (C ) of Section 8.7.1, but 
now with c′ = 1, c″ = c, in order to obtain the probability that Yt always remains strictly 
between −1 and c. Dividing this by 2/(N + 2) (the probability that 0 ⩽ Yt, i.e. that 
−1  <  Yt), we obtain the probability of ∨Yt < c conditional on the given hypothesis; 
that  is the 1 sc of the present case. If we use sc to denote the same probability as in 
case (a), we have, therefore,
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s s s s s s s s
c

c c c c c c c

1 2
2

1 2 2 1 2 3 3 2 3 4 4 3 , etc..
 (8.69)

(d) This proceeds similarly: under the assumption of having been strictly in the lead 
(Yt ⩾ 1, 0 < t < N), we can reduce to the previous case by taking the axis у = 1 as the base 
line on the interval from t = 1 to t = N − 1 (Y1 = YN−1 = 1); for large N, the difference is 
very small.

8.7.9. Similar problems for an arbitrary segment of the Heads and Tails process (i.e. for 
a segment 0 ⩽ t ⩽ n, where we do not assume, as in the previous examples, that YN = 0). 
The segment could consist of one string, or several strings, or none, and, in general, it will 
end in an incomplete string. We shall give a brief review of certain problems and their 
solutions, in order to draw attention to various of the points which need considering.

(a) So far as periods in the lead are concerned (see Section 8.7.6 and the Remark), we 
know, from Section 8.6.3, that un is the probability of Yt remaining non‐negative (in 
0 ⩽ t ⩽ n); that is that the lead is maintained for n steps out of the n (and the same holds 
true, obviously, for 0 out of n). Assuming n to be even, the number of steps spent in the 
lead can be any of

 0 2 4 2, , , , .n n  
We therefore have (n + 2)/2 possible values and the average probability is 2/(n + 2). 
However, the extreme cases have probabilities un > 2/(n + 2),33 so it is likely (by the same 
kind of argument that the Remark of Section 8.7.6 led us to believe that in that case, a 
segment consisting of complete strings, the probabilities were equal) that, in the general 

33 Since it is the maximum of n + 1 probabilities h
n

nh n u0, , ,  is certainly >1/(n + 1).
It is, in fact, much greater than this, becoming more and more so as n gets larger: 
asymptotically, u n nn  2 2 0 4/ ( ) . . .
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case, there is a very small probability that a subdivision into periods of lead will consist 
of nearly equal lengths, and much greater probabilities for the less equal subdivisions. 
There is another consideration that makes this plausible. We already know that for the 
segment leading up to the last zero we have equal probabilities for all subdivisions, and 
that, from the last zero on, the lead does not change hands. In any case, the fact is 
that this turns out to be true and, in precise terms, we obtain ph = unun−h (h and n even) 
for the probability of being in the lead for h out of the n steps. The proof is much 
more difficult than one might expect from the simplicity of this formula, and we shall 
omit it.34 We shall restrict ourselves to a consideration of how this probability behaves.

Recalling that uh+2/uh = (h + 1)/(h + 2), we see that the ratio

 p p h n h h n hh h2 1 2 1/ /  

is less than, equal to, or greater than 1, according to whether h + 1 ⪋ n/2: taking the 
asymptotic expression for un, we have ph = uhun−h = (2/π)√/[h(n − h)]. In the limit, we 
can say that the proportion of time during which a gambler is ahead, in a long period 
of play, is a random quantity X, whose probability distribution has density f(x) = 1/(π√/
[x(1 − x)]). This is the ‘arc sine’ distribution, so‐called because the distribution function, 
F(x) = ∫f(x)dx, is equal to (2/π) sin−1(√x), which might be better written as

 1 2 11/ cos .x  

We shall come back to this again and again.
(b) We know that the probability distribution of Yn is the Bernoulli (or binomial) 

 distribution ( , , , , )( )p h nh h
n 0 1 , provided we know only that Y0 = 0 (this holds simi-

larly if we are given certain values, of which the last one is Yk = y with k < n; we then have 
py h h

n k ). The distribution is the hypergeometric if, in addition to Y0, we are also 
given a value YN, N > n (and similarly if two arbitrary values are known, one before and 
one after; Yt’ and Yt”, say, with t′ < n < t″).

In general, we can say that any change in the state of information produces a change 
in the probabilities. In particular, if, in addition to knowing the initial value Y0 = 0 (and, 
possibly, a subsequent value, or two arbitrary values, one before and one after), one also 
knows that Yt has remained non‐negative throughout 0 ⩽ t < n, we have a range of pos-
sibilities as discussed above. The same holds if we have non‐negativity throughout the 
entire process, 0 ⩽ t ⩽ N, or throughout t′ ⩽ t ⩽ t″ in the case where we know the values 
at the two points on either side, or even only for t′ ⩽ t < n, or n < t ⩽ t″. Different prob-
abilities also result if we assume the process to be strictly positive or strictly negative, or 
above or below some given level, or in between two levels, and so on. All this is obvious, 
but it needs emphasizing, and should be borne in mind.

(c) The probability that level у = c is reached for the first time at t = n (Yn = c, ∧Yn−1 < 
c, c > 0; symmetrically if c < 0) is equal (by the principle of reversal the problem is 
unchanged) to the probability that Yn = c without there being any zeroes beforehand (that 
is all Yt, 0 < t < n, have the same sign as c = Yn). This probability is given by P(Yn = c) 
multiplied by c/n, where c/n is the probability that, the value c of Yt at t = n being known, 

34 See the notes in Section 8.7.10.
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this level c has been reached for the first time at that point, and also the probability that 
the starting level (y = 0) has not been reached again; that is that Yt has always had the 
same sign as c.

If we denote by H one or other of the two hypotheses mentioned, we have that 
P(H) = un−1/2 (Section 8.6.3) and that P(H|Yn = c) = c/n (the Ballot problem: case (A) 
of  Section  8.7.1). The probability that we seek (which can also be obtained as the 
 probability of ruin occurring precisely at the nth toss, pn(c) = qn(c) − qn−1(c); see 
Sections 8.6.1 and 8.6.3) therefore has the value stated:

 P PY c H c n Y c c n c h n cn n h
n. , ./ / 2 0  (8.70)

The probability distribution of Yn conditional on H (one of the two hypotheses) is, 
therefore, proportional to c h

n ; in fact, we have

 

P P PY c H Y c H H nu c
c h n

n n n h
n. / /

.
2

2 0
1  (8.71)

Expressed in words: the probabilities of the possible values c for Yn are altered (by the 
condition H) in a manner proportional to c (those for c ⩽ 0 are clearly 0), and the nor-
malization factor K has been found explicitly in passing. The same result (and proof) 
goes through for the opposite hypothesis and provides the probability that Yn = c given 
that Yn is greater than any value obtained previously (for 0 ⩽ t < n, all Yt are <Yn; in this 
case, of course, we do not exclude the possibility of negative values). Asymptotically, 
we have a distribution of the form f x Kx xx( ) ( )/e

2 2 0 .
(d) We now restrict ourselves to the special case of knowledge of one value before and 

one after, Y0 = 0 and YN = 0, together with the condition that Yt > 0 throughout the given 
interval. The distribution of Yn (for any integer n, 0 < n < N) is obtained in a similar way, 
by observing that the probability that Yn = c (c = 2h − n > 0), and that the given condi-
tions hold, is, setting N = 2H, given by

 
h
H

n h
H

n
H c n c N n/ . .2 / /  (8.72)

(the product formed by taking P(Yn = c) from the hypergeometric case and multiplying 
it by the probability that the process does not vanish in the passage from 0 to c during 
the first n and subsequent N − n steps). We note, however, that this probability can also 
be thought of as the product of the ph we are after, multiplied by the probability of the 
hypothesis that at time t = N we obtain the first zero, the sign having previously been 
positive. This latter probability is equal to un/2, so we obtain

 
p

u n N n
c K ch

n n
N h

H
n h
H

h
n2 2 2. .  (8.73)

(we have placed a bar over the ω in order to stress the fact that it is the ω of the hyper-
geometric rather than the Bernoulli process, as above). One should note, however, the 
meaningful analogy between the two (every condition of positivity, on the left and on 
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the right, entails a modification proportional to c). Asymptotically, we have a 
 distribution of the form f x Kx xx( ) /2 22

0e .

8.7.10. Remark. It is instructive to consider in more detail some of the problems 
which lead (asymptotically) to the arc sine distribution (see Section  8.7.6 and the 
Remark in Section  8.7.9 (a)). We have omitted the proofs and we suggest that 
the reader refers to the third edition of Feller, Vol. I (1968). Comparison with earlier 
editions will reveal the simplifications in formulation that took place from one 
 edition  to the other, partly as a result of greater insight into the problems and 
their  connections with one another, and partly for purely fortuitous reasons (see 
Chapter III, Section  4 of Feller, ‘Last visit and long leads’, and, in particular, the 
 historical notes on pages 78 and 82).

The arc sine distribution was considered by P. Lévy (1939) in connection with the 
Wiener–Lévy process (see Section 8.9.8).35 The application to Heads and Tails and 
other cases (obvious in the asymptotic case) seemed to require ‘mysterious’ forms of 
explanation, until their combinatorial character was revealed (by Sparre Andersen, 
in 1953). The methods used were quite complicated, and still were in the first edition 
of Feller (where they were due to Chung and Feller); the new feature, which arises 
in the passage from the second to the third edition, lies in the preliminary statement 
of a simpler theorem, which, from a qualitative viewpoint, begins to explain the 
weighting towards very unequal subdivisions of periods in which the lead does not 
change hands.

We can prove this in just a few lines. The probability that in 2m tosses at Heads and 
Tails the final return to zero, Yt = 0, occurs at t = 2k is given by и2kи2m−2k (which is the 
discrete version of the arc sine distribution). In fact, the probability that Y2k = 0 is u2k, 
and the probability of no zeroes in the 2m − 2k subsequent tosses is u2m − 2k (see 
Section 8.7.4(a)). This is trivial, and yet the theorem is new (according to Feller); moreo-
ver, it was discovered by chance, experimentally, on the basis of observed statistical 
properties of random sequences produced by a computer. These were detected by capa-
ble mathematical statisticians, who then simply pointed out, and subsequently proved, 
that the distribution was symmetric (without realizing that it was the arc sine 
distribution).

This is by no means intended as in any way disrespectful to the number of authors 
who have made valuable contributions to this topic. It merely goes to show that tucked 
away in the vast rock‐pile of problems there is the odd nugget lying unobserved; once 
noticed, of course, it appears obvious.

The following little calculation, which I made simply out of curiosity, may be new and 
possibly of some interest. I observed that it was not appropriate to call one gambler 
‘luckier’ simply because he has led for most of the game so far (see the footnote to 

35 I (vaguely) remember that an obvious property of the arc sine distribution – the density taking its 
maxima at the end-points – was considered paradoxical, even in cases where it was natural, as for 
observations of periodic phenomena (for example, in the case of a river flooding, the level remains around 
the maximum longer than it does around intermediate values, which are passed through more rapidly, both 
when the level is increasing and decreasing): see Figure 8.9. Of course, when periodicity is crude (for 
example, seasonal temperature changes, where maxima and minima vary from year to year) there are 
smoothed peaks, or sequences of peaks.
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Section 8.8.1): it might well turn out that his luck runs out at the end of the game – ‘he 
who laughs last laughs longest’. The probability of this happening is given by

 

1 3 0 184 2 1
1
2

1 1
/ .t t t td  (8.74)

To see this, let t denote the time when the final zero occurs (taking [0, 1] as the whole 
interval). If t < 1

2 , the one who is leading at the end is also the one who has spent most 
time in the lead. If t > 1

2  in order for the one who is leading at the end to have spent 
most  time in the lead, he must previously (i.e. before time t) have spent at least an 
additional time t − 1

2  in the lead. Because of the uniformity of the distribution of 
the  lengths in an interval between two zeroes, this, for given t, has probability 
t t t1

2
1
21/ . This leaves a probability 1

2 t for the opponent, conditional on t (having 
the arc sine distribution) being greater than 1

2 ; we thus obtain equation 8.74)

8.8 The Clarification of Some So‐Called Paradoxes

8.8.1. We have already found (and will do so again) that certain of the conclusions we 
have arrived at have had a paradoxical air, or, at any rate, have been easy to misinterpret. 
We have discussed various examples where such misinterpretation arises and, in so 
doing, have attempted to clarify the issues involved. In particular, we recall the laws of 
large numbers and, in the gambling context, the long expected time to ruin. The topics 
we have just been considering also lend themselves to discussions of this kind. Indeed, 
it is hard to decide whether their main value lies in the knowledge they provide, and the 
light they throw on a number of important theoretical and practical questions, or in 
the  opportunity they give one to clear up a number of misconceptions and confu-
sions, which otherwise could make one rather wary of entering into the probabilistic 
domain at all.

In those aspects of the Heads and Tails process that we have just been studying, it 
surely seems rather strange and mystifying that some kind of ‘stationarity’ or regularity 
does not hold. In particular, why is there not a tendency for the periods of unbroken 
lead to be equally distributed in the two opposite directions (all the more so after having 
seen that the process can be considered as an indefinite sequence of strings, at the end 
of each of which the process begins all over again under identical conditions)?

In particular, since the alternation of strings in the two directions (i.e. in the positive 
and negative half‐planes) is itself a Heads and Tails process when the strings are consid-
ered as ‘tosses’, it seems obvious that the balancing of periods in the lead should hold by 
analogy with the balancing up of the frequencies of Heads and Tails. In actual fact, this 
conclusion is true if one considers the number of strings giving the lead in one or other 
of the two directions, but it is not true if one wishes to consider the respective total 
durations of periods in the lead. In fact, we have seen (see the Remark in Section 8.7.6) 
that in an interval formed by complete strings (i.e. those ending in a zero) all durations 
are equally probable, instead of, as one might have expected, those of intermediate 
length being more probable (i.e. we have a distribution into almost equal periods). In 
the general case (where the final string may not be complete, i.e. the interval does not 
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end in a zero; see the Remark in Section 8.7.9), the situation is, in fact, the very opposite; 
it is the most unbalanced distributions which are most likely.

Both the form of the density, f(x) = K/√[x(1 − x)], and that of the distribution function, 
F(x) = K cos−1(2x − 1), show clearly that the extremely asymmetric values are favoured 
(although in a symmetric fashion so far as the two opposite directions are concerned). 
The best way to visualize the result is to note that the splitting of the total duration of a 
long game into the fractions x and 1 − x of the duration in which one or other of the two 
gamblers is ahead can be thought of as brought about by choosing ‘at random’ (i.e. with 
uniform density) a point on the circumference of the semicircle having the segment 
[0, 1] as diameter, and then obtaining x by projecting that point onto this diameter. 
In other words, if the circumference is divided into an arbitrary number of equal arcs, 
their projections onto the diameter (which will clearly be smaller the nearer they are to 
the end‐points) are equally probable (because they contain the point dividing the two 
parts x and 1 − x).

The reader should now examine Figures 8.9c, 8.9b and8.9a (in reverse order, from 
bottom to top), together with the notes which accompany it.

Feller (Vol. I, Chapter III) provides numerical data that illustrate this phenomenon 
and make clear why it is not, in fact, surprising. Imagine that two gamblers play continu-
ously for a year (making a toss every hour, minute or second; it does not matter which). 
It turns out that there is only a 30% probability of both being ahead for more than 100 
days (about 28% of the total time), whereas there is a 50% probability that one of them 
remains ahead for less than 54 days (15% of the time), 20% that he remains ahead for less 
than nine days (2·4% of the time), 10% for less than 2.25 days (i.e. less than 0·6% of the 
time  –  more than 99·4% for his opponent!).36 Feller also provides the details of the 
behaviour resulting from a computer experiment.

8.8.2. It is not really surprising that these numbers are not what we would imagine 
intuitively. Intuition cannot guide us – not even roughly sometimes – in foreseeing the 
results from analyses of complicated situations. This is precisely why mathematics is so 
useful, particularly in probability theory.

We should ask ourselves, however, whether, even from a qualitative point of view, the 
above conclusions are paradoxical (and, if so, for what reasons), and how one might set 
about correcting and altering this impression by showing that it is, in fact, perfectly 
natural for things to be thus. Despite the fact that the example which has given rise to 
this discussion is an especially striking one, it is by no means a unique and isolated case 
and it provides us with an excellent basis for discussion and considerations relating 
more or less directly to more general problems. On the other hand, it is not so much the 
individual result itself that merits and requires illustration but rather the nature of ran-
dom processes which – like the very simple case of Heads and Tails – are based on the 
simple idea of stochastic independence (or lack of memory, if one prefers to think of it 
in this way). Although this is a simple notion, it is difficult to understand it sufficiently 
well to avoid finding certain of its consequences paradoxical. We have already com-
mented upon this on a number of occasions, some of which we recalled above (the laws 

36 Sometimes people refer to ‘the less fortunate’ player. This is not quite right, however, since it is possible 
(although not very probable) that the one who has been in the lead for most of the time finds himself behind 
at the end (see Section 8.7.10).
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of large numbers and the long‐expected time to ruin). These are  –  like the present 
example, and others which we shall soon come across – topics that are interrelated and 
deal with the same kinds of questions.

The reasons why these results appear paradoxical are all related to various kinds of 
distortion of the relations between probability and frequency:

by assuming connections without taking into account that they only exist under certain 
restrictive conditions;

by thinking that they virtually entitle one to make a prediction rather than a prevision;
by assuming that they systematically fall into familiar patterns of statistical ‘regularity’;
by having such a strong belief in such regularity as to make of it an autonomous 

 principle; this leads one, inadvertently, to expect ‘compensations’ to take place in a 
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Figure 8.9 These should be read in reverse order (i.e. (c), 
then (b) and finally (a)).

a) The density of the arc sine distribution. The histo-
gram shows the average density in each of the 
 intervals between the deciles. The graph shows 
the  density, whose equation, taking the interval to 
be [0, 1], is

 f x K x x/ ,1  

and is infinite at the end‐points.
b) The distribution function of the arc sine distribution 

(obtainable using the device shown in (c)).
The abscissae shown correspond to the ‘deciles’ 

(see Chapter  6, 6.6.6) since they are obtained from 
the corresponding ordinates.

The ten intervals between the deciles are equally 
probable (with probability 1

10
). Note how much more 

dense the probability is near the end‐points.
c) The probability distribution of the projection (onto 

the diameter) of a point ‘chosen at random’ (with 
 uniform density) on the circumference.

This distribution occurs, for example, if one meas-
ures, at a ‘random’ instant, the  position (or velocity) of 
a point performing harmonic oscillations.

The division of the circumference into 10 equal 
parts (18°) gives the deciles.
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more extreme form and providential manner and sense than can be derived legiti-
mately from probabilistic assumptions.

The danger of falling into these traps is even greater when one has been taught 
 statistical concepts in a grossly oversimplified form, easily misunderstood and with-
out the necessary warnings being given. The use of certain forms of terminology – for 
example, saying that something occurs on average a given number of times per 
unit time (instead of saying in prevision) – can lead one to regard such ‘regularities’ 
as  certain, instead of merely being probable; that is, as predictions instead of 
previsions.

If ‘regularity’ is assumed as an ‘article of faith’ (and there is a book on statistics, 
inspired by this outlook, which is entitled ‘Gleichförmigkeit der Welt’), how can it be, 
one might ask, that phenomena like returns to equilibrium and the distribution of 
leads could violate this regularity, thus challenging the supreme dictate of the ordered 
universe? If one thinks of returns to equilibrium (which are practically certain) as 
revealing a tendency towards, or desire for, such ‘regularity’, one would expect that a 
particle, having gone a long way below the origin while performing a random walk, 
would make an about turn in order to return to the fold. On the contrary, it has no 
memory and there is no fold to return to. It might carry on until it is twice as far from 
the origin before it turns back towards it, or it might have only gone half as far. If it does 
end up by going back to the origin with certainty, this is simply because, being on a 
random walk, it will sooner or later pass through all the points (but without any pos-
sibility of recognizing the point we have labelled the ‘origin’, nor any desire to do so).37 
One would have a stronger case (and, indeed, a valid one were it not for omitting to 
point out the fact that the expected duration is infinite, or, at least, for not taking it into 
account) if one were to argue that the phenomenon should reproduce itself ‘regularly’ 
because after each return to the origin a new string begins under precisely the same 
conditions.

If we attempt to identify and explain those reasons that we assume to underlie the 
tendency to talk in terms of ‘paradoxes’, we find the answers staring us in the face. The 
probability–frequency relation as it occurs in the law of large numbers should not 
be assumed to hold, since the successive Yn are not independent. They depend upon a 
‘cumulative effect’, which tends to be dominant; deviations take place only slowly and 
returns to equilibrium and changes of sign, that is of ‘lead’, only seldom. We have already 
mentioned above the idea of some kind of restoring force causing returns to equilib-
rium. However, only the last point is really important, because it pin‐points a subtle and 
basic difference (whereas the other points simply caution one against the possibility of 
trivial and rather absurd misunderstandings).

The very fact that the probability of a return to the origin at time t = n tends to zero 
(for n even, un = 0·8/√n) should be sufficient to rule out the ‘regularity’ or ‘stationarity’ 
of behaviour that is the implicit and unconscious assumption occasioning all the ‘aston-
ishment’ at these ‘paradoxes’. The latter appear as such simply because they do not fit 

37 I do not mean to imply that fallacious ideas of this kind are accepted statistical doctrine in some other 
approach differing from the one we follow. However, the environment created by a few introductory 
sentences followed by empirical clarifications etc. does not seem to be sufficiently antiseptic to prevent the 
germs of these dangerous distortions from multiplying in the subconscious.
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into that particular framework; a framework that has created, in its own image and 
likeness, psychological attitudes whose tendency to rise to the surface becomes, in the 
absence of any process of re‐education, general and indiscriminate. The following 
points may serve to provide a better appreciation of just how ‘sensational’ are the con-
sequences of this probability tending to zero (a fact which is so simple when it is accepted 
as it is, without further thought). In a consecutive sequence of k tosses (e.g. 100 000), the 
probability that Heads always occurs from some n onwards is very small, but nonethe-
less finite; and this is also true for the probability that, starting from n, the sequence 
11001… (where 1 = Heads and 0 = Tails) represents, in the binary code, either the first 
100 000 decimal places of π, or the text of the Divine Comedy, or that it reproduces the 
initial segment obtained with the first k tosses, or any other preassigned segment of 
fixed length. Something of this kind occurs, in prevision, once every 2k tosses, and it is 
practically certain that it occurs at least once within every segment of length N, if N is 
considerably larger than 2k (and also that it occurs at least 10 times, or at least 1000 etc., 
provided we take a long enough sequence; the details are straightforward and we shall 
not bother with them here). On the other hand, the expected number of returns to 
equilibrium with a given number, N, of consecutive tosses starting from t = n is, 
approximately,

 0 8 2 0 4 0/ / /n N N n. , 

and the probability of at least one is even smaller. This means that, if one proceeds far 
enough to have an interval sufficiently long to give a non‐negligible probability of  con-
taining a return to equilibrium (e.g. 1% or 10%), then one has an interval which almost 
certainly (e.g. with probability 90% or 99 %) contains the Divine Comedy at least once, 
and, if one carries on, at least 10 times, 1 million times, and so on, indefinitely.

8.8.3. Turning to a consideration of the values of Yt (and not only at those instants for 
which Yt = 0), a topic we shall be dealing with shortly, we can deduce an immediate and 
straightforward result about the extreme length of the strings at times far away from the 
starting time t = 0. We know that |Yn| has probability ≃0·8 M/√n of being less than a 
preassigned M. For sufficiently large n, it is therefore almost certain that |Yn| > M, in 
which case the string containing the instant t = n necessarily has length >2M. In fact, the 
length would equal 2M under the assumption that the increase from the previous zero 
to Yn and then the decrease to the following zero take place in an unbroken sequence of 
M successes and M failures, respectively. From considerations made in the context of 
the ruin problem, however, we know that it is probable that the increase and the decrease 
take much longer.

But the above remarks only have an illustrative and introductory value: they help us 
to see what is happening but they do not yet provide us with an explanation; neither do 
they resolve the confusion by going back to the source. At most, there is a restatement 
of the problem: instead of asking ourselves why do the lengths of the strings become 
longer and longer (despite the fact that they begin again from zero under the same 
 conditions), we can ask why, given the same assumptions, do the ordinates Yn become 
larger and larger (in absolute value); that is why do the strings get further and further 
away from the axis y = 0 (and it is clear that the two questions, even if not identical, 
are closely related).
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Let us study then the history of each string. We might as well consider the first one, 
starting at t = 0. The probability that its length is n = 2m, that is that it terminates at the 
nth toss (with a return to equilibrium), is

 u n u nn n/ / .1 2  

But un−2 is the probability that no zero has previously occurred, so 1/n is the probability 
that the string terminates at time n assuming that it does not terminate earlier (for n 
even; otherwise, the probability is zero). It follows that a string has probability 1

2  of ter-
minating at the second toss, 1

4  at the fourth (provided it did not terminate at the second), 
1
6  at the sixth (provided it did not terminate at the fourth) and so on. In demographic 
terms, a string can be thought of as an individual whose probability of dying decreases 
with age (this happens for newborn babies, the probability of survival increases each 
day they survive; the difference is that they grow old and the conditions become worse, 
whereas for the strings they continue to improve). We therefore see why the probability 
of ‘the string enclosing the instant t’ is smaller if t is smaller than if t is large. In the first 
case, it is necessarily ‘young’ (age at most t) and this bounds the past duration (the age 
that has been attained) and provides less favourable possibilities for the future (since an 
individual gets stronger with age): it has probability at least 1/(t + 2) of terminating at 
the next even toss, and so on.

And what are the probabilities of the various possible values for Yn? They are no 
longer those of the Bernoulli distribution that we had before. We are now in a different 
state of information, because we are discussing a string; in other words, we know (or 
assume) that Yt has not vanished in the meantime, and that the probability we seek is 
that conditional on this hypothesis, H, as we have already seen (Section 8.7.9(c)). This 
means that knowing that there are no zeroes modifies the distribution in favour of the 
larger values (as is natural); more precisely, it alters the probabilities in proportion to 
their sizes.

Every change in the state of information brings about a modification. For instance, if 
I knew the values of Yn at every instant, then the probability of the string ending at the 
next toss – let us take n to be odd – is no longer 1/(n + 1), but is 1

2  if Yn = ±1, and zero 
otherwise. The situation would be different again if I knew just a few of the past values. 
If I knew Yt at certain instants t = n1,…, nk, the probabilities would be those conditional 
on the last value; that is on the hypothesis H Y cnk

( ). But beware! This is only true if 
I have no knowledge, no clue whatsoever, relating to the results following the last known 
result. For example, if I obtain information every time Yt = 0, I not only know the 
 position of this last zero but I also know that no other zeroes have occurred since (and 
I then have the distribution given above, for the present Yn, whereas, otherwise, I would 
have the Bernoulli distribution). Yet another situation would arise if I knew it to be 
more probable for information to be available in the case of returns to the origin, or in 
the case of large values being attained, and so on, than in other cases: absence of infor-
mation can itself be informative. In the cases just mentioned, it increases the probability 
of the nonoccurrence of those things which, had they occurred, would probably have 
been reported.

Many of the mistakes that are made in the probabilistic treatment of problems and 
phenomena derive precisely from either ignoring, or forgetting, or giving insufficient 
weight to, the following fact: that everything depends upon the current, actual state of 
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information (with all the attendant flexibility that attaches to this notion in practice). 
In interpreting deterministic laws, also, we need to keep circumstances of this kind in 
mind. An example is provided by the treatment of ‘hereditary’ phenomena, such as hys-
teresis, using integral or integral–differential equations. If one assumes that knowledge 
of the past enters the picture indirectly through the modification it produces in the 
structure determining the present state (which is itself not directly observable), then we 
see that certain information (in our case, ‘the past’) may or may not be ‘informative’ in so 
far as the effects we are interested in are concerned (here, deterministic prevision of the 
future – i.e. ‘prediction’ – rather than prevision), depending on whether certain other 
information is, or is not, available (here, complete information about the structure of the 
‘present state’). If this latter information is not available, the information concerning the 
past serves as a substitute. It may be a completely adequate substitute, or only partially 
so, according to whether the knowledge of the outside influences in the past are, or are 
not, considered sufficient to determine, completely and with certainty, the present unob-
servable situation. In the latter case, we are essentially back in the realm of probability, 
even if this remains obscured by the fact that the treatment deals only with macroscopic 
behaviour, neglecting the random aspects which are, in that context, negligible.

In the probabilistic field, however, information is always incomplete and derives from 
the distinction – which, in any case, is never very clear‐cut – between what one knows, 
or believes one knows, or definitely remembers, and what one does not know. A funda-
mental rôle is played by that certain something which is, in a sense, complementary to 
information, and which comes about by interpreting the reasons for the absence of 
information. We have illustrated this with the Heads and Tails process, and we shall 
return to it again and again, sometimes with illustrations which are particularly instruc-
tive because they are, at first sight, rather disconcerting.38 For examples from more 
familiar fields, note that the knowledge of a person’s age is, to some extent, a substitute 
for a medical examination in so far as the evaluation of the probability of death is con-
cerned and that, for a person who is insured, present age, together with the medical 
report dating back to when the policy was originally taken out, are taken as substitutes 
for a medical examination at the present time. In like manner, the fact of whether or not 
one receives direct news, or whether or not the newspapers carry reports of a certain 
situation, individual, firm, institution and so on, itself constitutes information (satisfac-
tory or not, as the case may be). Any attempt – and these are still frequent – to base the 
theory of probability on some distinction between those things of which one is perfectly 
certain and others of which one is perfectly ignorant precludes, for the reasons we have 
given (and by not taking into account objections of principle), an understanding of the 
most meaningful aspects of problems requiring the use of probability theory.

Going back to the discussion of the questions we considered for the Heads and Tails 
process and to the doubts expressed in this context (‘How can it be… ?’), we see, there-
fore, that, in line with what has been said, the answer lies in making it clear that the situ-
ation – for example, the probability of a return to equilibrium at a given instant – does 
not alter merely because of the passage of time, or because time modifies something or 
other, but rather because our state of information changes. Initially, that is not 

38 For example, the equivalence of the Bayes–Laplace scheme to that of Pólya’s ‘contagion probabilities’; see 
Chapter 11, 11.4.4.
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conditional on any subsequent information, our state of information consists solely of 
the knowledge that Y0 = 0. When we later place ourselves at times t = n, however, we 
have a changed state of information; one that consists in knowing that there was a pas-
sage through the origin n steps ago (without knowing whether or not this was the last 
zero, nor anything else which would lead us to depart from an identical state of informa-
tion regarding the 2n possible paths that could have been followed meanwhile).

8.8.4. Despite all this, the doubt might linger on, transplanted to the new ground 
opened up by the new information. How can it be that the variation in the state of 
information to which we referred continues to exert an influence even when we move 
indefinitely far away? There is, in fact, a case in which knowledge of the initial state, 
provided it is sufficiently remote, ceases to have any influence (this is the so‐called 
ergodic case, which we shall be concerned with briefly in Chapter 9, 9.1, when we deal 
with ‘Markov Chains’). This is, however, something that only occurs under certain 
specified conditions and the fact that it often crops up is merely an indication that these 
conditions are satisfied in many of the problems one considers, rather than because of 
some principle which permits one to use the idea indiscriminately.

Here, too, as in the case of belief in a tendency to equilibrium, it happens that a special 
circumstance is assumed as some kind of autonomous ‘principle’, rather than as a simple 
and direct consequence of conditions that may hold in some cases and not in others. In 
this way – partly by accident and partly as a result of the usual obsession with replacing 
probability theory by something which is apparently similar, but which can, in fact, be 
reduced to the ordinary logic of certainty – one ends up by seizing upon the most fasci-
nating results (like the laws of large numbers and the ergodic theorem) and raising them 
to the status of principles. When the applications of these principles to situations in 
which the theorems they misrepresent do not hold turn out to be contradictory, the 
results are then held to be paradoxical. As an analogy, it is as if, instead of the principle 
of conservation of energy, one took as a ‘principle’ the statement that a field of forces 
must be conservative, and then were faced with justifying the ‘paradoxical’ cases (like 
magnetic fields) where the ‘principle’ no longer holds.

As an example, it is often asserted – especially by philosophers – that the calculus of 
probability proves that the ‘ergodic death’ of the universe is inevitable. On the contrary, 
the calculus of probability (the logic of uncertainty) is completely neutral with respect 
to facts and behaviour relating to natural phenomena, and with respect to any other 
kind of ‘reality’ (in just the same way as the logic of certainty is). It is absurd to believe 
that the calculus of probability can itself rule out any particular belief or that it can force 
one to adopt it; whether it be a belief in ‘ergodic death’, or whatever. All that it does do 
is to rule out ‘incoherent previsions’, on the grounds that these are not previsions; in the 
same way as the logic of certainty precludes one making the assertion that a horse has 
three fore legs and four hind legs, making a total of five (whereas it would be admissible 
to say 3 + 4 = 7, or 3 + 2 = 5, or 1 + 4 = 5). The point is that it must not be inconsistent; 
the question of whether or not the statements conform to what zoologists regard as 
admissible is not relevant. Ergodic death is very probable if one accepts, or at least 
assumes as the most plausible, that model of physical phenomena which regards things 
as deriving from the destruction of an initial state of order (as in the mixing of gases; 
kinetic theory). But the calculus of probability in no way precludes phenomena in which 
a new order is created (as in biology; in particular, the mechanisms of reproduction for 
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DNA, and hence of cells, human beings, and – who knows? – new stars or galaxies);39 
on the contrary, its techniques provide the means of analysing them.

Returning to our case, one could say that the ‘ergodic principle’ no longer applies 
(which is another way of saying that the ‘ergodic theorem does not apply unless the 
necessary assumptions are satisfied’), because if, at time t = n, we know that Y0 = 0, then, 
amongst other things, we already know that |Yn| ⩽ n with certainty (not to mention our 
knowledge of the distribution); this information is significant, although its significance 
varies a great deal with n. The opposite situation – the ergodic case – occurs if we think 
of the same random walk on an m‐sided polygon (m odd; a step clockwise or anticlock-
wise, according to whether we get a Head or a Tail). It is clear that knowledge of the 
starting point is practically irrelevant for evaluating the probabilities of the m positions 
after n steps (for n large); these probabilities will all be practically equal (to 1/m).

There is one thing that we have seen, however, which seems to contradict the (obvi-
ous) fact that the process begins again under identical initial conditions after every 
return to zero. If this is so, how is it that the first zeroes can be expected to be very close 
and then subsequently get further and further apart in the startling way brought home 
by our discussion of the interposed repetitions of the Divine Comedy? There is, in fact, 
no contradiction. Each time a zero occurs, it is to be expected that there will be several 
close to each other; the initial period is a special case of this. As a result, obviously, the 
groups of zeroes are even further from one another than the individual zeroes would be 
if we took the same number of them but assumed them approximately equidistant. For 
an arbitrary zero, for example, the kth, conveying no information about the length of 
adjacent strings (as would be the case if one said, for instance, ‘the first zero after the nth 
toss’, because it is likely that the nth toss will fall within a long string), the probability is 
always 1

4  that the two adjacent zeroes are the minimal distance away (=2; in other words, 
that the two adjacent strings have the minimal lengths possible, i.e. 2); 5

8
2

0 39  that 
they are both not more than a distance of 4 away; 193

256
2

0 75  for not more than 10 
away; and so on (in general, the probability is 1 1 2 1 1 602u u nn n  /  that both 
adjacent strings have lengths not exceeding n). Briefly, there are a great number of short 
strings, but here and there we find long strings, some extremely long; when we count 
not the numbers of strings but the number of steps they contain, however, the propor-
tionate contribution from short and long strings is inverted. This is what we saw (see the 
Remark in Section 8.7.6) when we compared the probabilities un−2/n with the previsions 
of the lengths n(un−2/n) = un−2. In the context of this conceptual discussion, it is conveni-
ent just to take up the final point (mentioned above) concerning the trouble caused by 
the expression ‘on average’, a notion inspired by the statistical formulation.

Once again, we are dealing with the attempt to replace a genuine and valid probabil-
istic concept, which applies under all circumstances, by a counterfeit notion, only 
 partially valid and not always applicable (it does not apply here, for example). 

39 For a brief summary of how ‘chance’ comes to intervene continuously in thousands of complicated ways 
to bring about evolution (albeit, of course, according to our present conceptions), it is sufficient to read the 
two sections entitled ‘The Development of Life’ and ‘A Chance Happening’ in V.F. Weisskopf, Knowledge 
and Wonder, Heinemann, London (1962). As for the ‘continuous creation of matter’ and the formation of 
the galaxies, see the section entitled ‘What happened at the beginning?’, pp. 165–167; also see D.W. Sciama, 
The Unity of the Universe, Faber and Faber, London (1959); in particular, the section on the ‘Steady State 
Model’, pp. 155–157.
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The probabilistic meaning is expressed perfectly – even though the expression may be 
rather unpalatable – by saying that each individual string has an infinite expected length, 
which is a result of the possible lengths 2, 4, 6, 8,… having probabilities 1

2
3
8

5
16

35
128, , , , …, 

respectively. It makes no difference (just as it makes no difference whether we quote an 
interest rate as 45 lire per 1000 lire, or as 0−045) if we say that in 1000 strings we have, 
in prevision, a total length of 1000 deriving from strings of length two, 375 from strings 
of length four, 312·50 from length six, 273·44 from length eight and so on. There is no 
harm in this, and, indeed, it could be more expressive to consider that an expected 
length of 312·50 steps from 1000 strings derives from an expected number of strings of 
length six equal to 52·087. The trouble arises when one tries to interpret the phrase in a 
nonprobabilistic sense, as if it were possible to state that in any 1000 strings things will 
turn out in this way (in some vague sense: no‐one goes so far as to claim this to be logi-
cally true – i.e. in a definite necessary sense – but people omit to state that it is at most 
‘very likely’; it is as though the possibility of something else happening could be avoided 
by recourse to some hybrid notion of ‘practically certain’). Anyway, this very fundamen-
tal objection, one which always applies, precludes one from making statements of this 
kind without qualifying them as being almost certain, where by almost‐certainty  – 
by  the mere fact of it not being certainty – we mean simply a rather high degree of 
probability (the latter being always subjective).

But it is not enough merely to correct a conceptually and formally inadequate form of 
expression. We must also make clear that statements which assert that in a large number 
of trials (in our case, strings) the actual outcomes will very likely be close to the ‘previ-
sions’ do not hold except under appropriate conditions. First of all, we need conditions 
like independence, and this holds in our case; so far as the lengths and the signs are con-
cerned, the strings are stochastically independent. For this reason, we can conclude that 
we may be almost certain that the proportion of positive and negative strings is fifty‐fifty; 
the sequence of strings thought of in terms of their signs is a Heads and Tails process. 
However, we cannot claim that the same is true for the number of steps made on the two 
half‐planes: despite the independence, the conclusion fails to hold because the prevision 
of the length of a string is infinite. A fortiori, for precisely the same reason, we cannot 
make statements of almost certainty about the frequency distribution of the lengths of the 
strings (or of the number of steps, considered in terms of the length of the string to which 
they belong). On the contrary, it would be very difficult to formulate this problem (even if 
the expected length were finite, and the statement therefore essentially true), not least 
because there are an infinite number of cases (lengths) to be distinguished.

We have shown how even a fairly superficial examination of very simple cases, like 
that of the Heads and Tails process, can reveal a number of features which are both 
unsuspected and fascinating in their own right. The intrinsic interest of these results 
has interesting conceptual implications when one considers more deeply the reasons 
for the surprise and the air of paradox which they generate.

8.9 Properties of the Wiener–Lévy Process

8.9.1. In Section 8.3, we had a brief look at those properties of the Wiener–Lévy process 
that could be established immediately and which served to enable us to make reference 
to the process. We now return to this topic, both in order to consider it in more depth 
and to show how certain asymptotic properties, which hold in many cases of 
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asymptotically normal processes, gain in simplicity and clarity when we observe that 
they are exact properties in the Wiener–Lévy case.

This is, paradoxically, both the simplest and the most pathological case. The disarm-
ingly simple features we have seen already: all the quantities we consider, whether indi-
vidually, in pairs, or n at a time, and under all the circumstances we have examined, are 
normally distributed (in either 1, 2 or n dimensions). What could be better?

There was one feature, however, which might perhaps have given us grounds for sus-
pecting that troubles might lie ahead. We are referring to the property of projective 
invariance, which, as we mentioned, enables us to reduce the study of asymptotic 
behaviour to that of the behaviour in the neighbourhood of the origin. At the time, we 
did not wish to frighten the reader by drawing attention to certain things that happen at 
infinity and cause awful trouble when one considers them concentrated near the origin. 
What is even worse is that everything that happens in the neighbourhood of the origin 
also happens in the neighbourhood of every other point of the curve y = Y(t) (since the 
process is homogeneous with independent increments).

8.9.2. First of all, we recall how the Heads and Tails process (along with many others) 
provides – with an appropriate change of scale – a good approximation to the Wiener–
Lévy process (to any desired degree of accuracy).

Let us consider the standardized Wiener–Lévy process (m = 0, σ = 1). A Heads and 
Tails process, in order to preserve these characteristics and to approximate the continu-
ous process, must consist of a large number of small jumps (e.g. very frequent bets with 
very small stakes) and, instead of a single jump +1 per unit time, requires N2 jumps of size 
±1/N per unit time. In this way, the standard deviation per unit time is, in fact, given by

 n N N1 12/ .  

as required.
If N is large – in the sense that the time intervals τ = 1/N2 and stakes s = 1/N are small 

in comparison with the precision with which we wish, or are able, to measure intervals 
of time and amounts of money – this process is practically indistinguishable from the 
Wiener–Lévy process. In fact, if all the time intervals we wish, or are able, to consider 
contain a large number of small time intervals, τ, then the increments of Y(t) are made 
up of the sums of a large number of independent increments and are, therefore, approx-
imately normally distributed.

If we think in graphical terms, we can say that if the graph of the Heads and Tails 
process (Figure 7.1 in Chapter 7, 7.3.2) is collapsed by dividing the ordinates by 1/N and 
the abscissae by 1/N2, with N large enough to render imperceptible the segments of the 
broken line corresponding to the individual tosses, then we have the most exact obtain-
able representation of a Wiener–Lévy process. In a certain sense, this is precisely the 
same old process of approximation and idealization as is used when we consider changes 
in population (the number of inhabitants of some region etc.) as a continuous graph: 
even though one wishes to consider them as drawn in, one chooses the scale in such a 
way as to render imperceptible the jumps that represent the individual births and deaths 
on which the behaviour of the curve actually depends.

8.9.3. Of course, as we remarked at the time, instead of starting from the Heads and 
Tails process in discrete time, we could start from that in continuous time (the Poisson 
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variant, with jumps ±1/N, N2 of them, in prevision, per unit time), or with any other 
distribution of jumps (e.g. normal, always taking the standard deviation to be 1/N etc.).

Conversely, the Wiener–Lévy process can be a useful representation (giving an excel-
lent approximation on some given scale) of phenomena whose ‘microscopic’ behaviour 
may well be very different. Among other things, it provides a useful model of the 
Brownian motion of a particle (or, better, if we restrict ourselves to one dimension, the 
projection of its motion onto one of the axes). Of course, the scale must be chosen so 
that it no longer makes sense to attempt to follow the actual mechanism of the phenom-
ena, with its free paths, collisions and so on. We also note that P. Lévy often refers to the 
Wiener–Lévy process as the ‘Brownian motion process’ (the name Wiener–Lévy has 
come about in recognition of the two authors who made the greatest contributions 
to  the study of this process; Bachelier also deserves a mention, however  –  he had 
previously discovered many of the properties and results, although in not such a 
 rigorous manner).

8.9.4. We shall restrict ourselves in what follows to collecting together, as a survey, 
some of the more interesting facts about the process, but without providing proofs. 
In  general, however, we shall be dealing with results that have already been proved 
implicitly – or at least made plausible – by virtue of results established for the Heads 
and Tails process.

Problems relating to the Wiener–Lévy process can be tackled in many different ways; 
in a certain sense, this reflects the various ways of looking at the normal distribution, 
which we noted when the latter was first introduced (the Wiener–Lévy process can be 
considered, roughly speaking, as a particular form of extension of the normal distribu-
tion to the infinite‐dimensional case). On the other hand, we get a better overall view if 
we say something briefly about each of the most important procedures.

Those procedures, which derive basically from the Heads and Tails process, or some-
thing similar, are essentially rooted in combinatorial theory (together with whatever 
else may be required). The greater part of Chapters 7 and 8 are, in fact, devoted to this 
kind of procedure and we have often pointed out how it might be used in the context of 
the Wiener–Lévy process. We shall shortly give the details of this.

Rather more direct procedures are derived from the properties of the normal distri-
bution itself, together with the various techniques for dealing with distributions. This 
means that knowledge of the second‐order characteristics (variances and covariances) 
are sufficient to determine the process. We have already given examples of this when 
introducing the preliminary properties of the Wiener–Lévy process.

The third kind of procedure will require a more thorough discussion. It involves the 
study of diffusion problems (the heat equation and so on) and was briefly mentioned 
in Chapter 7, 7.6.5, and again in Chapter 8, 8.6.7. Despite the elegance and power of 
these methods, we shall not be able to say a great deal about them here. This is unfor-
tunate, because, besides their power, they can be made very expressive in terms of the 
image of the spread of probability, considered as mass. However, we clearly cannot 
include everything and this seemed a reasonable candidate for exclusion, as –  from 
a conceptual viewpoint – it is more in the nature of an analogy than a genuine repre-
sentation of the problems. This is in contrast to the other approaches, which, in their 
various ways, stick closely to the probabilistic meaning and enable one to shed light on 
every aspect of it.
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Anyway, we shall restrict ourselves here to illustrating, using the perspective provided 
by diffusion theory, some of the problems with which we are already familiar through 
other approaches.

The Wiener–Lévy process corresponds precisely to the basic case of diffusion start-
ing from a single source. The so‐called ‘dynamic’ considerations and conclusions, in 
which t is considered as the time variable (instead of just a constant), involve precisely 
this process (and not just the individual distributions at individual instants).

The gambler’s ruin problem (in the version provided by the Wiener–Lévy process) 
requires the introduction of an absorbing barrier; the straight line y = −c, where c = the 
initial capital. This problem can be solved, in the theory of heat transfer, by the method of 
images (due to Lord Kelvin). This involves placing an opposite (cold) source at the point 
t = 0, у = −2c (a mirror‐like image of the origin, a hot source, the image being taken with 
respect to the barrier). The resulting process, which, for reasons of symmetry, clearly has 
zero density on the barrier, gives, at each instant t, the density of the distribution of the 
gain. The missing part (the integral of the density is less than 1) is the mass absorbed by 
the barrier; that is the probability of ruin before the instant under consideration. It can be 
seen, without the need for any calculations, that this is twice the ‘tail’ that would go beyond 
the barrier (this tail is itself missing and there is also the negative tail that has come in 
from the cold source). We note that this corresponds precisely to Desiré André’s argument.

Similarly, in the case of the two‐sided problem, the method of images leads to the 
introduction of an infinite number of hot and cold sources (images of the actual source, 
with an even or odd number of reflections in the absorbing barriers). This is the ‘physi-
cal’ interpretation of the formulae in Section 8.6.6.

8.9.5. Our survey of the results relating to the Wiener–Lévy process should begin, 
naturally enough, with those we gave in Section 8.3, and with those we came across 
subsequently. We shall only repeat those things which are required to make the survey 
sufficiently complete.

We begin with the results relating to the ruin problem (i.e. to the case with an absorb-
ing barrier).

In the case of a single barrier (at у = c, say), the probability of ruin at or before time t, 
F(c, t),40 that is the distribution function for the time T spent by the process before ruin 
occurs, F(c, t) = P(T ⩽ t), is given by
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(the above holds in a real sense, because the probability of T < ∞ is 1). The density has 
the form
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40 In Sections 8.6.4–8.6.5, this was denoted by q(t) and p(c) (or qc(t) and pt(c)) because it was then 
convenient to think of one of the variables as fixed (i.e. included as a parameter).
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We recall that we are dealing with the stable distribution with index α = 1
2 . The second 

form emphasizes the relationship with the Heads and Tails process, involving N2 tosses 
per unit time, each involving a gain of ±l/N. The second factor expresses (asymptoti-
cally) the probability of a gain of |c| = (N|c|)(1/N) in N2t tosses, the first factor the 
probability that we are dealing with the first passage through level y = |c| (see 
Section 8.7.9(c)).

When considered as a function of |c| (and we shall write y rather than |c|), the distri-
bution becomes the half‐normal, with density

 
f y y yt

y t2 0 0
2 2/ e i e zero for/ . . .  (8.48)

We recall that, in addition, this holds for the following cases:

the absolute value of Y(t)
the absolute value of ∨Y(t) (the maximum of Y(τ) in 0 ⩽ τ ⩽ t)
the absolute value of ∧Y(t) (the minimum of Y(τ) in 0 ⩽ τ ⩽ t)
the absolute value of ∨Y(t) − Y(t)
 (the deviation from the maximum)
the absolute value of ∧Y(t) − Y(t)
 (the deviation from the minimum).

We now give the probability distributions of Y(t) conditional on three different 
assumptions concerning the maximum of Y(τ) in [0, t]. The three assumptions are as 
follows:

that, with respect to some given c > 0, we have ∨Y(t) ⩾ c (in equation 8.75);
that ∨Y(t) ⩾ c (in equation 8.76);
that ∨Y(t) = Y(t)(in equation 8.77).

In the first two cases we have:
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The first follows immediately from the reflection principle. Note that c + |y − c| is equal 
to у (for у ⩾ c) or 2c − у (for у ⩽ c), and that the distribution is therefore the normal with 
the central portion (between ±c) removed, and the two remaining tails attached to one 
another. For the second, it is sufficient to observe that, multiplying it and the first one 
by 1 − F(c, t) and F(c, t), respectively (i.e. by suppressing the K), and summing them, we 
must again obtain K exp(−y2/2t).

Finally, suppose we assume that we know that either the value Y(t) is greater than all 
those previously obtained, that is that Y(t) = ∨Y(t) (without knowing anything more 
about the actual value), or that we know that ∧Y(t) = 0, that is that the minimum is the 
initial zero, Y(0) = 0 (by the reversal principle, the two cases are equivalent). 
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Conditional on either of these, the density of the distribution is like ∂F/∂t in equa-
tion 8.49, except that we now have to take у = |c| as the variable rather than t. This 
changes K and we obtain

 
f y y

t
yy te

2 2 0/ ,  (8.77)

giving the distribution function

 
F y yy t1 0

2 2e / .  (8.78)

The same thing holds, with the range of values reversed, when we take Y(t) to be equal 
to the minimum rather than the maximum (or if Y(0) = 0 is the maximum).

This can be justified by considering (in a somewhat roundabout manner) the meaning 
of ∂F/∂t, or, alternatively, by considering equation 8.71 of Section 8.7.9, which refers to 
the Heads and Tails process.

In the case of two barriers (the ruin problem for two gamblers), the distribution 
of Y(t) conditional on the fact that neither has been ruined in [0, t], that is condi-
tional on

 
c Y t Y t c c c   with and0 0 ,

 

is given by

 
f y K y hc t y c hc t

h
exp * exp *2 2 2 2 22 2/ / , (8.79)

where c* = c′ + c″, and − c′ ⩽ у ⩽ c″.
In the symmetric case, c′= c″ = c, c* = 2c, this becomes

 
f y K y hc t c y c

h

h1 2 22exp ./    (8.80)

Clearly, the probability, 1 − q(t), of neither barrier being crossed until time t is equal 
to 1/K (which is given by the integral of the ∑ between ±c, or, in the general case, 
between −c′ and +c″). This q(t) also appeared, in a slightly different form, in equation 
8.53 (see Section 8.6.5). Note that, if we ignored the K, equation 8.79 would give f(y) 
dу = the probability that Y(t) lies in [y, y + dy] and has never previously gone outside the 
interval [−c′, c″]: the point is that we would be saying ‘and’, rather than ‘assuming that’. 
Similar comments apply in all other cases of this kind.

The few remarks we have made about Lord Kelvin’s ‘method of images’ (Section 8.6.7) 
suffice to explain the result. If one so wished, one could verify it by checking that both 
the diffusion equation (equation 8.32 of Chapter 7, 7.6.5) and the boundary conditions, 
f(y) = 0 on the half‐lines y = −c′ and у = c″for 0 < t < ∞, are satisfied.
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8.9.6. In the case of the Wiener–Lévy process, we can provide complete answers to 
questions concerning the asymptotic behaviour of Y(t) as t → ∞. In principle, these 
answers are provided by a celebrated result of Petrowsky and Kolmogorov; ‘in practice’, 
that is in a less complete but more expressive way, they are given by a famous theorem 
of Khintchin, the so‐called ‘law of the iterated logarithm’ (see the brief comment in 
Chapter 7, 7.5.4).

What we do is to compare Y(t) with some function ω(t) (which we assume to be 
continuous, increasing and tending to +∞), and then calculate the probability that the 
inequality Y(t) < ω(t) holds from some arbitrary time t onwards. More precisely, we 
examine the limit, as t′ → ∞, of the probability that the inequality holds from t′ onwards. 
To be even more precise,41 this latter probability is itself to be understood as the limit, 
as t′ → ∞, of the probability that the inequality holds in (t′, t″). The p of interest is thus 
given by

 
p p t t

t t
lim lim , ;

 

the limit certainly exists, since p(t′, t″) increases as t″ increases and decreases as t′ 
increases.

We can say a great deal more, however. By the Zero–One law, only the two values 
p = 0 or p = 1 are possible: either it is practically certain that Y(t) remains below ω(t) 
from a certain time onwards, or it is practically certain that this does not happen; 
that is there will always be segments in which Y(t) is greater than ω(t). The class of 
functions ω(t) can therefore be divided into two subclasses, which could be said to 
contain ‘those which increase more (less) rapidly that the “large values” of Y(t)’ The 
general distinction (given by Petrowsky and Kolmogorov) is that ω(t) belongs to the 
upper or lower class according to whether the improper integral (from an arbitrary 
positive t0 to +∞) of

 
t t t t t t t. exp , / ,1 21

2
d where  (8.81)

converges or diverges.
In terms of ψ(t), the condition Y(t) < ω(t) can be written as Y(t)/√/t < ψ(t); that is in 

terms of a standardized function (for which we have made σ = constant = 1.
The more expressive distinction (that of Khintchin) simply considers the class of 

functions

 ( ) ( log log ) . . ( ) ( log log )( )t k t t t k t2 2i e  (8.82)

41 This further qualification is unnecessary if countable additivity is assumed. We recall similar caveats in 
the case of the strong law of large numbers (Chapter 7, 7.7.3), etc. For simplicity, we shall give an informal 
discussion here.
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and asserts that these belong to the lower class when k ⩽ 1, and to the upper class when 
k > 1. The result can be strengthened by considering the functions

 t t t k t2 loglog logloglog : (8.83)

these belong to the lower class if k ⩽ 3
2 , and to the upper if k > 3

2  (a generalization due to 
P. Lévy, which is proved by first using a direct approach, which leaves the cases 1

2  ⩽ k ⩽ 3
2  

undecided, and then removing the gap by using the Petrowsky and Kolmogorov result).
The proof of the general criterion is based on diffusion theory ideas (which relate to 

the theory of heat flow). For the law of the iterated logarithm, we recall the previous 
comments given for the case of Heads and Tails.

8.9.7. Small‐scale behaviour is extraordinarily complicated and irregular. Not only 
do all the large‐scale peculiarities reappear (shrunk by a factor of N2 in the abscissa, 
corresponding to a factor of N in the ordinate) but, also, if we study the behaviour in 
the neighbourhood of a point – the origin, for instance – we find all the asymptotic 
properties corresponding to t → ∞ reappearing in an inverted way. This can be seen 
most simply by observing that, if Y(t) is given by a Wiener–Lévy process, then the same 
is true for the function

 Z t tY t1/ ; 

this has mt = 0, σt = t√(1/t) = √t, the distribution is normal, and the correlation coeffi-
cient between Z(t1) and Z(t2) is the same as that between Y(1/t1) and Y(1/t2) (if t2 > t1, 
and hence 1/t1 > 1/t2, it is equal to √[(1/t1)/(1/t2)] = √(t2/t1)); this is all we need.

It is practically certain, therefore, that in every neighbourhood of zero (Y(0) = 0) Y(t) 
vanishes an infinite number of times (as in the case when t → ∞) and that it touches 
infinitely often every curve

 y t k t t2 1loglog /  

with k ⩽ 1, but not those with k > 1 (which gives, locally, an almost certain ‘modulus of 
continuity’; |Y(t0 + t) − Y(t0)| < ω(t) in a neighbourhood of t0, with 0 < t < ε). If, however, 
we want this to hold almost certainly for all the t0 of some given interval simultaneously 
(still for all t between 0 and ε), we have to take

 t k t t k2 1 1log / ,  (8.84)

(the simple rather than the iterated logarithm).
In order to be brief, the presentation of the results in these cases has been rather 

informal. We should point out, however – for reasons we shall see shortl y– that there 
are grave dangers in treating these topics without sufficient care and attention. For 
every point t0 at which Y(t0) = 0, it is practically certain (probability = 1) that there are 
other roots (an infinite number of them) in every interval of the point, either to the left 
or to the right (and the same holds true at every other point if we consider crossings of 
the horizontal line y = Y(t0)). On the other hand, between two roots there are always 
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several intervals (and almost certainly a countable infinity) in which Y(t) is either posi-
tive or negative; hence there are isolated roots to the right or to the left – the end‐points 
of such intervals. Since this can be repeated for all horizontal lines y = constant (an 
uncountably infinite set), the points y = Y(t), which are isolated (on at least one side) 
from points of the curve at precisely the same level y, form, in every interval, an uncount-
ably infinite set and among them there are always an infinite number of points isolated 
on either side (at least the maxima and minima).

This having been said, the length of the segment starting from the origin, where we 
assume Y(0) = 0 (or starting from some arbitrary t′ at which we know that there is a root, 
Y(t′) = 0), and containing no roots, is a random quantity X, which has probability 1 of 
being precisely zero (if 0, or, in general, t′ is a root which is adherent on the left to the 
set of roots). Indeed, such a random quantity, X(t′), can be considered, without chang-
ing the problem, for any arbitrary t′ – even if y′ = Y(t′) is not zero – as the length of the 
interval on the left of t’ not containing points t at which Y(t) again takes the value y′. In 
any case, we know that we necessarily have X(t′) > 0 for an uncountable infinity of 
points in any arbitrarily small interval, and it can be shown that, assuming the length X 
to be greater than some given x0 > 0, the probability of it being greater than some x ⩾ x0 
is √(x/x0). In other words, conditional on the hypothesis X ⩾ x0 (x0 > 0), we can say that 
X has distribution function and density given by

 F x K x1 , (8.85)

 f x K x1
2 / , (8.86)

where K = 1/√x0 (so that F(x0) = 0); as x0 → 0, we also have K → 0.42

The result for Heads and Tails (where X ⩾ n has probability un ≃ 0·8/√n43) corre-
sponds to the case K ≠ 0 (because, clearly, in discrete time there is no way for ‘peculiari-
ties on the small scale’ to occur).

42 This means not only that, in the absence of any contrary hypothesis (the case of an infinite number of 
roots adherent on the left), there is a probability = 1 that X = 0 (i.e. X is concentrated at the point x = 0), but 
also that with the single assumption that x > 0, all the probability is adherent to zero (i.e. however x0 > 0 is 
chosen, the probability that X ⩾ x0 is zero; this is obvious, because, in any finite interval, however large, 
there can only be a finite number of intervals containing no roots and of length greater than x0, whereas 
there are an infinite number of ‘small’ intervals containing no roots in every interval of almost all the roots; 
i.e. excluding the isolated ones).
Note, of course, that the problem would be different if we were talking about an interval containing no 
roots, and chosen by picking out some point in it. As usual – recall ‘sums’ at Heads and Tails, ‘number’ and 
‘length’ of strings, etc. – this procedure would favour the choice of the longest intervals (see the comments 
to follow in the text). The choice must be made by saying, for example, ‘t’ = the starting point of the third 
interval of length ⩾x0 (possibly with some additional complications, in order that the restriction to a simple 
example is seen not to be necessary) after the level Y(t) = c has been reached’. For the case x0 → 0 (under the 
assumption X > 0), this explicit method of choice does not exist. We can, however, reduce to the previous 
case by thinking of t′ as having been determined in this way by some other person, with x0 unknown to us, 
but given by x0 = 1/N, where ‘N is an integer chosen at random’ (in the sense we discussed in Chapter 3, 
Section 3.2, and Chapter 4, Section 4.18).
43 Or un/2 ≃ 0·4/√n: it does not make any difference whether we consider the X of the continuous case as a 
generalization of the length of a string, or of the period spent in the lead (i. as L or V of Chapter 8, 
Section 8.7).
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8.9.8. If, instead, we begin by fixing a time t0, knowing only that Y(0) = 0, and we 
consider X = T″ − T′, the length of the interval containing t0 and no roots (i.e. T′ = the 
last root of Y(t) = 0 with t ⩽ t0, and T″ = the first root of Y(t) = 0 with t ⩾ t0

44), then we 
have the following probability distributions :

 for / /T f t K t t t F t K t t t t: , sin , ,0
1

0 00  (8.87)

 for / /T f t K t t t F t K t t t t: , cos , ,0
1

0 0  (8.88)

 
for d /X f x K t t t t t x t x t x

t

: , ,
0

0 0 0  (8.89)

where α = 0 ∧ (t0 − x). Similarly, we have the result that, given t′ and t″ (t′ < t″) the 
probability of at least one root of X(t) in the interval (t′, t″) is equal to K cos−1 
√(t′/t″).

The same results hold (by virtue of the usual transformations) if we think, for 
example, of T′ as denoting the abscissa of the maximum (or of the minimum) of X(t) 
between 0 and t0 (rather than the last root) and, correspondingly, of (T′, T″) as the 
interval in which the maximum (or minimum) remains constant (i.e. T″ is the last 
instant up to which X(t) does not exceed the maximum value attained in (0, t0); and 
similarly for the minimum) and so on. It is interesting to note – and this ties in with 
what we drew attention to in Section  9.8 as seemingly ‘paradoxical’  –  that these 
points (maximum, minimum, last root) are more likely to be near the end‐points of 
the interval (0, t0) than near the centre. More precisely, as a more expressive inter-
pretation, recall that T′ is the abscissa of a point ‘chosen at random’ (i.e. with uni-
form probability density) on the circumference of a semi‐circle having (0, t0) as 
diameter (see Figure 8.9c).

In the case of Heads and Tails, we saw that, asymptotically, in any interval (0, t0) with 
Y(0) = 0 (or in any interval (t′, t″) with Y(t′) = 0), the proportion of time during which 
Y(t) is positive had the arc sine distribution. This property continues to hold, exactly, for 
the Wiener–Lévy process.

8.9.9. The ‘pathological’ character of the ‘small‐scale’ behaviour might leave one 
somewhat puzzled as to the possibility of interpreting the process in a constructive way. 
For this purpose, Lévy suggests a procedure of definition by successive approximations. 
It consists of subdividing the interval under consideration (0 ⩽ t ⩽ 1, say) into 2, 4, 8,…, 
2k,… equal parts, in determining Y(t) at the division points and in taking as the kth 
approximation a function Yk(t), coinciding with Y(t) for those t which are multiples of 
1/2k and linear in between them. Given Y(0) = 0, and Y(1) determined as a random 
quantity with a standard normal distribution (m = 0, σ = 1), the intermediate points are 
successively determined by means of the considerations of Section 8.3.2. If t′ and t″ are 
two consecutive multiples of 1/2k, and t = (t′ + t″)/2 is the point at which Yk + 1(t) = Y(t) 
is to be determined, we know that it is sufficient to add to the prevision given by Yk(t) 

44 If it so happened that Y(t0) = 0 (and this has probability 0), we would have T′ = T″ = t0 and X = 0.
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(= [Yk(t′) + Yk(t″)]/2 = [Y(t′) + Y(t″)]/2) a random quantity having a centred normal 
distribution (m = 0) and standard deviation given by

 
t t t t t t k/ / . ./1 2 8 32 2 see Figure

 

By bounding the probabilities of large values for these successive correction terms, we 
can conclude (following Lévy) that the Yk(t) converge almost certainly to a continu-
ous Y(t).

Of course, this means that we are using countable additivity. If one wishes to avoid 
this, all the difficulties relating to ‘small‐scale’ behaviour could be avoided by imagining, 
for instance, that the process only appears to take place in continuous time but, in fact, 
takes place in discrete time, with time intervals 1/N (with N unknown and having prob-
ability 0 of being smaller than any arbitrary preassigned integer).45

45 Note that the same idea can be used in reverse, making any discontinuous process, for example, the 
Poisson process, continuous. It is sufficient to think of the ‘jump’ +1, at any instant t, as actually a continuous 
increase taking place in a very short time interval from t to t + 1/N (with N as above; for example, one could 
take an increment Nτ in 0 ⩽ τ ⩽ 1/N, or take sin2 1

2 N ; one could even assume behaviour of the form 
1 – e–Nτ, or 1 – e–Nτ cos Nτ, and so on, in 0 ⩽ τ ⩽ ∞).
Without countable additivity, there is no unique answer to certain of the more subtle questions. Countable 
additivity certainly provides unique answers, but this, of course, is no reason to consider the latter as ‘well 
founded’ in any special sense.
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9

9.1 Markov Processes

9.1.1. The cases treated so far have been considered at some length, this being a 
 convenient way in which to introduce various of the basic notions and most frequently 
used techniques. They are, however, nothing more than examples of the simplest 
and most special form of random process; that is, the linear form, or, more explicitly, 
the homogeneous process with independent increments. We now give some of the basic 
properties of other cases of interest, although, given the limits of the present work, the 
treatment will necessarily be brief.

Processes for which ‘given the present, the future is independent of the past’, or, 
 alternatively, ‘the future depends on the past only through the present’ are called 
Markov processes. Processes with independent increments are a special case (they are 
even independent of the present, and the process depends on the latter only through 
the fact that the future increment, Y(t) − Y(t0), is added on to the present value Y(t0)); the 
Markov property is much less restrictive.

The name derives from the fact that Markov considered this property in a particular 
discrete situation (involving probabilities of ‘linked’ events, whence Markov chains). 
To give a simple example, let us consider a function Yn, taking only a finite number of 
values, 1, 2,…, r, say. For a physical interpretation, which may be more expressive, we 
could think of it as a ‘system’ which can be in any one of the r ‘states’, S1, S2,…, Sr, and 
which passes from one state into another in a sequence of ‘steps’ (including the possibil-
ity that a ‘step’ could result in the process remaining in the same state: recall, however, 
what was said in Chapter 8, 8.2.5 concerning the case μii ≠ 0).

Such a system is said to be a Markov chain if, given that at time n the system is in 
state i, the probability that it then occupies state j at time n + 1 is given by some value, 
pij(n), which is independent of anything one might know about the past.

The simplest case is that of the homogeneous chain, for which the transition 
 probabilities, pij, are also independent of the time n. These probabilities form a matrix, 
P = ||pij||, and, with the usual definition of matrix product, its square and cube and 
so  on give the analogous matrices of transition probabilities, p pij ij

( ) ( ),2 3  and so on for 
 passages from i to j in two steps, three steps and so on. In fact, we have

 
p p pij

h
ih hj

2  (9.1)
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(the sum, over h, of the probabilities of going from i to j in two steps when the 
 intermediate state is h) and, in general,

 
p p pij

m

h
ih

m
hj

1 . (9.2)

Of course, the pij must be non‐negative and, for each i, must have sum pijj 1.
If the pij are all non‐zero, or if this is the case for the pij

m( ) from some given m onwards, 
we have the so‐called ergodic case: as m increases, the pij

m( ) tend to limit‐probabilities pj, 
which are independent of i. In other words, for large n, P(Yn = j) = pj, independently of 
one’s knowledge concerning the initial state i. Moreover, as n increases, the proportion 
of the time in which the system occupies state j during the first n steps tends stochasti-
cally to pj (and 1/pj is, in fact, the prevision of the recurrence time; i.e. the time between 
two successive passages through j).

If, further, we are unaware of the initial situation Y0, and if our state of uncertainty 
causes us to attribute precisely these probabilities pj as the initial, P(Y0 = j), then these 
will remain our probabilities for the occupation of these states throughout the process, 
and we have what is called a stationary process. In fact, the vectors composed of the pj 
are characterized by this property of being a fixed point (i.e. an eigenvector with unit 
eigenvalue) under the transformation P (and, moreover, under the stated conditions it 
is the unique admissible such eigenvector; i.e. with non‐negative components). The 
ergodic property ensures that, under these conditions, we approach, asymptotically, 
this stationary situation. The set‐up is often applied to statistical problems (involving, 
for example, a large number of particles or individuals etc.); then the ergodic result has 
a more concrete interpretation, because it implies the tendency to stationarity of the 
statistical distribution. The reader should compare this situation with those involving 
illegitimate applications of the ergodic ‘principle’, outside of the conditions under which 
the theorem holds (see Chapter 8, 8.8.4).

A similar set‐up can be obtained in continuous time by assuming that the  probabilities 
of passing from Si to Sj in the time period from t to t + dt (given that we are at Si at time t) 
are given by μij dt, where the μij may be constant, or perhaps functions of t. This case has 
already been considered (Chapter  8, 8.2.5) as background to our discussion of the 
Poisson process and we shall not add anything here to our previous discussion. As we 
remarked at that time, we can, without loss of generality, take μij = 0 for i = j (and, except 
for special cases, it is usually convenient to do so).

9.1.2. Within the framework of the very simple cases that formed the basis of our 
previous discussion, we outlined several of the main problems and features of interest 
that arise with these processes. The same kinds of problems and features have been 
studied for general Markov processes and, without going into the details, we shall con-
sider a few of these in order to make some appropriate comments.

The kind of relation which we have encountered in the simple form p p pij ih hjh
( )2  

is typical of the Markov set‐up (even in continuous time and with continuous state 
space). Given that we start from some point P0 at time t0, the probability of being in a 
neighbourhood of a point P1 at time t1 satisfies a relation involving the sum (or infinite 
series, or integral, as the case may be) of the probabilities of getting there by passing 
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through the various possible points P at some arbitrary, intermediate time t (t0 < t < t1). 
These probabilities are evaluated as the product of the probabilities of the two passages: 
from P0 to (a neighbourhood of ) P in [t0, t], and then from P to (a neighbourhood of ) P1 
in [t, t1], the latter probability being independent of P0. This is the probabilistic version 
of ‘Huyghens’ principle’, by which, in the deterministic case, one regards the evolution 
of a system in the period from t0 to t1 as being the result of what happens between t0 and 
t, followed by what happens from t to t1, starting from the situation reached at t with 
no need to recall the past. In our case, the same thing applies, not to the evolution of 
the system, but to the evolution of the probability distribution on the basis of which we 
foresee the evolution of the system.

