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R & Q Analysis

A number of criteria exist for performing principal
component analysis on a data matrix. These criteria
are referred to as R-, Q-, N-, M- and P-analysis. The
first four of these criteria all involve deviations about
column means, row means, or both. The properties of
these criteria were given by Okamoto [7]. P-analysis
involves the raw data directly.

In principal component analysis, one generally
begins with an n x p data matrix X representing n
observations on p variables. Some of the criteria will
be illustrated by numerical examples, all using the
following data matrix of n = 4 observations (rows)
on p = 3 variables (columns):

(variables)
-2 -2 -1
0 1 0
X = > ’ ’ (observations)
0 —1 -1
variable means 0 0 0
(h

This matrix will have a rank of three. The variable
means have been subtracted to simplify the compu-
tations. This example is taken from [6, Chapter 11],
which includes more detail in the operations that are
to follow.

R-analysis

In principal component analysis, one generally forms
some type of p x p dispersion matrix of the variables
from the n x p data matrix X, usually a covariance
matrix (see Correlation and Covariance Matrices)
or its related correlation matrix. A set of linear
transformations, utilizing the eigenvectors of this
matrix, is found which will transform the original
correlated variables into a new set of variables.
These new variables are uncorrelated and are called
principal components. The values of the transformed
data are called principal component scores. Further
analysis may be carried out on these scores (see
Principal Components and Extensions). (A subset
of these transformed variables associated with the
larger eigenvalues is often retained for this analysis.)
This procedure is sometimes referred to as R-analysis,

and is the most common application of principal
component analysis. Similar procedures may also be
carried out in some factor analysis models.

For example, consider an R-analysis of matrix
X. Rather than use either covariance or correlation
matrices, which would require different divisors for
the different examples, the examples will use sums
of squares and cross-products matrices to keep the
units the same. Then, for R-analysis, this matrix for
the variables becomes:

&8 8 6
X’X:|:8 10 7:| 2)
6 7 6

whose eigenvalues are [} = 22.282, [, = 1.000 and
I3 =0.718. The fact that there are three positive
eigenvalues indicates that X' X has a rank of three.
The unit (ie., U'U =1) eigenvectors for X ‘X are:

—-0.574 0.816 —0.066
U= |:—0.654 —0.408  0.636 i| 3)
—0.493 —0.408 —0.768

Making a diagonal matrix of the reciprocals of the
square roots of the eigenvalues, we have:

0212 0 0
L°'5:|: 0 1.000 0 } @)
0 0 1.180

and the principal component scores ¥ = XUL™"
become:

0.625 —0.408 —0.439
—0.139 —-0.408 0.751

Y= —-0.729 0 —0.467 )
0.243 0.816  0.156

where each row of this matrix gives the three
principal component scores for the corresponding
data row in X.

Q-analysis

In Q-analysis, this process is reversed, and one stud-
ies the relationships among the observations rather
than the variables. Uses of Q-analysis include the
clustering of the individuals in the data set (see
Hierarchical Clustering). Some multidimensional
scaling techniques are an extension of Q-analysis,
and are often used where the data are not homoge-
neous and require segmentation [4].



2 R & Q Analysis

In Q-analysis, an n x n covariance or correla-
tion matrix will be formed for the observations and
the eigenvectors, and principal component scores
obtained from these. Generally, n > p so that covari-
ance or correlation matrices will not have full rank,
and there will be a minimum of n — p zero eigen-
values.

Using the same data matrix from the preceding
section, the corresponding sums of squares and cross-
products matrix become:

9 -2 —-10 3
-2 1 2 -1

-10 2 12 —4 ©
3 -1 -4 2

with eigenvalues /| = 22.282, 1, = 1.000, I3 = 0.718,
and /4 = 0. The first three eigenvalues are identical
to those in the Q-analysis. The significance of the
fourth eigenvalue being zero is because XX contains
no more information than does X X, and, hence, only
has a rank of three.

Although one can obtain four eigenvectors from
this matrix, the fourth one is not used as it has no
length. The first three eigenvectors are:

XX' =

0.625 —0.408 —0.439
—0.139 —0.408 0.751

Us=1 _0729 0  —0.467 )
0243 0816 0.156

Note that this is the same as the matrix Y of principal
scores obtained in the R-analysis above. If one
obtains the principal component scores using these
eigenvectors, (i.e., Y* = X/U*Lfo's), it will be found
that these principal component scores will be equal
to the eigenvectors U of the R-analysis. Therefore,
Y*=U,andY =U*.

N-analysis (Singular Value Decomposition)

With proper scaling or normalization, as has been
used in these examples, the eigenvectors of R-
analysis become the principal component scores of
Q-analysis, and vice versa. These relationships can be
extended to N-analysis or the singular value decom-
position [1, 5]. Here, the eigenvalues and vectors as
well as the principal component scores for either R-
or Q-analysis may be determined directly from the
data matrix, namely:

X = YLO.SU’ — U*LO.SY*/ (8)

The practical implication of these relationships is that
the eigenvalues, eigenvectors, and principal compo-
nent scores can all be obtained from the data matrix
directly in a single operation. In addition, using the
relationships above,

X =U*LU’ )

This relationship is employed in dual-scaling tech-
niques, where both variables and observations are
being presented simultaneously. Examples of such
a technique are the biplot [2] and MDPREF [4],
which was designed for use with preference data
(see Scaling of Preferential Choice). The graphical
presentation of both of these techniques portrays both
the variables and the observations on the same plot,
one as vectors and the other as points projected
against these vectors. These are not to be confused
with the so-called ‘point—point’ plots, which use a
different algorithm [6, Section 10.7].

Related Techniques

In addition to R-, Q-, and N-analysis, there are
two more criteria, which, though more specialized,
should be included for completeness. One of these,
M-analysis, is used for a data matrix that has been
corrected for both its column and row means (so-
called double-centering). This technique has been
used for the two-way analysis of variance where
there is no estimate of error other than that included
in the interaction term. The interaction sum of squares
may be obtained directly from double-centered data.
M-analysis may then be employed on these data
to detect instances of nonadditivity, and/or obtain
a better estimate of the true inherent variability
[6, Section 13.7]. A version of M-analysis used
in multidimensional scaling is a method known as
principal coordinates [3, 8, 9].

In the antithesis of M-analysis, the original data
are not corrected for either variable or observation
means. This is referred to as P-analysis. In this
case, the covariance or correlation matrix is replaced
by a matrix made up of the raw sums of squares
and cross-products of the data. This is referred to
as a product or second moment matrix and, does
not involve deviations about either row or column
means. The method of principal components may
be carried out on this matrix as well, but some
of the usual properties such as rank require slight
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modifications. This technique is useful for certain
additive models, and, for this reason, many of the
published applications appear to be in the field of
chemistry, particularly with regard to Beer’s Law.
For some examples, see [6, Section 3.4].

References

(1]

(2]

(3]

[4]

Eckart, C. & Young, G. (1936). The approximation of
one matrix by another of lower rank, Psychometrika 1,
211-218.

Gabriel, K.R. (1971). The biplot-graphic display of matri-
ces with application to principal component analysis,
Biometrika 58, 453-467.

Gower, J.C. (1966). Some distance properties of latent
root and vector methods used in multivariate analysis,
Biometrika 53, 325-338.

Green, P.E., Carmone Jr, F.J. & Smith, S.M. (1989).
Multidimensional Scaling, Allyn and Bacon, Needam
Heights.

[5]

[7]

[8]
[9]

Householder, A.S. & Young, G. (1938). Matrix approxi-
mations and latent roots, American Mathematical Monthly
45, 165-171.

Jackson, J.E. (1991). A User’s Guide to Principal Com-
ponents, John Wiley & Sons, New York.

Okamoto, M. (1972). Four techniques of principal compo-
nent analysis, Journal of the Japanese Statistical Society
2, 63-69.

Torgerson, W.S. (1952). Multidimensional scaling I: the-
ory and method, Psychometrika 17, 401-419.
Torgerson, W.S. (1958). Theory and Methods of Scaling,
John Wiley & Sons, New York.

(See also Multivariate Analysis: Overview)

J. EDWARD JACKSON



R-squared, Adjusted R-squared

JEREMY MILES
Volume 4, pp. 1655-1657

in
Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

© John Wiley & Sons, Ltd, Chichester, 2005



R-squared, Adjusted
R-squared

Many statistical techniques are carried out in order
to predict or explain variation in a measure — these
include univariate techniques such as linear regres-
sion (see Multiple Linear Regression) and analysis
of variance, and multivariate techniques, such as
multilevel models (see Linear Multilevel Models),
factor analysis, and structural equation models. A
measure of the proportion of variance accounted for
in a variable is given by R-squared (see Effect Size
Measures).

The variation in an outcome variable (y) is rep-
resented by the sum of squared deviations from the
mean, referred to as the total sum of squares (S Siotar):

SSou = Y (y — )’ (1

(Note that dividing this value by N — 1 gives the
variance.)

General linear models (which include regression
and ANOVA) work by using least squares estimators;
that is, they find parameter estimates and thereby
predicted values that account for as much of the
variance in the outcome variable as possible — the
difference between the predicted value and the actual
score for each individual is the residual. The sum
of squared residuals is the error sum of squares,
also known as the within groups sum of squares or
residual sum of squares (S Serrors S Swithin, OF S Sresidual)-
The variation that has been explained by the model
is the difference between the total sum of squares
and the residual sum of squares, and is called the
between groups sum of squares or the regression sum
Of squares (SSbelween or SSregression)~

R-squared is given by:

R2 _ SSbetween (2)
N Smtal

In a standardized regression equation, where the
correlations between variables are known, R? is given
by:

R* = birys + borys, + -+ birye, (3)

where b; represents the standardized regression of y
on x, and r,, represents the correlation between y
and x.

Where the correlation matrix is known, the for-

mula:
1

=T )

Ri2.123..k =1-
may be used, although this involves the inversion of
the matrix R, and should really only be attempted by
computer (or by those with considerable time on their
hands). R™! is the inverse of the correlation matrix
of all variables.

In the simple case of a regression with one
predictor, the square of the correlation coefficient (see
Pearson Product Moment Correlation) is equal to
R-squared. However, this interpretation of R does
not generalize to the case of multiple regression.
A second way of considering R is to consider
it as the correlation between the values of the
outcome predicted by the regression equation and
the actual values of the outcome. For this reason,
R is sometimes considered to indicate the ‘fit’ of
the model.

Cohen [1] has provided conventional descriptions
of effect sizes for R-squared (as well as for other
effect size statistics). He defines a small effect as
being R? equal to 0.02, a medium effect as R> =
0.13, and a large effect as being R> = 0.26.

