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R & Q Analysis

A number of criteria exist for performing principal
component analysis on a data matrix. These criteria
are referred to as R-, Q-, N -, M- and P-analysis. The
first four of these criteria all involve deviations about
column means, row means, or both. The properties of
these criteria were given by Okamoto [7]. P-analysis
involves the raw data directly.

In principal component analysis, one generally
begins with an n × p data matrix X representing n

observations on p variables. Some of the criteria will
be illustrated by numerical examples, all using the
following data matrix of n = 4 observations (rows)
on p = 3 variables (columns):

X =

variable means

(variables)


−2 −2 −1
0 1 0
2 2 2
0 −1 −1




0 0 0

(observations)

(1)

This matrix will have a rank of three. The variable
means have been subtracted to simplify the compu-
tations. This example is taken from [6, Chapter 11],
which includes more detail in the operations that are
to follow.

R-analysis

In principal component analysis, one generally forms
some type of p × p dispersion matrix of the variables
from the n × p data matrix X, usually a covariance
matrix (see Correlation and Covariance Matrices)
or its related correlation matrix. A set of linear
transformations, utilizing the eigenvectors of this
matrix, is found which will transform the original
correlated variables into a new set of variables.
These new variables are uncorrelated and are called
principal components. The values of the transformed
data are called principal component scores. Further
analysis may be carried out on these scores (see
Principal Components and Extensions). (A subset
of these transformed variables associated with the
larger eigenvalues is often retained for this analysis.)
This procedure is sometimes referred to as R-analysis,

and is the most common application of principal
component analysis. Similar procedures may also be
carried out in some factor analysis models.

For example, consider an R-analysis of matrix
X. Rather than use either covariance or correlation
matrices, which would require different divisors for
the different examples, the examples will use sums
of squares and cross-products matrices to keep the
units the same. Then, for R-analysis, this matrix for
the variables becomes:

X ′X =
[ 8 8 6

8 10 7
6 7 6

]
(2)

whose eigenvalues are l1 = 22.282, l2 = 1.000 and
l3 = 0.718. The fact that there are three positive
eigenvalues indicates that X

′
X has a rank of three.

The unit (i.e., U
′
U = I) eigenvectors for X

′
X are:

U =
[−0.574 0.816 −0.066

−0.654 −0.408 0.636
−0.493 −0.408 −0.768

]
(3)

Making a diagonal matrix of the reciprocals of the
square roots of the eigenvalues, we have:

L−0.5 =
[ 0.212 0 0

0 1.000 0
0 0 1.180

]
(4)

and the principal component scores Y = XUL−0.5

become:

Y =



0.625 −0.408 −0.439
−0.139 −0.408 0.751
−0.729 0 −0.467

0.243 0.816 0.156


 (5)

where each row of this matrix gives the three
principal component scores for the corresponding
data row in X.

Q-analysis

In Q-analysis, this process is reversed, and one stud-
ies the relationships among the observations rather
than the variables. Uses of Q-analysis include the
clustering of the individuals in the data set (see
Hierarchical Clustering). Some multidimensional
scaling techniques are an extension of Q-analysis,
and are often used where the data are not homoge-
neous and require segmentation [4].
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In Q-analysis, an n × n covariance or correla-
tion matrix will be formed for the observations and
the eigenvectors, and principal component scores
obtained from these. Generally, n > p so that covari-
ance or correlation matrices will not have full rank,
and there will be a minimum of n − p zero eigen-
values.

Using the same data matrix from the preceding
section, the corresponding sums of squares and cross-
products matrix become:

XX ′ =



9 −2 −10 3
−2 1 2 −1

−10 2 12 −4
3 −1 −4 2


 (6)

with eigenvalues l1 = 22.282, l2 = 1.000, l3 = 0.718,
and l4 = 0. The first three eigenvalues are identical
to those in the Q-analysis. The significance of the
fourth eigenvalue being zero is because XX

′
contains

no more information than does X
′
X , and, hence, only

has a rank of three.
Although one can obtain four eigenvectors from

this matrix, the fourth one is not used as it has no
length. The first three eigenvectors are:

U ∗ =



0.625 −0.408 −0.439
−0.139 −0.408 0.751
−0.729 0 −0.467

0.243 0.816 0.156


 (7)

Note that this is the same as the matrix Y of principal
scores obtained in the R-analysis above. If one
obtains the principal component scores using these
eigenvectors, (i.e., Y ∗ = X

′
U ∗L

−0.5
), it will be found

that these principal component scores will be equal
to the eigenvectors U of the R-analysis. Therefore,
Y ∗ = U , and Y = U ∗.

N-analysis (Singular Value Decomposition)

With proper scaling or normalization, as has been
used in these examples, the eigenvectors of R-
analysis become the principal component scores of
Q-analysis, and vice versa. These relationships can be
extended to N-analysis or the singular value decom-
position [1, 5]. Here, the eigenvalues and vectors as
well as the principal component scores for either R-
or Q-analysis may be determined directly from the
data matrix, namely:

X = YL0.5U
′ = U ∗L0.5Y ∗′

(8)

The practical implication of these relationships is that
the eigenvalues, eigenvectors, and principal compo-
nent scores can all be obtained from the data matrix
directly in a single operation. In addition, using the
relationships above,

X = U ∗L0.5U
′

(9)

This relationship is employed in dual-scaling tech-
niques, where both variables and observations are
being presented simultaneously. Examples of such
a technique are the biplot [2] and MDPREF [4],
which was designed for use with preference data
(see Scaling of Preferential Choice). The graphical
presentation of both of these techniques portrays both
the variables and the observations on the same plot,
one as vectors and the other as points projected
against these vectors. These are not to be confused
with the so-called ‘point–point’ plots, which use a
different algorithm [6, Section 10.7].

Related Techniques

In addition to R-, Q-, and N-analysis, there are
two more criteria, which, though more specialized,
should be included for completeness. One of these,
M-analysis, is used for a data matrix that has been
corrected for both its column and row means (so-
called double-centering). This technique has been
used for the two-way analysis of variance where
there is no estimate of error other than that included
in the interaction term. The interaction sum of squares
may be obtained directly from double-centered data.
M-analysis may then be employed on these data
to detect instances of nonadditivity, and/or obtain
a better estimate of the true inherent variability
[6, Section 13.7]. A version of M-analysis used
in multidimensional scaling is a method known as
principal coordinates [3, 8, 9].

In the antithesis of M-analysis, the original data
are not corrected for either variable or observation
means. This is referred to as P-analysis. In this
case, the covariance or correlation matrix is replaced
by a matrix made up of the raw sums of squares
and cross-products of the data. This is referred to
as a product or second moment matrix and, does
not involve deviations about either row or column
means. The method of principal components may
be carried out on this matrix as well, but some
of the usual properties such as rank require slight
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modifications. This technique is useful for certain
additive models, and, for this reason, many of the
published applications appear to be in the field of
chemistry, particularly with regard to Beer’s Law.
For some examples, see [6, Section 3.4].
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R-squared, Adjusted
R-squared

Many statistical techniques are carried out in order
to predict or explain variation in a measure – these
include univariate techniques such as linear regres-
sion (see Multiple Linear Regression) and analysis
of variance, and multivariate techniques, such as
multilevel models (see Linear Multilevel Models),
factor analysis, and structural equation models. A
measure of the proportion of variance accounted for
in a variable is given by R-squared (see Effect Size
Measures).

The variation in an outcome variable (y) is rep-
resented by the sum of squared deviations from the
mean, referred to as the total sum of squares (SStotal):

SStotal =
∑

(y − ȳ)2 (1)

(Note that dividing this value by N − 1 gives the
variance.)

General linear models (which include regression
and ANOVA) work by using least squares estimators;
that is, they find parameter estimates and thereby
predicted values that account for as much of the
variance in the outcome variable as possible – the
difference between the predicted value and the actual
score for each individual is the residual. The sum
of squared residuals is the error sum of squares,
also known as the within groups sum of squares or
residual sum of squares (SSerror, SSwithin, or SSresidual).
The variation that has been explained by the model
is the difference between the total sum of squares
and the residual sum of squares, and is called the
between groups sum of squares or the regression sum
of squares (SSbetween or SSregression).

R-squared is given by:

R2 = SSbetween

SStotal
(2)

In a standardized regression equation, where the
correlations between variables are known, R2 is given
by:

R2 = b1ryx1 + b2ryx2 + · · · + bkryxk
, (3)

where b1 represents the standardized regression of y

on x, and ryx represents the correlation between y

and x.

Where the correlation matrix is known, the for-
mula:

R2
i.123..k = 1 − 1

R−1
ii

(4)

may be used, although this involves the inversion of
the matrix R, and should really only be attempted by
computer (or by those with considerable time on their
hands). R−1 is the inverse of the correlation matrix
of all variables.

In the simple case of a regression with one
predictor, the square of the correlation coefficient (see
Pearson Product Moment Correlation) is equal to
R-squared. However, this interpretation of R does
not generalize to the case of multiple regression.
A second way of considering R is to consider
it as the correlation between the values of the
outcome predicted by the regression equation and
the actual values of the outcome. For this reason,
R is sometimes considered to indicate the ‘fit’ of
the model.

Cohen [1] has provided conventional descriptions
of effect sizes for R-squared (as well as for other
effect size statistics). He defines a small effect as
being R2 equal to 0.02, a medium effect as R2 =
0.13, and a large effect as being R2 = 0.26.