In both cases (Huyghens and Markov), these processes are sometimes referred to as 
nonhereditary (in contrast to hereditary phenomena, whose evolution is influenced by 
the past). Examples are provided by the phenomenon of hysteresis, Volterra integral 
equations and so on. One should note, however, that, in these respects, the distinction 
between ‘present’ and ‘past’ is something of a convention. One often believes that a 
(deterministic) prediction or a (probabilistic) prevision would be determined by the pre-
sent if only some (unattainable) data or measurements were known. To compensate for 
their unavailability, one makes use of available data relating to the past (for example, in 
the case of hysteresis, the characteristics of the present situation are deduced from the 
history of the magnetic field which has produced them, since it is impossible to explore 
the state of magnetization at each point of a body). At an even more basic level, it can 
happen that for some problems ‘the present’ can be regarded as the position of a particle 
(or a body etc.), whereas for others we need, in addition, to know the velocity (or the last 
movement). This is also true in the probabilistic case and we can consider a second‐order 
Markov chain as one in which the probabilities of the possible values for Y(n + 1) depend 
both on the value of Y(n) and of Y(n − 1) (but on no others; one could, however, extend 
the notion and consider chains of arbitrary order). In fact, we could reduce this directly 
to the first‐order case by defining ‘the present’ at time n to consist of the pair

 
Y n Y n1 , .

 

In other words, we redefine the ‘states’ to be the r2 pairs (i, j), with the obvious restriction 
that from a state (i, j) one can only move, in one step, to one of the r states of the form (j, h).

9.1.3. Although it may seem a ‘natural’ condition, we are not claiming that the Markov 
property holds in all ‘nonpathological’ cases, nor even for the simplest, standard 
 processes. Simple counterexamples that are of practical interest arise in connection 
with the Poisson process. For example, let Y(t) be the number of telephone conversa-
tions in progress on some telephone system at time t and let us assume that N(t), the 
number of conversations which began between 0 and t, has a Poisson distribution, and 
that the length of any conversation is a random quantity having the same distribution as 
all the others, and stochastically independent of them. If this distribution is exponential, 
the process is Markovian (because every conversation in progress then has the same 
probability, λdt, of terminating within an infinitesimal time dt, whatever its duration 
so far) but, in every other case, knowledge of the duration of the conversation so far 
modifies the prevision. In other examples of this kind, as here, ‘age’, or something simi-
lar, plays a fundamental rôle. A similar kind of example is that where the ‘cumulative 
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effects’ have an influence; the prevision at t0 depends not only on Y(t0) but also on the 
sum (or integral, in the continuous case) of the values Y(t) between 0 and t0. Of course, 
if the ages or the cumulative values were included as part of the definition of ‘the pre-
sent’ (and were observable, or somehow available) then the process, appropriately 
extended to include these other variables, would turn out to be Markovian.

9.2 Stationary Processes

9.2.1. We have already given the basic idea of a stationary process. We discussed it in 
relation to a Markov process, but this is not a necessary condition for stationarity. 
A sufficient condition is that the probabilities are invariant with respect to a translation 
along the time axis. For example, it is sufficient that the probabilities of Y(t), Y(t + t1),…, 
Y(t + tk) satisfying the inequalities yi  ⩽ Y(t + ti) ⩽ yi  are independent of t. The above exam-
ple of a telephone system (along with similar examples) gives a stationary process if we 
assume either that the system has been in operation for an infinitely long time or that Y is 
unknown and that we attribute to the values that it can assume at each instant those prob-
abilities corresponding to the assumption of an infinitely distant beginning. We note that 
the process is Markovian or non‐Markovian according to whether the distributions of the 
lengths of conversations are or are not independent exponential distributions.

If Y(t) is a stationary process, then the definition implies, in particular, that the distri-
bution of Y(t) does not depend on t, and so neither does the prevision (if it exists) 
P(Y(t)) = m, nor the variance P(|Y(t)|2) = σ2 (we assume, for convenience, and without 
loss of generality, that m = 0 and σ = 1). The same holds for all other moments and 
parameters of the distribution. If we consider two distinct times t′ and t″, the pair of 
values Y(t′) and Y(t″) has a distribution depending only on the difference t″ − t′ = u,1 and, 
in particular, all the quantities defined in terms of this distribution depend only on и; 
above all, this applies to the correlation

 u r Y t Y t Y t Y t, *P .
2 (9.3)

This correlation – usually referred to as the autocorrelation function – characterizes 
the process so far as second‐order properties are concerned (in the sense that it enables 
one to determine P(X) for all X a Y Yij i j

*; i.e. for functions of the second degree in the 
values Yi = Y(ti) of Y(t) at any number of arbitrary time points ti). If we have m ≠ 0 and 
σ ≠ 1, we can get back to the original process from the standardized case by noting that 
the former is equal to m + σY(t). Similar conclusions hold in the nonstationary case, 
also, provided that P(Y(t)) is constant and

 P Y t Y t t t* ,  (9.4)

1 The choice of u is a deliberate attempt to exploit an analogy that makes it convenient to use the same 
notation, ϕ(и), for both the autocorrelation and the characteristic function (see the next section).
2 The asterisk denotes ‘complex conjugate’. For the present, it is superfluous, as we are only considering real 
functions; shortly, however, we shall need the extension to the complex field.
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depends only on the difference between t′ and t″. Putting t′ = t″ gives the second moment 
and if this is bounded so is Г, and the process is called ‘second‐order stationary’.

9.2.2. In dealing with this topic it is convenient to allow Y(t) to be complex (for the 
same reasons for which it is convenient to represent harmonic oscillations with eit 
rather than sines and cosines). The product Y(t′)Y(t″) therefore has to be replaced by 
the Hermitian product; that is by Y(t′)Y*(t″) (as we already indicated when we defined 
ϕ and Г). This implies that

 t t t t, , ,*  

and, in particular, that ϕ(−и) = ϕ*(и). The latter is the more important because it relates 
directly to the stationary case that we are discussing. Moreover, the real part of ϕ(и) is 
continuous if (and only if ) the process is ‘mean‐square continuous’ (a stationary process 
enjoying this property is known as a Khintchin process). This property requires, in the 
notation of Chapter 6, 6.8.3, that Y t Y t( ) ( )0  as t → t0, but – and one should be clear 
about this – it says nothing about the continuity of the function Y(t). We require that the 
prevision of [Y(t) − Y(t0)]2 tends to 0. This happens, for example, for a Poisson process, 
or variants thereof, even for generalized Poisson processes (these only change through 
discontinuities, which, in the latter case, are everywhere dense), provided the standard 
deviation is finite (in this case, in fact, P(Y(t) − Y(t0))2 = K|t − t0| → 0).

Under these conditions, it can be shown that the class of possible correlation  functions 
coincides with the class of characteristic functions (and, of course, in the case of Y(t) 
with even‐valued, and hence real‐valued, characteristic functions, we have

 u u u* , 

which correspond, as characteristic functions, to symmetric distributions F(−x) = 
1 − F(x)). In any case, the distribution F has an important significance so far as the pro-
cess is concerned, not only from a mathematical point of view but also practically, in all 
applications, especially to problems in physics, where it has a connection with energy. It 
gives, in fact, the spectral function of the process: that is F(ω2) − F(ω1) is the prevision of 
the energy corresponding to the frequencies in the interval ωl ⩽ ω ⩽ ω2. Expressed in an 
informal manner, the actual meaning of this in relation to the random function Y(t) 
defined by the process is the following: let U(ω) (in general, complex) be the function 
expressing Y(t) as a mixture of harmonic components (i.e. as a Fourier–Stieltjes 
transform)

 Y t te d .i U  (9.5)

The prevision of the energy corresponding to an individual dω is

 
d d ,F UP 2  (9.6)

and in terms of F we obtain the correlation function

 u Fue d ,i  (9.7)

which is therefore the characteristic function of the energy distribution.
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The spectrum F could contain both concentrated masses (jumps of F)

 U F Fk k k0 0 , 

corresponding to ‘lines’ ωk and diffused masses (segments where F is increasing and 
continuous). To make things as clear as possible, we repeat and extend the previous 
discussion in the simpler case where we just have concentrated masses Uk, corre-
sponding to a set of particular frequencies ωk. In this case, we have

 
Y t U

k
k

tke ,i  (9.5′)

and we can deduce that
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i tt.

 (9.8)

The Uk are, therefore, random quantities that depend on the global behaviour of Y(t); 
conversely, knowledge of these random quantities determines Y(t) in the way we have 
indicated. To give the probability distribution for all the Uk is an indirect way of  giving all 
the probabilities of the process leading to Y(t). From the energy viewpoint, we could say 
that the energy for the frequency ωk is |Uk|2 with prevision P(|Uk|2); the Uk are uncor-
related (i.e. ‘orthogonal’) in the sense that P U Uh k

* 0 (h ≠ k), and the total energy 
for frequencies up to and including ω is given by

 
F U

k
kP 2  (9.6′)

(the sum being taken over all the k for which ωk ⩽ ω).
Because we have standardized the process (σ = 1), the total energy equals 1. The 

 correlation function is given by

 
u U

k
k

ukP 2 e .i  (9.9)

Cramèr and Loève have proved that in the case we have considered (with discrete 
spectrum) the Uk are mutually orthogonal and that this also holds in the general case 
(either second‐order stationary or Khintchin processes) for the dU(ω) for disjoint inter-
vals d1ω and d2ω;

 
P d d .1 2 0U U. *

 

Conversely, all such processes can be obtained in this way (a result also proved by 
Cramèr and Loève).

9.2.3. The concepts and techniques that we have discussed are not only applicable 
to problems in physics – from which we have borrowed the particularly expressive form 
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of terminology – but also to problems in other fields, such as statistics (‘time‐series’ 
analysis and so on). However, this was a good place to give an outline of these ideas; it is 
useful to be able to ‘see’ the various problems concerning Fourier transforms and their 
mathematical properties in terms of some concrete framework. The two applications 
we have encountered are, in some sense, mutual inverses one of the other. In the case 
of the characteristic function, the concrete datum, or, at any rate, the most immedi-
ate, was the distribution, and the transform mainly provided a ‘useful image’ of it; in 
the case we have just dealt with, the function Y(t) and the autocorrelation function are 
more  concrete, and the corresponding distributions U and F are the ‘images’ in a certain 
wave inter pretation.
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10

10.1 Introduction

10.1.1. It might be argued that every problem could, or even should, be put in a multidi-
mensional framework; indeed, we have seen this over and over again throughout our 
treatment so far. The subject matter of this chapter is not really new, therefore, and 
we shall merely emphasize those features and problems which particularly relate to the 
multi‐dimensional nature of certain distributions.

In Chapter 6, 6.9.1, we dealt with the essential points concerning the representation 
of a distribution over an r‐dimensional Cartesian space, either by means of the distribu-
tion function

 

F x x x X x X x X x

X x

r r r

i
i i

1 2 1 1 2 2, , , P

P

  

 ,,
 (10.1)

or, if it exists, by means of the density

 f x x x F x x xr
r

r1 2 1 2, , , / . (10.2)

In addition, we can state that a necessary and sufficient condition for a function 
F(xl, x2,…, xr) to be a distribution function is that ƒ never be non‐negative, or, should 
ƒ not exist, that the expression for which it would be the limit is non‐negative. The latter 
is the probability of the rectangular prism x X x i ri i i � 1 2, , ,  given by

 
P

i
i i i rx X x F x x x � 1 2, , , , (10.3)

the sum being taken over the 2r vertices corresponding to all possible assignments of 
xi = xi  or xi = xi , with a + or − sign according to whether these are an even or odd num-
ber of x’ (for the case r = 2, see Figure 6.5 in Chapter 6, 6.9.1, together with the intuitive 
explanation that accompanied it).

In order to ‘see’ the meaning of this condition (which is a generalization of the nonde-
creasing property of the one‐dimensional F), it is useful to think of a mass c placed at 

Problems in Higher Dimensions
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some given point P x x xr0 1
0

2
0 0, , ,  as giving rise to a ‘step’ of height c in that orthant1 

of the r‐dimensional space of the points whose coordinates are greater than the corre-
sponding xi

0 (in the plane, this would be the NE quadrant). The function F is given by 
the superposition of such steps (or as a limit case).

The disadvantage of this is that the function F depends on the coordinate system 
(often, however, the problem itself has arisen in connection with r given random quan-
tities Xi). A less arbitrary – but less useful – approach would be to assign probabilities 
over each half‐plane (i.e. to assign F(y) for each linear combination Y = ∑i aiXi). 
The   justification for this is straightforward, although somewhat indirect, and follows 
from the fact that this serves to determine the characteristic function, which, in turn, 
determines the distribution (as we shall see in the next section).

10.1.2. The characteristic function for an r‐dimensional distribution of X1, X2,…, Xr is 
a function of r variables, u1, u2,…, ur, defined in a completely analogous way to that in 
the one‐dimensional case:

 
u u ur

u X u X u Xr r
1 2

1 1 2 2, , , e ei iP P u X . (10.4)

The vector form is probably the clearer, with vectors X and u whose components are the 
Xi and ui, respectively (u × can, if we so wish, be regarded as a vector in the dual space).

For the cases r = 2 and r = 3, it is more convenient to avoid the use of subscripts and 
to  write uX + vY, uX + vY + wZ, respectively (the standard notation for Plückerian 
coordinates).

The properties of ϕ(и1, u2,…, ur) = ϕ(u) are (as is fairly obvious) the same as in the 
one‐dimensional case. The inversion formula is also the same: for the case r = 2, for 
example, if the density exists and is bounded, it is given by

 
f x y u v u vux vy, e , d di1

2 2 . (10.5)

If, in addition, the Xh are independent, we have

 
F x x x F x F x F xr r r1 2 1 1 2 2, , , , (10.6)

 
u u u u u ur r r1 2 1 1 2 2, , , , (10.7)

as well as the converse; that is factorization implies stochastic independence.

10.1.3. A number of problems in higher dimensions can be dealt with formally as 
though they were one‐dimensional problems by means of matrix and vector notation. 
For example, sums of random vectors have the same properties as sums of random 
quantities. In particular, if the vector summands (each with prevision zero) all have the 
same distribution and finite variances, then the sum‐vector of n of them, divided by √n, 
has, asymptotically, a normal distribution having the same variances and covariances.

A frequently used and very expressive interpretation is that in terms of a ‘random 
walk’ in r‐dimensional space, regarded as a random process in discrete time (as an aid 

1 Orthant is the r-dimensional analogue of half-line (r = 1) and quadrant (r = 2).
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to intuition, we shall mainly deal with the cases r = 2 and r = 3, corresponding to the 
plane and ordinary space); a step is taken after each unit of time and at each step we 
obtain a random vector (always with the same distribution and stochastically independ-
ent). The simplest example is obtained, for example, by simultaneously studying the 
gain of two (or three) gamblers who bet independently on a sequence of tosses at Heads 
and Tails (again ±1 with probabilities 1

2  and 1
2  at each toss). This results in a zigzag path 

(in the plane, each step from (xn, уn) to (xn+1, yn+1) is the diagonal of some square in the 
integer lattice; the same holds in three dimensions with the diagonals of cubes). If (Xn, 
Yn) is the ‘position after n tosses’, then, as n increases, it can be shown that this has, 
asymptotically a normal distribution with circular symmetry and standard deviation √n 
in all directions (and the same holds for the position (Xn, Yn, Zn) in three dimensions).

10.1.4. The following is a simple and instructive argument that can be applied to 
the  present case. The probability of a return to the origin after n tosses in the one‐
dimensional case is given by un ≃ 0 · 8/√n for n even, 0 for n odd. In the case of the 
plane (Xn = Yn = 0), or ordinary space

 X Y Zn n n 0 , 

the respective probabilities are therefore given by u nn
2 0 64 . /  and un

3 = 0 · 51/√n3: in the 
general case, we have u K nn

r r/ /2. We observe immediately that, in prevision, the 
 number of returns to the origin is infinite in the plane (∑n−1 diverges) but is finite in 
three dimensions (∑n−r/2 converges for r ⩾ 3). It follows that the return to the origin is 
practically certain (p = 1) for r = 1 and r = 2 but not for r ⩾ 3 (where p = a/(1 + a), with 
a = ∑n−r/2; for r = 3, for example, a ≃ 0 · 53 and p ≃ 0 · 352).

The conclusion concerning the limit distribution (normal, with rotational symmetry 
and dimensions increasing like √n) holds in the general case, also, provided the distribu-
tion of every individual step has the same variance in all directions (i.e. equal variances 
and zero correlation for any two orthogonal directions). Without these conditions, we 
would have ‘ellipsoidal contours’ instead of spheres (but the latter case can be reduced 
to the former by making appropriate changes of scale along the axes of the ellipsoids).

10.2 Second‐Order Characteristics and  
the Normal Distribution

10.2.1. To illustrate the use of vector and matrix notation, we shall re‐examine certain 
expressions that we have already encountered in the context of the multivariate normal 
distribution, pointing out the form that certain properties now take.

The notation we shall introduce will enable us to interpret and understand our 
 formulae in several alternative ways: either in the rather formalistic spirit that derives 
from algebraic‐type theories (vectors and matrices thought of as rows, or columns, or 
arrays of numbers) or in the geometric, functional analytic spirit.

2 If p is the probability of (at least) one return to the origin, (1 – p)ph is the probability of exactly h returns to 
the origin, and the prevision of the number of returns is given by 

 a hp p p ph( ) ( )1 1/
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Vectors will be written boldface: for example, x (or X, if we are dealing with a random 
vector). Given r linearly independent vectors u1, u2,…, ur in Sr, x can be written (in one 
and only one way) as a linear combination of them; x = ∑xhuh. We may sometimes write 
x = (x1, x2,…, xr), but this is simply a convention and leaves it to be understood (and 
never forgotten) that the components do not directly relate to the intrinsic meaning of 
the vector, but only acquire their meaning through the introduction of some arbitrary 
basis, which can be changed at any time, the choice being simply a matter of conveni-
ence (this conflicts somewhat with the algebraic viewpoint). For a random X, we shall 
write X = ∑Xhuh = (X1, X2,…, Xr). The linear functional on the vectors of the space Sr 
themselves form an r‐dimensional space, the dual space, which we shall denote by Sr

*.

10.2.2. If we introduce a metric into the space Sr (i.e. a scalar product, which maps 
each pair of vectors x and y to a scalar, x × y = y × x, and is linear for each vector, and such 
that x × x > 0 for all x other than the zero vector), then each dual vector can be expressed 
as a vector of the original space with the scalar product sign following it. In other words, 
if f(x) is a scalar depending linearly on x, then there exists a vector a such that f(x) = a × x, 
and ƒ(·) can be written as a×. Given a metric in Sr, it makes sense to define the norm of 
a vector, |x| = √x × x, and the orthogonality of two vectors, x × y = 0. It then becomes 
convenient to choose the basis to be an orthogonal set of uh with unit norms, in which 
case we denote them by ih:

 
i ih k h k h k; . . , .i e or according as or not1 0

 

The scalar product then has a simple representation in terms of the components: 
x × у = ∑xhyh (and |x| = √(∑xh

2

)) We shall write a* instead of a×, and a* is then interpreted 
as the ‘dual of a’ (some authors write aT, where the superscript denotes ‘transpose’; 
 others use a−1; and so on). These alternative notations relate to the interpretation of the 
vectors in the two spaces as ‘column vectors’ or ‘row vectors’, respectively (i.e. matrices 
with 1 column and r rows, or 1 row and r columns).

From the formal, algebraic point of view, the matrices are also considered simply as 
arrays of numbers (r rows and s columns). From the geometric or functional analytic 
point of view, they are linear transformations between some Sr and some Ss. In our 
particular case, we shall only be considering square matrices.

If A is a matrix (or, better, a linear transformation), we have

 y x x x x x x xA A A A A c cA, , .with 1 2 1 2  (10.8)

In terms of components, if we havex i x i
i i

x A x A
A a a

h h h h

h h h

, ,

1 1 22 2i iahr r , and  

 
A x a a x

h
h

k
hk k

k h
hk h kx i i : (10.8′)

in other words, the components of у = Ax are given by y a xk hk hh . The linear trans-
formation A can therefore be represented (in the given reference system) by means of 
the r2 coefficients ahk (which, in the array, corresponds to the hth row, kth column).
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10.2.3. We are particularly interested in those linear transformations (or matrices) 
which, with respect to the metric under consideration, are symmetric and positive; that 
is they correspond to ‘positive‐definite quadratic forms’:

 A A Ax y y x x x x, .0 0provided  

If Q denotes such a linear transformation, we shall make the convention that Q will also 
be used to denote the matrix and the quadratic form. We can write, therefore,

 
Q Q Q Q Q q x x q q

hk
hk h k hk khx x x x x x x x x* * T  (10.9)

(where the symbols are to be interpreted in an appropriate way). Everything is straight-
forward, except that, in order to conform with the standard conventions of matrix 
manipulation, we would need to write xA instead of Ax, yxT instead of xTy ( corresponding 
to x*y or x × y), and, therefore, xQxT instead of Qx*x. All vectors are to be understood as 
row vectors, except when they have a ‘transpose’ superscript, which transforms them 
into column vectors (dual vectors; i.e. of the form a×, but as operators on the right). 
Note, therefore, that while xyT means y × x, yTx means x.y×; that is it represents the 
transformation A which takes every vector z to Az = x.(y × z) (the transformation of 
rank 1 which transforms all the vectors of Sr into vectors parallel to a particular vector; 
x in our case); the entries of the matrix A are given by ahk = xkyh.3 Observe, in particular, 
that x. x×, or xTx (such that Az = x.(x × z)), represents the vector which is the projection 
of z in the direction of x (if x is a unit vector; otherwise, it is multiplied by x2, which we 
write instead of |x|2, i.e. x × x).

10.2.4. The covariance matrix – defined in Chapter 4, 4.17.5, for random variables Xh 
with P(Xh) = 0, by σhk = P(XhXk) – can be defined in this set‐up as Var(X), or simply V(X), 
by setting, for X = (X1, X2,…, Xr),

 
V X P X X P X X. :T

 

in other words, as the linear transformation which gives, for each vector u,

 
V X u P X X u. . (10.10)

Since

 
V X Vu v P X u X v X v u,

 
the linear transformation is symmetric, so we can find an r‐tuple of orthogonal direc-
tions which are mapped to themselves (i.e. there exist eigenvectors vh and eigenvalues 
λh such that V(X)vh = λhvh); the transformation is also positive (V(X)u × u = P(X × u)2), 
and so λh > 0.

When we are referring to a fixed X, and there is no danger of ambiguity, we shall 
simply write V in place of V(X).

3 This follows, even without taking into account the geometrical meaning of xx and yh, from the fact that 
the characteristic of the matrix must be 1 (rows and columns are proportional).
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We have already seen (in Chapter 4, 4.17.5, and in Chapter 7, 7.6.7) that the normal 
distribution, in whatever number of dimensions, is characterized by its covariance 
matrix and that such a matrix (i.e. symmetric and positive definite) characterizes a 
unique normal distribution (where throughout we are assuming distributions to be 
 centred at zero). At the point 0 + x the density has the form

 
f f x x x K K Qr

Q rx
x

1 2

1
2 1 2, , , e  /, det . (10.11)

The relationship of Q and V is given by V = Q−1 (and, conversely, Q = V−1), by virtue of 
the fact that the eigenvalues are the variances, h

2, for V, but their inverses, h
2, for Q.

For these reasons, we again get involved with the ellipsoid of covariance (or of inertia) 
and the ellipsoid of concentration, which we first came across in Chapter 4, 4.17.6, and 
which we are forced to consider further. What we said in Chapter 7, 7.6.7, concerning 
the affine properties (for which it is sufficient to consider the case of spherical symme-
try) still holds, whereas any consideration of the ellipsoids only makes sense, and has 
any use, if it is necessary, or appropriate, to base oneself upon a preassigned metric. 
(This would be the case, for example, were we dealing with a problem in real, physical 
space, or if a number of problems, each of which separately would require a different 
metric for convenience, were considered simultaneously.)

In any case, we lose nothing in the way of generality, and we gain a great deal in terms 
of simplicity and understanding, if, in order to study this problem, we take the principal 
axes of inertia as our reference system. In other words, we take as our unit vectors ih 
the eigenvectors of Q and V (necessarily orthogonal)4, whose respective eigenvalues are 
the variances h

2 of V and the reciprocals (‘weights’) h
2 of Q.

We obtain, therefore,

 
Q Q xh h h

h
h h hi i x i2 2, , (10.12)
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V V uh h h

h
h h hi i u i2 2, , (10.14)

 
V V u u u u

h
h h h

h
h h

h
h hu u u 2 2 2 2 . (10.15)

As we already know, Q{x} is useful when it comes to expressing the density (by 
means of equation 10.11), which, in the present reference system, becomes (there being 
no cross‐product terms)

 
f K K x K x

Q

h
h h

h
h hx

x
e / /

1
2 2 21

2
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2

exp exp . (10.16)

This shows (as was obvious anyway) that, in this reference system, the components 
Xh of X are stochastically independent (the density is a product of factors each of which 

4 Apart from irrelevant ambiguities in the case of multiple eigenvalues.



10 Problems in Higher Dimensions 407

is a function of only one xh). But this implies that the same factorization holds for the 
characteristic function,

 
u

u

h
h h

h
h h

V
u uexp exp ,1

2
1
2

2 2
1
2e  (10.17)

and we therefore see the complementary rôle played by V = Q−1 in defining the 
 characteristic function.

The two ellipsoids are given by

 V covariance inertia hu 1 1 or semi-axes / and; ,  

 Q concentration hx 1 ; . semi-axes  

The choice of the different variables u and x for V and Q is deliberate, and in 
 explaining this choice we will be led to a comparison of the two ellipsoids. The x on 
which Q operates are the actual vectors of the space over which the distribution is 
defined (the ambit A; e.g. physical space): the u on which V operates are essentially the 
dual vectors (even though, given the introduction of the metric, the two spaces are 
superposed). This supports the idea that the ellipsoid of concentration is more directly 
meaningful, as was confirmed, in part, by what we established in Chapter  4, 4.7.6. 
We  must now, as we then promised, consider this further, basing ourselves on the 
representation in terms of the appropriate normal distribution; that is the distribution 
with the most frequently occurring and stable form having the same previsions and 
covariances (in mechanical terms, barycentre and kernel of inertia).

As we have seen, the ellipsoids Q = constant are the surfaces on which the density, ƒ, is 
constant. The special case Q = 1 (which gives, therefore, f Ke

1
2, which is 0 · 606 of the 

maximum at the origin) enjoys a property that justifies one in singling out, and defining 
as the body or kernel of the distribution, that part of it contained in Q ⩽ 1 (that part cor-
responding to Q ⩽ 1 might be referred to as the tail, or shell, but no appropriate term 
seems to exist). The meaning is clearest in one dimension: the kernel is the portion of the 
distribution with convex density lying between the points of inflexion – see Figure 7.6 in 
Chapter 7, 7.6.6 – and the tail consists of the two outside portions with concave density; 
that is tapering away. The same thing applies in the general case,  however: inside Q ⩽ 1 
the density is convex (with the same meaning: for each point λA + (1 − λ)B, 0 < λ < 1, 
in the segment between A and B, the density has a greater value than the linear interpola-
tion λf(A) + (1 − λ)f(B)); outside, however, that is for Q ⩾ 1, in the direction of a radius 
emanating from the origin the behaviour is concave (we are back in the one‐dimensional 
case), and convex in all directions which are conjugate with respect to Q.

10.3 Some Particular Distributions: The Discrete Case

10.3.1. We shall now look at a few specific problems in more detail, and we begin with 
those involving discrete distributions.

Many of the problems we have considered for ordinary events can be extended in an 
obvious manner to the case of multi‐events: instead of a coin, which only has two faces, 
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we could consider a die, which has six faces; instead of an urn with black and white balls, 
we could have an urn containing balls of r different colours; instead of games that can 
only result in either victory or defeat, we could consider those in which a draw is also 
possible, or we could even distinguish a whole range of results (for example, the actual 
scores, 3–1, 2–2, 0–1 etc., as in football), and so on.

In all these cases, by making various assumptions, there are a whole range of  problems 
that can be considered. In particular, one can try to calculate the probabilities of the r 
possibilities 1, 2,…, k,…, r occurring n1, n2,…, nk,…, nr times, respectively. This same 
question can be formulated along different lines, clearly equivalent, but seemingly 
 different at first sight. For example, we might ask how many objects will be given to each 
of r individuals as the result of some given method of selection (like giving an object to 
individual k whenever a certain outcome occurs). If the ‘objects’ are ‘particles’, and 
instead of individuals we think of ‘physical states’, or ‘cells’ corresponding to them, the 
different distributions will correspond to different ‘macroscopic states’.

10.3.2. The following examples are of this kind and in order to make them seem 
more intuitive we shall present them as far as possible in terms of familiar set‐ups. 
They  correspond, however, to the fundamental ‘statistics’  –  as they are called 
by  physicists – of Maxwell‐Boltzmann (case (a)), Fermi–Dirac (case (b)) and Bose–
Einstein (case (c)).

For all these cases, we can think in terms of an urn containing

 g g g gr1 2  
balls of r different colours, and then, with respect to different procedures for drawing a 
total of n balls, we seek the probabilities that the numbers of balls drawn of each of the 
different colours will be n1, n2,…, nr. One should bear in mind, however, that there are 
many other interpretations that could be considered: for example, how many objects, 
out of a total of n, will be attributed to individuals (or placed into cells) identified by 
colours 1, 2,…, r (i.e. associated with balls of these colours). In practice, the individuals 
could be characterized in any way whatsoever: nationality, sex, marital status, school 
and so on (in the case of cells, it might be energy levels). If we stick to colours, this has 
the advantage of making it clear that, so far as the considerations we are interested in 
are concerned, the nature of the characteristic on which the classification is based is 
irrelevant (whereas, of course, this is no longer the case if one wishes to study the par-
ticular aspects of some given application).

10.3.3. We now consider the three cases mentioned above. They differ in the form of 
procedure used in drawing the balls; these correspond to (a) with replacement, (b) 
without replacement, (c) double replacement, terms which will be made more precise 
as we go along (equal probabilities being assumed throughout).

(a) With replacement. We perform n drawings from an urn with replacement. 
Thinking in terms of our alternative interpretation, we draw n objects in succession, 
distributing them among the g individuals (or cells) regardless of whether the latter have 
previously received any or not. This is the obvious extension to higher dimensions of 
the binomial distribution and is known as the multinomial distribution. At each draw-
ing (independently of the previous outcomes) the probabilities of the various colours 
are given by Pk = gk/g (either referring to a drawing of that colour, or in favour of some 
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individual, or cell, identified by that colour). The probability of the various colours 
appearing n1, n2,…, nr times is therefore given by
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Special case. Taking all the gk = 1 (for example, if all balls, individuals, or cells, are of a 
different colour; i.e. if we are dealing with the distribution among the g different balls, 
individuals, or cells, without speaking of colours), we obtain
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10.3.4. (b) Without replacement. We perform n drawings from an urn without 
 replacement. Thinking in terms of our alternative interpretation, we draw n objects in 
succession, distributing them only among those of the g individuals who have not yet 
received any. In this way, we exclude the possibility of an individual (or cell) receiving 
more than one object (we must therefore assume n ⩽ g, and we certainly have nk ⩽ gk, 
k = 1, 2,…, r). This is the obvious extension to higher dimensions of the hypergeometric 
distribution; we obtain

 

n n n
n

n
g

n
g

n
g

n
g

k
n
g

k

k k

r r

r

k

kK

K
g g

1 2 1

1

2

2

1

, , ,

g n
n

k k

k

1
!

.
 (10.20)

In fact, n
g  is the number of ways in which n individuals can be chosen out of g (i.e. of 

distributing n objects among them, not more than one to each). The interpretation of 

n
g

k

k  for colour k is similar and gives the number of ways in which a distribution of the 
given form can take place.

Special case (as above, gk = 1). The possible distributions correspond to the various 
possible choices of n out of the g balls (or individuals, or cells), and these number n

g . 
They all have the same probability, 1 n

g , because n
g

k

k  is either equal to 1
1  or 0

1 , and 
is therefore equal to 1.

10.3.5. (c) Double replacement. We perform n drawings from an urn, replacing, on 
each occasion, the ball drawn, together with a further ball of the same colour (so that, 
after m = m1 + m2 + … + mr drawings of the balls of various colours, the urn contains 
g + m balls, of which gk + mk are of colour k). Thinking in terms of our alternative inter-
pretation, we could imagine that every individual participates at each drawing as though 
it were a raffle and, together with his original ticket, has a number of additional tickets, 
one for each object received so far.5

5 A somewhat more expressive example is the following. The r original individuals act as recruiting officers 
for companies. New individuals are assigned to companies by randomly selecting someone already present, 
and then assigning the individual to his company (so that, at any given moment, the largest company has the 
highest probability of recruiting).
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In this case, we have
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To see this, note that the ratio giving the second factor is precisely the probability of 
obtaining the required distribution in some preassigned order. In fact, if we write, for 
example,
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we are expressing, as a product (compound probability), the probability of obtaining, in 
n = 9 drawings, colour 1 twice, colour 2 four times, colour 3 three times, in the order 
1–3–3–2–2–3–1–2–2. For a different order, we merely permute the numerator; 
the denominator does not change. If the order is not taken into account, the required 
probability is that given above multiplied by the number of permutations (in which the 
order is preserved among gk, gk + 1 etc.). In the example, the number of permutations is 
9!/2!4!3!; in the general case, we have п!/п1!… nr!, as in equation 10.21.

Pólya’s urn scheme (for ‘contagious diseases’). The process that we have just consid-
ered – drawings with double replacement – is known as Pólya’s urn scheme (especially 
in the case r = 2, black and white balls), having been introduced by Pólya as a particular 
model for the spread of ‘contagious diseases’ (in the sense that the more a colour turns 
up, the more probable it is to do so again). We observe that, contrary to what one might 
think initially, results that differ only in the order (permutations!) have the same prob-
ability (as we saw in the case of equation 10.22). On the other hand, this also holds in the 
case of drawings without replacement and in other variants: for example, after each 
drawing replacing c balls of the colour just drawn and d balls of the other colour. If d > 0, 
we have the possibility of dealing with other cases besides the ‘contagious’ form. If nega-
tive values are also permitted for c and d, many conclusions still hold, but the process 
may – and sometimes certainly does – terminate after a finite number of drawings (it 
suffices to consider the case c = −1 and d = 0; the case of drawings without replacement). 
We could also generalize beyond the model of balls in an urn and take c and d as nonin-
teger parameters for determining the successive probabilities.

Special case (as above, gk = 1). In this case, we have gk + nk − 1 = nk, hence the product 
in equation 10.21 is equal to 1 (all factors are of the form n

n
k

k  = 1) and all possible 
 distributions (with any given g and n) have the same probability:

 
1 1/ .n

g n  (10.23)

We recall that n
g n 1  is the number of ways of distributing g objects among n 

 individuals, two distributions being considered distinct only if they differ in the number 
of objects (and not in the particular objects) attributed to each individual.6

6 See the Remark in Section 10.4.1.
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Sometimes, one refers to ‘the different distributions that arise when the objects are 
considered as indistinguishable’; in the interpretation of cases in physics where this 
turns out to be applicable (experimentally) it is attributed to the fact that the particles 
in question are ‘indistinguishable’. The same interpretation also holds in the general 
case (gk arbitrary), and the explanation is practically identical.

However, the interpretation in terms of the Bayes–Laplace scheme (which we shall 
meet in Chapter 11, 11.4.3) is possibly more satisfactory and might also be considered.

10.3.6. Remark. In the case of the applications in physics to which we have referred, 
case (b) (drawings without replacement) holds when Pauli’s exclusion principle applies; 
it corresponds to the so‐called Fermi–Dirac ‘statistics’, applicable to electrons, protons 
and neutrons (i.e. particles with semi‐integer spins). Case (c) (double replacement) 
holds in all other cases and corresponds to the so‐called Bose–Einstein ‘statistics’, 
 applicable to photons, mesons and so on (i.e. particles with integer spin).

Case (a) (drawings with replacement, the Bernoulli scheme) corresponds to classical 
statistical mechanics (Maxwell–Boltzmann ‘statistics’). According to modern theoreti-
cal physics this never applies, but it provides, asymptotically, an approximation to both 
(b) and (c) when the gk are much larger than the corresponding nk.

It would be very worthwhile to proceed further with the actual application of these 
ideas, principally to the problem of determining statistical equilibrium. However, this 
would take us well beyond our purpose in providing this introductory outline.

10.4 Some Particular Distributions: The Continuous Case

We now turn to the continuous case, where there are a number of interesting problems. 
We shall only be able to sample a few of them, choosing those that are best suited to 
illustrating certain useful techniques, and to presenting, in a simple fashion, those 
 distributions most frequently encountered in practice.

10.4.1. Subdivisions of an interval. This is a continuous analogue of the problem 
we have just discussed in the discrete case. Instead of considering the subdivision of 
some given n objects into r groups, we consider the subdivision of an interval (for 
 convenience, assumed to be of unit length) into r parts. In this way (or as a result of 
subdividing some other quantity), we end up with a collection of r random quantities 
X1, X2,…, Xr, whose sum is equal to one.

There are various ways of performing such a subdivision. Of these, we shall consider 
one of the most straightforward and ‘symmetric’, and we shall give it its customary title, 
referring to it as ‘random subdivision’. This has a certain convenience, so long as one 
does not attempt to read too much into the terminology, thinking of it as endowing this 
particular method of subdivision with some special significance, rather than being just 
a matter of convention.

More precisely, when we talk of random subdivision of an interval we mean that 
r − 1 division points are chosen independently, each with a uniform distribution. 
Equivalently, we could say that, after having performed the subdivision into k parts, 
the kth division point is chosen by first choosing a subinterval – with probability of 
choice proportional to length – and then choosing a point within this subinterval by 
means of a uniform distribution over it. This formulation is a little ‘artificial’ if we are 
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considering subdivision of an interval but it still makes sense and has the advantage 
of also being applicable to the subdivision of an arbitrary quantity (mass, area, sum of 
money, amount of energy etc.). The distribution itself has constant density over the 
range of possible values; that is over the (r − l)‐dimensional simplex defined by xk ⩾ 0 
(k = 1, 2,…, r) and x1 + x2 + … + = 1. If r = 3, for example, it is uniform over the equilat-
eral triangle, as shown in Figure 10.1.

Remark. It is instructive to point out that we are here dealing with the limit‐case (as 
we pass from the discrete to the continuous) of the Bose–Einstein ‘statistic’, as consid-
ered above. In that case, in fact, the distributions of the n ‘indistinguishable’ objects over 
the g cells correspond to the n

g n 1  ways in which n points (representing the objects) 
and g − 1 division bars, together with a bar at either end (which represent the division 
into cells), can be arranged. For example, the distribution which results in 0, 2, 0, 3, 1 
objects in the 1st, 2nd,…, 5th cells, respectively, would be represented by //**//***/*/. If 
the number of points n is large in comparison with the number of cells, the bars subdi-
vide the interval in a manner very close to that described above. If we consider the dis-
tribution, it is practically uniform over the simplex because the possible points are 
uniformly distributed over it – the xk are all multiples of 1/n – and all have the same 
probability (i.e. 1/N, where N n

g n 1  is the total number of points). Note that the two 
cases are also analogous notationally (in the ‘special case’ we have g = r; the comparison 
with the general case led us, however, to prefer to write g rather than r).

10.4.2. Problems relating to random subdivision arise quite naturally and frequently in 
a number of applications. In order to be able to picture the distribution, it will often be 
useful to consider special cases where r has a small value and the simplex reduces to an 
interval (r = 2), an equilateral triangle (r = 3) or a regular tetrahedron (r = 4). We find – for 
the same reasons, although the purpose is different – that the diagrams we require are 
the same as those already encountered in Chapter 5 (especially Figure 5.3b) and which 
represented probabilities ph with sum equal to one.

In our case, it is the sum of the subintervals xh that is equal to one. For r = 3, subdivi-
sion into three corresponds to some point in the triangle A1A2A3 (having barycentric 
coordinates, x1, x2 and x3, with x1 + x2 + x3 = 1, where the xh are the distances from the 
three sides and the height of the triangle is taken to be unity). Two simple examples will 
suffice to illustrate this form of representation and to show how, with its aid, one can 
obtain immediately certain conclusions which would involve heavy calculations if 
arrived at analytically.

In Figure 10.1a, the areas corresponding to X1 ⩽ x1, X2 ⩽ x2, X3 ⩽ x3 (for given x1, x2, x3) 
are indicated with different forms of shading. The unshaded triangle which remains 
(with sides 1 − x, where x = x1 + x2 + x3; we clearly have x ⩽ 1, so this does exist) repre-
sents the subdivisions in which X1 ⩾ x1, X2 ⩾ x2, X3 ⩾ x3. The probability of a subdivision 
for which this holds is therefore given by (1 − x)2 (the ratio of the area of the smaller 
triangle to the larger) and, by virtue of the homogeneity, one can see immediately that, 
for arbitrary r, the probability is equal to (1 − x)r−1.

Figure 10.1b (X1 > X2 > X3) illustrates the following problem. Suppose that Z1, Z2,…, Zr − 1 
are the abscissae of the r − 1 division points arranged in increasing order: What are their 
probability distributions? We recall that the points are chosen independently and with 
a uniform distribution over the given interval, but that if we consider them as ordered 
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neither independence nor uniformity continues to hold. It is obvious – but one does not 
always think of it – that everything changes when the state of information changes (and 
the latter change may be obscured by the terminology used). As an  example of this, we 
note that ‘the 1st division point obtained’ (in chronological order) may very well be ‘the 
7th division point obtained’ (when they are taken in increasing order – for example, at 
some given moment when 20 of them have been considered) and that knowing these 
two facts to coincide changes the state of information, and with it the probability distri-
bution. More concretely, the probability distribution of the chronologically first division 
point changes after each new division point is obtained if we are informed as to whether 
the latter is to the right or to the left of the former.

Let us first determine the distribution of the maximum, Zr−1. To say that Zr − 1 ⩽ x, 
amounts to saying that all the r − 1 division points are ⩽x; this has probability xr−1 and 
the distribution we are after is therefore given by

 
F x x f x r x xr r1 21 0 1, .   (10.24)

For the minimum, Z1, we have, by symmetry,

 F x x f x r xr r1 1 1 11 2, . (10.25)

In general, for the kth point, Zk (taken in increasing order), the density is given by

 
f x r x x xk

r k r k1 1 0 11
2 1 1, .   (10.26)

To see this, note that the probability of one (no matter which) of the r − 1 points falling 
in the interval from x to x + dx is (r − 1)dx, which must then be multiplied by the 
 probability that, of the remaining r − 2 points, k − 1 fall on the left (with probability x) 
and r − k − 1 on the right (probability 1 − x).

10.4.3. The beta distribution. The distributions that we have just encountered belong, 
in fact, to the family of beta distributions, a family which finds frequent and important 
applications. The general form of the density is given by

 
f x Kx x K n n1 11 1/ ; ! , (10.27)
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Figure 10.1 (a) The probability that X1 ⩾ x1, X2 ⩾ x2, X3 ⩾ x3. (b) The probability that X1 > X2 > X3.
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where α and β are positive real numbers (and not necessarily integers as in the previous 
example). If α (and/or β) is <1, the density tends to infinity at x = 0 (and/or at x = 1). 
We have already seen an example of this; 1

2  corresponds, in fact, to the arc sine 
distribution. In the more usual case (α and β greater than 1), the density has a maximum 
at (α − l)/(α + β − 2), and on either side of this the curve slopes downwards, reaching zero 
at x = 0 and x = 1. The prevision and standard deviation are given by α/(α + β) and 
√[αβ/(α + β + 1)]/(α + β), respectively, whatever the values of α and β. Note that for a 
given prevision (i.e. α/β fixed), the standard deviation behaves like 1/√(α + β + 1), 
decreasing as α and β increase. The distribution, therefore, thickens around the previ-
sion (and also around the mode, which differs little from the prevision and tends to it 
asymptotically).

10.4.4. Extension. The argument that we gave in the case of the division points extends 
immediately to the case of any n independent random quantities having the same 
 distribution F, where F can be any distribution at all.7

The distribution of the maximum of X1, X2,…, Xn is given by

 F x F x f x nF x f xn
n

n
n, ,1  (10.28)

and the density for the kth largest by

 f x n F x F x f xk k
n k n k

1
1 1 1 . (10.29)

Similar expressions can be obtained under more general conditions.
If, for the sake of simplicity, we restrict ourselves to the maximum, we obtain, in the 

general case,

 
F x F x x xn , , , , (10.30)

where F is the joint distribution function of the n random quantities. If, in r particular, 
the random quantities are independent (but each Xk has a different distribution Fk(x)), 
we have

 F x F x F x F xn n1 2 . (10.31)

10.4.5. ‘Random’ subdivision and the Poisson process. Suppose that, in a Poisson 
 process, n occurrences are known, or are assumed, to have taken place in some given 
interval; then, in the sense we have defined, they form a ‘random subdivision’ of the 
interval. Conversely, if we imagine the subdivision of an interval of length n + 1 by means 
of n points in such a way that each of the n + 1 subintervals has expected length 1, then, 
as n increases, we approach a Poisson process (with intensity μ = 1). The distributions 
relating to the 1st, 2nd,…, kth, … positions now belong to the gamma family instead of 
the beta as above.

In both these cases, the length of each interval is, in prevision, equal to 1. In general, 
however, it is important that the method of picking such an interval should be made 
explicit. If we refer to the ‘third interval starting from 0’, or ‘the first interval after x = x0’, 

7 Note that n corresponds to the ‘number of division points’ of the preceding case, where it was denoted by 
r – 1 because there were r subintervals.
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then what we have said is true. It is clearly no longer true if we look at ‘the shortest’, or 
‘the longest’ (in which case, we reduce to the problem considered above, independence 
holding in the Poisson case, but not for a random subdivision). It is perhaps not quite so 
obvious that the result no longer holds if we pick out the interval ‘containing some 
given point’, but it is clear, on reflection, that this method does favour the longer inter-
vals. In actual fact, the prevision of the length of an interval chosen in this way is twice 
that of the Poisson case, and only a little less than twice that of the case of a random 
subdivision. In the first case, the prevision of the distance from a given point (division 
point or not) to the first division point, both on the left and on the right, is equal to 1. 
In (the second case, the point chosen as a reference point plays the rôle of an additional 
‘point chosen at random’.8 This means that the original interval, of length n + 1, turns 
out to be subdivided into n + 2 subintervals, each of which has expected length 
(n + 1)/(n + 2). Two of these subintervals join together to form the interval into 
which  the  new division point has fallen, and the expected length of this interval is 
 therefore 2(n + 1)/(n + 2) = 2 − 2/(n + 2).

10.5 The Case of Spherical Symmetry

10.5.1. Examples with spherical symmetry. We shall obtain further useful insights by 
considering –  in the plane, in ordinary space, and in an arbitrary number of dimen-
sions – distributions possessing spherical symmetry. In particular, we shall consider the 
normal distribution. Referring to the three‐dimensional case for convenience, 
this means that the density (provided it exists) is a function of the distance ρ only; that 
is f (x, y, z) = g(ρ), a function of ρ2 = x2 + y2 + z2.

10.5.2. Distance from the origin. The distance X X Xr1
2

2
2 2

1
2 has a probability 

distribution with density f(p) = Kg(ρ)ρr−1. Taking the particular case of a uniform distri-
bution inside the hypersphere (with radius 1), we obtain f(ρ) = Kρr−1 and note that this is 
identical to what we obtained for the distribution of the abscissa of the maximum when 
r points were chosen at random in [0, 1]. Observe that, for large r, the volume is concen-
trated near the surface; that is, for any given ε > 0, the layer between 1 − ε and 1 includes 
all the volume apart from a fraction θ, which tends to zero as r increases. More precisely, 
the distance from the surface, as r increases, tends asymptotically to an exponential 
distribution with prevision 1/r.

In the case of the normal distribution, the distance is distributed with density

 f K r 1 22

e / . (10.32)

8 For this to hold exactly, we require the point to be ‘chosen at random’, and its position to be unknown. 
In other cases, the result is very little altered except when the point is very close to the end-points (and then 
one of the two subintervals is necessarily small). This should provide an adequate background to more 
complicated situations, as well as illustrating how such complications can arise in seemingly harmless 
formulations of problems if one is not sufficiently careful.
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For r = 3, we note that we obtain Maxwell’s formula for the distribution of the (absolute 
values of ) velocities in a gas, assuming them to be normally and spherically distributed : 
f v Kv v( ) 2 22

e /  (where we take the prevision of the square of the velocity to be equal 
to 3; that is equal to 1 for each component).

The distribution given by equation 10.32 is widely used in a number of problems. 
In particular, it occurs in statistics, where one often takes as a basis of comparison the 
square of some deviation from a ‘true’ value. In this case, it is known as the χ2  
(‘chi‐square’) distribution. If we take x = ρ2 as the variable rather than ρ, we obtain a 
gamma distribution

 f x Kx r x2 2 2/ / .e  

In fact, if we temporarily write f1(x) in order to avoid confusion with f (ρ), we have9

 f x x f Kf x x K x x xr x
1

9 1 2 2 1
2d d d e d. / /

 

(the constant ½ being included in K).

10.5.3. Distance from a hyperplane to the origin (or, alternatively, the coordinate, or 
projection, onto an arbitrary axis).10 This has as its distribution the projection of the spa-
tial distribution and is the same for all axes. In other words, if f(x) gives the density of the 
distribution of X, then it also gives that of Y and Z, and of any other coordinate aX + bY + cZ, 
where a2 + b2 + c2 = 1 (i.e. with the same unit of measurement). Given g(ρ), we have

 
f x K g x2 2 2

0
d , (10.33)

and, for general r,

 
f x K g x r2 2 1

0
d . (10.34)

We have already seen that in the case of the normal distribution (and only in this case) 
g and ƒ coincide (up to the normalization constant). We have also seen that for a  uniform 
spherical distribution, g(ρ) = K > 0 for ρ ⩽ 1, g(ρ) = 0 for ρ > 1, we have f(x) = K(1 − x2)(r−1)/2 
(see Section 7.6.8), and we observe that we are dealing with a beta distribution,

 f x K x xr r1 11 2 1 2/ / , 

defined over [−1, 1], rather than over [0, 1]. Let us take up again the case of a distribu-
tion on the surface of a unit sphere; more precisely, we shall consider a spherical layer 
(points whose distances from the origin lie in the range 1 − ε to 1) whose thickness, ε > 0, 
we let tend to zero. In this way, we obtain

9 We take this opportunity of pointing out how a change of variable leads to an altered form of density 
(obviously: we are dealing with the derivative of a function of a function!). For increasing transformations, 
this applies directly: for transformations which are not one-to-one, we have to add up the separate 
contributions. As a practical rule, it is convenient to transform (as we have done) f(y) dy into f1(x) dx, rather 
than writing f1(x) = f(y). dy/dx.

For transformations of several variables one proceeds in a similar fashion, but multiplying by the Jacobian 
∂(y1,…, yr)/∂(x1,…, xr) instead of by dy/dx.
10 This differs only that, in speaking of distance, one needs to take the absolute value of the abscissa. Given 
the symmetry, the density is 2f(x) for x ⩾ 0, and zero for x ⩽ 0, rather than f(x)(-∞ < x < +∞).
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We are thus led to the same distribution, but with r reduced by 2. For the particular case 
r = 2, we have ƒ(x) = K/√(1 − x2); in other words, as was obvious geometrically, we again 
obtain the arc sine distribution. For r = 3, we obtain the uniform distribution (as one 
would expect from the well‐known relation between the area of the sphere and of 
the cylinder). In both of these cases, as in many other cases of this kind, as r increases 
the projection of the distribution tends to normality.

The distance from a straight line (or plane, or arbitrary Euclidean space with dimen-
sion d < r) passing through the origin can be shown to lead to a gamma distribution 
(with parameters α = d and β = r − d).11

10.5.4. Finally, let us consider the central projection of a distribution with spherical 
symmetry (r‐dimensional) onto an arbitrary hyperplane ((r − 1)‐dimensional); a straight 
line if r = 2, a plane if r = 3 and so on. This is clearly the same no matter which hyper-
plane we take (apart from changes of scale, which can be avoided in any case if we adopt 
the convention of taking the hyperplane to be unit distance from the origin) and no 
matter what distribution one starts with (in other words, it does not matter what g(ρ) is: 
in fact, it does not matter how the mass moves along the radii of the projection). We 
might as well assume, therefore, that the mass is uniformly distributed on the surface of 
a hypersphere with radius 1 (centred at the origin).

We have just seen, however, that the projection of this distribution onto an axis, 
x = cos ϕ (Figure 10.2), has density K(1 − x2)(r−3)/2. A mere change of variable suffices, 
therefore, to obtain the distribution in terms of either the angle ϕ, or у = tan ϕ, or 
z = 1/y = cot ϕ.12

From x = cos ϕ, we obtain
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the distribution for ϕ having density proportional to sinr−2 ϕ (i.e., as is well known from 
geometry, the area of the ring cut on the hypersphere by cones with semi‐angles ϕ 
and ϕ + dϕ).

From у = tan ϕ, that is ϕ = tan−1 y, we obtain
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11 This problem crops up in connection with problems in theoretical physics; see J. von Neumann, Zeitschr. 
Phys., 57 (1929); A. Loinger, Rend. S.I.F., 1961.
12 The letters y and z are used here simply for convenience and not in their usual sense of coordinates.
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Finally, from z = 1/y, that is y = z−1 we obtain
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If X1, X2,…, Xr are random quantities whose joint distribution has spherical 
 symmetry,  and we set X = X1, R = distance of the point (X1,…, Xr) from 
0 2

1
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x‐axis, then the variables previously denoted by x, y, z and ϕ correspond to X/R, D/X, 
X/D and tan−1(D/X), respectively. Their distributions, therefore, have densities of 
the form:
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where x, as usual, denotes the variable. We note that in the case of D/X with r odd, we 
would have to include the absolute value sign, or, alternatively, think of K changing its 
sign as x does. In all cases, the same distributions (if we double K and restrict the range 
to x ⩾ 0) correspond to the absolute values of the random quantities (|X|/R etc.).
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Figure 10.2 The central projection (origin 0) of a spherically symmetric distribution. The functions ϕ, 
cos ϕ, tan ϕ, cot ϕ, and their derivatives, appear in the various problems which we consider.
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The distribution of D/|X| is that of the distance for the distribution projected onto the 
hyperplane. Dividing by x(r−1)−1, we obtain the (r − 1)‐dimensional density as a function 
of x, corresponding here to the distance ρ. We can, therefore, write g(ρ) = K(1 + ρ2)−r/2; 
formally, this is the same expression as that which is given for |X|/D, but the meaning is 
different, and K appears because we are dealing with an (r − l)‐dimensional distribution 
instead of the one‐dimensional case. Note that the exponent should be − (r + l)/2, 
 corresponding to r being the dimension of the space we are dealing with, rather than 
that from which we have projected. In the simplest case of the projection of a plane 
distribution with circular symmetry onto a straight line (r = 2, distribution of Y/X; the 
reader should be able to deduce this result directly from an inspection of the diagram), 
we obtain the Cauchy distribution:

 
f x K x K F x x/ / , / tan .1 1 1

2
12 1  (10.40)

This is the most direct characterization of the Cauchy distribution (which is usually 
presented as the special case of Y/X with X and Y independent, centred normals, m = 0). 
As we have seen already, this is a stable distribution with infinite variance.

Notice that for D/X we have infinite variance for every r, whereas for X/D we have 
f(x) ~ x−r and hence no moments of order ⩾r − 1 (they become infinite). This latter 
 distribution (X/D, with r arbitrary) is also of great importance in statistics, where it 
finds wide application as Student’s distribution (Student being the nom‐de‐plume of 
W.S. Gosset, who introduced it into statistics; see Chapter 12, 12.3.6).
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11

11.1 Introduction

11.1.1. Within the ambit of the logic of certainty, that is to say ordinary logic, valid 
 arguments are deductive arguments. Conclusions which are certain can only be arrived 
at by establishing that they are implicit in something already known. In other words, we 
arrive at the particular through the general. In doing so, however, it is clear that we can 
never enlarge our field of knowledge (except in the sense that certain features of our 
previously acquired knowledge, of which, perhaps, we were previously unaware, are 
now made more explicit).

The form of argument leading to conclusions that go beyond what is already known, 
or what has previously been ascertained, is different; this is the so‐called inductive form 
of argument. We have used ‘so‐called’ because, in fact, we must first of all discuss 
whether, and in what sense, it is legitimate to refer to it as a form of ‘argument’ at all 
(see Sections 11.1.3–11.1.4).

The problem of induction arises in every field and at every level: from the examina-
tion of arguments for and against various scientific theories, to those concerning the 
guilt of someone suspected of a crime; from methods for establishing, on the basis 
of some given data, the conditions for a specific kind of insurance policy, to methods 
of estimating some quality or other to the required degree of accuracy on the basis of 
measurements which are inherently imprecise.

It is particularly instructive to consider the process by which new scientific theories 
are formulated. The first step is an intuitive one, arising out of some particular set of 
observations, but then various modifications are made as a result of more up‐to‐date 
results, which suggest that this or that alternative theory provides a better explanation. 
In essence, it is always a question of analysing the current state of information by means 
of Bayes’s theorem (except that, in this rather open‐ended and imprecise context, such 
applications of the theorem are necessarily qualitative in nature). The most interesting 
feature of all this is, perhaps, the substantial scope which is left for the personal 
 judgements of individual scientists. In particular, it is interesting to note the prevalent, 
conservative aversion to any form of novelty; an aversion which some might regard 
as  an alarming symptom of the superstitious faith placed in the ‘scientific truths’ of 
the moment.

Inductive Reasoning; Statistical Inference
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There are two common fallacies which deserve special mention. One consists in 
believing that a theory can be disproved merely by discrediting some particular expla-
nation, consequence, or application of it. This is not so: it may well be the case that the 
particular explanation is not essential, or that the particular application breaks down for 
some other reason.1 The cursory manner in which new ideas are discussed is to be 
deplored, because such ideas, even though they may turn out to be false trails, usually 
contain within them the germ of something fruitful. In this respect, the second of the 
two fallacies is even more dangerous. This fallacy consists of leaving out of  consideration 
certain of the data or observations. In the logic of certainty this is quite legitimate: it is 
perfectly proper to start from some restricted set of hypotheses and to deduce the cor-
responding restricted set of conclusions (which are, in any case, correct). In the logic of 
probability this is not so (as is obvious – even without a consideration of likelihood, 
Chapter 4, 4.6.1 – if one considers the bias that would be introduced if all the evidence 
against some particular hypothesis were suppressed). It is important to note how easy it 
is to overlook this fact – albeit inadvertently!

A deeper analysis of the way in which scientific thought evolves, in all its many aspects, 
would make an extremely interesting study, although one fraught with difficulty. In actual 
fact, I do not know of any work along these precise lines, nor of any such attempt. It 
would need to be the history of a continuous series of conceptual U‐turns, occasioned by 
singular minds reflecting upon singular results, and initially greeted with hostility, 
incomprehension and suspicion, until, finally, the weight of favourable evidence and the 
resulting improvement in the theoretical formulations renders them acceptable.

We can quote a few examples of this. They may serve to give some idea of how a few 
of the main aspects of the problem should be tackled in the context of a synthesis that 
captures the essence of the whole. In the work of Weisskopf (which we have already 
quoted in the footnote to Chapter 8, 8.8.4), the decisive part played in every field by 
revolutionary conceptual innovations and changes is stressed and allotted its rightful 
place within an overall examination of the development of modern scientific concep-
tions. The intuitive basis of an idea and the way in which it develops as one searches for 
evidence supporting it is vividly described by James D. Watson in The Double Helix, 
Weidenfeld and Nicholson, London (1968), an autobiographical description of the 
events leading up to the discovery of the structure of DNA (the substance of which the 
genetic code and so on is made up). A critical analysis of the academic establishment’s 
attitude to ‘disturbing’ theories can be found in the article The scientific reception 
 system’ by Alfred de Grazia, in the volume The Velikovsky Affair: The Warfare of Science 
and Scientism, University Books, New York (1966), which he edited. Various considera-
tions closely bound up with the themes of this book are developed in a paper of mine, 
‘Remore e freni sul cammino della scienza’, appearing in Civiltà delle macchine (1964). 

1 Here are two examples. Wegener’s theory (of ‘continental drift’) has been rejected on the grounds that the 
mechanism he suggested by way of explanation is not appropriate. But this in no way excludes the possibility 
of the theory being correct (with the explanatory detail revised, under the assumption of some other 
mechanism). Velikovsky’s theory (concerning certain aspects of the planetary system) was considered 
absurd because, among other things, it implied that the temperature of Venus could be ridiculously high…. 
Such temperatures were, in fact, confirmed by Mariner II, and by other observations. This in no way proves 
the correctness of the theory (which is rather speculative – at least, in terms of current views) but it is 
sufficient to discredit the claims of those scientists who believe they have the right to make their superficial 
judgements, without even bothering to examine the numerous, careful arguments put forward.
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Everyone is familiar with the background to the struggle for the establishment of new 
ideas; from relativity theory to quantum physics, from the theory of evolution to that of 
Mendelian heredity. It would be instructive to obtain a critical compilation of all this 
material in order to ascertain whether, and to what extent, the situation (mutatis 
 mutandis) has improved since the time of Galileo.

Another aspect of the problem, and one more strictly in line with the subject matter of 
this work, and, in particular, of this present chapter, is that of examining these  processes 
of discovery and acceptance in the context of the probabilistic basis of the inductive 
argument. As we have remarked already, we are dealing with rather imprecise situations, 
so that any estimation of the probabilities involved could only be attempted by experts 
attempting to put themselves in the place of the scientists of the period in question, 
assuming only the knowledge available to them. It might be possible to do something 
worthwhile in this connection.2 There is a vast literature in this area but, in my opinion, 
it is inspired by considerations that are too abstract and formalistic (in particular, this 
applies to the work of R. Carnap and K. Popper).3 In contrast, the critical comments of 
H. Jeffreys in ‘Logic and scientific inference’ (which forms Chapter I of his book Scientific 
Inference, cited in the footnotes to Chapter 7, 7.5.5) are beautifully penetrating and witty. 
By means of a brilliant, imaginary dialogue between a logician and a botanist, he attempts 
to establish the inevitably uncertain and tentative nature of all scientific ‘truths’ or ‘laws’ 
and, for this reason, the necessity of making probabilistic logic the basis of every argu-
ment.4 However, the treatment stops short of actually using this idea, or examining it 
more deeply; neither does it mention the possibility of applying it to the grander prob-
lem of synthesis; that is, to the problem of choice among competing theories.

11.1.2. The range of problems for which the inductive argument can be carried out 
specifically as an application of the calculus of probability in a technical sense is more 
modest and concerns rather special problems arising in the context of an already 
accepted approach. We shall confine ourselves to these kinds of problems and, in par-
ticular, to the most basic and straightforward cases. We begin by identifying, rather 
crudely, three possible meanings, or forms, of induction; the second form is the one 
where we encounter the standard applications, and we shall concentrate on this one.

 ● First form. Here we obtain conclusions of a (more or less strictly) deterministic kind. 
From the realization that in some given number of more or less similar cases some 
given event has always occurred in precisely the same way, we are often led to expect 
that the same thing will continue to happen in the future, or even to believe that it must 
necessarily happen on account of there being some ‘law’. This is the most extreme case.

2 Research carried out by K. Pearson and G.M. Morant, in which they classify and evaluate all the 
ingredients which could be put forward in any discussion concerning the authenticity of Cromwell’s skull 
(and the conclusion reached is that, to all intents and purposes, it is authentic), might, in some sense, serve 
as an example which could possibly be extended to more interesting problems. See quotations and 
comments in B. de Finetti and L.J. Savage, ‘Sul mondo di scegliere le probabilità iniziali’, in Bibl. del Metron, 
C, Vol. I, Rome (1962), pp. 130–131 and 153.
3 A comparative and critical study of the various ideas put forward in this area can be found in a useful 
paper by Imre Lakatos; ‘Changes in the problem of inductive logic’, in The Problem of Inductive Logic, 
North-Holland Publ. Co., Amsterdam (1968).
4 See similar considerations put forward in the Appendix (especially Section 13).
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 ● Second form. From the realization that some given event has occurred in some given 
way almost always, or with some given frequency (e.g. 37 · 2%), we are often led to 
expect that in the future it will continue to happen almost always, or with that given 
frequency, as the case may be. This is the most typical example of statistical inference 
as it is commonly understood.

 ● Third form. From the knowledge of the behaviour of some given event in a collection, 
or sequence, of more or less similar cases in the past, we are often led to make some 
kind of forecast of the future. For example: that an apparent tendency for a frequency 
to decrease will continue; or that this will apply to the tendency of successes to group 
together in runs, or to alternate with failures; and so on. This can be regarded as the 
most general case.

We cannot claim that there is any really clear‐cut distinction among the three cases 
(especially between the last two), nor that the distinction between past and future has 
any real importance. The inductive argument can equally well be used to make 
 conjectures about behaviour at or before the time for which observations are available. 
The three categories should, therefore, simply be treated as a convenient way of 
 concentrating attention on certain aspects of the problem and for reflecting upon the 
questions raised.

If one were interested in the difficult and complex questions raised by considering the 
notion of indeterminism (marginal or static – with or without experimentation – or 
dynamic, using stochastic models), one might adopt a different classification (for exam-
ple, that suggested by J. Neyman).5 We shall not deal with these problems, however.

11.1.3. If by ‘argument’ we mean something based upon logic – the logic of certainty, 
ordinary logic – then it is clear that the ‘inductive argument’ is not an ‘argument’. Even 
in the first form of induction, where the conclusion (whether valid or not) has the logi-
cal meaning of a statement, it is clear that logic cannot provide any proof of its validity. 
Knowing that an event has never occurred in the past in no way excludes the possibility 
of its occurring in the future (even if we admit, in order to pre‐empt any hair‐splitting 
objections, that an event which has never been observed has, in fact, never occurred). 
So far as the other forms are concerned, there is always the objection that from the 
knowledge of the past (or, at least, of that which has already been observed or  ascertained) 
nothing can be logically concluded concerning the future (or, in general, concerning 
that which is as yet unobserved or unknown and which could be anything at all, even 
the unimaginable). Moreover, in these cases, the ‘conclusions’ themselves do not even 
have the logical status of precise statements (leaving aside the question of their validity).6

Within what ‘logical’ ambit, then, might it be admissible to assert that the ‘inductive 
argument’ is an ‘argument’? From our standpoint the answer is straightforward. It is 

5 Jerzy Neyman, ‘Indeterminism in science’, etc., in Jour. Amer. Math. Ass. (1960); see comments in  
B. de Finetti and F. Emanuelli, Economia delle assicurazioni, Vol. XVI of Tratto italiano di economia (edited 
by C. Arena and G. Del Vecchio), Utet, Torino (1967), pp. 17–19.
6 In the ‘third form’, we could also encounter statements of a deterministic kind, expressing, for example, a 
tendency to decrease or fluctuate according to some precisely stated law (like the exponential, or the sine 
curve, etc.) suggested by extrapolation. In this case, the second objection (that of imprecision) no longer 
holds; a third objection arises, however (or one might say that the first objection becomes more serious), 
because of the large degree of arbitrariness that attaches, in general, to the choice of an extrapolation formula.
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admissible within the ambit of probabilistic logic; that is, that of (subjective) probability 
theory, which, for us, is the only form of logic required over and above that of ordinary 
logic. In fact, in what follows (in this and the final chapter) we shall illustrate all the 
questions that arise in the context of induction by presenting them within the frame-
work of the subjectivistic–probabilistic interpretation. The vital element in the induc-
tive process, and the key to every constructive activity of the human mind, is then seen 
to be Bayes’s theorem.

11.1.4. Those who do not accept this point of view (and they are, unfortunately, in the 
majority) come up against a dead‐end and are in a different situation. If one accepts, in 
its totality, the subjectivistic interpretation, probability theory constitutes the logic of 
uncertainty; this complements the logic of certainty and the two together form a unified 
and complete framework within which to conduct any argument. Those who reject this 
point of view find themselves without any coherent foundation on which to build. 
Between the logic of certainty and probability theory – reduced now to a fragmentary 
collection of those aspects that can be provided with an objectivistic disguise – there is 
a void; any attempt to fill this must be without foundation and consists, in the final 
analysis, of empty phrases. A useless attempt is made to enlarge and extend the rôle of 
the calculus of probability (and the applications thereof – referred to nowadays by the 
Anglo‐Saxon title of ‘statistics’) in a manner that cannot be justified within the terms of 
the objectivistic assumptions and which, in any case, falls far short of the required gen-
erality, a condition met only by the subjectivistic interpretation. As is evidenced by the 
ever increasing proliferation of ad hoc methods for special cases and subcases 
(Adhockeries!), and the disputes to which these give rise within the ranks of the sup-
porters of objectivistic conceptions, all such efforts fall short of being either satisfactory 
or sufficient. The gap remains.

In order to be able to provide ‘conclusions’ – but without being able to state that they 
are certain, because they are undoubtedly not so, and not wanting to say that they are 
probable, because this would involve admitting subjective probability – a search is first 
made for words that appear to be expressing something meaningful, it is then made 
clear that they do not, in fact, mean what they say, and then, finally, a strenuous attempt 
is made to get people to believe that it is wise to act as if the words did, in fact, have 
some meaning (though what it is heaven only knows!).

As examples of such words, we are said to ‘accept’ or ‘reject’ an ‘hypothesis’, and to give 
an ‘estimate’ of a quantity which is not known precisely.

In order to be dealing with a concept rather than a mere word, we should require that 
an estimate be some value arising in the context of the probability distribution attributed 
to the unknown quantity: for example, the prevision, the median, or whatever, especially 
if selected in a manner appropriate to some specific decision. If probabilities and prob-
ability distributions are not mentioned, any reference to an ‘estimate’ is a nonsense.

Similarly, if we use ‘accept’ and ‘reject’ to mean that the probability attributed to some 
given hypothesis is large enough (or small enough) for us to behave, in certain respects, 
as if the hypothesis were true (or false), then again we would be dealing with concepts 
and not mere words.

It is convenient at this point to enter a further reservation, this time in connection with 
the use of the word ‘hypothesis’. What we have said above only makes sense if we are refer-
ring to an ‘hypothesis’ for which it is possible to verify directly whether or not it is true. 
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If, instead, the ‘hypothesis’ is somewhat of an abstraction, used solely as an interpretative 
device, suitable only for summarizing certain features of the problem, and depending on 
certain given facts, the latter neither requiring it nor capable of ruling it out, then it would 
be illusory, or, at least, suspect (as is the case when we ask whether ‘light is a wave or 
particle phenomenon’, or whether ‘a particular individual is intelligent’). Strictly speaking, 
one would need to replace such statements with a precise list of the verifiable, factual 
circumstances which one would accept as a substitute. If the ‘hypothesis’ expresses an 
opinion about probabilities (either implicitly or explicitly) then matters are even worse. As 
examples, we could take the following: ‘this coin is perfect, in the sense that p = 1

2 ’; ‘sun-
spots influence economic life (in the sense of there being a probabilistic correlation)’; ‘the 
fact that having been the cause of a car accident increases the risk of one’s being involved 
in other accidents in the future’. In these cases, it would be necessary to substitute formu-
lations – if any such exist – that could be expressed in terms of (subjective) probabilities 
referring exclusively to facts and  circumstances that are directly verifiable and of a com-
pletely objective, concrete and restricted nature.