R? is a sample estimate of the proportion of
variance explained in the outcome variables, and is
biased upwards, relative to the population proportion
of variance explained. To explain this, imagine we are
in the unfortunate situation of having collected ran-
dom numbers rather than real data (fortunately, we
do not need to actually collect any data because we
can generate these with a computer). The true (popu-
lation) correlation of each variable with the outcome
is equal to zero; however, thanks to sampling vari-
ation, it is very unlikely that any one correlation in
our sample will equal zero — although the correla-
tions will be distributed around zero. We have two
variables that may be correlated negatively or posi-
tively, but to find R? we square them, and therefore
they all become positive. Every time we add a vari-
able, R? will increase; it will never decrease. If we
have enough variables, we will find that R%is equal
to 1.00 — we will have explained all of the variance
in our sample, but this will of course tell us noth-
ing about the population. In the long run, values of
R? in our sample will tend to be higher than values
of R? in the population (this does not mean that R?
is always higher in the sample than in the popula-
tion). In order to correct for this, we use adjusted RZ,
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calculated using:

N -1
N—k-1

where N is the sample size, and k is the number of
predictor variables in the analysis. Smaller values for
N, and larger values for k, lead to greater downward
adjustment of R?. In samples taken from a population
where the population value of R? is 0, the sample
R? will always be greater than 0. Adjusted R? is
centered on 0, and hence can become negative; but R?
is a proportion of variance, and a variance can never
be negative (it is the sum of squares) — a negative
variance estimate therefore does not make sense and
this must be an underestimate.

Adj.R*=1-(1—-R? 6)

A useful source of further information is [2].
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Random Effects and
Fixed Effects Fallacy

Introduction

In most psychological experiments, the factors inves-
tigated consist of fixed effects, that is, all possible
levels of each factor are included in the experiment.
Clear examples of fixed factors include Sex (if both
male and female are included) and Interference (in
an experiment that manipulated distraction during a
task, and included such conditions as no interference,
verbal interference, and visual interference). In con-
trast, a random effect is where the levels of a factor
included in the experiment do not exhaust the pos-
sible levels of the factor, but consist of a random
sample from a population of levels. In most psy-
chological experiments, there is one random effect,
Subjects: the experimenter does not claim to have
tested all the subjects who might have undertaken the
task, but hopes that the conclusions from any statis-
tical test apply not only to the people tested but also
to the population from which they have been drawn.

Analysis of factorial experiments where there are
several fixed-effects factors and one random-effects
factor (usually subjects) is the core of an introduc-
tory course on analysis of variance, and methods
and results for all simple designs are well under-
stood. The situation is less clear if there are two
random-effects factors in the same experiment, and
some researchers have argued that this is the case
in experiments involving materials drawn from lan-
guage. Two artificial datasets have been constructed,
shown in Table 1, to illustrate the problem (ignore
for the moment the variable AoA in Table 1(b); this
will be discussed later).

An experimenter is interested in word frequency
effects in a categorization task. He selects three high-
frequency words, w; to w3, and three low-frequency
words, w4 to we. Four subjects, s; to s4, make
decisions for all the words. Their decision times are
recorded and shown as ‘RT’ in Table 1. Thus, this
is a repeated measures design with the factor Words
nested within the factor Frequency. This is a common
design in psycholinguistic experiments, which has
been chosen because it is used in many discussions
of this topic (e.g., [1, 6, 7]). The actual examples are
for illustrative purposes only: It is certainly not being

Table 1 Two artificial data sets

(a) Small variance
between words

(b) Large variance
between words

S W  Freq RT S W Freq AoA RT
S 1 w1 hi 10 S1 wi hi

Sl wy hi 11 S wy hi 11
St w3 hi 12 s ws hi 13
Sl W4 lo 13 S1 Wy lo 12
S ws lo 14 s ws lo 14
Sl We lo 15 S1 We lo 16

Sz w1 hi 10 852 wi hi

S2 wr hi 12 52 wy hi 12
Sz w3 hi 12 852 w3 hi 13
S2 W4 lo 14 52 Wy lo 13
S, ws lo 14 s,  ws lo 14
S2 We lo 15 52 We lo

S3 wy hi 11 53  w hi 10
S3 wro hi 11 83 wr hi 11
S3 w3 hi 12 53 w3 hi 13
Sz wy lo 13 535 wy lo 12
Sz ws lo 13 53  ws lo 13
S3 we lo 15 53 wg lo 16

S4 w1 hi 10 S4 w1 hi

o N S R Y AT L A S Lo R S (S SO e i S S R O
—_
=)}

S4 wr hi 10 S4 wr hi 10
S4 w3 hi 11 S4 w3 hi 12
S4 Wy lo 13 S4 Wy lo 12
Ss  ws lo 15  s4 ws lo 15
Sy we lo 15 54 wg lo 16

suggested that it is appropriate to design experiments
using such small numbers of subjects and stimuli.
One possible analysis is to treat Frequency and
Words as fixed-effect factors. Such an analysis uses
the corresponding interactions with Subjects as the
appropriate error terms. Analyzed in this way, Fre-
quency turns out to be significant (F (1, 3) = 80.53,
P < 0.01) for both datasets in Table 1. There is
something disturbing about obtaining the same results
for both datasets: it is true that the means for Fre-
quency are the same in both sets (hi Frequency has
a mean RT of 11.00, lo Frequency has a mean RT
of 14.08, in both sets), but the effect looks more
consistent in dataset (a), where all the hi Frequency
words have lower means than all the lo Frequency
words, than in dataset (b), where there is much more
variation. In an immensely influential paper, Herb
Clark [1] suggested that the analyses we have just
described are invalid, because Words is being treated
as a fixed effect: other words could have been selected
that meet our selection criteria (in the present case,
to be of hi or lo Frequency) so Words should be
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treated as a random effect. Treating Words as a fixed
effect is, according to Clark, the Language-as-Fixed-
Effect Fallacy.

Statistical Methods for Dealing with Two
Random Effects in the Same Experiment

F] and Fg

Treating Words as a fixed effect, as we did in the
previous paragraph, is equivalent to averaging across
Words, and carrying out an ANOVA based purely
on Subjects as a random effect. This is known as a
by-subjects analysis and the F values derived from
it usually carry the suffix ‘1’; so, the above anal-
yses have shown that Fj(1,3) = 80.53, P < 0.01.
An alternative analysis would be, for each word, to
average across subjects and carry out an ANOVA
based purely on Words as a random effect. This is
known as a by-materials analysis (the phrase by-
items is sometimes used). The F values derived
from this analysis usually carry the suffix ‘2’. In
the present case, the dataset (a) by-materials analysis
yields F»(1,4) = 21.39, P = 0.01, which is signifi-
cant, whereas dataset (b) by-materials analysis yields
F>(1,4) =4.33, P =0.106, clearly nonsignificant.
This accords with our informal inspection of Table 1,
which shows a more consistent frequency effect for
dataset (a) than for dataset (b).

It is sometimes said that F; assesses the extent
to which the experimental results may generalize to
new samples of subjects, and that F, assesses the
extent to which the results will generalize to new
samples of words. These statements are not quite
accurate: neither F| nor F, are pure assessments of
the presence of an effect. The standard procedure in
an ANOVA is to estimate the variance due to an
effect, via its mean square (MS), and compare this
mean square with other mean squares in the analysis
to assess significance. Using formulas, to be found
in many textbooks (e.g. [13, 14]), the analysis of the
Table 1 data as a three-factor experiment where Freq
and W are treated as fixed effects and S is treated as
a random effect yields the following equations:

E(M Skreq) = 07 + qaéreqxs + nqaﬁreq (D
2, 2 2
E(MSwFreq) = 0, + O greqxs T M0W(Freqy (2

E(MSs) = 2 + pqo; (3)

E(MSFrequ) = 0_62 + qalgrequ )
E(MSW(Freq)xS) = 0432 + a&V(Freq)xS (5)

E means expected or theoretical value, o} refers
the variance attributable to A, e is random error, n
is the number of Subjects, p the number of levels
of Frequency, and g the number of Words. The
researcher rarely needs to know the precise detail
of these equations, but we include them to make an
important point about the choice of error terms in
hypothesis testing: (1), E(M Sgeq), differs from (4)
only in having a term referring to the variance in
the data attributable to the Frequency factor, so we
can test for whether Frequency makes a nonzero
contribution to the variance by comparing (1) with
(4), more precisely by dividing the estimate of
variance described in (1) (M Sgrq) by the estimate of
variance described in (4) (M Sgreqxs). In other words,
M Sgreqx s is the appropriate error term for testing for
the effect of Frequency.

If Frequency is treated as a fixed effect, but
Words and Subjects are treated as random effects,
the variance equations change, as shown below.

E(M Stieq) = 07 + Oy freqys + OFreqs
+ na‘%,(Freq) + nqaﬁreq 6)
E(M Sw (Freq) = 02 + Uvzva:req)xs + ”Uv2v<1=req> @)
E(MSs) = o} + C’VZV(Freq)xs + pqog ®)
E(M Skreqxs) = 02 + C’vzva:req)xs + anZrequ &)
E(M Sw(freq)xs) = 02 + G‘%V(Freq)xs (10)

The most important change is the difference
between (1) and (6). Unlike (1), (6) contains terms
involving the factor Words. Equation (6) is telling us
that some of the variance in calculating M Sgyq is
due to the possible variation of the effect for different
selections of words (in contrast, (1) assumes all rele-
vant words that have been included in the experiment,
so different selections are not possible). This means
that F; (derived from dividing (6) by (9)) is contam-
inated by Words: a significant F; could arise from a
fortuitous selection of words. Similarly, F, (derived
by dividing (6) by (7) is contaminated by Subjects: a
significant F, could arise from a fortuitous selection
of subjects. By themselves, F| and F; are insufficient
to solve the problem. (This is not to say that signifi-
cant Fj or F; are never worth reporting: for example,
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practical constraints when testing very young children
or patients might mean the number of stimuli that can
be used is too small to permit an F, test of reasonable
power: here F; would be worth reporting, though the
researcher needs to accept that generalization to other
word sets has yet to be established.)

Quasi-F Ratios

There are ratios that can be derived from (6) to (10),
which have the desired property that the numerator
differs from the denominator by only a term involving
apzreq. Two possibilities are

_ (MSFreq + MSW(Freq)XS)

F = (11)
(MSW(Freq) + MSFrequ)
and
F” _ MSFreq
(MSW(Freq) + MSFrequ - MSW(Freq)xS)
(12)

These F's are called Quasi-F ratios, reflecting the
fact that they are similar to standard F ratios, but,
because they are not the simple ratio of two mean
squares, their distribution is only approximated by
the standard F distribution. Winer [13, pp. 377-378]
and Winer et al. [14, pp. 374-377], give the basic
formulas for degrees of freedom in (11) and (12),
derived from Satterthwaite [10]. It is doubtful that the
reader will ever need to calculate such expressions by
hand, so these are not given here. SPSS (Version 12)
uses (12) to calculate quasi-F ratios: for example, if
the data in Table 1 are entered into SPSS in exactly
the form shown in the table, and if Freq is entered
as a Fixed Factor and S and W are entered as
Random Factors, and Type I SS are used, then SPSS
suggests there is a significant effect of Frequency
for dataset (a) (F(1,4.916) = 18.42, P < 0.01), but
not for dataset (b) (F(1,4.249) = 4.20, P = 0.1006).
If S and W are truly random effects, then this
is the correct statistical method. Many authorities,
for example, [1, 6, 13], prefer (11) to (12) since
(12) may on occasion lead to a negative number
(see [5)).