R2 is a sample estimate of the proportion of
variance explained in the outcome variables, and is
biased upwards, relative to the population proportion
of variance explained. To explain this, imagine we are
in the unfortunate situation of having collected ran-
dom numbers rather than real data (fortunately, we
do not need to actually collect any data because we
can generate these with a computer). The true (popu-
lation) correlation of each variable with the outcome
is equal to zero; however, thanks to sampling vari-
ation, it is very unlikely that any one correlation in
our sample will equal zero – although the correla-
tions will be distributed around zero. We have two
variables that may be correlated negatively or posi-
tively, but to find R2 we square them, and therefore
they all become positive. Every time we add a vari-
able, R2 will increase; it will never decrease. If we
have enough variables, we will find that R2 is equal
to 1.00 – we will have explained all of the variance
in our sample, but this will of course tell us noth-
ing about the population. In the long run, values of
R2 in our sample will tend to be higher than values
of R2 in the population (this does not mean that R2

is always higher in the sample than in the popula-
tion). In order to correct for this, we use adjusted R2,
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calculated using:

Adj.R2 = 1 − (1 − R2)
N − 1

N − k − 1
, (5)

where N is the sample size, and k is the number of
predictor variables in the analysis. Smaller values for
N , and larger values for k, lead to greater downward
adjustment of R2. In samples taken from a population
where the population value of R2 is 0, the sample
R2 will always be greater than 0. Adjusted R2 is
centered on 0, and hence can become negative; but R2

is a proportion of variance, and a variance can never
be negative (it is the sum of squares) – a negative
variance estimate therefore does not make sense and
this must be an underestimate.

A useful source of further information is [2].
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Random Effects and
Fixed Effects Fallacy

Introduction

In most psychological experiments, the factors inves-
tigated consist of fixed effects, that is, all possible
levels of each factor are included in the experiment.
Clear examples of fixed factors include Sex (if both
male and female are included) and Interference (in
an experiment that manipulated distraction during a
task, and included such conditions as no interference,
verbal interference, and visual interference). In con-
trast, a random effect is where the levels of a factor
included in the experiment do not exhaust the pos-
sible levels of the factor, but consist of a random
sample from a population of levels. In most psy-
chological experiments, there is one random effect,
Subjects: the experimenter does not claim to have
tested all the subjects who might have undertaken the
task, but hopes that the conclusions from any statis-
tical test apply not only to the people tested but also
to the population from which they have been drawn.

Analysis of factorial experiments where there are
several fixed-effects factors and one random-effects
factor (usually subjects) is the core of an introduc-
tory course on analysis of variance, and methods
and results for all simple designs are well under-
stood. The situation is less clear if there are two
random-effects factors in the same experiment, and
some researchers have argued that this is the case
in experiments involving materials drawn from lan-
guage. Two artificial datasets have been constructed,
shown in Table 1, to illustrate the problem (ignore
for the moment the variable AoA in Table 1(b); this
will be discussed later).

An experimenter is interested in word frequency
effects in a categorization task. He selects three high-
frequency words, w1 to w3, and three low-frequency
words, w4 to w6. Four subjects, s1 to s4, make
decisions for all the words. Their decision times are
recorded and shown as ‘RT’ in Table 1. Thus, this
is a repeated measures design with the factor Words
nested within the factor Frequency. This is a common
design in psycholinguistic experiments, which has
been chosen because it is used in many discussions
of this topic (e.g., [1, 6, 7]). The actual examples are
for illustrative purposes only: It is certainly not being

Table 1 Two artificial data sets

(a) Small variance
between words

(b) Large variance
between words

S W Freq RT S W Freq AoA RT
S1 w1 hi 10 s1 w1 hi 1 9
S1 w2 hi 11 s1 w2 hi 3 11
S1 w3 hi 12 s1 w3 hi 4 13
S1 w4 lo 13 s1 w4 lo 2 12
S1 w5 lo 14 s1 w5 lo 4 14
S1 w6 lo 15 s1 w6 lo 6 16
S2 w1 hi 10 s2 w1 hi 1 9
S2 w2 hi 12 s2 w2 hi 3 12
S2 w3 hi 12 s2 w3 hi 4 13
S2 w4 lo 14 s2 w4 lo 2 13
S2 w5 lo 14 s2 w5 lo 4 14
S2 w6 lo 15 s2 w6 lo 6 16
S3 w1 hi 11 s3 w1 hi 1 10
S3 w2 hi 11 s3 w2 hi 3 11
S3 w3 hi 12 s3 w3 hi 4 13
S3 w4 lo 13 s3 w4 lo 2 12
S3 w5 lo 13 s3 w5 lo 4 13
S3 w6 lo 15 s3 w6 lo 6 16
S4 w1 hi 10 s4 w1 hi 1 9
S4 w2 hi 10 s4 w2 hi 3 10
S4 w3 hi 11 s4 w3 hi 4 12
S4 w4 lo 13 s4 w4 lo 2 12
S4 w5 lo 15 s4 w5 lo 4 15
S4 w6 lo 15 s4 w6 lo 6 16

suggested that it is appropriate to design experiments
using such small numbers of subjects and stimuli.

One possible analysis is to treat Frequency and
Words as fixed-effect factors. Such an analysis uses
the corresponding interactions with Subjects as the
appropriate error terms. Analyzed in this way, Fre-
quency turns out to be significant (F (1, 3) = 80.53,
P < 0.01) for both datasets in Table 1. There is
something disturbing about obtaining the same results
for both datasets: it is true that the means for Fre-
quency are the same in both sets (hi Frequency has
a mean RT of 11.00, lo Frequency has a mean RT
of 14.08, in both sets), but the effect looks more
consistent in dataset (a), where all the hi Frequency
words have lower means than all the lo Frequency
words, than in dataset (b), where there is much more
variation. In an immensely influential paper, Herb
Clark [1] suggested that the analyses we have just
described are invalid, because Words is being treated
as a fixed effect: other words could have been selected
that meet our selection criteria (in the present case,
to be of hi or lo Frequency) so Words should be
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treated as a random effect. Treating Words as a fixed
effect is, according to Clark, the Language-as-Fixed-
Effect Fallacy.

Statistical Methods for Dealing with Two
Random Effects in the Same Experiment

F1 and F2

Treating Words as a fixed effect, as we did in the
previous paragraph, is equivalent to averaging across
Words, and carrying out an ANOVA based purely
on Subjects as a random effect. This is known as a
by-subjects analysis and the F values derived from
it usually carry the suffix ‘1’; so, the above anal-
yses have shown that F1(1, 3) = 80.53, P < 0.01.
An alternative analysis would be, for each word, to
average across subjects and carry out an ANOVA
based purely on Words as a random effect. This is
known as a by-materials analysis (the phrase by-
items is sometimes used). The F values derived
from this analysis usually carry the suffix ‘2’. In
the present case, the dataset (a) by-materials analysis
yields F2(1, 4) = 21.39, P = 0.01, which is signifi-
cant, whereas dataset (b) by-materials analysis yields
F2(1, 4) = 4.33, P = 0.106, clearly nonsignificant.
This accords with our informal inspection of Table 1,
which shows a more consistent frequency effect for
dataset (a) than for dataset (b).

It is sometimes said that F1 assesses the extent
to which the experimental results may generalize to
new samples of subjects, and that F2 assesses the
extent to which the results will generalize to new
samples of words. These statements are not quite
accurate: neither F1 nor F2 are pure assessments of
the presence of an effect. The standard procedure in
an ANOVA is to estimate the variance due to an
effect, via its mean square (MS ), and compare this
mean square with other mean squares in the analysis
to assess significance. Using formulas, to be found
in many textbooks (e.g. [13, 14]), the analysis of the
Table 1 data as a three-factor experiment where Freq
and W are treated as fixed effects and S is treated as
a random effect yields the following equations:

E(MSFreq) = σ 2
e + qσ 2

Freq×S + nqσ 2
Freq (1)

E(MSW(Freq)) = σ 2
e + σ 2

W(Freq)×S + nσ 2
W(Freq) (2)

E(MSS) = σ 2
e + pqσ 2

S (3)

E(MSFreq×S) = σ 2
e + qσ 2

Freq×S (4)

E(MSW(Freq)×S) = σ 2
e + σ 2

W(Freq)×S (5)

E means expected or theoretical value, σ 2
A refers

the variance attributable to A, e is random error, n

is the number of Subjects, p the number of levels
of Frequency, and q the number of Words. The
researcher rarely needs to know the precise detail
of these equations, but we include them to make an
important point about the choice of error terms in
hypothesis testing: (1), E(MSFreq), differs from (4)
only in having a term referring to the variance in
the data attributable to the Frequency factor, so we
can test for whether Frequency makes a nonzero
contribution to the variance by comparing (1) with
(4), more precisely by dividing the estimate of
variance described in (1) (MSFreq) by the estimate of
variance described in (4) (MSFreq×S). In other words,
MSFreq×S is the appropriate error term for testing for
the effect of Frequency.

If Frequency is treated as a fixed effect, but
Words and Subjects are treated as random effects,
the variance equations change, as shown below.

E(MSFreq) = σ 2
e + σ 2

W(Freq)×S + qσ 2
Freq×S

+ nσ 2
W(Freq) + nqσ 2

Freq (6)

E(MSW(Freq)) = σ 2
e + σ 2

W(Freq)×S + nσ 2
W(Freq) (7)

E(MSS) = σ 2
e + σ 2

W(Freq)×S + pqσ 2
S (8)

E(MSFreq×S) = σ 2
e + σ 2

W(Freq)×S + qσ 2
Freq×S (9)

E(MSW(Freq)×S) = σ 2
e + σ 2

W(Freq)×S (10)

The most important change is the difference
between (1) and (6). Unlike (1), (6) contains terms
involving the factor Words. Equation (6) is telling us
that some of the variance in calculating MSFreq is
due to the possible variation of the effect for different
selections of words (in contrast, (1) assumes all rele-
vant words that have been included in the experiment,
so different selections are not possible). This means
that F1 (derived from dividing (6) by (9)) is contam-
inated by Words: a significant F1 could arise from a
fortuitous selection of words. Similarly, F2 (derived
by dividing (6) by (7) is contaminated by Subjects: a
significant F2 could arise from a fortuitous selection
of subjects. By themselves, F1 and F2 are insufficient
to solve the problem. (This is not to say that signifi-
cant F1 or F2 are never worth reporting: for example,
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practical constraints when testing very young children
or patients might mean the number of stimuli that can
be used is too small to permit an F2 test of reasonable
power: here F1 would be worth reporting, though the
researcher needs to accept that generalization to other
word sets has yet to be established.)