11.1.5. The final sentence above re‐emphasizes something we have pointed out on 
numerous occasions. The objectivistic conception of probability and statistics, by 
 misguidedly attempting to make everything objective (including things which cannot 
be so), in fact has the opposite effect: instead of objectivity being granted its rightful, 
important place, it is discredited by being claimed in contexts where it is inappropriate. 
The same thing would happen if someone tried to raise the status of the property of 
‘rigidity’ by referring to all solid bodies as ‘rigid bodies’ (including those which are 
 elastic or plastic). The effect would be to deprive the notion of ‘rigidity’ of any meaning 
or applicability, even in those situations for which it was originally introduced and 
served a useful purpose, and where it needs to be free of any distortions of meaning, 
ambiguities or artificial interpretations.

In the philosophical arena, the problem of induction, its meaning, use and justification, 
has given rise to endless controversy, which, in the absence of an appropriate probabilistic 
framework, has inevitably been fruitless, leaving the major issues unresolved. It seems to 
me that the question was correctly formulated by Hume (if I interpret him correctly –   
others may disagree) and the pragmatists (of whom I particularly admire the work of 
Giovanni Vailati7). However, the forces of reaction are always poised, armed with reli-
gious zeal, to defend holy obtuseness against the possibility of intelligent clarification. No 
sooner had Hume begun to prise apart the traditional edifice, then along came poor Kant 
in a desperate attempt to paper over the cracks and contain the inductive  argument – like 
its deductive counterpart – firmly within the narrow confines of the logic of certainty.

The remainder of this work can be seen as an attempt to do away with such nonsense 
once and for all. In both the general philosophical context, and in the more technical 

7 See G. Vailati, Scritti (edited by Seeber), Florence (1911). Giovanni Vailati, a mathematician of the Peano 
school, was an original, profound and committed supporter of pragmatism in Italy (which had several 
features – which I, in fact, approve of – distinguishing it from the American version of Peirce, James etc.). 
The beginnings of a work on pragmatism (which was to be with Mario Calderoni, but was unfinished 
because of Vailati’s death) are published in two articles (CCX and CCXI) to be found in the above volume 
(pp. 420–432 and 933–941): ‘Le origini e l’idea fondamentale del pragmatismo’ and ‘Il pragmatismo e i vari 
modi di non dir niente’. See, also (CLIX, pp. 684–694), ‘Pragmatismo e logica matematica’.
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mathematical–statistical sense, we shall try to show that these questions, which are, in 
themselves, perfectly clear and straightforward, can be formulated in a perfectly clear 
and straightforward manner. All that is required is that we abandon the traditional 
 pursuit of creating for ourselves pretentious and misleading malformations.

11.2 The Basic Formulation and Preliminary Clarifications

11.2.1. In our formulation, the problem of induction is, in fact, no longer a problem: we 
have, in effect, solved it without mentioning it explicitly. Everything reduces to the 
notion of conditional probability (introduced in Chapter 4) and to the considerations 
that were developed there (particularly in Chapter 4, Section 4.14, albeit rather con-
cisely) concerning ‘stochastic dependence through an increase in information’.

What is required now is a more systematic study of this topic, oriented specifically 
towards the questions which presently concern us. These questions only differ from the 
general case – that of the ‘effect of an increase in information’ – insofar as the informa-
tion in our case may well be obtained by design, by means of observations, or  even 
through appropriate experimentation. However, this distinction is of no real importance.

11.2.2. By virtue of having observed, or having obtained the information, that some 
given complex A of events has occurred, what are we entitled to say about some future 
event E? (Or about some collection of future events? Or about events for which ‘future’ 
is replaced by ‘not yet known’?) The answer is … nothing! Nothing ‘certain’, that is, 
because nothing justifies our making any prediction about a future event E unless it is 
assumed to fall within the ambit of some never‐failing ‘laws’ (this might apply, for exam-
ple, to an eclipse of the sun; even in this case, however, if one wished to be rigorous it 
would be necessary to add ‘assuming no violent changes to the planetary system, outside 
of what previous observations could have led us to expect’, and, as a blanket qualification, 
‘unless the above‐mentioned laws are disproved’). And nothing can be said, in any objec-
tive sense, concerning probability or prevision. This means that no restrictions can be 
made: every prevision – that is, every evaluation of probability – can be made freely and 
is entirely a matter for the subjective judgement of the individual.

It is only within this process of subjective judgement that certain restrictions occur. 
These are the restrictions imposed by coherence, from which derives all that can legiti-
mately be said concerning ‘inductive reasoning’, and which essentially reduces to the 
theorem of compound probabilities (or to its corollary, Bayes’s theorem; the latter often 
being the more expressive form).

Suppose that P(E) represents the probability evaluated on the basis of our assumed 
information; that is that of knowing of the occurrence of the complex of events A 
( perhaps by means of certain observations). If H0 denotes the entire complex of initial 
information (see Chapter 4 Section 4.1), and P0(E) = P(E|H0) denotes the corresponding 
probability, then, in fact, P(E) = P(E|H0A), the probability corresponding to the original 
information plus that provided by the knowledge of A: Bayes’s version of the theorem of 
compound probabilities implies in this case that we must have

 P P P P P PE EA A E A E A0 0 0 0 0/ | / . (11.1)
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Remarks. There is a delicate point here which requires some attention. When we 
defined conditional probability (Chapter 4, Section 4.1), we stated that the H appear-
ing in P(E|H) means that this is the probability You attribute to E if ‘in addition to your 
present information, that is the H0 which we understand implicitly, it will become 
known to You that H is true (and nothing else)’. It would be wrong, therefore, to state, 
or to think, in a superficial manner, without at least making sure that these explana-
tions are implicit, that P(E|H) is the probability of E once H is known. In general, by 
the time we learn that H has occurred, we will already have learnt of other circum-
stances that might also influence our judgement. In any case, the evidence that 
 establishes that H has occurred will itself contain, explicitly or implicitly, a wealth of 
further detail, which will modify our final state of information and, most likely, our 
probabilistic judgement.

In the Appendix (Section 16), we shall present some further critical comments relating 
to this topic. In any case, it should always be borne in mind when dealing with a problem 
of inductive reasoning (and, were it not for fear of annoying the reader, we should 
 certainly stress this more frequently).

11.2.3. This, then, is what ‘inductive reasoning’ is all about. It is often said to reveal how 
it is that one ‘learns from experience’, and this is true, up to a point. It must be made clear, 
however, that experience can never create an opinion out of nothing. It simply provides 
the key to modifying an already existing opinion in the light of the new situation. The 
complex A (the experience) by itself determines nothing, nor does it provide bounds: to 
reach a conclusion – that is to determine a new (‘posterior’) opinion P – we require the 
conjunction of A with P0 (the initial, or ‘prior’, opinion). This should not be interpreted as 
the experience (represented by A) disproving P0, or forcing one to discard it in favour of 
P. On the contrary, the adoption of P in the new state of information is the only way of 
remaining consistent with what was adopted as the initial opinion in the initial state 
of information.8 So far as the terms ‘prior’ and ‘posterior’ are concerned, they simply sig-
nify ‘before’ and ‘after’ the acquisition of the information A. One should avoid giving too 
much weight to this, lest the impression is given that ‘prior’ refers to some mysterious 
circumstance of being ‘prior to any experience’, or to a state of ‘absolute ignorance’, or ‘total 
indifference’ and so on, or even that we are referring to different kinds of probability (as 
was the case with the old terminology relating to a priori and a posteriori probabilities).

Better still, remembering that there are two sides to every relationship, we could say 
that equation 11.1 merely reveals the possibility of evaluating P(E) in two different ways: 
directly, having in mind the final state of information, H0 plus A, or by evaluating P0(E) 
and P0(AE), thinking only in terms of our previous state of information H0. Coherence 
requires that the two answers be the same. If one tries it both ways and finds a differ-
ence, then the evaluations should be reconsidered, their reliability checked by each 
method, and adjustments made on this basis until they coincide. This is not a question 
of deduction (albeit within the ambit of evaluations of subjective probabilities) so much 
as an invitation to reflect on one’s own opinions in order to make them compatible with 
the requirements of coherence. We point this out explicitly, largely because  –  for 

8 Recall – or, preferably, re-read – the discussion given in Chapter 4, 4.5.3, and in Chapter 5, Section 5.9; 
see also Section 11.3.1 of this chapter.
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obvious reasons of simplicity – our own exposition will always follow the same path; 
first evaluating P0, subsequently observing A, and, finally, arriving at the conclusion P.9

11.2.4. One fact to note is that the explanation that we have given has only one 
form and is suitable for every application of inductive reasoning, with no exceptions. 
This will seem natural to those who have entered into the spirit of the subjectivistic 
conception of probability, and would scarcely be worth mentioning at all, were it not 
that certain other approaches consider statistical induction – usually referred to as sta-
tistical inference – as a case apart, and, indeed, as the only case in which probability 
theory finds any legitimate application.

According to these other approaches, statistical inference is the special form of 
 reasoning to be applied when a large quantity of related data is available. For example, 
when the frequency of some given phenomenon in a large number of trials is known, or 
when we know the percentages of people in a given population who possess certain 
characteristics, and so on. The conclusions that are put forward on this basis derive 
their overall justification from the fact of there being a large quantity of data. They are 
valid, therefore, insofar as the quantity of data is sufficient for them to be regarded as 
such, and not otherwise.

To use a classical form of terminology, we would be dealing with a property con-
nected with the existence of an ‘aggregate’. So long as we are dealing with just a few 
objects, they do not form an aggregate and no conclusions can be reached. If, however, 
we have a large number of objects, then we do have an aggregate and then, and only 
then, does the argument go through. If we add in objects one at a time, nothing can be 
said until the number of objects becomes sufficient to be considered an aggregate; then 
the conclusion appears (just like that? in passing from 99 to 100? or from 999 to 1000? 
…), as that which is not yet an aggregate at last becomes one. Now it will be objected 
that this version is a travesty: there is no sharp break of this kind, but rather a gentle 
transition. The nonaggregate passes through a to‐be‐or‐not‐to‐be‐an‐aggregate phase, 
inclining first one way and then the other, and only subsequently does it gradually trans-
form itself into a real and genuine aggregate. But this does not answer the original 
objection raised against the distinction, here put forward as being of fundamental con-
ceptual importance, between the ‘aggregate effect’ and the ‘effect of individual elements’. 
To recognize that a clear‐cut separation cannot exist, even though this admission may 
perhaps resolve certain of the apparent paradoxes, does not get to the real root of the 
problem and, indeed, serves to underline the weakness and the contradictory nature of 
the whole approach.

9 This last comment might help to reduce the impact of one rather obvious objection that springs to mind: 
if from P we require to trace back to P0, should we not trace back from P0 to some P00, and so on, ad 
infinitum? Where, then, would the very first evaluation have come from? The question is rather sophistical, 
since the procedure which we have given loses its force when carried out in situations that are too far 
removed from reality. On the other hand, it is well known – and we shall see examples of this – that even 
very vague prior evaluations are often sufficient to yield conclusions of more than adequate practical 
precision (and this holds, a fortiori, if we retrace from one ‘beginning’ to another). Eventually, perhaps, we 
should need to have recourse to an explanation based on ‘instinct’, or to experience in the form of genetic 
inheritance, or something of that kind (I do not want to insist too seriously on these suggestions relating to 
fields in which I am not expert). For a more detailed discussion, see B. de Finetti and L.J. Savage (1962).
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The problem is only resolved by acknowledging that distinctions of this kind have no 
significance. The conclusions one arrives at on the basis of a large quantity of data are 
not the consequence of some aggregate effect, but simply the cumulative effects of the 
contributions of the individual pieces of information. The modification of a prior 
 opinion into a posterior opinion through knowing the outcome of some given set of 
trials is precisely the same as that obtained by considering each item of data separately, 
and effecting the appropriate modifications (in general, minor) one at a time. This is so 
no matter whether the number of trials is large or small and is an important fact to bear 
in mind if serious misunderstandings are to be avoided. We are aware that we have, 
perhaps, given undue emphasis to this point, but the fact remains that the germs of such 
misunderstandings seem to permeate the very air we breathe.

11.2.5. In what follows, problems of the ‘statistical type’ will receive their due empha-
sis; they are undoubtedly interesting from a theoretical point of view, and certainly 
important so far as practical applications are concerned. They will, however, simply be 
a special case – or, more precisely, a collection of rather ill‐defined special cases –  having 
in common the following general characteristics: that past experience consists of a num-
ber of observations of ‘more or less similar facts’ (and often the case of interest is that of 
a large number of such observations). Of course, analogy per se is a rather  marginal and 
irrelevant factor but it often leads one to considerations of some kind of symmetry in the 
evaluations of probability, and this is what really concerns us (even though, from a 
descriptive point of view, it is often useful to mention the analogy in question).

As a more expressive statement of the way in which such an analogy is translated into 
probabilistic terms, we could say that the analogy leads us to make the conclusions 
depending only, or, at least, mainly, on how many ‘analogous’ events occur out of some 
given number, and not on which of them occur. This is intended to give a broad view of 
what we mean, however, and should not be interpreted in any literal sense.

It is within this kind of framework that we consider the problem of evaluating prob-
abilities on the basis of observed frequencies (and although we have touched on this 
topic before – see Chapter 5, Sections 5.8–5.9 and Chapter 7, 7.5.5–7.5.6 – we have not 
done so in a systematic fashion).

We shall soon see, however, that even in this case, the simplest, there is no unique 
answer. In fact, one is permitted – and, indeed, obliged – to choose any initial opinion 
from among those possible (and the latter will turn out to correspond to the set of func-
tions which increase from 0 to 1 over the interval [0, 1]). Conversely, we shall also see 
that, starting from an examination of the same series of results, it may be natural to 
express opinions which involve extending the whole approach, although the qualitative 
features originally advanced as being characteristic of problems of the statistical type 
remain unchanged (or are changed in minor respects only).

11.2.6. In order to give a more concrete presentation of the various possible attitudes 
to the way in which a given set of results should influence us, we shall examine a 
 particular example. Let us suppose that we have observed 50 events, E1, E2,…, E50, and 
that the results are the following:

1111001111 0111000111 1100001110 0000111011 1000000010,

where 1 denotes a success, and 0 a failure.
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What can we say on the basis of these results? What probability should we attribute 
to some other event, E51, or E312? Or to the proposition that there will be k successes 
(k = 0, 1, 2,…, 100) out of some other collection of 100 events (either a particular, preas-
signed collection, or just some collection chosen, in some specified sense, ‘at random’)?

It does not make sense to pose these questions in this abstract fashion. We have got to 
know what kind of events we are dealing with, and what information we have concern-
ing them, no matter how limited it may be. To say there is ‘no available information’ is 
too glib: were this actually the case, we would not even know what kinds of events we 
were dealing with (they would simply exist as Ei, i = 1, 2,…, 50). In such a case, there 
could be no possibility of considering their probabilities, nor any interest in doing so. 
Even in this case, however, in trying to figure out why the author has presented such an 
example, the reader would form some opinion, albeit tentative, and it would be this 
opinion that was relevant, rather than the so‐called state of ‘no available information’.

11.2.7. In real‐life examples, one will have some idea of which features or attendant 
circumstances might lead to different probabilities of success (in the sense that one feels 
inclined to treat as meaningful, and to take into future account, any significant departures 
from the norm in the frequencies for events possessing these features, or being dependent 
on these circumstances). If, for example, in considering the deaths resulting from an epi-
demic one finds significant differences for individuals with different blood pressures, or 
for those born at different times of the year, or on different days of the week, there will be 
a tendency to regard the differences as meaningful in the first case but not in the others.

Another circumstance, which may or may not appear as meaningful, is that of order. 
In our example, we assumed the events to be numbered from 1 to 50: in many cases, 
such a numbering is just a matter of convention and is completely irrelevant (registra-
tion numbers, passport numbers etc.), but in others it will correspond to chronological 
order and then may well be meaningful, in that it could reveal a tendency for the 
 frequency of successes to increase or decrease with time, or to oscillate. Moreover, in 
cases where the fact of two trials being consecutive is meaningful, study of the order 
may reveal a difference in frequencies for trials depending on whether they follow a 
success or failure (and one could easily consider other variants of this idea).

In any actual example, there are innumerable different factors that could be considered 
in this way, the vast majority of which would certainly be meaningless. But there may be 
other examples in which these same factors in various combinations will appear, to some 
extent at least, meaningful. In any case, this rather general summary finds its genuine 
expression only in the evaluation of the probabilities for all the constituents constructed 
on the basis of the events under consideration. Alternatively, if one prefers to look at it in 
this way (the two approaches are equivalent), we consider the probabilities conditional 
on every possible combination of results out of any group of observed events, these being 
taken over every possible combination of other events. Within this framework, every-
thing can be expressed in a complete form; this is true for all possible cases.

11.2.8. It is clear, however, that it would be very difficult to consider simultaneously all 
possible factors and, in any case, this would only cause confusion. In studying this topic 
from a theoretical viewpoint, therefore, one restricts oneself to considering certain rela-
tively simple cases in which only a small number of factors (and sometimes only one) 
are considered. In any practical application, of course, one must not lose sight of the fact 
that simplified schemes of this kind are likely to be inadequate in certain respects.
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We should also make it clear that the various schemes to which we shall make  reference 
(those of Bernoulli, Poisson and Markov, together with the exchangeable and partially 
exchangeable cases, contagion models and so on) should not be interpreted as fixed 
slots into which real applications are to be fitted. Still less should they be viewed 
 primarily as mathematical inventions, whose complications are merely evidence of 
mathematical playfulness, and which are devoid of interest so far as applications are 
concerned. They should be seen rather as simplified schemes serving as possible repre-
sentations of the one and only realistic ‘scheme’  –  that which includes all possible 
 distinctions in all possible combinations. The schemes we shall deal with are useful in 
practice, but, again we note, only as simplified representations of more complicated 
situations which themselves cannot be represented straightforwardly.

11.3 The Case of Independence and  
the Case of Dependence

11.3.1. Independence. We first consider the case in which the possibility of observed 
results influencing subsequent evaluations is specifically excluded. This is the case of 
independence, with which we are already familiar, and for which the problem of inference 
does not exist. The case would not concern us, therefore, were it not for the following 
two considerations, the first of which is of a technical nature. It turns out that the most 
convenient way of attacking problems of interdependence is to reduce them, if possible, 
to appropriate combinations of independent schemes (as we shall see in Section 11.3.5 
and subsequently). The second consideration is of a critical nature: the statement that 
the problem of inference does not exist in the case of independence, although obvious, 
often gives rise to misunderstandings (more precisely, it is misguidedly dismissed by 
those who have not properly understood what it actually says). What it says is that any 
possibility of ‘learning through experience’ is excluded – ‘ruled out by the principle of 
contradiction’ – if the original opinion is based on independence, because the latter, by 
definition, requires that the original opinion will not be modified on the basis of any 
observation of results.

Let us consider, as an example, the case of Heads and Tails, with the assumption that 
the two probabilities are equal (i.e. 1

2 ) and that trials are independent. The evaluations 
of probabilities for successive trials remain unchanged, no matter what results are 
observed (like, for instance, those considered above in Section 11.2.6, supposing them 
to be the results of the first 50 trials).

The same could be said in the case of a die if, for example, we considered the face ‘1’ 
as a success, and the others as failures, and assumed throws to be independent (we 
merely have p = 1

6  in place of p = 1
2 ). In the case of independence – that is if the original 

opinion is based on an assumption of independence  –  every possibility of ‘learning 
through experience’ is ruled out (it would not be consistent with the original opinion).

Someone might, perhaps, argue as follows (in the context of the example of 
Section 11.2.6). If the die gives me face ‘1’ 26 times out of 50 (instead of about 8 times), 
I am inclined to believe that it is ‘loaded’ (i.e. that it favours ‘1’, and perhaps there is a 
weight in the opposite face): it also happens that 18 times out of 26 ‘1’ is followed by ‘1’, 
and 16 times out of 23 ‘0’ is followed by ‘0’; I suspect that the way the die is thrown 
favours ‘repeats’, and this leads me to revise my original assumption of independence 
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and to drop it. Moreover, noticing that the number of times ‘1’ occurs in the five blocks 
of ten decreases from 8, 6, 5, 5 to 2, I am led to think that the loading which originally 
favoured ‘1’ was temporary and subsequently ceased to operate, so that the die is now 
perfect. Perhaps, if I continue, I shall notice a number of other things!

Now it may be that arguments of this kind are acceptable in themselves (this is a mat-
ter of opinion), but it is necessary that they be formulated correctly, so as to avoid any 
possibility of misunderstanding. Insofar as they seem to be in conflict with the previous 
assertion concerning the contradiction involved in changing one’s mind having assumed 
independence, we can deduce that either the form in which they are expressed, or the 
manner in which they are interpreted, is mistaken.

The mistake, in fact, is in referring to stochastic independence as if it were an ‘hypoth-
esis’ which the facts can ‘dispute’, enabling us, and possibly obliging us, to change our 
minds. If we are to be able to ‘change our mind’, the original opinion must be expressed 
in a form that is compatible with such a possibility of revision. Such an opinion could, 
at most, be a ‘first approximation’ to the case of independence, in that it might, for 
example, consist of a mixture of evaluations, most of which correspond to the case of 
independence (with some preassigned p), but some of which, although having little 
weight, correspond to various alternatives (like those mentioned for the above example).

It is only by admitting such alternatives that a ‘revision’ can take place; and, indeed, 
not simply by admitting their possible existence, but rather through their actual  presence 
in the original opinion, which, therefore, can no longer possess the property of independ-
ence. The so‐called revision – that is the passage from the original opinion to a different 
subsequent opinion –  takes place, in fact, as a result of outcomes that give rise to a 
strong likelihood for such an alternative: in other words, roughly speaking, if we suspect 
that the occurrence of a certain event should be attributed to an alternative explanation 
under which it would have a higher probability.

When discussing this topic previously (see Chapter  7, the first footnote to 
Section 7.5.8), we emphasized that one should speak of suspicious cases, rather than 
calling them ‘strange’ or ‘unlikely’, as is often done. The reason for this is the one we have 
just given, but it will be useful to provide further illustration, in order to clarify the 
contrast between our terminology and the terminology which we reject (not simply on 
the grounds that it is inappropriate but also because it leads to the construction and 
application of methods which have no proper foundation). We note that from a concep-
tual viewpoint the considerations which we have put forward hold completely  generally: 
our detailed concentration on the Bernoulli scheme – in particular the special case of 
Heads and Tails – is purely for the purpose of fixing ideas.

Those who think in terms of a ‘revision’ – or even a ‘disproof ’ – of the original opin-
ion, without having in mind, or referring to, any alternatives, could not regard what has 
occurred as ‘suspicious’, since the word is meaningless unless alternative explanations 
are admitted. Instead, it would be described, having in mind the original opinion, as 
“strange’, ‘unlikely’, ‘exceptional’, ‘very improbable’ or ‘very unexpected’.

More specifically (and, for convenience, we deal with the simplest cases), the circum-
stances which would characterize the cases ‘disproving’ the original opinion would be 
one or other of the following:

 ● the distance from the prevision; this ties up with hypothesis testing, for example whether 
or not something belongs to a ‘confidence interval’ (with some given ‘tail area’ 
 probability), or to the interval m ± 3σ, or something similar (see Chapter 12, 12.6.4);
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 ● the small probability of the case which has occurred;
 ● some observed peculiarity; for example, that all the 0 s come before all the 1 s, or that 

they alternate, or – should one happen to spot the fact! – that the binary sequence is 
the coding of some celebrated historical date.

These are circumstances that may turn out to be useful in practice; not in themselves, 
however, but rather if, and insofar as, they serve to strengthen more usual forms of ‘sus-
picion’ (like those regarding ‘cheating’, ‘malfunctioning’ etc.). With regard to ‘small prob-
abilities’, one should say immediately that the whole thing is rather ambiguous. Is it to be 
taken as referring to the probability of the particular sequence of 50 1 s and 0 s, or to the 
probability of the frequency; that is of all those sequences in which a 1 occurs 26 times?10

To speak in terms of objective circumstances, rather than suspicions relating to other 
alternatives (and to make use of criteria based upon such objective circumstances), 
means, as usual, that one is attempting to draw conclusions on the basis of a single 
 possibility, neglecting the necessary comparative possibilities.

Everyone is free to choose his prior opinion in whatever way he likes. The choice can 
only be made once, however. If I choose to base my prior opinion upon the assumption 
of independence, it means that I exclude, once and for all, any circumstance that might in 
future be pointed out to me as rather ‘strange’. I refuse to consider it as a possibility; that 
is as something capable of modifying my opinion. If the future occurrence of this ‘strange’ 
circumstance would, in fact, lead me to suspect ‘cheating’ (or whatever), then I should 
make it clear from the very beginning that my opinion is not based on the assumption of 
independence, but that it accepts the dependence deriving from admitting the possible 
suspicion (which, although negligible at the outset, could, under certain circumstances, 
come to the fore). If I omit to say this, then, at best, I have expressed myself rather super-
ficially (this might be excused, however, if I was aware what I was doing).

There would be no excuse, on the other hand, if a change of opinion was explained in 
a distorted fashion, by attributing it to the fact of experience having disproved the origi-
nal opinion, dictating its replacement by another. Nothing can oblige one to replace 
one’s initial opinion, nor can there be any justification for such a substitution. From a 
logical point of view – and, it might even be argued, from the ‘moral’ point of view – one 
would be adopting the same contradictory posture (or indulging in the same unfair 
subterfuge) as a person who regards himself as released from a promise to help a friend 
if a certain event occurs, given that the event in question has already occurred.

In order to retain the right of being influenced by experience, it will therefore be 
necessary to express an initial opinion differing from that of independence.

11.3.2. Exchangeability. Having abandoned independence, the simplest choice open 
to us is to continue to regard the order as irrelevant. Given n events, the probabilities 

h
n( ) that h of them occur (h = 0, 1, 2,…, n) are now arbitrary11 (and are no longer neces-

sarily those of the binomial distribution, as in the case of independence); however, the 

10 Not to mention the fact that in more complicated cases, or if one takes other circumstances into 
account, the ‘observed result’ (whatever it may be) always has an arbitrarily small probability if one describes 
it in a sufficiently precise way.
11 If, however, the events are at least potentially infinite in number, then there may be restrictions 
(see Section 11.4).
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combinations of h 1 s and n − h 0 s all have the same probability h
n

h
n( ) / . This is equiva-

lent to simply saying that all products of n events have the same probability h
n( ).12

In this case, the events are called exchangeable (the reasons for the terminology being 
contained in what we have already said): knowledge of the n results can only have an 
influence through the reporting of n and the frequency (i.e. n and h). whereas any other 
aspect connected with order will be ignored. We shall return to this topic shortly (in 
Section 11.4).

It is intuitively obvious that drawings from an urn with unknown composition are 
exchangeable (e.g. an urn containing an unknown number of black and white balls, with 
the standard method of drawing with replacement). The same applies to tosses of a 
possibly asymmetric coin and, more generally, to all those cases that are commonly 
referred to as ‘repeated trials with a constant but unknown probability of success’.13 It is 
less obvious but nonetheless true, as we shall see, that we still have exchangeability in 
the case of drawings without replacement, or with double replacement (the ‘contagion’ 
model; see Chapter 10, 10.3.5).

In the example we have been considering, the only significant fact is that we had h = 26 
successes out of n = 50 tosses. This can also be expressed by saying that the two numbers 
n = 50 and h = 26 are ‘sufficient statistics’ (i.e. they constitute an exhaustive summary of 
the data). In other words, so far as ‘learning from experience’ is concerned, it does not 
matter whether we observe the complete sequence, or whether we simply observe that 
n = 50 and h = 26; this is a consequence of the assumption of exchangeability.

11.3.3. Partial exchangeability. We obtain a somewhat less restrictive condition 
(although at the expense of some additional complication) by thinking of the events 
under consideration as divided into various classes (in order to fix ideas, we shall con-
sider two classes) and of exchangeability as holding within both classes. In other words, 
the probability that out of n = n′ + n″ events (n′ of the first class, n″ of the second) 
h = h′ + h″ occur (h′ of the first class, h″ of the second) is the same, no matter how the n′ 
and n″ events are chosen, and no matter which of them are among the h′ and h″ 
 successes. The probability of obtaining a total of h′ and h″ successes is h h

n n
,

( ),  and the 
probability of them occurring for a particular, preassigned sequence of events is that 
just given, divided by h

n
h
n . Obvious, trivial examples are that of exchangeability 

per  se (for which ω depends only on n′ + n″ and h′ + h″) and that of independence  
between the classes (within each of which there is exchangeability; ω is then the product 
of the h

n( ) and h
n( ) for the two cases). Actual cases of partial exchangeability fall into an 

intermediate category: put in a rather imprecise form, but one which conveys the 
 general idea, we have interdependence between all the events but a rather stricter one 
among those in the same class. This would be true, for example, of drug trials carried 
out on patients of both sexes.

12 In fact, it suffices to observe from equation 3.11 of Chapter 3, 3.8.4 that we have
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(11.2)

13 The terminology is incorrect (see Chapter 4, 4.8.3–4.8.4), but is expressive (and the meaning it suggests 
is essentially correct).
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In the particular case of events occurring in chronological order, the division into 
classes may depend on the result of the previous trial; in such a case we have the Markov 
form of partial exchangeability.

If one suspects that an outcome is influenced by the preceding result, then one would not 
initially regard all sequences having the same numbers of successes and failures as equally 
likely (in the example, this would be those with 26 1 s, and 24 0 s). Instead, the judgement of 
equal probability would apply to all those sequences having the same number of successes 
and failures following the occurrence of a 1 (18 and 8, respectively) and the same number 
(7 and 16, respectively) following the occurrence of a 0. We might expect some similarity 
with the case of a Markov chain with probability 18/(18 + 8) (about 70%) of a success follow-
ing a success, and 7/(7 + 16) (about 30%) of a success following a failure … (however, there 
are various reservations, as in the previous case, and these become more serious the more 
complicated the situation becomes). In any case, with the above assumption one requires 
n′, n″, h′ and h″ for an exhaustive  summary (n and h alone no longer suffice).

11.3.4. Other cases. Similar conclusions hold in the other case we mentioned in 
Section 11.2.7; that in which one suspects a progressive increase in one of the two prob-
abilities at the expense of the other (right from the beginning; recall that no suspicion 
can arise if it is not present initially). For example, we might suspect that under certain 
circumstances (for instance, a black ball being drawn) white balls may turn into black 
balls during a series of drawings with replacement from an urn of unknown composi-
tion. A study of the outcomes provides information concerning the composition of the 
urn if we consider the tendency for the frequency of white balls to decrease with time 
(this frequency being the only thing we can get hold of ). It also provides a basis for 
making conjectures about the past history – and hence about the future – of the unob-
servable process by which white balls are gradually turned into black balls.

The general case follows along the same lines as all the examples which we have 
 considered. Given an arbitrary prior probability distribution P0, which attributes  probability 
to each A E E En1 2  (where Ei  stands for either Ei or Ẽi, and n is arbitrary), the problem is 
solved by simply stating that, knowing A, the (posterior) probabilities are given by P, where

 P P PE EA A0 0/ . 

The extreme simplicity of this mathematical statement is, however, misleading. In 
 general, straightforward application of the method is precluded by the requirement that 
one provide the P0(A) directly for all A. This is only really feasible if the situation can be 
represented in terms of simple formulae.

11.3.5. Mixtures of distributions which assume independence. The straightforward case 
of independence is itself uninteresting; we have, simply, P0(EA) = P0(E)P0(A), and hence 
P(E) = P0(E) for all E which are defined in terms of ‘future’ trials (or, at least, do not 
depend on the observations A). As we mentioned in Section 11.3.1, however, it turns out 
that in a number of cases it is extremely useful to consider the possibility of expressing P0 
as a mixture of such distributions Pi: in other words, we take linear combinations

 P P P P P0
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with non‐negative coefficients ci
0 having sum equal to 1 (or limit cases thereof ). 

The  latter may take the form of infinite series, or of integrals; in either case, it is suffi-
cient to describe it as a P* for which, given any arbitrary ε > 0, there exist Ps having the 
form of finite linear combinations such that supE|P*(E) − P(E)| < ε.

It is easily seen that if P0 is a mixture, then so is any P to which it leads as a result of (arbi-
trary) observations A (the coefficients varying for different experiences, A). In fact, we have
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where c Kc Ai i i
0P ( ) (K = the normalization factor = 01/ ( )i ic AP ).

The expression in mixture form may correspond to an actual mixture, in which case there 
exist events, H1, H2,…, Hm (exclusive and exhaustive) such that the Pi represent probability 
distributions conditional on the Hi: Pi(E) = P(E|Hi). In other cases, where this does not apply, 
it may, nevertheless, turn out to be useful to proceed, formally, as if such events existed.

11.3.6. In the exchangeable case, if we think in terms of an urn of unknown composi-
tion, the Hi represent the events (or ‘hypotheses’) that the proportion of white balls is θi 
(and under such an hypothesis we consider the drawings to be independent and of con-
stant probability, pi = θi). If we think in terms of a biased coin, or of the Pólya urn scheme, 
objective circumstances of this kind (i.e. observable in principle, even though we cannot 
actually observe them) do not exist. However, we shall soon see (in Section 11.4.2) that, 
in the exchangeable case, P0 always has the form of a mixture. This will then permit us 
to argue as if the coefficients ci

0 and ci were the probabilities of events Hi, conditional on 
which we have independence and probability of success equal to pi.

11.3.7. In the Markov case (dependence on the preceding result), we can still reduce 
to mixtures by considering distributions Pi under which the trials are independent with 
probability pi  or pi , depending on the outcome of the previous trial.

In the third example (that of decreasing probabilities), it may or may not be possible 
to reduce to a mixture, depending on the way the initial opinion is stated. The statement 
considered previously does not permit us to do this. On the other hand, we do have a 
mixture of distributions if the latter are taken to be of the form

 Pi h iE f h , 

where the Eh are independent according to the Pi, and the fi(h) are arbitrary (e.g. e ih, if 
one requires them to be decreasing).

11.4 Exchangeability

11.4.1. We shall now consider the general notion of exchangeability and, in particular, 
exchangeable events and exchangeable random quantities. What we are considering, in 
fact, is the most fundamental and widely used form of statistical inference.
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The definition of exchangeability in the case of events has already been given, but we 
shall re‐express it in such a way as to include, also, the case of exchangeable random 
quantities. The definition is the following: for arbitrary n, the distribution function, 
F(.,.,…,.), of 

1 2
, , ,

nh h hX X X  is the same, no matter how the Xhi
 are chosen (in particular, 

F must be symmetric, because the Xhi
 could simply be permuted). More generally, every 

condition concerning n of the Xh has the same probability, no matter how the Xh are 
chosen or labelled.

We shall come across applications of exchangeable (and partially exchangeable) 
 random quantities in Chapter  12. For the time being, we shall restrict ourselves to 
establishing a particular property that we shall make use of in the special case of 
exchangeable events (a topic to which we shall return shortly).

Let us consider exchangeable Xh having finite variances and, in particular, we shall 
look at two large groups of such quantities. What we shall prove, roughly speaking, is 
that their arithmetic means, Y′/n′ and Y″/n″, are almost certainly equal (where Y′ and 
Y″ are the sums of the n′ quantities in the first group and the n″ in the second, respec-
tively). More precisely, we shall show that the square of their difference tends to zero in 
prevision as n′ and n″ increase. This gives us Cauchy convergence in mean‐square, and 
hence weak convergence, and a limit distribution F for the mean Yn/n of a large number 
of terms: Fn → F, where Fn(x) = P(Yn/n ⩽ x).

The proof is as follows (and is given under conditions that are less restrictive than 
those of exchangeability). We assume that the Xh have the same, finite, previsions and 
variances, m and σ2, and the same pairwise correlation coefficient, r.14

Expanding the square of n″Y′ − n′Y″, we obtain n′n″(n′ + n″) terms of the form XhXk 
with h = k, and the same number15 (but with the opposite sign) having h ≠ k. The 
 previsions are m2 + σ2 and − (m2 + rσ2), respectively, so that
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We could have set m = 0 at the very outset (it disappears in the formulation of the 
problem), but it is sometimes useful to have the formula available for m ≠ 0. This is 
particularly so in the case of exchangeable events, because P PE Eh h

2
1 and 

P(EhEk) = ω2(h ≠ k), and hence
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1 1
1 2 . (11.4′)

14 We remind the reader that if (at least in principle) the Xh are infinite in number then r ⩾ 0 (see 
Chapter 4, 4.17.5). So far as we are concerned, the Xh. must be infinite in number – or, at least, very 
numerous – and so r will always be positive – or, at worst, negative but very small (and 1 − r will be ⩽ 1, 
or just greater than 1).
15 The ‘number of terms’ is to be understood in an algebraic sense (i.e. counted as −1 if it has a sign 
opposite to that being understood).

Note that the two groups are assumed to be disjoint: if they had c terms in common, we have a tighter 
bound (as one might have expected). The factor n′ + n″ becomes n′ + n″ − 2c (i.e. 2c/n′n″ is subtracted from 
(1/n′) + (1/n″)).
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Returning now to the case of exchangeable events and thinking of them as a sequence 
(but one whose ordering is arbitrary and irrelevant), we can characterize them as a 
stochastic process with the same representation we used for Heads and Tails: all paths 
leading from the origin to some given point are equally probable. In this case, we shall 
speak of an exchangeable process.

For such a property to hold, it is sufficient that the probabilities ph
n( ) and ph

n( ) of 
steps of +1 or −1, respectively, when leaving a given point [n, h],16 depend on the 
vertex in question, but not on the path travelled in order to reach it, and that the 
probability of successive steps of +1 and −1 remains unchanged if they are reversed: 
that is p p p ph

n
h
n

h
n

h
n( ) ( ) ( ) ( )

 1
1

1
1 . This condition lends itself to an elegant geometrical 

interpretation. If, at each vertex, the probabilities of the next step are expressed as a 
vector (1, p − p) (where p ph

n( )) pointing at the barycentre (or prevision) of the 
 possible points of arrival, then the condition may be stated as follows: for any vertex 
[n, h] and the two following, [n + 1, h] and [n + 1, h + 1], the three corresponding vectors 
meet at a point (see Figure 7.2 of Chapter 7, 7.3.3). By induction, this condition is itself 
sufficient to ensure exchangeability (provided it holds at all vertices of the lattice).

As a function of the ω, we have
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Note that each path from the origin to [n + 1, h + 1] has probability h
n

h
n

1
1

1
1( ) / , 

whereas those paths coming from [n, h] have probability h
n

h
n( ) / .ph

n( ). Equation 11.5 
follows on comparing the two probabilities.

11.4.2. Some processes necessarily come to an end in a finite number of steps 
(for example, drawings without replacement from an urn containing N balls; if H are 
white, 0 < H < N, we have H

N( ) 1, and so we cannot continue with the h
n( ) for n > N): 

others can be considered as if they could be continued indefinitely.
All exchangeable processes that end after N steps are mixtures of the hypergeomet-

ric process. The mixtures over the possible cases H = 0, 1,…, N, with probabilities c0, 
c1,…, cN (H unknown, and perhaps chosen at random in some way or other), coincide, 
within the N steps, with every process that has, for t = N, the given distribution for YN: 
that is

 
P PY h N S h c h NN N h

N
h2 0 1, , , .

 

The idea is obvious: if the probabilities of passing through the various vertices of the 
vertical line t = N are made to coincide (by balancing the drawing), then, for any two 
process, all the probabilities relating to occurrences before time t (displayed on the left 
in the figure) also coincide. These latter probabilities are all well determined, since all 
the paths ending at a given point have equal probabilities.

16 See Figure 7.1 in Chapter 7, 7.3.2.
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More important, however, is the case of exchangeable processes, which can be 
 continued indefinitely. Clearly, those obtained by mixtures of Bernoulli processes, 
that is such that

 h
n

h
n h n h F1

0

1
d , (11.6)

are of this type. In the discrete case, or if a density exists, we have
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and
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n h n h f1

0

1
d . (11.6′′)

Conversely, it can be shown that every exchangeable process which can be continued 
indefinitely is a mixture of this form. In order to prove this, it is sufficient to refer to the 
previous case. For any given N, we know how to construct an exchangeable process 
coinciding (in 0 ⩽ t ⩽ N) with our given process. As we have seen, this can be achieved 
as a mixture of hypergeometric processes with N steps: it suffices that the urn having 
composition H/N (H white balls out of N) be chosen with the same probability as is 
attributed to the frequency H/N (= SN/N) in the given process. If

 F S NN NP /   

denotes the distribution function of the frequency in N trials, and Ber(N, θ) and 
hyp(N, θ) are used to denote, symbolically,17 the Bernoulli and hypergeometric 
 processes that result from drawing with and without replacement, respectively, from 
an urn containing N balls, H = Nθ of which are white, then our process is given by the 
mixture

 hyp  d .N FN,
0

1
 (11.7)

But we know that, as N → ∞, hyp(N, θ) → Ber(N, θ) and FN → F (see Section 11.4.1), 
so that, in the limit, the form given in equation 11.7 tends to that of equation 11.6. 
There would be no difficulty in providing a rigorous treatment but it seems more 
instructive to emphasize the basic idea and to give an intuitive understanding of the 
general validity of the mixture form (and in doing so, we have opened up the way for 
a rigorous proof ).18

17 We are not dealing with an abstraction, but rather with a convention of notation for indicating that in 
place of hyp(N, θ) we could put h

n( ), or any other probability (or prevision), whose value in our process will 
be given as a mixture by equation 11.7.
18 It can happen that by following through a sequence of logical steps one is forced willy-nilly to concede 
the truth of something without ever seeing what Federigo Enriques used to call the wherefore. I happen to 
believe that the wherefore is all important (a point I have repeatedly emphasized, and do not wish to dwell 
upon here). See, e.g., B. de Finetti, ‘Sulla suddivisione casuale di un intervallo: spunti per riflessioni’, in ‘Rend. 
Sem. Mat. e Fis.’, XXXVII, Milan (1967) (especially numbers 1, 2, 5 and 6).
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This representation in mixture form enables us to obtain, in the way we have  indicated, 
the modified distribution resulting from the knowledge of some given number of trials, 
yielding r successes and s failures, say. We find that F(ξ) must be replaced by F ( ), where

 d d .F K Fr s1  (11.8)

We still have a process consisting of exchangeable events, but now with a probability 
distribution modified in proportion to the likelihood, ξr(1 − ξ)s. In other words, 
 proportional to the ξ and (1 − ξ) deriving from the effect of each success and failure, 
respectively.

In particular, the probability for each individual trial, which is given initially by 

1
1( ) ( )dF  (i.e. by the abscissa of the barycentre of the distribution F), becomes, 

similarly, after r successes and s failures, the barycentre of F : that is to say,

 p Fr
r s r s. 1 d . (11.9)

11.4.3. We shall give the details for a very simple special case: that for which the initial 
distribution is uniform (ƒ(ξ) = 1 (0 ⩽ ξ ⩽ 1), F(ξ) = ξ). This is the classical Bayes–Laplace 
version, which corresponds to the idea that ‘knowing nothing about the probability’ 
obliges one to assume the uniform distribution as the ‘probability of the unknown prob-
ability’. We do not regard the uniform distribution as having any special status, and still 
less do we subscribe to these kinds of underlying assumptions; indeed, we regard them 
as meaningless and metaphysical in character. On the other hand, there is some value in 
considering a simple, clear example; especially one which provides us with an opportu-
nity to make some useful points. We have, in fact, already mentioned this case (in 
Chapter 10, 10.3.5 and 10.4.1) in relation to the problem of subdividing an interval, and 
in connection with Pólya’s urn scheme for contagion models.

In the subdivision of the interval [0, 1], the division point chosen first, P0, has, like 
any other division point, a uniform distribution. Knowing its position ξ, the event that 
any particular one of the other division points P1, P2,…, Pn, … falls to the left of P0 will 
have probability ξ, independently of the others. If ξ is not known, the probability that 
h out of some other n division points fall to the left of P0 is 1/(n + 1) for every h (i.e. all 
the frequencies are equally probable), because P0 is equally likely to be any one of the 
n + 1 ordered division points ‘chosen at random’. If we assume that we know there to 
be r out of n points to the left of P0, then the probability of a success with the next 
division point (i.e. that Pn+1 falls to the left of P0) is given by (r + 1)/(n + 2), because the 
n + 1 points divide the interval into n + 2 pieces, r + 1 of which are to the left of P0 (and 
all have exactly the same probability of containing the new division point – assuming 
that nothing is known about their lengths, etc). The probability distribution of P0, 
which is initially uniform, is no longer such if we know that out of a further n ‘random’ 
subdivision points r have fallen to the left of P0. It is, instead, the beta distribution 
ƒ(ξ) = Kξr(1 − ξ)n−r, because P0 is then the (r + 1)st point from the left out of n + 1 
‘ random’ points.

In this way, we have again displayed the likelihood factors, the equal probabilities 
of the frequencies, and also the value of the probability after observing r successes out 
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of n trials. In other words, we have found the barycentre of the beta distribution without 
evaluating the integral (which, in any case, would give the same result):
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(11.10)

This result can be expressed more appealingly by saying that, in the Bayes–Laplace 
case, the probability for any future trial is given by the observed frequency, modified by 
adding in two fictitious observations, one a success, the other a failure. This is Laplace’s 
celebrated ‘rule of succession’.

11.4.4. The same rule reveals, on the other hand, the identity of the Bayes–Laplace 
scheme and that of Pólya’s contagion model. In the latter, in fact, one adds to two initial 
balls, one white and the other black, as many white and black balls as there have been 
draw from the urn (the result of double replacement). After n drawings, r of which 
resulted in the drawing of a white ball, we shall have n + 2 balls in the urn, r + 1 of which 
are white. The probability of drawing a white ball is then (r + 1)/(n + 2).

This establishes that the probabilities are all identical to those of the previous case: in 
particular, the drawings are exchangeable events, the frequencies (out of a given number 
of drawings) are equally probable and so on. It follows that not only is 7/10(= (6 + 1)/
(8 + 2)) the probability of drawing a white ball at the 9th drawing after six of the previous 
eight have resulted in white (in which case, we know that at this point the urn contains 10 
balls, seven of which are white), but it is also the probability of drawing a white ball on any 
occasion for which we do not know the outcome, provided that, out of eight observed 
drawings, six (for instance, the 3rd, 8th, 19th, 52nd, 53rd, 100th) resulted in white balls 
and two in black (the 1st and 92nd, say). And this will hold for the 2nd drawing (even 
though it is certain that at that moment there were three balls in the urn, one of which was 
white), the 4th (even though there were then five balls in the urn, either two or three of 
which were white), the 20th, 50th, 200th or 1000th, or any other (although in determining 
the proportion of white and black balls the need for information becomes less and less). 
At the second drawing, if I only knew the outcome of the first (black), I would attribute a 
probability of 1

3  to white, there being certainly one white and two black balls in the urn. 
Although this is clear‐cut, the knowledge of the subsequent outcomes leads me to attrib-
ute a probability of 7

10  to obtaining a white ball in that same drawing. This is because the 
subsequent prominence of white balls leads me to assume that their percentage increased 
due to a number of drawings of white balls – including, perhaps, on the second drawing.

The resolution of what appeared at first sight to be a paradox is instructive, because it 
makes one aware of the traps that one can so easily fall into. In this way, one’s attention 
is drawn to the kinds of misunderstanding that may persist (due, in part, to an inability 
to rid oneself of past habits), even without one noticing, and even if one has thought 
carefully about what we have said so far, and has made an effort to adjust to our per-
spective and terminology. We have stated repeatedly that probability can only mean 
probability as evaluated by someone on the basis of available information. In this sense, 
the Bayes–Laplace and Pólya schemes are identical, because anyone who adopts a given 
prior probability distribution and has the same information (concerning the outcomes 
of certain events in the scheme) must evaluate the probabilities in the same way. 
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There may, however, be a temptation to regard these probabilities of ours as less  concrete 
or less valid than other things that might more justifiably be called true probabilities: for 
example, the actual and unchanging composition of the urn in the first case, or any of 
the momentary compositions in the ever‐changing Pólya scheme. On the contrary, 
these other things are either irrelevant, or even illusory. The composition of the urn 
(in the Bayes–Laplace sense) does make sense if we are actually dealing with drawings 
from an urn and is connected with the idea of probability conditional on the knowledge 
of such a composition. But this is irrelevant, because it is assumed that we do not 
have knowledge of the composition of the urn. Nevertheless, it may serve to highlight 
the interpretation of the distribution as a mixture.

On the other hand, to posit an imaginary urn for the purpose of giving a more concrete 
interpretation to the expression in mixture form, and to the symbols in that expression in 
mixture form, and to the symbols in that expression which replace the probability, and 
then, in this context, to refer to the ‘true, unknown probabilities’, is a distortion that 
leads to an immediate confusion of the issues. It would be equally illusory, and just as 
much a distortion, to imagine that behind every set of exchangeable events with an 
initial distribution judged to be uniform, there exists, or can be assumed to exist, a Pólya 
scheme whose probabilities, from drawing to drawing, are to be interpreted as a com-
position obtained as a result of drawing with double replacement. We have seen that 
changing the order changes everything, even when the above scheme actually exists.

The one genuine and real factor is the probability (albeit subjective and relative to the 
person making the evaluation – and, indeed, precisely because of this) that one evalu-
ates in the actual situation pertaining (and in future situations, with respect to certain 
hypothetical and as yet unavailable information, which will subsequently be obtained). 
If we step out of this ambit, we not only find ourselves unable to reach out to something 
more concrete, but we tumble into an abyss, an illusory and metaphysical kingdom, 
peopled by Platonic shadows.

11.4.5. The considerations we have put forward in the preceding sections should be 
carefully studied. Not only do they provide the necessary basis for a valid conceptual 
approach, but they also serve to give one a clear practical awareness of how, under 
conditions like those which characterize the case of exchangeable events, one can jus-
tify evaluating probabilities on the basis of observed frequencies for events that are, in 
some sense, ‘similar’. The safest and most down‐to‐earth approach consists, as always, 
in confining attention to just those particular events which are of interest to us, and, 
within this framework, considering the smallest number possible (without positing any 
infinite sequences, or any imaginary, fictitious underlying schemes). For example, if we 
have observed r successes and n − r failures, then, in the exchangeable case, the proba-
bility which we attribute to a success on any other trial is given by
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(as is easily verified). This shows that, provided the probabilities attributed initially to 
the two frequencies r/(n + 1) and (r + 1)/(n + 1) out of n + 1 trials do not differ greatly, this 
probability itself differs little from the frequency (or the modified frequency, as in the 
Bayes–Laplace scheme).
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11.4.6. If one uses the properties of the likelihood and the mixture form, a stronger 
conclusion can be obtained, although somewhat indirectly. After n trials, r of which are 
successes, the function ξr(1 − ξ)n−r, which represents the likelihood (and, in the Bayes–
Laplace case, the density), increases in the range 0 to ξ = r/n, where it attains its maxi-
mum, and then decreases as we move from r/n to 1. It vanishes at the end‐points 0 and 
1 (provided, of course, that 0 < r < n) and, if r and n − r are large, it is practically 0 every-
where except in the immediate neighbourhood of the maximum. We can see this clearly 
by observing that, as n increases with r n/  held fixed, one obtains, in the limit, the 
density function of the normal distribution, centred at the frequency, r n/ , and hav-
ing standard deviation

 1 / n  

(i.e. the same standard deviation that we have for the difference between the frequency 
and the probability for n events having constant probability ξ).

In fact, setting x n/ /1 , we have, asymptotically,
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To prove this, all we need to do is to take the logarithm of the penultimate expression.19 
Omitting the constant K, we obtain

 

n x n n x nlog / log /1 1 1 1
1

1

n x n x n O n

n x

1 1
2

1

1
1

2

2
3
2/ /

1 1
2 1

1

1
2

1

2

2
3
2

2

/ /n x n O n

x O n x1
2

21
2

.
 

This establishes directly that, in the Bayes–Laplace case, the posterior distribution 
(which is a beta distribution, with observed frequency  and very large n) is asymptoti-
cally normal. This conclusion holds more generally, provided that the limit distribution 
F(x) obeys certain qualitative conditions. More precisely, it is sufficient that a density 
exists and is ‘practically constant’ in the neighbourhood of ξ = , and that it is not too 

19 There is no mystery in the disappearance of the factor in square brackets: it does not involve x, which is 
the only thing we are interested in, and we have subsumed it in K.
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small in comparison with distant masses, which, if they were very large, would other-
wise give an appreciable contribution to the product, even though multiplied by the 
likelihood factor, which itself would be quite small. Such a condition – which we prefer 
to express in this rather vague form, because we are interested in ensuring a good 
approximation for large n, rather than for the asymptotic case of n → ∞ – can be sum-
marized (following L.J. Savage) by saying that the distribution F must be diffuse (in the 
neighbourhood of the point of interest).

11.4.7. The same argument also applies in cases where the scope is much wider (like 
those involving exchangeable random quantities rather than events), and it can be 
proved that the normal distribution arises quite naturally, and under relatively weak 
conditions even in these cases. The cases we are discussing are, of course, very different 
from those involving the limiting normal distribution that we discussed previously. 
There we were dealing with the distribution of a quantity defined as a function of a large 
number of other independent quantities (in particular, as the sum, but also in other 
ways); here, we are dealing with the form of the posterior distribution after a large num-
ber of items of information have been acquired.

From a conceptual point of view, the reason for the appearance of the normal distribution 
is clear (albeit in outline form) if one thinks of the genesis of the beta function in the exam-
ple we have considered. It arose as the product of a number of terms ξ and 1 − ξ, each of 
which was the likelihood factor corresponding to an observation (the outcome of an event). 
In the case of observations of random quantities, also (e.g. performing a measurement, 
which is affected by error, of the quantity in which we are interested, or of others of which 
it is a function etc.), under similar conditions the likelihood factor for the totality of such 
observations will be the product of the factors corresponding to individual observations:

 v v v vn1 2 . 

Let  denote the ‘maximum likelihood’ point: that is the point at which v(ξ) has an 
absolute maximum (which we shall assume to be unique; and we further assume that 
v(ξ) is much less than v , except in a neighbourhood of  small enough for whatever 
purposes we have in mind). If, in the neighbourhood of , we replace vi(ξ) by the linear 
approximation

 v v K ai i i1  

(with 
i

ia 0, in order that v 0), the product can be replaced by a polynomial for 
which we can repeat essentially the same form of argument as we used for the case of 
the beta.20 By including with the vi(ξ) the factor ƒ(ξ) = prior density, the product becomes 

20 In order to obtain the exact value of v , one must take into account v″(ξ), by writing
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the posterior density and the conclusions can be applied to it. If the contribution of this 
factor is irrelevant when compared with the others, then v(ξ) alone already provides an 
approximation to the posterior density. Both the latter and the likelihood have, asymp-
totically, the form of the normal density.

11.4.8. Similar considerations can be made in cases where something less restrictive 
than exchangeability is assumed (as in those cases which we pointed out for the sake of 
giving examples in Section 11.3.3). In some cases the conclusions are rather similar; in 
others they are markedly different. The starting point and the basic ideas remain the 
same, however, and are always clear and straightforward. We have merely to apply to 
these various cases the theorem of compound probabilities, or, more directly, Bayes’s 
theorem, which can be expressed simply in the form:

 posterior probability constant prior probability likelihood. 

We should point out that many of the methods used in statistics for purposes similar 
to those we have been considering do not follow the lines we have indicated. They are 
based upon a very different set of underlying concepts and we shall not make use of 
them, nor shall we advocate their use. They will, however, be mentioned in Chapter 12, 
which is devoted specifically to statistical applications, and where it will obviously be 
necessary to examine and compare a number of different viewpoints and the methods 
they give rise to, especially those which are widely used in practice. Above all, it will 
be  important to discuss the question of whether, and to what extent, those methods 
which have been introduced and justified on the basis of approaches which we consider 
invalid (i.e. non‐Bayesian) can, in fact, be seen as legitimate (i.e. Bayesian) by suitably 
reinterpreting their underlying assumptions.
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12

12.1 The Scope and Limits of the Treatment

12.1.1. A brief account of mathematical statistics within the confines of the final 
 chapter  of this book must necessarily offer a limited perspective. Nevertheless, its 
 inclusion serves a very definite purpose.

In Chapter 11, we have already encountered certain of the problems that fall within the 
purview of the subject matter of mathematical statistics. Specifically, we  examined 
applications of inductive reasoning based on statistical data; that is, data  involving a 
number of observations (possibly a large number) that are, in a  certain sense, similar to 
one another. We have also explained the Bayesian approach to such  problems (an 
approach which constitutes an integral part of the subjectivistic conception), noting 
that a unified coherent structure cannot be maintained if this is abandoned in favour of 
other approaches involving a variety of more or less  empirical ‘ad hoc’ methods.

In this chapter, we shall attempt to give a more explicit account of the problems with 
which mathematical statistics is concerned, and of the implications, both for these 
problems and more generally, which flow from the adoption of one or other of the com-
peting points of view.

12.1.2. In addition to the strictly probabilistic aspects, with which the previous 
 considerations are concerned, we shall have occasion to examine other topics relating 
to decision theory. There are two basic reasons for this and they correspond to two 
different questions that can be posed within the same framework.

The first of these concerns applications where the entire enterprise is more or less 
explicitly geared to arriving at a decision. Obvious examples of this are batch testing, or 
quality control, performed on a sample of a certain product in order to decide what to 
do with the rest of the stock (whether or not to reject it), or how to produce it in an 
optimal fashion (whether or not process parameters need adjusting) and so on. Although 
one does not always have such immediate actions in mind, it could be said that there is 
always some practical purpose for which one is somehow seeking guidance.

The second reason may or may not be relevant, depending on the particular applica-
tion: more precisely, it depends on whether or not one is able to experiment. If this 
is possible – that is if one has certain choices regarding the way in which observations 
are to be obtained  –  then there is an additional dimension to the problem, because 
this choice is itself a decision and must be made in the most appropriate way. What is 
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appropriate will in this case, of course, depend on the final decision, itself dependent 
on  the outcome of the experiment. More precisely, the whole question of what is 
 appropriate needs to be set in the context of the theory of compound decisions; 
a framework including both decisions concerning the experiment to be performed and 
the final decision to be taken after the results of the experiment are known.

12.1.3. General issues will be dealt with in a somewhat summary fashion in what fol-
lows, and most of the discussion will centre around specific examples. In this way, we 
hope to provide a straightforward account that will make best use of the limited space 
available to use. The examples will, in fact, involve some of the most important and 
commonly occurring cases, and so, in a sense, they do provide a general perspective.

12.2 Some Preliminary Remarks

12.2.1. The cases that are usually considered in mathematical statistics are those which can, 
in various ways, and in a somewhat loose sense, be regarded as generalizations of the case 
of exchangeable events. This is in the nature of an aside, however, and simply provides a 
convenient reference to, and reminder of, the contents of the previous chapter: in fact, in 
the standard terminology of mathematical statistics one never comes across any reference 
to exchangeability. In order not to introduce a further difficulty into the task of comparing 
the various viewpoints, we shall conform to standard usage in this regard. Before doing so, 
however, we offer the following preliminary clarification of the approach we shall adopt.

We have seen (in Chapter 11, Sections 11.3 and 11.4) that the notions of exchangea-
bility and partial exchangeability can be reduced to that of conditional independence 
(albeit sometimes in a merely formal sense). More precisely, we have seen that the prob-
ability distribution in such cases is always a mixture (i.e. a convex linear combination) 
of distributions representing independence. If to each case of independence there cor-
responds an objectively defined ‘hypothesis’ – like, for example, the proportion of white 
balls in an urn of unknown composition – then the mixture has an objectively meaning-
ful interpretation. Where this is not the case, the representation is merely formal (as, for 
example, in the case of a biased coin). There is, however, no difficulty – apart from that 
of a conceptual nature – in dealing with such ‘hypotheses’ in these cases as if they were 
objectively meaningful: for example, one might refer, quite improperly, to ‘the hypoth-
esis that the unknown probability of obtaining Heads with the bent coin has the value p’ 
On the other hand, this pseudo‐interpretation could always be treated as an asymptotic 
interpretation of a property that can be defined in a finitistic way by referring to 
 ‘frequency in a large number of trials’ instead of to ‘unknown probability’.1

1 We observe that although the present approach may, at first sight, appear to be very similar (or even 
equivalent) to that based on ‘limit-frequency’, there is, in fact, a great deal of difference. We in no way 
assume the existence of any limit to which the frequency Yn/n must tend (either with certainty, or in some 
probabilistic sense – like weak, mean-square or strong convergence and so on). Nor do we utilize any 
probabilistic form of Cauchy convergence (Chapter 6, 6.8.7), even though this holds (see Chapter 11, 11.4.2) 
under the assumption of exchangeability (it does not define a ‘limit random quantity’ and, in any case, 
requires an infinite number of ‘trials’). We base ourselves solely on the frequency Yn/n of successes in the 
trials actually considered, whatever they may be, and however many there are, and on the fact that their 
distribution Fn (the probability distribution of Yn/n according to the evaluation made at the beginning of the 
trials) provides an approximation (which improves as n increases) to the limit distribution F, whose 
existence is therefore established (and this is the only thing we need!).
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We shall therefore adopt, in line with our previous remarks, the standard practice of 
talking in terms of ‘hypotheses’, irrespective of whether these exist objectively, or merely 
formally (in which case, they might be interpreted, if at all, in the asymptotic sense given 
above). Within this framework, the Bayesian approach consists in considering an initial 
distribution of probability among these hypotheses, this distribution being modified as 
new information becomes available.

12.2.2. The enormous range of possible applications might lead one to expect a large 
number of different theoretical models. On the other hand, if one thinks in terms of the 
basic simple forms of representation, the possibilities are more limited. (Indeed, one 
might argue that from a Bayesian point of view there is only one form of the problem since 
everything reduces, in the final analysis, to an application of Bayes’s theorem.) In fact, 
those cases which form the bulk of mathematical statistics can probably be reduced to one 
or other of the two forms already mentioned: exchangeability or partial exchangeability. 
There is a meaningful distinction to be drawn between these two cases and, indeed, par-
tial exchangeability embraces a wide range of possible deviations from the exchangeable 
case. Moreover, within the two categories there are a number of problems of detail and, 
depending on the field of events under consideration, these may present various levels of 
difficulty (without there necessarily being any great conceptual difficulties).

Exchangeability and partial exchangeability can also arise in the context of multi‐
events in general (as we mentioned in Chapter 11), as well as for vectors (r‐tuples of 
random quantities), functions,…, and random elements of any space whatsoever.

What is important in these cases is not so much their actual form, or that of the space 
to which they belong, but rather the kinds of ‘hypotheses’ that are assumed; that is the 
corresponding distributions. There are three main distinctions worth making in this 
respect: the discrete case (involving a finite or countable set of hypotheses); the para-
metric case (involving a set of hypotheses which can each be represented in terms of a 
fairly restricted set of parameters; i.e. by a vector in a parameter space whose dimension 
is not too large); the nonparametric case (where either the individual hypothesis cannot 
be represented in terms of a finite number of parameters, or, alternatively, the number 
of parameters involved is prohibitively large).

Similar distinctions can be made in the case of forms of representation required for 
partial exchangeability (and we shall shortly give a more precise account of these).

12.2.3. In presenting the mathematical development of these ideas, we shall normally 
deal with problems involving random quantities in the parametric case; in particular, 
with just one parameter. This is the most straightforward and meaningful case, and 
hence the most convenient for illustrating the mathematics. It will be immediately 
 obvious, however, that our treatment is completely general, provided the expressions 
given and the comments made are interpreted in an appropriate manner.

Specifically – to use what we regard as the correct terminology – we shall be dealing 
with a collection of exchangeable random quantities Xh (see Chapter 11, Sections 11.3 
and 11.4). These can be represented in precisely the same way as we saw earlier in the 
case of exchangeable events: in other words, they can, in a formal sense at least, be 
thought of as ‘independent conditional on some given set of hypotheses’. More pre-
cisely, each ‘hypothesis’ indexes a distribution and we assume that, conditionally, ‘all 
the Xh have this same distribution, and are stochastically independent of one another’.
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This implies that their joint distribution is a mixture of products of individual factors 
(corresponding to the case of independence). As we remarked earlier on, we shall take 
this representation as our starting point; the interpretation in terms of exchangeability 
then becomes merely a preliminary clarification.

We shall follow the usual practice in mathematical statistics and work in terms of 
probability densities (for a justification of this, see the remarks in Section  12.4.3). 
Expressed mathematically, our basic assumptions then become the following:

 ● there exists a set of ‘hypotheses’, a general element of this set being denoted by θ 
(a point in the hypothesis space); in particular, we shall first consider the case where 
each hypothesis can be represented by a single real‐valued parameter θ;

 ● conditional on each hypothesis θ (i.e. on the value of θ for the case in question), all the 
Xh have exactly the same distribution, that is the same density f(x|θ), and are stochas-
tically independent; this implies that the joint density pm(x1,…, xm|θ)2 for m of the Xh 
(no matter how they are chosen or labelled) is given by the product of the densities

 p x x x f x f x f xm m m1 2 1 2, , , | | | | ; 

 ● over the set of hypotheses we have prior probability with density π0(θ); in the case we 
are considering, we have a non‐negative function of θ such that

 
0 1d .

 

We note that this latter assumption is the hallmark of the Bayesian approach, whereas 
other approaches attempt to do without it. We shall develop our treatment within the 
Bayesian framework but, as we proceed, we shall discuss the techniques that are used by 
those who eschew the use of ‘prior probabilities’.

It follows immediately from these assumptions that the marginal (prior) distributions 
for any individual Xh, or for m of them, are, expressed as densities, given by

 f x f x0 0| ,d  (12.1)

 

p x x x p x x x

f x f x f

m m m m
0

1 2 1 2
0

1 2

, , , d, , , |

| | xxm | .0 d
 (12.2)

Here, and elsewhere, it is to be understood that the integrals are to be taken over the 
entire range of the distribution (and there is no harm in thinking of this as the whole 
real line, since any range where the density is zero will give a zero contribution). Note 
that, if we interpret the quantities involved in an appropriate manner, these expressions 
apply equally well to any abstract spaces (and, in particular, to the case of several param-
eters, where θ represents a vector).

From the point of view of interpretation, note that f0 and pm
0  give the previsions of f 

and pm if the latter are considered as functions of the random quantity θ. Also note that 

2 The reason for using superscripts will become clear in Section 12.2.5. Note that ƒ is a special case of pm 
for m = 1 (ƒ = p1, and, in what follows, f pn n

1, etc.). Usually, however, we shall use ƒ in preference to p1 in 
order to make the case m = 1 more immediately distinguishable, and also to avoid the superscript.
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pm
0 , like pm, is a symmetric function of the xh (in line with our original assumption of 

exchangeability).

12.2.4. It is equally straightforward to derive expressions, similar to the above, for the 
evaluations conditional on knowledge of the values of any of the Xh, or of any n of them. 
We shall denote these random quantities by X1, or X1, X2,…, Xn, partly for convenience 
and partly to fix ideas for the case in which we observe them in chronological order (and 
although this might be useful, the reader should remember that it is not an essential 
part of the argument). The choice of which particular Xh (or set of them) we are inter-
ested in calculating the conditional evaluation for is equally irrelevant and the reader 
should again realize that we denote these by

 X X Xn n n m1 2, , ,  

purely for convenience.
We shall see, in fact, that the evaluations conditional on the knowledge of the values 

of the first n of the Xh (which we shall denote by fn and pn
m) can be expressed in essen-

tially the same form as the f0 and pm
0  above (the special cases corresponding to n = 0; i.e. 

the initial evaluations, prior to any knowledge of the Xh). In fact, it turns out to be 
 sufficient to determine the distribution n nx x x| , , ,1 2

3 for the parameter θ, con-
ditional on the values X1 = x1, X2 = x2,…, Xn = xn, and to substitute this in place of π0(θ) 
in the expressions for f0 and pm

0 . Let us first see this for the case n = 1.
After having observed the value of any one of the Xh, X1 = x1, say, the probability 

 distribution of the parameter (or, more accurately,4 the distribution ‘conditional on the 
hypothesis X1 = x1′) becomes

 

1 1 0 1

1 0 0 1
1

| |

| .

x K f x

K
f x f xd

 (12.3)

This is a straightforward application of Bayes’s theorem, or, if one prefers, it is sufficient 
to observe that the joint density for (θ, X1) is given both by 0 1f x |  
and by f x x0 1 1 1| .

It follows immediately that

 f x x f x x1 1 1 1| | | ,d  (12.4)

 p x x x x p x x x xm m m m
1

2 3 1
1

2 3 1
1 1, , , | , , | | .d  (12.5)

12.2.5. Before we go on with our development, we need to make a comment about nota-
tion. The use of superscripts for the x (xh rather than xh) is necessary in order to distinguish 
the use of the values xh of Xh as ‘names of coordinates’ for the distribution of Xh (as yet 
unknown, or considered as unknown), from the use of the xh as observed values (or values 

3 N.B. For the sake of brevity, we shall sometimes write this as πn(θ) omitting any explicit mention of 
x1, x2,…, xn (which must of course be understood).
4 More accurately’ by virtue of what we said in Chapter 11, 11.2.2 (and what we shall say in Section 6 of the 
Appendix).



Theory of Probability: A Critical Introductory Treatment452

assumed to be known). The practical effect of this can be observed in the formulae, where 
superscripts precede the vertical bar and subscripts follow it (except when rôles are reversed, 
as happens during the application of Bayes’s theorem; see equations 12.11 and 12.11)). In 
the case of something like f1(x|x1), it is clear that it would be superfluous to write f1(x2|x1), 
because the superscripts are only useful for distinguishing between the xh when there is 
more than one of them. For a single (generic) coordinate, it is sufficient to denote it by x.

12.2.6. The expressions for f1 and pm
1  (and we recall that the former is a special case 

of  the latter; f p1 1
1) can be rewritten in a different form, so as to show up certain 

interesting features more clearly:
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 (12.6)

 

p x x x x K p x x x f xm m m m
1

2 3 1
1

2 3 1
1 0, , , | , , , | | d
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d

 (12.7)

In this way, we emphasize the fact that f1 and pm
1  are mixtures of ƒ and pm, with ‘weights’ 

as given in square brackets. Alternatively, we could remove the separation between fac-
tors in x1 and those in xi (i = 2, 3,…, m + 1) and write instead

 

f x x K f x f x

Kp x x
p x x

f x
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d

,
, 

,
 (12.8)

or even

 
f x x f x

f x x
f x1 1 0

1 1

0 1
|

|
. (12.9)

In this way, we directly emphasize the interpretation in terms of the theorem of com-
pound probabilities and Bayes’s theorem.

Proceeding in a similar fashion, we can derive the more general result
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In order to derive a form analogous to that of equation 12.9, that is
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p x x x f x x x x
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m

1
2 3 1

1
0
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, , , |
| , , ,, , , 

f x0 1
, (12.11)

we must introduce the fm for m > 1; the result is then immediate.
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12.2.7. It would have been perfectly straightforward, and more in line with the 
approaches more commonly adopted in statistics, to have considered right away the 
distributions conditional on n values,

 X x X x X xn n1 1 2 2, , , , 
instead of on just one. Our main consideration in starting off with the case n = 1 is that 
it enables one to bring out the fact that the effect of n observations is simply the com-
bined effect of considering them one at a time, rather than some magical consequence 
of there being enough of them to be ‘statistically’ relevant.