Min F’

The method outlined in section ‘Quasi-F Ratios’ can
be cumbersome: for any experiment with realistic

numbers of subjects and items, data entry into SPSS
or similar packages can be very time-consuming, and
if there are missing data (quite common in reaction-
time experiments), additional corrections need to be
made. A short cut is to calculate min F’, which, as its
name suggests, is an estimate of F’ that falls slightly
below true F’. The formula is as follows:
min F' = B (13)
(Fi + F)
The degrees of freedom for the numerator of the
F ratio remains unchanged (p — 1), and the degrees
of freedom for the denominator is given by

df— (F2+F})
(F?/df, + F}/dfy)

(14)

where df; is the error degrees of freedom for
Fy and df, is the error degrees of freedom for
F,. For the data in Table 1, dataset (a) has min
F'(1,5.86) = 16.90, P < 0.01, and dataset (b) has
min F'(1,4.42) = 4.11, P = 0.11, all values being
close to the true F’ values shown in the previ-
ous section.

Best practice, then, is that when you conduct an
ANOVA with two random-effects factors, use (11) or
(12) if you can, but if you cannot, (13) and (14)
provide an adequate approximation.

Critique

Clark’s paper had an enormous impact. From 1975
onward, researchers publishing in leading psycholin-
guistic journals, such as Journal of Verbal Learning
and Verbal Behavior (now known as Journal of Mem-
ory and Language) accepted that something needed
to be done in addition to a by-subjects analysis, and
at first min F’ was the preferred solution. Nowadays,
min F’ is hardly ever reported, but it is very common
to report F; and F,, concluding that the overall result
is significant if both F; and F, are significant. As
Raaijmakers et al. [8] have correctly pointed out, this
latter practice is wrong: simulations [4] have shown
that using the simultaneous significance of F| and F,
to reject the null hypothesis of no effect can lead to
serious inflation of Type I errors. It has also been
claimed [4] and [12] that min F’ is too conservative,
but this conservatism is quite small and the proce-
dure quite robust to modest violations of the standard
ANOVA assumptions [7, 9].
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One reason for min F”’s falling into disuse is
its absence from textbooks psychology researchers
are likely to read: Only one graduate level text-
book has been found, by Allen Edwards [3], that
gives a full treatment to the topic. Jackson & Brash-
ers [6] give a very useful short overview, though
their description of calculations using statistical pack-
ages is inevitably out of date. Another reason for
not calculating min F’ is that we have become
so cosseted by statistics packages that do all our
calculations for us, that we are not prepared to
work out min F’ and its fiddly degrees of freedom
by hand. (If you belong to this camp, there is a
website (www.pallier.org/ressources/MinF/
compminf .htm) that will work out min F’, its
degrees of freedom and its significance for you.)

The main area of contention in the application
of these statistical methods is whether materials
should be treated as a random effect. This point
was picked up by early critics of Clark [2, 12]:
researchers do not select words at random, and indeed
often go to considerable lengths to select words with
appropriate properties (‘It has often seemed to me
that workers in this field counterbalance and constrain
word lists to such an extreme that there may in
fact be no other lists possible within the current
English language.’ [2, p.262]). Counterbalancing (for
example, arranging that half the subjects receive
word set A in condition C; and word set B in
condition C,, and the other half of the subjects
receive word set B in condition C; and word set
A in condition C;) would enable a by-subjects
analysis to be carried out uncontaminated by effects
of materials [8]. Counterbalancing, however, is not
possible when the effect of interest involves intrinsic
differences between words, as in the examples in
Table 1: different words must be used if we want
to examine word frequency effects.

Constraining word lists, that is selecting sets of
words that are matched on variables we know to
influence the task they are to be used in, is often a sen-
sible procedure: it makes little sense to select words
that differ widely in their frequency of occurrence
in the language when we know that frequency often
has a substantial influence on performance. The trou-
ble with such procedures is that matching can never
be perfect because there are too many variables that
influence performance. One danger of using a con-
strained word set, which appears to give good results
in an experiment, is that the experimenter, and others

who wish to replicate or extend his or her work, are
tempted to use the same set of words in subsequent
experiments. Such a procedure may be capitalizing
on some as yet undetected idiosyncratic feature of
the word set, and new sets of words should be used
wherever possible. A further drawback is that results
from constrained word sets can be generalized only
to other word sets that have been constrained in a
similar manner.

An alternative to using highly constrained lists is
to include influential variables in the statistical model
used to analyze the data (e.g., [11]). For example,
another variable known to influence performance
with words is Age of Acquisition (AoA). A researcher
dissatisfied with the large variance displayed by
different words in Table 1(b), and believing AoA
was not adequately controlled, might add AoA as a
covariate to the analysis, still treating Subjects and
Words as random effects. This now transforms the
previously nonsignificant quasi- F ratio for Frequency
to a significant one (F (1, 3.470) = 18.80, P < 0.05).

A final remark is that many of the comments about
treating Words as a random effect apply to treating
Subjects as a random effect. In psycholinguistic
experiments, we frequently reject subjects of low
IQ or whose first language is not English, and,
when we are testing older populations, we generally
deal with a self-selected sample of above average
individuals. In an area such as morphology, which
is often not taught formally in schools, there may
be considerable individual differences in the way
morphemically complex words are represented. All
of these examples suggest that attempts to model
an individual subject’s knowledge and abilities, for
example, via covariates in analyses of covariance,
could be just as important as modeling the distinct
properties of individual words.

References

[1]  Clark, H.H. (1973). The language-as-fixed-effect fal-
lacy: a critique of language statistics in psychological
research, Journal of Verbal Learning and Verbal Behav-
ior 12, 335-359.

[2]  Clark, H.H., Cohen, J., Keith Smith, J.E. & Keppel, G.
(1976). Discussion of Wike and Church’s comments,
Journal of Verbal Learning and Verbal Behavior 15,
257-266.

[3] Edwards, A.L. (1985). Experimental Design in Psycho-
logical Research, 2nd Edition, Harper & Row, New
York.



Random Effects and Fixed Effects Fallacy 5

[4]

(51

(6]
(71

(8]

[9]

Forster, K.I. & Dickinson, R.G. (1976). More on the
language-as-fixed-effect fallacy: Monte Carlo estimates
of error rates for Fy, F>, F’, and min F’, Journal of
Verbal Learning and Verbal Behavior 15, 135-142.
Gaylor, D.W. & Hopper, F.N. (1969). Estimating the
degrees of freedom for linear combinations of means
squares by Satterthwaite’s formula, Technometrics 11,
691-706.

Jackson, S. & Brashers, D.E. (1994). Random Factors
in ANOVA, Sage Publications, Thousand Oaks.
Maxwell, S.F. & Bray, J.H. (1986). Robustness of the
quasi F statistic to violations of sphericity, Psychologi-
cal Bulletin 99, 416—421.

Raaijmakers, J.G.W., Schrijnemakers, J.M.C. & Grem-
men, F. (1999). How to deal with “The Language-
as-Fixed-Effect Fallacy”: common misconceptions and
alternative solutions, Journal of Memory and Language
41, 416-426.

Santa, J.L., Miller, JJ. & Shaw, M.L. (1979). Using
quasi F to prevent alpha inflation due to stimulus
variation, Psychological Bulletin 86, 37—-46.

[10]

[11]

[12]

[13]

[14]

Satterthwaite, F.E. (1946). An approximate distribution
of estimates of variance components, Biometrics Bulletin
2, 110-114.

Smith, P.T. (1988). How to conduct experiments
with morphologically complex words, Linguistics 26,
699-714.

Wike, E.L. & Church, J.D. (1976). Comments on Clark’s
“The Language-as-Fixed-Effect Fallacy”, Journal of Ver-
bal Learning and Verbal Behavior 15, 249-255.

Winer, B.J. (1971). Statistical Principles in Experimental
Design, 2nd Edition, McGraw-Hill Kogakusha, Tokyo.
Winer, B.J., Brown, D.R. & Michels, K.M. (1991). Sta-
tistical Principles in Experimental Design, 3rd Edition,
McGraw-Hill, New York.

PHILIP T. SMITH



Random Effects in Multivariate Linear Models:
Prediction

NicHOLAS T. LONGFORD
Volume 4, pp. 1661-1665
in
Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

© John Wiley & Sons, Ltd, Chichester, 2005



Random Effects in
Multivariate Linear
Models: Prediction

Random effects are a standard device for representing
the differences among observational or experimen-
tal units that are or can be perceived as having
been drawn from a well-defined population. Such
units may be subjects (individuals), their organiza-
tions (businesses, classrooms, families, administrative
units, or teams), or settings within individuals (time
periods, academic subjects, sets of tasks, and the
like). The units are associated with random effects
because they are incidental to the principal goal of the
analysis — to make inferences about an a priori spec-
ified population of individuals, geographical areas,
conditions, or other factors (contexts).

In modeling, random effects have the advantage
of parsimonious representation, that a large number
of quantities are summarized by a few parameters
that describe their distribution. When the random
effects have a (univariate) normal distribution, it is
described completely by a single variance; the mean
is usually absorbed in the regression part of the
model. The fixed-effects counterparts of these models
are analysis of covariance (ANCOVA) models, in
which each effect is represented by one or a set of
parameters.

In the resampling perspective, fixed effects are
used for factors that are not altered in hypotheti-
cal replications. Typically, factors with few levels
(categories), such as experimental conditions or treat-
ments, which are the focus of the inference, are
regarded as fixed. In contrast, a different set of ran-
dom effects is realized in each hypothetical replica-
tion; the replications share only the distribution of the
effects. A logical inconsistency arises when the ana-
lyzed sample is an enumeration. For example, when
the districts of a country are associated with random
effects, a replication would yield a different set of
district-level effects. Yet, a more natural replication,
considered in sampling theory in particular, keeps the
effects fixed for each district — the same set of dis-
tricts would be realized. This conflict is resolved by
a reference to a superpopulation, arguing that infer-
ences are desired for a domain like the one analyzed,

and in each replication a different domain is realized
with a different division into districts.

A constructive way of addressing the issue of
fixed versus random effects is by admitting that
incorrect models may be useful for inference. That
is, the effects are fixed, but it is advantageous to
treat them in inference as random. Apart from a
compact description of the collection of units, by their
(estimated) distribution or its parameters, random
effects enable estimation of unit-specific quantities
that is more efficient than in the maximum likelihood
or least squares for standard fixed effects ANCOVA.
The efficiency is achieved by borrowing strength
across the units [9]. Its theoretical antecedent is the
work on shrinkage estimation [5] and its application
to small-area statistics [3].

Borrowing strength can be motivated by the fol-
lowing general example. If the units are similar, then
the pooled (domain-related) estimator of the quantity
of interest @ may be more efficient for the correspond-
ing unit-related quantity 6;, because the squared bias
(0; —0)? is much smaller than the sampling vari-
ance var( ;) of the unbiased estimator of ;. Instead
of selecting the domain estimator 6 or the unbiased
large-variance estimator 0 ;, these two estimators are
combined,

6; =(1—b)b; + b0, (1

with a constant b;, or its estimator b j» for which
the combination has some optimal properties, such
as minimum mean squared error (MSE). The combi-
nation (composition) 0 ; can be interpreted as exploit-
ing the similarity of the units. The gains are quite
dramatic when the units are similar and var(éj) >
var(f). That occurs when there are many (aggregate-
level) units j and most of them are represented in the
dataset by only a few observations each.

Inference about the individual units is usually
secondary to studying the population as a whole.
Nevertheless, interest in units on their own may arise
as a result of an inspection of the data or their analysis
that aimed originally at some population features.
Model diagnostics are a notable example of this.