Quasi-F Ratios

There are ratios that can be derived from (6) to (10),
which have the desired property that the numerator
differs from the denominator by only a term involving
σ 2

Freq. Two possibilities are

F ′ = (MSFreq + MSW(Freq)×S)

(MSW(Freq) + MSFreq×S)
(11)

and

F
′′ = MSFreq

(MSW(Freq) + MSFreq×S − MSW(Freq)×S)

(12)

These F s are called Quasi-F ratios, reflecting the
fact that they are similar to standard F ratios, but,
because they are not the simple ratio of two mean
squares, their distribution is only approximated by
the standard F distribution. Winer [13, pp. 377–378]
and Winer et al. [14, pp. 374–377], give the basic
formulas for degrees of freedom in (11) and (12),
derived from Satterthwaite [10]. It is doubtful that the
reader will ever need to calculate such expressions by
hand, so these are not given here. SPSS (Version 12)
uses (12) to calculate quasi-F ratios: for example, if
the data in Table 1 are entered into SPSS in exactly
the form shown in the table, and if Freq is entered
as a Fixed Factor and S and W are entered as
Random Factors, and Type I SS are used, then SPSS
suggests there is a significant effect of Frequency
for dataset (a) (F (1, 4.916) = 18.42, P < 0.01), but
not for dataset (b) (F (1, 4.249) = 4.20, P = 0.106).
If S and W are truly random effects, then this
is the correct statistical method. Many authorities,
for example, [1, 6, 13], prefer (11) to (12) since
(12) may on occasion lead to a negative number
(see [5]).

Min F ′

The method outlined in section ‘Quasi-F Ratios’ can
be cumbersome: for any experiment with realistic

numbers of subjects and items, data entry into SPSS
or similar packages can be very time-consuming, and
if there are missing data (quite common in reaction-
time experiments), additional corrections need to be
made. A short cut is to calculate min F ′, which, as its
name suggests, is an estimate of F ′ that falls slightly
below true F ′. The formula is as follows:

min F ′ = F1 · F2

(F1 + F2)
(13)

The degrees of freedom for the numerator of the
F ratio remains unchanged (p − 1), and the degrees
of freedom for the denominator is given by

df = (F 2
1 + F 2

2 )

(F 2
1 /df2 + F 2

2 /df1)
(14)

where df1 is the error degrees of freedom for
F1 and df2 is the error degrees of freedom for
F2. For the data in Table 1, dataset (a) has min
F ′(1, 5.86) = 16.90, P < 0.01, and dataset (b) has
min F ′(1, 4.42) = 4.11, P = 0.11, all values being
close to the true F ′ values shown in the previ-
ous section.

Best practice, then, is that when you conduct an
ANOVA with two random-effects factors, use (11) or
(12) if you can, but if you cannot, (13) and (14)
provide an adequate approximation.

Critique

Clark’s paper had an enormous impact. From 1975
onward, researchers publishing in leading psycholin-
guistic journals, such as Journal of Verbal Learning
and Verbal Behavior (now known as Journal of Mem-
ory and Language) accepted that something needed
to be done in addition to a by-subjects analysis, and
at first min F ′ was the preferred solution. Nowadays,
min F ′ is hardly ever reported, but it is very common
to report F1 and F2, concluding that the overall result
is significant if both F1 and F2 are significant. As
Raaijmakers et al. [8] have correctly pointed out, this
latter practice is wrong: simulations [4] have shown
that using the simultaneous significance of F1 and F2

to reject the null hypothesis of no effect can lead to
serious inflation of Type I errors. It has also been
claimed [4] and [12] that min F ′ is too conservative,
but this conservatism is quite small and the proce-
dure quite robust to modest violations of the standard
ANOVA assumptions [7, 9].
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One reason for min F ′’s falling into disuse is
its absence from textbooks psychology researchers
are likely to read: Only one graduate level text-
book has been found, by Allen Edwards [3], that
gives a full treatment to the topic. Jackson & Brash-
ers [6] give a very useful short overview, though
their description of calculations using statistical pack-
ages is inevitably out of date. Another reason for
not calculating min F ′ is that we have become
so cosseted by statistics packages that do all our
calculations for us, that we are not prepared to
work out min F ′ and its fiddly degrees of freedom
by hand. (If you belong to this camp, there is a
website (www.pallier.org/ressources/MinF/
compminf.htm) that will work out min F ′, its
degrees of freedom and its significance for you.)

The main area of contention in the application
of these statistical methods is whether materials
should be treated as a random effect. This point
was picked up by early critics of Clark [2, 12]:
researchers do not select words at random, and indeed
often go to considerable lengths to select words with
appropriate properties (‘It has often seemed to me
that workers in this field counterbalance and constrain
word lists to such an extreme that there may in
fact be no other lists possible within the current
English language.’ [2, p.262]). Counterbalancing (for
example, arranging that half the subjects receive
word set A in condition C1 and word set B in
condition C2, and the other half of the subjects
receive word set B in condition C1 and word set
A in condition C2) would enable a by-subjects
analysis to be carried out uncontaminated by effects
of materials [8]. Counterbalancing, however, is not
possible when the effect of interest involves intrinsic
differences between words, as in the examples in
Table 1: different words must be used if we want
to examine word frequency effects.

Constraining word lists, that is selecting sets of
words that are matched on variables we know to
influence the task they are to be used in, is often a sen-
sible procedure: it makes little sense to select words
that differ widely in their frequency of occurrence
in the language when we know that frequency often
has a substantial influence on performance. The trou-
ble with such procedures is that matching can never
be perfect because there are too many variables that
influence performance. One danger of using a con-
strained word set, which appears to give good results
in an experiment, is that the experimenter, and others

who wish to replicate or extend his or her work, are
tempted to use the same set of words in subsequent
experiments. Such a procedure may be capitalizing
on some as yet undetected idiosyncratic feature of
the word set, and new sets of words should be used
wherever possible. A further drawback is that results
from constrained word sets can be generalized only
to other word sets that have been constrained in a
similar manner.

An alternative to using highly constrained lists is
to include influential variables in the statistical model
used to analyze the data (e.g., [11]). For example,
another variable known to influence performance
with words is Age of Acquisition (AoA). A researcher
dissatisfied with the large variance displayed by
different words in Table 1(b), and believing AoA
was not adequately controlled, might add AoA as a
covariate to the analysis, still treating Subjects and
Words as random effects. This now transforms the
previously nonsignificant quasi-F ratio for Frequency
to a significant one (F (1, 3.470) = 18.80, P < 0.05).

A final remark is that many of the comments about
treating Words as a random effect apply to treating
Subjects as a random effect. In psycholinguistic
experiments, we frequently reject subjects of low
IQ or whose first language is not English, and,
when we are testing older populations, we generally
deal with a self-selected sample of above average
individuals. In an area such as morphology, which
is often not taught formally in schools, there may
be considerable individual differences in the way
morphemically complex words are represented. All
of these examples suggest that attempts to model
an individual subject’s knowledge and abilities, for
example, via covariates in analyses of covariance,
could be just as important as modeling the distinct
properties of individual words.
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Random Effects in
Multivariate Linear
Models: Prediction

Random effects are a standard device for representing
the differences among observational or experimen-
tal units that are or can be perceived as having
been drawn from a well-defined population. Such
units may be subjects (individuals), their organiza-
tions (businesses, classrooms, families, administrative
units, or teams), or settings within individuals (time
periods, academic subjects, sets of tasks, and the
like). The units are associated with random effects
because they are incidental to the principal goal of the
analysis – to make inferences about an a priori spec-
ified population of individuals, geographical areas,
conditions, or other factors (contexts).

In modeling, random effects have the advantage
of parsimonious representation, that a large number
of quantities are summarized by a few parameters
that describe their distribution. When the random
effects have a (univariate) normal distribution, it is
described completely by a single variance; the mean
is usually absorbed in the regression part of the
model. The fixed-effects counterparts of these models
are analysis of covariance (ANCOVA) models, in
which each effect is represented by one or a set of
parameters.

In the resampling perspective, fixed effects are
used for factors that are not altered in hypotheti-
cal replications. Typically, factors with few levels
(categories), such as experimental conditions or treat-
ments, which are the focus of the inference, are
regarded as fixed. In contrast, a different set of ran-
dom effects is realized in each hypothetical replica-
tion; the replications share only the distribution of the
effects. A logical inconsistency arises when the ana-
lyzed sample is an enumeration. For example, when
the districts of a country are associated with random
effects, a replication would yield a different set of
district-level effects. Yet, a more natural replication,
considered in sampling theory in particular, keeps the
effects fixed for each district – the same set of dis-
tricts would be realized. This conflict is resolved by
a reference to a superpopulation, arguing that infer-
ences are desired for a domain like the one analyzed,

and in each replication a different domain is realized
with a different division into districts.

A constructive way of addressing the issue of
fixed versus random effects is by admitting that
incorrect models may be useful for inference. That
is, the effects are fixed, but it is advantageous to
treat them in inference as random. Apart from a
compact description of the collection of units, by their
(estimated) distribution or its parameters, random
effects enable estimation of unit-specific quantities
that is more efficient than in the maximum likelihood
or least squares for standard fixed effects ANCOVA.
The efficiency is achieved by borrowing strength
across the units [9]. Its theoretical antecedent is the
work on shrinkage estimation [5] and its application
to small-area statistics [3].

Borrowing strength can be motivated by the fol-
lowing general example. If the units are similar, then
the pooled (domain-related) estimator of the quantity
of interest θ may be more efficient for the correspond-
ing unit-related quantity θj , because the squared bias
(θj − θ)2 is much smaller than the sampling vari-
ance var(θ̂j ) of the unbiased estimator of θj . Instead
of selecting the domain estimator θ̂ or the unbiased
large-variance estimator θ̂j , these two estimators are
combined,

θ̃j = (1 − bj )θ̂j + bj θ̂ , (1)

with a constant bj , or its estimator b̂j , for which
the combination has some optimal properties, such
as minimum mean squared error (MSE). The combi-
nation (composition) θ̃j can be interpreted as exploit-
ing the similarity of the units. The gains are quite
dramatic when the units are similar and var(θ̂j ) �
var(θ̂). That occurs when there are many (aggregate-
level) units j and most of them are represented in the
dataset by only a few observations each.