The probability distribution of the parameter θ, given the observed values x1, x2,…, xn, 
is given by

 

n n
n

nx x x K p x x x
K f x f x

| , , , , , , |
| |

1 2 0 1 2

0 1 2 f xn | ,
 (12.3′)

where
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As we remarked earlier, it is sufficient to replace π0 by πn in order to obtain the 
 distributions for one of the Xh, or for m of them:

 f x x x x f x x x xn n n n| , , , | | , , ,1 2 1 2 d  (12.4′)
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The last four expressions include all the others as special cases: more precisely,

equations 12.5′, 12.7′, 12.10′ and 12.11′ give for general n and m, what
equations 12.5, 12.7, 12.10 and 12.11 give for n = 1 (with m arbitrary), and
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equations 12.4′, 12.6′, 12.8′ and 12.9′ give for m = 1 (with n arbitrary) and
equations 12.4, 12.6, 12.8 and 12.9 give for n = m = 1.

The interpretations are identical to those that we gave in the simplest case (i.e. that of 
n = m = 1) and, when contemplating extensions to cases that are more complicated (inso-
far as the formulae are concerned, anyway), it may be useful to bear this case in mind.

Given x1, x2,…, xn, the likelihoods for θ and x are

a) 
h

hf x | ,( )as a function of 

b) f x f x x
h

h| | ( ),0 d as a function of

respectively. In fact, any function differing from (a) by a factor independent of θ, or 
from (b) by a factor independent of x, could be taken as the respective likelihood.

12.2.8. We now turn to the case of ‘partial exchangeability’. The account we shall give 
will be even shorter than the above and we shall rely on the examples to clarify our 
interpretation and approach to the problem.

In terms of our formulation, this case differs from the previous one in that, condi-
tional on each of the ‘hypotheses’ characterized by θ, the Xh are still stochastically inde-
pendent, but now may have different distributions. The latter depend not only on the 
parameter θ, but also on certain observable quantities yh, which relate to the Xh. Like θ, 
y may be real‐valued, or a vector, or whatever (irrespective of the form of θ).5 In order 
to keep the presentation on a simple level, we shall take y to be real‐valued (the general 
case presents nothing new from a conceptual viewpoint).

Formally, instead of starting from f(x|θ) we consider f(x|θ, y). So far as the prior distri-
bution for θ is concerned, nothing changes; we begin, as before, with some π0(θ). The 
distribution 1 2

0 , ,( , )m mp x x x  (knowledge of which enables one to derive everything 
else) will, however, also depend on the values that y takes for each of the Xx, X2,…, Xm, 
and has the form

 
p x x x f x y f x y f x ym m m

m0
1 2 1

1
2

2 0, , , d| , | , | , , (12.12)

where yh corresponds to Xh. If we wish this to be made explicit, we must write the left‐
hand side as

 p x x y ym m
m0

1
1, , | , , . 

On the other hand, if we do make systematic use of this explicit form the expressions 
become rather cumbersome – particularly those which are already complicated, even 
without this additional detail.

The following are intended as examples of the kinds of yh that might be observed6 and 
considered as possibly influencing the distribution of Xh: the temperature at the time at 

5 In other words, one could be a vector and the other a real number, etc.
6 See the remark at the end of Section 12.3.3.
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which the experiment yielding Xh took place; the age of an individual whose reaction to some 
given drug is measured by Xh; the precision of the instrument which performs the measure-
ment giving Xh; and so on. We shall shortly give an example involving the latter possibility.

12.3 Examples Involving the Normal Distribution

12.3.1. Given that the normal distribution is widely used (and somewhat abused) in 
statistics, it is natural that the most familiar problems of inference are those which 
involve this distribution. The prevision m and the variance σ2 suffice to characterize 
the distribution, which is usually denoted by N(m, σ2). The density, as we already know, 
is given by

 
f x x m1

2
1
2

2 2exp ./
 

By far the most important case is that in which m corresponds to the unknown 
parameter θ (while σ2 is known), but we shall also deal with the opposite case (θ = 1/σ2, 
m known) and with the case in which both parameters are unknown (θ is the ‘vector’ 
(θ1, θ2), θ1 = m and θ2 = 1/σ2).7 On the basis of these examples, all under the assumption 
of complete exchangeability, we can discuss variants corresponding to partial exchange-
ability. The simplest such variants are obtained by replacing the assumption ‘σ2 known’ 
(or ‘m known’) by ‘ = y’, known for each Xh, but possibly different for different h’.

12.3.2. The case where m is unknown. This is, above all, the case considered in the 
theory of errors (experimental or observational) as applied in astronomy geodesy, phys-
ics and so on. What is unknown is the true value of the quantity that is being measured; 
that is θ = m. The accuracy of the instrument (as represented by σ2) is assumed known 
and the distribution of the observed value is assumed to be N(m, σ2); that is a normal 
distribution centred at the true value and having the given precision.

We have, therefore,

 
f x K x| exp / ,1

2
2 2  (12.13)

and (apart from the constant factor K) this is the likelihood for θ given by an observa-
tion x. The likelihood given by n observations x1, x2,…, xn is

 h
h

h
hf x x| exp .1

2 2
2

 

7 In the terminology used in the theory of errors, the reciprocal 1/σ of the standard deviation is called the 
precision, and the reciprocal 1/σ of the variance is called the weight (although sometimes a different unit of 
measure is used; e.g. precision 1/√2σ, weight 0

2 2/ , where 0
2 is chosen as appropriate for the problem 

under consideration). It might seem rather unnecessary to have four terms available, but this is not entirely 
the case.

We shall take the weight σ−2 as the parameter θ, instead of the more customary variance, σ2, since this 
turns out to simplify the formulae.
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Noting that
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where x n xhh1/  the mean of the xh, we see that the likelihood can be rewritten in 
the form

 
exp .n x

2 2
2  (12.14)

In other words, it has the same form as the likelihood of a single observation equal to 
the mean x , and with standard deviation σ/√n (i.e. reduced in the ratio 1 to 1/√n, which 
is equivalent to precision increased in the ratio 1 to √n, variance reduced in the ratio 1 
to 1/n, weight increased in the ratio 1 to n).

The posterior distribution for θ is therefore given by

 
n K n x0 2

2

2
exp . (12.15)

Since the likelihood is maximized for θ = x  and decreases as we move away from this 
value (the decrease being sharper for larger n), the posterior distribution concentrates 
around x. In particular, if the prior distribution is taken to be normal, N(m0, 0

2), say 
then the posterior distribution is also normal. More precisely, the posterior (or final8) 
distribution is N(mf, f

2), where
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In words: the posterior weight (1/variance) is the sum of the weights from the prior and 
the likelihood; the posterior mean is the weighted mean of the prior mean and the mean 
from the likelihood (m0, and n times x ; i.e. a function of m0 and x1, x2,…, xn), the weights 
being the respective weights (thus revealing the aptness of the terminology).

12.3.3. The extension to the case of ‘observations made with different precisions’ is 
immediate. Let us assume, for instance, that we know that the n observations are per-
formed with different measuring instruments, the errors of which have standard devia-
tions σ1, σ2,…, σn. It is clear that (by an argument similar to that used above) these 
observations are equivalent to a single observation whose value is given by the weighted 
mean of the xh (with weights h

2) and having weight equal to the sum of the weights. 

8 Translators’ note. The terms prior and posterior seem firmly established in English publications relating to 
applications of Bayes’s theorem, and we have used them in preference to the terms initial and final. The 
Italian version uses the latter, and the notation mf and f

2 derives from this usage.
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If the prior distribution is N(m0, 0
2), the posterior distribution is given by N(mf, f

2), 
where mf and f

2 are determined by the weighting process just described, except that we 
now also include m0 with weight 0

2.
This is an example of ‘partial exchangeability’ with yh = h

2 (or we could take 
yh = h

2, and

 
f x y K x y| , exp / .1

2
2

 

We should draw attention to the fact that the yh must actually be known and observed 
for each Xh under consideration. In our example, we must know with what precision 
each measurement has been performed. One should be careful not to think of it as 
being sufficient to know that each measurement has been performed using instruments 
of various precisions (for example, by choosing each time at random from among some 
given collection of measuring instruments, but without registering which were actually 
used and how often). Under this latter assumption, one would have a case of exchange-
ability with

 
f x c f x f x K x y c c

k
k k k k k

k
k| | , | exp , ,1

2
02  1

 

(i.e. no longer a normal distribution but a mixture of normals). In the same way, in the 
other examples it would be necessary to have actually noted the temperature, age etc., 
in each case.

12.3.4. Comments. The choice of the normal form for the prior distribution in the case 
just considered is convenient in that the posterior distribution is then always a member 
of this same family. We shall see that in other cases, too, we can find distributions for 
which this property holds.

On the other hand, this convenience does not justify our making such a choice if it is 
not compatible with our actual prior opinion; neither does it provide any a priori justifi-
cation for regarding such distributions as in any way playing a special role. A reasonable 
approach involves adopting ‘convenient’ distributions if and insofar as they provide a suf-
ficiently accurate representation of one’s actual opinions (and this is especially useful in 
those problems where the precise form chosen has little influence on the final outcome).

If the influence on the final outcome is going to be practically negligible, one might even 
‘omit’ the factor π0(θ) altogether; that is, to be more precise, one might consider the limit 
case of a ‘constant density’. This improper distribution could be interpreted, for example, 
as the limit of the normal distribution N(0, σ2) as σ2 → ∞, or of the uniform distribution

 0
1
2

a a a a   as .
 

As we shall see, other forms of improper prior distribution may be more appropriate, 
depending on the form of the problem.

Sometimes the use of the improper, uniform prior distribution is interpreted as rep-
resenting ‘total ignorance’. This is nonsense: every distribution reflects some sort of 
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opinion, and none of these have any special status – not even in the negative sense of 
representing no opinion at all. Moreover, one should note that the uniform distribution 
is not invariant under changes in the parametrization (e.g. θ into log θ or eθ etc.). 
A number of useful observations of this kind can be found in Lindley, Vol. II (with 
particular reference to this topic, see p. 145).

Remarks. The above considerations are all dependent on a certain mathematical point 
which should be clearly understood, because it serves to clarify the particular practical 
consequences of the above.

Rigorously speaking, a density is not just a point function but rather a function of the 
point and of the measure assumed over the space under consideration. For instance, it is 
well known that in the case of measures defined in terms of coordinate systems a change 
of coordinates alters the density by multiplying it by the Jacobian (and the same thing 
holds more generally). It follows, for instance, that we could always arrange to have a 
constant density (it suffices to take the distribution corresponding to such a density as 
the underlying measure).

The likelihood, on the other hand, actually is a point function, and ‘equating’ it 
to a density is a meaningless idea. We can always achieve what we want, however, by an 
appropriate choice of the measure (which is never significant from a  theoretical view-
point), taking it over the most convenient reference system (or one which is sufficiently 
convenient) in order to make calculations as straightforward as possible.

We shall, therefore, find it useful (and a number of examples of this will be given) to 
choose a family of prior distributions with density ‘equal’ to the likelihood. In the termi-
nology introduced by Raiffa and Schlaifer, these constitute the conjugate family for the 
problem. One should note, however, that this notion has no absolute meaning, but can 
be useful relative to some given standard formulation of a problem.

12.3.5. The case where σ2 is unknown. We again consider the normal distribution, 
N(m, σ2) but now with the variance σ2 unknown (and it is convenient to set 
θ = 1/σ2 = ‘weight’) and the mean m known. This case arises, for example, if one wishes 
to calibrate a new measuring instrument (i.e. to determine its precision as measured by 
θ = 1/σ2) by making repeated measurements of a given known quantity m.

In this case we have

 
f x K x m| exp .

1
2 21

2
 (12.17)

As a function of θ (and leaving aside factors independent of θ), this is the likelihood for 
θ given by an observation x.

The likelihood for θ given by n observations x1, x2,…, xn is, therefore,

 h
h

n

h
h

n S
f x x m| exp ,

1
2 2

1
2

1
21

2

2

e  (12.18)

where S x mhh
2 2  (the constant Kn having been omitted).

Since the form of this expression is that of the density of a gamma distribution, any 
choice of prior from within the gamma family will ensure that the posterior distribution 
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belongs to the same family (and the comments of Section 12.3.4 should be understood 
in this case, too). Taking

 0
1K e , 

we obtain

 0
1 1

2
1
2

2

K
n S
e . (12.19)

12.3.6. The case where both m and σ2 are unknown. This arises in the context of errors 
of observation, as in Section  12.3.2, except that we also assume the precision of the 
measuring instrument to be unknown. It is also the most frequently studied case in 
statistics, where we have a population (of individuals, objects, experiments etc.) in 
which some given quantity (Xh for the hth individual) is known (or assumed) to be 
normally distributed, but with neither the mean (central) value nor the variance known.

The example involves two parameters – those encountered separately in the previous 
two cases. We put θ1 = m, θ2 = 1/σ2, and hence we obtain
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The likelihood for θ1 and θ2 after having observed x1, x2,…, xn is given by
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where

 
v n s x x v x x n

h
h

h
h1 2 2, / , /

 
(the steps are the same as those given in Section 12.3.2, except that the constant vs2 can 
now no longer be omitted because it is multiplied by the parameter θ2).

The standard assumption for the prior distribution is, in this case, the improper uni-
form distribution for both θ1 and log θ2: this results in an improper ‘density proportional 
to l/θ2’

 
over the half-plane 1 20, .

 
Strictly speaking, this assumption is only made by Bayesians (and even then only by 
those who have no objections to improper distributions), but there is some justification 
for referring to it as the standard assumption because it leads to the same conclusions 
as those arrived at by non‐Bayesian statisticians using other methods of approach.

With these assumptions, that is supposing that we are prepared to express the prior 
density in the form

 0 1 2 2, /K , (12.22)
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we obtain

 
n
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The marginal posterior densities for θ1 and θ2 (obtained by integrating out the other 
variable) are9
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For θ2, we still have a gamma distribution, just as in the case m known (Section 12.3.5). 
For θl, on the other hand, the normal distribution, which we obtained in the case σ2 
known (Section 12.3.2), has been replaced by Student’s distribution (see the very end of 
Chapter 10). The effect of not knowing m and σ2 is that they are replaced by x  and s2 
(which are ‘reasonable estimates’ of them), and that, in the case where we are ignorant 
of σ2, the normal is replaced by the Student distribution which has much fatter tails 
(although it tends to the normal as n → ∞). For large n, therefore, the difference is 
 practically negligible.

12.4 The Likelihood Principle and Sufficient Statistics

12.4.1. Given that we started out by adopting the Bayesian approach and that we have 
adhered to it coherently throughout, the ‘likelihood principle’ inevitably appears to be 
rather obvious and certainly not worth getting excited about. It simply states that the 
information available from any set of observations is entirely contained in the corre-
sponding likelihood function. Since this is, in fact, the factor which transforms the prior 
opinion into the posterior, this is all we require and, indeed, all we can ask for.

If, however, one proposes ad hoc methods  –  more or less on a trial and error 
basis –  it might well happen that they conflict with this ‘principle’. For this reason, 
non‐Bayesians have debated among themselves as to whether this principle (or a 
 variant thereof ) should be rejected, or whether, on the contrary, one should reject 
methods which do not comply with it (or whether such methods could be considered 
valid as approximations).

From the Bayesian standpoint there are two possible reasons for wishing to mention 
the principle: firstly, to warn against superficial interpretations of it; secondly, as a start-
ing point for developing the topic of ‘sufficient statistics’.

9 For the details of the calculations, see, for example, Lindley, 5.3 and 5.4, but note that he takes θ2 = σ2 
(whereas by setting θ2 = 1/σ2, we have obtained a certain amount of simplification in the formulae and 
calculations).
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The warnings are the obvious ones (but, on the other hand, mistakes are often the 
result of overlooking the obvious) and concern a too literal interpretation of the follow-
ing statement of the principle:

The information contained in a set of observations is completely summarized by 
the likelihood function, and provided it can be combined with similar results etc., 
it is quite sufficient to quote this.

All is well, provided we also enter the following reservation: ‘so long as the basic 
assumptions remain unchanged’. If, for instance, one starts off by assuming that certain 
errors ‘are normally distributed’ and then begins to wonder whether they, in fact, have 
some other distribution, the data expressed in the form of the ‘likelihood function’ can 
no longer provide all relevant information.

The discussion about ‘sufficient statistics’ could begin by our pointing out that the 
likelihood function is itself a sufficient statistic (that is to say, it provides an exhaustive 
summary of the information contained in the data). It follows, therefore, that the sum-
maries of the data that characterize the likelihood, when considered altogether, them-
selves form a sufficient statistic. In the cases that we have examined, for example, we 
have the following:

Section Case Sufficient statistic

12.3.2 (m unknown, σ2 known and constant) the pair n x, ;
12.3.3 (m unknown, σ2 known but varying) the pair , ;h h hy y x
12.3.5 (σ2 unknown, m known and constant) the pair n, S2;
12.3.6 (m and σ2 both unknown) the triple n x s, ,  2.

12.4.2. For the sake of completeness, we now give a few of the basic notions relating to 
the concept of a sufficient statistic.

In what follows, it will be convenient to denote the data (which in general consists of 
n observations, xh; h = 1, 2,…, n) simply by x; the parameters (no matter whether there is 
just one, θ, or several, θi, i = 1, 2,…, s) by θ; and the sufficient statistic (consisting either 
of a single real‐valued function of the data, t = t(x), or of several; tj = tj(x); j = 1, 2,…, r) by t; 
in the same way p(x|θ) denotes something of the form pn(x1, x2,…, xn|θ) and so on. From 
a conceptual point of view, the argument is precisely the same, whether x, θ, t,… are real 
numbers, or vectors, or whatever.

Expressing our comments about sufficient statistics in the form of a definition, 
we have the following (also known as the ‘sufficiency principle’): t(x) is a sufficient 
statistic for the family p(x|θ) if and only if, for any prior π0(θ), the posterior 
 distribution  is the same no matter whether we condition on x or on t(x); that is. 
π(θ|x) = π(θ|t(x)).

A necessary and sufficient condition for t(x) to be a sufficient statistic for p(x|θ) is that 
the latter can be written as

 p x f t x g x| , . , (12.26)
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where ƒ and g are arbitrary functions. The necessity of the condition is obvious. From the 
definition, it follows that

 p x p t x p x t x| | | , , 

and this is then equal to

 p t x p x t x| | . 

If we now take the first factor as ƒ and the second as g this is in the required form. The 
sufficiency part is known as Neyman’s factorization theorem.

What we have stated above is true in the general case (i.e. x does not necessarily have 
to consist of the results of ‘independent observations from the same distribution’). If we 
go back to the special case (complete exchangeability), we can pose some further prob-
lems. In this case, we may be interested in knowing, for example, whether, as n varies, 
we can always obtain a sufficient statistic of fixed dimension (for example, having r 
components: t = (t1(x), t2(x),…,tr(x))).

Ignoring the finer points, the condition for this to happen is that the family of distri-
butions f(x|θ) is a member of the exponential family: that is that it is of the form
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where F, G, uj, Фj, are arbitrary functions. In this case, a sufficient statistic, given any n 
observations x = (x1, x2,…, xn), is provided by the r functions
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together with n (although the latter is sometimes left to be understood).
In this case, the likelihood function (for θ, on the basis of the given x) is
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If the prior distribution π0(θ) is proportional to the form
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then the posterior distribution will also have this same form:
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This explains how it is always possible to define conjugate families of distributions 
whenever we are dealing with a member of the exponential family (and the same advan-
tages are obtained as we saw previously for the normal and gamma distributions).
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Recall, however, that the concept lacks any genuine substantial foundation, as we 
explained in the final paragraph of Section 12.3.4.

12.4.3. The time has now come for us to explain  –  in line with what we said in 
Section 12.2.3 – why we have restricted ourselves to cases in which a probability density 
exists.

Firstly, of course, it is quite natural to restrict oneself to the most straightforward and 
meaningful practical cases; these are the ones we have mentioned: either the discrete 
cases or those where a density exists.10

Over and above this, however, it is necessary to point out a far more essential reason; 
one which I do not think I have heard put forward before, nor have had occasion to men-
tion myself. In order for inferences to be valid independently of the indeterminism that 
arises on account of ‘probabilities conditional on events of zero probability’, together with 
related questions concerning ‘nonconglomerability’ (Chapter 4, Sections 4.18 and 4.19, 
and Chapter 6, 6.9.5), it is necessary to confine oneself to problems that can be dealt with 
by using only probabilities conditional on hypotheses having nonzero probability. This 
happened trivially in the case of ‘concentrated masses’ and it happens directly in cases 
where a density exists, provided one assumes – as, fortunately, seems to be ‘inevitable’ 
from an empirical point of view – that knowledge of observed values xh is not ‘exact’, but 
that, at best, it involves ‘belonging to a neighbourhood of (x1, x2,…, xп)’ small enough to 
make it possible to argue in terms of a density, but not in terms of the point itself.

12.5 A Bayesian Approach to ‘Estimation’ 
and ‘Hypothesis Testing’

12.5.1. The natural way to present the solution of any problem of statistical inference 
is  to give the relevant probability or probability distribution. In the cases we have 
 considered, this involved the posterior distribution given the observed data. 
Unfortunately, however, such a solution cannot be regarded as ‘natural’, insofar as it is 
not ‘familiar’ to most people. It is for this reason, perhaps, that attempts have been 
made to replace the posterior distribution with some sort of crude summary conveying 
a more immediate message.

Two such crude approaches to summarizing the distribution of a random quantity X 
are widely used: the first consists in providing a unique value x̂, around which the dis-
tribution is concentrated; the second in providing an interval [x′, x″], enclosing a large 
proportion of the distribution. These descriptions are rather vague but they can be 
made more precise in various ways and, in so doing, we obtain the various methods of 
estimation. More specifically, in the first case we refer to x̂ as a point estimate, while in 

10 Or even mixed cases; a distribution admitting a density, plus a few ‘concentrated masses’ at particular 
values of interest: for example, the percentage of some given compound in an alloy when the value zero 
(the absence of the compound) can occur with non-zero probability.

A typical example is the problem of King Hiero’s crown (to which the episode of Archimedes’ ‘Eureka!’ 
refers). Was there silver in the crown? (See L.J. Savage et al., The Foundations of Statistical Inference, 
London, Methuen (1961).) Another example is given by the correlation between two genes (0 corresponds 
to their being on separate chromosomes).
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the second we call [x′, x″] an interval estimate. Similar considerations apply in higher 
dimensions (where the form of the ‘interval’ may be much more general).

There are other cases in which one poses the inferential question in a different way, 
but where one requires solutions formally similar to those given above. It may be that 
there is a value x*, or an interval [x x* *, ], for which we wish to know whether or not X is 
equal to x* (either exactly or approximately), or whether or not it lies between x* and x″. 
In such cases, one refers to tests of hypotheses, because an answer of either YES or NO 
is required in relation to the so‐called ‘null hypothesis’

 
X x x X x* * *, .or  

 

The contrary hypothesis, or the various hypotheses into which the complement may be 
divided, are known as ‘alternative hypotheses’.

12.5.2. The traditional approach to these problems, and still the most popular, 
is  based on ad hoc methods, which, in contrast to Bayesian methods (based on a 
 systematic and coherent theory), are largely rule‐of‐thumb.

In the present context, we wish to examine the extent to which they can be modified 
to fit into the Bayesian framework. In other words, we shall consider them not as sepa-
rate and distinct methods leading to an alternative set of techniques but rather as useful 
summaries of certain aspects of the actual, complete solution – that is the description 
of the posterior distribution.

In certain respects, it is clear that the solution will depend on some value relating to 
the (posterior) distribution; for example, the prevision (for a fair bet), or some other 
mean, or the median and so on. Such a value might well be referred to as the (point) 
estimate for the problem; that is the appropriate mean in the Chisini sense.

In many cases, it is clear that giving an interval in which the random quantity of interest 
might plausibly be thought to lie is more informative than any attempt at actually pin‐point-
ing it. From the Bayesian standpoint, we would give an interval having some stated proba-
bility of containing X (usually a high probability; e.g. 95%, 99%: in general, 100β%). In such 
a case, following Lindley, we could refer to this interval [x′, x″] as a 100β% (Bayesian) confi-
dence interval for X. The qualification ‘Bayesian’ will be implicit in what follows and the 
reader should note that a ‘100β% confidence interval’ is a very different concept in a non‐
Bayesian context (as we shall see), and that it is important to distinguish between the two.

In general, there are infinitely many such intervals for any given level. The standard 
procedure is to choose the shortest one (in a certain sense, it is the most informative). 
In many cases – for instance, those for which the density has a unique maximum and 
decreases on either side of it – this interval is characterized by the fact that at each point 
inside it the density is greater than at every point outside it. One should note, however 
(in order that this criterion should not appear more ‘natural’ than it actually is), that 
both the length and the density change, in general, if X is transformed into some func-
tion of itself. For example, if [x′, x″] is a 95% confidence interval for X, the interval 
[ , ]e ex x  remains such for eX, but if the former is the interval of shortest length, the 
 latter, in general, is not.11

11 This is an obvious consequence of what we have seen more generally (see Remark, Section 12.3.4).
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12.6 Other Approaches to ‘Estimation’ 
and ‘Hypothesis Testing’

12.6.1. Those who reject the Bayesian approach cannot base their inferences on the 
posterior distribution even if they wished to – it does not make any sense so far as they 
are concerned. As a result, they are forced to have recourse to ad hoc criteria and, hence, 
to open the floodgates to arbitrariness. This has led to an enormous proliferation of 
such techniques. For the sake of completeness, and to provide a basis for certain critical 
comparisons, we shall give a short account of the most important and best known 
of these.

The basic reason why non‐Bayesians are unable to refer to the posterior distribution 
lies in their rejection of the use of a prior distribution.12 The best they can then do is to 
base themselves on the likelihood function; failing that, they simply resort to playing 
with formulae that are without any real foundation.

The situation can be summarized as follows.
A method for obtaining a point estimate x̂ given the data xh (h = 1, 2,…, n), reduces in 

the final analysis, to providing a formula which expresses x̂ as a function of the xh: x̂ = 
ϕn(x1, x2,…, xn). (The same thing applies to finding the end‐points x′ and x″ for an inter-
val estimate.) At the very beginning the choice of the criterion consists in defining a 
random quantity

 1 2, , ,ˆ ,n nX X X X
 

a function of the Xh, whose value ˆ ˆX x is to be taken as the estimate.
The problem must always be interpreted as follows (and we express it in a form which 

should be sufficiently vague to be acceptable to everyone): the Xh are either approximate 
measurements of some ‘true value’ x0, which we would like to know, or they are the 
values of some given quantity as observed in a sample, and the value x0 which we wish 
to know is some typical value (the mean, median, mode …) of the distribution of that 
quantity in the population. We seek to ‘estimate’ x0 by x̂.

12.6.2. There are, essentially, three different levels at which this problem can be for-
mulated and dealt with.

At the very lowest level one simply ignores the probabilistic nature of the problem (or, 
at least, it is not taken into account in the formulation). At this level, we can only exam-
ine the formal properties of the proposed function and judge on empirical grounds the 
extent to which these are appropriate. It is rare to find this approach adhered to in any 
systematic way but considerations of this kind do crop up incidentally now and again 

12 The paper by B. de Finetti and L.J. Savage, ‘Sul modo di scegliere le probabilità iniziali’, which we have 
already quoted several times (see Chapter 11, footnote to Section 11.1.1), and my talk at the Saltzburg 
conference in 1968, published as B. de Finetti, ‘Initial probabilities: A prerequisite for any valid Induction’, 
Synthese, XX, 1 (1969), are devoted to a refutation of this, and to the clarification of various problems 
connected with it.

Related topics were mentioned at the conference by Vetter, Hintikka, von Kutschera and Frey; in 
particular, see the paper by I.J. Good, ‘Discussion of Bruno de Finetti’s paper’, which reveals the differences 
in attitudes existing within the subjectivistic conception.
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(and there have been attempts to put forward abstract theories of ‘methods of 
 measurement’ at this level).

The methods proposed by objectivistic statisticians are at an intermediate level. 
The probabilistic framework is accepted for that which takes place conditional on cer-
tain given hypotheses, but any reference to a probability distribution for the hypotheses 
themselves is rejected. To relate this to our previous considerations, the ‘hypotheses’ 
are the various values of the parameter θ and what is rejected is the prior distribution 
π0(θ) (and hence the posterior π0(θ|x)).13 All that one is permitted to work with is the 
assumption that the Xh are stochastically independent with the same distribution, 
f(x|θ), conditional on each value of θ.14

The implication of this for problems of estimation (and similarly for ‘tests of hypoth-
eses’) is that the function ϕ can only be made to depend on the f(x|θ), whereas in the 
unrestricted (i.e. Bayesian) formulation one must also make it depend on π(θ).

12.6.3. One way of avoiding the difficulty is to use the Bayesian approach (either 
 consciously or unconsciously) but omitting π(θ): in other words, by implicitly adopt-
ing the (possibly improper) prior π(θ) = constant. In this way, the conclusions 
obtained are necessarily valid, although it should be noted that indiscriminate use of 
this prior may result in its adoption in situations where neither the individual using 
it, nor the majority of other people, find it reasonable. Worst of all, actual contradic-
tions can arise if the approach is used independently in related problems (as a trivial 
example, taking first θ to have a uniform prior and then, later in the same problem, 
taking 1/θ to be uniform).

One way of running head on into the difficulty – whilst claiming at the same time to 
have solved the problem – is to assert that nothing can be said concerning the probabil-
ity of the statement of interest being true (e.g. that x0 is ‘close to x̂’, or that it lies between 
x′ and x″). Having decided against overcoming this problem by the use of prior proba-
bilities, it suffices … to pretend that the solution we require is, in fact, a different one, 
and concerns the probability of the statement of interest being true conditional on the 
(false!) hypothesis that x0 is known. In fact, the statements would be similar in appear-
ance only. We could gloss over it by saying, in either version, that ‘in any case, it is 
almost certain that x0 and x̂, the true and estimated values respectively, are close to one 
another’, as if the phrase ‘in any case’ had some abstract and absolute meaning, both 
when it refers to ‘whatever the true value might be’ and when it refers to ‘whatever the 
estimated value might be’.

The fallacy in confusing the two cases is obvious. In fact, under the usual assump-
tions, it is almost certain that the mean of the measurements obtained from n observa-
tions will turn out to be near the true value (whatever it may be), since we are assuming 
the error distribution to be the same no matter what the true value is. When we consider 
the mean resulting from a set of given observed values, however, we are by no means 
entitled to conclude that the true value is almost certainly near this mean. It may well be 
that, finding the latter conclusion hard to believe, one considers it as much more 

13 There is no objection, however, in problems where objectivists adjudge there to be an ‘objective’ prior. In 
such cases, the approach will be the same as a Bayesian would adopt.
14 There seems little point in complicating this brief account by extending it to include the more general 
cases (e.g. those with f(x|θ, y), and so on).
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plausible (even though a priori quite improbable) that, by chance, the observations have 
turned out to be affected by large errors acting in that particular direction.15

12.6.4. There are critics who occasionally attempt to ridicule this argument by pretending 
to interpret it as meaning that the difference between x and x0 can be small at the same time 
as that between x0 and x̂ is large.16 As we have stated above, we are not drawing a distinction 
between these two cases (there is none) but between conditioning on the hypotheses ‘what-
ever x0 may be’ and ‘whatever x̂ may be’. Tracing this back to Bayes’s theorem, what goes 
wrong is that those who do not wish to use it in a legitimate way – on account of certain 
scruples – have no scruples at all about using it in a manifestly illegitimate way. That is to 
say, they ignore one of the factors (the prior  probability) altogether and treat the other (the 
likelihood) as though it in fact meant something other than it actually does. This is the same 
mistake as is made by someone who has scruples about measuring the arms of a balance 
(having only a tape‐measure at his disposal, rather than a high precision instrument) but is 
willing to assert that the heavier load will always tilt the balance (thereby implicitly assum-
ing, although without admitting it, that the arms are of equal length!).

These same comments apply, essentially unaltered, to the case of hypothesis testing 
and to other topics (and so we shall not bother to repeat them), because they relate 
to  the essence of the whole ‘objectivistic’ approach to statistics. One important 
 consequence is the realization that objectivistic forms of significance test do not obey 
the likelihood principle. These are tests in which, for example, one rejects the null 

15 If we call X the true value, Y the estimated value and Z = Y – X the error, it is clear that the distribution 
of Z given X = x0 is not the same thing as the distribution of Z given Y = y0. If f(x, y) represents the joint 
density for (X, Y), then, in the two cases, the distributions of Z are given by Kf(x0, x0 + z) and Kf(y0 – z, y0), 
respectively. These can only coincide if X and Y both have improper uniform densities and Z is independent 
(i.e. f(x,y) = Kg(y – x) with K = 0, in the usual sense). In the case of Section 12.3.2 (X and Z independent and 
normally distributed), ƒ(z|x) is independent of x by hypothesis (normal distribution N(0, σ/√n) but f(z|y), as 
is shown in (16), although still normal and having the same variance, has nonzero prevision:

 P Z Y y m y m y nf| / ,0 0 0 0
2

0
21 /

where y0 was denoted in equation 12.16 by nx . The term mf – yo only vanishes if we take σ0 = ∞; i.e. the 
improper uniform distribution over ± ∞.

Objectivists will probably argue that, as a rule, really large errors do not occur and that if they do one 
notices the fact and rejects the observation. However, the rejection of a complete, coherent formulation 
cannot be justified under the pretext that if something does not seem to work one can always get out of 
trouble by resorting to expedients which themselves cannot be justified (neither in the new, patched-up 
formulation, nor in the coherent one).
16 This is a rather imprecise objection, open to several interpretations. Only laymen (so far as this topic is 
concerned, anyway) could take it literally as providing evidence of an oversight. That we are dealing with 
two different things (see the explanation in the text) is clear, not only to the Bayesian but also to objectivists 
of the Neyman–Pearson school. The difference is that the latter deliberately choose to base themselves on 
considerations of the form ‘whatever x0 may be’, in order to avoid the Bayesian formulation (assuming 
arguments based upon the former considerations to be valid, despite the fact that they do not have the same 
meaning as those in the Bayesian framework, and, indeed going so far as to claim the former as ‘modern’, 
and the latter as ‘old fashioned’). R.A. Fisher, on the other hand, attempted to create a fusion of the two. It 
seems to me that he felt the need for the Bayesian form of conclusion (although he expressed it in an illusory 
manner by means of an undefinable ‘fiducial probability’), but wanted to approach the problem from the 
opposite direction (an approach rather like that of Neyman).
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hypothesis θ = θ0 because some given function t(x) of the observed data (a statistic) has 
‘too large’ a value (lying outside some given confidence interval; i.e. in the ‘tails’ of 
the distribution of t). The point concerning the likelihood principle is clear, because, 
for  the objectivist, the confidence interval is one in which, with 100β% probability, 
t(x)  must lie given θ0 (and not vice versa!). An example of this is given in Lindley, 
Vol. II, pp. 68–69.

These strictures do not imply, however, that the conclusions cannot, in practice, be 
satisfactory for most applications. Referring to our example, it will, in fact, be very rare 
for x0 not to be close to x̂. However, why should we blind ourselves to the possibility of 
it being otherwise? Why should we stick to the standard conclusion even in cases where 
we are suspicious? Why should we be forced to ignore facts which, if we do not wish to 
shut our eyes to them, should lead us to be suspicious?

In any case, a Bayesian analysis will indicate within what limits, and under what 
 conditions, any particular method is approximately valid and what needs to be done 
(following Lindley’s example, perhaps) in order to turn it into an exact and acceptable 
procedure.

12.6.5. The method of maximum likelihood was developed in particular by R.A. Fishe, 
and, although it was known previously, it was through his work that it came to 
prominence.

In its crudest form, as a method of point estimation, it consists in taking the estimate 
of a parameter θ as the value (or vector etc.)  ̂that gives the (absolute) maximum of the 
likelihood for θ given by the observations x. One can give this a Bayesian interpretation 
as the estimate of θ given by the mode of the posterior distribution, assuming the prior 
to be uniform (since the posterior coincides17 with the likelihood in this case, the point 
maximizing the former also maximizes the latter).

The most useful application of the concept is in providing a normal approximation to 
the posterior distribution (which can then, if one wishes, be used to give an interval 
estimate).

If we consider the standard case of exchangeability, that is repeated observations with 
the same density f(x|θ), the likelihood is the product, as we have seen many times before, 
and its logarithm is given by

 
L x L x p x f xn

h

n

h| | log | log | .
1

 (12.31)

The logarithm is used simply for convenience and the function L, to use the standard 
notation, is called the log‐likelihood (the subscript n usually being omitted).

As n increases, the influence of the prior distribution π0 on the posterior πn becomes 
smaller and smaller, the fixed factor being overwhelmed by the n factors of the form 
f(xh|θ). This was clear even in Section 12.2.5 (see equation 12.3′) and especially so in the 
examples we studied (see equation 12.15 of Section 12.3.2 etc.). This means that the 
more observations that are available, the more their influence is predominant in 

17 Recall that it is not really correct to say ‘coincides’, because the likelihood is a point function, whereas the 
density depends on the point and on the measure (see the final remark of Section 12.3.4).
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determining our posterior opinions and the less significant the prior opinion becomes. 
This is what we would expect.

Because of this (a fact which, incidentally, has been appreciated for quite a while, and 
was well illustrated by Poincaré), the difficulties we mentioned relating to the evalua-
tion of the prior probabilities turn out to be less serious from a practical point of view. 
We are not saying that the problem disappears, but that it becomes possible to deal with 
it in a satisfactory manner by making precise the conditions and the limits within which 
it is possible to replace a given prior distribution by the uniform, for example, without 
causing any serious distortion.

In general, and under fairly weak conditions, the likelihood, for large n, is sharply 
peaked around its maximum, so that the maximum likelihood estimate  ̂is, as it stands, 
quite informative (and this is true, in particular, in the case of the normal  distribution). 
A point estimate on its own, however, is never very satisfactory and it is fortunate that 
the maximum likelihood approach enables us to improve on this by also providing the 
variance, not of πn(θ) itself, but of the normal approximation to it in a neighbourhood of 

.̂ In fact, we have
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A rough argument will suffice to show why this is so:19 expanding Ln(θ) = L(x|θ) around 
θ ≃ ,̂ we obtain
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and the density (again, in a neighbourhood of )̂ is given by
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because: (i) π0(θ) (in the small neighbourhood of  ̂in which Ln(θ) is large) is practically 
constant (and equal to 0

ˆ( )); (ii) ( )ˆ
nL , which is constant, can be subsumed in K; 

(iii)  ˆ( 0)nL , because Ln is maximized at ;̂ and (iv) we can neglect terms beyond those 
of second order.

The term ( )ˆL  is called the ‘information’ (but must not be confused with the concept 
as used in information theory; see Chapter 3, 3.8.5). The result can be extended to the 
case where θ is a vector, θ = (θ1, θ2,…, θs). The distribution is then multivariate normal 
and a natural generalization of equation 12.32 defines the information matrix as the 
inverse of the variance‐covariance matrix:

 

2
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i j
I L x  (12.34)

18 Here, and in equation 12.34, the derivative of Ln(x|θ) is evaluated at ˆ.
19 This is basically the same argument as that given in Chapter 11, 11.4.4.
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In other words, the Iij give the coefficients of the ( )( ˆ )ˆ
i i j j  terms in the quadratic 

form − Q appearing in the density K Q. e
1
2 .

12.6.6. Although our account has been very brief, it has dealt with several of the 
most  important topics of mathematical statistics, both from the Bayesian and 
the objectivistic standpoints. Moreover, we have indicated the main points of departure 
of the two approaches.

In particular, we note that, in practical terms, the situation is altered by the fact of 
whether n is large (when we enter the realm of so‐called large‐sample theory) or small 
(small‐sample theory). In the first case, practically any method works; whereas, in the 
second, different methods lead, in general, to very different conclusions. The Bayesian 
approach is part of a coherent, formal theory, which rules out any conceptual obscurity. 
On the other hand, in the case of small samples the conclusions are strongly dependent 
on prior opinions, which may vary greatly from one individual to another. This is a 
genuine unavoidable fact, but it is not a drawback of the Bayesian approach. It would be 
a drawback if it were an unnecessary complication but the fact is that if complications 
do actually exist the drawbacks and errors stem from ignoring them and providing pie‐
in‐the‐sky solutions that do not take them into account (as in the objectivistic approach).

Anyway, in concluding this summary I should like to quote the following words of 
Lindley (Vol. II, Preface, p. xii):20

‘Most of modern statistics (i.e. that of the objectivistic school) is perfectly sound 
in practice; it is done for the wrong reason. Intuition has saved the statistician 
from error. My contention is that the Bayesian method justifies what he has been 
doing (by reinterpreting and correcting it) and develops new methods that the 
“orthodox” approach lacks.’

12.7 The Connections with Decision Theory

12.7.1. It is not our intention to discuss this topic at all thoroughly, nor would it be 
 possible to do so within the limits of the present outline treatment. Had we wished to do 
so, however, we could have set the whole of this chapter within a decision‐theoretic 
framework. What we shall do is to clarify some of the areas in which decision theory 
offers additional insights into certain of the problems of mathematical statistics and into 
the comparison between the Bayesian and the more fashionable objectivistic approaches.

We mentioned this topic briefly at the end of Chapter  3 (and here and there in 
the  sequel), where we observed that coherence required us to adopt the criterion of 
maximizing (expected) utility as the basis of decision making.

Basically, it tells us that we should arrive at a decision by first considering the  individual 
increments of utility attached to the consequences of the various possible decisions, and 
then weighting these by the respective probabilities. A decision must, therefore, be based 
on probabilities; that is the posterior probabilities as evaluated on the basis of all 

20 The explanations in parentheses, together with the quotation marks for ‘orthodox’, are not part of the 
original.
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information so far available. This is the main point to note. In order to make decisions, we 
first require a statistical theory that provides conclusions in the form of posterior proba-
bilities. The Bayesian approach does this; other approaches explicitly refuse to do this.

Indeed, objectivistic approaches to statistics bend over backwards to give nonproba-
bilistic answers to probabilistic questions, expressing them in YES–NO terms, as in the 
logic of certainty. More specifically, they talk in terms of ‘accepting’ or ‘rejecting’ a given 
hypothesis on the basis of some given test and, although some hesitate to go this far, 
occasionally one hears that ‘to accept an hypothesis’ means ‘to agree to behave as if it 
were certainly true’. This is nonsense. One should not behave ‘as if an hypothesis were 
certain’ unless it actually is regarded as certain. If it is not, then we cannot decide how 
to behave until we have attributed to it some probability p. The appropriate behaviour 
is then that which, on the basis of p, is calculated to maximize expected utility.

12.7.2. Some authors (notably R.A. Fisher) criticize the application of these ideas to 
problems of scientific inference, regarding them as essentially economic in nature and 
incompatible with pure research. We could object that even in the scientific field one 
cannot escape having to weigh up favourable and unfavourable consequences, but a 
more decisive reply stems from the fact that these ‘economic’ arguments reveal the 
necessity of making sure that opinions cohere. In particular, they show that one must 
pass from prior to posterior opinions in conformity with Bayes’s theorem, and that this 
is the case no matter whether we are contemplating a bet, a business decision, or simply 
recording our conclusion for use in a scientific context.

There do not exist two entirely different forms of valid reasoning, one suitable in a 
commercial context, the other for pure research. No one working in the scientific field 
considers it beneath him to use the same arithmetic operations, or calculating machines, 
as are needed for commercial purposes. There is only one theory and it does not matter 
whether it is used for utilitarian purposes, or for pure research, or simply studied for 
its own sake.

12.7.3. It is interesting to note that the movement towards a decision‐theoretic point of 
view began within the framework of objectivistic theory. Above all, this was the result of 
Abraham Wald’s introduction of the idea of associating a loss with an incorrect decision, 
taking, as an example of this, the acceptance of an hypothesis i given that hypothesis j is 
true (loss = Lij, zero if i = j). However, this does not entirely remove the unsatisfactory 
identification of the decision as the ‘acceptance of an hypothesis’. The necessary step 
involves singling out the individual possible ‘actions’ – choice among which corresponds 
to a probabilistic assessment – rather than acceptance of the various hypotheses. Some 
criteria of decision making are taken over from other contexts,  without examining closely 
their suitability for the problem under consideration (for example, the minimax criterion 
is considered acceptable, even though it corresponds to a different situation, that of com-
petitive uncertainty – i.e. games theory). However, Wald’s formulation did result in the 
explicit reintroduction of prior probabilities and hence Bayesian theory (albeit in a for-
mal sense, without involving the subjectivistic interpretation).

Other movements in this direction have sprung from criticisms of various paradoxes 
and defects within the objectivistic framework itself. In order to remove these, it became 
clear that a Bayesian formulation was required. In this context, the contributions of 
I.J. Good, D.V. Lindley and L.J. Savage deserve explicit mention.
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In addition there has been a great deal of research into the economics of uncertainty. 
Through the work of von Neumann and Morgenstern this gave new life and impetus to 
the study of utility theory, which had long been neglected (although various 
 scholars – Daniel Bernoulli in the past, and F.P. Ramsey more recently – had shown an 
interest in it). These various strands of research found their culmination in the work of 
L.J. Savage, The Foundations of Statistics (1954) (so far, that is, as the theme of this book 
is concerned; the revision of statistical methodology from a Bayesian point of view is 
more recent, and is still continuing).

12.7.4. Finally, we should note that decision theory has very important things to say 
about questions relating to the planning of experiments for statistical purposes. In other 
words, planning experiments in order to improve the information on the basis of which 
decisions are to be taken.

One aspect of this involves the techniques of such experiments, these being studied 
in order to optimize the outcome; that is to obtain the most valid and useful information 
at the least possible cost. It would take us too long even to just mention the most impor-
tant problems and methods, which have been extensively studied in the literature. It will 
suffice to simply point out that a vast amount of research has been done and that its 
enormous contribution to technological progress cannot be properly appreciated unless 
one examines a number of examples.

So far as we are concerned, it is the more basic aspect of all this which interests us. 
We are referring to the fact that the reasons which make clear to us the correct form 
of  argument for reaching useful, practical decisions, and that required for reaching 
 conceptually valid conclusions, are the same in both cases.

In fact, the seemingly ‘new’ problem, ‘what information is it most useful to obtain 
before making the decision?’, can be considered as it stands within our previous formula-
tion, underlining yet again its general and comprehensive nature. It suffices to include as 
possible ‘actions’ not only those of the original formulation – that is those relating to the 
‘final decision’ – but also the various possible choices of experimental procedure and 
model‐building which lead up to it. The value of any piece of information (in the context 
of a particular decision problem) can be measured as the increment of expected utility 
deriving from it (or, in the simplest case, the increment of expected gain). This value is 
always positive (although it could be zero; if the worst comes to worst, we can always 
take the decision without taking into account the additional information) but there is 
usually some cost incurred (for labour, time etc.). The net gain from the information (or, 
more precisely, from the decision to obtain it) is the difference between its value and its 
cost. The optimal decision (regarding what information one should seek to obtain) is 
given by that for which the difference between the value and the cost is maximized. In 
general, the process of collecting information may be quite complicated (performed 
sequentially, in a number of stages, with a built‐in arrangement for subsequent choices 
to depend on the information obtained initially, and so on). From a conceptual point of 
view, our general approach can cope with all this without requiring any modification.

In this context, it is clear from a practical point of view that there is a need for coher-
ence not only for each individual decision but also at an overall level, linking the indi-
vidual steps together. Such a requirement is perfectly obvious if problems are set out in 
a detailed fashion within their natural probabilistic setting, but it tends to be overlooked 
if one gets used to dealing with problems on a fragmentary basis.
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Typical of the confusion that can arise is the statement that the ‘minimax’ procedure 
(in decision theory) is coherent. In actual fact, it is coherent for each individual 
application, because it turns out to be Bayesian under the choice of a particular prior 
distribution (and any one is free to choose it if they wish). It corresponds to the choice 
of the least favourable distribution, one that would be used by an opponent who wished 
to make things as difficult as possible for us. This analogy with games theory – more 
precisely, with two‐person zero‐sum games, that is those in which one person’s loss 
is the other’s gain – is often emphasized by referring to a statistical decision as a ‘game 
against Nature’. The analogy only goes through, however, if one assumes ‘Nature to be 
malevolent’.

Apart from any reservations one might have about this latter hypothesis,21 we see at 
once that it cannot be applied in every case. In fact, if we simultaneously consider a 
number of decisions all depending on the same event, this approach will certainly lead 
to contradictions, because the least favourable distribution for one decision will not, in 
general, be the least favourable for the others. Nature (nor any other opponent for 
that matter) cannot be so evil‐minded as to simultaneously adopt distributions – or 
‘strategies’ as they are called in games theory  –  which necessarily put us in a least 
favourable position for any individual decision problem that we might wish to 
 consider.22 As an obvious analogy, anyone being pursued by a number of hunters 
 coming at him from different directions cannot escape in the opposite direction to 
all of them.

12.7.5. It might appear that these, our final considerations, have only been made pos-
sible by the long and wearisome journey that has gone before. In fact, this is not so. If 
one sticks to the approach that we have advocated throughout, all this  –  and let us 
repeat it once more, so that there is no doubt – is obvious. The time and energy was 
required for the long excursion that we made into objectivistic territory – a necessary 
journey, undertaken not as an end in itself, but in order to dispel the notion that an 
objectivistic formulation could constitute an acceptable, alternative approach. That 
journey is now over and our work is done. Free at last from paradoxes and contradic-
tions, we emerge from our sea of troubles.

21 Some people attempt to justify it as a ‘conservative policy’ for anyone wishing ‘to guard themselves 
against the risk of the worst happening to them’. The solution to this, if there is one, lies in choosing a very 
convex utility function, not in deliberately distorting one’s opinions; this can only result in a worse decision, 
and is therefore unacceptable.
22 Anyone wishing to take seriously the hypothesis that Nature is ill-disposed towards him, should adopt 
a prior distribution that is least favourable over the whole range of decisions confronting him, and involving 
the circumstances under consideration. This would involve applying the minimax criterion to the single, 
compound problem (taking the entire complex of possible decisions as a single decision), or, alternatively 
(if the cases are independent), solving each individual decision one at a time, but in terms of what ‘Nature’s 
evil-minded strategy’ would be over the whole complex of decisions (a very different situation from 
individual applications of minimax). This is the same as the distinction between minimizing a sum of 
functions f x f x fnn( ) . . ( )( ) i e  at the value ξ where the sum obtains its minimum – and evaluating 

fn nn ( ) the sum at the individual minima (as if x could assume simultaneously – perhaps being  
evil-minded – the different values x = ξn).
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1 Concerning Various Aspects of the Different Approaches

In every field, and in particular in the calculus of probability, there is scope, both 
 hypothetically and in fact, for a number of axiomatic approaches, each of which, to a 
greater or lesser degree, differs from the others in various respects. It does not suit our 
purpose to choose just one of these, merely illustrating – even if exhaustively – that 
particular one; nor are we interested in presenting a somewhat wide and diverse 
 collection from which each person makes his choice with the aid of a pin. The way that 
seems more appropriate, and that in any case we shall try to follow, consists in sticking 
to one preferred approach as a reference point but at the same time illustrating both the 
variants within it that seem admissible, or necessary, and the approaches inspired by 
divergent views. This provides the framework for the necessary conceptual and formal 
comparisons.

From a conceptual standpoint our choice has already been made, and explained at 
some length, in Chapters 3, 4 and subsequently. At that time, we gave what might be 
called an axiomatic approach, but between then and now there is a difference in attitude 
that can be expressed (in the summary form of a single sentence) by saying that we must 
pass from an axiomatic approach to the theory of probability, to an axiomatic approach 
to the calculus of probability. This transition must not be taken as implying the  existence 
of any distinction or separation between the two terms, or the desirability of creating 
such a distinction; we simply wish to draw attention to the different perspective that is 
obtained by emphasizing on the one hand the essential meaning, on the other the  formal 
aspect.

The difference in perspective is the same as that which occurs when a given theory is 
viewed by a physicist and a mathematician. One concentrates his attention on the 
 passage from the ‘facts’ to their mathematical translation; the other on the work involved 
in the latter. This then resolves itself into the difference between the axiomatization of 
a theory considered from the point of view of its meaning, and the axiomatization of a 
theory reduced to its formal and abstract aspect. In the first case, with reference to the 
example of a physical theory, the axioms encapsulate all those properties of an 
 experimental nature that have been ascertained (or are assumed, perhaps hypotheti-
cally, to have been ascertained), and which suffice to give meaningful (i.e. operational) 
definitions of concepts and quantities, and to establish a mathematical theory to which 
they are subjected. In the second case, however, we omit the details and merely assume 
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the result as our starting point: the axioms, independently of the meaning and validity 
of the physical interpretation from which one starts, are now nothing more than an 
expression of the mathematical nature of certain entities and of the form of the relations 
among them. In this way, the mathematician can work with the axioms without worry-
ing about those features which do not concern him qua mathematician. As always, the 
division of labour carries with it both advantages and disadvantages. A blind man with 
very acute hearing and a deaf man with very sharp eyesight will be able, in conjunction, 
to see and hear better than a normal individual, but they might ‘understand’ less owing 
to their inability to communicate. We will return to this point later.

The distinction we have just considered applies equally to the case of probability. As 
an axiomatic approach to the theory of probability, we understand the axiomatization 
made from the point of view of meaning. The latter consisted, for us, in the analysis of 
the conditions of coherence for bets (or something similar) on things we called ‘events’; 
for others, it may consist of assertions either about symmetries, or frequencies, or 
things also called ‘events’, but which, perhaps, might be thought of as ‘sequences of 
events’, or whatever. In this way, one comes to impart meaning to certain words (quanti-
ties etc.) and to establish relationships that must hold among them. As an axiomatic 
approach to the calculus of probability, we mean the axiomatization made from the 
formal and abstract point of view: we have rules with which to operate on symbols 
without the necessity of knowing which, if any, interpretation these rules and symbols 
have in the actual context.

Of course, such a contraposition is too crude to serve as anything other than a starting 
point; on no account must we gloss over the finer points (perhaps hidden to a superfi-
cial view, but nonetheless essential). In the choice of the mathematical axiomatization 
there is plenty of scope for choosing among formulations that are formally equivalent 
(but whose particular axioms, to those who recall the original meaning, might differ in 
their intuitive appeal); on the other hand, choices that are made concerning the more 
‘peripheral’ aspects can appear rather arbitrary and made simply for mathematical 
convenience.

The path we shall follow is motivated by our steadfast refusal to adopt this bad habit. 
In precise terms: the axioms of the calculus of probability will be nothing more, and 
nothing less, than the translation into an abstract form of the conclusions which follow 
strictly from the practical exigencies brought to light during the preliminary discussions 
concerning the theory of probability. It is useful, at this point, to clarify, in a summary 
and preliminary fashion, why this statement, so obvious in itself, is, instead, at odds with 
all those formulations, which, by following the same criterion a little less strictly, end 
up, in my opinion, by not following it at all. These clarifications will certainly not be 
enough to give a sufficient picture of the many factors to be taken into consideration 
and of their compass. However, they will enable those who bear them in mind to get to 
grips with the many considerations that will have to be worked out in detail, but without 
repeating too often, and tediously, these general motives.

We know that what we have to deal with in any case will be the characterization of 
certain functions P defined over the field of entities E, called ‘events’ (and then P is 
called ‘probability’), or over the wider field of entities X called ‘random quantities’ (and 
then P is called ‘prevision’). In order to carry out our task we will try to pose the formal 
questions concerning events in such a way as to reproduce, as faithfully as possible, the 
circumstances that can practically arise for events (together with variants  –  some 
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important, some less so – to meet particular exigencies): similarly for random  quantities. 
In order to define the functions acceptable as P, we will utilize only the conditions of 
coherence expressed in an abstract form.

In what way does this differ from the formulations more usually adopted at the  present 
time? In the first place, the structure which is generally preferred is a closed, monolithic 
one. Rather than defining events in a general way, and then the functions P as extendible 
(in principle) to all events (either already conceived of, or conceivable in the future), one 
constructs on each occasion a definite, well‐delimited (although possibly enormous) 
field of events with a particular function P attached to it once and for all. In terms of the 
standard image (in which events are thought of as sets in an abstract space), this means 
that the complete set‐up (or ‘probability space’) is a measure space (i.e. a space with one 
particular, fixed measure). In contrast to this, the separate consideration of first the 
space (without the measure, or any other kind of structure) and then all the possible 
measures, not only, and most importantly, meets the needs of the subjective conception 
by providing Pi, which are possibly different for each individual i (‘tot capita, tot senten-
tiae’), but also satisfies other more ‘neutral’ requirements (probabilities conditional on 
different hypotheses, or different states of information, or ‘mixtures’, and so on).

Moreover (independently of the previous objection, concerning P), this space– 
measure coupling gives rise to an unnatural, forced relationship between the two 
notions of event and probability, because it does not take account of the problems raised 
by the fixing of a particular function P. The current practice of reducing the calculus of 
probability to modern measure theory (countably or σ‐additive, as in the Lebesgue 
theory)  –  apart from changes in terminology (set–event; measure–probability; 
 function–random quantity; integral–expectation) – has resulted in the following:

 ● probability is obliged to be not merely additive (as is necessary) but, in fact, σ‐additive 
(without any good reason);

 ● events are restricted to be merely a subclass (technically, a σ‐ring with some further 
conditions) of the class of all subsets of the space (in order to make σ‐additivity 
 possible, but without any real reason that could justify saying to one set ‘you are an 
event’, and to another ‘you are not’);

 ● people are led to extend the set of events in a fictitious manner (i.e. not corresponding 
to any meaningful interpretation) in order to preserve the appearance of σ‐additivity 
even when it does not hold (in the meaningful field), rather than abandoning it.

Among other things, in the case of limiting processes and definitions of stochastic 
limits, this leads to the adoption of formulations that are unacceptable as they stand 
unless σ‐additivity is imposed (at the cost of a great deal of inconvenience) as a neces-
sary assumption at all times.

We should, of course, discuss these objections and reservations rather more fully, and 
go on to justify them; all the more so in that they will seem strange to those who are 
accustomed to the standard formulation. In fact, in the standard approach the points 
which do not seem to stand up to a critical examination are introduced either with the 
tacit suggestion that they are obvious, or they are couched in suitably seductive terms 
to overcome any initial reluctance to accept them.

There are other negative features of the space–measure coupling which are not related 
to the assumption of σ‐additivity. An example is provided by the fact that zero probability 
is regarded as a property of the event in question (among other things, this sometimes 
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leads to two events, A ≠ B, being defined as ‘equivalent’ if their symmetric difference, 
A  B BA, or A + B − 2AB, has zero probability). Even more dangerous is the fact that 
stochastic independence – P(AB) = P(A)P(B) – is considered as being a  property of the 
events; and so on. One should beware of laying insufficient stress on the fact that it is a 
property of the function P (in relation to the events A and B) and not of the events as such 
(but this important distinction ceases to have any meaning if P is considered as given!).

In Chapter 2, we gave an account of what can be said about events from a logical 
standpoint (within the logic of certainty); in other words, concerning the events in 
themselves. We postponed until Chapter 3 anything which depended on the  introduction 
of the function P defined on the events (without adding or altering anything concerning 
the notion of event, or the meanings of individual events). This separation was made in 
order to avoid any confusion early on; confusion which could have led to misunder-
standings later.

Here we shall adopt the same policy, although, of course, in a deeper, more systematic 
and precise way. Certain distinctions that appear meaningful in other formulations no 
longer appear so in ours. Consider, for example, the distinctions between whether or not 
events are atomic (i.e. contain no events other than themselves and the empty one; in 
terms of sets of points, this reduces to those sets formed from the singletons), or between 
those events belonging to either finite or infinite sets of events, and so on. In the case of a 
random quantity X, having as possible values, for example, all real numbers between 0 and 
1 (like X = ‘percentage of time during which a given telephone link will be busy tomorrow 
between 9 a.m. and 5 p.m.’), let us consider the event E = (X = 0·4166666 …). It consists of 
obtaining exactly a given preassigned value and could be regarded both as ‘belonging to 
an infinite set’ (i.e. of events Ex = (X = x), 0 ⩽ x ⩽ 1) and as an ‘atomic event’ (because a 
precise value, like x0

2
341 %, does not admit further refinement). It also belongs, how-

ever, to the field consisting of just the two events E = (X = x0) and Ẽ = (X ≠ x0) (together 
with the events 0 and 1), and can be decomposed into E EA EA , by means of any event 
A not involving X (for example: A = ‘it will rain tomorrow’; A = ‘the party at present in 
government will not remain in power after the next election’; A = ‘the azaleas in the win-
dow of the florist across the street will be sold today’). This can be extended to infinite 
subcases by considering other random quantities Y, Z,… (and, therefore, by considering as 
‘provisional atoms’ the points (x, y), or (x, y, z), or (x, y, z, …) of S2, S3,…, Sn,…). It follows 
that any considerations put forward on the basis of these nonexistent distinctions must be 
without foundation (an example of this is the assertion that an event E that is not impos-
sible can only have zero probability, P(E) = 0, if it ‘belongs to an infinite set of events’).

On the other hand, there exist real problems that arise in various connections with 
the notion of the ‘verifiability’ of an event; a notion which is often vague and elusive. 
Strictly speaking, the phrase itself is an unfortunate one because verifiability is the 
essential characteristic of the definition of an event (to speak of an ‘unverifiable event’ 
is like saying ‘bald with long hair’). It is necessary, however, to recognize that there are 
various degrees and shades of meaning attached to the notion of verifiability. Some are 
more or less flexible: verifiable with a greater or lesser degree of precision; or within a 
shorter or longer period of time; or with a higher or lower level of expenditure; or with 
a greater or lesser number of partial verifications; and so on. Others are more precise: 
for example, we could consider ‘absolute’ degrees of precision, or ‘infinite’ time periods, 
and so on. The most precise and important, however, is that which arises in theoretical 
physics in connection with observability and complementarity. It seems strange that a 
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question of such overwhelming interest, both conceptually and practically (and 
 concerning the most unexpected and deep forms of application of probability theory to 
the natural sciences), should be considered, by and large, only by physicists and philoso-
phers, whereas it is virtually ignored in treatments of the calculus of probability. We 
agree that it is a new element, whose introduction upsets the existing framework, mak-
ing it something of a hybrid. We see no reason, however, to prefer tinkering about with 
bogus innovations rather than enriching the existing structure by incorporating stimu-
lating refinements (disruptive though they may be).

It is our intention, therefore, to attempt to provide in this appendix an integrated view of 
questions of this kind that arise in connection with events. We should perhaps make it clear 
that our ‘attempt’ will be mainly concerned with the case of theoretical physics, and will 
consist of little more than a comparison of the positions adopted by various other authors, 
plus an indication of which position seems to us to be less open to  criticism (as well as being 
better suited to deal with further problems concerning the verifiability of events).

There are other questions (already mentioned many times in passing) which concern 
the notion of ‘possibility’, and further aspects are revealed in cases where, either through 
haste or oversight (or because of one’s own limitations, or because of the impossible 
nature of the task, or whatever), one has not drawn out all the logical implications con-
tained1 in the information in one’s possession. The result of this is that the set of events 
considered ‘certain’ is not closed with respect to the logic of certainty.

Finally, we shall turn from the preliminary questions concerning events (and hence the 
logic of certainty) to the introduction of probability. It is the latter that is for us the real sub-
ject matter, the principle character as it were, and the rest is simply the setting of the scene.

We must now pass from the considerations that led us (in Chapter 3) to our basic 
formulation, to consider the axioms which constitute their translation into abstract 
form. The surest way of avoiding any kind of modification taking place during this 
translation is to directly express things in abstract form without any alterations. It suf-
fices to preserve additivity and non‐negativity. So far as the essential considerations are 
concerned, this rules out the attributing of a positive price (positive prevision) to a 
transaction (or bet) that will certainly lead to a negative outcome. From the abstract 
point of view, this obliges P to be such that we can never have

 c X c X c Xn n1 1 2 2 0P P P  

if

 X c X c X c Xn n1 1 2 2 0iscertainly . 

These inequalities (imposed for every finite, linear combination) define (as the intersec-
tion of half‐spaces) the convex set P of admissible functions P (and all that remains to 
be sorted out are a few details, like the possibility of substituting ⩾ for > in the inequali-
ties, and so on).

1 As an example of this, consider the matching problem (with n objects). It could happen that someone does 
not realize that the case of n - 1 matchings is impossible (see Chapter 3, 3.8.4), either because he is not capable 
of arriving at this conclusion on the basis of the information available to him, or because it never occurred to 
him to doubt that all the values 0 to n were possible. It could also be that he had once known the result, but had 
subsequently forgotten it; or that he had not really forgotten it, but simply overlooked it at the time in question.
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On the other hand, we should point out that in expressing these conditions we have 
made use of, or at least made reference to, random quantities rather than events. In 
actual fact, writing E1 … En in place of X1 … Xn would have given practically the same 
condition2 by introducing the Xh (which form a linear space) in an indirect fashion as 
linear combinations of the events (which do not form a linear space). To start directly 
with the linear space of the Xh (without giving any particular emphasis to events, which 
are, in any case, part of that space) not only enables one to deal with the whole set‐up in 
one go but also permits one to emphasize the adherence to the essential meaning.

Proceeding in this way, the axioms directly characterize P over its entire field of 
 application: that is both over the field of events – where it can be given the name of 
probability – and over the field of random quantities – where it is called, more generally, 
prevision (or price, if we are dealing with practical situations).

This is a great advantage, not only from a formal point of view but also because of the 
elegant simplification it provides. One avoids not merely the tiresome complication of 
having to consider two separate cases but also a whole series of difficulties that stem 
from the fact that such complications are misleading as well as annoying. In the first 
place, one encounters a tiresome complication if one wishes to formulate the axioms in 
such a way as to deal only with events, excluding random quantities. A further 
 complication then arises when one attempts to put right this exclusion and define 
 prevision, taking into account that it has already been defined in the particular case of 
events, where it is called probability.

The obvious way, and the only possible way, of dealing with the exclusion would 
 simply be to remove it – even though not straightforwardly – by means of some device 
that puts us back on the straight and narrow. It seems, however, that the first, unhappy 
step obliges us to continue with it in making the second step. In wishing to consider as 
a definition of prevision some relation connecting it with probability, one is led into an 
extremely unnatural position. In other words, one makes it appear as though the 
 elementary notion of prevision presupposes a knowledge of something much more 
complicated and delicate; that is, the probability distribution itself. Because it is 
 unnatural, the situation is also dangerous, in the sense that it leads one to think that the 
definition to be made in this way, ex novo, allows a certain element of arbitrariness. In 
other words, that it requires, or permits, a choice of conventions, which are inspired by 
considerations of convenience.

In mathematical terms, expressed abstractly, all that we have said reduces to express-
ing a preference for, and then adopting, the first of the two paths open to us (which we 
indicate here by quoting the opening sentences of a more detailed description that can 
be found in Bodiou,3 p. 5):

i) emphasis on linear functional (Riesz, Bourbaki, L. Schwartz);
ii) emphasis on measure (Borel, Lebesgue, Carathéodory, Fréchet, Kolmogorov).

2 If one limits oneself to Xh having a finite number of possible values; from here one could proceed to the 
general case (with bounded Xh) by means of approximations from above and below.
3 Georges Bodiou, Théorie dialectique des probabilitiés englobant leur calcul classique et quantique, 
Gauthiers-Villars, Paris (1964).
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The main thing, however, is not the conclusion we reach – that is the choice itself – but 
rather the reasons lying behind this choice. It is not a question of saying which 
 mathematical formulation has the greatest merit from a mathematical point of view, but 
rather of saying which provides a means of interpreting most directly those things 
which are most directly significant, most directly important, and, above all, most 
directly observable (in a conceptual sense).

Our attitude towards the difference between the two approaches to the definition of 
P(X) (the prevision of X, usually denoted by E(X) = the mathematical expectation of X) 
can be clarified by means of an analogy (which is, in fact, exact, apart from the change 
in terminology). Given a solid body C, one can define its ‘barycentre’, B(C), say, and also 
give an  operational method of determining it, without formulae; but it will not normally 
be possible (nor will it be important) to discover the mass distribution of C. In particu-
lar, the notion of ‘density’ at a point is simply a convention, defined by a limit process 
which, given the structure of matter (molecules, atoms, particles), cannot, strictly 
speaking, make any sense. However, it can be said that if we assume the density ρ to be 
known, as a function of the point P, we are then able to say that the mass of the body, 
m(C), and its barycentre, B(C), must be given by:

 
m C P S B C

m C
P P S

C C

d d, . .1

 

To summarize: the difference we referred to consists of choosing between those 
 definitions that are direct and intuitive, and those expressed in formulae as in the exam-
ple above. (Note that in the latter case we require a passage to the limit in order to define 
density and then, to go back to the body itself, we have to do away with the density by 
integrating it. If there is any arbitrariness in the definition of the integral to be used, 
there is always the risk that some error is introduced.)

I find this undesirable habit of making simple things complicated to be very wide-
spread at the present time (it is as if people go looking for trouble – and often they find 
it). I mention this not because I see it as my business to concern myself with it outside 
the confines of my own subject, but merely to point out that my noticing it and attempt-
ing to remedy it in the field of probability theory does not mean that I only see it as 
having taken root there. It happens more or less everywhere.

2 Events (true, false, and …)

By definition, an event must either be true or false (see Chapter  2, 2.3.4). It can be 
uncertain (for us, for the time being) only if, and insofar as, we do not possess the 
information required for establishing its truth or falsity. The same holds for any random 
entity; in particular, for random quantities. A ‘random’ quantity X is a quantity which 
has a well‐determined value x; it could be, however, that we are not aware of what this 
value is (and it is because of this absence of information that it is, for us, for the time 
being, uncertain and, hence, random). We can, in fact, limit our discussion to the case 
of events, because any information concerning X is simply information concerning 
some event of the form X ∊ I (where I is any set).
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But what does it mean to say that an event is either true or false? Two extreme inter-
pretations would consist in making reference to an ‘objective truth’ or to ‘immediate veri-
fiability’. The latter is unobjectionable but is extremely restrictive: it only holds in 
situations like that of a quiz where the answers can be found by turning to the next page. 
Even in this case, however, there are a number of implicit assumptions! We have to 
exclude the possibility of confusion or bewilderment such as would arise, for example, if 
every time one turned to the answers one found them different from when one last 
looked; or found them to be different according to whether one read them with the left 
eye or the right eye; and so on. Everyone will no doubt agree that these kinds of assump-
tions are ridiculous but it should be noted that there is no logical reason for regarding 
them as such. One does so because they conflict with certain ‘regularities’ that ‘objective 
reality’ has accustomed us to. (Dually, from a solipsistic point of view, they conflict with 
certain ‘regularities’ that have guided us in our construction of our idea of ‘objective real-
ity’ – in the image of what appears to us in our maybe‐real‐world‐maybe‐dream‐world.)