Estimation of random effects is usually referred
to as prediction, to avoid the terminological conflict
of ‘estimating random variables’, a contradiction in
terms if taken literally. The task of prediction is to
define a function of the data that is, in a well-defined
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sense, as close to the target as possible. With random
effects, the target does not appear to be stationary.

In fact, the realizations of random variables,
or quantities that are fixed across replications but
regarded as random in the model, are estimated.
Alternatively, the prediction can be described as
estimating the quantity of interest given that it is
fixed in the replications; the corresponding quantities
for the other units are assumed to vary across
replications. The properties of such an estimator
(predictor) should be assessed conditionally on the
realized value of the target.

Random-effects models involving normality and
linearity are greatly preferred because of their analyt-
ical tractability, easier interpretation, and conceptual
proximity to ordinary regression (see Multiple Lin-
ear Regression) and ANCOVA. We discuss first the
prediction of random effects with the model

y;=X;B+3;+ej, (2)

where y; is the n; x 1 vector of (univariate) out-
comes for (aggregate or level-2) unit j =1, ..., Ny,
X is the regression design matrix for unit j, B the
vector of regression parameters, §; the random effect
for unit j, and e; the vector of its elementary-level
(residual) terms, or deviations (see Variance Com-
ponents). The random terms §; and &; are mutually
independent, with respective centered normal distri-
butions A0, 65) and MO, 0°I,,); I is the identity
matrix of the size given in the subscript.

The model in (2) can be interpreted as a set of
related regressions for the level-2 units. They have
all the regression coefficients in common, except for
the intercept By + §;. The regressions are parallel.
The obvious generalization allows any regression
coefficients to vary, in analogy with introducing
group-by-covariate interactions in ANCOVA. Thus,
a subset of the covariates in X is associated with
variation. The corresponding submatrix of X is
denoted by Z; (its dimensions are n; x r), and the
model is

Yy, =X;B+Z;5; +¢;. 3)

where §; ~ M(0,, X), independently (0, is the r x 1
column vector of zeros), [4] and [7]. In agreement
with the ANCOVA conventions, Z; usually contains
the intercept column 1,,;. Variables that are constant
within groups j can be included in Z, but the
interpretation in terms of varying regressions does not

apply to them because the within-group regressions
are not identified for them.

The random effects §; are estimated from their
conditional expectations given the outcomes y. The
matrices X; and Z; are assumed to be known, or
are conditioned on, even when they depend on the
sampling or the data-generation process. Assuming
that the parameters f3, o2 and those involved in X are
known, the conditional distribution of §; is normal,

1
ély, 0) ~ N{FEG;'Zjej, zG;'} . @)

where G; =1, +a‘2Z;Zj): and e; =y; — X;B.
The vector §; is predicted by its (naively) estimated
conditional expectation. The univariate version of
this estimator, for the model in (2), corresponding
toZ; = 1,,]., is

g_}. — ﬂ;’ 3)

1—}—}1]‘6?) /

where @ is an estimate of the variance ratio w =
0}/0? (03 is the univariate version of ¥) and ¢; =
(y; —Xjﬁ)Tln/,/nj is the average residual in unit
Jj. Full or restricted maximum likelihood estimation
(MLE) can be applied for B, 62 and ¥ or 63. In
general, restricted MLE is preferred because the esti-
mators of o and o7 are unbiased. As the absence of
bias is not maintained by nonlinear transformations,
this preference has a poor foundation for predicting
d;. Thus, even the restricted MLE of w, the ratio
of two unbiased estimators, & = 65/62, is biased.
The bias of @ can be corrected, but it does not lead
to an unbiased estimator Sj, because 1/(1 +njw) is
estimated with bias.

These arguments should not be interpreted as
claiming superiority of full MLE over restricted
MLE, merely that no bias is not the right goal to aim
for. Absence of bias is not a suitable criterion for esti-
mation in general; minimum MSE, combining bias
and sampling variance, is more appropriate. Predic-
tion of random effects is an outstanding example of
successful (efficient) biased estimation. Bias, its pres-
ence and magnitude, depend on the resampling (repli-
cation) perspective adopted. Reference [10] presents
a viewpoint in which the estimators we consider are
unbiased. In fact, the terminology ‘best linear unbi-
ased predictor’ (BLUP) is commonly used, and is
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appropriate when different units are realized in repli-
cations. Indeed, E(§; — 8;|w) = 0 when the expec-
tation is taken both over sampling within units j
and over the population of units j, because E(§ i) =
E(8;) = 0. In contrast,

nja)
— 4,
l—l—nja) I

EG;18j;0) = (©6)

SO g_, is conditionally biased. The conditional prop-
erties of & ; are usually more relevant. The return,
sometimes quite generous, for the bias is reduced
sampling variance.

When §; are regarded as fixed effects, their
least-squares estimator (and also MLE) is S i =e;.
As SJ = qjgj’ where qj = I’lJL,(\)/(l —I—njé)) <1, S/
can be interpreted as a shrinkage estimator and
q;j, or more appropriately 1 —¢q; = 1/(1 +n;), as
a shrinkage coefficient. The coefficient g; is an
increasing function of both the sample size n; and @;
more shrinkage takes place (g; is smaller) for units
with smaller sample sizes and when @ is smaller.
That is, for units with small samples, greater weight
is assigned to the overall domain (its average residual
e = (nIEI + -+ nNZENz)/(nl + -+ I’lNz) vanishes
either completely or approximately) — the resulting
bias is preferred to the substantial sampling variance
of e;. Small w indicates that the units are very
similar, so the average residuals e; differ from zero
mainly as a result of sampling variation; shrinkage
then enables estimation more efficient than by e;.
The same principles apply to multivariate random
effects, although the discussion is not as simple and
the motivation less obvious.

Shrinkage estimation is a form of empirical Bayes
estimation (see Bayesian Statistics). In Bayes esti-
mation, a prior distribution is imposed on the model
parameters, in our case, the random effects §;. In
empirical Bayes estimation, the prior distribution is
derived (estimated) from the same data to which it is
subsequently applied; see [8] for examples in edu-
cational measurement. Thus, the prior distribution
of §; is MO, 022), and the posterior, with 022 and
other model parameters replaced by their estimates,
is M8, 62/(1 +n,;d)}.

Somewhat loosely, 67/(1 +n;@®) is quoted as the
sampling variance of & j» and its square root as the
standard error. This is incorrect on several counts.
First, these are estimators of the sampling variance
or standard error. Next, they estimate the sampling

variance for a particular replication scheme (with
d; as a random effect) assuming that the model
parameters 8, o2, and 022 are known. For large-scale
data, the uncertainty about 8 and o2 can be ignored,
because their estimation is based on many degrees of
freedom. However, 022 is estimated with at most N>
degrees of freedom, one for each level-2 unit, and
N, is much smaller than the elementary-level sample
size n =n; + --- + ny,. Two factors complicate the
analytical treatment of this problem; §; is a nonlinear
function of @ and the precision of & depends on the
(unknown) w. The next element of ‘incorrectness’ of
using 67/(1 +n;®) is that it refers to an ‘average’
unit j with the sample size n;. Conditioning on the
sample size is a common practice, even when the
sampling design does not guarantee a fixed sample
size n; for the unit. But the sample size can be
regarded as auxiliary information, so the conditioning
on it is justified. However, S_,- is biased, so we should
be concerned with its MSE:

MSE($;38;) = E{(§; — §,)*18;)
(njw)* o* 5
C (I+njw?n;  (1+n;w?’

assuming that S, 0%, and @ are known and the
sample-average residual e vanishes. Rather inconve-
niently, the MSE depends on the target §; itself. The
conditional variance is obtained by replacing 8? with
its expectation 2.

Thus, 67/(1 + n ;&) is an estimator of the expected
MSE (eMSE), where the expectation is taken over the
distribution of the random effects §;,, j' = 1,..., Na.
It underestimates eMSE(Sj;Sj) because some ele-
ments of uncertainty are ignored. As averaging is
applied, it is not a particularly good estimator of
MSE($;;8;). It is sometimes referred to as the com-
parative standard error [4]. The MSE can be esti-
mated more efficiently by bootstrap [2] or by framing
the problem in terms of incomplete information [1],
and representing the uncertainty by plausible values
of the unknown parameters, using the principles of
multiple imputation, [11] and [12]. Approximations
by various expansions are not very effective because
they depend on the variances that have to be esti-
mated.

The normal distribution setting is unusual by its
analytical tractability, facilitated by the property that
the normality and homoscedasticity are maintained
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by conditioning. These advantages are foregone with
generalized mixed linear models. They are an exten-
sion of generalized linear models that parallels the
extension of linear regression to random coefficient
models:

S{E(y;18,)) =X;B +Z;3;, )

where g is a monotone function, called the link func-
tion, and the assumptions about all the other terms
are the same as for the random coefficient model
that corresponds to normality and identity link (see
Generalized Linear Mixed Models). The condi-
tional distribution of y; given §; has to be specified;
extensive theory is developed for the case when this
distribution belongs to the exponential family (see
Generalized Linear Models (GLM)). The realiza-
tion of §; is estimated, in analogy with BLUP in the
normality case, by estimating its conditional expecta-
tion given the data and parameter estimates. In gen-
eral, the integral in this expectation is not tractable,
and we have to resort to numerical approximations.
These are computationally manageable for one- or
two-dimensional § ;, especially if the number of units
J in the domain, or for which estimation of §; is
desired, is not excessive. Some approximations avoid
the integration altogether, but are not very precise,
especially when the between-unit variance 022 (or X)
is substantial. The key to such methods is an analyti-
cal approximation to the (marginal) likelihood, based
on Laplace transformation or quasilikelihood. These
methods have been developed to their apparently log-
ical conclusion in the A-likelihood [6]. Fitting models
by h-likelihood involves no integration, the random
effects can be predicted without any extensive com-
puting, and more recent work by the authors is con-
cerned with joint modeling of location and variation
structures and detailed diagnostics.

In principle, any model can be extended to its
random-effects version by assuming that a separate
model applies to each (aggregate) unit, and specifying
how the parameters vary across the units. No varia-
tion (identical within-unit models) is a special case
in such a model formulation. Modeling is then con-
cerned with the associations in an average or typical

unit, and with variation within and across the units.
Unit-level random effects represent the deviation of
the model for a given unit from the average unit.
Units can differ in all aspects imaginable, including
their level of variation, so random effects need not be
associated only with regression or location, but can
be considered also for variation and any other model
features.
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Random Forests

Random forests were introduced by Leo Breiman
in 2001 [1], and can be thought of as bagging
classification and regression trees (CART), for
which each node is split using a random subset of
the variables, and not pruning. More explicitly, we
select a bootstrap sample (see Bootstrap Inference)
from the data and fit a binary decision tree to the
bootstrap sample. To fit the tree, we split nodes by
randomly choosing a small number of variables and
finding the best split on these variables only. For
example, in a classification problem for which we
have, say, 100 input variables, we might choose 10
variables at random, independently, each time a split
is to be made. For every distinct split on these 10
variables, we compute some measure of node purity,
such as the gini index [2], and we select the split

that optimizes this measure. Cases on each side of
the split form new nodes in the tree, and the splitting
procedure is repeated until all the nodes are pure.
We typically grow the tree until it is large, with
no pruning, and then combine the trees as with
bagging (averaging for regression and voting for
classification).