Inference about the individual units is usually
secondary to studying the population as a whole.
Nevertheless, interest in units on their own may arise
as a result of an inspection of the data or their analysis
that aimed originally at some population features.
Model diagnostics are a notable example of this.

Estimation of random effects is usually referred
to as prediction, to avoid the terminological conflict
of ‘estimating random variables’, a contradiction in
terms if taken literally. The task of prediction is to
define a function of the data that is, in a well-defined
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sense, as close to the target as possible. With random
effects, the target does not appear to be stationary.

In fact, the realizations of random variables,
or quantities that are fixed across replications but
regarded as random in the model, are estimated.
Alternatively, the prediction can be described as
estimating the quantity of interest given that it is
fixed in the replications; the corresponding quantities
for the other units are assumed to vary across
replications. The properties of such an estimator
(predictor) should be assessed conditionally on the
realized value of the target.

Random-effects models involving normality and
linearity are greatly preferred because of their analyt-
ical tractability, easier interpretation, and conceptual
proximity to ordinary regression (see Multiple Lin-
ear Regression) and ANCOVA. We discuss first the
prediction of random effects with the model

yj = Xjβ + δj + εj , (2)

where yj is the nj × 1 vector of (univariate) out-
comes for (aggregate or level-2) unit j = 1, . . . , N2,
Xj is the regression design matrix for unit j , β the
vector of regression parameters, δj the random effect
for unit j , and εj the vector of its elementary-level
(residual) terms, or deviations (see Variance Com-
ponents). The random terms δj and εj are mutually
independent, with respective centered normal distri-
butions N(0, σ 2

2 ) and N(0, σ 2Inj
); I is the identity

matrix of the size given in the subscript.
The model in (2) can be interpreted as a set of

related regressions for the level-2 units. They have
all the regression coefficients in common, except for
the intercept β0 + δj . The regressions are parallel.
The obvious generalization allows any regression
coefficients to vary, in analogy with introducing
group-by-covariate interactions in ANCOVA. Thus,
a subset of the covariates in X is associated with
variation. The corresponding submatrix of Xj is
denoted by Zj (its dimensions are nj × r), and the
model is

yj = Xjβ + Zjδj + εj , (3)

where δj ∼ N(0r , �), independently (0r is the r × 1
column vector of zeros), [4] and [7]. In agreement
with the ANCOVA conventions, Zj usually contains
the intercept column 1nj

. Variables that are constant
within groups j can be included in Z, but the
interpretation in terms of varying regressions does not

apply to them because the within-group regressions
are not identified for them.

The random effects δj are estimated from their
conditional expectations given the outcomes y. The
matrices Xj and Zj are assumed to be known, or
are conditioned on, even when they depend on the
sampling or the data-generation process. Assuming
that the parameters β, σ 2 and those involved in � are
known, the conditional distribution of δj is normal,

(δj |y, θ) ∼ N
{

1

σ 2
�G−1

j Z�
j ej , �G−1

j

}
, (4)

where Gj = Ir + σ−2Z�
j Zj� and ej = yj − Xjβ.

The vector δj is predicted by its (naively) estimated
conditional expectation. The univariate version of
this estimator, for the model in (2), corresponding
to Zj = 1nj

, is

δ̃j = nj ω̂

1 + nj ω̂
ej , (5)

where ω̂ is an estimate of the variance ratio ω =
σ 2

2 /σ 2 (σ 2
2 is the univariate version of �) and ej =

(yj − Xj β̂)�1nj
/nj is the average residual in unit

j . Full or restricted maximum likelihood estimation
(MLE) can be applied for β̂, σ̂ 2 and �̂ or σ̂ 2

2 . In
general, restricted MLE is preferred because the esti-
mators of σ 2 and σ 2

2 are unbiased. As the absence of
bias is not maintained by nonlinear transformations,
this preference has a poor foundation for predicting
δj . Thus, even the restricted MLE of ω, the ratio
of two unbiased estimators, ω̂ = σ̂ 2

2 /σ̂ 2, is biased.
The bias of ω̂ can be corrected, but it does not lead
to an unbiased estimator δ̃j , because 1/(1 + njω) is
estimated with bias.

These arguments should not be interpreted as
claiming superiority of full MLE over restricted
MLE, merely that no bias is not the right goal to aim
for. Absence of bias is not a suitable criterion for esti-
mation in general; minimum MSE, combining bias
and sampling variance, is more appropriate. Predic-
tion of random effects is an outstanding example of
successful (efficient) biased estimation. Bias, its pres-
ence and magnitude, depend on the resampling (repli-
cation) perspective adopted. Reference [10] presents
a viewpoint in which the estimators we consider are
unbiased. In fact, the terminology ‘best linear unbi-
ased predictor’ (BLUP) is commonly used, and is



Random Effects in Multivariate Linear Models: Prediction 3

appropriate when different units are realized in repli-
cations. Indeed, E(δ̃j − δj |ω) = 0 when the expec-
tation is taken both over sampling within units j

and over the population of units j , because E(δ̃j ) =
E(δj ) = 0. In contrast,

E(δ̃j |δj ; ω) = njω

1 + njω
δj , (6)

so δ̃j is conditionally biased. The conditional prop-
erties of δ̃j are usually more relevant. The return,
sometimes quite generous, for the bias is reduced
sampling variance.

When δj are regarded as fixed effects, their
least-squares estimator (and also MLE) is δ̂j = ej .
As δ̃j = qj δ̂j , where qj = nj ω̂/(1 + nj ω̂) < 1, δ̃j

can be interpreted as a shrinkage estimator and
qj , or more appropriately 1 − qj = 1/(1 + nj ω̂), as
a shrinkage coefficient. The coefficient qj is an
increasing function of both the sample size nj and ω̂;
more shrinkage takes place (qj is smaller) for units
with smaller sample sizes and when ω̂ is smaller.
That is, for units with small samples, greater weight
is assigned to the overall domain (its average residual
e = (n1e1 + · · · + nN2eN2)/(n1 + · · · + nN2) vanishes
either completely or approximately) – the resulting
bias is preferred to the substantial sampling variance
of ej . Small ω indicates that the units are very
similar, so the average residuals ej differ from zero
mainly as a result of sampling variation; shrinkage
then enables estimation more efficient than by ej .
The same principles apply to multivariate random
effects, although the discussion is not as simple and
the motivation less obvious.

Shrinkage estimation is a form of empirical Bayes
estimation (see Bayesian Statistics). In Bayes esti-
mation, a prior distribution is imposed on the model
parameters, in our case, the random effects δj . In
empirical Bayes estimation, the prior distribution is
derived (estimated) from the same data to which it is
subsequently applied; see [8] for examples in edu-
cational measurement. Thus, the prior distribution
of δj is N(0, σ 2

2 ), and the posterior, with σ 2
2 and

other model parameters replaced by their estimates,
is N{δ̃j , σ̂ 2

2 /(1 + nj ω̂)}.
Somewhat loosely, σ̂ 2

2 /(1 + nj ω̂) is quoted as the
sampling variance of δ̃j , and its square root as the
standard error. This is incorrect on several counts.
First, these are estimators of the sampling variance
or standard error. Next, they estimate the sampling

variance for a particular replication scheme (with
δj as a random effect) assuming that the model
parameters β, σ 2, and σ 2

2 are known. For large-scale
data, the uncertainty about β and σ 2 can be ignored,
because their estimation is based on many degrees of
freedom. However, σ 2

2 is estimated with at most N2

degrees of freedom, one for each level-2 unit, and
N2 is much smaller than the elementary-level sample
size n = n1 + · · · + nN2 . Two factors complicate the
analytical treatment of this problem; δ̃j is a nonlinear
function of ω and the precision of ω̂ depends on the
(unknown) ω. The next element of ‘incorrectness’ of
using σ̂ 2

2 /(1 + nj ω̂) is that it refers to an ‘average’
unit j with the sample size nj . Conditioning on the
sample size is a common practice, even when the
sampling design does not guarantee a fixed sample
size nj for the unit. But the sample size can be
regarded as auxiliary information, so the conditioning
on it is justified. However, δ̃j is biased, so we should
be concerned with its MSE:

MSE(δ̃j ; δj ) = E{(δ̃j − δj )
2|δj }

= (njω)2

(1 + njω)2

σ 2

nj

+ δ2
j

(1 + njω)2
,

assuming that β, σ 2, and ω are known and the
sample-average residual e vanishes. Rather inconve-
niently, the MSE depends on the target δj itself. The
conditional variance is obtained by replacing δ2

j with
its expectation σ 2

2 .
Thus, σ̂ 2

2 /(1 + nj ω̂) is an estimator of the expected
MSE (eMSE), where the expectation is taken over the
distribution of the random effects δj ′ , j ′ = 1, . . . , N2.
It underestimates eMSE(δ̃j ; δj ) because some ele-
ments of uncertainty are ignored. As averaging is
applied, it is not a particularly good estimator of
MSE(δ̃j ; δj ). It is sometimes referred to as the com-
parative standard error [4]. The MSE can be esti-
mated more efficiently by bootstrap [2] or by framing
the problem in terms of incomplete information [1],
and representing the uncertainty by plausible values
of the unknown parameters, using the principles of
multiple imputation, [11] and [12]. Approximations
by various expansions are not very effective because
they depend on the variances that have to be esti-
mated.