Should we let ourselves be guided by the objective interpretation, the first of the two 
extremes we mentioned above? Up to a certain point this is inevitable (otherwise we 
would be forever in the grip of a ‘ridiculous’ scepticism, as in the examples above). It is 
necessary, therefore, to be constantly on the alert, with a critical attitude, remembering 
that many statements that appeared to a ‘naïve’ objectivism to be undoubtedly mean-
ingful had subsequently to be modified and revised in terms of ‘operational’ definitions 
in order for it to be possible to give them a meaning.4

But when is ‘objectivism’ not ‘naïve’? Unfortunately, the answer is far from reassuring: 
‘it is so up until the point when the unexpected occurrence of the contradictions or 
drawbacks to which it gives rise actually take place’.5 When this happens, one has to seek 
a remedy, and this consists in moving as far as we can in the opposite direction. In other 
words, we cease to think of the ‘objective’ fact of something being either true or false, 
but rather of the fact of whether or not we can obtain the information that for us deter-
mines whether it is true or not (or, at least, whether there is a possibility’ –  in some 
sense or other – of obtaining this information).

This would lead us to regard some events as worthy of the name (since it actually 
makes sense to ask whether they are true or false) and others as requiring elimination 
(in that they are bogus – events in appearance only, non‐events). If the possibility of a 
clear‐cut separation of the two kinds of events existed (or, at any rate, were assumed to 
exist  –  possibly with some appropriate, simplifying hypothesis), there would be no 
problem. Everything could then remain as before (including the definition of event), 

4 At this point, in order to avoid confusion and misunderstandings, we should clarify the relationship 
between subjectivism in the field of probability and subjectivism in relation to knowledge in general.
It is sometimes said that ‘yes, of course probability is subjective … because everything is subjective’. Put this 
way, however, the statement is not in accordance with the subjectivistic conception of probability and is, in 
fact, at odds with it. The fundamental point of the subjectivistic conception is that the notion of probability 
does not refer to something which is a property of the ‘outside world’ (and it does not matter whether the 
latter is regarded as an ‘objective reality’ or as a ‘mental construct’). A solipsist, who considered all of 
so-called ‘reality’ to be ‘subjective’, in order to be self-consistent, and to correctly interpret the subjectivistic 
concept of probability, would perhaps be right in saying, instead, that probability is objective. It is objective 
in the sense that it expresses an autonomous judgment and not something which is bound by ‘external’ 
circumstances to be interpreted in the sense of ‘as if ’ (Veihinger’s ‘als ob’).
5 It is almost the same as saying that every individual must be regarded as immortal until he eventually 
happens to die.
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with an additional warning that one should make sure that one really is dealing with 
events (i.e. with events that make sense – those that are verifiable).

Instead, it seems to be necessary to retain more flexibility. More specifically (although 
this suggestion might appear to be an unhappy expedient), it will be convenient to use 
the term ‘event’ quite freely, without any a priori selection and exclusion. In this way, the 
selectivity can be brought in later, case by case, taking into account the different require-
ments (sometimes clear‐cut, more often vague) that arise in connection with ‘verifiabil-
ity’, and interpreting them in the light of appropriate (albeit to some extent arbitrary) 
schematizations.

It might be claimed that by adopting this approach we are begging the question, since 
the exclusion of that which must be excluded (because it is meaningless) becomes 
mixed up with the exclusion of that which can be excluded should we happen not to be 
interested in it. It is a fact, however, that our analysis (whether completely satisfying or 
not) does reveal the case of absolute unverifiability to be a limit‐case of something more 
gradual (and, in a certain sense, ‘economic’), involving different degrees of difficulty (of 
various kinds) in verifying whether an event is true or false. Nothing precludes one from 
evaluating this degree of difficulty in the light of the meaning and importance that such 
a verification would produce in practical terms.

One great advantage of proceeding in this way (and one which seems to me indispen-
sable) is that our initial scheme remains the same: it includes all those things that we 
would have called events prior to embarking on these critical considerations, and per-
mits us to carry out all the usual operations on them. When it comes to introducing a 
restriction (in a way which corresponds – within the given framework – to certain well‐
defined reasons), it will be sufficient to specify the subclass of events that one wishes to 
take into consideration (or to regard as making sense, or as verifiable, or whatever), and 
which other events one wishes to discard (regarding them as bogus, non‐events, or as 
events whose meaning is unclear, or of little interest, or whatever). It may happen that 
in some circumstances certain given operations applied to verifiable events lead to veri-
fiable events but that in other circumstances they do not. There are various possibilities 
of this kind and it is simply a question of noting what actually happens, rather than a 
theoretical question to be posed in abstract form as being an inherent feature of the 
concept of verifiability.

We have spoken thus far as if it were merely a question of distinguishing between 
genuine (i.e. verifiable) events, for which there are just two values, True and False, and 
bogus events, which are either not events at all, or are ‘meaningless’, or are ‘intrinsically 
indeterminate’. There are cases, however, in which one discusses events for which there 
are three possibilities: True, False and Indeterminate (or Meaningless). This situation 
occurs above all in quantum mechanics in connection with the problem of complemen-
tarity and, hence, of indeterminism. Having three possibilities could give rise to a three‐
valued logic (as, for example, in Reichenbach, 1942).

In considering (in Chapter 4) conditional events of the form E|H, we were, in fact, 
dealing with logical entities that could take on three values: True (1 = 1|1; i.e. both H 
and E true); False (0 = 0|1; i.e. H true and E false); and Void (∅ = 1|0 = 0|0; i.e. H false 
and hence the truth or falsity of E irrelevant). This is precisely the way in which the 
‘three truth values’ of the above‐mentioned three‐valued logic are formed (with H = ‘an 
observation made in order to verify whether E occurs or not’; and only after this does it 
make any sense to ask whether E is true or false). In actual fact, this reduction of the 
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problem to the simple and familiar set‐up of conditional events does seem to provide an 
adequate solution; moreover, it is especially satisfying in that it avoids any formulation 
which might appear to contain the germ of metaphysical infection.

There is no problem if only one considers the meaningful components making up 
the conditional event E|H to be not H and E, but H and EH (see Chapter 4, 4.4.1). So 
far as the event E in E|H is concerned, it is immaterial whether we take it to be E, or 
EH (the minimum possible), or EH H  (the maximum possible), or any intermediate 
event E = EH + A, with A ⊂ H . To ask whether E is meaningful (and if so whether it is 
true or false), when H is assumed false does not make sense, when considered in rela-
tion to E|H. In this context, one would be considering the question of whether or not 
the possible residual part of the sentence made sense, or was true or false. If it were 
meaningful at all, this would represent the irrelevant A, which is outside the field of 
interest. One could, however, investigate whether, for other reasons, the E in the 
 formulation adopted – that is its residual part A which is irrelevant for E|H – should 
be considered as meaningful and having interest outside of the hypothesis H. This is 
a separate problem, which concerns the event A as such, and does not have anything 
to do with the conditional event E|H, into which A enters only by the back door (like 
b in 5a − 0b + 2c), or with its three logical values (for which, whatever A might be, 
there corresponds to H  – and hence to A and H  − A – always and only the same value; 
∅ = Empty).

Let us now turn to a consideration of the mathematical representation of the field of 
events. We shall mention several variants, their appropriateness depending on the situ-
ation and on what is required. When it seems useful to do so, we shall also mention 
other possibilities that do not fit into our general framework of ideas. We have already 
provided a great deal of discussion in the text (Chapters 1–12) concerning the reasons 
for conflicting views on this subject; a few brief comments about certain peripheral 
topics should therefore suffice here. We shall try to give accurate accounts of those 
formulations that are not acceptable as such in terms of the approach adopted in the 
present work, and to bring out their worthwhile features, indicating how they might be 
applied in particular situations or as special cases.

3 Events in an Unrestricted Field

The basic set‐up with which we shall begin is that already described in a summary 
fashion in Chapter 2, and which we have adhered to ever since, despite the occasional 
reservation. It serves our purpose in two ways: firstly, it is useful as it stands, in that 
it provides for a suitable representation and interpretation of the case that we shall 
regard as the most general, and, apparently, the simplest; secondly, with appropriate 
 modifications, it provides a means of obtaining schemes for representing the other 
cases of interest (and some aspects of these might, in fact, appear simpler than the 
first case).

The simplicity of this first case lies precisely in the fact that no restrictions of any kind 
are imposed when it comes to forming the events: the latter could always be thought of 
as arbitrary subsets of a set of ‘elementary possible cases’ of a partition admitting indefi-
nite refinements. In formal terms, we could express this more precisely as follows: ‘at 
any given moment’, the field E of events under consideration corresponds to the entire 
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collection of subsets (or subdivisions) of the set (or partition) Q of the ‘elementary pos-
sible cases’, Q, which, ‘at that moment’, one wishes to single out. The partition Q must be 
considered as having no structure whatsoever and, moreover, it must be considered as 
‘provisional’, ‘not once‐and‐for‐all’ (and this is what the references to a ‘given moment’ 
etc. are intended to convey). This implies that we can only consider as meaningful those 
notions and properties which are, in a certain sense, invariant with respect to ‘refine-
ments’ of Q. In more precise forms the latter are represented by subsets Q′, for which 
each set of Q consisting of a single point Q is replaced by a set containing many ‘points’ 
Q′ (in general, there could be an infinite number). To summarize: we can provisionally 
identify the events E of E with the subsets P(Q  ) of Q, and also with the corresponding 
subsets P(Q′) of Q′; – that is without taking too seriously the temporary interpretation 
of the Q ∊ Q as ‘points’.

We shall give an example straightaway, in order to clarify this. Let E be the event 
X2 + Y2 ⩽ a2 (where X and Y are random quantities). If Q  is the (x, y)‐plane, the event E 
 corresponds to the disc of ‘points’ (x, y) with x2 + y2 ⩽ a2; whereas if Q ′ is the three‐ 
dimensional space of points (x, y, z) (or four‐dimensional, (x, y, z, t) etc.) the event 
 corresponds to the cylinder of points (x, y, z) (or x, y, z, t) etc.) such that x2 + у2 ⩽ a2. By 
considering not only the random quantities X and Y, but also others like Z and T, etc., 
we change the field Q and the notion of point (to each point (x0, y0) there corresponds 
the infinity of points on the line (x0, y0, z), or on the plane (x0, y0, z, t), etc.). The set to 
which E corresponds – or, conventionally, with which it is considered  identified – changes, 
but this is an irrelevant contingency, arising from the form of representation; what does 
not change is the meaning of the proposition itself, which is completely contained in the 
inequality X2 + Y2 ⩽ a2.

All this could have been expressed in a better way had we eliminated completely the 
notion of point, but it appears to be more instructive to put it forward and then to 
present the arguments against it. In this way, we underline the contrast between the 
more usual formulations on the one hand, and the refusal to accept ‘closure’ – as is 
otherwise inevitable – on the other.6 On the other hand, it turns out to be useful to 
accept the ‘points’ as indicating the limit of subdivision beyond which it is not neces-
sary to proceed (at a given ‘moment’, i.e. with respect to the problems under considera-
tion). There is just one condition: that we always bear in mind that this is only useful 

6 To approach the formulation of a theory by starting off with a preassigned, rigid and ‘closed’ scheme 
seems to me a tiresome and cumbersome procedure, wherever it is followed. (It is true that it serves to 
guarantee one against antinomies and suchlike, but this is not a good reason for always having recourse to 
it; in the same way as it is not necessary to shut oneself inside a tank in order to journey through a peaceful 
and friendly country.)

In connection with the use of ‘points’, and their abandonment in geometrical representations, we refer 
the reader back to our remarks in Chapter 2, 2.4.3 (especially to the quotations of von Neumann 
and Ulam).

Further discussion, closely relevant to this point, and (insofar as the present topic is concerned) 
upholding precisely the same position, can be found in Bodiou (1964, p. 3). Abstracting from the space of 
points, and describing the events directly as the elements of a Boolean algebra, or a Boolean lattice, he 
observes that ‘apart from the formal simplification thus obtained, the new axiomatization is more directly 
interpretable in terms of the logic of the attributes…. If one assumes that each element of the Boolean 
algebra is a union of “atoms”, one proves equivalence to the Kolmogorov axioms; the emphasis, however, 
is more directly on the essential feature – the global lattice, and not the set of its atoms’. (We should 
add – although it is not necessary at this point – that Bodiou does, however, retain the usual conditions, 
which admit σ-additivity.)
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insofar as it helps to ‘fix ideas’ at the time in question. If one were to attribute to it some 
absolute meaning, it would lead to a confusion of the ideas, and to a tangle of 
misunderstandings.7

The field Q (or, more generally, a field S   of which Q  is just a part) is often obtained by 
starting from some given set – which we shall call a basis B – of events Eh, or, more 
generally, of random quantities Xh (this was the case in the previous example, where we 
started with X and Y, and then considered adding in Z and T). To think of the field Q 
(and therefore of the field E = P(Q  )) as having been generated from a basis B is 
 completely irrelevant; it is convenient, however, to refer to this case in order to take up 
the theoretical discussion again, and to develop it in a more expressive manner.

In Chapter  2, and also in the example above, we have already seen how, given n 
 random quantities Xh, the whole picture could be summed up by considering a single 
‘random point’ Q in the Cartesian space S  = Sn (with coordinate system xh), where Q is 
the point defined by xh = Xh(h = 1, 2,…, n). Not all the points of S   are, in general, possible, 
but only those of a subset Q (obtained by eliminating the cases S − Q  which, on the basis 
of the data of the problem, turn out to be impossible). In particular, if the Xh are events, 
Xh = Eh, S    reduces to the set of the 2n vertices of the hypercube (with coordinates 0 or 1), 
since we can only have xh = 0 or xh = 1. In this case, Q  is the subset of possible  vertices; 
in other words, the constituents (Chapter 2, 2.7.1). In the general case, nothing really 
changes, except that the Eh, or the Xh, may be infinite in number; the indices h will then 
run through some infinite set H (not necessarily countable), and even if we write the 
more familiar h = 1, 2, 3,…, or simply say ‘all the Eh (or Xh)’, we shall mean h ∊ H.

In this way, the preceding (Cartesian) representation will hold without any alteration, 
except that the number of dimensions (of axes, of coordinates) is infinite,8 and S will be 
SH (the cartesian space with an infinite number of coordinates, xh, h ∊ H). In the case of 
events (i.e. if all the Xh reduce to events Eh) the vertices of the hypercube (in infinite 
dimensions) are characterized by indicating for which h we have Eh = xh = 1 (for the others, 
Eh = xh = 0). In other words, they correspond to subsets of B (S = P(B  )) or, equivalently, 
to the functions ƒ(·), elements of S  = 2B, which to some subsets of B assign the value 1, 
and to the others 0. One easily recognizes the identical form of procedure to that which 
led to constituents in the case of finite n; it is a question of stating that out of the events of 
the basis B, a certain subset are true, and the others false. Of course, some of the products 
will, in general, be impossible; that is demonstrably false on the basis of the data. We shall 
need to remove these from S in order to obtain Q. If we wish, we can always reduce the 

7 The most serious such misunderstanding likely to arise is the idea that a conditional event E|H has some 
special significance when H is ‘atomic’: in other words, when H corresponds to a ‘point’ in some given 
representation (although this would obviously be incomplete, since both EH and E ̃H must make sense, and 
H = EH + E ̃H ). In this way, one would be led to think that P(E|H) has an absolute meaning, unchanged 
even if some further information can be added to that expressed by H (here, P(E|H) is the probability of E, 
‘knowing all the circumstances that can influence E – and, one might add, determined up to the present 
moment – as expressed by H’).

Considering the early stage we are at in our present attempt at a systemization, the above brief comments 
may seem premature. However, it is perhaps useful to have some idea of the arguments we shall have to 
consider, even though we shall only come across them later, while developing this treatment.
8 Note (although this is not really important here) that the concept of the number of dimensions – when 
this is infinite – could be understood in a different way as the number of nonzero linearly independent 
elements (and this is actually intrinsically more meaningful): this notion no longer coincides – as in the case 
of finite n – with the ‘number of coordinates’.
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case of random quantities to that of events: it suffices to substitute for each Xh the events 
Eh,x = (Xh = x), for all the values x possible for Xh. Calling B ′ the modified basis which 
arises from this substitution for all the Xh, we can always write S = P(B ′), or S = 2B′.

If, having constructed S    in this way (using one variant or another), we preserve, even 
if implicitly, through the xh, the record of how S   was generated from the basis B, a linear 
space structure (or that of a subspace) remains as a trace of this in S   (and hence in Q  ). 
On the other hand, we might actually be dealing with a problem of geometrical 
 probability (even of geometry, in the sense of ordinary, physical space) and hence we 
inevitably have the geometric structure (one could think, for example of S  = Q = surface 
of the earth, Q = point at which a lost – or stolen – object is located). It does not matter. 
In saying that Q has to be considered as having no structure, one is not saying that a 
structure might not be seen to exist if we looked at it from a different standpoint (and 
one does not wish to rule out the possibility of taking this into account if it should 
appear at a later stage to suit our purpose to do so). We simply mean that for the time 
being and for our present purpose we must ignore it.

If we do not choose to ignore the way in which S   has been derived from the basis B, 
the possibility arises that we could single out certain events as being somewhat special: 
for example, belonging to the basis, or logically expressible in terms of a finite or count-
able number of basis elements. Similar distinctions could be drawn among random 
quantities: those belonging to the basis, or functions of basis elements (the functions 
being linear, or continuous, or whatever, and involving any particular number of basis 
elements), and so on. This is why on the real line, starting from the intervals (as basis), 
one is able to maintain distinctions between sets that are sums of a finite, or countable, 
number of intervals, or obtainable from intervals by at most a countable number of 
 logical operations, and those which are not. We mention this familiar example merely 
in order to point out that the introduction of ideas of this kind, and the consideration of 
such distinctions, is not admissible, and, in fact, must be explicitly excluded, since we 
wish to regard Q as having no structure whatsoever (at least for the time being).

There remains just one distinction – a nuisance as far as we are concerned – which, 
at the present time, would continue to make sense, even if we consider Q as having no 
structure. It is that based on the number of elements (‘points’) of the given E and of its 
complement Ẽ. More precisely, if the cardinality9 of the whole set Q = E ∪ E ̃ is M 
 (infinite), then either E and E ̃ both have the same cardinal, M, or one of them has cardi-
nal M, and the cardinal of the other is smaller (either 0, 1, 2,…, n,…, or n – countable 
infinity – if M > n, or some other cardinal N, where n < N < M). The introduction of the 
convention of ‘never’ regarding the subdivision as a ‘final’ one is another reason for 
ignoring the structural distinctions. In speaking of the basis, we can express this by 
saying that we must always be aware that other events (or random quantities) can be 
added at will. In this way, the distinction based on the number of ‘points’ also becomes 

9 We denote by n and c (Gothic n and c) the cardinals of the integers (the smallest infinite cardinal) and of 
the reals (the continuum), respectively. If A and B are (disjoint) sets with cardinals M and N, respectively, 
then the cardinals of A ∪ B (union), A × B (Cartesian product of ordered pairs (a, b)) and AB (the set of 
functions from B to A), are given by M + N, MN and MN, respectively. If M and N are infinite, and M > N, 
we have M + N = MN = MN = M (and also M + M = MM = M): however, 2M > M (and, a fortiori, NM > M), 
and, in particular, 2n c n (there are as many subsets of the integers as there are points on the real line).

We shall be making use of these properties in what follows, hence the reason for our recalling them here.
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meaningless (and this applies, in particular, to the distinction between ‘atomic’ 
events – corresponding to single points – and others). There remains the one structural 
distinction that we must, of course, retain as a meaningful one: that between the 
 impossible event (E ≡ 0, corresponding to the empty set), the certain event (E ≡ 1, 
 corresponding to the entire set), and all the others (the possible events, which are 
 structurally indistinguishable among themselves).

If one actually wishes to continue along these lines, by introducing new elements into 
the basis, or – if one prefers to put it this way – passing from Q to Q ′ = Q × Q  * (the 
cartesian product with any suitable Q  *) until each ‘elementary case’ Q of Q is subdivided 
into M elements, all the E (thought of as sets of Q ′), apart from the empty set, will have 
cardinality M (because the cardinality will be both ⩾M and ⩽M · M = M). In this way, 
only the empty set and its complement will be distinguishable from the others. It would, 
however, be cumbersome to actually reduce oneself to such a Q ′. We shall content 
 ourselves, therefore, with the fact of having mentioned the possibility of this equalizing 
of the cardinality for all the events of interest, without insisting on it being done, or 
taking it into any further account. It is sufficient to state that we ignore as being irrele-
vant any distinctions made on the basis of considering cardinality. We shall not mention 
this again. In fact, without going into all the details, all this could have been regarded as 
implicit in the assertion that we were not going to acknowledge any distinction between 
the subdivisions of a partition Q, and the (corresponding) subdivisions of a finer 
 partition Q ′.

Instead, we must go back to the problem of the nuisance structures introduced by the 
presence of the basis B ; the structures that we had decided to ignore. Rather than 
 ignoring them, we can make use of them, by removing, in a different way, the drawback 
they had of inducing a special status for some events, or random quantities, in compari-
son with the others. Instead of prescribing that the basis be ignored (and let us suppose 
for the moment that we have a basis of events, Eh ∊ B, h ∊ H), we can achieve the desired 
result by enriching the basis itself so that it includes all the E ∊ E. It then follows that 
membership of the original basis B is no longer relevant.10 In the case of a basis of 
 random quantities (Xh ∊ B, where h ∊ H), a thorough application of this same procedure 
takes us even further. More precisely, it will be a question of adding to the Xh of the basis 
B all the random quantities expressible as functions of them (any functions); that is 
every function Xk of the points Q ∊ Q, Xk = fk(Q), where the fk(·), k ∊ K, put every Q of Q 
into correspondence with a real number. (It goes without saying that we do not impose 
any restrictions like continuity, etc., because we have already said, and repeated, that 
we do not consider Q as having any structure, and so such restrictions do not even make 
sense.11) The field S    will then be the Cartesian space – let us denote it by SK – with an 
infinite number of coordinates xk(k ∊ K), where K is the set of the indices k that label the 
functions fk(·) forming the field S = cQ. Essentially, K is S itself (and it is only for 

10 This is rather like everyone at birth receiving the title of ‘Your Excellency’ in order to achieve its 
downgrading (something which the abolition of the title would not, since there would always be a handful of 
people who would retain it).
11 The distinctions which clearly do make sense are those concerning the ‘possible’ values of the Xk (i.e. the 
range of fk(Q)); the case of bounded Xk is particularly important (as we have often seen already in this work). 
Here we are not directly interested in this aspect, because it does not depend on things concerning the field 
Q (and related notions).
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notational convenience that we introduce an index k, k ∊ K, in order to distinguish the 
functions fk(·); it would be equivalent to refer to the functions f, f ∊ S    ). One may observe 
that K (or, equivalently, S) has cardinal cM, where M is the cardinal of Q, and that K 
contains H, H ⊂ K, given that among the complete collection of Xk = fk(Q) there exist, in 
particular, the Xh which form the basis B.

The ‘waste’ in the number of dimensions (in passing from H to K) is clearly consider-
able and might seem rather absurd. On the one hand, however, the fact that this 
 enormous waste is more or less a disaster is irrelevant in practice, since it is never neces-
sary, nor would it be possible, to take account of the infinite dimensions one at a time. 
On the other hand, such an extension brings with it something that is very much to our 
advantage (formally, for the time being, but of substance later, when we introduce into 
this framework the notions of probability and prevision). This advantage lies in the 
following: that, by this means, we could also retain, and consider as valid, the linear 
structure thus introduced into S   and which makes it into a linear ambit A, since – by 
the principle of ‘everyone a nobleman’ –  it no longer gives rise to any discrimination 
among the various random quantities and, in particular, among the events.12

The extension made for S   does not modify, in any basic respect, the set, or field, Q of 
possible points Q. Those that are (provisionally) considered as ‘elementary possible 
cases’ remain the same, but the ‘points’ representing them are dispersed and spread in 
the enlarged field S   to a much greater extent. A basic intuition can be obtained from 
recalling the example of the parabola, y = x2, given in Chapter 2, 2.8.7; however, this only 
concerns a single random quantity. In the general case (and also in the case of the exam-
ple above, where one considers all the Y = f(X), even restricting oneself to Y = Xn), it 
turns out that all the points Q (in the field S   extended to a linear ambit A) are linearly 
independent. In other words, if Q1, Q2, …, Qn are possible points – belonging to Q – then, 
in all the Sn−1 which they determine, there is no other possible point (i.e. the intersection 
of Q  with such Sn−1 reduces to these n points, and in general consists of at most n points).

In order to fix ideas, let us verify this first of all for the simplest example, which we 
mentioned above. The field S   is the Cartesian space with an infinite number of coordi-
nates, xh (h = 1, 2, 3,…), on which are represented the values of the random quantities 
Xh = T h (where, for greater clarity, we denote by T the random quantity with which we 
begin; i.e. X1, represented on the x1‐axis). The field Q is the ‘line’13 with parametric 
equations x1 = t, x2 = t2, x3 = t3,…, xh = th,…, if the random quantity T admits all the reals 

12 In Bodiou (1964, op. cit.) we find further discussion of these topics, again in agreement with our views, 
and all the more interesting since his discussion is not inspired by abstract, conceptual questions like those 
we have raised here, but by problems in quantum mechanics. Arguing in favour of referring to a ‘dialectic 
lattice’ (like the one he proposes) rather than to a particular special form of Hilbert space, he makes the 
following remark (p. 103): ‘The unwarranted special status conferred on the coordinates of the particle by 
this particularization obscures the general character of the notions, and gives rise to pseudo-problems (…) 
The coordinates are random quantities just like all the others, no matter how important they might seem’.
13 We use the word ‘line’ for convenience, it being a set of points depending on t(-∞ < t < +∞). For our 
purposes, it does not matter whether this term is really appropriate for some other aspects of the problem. 
(One thinks, for example, of the ‘peculiar fact’ that on the segments where |t| > 1, the points of the ‘line’, 
with the usual metric, all have infinite distance from one another. However, it would be sufficient to 

consider the modified line, xh = th/h!, or, equivalently, to use the metric [ ]/ !
h

hx h 2
1
2 , in order to overcome 

these difficulties. We mention all this merely for the sake of curiosity.)
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(from −∞ to +∞) as possible values; otherwise, it is the subset of the points of the ‘line’ 
corresponding to the values t ∊ I of the parameter t belonging to the set I of possible 
values for T (one should constantly refer back to the example in Chapter 2, 2.8.7).

To establish that linear independence exists between the points of Q, it is sufficient to 
recall, for example, the fact that the Vandermonde determinant is nonzero. Given any n 
points of Q – Q1, Q2,…, Qn, say, corresponding to t = t1, t2,…, tn – if they were linearly 
dependent (i.e. if they belonged to an Sm, m < n − 1) then, a fortiori, their projections 
onto an (n − 1)‐dimensional subspace would also be linearly dependent. One could, for 
example, take the projections onto the subspace obtained by considering only the first 
n − 1 coordinates x1, x2,…, xn−1 (setting xh = 0, h ⩾ n). This would imply the vanishing of 
the Vandermonde determinant ( ; , , , , )a t r s rrs r

s 1 1 2 , which is impossible for distinct 
values of t. It might be observed that the same proof also holds for all other infinite 
projections (but one is enough to establish the conclusion).

The proof of linear independence in the case of a general linear ambit A is even 
 simpler: the preceding case is useful only in that it deals with a situation that is, in a 
certain sense, more immediate, because no discontinuities are involved (these arise in 
the consideration of events, with 0 and 1 as the only possible values). Let Q1, Q2,…, Qn 
be once again points of Q, and let Q0 be a point which is linearly dependent on them:

 Q a Q a Q a Qn n0 1 1 2 2  

with ah 1.14 Let us divide the n points Qh into two groups, labelling them with one or 
two dashes, respectively (i.e. writing Qh or Qh to indicate whether Qh is in the first or 
second group). The only condition is that the sums a′ and a″ of the weights ah and ah 
are neither 0 nor 1 (this can always be arranged, except in the case in which a single ah 
is equal to 1, and all the others are zero; i.e. the case in which Q0 coincides with one of 
the given points Qh: we shall obviously exclude this case). We denote by E′ and E″ the 
logical sums of the Q′ and the Q″, and we let E be any event E′ ⊂ E ⊂ Ẽ″ (in simple terms, 
we put the Q′ in E, the Q″ in E ̃, and we divide up all the other points of Q arbitrarily 
between E and E ̃). For any such event E, we can say that it has the value 1 over all 
the points Q′, and the value 0 over all the Q″; consequently, it has value a′ on Q0 (where 
0 ≠ a′ ≠ 1). It follows that Q0 is not a point of Q  (and therefore not ‘possible’) because it 
does not attribute to E one of the two values 0 or 1.

It might well seem absurd to ‘invent’ – not without some effort – a field S, or a linear 
ambit A, constituted almost entirely of points that satisfy ridiculous conditions (like 
making an event – whose values can only be 0 or 1 – assume values such as log 2, or π; 
or making X take on the value 1, and X2 take on 2 or 0). It may be, however, that this 
makes sense in terms of probability and prevision (we might well have P(E) = log 2 or 
P(X) = 1 with P(X2) = 2; this would happen, for example, if X took on the values 0 and 2, 
each with probability 1

2 ), or in terms of linear combinations of previsions (see the 
 footnote to Chapter 3, 3.7.2). Let us take advantage of this glimpse into the future in 
order to simplify our construction somewhat. Suppose that we assume (rather unjustifi-
ably, because it runs a little ahead of the axiomatic treatment) that points satisfying 

14 This notation really implies that Q0 is the barycentre of the Qh with masses ah; i.e. the point whose 
barycentric coordinates, with reference to the basis-points Qh, are ah. In Cartesian coordinates, this implies 
that, for any x, the values x(i) which it assumes at Qi (i = 0, 1, 2,…, n) satisfy a similar relationship, x(0) = a1x(1) 
+ a2x(2) + … + anx(n).
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linearly contradictory conditions are of no use (for example, 2X − Y = 3, X + 4Y = 1,  
3X − 6Y = 4; we see that 3X − 6Y = 2(2X − Y) − (X + 4Y) = 2.3 − 1 = 6 − 1 = 5). We can 
then restrict the linear ambits A to that part (of the larger construction) where things 
go through for linear relations.

As an alternative to this a posteriori exclusion of the superfluous part, one could sim-
ply avoid constructing it in the first place. Thinking in terms of a transfinite mode of 
construction, introducing one after the other the functions Xk = fk(Q), it is sufficient not 
to introduce new axes xk whenever the Xk turns out to be a (finite) linear combination 
of those already considered. We shall make the convention that the (bogus) random 
quantity X0 ≡ 1 be introduced as the first element (for the same reasons, and with the 
same effects, as in Chapter 2, 2.8.3) and we shall obtain the linear space L of the X, the 
dual of the linear ambit A (this follows in the same way as before, so we omit the details).

In order to illustrate all this in a more concrete fashion, it is convenient to refer to the 
construction we mentioned above. Some of the Xk (let us denote them by Xk

*) are repre-
sented on new coordinates xk, whereas those linearly expressible in terms of a finite num-
ber of the preceding ones already find a coordinate available: x u x u x u xk k k kn n0 0 1 1

. 
This representation is one‐to‐one15 and also holds for the preceding case (for 
X x u x uk k k k k

* : , 1), which does not have to be regarded as special in any way. Each 
point Q, and similarly each point A of A (even those not possible), is characterized by 
the values xk(Q), respectively, xk(A), of its coordinates on the axes of the Xk

* . For every 
other X, the value will be given by the above finite linear combinations (of the coordi-
nates xki

, calculated at Q or at A, respectively). These values could be written (just as in 
Chapter 2, 2.8.3) as A(X) or X(A), and interpreted as products of vectors (from L and 
from A), with the sole difference that instead of linear combinations from among a 
finite number of elements (n + 1), we have finite linear combinations from among an 
infinite number of elements.

We shall call a halt here to our description of the formal set‐up. The consideration of 
these topics  –  although necessary for a complete presentation of the scheme  –  has 
already led us so far into the probabilistic meaning that we cannot usefully say anything 
more without bringing in the latter explicitly.

4 Questions Concerning ‘Possibility’

The most clear‐cut distinction in the entire formulation is that between possible and 
impossible events (or certain ones, but these are merely complements of the impossible 
ones). But is this distinction really so clear‐cut?

There would seem little room for doubt. Someone who argues that he does not know 
whether an event is possible or not is, in actual fact, already saying that for him it is 
possible (because he cannot exclude it, as would be necessary if it were impossible). In 
the same way, when one says that ‘it is not known whether, in a census, the sex of a 
particular individual is known or not’, one is already admitting that it is ‘unknown’. As a 
matter of terminology, this is without doubt absolutely correct. When we try to apply 

15 Were it not so, there would exist a linear relation among a finite number of elements Xk
*, and then the 

last one would have been mistaken for an X*.
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the principle to actual situations, however, and we start examining the exact nature of 
the dichotomy between what one knows and what one does not know, the dividing line 
seems much less absolute and various kinds of difficulties arise.

The most serious of these is the one concealed in the very logical mechanisms which 
exist to overcome it. We know that every consequence of something which is certain is 
itself certain; in other words, all that is implicit in those things for which we have explicit 
information must be considered as part of that information. It follows that the field of 
what is certain for someone – that is for which information is available – must be closed 
with respect to deduction; in other words, it must not leave outside anything which is 
deducible. But deducible in what sense? Through the mechanisms of logic, and this, as 
Galileo says in a celebrated passage, requires ‘voyages of our mind, step by step, with 
time and with motion’; but for things to be as easily done as said, we should require ‘the 
mind of the Almighty’, voyaging ‘with the speed of light’.

The extreme case, in an opposite sense, is that in which, for some individual, certain 
conclusions are completely beyond reach; either because his knowledge is insufficient, 
or because he is not capable of the necessary reasoning. Suppose that N is the number 
of paving stones forming some given rectangular pavement (for example, one that the 
individual recalls having seen, but for which he has only a vague recollection of the 
dimensions, and of the dimensions of the paving stones). The set of possible values for 
N should, at the very least, exclude the prime numbers. But what if he is not familiar 
with this notion? Or if he was familiar with it once upon a time, but finds that things he 
learnt at school do not come back to him sufficiently readily when he is faced with 
problems where such knowledge would be useful? In these circumstances, he could not 
even contemplate making such an exclusion. This extreme case is in any case the sim-
plest; the set of things that are ‘certain’ always remains closed with respect to this 
deductive capability (even if in an incoherent fashion, since it does not coincide with the 
logical possibilities).

The situation is more awkward when ‘closure’ fails to hold and is replaced by some-
thing less rigid. The clear‐cut distinction between those certainties that an individual 
can work out for himself and those which he cannot is lost, and instead we have certain-
ties that are attainable with various degrees of difficulty, and perhaps not immediately. 
In terms of the above example, this is the situation faced by an individual who knows 
that he has to exclude the prime numbers, but who finds that for many integers it is not 
easy to see at a glance whether or not they are prime. Is it worthwhile making all the 
calculations required in order to find out? Or is it worthwhile checking through a table 
of prime numbers (first searching for such a table and then searching for the number in 
question)? It would probably not be worthwhile if the purpose were merely to exclude 
certain rare numbers from the set of those to be considered as ‘possible’. It might be the 
case, however, that, by virtue of some additional information, we were in a position to 
determine N uniquely, since it would turn out to be the only possible value. (As an 
example, suppose we knew that the diagonal of the rectangle were a multiple of the side 
of the paving stones. It follows that N = XY, where the sum of the squares of X and Y is 
a square; if we had sufficiently close bounds, x′ ⩽ X ⩽ x″, y′ ⩽Y ⩽ y″, or some other simi-
lar information, X, Y, N would turn out to be uniquely determined.) In such cases ‘is it 
worthwhile’?

In order to answer this question, we need, of course, to know what the alternatives 
are, and what degree of interest they hold for the individual relative to his evaluation of 
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the difficulty and the labour of finding out. Among the possibilities, we note the 
 following: we are not interested in the problem, not even out of curiosity, and we have 
the option of not bothering ourselves with it; we are content with a crude estimation 
(for example, we may wish to buy n paving stones, choosing n such that we are almost 
certain of there being sufficient to enable us to form a pavement of the same size as 
the original, but with not more than 10% of the paving stones left over; P(N > n) = 1%, 
P(N < 0·9n) ⩽ 5%, say); if, instead, there is a lot at stake, we can make precise our distri-
bution of probability, ph = P(N = h), and compare the costs, risks and advantages of 
buying this or that number of paving stones.

The aspect that concerns us most here is the difficulty of verifying just what it is that 
is implicit in our initial data. Sometimes this difficulty will be insurmountable (evaluate 
the billionth decimal place of π; check the Goldbach conjecture up to 10100 etc.; and it 
would be even worse were we to consider things of this kind involving an infinite num-
ber of digits or integers); at other times, the difficulty is simply one of the labour or cost 
involved. We shall encounter these matters again in connection with the verifiability of 
events, and we shall then go into them more deeply. At this juncture, it is sufficient to 
observe that, from a practical point of view, there is, in the last analysis, no difference 
between an experiment or investigation aimed at uncovering information about an 
unknown fact, and an attempt at deduction aimed at ascertaining that which, in theory, 
we should already know on the basis of the information in our possession. The differ-
ence is simply that if we abandon such attempts at deduction (because of more or less 
insurmountable difficulties), the field of that which we ‘actually know’ is incoherent, 
since it is not closed from a logical point of view.

We obtain maximum ‘flexibility’ if it is easy to demarcate the field of those cases 
 ‘possible at first sight’; the difficulty here, however, is that it takes a long time to check 
all cases. (To give a simple, though rather silly, example: all the integers n between 1 and 
1000 excluding those for which 5 appears at least twice in the first six decimal places of 
the reciprocal.) To check through to the very end presents difficulties, but the same is 
true of stopping at some arbitrary point and, therefore, of starting off with any  rigorously 
laid down distinction between those cases which are possible and those which are not.

Such a distinction becomes even weaker if we abandon the convenient hypothesis 
that the knowledge one starts with is precisely specified in the stated ‘data of the prob-
lem’. If we trace back to the actual, empirical source of the knowledge, are we really able 
to draw a reasonable line between possible and impossible? If a person had seen our 
pavement he might very well say that he is ‘certain’ (but is it true?) that it could neither 
be less than 1 × 2 m2, nor greater than 100 × 1000 m2 (suppose he estimated it as about 
4 × 7). But can such an absolute logical distinction be declared valid in one case and yet 
one not know at what point it ceases to be valid? Is the length of 3 m too small to be 
possible? Yes? And a length of 4 m? No? Then what about the limit being 3·42 or 3·423 m? 
Can it not be specified precisely?

It would perhaps be appropriate to only use the phrase ‘absolutely certain’ when 
 referring to tautologies (and even then …?). Adopting this rule in our example, we could 
only say that the side may have any length between 0 and ∞. In fact, nothing prevents 
us, either for convenience or by convention, from restricting our consideration of the 
problem to a narrower and more ‘reasonable’ set of values (like those mentioned above, 
1 × 2 and 100 × 1000, or to an even more restricted set). It would, however, be more pru-
dent and responsible to substitute in place of ‘it is certain that …’, the phrase ‘assuming 
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that … (the risk of my being wrong appears to me completely negligible)’. Can we talk of 
an age limit beyond which it is certain that some given individual (or any person living 
at the present time) cannot survive? Or of a speed which cannot be exceeded (for exam-
ple, in a track race, or swimming 1000 m, or by a bicycle, car, aeroplane etc.)? I would say 
that it is always inadvisable to express in terms of ‘certainty’ any everyday judgement of 
this kind (even on those occasions when I share the judgement, though with a less firm 
conviction).

So what conclusion do we come to? We could well repeat the statement that we made 
initially: that if we do not know whether something is possible or impossible, then, by 
definition, it is possible. Let us bear in mind, however, that everything is based on 
 distinctions that are themselves uncertain and vague, and which we conventionally 
translate into terms of certainty only because of the logical formulation. On the other 
hand, even in the case of those in a census for whom ‘it is not known whether or not the 
sex is known’, it may very well be that the doubt does not have to be resolved 
 straightforwardly by saying ‘therefore it is unknown’. This is true, certainly, but if we are 
considering the possibility of further investigation, allowing – either definitely or poten-
tially – the completion of the missing information, the nature of the problem changes.

In the mathematical formulation of any problem it is necessary to base oneself on 
some appropriate idealizations and simplifications. This is, however, a disadvantage; it 
is a distorting factor which one should always try to keep in check, and to approach 
circumspectly. It is unfortunate that the reverse often happens. One loses sight of the 
original nature of the problem, falls in love with the idealization, and then blames reality 
for not conforming to it.

In our case, it is certainly necessary that we base ourselves, in the initial formulation, 
on the distinction between possible and impossible; the distinction being considered as 
clear‐cut as suits our purpose. We must be on our guard, however, not to become 
 prisoners of this artificial rigidity (of absolute certainty) if, rather than helping us, it 
should come to trap us in an incomplete and distorted view of things. We shall return to 
these questions, and delve more deeply into them, both in relation to impossibility (as 
above) and with (new) reference to zero probability, and, above all, in relation to the 
acquisition of information for the purpose of an evaluation of probability. It is only then 
that we may come to have a more precise understanding of the questions we have had to 
illustrate here in terms of one particular aspect, without considering the complemen-
tary one.

5 Verifiability and the Time Factor

We can admit that an event E, suitably described, makes sense objectively; that is, is true 
or false independently of any possibility that we have of knowing the fact. To affirm or 
deny its truth as a general thesis would mean that one was being metaphysical, but it 
cannot be doubted that it is often convenient and almost unavoidable to think in this 
way (albeit with due caution).

However, what is important for our purposes is not the fact that E is objectively true 
or false (if one can speak of a ‘fact’ in this connection). What really matters is to  establish 
the fact (to obtain the information, to verify) that E is true or E is false. Think in terms 
of a bet involving E: this is the most futile, but nonetheless the most expressive, example 
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for demonstrating that what counts is only the knowledge of the outcome. Moreover, 
the case of a bet serves as a typical model of the general situation in which probabilities 
serve as guidelines for decision making under uncertainty and for applications within 
this framework.

Let us return now to the study of the field of possibility, which we began in Section 3 
(without restrictions; and let us leave aside, for the time being, the reservations made in 
Section 4). Let us assume that in this field every event is – in an ‘objective’ sense – either 
true or false (and that every random quantity X has a precisely determined value, x); in 
other words, we assume that one may imagine as uniquely defined that point Q of Q 
which summarizes the truth or falsity of all the events of E and the exact values of all the 
random quantities of L.

It might be thought that such a schematization is excessively theoretical and 
 pretentious, even for the representation of the situation relating to a theoretical concep-
tion like that of ‘objective’ reality (which does not take into account limitations deriving 
from imperfections of ourselves and of the instruments with which we make our obser-
vations). It might even be said (from the opposite point of view) that it does not make 
sense, because things only acquire meaning through, and as a result of, observation and 
measurement. Either way, it seems that one is less open to criticism in starting from 
such an ‘overdone’ schematization of some ‘objective reality’ (that one may or may not 
take seriously), since this is merely the starting point for the introduction, as and when 
it suits us, of the gradual qualifications that take place in the transition from the 
 metaphysical notion of ‘objective truth’ to the effective notion of ‘verifiability’.

As we have already mentioned in Sections 1 and 2, these modifications and 
 qualifications will have to be examined from various points of view, in relation to vari-
ous circumstances and factors. As a first step, let us consider the time factor. In order to 
simplify the question, and to separate it off from others that are almost always con-
nected with it, we restrict ourselves to the case in which, from a given instant t onwards, 
the result is known to everyone (or, at any rate, accessible, there being no need to do 
anything in order to ensure its occurrence or to learn about it). In order to fix ideas, 
think in terms of the entire output of news from the press, radio and television (political 
news, day to day items, weather, sport, the economy, science, the arts and so on).

Several cases may arise for each event E, according to the instant at which the result 
is known. An event may be dated more or less precisely, in the sense that the instant at 
which one knows whether it is true or false is known a priori (or, if we are dealing with 
a random quantity, the instant at which its value is known). For instance, the maximum 
temperature in Rome in August of next year (together with the fact of whether or not it 
is greater than that of the preceding August) will be known immediately after the end of 
the month in question. The population of Italy at the next census (the year of this being 
fixed by law, the actual day not yet decided) will be known shortly after the time men-
tioned (i.e. the year already fixed by law and the day chosen); and the same is true for the 
question of whether the population of the North or of the Central‐South has had the 
greatest increase. It is easy to think of other examples.

In other cases, there exists a maximum time limit (possibly rigid, possibly not) before 
one knows the answer; and this advance knowledge could be relevant to only one form 
of answer (either affirmative or negative), or to both. As examples, consider the fact of 
an individual remaining alive, or continuing to hold his present post without interrup-
tion, or never being sick, or never having a car accident, and so on, up to some 
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preassigned time or age. These are all statements that can only be ascertained as true at 
the last‐mentioned time (if at all; for it could turn out that they were known to be false 
at some earlier instant). As for examples the other way around, it suffices to consider 
the negations of the above statements. If the preassigned time limit is dropped, and one 
stipulates ‘until death’, the conclusion16 remains the same, except that a maximum time 
limit can no longer be given with certainty (although in practice the time at which a 
person would become 100 years old might be considered appropriate for the purpose in 
hand). The asymmetry between affirmative and negative answers vanishes if, always 
with respect to the life of a given individual, we consider examples like his dying because 
of an accident, or some other cause, or before (or after) some other individual, or in 
Italy, or abroad. (If in these examples one wishes to include a time limit, it is necessary 
to decide in advance which result is considered as valid if the limit is reached; for exam-
ple, if the individual were insured against one of the two eventualities up to the time 
limit, to reach this limit would be equivalent to the occurrence of the other.)

There are cases, however, in which a statement can never be either verified or dis-
proved until the end of time (or can only be verified or only disproved, or the one and 
the other, but it is not known if and when). Obvious examples of statements that can 
never be settled one way or the other within a finite time period are easily found; one 
only has to consider sequences of events unbounded in time. For example: tosses of a 
coin; spins of a roulette wheel; rainy and dry days (in a given locality); normal days and 
those days on which men turn into rhinoceroses;17 male and female births (in chrono-
logical order, in some given town); passages of people in one direction or another 
through a gateway; and so on. Taking the coin tossing example, for convenience, it is 
sufficient to say, for example, ‘neither Heads nor Tails will always occur’, ‘the frequency 
of Heads will tend to 1

2
’, or ‘will tend to some limit’, or ‘will exceed both the bounds 0·01 

and 0·99 infinitely often’, ‘from some point on Heads and Tails will alternate in a regular 
fashion, HTHTHT…’, ‘the sequence HTTHH…, which represents the Divine Comedy in 
binary code, will be repeated an infinite number of times’, and it would be easy to go on 
in this way. If instead we were to say that ‘the frequency will be less than 0·01 at least 
once (after the first 1000 trials)’, or ‘we will have (after the first 1000 trials) at least one 
run of Heads as long as the preceding segment’ (i.e., starting at the (n + 1)th toss it 
reaches at least to the 2nth), and so on, we would have examples of statements which, if 
true, are certainly verifiable within a finite period of time (although we do not know 
how long). For the complementary statements the opposite holds. If we add to each of 
the above statements something like ‘… or the frequency tends to 1

2 ’, we have statements 
which, if true, can either turn out to be verifiable within a finite time period, or not. An 
example of a statement that may or may not be verified within a finite time both if true 
and if false is the following: ‘if one has, at least once (after the first 1000 trials), a sequence 
of identical results (always H or always T) from toss n + 1 to toss 2n, this will occur for 
the first time for the outcome Heads; if this never occurs, the frequency of Heads will 
have lower limit ⩾ 1

2 ’.

16 Except for the first example, which becomes meaningless.
17 Up until now, all days have been ‘normal’ (Ionesco notwithstanding), and I think that this will always be 
the case. An example of this kind was needed, however, in order to make clear that it in no way differs from 
the others insofar as verifiability is concerned.
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All the events we have considered, expressed as statements about some given sequence 
of ‘trials’ of unlimited duration in time, or concerning phenomena (like the death of an 
individual) that can take place at various times, can be more completely described by 
means of the ordered pair (E, T) (event E, taking values 0 and 1, and random time T, 
with 0 ⩽ T < ∞, or T = ∞). This enables one to identify not only the truth value (True or 
False) but also the time (finite or infinite) after which the event turns out to be verified. 
A useful convention, enabling one to reduce the ordered pair to a single random quan-
tity, is that of taking T with a + or − sign, according to whether E is true or false: that is 
putting T* = T. (E − Ẽ) = T. (2E − 1) (which, in fact, gives +T if the time is T and E = 1 = 
true, 2E − 1 = 1, and gives −T if the time is T and E = 0 = false, 2E − 1 = −1). We can 
summarize the various cases by expressing them in terms of this random quantity T*. 
Both for positive values and for negative values (and independently of what happens in 
the other case) the possible values for T may either reduce to the unique value ∞, or to 
∞ together with some finite values, or to finite values only (and in this case either 
unbounded or bounded; possibly ‘bounded in practice’, to put it in an unorthodox way).

What happens if we consider logical operations on events whose verification may be 
put off until different times, possibly ‘never’? It is clear that under negation T* changes 
sign; if E2 = Ẽ1, T T2 1* *. If we consider the (logical) product, E = E1E2, E must turn out 
to be true if and when this has happened both for E1 (at time T1) and for E2 (at time T2), 
that is at time T1 ∨ T2 (the larger of the two). In the opposite case, E will turn out to be 
false as soon as either E1 or E2 does; that is either at time T1 or at time T2, or at the 
smaller of the two if both events turn out to be false. All this can be condensed by means 
of the following convention: for E = E1E2 we have T T T* * *1 2  with the convention of 
modifying the general meaning of the sign as follows; ‘take the larger of the negative 
values (the smaller in absolute value) and if they are both positive take the larger’. It is 
easy to see that this rule also holds if we include the values +∞ and −∞, and that it can 
be extended to deal with the product of an arbitrary number of events. By means of this 
rule, one can construct the set of possible values of T* starting from those for T1* and T2* 
(and possibly others) provided they are logically independent.18 Moreover, given that the 
logical sum is the negation of the product of negations, it is immediate, from what we 
have said above, that for E = E1 ∨ E2 (and also for several events) we have T T T* * *1 2 , 
with a convention dual to the previous one: ‘take the minimum of the positive values, 
and if they are all negative, again the minimum (i.e. the maximum in absolute value)’. On 
the other hand, these rules are obvious if we think of the meaning of the actual problems 
themselves.19

Actually, it is clear (and it also follows formally from what we have said) that logical 
combinations of events which are certainly verifiable within finite time periods yield events 
that are (in general) certainly verifiable within the most extensive of these time periods. 

18 The meaning is the usual one: however, it might be useful to discuss it in our present context. T1 and T2 
are logically independent if, when t1 is a possible instant for E1 turning out to be true, and t1  is a possible 
instant for it turning out to be false, and the same is true for t2, t2  with respect to E2, it is also possible that E1 
turns out to be true at t1, and E2 false at t2  (and similarly, interchanging true and false, for t1  and t2, t1 and t2, 
t1 and t2).Of course, if logical independence did not hold, the set of possible values for T* would either still 
be the one so determined, or a subset of it.
19 In order to avoid confusion, it would certainly be useful to introduce modified notation to replace ∨ and 
∧ if we planned on making actual use of it. In fact, we are only going to use the idea here, temporarily, for 
the purpose of this explanation: it is, therefore, not worth complicating things.



Appendix498

If, however, we consider an infinite number of events, which are each certainly verifi-
able within finite, although unbounded, time periods, we no longer have certain 
verifiability.

Let us now turn to the examination of the points raised by our analysis of the 
 circumstances surrounding the notion of an event (with special emphasis on the 
 realizability of a bet, which serves for us as something of a ‘touchstone’). It seems natu-
ral to conclude that every postponement, and every asymmetric feature (between the 
ascertainment of the truth of either result) which might be caused by it, has an adverse 
effect on those characteristics required for an event until, if the postponement is too 
great, or even forever, these characteristics completely disappear.

Although we have to postpone the most relevant comments until after the  introduction 
of probability, it is certainly clear, even at this point, that it would be very strange to 
discuss the truth of a statement, or bet on it (or even to maintain that it makes sense), 
when it does not assert anything that would enable one to discriminate in any way 
between possible future observations, even were one to think in terms of living for ever, 
or of passing on the task to future generations (assuming they never become extinct). 
And how silly it would be, besides being strange, to bet on a statement constructed in 
such a way that it is possible to lose right now, but to win only after the end of time‐
without‐end (and this is so, even if it is a statement involving only a very small risk – like 
the assertion that ‘the day on which men will turn into rhinoceroses will never come’).

6 Verifiability and the Operational Factor

In Section  5, for the purpose of isolating the time factor, we restricted ourselves to 
considering the result as ‘known to everyone (or, at any rate, accessible, there being no 
need to do anything in order to ensure its occurrence, or to learn about it)’. This assump-
tion is not tenable as anything other than an idealized limit case, because even to listen 
to the radio, or to read a newspaper, requires some time, effort and cost, even if only a 
small amount. In general, however, it is necessary to do a great deal more in order to 
check the truth or falsity of an event or statement. It is often necessary to actually 
experiment in order to observe, or measure, or even produce, the phenomenon under 
consideration. In any case, even the mere recollection of existing data, or the task of 
researching for information concerning data already collected, can be involved, non-
trivial operations.

We use the term operational factor to describe anything which, by virtue of the nature 
of such operations, imposes constraints on the verifiability of events. One aspect of this 
is the cost factor (intended in a broad sense), which we shall mention in conjunction 
with it. ‘Precision’ and ‘indeterminacy’ are other factors closely connected with the 
operational factor, but, because of their importance, we shall treat them separately in 
Sections 7 and 8.

In the first place, we come across a feature similar to that encountered when we dealt 
with the time factor: this is the difficulty, or even impossibility, of performing an exces-
sive (or infinite) ‘number’ of operations (we say ‘number’ even though the terminology 
only makes sense in certain cases). For example, if we want to ensure that in a given time 
interval, t1 ⩽ t ⩽ t2, a certain quantity y = f(t) has not exceeded a given level y = y0, and 
for this purpose we wish to measure y (or just to check that y ⩽ y0) at each of the 
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infinitely many instants of the interval, the task would appear impossible to carry out. 
(And the same would be true even if measurements were only made at a dense subset of 
time points – also infinite, even if denumerable.) This statement is not, of course, to be 
taken as indisputable, deriving from some metaphysical prejudice, but simply as an 
empirical observation that seems undeniable in many practical instances (and in cases 
where it could be challenged we will acknowledge the fact). One cannot, however, 
 conclude from this that there is no way of verifying the event under consideration. For 
the example in question, it suffices to invent and install some device like a ‘max–min’ 
thermometer, as used for temperatures, or like a fuse, calibrated to take an upper limit 
of electric current.

In the example we have considered, note the following two circumstances. Firstly, the 
constraints thaat derive from the impracticability of simultaneously considering an 
 infinite number of trials might, formally, be the same as those of Section  5, but the 
 significance is entirely different. In this context, it is not the postponement of the verifi-
cation, sine die, which we are concerned with, but rather its unrealizability (were one 
able to do it, it could be done in a finite time). Secondly, the fact that a statement is not 
verifiable by means of some given procedure (here, measurements at an infinite number 
of instants) does not preclude its being verifiable in some other way. Unverifiability in 
some absolute sense cannot be asserted on the basis of the unrealizability of some or all 
of the operational schemes put forward so far: it can only be asserted on the basis of 
some rather general assumption that excludes realizability under any scheme (and the 
basis for such an assumption may or may not be very secure …).

A formulation that might in certain cases adequately express the meaning of such 
constraints (albeit in a very schematized and idealized manner) could take the form of 
considering an event – or, better, a partition into events – as verifiable if one could reach 
it by means of a finite number of elementary, realizable operations. Note that if one 
regards the results of these operations as basic events this corresponds to assigning some 
special status to them – the very thing we strived so hard to eliminate! There is, in fact, 
no contradiction. In the first place, we have here made precise which criterion, if any, is 
to determine the basic subdivisions, and, hence, to assign them special status. Secondly, 
this would be justified only if in certain cases a formulation like the one we have just put 
forward as a hypothetical example appears to be actually valid (or, at least, almost so).

A similar, but more realistic, limitation (and not only from a practical point of view) 
would consist in restricting ourselves not simply to a finite, though arbitrarily large, 
number of operations but to a number not exceeding some given finite upper bound. In 
the case of the measurement of y = f(t) in (t1, t2), for example, we must not merely take 
it to be impossible to make an infinite number of observations within the time interval, 
but also impossible to make more than some given finite number, which can be speci-
fied more or less precisely. In actual fact, this upper bound will, in general, be anything 
but precise unless we introduce the cost factor. Usually, one does not find a clear‐cut 
point of separation up to which we can proceed without any difficulty but beyond which 
it is impossible to proceed. On the contrary, the fact of the matter is that one encounters 
ever increasing difficulty as one proceeds further and further. We use the term cost to 
denote the measure of these difficulties. As we have already remarked, it is a question of 
‘cost in a broad sense’; not simply the money spent but also the efforts made and the 
time required, taking into account the other alternative uses to which the time and 
effort might have been devoted.
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We shall, however, always express this cost in monetary terms. This is done not so that 
we can adopt the economist’s approach to the problem but simply to enable us to note 
that the problem of limitation can then be put in the following terms:

 ● First version: given the total budget available (over a certain time period), one can 
work out whether a certain sequence of operations is realizable or not. One must then 
select the most efficient from among those that are realizable (i.e. the one which gives 
the best overall result).

 ● Second version: this is a refinement of the first one and, following along the same 
lines, assumes that the best realizable sequence of operations is determined for a 
given total budget. The latter is no longer regarded as given and fixed, however, but 
as variable within some given range of values. In this version, the cost is also a matter 
of choice and will be chosen in such a way that one arrives at the equilibrium point in 
the neighbourhood of which an increase in cost produces an equivalent increase in 
efficiency (the principle of marginal returns).

The simplest assumption, so far as costs are concerned, is that of additivity (a given 
cost for each separate operation); in general, however, it is not necessary to limit oneself 
to this special case.

A further step towards realism consists in taking into account at least one particular 
kind of uncertainty which, in general, affects the ‘operations’ we employ in order to 
verify events (this is in fact the final such step we shall take: it seems to be adequate for 
the purpose of an idealized schematization). So far, we have assumed that such 
 operations should always give us a precise answer, either YES or NO, to the question 
posed. We now make the assumption that the answer could also be MAYBE; in other 
words, either the experiment does not succeed, or it gives a result which is not  sufficiently 
clear‐cut to enable us to consider either YES or NO as established beyond doubt.

It is commonplace to remark that this can happen in any kind of experiment or 
 procedure (such as the examination of a witness’s testimony in court). If there is any 
well‐founded objection to this statement, it would be that admitting MAYBE does not 
go far enough and that a clear‐cut and definitive YES or NO cannot be obtained from 
any experiment … and that it is always a question of greater or lesser probabilities. It 
goes without saying that I very much agree with this but, in order to avoid getting into 
a vicious circle, it seems to me that the best one can do, or, at any rate, the least 
 objectionable alternative, is to go along with this approach. It introduces uncertainty in 
a meaningful way, by including the possibility of the answer MAYBE, but does not 
 preclude the construction of a scheme coming before the introduction of the notion of 
probability. Such a preclusion would arise if the woodworm of uncertainty were to find 
its way into the answers YES and NO. On the other hand, a study based on a formula-
tion that was completely rooted in uncertainty (that is to say probability) could be 
 carried out once probability theory was constructed. This is done, for example, in the 
classical theory of errors, where an error can be arbitrarily large, although with an 
extremely small probability (given by the normal, or Gaussian, distribution).

With respect to an event E, an operation may, therefore, yield either the answer YES 
(and hence NO for E ̃), or the answer NO (and hence YES for E ̃), or the answer MAYBE 
(the same for both E and E ̃). But it may very well happen – and this is the case we shall 
consider – that the operation yields similar answers for other events, and ultimately for 
a partition, C1, C2,…, Cs. In this case, the following possibilities arise: either the answer 
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YES is given for one of the constituents Ck (and hence NO for all the others – a complete 
answer); or there are no YES answers and more than one MAYBE, with or without NO 
answers (all MAYBE answers give an absolute void, leaving one in the same state of 
ignorance as before; if there is at least one NO we have a partial answer). With respect 
to the event E under consideration, the answer will be YES if E contains the constituent 
with the YES answer, or (if YES was missing) if it contains all the constituents with the 
answer MAYBE; the answer will be NO if, symmetrically, E is contained in the union of 
the constituents with NO answers; it will be MAYBE otherwise (i.e. if both E and E ̃ are 
compatible with the union of the NO constituents and with that of the MAYBE con-
stituents, replaced by the YES constituent if it exists).

Taking account of the partial answers in this more detailed manner – that is referring 
to the partition into constituents – greatly increases the efficiency of the procedure, 
because it permits us to draw the maximum possible information from the result of 
each operation. As an intuitive illustration of this obvious mechanism, suppose that in 
picking out the guilty party from among n individuals (who constitute the entire collec-
tion of possible suspects) we obtain n − 1 observations having the very limited effect of 
excluding one with the answer NO, and attributing MAYBE to all the others. If each 
single observation excludes a different individual, the unique remaining person must be 
the guilty party; if instead one had been concentrating on the guilty party (perhaps 
because he was the main suspect) and had only recorded whether or not each trial was 
sufficient, one would have had to conclude MAYBE, having always obtained the 
answer MAYBE.

So far as the applications to verifiability are concerned, this enrichment of the possi-
bilities makes life somewhat more complicated, but compensates for this by removing 
some of the other complications deriving from the rigidity of the previous scheme. 
We  shall see this particularly when we come to deal with measurement procedures 
(in Section 7).

On the other hand, everything could be expressed in a more direct and straightfor-
ward way by simply referring to the field Q of elementary cases Q (rather than fixing 
one’s ideas – as, in a certain sense, is more instructive – on that subject which the opera-
tion has brought into play). Thinking in terms of Q, an ‘operation’ has the intended 
purpose of obtaining information, which means, in fact, narrowing the field Q by 
 eliminating the Q that have turned out to be impossible (NO), and retaining the others 
(MAYBE). The YES would only be of use in the case of complete information, in order 
to pin‐point the unique nonexcluded ‘point’ (or never, if one takes strict account of the 
observation that no subdivision – even if words like point or atom are used – can ever 
be considered as definitive, or as the ultimate one).

So far as the previous considerations about the advantages deriving from efficiency 
and cost are concerned, the only difference lies in the fact that the factor of uncertainty 
is introduced. If we decide to proceed in some given manner, it is no longer known a 
priori whether, and after how many operations, we will reach the desired conclusion. To 
judge a procedure as appropriate therefore necessitates the application of the theory of 
decision making under conditions of uncertainty – that is the maximization of expected 
utility corresponding to an uncertain cost and uncertain efficiency.

The experimenter could, taking everything into account, estimate, on a rough and 
ready basis, the procedure that he thinks to be the best. If he decides to apply the calculus 
of probability, so much the better (provided it is worthwhile to do so; i.e. that the 
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additional cost of performing the calculations does not exceed the expected increment in 
utility for choosing the optimal procedure). In any case, in this context we are not drawn 
into the vicious circle we previously indicated that we wished to avoid. The possible 
application of the theory of probability to this aspect of the problem is something which 
concerns the experimenter; he, independently of the stage in the present treatment at 
which we have occasion to speak of him, might equally well know or not know the calcu-
lus of probability. On the other hand, the fact of whether he has worked things out for 
himself well or badly (i.e. of whether he chooses the procedures in a more or less advanta-
geous manner) is something of no concern or interest to us. Here, we are only interested 
in procedures in the abstract, in principle, as instruments we can make use of, and which 
give certain types of answers. Whether they are used well or badly is a separate question.

7 Verifiability and the Precision Factor

We have already (in Section 6) made some mention of measurements but, in order to 
divert attention from the topic being considered, we tacitly assumed that we were 
 dealing with exact measurements. It is well known, however, that exactness is unattain-
able (except in counting procedures – provided one makes no mistakes). When dealing 
with measurements, one can only proceed by fixing in advance some higher or lower 
level of accuracy or precision.20 Here, too (as in the case of similar questions considered 
previously), an improvement in precision generally implies an increase in cost. Looked 
at from this point of view, there is nothing new, and nothing to add to the above.

The most important issue, which we must examine, concerns the implications of 
imperfect precision in the measurements for the identification of the individual points Q 
of Q  (or of S    ). This leads into a discussion of whether, and in what sense, it is  appropriate 
to introduce a topological structure into the field Q (or S    ). We have, of course, struggled 
hard to eliminate any trace of such structure – as in the case of the special status of basis 
events – but here, as we found in that case, too, there is no contradiction. It will simply 
be a question of rejecting structures that are either unnecessary or suggested by so‐
called motives of analytic convenience and possibly accepting, after careful examina-
tion, those structures that correspond to essential and meaningful requirements.

Let us begin by considering the case of a single random quantity X, having the real line 
as its set of possible values. Thus far, in beginning our discussion of ‘verifiability’, we 
have considered events rather than random quantities. It is clear, however, that ‘to 
 verify’ the value x taken by X is (precisely) to verify which of the events Ex = (X = x) 
is the true one: in a weaker sense, it would be a question of verifying events of the form 
EI = (X ∊ I), with I, a priori, arbitrary.

There is nothing to be said on a general level about the possible ways of proceeding. This 
is not a mathematical problem, but rather one of the peculiarities inherent in each indi-
vidual case. There is no problem when X appears already in a simple form, written in 
Arabic numerals (like the number on the ball at bingo, or on the sectors of the  roulette 
wheel), or spelt out in the form of dots (as on a die), or is provided and vouched for by 

20 In probability theory (and especially in relation to ‘error’ theory) the term ‘precision’ is often used to 
denote the reciprocal of the standard deviation, 1/σ. Here, however, we use the word informally, without 
reference to any ‘technical’ meaning (as in Chapter 12, 12.3.1).
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others (like the data from a census, or statistical data in general). In these cases we are 
dealing with integer random quantities and this, of course, is a simpler situation. It is pos-
sible, however, to find similar, immediate and rather precise representations when dealing 
with continuous quantities (physical constants, geographical coordinates,  geodetic points, 
heights of buildings, weights of objects and individuals etc.). If, on the other hand, it is our 
responsibility to pin‐point (exactly, or in part, or approximately) the value x of X, we have 
to examine, case by case, which events Ei are more or less accessible to us, and which of 
them yield the more interesting or useful pieces of information about X. Having done this, 
we then choose (as in the case already noted in Section 6) that combination of operations 
which is most advantageous, taking into account considerations of both efficiency and cost.

In what way is it possible to learn something about a random quantity X? And what can 
we learn? Posed in these terms, the question does not make sense because the answer does 
not depend on the fact of X being a random quantity, but rather, case by case, on the actual 
and particular meaning attached to each given X by virtue of its  definition. The case usually 
dealt with, to the virtual exclusion of all others, is that of a physical quantity for which one 
may obtain more or less precise measurements; this will also be our principal concern here. 
It should be noted, however, that, apart from this rather special case, there is no reason to 
think that, in general, the problem can be posed in terms of the same concepts. An X defined 
as a (practically speaking) insufficiently continuous21 function of another random quantity 
(having physical meaning) clearly does not lend itself to measurement through such a defi-
nition; but it may be measurable by virtue of the fact that it, or some suitable function of it, 
has a physical meaning of its own, which renders it capable of direct measurement. On the 
other hand, it may  happen, especially if the definition of X is bound up with mathematical 
concepts, that the  question of whether X belongs to sets I which are less straightforward 
(and in general less resolvable) than the intervals turns out to be easily answerable, or, at any 
rate,  feasible (e.g. one might ask whether or not X is rational, or algebraic etc.).

The random quantity X = π provides a suitable example. This might seem rather 
strange because – it might be argued – π is not a random quantity; it is a well‐ determined 
number, already determined with remarkable accuracy (given his time) by Archimedes, 
and for which explicit expressions in the form of series have been discovered, so that it 
is now known ‘more precisely than any other number’.22 Agreed: but π is not known 
(and is thus random, since we do not accept a more restrictive use of the term) insofar 
as its remaining decimal places are concerned; just as, for a long time, it was not known 
whether it was rational or algebraic. These questions, as everyone knows, have now 
been resolved (negatively): it is clear that this would not have been achieved merely by 
the more and more precise determination of the numerical value of π – even by going 
on to infinitely many decimal places – in order to look for possible periodicities (sup-
posing it were rational) and so on. Instead, there was another approach (just as in the 
previous example concerning the maximum of a function in an interval).

Another example (of a simpler but more artificial kind) is provided by the following. 
Suppose we define X = (N + 1)(N < ∞) − 1 + E′/4 + E″/π, where π is no longer considered 
as a random quantity, E′ and E″ are arbitrary events (e.g. a sports result and some  feature 

21 For example, in the sense of there being a Lipschitz condition, |f(ξ2) - ƒ(ξ1)| < K|ξ2 - ξ1|, with K not too 
large (at least in the range of practical interest).
22 To 100 000 decimal places; given by D. Shanks and J. W. Wrench in Math. of Computation (1962).
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of the weather), and N is the number of (possible) exceptions to Goldbach’s conjecture.23 
The first two terms in the expression for X simply denote N, to be replaced by −1 if it is 
infinite; it is, therefore, an integer if the last two terms are missing (E′ and E″ are false: E′ = 
E″ = 0), rational (noninteger) if E′ is true and E″ is false (E′ = 1, E″ = 0; 1

4  is added), and 
irrational (in fact, transcendental) if E″ is true (E″ = 1, it does not matter whether E′ = 0 or 
E′ = 1; either one adds 1/π or one adds 1/π + 1

4). In this example, it is therefore sufficient to 
know the outcomes of E′ and E″ in order to establish whether X is integer, rational and 
noninteger, or transcendental; on the other hand, one would need to know whether 
Goldbach’s conjecture was true in order to know whether 0 ⩽ X ⩽ 1; or whether there were 
an infinite number of exceptions in order to know whether X were negative (−1 ⩽ X < 0); 
or a finite number (N) in order to know whether X ⩾ 1 (more precisely, N ⩽ X < N + 1).

Having put forward these examples and discussed them, we can now confine  ourselves 
to cases where X has a physical meaning (or something akin to a physical meaning). To 
be more specific, we shall deal with those X for which knowledge of their values can 
only be attained or approached through operations of measurement (which may or may 
not be precise). A few illustrative examples will make this intuitive explanation clearer; 
it, in turn, will prove useful for a careful scrutiny of the same ideas insofar as they 
 constitute the standard formulation. We are interested in delving deeply into certain 
aspects of the latter, but we are even more concerned to warn against the customary 
readiness to accept that these assumptions can, or must, be assumed valid for ‘all’ 
 random quantities, with no discrimination. The examples and discussion given above 
were intended precisely for this purpose.

In order to provide a technical discussion of this topic, we must first of all say what we 
mean by an ‘operation of measurement’. By this we mean an operation which, if applied 
to X, can only have the effect of restricting the field Q of possible values to an interval24 
(and we repeat that this is an ‘experimental’ question, not a mathematical one).

These general characterizations only serve as a starting point. It will prove much 
more important for our analysis to examine closely a few of the main variants from 
among the many possible. As far as precision is concerned, it is of interest to single out 
the three cases of bounded, unbounded and perfectible precision; and, moreover, cases 
of precision which are possibly perfect and certainly perfect. So far as partitions are 
concerned, we shall distinguish the three cases of fixed, free and variable partitions. It 
would be pointless and rather tiresome to examine all these variants and their innumer-
able subcases in detail, not to mention all the other possibilities. What is worthwhile is 
to exemplify some of them, in order to single out the points which really matter (noting 
in passing that in this way we obtain an adequate view, even if not complete).