To illustrate, we use the R [8] function random-
Forest to fit a classifier to the data in Figure 1.
The classification boundary and the data are given in
Figure 1(a). In Figures 1(b), 1(c), and 1(d), the shad-
ing intensity indicates the weighted vote for class 1.
As more trees are included, the nonlinear boundary
is estimated more accurately.

Studies (e.g., [4]) show that random forests are
about as accurate as support vector machines [6] and
boosting [3], but unlike these competitors, random
forests are interpretable using several quantities that
we can compute from the forest.

0.0
(©

Figure 1 (a) Data and underlying function; (b) random forests, 10 trees; (c) random forests, 100 trees; and (d) random

forests, 400 trees



2 Random Forests

The first such quantity is variable importance. We
compute variable importance by considering the cases
that are left out of a bootstrap sample (‘out-of-bag’).
If we are interested in the importance of variable
3, for example, we randomly permute variable 3
in the out-of-bag data. Then, using the tree that
we obtained from the bootstrap sample, we subtract
the prediction accuracy for the permuted out-of-
bag data from that for the original out-of-bag data.
If variable 3 is important, the permuted out-of-bag
data will have lower prediction accuracy than the
original out-of-bag data, so the difference will be
positive. This measure of variable importance for
variable 3 is averaged over all the bootstrap samples,
and the procedure is repeated for each of the other
input variables.

A second important quantity for interpreting ran-
dom forests is the proximity matrix (see Proximity
Measures). The proximity between any two cases
is computed by looking at how often they end up
in the same terminal node. These quantities, suitably
standardized, can be used in a proximity-based clus-
tering (see Hierarchical Clustering) or multidimen-
sional scaling procedure to give insight about the
data structure. For example, we might pick out sub-
groups of cases that almost always stay together in
the trees, or outliers that are almost always alone in
a terminal node.

Random forests can be used in a clustering context
by thinking of the observed data as class 1, creating a

synthetic second class, and using the random forests’
classifier. The synthetic second class is created by
randomly permuting the values of each input variable.
The proximities from random forests can be used in
a proximity-based clustering procedure.

More details on random forests can be obtained
fromhttp://stat-www.berkeley.edu/users/
breiman/RandomForests, along with freely avail-
able software.
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Random Walks

Suppose there is an accident on a motorway that
reduces traffic past that point to a cautious one-
vehicle-at-a-time on the hard shoulder. A mile or
so in advance, the traffic is channelled into two
lanes and, as you reach that two-lane restriction, you
find yourself level with a Rolls-Royce. Thereafter,
sometimes the Rolls-Royce edges forward a length,
sometimes it is your turn, and Figure 1 shows how
the relative position of the two cars develops. To your
chagrin, the Rolls-Royce has crept ahead; will you
ever catch up?

A random walk is the cumulative sum of a series
of independent and identically distributed random
variables, Y | X;, and Figure 1 is a simple example
(as also is the forward progress of either car). As a
vehicle somewhere ahead edges past the scene of the
accident, you or the Rolls-Royce (but not both) can
move forward one car length — one step in the random
walk. Assuming that the two lanes feed equally and at
random past the accident, then the relative positions
of the two cars is analogous to the difference in the
numbers of heads and tails in a sequence of tosses of
a fair coin. If the sequence continues for long enough,
it is certain that the numbers of heads and tails will,
at some point, be equal, but the mean wait is infinite.
That is to say, you will most probably pass the point
of restriction before you draw level with the Rolls-
Royce.

Each step in Figure 1 could, of course, be itself
the sum of a number of independent and identically
distributed random variables. Suppose I let a drop of

No. of lengths
Rolls-Royce is ahead

No. of lengths
your car is ahead

Steps in random walk

Figure 1 Relative position of two cars on a motorway

black ink fall into a glass of water. The ink slowly
diffuses throughout the water, driven by Brownian
motion. Suppose Figure 1 represents the drift of a
notional particle of black ink on the left—right axis.
Each step can then be split into an arbitrary num-
ber of substeps. If the substeps are independent and
identically distributed, then the random walk is actu-
ally a random process, unfolding in continuous time.
But such a decomposition (into an arbitrary number
of independent and identically distributed substeps)
is possible only if the distribution of each step is
infinitely divisible. Amongst well-known probability
distributions, the normal, the Poisson, and the gamma
(or chi-squared) (see Catalogue of Probability Den-
sity Functions) distributions are infinitely divisible.
In addition, a compound Poisson distribution (in
which each Poisson event is itself a random vari-
able) is infinitely divisible with respect to its Poisson
parameter, so the class of infinitely divisible distri-
butions is very broad. But amongst these possibilities
only the normal (or Wiener) process is continuous
with respect to the spatial dimension; all the other
random processes contain jumps.

Interest in random walks began in the 18th century
with gamblers wanting to know the chances of
their being ruined. Suppose the game is ‘absolutely
fair’ (see Martingales), so that the probabilities of
winning and losing are equal. The paths in Figure 2
trace out different gamblers’ cumulative wins and
losses. If a gambler should ever lose his or her entire
fortune, he or she will have nothing left to gamble
with, and this is represented by his or her time line
(path) in Figure 2 descending to the axis at 0. This
poses the following question: What is the probability
that the random walk will ever fall below a certain
specified value (the gambler’s entire fortune)? In
more detail, how does the random walk behave if
we delete all those gamblers who are ruined from the
point of their bankruptcy onwards (broken lines in
Figure 2)? For the binomial walk of Figure 1, this is
a simple problem. Clearly, any walk that strays below
the horizontal boundary must be struck out from
that point onwards. But we must also delete those
continuations of such a random walk that happen to
rise upwards from the boundary as well as those that
continue below. This may be achieved by introducing
a mirror-image source (dotted lines in Figure 2)
below the boundary. The fortunes of a gambler who
has escaped ruin may be represented by the difference
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Figure 2 Calculation of a random walk with one absorb-
ing barrier by deletion of an image process

between these two random processes, the original and
the mirror image, above the horizontal boundary [2].

The mirror-image technique works equally for
random processes in continuous time; and a simple
modification to the argument adjusts it to the case
where the random walk drifts up or down (the
gambler is playing with skilled card sharps and loses
more often than he wins) [1, p. 50]. If the basic
random process is a (normal) Wiener process, the
time taken to reach the boundary (to be ruined) is
given by the Wald distribution

f@) = 4 exp M (1)
N TED) 207}’

where a is the distance to the boundary (the gam-
bler’s fortune) and p and o2 the rates at which the
mean and variance of the random process increase
per unit time. Schwartz [5] has used this distribution,
convolved with an exponential to provide the char-
acteristic long tail, as a model for simple reac-
tion times.

Random walks have also been proposed as mod-
els for two-choice reaction times [6]. There are now
two boundaries placed on either side of a starting
point (Figure 3), one corresponding to each response.
The response depends on which boundary is reached

Figure 3 Random walk with two absorbing barriers

first; the reaction time is, of course, the time taken to
reach that boundary. So this model bids to determine
both choice of response and latency from a com-
mon process.

The distribution of reaction time now depends on
the location of two absorbing boundaries as well as
the statistical properties of the processes represent-
ing the two alternative stimuli. Unfortunately, the
simple argument using mirror-image sources is not
practicable now; it generates an infinite series of
sources stretching out beyond both boundaries. But
the response probabilities and the moments of the
reaction time distributions can be readily obtained
from Wald’s identity [7, p. 160]. Let ¢(w) be the
characteristic function of the random process per unit
time. Let Z be the terminal value of the process on
one or the other boundary. Then

£ {exp(Za)) }
[p(@)]

Even so, the development of this model is not simple
except in two special cases.

There are two distinct random processes involved,
representing the two alternative stimuli, A and B.
The special cases are distinguished by the relationship
between these two processes.

= 1. 2)

1. Suppose that fg(x) = e* fa(x). The variable x
is then the probability ratio between the two
alternatives, and the reaction time model may be
interpreted as a sequential probability ratio test
between the two stimuli [3].
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2. Suppose instead that fg(x) = fa(—x). The two
processes are now mirror images of each
other [4].

The nature of reaction times is such that a random
walk has an intuitive appeal as a possible model;
this is especially so with two-choice reaction times in
which both probabilities of error and reaction times
derive from a common source. But the relationship
of experimental data to model predictions has not
provided great grounds for confidence; it has typically
been disappointing.
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Randomization

Introduction

Randomization is the intentional use of a random
process either in the design phase (prerandomiza-
tion) or in the analysis phase (postrandomization)
of an investigation. Prerandomization includes ran-
dom selection, random assignment, and random-
ized response methods. Postrandomization includes
randomized decision rules and randomization-based
inference methods such as permutation tests and
bootstrap methods. The focus of this article is
on random selection, random assignment, and their
relationship to randomization-based inference. Defi-
nitions of simple random assignment and selection
along with a brief discussion of the origins of ran-
domization are given in this section. Justifications
for and criticisms of randomization are given in the
next section.

Simple random selection refers to any process that
selects a sample of size n without replacement from
a population of size N > n, such that each of the
N!/[n!(N — n)!] possible samples is equally likely
to be selected. Simple random assignment refers to
any process that assigns one of ¢ treatments to each of
N subjects, such that each of the N!/(n!n,!, ...n.!)
possible assignments in which treatment j is assigned
to n; subjects is equally likely. A method for per-
forming random assignment, as well as a warn-
ing about a faulty assignment method, is described
in [26]. For convenience, the term randomization will
be used in this article to refer either to random selec-
tion or to random assignment. Details on randomized
response methods can be found in [67]. Randomized
decision rules are described in [11, §1.5] and [40,
§9.1].

The prevailing use of random assignment in
experimentation owes much to R. A. Fisher, who
in 1926 [17], apparently was the first to use the
term randomization [7]. Random assignment, how-
ever, had been used much earlier, particularly in
behavioral science research. Richet [49] used random
assignment in an 1884 telepathy experiment in which
subjects guessed the suit of a card. The Society for
Psychical Research in London was receptive to using
random assignment and by 1912 it was being used
in parapsychological research at American univer-
sities. Random assignment also was used as early

as 1885 in psychophysics experiments [42], but the
procedure was not as readily accepted here as it
was in parapsychological research. Fisher made ran-
dom assignment a formal component of experimental
design, and he introduced the method of permutation
tests (see Permutation Based Inference) [18]. Pit-
man [44—46] provided a theoretical framework for
permutation tests and extended them to tests on cor-
relations and to analysis of variance.

Random sampling also has origins within social
science research. Kiaer [34] proposed in 1897 that
a representative (purposive) sample rather than a
census be used to gather data about an existing pop-
ulation. The proposal met substantial opposition, in
part because the method lacked a theoretical frame-
work. Bowley, in 1906 [3], showed how the central
limit theorem could be used to assess the accuracy
of population estimates based on simple random sam-
ples. Work on the theory of stratified random sam-
pling (see Stratification) had begun by 1923 [64],
but as late as 1926 random sampling and purpo-
sive sampling were still treated on equal grounds [4].
It was Neyman [41] who provided the theoretical
framework for random sampling and set the course
for future research. In this landmark paper, Ney-
man introduced the randomization-based sampling
distribution, described the theory of stratified ran-
dom sampling with optimal allocation, and developed
the theory of confidence intervals. Additional discus-
sions on the history of randomization can be found
in [16, 25, 29, 43, 47, 48, 57, 59], and [61].