The normal distribution setting is unusual by its
analytical tractability, facilitated by the property that
the normality and homoscedasticity are maintained



4 Random Effects in Multivariate Linear Models: Prediction

by conditioning. These advantages are foregone with
generalized mixed linear models. They are an exten-
sion of generalized linear models that parallels the
extension of linear regression to random coefficient
models:

g{E(yj |δj )} = Xjβ + Zjδj , (7)

where g is a monotone function, called the link func-
tion, and the assumptions about all the other terms
are the same as for the random coefficient model
that corresponds to normality and identity link (see
Generalized Linear Mixed Models). The condi-
tional distribution of yj given δj has to be specified;
extensive theory is developed for the case when this
distribution belongs to the exponential family (see
Generalized Linear Models (GLM)). The realiza-
tion of δj is estimated, in analogy with BLUP in the
normality case, by estimating its conditional expecta-
tion given the data and parameter estimates. In gen-
eral, the integral in this expectation is not tractable,
and we have to resort to numerical approximations.
These are computationally manageable for one- or
two-dimensional δj , especially if the number of units
j in the domain, or for which estimation of δj is
desired, is not excessive. Some approximations avoid
the integration altogether, but are not very precise,
especially when the between-unit variance σ 2

2 (or �)
is substantial. The key to such methods is an analyti-
cal approximation to the (marginal) likelihood, based
on Laplace transformation or quasilikelihood. These
methods have been developed to their apparently log-
ical conclusion in the h-likelihood [6]. Fitting models
by h-likelihood involves no integration, the random
effects can be predicted without any extensive com-
puting, and more recent work by the authors is con-
cerned with joint modeling of location and variation
structures and detailed diagnostics.

In principle, any model can be extended to its
random-effects version by assuming that a separate
model applies to each (aggregate) unit, and specifying
how the parameters vary across the units. No varia-
tion (identical within-unit models) is a special case
in such a model formulation. Modeling is then con-
cerned with the associations in an average or typical

unit, and with variation within and across the units.
Unit-level random effects represent the deviation of
the model for a given unit from the average unit.
Units can differ in all aspects imaginable, including
their level of variation, so random effects need not be
associated only with regression or location, but can
be considered also for variation and any other model
features.
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Random Forests

Random forests were introduced by Leo Breiman
in 2001 [1], and can be thought of as bagging
classification and regression trees (CART), for
which each node is split using a random subset of
the variables, and not pruning. More explicitly, we
select a bootstrap sample (see Bootstrap Inference)
from the data and fit a binary decision tree to the
bootstrap sample. To fit the tree, we split nodes by
randomly choosing a small number of variables and
finding the best split on these variables only. For
example, in a classification problem for which we
have, say, 100 input variables, we might choose 10
variables at random, independently, each time a split
is to be made. For every distinct split on these 10
variables, we compute some measure of node purity,
such as the gini index [2], and we select the split

that optimizes this measure. Cases on each side of
the split form new nodes in the tree, and the splitting
procedure is repeated until all the nodes are pure.
We typically grow the tree until it is large, with
no pruning, and then combine the trees as with
bagging (averaging for regression and voting for
classification).

To illustrate, we use the R [8] function random-
Forest to fit a classifier to the data in Figure 1.
The classification boundary and the data are given in
Figure 1(a). In Figures 1(b), 1(c), and 1(d), the shad-
ing intensity indicates the weighted vote for class 1.
As more trees are included, the nonlinear boundary
is estimated more accurately.

Studies (e.g., [4]) show that random forests are
about as accurate as support vector machines [6] and
boosting [3], but unlike these competitors, random
forests are interpretable using several quantities that
we can compute from the forest.
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Figure 1 (a) Data and underlying function; (b) random forests, 10 trees; (c) random forests, 100 trees; and (d) random
forests, 400 trees



2 Random Forests

The first such quantity is variable importance. We
compute variable importance by considering the cases
that are left out of a bootstrap sample (‘out-of-bag’).
If we are interested in the importance of variable
3, for example, we randomly permute variable 3
in the out-of-bag data. Then, using the tree that
we obtained from the bootstrap sample, we subtract
the prediction accuracy for the permuted out-of-
bag data from that for the original out-of-bag data.
If variable 3 is important, the permuted out-of-bag
data will have lower prediction accuracy than the
original out-of-bag data, so the difference will be
positive. This measure of variable importance for
variable 3 is averaged over all the bootstrap samples,
and the procedure is repeated for each of the other
input variables.

A second important quantity for interpreting ran-
dom forests is the proximity matrix (see Proximity
Measures). The proximity between any two cases
is computed by looking at how often they end up
in the same terminal node. These quantities, suitably
standardized, can be used in a proximity-based clus-
tering (see Hierarchical Clustering) or multidimen-
sional scaling procedure to give insight about the
data structure. For example, we might pick out sub-
groups of cases that almost always stay together in
the trees, or outliers that are almost always alone in
a terminal node.

Random forests can be used in a clustering context
by thinking of the observed data as class 1, creating a

synthetic second class, and using the random forests’
classifier. The synthetic second class is created by
randomly permuting the values of each input variable.
The proximities from random forests can be used in
a proximity-based clustering procedure.

More details on random forests can be obtained
from http://stat-www.berkeley.edu/users/
breiman/RandomForests, along with freely avail-
able software.
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Random Walks

Suppose there is an accident on a motorway that
reduces traffic past that point to a cautious one-
vehicle-at-a-time on the hard shoulder. A mile or
so in advance, the traffic is channelled into two
lanes and, as you reach that two-lane restriction, you
find yourself level with a Rolls-Royce. Thereafter,
sometimes the Rolls-Royce edges forward a length,
sometimes it is your turn, and Figure 1 shows how
the relative position of the two cars develops. To your
chagrin, the Rolls-Royce has crept ahead; will you
ever catch up?

A random walk is the cumulative sum of a series
of independent and identically distributed random
variables,

∑n
1 Xi , and Figure 1 is a simple example

(as also is the forward progress of either car). As a
vehicle somewhere ahead edges past the scene of the
accident, you or the Rolls-Royce (but not both) can
move forward one car length – one step in the random
walk. Assuming that the two lanes feed equally and at
random past the accident, then the relative positions
of the two cars is analogous to the difference in the
numbers of heads and tails in a sequence of tosses of
a fair coin. If the sequence continues for long enough,
it is certain that the numbers of heads and tails will,
at some point, be equal, but the mean wait is infinite.
That is to say, you will most probably pass the point
of restriction before you draw level with the Rolls-
Royce.

Each step in Figure 1 could, of course, be itself
the sum of a number of independent and identically
distributed random variables. Suppose I let a drop of
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Figure 1 Relative position of two cars on a motorway

black ink fall into a glass of water. The ink slowly
diffuses throughout the water, driven by Brownian
motion. Suppose Figure 1 represents the drift of a
notional particle of black ink on the left–right axis.
Each step can then be split into an arbitrary num-
ber of substeps. If the substeps are independent and
identically distributed, then the random walk is actu-
ally a random process, unfolding in continuous time.
But such a decomposition (into an arbitrary number
of independent and identically distributed substeps)
is possible only if the distribution of each step is
infinitely divisible. Amongst well-known probability
distributions, the normal, the Poisson, and the gamma
(or chi-squared) (see Catalogue of Probability Den-
sity Functions) distributions are infinitely divisible.
In addition, a compound Poisson distribution (in
which each Poisson event is itself a random vari-
able) is infinitely divisible with respect to its Poisson
parameter, so the class of infinitely divisible distri-
butions is very broad. But amongst these possibilities
only the normal (or Wiener) process is continuous
with respect to the spatial dimension; all the other
random processes contain jumps.

Interest in random walks began in the 18th century
with gamblers wanting to know the chances of
their being ruined. Suppose the game is ‘absolutely
fair’ (see Martingales), so that the probabilities of
winning and losing are equal. The paths in Figure 2
trace out different gamblers’ cumulative wins and
losses. If a gambler should ever lose his or her entire
fortune, he or she will have nothing left to gamble
with, and this is represented by his or her time line
(path) in Figure 2 descending to the axis at 0. This
poses the following question: What is the probability
that the random walk will ever fall below a certain
specified value (the gambler’s entire fortune)? In
more detail, how does the random walk behave if
we delete all those gamblers who are ruined from the
point of their bankruptcy onwards (broken lines in
Figure 2)? For the binomial walk of Figure 1, this is
a simple problem. Clearly, any walk that strays below
the horizontal boundary must be struck out from
that point onwards. But we must also delete those
continuations of such a random walk that happen to
rise upwards from the boundary as well as those that
continue below. This may be achieved by introducing
a mirror-image source (dotted lines in Figure 2)
below the boundary. The fortunes of a gambler who
has escaped ruin may be represented by the difference
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0

Figure 2 Calculation of a random walk with one absorb-
ing barrier by deletion of an image process

between these two random processes, the original and
the mirror image, above the horizontal boundary [2].

The mirror-image technique works equally for
random processes in continuous time; and a simple
modification to the argument adjusts it to the case
where the random walk drifts up or down (the
gambler is playing with skilled card sharps and loses
more often than he wins) [1, p. 50]. If the basic
random process is a (normal) Wiener process, the
time taken to reach the boundary (to be ruined) is
given by the Wald distribution

f (t) =
[

a√
(2πσ 2t3)

]
exp

{−(a − µt)2

2σ 2t

}
, (1)

where a is the distance to the boundary (the gam-
bler’s fortune) and µ and σ 2 the rates at which the
mean and variance of the random process increase
per unit time. Schwartz [5] has used this distribution,
convolved with an exponential to provide the char-
acteristic long tail, as a model for simple reac-
tion times.

Random walks have also been proposed as mod-
els for two-choice reaction times [6]. There are now
two boundaries placed on either side of a starting
point (Figure 3), one corresponding to each response.
The response depends on which boundary is reached

0

−a

b

Figure 3 Random walk with two absorbing barriers

first; the reaction time is, of course, the time taken to
reach that boundary. So this model bids to determine
both choice of response and latency from a com-
mon process.

The distribution of reaction time now depends on
the location of two absorbing boundaries as well as
the statistical properties of the processes represent-
ing the two alternative stimuli. Unfortunately, the
simple argument using mirror-image sources is not
practicable now; it generates an infinite series of
sources stretching out beyond both boundaries. But
the response probabilities and the moments of the
reaction time distributions can be readily obtained
from Wald’s identity [7, p. 160]. Let ϕ(ω) be the
characteristic function of the random process per unit
time. Let Z be the terminal value of the process on
one or the other boundary. Then

E

{
exp(Zω)

[ϕ(ω)]t

}
= 1. (2)

Even so, the development of this model is not simple
except in two special cases.