We shall begin with a typical example of a measurement operation with bounded preci-
sion and a variable partition. We obtain a value which we know to differ from X by not 

23 Which asserts that every even integer can be written as the sum of two primes. Investigation has (so far) 
revealed no exceptions, but no proof has yet been found, so that there could well be exceptions (even an 
infinite number of them).
24 It is convenient to fix one’s ideas on this case (that of a two-sided restriction); it is better, however, not to 
exclude the limit cases in which the interval becomes a half-line (one-sided restriction), or the whole line (no 
restriction; operation failed); or, instead, going to the opposite extreme, into a point (exact measurement). 
It goes without saying that if Q is not initially the whole line then the above reduce to the intersection of Q 
with the interval in question (and the operation may have no effect if the actual restrictions obtained are 
weaker than those already holding for Q  ).
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more than a given maximum error, δ. (One could consider, asymmetrically, different lim-
its, −δ′ and +δ″, for negative and positive errors, or one could think of δ – or even of δ′ and 
δ″ – as functions of x, where X = x; one could complicate matters even further, by thinking 
of other random quantities, and so on; however, nothing of conceptual importance is lost, 
and much is gained in clarity, if we limit ourselves to the simplest case.) Having obtained, 
by measurement, a certain value x, it tells us that X certainly belongs to the interval (x − δ, 
x + δ). The precision is bounded in the sense that we know X up to this δ, whatever it may 
be. If, however, we have at our disposal operations of this type with δs arbitrarily small, 
then the operation which consists in first selecting one of them, with a δ corresponding to 
the degree of precision required, and then in performing a measurement on the basis of 
it, is an operation with unbounded precision (there is always some preassigned margin of 
error, δ, but this can be chosen arbitrarily small before the measurement is performed).

Even with a fixed δ, we could perform measurements of possibly unbounded precision 
(in the sense that the margin of error might remain equal to δ, but, by chance, could also 
become arbitrarily smaller). Bearing in mind that all ‘assumptions’ (like the ones we are 
about to make) always have an experimental interpretation – even if this is not explicitly 
mentioned – it is sufficient to assume that it is possible to ‘repeat’ the previous opera-
tion; or, to put it in a better way, to perform another operation with identical character-
istics (and we are assuming that there are no constraints of a physical nature, or of cost, 
administrative veto etc.). If this is done, and two distinct values x1 ≠ x2 are obtained (to 
fix ideas, suppose x1 < x2), the two bounds reduce to the single interval

 x X x2 1 , 

so that X belongs to the interval

 x x x x x x* *, .where and1
2 1 2

1
2 2 1  

Observe that the same conclusion (with more and more possibility of obtaining a small 
value of δ*) holds in the case in which one can repeat the same operation over and over 
again, as many times as one wishes. It is enough to take x1 to be the minimum and x2 the 
maximum of the measurements obtained. Put into words: if one takes the mean of the 
resulting maximum and minimum, one has a margin of error equal to that of a single 
observation (δ) less half the difference between the maximum and minimum. Assuming 
that one could go on to make an infinite number of repetitions, the precision is even 
possibly perfect (it suffices to take x1 and x2 as the infimum and supremum rather than 
the minimum and maximum) because it is possible that the difference x2 − x1 tends to 
2δ and, hence, δ* tends to zero.25

25 This could also happen with only a finite number of repetitions, even with just two, if one assumes that 
the intervals x ± δ are to be taken as closed (i.e. that the error can reach its upper bound δ). The question 
is, in itself, rather hair-splitting (given that to have fixed a precise δ is already an arbitrary schematization), 
but it is precisely for this reason that it seems innocuous to follow here the criterion of ‘mathematical 
convenience’ (which, in general, we do not approve of ). From this viewpoint, it appears preferable to take 
the intervals to be open (and that is why we chose to write them, without comment, in the form x - δ < X < x + δ, 
with ‘<’ and not with ‘⩽’), thus avoiding the fact that the conventional assumption of a precise separation 
leads (even though exceptionally) to the possibility of an exact measurement. If the intervals are open, every 
intersection of a finite number gives an open interval, and hence not a point (neither can it be empty, since 
we cannot have x2 - x1 > 2δ).
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If, finally, one proceeds to ‘repetitions’ of the operation with different precisions, the 
conclusion does not change in the finite case, nor does it (formally) in the infinite case. 
The bound can always be written

 x X x , 
with x″ + δ″ equal to the minimum (or infimum) of the xi + δi (and vice versa for x′ − δ′). 
We note, however, that, because the δi are also variable, the minimum (and maximum) 
will no longer be attained, in general, for the i which give, respectively, the minimum 
and maximum xi. The interval x ± δ* will be centred at

 
x x x x x1

2
1
2

1
2

1
2with * .

 

It is instructive to note that, in any case, δ* is at most equal to the minimum (or  infimum) 
of the δi, given that the interval x ± δ* is contained (as their intersection) in all the 
intervals xi ± δi. If, therefore, we have at our disposal operations with δ arbitrarily small, 
and we can not only choose one (as in one of the cases mentioned above) but can also 
perform a succession of them with δ → 0 (or in some way with infimum zero), we have 
a case of perfectible precision if one thinks in terms of performing a finite number of 
operations, however large (or if one takes into account that at any time point not 
 infinitely far away the number will be finite anyway). We have a case of certainly perfect 
precision if we place ourselves at the end of time, or if we imagine that an infinite 
 number of operations can be performed in a finite time.

We have mentioned precision in its various forms but as yet we have said nothing 
about the partition. We have merely noted that, in the example considered (and 
extended in various ways), we had a variable partition, since the intervals which 
could be obtained as bounds could have any end‐points whatsoever (with no imposed 
constraints inherent in the nature of the operations considered). The opposite 
case – that of a fixed partition – is perhaps best illustrated in the case of a number X 
for which (as in the example of X = π) one can determine the decimal places one at a 
time (or take readings from a series of increasingly finely graduated scales). A free 
partition is a partition that one is free to choose from among several others (or, in 
general, from among an infinite number), but which, after the choice is made, 
becomes fixed. Think of a measuring scale whose origin and measurement unit can 
be chosen arbitrarily (for example, instead of X, consider measuring or calculating 
the successive decimal places of √2 + πX; or measuring angles having rotated the dial 
of the instrument; or, more generally, to deal in this way with nonlinear functions – for 
instance, log X, or the tangent of the angle – and so on). A further example occurs 
with operations for which one can establish in advance the interval to which the 
question will refer (is it or is it not true that X is in the interval (x′, x″)?). If one 
assumes (certainly) perfect precision, there is nothing else to be said. In general, how-
ever, this would not be valid (and, in any case, this is not the form of greatest interest). 
One can think, for example, that (because it is outside the scope of the apparatus) 
there may be some doubt as to whether X is near (inside or outside) the end‐points, 
and, in this case, one can imagine that the answer is either YES or NO (by chance), or 
MAYBE. Supposing that δ is the margin of error (for different δs the same qualifica-
tions as were made previously continue to hold) we have the following: in the case of 
the two answers YES or NO only,
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YES means that x′ − δ < X < x″ + δ and
NO means that (X < x′ + δ) ∨ (X > x″ − δ) (in particular, it is void if x″ − x′ < 2δ).

In the case of three answers, YES, NO, MAYBE, we have

YES: x′ + δ < X < x″ − δ,
NO: (X < x′ − δ) ∨ (X > x″ + δ),
MAYBE: (x′ − δ ⩽ X ⩽ x′ + δ) ∨ (x″ − δ ⩽ X ⩽ x″ + δ).

It is perhaps more interesting to consider the simplest case, that of comparison with 
a single value x, asking whether X < x (the usefulness of this particular case is obvious if 
one considers that an interval corresponds to two questions of this kind with x = x′ and 
x = x″). In this case, the answers have the following interpretations: with the two answers 
YES or NO,

YES: (X < x + δ)
NO: (X > x − δ).

(In other words, whatever the answer is, there is no way of excluding the possibility 
that X can assume any of the values in x ± δ). On the other hand, with three answers, the 
MAYBE clearly picks out this possibility;

YES: X < x − δ (and, a fortiori, we certainly have X < x),
NO: X > x + δ (and, a fortiori, we certainly have X > x),
MAYBE: x − δ ⩽ X ⩽ x + δ.

In both cases, however, it could happen that the answer MAYBE does not give any 
information. This would happen, for example, if it could arise both as a result of X being 
near the end‐points of the interval under consideration, and as a result of a chance 
malfunction of the apparatus. We make this comment not for the pleasure of adding yet 
another variant, but in order to stress that every question relates to factual  circumstances. 
The logical structures can only be specified with respect to the given circumstances, 
and not on the basis of some convention fixed beforehand in the belief that one can do 
without taking these circumstances into account.26

Let us now consider the conclusions we can draw as a result of the above discussion. 
If X is a random quantity, knowledge of which can be attained by means of procedures 
of the kind considered above, for which sets I can one say that the event X ∊ I is verifi-
able? In other words, when is it meaningful, practically speaking, to ask whether X 
belongs to I?

We have throughout, when introducing a notion, tried to give a realistic analysis of 
the underlying assumptions (bearing in mind, however, that it would be unrealistic to 
take these realistic considerations too seriously, thus turning them into metaphysical 
obsessions). Following this procedure, it would appear in this case that we are justified 

26 My insistence on these points (which I hope the reader will excuse) is a consequence of my impression 
that in general they are not taken sufficiently into account (and sometimes not at all).



Appendix508

in confining ourselves to consideration of just three types of answer. We can label 
them by again using the terms bounded, unbounded or perfect precision (avoiding the 
 introduction of other terminology, although, for the reasons already given, the 
 trichotomy ignores many further subtle subdivisions).

If we confine attention, for the time being, to the case of a random quantity 
 (geometrically, a straight line – the real line), the three cases can be described in the 
following way, beginning with the last one.

Perfect precision. This is the case in which one leaves out of consideration the practi-
cal difficulties examined in Section  7 and considers the value of X, and hence the 
 question of its belonging to some set I, as perfectly determinable. This is very much a 
theoretical view but there is no reason to rule it out on these grounds. Indeed, there 
would seem to be no justification for closing one’s mind against any formulation (even 
those which themselves would lead one to close one’s mind against others), unless, in 
this case, one were taking account of the unrealistic character of such perfect precision, 
and, for this reason, were to choose to substitute one of the following cases in its place.

Unbounded precision. This is the case in which, by translating into a necessarily  idealized 
form the practical situation that can be realized in the most favourable  circumstances, one 
imagines that, apart from the endpoints, an unambiguous answer can always be obtained 
to the question of whether or not X belongs to an arbitrary set I. In other words: the ques-
tion ‘is it true that X belongs to the set I?’ is partially decidable, in the sense that one can 
obtain either the answer YES or the answer NO; certainly YES if X is in I, certainly NO if it 
is not, but it could be either answer, YES or NO, if X belongs to the boundary, F   (I), of I 
(that is, if every neighbourhood, however small, having X as an interior point, contains 
both points of I and of its complement I). Put another way, having obtained a measurement 
x̂ of X, it will be legitimate to conclude that X ∊ I if x̂ is an interior point of I (and so on).

Bounded precision. This is a weakened form of the previous case, obtained by substi-
tuting in place of the boundary, F   (I) of I, ‘a boundary strip of width δ’, which we denote 
by F   δ(I), consisting of the points x for which the neighbourhood x ± δ contains both 
points of I and of its complement. If we call δ‐internal (δ‐external) those points which 
belong to I (Ĩ, respectively) but not to F   δ(I), the difference between this and the previ-
ous case reduces to using the prefix ‘δ‐’ (we could perhaps even use the term ‘δ‐bound-
ary’). One could even include the previous case in the present one by introducing a 
small modification and allowing δ = 0: it would suffice to redefine F  δ(I) by replacing ‘the 
neighbourhood x ± δ’ by ‘every neighbourhood x + δ′, with δ′ > δ’.

In all cases, this must be interpreted as a possible final result (and not as a possible 
result of ‘an operation’ of measurement, which could be improved on by combination 
with others).

Bounded precision: more general forms, fixed and optional. It is not difficult to weaken 
this scheme in two different senses, thus obtaining a much closer correspondence to 
realistic requirements (albeit idealized ones).

Instead of neighbourhoods x ± δ, with δ fixed, we can define directly δ(x) as a neigh-
bourhood of x associated with x in an arbitrary way (in general asymmetric, and of 
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variable length), except for the necessary restriction of reciprocity; x′ ∊ δ(x″) ↔ x″ ∊ 
δ(x′). For example, we could have neighbourhoods defined by ƒ−1(f(x) ± δ), with f 
increasing, δ constant. This frees us from any particular scale.

A more substantial and indispensable freedom, however, is that we can consider the 
possibility of obtaining a measurement with precision defined by different laws, δ(x), 
a free choice being allowed among them (although – but for the time being we shall 
not worry about this point – the cost factor may differ). It might be that we are faced 
with a choice between measuring, with an error ⩽δ, either X or eX, or one of three 
quantities, …, or an infinite number, or X with an error δ (small, but not necessarily 
arbitrarily small). In such cases, we shall speak of measurements with optional 
bounded precision.

For each δ(x), the definition of F  δ(I) becomes ‘the union of all the δ(x) with x ∊ F   (I)’.
Expressed in this way, it becomes clear how, formally, the notions of the preceding 

schemes could be directly transported from the one‐dimensional case (only a single X 
under consideration) to the general case (provided that we have a topology). It is, how-
ever, necessary to carry out a critical examination – not in the abstract, but from the 
point of view of the basic issues involved – of whether, and how, essential considera-
tions about observability, similar to those presented above for a single X, can justify the 
introduction of a topology in the general case. (We did, after all, strive hard to eliminate 
any trace of topologies which might have arisen naturally, but perhaps, we suspected, 
irrelevantly.)

8 Continuation: The Higher (or Infinite) Dimensional Case

In the finite‐dimensional case the extension of the considerations previously  encountered 
does not involve too many new features. But when do we have a finite‐dimensional 
situation?

Having reshuffled all the points in order to eliminate the topology, the Sr formed by 
the r random quantities X1 … Xr is merely an infinite collection of points with the 
 cardinality of the continuum, which can be individuated by means of a single number X. 
(It is not even necessary to have recourse to the Peano curve in order to obtain  continuity, 
since we leave this out of consideration.) We are certainly not saying anything new if we 
point out that in eliminating the topology we take away the meaning from dimensional-
ity, too; this is a necessary observation, however, if we are to frame the problem as it 
presents itself in our case.

Let us now make a point in the opposite direction, in order to show that Sr (assuming 
that we have adopted it in order to have a continuous representation with respect to X1 
… Xr) might not be sufficient. If we were also interested in considering the values of 
another random quantity X, a function of the others, X = f(X1, X2,…, Xr), we do not 
need – logically speaking – a new dimension in order to represent it. If, however, the 
function f is very irregular – for example, everywhere discontinuous – knowledge of the 
Xh in the sense of ‘unbounded precision’ is not sufficient to determine the value of X. In 
the case of bounded precision, the same difficulty would arise even if X were continuous 
but varying sufficiently rapidly (for example, X X

h
hsin , with 1/λ small in relation 
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to the imprecision in the measurement of the Xh
27). In these cases, if one is also inter-

ested in X (and if there is some way of measuring it which is more direct and dependable 
than calculating it by means of the formula – if not, there is no real interest, only a vain 
desire), it will be necessary to introduce another dimension for X, in this way going from 
Sr to Sr+1 (and so on, in the same way, should we wish to consider several such functions).

Here is another observation, again of a practical nature, which, under different 
assumptions, reduces the number of distinct dimensions to be considered. Suppose that 
in the initial formulation one considers a large number of quantities X1, X2,…, Xr, like, 
for instance, the coordinates and velocity components of N molecules (in which case, 
r = 6N). Suppose, also, that, from a practical point of view, we are interested in, and can 
measure, not the individual Xh (although this would be needed for the theoretical part 
of the development and calculations) but only some of the macroscopic quantities 
which derive from them (or, at any rate, some number of quantities r′, much smaller 
than r). In order to study this aspect of the problem, one must refer not to Sr (having the 
number of dimensions required by the theoretical formulation), but rather to Sr  (the 
space of the r′ quantities, Xk, k = 1, 2,…, r′, functions of the original Xh, h = 1, 2,…, r, 
which in practice are either unobservable or irrelevant: X f X X Xk k r( )1 2,,, ,,, ,,, ).

It appears, then, that the number of dimensions is also a notion that is neither  absolute 
on the one hand, nor arbitrary on the other. It boils down to being the number of 
 quantities that one requires to measure independently in order that one may know all 
the quantities of interest to the degree of precision judged satisfactory. Naturally, 
 ‘satisfactory’ cannot have the meaning of ‘to the desired extent’ if such a degree of 
 precision is not attainable. The term is then to be understood in the sense of ‘we can be 
content with this, given that other methods of measurement (for example, direct ones) 
would not increase the precision to the extent required for it to be worthwhile (in terms 
of efficiency and cost) applying them’. All this depends, of course, on the kind of preci-
sion that is attainable.

This ‘definition’ of the number of dimensions (or, to put it in a better way, this ‘sug-
gested way of choosing it’) is close in spirit to the necessary extension to this case of 
topological and allied notions. If by ‘a small neighbourhood of a point’ (permit me to 
use the expression) one means, in practice, a ‘set of points indistinguishable from it’, 
‘sufficiently close to it compared with the degree of imprecision of the measurement’, 
this indistinguishability must be attributed to the measurements to be made in practice 
according to the above‐mentioned requirements (even if this is a bit extreme compared 
with the rigid theoretical scheme of some previous formalistic approach).

This having been said in general, there is nothing to add in the case of unbounded 
precision (any definition of the neighbourhood of a point will do: for example |Xh − xh| 
< δ(h = 1, 2,…, r), or ( )X xh h

2 2). In the case of bounded precision, however, 

27 The following provides a suitable, simple example. Suppose we are dealing with a phenomenon whose 
behaviour as a function of time t is given by f(t) = A(t) + B(t) sin λt, where sin λt represents a daily or annual 
variation (with period equal to one day or one year), whereas A(t) and B(t) have slower variations (only 
perceptible on a much longer timescale) because they represent the trend of the mean value of f(t) and the 
amplitude of its oscillation. In order to investigate its behaviour, it is certainly more instructive to consider 
and to represent f(t) as a function of two variables, t and τ = t - 2πk/λ (where k is the largest integer for 
which 2πk/λ ⩽ t): we then have f(t, τ) = A(t) + B(t) sin λτ. (And one day of time τ on the ordinate might 
appear larger than a year or a century of time t on the abscissa.)
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it  is necessary to say something more; especially in the optional case, which can 
give rise to a greater variety of circumstances.

In the case of fixed, bounded precision we still have a law δ which to each point Q = 
(x1, x2,…, xr)28 associates a given neighbourhood δ(Q) (with the condition that Q′ ∊ 
δ(Q″) ↔ Q″ ∊ δ(Q′)). We shall say that the measurements on the different Xh are ‘inde-
pendent’ if the neighbourhood δ(Q) is the Cartesian product of the neighbourhoods 
δ(xh). If the measurements are not independent, or are performed on combinations of 
the Xh, or in some other way, the form of δ(Q) may be anything at all.

This fact, which if δ is fixed has no practical importance, becomes important in the 
optional case where one can choose, from among various laws, δ1, δ2,…, δs, the δ one 
prefers (it may be a choice from an infinite number of laws, δ ∊ ∆). This possibility of 
choice opens up the way to much more varied and important features in the higher‐
dimensional case and it would be pointless to attempt to give a typical example. It will 
be enough to present a case that throws light on a situation of particular interest, one to 
which we shall return later from another viewpoint. If X1 and X2 are ‘complementary’ 
quantities (in a quantum theoretic sense) there exists a relation of a probabilistic nature 
between the precisions with which one can measure them simultaneously. Translating 
this (in order to include it within the framework of the present considerations) into a 
relation which gives bounds, we could say that the margins of error, δ1 and δ2, of the 
measurements of X1 and X2 can be chosen at will subject to the restriction δ1δ2 > 
 constant. As a neighbourhood δ(Q) (in the (x1, x2)‐plane) we have the option of any 
rectangle of constant area (i.e. with vertices lying on a rectangular hyperbola). So far as 
the question of the number of dimensions is concerned, this circumstance reveals 
 possible causes of uncertainty and complications over and above those already 
 mentioned. In fact, if we consider as adequate the knowledge of X1 and X2 with the 
precision attained by measuring them jointly, we are assuming that we can measure two 
quantities. If, on the other hand, we are not content with this precision, we can obtain 
an acceptable measurement for only one of the two quantities. We could choose which 
one, but it would be only one. Should we, therefore, eliminate the other from the set of 
quantities to which there corresponds a dimension? The question is (in all probability) 
just a rhetorical one, because if we do not eliminate the dimension in question it should 
not cause any extra trouble. Moreover, it is capable of either being excluded or being 
chosen, and hence it might be called ‘potentially observable’. In any case, even these 
points which we leave open show (to paraphrase Shakespeare) that many more  problems 
arise when we worry about what is ‘realistic’ than arise if we accept some pre‐packaged 
scheme.

If we wish to go on to the infinite‐dimensional case, we must again ask ourselves what 
it means. Again, there does not appear to be a unique answer. We might interpret it in a 
weak sense (thinking of being interested in representing an infinite number of quanti-
ties, but only being able to measure an arbitrarily large finite number of them, or com-
binations of them); or in a strong sense (thinking in terms of being in a position to say 
something which depends on the infinite number of quantities taken as a whole: e.g. to 
refer to the lim sup etc.).

28 We are using r here to denote the ‘chosen’ number of dimensions; it may be the theoretical r, or 
any other.
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This latter possibility seems rather theoretical, especially given the discussion of 
Sections 5 and 6: recall, for example, the discussion concerning the maximum of a 
function (this was judged to be indeterminable if an infinite number of measure-
ments of all the values assumed were required and determinable if a direct method 
existed).

The weak interpretation seems to correspond better to the requirements of a theo-
retical scheme in line with the interpretations conceivable in real terms in practical 
applications. We shall, as a general rule, stick to this interpretation. For questions where 
the links with empirical considerations are so tenuous, it is difficult to base one’s judge-
ments and decisions on precise reasoning, rather than on impressions. Perhaps the 
choice here has been dictated by the idea that the weakest formulation is always the 
most valid one … until such time as it is shown not to be (and, in this case, one will 
always be able to patch it up after due consideration). The remedy would be more dif-
ficult in the opposite case.

Let us recall what is meant by a weak topology in an infinite‐dimensional linear space. 
It is sufficient to require that among the neighbourhoods of a point are the half‐spaces 
containing it. It follows, in fact, that the intersections of a finite number of them are also 
neighbourhoods (and this applies, a fortiori, to sets containing these intersections), and 
this completes the enumeration of the neighbourhoods. In terms of convergence, this is 
equivalent to defining the (weak) convergence of a sequence of points Qn to a point Q 
by the condition that every linear coordinate of Qn tends to the corresponding coordinate 
of Q:x(Qn) → x(Q).

In the case of bounded precision, the neighbourhoods will themselves be of the 
above‐mentioned form and we observe, in particular, that they are necessarily 
unbounded. In fact, they have cylindrical structure: if δ(Q) is the intersection of n 
half‐spaces (as we can always assume, by virtue of what we noted above) and s is an 
arbitrary line contained in the intersection of the n hyperplanes which delimit the 
half‐spaces (this intersection is always an infinite‐dimensional space; one might say 

Figure A.1 Rectangles of equal area (concentric, and similarly placed); equilateral hyperbolae, the 
locus of the vertices.
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“all except n”), then together with any point P contained in δ(Q) are contained all lines 
through P parallel to s. To visualize this fact more easily, it suffices to note that two 
planes in S3 cannot cut all the straight lines (more precisely, they do not cut those 
parallel to their line of intersection), and the same happens when one considers three 
hyperplanes in S4, four in S5, …, r in Sr+1: a fortiori, this happens for r hyperplanes in 
Sr+2, Sr+3 and so on (and, in fact, the lines which are not cut will determine an infinite 
number of different directions; ∞1, ∞2 etc.). Finally, we note that this happens in any 
case where a space is cut by hyperplanes which number less than the dimension of the 
space: all the more so if the hyperplanes are finite in number and the dimension of the 
space is infinite.

9 Verifiability and ‘Indeterminism’

The notion of indeterminism and the related notion of complementarity have arisen in 
the context of well‐known ‘anomalies’ encountered in the study of physical phenomena. 
More specifically, in the study of phenomena where for certain aspects the particle 
interpretation is appropriate and for others the wave interpretation holds. Neither 
interpretation can lay claim to being universally acceptable, nor can the two be consid-
ered simultaneously without leading to ‘contradictions’.

The question has been, and continues to be, a live topic of discussion; many‐sided, 
and requiring special competence in several fields. The arguments put forward have 
offshoots in many directions, making it extremely difficult both to encompass them all 
(even if one restricts oneself to the essential points) and to single out with sufficient 
clarity either one topic, or a small group of them, on which one would like to concen-
trate attention.

The aspect which concerns us here is the logical‐probabilistic one (and, in fact, 
for the time being, just the logical aspect, although with a view to the probabilistic 
side of things, for which it will serve as support). The study of this aspect could not 
be carried out, however, without touching upon points relating to other aspects and 
without indicating the position taken up with respect to them, a position which 
appears to correspond to that underlying the proposed choice of approach in the 
logical field.

Let us, without further ado, indicate which works we shall be referring to most fre-
quently in what follows: on the one hand, that of von Neumann, and, in particular, the 
exposition and development given by Bodiou, whose formulation is in the field of direct 
interest to us; on the other hand, that of Reichenbach, who seems to me to present the 
questions most lucidly from the logical and philosophical point of view.29 The solution 

29 John von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press 
(1955) (a translation, by Robert T. Beyer, of Mathematische Grundlagen der Quantenmechanik, Springer, 
Berlin (1932)); J. von Neumann and G. Birkhoff, ‘The logic of quantum mechanics’ Annals of Math. (1937); 
G. Bodiou, Théorie dialectique des probabilités (etc.), Gauthiers-Villars, Paris (1964); Hans Reichenbach, 
Philosophical Foundations of Quantum Mechanics, University of California Press (1944).

References to these works in the present section will be indicated by means of initial and page number; R, 
p. 238, for example, for Reichenbach.
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that I will put forward is a different one, but it could, in a certain sense, be seen as a 
simplified version of those set out by these authors.30

The different solutions, or interpretations, relating to the points we have to consider 
here, are concerned, explicitly, with the systematization in the logical domain of those 
kinds of statements which, because of their association with ‘anomalies’ like those 
mentioned above, lead to confusion. In order to incorporate them, it is suggested that, 
in general, we must have recourse to new logical structures, different from the usual 
structures, such as many‐valued logics, or logics with modified operations and rules 
(in particular, ‘nonmodular’ logics).

The very starting points on which the analysis of these problems is based differ, how-
ever, one from the other. This difference is mainly between those who consider the 
problems as strictly peculiar to quantum physics, and who therefore pose the problems 
directly in terms of its technicalities, and those who see the problems as problems of 
thought in general. In the latter case, these problems could still appear more or less 
bound up with quantum physics, but only for contingent reasons; that is because they 
satisfy needs which actually arise in that theory (some would say ‘exclusively’ so, some 
‘mainly’).

The formulation of von Neumann (vN, pp. 247–254) is strictly in terms of quan-
tum theory, and takes as its starting point a Hilbert space (of functions ψ) in which 
the (linear Hermitian) operators correspond to quantities. An event is a quantity 
capable of assuming only the two values 0 and 1,31 and therefore represented by a 
projection‐operator E (which is idempotent, E2 = E; that is having possible values – 
and eigenvalues – either 0 or 1); that is by a closed linear manifold M (that onto 
which E projects orthogonally). The event E is certain or impossible according to 
whether ψ belongs to M or is orthogonal to it; in all other cases, E has probability 
equal to the square of the projection of ψ onto M. Two events are incompatible if 
they are orthogonal; they are simultaneously verifiable (not ‘complementary’) if they 
are commutative (in which case the logical product and logical sum are meaningful); 
and so on. To quote von Neumann (p. 253):

‘As can be seen, the relation between the properties of a physical system on the 
one hand, and the projections on the other, makes possible a sort of logical 
calculus with these’.

30 My attitude had previously consisted in rejecting ad hoc interpretations in relation to quantum physics 
in order to reduce everything, essentially, to familiar situations (to facts which were ‘complementary’ in the 
sense that they were conditional on mutually exclusive experiments; like the behaviour of an object in two 
different destructive testing situations; or the victory of a tennis player in two different tournaments taking 
place at the same time in two different countries). A mention of this can perhaps only be found in the CIME 
(Centro Italiano Matematico Estivo) course given in Varenna, 1959. This solution seems to coincide with 
that of B.O. Koopman, Quantum Theory and the Foundations of Probability (1957).

Subsequent reflection (after a good deal of reading – the most relevant being that mentioned above), has 
not changed my original view, but rather made it more precise. In any case, it is, of course, simply an 
attempt at explanation (as we remarked at the beginning of the chapter) given the many issues involved, 
some of which may have escaped my notice.
31 Let me just mention, as an interesting curiosity, that this is the same convention as I had adopted 
(in a paper of 1964, and now here) after much hesitation, considering it novel and perhaps unacceptable. 
I subsequently realized that, far from being new, it had been in use since 1932 (together with all its 
developments). I wonder if the fact of its not being taken up confirms my doubts about its unacceptability?
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The study of this kind of logical calculus (in terms of projections) has led (vN and B) 
to the identification of nonmodularity32 as the characteristic property which distin-
guishes the lattice of this logic from that of standard (Boolean) logic.

A development which is inspired by the trend towards studying, in a more auto-
nomous manner, or even completely separately, logic (and probability) on such a 
lattice – or on similar structures, also referred to many‐valued logics – can be found 
in the work of Bodiou. His intentions are clearly summarized in the following 
 passage (B. p.7):

‘The primary motivation for our work, quantum theory, might appear contin-
gent and particular, and capable of disappearing by the wayside if, by chance, 
quantum theory should come to be incorporated within a classical theory, 
which eliminates its “anomalies”. This is what contemporary probabilists 
seem to believe and to expect. We shall attempt to show that they are wrong, 
and that the quantum calculus is simply a special case, imposed by necessity, 
of a general calculus of probability, which we call dialectic. This latter, far 
from being an unnatural growth on the body of the classical calculus, in fact 
subsumes it.’

Discussions of which statements and interpretations ‘are or are not meaningful’ are 
more directly considered, and more rigorously set out in Reichenbach, in a form which 
makes specific reference to quantum mechanics (and compares, in this context, the 
work of various authors), but which, from a conceptual point of view, can be adapted to 
any context whatsoever. For this reason, we shall develop our own analysis by using his 
(Reichenbach’s) remarks as a guideline, putting forward our remarks as comments on 
his. In any case, the object of the analysis is that of finding the logical constructions that 
will prove suitable for resolving the difficulties in which we find ourselves; a topic which 
has attracted many currents of ideas from many different sources. This goal does not 
appear to have been achieved, nor does it appear that the efforts to reach it have opened 
up any promising avenues. I have the feeling that (as I said in my preliminary remarks in 
Section 6) the correct path is straightforward and simple, but it is my belief that it is 
obscured precisely by preconceived ideas about what it is that constitutes a necessary 
prerequisite for any logic.33

This would also appear to be a move in the direction of a natural continuation of a 
natural process; that of eliminating the drama from the initial state of confusion brought 
about by the appearance of something new, in contrast to one’s accustomed way of see-
ing things. This has already happened for the Copernican system and for non‐Euclidean 
geometry, for logical paradoxes and for relativity theory, and was bound to happen for 
the ‘anomalies’ of quantum physics. It seemed as if either logic itself was on trial or had 

32 See, for example, L. Lombardo-Radice, Istituzioni di algebra astratta, Feltrinelli, Milan (1965), pp. 332 ff.
33 A comment seems called for at this point. My agreement or disagreement with the opinions of various 
authors concerns the individual points which necessarily arise in the course of an argument, and does not 
indicate any general position for or against. In every work there are inevitably a number of points with 
which the reader agrees or disagrees, either strongly or to some extent, or is in doubt about, or indifferent 
to, or simply does not understand. This also holds true for those works which I value to the extent of making 
them the basis for a discussion, an indication in itself of the stimulation I derived from them.
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fallen apart completely. Reichenbach makes it clear, however, that logic, including 
probabilistic logic, is not to blame; on p. 102 he says:

‘The rules of logic cannot be affected by physical experiences. If we express this 
idea in a less pretentious form, it means: If a contradiction arises in physical rela-
tions, we shall never consider it as due to formal logic, but as originating from 
wrong physical interpretations.’

The attributing of ‘anomalies’ not to the structure of the physical world, but rather to 
the ‘structure of the languages in which this world can be discussed’ is even more decisive. 
‘Such analysis expresses the structure of the world indirectly but in a more precise way’ 
(R, p. 177). These are the languages which, by means of definitions, introduce into the 
world of observable phenomena something that we might call ‘interphenomena’ (non-
observables). As examples of such ‘definitions’, consider those which attach to the 
‘observed value’ the meaning of being the value of the quantity before and after, or only 
after, and so on. As examples of such languages, consider the particle language, the 
wave language and a neutral language: The first two ‘… show a deficiency so far as they 
include statements of causal anomalies, which … can be transformed away, for every 
physical problem, by choosing the suitable one of the two languages. The neutral language is 
neither a corpuscle language nor a wave language, and thus does not include statements 
expressing causal anomalies. The deficiency reappears here, however, through the fact 
that the neutral language is three‐valued; statements about interphenomena obtain the 
truth‐value indeterminate’ (R, p. 177). The same situation is described by Bodiou as 
the existence of several ‘coherent formal systems’, like the mechanics of points, and the 
wave theory of light. Two ‘attributes’ pertaining to different systems, like a statement 
in particle form and one in wave form, ‘might be incoherent without being contradictory’ 
(B, p. 11).

The appearance of the word ‘indeterminate’, or of the distinction between ‘incoher-
ent’ and ‘contradictory’, indicates that in order to find something suitable for our pur-
pose we must bring into the world a new logic. There is no difference, in principle, 
between the approaches of the two authors cited. The one introduces straightaway a 
third ‘logical value’ and then goes on to define the logical operations by means of 
‘truth tables’; the other defines the operations axiomatically and could (it seems to 
me – in fact, he does not, although I think he should do so) define the ‘truth values’ 
on the basis of them.

Reichenbach distinguishes two variants depending on whether a statement that is 
neither true nor false is called indeterminate or meaningless. The different names do not 
correspond to different meanings of the partitions into the three cases; the change in 
name corresponds to the case in which ‘it is necessary to make an observation H in 
order to know whether E is true or false’. One agrees then to say that

E is true if observation H has given the result E,
E is false if observation H has given the result not‐E

E is 
meaningless

indeterminateor
 if the observation H has not been made.
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Using the notation introduced for conditional events, this turns out to be exactly what 
we agreed to say by writing E|H instead of E, and putting E|H = 1 (true), or = 0 (false), 
or = ∅ (void) (and, if we wish, we could call it ‘meaningless’ or ‘indeterminate’ instead 
of ‘void’).

The meaning of the trichotomy does not depend at all on which words we use; the 
way in which it is defined is the only thing that matters. It might be conceded, 
however, that it does make some difference whether we use ‘meaningless’ instead of 
‘indeterminate’. It is a difference of philosophical attitude  –  an acceptance of the 
Bohr or Heisenberg interpretation. And there are formal consequences if one 
believes that a meaningless statement cannot even be mentioned, whereas by calling it 
indeterminate, and considering this, as ‘an intermediate truth‐value’ (R, p. 145) 
lying between true and false, it becomes permissible to speak of it and above all to 
work with it.

This is, in fact, the requirement that must be satisfied if something is to be called 
a mathematical structure or, in particular, a logical structure. It is very easy to 
construct such a structure. Considering the tableau on the left, there are 39 
(=19 683) different ways of substituting the letters T, F, I (True, False, Indeterminate) 
in place of the asterisks and one can choose a subset of these to which to assign the 
title of operation and a symbol (e.g. +) to replace the symbol ° between A and B at 
the corner.

A ° B
T F I

B� �� �� A + B
T F I

B� �� ��

A
T
F
I

* * *

A
T
F
I

T T T

* * * T F I

* * * T I I

The table headed A + B is thus filled with entries that are either T or F or I, placed 
in the 1st, 2nd, or 3rd row according to whether A is true, false, or indeterminate, and in 
the 1st, 2nd or 3rd column depending on the value of B (an example is given in the 
tableau on the right). Reichenbach (p. 151) introduces seven such binary operations 
(some of which are taken from the work of Post): disjunction and conjunction (exten-
sions of logical sums and products), three forms of implication (the standard one, an 
alternative and a form of quasi‐implication), two forms of equivalence (the standard 
one and an alternative), and three unary operations of negation (cyclical, diametrical 
and complete). Four of these operations are due to Reichenbach himself, but he leaves 
out ‘some further implications’ defined by Post. Variants due to other authors are also 
mentioned.

Without going into a more detailed discussion (which would lead on to more sub-
stantial objections), we note that all this could be expressed in terms of two‐valued 
logic by thinking of a ‘three‐valued event’ (in our terminology a ‘conditional event’, 
but nothing is altered if one refers to it – or thinks of it? – in a different way), E, say, 
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expressed in the form E′|E″, or in that of the partition into three cases in which it is 
either true, false or void:

 E E E E E E E E E E ET F I1 0, , . 

 
An E whose logical value depends on the logical values of two other ‘three‐valued’ 
events, A and B, is obtained by defining as logical functions of AT, AF, AI, BT, BF, BI, 
both E′ and E″, and ET, EF, EI (should they turn out to be exhaustive and exclusive), 
and putting E = E′|E″ or E = ET|(ET + EF).34 In this way, one avoids creating a number of 
symbols and names of operations and consequent rules (which are difficult to remember 
and sort out, and difficult to use without confusion arising). Above all, one avoids 
creating the tiresome and misleading impression that one is dealing with mysterious 
concepts which transcend ordinary logic.

Bodiou (like, of course, many previous authors whose approach and notation he 
follows) does not base his work on three truth‐values (although, in his notation, the 
three possibilities for a proposition a seem to me to be expressible in the form a, Ca, 
C(a ∨ Ca), where C denotes negation). He does not even have a symbol for the ‘third 
value’ (whereas he uses u, True, and ∅, False, corresponding to our use of 1 and 0). This 
takes one even further from an immediate understanding of the meaning. There is also 
a section (B, pp. 30 ff ) devoted to many‐valued logics in which there are M ‘truth‐ 
values’, which can be denoted by k/(M − 1), k = 0, 1, 2,…, M − 1, but not even here is 
there a value equivalent to ‘Indeterminate’. The work, in fact, proceeds in an entirely 
different direction, in which the value W(a) of a proposition should have a meaning 
something ‘similar’ to ‘probability’ (but with its own ‘rules’: W(a ∨ b) = W(a) ∨ W(b), 
with the same for ⋀; fortunately, we have W(Ca) = 1 − W(a)).35

With this, the time has now come (for two reasons which are formally identical, but 
as far as interpretation goes are totally unrelated) to examine the real meaning of these 
questions; no longer just formally, but in depth. And it is at this point that, in our exami-
nation, we must take into consideration, together with the notion of indeterminacy, the 
notion of complementarity.

10 Verifiability and ‘Complementarity’

The essential problem, the basic doubt which came to the surface in the previous analy-
sis, can be expressed formally in the following way. Suppose we have two or more 
‘three‐valued events’ (we shall consider them as conditional events, but it does not 
make any difference), and let us denote them by E E E E E E E E Es s s1 1 1 2 2 2| , | , , | . 
Can it be meaningful and interesting to define another such, an E = E′|E″, whose 
meaning is related to the meaning of the others? And, in this case, will its ‘truth‐value’ 
be a function of those of the others?

If we think of the general case (for example, of s conditional bets) it is likely that a few 
events (simple, two‐valued ones) will be of interest; like E E E E E ET T

s
T T T

s
T

1 2 1 2, , 

34 Note that E″ is the same thing as ET + EF, whereas for E′ it does not matter whether we take ET or ET + EI, 
or any event in between (E′ = ET + D, with D contained in EI).
35 Such rules, proposed by other authors, are changed by Bodiou in a way which brings them closer to 
probability theory (but then, of course, one no longer has operations on logical values).
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and the similar forms with Eh
F  or Eh

I (expressed by means of simple events), which 
express the fact that either all the events, or at least one, are won, or are lost, or are 
called‐off (because the conditioning event did not occur).

If we think of cases of actual interest, however, it appears that we have to reconsider 
our whole approach to the problem, since some Es may arise that are connected with 
the Eh in a meaningful way, although not necessarily with their logical values. As a trivial 
example – but, for this very reason, instructive – let us begin by considering the (two‐
valued) events Eh, and for each of them construct the (two‐valued) event Eh = ‘I know 
(at this moment) whether Eh is true or false’. By this means, we have transformed our 
field of events into a field of three‐valued events, in which the third value stands for 
‘unknown’, whereas True and False stand for ‘known as true’ and ‘known as false’. One 
often emphasizes – and for good reason – that ‘Indeterminate’ is not to be confused 
with ‘unknown’ (see, e.g., R, p. 142). The same thing can be underlined in a rather better 
way by saying that the two notions coincide only in this particular example. One might 
say that this example corresponds to thinking of what ‘I know at this moment’ as frozen 
(I will no longer be able to learn anything about that which is now unknown to me, and 
I have no further interest in it; for me it will be for ever indeterminate, or even 
‘meaningless’).

In this example it is natural to call the logical sum of two conditional events E1 and E2, 
E = E1 ∨ E2, the conditional event corresponding to the logical sum E E1 2Ú  of the cor-
responding events E1 and E2. We have, therefore, E = E′|E″ = (E E1 2Ú )|E″, where E″ 
= ‘I know (at this moment) whether E E1 2Ú  is true or false’ (i.e. if at least one of E1 and 
E2 is true), and this does not coincide with E E1 2Ú  (although it necessarily contains it) 
since one might well know, for instance, that someone ‘arrived yesterday or today’, but 
not know which. It follows, therefore, that the event E = E1 ∨ E2 thus defined is not a 
logical function of E1 and E2 in the sense we have seen so far (function of their logical 
values). E is certainly true if at least one of the Eh is (certainly) true, certainly false if they 
are both known to be false; but if they are both indeterminate (unknown) it could be 
either indeterminate or (known to be) true. (And if there are more than two of the Eh, 
one has the latter case if at least two are indeterminate and the others false.)

This example, as we have said, is trivial; but the cases in which considerations of this 
kind find an actual important application are precisely (I would even say exclusively) 
those modelled on the same scheme (except that ‘I know …’ is replaced by ‘it has been 
verified that …’, or ‘it will be verified that …’ – within a certain time period, for exam-
ple – and so on).

Quantum theory provides an obvious example of a case in which everything is more 
clear‐cut. If E1 and E2 denote two events (or, equivalently, the respective projection‐
operators), an observation by means of the operator E1 ∨ E2 = E1 + E2 − E1E2 is an 
observation for the event‐sum, but not for either of them individually. Similarly, one can 
make an observation of X + Y or XY and so on without making observations of the two 
separate random quantities X and Y. The concept is an analogous one but, if we wish to 
confine ourselves to projection‐operators representing events, we must restrict our-
selves to considering the events consisting of whether or not X (or Y, or X + Y, or Y etc.) 
belongs to a given interval, E = (a ⩽ X ⩽ b); that is E = 1 if X lies between a and b, and 
E = 0 otherwise.

When we turn to verifiability (in the various senses considered in previous sections) 
the situation is similar. Leaving aside the details and the finer points (we do not have to 
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repeat them here, having dwelt upon them – perhaps at too great a length – already), it 
will suffice to refer to the ‘trivial example’ considered above, taking as ‘indeterminate’ 
that which will be ‘known (not now, but) after a certain time, or after certain checks 
have been made, or after having obtained some given information, and so on.’ Here, too, 
‘E is indeterminate’ is the statement of an objective fact; the lack of the information 
required in order to decide the truth or falsity of E within the specified time period and 
according to the rules laid down for doing so. The difference is that the assignment of 
the value ‘indeterminate’ (and the same for ‘true’ and ‘false’) is, in this sense, not imme-
diate (as it was in the trivial example): it is not excluded, however, as in two‐valued 
logic (where ‘unknown’ is always considered as a temporary state of affairs, pending 
knowledge of the truth – even if the period of waiting should turn out to be in vain, or 
to last for ever).

Within this context, it appears to be possible to pose the problem of complementa-
rity and to discuss its real meaning. Let us first of all observe that, in the sense we have 
just used it, the qualification ‘indeterminate’ might be attributable to an event as of 
now: that is when, on the basis of what we already know about the events, and about 
the possibilities and known means of obtaining information, we are in a position to 
exclude the possibility of getting to know whether E is true or false within the given 
time period, and according to the specified mode of doing so. Clearly, only a few of the 
‘unknown’ events (or possible events, as we used to call them) will be ‘as‐of‐now inde-
terminate’ (in exceptional cases all of them might be and this would reduce to the 
trivial example considered above). We could say, in order to be more precise, that the 
division (at a given moment) of the events into certain, impossible and possible (i.e. 
with values known, as of now, to be true, false or unknown) could be pursued further, 
subdividing the possible (unknown) events into five subcases depending on the situa-
tion considered as ‘final’. Specifically, we can distinguish the events which will eventu-
ally be certainly indeterminate (the case I already mentioned), or those for which there 
is doubt between the outcomes T–I (true–indeterminate), I–F (indeterminate–false), 
T–F (true–false), T–I–F (true–indeterminate–false).

From these conclusions concerning single events, we can pass to the properties of 
two or more possible events. When we were restricting ourselves to True and False, 
for example, we were able to say whether two or more events were incompatible or 
exhaustive. This meant that although it was possible for any of the events to occur, 
not more than one of them actually could. In the same way, it is possible that in the 
case of indeterminacy similar exclusions can be made. It may be certain, as of now, 
that, from among two or more events, each of which might or might not in the end 
turn out to be indeterminate (i.e. they are all either T–I, I–F or T–I–F; none of them 
are I or T–F), at least one remains indeterminate, or at least one does not, and so on, 
and so forth.

The interesting case in practice is that of two events, one at least of which remains 
certainly indeterminate (but it is not known which; otherwise it is easy to couple it with 
another one). Two such events are called complementary (and a similar definition holds 
for quantities, as we shall shortly see). The purpose of the more general discussion given 
above was merely to show how the notion corresponds to a natural examination of the 
possibilities that present themselves when we extend the classification by introducing 
‘indeterminate’ as a third logical value.
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Complementary events arise, for example, when establishing:

whether or not a tennis player wins if he takes part in one or other of two tournaments 
taking place at the same time in two different countries;

whether a coin will show Heads or Tails the next time it is tossed, assuming that the next 
toss is performed by either Peter or John;

what are, fixing them in one’s mind, the registration number and the features of the 
driver of a suspect car that flashes past (assuming that it is at best possible to observe 
one or other of the two items);

what is the behaviour of one and the same object when it is subjected to one or other of 
two destructive tests;

whether a given building (e.g. the Tower of Pisa) will remain standing until some speci-
fied date under the assumption that some kind of repair work is carried out (or 
assuming some other project); and so on.

As well as events, one could equally well speak of complementary quantities. Referring 
to the above examples, we could consider the remaining life of the Tower of Pisa condi-
tional on one or other of the hypotheses considered (of which only one will be observ-
able – that conditional on the course of action actually chosen). Two random quantities 
X and Y are, by definition, noncomplementary (i.e. simultaneously measurable) in the 
strict sense, if this condition holds for all the events X ⩽ x, Y ⩽ y, for arbitrary x, y (and, 
in quantum theory, this reduces to the spectral decompositions of the corresponding 
operators; see vN, Chapter II, and, for noncomplementarity, p. 254). An amusing exam-
ple, but one which well conveys the idea (in a nutshell), is the complementarity of the 
two measurements that a tailor would have to make simultaneously when one of them 
requires the client to hold his arm straight downwards, and the other requires that he 
hold it parallel to the floor and with the elbow bent to give a right angle.

The most celebrated example is undoubtedly that of complementarity in quantum 
mechanics, and there is no doubt that this is the most important case, because of the 
profound nature of the implications regarding our conception of the nature of phenom-
ena and the knowledge of them that we can attain. There is also a more ‘technical’ and 
precise way of expressing the condition of complementarity for events in this case. As 
we have already mentioned, E1 and E2 are noncomplementary events if, as projection‐
operators, they commute. Does this (together with related factors) provide sufficient 
justification for the idea that one has to make a distinction of a logical nature between 
complementarity in the realm of everyday affairs and in that of quantum physics? The 
answer would seem to be no. Otherwise, why should we not say that incompatibility – 
corresponding as it does in the quantum theory formulation to orthogonality – should 
be considered in that context as something completely different, even though it is 
exactly the same thing? This comment is certainly not sufficient to settle the argument; 
nor is the much more basic fact that we have up to now presented the notion of comple-
mentarity without having encountered any need to introduce such distinctions. We 
shall have to be more specific, albeit in a summary fashion, about the physical meaning 
of the problems under consideration, while, on the other hand, we must examine, from 
a critical standpoint, the arguments put forward on the basis of these physical consid-
erations to support the opposite point of view.
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As a first step, we shall simply develop the description of what we shall need as 
background for our purposes. This can then be used as a basis for the understanding 
of the logical situation and also by those who are not familiar with the physical and 
mathematical interpretations of the schemes on which we shall base our considerations. 
We shall take as our starting point the remarks of Section 9, concerning the interpreta-
tion of events as projection‐operators and, in fact, we shall restate this, for the conveni-
ence of the reader, and provide an integrated and extended version by including the case 
of quantities. Notwithstanding the inevitable fact that many things will be glossed over, 
this should be sufficient, and the resulting picture should turn out to be clear and precise 
enough for the purposes for which it is intended.

11 Some Notions Required for a Study of the Quantum 
Theory Case

As the fundamental notion, we take a space H which, by means of its points, or rather 
vectors, provides a suitable representation of the ‘states’ in which a given physical system 
S can find itself. The space is like ordinary three‐dimensional space, with all the affine 
and metric properties (those of analytic geometry) but is infinite‐dimensional (Hilbert 
space). Its points, or vectors, represent functions (functions defined on the space of 
possible configurations of the system; for example, of three coordinates x, y, z in the case 
of a single free particle, and of 3N in the case of N distinct particles). The ‘state’ of the 
system, at a given instant, is characterized by one of these functions, its ψ‐function (or 
ψ‐point, or ψ‐vector, as we call the point, or vector, which represents it in the space H  ); 
ψ is such that the vector has modulus ‖ψ‖ = 1.

The way the system evolves in time is described by the variation of ψ as a function of 
time (deterministically set out by equations similar to those of classical mechanics). The 
difference is that these equations no longer tell one how the configuration of S varies, as 
it is and as it is observed, but only how the probability of finding it in this or that con-
figuration varies if one submits it to an ‘observation’ at some future time t.36

36 Let us just mention some of the omitted details. The functions ψ (and, in general, all the functions 
considered) are complex (roughly speaking, for the same reason as it is convenient to express oscillations in 
terms of eiωt rather than cos ωt), and, as such, considered as vectors, they have bounded moduli ( )f f S2 2 d . 
The space of these functions is the Hilbert space with the Hermite inner-product (f × g = ∫ f.g* dS, where the asterisk 
denotes the complex conjugate; we always have (f × g) = (g × f)* and |f × g| ⩽ ||f|| ||g||). One can directly 
characterize an infinite-dimensional linear metric space as a Hilbert space by adding the properties of 
completeness and separability. With a system of (orthogonal, etc.) Cartesian coordinates, it is the space of 
points defined by sequences of coordinates xh(h = 1, 2,…, n,…) such that x 2

h  (and this expression gives 
the modulus of the vector with coordinates xh; the Hermitian inner-product of two vectors is given by *

h hh
x y ). 

The linear operators that we shall come across are also Hermitian (or self-adjoint: A* = A, where A*, the 
adjoint of A, is defined by A * f × g = f × Ag); the operators can be represented by matrices (with reference to an 
orthogonal Cartesian system) with entries Ars (and then (A*)rs = (Asr)*; A is Hermitian if Asr = (Ars)*). See vN, 
especially pp. 34–46, and for a more direct exposition and interpretation, E. Persico, I fondamentali della 
meccanica atomica, Zanichelli, Bologna (1936).

Let the above serve to give an idea of the various detailed specifications which, like the present one, would be 
out of place in the main text if they were to give the reader the impression that he has to acquire a knowledge of 
these notions, or to refresh his rusty memory, or to worry about the details, in order to understand those few 
points on which his attention would be better focused. And let it serve also as a warning for those who were 
tempted to accept the present formulations literally, or to be put off at finding them incomplete.
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We cannot ‘see’ the vector ψ; it is a mathematical abstraction in a space that is a 
mental fiction. But, by starting with the results of the last observations made (and 
assuming that the system S has not, in the meantime, been subjected to any external 
disturbance), and knowing the laws governing its evolution, we can, in principle, determine 
it. In any case, assuming that we knew the vector ψ, little or nothing would be known 
about the actual configuration of the physical system S in which we are interested, and 
about its evolution.

More precisely – in order to make clear what ψ is or is not sufficient to explain – let 
us consider an arbitrary event E, that is any statement whatsoever concerning the space 
S at a given instant (this must always be understood, even if not mentioned explicitly; 
two events or two quantities of the same kind, but relative to different times, are two 
distinct events or quantities). What we can say about E is that it is certainly true if the 
vector ψ belongs to some given linear manifold M (associated with E), and certainly 
false if it belongs to the linear space of all vectors orthogonal to M. In these two cases it 
is superfluous to make an observation, because the answer would certainly be the one 
we have just given (but it would also be innocuous because it would not disturb the 
system at all). If, on the other hand, the vector ψ is neither contained in nor orthogonal 
to the space M an observation concerning E gives an unforeseeable result. Knowledge 
of the state, which is all contained37 in the vector ψ, does not determine this result in 
advance, but it is not without value, because it gives all that can be given: that is, the 
probability. The details are as follows: we decompose the vector ψ into two compo-
nents, one parallel to M, the other orthogonal; that is into ψ = Eψ + E ͂ψ (in this way 
indicating the projection E onto M, and the orthogonal projection, E ͂ = 1 − E, onto 
H − M). The probabilities of the E and E ͂ that result are given by the squares of the 
respective projections:

 P PE E EE2 2, . 

 

Note that, instead of ||Eψ||2 = Eψ × Eψ (1st form) we can also write Eψ × ψ (2nd form, 
which equals Eψ × (Eψ + E ͂ψ), whereas Eψ × E͂ψ = 0), which is also valid even if E is not a 
projection‐operator and has a similar meaning even in this case (as we shall see).38 
In the case where E is a projection‐operator, one verifies immediately that P(E) + P(E͂) = 1, 
as was necessary. In fact (because of the orthogonality of the two components, and 
hence by Pythagoras), we have

 P PE E E E 

2 2 2 1. 

The interpretation of E as a projection‐operator turns out to be even more expressive, 
however, in light of the following. The most important fact is that the vector ψ is not 
restricted to a passive rôle of indicating the probability of the required result being 
observed. The observation itself is forced to choose whether to fall into the space M 

37 See the comments that are made later following the discussion of the possibility of explanations 
introducing ‘hidden parameters’.
38 The equivalence between the two forms does not hold in the general case. There, in fact (see footnote 36), 
we have Aψ × Aψ = A*Aψ × ψ, and, in the case which interests us (the Hermitian form), this equals Aψ × ψ. 
In order that it equals Aψ × ψ, we must have A idempotent; i.e. A = projection-operator (with all the 
eigenvalues idempotent, λ = λ; that is, λ= 1 or λ = 0).
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corresponding to E, or into the orthogonal space H − M corresponding to E͂ (and it 
does so with the probabilities indicated). The outcome simply constitutes the informa-
tion about the choice made. From the position taken up after the jump we have obliged 
it to take, the system returns to an evolution according to the previous laws until there 
is a new disturbance.

This picture (anthropomorphic, but this perhaps helps one grasp the ideas in the 
absence of a more detailed technical exposition) contains ‘in a nutshell’ all that is required 
for a complete treatment. It will suffice, essentially, to consider simultaneous questions 
about several events, rather than a single one (this will also hold for measurements of 
quantities), and to distinguish the cases which give rise to the circumstances to be 
discussed.

Instead of a partition into two opposite events (E and E͂ ) we can think of a ‘finer’ parti-
tion, still ‘complete’, into some number n of incompatible events, E1, E2,…, En, or even into 
an infinite number. Each Eh will be defined by the corresponding (closed) linear space Mh, 
and all these spaces must be taken to be orthogonal to each other, and such that taken 
altogether they form the entire space H (i.e. there must not exist a vector in H orthogonal 
to all the Mh, and then there will not exist vectors which are not linearly dependent on the 
vectors of the Mh). The total dimension is countable, being coincident with that of H. 
It follows that, in the case of a finite partition, at least one of the Mh must be infinite‐
dimensional (in particular, note that for E and E͂ either one is infinite‐dimensional or both 
are). In the case of a countable partition, this is not necessarily the case, and we can even 
consider the extreme case where all the spaces Mh are one‐dimensional.

This is the fundamental case in terms of which the discussion of all the others is 
framed. In other words, it is the case in which we have a system of orthogonal Cartesian 
axes corresponding to an infinite set of events Eh(h = 1, 2,…, n,…), interpretable, for 
example, as the (distinct) values, λh, which a quantity Z can assume: Eh = (Z = λh). On the 
other hand, we clearly have Z Eh hh

 (as a random quantity), since one and only one 
of the Eh will occur (and will take the value 1; all the others will be 0), and the sum will 
reduce to the corresponding value λh. Defining Z as an operator (associated with the 
quantity of the same name) in the same way, it seems clear from the identity of the writ-
ten forms that one is dealing with the operator formed by multiplying the axis vectors 
(functions) Eh (the eigenvectors or eigenfunctions) by the λh (the eigenvalues). This 
gives the prevision (or mathematical expectation) of the quantity Z by means of the 
same formula used for E (2nd form):

 
Z E E E Z

h
h h

h
h h

h
h hP P .

 

In a similar fashion, one obtains, immediately, the distribution function of Z: putting 
Ez(λ) =∑Eh(λh ⩽ λ), one has the event Ez(λ) = (Z ⩽ λ), or the related projection‐operator; 
it follows that

 E E Z Fz z zP P  , 

where we denote by Fz the distribution function of Z.
The collection of projection‐operators Ez(λ) (or the set of their linear spaces, each of 

which, if we proceed in the direction of increasing λ, contains all the preceding ones) 
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defines the spectrum of Z; in this case, a discrete spectrum (there are a countable 
number of values of λh).

Going back to the physical problem, we can repeat what was said in the case of an 
event. If ψ belongs to one of the axes, and only then, the corresponding event Eh will 
certainly be true; that is, thinking of the quantity Z, its value will be λh with certainty. 
It is unnecessary (but harmless) to make an observation. In all other cases, the vector ψ 
will be forced (if we make an observation on all the Eh together, i.e. on Z) to choose 
along which axis it is to lie: the result (Eh, or λh) indicates which choice was made, and, 
after the jump, we go back to the normal evolution.

There is one difference, and a very important one, with respect to the previous case. 
Now we know exactly,39 after the observation, the position chosen by ψ (whereas, 
beforehand, we knew only that it belonged to M, or alternatively to H − M ). This 
 happens only in the case now under consideration; that of a partition which gives rise to 
spaces which are all one‐dimensional. When one defines on them a quantity Z, it is 
necessary that the λh values (the eigenvalues) are all distinct (simple), otherwise, the 
refinement of the subdivision we have reached will in part be destroyed (one has the 
case of ‘degeneracy’). For the case we are dealing with (the nondegenerate case) one 
says – for obvious reasons – that a ‘maximal observation’ has been made.

We now turn to the problem of complementarity of observations.
Can we ask for the simultaneous verification – that is with one and the same observa-

tion – of two or more events? Or for the measurements of two or more quantities? (And 
we note that ‘simultaneously’ can only mean ‘with one and the same observation’; 
another observation made immediately afterwards would already find ψ changed by the 
effect of the first one.)

The answer is obvious if one thinks of two ‘maximal observations’, like the measure-
ments of two quantities Z′ and Z″, to be performed simultaneously. In doing so, we 
force ψ to lie on one of the axes of the first system and also on one of the second system. 
Now ψ obeys any order whatsoever, but cannot accept contradictory orders – and this 
would be the case if the two systems of axes do not coincide. In such a case, Z′ and Z″ 
cannot be measured simultaneously; that is they are complementary.40 If the axes do 
coincide, the result is trivial, because Z′ and Z″ are functions one of the other (if Z′ 
assumes the value h, it means that the hth‐axis has been chosen, and hence that Z″ 
takes on the value h). The coincidence of the system of axes implies commutativity (in 
terms of operators, the condition is Z′Z″ = Z″Z′), and the same also holds in the case of 
events, E′E″ = E″E′, or of non‐maximal quantities, XY = YZ. Non‐maximal quantities X, 
Y relating to one and the same system of axes (suppose it to be that of Z) are obtained 
by taking eigenvalues μh and vh, which are not all distinct (so that X and Y as functions 
of Z, X = f(Z), Y = g(Z), are not invertible). Conversely, if X and Y are not complementary, 
and have as possible values the μi and vi, respectively, one can construct a Z (correspond-
ing to a maximal observation) of which X and Y are functions, and having distinct values 
λh corresponding to all the compatible pairs (μi, vj). In particular, in the case of events, 
noncomplementarity, E′E″ = E″E′, means that the corresponding spaces M′ and M″ 
are mutually orthogonal (i.e. if we call M the intersection, M = M′ M″, then two vectors, 

39 The ψ is, in fact, uniquely determined, because a multiplicative constant (real or complex) is irrelevant.
40 Think of the example of the tailor: complementary measurements are those that to be made 
simultaneously would require the client to simultaneously assume several different, incompatible positions!
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one from M′ − M, and one from M″ − M – i.e. from M′ and M″, respectively – and 
orthogonal to M, are always orthogonal to each other; then, in fact, and only then, is the 
product of the two projections the projection onto the intersection M, and does not 
depend on the order). As special cases, one has the case of inclusion (if M′ − M = {0}, 
we have M′ ⊂ M″, E′ ⊂ E″), and that of incompatibility (M = {0}, E′E″ = 0 = impossible).

Noncomplementarity between X and Y can be interpreted in the same way because it 
is equivalent to the noncomplementarity of each of the events (projection‐operators) 
Ex(μ) and Ey(v); in other words,

 E E v E v Ex y y x 0 
for any μ and v whatsoever. Geometrically, this is equivalent to the orthogonality of the 
spaces M  and Mv  (i.e. orthogonality between the vectors of M M M  and of 
M M Mv v ). One could consider the same condition in a weaker version (limiting our-
selves to checking the validity for certain values of μ and v instead of for all of them), but 
we shall consider this in the context of ‘continuous spectra’, where it is more interesting.

The case of the ‘continuous spectrum’ arises with a quantity that can assume any 
value (between −∞ and +∞, or in an interval etc.), rather than just a finite or countable 
set of values as considered so far. In quantum physics one deals with nonquantized 
quantities (like the coordinates) in addition to the quantized ones (like energy).

In this case, too, in considering quantities X, Y,…, everything can be expressed by 
Ex(μ), Ey(v),…, except that an Ex(μ) will actually vary for all increments in μ (and not just 
in going through certain values of μ; the eigenvalues μ = μi) and the distribution function

 F X Ex xP   
will, in general, turn out to be continuous.41 A decomposition into a finite or infinite 
number of incompatible events could be obtained by dividing the axes of the μ in some 
fashion into intervals μi < μ < μi+1 (i = 0, ±1, ±2,…, in order to denote them in increasing 
order, and letting them be, in general, unbounded in both directions). Only in this way 
can we have a partition

 E Xi i i 1  
that gives us, in the way we indicated previously, an ‘approximate measurement’ X  of X, 
defined by choosing a subdivision μi, and in each interval a value xi , and then setting 
ˆ ˆi iiX x E . In other words; X  is the function of X defined by the step‐function

 
1ˆ .i i i

i
f X x X

 
From this point of view, X is not a measurement with absolute precision, but with arbi-
trarily high precision if we substitute for it an X  defined by a function with arbitrarily 
small steps. An observation on X  forces ψ to lie in one of the spaces Mi (corresponding 
to Ei = Ex(μi+1) − Ex(μi)) and it is never maximal because the subdivision could always be 
made finer.

41 We ignore the mixed case of probability in part concentrated, in part continuous, etc. (see Chapter 6, 
6.2.2–6.2.3).
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If we now consider X and Y (both with continuous spectra), the condition for 
noncomplementarity is still the commutativity of X and Y as operators, XY − YX = 0; in 
other words, commutativity between the Ex(μ) and the Ey(v). If the condition holds, 
then, apart from obvious complications, what was said in the case of the discrete spec-
trum also applies here: for example, it is also true in this case that one can construct a Z 
of which X and Y are functions, but that one can only obtain it (clearly) by means of 
procedures based on the Peano curve or something similar (vN, p. 178).

If, however, we content ourselves with approximate measurements, X  and Ŷ, then the 
orthogonality of Ex(μi) and Ey(vj), relative to the points of subdivision chosen for the μ 
and v, is sufficient for noncomplementarity; this weaker condition may also hold if 
X and Y are complementary. In other words, complementarity does not necessarily 
exclude the possibility of simultaneous approximate measurements; that is of two 
suitably chosen X  and Y .

And at this point we arrive at the special case of quantum mechanics, where comple-
mentarity often arises in the particular guise of noncommutativity, expressed by

 XY YX h i h/ .2 Planck’s constant  
This holds where X and Y are coordinates, and for a conjugate impulse, or, more generally, 
in the terminology of classical mechanics, for ‘canonically conjugate’ quantities.

From this relation of noncommutativity (and hence complementarity between X and 
Y) we can derive a justification of Heisenberg’s Uncertainty Principle, which indicates 
the way in which the precision of the measurements of X and Y – which can be made 
arbitrarily high if performed separately  –  turn out to have a reciprocal relationship 
under a simultaneous observation.42

The following is just a brief development of this crucial point. From XY − YX = a, it 
follows that

 
XY YX a a a2 1if .

 

We note also that

 XY Y X Y X ,  

with a similar result for YX. It follows (by the triangle inequality!) that the bound for the 
difference is given by

 XY YX Y X2. , 

that is

 
Y X a h1

2 4
.
 

42 The procedure which is briefly outlined here is taken from vN (p. 230, ff.), and is there (note 131, p. 233) 
attributed to ideas of Bohr, and work of Kennard and Robertson.
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The inequality holds no matter where we take the origin for X and Y, and, in particular, 
if we take it at the mean value. The two moduli then have an interpretation as standard 
deviations, and we have the uncertainty principle in its usual form: σxσy ⩾ h/4π.

This means that it is impossible to approximate X and Y by means of some X  and Y  
by choosing arbitrarily small ‘steps’ for both of them: their order of magnitude must be 
such that the product (as an order of magnitude) is not less than h. Geometrically, the 
subdivision into rectangles in the (X, Y)‐plane, a consequence of the subdivision by 
means of the μi and vj, respectively, on the x‐, y‐axes, cannot be so fine as to give rectan-
gles whose areas have orders of magnitude less than h (the choice of the ratio of height 
to width remaining arbitrary). These rectangles are the regions for which it can be ‘veri-
fied’ whether the pair of measurements fall inside or not: ( )(ˆ ˆˆ ˆ )i jX x Y y  is, in fact, 
equivalent to (μi < X ⩽ μi+1)(vj < Y ⩽ vj+1). Observe that this is precisely one of the condi-
tions of ‘bounded precision’ considered in Section 8 (Figure A.1).

On the basis of the digression, which we are now about to end, we might, at this 
point, take up again the discussion of the logical aspects of indeterminacy. However, 
let us first take advantage of the opportunity that has grown out of the discussion 
concerning the precision of a measurement in the quantum theoretic field, in order to 
examine the question in relation to the considerations we put forward about the sub-
ject in general (in Sections 7 and 8). We have just pointed out the similarity between 
relations of indeterminacy and bounded precision in terms of area; more fundamental, 
however, is the analogy between the case of ‘unbounded precision’ (considered in 
Section 7) and the situation presented (following von Neumann) for the measurements 
of nonquantized quantities (with continuous spectra). These quantities (vN, p. 222) ‘… 
could be observed only with arbitrarily good (but never absolute) precision’, in contrast 
to what happens with the ‘… introduction of an eigenfunction which is “improper”, that 
is, which does not belong to Hilbert space’, a procedure which ‘… gives a less good 
approach to reality than our treatment here. For such a method pretends the existence 
of such states in which quantities with continuous spectra take on certain values 
exactly, although this never occurs.’ These critical comments are directed towards pro-
cedures that make use of the Dirac function (and they are repeated very frequently). In 
this connection, I think it appropriate to indicate its relation to the point of view that 
we are following, both to avoid misunderstanding and to make things clearer. I sympa-
thize with von Neumann’s attitude, not when he seems to be inspired by scruples of 
mathematical rigour and attacking imprecise definitions (because, generally speaking, 
formal imperfections can always be removed), but when he shows care in not attribut-
ing absolute certainty and precision to a quantity without really good reason. I approve 
even more strongly of the observation (as he adds in note 126, p. 222) that not even 
attributing X to one of the intervals of the subdivision can be considered as certain, 
except as an idealization: ‘Nevertheless,’ he concludes, in an admirably undoctrinaire 
manner, ‘our method of description appears to be the most convenient one mathemati-
cally at least for the present.’ ‘I sympathize’, also, in the sense that I would like quantum 
physics to make room for this elegant example of contraposition; of quantities that are 
or are not quantized, which are, respectively, precisely measurable or not. In any case, 
it cannot, of course, be a matter of taste, whether mathematical or philosophical, and 
if the opposite formulation should, on a closer examination, turn out to correspond 
more closely to a meaningful physical interpretation then it must be welcomed with 
open arms.
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12 The Relationship with ‘Three‐Valued Logic’

Let us now go back to three‐valued logic and to the related conceptual questions that 
are raised by quantum mechanics.

So far as the nature of ‘three‐valued logic’ is concerned, we came to the conclusion 
that the ‘three values’ correspond well to the requirements of applications – quantum‐
theoretic or otherwise – but that they do not give rise to a ‘logical calculus’, because 
the most meaningful considerations are not connected with operations that could be 
performed on such ‘values’. If one examines the actual situations directly, the pre-
conceived choice of a machinery consisting of formal operations similar to those of 
ordinary logic does not appear to be appropriate as the unique way of constructing a 
formulation which is to replace it.

The best proof is provided by the many‐valued logic –  ‘similar to the calculus of 
probability’ – which Bodiou mentions and develops. In order to have the satisfaction of 
finding a true relationship (in the calculus of probability), he has to put together two 
things which are falsely defined (in the calculus of probability) and which, on the other 
hand, cannot be modified if one wants them to be expressed as ‘logical functions’ (and 
the final consolation lies in the observation that they only work if one has either prob-
ability 0 or 1, in which case formal, two‐valued, logic, without probability, is essentially 
sufficient).43

The most important point to be examined is the reason behind the different attitudes 
(already mentioned in Section 10) of those who regard ‘Indeterminism’ as a concept 
specifically and exclusively belonging to quantum physics, and those who see no dis-
tinction of a logical nature between this case and the world of everyday affairs (although 
nobody denies the very important and significant differences which derive from the 
physical and mathematical structures peculiar to the quantum‐theoretic set‐up).