Why Randomize?

It might seem unnecessary even to ask the ques-
tion posed by the title of this section. For most
behavioral scientists, the issue was resolved in the
sophomore-level experimental psychology course. It
is apparent, however, that not all statisticians take
this course. At least two articles with the title “Why
Randomize’ are widely cited [23, 32]. A third arti-
cle asked ‘Must We Randomize Our Experiment’?
and answered — ‘sometimes’ [2]. A fourth asked
‘Experimental Randomization: Who Needs It?” and
answered — ‘nobody’ [27]. Additional articles that
have addressed the question posed in this section
include [5, 6, 9, 24, 36, 38, 55, 60—63, 65], and [66].
Arguments for randomization as well as selected crit-
icisms are summarized next.
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To Ensure that Linear Estimators are Unbiased
and Consistent. A statistic is unbiased for esti-
mating a parameter if the mean of its sampling
distribution is equal to the value of the parameter,
regardless of which value the parameter might have.
A statistic is consistent for a parameter if the statistic
converges in probability to the value of the parameter
as sample size increases.

A sampling distribution for a statistic can be gen-
erated by means of postrandomization, provided that
prerandomization was employed for data collection.
Sampling distributions generated in this manner are
called randomization distributions. In an observa-
tional study, random sampling is sufficient to ensure
that sample means are unbiased and consistent for
population means. Random sampling also ensures
that the empirical cumulative distribution function is
unbiased and consistent for the population cumulative
distribution function and this, in turn, is the basis of
the bootstrap. Likewise, random assignment together
with unit-treatment additivity ensures that differences
between means of treatment groups are unbiased and
consistent estimators of the true treatment differences,
even if important explanatory variables have been
omitted from the model.

Unbiasedness is generally thought of as a desirable
property, but an estimator may be quite useful without
being unbiased. First, biased estimators are some-
times superior to unbiased estimators with respect
to mean squared error (variance plus squared bias).
Second, unbiasedness can be criticized as an artifi-
cial advantage because it is based on averaging over
treatment assignments or subject selections that could
have been but were not observed [5]. Averaging over
data that were not observed violates the likelihood
principle, which states that inferences should be based
solely on the likelihood function given the observed
data. A brief introduction to the issues regarding the
likelihood principle can be found in [50] (see Maxi-
mum Likelihood Estimation).

To Justify Randomization-based Inference. One
of the major contributions of Neyman [41] was
to introduce the randomization distribution for sur-
vey sampling. Randomization distributions provide a
basis for assessing the accuracy of an estimator (e.g.,
standard error) as well as a framework for construct-
ing confidence intervals.

Randomization distributions based on designed
experiments are particularly useful for testing sharp

null hypotheses. For example, suppose that treatment
and control conditions are randomly assigned to sub-
jects and that administration of the treatment would
have an additive effect, say §, for each subject. The
permutation test, based on the randomization distri-
bution of treatment versus control means, provides
an exact test of the hypothesis § = 0. Furthermore, a
confidence interval for § can be obtained as the set
of all values 8y for which Hy: § = §p is not rejected
using the permutation test. In general, randomization
plus subject-treatment additivity eliminates the need
to know the exact process that generated the data.

It has been suggested that permutation tests are
meaningful even when treatments are not randomly
assigned [9, 12-15, 19, 39, 54]. The resulting P
values might have descriptive value but without
random assignment they do not have inferential value.
In particular, they cannot be used to make inferences
about causation [24].

Randomization-based inference has been criticized
because it violates the conditionality principle [1, 10,
27]. This principle states that inference should be
made conditional on the values of ancillary statistics;
that is, statistics whose distributions do not depend on
the parameter of interest. The outcome of randomiza-
tion is ancillary. Accordingly, to obey the condition-
ality principle, inference must be made conditional
on the observed treatment assignment or sample
selection. Postrandomizations do not yield additional
information. This criticism of randomization-based
inference loses much of its force if the model that
generated the data is unknown. Having a valid
inference procedure in the absence of distributional
knowledge is appealing and appears to outweigh the
cost of violating the conditionality principle.

To Justify Normal-theory Tests. Kempthorne [30,
31] showed that if treatments are randomly assigned
to subjects and unit-treatment additivity holds, then
the conventional F Test is justified even in the
absence of normality. The randomization distribution
of the test statistic under Hy is closely approximated
by the central F distribution. Accordingly, the con-
ventional F' Test can be viewed as an approximation
to the randomization test. In addition, this result
implies that the choice of the linear model is not ad
hoc, but follows from randomization together with
unit-treatment additivity.
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To Protect Against Subjective Biases of the Investi-
gator. Randomization ensures that treatment assign-
ment is not affected by conscious or subconscious
biases of the experimenter. This justification has
been criticized on the grounds that an investigator
who cannot be trusted without randomization does
not become trustworthy by using randomization [27].
The issue, however, is not only about trust. Even
the most trustworthy experimenter could have an
unintentional influence on the outcome of the study.
The existence of unintentional experimenter effects
is well documented [53] and there is little reason to
believe that purposive selection or purposive assign-
ment would be immune from such effects.

To Elucidate Causation. It has been argued that the
scientific (as opposed to statistical) purpose of ran-
domization is to elucidate causation [33, 62]. Accu-
rate inferences about causality are difficult to make
because experimental subjects are heterogeneous and
this variability can lead to bias. Random assign-
ment guards against pretreatment differences between
groups on recorded variables (overt bias) as well as
on unobserved variables (hidden bias).

In a designed experiment, the causal effect of one
treatment relative to a second treatment for a spe-
cific subject can be defined as the difference between
the responses under the two treatments. Most often
in practice, however, only one treatment can be
administered to a specific subject. In the counterfac-
tual approach (see Counterfactual Reasoning), the
causal effect is taken to be the difference between
potential responses that would be observed under
the two treatments, assuming subject-treatment addi-
tivity and no carryover effects [28, 52, 55, 56].
These treatment effects cannot be observed, but ran-
dom assignment of treatments is sufficient to ensure
that differences between the sample means of the
treatment groups are unbiased and consistent for the
true causal effects. The counterfactual approach has
been criticized on the grounds that assumptions such
as subject-treatment additivity cannot be empirically
verified [8, 20, 63].

‘Randomization is rather like insurance [22].” It
protects one against biases, but it does not guaran-
tee that treatment groups will be free of pretreat-
ment differences. It guarantees only that over the
long run, average pretreatment differences are zero.
Nonetheless, even after a bad random assignment, it
is unlikely that treatment contrasts will be completely

confounded with pretreatment differences. Accord-
ingly, if treatment groups are found to differ on
important variables after random assignment, then
covariate adjustment still can be used (see Analysis
of Covariance). This role of reducing the probability
of confounding is not limited to frequentist analyses;
it also is relevant in Bayesian analyses [37].

Under certain conditions, causality can be inferred
without random assignment. In particular, if experi-
mental units are homogeneous, then random assign-
ment is unnecessary [55]. Also, random assignment is
unnecessary (but may still be useful) under covariate
sufficiency. Covariate sufficiency is said to exist if all
covariates that affect the response are observed [63].
Under covariate sufficiency, hidden bias is nonex-
istent and adjustment for differences among the
observed covariates is sufficient to remove overt
bias, even if treatments are not randomly assigned.
Causal inferences from structural equation models fit-
ted to observational data as in [58] implicitly require
covariate sufficiency. Without this condition, infer-
ences are limited to ruling out causal patterns that
are inconsistent with the observed data. Causal infer-
ence in observational studies without covariance suf-
ficiency is substantially more difficult and is sensitive
to model misspecification [68, 69].

Furthermore, random assignment is unnecessary
for making causal inferences from experiments when-
ever treatments are assigned solely on the basis of
observed covariates, even if the exact assignment
mechanism is unknown [21]. The conditional prob-
ability of treatment assignment given the observed
covariates is known as the propensity score [52].
If treatments are assigned solely on the basis of
observed covariates, then adjustment for differences
among the propensity scores is sufficient to remove
bias. One way to ensure that treatment assignment
is solely a function of observed covariates is to ran-
domly assign treatments to subjects, possibly after
blocking on one or more covariates.

To Enhance Robustness of Inferences. Proponents
of optimal experimental design and sampling recom-
mend that treatments be purposively assigned and
that subjects be purposively selected using rational
judgments rather than random processes. The advan-
tage of purposive assignment and selection is that
they can yield estimators that are more efficient
than those based on randomization [35, 51]. If the
presumed model is not correct, however, then the
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resulting inferences may be faulty. Randomization
guards against making incorrect inferences due to
model misspecification.

For example, consider the problem of constructing
a regression function for a response, Y, given a single
explanatory variable, X. If the regression function is
known to be linear, then the variance of the least
squares slope estimator is minimized by selecting
observations for which half of the Xs are at the max-
imum and half of the Xs are at the minimum value
(see Optimal Design for Categorical Variables). If
the true regression function is not linear, however,
then the resulting inference will be incorrect and
the investigator will be unable to perform diagnostic
checks on the model. In contrast, if (X, Y) pairs are
randomly selected then standard regression diagnos-
tic plots can be used to detect model misspecification
and to guide selection of a more appropriate model.
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Randomization Based
Tests

Introduction

My brief is to provide an overview of the random-
ization model of statistical inference, and of the
statistical tests that are appropriate to that model. I
may have exceeded that brief. In the first instance,
I have felt obliged to present and discuss one of its
major rivals: the population model of inference. In
the second instance, I have not confined my descrip-
tion to tests on continuous or rank-ordered data under
the randomization model. It has seemed to me that
the so-called ‘exact’ tests on categorical data should
also be considered under this model for they, too,
involve permutation (see Exact Methods for Cate-
gorical Data).

I shall try to differentiate between the population
and randomization models of statistical inference. I
shall not consider the Bayesian model, partly (at least)
because it is not popular, and partly because I have to
confess that I do not fully understand its application
to real-life experimentation (see Bayesian Statistics).

The Population Model of Statistical
Inference

This is sometimes known as the classical model. It
was first articulated in stringent theoretical terms by
Neyman and Pearson with respect to continuous
data [21, 22] (see Neyman—Pearson Inference). It
presupposes, or has as its assumptions, the following:
(a) the samples are drawn randomly from defined
populations, and (b) the frequency distributions of
the populations are mathematically definable. An
alternative definition embraces the notion that if a
large (infinite) number of samples (with replacement)
were to be taken from the population(s) actually
sampled in the experiment, then the P value attached
to the null hypothesis corresponds to the frequency
with which the values of the test statistic (for instance,
the difference between means) are equal to or exceed
those in the actual experiment. It should be noted
that Neyman and Pearson also introduced the notions
of Type 1 error («, or false rejection of the null
hypothesis) and Type 2 error (8, or false acceptance

of the null hypothesis) [21, 22]. By extension, this led
to the notion of power to reject the null hypothesis
(1 — B). Though Neyman and Pearsons’s original
proposals were concerned with tests of significance
(P values), Neyman later introduced the notion of
confidence intervals (CIs) [20].

It is important to note that statistical infer-
ences under this model, whether they are made by
hypothesis-testing (P values) or by estimation (CIs),
refer to the parent populations from which the random
samples were drawn.

The mathematically definable populations to which
the inferences refer are usually normally distributed
or are derivatives of the normal (Gaussian) distribu-
tion (for instance, ¢, F, x2).