There are two distinct random processes involved,
representing the two alternative stimuli, A and B.
The special cases are distinguished by the relationship
between these two processes.

1. Suppose that fB(x) = exfA(x). The variable x

is then the probability ratio between the two
alternatives, and the reaction time model may be
interpreted as a sequential probability ratio test
between the two stimuli [3].
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2. Suppose instead that fB(x) = fA(−x). The two
processes are now mirror images of each
other [4].

The nature of reaction times is such that a random
walk has an intuitive appeal as a possible model;
this is especially so with two-choice reaction times in
which both probabilities of error and reaction times
derive from a common source. But the relationship
of experimental data to model predictions has not
provided great grounds for confidence; it has typically
been disappointing.
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Randomization

Introduction

Randomization is the intentional use of a random
process either in the design phase (prerandomiza-
tion) or in the analysis phase (postrandomization)
of an investigation. Prerandomization includes ran-
dom selection, random assignment, and random-
ized response methods. Postrandomization includes
randomized decision rules and randomization-based
inference methods such as permutation tests and
bootstrap methods. The focus of this article is
on random selection, random assignment, and their
relationship to randomization-based inference. Defi-
nitions of simple random assignment and selection
along with a brief discussion of the origins of ran-
domization are given in this section. Justifications
for and criticisms of randomization are given in the
next section.

Simple random selection refers to any process that
selects a sample of size n without replacement from
a population of size N > n, such that each of the
N !/[n!(N − n)!] possible samples is equally likely
to be selected. Simple random assignment refers to
any process that assigns one of t treatments to each of
N subjects, such that each of the N !/(n1!n2!, . . . nt !)
possible assignments in which treatment j is assigned
to nj subjects is equally likely. A method for per-
forming random assignment, as well as a warn-
ing about a faulty assignment method, is described
in [26]. For convenience, the term randomization will
be used in this article to refer either to random selec-
tion or to random assignment. Details on randomized
response methods can be found in [67]. Randomized
decision rules are described in [11, §1.5] and [40,
§9.1].

The prevailing use of random assignment in
experimentation owes much to R. A. Fisher, who
in 1926 [17], apparently was the first to use the
term randomization [7]. Random assignment, how-
ever, had been used much earlier, particularly in
behavioral science research. Richet [49] used random
assignment in an 1884 telepathy experiment in which
subjects guessed the suit of a card. The Society for
Psychical Research in London was receptive to using
random assignment and by 1912 it was being used
in parapsychological research at American univer-
sities. Random assignment also was used as early

as 1885 in psychophysics experiments [42], but the
procedure was not as readily accepted here as it
was in parapsychological research. Fisher made ran-
dom assignment a formal component of experimental
design, and he introduced the method of permutation
tests (see Permutation Based Inference) [18]. Pit-
man [44–46] provided a theoretical framework for
permutation tests and extended them to tests on cor-
relations and to analysis of variance.

Random sampling also has origins within social
science research. Kiaer [34] proposed in 1897 that
a representative (purposive) sample rather than a
census be used to gather data about an existing pop-
ulation. The proposal met substantial opposition, in
part because the method lacked a theoretical frame-
work. Bowley, in 1906 [3], showed how the central
limit theorem could be used to assess the accuracy
of population estimates based on simple random sam-
ples. Work on the theory of stratified random sam-
pling (see Stratification) had begun by 1923 [64],
but as late as 1926 random sampling and purpo-
sive sampling were still treated on equal grounds [4].
It was Neyman [41] who provided the theoretical
framework for random sampling and set the course
for future research. In this landmark paper, Ney-
man introduced the randomization-based sampling
distribution, described the theory of stratified ran-
dom sampling with optimal allocation, and developed
the theory of confidence intervals. Additional discus-
sions on the history of randomization can be found
in [16, 25, 29, 43, 47, 48, 57, 59], and [61].

Why Randomize?

It might seem unnecessary even to ask the ques-
tion posed by the title of this section. For most
behavioral scientists, the issue was resolved in the
sophomore-level experimental psychology course. It
is apparent, however, that not all statisticians take
this course. At least two articles with the title ‘Why
Randomize’ are widely cited [23, 32]. A third arti-
cle asked ‘Must We Randomize Our Experiment’?
and answered – ‘sometimes’ [2]. A fourth asked
‘Experimental Randomization: Who Needs It?’ and
answered – ‘nobody’ [27]. Additional articles that
have addressed the question posed in this section
include [5, 6, 9, 24, 36, 38, 55, 60–63, 65], and [66].
Arguments for randomization as well as selected crit-
icisms are summarized next.



2 Randomization

To Ensure that Linear Estimators are Unbiased
and Consistent. A statistic is unbiased for esti-
mating a parameter if the mean of its sampling
distribution is equal to the value of the parameter,
regardless of which value the parameter might have.
A statistic is consistent for a parameter if the statistic
converges in probability to the value of the parameter
as sample size increases.

A sampling distribution for a statistic can be gen-
erated by means of postrandomization, provided that
prerandomization was employed for data collection.
Sampling distributions generated in this manner are
called randomization distributions. In an observa-
tional study, random sampling is sufficient to ensure
that sample means are unbiased and consistent for
population means. Random sampling also ensures
that the empirical cumulative distribution function is
unbiased and consistent for the population cumulative
distribution function and this, in turn, is the basis of
the bootstrap. Likewise, random assignment together
with unit-treatment additivity ensures that differences
between means of treatment groups are unbiased and
consistent estimators of the true treatment differences,
even if important explanatory variables have been
omitted from the model.

Unbiasedness is generally thought of as a desirable
property, but an estimator may be quite useful without
being unbiased. First, biased estimators are some-
times superior to unbiased estimators with respect
to mean squared error (variance plus squared bias).
Second, unbiasedness can be criticized as an artifi-
cial advantage because it is based on averaging over
treatment assignments or subject selections that could
have been but were not observed [5]. Averaging over
data that were not observed violates the likelihood
principle, which states that inferences should be based
solely on the likelihood function given the observed
data. A brief introduction to the issues regarding the
likelihood principle can be found in [50] (see Maxi-
mum Likelihood Estimation).

To Justify Randomization-based Inference. One
of the major contributions of Neyman [41] was
to introduce the randomization distribution for sur-
vey sampling. Randomization distributions provide a
basis for assessing the accuracy of an estimator (e.g.,
standard error) as well as a framework for construct-
ing confidence intervals.

Randomization distributions based on designed
experiments are particularly useful for testing sharp

null hypotheses. For example, suppose that treatment
and control conditions are randomly assigned to sub-
jects and that administration of the treatment would
have an additive effect, say δ, for each subject. The
permutation test, based on the randomization distri-
bution of treatment versus control means, provides
an exact test of the hypothesis δ = 0. Furthermore, a
confidence interval for δ can be obtained as the set
of all values δ0 for which H0: δ = δ0 is not rejected
using the permutation test. In general, randomization
plus subject-treatment additivity eliminates the need
to know the exact process that generated the data.

It has been suggested that permutation tests are
meaningful even when treatments are not randomly
assigned [9, 12–15, 19, 39, 54]. The resulting P

values might have descriptive value but without
random assignment they do not have inferential value.
In particular, they cannot be used to make inferences
about causation [24].

Randomization-based inference has been criticized
because it violates the conditionality principle [1, 10,
27]. This principle states that inference should be
made conditional on the values of ancillary statistics;
that is, statistics whose distributions do not depend on
the parameter of interest. The outcome of randomiza-
tion is ancillary. Accordingly, to obey the condition-
ality principle, inference must be made conditional
on the observed treatment assignment or sample
selection. Postrandomizations do not yield additional
information. This criticism of randomization-based
inference loses much of its force if the model that
generated the data is unknown. Having a valid
inference procedure in the absence of distributional
knowledge is appealing and appears to outweigh the
cost of violating the conditionality principle.

To Justify Normal-theory Tests. Kempthorne [30,
31] showed that if treatments are randomly assigned
to subjects and unit-treatment additivity holds, then
the conventional F Test is justified even in the
absence of normality. The randomization distribution
of the test statistic under H0 is closely approximated
by the central F distribution. Accordingly, the con-
ventional F Test can be viewed as an approximation
to the randomization test. In addition, this result
implies that the choice of the linear model is not ad
hoc, but follows from randomization together with
unit-treatment additivity.
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To Protect Against Subjective Biases of the Investi-
gator. Randomization ensures that treatment assign-
ment is not affected by conscious or subconscious
biases of the experimenter. This justification has
been criticized on the grounds that an investigator
who cannot be trusted without randomization does
not become trustworthy by using randomization [27].
The issue, however, is not only about trust. Even
the most trustworthy experimenter could have an
unintentional influence on the outcome of the study.
The existence of unintentional experimenter effects
is well documented [53] and there is little reason to
believe that purposive selection or purposive assign-
ment would be immune from such effects.

To Elucidate Causation. It has been argued that the
scientific (as opposed to statistical) purpose of ran-
domization is to elucidate causation [33, 62]. Accu-
rate inferences about causality are difficult to make
because experimental subjects are heterogeneous and
this variability can lead to bias. Random assign-
ment guards against pretreatment differences between
groups on recorded variables (overt bias) as well as
on unobserved variables (hidden bias).

In a designed experiment, the causal effect of one
treatment relative to a second treatment for a spe-
cific subject can be defined as the difference between
the responses under the two treatments. Most often
in practice, however, only one treatment can be
administered to a specific subject. In the counterfac-
tual approach (see Counterfactual Reasoning), the
causal effect is taken to be the difference between
potential responses that would be observed under
the two treatments, assuming subject-treatment addi-
tivity and no carryover effects [28, 52, 55, 56].
These treatment effects cannot be observed, but ran-
dom assignment of treatments is sufficient to ensure
that differences between the sample means of the
treatment groups are unbiased and consistent for the
true causal effects. The counterfactual approach has
been criticized on the grounds that assumptions such
as subject-treatment additivity cannot be empirically
verified [8, 20, 63].