Von Neumann, in speaking about the ‘sort of logical calculus’ to which the projec-
tion‐operators gives rise, says of this calculus that ‘… in contrast to the concepts of 
ordinary logic, this system is extended by the concept of “simultaneous decidability” 
which is characteristic for quantum mechanics’ (vN, p. 253).

It seems that such sentences have no practical implication and, therefore, no actual 
content. So far as von Neumann is concerned, it may be that he never examined the 
possibility of examples of a different kind. This is not the case, however, with Reichenbach 
(as we shall see); indeed, one might think that he was constantly preoccupied with such 

43 Perhaps this ‘many-valued logic’ might be useful in other cases, and in other senses, without reference to 
probability. For example, by giving a proposition a a certain value V(a) = k, if, in a system with a given set of 
ordered axioms A1, A2,…, An, the proposition is decidable (true or false) on the basis of A1, A2,…, Ak, but 
not using only A1, A2, …, A(k - 1). The scheme as it stands does not even work in this case, but, in a certain 
sense, we get closer.

So far as non-modularity is concerned, one can observe that modularity no longer holds in our scheme, 
(E|H) (or in similar ones), when the ‘truth-value’ (Void or Indeterminate) is considered greater than 0 (False) 
and less than 1 (True), and a scale of intermediate values (in various possible senses, e.g. probability), which 
are considered not comparable with Ø, are inserted between these two values. The most natural convention 
would be that of taking P(E|H) as the value, putting P(E|H) = Ø if H = Ø; possibly using 0* and 1* to distinguish 
the certainly False and certainly True cases (obtaining the partially ordered set of values 0* < 0 ⩽ p ⩽ 1 < 1*, 
0* < Ø < 1*, Ø not comparable with values 0 ⩽ p ⩽ 1). It is not clear to me whether this has any connection 
with the appearance of non-modularity – in many different ways, some not immediate – in the treatments 
given by von Neumann and Birkhoff, and Bodiou.
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dilemmas (like waves versus particles, values before and after etc.). These dilemmas 
were, instead, clearly resolved by von Neumann, as is shown, for example, by the following 
remark (note 148, p. 282):

‘In contrast with this, however, it is to be noted that quantum mechanics derives 
both “natures” from a single unified theory of the elementary phenomena. The 
paradox of the earlier quantum theory lay in the circumstance that one had to 
draw alternately on two contradictory theories (electromagnetic theory of radia-
tion of Maxwell–Hertz, light quantum theory of Einstein) for the explanation of 
the experience.’

The attitude of Bodiou – see the previous quotation (B, p. 7) – also seems to stem 
from having overcome these distinctions. On the other hand, it seems an inevitable 
progression to attain more and more comprehensive views, which remove from their 
isolation those things which, when they first appeared, seemed abnormal.

What is the difference then, from a logical point of view, between the complementarity 
or noncomplementarity of measurements in the case of a physicist and in that of the 
tailor (whom we met above in our trivial example)? Or among the examples given 
previously  –  like that of the coin whose next toss could be made by either Peter or 
John – and an example of a quantum‐theoretic nature? It is precisely in the context 
of such an example that Reichenbach has developed his arguments (R, pp. 145–146, and 
p. 168), basing himself upon an absolutely rigid division between the indeterminacy of 
the quantum world and the determinacy of the macroscopic world. This division is so 
complete that Reichenbach says the following concerning the outcome of that toss 
which John might have made (but which instead was made by Peter). Since it is a question 
of ‘a macroscopic affair, we have in principle other means of testing’, by making precise 
measurements of the state of John’s muscles before or after the toss made by Peter, and 
in many other ways:

‘… or let us better say, since we cannot do it, Laplace’s superman could. For us the 
truth value of John’s statement will always remain unknown; but it is not indeter-
minate, since it is possible in principle to determine it, and only lack of technical 
abilities prevents us from so doing.’

In discussing the merits of the question, one might object that the ‘determinism’ of 
the macrocosm – to which Reichenbach makes explicit reference – has a merely static 
character and this renders completely unpredictable those facts for which numerous 
microscopic circumstances might prove decisive (not to mention the fact that even the 
result of a single collision between particles, as recorded on a photographic plate, can 
cause macroscopic phenomena like the publishing of papers, the holding of lectures and 
conferences, and endless indirect consequences and repercussions). Moreover, not 
even Laplace (so far as I know) ever suggested that his ‘superman’ was capable of pre-
dicting not only everything that is going to happen but also what would happen if … 
something that is not going to happen were to happen. How could it come about that 
the state of the muscles, and so on, could inform us about the result of the toss that has 
not been performed (and why not the text of a conversation that has not taken place; the 
adventures of a journey not undertaken; etc.), rather than informing us directly that it is 
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predetermined that the toss, or the conversation, or the journey, will not take place 
(or did not take place)? To my knowledge, no‐one, even in theological discussions, has 
ever claimed to have decided whether divine omniscience includes the knowledge of 
what exactly would have happened to the world conditional on every imaginable 
hypothesis about the form of Cleopatra’s nose (or any other fact, either substantial or 
irrelevant, concerning the world’s history).

In my opinion, however, there is no point in entering into the merits of such ques-
tions, physical or metaphysical as the case may be, because logic can only be neutral and 
anterior with respect to any contingent circumstance of scientific knowledge, or 
hypothesis, concerning the world of phenomena.44 Logic has to be applied to the wider 
field of everything that is imaginable, and the inevitable circumstance that fantasy is of 
so little use in extending the field beyond what has already been observed or realized is 
already too restrictive. Science fiction itself has rarely anticipated reality by more than a 
few decades. To make use of new ideas or discoveries can be legitimate for the purpose 
of bringing up to date points of view in logic by including in its domain new areas of 
what is conceivable, areas which had previously been ignored (and this is what we are 
attempting to do). The approach, which consisted, instead, in making every logical 
theory restrictive and ephemeral, by reducing it, moment by moment, to a reflection of 
current scientific views, would have got things upside down.

Before turning to another topic, it would perhaps be appropriate to clarify certain 
views on the theme of determinism, given the connection with discussions pertaining 
to the present theory, and given that we have commented upon it (even though in order 
to decide that it was not relevant). In my opinion, the attachment to determinism as 
an  exigency of thought is now incomprehensible. Both classical statistical mechanics 
(or Mendelian hereditary) and quantum physics provide explanations – in the form of 
coherent theories, accepted by many people – of apparently deterministic phenomena. 
The mere existence of such explanations should be sufficient to give the lie for evermore 
to the dogmatism of this point of view. What I mean is that the fact that such theories 
exist, or are conceivable, should be sufficient (no matter if they are wrong, or even if 
they are merely successful mental constructs, clearly science‐fictional in character).

It is a rather different matter to pose oneself similar questions from what one might 
call a psychological–aesthetic angle, rather than a dogmatic one. As a result of our own 
individual tastes and habits, each one of us will have a propensity to find one or other of 
a deterministic or indeterministic formulation of a law or theory more or less simple 
and convincing. In particular, we evaluate with greater or lesser sympathy (a priori – i.e. 
before some possibly deeper knowledge or examination of the detailed reasons for and 
against) the ideas which tend to characterize probabilistic‐type quantum theory as 
merely a partial explanation, unsatisfactory and provisional, and requiring replacing 
sooner or later by something deterministic.

Personally, I am of the opinion that nothing should ever be excluded a priori: tomor-
row’s notions will almost certainly be as inconceivable for us today as today’s notions 
would have been for a man of the nineteenth century, or for Neanderthal man. This is, 
however, a distant prospect; the foundations of physics are those we have today (perhaps 
for many decades, perhaps centuries) and I think it unlikely that they can be interpreted 

44 On the other hand, this has been perfectly expressed elsewhere by Reichenbach himself.
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(or adapted) in deterministic versions, like those that are apparently yearned for by 
people who invoke the possible existence of ‘hidden parameters’, or similar devices. 
I hold this view not only because von Neumann’s arguments against such an idea seem 
to me convincing (vN, pp. 313–328), but also because I can see no reason to yearn for 
such a thing, or to value it – apart from an anachronistic and nostalgic prejudice in 
favour of the scientific fashion of the nineteenth century. If anything, I find it, on the 
contrary, distasteful; it leaves me somewhat bewildered to have to admit that the evolu-
tion of the system (i.e. of its functions ψ) is deterministic in character (instead of, for 
example, being a random process) so that indeterminism merely creeps in because of 
the observation, rather than completely dominating the scene. This can actually lead 
one to search for some meaning which makes the function ψ objective, although this 
notion is the very least suited to appear to be capable of such a transformation.

In any case, for what concerns us as human beings, interested in foreseeing the future 
with some degree of confidence on the basis of our scanty, imprecise and uncertain 
knowledge of the present and the past, all arguments about determinism are purely 
academic and have no more meaning than would a discussion about the number of 
angels that can dance on the head of a pin. No matter how the world’s history develops, 
nobody could disprove either the assertion that everything is determined by the past 
through iron laws (but we can foresee either nothing or very little because we are too 
ignorant both of the past and of the laws), or the assertion that everything occurs ‘by 
chance’ (and this does not exclude the possibility that ‘by chance’ things might develop 
according to some ‘law’). In the final analysis, it seems to be of very little consequence 
or assistance to us whether we take up a position for or against the plausibility of the 
hypothesis that Laplace’s superman could work out the entire future if only he knew the 
entire present in every detail. Such a statement, in the sense we have just examined, 
must, in fact, be said to be neither true nor false, but instead indeterminate, the hypoth-
esis being, without any doubt, illusory, and therefore false.

13 Verifiability and Distorting Factors

As the final part of our survey of the various factors that are important when we attempt 
to determine and verify the outcome of an event, it remains to consider the most trou-
blesome of them. These are the factors which, for reasons relating to the individuals 
involved, or to their self‐interest, are capable of modifying the outcome, or of influencing 
its verifiability, or of simply raising doubts about the possibility of such distortions.

Many examples of this are well‐known, and we shall just quote them without having 
anything useful to say about overcoming the difficulties. The deepest discussion (which 
may well be new) will centre, however, on the events of the three‐valued logic illustrated 
in Sections 10–12 above, where it seems impossible to give a complete definition without 
encountering similar difficulties regarding possible distortions. Let us begin, however, 
with the most well‐known and obvious cases.

These are events for which the will of the individual concerned enters in directly (and, 
in this respect, there is nothing to distinguish this case from that of events which depend 
on animals, or on other natural factors). There is a difference – a distorting factor – when 
such a will can be influenced by facts which are objects of our study, and which 
therefore alter this very object of study. This happens in evaluating a probability if the 
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circumstances upon which the evaluation itself is based are modified by the evaluation, 
or the knowledge of this evaluation, or a contract drawn up on the basis of this evaluation, 
and so on.

This much is true: although we are again speaking of probability before the appropriate 
time, we have to do so in order to present the examples; the object under consideration 
is, however, the difficulty of avoiding the problems by means of detailed specifications 
in the description of an event.

The evaluation of the probability of an event can influence its occurrence. If someone, 
at some given moment, perhaps because of a vague feeling, or even for no reason at all, 
considers the danger of a traffic accident to be higher than usual, he will try to be more 
careful, and the risk will diminish. If, on the other hand, we are dealing with an event 
whose positive outcome is desired – like succeeding in a business deal, an examination, 
or a race – it can happen that a greater feeling of confidence leads to one being in a 
better position to succeed.

The knowledge of someone else’s evaluation of probability can have a marked snowball 
effect, as a result of the confidence that tends to be placed in the opinions of experts. 
If  in circles which are considered well‐informed the expectations are pessimistic (or 
optimistic) and an increasing number of people, when informed of these opinions, 
behave as if they correspond to reality, the expectations will end up by being borne out 
by reality – even if they were initially without foundation.

Nevertheless, the most direct example is provided by the influence of a person’s self‐
interest on the outcome of events. In the case of insurance, it can lead to faked or fraudu-
lent accidents; but we are still dealing here with the kind of case which is, to some extent, 
identifiable. Much worse (from a logical point of view, since it constantly eludes one’s 
grasp) is the effect of the insufficient precautions that an individual might take, knowing 
that he is insured. Similar influences are at work if a prize is attached to the occurrence 
of an event (e.g. an additional bonus for each goal, either for the player who scores, or for 
the whole team to share out), or even if it arouses admiration, or merits reproach.

It is even easier for a person to have an influence on the process of verification rather 
than on the outcome itself. An individual who is interested in proving that an event has 
occurred will devote a lot of energy to obtaining information to this end, and will take 
care to collect the necessary documentation and to send it to the appropriate authority. 
On the other hand, someone interested in concealing such news will be more or less 
negligent, or may even attempt to suppress it, or to destroy the evidence.

In order to avoid all this, one should provide a description of the event which is suffi-
ciently detailed to preclude the possibility of distortion. In fact, the clauses of an insurance 
policy abound in detailed specifications of the obligations of the person concerned, the 
risks excluded, and so on (although it is clearly not possible to extend the specification 
beyond those cases which are easiest to define and to pick out45).

An even more entangled situation is to be found in the theory of games. In the simplest 
case, one has two players, each of whom must make a decision (without knowing the 
decision of his opponent), and the result (one player’s gain, the other’s loss) depends on 
the two decisions made. Each would like to know the decision of the other in order to 

45 A discussion, together with useful examples, can be found in H.M. Sarason, ‘Come impostare e applicare 
le statistiche assicurative’, Giorn. Ist. Ital. Attuari, I (1965), pp. 1–25.
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adjust his own decision accordingly; not knowing it, he could evaluate the probabilities 
of the various decisions the other might make, and in order to do this he would need to 
go through a similar reasoning process by putting himself in the other’s shoes.

This and other more complicated situations are objects of study in games theory. But 
all the aspects of distorting factors that we have mentioned so far are only intended as 
remarks in passing, merely to put the reader on guard against the difficulties one 
encounters when dealing with cases where they arise (the difficulties may or may not be 
serious, but they are virtually impossible to eliminate).

Above all, these examples serve as an introduction, in order that it should not 
appear (misleadingly) to be a rather special feature which arises when one delves 
more deeply into the study of ‘three‐valued’ events. There is, in fact, a particular, 
novel feature in this case, but it arises later, and is not related to the distorting factor 
(which derives from the choices that can affect verifiability). We shall examine this 
latter aspect first.

A conditional event E|H presents no problem of this kind if E and H turn out to be 
known with certainty – as true or false – within the time and manner specified. In fact, 
if we think in terms of having made a bet – our guideline – we will then know, without 
any room for doubt, that it is called off if H turns out to be false, won if both H and E 
turn out to be true, lost if H but not E turns out to be true. But what if H or E, or both, 
turn out to be nonverifiable (in some preassigned manner; for example, within a given 
time period during which the bet has to be decided)? As a first step, we must decide 
what is to happen to the hypothetical bet in such circumstances. It seems natural – and, 
in any case, this is what we shall do – to make the following convention: it is either won 
or lost, respectively, only in the cases of H and E true, H but not E true, respectively; it 
is called off both if H is false, and if H is indeterminate, and also if H is true but E is 
indeterminate. In formal terms, considering E and H as three‐valued events, E = E′|E″, 
H=H′|H″, the conditional event E|H = (E′|E″)|(H′|H″) would correspond (in Reichenbach’s 
terminology) to quasi‐implication (as introduced by him), with the following truth table 
(in Reichenbach’s notation, E|H corresponds
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H� �� ��
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to H ⋺ E). In terms of the four simple (two‐valued) events E′, E″, H′, H″, this becomes
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in other words,

 E H E E H H E E H H| | | . 
Distorting factors enter in here, too, as soon as one allows the possibility that some-

body might influence the outcome, or the knowledge of the outcome, of E|H. The 
particular case of greatest specific interest is that in which H represents the performing 
of the experiment – or, more usually, experiments – from which information about 
the outcome of E is drawn (either in fact, or potentially). This covers the cases of all 
measurements and experiments in both classical and quantum physics, and of all the 
investigations that are appropriate for the ascertaining of the truth of any assertion 
concerning practical matters. This situation arises most clearly when E consists just 
of the result of an experiment which must be expressly performed (e.g. H = the toss of 
a coin, or the launch of a satellite, and E = Heads, or entering into orbit, respectively). 
In such a case, it would make no sense at all to enquire whether E was true or false 
without assuming that H were true; but the case in which E is thought of as being 
true or false independently of an experiment H for ascertaining it no longer appears 
different when one is concerned with the actual ascertainment of E. We can very well 
imagine that E = A.N. Other has gone down with a certain illness, or E = the residue 
of a substance contains poison, are statements that are true or false in themselves, 
independently of the fact of our knowing whether they are true or false. If we, or 
anyone, wish to know whether E is true or is false (and not merely to say that it is one 
or the other) then E should be replaced by E|H, where H denotes the performing of an 
act leading to its ascertainment. We could say, for example, that H = A.N. Other 
undergoes tests to establish whether or not he is infected with the given disease, or 
H = the residue of the substance analysed in order to ascertain whether or not it 
contains poison, and then E = the outcome is positive. But what tests and analyses 
should be performed?

Let us exclude the possibility that an experiment (e.g. the tests or analyses men-
tioned in the above examples) could give a wrong answer: this would by no means 
be absurd, because experiments concerning facts related to the one we wish to 
ascertain can only lead us to increase or decrease the probability we attribute to it. 
Everything stems from our convention of considering that a question has been 
answered only if it is certain, and we call E indeterminate if the ascertainments that 
have been made have not proved sufficient to resolve the doubt. (Just as, in the case 
of ‘insufficient evidence’, it would be inadmissible to claim that a suspect is both 
guilty and not guilty.)

However, it is only rarely that by performing an experiment H one obtains an 
answer with certainty. What usually happens (at least in cases which are sufficiently 
complicated for it to be worthwhile to apply considerations of this kind) is that H 
may give an answer (in which case it is an exact answer), but, on the other hand, may 
not (and then E remains indeterminate). To be precise, H should not simply denote 
the performance of some given experiment, but rather the successful performance of 
it (in the sense that, with respect to E, the answer is either YES or NO, and not 
MAYBE). If we wished to split hairs, we could put H = K′|K, where K denotes the 
experiment in the sense of its performance, K′ the fact that K was a success, and thus 
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H is the successful performance of K (i.e. the hypothesis that ensures the ascertainment 
of the truth or falsity of E).46

In general, however, there will be no one unique experiment K which we can (or cannot) 
perform in order to ascertain E. There will exist various possibilities K1, K2, K3,… (and 
even if there were only one ‘tуpe’ of experiment available, we could always vary the time, 
the apparatus, or the experimenter etc.) and they might or might not be compatible for 
various reasons (and possibly not repeatable in the case of failure), ranging from physi-
cal incompatibility to contingent limitations (e.g. lack of time, apparatus or available 
personnel, funds, raw materials etc.). In order not to further complicate the notation, 
we can suppose that the list given by the Ki includes not only the individual experiments 
(e.g. let K1, K2,…, K38 denote the performance of just one of 38 possible different experi-
ments), but also all possible combinations or strategies (e.g. the one consisting in first 
performing K5, K19 and K22, and then, if none of these succeeds, K7, and, if this is still not 
sufficient, K9 and K31 together, and then stopping whatever happens, is a strategy which 
will be denoted by a number greater than 38 – e.g. by K728). For each Ki, Ki will mean 
that Ki was successful; that is that Ki succeeded in establishing whether E was true or 
false. In the case of an individual experiment, K2, say, K2 will mean that this experiment 
was successful; in the general case, for example for K K728 728,  will mean that at least one 
of the component experiments of the strategy was successful (and –  in the case of a 
sequence of experiments, as in the example of K728 – the experiments following will 
then not even be performed). By going into more and more detail (like the time and 
manner of performing the experiments, possible repetitions etc.), the number of distinct 
strategies could be increased without limit. So far as our notation is concerned, how-
ever, it is simply a question of extending the list of the Ki.

In this way, the problem of ascertaining E is translated, in practice, into the problem of 
ascertaining one of the conditional events E|Ki, depending on the choice of Ki, which is 
arbitrary within the limitations imposed (of time, money etc.). And it is thus that the 
arbitrariness has its effect on the verification of E. In extreme cases, there might be one‐way 
experiments; that is experiments which either prove that E is true, or prove nothing (or 
vice versa). Suppose that one experiment shows whether or not a given liquid is pure 
water, and another experiment shows whether or not it contains strychnine. If the ques-
tion is whether or not the liquid is poisonous, the first experiment can only return a 
negative answer, and the second only a positive one (because to know that it is not pure 
water, or that it does not contain strychnine, neither proves nor disproves the presence 
of poison). Even without taking these extreme cases into consideration, any method 
might present, by its very nature (and taking previous experiences into account, accord-
ing to the evaluation of each individual), different characteristics in its functioning, and 
different probabilities of breaking down, depending on whether E is true or false.

Up to this point, we have merely been dealing with cases involving distorting factors, 
just like the others considered previously (even if these cases deserve special attention 
because they are less obvious than most other examples). The most important specific 

46 Only thus can one avoid having to consider E itself (as well as E|H, which becomes, in this notation, E|K) 
as a three-valued event (indeterminate, notwithstanding the – unsuccessful – performance of the 
experiment). We have our doubts about the actual utility of such notation, other than for a once and for all 
explanation, and we avoid insisting on, or taking up a position, regarding the desirability of more or less 
logically perfect forms of notation.
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factor in the present case is, however, quite a different one, which – as we mentioned at 
the beginning – only ‘arises later’, after the analysis given above of the experiments Ki, 
their successes Ki, and the consequent realization of the corresponding hypothesis Hi.

The new factor is the following: to be realistic, one should also substitute Ei for E. Let 
us explain right away what we mean by this. If we perform the experiment Ki, its success 
Ki does not give us directly the answer ‘E is true’, or ‘E is false’; it does not make directly 
visible to us the fact that we wish to affirm or deny by these phrases. Neither, if we are 
dealing with the more general question of measuring a quantity, does it enable us to 
realize what the value is by making it visible or tangible. The answer reduces to a signal 
(a movement, a light, a noise, a colour etc.; in the case of quantities, the position of a 
pointer on a dial, the reading of a counter, the height of a column of mercury etc.). For 
an event, we shall have one of two signals, Ei or E͂i, as possible outcomes of the experiment 
Ki (as well as the absence of any answer at all – or, if one prefers, ∅, or Ki), and these may 
differ from experiment to experiment. But, it could be argued, this is irrelevant, because 
we know that they correspond to E being true, or E being false.47

Agreed …, but what does this mean exactly? The last sentence, so simple, clear and 
straightforward, is admirably suited to an hypothesis which is equally simple and clear; 
the hypothesis which assumes that one of the many experiments has been taken as the 
definition of E (i.e., if the one chosen is K13, then E means E13, or, better, E13|K13), and 
that this experiment is always possible and always successful. It follows that the statement 
that E is true because a different experiment K4 has given the signal E4, can be strength-
ened by the remark ‘since it is certain that the answer E13 – that is E – will be obtained 
if we perform experiment K13, it is unnecessary to do so, because of the trouble, expense 
and so on; but, if you do not believe it, try it, and you will see!’. In this way, for example, 
if I derive the height of a distant tower by trigonometric methods, or by observing how 
long it takes for stones dropped from the top to reach the ground, I can say to someone 
who does not believe it ‘go up and measure it’. And one might allow that the argument 
is considered in general to be valid, even when the invitation becomes rather less realistic 
(distance from the centre of the earth, distance between two stars, or two galaxies). 
But what if someone does not believe it?

In the previous hypothetical case, there was a criterion which could appropriately 
be assumed as a definition, both because of its meaning and because it could always be 
applied (at least in principle) with a guarantee of success. In particular, it could be 
applied to statements about things that are not directly observable and possess discon-
certing properties (as in the case of ‘waves’ and ‘particles’). What do we do in the absence 
of such a criterion? We could define all the experiments Ki (and the simple ones will 
suffice, it is not necessary to consider strategies) by means of the respective answering 
signals and observe that, in any case, no matter which Ki are applied, and no matter how 
many of them, in all successful cases they give a concordant answer; either always Ei, or 
always E͂i. This, practically speaking, assures the meaning and uniqueness of the notion 
related to E (or, more generally, to a quantity), provided that the coincidence of answers 
for any two methods, Ki and Kj, could be verified experimentally by applying both of 
them in precisely that same situation (or at least indirectly, by means of a chain of 
equivalences, each link of which could be verified experimentally).

47 See the discussion of H. Jeffreys that we have already quoted (Chapter 11, the end of 11.1.1).



Appendix538

But what if we come across cases where it is not possible to perform more than one 
experiment in a given situation? Any statement of the form ‘having observed the out-
come Ei of the experiment Ki, we know that had we performed the experiment Kj we 
would have obtained Ej’, is entirely without content, since the assumption is false. It is 
the same situation as the one we already considered, albeit light‐heartedly, at the begin-
ning of Chapter 4 (Section 4.1), when we asked ‘whether or not it is true that had I lived 
in the Napoleonic era and had participated in the Battle of Austerlitz I would have been 
wounded in the arm’.

It might help to place one’s confidence in a more speculative kind of generalization, 
such as one makes in passing from the direct verification of indirect measurements of 
length on the ‘human’ scale to admitting the same thing for inaccessible distances. The 
generalization required would have to admit the coherence and validity (justified by 
numerous indirect proofs) of the entire set of concepts, arguments and calculations 
which constitute the scientific view of the world.

It is a fact, however, that, so far as the ‘ordinary man in the street’ is concerned, the 
only reason he believes in these things is a lack of appreciation of the fact that they are 
more abstruse and delicate than he imagines. The logical situation for him is, under the 
worst assumptions, the following: he is given the explanation that the fact of E being 
true (to fix ideas, think of E as an event on which he would like to bet) can be verified in 
one and only one of the many possible ways provided by performing an experiment Ki 
and receiving a corresponding answering signal Ei (the choice being made by the experi-
menter; in any case, this tells him about the same fact). But this leading statement 
conveys nothing to the man in the street, who has no idea of what ‘fact’ it is that one is 
dealing with. (For the scientist, too, it is very much an intellectual conviction; but we are 
not interested in him.) The man in the street only knows, naturally enough, that he 
might bet on the outcome of an experiment whose choice is in the hands of his oppo-
nent. He may therefore think (in theory, of course – not in practice, because it is not 
nice to be suspicious) that the choice will be made to his disadvantage: for example he 
may end up trying to draw a white ball from an urn containing only black balls, this 
being one of the possible choices open to his opponent.

Leaving these more or less picturesque illustrations aside, it would seem that the con-
clusion – a negative and disturbing one – cannot be other than the following: one does 
not succeed in giving an operational meaning to a statement E (or to a quantity X) by 
means of a collection of statements Ei|Hi, which do have operational meaning, without 
introducing the statement that all the obtainable results Ei are necessarily conformable 
(and this does not have an operational meaning if the Hi are incompatible).

14 From ‘Possibility’ to ‘Probability’

The logic of certainty only distinguishes events which are either true or false, and which 
can only be possible (uncertain) rather than certain or impossible48 (for us, in our more 
or less temporary state of ignorance). We have discussed questions of a critical nature 

48 We do not have to worry about ‘indeterminacy’, considering it (see Sections 9–12) reducible to the case 
of two-valued logic by means of conditional events.
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by remaining within this ambit as a preliminary exploration of the field into which we 
have to introduce and apply the logic of the probable.

The time has now come to deal with the main critical questions, which specifically 
concern the subject of direct interest to us: the theory of probability.

We do not want to repeat ourselves by going back to the beginning and starting from 
scratch: we have already dealt with many questions in the text, and many comments 
were necessarily made as we developed our approach. It will be more appropriate to 
refer back to these, to draw the threads together, and to go more deeply into them, in 
order to provide a synthesis and, finally, what will, hopefully, turn out to be a sufficiently 
integrated view of the entire subject.

Let us begin by sketching a broad outline, including both those topics for which we 
shall limit ourselves to recalling our previous remarks – or just adding the odd word 
here and there – and those which we shall take up again later because they require fur-
ther analysis or more thorough discussion.

Without further comment, we shall take as axioms those already established as the 
basis of our subjectivistic formulation. This will in no way prejudice the (technically 
neutral) possibility of comparison; our starting point, in fact, makes comparison easier, 
because it represents the minimal set of conditions common to all formulations. The 
subjectivistic formulation, as we have said repeatedly, is, in fact (and deliberately so), the 
weakest one; its only requirement is coherence, and in no way does it seek to interfere 
with an individual’s freedom to make an evaluation by entering into the merits of it on 
some other grounds.

In discussing these concepts, we shall provide a comparison with other points of view, 
which differ in various respects (in the interpretation of the notion of probability, the 
mathematical details and the qualitative formulation).

Those interpretations of the notion of probability in a (would‐be) objective sense that 
are based on symmetry (the classical conception; equally likely cases), or on frequency 
(the statistical conception; repeated trials of a phenomenon), provide criteria which are 
also accepted and applied by subjectivists (as, to a considerable extent, in this book). It 
is not a question of rejecting them, or of doing without them; the difference lies in 
showing explicitly how they always need to be integrated into a subjective judgment and 
how they turn out to be (more or less directly) applicable in particular situations. If one, 
instead, attempts to force this one or that one into the definitions, or into the axioms, 
one obtains a distorted, one‐sided, hybrid structure.

The mathematical details remain those that derive from the positions we adopted 
concerning zero probability, countable additivity and the interpretation of asymptotic 
laws (points which we have already encountered, and commented on, many times). In 
this regard, we shall have to consider many further points, which we glossed over in 
Chapters 3, 4 and 6, in order not to overcomplicate the exposition (prematurely), and to 
add some details concerning a number of new features. These considerations, together 
with some others, will enable us to sort out, and comment upon, the differences between 
the axiom system we have adopted here, and that given by Kolmogorov (1933), the 
formulation which, broadly speaking, has been adopted by most treatments of the last 
few decades.

Finally, under the heading of ‘qualitative formulations’, we will have to mention two 
separate topics. The first concerns the possibility of starting from purely qualitative 
axioms – that is in terms of comparisons between probabilities of events (this one is 
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more probable than that one etc.) – without introducing numerical probabilities, but 
eventually arriving at them by means of comparisons of this kind. The second deals with 
the thesis that several authors have recently put forward, namely that probabilities are 
intrinsically indeterminate. The idea is that instead of a uniquely determined value p 
one should give bounds (upper and lower values, p′ and p″). That an evaluation of 
probability often appears to us more or less vague cannot be denied; it seems even more 
imprecise, however (as well as being devoid of any real meaning), to specify the limits of 
this uncertainty.

15 The First and Second Axioms

The entire treatment that we have given was based on a small number of properties, 
which were justified in the appropriate place in the text as conditions of coherence. 
In order to develop the theory in an abstract manner, it will now suffice to assume these 
same properties as axioms.

There will be two axioms (the first and the second) dealing with previsions and a third 
dealing with conditional previsions. The third one – which is needed in order to extend 
the validity of the first two to a special case – will be dealt with later (Section 16); we 
concentrate for the time being on the first two.

Axiom 1 Non‐negativity: if we certainly have X ⩾ 0, we must have P(X) ⩾ 0.
Axiom 2 Additivity (finite):

 P P PX Y X Y . 

From these it also follows that

 P P PaX a X X X X, inf sup ,   

as well as the (Convexity) condition, which includes Axioms 1 and 2:
(C) any linear equation (or inequality) between random quantities Xi must be satisfied 

by the respective previsions P(Xi); in other words,

 if we have orcertainly c X c X c X c cn n1 1 2 2   

 then ornecessarily c X c X c X c cn n1 1 2 2P P P  . 

By taking differences, (C) can be written in an alternative form:
(C′) No linear combination of (fair!) random quantities can be uniformly positive; in 

other words, the P(Xh) must be chosen in such a way that whatever be the given c1, c2,…, 
cn, there does not exist a c > 0 such that

 c X X c X X c X X cn n n1 1 1 2 2 2P P P  

certainly holds.
We could put forward as a further (possible) axiom one which consists in excluding the 

addition of other axioms; that is one which considers admissible, as prevision‐functions P, 
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all those satisfying Axioms 1 and 2, or equivalently, condition (C).49 On the other hand, 
this is implicit, since nothing is said to the contrary. In any case, we shall say that every 
function P satisfying Axioms 1 and 2 is coherent.

As we have already mentioned (Chapter 3, 3.10.7), a coherent function P, defined 
on some given set of random quantities X (an arbitrary set, in general infinite), can 
always be extended, preserving coherence, to any other random quantity, X0, say. 
From any inequality of the form (C′), one can obtain, by solving it with respect to 
one of the summands (let us assume c0 = ±1 and take it to be the one corresponding 
to X0; were this not the case, it suffices to divide through by |c0|), an inequality for 
P(X0) of the form

 
P PX X c X X c

h

n

h h h0 0
1

� �inf sup .or
 

As a result, we obtain x′ ⩽ P(X0) ⩽ x″, where x′ denotes the greatest lower bound and x″ 
the least upper bound. If x′ = x″, the extension will turn out to be uniquely defined;

 P X x x0 , 

that is P(X0) will be determined by the values given over X. If x′ < x″, the admissible 
values for P(X0) will consist of all those in a closed interval (as is obvious by convexity). 
The extension would be impossible if x′ > x″, but this is ruled out by the observation 
that there would then exist a linear combination X c X Xi i ii0 P  always >x′, and 
another one

 
X c X X

j
j j j0 P

 

always <x″; their difference (∑i − ∑j; X0 cancels out) would then turn out to be > x′ − x″ > 0. 
But this would mean that there was a contradiction of (C′) already contained in X, 
contrary to the hypothesis.

It follows immediately from this that one can always define a P(X) for all the X belonging 
to an arbitrary set of random quantities (in particular, one can always define a P(E) for 
every event in an arbitrary collection of events – for example those corresponding to all 
subsets of a given space), even assuming P(X) as already assigned in some given field, 
and extending it. It is sufficient, as we have done here, to carry out the extension for new 
X one at a time, by means of transfinite induction (assuming, of course, the Zermelo 
Postulate, in order to well‐order the Xh; the indices, h etc., will be transfinite ordinals). 
One has to be a little careful that nothing goes wrong for the Xk which have no 

49 Note that we are not dealing here with the basic issue of whether under given circumstances all the 
coherent evaluations P are admissible (subjectivistic conception), or whether only one of them corresponds 
to reality (objectivistic conceptions). For the objectivist also, it is a question of knowing which P are formally 
admissible (e.g. the P which he can adopt when he has the information he is now lacking – about 
composition of urns, frequency of statistical phenomena etc.), or even that he judges to be possible with 
respect to the abstract scheme without knowing which concrete events are represented by the symbols 
E1, E2 etc. On the other hand, this is the attitude adopted by the supporters of all points of view when they 
are faced with the notion of ‘(abstract) probability space’.
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antecedent (such as Xω, where ω denotes, as usual, the first ordinal which comes after 
the natural numbers).50 In our case, however, the contradiction would derive from 
the comparison between two finite linear combinations and should have occurred 
at the last of the steps corresponding to the Xh which appear (and the fact that there 
are an infinite number of steps between this Xh and our Xk does not enter into the 
argument).

Let us return now to the problem of the extension, in order to consider when it 
turns out to be uniquely defined. One obvious case is that of a random quantity X0 
linearly dependent on those of the original field X; that is belonging to the linear 
space L generated by the X belonging to X. In this case, the uniqueness of the extension 
holds for any P.

Condition (C), however, reveals what the situation is in terms of a particular P. Instead 
of linear relations, we have, in general, linear inequalities, c X ci ii , which, solved in 
terms of X0 (as above for X0 − P(X0)), give random quantities X′ and X″, linear combina-
tions of random quantities belonging to the field X (and hence belonging to L), which 
bound X from below and above: X′ ⩽ X and X ⩽ X″, respectively. We observe that the 
problem is the same one that we already encountered in a special case (Chapter  3, 
3.12.4), and by passing, as here, to the general and abstract case, we also reached 
essentially the same conclusions. As we vary P (defined over X, and hence on L, and, 
in particular, for X′ and X″), the X′ for which P(X′) is a maximum, P(X′) = x′, will also 
vary (or, if x′ is an upper bound rather than a maximum, the X′ to be chosen in order 
to obtain P(X′) arbitrarily close to x′ will vary): similarly for X″. Having chosen X and 
X″ in this way, we have X′ ⩽ X ⩽ X″, with P(X″ − X′) = x″ − x′ (or x″ − x′ + ε, with ε > 0 
arbitrary, in the case when they are not the maximum and minimum). In general, 
therefore, one has a uniquely defined extension if upper and lower bounds of X exist 
for which the difference ∆ = X″ − X′ ⩾ 0 has prevision P(∆) = 0, or such that P(∆) < ε 
(for arbitrary, fixed ε > 0).

In order to denote what can be said about the probability (or prevision) outside some 
given linear space L in terms of the prevision function P defined over it by the evalua-
tions of probability (or prevision), it is convenient to use the same notation (mutatis 
mutandis) as we used in Chapter 6, 6.4.4.

We thus denote by

 L L LP , P , P ,X x X x X x  

the minimum and maximum (previously indicated in the text by x′ and x″) of the values 
P(X) which are compatible with the knowledge of P over L, and, respectively, their 
common value (if they are equal).

We shall say more about this – for other reasons – in Section 19.4.

50 Lebesgue measure, too, can be extended, preserving countable additivity, to an arbitrary non-measurable 
set, and hence to an arbitrary number of such sets, one at a time. In this case, however, an infinite number of 
steps can lead to a contradiction without any single step doing so (in the same way as a convergent series 
remains such if we replace the 1st, 2nd, 3rd, …, terms with 1, and so on for any finite number, but not if we 
replace an infinite number of terms).
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16 The Third Axiom

Conditional probabilities P(E|H), or conditional previsions, P(X|H), are expressible, in 
cases where H has nonzero probability, in terms of the unconditional probabilities by 
means of a formula which, in an abstract, axiomatic treatment, can be taken as a 
definition:

 P P P P P PE H EH H X H XH H| / , | / . 

In this case, there is nothing much to add, apart from noting that here, too, an extension 
(in the sense of PL) gives rise to an interval of indeterminacy:

 P P PL LX H X H X H| | | .   

To see this, suppose that P1 and P2 are two extensions of P as given over L, and that 
these give to XH and H the values

 P P P P1 1 2 2 1 1 2 2XH x XH x H h H h, , , . 

In addition to P1 and P2, their convex combinations,

 P P P P P P1 2 2 1 21 0 1  , 

will also be extensions of P, and will give

 
P P PX H XH H

x x x
h h h

| / .2 1 2

2 1 2  

Since the denominator does not vanish (for 0 ⩽ λ ⩽ 1; or at most at one of the end‐points 
if one of the hi is zero, a case that we shall not consider now, however), the hyperbola 
increases or decreases monotonically between the extreme values

 P P1 1 1 2 2 2X H x h X H x h| / | / .and  

In the extension, the set of possible values for P(X|H) is thus an interval as asserted.
If P(H) = 0, we have a new situation. Does it make sense to consider this case? And, if 

so, for what purpose? If one were to take the formula, with P(H) in the denominator, as 
the actual, unique definition of conditional probability and prevision, then the concept, 
in this case, would become meaningless. If the meaning were to be assigned in some 
other, direct, way – for example (as was done in Chapter 4, in line with the subjectivistic 
point of view), by means of conditional bets – then the meaning would be retained.

But the theorem which expresses coherence, connecting it to the nonconditional P 
(the theorem of compound probabilities), no longer holds (and neither does the criterion 
of coherence) if its formulation (Chapter 4, Section 4.2) has to be in terms of the exist-
ence of a ‘certainly smaller’ loss. In order to extend the notions and rules of the calculus 
of probability to this new case, it is necessary to strengthen the condition of coherence 
by saying that the evaluations conditional on H must turn out to be coherent conditional 
on H (i.e. under the hypothesis that H turns out to be true). This is automatic if one 
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evaluates P(H) ≠ 0, in which case we reduce to the certainty of a loss in the case of 
incoherence. The loss for H  (Chapter 4, Section 4.3) is, in fact, the sum of the squares 
of P(H) and P(EH); but if P(H), and therefore P(EH), are zero, this loss is also zero in the 
case H  (which has probability = 1, and is, in any case, possible).

Although this strengthening of the condition of coherence might seem obvious, we 
had better be careful with it. There are several other forms of strengthening of condi-
tions, often considered as ‘obvious’, which have consequences that lead us to regard 
them as inadmissible. In this case, however, there do not seem to be any drawbacks of 
this kind; moreover, the ‘nature’ of the strengthening of the condition seems more firmly 
based on fundamental arguments (rather than for conventional or formal reasons, or for 
‘mathematical convenience’) than others we have come across, and to which we shall 
return later. In any case, we propose to accept the given extension of the notion of 
coherence, and to base upon it the theory of conditional probability, without excluding, 
or treating as special in any way, the case in which one makes the evaluation P(H) = 0.

If we wish to base ourselves upon a new axiom, we could express it in the following way:

Axiom 3 The conditions of coherence (Axioms 1 and 2) must be satisfied, also, by the 
PH conditional on a possible H, where

 P P P PH HE E H E A E AH| , | |  
is to be understood.

This means that PH is the prevision function that we may have ready for the case in 
which H turns out to be true, and the axioms oblige us to make this possible evaluation 
in such a way that if it is to have any effect it must be coherent. This is implicit in the 
previous definition if one makes the evaluation P(H) ≠ 0. Axiom 3 obliges us to behave 
in the same way, simply on the grounds that H is possible and we might find ourselves 
actually having to behave according to the choice of PH – even if, in the case in which 
we attribute probability 0 to the hypothesis H, the sanction provided by the losses does 
not apply outside of the case H .

Axiom 3 permits us to define the ratio of the probabilities of two arbitrary events – even 
if they have zero probabilities – in the manner already introduced in Chapter 4, 4.18.2. 
In Section 18.3, we shall expressly return to the topics concerning zero probabilities, 
topics previously dealt with in Chapter 4, 4.18.3–4.18.4.

17 Connections with Aspects of the Interpretations

The axioms of an abstract theory are, as such, arbitrary and independent of this or that 
interpretation (at this level, interpretations do not, strictly speaking, exist; or, to put it a 
little less strongly, one might say that they are ignored).

It goes without saying, however, that the choice of axioms is influenced by the inter-
pretation they will have when the theory is applied in the field for which it has, in fact, 
been constructed, and on which one would like it to turn out to be adequately modelled.51

51 As someone rather neatly put it – Frechet attributes the remark to Destouches – a book which starts off 
with axioms should be preceded by another volume, explaining how and why these axioms have been 
chosen, and with what end in view.
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In the case of the theory of probability, any judgement about the adequacy of the 
axioms depends on one’s concept of probability and, in addition to the subjectivistic 
concept, which we have adhered to throughout, we shall also have to consider the ‘classical’ 
and ‘statistical’ concepts.

From the subjectivistic point of view, the axioms are valid in that they are a translation 
of the necessary and sufficient conditions for coherence (our starting point in Chapters 
3 and 4). It follows that no other axioms can be admitted (since these would introduce 
further restrictions).

Mention should be made of a formulation which is subjectivistic in a purely psycho-
logical sense, and in which no axioms would be acceptable. This is the approach in 
which one simply thinks of evaluations of probability – in general, incoherent – being 
made by some, arbitrary, individual. It is clear that without sufficient preparation and 
thought everyone would give incoherent answers in every field (e.g. by estimating 
distances, areas, speeds etc. in an incoherent manner). This does not imply, however, 
that there exists – albeit only in the individual’s own mind – a different theory (e.g. a 
non‐Euclidean geometry) to be made an object of study. The object of study could only 
be the extent of his intuitive inability to understand the conditions of coherence, and to 
avoid breaking them. Otherwise, one would have to say that, in a system of bets, he 
deliberately chooses to behave in such a way as to lose.

From the classical point of view – probability ‘defined’ as the ratio of favourable cases 
to possible cases, all considered ‘objectively’ equally likely for reasons of symmetry – the 
axioms are true by virtue of the laws of arithmetic (sums of fractions, together with 
certain other details which are required to achieve the necessary rigour). There is, for 
any given application, just one admissible P. It would appear to be valid to consider 
infinite partitions into equally probable cases (by virtue of symmetry).

As an extension of this point of view, one might consider the ‘necessary’ conception, 
which takes probabilities of a collection of events, possibly outside the range of cases 
considered in the ‘classical’ approach, to be uniquely defined for logical reasons. A typical 
example  –  one that accepts the possibility of ‘an infinite number of equally likely 
cases’ – is provided by Jeffreys’ admission of improper initial distributions (e.g. uniform 
in X, or in log X etc.). It appears that Carnap’s point of view is similar to this.52

From the statistical point of view  –  where probability is regarded as ‘idealized 
frequency’53 – additivity always holds for arithmetic reasons (as in the classical case). 
According to this conception (again as in the classical case), there should be a unique 
admissible P. It is difficult to attempt to venture hypotheses about the interpretation of 
more delicate cases (e.g. zero probability).

An attempt to make the statistical conception more precise consists in defining prob-
ability not as an ‘idealization’, but rather as a limit of the frequency (as the number of 
trials, n, tends to ∞). In throwing a die, the limit‐frequency of ‘evens’ is without doubt 
the sum of the limit‐frequencies of ‘2’, ‘4’ and ‘6’, if these limits exist (and this is assumed 

52 It is always difficult to judge whether similarities are real or apparent (particularly between authors with 
different backgrounds, working in different fields).
53 This phrase does not really convey anything, but it is the only way to refer to the many confused 
explanations given by the supporters of this conception, and it may be that, in fact, there is nothing of 
substance to ‘understand’ (alternatively, it may be me who lacks the resources necessary for success in this 
toilsome venture).
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to be the case in the scheme we are considering). It seems equally clear that such addi-
tivity does not (necessarily) hold for infinite partitions: a ‘die with an infinite (countable) 
number of faces’ could well turn up each face with limit‐frequency zero54 (indeed, it 
should do so, if we continue to admit, in some shape or form, the assumption of equal 
probabilities for all the infinite faces). But this seems to get overlooked (see Chapter 3, 
3.11.6, the case C9 = N9).

Although it is really going beyond our aim of giving a critical analysis of particular 
attempts at axiomatization, it seems necessary to spend some time on the following 
case in order to make some comments (we shall refer to the version given by von Mises, 
which is the most developed, and which was in favour for a time).

On the one hand, it appears that the hypothesized sequences with well‐determined 
limit‐frequencies should represent ‘idealizations’ of problems of ‘repeated trials’. This 
would seem to be so in view of introductory remarks alluding to ideas like the ‘empirical 
law of averages’ and because of an additional restriction (‘Regellosigkeitsaxiom’, or the 
axiom of ‘nonregularity’), which is intended as a summary, in objective and descriptive 
terms, of the apparent effects of the independence of successive trials. Should one 
exclude periodicities? The grouping of the results in blocks (e.g. each ‘colour’ at least 
three times in a row)? The sequences definable in terms of simple mathematical formu-
lae, or sentences not exceeding 100 words? On each occasion one would probably 
answer yes; but in actual fact there is never any reason to call a halt before having 
excluded all the possibilities, nor, conversely, any justification for absolutely excluding 
any given case.

On the other hand, if one wishes to consider the actual case of a sequence of trials (in 
general unlimited, but to begin with let us assume it to be limited to a finite number, n), 
independent and with equal probabilities  –  according to the concepts derived from 
such a formulation – one must not think in terms of the ‘sequences’ of the previous 
model. One must think of n parallel sequences; that is a sequence of n‐tuples represent-
ing (let us say) a fictitious infinity of ‘copies’ of the actual sequence of n trials (for n = ∞, 
a fictitious infinity of copies of the whole actual sequence). Only in this absurd super-
model do the simple and obvious ideas of independence and equal probabilities make 
any sense, and is one able to (correctly) conclude that in the actual (Bernoulli) sequence 
one has stochastic convergence (weak, strong, in mean‐square), but not definite conver-
gence (as was postulated in the original scheme).

54 A ‘reasonable enough’ example might be obtained by saying that each face of the die has probability ph = e-1|h! 
of occurring h times (in an infinite series of trials). Alternatively, if one prefers, one could say that out of 
10 000 faces occurring ‘at random’ we will have ‘in prevision’ (or, less appropriately, ‘on average’)

10 000 ph = 3679 3679 1839 613 153 31 5 1
where h =  0 1 2 3 4 5 6 7

(i.e., in the infinite series of trials 0, 1, 2,…, 7 repeats will occur, but 8 or more will not occur even once – on 
average about 0·10 times).

This is the Poisson distribution with m = 1, which holds asymptotically for the game of matching n 
objects (n → ∞), or for that of n drawings with n balls (e.g. 90 drawings, with replacement, of the 90 
numbers in bingo), again as n → ∞. We have remarked that this example is ‘reasonable enough’, but it is no 
more than this, because the choice of this scheme from among infinitely many others is arbitrary. One 
could, for example, vary the scheme for drawing the balls, by assuming that as n, the number of balls, 
increases, the number of drawings is not n, but 2n, or n, or √n etc.
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The original scheme is therefore a sham. For the purpose of winning over the 
unwary – who do not notice the sleight of hand – properties are attributed to it which 
look like the probable properties of actual sequences of ‘repeated trials’, but which are, 
in fact, misleading and incompatible with them. By mysterious manipulations of an 
infinite number of such shams, one finally succeeds in saying those things which could 
have been said directly anyway (i.e. that the trials are independent and equally probable). 
The fruits of these labours are that one now does not understand the (subjective) 
meaning of the words, and that the flurry of sophistical acrobatics has created the 
illusion that one has established or produced an ‘objective’ something or other.

In bringing to a close our summary of the various interpretations, we repeat that the 
subjectivistic conception is not in opposition to any of them, but rather that it utilizes 
all of them. It is simply a question of rejecting the claims of exclusiveness that lead to 
incomplete and one‐sided theories, of correcting the distortions made in order to make 
them appear objectivistic, of considering them as methods whose appropriateness var-
ies with the situation, and of seeing them as having one and the same function: that of 
aiding the individual in his task of evaluating the probabilities (always subjective) to be 
attributed to events of interest.

18 Questions Concerning the Mathematical Aspects

18.1. We now turn to an examination of those aspects of a purely mathematical or 
formal nature. In a certain sense, we will be considering the properties of the function 
P and the meaning of the implications of these properties. We refer here to meaning in 
a formal sense; without reference – except incidentally, and for purposes of clarifica-
tion  –  to the different interpretations and assumptions which precede the choice of 
axioms (concerning which see Section 17).

In order to provide an overall perspective, it will be convenient to present the vari-
ous questions  –  including those we have already dealt with  –  in the context of a 
comparison with the Kolmogorov axiom system,55 a formulation which is well known 
to everyone.

The basic differences are:

i) we REJECT the idea of ‘atomic events’, and hence the systematic interpretation of 
events as sets; we REJECT a ready‐made field of events (a Procrustean bed!), which 
imposes constraints on us; we REJECT any kind of restriction (such as, for example, 
that the events one can consider at some given moment, or in some given problem, 
should form a field);

ii) we REJECT the idea of a unique P, attached once and for all to the field of events 
under consideration; instead, one should characterize all the admissible P (the set 
P); P turns out to be closed (Chapter 3, Section 3.13), and thus any P adherent to P 
in fact belongs to it (a property which does not hold in the Kolmogorov system);

55 A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin (1933). The first time 
I developed a systematic discussion in the context of a comparison with this theory was in ‘Sull’impostazione 
assiomatica del calcolo delle probabilità’, Annali Triestini, XIX, University of Trieste (1949).
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iii) our approach deals directly with random quantities and linear operations upon 
them (events being included as a special case); we thus avoid the complications 
which arise when one deals with the less convenient Boolean operations;

iv) we REJECT countable additivity (i.e. σ‐additivity);56

v) we REJECT the transformation of the theorem of compound probabilities into a 
definition of conditional probability, and we also REJECT the latter being made 
conditional on the assumption that P(H) ≠ 0; by virtue of the exclusions we have 
made in (iv) and (v), the construction of a complete theory of zero probability 
becomes possible;

vi) Kolmogorov’s proof of the compatibility of his axioms is open to criticism (see the 
paper of mine quoted in the footnote at the beginning of this section); this is, 
however, a problem that can be resolved, and it has no substantive implications.

To a greater or lesser extent, all these matters have been touched upon already, either 
in the text or in this Appendix. We shall only concern ourselves now with those aspects 
which require further analysis or more detailed discussion.

18.2. Zero probabilities. Let us first of all go back to our earlier discussion (at the end 
of Section 16), and let us repeat the proofs and definitions that we gave (in Chapter 4, 
4.18.2), basing ourselves now on Axiom 3.

Axiom 3 permits us to define the ratio of the probabilities of two arbitrary events, A 
and B, by observing that for all H which contain A and B (i.e. H ⊃ A ∨ B) the ratio 
P(A|H)/P(B|H) does not change (except possibly to become indeterminate, 0/0). 
Suppose, in fact, that H′ and H″ are events containing A ∨ B, and that they do not give 
rise to the case of 0/0, and let H = H′H″ be their product, which also contains A and B 
(or one could take H to be A ∨ B). Since PH , and PH  must be coherent, we can write

 P P P PH H H HA AH H A H. | . 

But P P PH A H A HH A H( | ) ( | ) ( | ), because H ⊂ H′, HH′ = H. Finally, we have 
P P PH HA H v( ) ( ). ( ), and P P PH HB H B H( ) ( ). ( | ), and hence it follows that
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The same holds true for every H″, and, finally, in order to obtain the ratio, it suffices 
simply to take H = A ∨ B = A + B − AB; in this case we certainly have PH(A) + PH(B) ⩾ 1 
and 0/0 cannot occur.

In this way, the formula P(E|H) = P(EH)/P(H) is always meaningful and valid, and 
the same is true for every application of the theorem of compound probabilities, and, 
more generally, for any operation involving probability ratios, so long as they make 

56 It is worth mentioning, incidentally, that if one decides to proceed in the direction of assuming things for 
‘mathematical convenience’, then not even countable additivity appears to be sufficiently restrictive. Several 
authors, including Kolmogorov himself, have recently proposed axioms (‘perfect’ additivity, and such-like) 
that make the principles of probabilistic reasoning, essential to every human being, completely dependent 
on the abstruse subtleties of set theory at its most profound. See, for example, D. Blackwell, ‘On a class of 
probability spaces’, in Proc. 3rd Berkeley Symp., II, pp. 1–6 (1956), and other works referred to therein.
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sense (i.e. so long as one does not introduce the nonsensical, indeterminate expressions, 
0/0, 0/∞, ∞/∞, which must be avoided by means of the procedure used for defining the 
ratio in each case).

There are, therefore, different orders, or layers, of zero probability (as we have already 
noted in Chapter 4, 4.18.3, where we also saw how very rich and complicated structures 
of such layers could be constructed). We shall see later, in 18.3, what the situation would 
necessarily be in this respect were we to assume the axiom of countable additivity (or, at 
least, if the condition were assumed to hold in some specific example or other). For the 
present, however, let us return to the general case.

The theorem of total probability will have to be interpreted in the following extended 
sense (which includes the case of zero probabilities): given n incompatible events, E1, 
E2,…, En, the probability of the sum‐event E is the sum of the nonzero probabilities, if 
there exist any, and, if not, it is the sum of the zero probabilities of maximal order. If, for 
example, E3 is of maximal order (i.e. P(Eh)/P(E3) < ∞, h = 1, 2,…, n), the sum‐event has 
probability P(E) = P(E3) if for all h ≠ 3 the preceding ratio is not only <∞ but in fact =0. 
In general, it is given by

 
P PE E c

h

n

h3
1

,
 

where ch = P(Eh)/P(E3) (c3 = 1; the other ch may be zero, in which case they do not count, 
or they may be greater than, or less than, 1).

The introduction of conditional probability freed from the restriction that the ‘hypoth-
esis’ have nonzero probability, and the consequent possibility of comparing zero probabili-
ties, is important both from a conceptual and from a practical point of view. This importance 
derives not so much from the fact that we can see the potential usefulness in interesting 
applications, but rather from the warning it provides against inaccurate ways of approach-
ing – or, at least, of expressing – certain questions. We have in mind methods of approach 
that either lead to confusion or to an over‐hasty choice of the path and interpretation to be 
followed, because of the absence of a precise meaning to which one can refer.

No doubt some will regard discussion of this kind as rather artificial and academic; 
nothing more than hair‐splitting ad infinitum. They may be right and they will do well to 
pose their problems in such a way as to avoid the difficulties. But in order to do this, they 
must first be able to recognize the difficulties as such, so as to overcome them without 
lapsing into naïvety or contradiction. In any case, since there do exist differences of opinion 
in this respect, and since the one which I consider to be correct, and which I uphold, 
differs from that which forms an integral part of the theory currently most in favour, there 
is no alternative, in the present context, but to consider the matter more deeply.

But why worry about events with zero probability? Are they not, for this very reason, 
eventualities which can be ignored?

From time to time, someone imagines that he had discovered the way of eliminating 
the problem altogether, by establishing that the values 0 and 1 must be reserved for the 
probabilities of the impossible event and the certain event, respectively. Every possible 
event should have positive probability (strictly less than 1). It is easy to see – and we 
shall do so presently – that this leads in our case to the same kind of absurdities as one 
encounters when trying to invent a measure which only assigns zero to the empty set. 
It is only in the very simplest examples (i.e. those where we only meet finite or countable 
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partitions) that it may happen, by chance, that there are no possible events with zero 
probability, or that, if there are an infinite number of them, their union still has zero 
probability (a case in which, to some extent, one might regard them as eventualities that 
can be ignored). If, on the other hand, we considered a nondenumerable partition, we 
would have to conclude that it was impossible to consider a nondenumerable partition 
into possible cases (because at most a countable number can have positive probability if 
their sum is not to become infinite ∑ph = ∞). We need go no further than the logic of 
certainty to see the absurdity of this statement.

The major difference between events of zero probability and impossible events is the 
following: the union of an infinite number of the former can have a nonzero probability 
(and may even be the certain event), whereas any union of the latter can only be an 
impossible event.

It is in this setting that one comes across the most controversial question of them all; 
that of ‘countable additivity’. If we limit ourselves to a discussion of it in the context of 
events having zero probability, countable additivity implies that taking a countable 
union will never yield an event with positive probability (and certainly not the certain 
event). One has to examine the specific question of whether it is possible and appropriate 
to assume this property as an axiom of probability (the property holds, as is well known, 
for Lebesgue measure, where the nature of the definition excludes the cases for which it 
would not hold57). The majority opinion is that the answer is yes. In my opinion, this is 
a consequence of external factors, which, generally speaking, are not examined in order 
to check whether or not they correspond to the essential nature of the problem.

Certain aspects of conditional events also involve us in a consideration of the problems 
that derive from the presence of events with zero probability. If an event is possible, 
then – independently of the probability attributed to it, even if it is zero – events condi-
tional on it, and bets related to these events, can always be considered. In this way (by 
means of the above‐mentioned formulae, which we need not consider here), it becomes 
possible to compare all zero probabilities. They may be of the same order (i.e. having a 
finite ratio); or of a different order (ratio equal to zero, or, conversely, to infinity). For 
the purpose of providing an analogy, we have a situation similar to that which arises in 
comparing two geometrical objects of zero volume; they can be compared by considering 
the ratios of their areas, or of their lengths, depending on whether they are both two 
dimensional, or one dimensional. On the other hand, we would say that one was of 
smaller order if it were a line segment while the other were part of a plane.58

We are not concerned with pushing the analogy too far, because the geometrical case 
has certain special features of its own. What is common to both is the idea of measures of 
different orders (or, if one prefers, of non‐Archimedean quantities). However, the example 
is to be understood in a purely illustrative sense, with a warning that one should not take 
into account notions like dimension, distance, volume, limit, cardinality and so on.

57 As in the example given by Vitali (quoted in Chapter 6, 6.5.9). See G. Vitali and G. Sansone, Moderna 
teoria delle funzioni di variabile reale, Zanichelli, Bologna (1935), part I, pp. 56 ff.
58 A more systematic method of comparison – for simplicity, we shall always refer to ordinary, three-
dimensional space – would be to consider, for each set I, the set of points Iρ whose distance from I is less 
than ρ, and the function VI(ρ) = Vol(Iρ) (volume of Iρ). One can now define the ratio of the measure of two sets 
I′ and I″ to be the limit as ρ → 0 of the ratio V VI I( )/ ( ) (if it exists). It does not always exist, but in the most 
‘regular’ cases we have V(ρ) = kρ3-d (1 + 0(ρ)); in other words, V(ρ) is comparable with a power ρα (0 ⩽ α ⩽ 3), 
and, in particular, volumes, areas, lengths, the number of isolated points are given by the coefficients k in 
the cases for which α turns out to be 0, 1, 2, 3 (d = 3 - α is the number of dimensions, d = 3, 2, 1, 0).
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Let us just mention that the consideration of probability as a non‐Archimedean quantity 
would permit us to say, if we wished, that ‘zero probabilities’ are in fact ‘infinitely small’ 
(actual infinitesimals) and only that of the impossible event is zero. Nothing is really 
altered by this change in terminology but it might sometimes be useful as a way of 
overcoming preconceived ideas. It has been said that to assume that

 0 0 0 0 1  

is absurd, whereas, if at all, this would be true if ‘actual infinitesimal’ were substituted in 
place of ‘zero’. There is nothing to prevent one from expressing things in this way, apart 
from the fact that it is a useless complication of language, and leads one to puzzle over 
‘les infiniment petits’ [the infinitely small].

Despite all that has been said, some readers may still be of the opinion that all these 
things are pointless hair‐splitting anyway – and, in a certain sense, I would like to reply 
YES. The fact remains, however, that, paradoxically, the only way of dealing with these 
things is to think about them and analyse them in detail, carefully studying the most 
valid and appropriate way of setting them aside, case by case. Even in those cases where 
approximate answers are preferable to exact ones (because of the illusory nature of the 
exactness), it is especially important to be doubly precise in one’s arguments, in order 
to know which things remain valid, and which require modification, when the reasons 
for, and the degree of, this illusory exactness are taken into account.

To this end, we shall make use, among other things, of the ideas that were developed 
concerning the ‘precision’ factor, and we shall arrive at conclusions which (hopefully) will 
appear reasonable, sensible and, perhaps, obvious. But this feeling will only be justified 
when we have arrived at the conclusion by means of an accurate evaluation of alternative 
suggestions, which clarifies just what is, and what is not, really significant and well founded.

18.3. Countable additivity. An extensive treatment of this topic was given in Chapter 3, 
Section 3.11, and we have also referred to it on many subsequent occasions. Let us recall 
the main points as a prelude to making some further critical comments.

The property of additivity, which we have assumed as an axiom, says that in a finite 
partition the sum of the probabilities must equal 1. In other words, if E1, E2,…, En are 
exclusive and exhaustive, the probabilities p1, p2,…, pn attributed to them must be non‐
negative with sum equal to 1. In fact, this is not merely a necessary condition for the 
evaluation to be coherent and admissible but it is also sufficient.

In the case of an infinite partition into events Eh (h ∊ H, where H is arbitrary), we can 
only say, on the basis of our axiom, that the sum of every finite number of the ph must 
be ⩽1: in other words, that at most a countable number of them can be positive (≠0), 
and that for such values59 we must have ∑ph ⩽ 1. If, in particular, the set of positive ph 
has sum = 1, then the Eh with zero probability also have zero probability when taken 

59 Even if there are an infinite number of them one can speak of a ‘sum’ in the sense of ‘upper bound of the 
sum of a finite number of terms’ (if one thinks of the ‘sum of the series’ no conclusion would be legitimate). 
If we denote by ∑ the upper bound (possibly +∞) of the sums of a finite number of terms, we may denote in 
this way the sum of an arbitrary infinite number of non-negative numbers, and, in particular, of events. For 
example, ∑Eh(h ∊ k) will denote the number of successes among those Eh for which h ∊ K, and we observe 
that the standard convention – see Chapter 1, Section 1.9 – in which (h ∊ K) = 1 or (h ∊ K) = 0 according as 
h belongs, or does not belong, to K, allows one to write (h ∊ K) as a factor, on the same line, instead of as an 
index written below the ∑ sign (see the application, which follows shortly, with (ph = 0) for (h ∊ K) where K = ‘the 
set of the indices for which ph = 0’). If the Eh are incompatible, the sum is necessarily either 0 or 1.
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together: that is it turns out that the union E = ∑Eh (ph = 0) also has zero probability, 
P(E) = 0. If, on the other hand, we obtain ∑ph = P < 1, that is if a probability 1 − P is 
missing in the partition, then the possibilities are as follows: if there are a finite number 
of events with nonzero probability, then this missing probability is necessarily that of 
E = the union of the events with zero probability; otherwise, it may be attributed 
arbitrarily to E and to E͂46 = the union of the events with positive probability;

 P PE P P P P P PE, , . 1  

To summarize: given the probabilities ph of the events Eh of a partition, if their sum is 
= 1 then the probabilities of all the events depending on it – that is sums of a finite or 
infinite number of events in the partition – are uniquely determined. In this case, we 
shall say that the probability P(E) is countably additive on the partition {Eh}. Otherwise, 
this only holds for event‐sums of a finite number of the Eh, or for their complements: in 
any other case, a margin of indeterminacy equal to 1 − P = 1 − ∑ph remains;

 p p E E E p E E p p Ph h h h P 1 1 . 

Let us be clear that ‘indeterminacy’ simply means that the extension is not, in general, 
uniquely defined; one only has bounds. There is no ‘indeterminacy’ in any specific 
sense; such as being ‘barred’ from attributing a well‐defined value to P(E). It is simply 
that E is not one of the events whose probability has already implicitly been evaluated 
by virtue of our evaluations for the Eh; it is just one of the many for which our choice is 
more or less open. We are completely free in our choice (i.e. can give P(E) any value 
between 0 and 1) in the particular case in which all the events of the partition have been 
attributed zero probability (and E is not the sum of a finite number of the Eh, nor the 
complement of such a sum). This happens in the case of a continuous distribution (on 
the line, or in the plane, or in ordinary space, …) for which we have established only 
that it is ‘without concentrated masses’, or for a countable number of exclusive (and 
exhaustive) events of zero probability.

Conclusions of this kind may be hard to accept, or perhaps may even appear para-
doxical. At least, the way in which many authors bend over backwards to avoid 
them – by introducing some new axiom (or ‘strengthening’ the existing ones) – seems 
to suggest that this is the case. The following are some of the kinds of restrictions 
which could be imposed:

(Z) denying that it is legitimate to attribute zero probability to a possible event;
(Za) denying that a union of events with zero probability can have nonzero probability;
(Zb) as (Za), but only considering a countable number of events;
(Ka) assuming countable additivity for arbitrary partitions;
(Kb) as (Ka), but only for countable partitions.

We have introduced the letters Z, Za, Zb, Ka, Kb, in order to facilitate references to 
these ‘axioms’; in what follows, we shall, of course, argue against them.

The first and the last have actually been proposed; Za and Zb are progressively weaker 
versions of Z and are also special cases of Ka, Kb, respectively; the inclusion of inter-
mediate possibilities would only serve the purpose of pointing out these connections.
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First of all, we should draw attention to the lack of any real arguments on the part of 
those who support such a restriction. It is usually presented as a ‘natural’ extension of 
the theorem of total probability as n → ∞ (as, for example, in Cramèr); or as a ‘natural’ 
property by analogy with Lebesgue measure (and this is the most common idea); or by 
Baire extension by continuity (like, for example, in Feller). In other words, for ‘mathe-
matical’ reasons, and not for reasons relating to probability theory.

One mathematical consequence of this is that it becomes impossible to think of a P(E) 
defined for all the events which could be formed on the basis of a nondenumerable 
partition. An example is provided by the power set of any set whose cardinality is that 
of the continuum (by virtue of the results of Vitali, Lebesgue, Banach, Kuratowski and 
Ulam, concerning the impossibility – except in trivial cases of ‘concentrated mass’ at 
a finite or countable number of points – of extending σ‐additive measures to all the 
subsets of a nondenumerable set60). To admit σ‐additivity is to contradict the basic idea 
that one can attribute to any uncertain event whatsoever a probability – without any, 
logically inexplicable, discrimination between one event and another. Of course, it 
could happen that this ‘basic idea’ itself gives rise to conflicts with other requirements: 
for example, were it true that there does not always exist an extension of a finitely additive 
P, we should have had to re‐examine the whole question of whether, and in what way, a 
mathematical theory of probability was possible (with goodness knows what weakening 
of the axioms61). The fact that such a disaster does not occur for finite additivity, but 
does occur if one attempts to replace it with σ‐additivity, clearly indicates that the 
substitution is entirely inappropriate.

If one accepts the subjective concept of probability, the conclusion becomes even 
more obvious.

In order to reach this conclusion, it was not even necessary, in fact, that the contradiction 
of not being able to find an arbitrary P came to light. It was sufficient that the choice was 
restricted in a way which appeared to preclude each individual being permitted an 
unfettered evaluation. And this occurs even in the case of a countable partition. Let us 
suppose that there are a countable infinity of ‘possible cases’ and – in order to avoid 
thinking of points or sets on the real line which appear ‘special’ in some way – let us 
imagine that they are represented by points on the circumference of a circle, whose 
distance apart is a rational multiple of 2π (i.e. by taking the origin at an arbitrary one of 
these points, with θ = 2kπ, k rational, 0 ⩽ k ⩽ 1). That an axiom should not permit me to 
attribute probabilities which are negative, or have sum greater than one, is something 
which can be clearly understood as a condition of coherence; it does not impose any 

60 From our point of view, it suffices that this has been established for some sets. It appeared preferable, 
therefore, not to weigh down the text with details of how the result has been proved (Ulam) provided that 
the cardinality of the set is not ‘inaccessible’.
61 A more ‘minor’ difficulty may serve as an example. A paradox, due to Haussdorff, says that a spherical 
surface can be divided into three sets, A, B, C such that each is superimposable both on each of the others 
and on their union; it follows that any ‘measure’ which was finitely additive and invariant under rigid 
motions would assign to these sets both 1

3  and 1
2  (and 2

3  and so on; as is well-known, one can logically deduce 
anything if one starts from something ridiculous). This contradicts geometric intuition, but not the idea of 
probability (nor the ‘axiom of choice’). As Paul Lévy said, in order to refute this interpretation, the simple 
fact is that ‘the continuous in higher dimensions is even more complicated than we thought’. (See E. Borel, 
Les paradoxes de l’infini, Gallimard, Paris (1946); Paul Lévy, ‘Les paradoxes de l’infini et le calcul des 
probabilités’, and a note by Borel, in Bull. Sci. Math (1948), pp. 184–192.)
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restriction on my freedom of opinion. But suppose that an axiom (like Zb or Kb) 
prohibits me from attributing the same probability, ph = 0, to all the events; or even (like 
Kb) forces me to choose some finite subset of them to which I attribute a total probability 
of at least 99% (leaving 1% for the remainder; and I could have said 99·999% with 0·001% 
remaining, or something even more extreme). If I do not happen to hold these opinions, 
and have no reasons for adopting them, then this is no longer a question of coherence; 
it is a direct interference with my judgement!62

Moreover, to permit the assignment of zero probabilities to all the events (of a count-
able partition) is a much less restrictive idea than, as in the finite case, considering them 
as ‘equally probable’ (P(Eh) = 1/n, h = 1, 2,…, n). The equivalent of this would be to 
consider the P(Eh) equal, not in the sense that P(Eh) = P(Ek) = 0 as real numbers, but in 
the sense that P(En)/P(Ek) = 1 (as a ratio of zero, or ‘infinitely small’, probabilities). For 
the first condition (ph = 0) to hold, much less is required: in terms of ratios, it is suffi-
cient that there do not exist probabilities of maximal order (for example, that give, for 
each h, P(Eh+1)/P(Eh) = ∞), or that, if they do exist, their sum (taking one of them to be 
unity) is infinite. (It is also sufficient  –  but this cannot be derived from the ratios 
alone – that the probability of all the cases be infinite in the given scale; and it may happen 
that this occurs for the union of cases with probability of smaller order without occur-
ring for those of maximal order.)