A late entrant to the population model of infer-
ence is the technique of bootstrapping, invented by
Bradley Efron in the late 1970s [5]. Bootstrapping
is done, using a fast computer, by random resam-
pling of the samples (because the populations are
inaccessible), with replacement. It allows inferences
to be made (P values, SEs, CIs) that refer to ran-
domly sampled populations, but with the difference
from classical statistical theory that no assumptions
need be made about the frequency distribution of the
populations.

The historical relationship between the enuncia-
tion of the population model of inference and the first
descriptions of statistical tests that are valid under
this model is rather curious. This is because the tests
were described before the model was. ‘Student’ (W.S.
Gosset) described what came to be known as the ¢
distribution in 1908 [28], later converted into a prac-
tical test of significance by Fisher [6]. R.A. Fisher
gave, in 1923, a detailed account of his use of anal-
ysis of variance (ANOVA) to evaluate the results
of a complex experiment involving 12 varieties of
potato, 6 different manures, and 3 replicates in a
randomized block design [9]. The analysis included
the Variety x Manure interaction. All this, performed
with pencil and paper! But it was not until 1928
that Neyman and Pearson expounded the population
model of inference [21, 22].

So, what is wrong with the population model
of inference? As experimental biologists (not least,
behavioral scientists) should know — but rarely
admit — we never take random samples (see
Randomization). At best, we take nonrandom
samples of the experimental units (humans, animals,
or whatever) that are available — ‘samples of
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convenience’ [16]. The availability may come about
because units have presented themselves to a clinic,
have responded to a call for volunteers, or can be
purchased from animal breeders. We then randomize
the experimental units to ‘treatment groups’, for
instance, no treatment (control), placebo, various
drugs, or various environmental manipulations. In
these circumstances, it is impossible to argue that
genuine populations have been randomly sampled.
Enter, the randomization model of inference and tests
under that model.

The Randomization Model of Statistical
Inference

This was enunciated explicitly only about 50 years
ago [12], even though statistical tests under this
model had been described and performed since the
early 1930s. This is undoubtedly because, until com-
puters were available, it might take days, weeks, or
even months to analyze the results of a single exper-
iment. Much more recently, this and other models
have been critically appraised by Rubin [26]. The
main features of the model are that (a) experimental
groups are not acquired by random sampling, but
by taking a nonrandom sample and allocating its
members to two or more ‘treatments’ by a pro-
cess of randomization; (b) tests under this model
depend on a process of permutation (randomiza-
tion); (c) the tests do not rely on mathematically
defined frequency-distributions; (d) inferences under
this model do not refer to populations, but only to the
particular experiment; (e) any wider application of
these statistical inferences depends on scientific (ver-
bal), not statistical, argument. Good accounts of this
model for nonmathematical statisticians are given in
monographs [4, 11, 16, 18] (see Permutation Based
Inference).

Arguments in favor of this model have been pro-
vided by R.A. Fisher [7]: “....conclusions [from ¢
or F Tests] have no justification beyond the fact
that they agree with those which could have been
arrived at by this elementary method [randomiza-
tion].” And by Kempthorne [12], who concluded:
‘When one considers the whole problem of exper-
imental inference, that is, of tests of significance,
estimation of treatment differences and estimation of
the errors of estimated differences, there seems lit-
tle point in the present state of knowledge in using

[a] method of inference other than randomization
analysis.’

The randomization model of inference and the
statistical tests conducted under that model have
attracted little attention from theoretical statisticians.
Why? My guess is that this is because, to theoreti-
cal statisticians, the randomization model is boring.
There are some exceptions [2, 25] but, as best I
can judge, these authors write of inferences being
referable to populations. I argue that because the
experimental designs involve randomization, not ran-
dom sampling, they are wrong.

What statistical tests are appropriate to randomiza-
tion? For continuous data, the easiest to understand
are those designed to test for differences between
or among means [15]. In 1935, R.A. Fisher ana-
lyzed, by permutation, data from an experiment on
matched pairs of plants performed by Charles Dar-
win [8]. Fisher’s goal was to show that breaches
of the assumptions for Student’s 7 Test did not
affect the outcome. In 1936, Fisher analyzed cran-
iometric data from two independent groups by per-
mutation [7]. In 1933, Eden and Yates reported
a much more ambitious analysis of a complex
experiment by permutation, to show that analy-
sis of variance (ANOVA) was not greatly affected
by breaches of assumptions [3]. As I shall show
shortly, the calculations involved in these studies
can only be described as heroic. Perhaps, because
of this, Fisher repudiated permutation tests in favor
of ¢t Tests and ANOVA. He said that their utility
‘... consists in their being able to supply confir-
mation. whether rightly or, more often, wrongly,
when it is suspected that the simpler tests have
been apparently injured by departure from nor-
mality’ [8]. It is strange that Fisher, the inventor,
practitioner, and proselytizer of randomization in
experimental design [8], seems not to have made
the connection between randomization in design
and the use of permutation (randomization) tests
to analyze the results. All Fisher’s papers can be
downloaded free-of-charge from the website www.
library.adelaide.edu.au/digitised/
fisher/.

Over the period 1937 to 1952, the notion of
transforming continuous data into ranks was devel-
oped [10, 13, 19, 29] (see Rank Based Inference).
The goal of the authors was to simplify and expe-
dite analysis of variance, and to cater for data that
do not fulfill the assumption of normality in the
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parent populations. All four sets of authors relied
on calculating approximate (asymptotic) P values
by way of the x> or z distributions. It is true
that Wilcoxon [29] and Kruskal and Wallis [13] did
produce small tables of exact P values resulting
from the permutation of ranks. But it is curious
that only Kruskal and Wallis [13] refer to Fisher’s
idea of exact tests based on the permutation of
means [7, 8].

There is a misapprehension, commonplace among
investigators but also among some statisticians [26],
that the rank-order tests are concerned with dif-
ferences between medians. This is simply untrue.
These tests are concerned with differences in group
mean ranks (R; — R,), and it can easily be demon-
strated that, because of the method of ranking,
this is not the same as differences between medi-
ans [1]. It should be said that though Wilcoxon
was the first to describe exact rank-order tests, it
was Milton Friedman (later a Nobel prize-winner
in economics) who first introduced the notion of
converting continuous into rank-ordered data in
1937 [10], but he did not embrace the notion of
permutation.

Now, the analysis of categorical data by permu-
tation — this, too, was introduced by R.A. Fisher [8].
He conjured up a hypothetical experiment. It was that
a colleague reckoned she could distinguish a cup of
tea to which the milk had been added first from a
cup in which the milk had been added after the tea
(Table 3). This well-known ‘thought’ experiment was
the basis for what is now known as the Fisher exact
test. Subsequently, this exact method for the analysis
of categorical data in 2 x 2 tables of frequency has
been extended to r x ¢ tables of frequencies, both
unordered and ordered.

As a piece of history, when Frank Yates described
his correction for continuity for the x? test on small
2 x 2 tables, he validated his correction by reference
to Fisher’s exact test [30].

Statistical Tests Under the Randomization
Model of Inference

Differences Between or Among Means

Two Independent Groups of Size n; and ny;. The
procedure followed is to exchange the members of
the groups in all possible permutations, maintaining
the original group sizes (Tables 1 and 2). That is, all

Table 1 Illustration of the process of permutation in the
case of two independent, randomized, groups

Permutation Group 1 n =2 Group 2 n =3
A a, b c,d, e
B a, c b,d, e
C a, d b,c, e
D a, e b, c, d
E b, ¢ a, d, e
F b, d a, c, e
G b, e a,c,d
H c, d a, b, d
1 c, € a, b, d
J d, e a, b, c

The number of possible permutations (see Formula 2) is
24+ 3)!/(2)!(3)! = 10, whether the entries are continuous or
ranked data.

Table 2 Numerical datasets corresponding to Table 1

Dataset Group 1 Group 2 Xy — X1 R, — R
A 1,3 4,7,9 4.67 2.50
B 1,4 3,7,9 3.83 1.67
C 1,7 3,4,9 1.33 0.83
D 1,9 3,4,7 —0.33 0.00
E 3,4 1,7,9 2.17 0.83
F 3,7 1,4,9 -0.33 0.00
G 3,9 1,4,7 —2.00 —0.83
H 4,7 1,3,9 —1.17 —0.83
1 4,9 1,3,7 —2.83 —1.67
J 7,9 1,3,4 —5.33 —2.50

1, 3, 4, 7 and 9 were substituted for a, b, ¢, d and e in Table 1,
and the differences between means (x, — x;) calculated. The
ranks 1, 2, 3, 4 and 5 were substituted for a, b, ¢, d and e
in Table 1, and the differences between mean ranks (152 —
R,) calculated.

Exact permutation test on difference between means [7]:
dataset A, one-sided P = 0.100, two-sided P = 0.200; dataset
B, one-sided P = 0.200, two-sided P = 0.300; dataset J, one-
sided P = 0.100, two-sided P = 0.100.

Exact permutation test on difference between mean ranks [18,
28]: dataset A, one-sided P = 0.100, two-sided P = 0.200;
dataset B, one-sided P = 0.200, two-sided P = 0.400; dataset
J, one-sided P = 0.100, two-sided P = 0.200.

possible ways in which the original randomization
could have fallen out are listed. Then:

No. of permutations in which the difference
between group means is equal to
or more extreme than that observed
All possible permutations

P=
ey
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For a one-sided P, only differences that are equal to
or greater than that observed (that is, with + sign) are
used. For a two-sided P, differences, regardless of
the sign, that are greater than that observed are used.

The number of all possible permutations increases
steeply with group size. The formula for this, for
group sizes of n; and n,, and corresponding group
means x; and Xx,, is:

(n1 + ny)!
(n)!ny)!

This innocuous formula disguises the magnitude of
the computational problem. Thus, for n; =n, =95,
the number of all possible permutations is 252. For
n; =n, = 10, it is 184 756. And for ny = n, = 15, it
is 155117 520. A solution to the sometimes massive
computational problem is to take Monte Carlo ran-
dom samples (see Monte Carlo Simulation) of, say,
10000 from the many millions of possible permuta-
tions. Interestingly, this is what Eden and Yates did in
solving the massive problem of their complex analy-
sis of variance — by the ingenious use of cards [3].

2

Matched Pairs. Given n matched pairs, the number
of all possible permutations is

2", (3)

Thus, if n = 5, the number of all possible permuta-
tions is 32; for n = 10, 1024; and for n = 15, 32768.
The last is what R.A. Fisher computed with pencil
and paper in 1935 [8].

k Independent Groups. This corresponds to one-way
ANOVA. It is a simple extension of two independent
groups, and the number of all possible permutations is
given by an extension of formula (2). Usually, instead
of using the difference between the means, one uses
a simplified F statistic [4, 11, 18].

k Matched Groups. This corresponds to two- or
multi-way ANOVA (see Factorial Designs). There
is no great problem if only the main effects are to be
extracted. But it is usually the interactions that are
the focus of interest (see Interaction Effects). There
is no consensus on how best to go about extract-
ing these. Edgington [4], Manly [18], and Good [11]
have suggested how to go about this.

In the case of a two-way, factorial, design first
advocated by Fisher [9], there seems to be no great
problem. Good [11] describes clearly how, first, the
main (fixed) effects should be factored out, leaving
the two-way interaction for analysis by permutation.