‘Randomization is rather like insurance [22].’ It
protects one against biases, but it does not guaran-
tee that treatment groups will be free of pretreat-
ment differences. It guarantees only that over the
long run, average pretreatment differences are zero.
Nonetheless, even after a bad random assignment, it
is unlikely that treatment contrasts will be completely

confounded with pretreatment differences. Accord-
ingly, if treatment groups are found to differ on
important variables after random assignment, then
covariate adjustment still can be used (see Analysis
of Covariance). This role of reducing the probability
of confounding is not limited to frequentist analyses;
it also is relevant in Bayesian analyses [37].

Under certain conditions, causality can be inferred
without random assignment. In particular, if experi-
mental units are homogeneous, then random assign-
ment is unnecessary [55]. Also, random assignment is
unnecessary (but may still be useful) under covariate
sufficiency. Covariate sufficiency is said to exist if all
covariates that affect the response are observed [63].
Under covariate sufficiency, hidden bias is nonex-
istent and adjustment for differences among the
observed covariates is sufficient to remove overt
bias, even if treatments are not randomly assigned.
Causal inferences from structural equation models fit-
ted to observational data as in [58] implicitly require
covariate sufficiency. Without this condition, infer-
ences are limited to ruling out causal patterns that
are inconsistent with the observed data. Causal infer-
ence in observational studies without covariance suf-
ficiency is substantially more difficult and is sensitive
to model misspecification [68, 69].

Furthermore, random assignment is unnecessary
for making causal inferences from experiments when-
ever treatments are assigned solely on the basis of
observed covariates, even if the exact assignment
mechanism is unknown [21]. The conditional prob-
ability of treatment assignment given the observed
covariates is known as the propensity score [52].
If treatments are assigned solely on the basis of
observed covariates, then adjustment for differences
among the propensity scores is sufficient to remove
bias. One way to ensure that treatment assignment
is solely a function of observed covariates is to ran-
domly assign treatments to subjects, possibly after
blocking on one or more covariates.

To Enhance Robustness of Inferences. Proponents
of optimal experimental design and sampling recom-
mend that treatments be purposively assigned and
that subjects be purposively selected using rational
judgments rather than random processes. The advan-
tage of purposive assignment and selection is that
they can yield estimators that are more efficient
than those based on randomization [35, 51]. If the
presumed model is not correct, however, then the
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resulting inferences may be faulty. Randomization
guards against making incorrect inferences due to
model misspecification.

For example, consider the problem of constructing
a regression function for a response, Y , given a single
explanatory variable, X. If the regression function is
known to be linear, then the variance of the least
squares slope estimator is minimized by selecting
observations for which half of the Xs are at the max-
imum and half of the Xs are at the minimum value
(see Optimal Design for Categorical Variables). If
the true regression function is not linear, however,
then the resulting inference will be incorrect and
the investigator will be unable to perform diagnostic
checks on the model. In contrast, if (X, Y ) pairs are
randomly selected then standard regression diagnos-
tic plots can be used to detect model misspecification
and to guide selection of a more appropriate model.
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Randomization Based
Tests

Introduction

My brief is to provide an overview of the random-
ization model of statistical inference, and of the
statistical tests that are appropriate to that model. I
may have exceeded that brief. In the first instance,
I have felt obliged to present and discuss one of its
major rivals: the population model of inference. In
the second instance, I have not confined my descrip-
tion to tests on continuous or rank-ordered data under
the randomization model. It has seemed to me that
the so-called ‘exact’ tests on categorical data should
also be considered under this model for they, too,
involve permutation (see Exact Methods for Cate-
gorical Data).

I shall try to differentiate between the population
and randomization models of statistical inference. I
shall not consider the Bayesian model, partly (at least)
because it is not popular, and partly because I have to
confess that I do not fully understand its application
to real-life experimentation (see Bayesian Statistics).

The Population Model of Statistical
Inference

This is sometimes known as the classical model. It
was first articulated in stringent theoretical terms by
Neyman and Pearson with respect to continuous
data [21, 22] (see Neyman–Pearson Inference). It
presupposes, or has as its assumptions, the following:
(a) the samples are drawn randomly from defined
populations, and (b) the frequency distributions of
the populations are mathematically definable. An
alternative definition embraces the notion that if a
large (infinite) number of samples (with replacement)
were to be taken from the population(s) actually
sampled in the experiment, then the P value attached
to the null hypothesis corresponds to the frequency
with which the values of the test statistic (for instance,
the difference between means) are equal to or exceed
those in the actual experiment. It should be noted
that Neyman and Pearson also introduced the notions
of Type 1 error (α, or false rejection of the null
hypothesis) and Type 2 error (β, or false acceptance

of the null hypothesis) [21, 22]. By extension, this led
to the notion of power to reject the null hypothesis
(1 − β). Though Neyman and Pearsons’s original
proposals were concerned with tests of significance
(P values), Neyman later introduced the notion of
confidence intervals (CIs) [20].

It is important to note that statistical infer-
ences under this model, whether they are made by
hypothesis-testing (P values) or by estimation (CIs),
refer to the parent populations from which the random
samples were drawn.

The mathematically definable populations to which
the inferences refer are usually normally distributed
or are derivatives of the normal (Gaussian) distribu-
tion (for instance, t , F , χ2).

A late entrant to the population model of infer-
ence is the technique of bootstrapping, invented by
Bradley Efron in the late 1970s [5]. Bootstrapping
is done, using a fast computer, by random resam-
pling of the samples (because the populations are
inaccessible), with replacement. It allows inferences
to be made (P values, SEs, CIs) that refer to ran-
domly sampled populations, but with the difference
from classical statistical theory that no assumptions
need be made about the frequency distribution of the
populations.

The historical relationship between the enuncia-
tion of the population model of inference and the first
descriptions of statistical tests that are valid under
this model is rather curious. This is because the tests
were described before the model was. ‘Student’ (W.S.
Gosset) described what came to be known as the t

distribution in 1908 [28], later converted into a prac-
tical test of significance by Fisher [6]. R.A. Fisher
gave, in 1923, a detailed account of his use of anal-
ysis of variance (ANOVA) to evaluate the results
of a complex experiment involving 12 varieties of
potato, 6 different manures, and 3 replicates in a
randomized block design [9]. The analysis included
the Variety × Manure interaction. All this, performed
with pencil and paper! But it was not until 1928
that Neyman and Pearson expounded the population
model of inference [21, 22].

So, what is wrong with the population model
of inference? As experimental biologists (not least,
behavioral scientists) should know – but rarely
admit – we never take random samples (see
Randomization). At best, we take nonrandom
samples of the experimental units (humans, animals,
or whatever) that are available – ‘samples of
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convenience’ [16]. The availability may come about
because units have presented themselves to a clinic,
have responded to a call for volunteers, or can be
purchased from animal breeders. We then randomize
the experimental units to ‘treatment groups’, for
instance, no treatment (control), placebo, various
drugs, or various environmental manipulations. In
these circumstances, it is impossible to argue that
genuine populations have been randomly sampled.
Enter, the randomization model of inference and tests
under that model.

The Randomization Model of Statistical
Inference

This was enunciated explicitly only about 50 years
ago [12], even though statistical tests under this
model had been described and performed since the
early 1930s. This is undoubtedly because, until com-
puters were available, it might take days, weeks, or
even months to analyze the results of a single exper-
iment. Much more recently, this and other models
have been critically appraised by Rubin [26]. The
main features of the model are that (a) experimental
groups are not acquired by random sampling, but
by taking a nonrandom sample and allocating its
members to two or more ‘treatments’ by a pro-
cess of randomization; (b) tests under this model
depend on a process of permutation (randomiza-
tion); (c) the tests do not rely on mathematically
defined frequency-distributions; (d) inferences under
this model do not refer to populations, but only to the
particular experiment; (e) any wider application of
these statistical inferences depends on scientific (ver-
bal), not statistical, argument. Good accounts of this
model for nonmathematical statisticians are given in
monographs [4, 11, 16, 18] (see Permutation Based
Inference).

Arguments in favor of this model have been pro-
vided by R.A. Fisher [7]: ‘. . . .conclusions [from t

or F Tests] have no justification beyond the fact
that they agree with those which could have been
arrived at by this elementary method [randomiza-
tion].’ And by Kempthorne [12], who concluded:
‘When one considers the whole problem of exper-
imental inference, that is, of tests of significance,
estimation of treatment differences and estimation of
the errors of estimated differences, there seems lit-
tle point in the present state of knowledge in using

[a] method of inference other than randomization
analysis.’

The randomization model of inference and the
statistical tests conducted under that model have
attracted little attention from theoretical statisticians.
Why? My guess is that this is because, to theoreti-
cal statisticians, the randomization model is boring.
There are some exceptions [2, 25] but, as best I
can judge, these authors write of inferences being
referable to populations. I argue that because the
experimental designs involve randomization, not ran-
dom sampling, they are wrong.

What statistical tests are appropriate to randomiza-
tion? For continuous data, the easiest to understand
are those designed to test for differences between
or among means [15]. In 1935, R.A. Fisher ana-
lyzed, by permutation, data from an experiment on
matched pairs of plants performed by Charles Dar-
win [8]. Fisher’s goal was to show that breaches
of the assumptions for Student’s t Test did not
affect the outcome. In 1936, Fisher analyzed cran-
iometric data from two independent groups by per-
mutation [7]. In 1933, Eden and Yates reported
a much more ambitious analysis of a complex
experiment by permutation, to show that analy-
sis of variance (ANOVA) was not greatly affected
by breaches of assumptions [3]. As I shall show
shortly, the calculations involved in these studies
can only be described as heroic. Perhaps, because
of this, Fisher repudiated permutation tests in favor
of t Tests and ANOVA. He said that their utility
‘. . . consists in their being able to supply confir-
mation. whether rightly or, more often, wrongly,
when it is suspected that the simpler tests have
been apparently injured by departure from nor-
mality’ [8]. It is strange that Fisher, the inventor,
practitioner, and proselytizer of randomization in
experimental design [8], seems not to have made
the connection between randomization in design
and the use of permutation (randomization) tests
to analyze the results. All Fisher’s papers can be
downloaded free-of-charge from the website www.
library.adelaide.edu.au/digitised/
fisher/.