Assuming (in line with Axiom 3) that, if accepted, axioms Zb or Kb should also hold 
for probabilities conditional on an arbitrary possible event H, they would imply even 
more restrictive conditions for the probabilities of individual ‘possible cases’, in order to 
avoid – pulling out a countable number of them – the possibility of a case of probabilities 
all zero. There could be at most a countable number with the same order, so that, given 
a non‐denumerable infinity of ‘possible cases’, we should have a nondenumerable infinity 
of different ‘orders’ of probability.63

We should also mention that, from time to time, problems which, explicitly or implic-
itly, run counter to the assumption of countable additivity are also considered by authors 
who insist on the latter as an axiom. Sometimes the case of ‘an integer chosen at random’ 
is regarded as ‘meaningful’ but ‘breaking the rules’ (the probability taken to be the limit 
density; for example, the probability that the integer is a multiple of k = lim [(number of 
multiples of k between 1 and n)/n] = 1/k). At other times (see, for example, Rényi, 
Chapter 3, 3.18.5), one considers conditional probabilities; for instance, a distribution 
inside a circle, which is then made larger and larger, so that the probability of each finite 
region tends to zero. Countable additivity is prescribed for the conditional probability 
(i.e. within any circle), but it is not made clear that this no longer holds for the limit 
distribution (which is not explicitly dealt with in its own right, the passage to the limit being 
merely a device).

This seems to provide further evidence in support of our initial impression that 
the assumption of countable additivity owes very little to genuine probabilistic 

62 It is strange that the very same people who, in general, would encourage one in the finite case to accept a 
judgement of equal probabilities, on the grounds that a person ‘knows nothing’, seek to prohibit someone 
who, on the grounds that he ‘knows nothing’, would like to make the same judgement in the countably 
infinite case.
63 One can say even more: those of the same order must possess a convergent sum; the different ‘orders’, 
arranged in decreasing order, must form a ‘well-ordered’ sequence, so that there always exists a ‘maximal order’.
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considerations; in other words, that it is more a mathematical embellishment than a 
necessary property of probability. Many other anomalies and peculiarities (one might 
even say – in a psychological rather than a formal sense – contradictions) strengthen 
the same impression. The fact that ‘equal probabilities’ are perfectly acceptable in the 
finite and continuous (points of an interval) cases, but are not allowed in the countable 
case, can be explained only by drawing attention to our habit of applying, in particular 
cases, the most widely used tools (in the countable case we are accustomed to summing 
series!), rather than adhering to the principle of coherence. The very fact that one treats 
the finite and uncountable cases differently from the countable case (axioms Zb and Kb) 
is sufficient to show that more thought is given to the mathematical structure than to 
the logical problem – for which the meaningful distinction, if any, would seem to be that 
between the finite and the infinite (of whatever kind).

Bearing this in mind, the line we have followed here seems to represent, indepen-
dently of the reasoning we have put forward – which, hopefully, is more persuasive – the 
most natural way of connecting together attitudes that are, at least in part, inspired by 
fragmentary and irreconcilable points of view.

Finally, we should mention a concept and a result that have come to be considered 
as a justification for the systematic use of σ‐additivity. The basic idea is the possibility 
of stretching the interpretation in such a way as to be able to attribute the ‘missing’ 
probability in the partition to new fictitious entities in order that everything adds up 
properly. In some cases, in order to salvage countable additivity, it is even claimed that 
the new entities are not fictitious, but real. I remember having seen something of this 
kind in a paper (by Kingman, I think) which involved a probability distribution for 
discrete processes concentrated in the neighbourhood of a limit case where the process 
would become continuous.64 This was taken as an indication of the necessity of includ-
ing the continuous limit cases among the possible cases, in order to be able to foist upon 
them the probability missing from the sum.

Using this kind of argument, one could say that if the possible cases were the rationals, 
and if to each of them is attributed zero probability, then we have demonstrated that the 
real numbers must also exist, and be possible, because they are required as the indis-
pensable support for the probability as a whole (=1).

The more general kinds of considerations we have alluded to are more abstract, 
although, in the final analysis, they reduce to the same type of argument as is involved 
in the addition of fictitious entities. In mathematics, this kind of argument or procedure 
is well known to be fruitful (like, for example, the addition of new points in order to 
compact a space), but, in our case, events must be events, and not abstractions, if the 
theory is to preserve a concrete meaning; that is to say ‘has some meaning’, and this, in 
the formulations we have mentioned, does not happen.

In fact, it is necessary to have recourse to ‘ultrafilters’ (and this gives only a theoretical 
possibility of obtaining the desired result). In any case, this would only hold in a field 
that has been modified with respect to the original one, and the latter is the only one 
that we are interested in. I have never seen any application to the study of actual cases 
(and it seems impossible that it should constitute a simplification, rather than an 

64 Translators’ note. J.F.C. Kingman, ‘Additive set functions and the theory of probability’, Proc. Cam. Phil. 
Soc., 63 (1967), pp. 767–775.
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unnecessary complication, introduced for the purpose of permitting yet another unnec-
essary complication, i.e. σ‐additivity). It seems to me that the only result has been to 
encourage people even further to consider just those cases where σ‐additivity holds 
directly, and to ignore the others because they can, in theory, be transformed in such a 
way as to turn out to enjoy, fictitiously, the property which, in the field one ought to be 
considering, does not actually hold.

In practice, there are quite different purposes for which consideration of ultrafilters 
can be useful. In particular, for studying ‘agglutinated probabilities’ (i.e. probabilities 
that cannot be subdivided), which can arise in distributions.65 Think of the case (which 
we have already mentioned) of distributions on an ultrafilter: an ultrafilter is a family of 
events (sets) to which one and only one element of a partition can belong, and we attribute 
probability 1 to the events belonging to it (and, therefore, probability 0 to the others).

The consideration of filters can also be useful if one wishes to analyse further the 
possibility of dividing up the missing probability. In general, given a partition into events 
Eh, with ∑ph < 1, it is sufficient to consider another event B (or a partition, B1, B2,…, Bn), 
and to form the partition BEh (or the partitions B1Eh, B2Eh,…, BnEh) of B (or of B1, of 
B2,…, of Bn). The missing probability 1 − ∑ph can then be divided up between the filters 
generated by B and by B(or by B1, B2,…, Bn). Think, in particular, of the mass adherent 
to a point (in a distribution on the real line).

The probability adherent to the left (or to the right) may be further divided up by 
considering filters; for example, in the case of the sequence of sets In of rationals 
between x − 1/n and x, one obtains the probability adherent from the left on the 
rationals, or on the irrationals and so on. Of course, just as knowledge of F(x) is not 
sufficient to separate possible adherent masses from the concentrated ones, it is even 
less sufficient for these subdivisions, which have to be established on the basis of 
other considerations.

18.4. Concerning what is ‘reasonable’. It would be very difficult to reach any conclu-
sion or to make any constructive progress by attempting to conduct a discussion of this 
topic with supporters of opposing points of view. Each would first of all attempt to 
challenge the ‘reasonableness’ of the assumptions of the others, judging them to be too 
‘theoretical’, lacking any concrete value, and based on the assumption of an absolutely 
unrealistic degree of precision.

There would be no difficulty for anyone in criticizing the formulations of others, and 
no doubt anyone making such criticisms against the formulation we have adopted here 
would find good reasons for so doing. The complications we have considered, however, 
do not arise, unless one wishes to isolate cases that are in a certain sense ‘pathological’. 
For problems which are ‘sensible from a practical point of view’, one not only avoids 
these complications, but also those imposed everywhere a priori by the assumption of 
σ‐additivity. The latter are harmful because they go beyond what is required in simple 
cases and, moreover, are over‐restrictive in the complicated cases.

Our criticism of countable additivity on the grounds that it precludes one attributing 
probability to all events (for example, the extension of Jordan–Peano measure to all the 

65 See B. de Finetti, ‘La struttura delle distribuzioni in un insieme astratto qualsiasi’, Giorn. Ist. Ital. Attuari, 
XVIII (1955), pp. 1–14. An English translation of this paper, ‘The structure of distributions on abstract 
spaces’, forms Chapter 7 of B. de Finetti, Probability, Induction and Statistics, John Wiley & Sons (1972).
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sets of the interval [0,1]) is in no way intended as implying that the extension to Lebesgue 
measure is considered insufficient, or that one actually wishes to go further. On the 
contrary, it means that we consider it to be usually quite sufficient to confine attention 
to Jordan–Peano measure, but that, if one wishes to go further, the extension should be 
neither predetermined, nor ruled out in any way. In other words, Lebesgue measure is 
just one of the infinite number of extensions to larger families of sets and one should be 
free to choose any of these if one wishes to make such an extension. Should anyone opt 
for countable additivity as a matter of preference, there is no objection (just as, in a 
practical case, it is open to one to choose a distribution possessing a continuous density, 
rather than a less ‘regular’ one, without feeling that one is forced to make such a choice 
by virtue of some law of probability). Any other extension (to all sets) is equally legiti-
mate (in principle: so far as its usefulness is concerned, it is not clear whether the 
Lebesgue extension should be regarded as useful, once it has been made clear that the 
consequences one derives from it are not consequences of the initial evaluation by vir-
tue of the ‘law’ of countable additivity, but rather that they derive from the arbitrary 
choice of a particular one of the possible extensions of the given evaluation).

On the other hand, a similar criticism can be made at a much more basic and 
fundamental level. In many approaches, one establishes a priori that the probability 
P(E) has to be given for all the events E of some given family obeying some given 
conditions; for example, forming a field (in the above case a Borel field) that is consid-
ered fixed once and for all. One can then go on to consider only those problems that 
belong within that field (considered as a single, closed system, and often referred to 
as a ‘probability space’). It is not then possible to evaluate the probabilities of two 
events A and B without doing the same for the product AB. But it could well be that 
sometimes one either has to, or wishes to, proceed (albeit temporarily) without the 
knowledge or evaluation of P(AB); or that the family of events initially considered 
(and ‘arbitrary’) does not contain all the products. The conclusions hold for all events 
and random quantities linearly dependent on those events one starts from. Indeed, 
we could start from random quantities, X, for which the previsions, P(X), were evalu-
ated: the particular fact of whether all, or just a few, or none, of them are events is in 
itself irrelevant. The case of events seems simpler and more intuitive only because it 
is more familiar, as well as being more schematic, and capable of more varied repre-
sentations (set‐theoretic, for example). One may then examine for each problem (with 
no limitations of any kind) the implications of the evaluations already assumed made, 
and one can complete them by means of any further evaluations that are required to 
answer the questions of interest.

There is no need to make use of, or mention, probabilities conditional on events of 
zero probability (or to compare zero probabilities, as non‐Archimedean quantities) 
except when this might be useful for more careful consideration of delicate situa-
tions – where it is otherwise easy to adopt a cursory attitude.

As is illustrated in the cases used as examples, cases which are representative of the 
general situation, the approach we adopt consists in keeping the treatment at the sim-
plest and most concrete level, adhering to the practical meaning, rejecting assumptions 
that are not supported by compelling arguments (like that of replacing finite additivity 
by σ‐additivity), rejecting the once‐and‐for‐all fixing of closed structures and, instead, 
in always open‐mindedly allowing the possibility of extending the probability field to be 
studied, as and when required.
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In this sense, we obtain the maximum simplification. There are, however, certain 
circumstances in which complications do, in fact, arise. This happens when the assump-
tion of σ‐additivity leads to simple conclusions (well known from measure theory), 
which either no longer hold if we abandon the assumption, or require more careful and 
less ‘intuitive’ formulations. What should we reply to someone who objects to compli-
cations of this kind?

Our reply is that such complications are inherent in the fact that when we speak of 
probability (or prevision) we are referring to functions P which may well be finitely 
additive (instead of being assumed, a priori, by virtue of an ‘axiom’, to be σ‐additive over 
the field under consideration; or, and it amounts to the same thing, that the term ‘event’ 
can only be applied to members of some σ‐field, restricted in such a way that P is 
σ‐additive over it).

There are, therefore, two possibilities. On the one hand, it may be that we wish to be 
able to make a statement that holds only under the assumption of σ‐additivity; in this case, 
one can state it as it is, making explicit the assumption that P be σ‐additive (over some 
given field, or, often, just over some particular partition). There are no complications, 
apart from that of stating the assumption, and this has the advantage over the abandoned 
axiom in that it only requires the assumption of the latter over the minimal field for which 
it is required. The approach is rather like forcing a person to declare that a property holds 
for continuous functions, or for functions continuous in a given interval, or at a particular 
point, when the person is accustomed to stating it as valid for all functions (leaving it to be 
understood that he is only referring to functions which are continuous everywhere).

Alternatively, it may be that one wishes the statement to be valid without the restric-
tive hypothesis under which those things that held under σ‐additivity continue to be 
true. In this case, matters become more complicated (unless, for reasons of simplicity, 
one prefers an inaccurate statement). To put it concisely, there is always the possibility 
of choice: either stick to the assumption of σ‐additivity (no longer considered as an 
axiom), making it clear that one is doing so, or state things in the form necessary for 
them to turn out to be true independently of this assumption.

It will suffice to recall various of the cases we have already examined (the reader can, 
if necessary, refer back to the extensive discussion given in the text); the possibility of 
masses adherent to a point (instead of concentrated at it) and, in particular, concen-
trated at infinity (improper distributions); the indeterminacy of P(X) with respect to 
distributional knowledge in the case of unbounded distributions; the bogus formulation 
of the ‘strong law of large numbers’ and related topics.

In many cases, simple, minor modifications of the kind put forward are sufficient to 
ensure the validity of a statement, independently of the axiom of countable additivity. 
Moreover – although this is a matter of taste – they serve, because of their ‘finitistic’ 
character, to give a more concrete air to things.

All previous considerations can be regarded as variations on a single fundamental 
theme: the desirability of basing oneself on axioms that are the weakest (i.e. least restric-
tive) from a mathematical point of view, because they are from a logical point of view 
the most securely based (i.e. the least disputable), and which lead to results and state-
ments that are the most secure (i.e. the least disputable).

Let us consider again the introduction of P ( )X  (Chapter 6, 6.5.7). The mathematical 
definition is unexceptionable and this, by the standards normally adopted, suffices to 
render P ( )X  acceptable by definition as the value of P(X). In contrast, we put forward 
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arguments whose purpose was to establish the existence of possible reasons for consid-
ering this choice as being, in addition, a ‘reasonable’ one (and this, in a certain sense, is 
even more important). We were careful, however, not to identify P(X) with P ( )X . In 
fact, P ( )X  is always just one of the possible values for the extension of P outside the field 
within which it is uniquely defined by the F (although, in a certain sense, it is the most 
‘reasonable’ extension).

This example, and the discussion arising from it, serves also as an illustration of the 
kind of attitude that results from the choice of a ‘conceptual’ approach as opposed to a 
‘formal’ one, in the sense already considered. All the ideas and results are drawn from the 
meaning that lies behind the axioms, and not from the mathematical conventions. In 
contrast to the tendency towards uniquely determining the extension of certain notions 
by means of special forms of passage to the limit, our effort consists in not admitting, 
even inadvertently, any restriction that is not the result of simple finitistic inequalities, 
and which – one might say – goes beyond the idea of the ‘method of exhaustion’.

It is not a question of weighing up, a priori, one’s preferences for this or that mathe-
matical approach but, on the contrary, of emphasizing the need to choose, in any appli-
cation, the tools most suited to the nature and meaning of the problem. The nature and 
meaning must not be distorted or disguised in order to introduce tools of a more or less 
elegant, sophisticated, or ‘fashionable’ kind.

18.5. Countable additivity as continuity. We return to the topic of countable additivity 
once again, this time in a different (although equivalent and suggestive) guise. We shall 
examine some further questions and provide further discussion.

The condition of countable additivity for events (as considered so far) can be expressed 
in an even more meaningful form as a ‘continuity’ condition. This is the condition which 
appears among the axioms given by Kolmogorov (and other authors) in the following 
form (which we shall call ‘axiom’ Kb′):

if E1, E2,…, En,… is a sequence of events, each of which is contained in the preceding 
one, and whose product is empty (i.e. there are no ‘elementary outcomes’ common 
to all the En), then P(En) → 0 as n → ∞.

We can see immediately that this condition is equivalent to countable additivity. 
Let us write

 E E E E E E E En n n1 1 2 2 3 1 ; 

all the terms in brackets are events by virtue of the inclusion hypothesis, and the probability 
of E1 is the sum of the probabilities of the (Eh − Eh+1) up to some point, plus the remainder. 
If the latter tends to zero, as axiom Kb′ requires, the probability is given by the sum of the 
series, and countable additivity holds. The argument can be turned around straight-
forwardly: starting from a sequence C1, C2,…, Cn,… of incompatible events, and setting 
En = Cn + Cn+1 + …, we reduce to the preceding case (with Cn = (En − En+1)); in order that 
the series of the P(Cn) converges, the remainder, that is P(En), must tend to zero.

In fact, it is easily seen that Kb′ leads, in general, to a further property, even more mean-
ingful, and showing more clearly the appropriateness of the term ‘continuity’. Note that for 
any sequence of events, or random quantities, we can consider the lower limit and the 
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upper limit (and also, if these coincide, we can consider the limit, their common value), 
just as in analysis. The fact of whether the values of the sequence are known or not 
(random) is irrelevant. In particular, in the case of events, E′ = lim inf En and E″ = lim 
sup En are the events that consist of the fact that a finite number of the En are false and an 
infinite number are true, respectively (i.e. a finite number take the value 0 and an infinite 
number take the value 1, respectively). To say that En → E (i.e. that E′ and E″ coincide), 
or that the limit E of the sequence En exists, is to say that necessarily, in the case under 
consideration, from some N onwards the events En are either all true or all false (in other 
words, it is impossible for infinite sequences of both true and false events to occur).

Well, then: in the case of countable additivity one has

 

P P P
P P P

E E E
E E E

n n

n n

liminf liminf
limsup limsup


  ; 

in particular, if the limit E exists, lim P(En) = P(lim En) = P(E).
It remains to check that the same condition holds more generally when we have a 

sequence of random quantities Xn rather than events.
The property

 P X Xn n0 0if  
is valid (under the assumption of countable additivity) if the random quantities Xn are 
uniformly bounded. Suppose, in fact, that, for all n, |Xn| < K; then, for any (small) ε > 0, 
we have

 P P PX X K Xn n n .  

(because |Xn| < ε + K.(|Xn| > ε) = ε if |Xn| < ε, and = ε + K otherwise). But if Xn → 0 we 
also have (|Xn| > ε) → 0, and this means – recall the above – that we cannot have an 
infinite number of |Xn| > ε, and hence (assuming Kb′) P(|Xn| > ε) → 0. It follows that lim 
|P(Xn)| < ε, and, since ε is arbitrary, that

 lim lim .P PX Xn n 0  
Since events are uniformly bounded (|En| ⩽ 1) the property we have established is 

equivalent to Kb′ (i.e. to countable additivity). If we remove the condition of uniform 
boundedness, the property does not hold (even if countable additivity holds). Suppose 
we take a countable partition into events En to which we assign nonzero probabilities pn 
with sum = 1, and let us consider the sequence of random quantities Xn = En/pn (which 
are not uniformly bounded). We obtain P(Xn) = pn/pn = 1 → 1 ≠ 0, although Xn → 0 (all 
the Xn but one are, in fact, = 0). By slightly modifying the example, putting X E pn n n/  
for instance, we obtain P( )X pn n

1 , and we see, therefore, that the property P(Xn) → 0 
holds for α < 1, whereas, if α > 1, we have P(Xn) → ∞ (although, for the same reason as 
before, we still have Xn → 0).

The extension of the property to the limit is similar. Assuming Kb, we have
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if the Xn are uniformly bounded. We shall give the proof in the case of the upper limit 
(the other case is clearly symmetric) and our proof includes the case of events (where a 
proof was not given).

Putting X Xn hsup  (for h ⩾ п), X X Xn nlimsup inf , we obtain X Xn n
( ) ( )X X X X Xn n n , where ( )X Xn n  and ( )X Xn n  are non‐negative. We there-
fore have, in every case,

 P P PX X X Xn n , 

and, if P( )X Xn n 0, we shall have lim sup P(Xn) ⩽ P(X″). But

 X Xn n 0, 

by definition, and, if we assume the Xn to be uniformly bounded (which implies, 
a fortiori, that the X Xn n are), then, assuming countable additivity, the condition will 
be satisfied.

In particular, if the sequence of the Xn converges (definitely) to a limit (in general 
random), X = lim Xn, we can, if we assume countable additivity plus the uniform bound-
edness of the Xn, state that P(X) = lim P(Xn). The case of a series ∑Xh reduces to the 
preceding case if we consider the partial sums, Yn = ∑Xh (h ⩽ n). If we call Y′ and Y″ the 
infimum and supremum of the sums, we have

 P P P PY X X Yh h  inf sup ,  

and, in particular, we have P P P( ) ( ) ( )Y X Xh h  if Y′ = Y″ = Y (i.e. the series is 
definitely convergent) under the condition that the remainders are uniformly bounded 
(and always, of course, with the assumption of countable additivity).66

We have said that we do not intend to consider countable additivity as an axiom; for 
us, it is a property that may appear more or less interesting and which will hold over 
certain partitions but not over others. Interpreting the condition as one of continuity, 
we can reformulate this fact in a more meaningful way by saying that it will hold over 
certain linear spaces and not over others.

This approach has the merit of spotlighting the real essence of the problem: the fact 
that the property of countable or finite additivity, that is of continuity or the absence of 
continuity, concerns the behaviour of the function P over a linear space L. To give a 
complete account of the behaviour of P in terms of continuity involves, therefore, 
distinguishing which linear spaces L belong to the complex Λp of linear spaces over 
which P is continuous, and which do not.

66 The convergence of the series P( )Xh  (together with the assumption of countable additivity) is a 
sufficient condition to establish that ∑Xh has probability = 1 of being convergent, and that (putting 
therefore, arbitrarily, Y = Y′, or Y = Y″, or Y = Y′ = Y″, if they coincide, and otherwise Y = 0, etc.) one has 

( ) )ˆ ( hY XP P  (N.B.: P  not P). Under this hypothesis, in fact, for arbitrary choices of positive ε and λ, there 
exists an N such that, for any q, we have P( )( )X N h N qh   , i.e. P{ ( )}X N h N qh   , and, a 
fortiori (denoting the preceding summation by {∑N, q} for short), P(∑N, q > λ) < ε (because, if X is certainly 
positive, (X > λ) ⩽ X/λ). If the axiom of continuity holds, as we have assumed, the limit-event (∑N > λ) = 
lim(∑N, q > λ) (as q → ∞) also has probability ⩽ε, and, a fortiori, it follows that the fact that the series diverges 
(in which case the remainder ∑N will be ∞) has probability ⩽ε, and hence (since ε is arbitrary) zero.
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More precisely, in line with what we have said previously, and with the condition of 
coherence, we shall say that P is coherent and continuous on L if no random quantity X 
of the form

 X k X X k X X k X Xn n n1 1 1 2 2 2P P P  

turns out to be uniformly positive (where the kh are any real numbers and the Xh belong 
to L), not only for sums involving a finite number of terms (as is required for coher-
ence) but also for series (convergent, and with uniformly bounded remainders).

It is clear that if L belongs to Λp then so does every linear space contained in it, and 
so does the closure, L , formed by all the random quantities that can be obtained from 
L by means of the passage to the limit in the sense given:

 X X X X Kn n, .
 

If L1 and L2 belong, then so does L1 + L2 (the linear space of sums X1 + X2, X1 ∊ L1 and 
X2 ∊ L2): this holds for any finite number of spaces Lh but not for an infinite number.67 
This indicates that the most ‘natural’ hypothesis is not true; a hypothesis which corre-
sponds most closely to the standard point of view because it leads to a distinction between 
those events and random quantities which belong to a certain system of ‘probabilizable’ 
entities, and those which do not. This is the hypothesis that the complex Λp consists of all 
and only those linear spaces that belong to some given linear space L*, which, in this case, 
would have acquired the meaning of ‘total field of continuity’.

19 Questions Concerning Qualitative Formulations

19.1. There are many senses in which the words qualitative probability have been used, 
some of them very different from each other. To attempt to list them and classify them 
would be both tedious and pointless, but something must be said in order to point out 
the necessity of not confusing things that do differ, and of not being put off by apparent 
absurdities. Among the latter, for example, we include the fact that one might expect 
to encounter rather vague considerations, but can, in fact, find oneself forced into 
hair‐splitting detail, obliging one to apply, in all cases, the methods of comparison 
introduced for zero probabilities.

Our day‐to‐day judgements are on the whole rather vague and we usually limit 
ourselves to just a few verbal gradations (quite probable, or very, very much, not much, 
very little,…), or to percentage approximations (50%, 75%, 90%, 99%,…). In comparisons 
between two events, the probabilities will be said to be ‘roughly equal’ if the dominance 
of one over the other does not appear to be obvious. At this level, however, there is not 
even the possibility of arguing in mathematical terms.

67 Consider a countable partition of events Ehk (h, k = 1, 2,…, n,…). Let us denote by E Eh hkk  the sum 
of events whose first subscript is h, and suppose we attribute the values phk = P(Ehk) and ph = P(Eh) in such a 
way that p phk hk  (for each h), but phh 1 (i.e. phkhk 1). On the linear spaces Lh defined by the 
Ehk and Eh, P is continuous, and hence is also continuous on every linear space L determined by a finite 
number of Lh. This no longer holds, however, if we consider the space L determined by the whole infinite 
collection of Lh.
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Sometimes, one thinks of vagueness in the sense of ‘indeterminacy’ (for example, 
between precise numerical bounds); we have already referred to this, and we shall 
return to it later. At other times, one is willing to compare (let us assume exact com-
parison, in order not to get lost in too many subcases) the probabilities of events but 
without using numerical probabilities. A physician might have a quite precise opinion, 
in a comparative sense, concerning the probabilities that a small number of patients will 
overcome their present disease, but without knowing what to do if he were required to 
compare them with the probability of obtaining something other than a ‘6’ on the role 
of a die (or, more explicitly, were he required to state whether they were more or less 
than 5

6 ; i.e. 83·3%). Sometimes, this inability to compare them with numbers is attrib-
uted to innate peculiarities of the events in question (rather than to contingent reasons, 
such as lack of practice; see Borel’s review of Keynes’ treatise68), or to the fact of not 
having at one’s disposal (or not wishing to have) devices such as dice, urns and so on. In 
this case, if comparability is assumed exact, as in the comparison of intervals where one 
is led to say that a closed interval (i.e. end‐points included) is greater than one of equal 
length but open (i.e. end‐points excluded), it is clear that a non‐Archimedean scale 
results (and this is the absurdity we referred to at the beginning).

Other considerations arise when indeterminacy has a precise meaning; when, on the 
basis of some data, one can establish only that a probability p belongs to an interval 
p′ ⩽ p ⩽ p″. That we are not dealing with an essential indeterminacy is a point that we 
have stressed. Nevertheless, there is something to be said here and a few points will 
have to be made in connection with the discussion (in Sections 5–7) relating to the 
verifiability of events and measurement of quantities.

19.2. Axiomatic formulations in qualitative form. In all the methods of approach we 
have so far looked at, we have introduced, straightaway, numerical values for probabilities 
under the intuitive guise of prices, and as parameters required for optimal decision mak-
ing. In so doing, we referred (albeit indirectly) to percentages of white balls, or to number 
of successes, and so on. This is certainly the most direct way of learning how to express 
one’s own opinions and how to formulate the mathematical conditions which they must 
satisfy (and in terms of which they can be manipulated in a probabilistic argument).

There are occasions, on the other hand, when it seems preferable to start from a 
purely ordinal relation – that is a qualitative one – which either replaces the quantita-
tive notion (should one consider it to be meaningless, or, anyway, if one simply wishes 
to avoid it), or is used as a first step towards its definition. For example, given two 
commodities (or two economic alternatives) A and B, one can ask which is preferable 
(or whether they are equally preferable) before defining utility (or perhaps even reject-
ing the very idea of measurable utility); and the same can be said for temperature, the 
pitch of a note, the length of intervals and so on.

One could proceed in a similar manner for probabilities, too. In fact (if one accepts 
the subjective point of view), one can apply precisely the same notion of preference as 
we mentioned for utility. Instead of two commodities A and B, one compares one and 
the same gain (let us say 1 lira) conditional on the occurrence of event A, or event B. 

68 The article is reprinted in Borel’s Traité (as note 2 in issue III of Vol. IV); an English translation is given in 
H.E. Kyburg and H.E. Smokler, Studies in Subjective Probability, John Wiley & Sons, Inc., New York (1964).
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Our preference (apart from reservations concerning ‘distorting factors’; see Section 13 
above) will be for the event judged more probable (or, if the two events are judged to 
have the same probability, we will be indifferent).

This approach has been studied, and, provided one does not insist on splitting hairs, 
leads quickly and naturally to the usual conclusions (although in a form less directly appli-
cable to the general case). The properties one needs to take as axioms are simple and 
intuitive (the standard order properties, plus the qualitative equivalent of additivity): 
given that E′ and E″ are incompatible with E, then E ∨ E′ is more or less probable than 
E ∨ E″, or equally probable, according to whether E′ is more or less probable than E″, or 
equally probable; in other words, logical sums preserve order.69 All the same, the ‘quali-
tative’ comparison inevitably turns out to be far too precise (indeed, far too sophisti-
cated), from a theoretical point of view, for what is required for the quantitative (numerical) 
evaluation; in any case, it is not conveniently translatable into such an evaluation (unless 
one considers the possibility of constructing special scales of comparison).

The complication derives from the fact that, in a qualitative sense, a possible event 
(no matter what probability p one attributes to it, even p = 0) is obviously ‘more probable’ 
than an impossible event. Similarly, by adding to an event E a possible event A, incom-
patible with it, even if of zero probability, one obtains an event E + A, which is ‘more 
probable’ than E. It follows that, having other events E′ with (numerical) probabilities 
equal to that of E, P(E′) = P(E), the qualitative comparison would have to establish for 
each one whether it had the same probability as E, or E + A, or greater than the first and 
less than the second, or greater than both, or less than both. Even worse; consider an 
arbitrary sequence of events A1, A2,…, Ah,…, all of zero probability, mutually incompat-
ible, and incompatible with E, and another sequence of events B1, B2,…, Bh,…, all of zero 
probability, mutually incompatible, and contained in E: setting

 

E E E E A A A
E E B B B h

h h

h h

0 1 2

1 2 0
, ,

, ,
 

one obtains an increasing (Eh ⊂ Ek for h < k) and doubly unbounded sequence of events 
Eh (h = 0, ±1, ±2,…, ±n,…), all with probability P(Eh) = P(E). Any comparison of an E′ 
(also having probability P(E′) = P(E)) with the Eh should make precise which (if any) of 
the Eh have the same probability as E′; or, otherwise, in which of the intervals Eh, Eh+1, it 
finds itself; or if it precedes, or follows, all the Eh, for h between ±∞.

The necessity, now explained, of this much more refined comparison, has led us to 
use the phrase ‘having the same probability’ for two events which, in the ordering, 
belong to the same ‘equivalence class’, rather than ‘equally probable’, which we use when 
we refer to the equality of their numerical probabilities.

The situation is that which would present itself (in a less serious way) in a comparison 
between intervals, if intervals of equal length were to be called ‘equally long’ only if they 
both contained either 0, 1 or 2 of their end‐points (otherwise, the one containing more 
end‐points would be called ‘longer’). One arrives at a closer analogy by extending the 
example to sets which are unions of a finite number of intervals, and (the sum of the 

69 See B. de Finetti, ‘Sul significato soggettivo della probabilitá’, Fundamenta Mathematicae, 17, Warsaw (1931); 
an improvement in the argument given in the notes of my course on the Calculus of Probability, University of 
Padua, 1937–1938, was made by Professor A. Gennaro who succeeded me in presenting the course.
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lengths being equal) calling ‘longer’ the set for which the difference between the number 
of closed and open components is greatest (the intervals containing only one end‐point 
are not counted; any isolated points are counted as closed intervals; these conventions 
are necessary if we are to have additivity, as in the case of probability).

Using such partitions into intervals as an image for our probabilistic partitions, one 
sees, for example, that, if the certain event is thought of as represented by a closed 
interval of length 1, it is impossible to divide it into two intervals (or, more generally, 
into n) that have the same probability (there are n + 1 end‐points, one too many). This 
difficulty cannot be overcome by changing partitions into sums of intervals: it is always 
a question of dividing up the length 1 (into intervals with one end‐point), plus one 
point. Shifting an end‐point from one of the intervals to another one creates a disparity 
between them, but, in total, there always remains one end‐point too many.

Conversely, if one does not consider that one has (included in the field of events to be 
compared) events that are suitable for furnishing a scale of comparison (for example, 
drawing balls numbered 1 to n, and judged to have the same probabilities, from an urn, 
with n arbitrarily large70), then the inequalities arising can provide totally inadequate 
information about the numerical values of the probabilities. Given, for example, a partition 
into three (incompatible) events A, B, C (assumed in order of decreasing probability), 
and that the only remaining comparison open to us is between A and B + C, this will tell 
us whether the probability of A is greater than or less than 1

2 . In the former case, we 
know only that P(A) lies between 1

2  and 1, P(B) between 0 and 1
2 , P(C) between 0 and 1

4 ; 
in the latter case, we know that P(A) lies between 1

3
 and 1

2 , P(B) between 1
4
 and 1

2 , P(C) 
between 0 and 1

3  (Figure A.2). And it cannot be said that things necessarily improve if 
we consider more than three events. If, for example, the most probable of them is more 
probable than the union of the others, one can only say that its probability lies between 
1
2  and 1; the others, therefore, in aggregate, can have probability close to 1

2
, or arbitrarily 

close to zero, or even zero.71

We could avoid complications of this kind by assigning to the comparison ‘A is more 
probable than B’, a meaning equivalent to P(A) > P(B), and, in particular, calling a pos-
sible event of zero probability ‘equal in probability to the impossible event’. In order to 
do this, it would be necessary to introduce the Archimedean property; in other words, 
to characterize those events ‘more probable than the impossible one’ as those with a 
positive numerical probability by means of a condition like the following: ‘there exists a 
finite N such that, in every partition into N events, at least one is less probable than the 
given event’ (whose probability is then ⩾1/N). But why resort to this distortion of an 
arithmetic condition instead of proceeding directly, given that one’s desired goal is, in 
fact, the arithmetic notion?

70 The inconvenience of having to postulate the existence of partitions into events having the same 
probabilities has been overcome in L.J. Savage, The Foundations of Statistics (Chapter 3, 3: ‘Quantitative 
personal probability’) by means of a weaker assumption: for any N, one can construct a partition into N 
parts such that no union of n parts is more probable than one of n + 1 parts (for any n < N).
71 In the case of n > 3 parts (and in the absence of a ‘scale of comparison’) it becomes complicated to even 
establish the compatibility of a system of inequalities (between sums of events of the partition). For n = 4, 
there is a simple sufficient condition (as I showed in my paper ‘La logica del plausibile secondo la 
concezione di Pólya’, Atti. Riun. S.I.P.S. 1949 (1951)). Contrary to what I had supposed, however, this does 
not hold for n > 4, as was shown by C.H. Kraft, J. Pratt and A. Seidenberg, ‘Intuitive probabilities on finite 
sets’, Annals of Mathematical Statistics, XXX (1959).
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On the other hand, the ‘sophisticated’, non‐Archimedean, criterion corresponds exactly 
to the purely logical meaning that one would like to give to the comparison of probabili-
ties in the particular case in which it relates to an objective condition, that of implication. 
If it is true (indeed, if it is certain; i.e. if we know) that A ⊂ B (an objective condition), then 
coherence obliges us to evaluate P(A) ⩽ P(B) (subjective evaluation). One can say that A 
is ‘less probable in an objective sense’ (or ‘less possible’) than B if and only if A ⊂ B, because 
if A occurs then B certainly occurs, and, moreover, it is possible that B occurs without A 
occurring. Viewed in this light, the fact that the event B − A will be assigned zero prob-
ability under some evaluations, and nonzero probabilities under others, is irrelevant: the 
important thing is that B − A is possible. To give a geometrical analogy in this case, also, 
one could say that a comparison between two sets in the absence of a notion of a metric 
can only lead one to assert that A is smaller than B when the former is properly contained 
within the latter. In this case, and only in this case, will it be true that m(A) ⩽ m(B) for 
whatever measure m might be introduced (the exact form being < or =, according to 
whether the measure in question attributes to B − A a positive or zero value).

Given disparate events E′ and E″, it seems too much to hope that by comparing their 
probabilities one can decide if P(E′) = P(E″) exactly, rather than whether there is a differ-
ence of about 10−6, or 10−1000, and so on. Should one wish to square the reasonableness 
of the procedure with the logical scruples mentioned above (i.e. the seemingly obvious 
fact that, for the same price, one prefers to have an extra possibility of winning, even 
though the extra possibility has probability zero), one could perhaps consider an inter-
mediate order relation. One might define (for example):

A < B: ‘A less probable than B’ if P(A) < P(B), or if P(A) = P(B) and A ⊂ B;
A ~ B: ‘A not comparable with B’ if neither A < B nor B < A; that is if P(A) = P(B) 

and we have neither A ⊂ B nor B ⊂ A.
Instead of following this rather abstract comparison of the various possibilities, it is 

more useful to ask oneself whether the exigencies of the problem themselves indicate 

A

B

C

0

Figure A.2 Areas distinguished by means of the comparisons of probabilities for the events of a 
partition and their sums. The above refers to the case n = 3.

Dotted area: A > B > C, A > B + C.
Shaded area: A > B > C, A < B + C.

For n = 4 (tetrahedron), and n > 4 (simplex in higher‐dimensional space), the mode of subdivision is similar.
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the appropriate form, which could then profitably be adopted. This approach leads to 
something quite similar to the above, but, in the case where P(A) = P(B), comparability 
will be given by a condition less restrictive than demanding that either A ⊂ B or B ⊂ A 
(i.e. either A − AB = 0, P(B − AB) = 0, or vice versa). Specifically, the condition consists of 
P(A − AB) = P(B − AB) = 0, together with the comparability of these two zero probabili-
ties, along the lines suggested in Chapter 4 and developed in Section 18.2 of this Appendix.

It is a question of comparing the conditional probabilities

 P PA AB A B AB B AB A B AB| |and  
(whose sum = 1), saying that A is more or less probable than B according to whether 
the first expression is greater than the second or is less. Note that in this way one can 
deal with every case within the one formulation; it does not matter whether P(A) and 
P(B) are different, or are equal, or whether, if they are zero, one has to proceed to the 
comparison of residuals. By definition, we have that A and B are not comparable if 
P(A) = P(B) and the residuals A − AB and B − AB have equal probabilities (which is 
automatic if they are not zero).

Note also that it would be wrong to claim that events which are not comparable have 
the same probabilities. If A is more probable than B on account of the zero probability 
of A − AB being greater than that of B − AB, and if C is an event such that P(C) = P(A) 
= P(B) but P(AC) < P(C), then both A and B turn out not to be comparable with C; but 
to say ‘having the same probability as C’ would imply that they had the same probability 
as each other, and this is false by hypothesis.72

19.3. Do ‘imprecise probabilities’ exist? The question as it stands is rather ill‐defined, 
and we must first of all make precise what we mean. In actual fact, there is no doubt that 
quantities can neither be measured, nor thought of as really defined, with the absolute 
precision demanded by mathematical abstraction (can we say whether the number in 
question is algebraic or transcendental? Or are we capable of giving millions of signifi-
cant figures, or even a few dozen?). A subjective evaluation, like that involved in express-
ing a probability, attracts this criticism to an even greater degree (but this is no reason for 
regarding the problem differently in this case, as somehow being more essentially rooted 
in the concepts involved). The same is true for ‘objective probability’: the person putting 
his faith in ‘objective probabilities’ is in precisely the same situation, except insofar as he 
is restricting himself to cases in which everyone (he himself, or even a subjectivist) has at 
his disposal criteria and information which make the judgement easier.

In this sense, it should be sufficient to say that all probabilities, like all quantities, are 
in practice imprecise, and that in every problem involving probability one should 
provide, just as one does for other measurements, evaluations whose precision is adequate 
in relation to the importance of the consequences that may follow. In any case, one 
should take into account that there is always this margin of error (for instance, it might 
be worth repeating the calculations with several slightly different values).

72 The only case in which the two events E′ and E″ could be said ‘to have the same probability’ is that in 
which they consisted, respectively, of m′ out of n′, and m″ out of n″, events of two partitions into events 
having the same probabilities, where m′/n′ = m″/n″. This remark should not be taken to mean that we wish 
these futile and absurd complications to be taken seriously, but, on the contrary, that we wish to remove 
them, without ignoring, however, the issue of what can or cannot be expressed in a correct way.
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The question posed originally, however, really concerns a different issue, one which 
has been raised by several authors (each of whom, it seems to me, imparts a different 
shade of meaning to the problem). It concerns the possibility of cases in which one is 
not able to speak of a single value p for a given probability, but rather of two values, p′ 
and p″, which bound an area of indeterminacy, p′ ⩽ p ⩽ p″, possessing some essential 
significance.

The idea can be traced back to Keynes (see the remark in the last section concerning 
Borel’s review), and was later taken up by B.O. Koopman and I.J. Good, developed 
considerably by C.A.B. Smith,73 and more recently by other authors, like Ellsberg and 
Dempster.

Several different situations may lead one to express oneself in terms of an imprecise 
evaluation.

An example of this occurs when one wishes to distinguish various hypotheses, and 
attributes different probabilities P(E|Hi) to an E, depending on the various hypotheses 
Hi; if one then ignores the hypotheses, one can only conclude that the probability lies 
between the maximum and the minimum. We have already dealt with this case in 
Chapter 4, Section 4.8, especially in 4.8.3 and 4.8.5. The probability is what it is on the 
basis of the information that one has. It is clear that with additional information the 
probability could take on all conceivable values, finally reaching, and then remaining at, 
either 1 or 0, when it is finally known whether it is true or false. If we are dealing with 
hypotheses Hi about which we expect soon to have some information, then it may be 
reasonable to wait until this information is available, rather than making a provisional 
evaluation by taking a weighted average with respect to the probabilities which, in the 
meantime, are attributed to the Hi. It would be naïve, however, to assert that P(E) will 
take on a value lying somewhere between the P(E|Hi). There is an infinite number of 
partitions in hypotheses and the information which comes along might be anything at 
all (for instance, it may confirm that out of the Hi, H j, Hl  those with i = 3, j = 1, l = 7 are 
true); the P( | )E H H H3 1 7  could vary anywhere between 0 and 1, even though the P(E|Hi) 
are all very close to one another (and even if they are equal; this case is only without 
interest insofar as the question would then, of course, never have been raised).

A second example occurs when one has not given sufficient thought to the matter, 
and hence possesses only a vague idea of the evaluation one wishes to make. A special 
case of this occurs when one has expressed the evaluation in terms of a formula (e.g. 
p = e−aan/n!, with a = 5813 and n = 12), but, having not yet carried out the numerical 
calculations, one has only a rough idea of the order of magnitude. In the final analysis, 
however, nothing has changed. One either carries out the calculations or one is obliged 
to take as the probability the prevision of the result according to one’s own, more or less 
haphazard, crude estimation: there is no better solution.

The idea of translating the imprecision into bounds, p′ ⩽ p ⩽ p″, even in the weaker 
sense proposed by Good (who regards p′ and p″ not as absurd, rigid bounds, capable of 

73 These questions are examined in detail in Sections 26 and 27 of the paper by B. de Finetti and L.J. Savage 
that we have frequently referred to; particular reference is made to the (then very recent) paper of C.A.B. 
Smith, and to the interesting discussion to which it gave rise at a Royal Statistical Society meeting, with 
contributions from Barnard, Cox, Lindley, Finney, Armitage, Pike, Kerridge, Bartlett and (in the form of a 
written contribution) Anscombe. The reader will find there many other points which we have not found 
room for here.
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‘making the imprecision precise’, but merely as indications of maxima), is inadequate if 
one wishes to take it to the limit in the sense in which it serves to give an idea of the 
imprecision with which every quantity is known or can be considered. One should think 
of the imprecision in the choice of the function P (extended, for example, to some neigh-
bourhood P* of a given P0 in the space P).The imprecision for individual events and 
random quantities would, as a consequence, be determined not as isolated features, but 
with the certain or uncertain connections deriving from logical or probabilistic relations.

19.4. What one can do in practice. A similar kind of discussion can be given concern-
ing what one can actually do in practice; the main purpose of this, however, is to make 
clear that the issues involved here are rather different and do not give rise to any diffi-
culties or anxieties.

The (theoretical) possibility of attributing a precise probability to all the events 
appears to be an indispensable requirement if one considers probability as a notion 
which applies to events per se, independently (see Section 3) of the existence and nature 
of any properties (e.g. topological) of the fields to which the definition of certain events 
can be referred. On the other hand, this does not imply that these probabilities are 
determined, as unique extensions of those conferring to a subfield (extensions which 
may or may not provide a sharpening of bounds; sometimes, as a special case, they may 
provide a unique value), nor does it imply that we are obliged to complete the evalua-
tion, nor even to worry about it. Indeed, one can even call a halt well before this (earlier 
than usual) if there is no real interest in proceeding further: this is even more the case if 
the hypotheses upon which one would base oneself in proceeding further appear rather 
artificial and devoid of any realistic meaning.

If, in the context of the above (Section 19.3), we stop thinking in terms of a certain 
subset P  * of previsions P ∊ P  *, among which we are uncertain as to which one to 
choose, and we consider instead that we are dealing with the set of all the P   which 
extend a given P in L, then the bounds of indeterminacy mentioned above (at the end 
of Section 15) would follow. But it is not a question of imprecision. The fact that, in the 
case we are considering, it is only possible to say of a P(E) that it lies between P−(E) and 
P+(E), does not imply that certain events, like E, have an indeterminate probability: it 
merely implies that the probability is not uniquely defined by the initial data that one 
has considered. As an analogy, it would, in the same way, be nonsense to say that ‘a 
rectangle having a perimeter of 12 m has an indeterminate diagonal’; it is ‘determinate’ 
in the sense that it is what it is, but one has to measure it, or measure a side, or some-
thing else, in order to obtain sufficient information to be able to ‘determine’ it (in the 
sense of obtaining, by means of a calculation, its well‐determined value, notwithstand-
ing the fact that knowledge of the perimeter alone is not sufficient).

There is a context in which one might refer to indeterminacy, but only in a precise, 
technical sense. This would arise if a certain individual were familiar with the evalua-
tions that another individual had made within L, and wished to establish what the latter 
should do outside that ambit in order to remain coherent. This makes it clear, however, 
that the indeterminacy is not a property of the events, but rather that it lies in the fact 
that an outsider cannot remove it, since he cannot replace the individual who is inter-
ested in the, as yet unprejudiced, evaluation.

Another aspect of the problem links up with the discussion (Sections 5–11) concerning 
the ‘verifiability’ of events (or the ‘realizability’ of measurements).
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If, for a given problem, in a given situation, an event is not, in practice, verifiable, then 
any discussion about its probability is mere idle talk. For this reason, leaving aside the 
question of whether or not one accepts the necessity of admitting countable additivity 
as an axiom, it seems that if one is discussing the probability that X ∊ I, where I is non-
measurable in the Jordan–Peano sense, and there is an interval in which both I and its 
complement Ĩ are everywhere dense, then no measurement – not even with the assump-
tion of ‘unbounded precision’ (Section 7) – can decide, on the basis of an observation x 
lying in that interval, whether or not the exact value lies in the interval. The same diffi-
culty remains even under weaker assumptions: for example, if there exist points of both 
I and Ĩ whose distance from x is smaller than the margin of measurement error.

In other fields, too, for realistic applications it seems much more useful to use meth-
ods which avoid too rigorous an assumption of precision. For example, when one speaks 
of ‘convergence’ it seems preferable, when considering results to have asymptotic valid-
ity, to confine attention to those which are valid for a large, but finite, number of cases 
(without taking seriously the notion of considering an infinite number of them).

20 Conclusions

Can one, having now come to the end, draw some conclusions?
I have in mind, of course, the critical questions that we have examined in this Appendix 

(some of which we anticipated in the text, to the extent that the topic in question 
required). In other words, I am referring to questions of a predominantly technical 
nature – if the word technical is adequate to characterize the difference between these 
matters and those concerning the meaning and formulation of the entire (subjective 
and Bayesian) theory; matters which occupied us throughout the text (Chapters 1–12).

Some kind of summary is required, if only to avoid the possibility of the reader being left 
with a feeling of confusion or bewilderment. The latter is a distinct possibility, because of 
the apparent contrast between our tendency on the one hand to simplify things, refusing 
to go beyond the level of practical applications, and towards, on the other hand, throwing 
ourselves headlong into hair‐splitting and complicated analyses (which are not only far 
removed from any foreseeable application, but even strain the limits of good sense).

Why then, someone will surely ask, not be content with the ‘happy medium’ provided 
by the standard approach? This consists in proceeding to the point where countable addi-
tivity makes everything work beautifully, and then stopping when the miracle ceases.

Because – I would answer – so far as I am concerned it is by no means a ‘happy medium’, 
but rather a case of ‘two wrongs not making a right’. In my opinion, anything in the formu-
lation that proceeds beyond what the Jordan–Peano–Riemann machinery provides is 
irrelevant for practical purposes, and unjustifiable on theoretical and conceptual grounds.

The two kinds of discussion to which we referred above, although apparently in con-
trast to one another, are intended, converging from opposite directions, to demonstrate 
one and the same point: one can do without complications (and this is perhaps the wisest 
course of action), but, should one decide to embark upon them, one must do so whole‐
heartedly, in a constructive manner, even though this may prove troublesome.

I may be wrong. My criticisms will not have been in vain, however, if in order to refute 
them someone comes forward and explains and justifies, in a sensible and meaningful 
way, those things which, up until now, have merely been ‘Adhockeries for mathematical 
convenience’.
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correlation coefficient 138
countable additivity 551–556

continuity 559–562
Cournot’s principle 182, 279, 282
covariance 146
covariance matrix 405
Cramèr’s theorem 250
cubic mean 48–49
cumulative frequency curve 213–215
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deciles 217
decision theory 470–473
decisions 64–70

definitions 65–66
rigidity 66–67

degree of belief 154
density curve 214
density function 294–295
dependence 432–437
Desiré André principle 268, 317, 348–349, 

352, 354–355, 385
Ballot problem 359

determinism 21, 183–186, 423
deviations 139–140, 216

standardised deviation 140
device of imaginary observations 178–179
diffusion process 265
dimensions, higher see higher dimensions
Dirac function 528
Dirichlet integral 249
discrete distributions 188
discrete jumps 314
discrete time 311–312
discrete uniform distribution 276–277
disjoint sets 36
dispersion, measures of 216, 217
dispositional property 183
distance 219
distorting factors 532–538
distribution function 56, 188, 202

graphical representation 213–215
joint distribution function 226–227
practical study 212–218

descriptive properties 213
synthetic characteristics 215–218

distribution of mass 188
distributional knowledge 210–211
distributions 47, 193–196

arc sine distribution 370
Bernoulli distribution 242–243, 247, 

268–270
Bessel distribution 340, 341–342
beta distribution 413–414, 442
bimodal 213
binomial distribution 286–288

standardized 289–296

Cauchy distribution 247, 298, 335, 
339, 419

characteristic functions 
method 236–241

examples 242–249
geometric representation 239–241

convergence of random 
quantities 220–226

definition 188–193
discrete uniform distribution 276–277
divisibility of distributions 249–250
equivalent formulation 203–212

prevision viewed asymptotically 210
exponential distribution 246–247
gamma distribution 246, 340–342
Gaussian (normal) distribution 243, 248, 

286–303, 444
higher dimensions 403–407
hyperspace interpretation 299–300
standardized 289–296

geometric distribution 243, 274
hypergeometric distribution  

270–273, 370
introduction 187–188
leptokurtic 218
limits 219–220
logarithmic distribution 243, 342
negative binomial distribution 275
normal (Gaussian) distribution 243, 248, 

286–303, 444
higher dimensions 403–407
hyperspace interpretation 299–300
standardized 289–296

normalized distribution 217–218, 
243–244

Pascal distribution 273–276, 340, 342
platykurtic 218
Poisson distribution 242–243, 247, 322, 

337–338
probability theory 196–203
quasi‐stable distributions 339
semi‐normal distribution 353
stable 297–298

random processes 334–342
standardized distribution 243–244
Student’s distribution 419, 460
triangular distribution 245
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two‐dimensional 226–236
stochastic independence of random 

quantities 230–233
uniform distribution 243, 244–245
unimodal 213

duality principle 349–350
dynamic framework 261

e
economics, applications of probability 

theory 168
elapsed fraction 342
ellipsoid of concentration 406, 407
ellipsoid of covariance 406, 407
ellipsoid of inertia 146, 406, 407
ellipsoid of representation 146
empirical law of chance 182
empty intersection 36
entropy 87–88

negative 88
equally probable events 169–171, 173
ergodic death of the universe 380–381
ergodic principle 380, 394
error, risk of 22
estimation

Bayesian approach 463–464
interval estimates 464
point estimates 463

other approaches 465–470
maximum likelihood 468–470

evaluation of probabilities 153
approaches 157–158

losses 158–162
losses, applications of 163–168

bets and odds 153–156
considerations 179–183
determinism and 

indeterminism 183–186
frequencies and ‘wisdom after the 

event’ 176–179
partitions into equally probable 

events 169–171
prevision of a frequency 171–176
subsidiary criteria 168–169

evaluation, fair 62
events 5, 16, 481–484

probability of 83–89
unrestricted 484–491

event‐sum 32
compatible events 85
incompatible events 84
linear dependence 91–92

exchangeability 434–435, 437–446, 449
partial 435–436, 449, 457

exchangeable processes 439
exhaustivity 36

linear dependence 92
expenditure 478
experimental facts 282
expert opinion 163–165
exponential distribution 246–247, 462

f
fair evaluation 62
fair games 345
fairness 268
false events 481
FALSE value 25, 55
Feller principle 349–350
Fermi–Dirac statistics 408, 411
Fibonacci numbers 260
field of events 31
finite additivity 8, 100
finite partitions 551
finite variances 438
flexibility 493
F‐measure 192–193, 197–199
frequency 95–96, 424

curves 214
prevision 171–176
‘wisdom after the event’ 176–179

functional dependence 82
fundamental theorem of probability 94–98

canonical expression for random 
quantities 97

frequency 95–96
infinite number of events 98

g
gambler’s ruin 268, 317, 343, 344, 345–356
game duration prevision 345–356
gamma distribution 246, 340–342, 

458–459, 460

distributions (cont’d )
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Gaussian (normal) distribution 243, 248, 
286–303, 444

higher dimensions 403–407
hyperspace interpretation 299–300
standardized 289–296

generating function 237
generic coefficient of proportionality 156
geometric distribution 243, 274
geometric mean 49
Goldbach conjecture 493
gradation curve 213–214
Grammar of Assent 135

h
harmonic mean 49
Heads and Tails probability 126, 134, 221

binomial distribution 286–288
standardized 289–296

laws of large numbers 277–286
normal (Gaussian) distribution

standardized 289–296
Poisson version 318–319
preliminary considerations 253–261
prevision 265
random process 261–268
standard deviation 265

heat equation 294
Heisenberg’s Uncertainty Principle 527
higher dimensions 401–403

continuous case 411–415
discrete case 407–411
normal distribution 403–407
second‐order characteristics 403–407
spherical symmetry 415–419

central projection 417–419
distance from hyperplane to 

origin 416–417
distance from origin 415–416

verifiability 509–513
Hilbert space 514, 522
histograms 215, 216
homogeneity 284–285
homogeneous chains 393
homogeneous processes 311, 312, 313
homogeneous translations 217
hypergeometric distribution  

270–273, 370

hypergeometric processes 439, 440
hypothesis 117, 118, 425–426

alternative hypothesis 464
null hypothesis 464

hypothesis testing 433
Bayesian approach 463–464
other approaches 465–470

maximum likelihood 468–470

i
imaginary observations, device of 178–179
implication 34–35
impossibility 22
impossible events 488
imprecise probabilities 567–569
imprecision 232
incompatibility 35–36
incompatible events 84

linear dependence 91
independence 432–437
independent events 37–41
independent increments 311
indeterminancy 563
indeterminism 424

verifiability 513–518
induction, method of 257
inductive reasoning 421–427

basic formulation 427–432
exchangeability 437–446
independence and dependence 432–437

inequalities 147–148
infinite dimensions 511–513
infinitely divisible distributions 312, 315
infinitesmal transformation 322
infinity, order of 328
information matrix 469
intensity of processes 313, 328
intermediate truth‐value 517
interquartile ranges 218
intersectile ranges 218
intersection 33
interval estimates 464
interval subdivisions 411
inversion formula 402
inversions of a trend 171
isotropy 298
iterated logarithm, law of 281
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joint distribution function 226–227
J–P‐measure 193, 202, 556–557
judgment by results 177

k
Kelvin method of images 356,  

385, 387
kernel of inertia 146
Khintchin process 397
Khintchin theorem 309, 388–389
kinetic theory of gases 298
Kolmogorov axiom system 547
Kolmogorov condition 282
Kolmogorov law 226, 233
kurtosis 216, 218

l
lack of memory property 274
language, problems of 17–18

uncertainty 21
Laplace rule of succession 442
large‐number laws 277–286

complement 308–309
large‐sample theory 470
lattice structure 32
law of the interated logarithm 281
Lebesgue measure 8, 106, 193, 557
leptokurtic distribution 218
L’Hopital’s rule 280
Liapounov condition 307
likelihood 119–120, 422, 458

maximum likelihood 468–470
likelihood principle 135, 460‐463
limit‐frequencies 104
limit‐results 106
Lindeberg–Feller theorem 307
Lindeberg–Lévy theorem 307
linear dependence 43–45, 80–83

in general 89–94
event‐sum 91–92
exhaustivity 92
incompatibility 91
logical independence 92–93
nonobvious linear dependence  

93–94
partitions 90–91

linear independence 41, 43–45
linear representations 41–47
linear space 41
linear transformation 404
linearly contradictory conditions 491
location, measures of 216, 217
logarithmic distribution 243, 342
logic 22
logic of uncertainty 59
logical independence 497

linear dependence 92–93
stochastic independence 129

logical operations 30
logical plausibility 102–103
logical product 31, 44
logical sum 31, 32, 34, 44
logically dependent events 37–41
logically independent events 37–41
logically possibility 22
logically semidependent events  

38, 39
lotteries 51–53

m
marginal balance 157
marginal indeterminism 424
Markov chains 393
Markov processes 393–396, 437
martingales 345
mathematical formulation of 

probability 8–9
mathematical statistics

Bayesian approach to estimation and 
hypothesis testing 463–464

connection with decision 
theory 470–473

likelihood principle 460‐463
normal distribution 455–460
other approaches to estimation and 

hypothesis testing 465–470
maximum likelihood 468–470

preliminaries 448–455
scope and limits 447–448
sufficient statistics 460‐463
verifiability 547–562

mathematics of probability 2–3
maximal observations 525
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maximum likelihood 468–470
Maxwell–Boltzmann statistics 408, 411
Maxwell’s formula 416
Maxwell’s kinetic theory of gases 298
mean average 456
mean difference 218
mean standard deviation 139–140

geometric interpretation 144
mean value of a distribution 208
means 47–49
mean‐square convergence 224
measure space 477
measures 192–193
median value 217
method of images 356, 385, 387
methodological rigour 5–6
metrics 404
modal value 217
multiple‐choice question results 166–167
mutual convergence 225–226

n
negative binomial distribution 275
negative correlation 124

geometric interpretation 142, 144–145
negative entropy 88
Neyman’s factorization theorem 462
nonconglomerability 232, 463
noncorrelation 137–141

geometric interpretation 142, 144
order of 138

non‐Euclidean geometry 515
nonhereditary phenomena 395
nonknowledge 10
nonlinear dependence 80–83
nonmodularity 515
non‐negativity 8
normal (Gaussian) distribution 218, 243, 

248, 286–303, 444
higher dimensions 403–407
hyperspace interpretation 299–300
standardized 289–296

normalized distributions 217–218, 
243–244

notation 55–57
prevision 77–78

null hypothesis 464

o
objective probabilities 3, 5, 8–9, 23
objectivist (O) statements 6–7
objectivistic school of statistics 466, 

467–468, 470
observability 478, 481
odds 153–156
operational factor 498–502
opinions 65
order of infinity 328
order out of chaos 300–303
orthant 402

p
pairwise noncorrelation 138
pairwise uncorrelated 138
paradoxes, so‐called 373–382
partial exchangeability 435–436,  

449, 457
partial knowledge 201–202
partitions 36–37, 485

equally probable events 169–171
finite partitions 551
linear dependence 90–91
stochastic independence in finite 

partitions 126–127
Pascal distribution 273–276, 340, 342
Pascal’s triangle 266
Pauli’s exclusion principle 411
peculiarity 434
permanences 171
persistent events 358
Planck’s constant 527
platykurtic distribution 218
point estimates 463
Poisson approximation 293
Poisson distribution 242–243, 247, 322, 

337–338
Poisson processes 313–315, 319–323, 

414–415
compound Poisson processes 314, 316, 

323–329
Pólya’s criterion 245
Pólya’s urn scheme 410, 442–443
positional value 217
positive correlation 124

geometric interpretation 142, 144
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possibility 22, 491–494, 538–540
possible events 488
posterior weight 456
precise probabilities 569
precision 232, 502, 504

bounded 505, 508–509
perfect 504–505, 508
perfectable 506
unbounded 505, 508

precision factor 502–509
prediction 59–60, 83, 176, 427
prevision 17, 59–64, 427, 480

art of prevision 62
asymptotic 210
continuity 112
criteria 74–75, 78–79
decisions 64–70

definitions 65–66
rigidity 66–67

definitions 59–61, 70–75
prevision function (P) 70–75

examples 78–80
fundamental theorem of 

probability 94–98
game duration 345–356
geometric interpretation 76–77
Heads and Tails 265
linear and nonlinear dependence 80–83
linear dependence in general 89–94

event‐sum 91–92
exhaustivity 92
incompatibility 91
logical independence 92–93
nonobvious linear dependence  

93–94
partitions 90–91

notation 77–78
probability of events 83–89
random quantities with infinite possible 

values 108–112
utilities 64–70

alternative approach 68–70
definitions 65–66
rigidity 66–67
scale 67–68

zero probabilities 98–108
logical plausibility 102–103

prevision, conditional 113–114,  
117–118

conglomerative property, validity 
of 151–152

correlation 124–126
definition 114–115
frequencies 171–176
geometric interpretation 141–148
given event 118–119
likelihood 119–120
noncorrelation 137–141
probability conditional on a 

partition 121–123
second order 139
stochastic dependence

direct sense 129–130
indirect sense 130–131
information increase 131–132

stochastic dependence and 
independence 123–126

stochastic independence
conditional 132–137
finite partitions 126–127
meaning 127–129

theorem of combined probabilities 
proof 115–117

zero probabilities, comparability 
of 148–151

probability 22–23, 538–540, 570
agglutinated probabilities 556
as a distribution of mass 139
associative means 47–49
calculus of probability 475, 476
continuity 112
evaluation 153

approach 157–158
approach through loses 158–162
approach through loses, application 

of 163–168
bets and odds 153–156
considerations 179–183
determinism and 

indeterminism 183–186
frequencies and ‘wisdom after the 

event’ 176–179
partitions into equally probable 

events 169–171



Index 579

prevision of a frequency 171–176
subsidiary criteria 168–169

fundamental theorem 94–98
canonical expression for random 

quantities 97
frequency 95–96
infinite number of events 98

imprecise probabilities  
567–569

linear representations 41–47
means 47–49
notation 55–57
precise probabilities 569
random quantities with infinite 

possible values 108–112
range of 23–24

assertion 33–34
constituents 36–37
examples 49–55
implication 34–35
incompatibility 35–36
independence 37–41
logical dependence 37–41
partitions 36–37
random events 24–27
space of alternatives 27–30

theory of probability 475, 476
zero probabilities 98–108

logical plausibility 102–103
probability, conditional 114,  

117–118
conglomerative property, validity 

of 151–152
correlation 124–126
definition 114–115
geometric interpretation 141–148
given event 118–119
likelihood 119–120
noncorrelation 137–141
on a partition 121–123
stochastic dependence

direct sense 129–130
indirect sense 130–131
information increase 131–132

stochastic dependence and 
independence 123–126

stochastic independence

conditional 132–137
finite partitions 126–127
meaning 127–129

theorem of combined probabilities 
proof 115–117

zero probabilities, comparability 
of 148–151

probability distribution
distributional knowledge 210–211

probability of events 83–89
probability ratio 155
probability space 477
Procrustean bed 197, 199
projection‐operator 514, 519
projective invariance 333
proportionality, coefficient of 156
propositions 5

q
quadratic mean 48–49

convergence 222, 224
quadratic mean difference 218
qualitative formulations 562–570

axiomatic formulations 563–567
imprecise probabilities 567–569
practical approach 569–570

quantum theory 522–528
quartiles 217
quasi‐implication 534
quasi‐stable distributions 339

r
radius of gyration 139
Raikov’s theorem 250
random, definition 16
random entities 26
random functions 27
random gain 62–63
random processes 27

Heads and Tails 261–268
random processes with independent 

increments 311–317
asymptotic behaviour 342–345
asymptotic normality 317–329
Ballot problems 357–373
behaviour 342–345
general case 317–329
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prevision of game duration 345–356
return to equilibrium 357–373
ruin 345–356
so‐called paradoxes 373–382
stable distributions 334–342
strings 357–373
Wiener–Lévy process 329–334

properties 382–392
random quantities 16, 25

canonical expression 97
convergence 220–226
infinite possible values 108–112
stochastic independence 230–233

convolutions 233, 235
random subdivisions 411–413, 414–415
random walk 261, 263, 264
realism 173
reasonableness 556–559
record breaking 171
rectangular prism 401
recurrent sequences 357
reflection principle 268
regularity 376
Reichenbach formulation 516, 517, 

529–530
relative functional 47
return to equilibrium 357–361
returning to equilibrium 345
reversal principle 349–350
Riemann integral 191, 193, 195
Riemann–Stieltjes integral 191, 209, 238
rigidity 66–67
risk of error 22
rotational symmetry 297
ruin problems and probability 345–356

s
scalar products 142, 404
scheme of decisions 72
second‐order previsions 139
semi‐normal distribution 353
separations 139–140, 216

metric 142
standardised separation 140

sequences of random quantities 220

simultaneous decidability 529
small‐sample theory 470
small‐scale behaviour 389
smoothing procedures 174, 215
space of alternatives 26, 27–30
spectral function 397
spherical symmetry 415–419

central projection 417–419
distance from hyperplane to 

origin 416–417
distance from origin 415–416

sports results forecasting 165–166
spread, measures of 216, 217
stability of distributions 297–298
standard deviation 139–140, 456

geometric interpretation 144
Heads and Tails 265

standardised deviation 140
standardised separation 140
standardized binomial 

distribution 289–296
standardized distribution 243–244
standardized normal (Gaussian) 

distribution 289–296
stability 297–298
table of values 295–296

state of information 378
static indeterminism 424
stationary processes 394, 396–399
statistical distribution 394
statistical induction 429
statistical inference 424, 429
Stiefel’s identity 266
Stieltjes intergral 193
Stirling’s formula 292
stochastic dependence 123–126

direct sense 129–130
indirect sense 130–131
information increase 131–132

stochastic independence 40, 82,  
123–126, 478

conditional 132–137
finite partitions 126–127
Maxwell’s kinetic theory of gases 298
meaning 127–129
random quantities 230–233

convolutions 233, 235

random processes with independent 
increments (cont’d )
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stochastic, definition 16–17
strings 357–361, 373–374, 377–378
strong formulation of probability 

distributions 197–199
strong law of large numbers 279–280
Student’s distribution 419, 460
subdivisions 53
subjective probabilities 3, 5, 8–9, 23
subjectivist (S) statements 6–7
sufficient statistic 47, 460‐463
survey 251–253

central limit theorem 286–303
hyperspace interpretation 299–300
proof 303–309

Heads and Tails
preliminary considerations 253–261
random process 261–268

laws of large numbers 277–286
complement 308–309

particular distributions 268–277
Bernoulli distribution 268–270
discrete uniform distribution 276–277
geometric distribution 274
hypergeometric distribution 270–273
negative binomial distribution 275
Pascal distribution 273–276

suspicious cases 433
symmetry 169
synthetic characteristics of 

distributions 215–218

t
tailor‐made functions 47
tautology 21, 40
Tchebychev’s inequality 147, 269, 278, 

295, 316
terminology 16–17
theorem of compound probabilities 115

proof 115–117
theory of probability 475, 476
thesis/antithesis 117
three‐valued logic 529–532
time

continuous 311, 312
discrete 311–312

time factor 497–498
transfinite induction 541

transient events 358
transition probabilities 393
translations 217
transpose 404–405
trends, inversions 171
triangular distribution 245
true events 481
TRUE value 25, 55
truncations 56
twinned distributions 241
two‐dimensional distributions 226–236

stochastic independence of random 
quantities 230–233

convolutions 233, 235

u
ultrafilters 555
unbounded random values 110–111
uncertain events 481
uncertainty 21–22

prevision 59–64
unfair games 346–347
uniform distribution 243, 244–245
unimodal distributions 213
union 33
utilities 64–70

alternative approach 68–70
definitions 65–66
rigidity 66–67
scale 67–68

v
variance 139, 456
variance–covariance matrix 469
Vendermonde determinant 490
Venn diagrams 33, 35, 89
verifiability

complementarity 518–522
distorting factors 532–538
higher dimensions 509–513
indeterminism 513–518
mathematical aspects 547–562
operational factor 498–502
precision factor 502–509
time factor 494–498

von Neumann formulation 514, 
529–530, 532
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weak formulation of probability 

distributions 197–199
weak law of large numbers 279
weight 456

posterior weight 456
well‐determined quantities 25
Wiener–Lévy process 293, 314, 315, 316, 

317–319, 329–334, 348
properties 382–392
standardized 330

‘wisdom after the event’ 176–179

y
YES/NO/MAYBE answers 500–501, 

506–507, 535

z
zero probabilities 98–108,  

477–478
comparability 148–151
logical plausibility 102–103
verifiability 548–551

zero‐one law 226
Zweckmässig 47
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