But what about a three-way factorial design? Not
uncommon in biomedical experimentation. But this
involves no fewer than three two-way interactions,
and one three-way interaction. It is the last that might
test the null hypothesis of prime interest. Can this
interaction be extracted by permutation? Good [11]
shows, by rather complex theoretical argument, how
this could be done.

Then, what about repeated-measures designs?
Not an uncommon design in biomedical experimen-
tation. If the order of repeated measurements is ran-
domized, Lunneborg shows how this can be handled
by permutation [16, 17]. But, if the order of the
repeated measurements is not randomized (for exam-
ple, time cannot be randomized, nor can ascending
dose- or stimulus-response designs), surely, analysis
of the results cannot be done under the randomization
model of inference?

My pragmatic view is that the more complex
the experimental design, the less practicable is a
randomization approach. Or, to put it another way,
the more complex the experimental design, the closer
tests under the classical and randomization models of
inference approach each other.

Confidence Intervals (Cls) Under the Randomization
Model. 1t seems to me that Cls are irrelevant to the
randomization model. This is because they refer to
populations that have been randomly sampled [20],
and this is emphatically not the case under the
randomization model.

Minimal Group Size and Power in Randomization
Tests. Conventional ways of thinking about these
have to be abandoned, because they depend on the
population model of inference. My practical solution
is to calculate the maximum number of possible
permutations (formulae 2, 3). It must be at least 20
in order to be able to achieve P < 0.05.

Differences Between or Among Group Mean
Ranks

As indicated above, the computational problem of
evaluating these differences by permutation is much
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less than that presented by differences between/
among means. It is, therefore, rarely necessary to
resort to Monte Carlo random sampling.

An enormous number of rank-order tests has
been described: the Wilcoxon-Mann-Whitney test
for two independent groups [19, 29], the Wilcoxon
matched pairs, signed-rank, test [29], the Kruskal-
Wallis test (see Kruskal-Wallis Test) on k inde-
pendent groups [13], and the Friedman test on k
related groups [4], are well known. But there is
a host of other, eponymous, rank-order tests [14].
A word of caution is necessary. Almost all gen-
eral statistics programs offer these tests, though
executed asymptotically by normal or x2 approx-
imations rather than by permutation. The prob-
lem with the asymptotic versions is that the algo-
rithms used are often not described. How ties
are handled is of critical importance. This mat-
ter has been addressed recently [1]. An example of
the exact Wilcoxon-Mann-Whitney test is given in
Table 2.

Exact Tests on Categorical Data

The simplest case is a 2 x 2 table of frequencies
(Table 3). As Fisher described in simple terms [8],
and Siegel and Castellan in modern notation [27], the
point probability of Hy is described by:

p_ (@a+b)!(c+d)(a+c)b+d)!
o Nlalb!cld!

However, the probability of Hy refers to the prob-
ability of occurrence of the observed values, plus
the probabilities of more extreme values in the same
direction. And, if a two-sided P is sought, the same or
more extreme values in either direction must be taken
into account. Thus, (4) must be applied to all these
tables, and the P values summed. In the example of
Table 3, the two-sided P is twice the one-sided value.
This is only because of the equality and symmetry of
the marginal totals.

There is a multitude of exact tests on cate-
gorical data for 2 x 2 tables of frequencies, and
for unordered and ordered r x ¢ tables. But even
in the simplest case of 2 x 2 tables, there are
problems about the null hypotheses being tested.
It seems to me that the Fisher exact test, and
the various formulations of the x? test, are con-
cerned with very vague null hypotheses (Hy). I pre-
fer tests in which Hp is much more specific: for

“)

Table 3 Results of R.A. Fisher’s thought experiment on
the ability of a lady to distinguish whether milk or tea was
added first to the cup [8]

Actual design Row
Milk first Tea first Total
Milk first 3 1 4
Lady’s
decisions
Tea first 1 3 4
Column total 4 4 8

The lady was informed in advance that she would be presented
with 8 cups of tea, in 4 of which the tea had been added first,
in 4 the milk. The exact probability for the null hypothesis that
the lady was unable to distinguish the order is obtained by the
sum of the point probabilities (Formula 4) for rearrangements
of the Table in which the observed, or more extreme, values
would occur. Thus, two-sided P = 0.22857 + 0.0142857 +
0.22857 + 0.0142857 = 0.48573.

Table 4 Properties of exact tests on 2 x 2 tables of
frequencies

Null
Test hypothesis Conditioning
Fisher’s Vague Both marginal
totals fixed
Odds ratio OR =1 Column
marginal
totals fixed
Exact x? Columns and rows  Unconditional
independent
Difterence pr—p2=0 Unconditional
between
proportions
Ratio between pi/p2=1 Unconditional
proportions

Conditioning means ‘fixed in advance by the design of the
experiment’. In real-life experiments, both marginal totals can
never be fixed in advance. Column totals are usually fixed in
advance if they represent treatment groups.

instance, that OR =1, p; — p, =0, or p;/pr =1
(Table 4).

There is a further problem with the Fisher exact
test. It is a conditional test, in which the column
and marginal totals in a 2 x 2 table are fixed in
advance. This was so in Fisher’s thought experiment
(Table 3), but it is almost inconceivable that this
could be achieved in a real-life experiment. In the
case that Hy is that OR = 1, there is no difficulty if
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one regards the column totals as group sizes. Tests
on proportions, for instance, that p; — p, =0, or
p1/p2 = 1, are unconditional. But there are complex
theoretical and computational difficulties with these.
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Appendix: Software Packages for
Permutation Tests

I list only those programs that are commercially
available. 1 give first place to those that operate
under the Microsoft Windows system. There is an
excellent recent and comparative review of several of
these [23, 24]. The remaining programs operate under
DOS. I shall mention only one of the latter, which
I have used. The remaining DOS programs require
the user to undertake programming, and I do not list
these. All the commercial programs have their own
datafile systems. I have found dfPowerDBMS/Copy
v. 8 (Dataflux Corporation, Cary NC) invaluable
in converting any spreadsheet into the appropriate
format for almost any statistics program.

Microsoft Windows

StatXact v.6 with Cytel Studio (Cytel Software Cor-
poration, Cambridge MA). StatXact is menu-driven.
For differences between/among group means, it caters
for two independent groups, matched pairs, and the
equivalent of one-way ANOVA. It does not have
a routine for two-way ANOVA. For differences
between/among group mean ranks, it caters for the
Wilcoxon-Mann-Whitney test, the Wilcoxon signed-
rank test for matched pairs, the Kruskal-Wallis test
for k independent group mean ranks, and the Fried-
man test for £ matched groups. For categorical data,
it provides a great number of tests. These include the
Fisher exact test, exact x2, a test on OR = 1, tests
on differences and ratios between proportions; and
for larger and more complex tables of frequencies,
the Cochran—Armitage test on ordered categorical
data.

LogXact (Cytel Software Corporation, Cambridge
MA). This deals exclusively with exact logistic

regression analysis for small samples. However,
it does not cater for stepwise logistic regression
analysis.

SAS v. 8.2 (SAS Institute Inc, Cary NC). SAS
has introduced modules for exact tests, developed
by the Cytel Software Corporation. These include
PROC FREQ, PROC MULTTEST, and PROC
NPARIWAY, PROC UNIVARIATE, and PROC
RANK. NPARIWAY provides permutation tests on
the means of two or more independent groups, but not
on more than two related groups. PROCRANK caters
for a variety of tests on mean ranks, and PROCFREQ
a large number of exact tests on tables of frequencies.

Testimate v. 6 (Institute for Data Analysis and Study
Planning, Gauting/Munich). This caters for a vari-
ety of exact rank-order tests and tests on tables of
frequency, but no tests on means.

SPSS (SPSS Inc, Chicago IL). This very popular
statistics package has an Exact Tests add-on (leased
from StatXact), with routines for a wide range
of exact tests on categorical data, some on rank-
ordered data, but none on differences between/among
means.

DOS Programs

RT v. 2.1 (West Inc., Cheyenne WY). This is Bryan
Manly’s program, based on his book [18]. One
important attribute is that it provides for two-way
ANOVA carried out by permutation, in which the
interaction can be extracted. However, it has not
been developed since 1991, though Bryan Manly
hopes that someone will take on the task of
translating it onto a Windows platform (personal
communication).
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Randomized Block
Design: Nonparametric
Analyses

In a randomized block design, there are, in addition
to the experimental factor or factors of interest, one
or more nuisance factors (see Nuisance Variables)
influencing the measured responses. We are not inter-
ested in evaluating the contributions of these nuisance
factors. For example, gender may be relevant in
studying smoking cessation, but, in a comparative
evaluation of a particular set of smoking cessation
techniques, we would not be concerned with assess-
ing the influence of gender per se. However, we
would be interested in controlling the gender influ-
ence. One can control such nuisance factors by a
useful technique called blocking (see Block Ran-
dom Assignment), which can reduce or eliminate
the contribution these nuisance factors make to the
experimental error. The basic idea is to create homo-
geneous blocks or strata in which the levels of the
nuisance factors are held constant, while the lev-
els of the experimental factors are allowed to vary.
Each estimate of the experimental factor effect within
a block is more efficient than estimates across all
the samples. When one pools these more efficient
estimates across blocks, one should obtain a more
efficient estimate than would have been available
without blocking [3, 9, 13].

One way to analyze the randomized block design
is to use standard parametric analysis of variance
(ANOVA) methods. However, these methods require
the assumption that the experimental errors are nor-
mally distributed. If the errors are not normally dis-
tributed, or if there are outliers in the data, then
parametric analyses may not be valid [2]. In this
article, we will present a few distribution-free tests,
which do not require the normality assumption. These
nonparametric analyses include the Wilcoxon signed
rank test (see Signed Ranks Test), Friedman’s test,
the aligned rank test, and Durbin’s test.

The Sign Test for the Randomized
Complete Block Design with Two
Treatments

Consider the boys’ shoe-wear data in Table 1, which
is from [3]. Two sole materials, A and B, were

Table 1 Boys’ shoe-wear. Example: the amount of wear
measured for two different materials A and B

Boy Material A Material B
1 13.2 (L)* 14.0 (R)°
2 8.2 (L) 8.8 (R)
3 10.9 (R) 11.2 (L)
4 143 (L) 142 (R)
5 10.7 (R) 11.8 (L)
6 6.6 (L) 6.4 (R)
7 9.5 (L) 9.8 (R)
8 10.8 (L) 11.3 (R)
9 8.8 (R) 9.3 (L)

10 133 (L) 13.6 (R)

2left sole; Pright sole.

randomly assigned to the left sole or right sole for
each boy. Each boy is a block, and has one A-soled
shoe and one B-soled shoe. The goal was to determine
whether or not there was any difference in wearing
quality between the two materials, A and B.

The sign test (see Binomial Distribution: Esti-
mating and Testing Parameters) is a nonparametric
test to compare the two treatments in such designs.
It uses the signs of the paired differences, (B — A),
to construct the test statistic [12]. To perform the
sign test, we count the number of positive paired
differences, P, . Under the null hypothesis of no treat-
ment difference, P, has a binomial distribution with
parameters n = 10 and p = 0.5, where n is the num-
ber of blocks with nonzero differences. If 