Over the period 1937 to 1952, the notion of
transforming continuous data into ranks was devel-
oped [10, 13, 19, 29] (see Rank Based Inference).
The goal of the authors was to simplify and expe-
dite analysis of variance, and to cater for data that
do not fulfill the assumption of normality in the
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parent populations. All four sets of authors relied
on calculating approximate (asymptotic) P values
by way of the χ2 or z distributions. It is true
that Wilcoxon [29] and Kruskal and Wallis [13] did
produce small tables of exact P values resulting
from the permutation of ranks. But it is curious
that only Kruskal and Wallis [13] refer to Fisher’s
idea of exact tests based on the permutation of
means [7, 8].

There is a misapprehension, commonplace among
investigators but also among some statisticians [26],
that the rank-order tests are concerned with dif-
ferences between medians. This is simply untrue.
These tests are concerned with differences in group
mean ranks (R̄1 − R̄2), and it can easily be demon-
strated that, because of the method of ranking,
this is not the same as differences between medi-
ans [1]. It should be said that though Wilcoxon
was the first to describe exact rank-order tests, it
was Milton Friedman (later a Nobel prize-winner
in economics) who first introduced the notion of
converting continuous into rank-ordered data in
1937 [10], but he did not embrace the notion of
permutation.

Now, the analysis of categorical data by permu-
tation – this, too, was introduced by R.A. Fisher [8].
He conjured up a hypothetical experiment. It was that
a colleague reckoned she could distinguish a cup of
tea to which the milk had been added first from a
cup in which the milk had been added after the tea
(Table 3). This well-known ‘thought’ experiment was
the basis for what is now known as the Fisher exact
test. Subsequently, this exact method for the analysis
of categorical data in 2 × 2 tables of frequency has
been extended to r × c tables of frequencies, both
unordered and ordered.

As a piece of history, when Frank Yates described
his correction for continuity for the χ2 test on small
2 × 2 tables, he validated his correction by reference
to Fisher’s exact test [30].

Statistical Tests Under the Randomization
Model of Inference

Differences Between or Among Means

Two Independent Groups of Size n1 and n2 . The
procedure followed is to exchange the members of
the groups in all possible permutations, maintaining
the original group sizes (Tables 1 and 2). That is, all

Table 1 Illustration of the process of permutation in the
case of two independent, randomized, groups

Permutation Group 1 n = 2 Group 2 n = 3

A a, b c, d, e
B a, c b, d, e
C a, d b, c, e
D a, e b, c, d
E b, c a, d, e
F b, d a, c, e
G b, e a, c, d
H c, d a, b, d
I c, e a, b, d
J d, e a, b, c

The number of possible permutations (see Formula 2) is
(2 + 3)!/(2)!(3)! = 10, whether the entries are continuous or
ranked data.

Table 2 Numerical datasets corresponding to Table 1

Dataset Group 1 Group 2 x̄2 − x̄1 R̄2 − R̄1

A 1, 3 4, 7, 9 4.67 2.50
B 1, 4 3, 7, 9 3.83 1.67
C 1, 7 3, 4, 9 1.33 0.83
D 1, 9 3, 4, 7 −0.33 0.00
E 3, 4 1, 7, 9 2.17 0.83
F 3, 7 1, 4, 9 −0.33 0.00
G 3, 9 1, 4, 7 −2.00 −0.83
H 4, 7 1, 3, 9 −1.17 −0.83
I 4, 9 1, 3, 7 −2.83 −1.67
J 7, 9 1, 3, 4 −5.33 −2.50

1, 3, 4, 7 and 9 were substituted for a, b, c, d and e in Table 1,
and the differences between means (x̄2 − x̄1) calculated. The
ranks 1, 2, 3, 4 and 5 were substituted for a, b, c, d and e
in Table 1, and the differences between mean ranks (R̄2 −
R̄1) calculated.
Exact permutation test on difference between means [7]:
dataset A, one-sided P = 0.100, two-sided P = 0.200; dataset
B, one-sided P = 0.200, two-sided P = 0.300; dataset J, one-
sided P = 0.100, two-sided P = 0.100.
Exact permutation test on difference between mean ranks [18,
28]: dataset A, one-sided P = 0.100, two-sided P = 0.200;
dataset B, one-sided P = 0.200, two-sided P = 0.400; dataset
J, one-sided P = 0.100, two-sided P = 0.200.

possible ways in which the original randomization
could have fallen out are listed. Then:

P =

No. of permutations in which the difference
between group means is equal to

or more extreme than that observed
All possible permutations

.

(1)
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For a one-sided P , only differences that are equal to
or greater than that observed (that is, with + sign) are
used. For a two-sided P , differences, regardless of
the sign, that are greater than that observed are used.

The number of all possible permutations increases
steeply with group size. The formula for this, for
group sizes of n1 and n2, and corresponding group
means x̄1 and x̄2, is:

(n1 + n2)!

(n1)!(n2)!
(2)

This innocuous formula disguises the magnitude of
the computational problem. Thus, for n1 = n2 = 5,
the number of all possible permutations is 252. For
n1 = n2 = 10, it is 184 756. And for n1 = n2 = 15, it
is 155 117 520. A solution to the sometimes massive
computational problem is to take Monte Carlo ran-
dom samples (see Monte Carlo Simulation) of, say,
10 000 from the many millions of possible permuta-
tions. Interestingly, this is what Eden and Yates did in
solving the massive problem of their complex analy-
sis of variance – by the ingenious use of cards [3].

Matched Pairs. Given n matched pairs, the number
of all possible permutations is

2n. (3)

Thus, if n = 5, the number of all possible permuta-
tions is 32; for n = 10, 1024; and for n = 15, 32768.
The last is what R.A. Fisher computed with pencil
and paper in 1935 [8].

k Independent Groups. This corresponds to one-way
ANOVA. It is a simple extension of two independent
groups, and the number of all possible permutations is
given by an extension of formula (2). Usually, instead
of using the difference between the means, one uses
a simplified F statistic [4, 11, 18].

k Matched Groups. This corresponds to two- or
multi-way ANOVA (see Factorial Designs). There
is no great problem if only the main effects are to be
extracted. But it is usually the interactions that are
the focus of interest (see Interaction Effects). There
is no consensus on how best to go about extract-
ing these. Edgington [4], Manly [18], and Good [11]
have suggested how to go about this.

In the case of a two-way, factorial, design first
advocated by Fisher [9], there seems to be no great
problem. Good [11] describes clearly how, first, the
main (fixed) effects should be factored out, leaving
the two-way interaction for analysis by permutation.

But what about a three-way factorial design? Not
uncommon in biomedical experimentation. But this
involves no fewer than three two-way interactions,
and one three-way interaction. It is the last that might
test the null hypothesis of prime interest. Can this
interaction be extracted by permutation? Good [11]
shows, by rather complex theoretical argument, how
this could be done.

Then, what about repeated-measures designs?
Not an uncommon design in biomedical experimen-
tation. If the order of repeated measurements is ran-
domized, Lunneborg shows how this can be handled
by permutation [16, 17]. But, if the order of the
repeated measurements is not randomized (for exam-
ple, time cannot be randomized, nor can ascending
dose- or stimulus-response designs), surely, analysis
of the results cannot be done under the randomization
model of inference?

My pragmatic view is that the more complex
the experimental design, the less practicable is a
randomization approach. Or, to put it another way,
the more complex the experimental design, the closer
tests under the classical and randomization models of
inference approach each other.

Confidence Intervals (CIs) Under the Randomization
Model. It seems to me that CIs are irrelevant to the
randomization model. This is because they refer to
populations that have been randomly sampled [20],
and this is emphatically not the case under the
randomization model.

Minimal Group Size and Power in Randomization
Tests. Conventional ways of thinking about these
have to be abandoned, because they depend on the
population model of inference. My practical solution
is to calculate the maximum number of possible
permutations (formulae 2, 3). It must be at least 20
in order to be able to achieve P ≤ 0.05.

Differences Between or Among Group Mean
Ranks

As indicated above, the computational problem of
evaluating these differences by permutation is much
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less than that presented by differences between/
among means. It is, therefore, rarely necessary to
resort to Monte Carlo random sampling.

An enormous number of rank-order tests has
been described: the Wilcoxon-Mann-Whitney test
for two independent groups [19, 29], the Wilcoxon
matched pairs, signed-rank, test [29], the Kruskal-
Wallis test (see Kruskal–Wallis Test) on k inde-
pendent groups [13], and the Friedman test on k

related groups [4], are well known. But there is
a host of other, eponymous, rank-order tests [14].
A word of caution is necessary. Almost all gen-
eral statistics programs offer these tests, though
executed asymptotically by normal or χ2 approx-
imations rather than by permutation. The prob-
lem with the asymptotic versions is that the algo-
rithms used are often not described. How ties
are handled is of critical importance. This mat-
ter has been addressed recently [1]. An example of
the exact Wilcoxon-Mann-Whitney test is given in
Table 2.

Exact Tests on Categorical Data

The simplest case is a 2 × 2 table of frequencies
(Table 3). As Fisher described in simple terms [8],
and Siegel and Castellan in modern notation [27], the
point probability of H0 is described by:

P = (a + b)!(c + d)!(a + c)!(b + d)!

N !a!b!c!d!
(4)

However, the probability of H0 refers to the prob-
ability of occurrence of the observed values, plus
the probabilities of more extreme values in the same
direction. And, if a two-sided P is sought, the same or
more extreme values in either direction must be taken
into account. Thus, (4) must be applied to all these
tables, and the P values summed. In the example of
Table 3, the two-sided P is twice the one-sided value.
This is only because of the equality and symmetry of
the marginal totals.

There is a multitude of exact tests on cate-
gorical data for 2 × 2 tables of frequencies, and
for unordered and ordered r × c tables. But even
in the simplest case of 2 × 2 tables, there are
problems about the null hypotheses being tested.
It seems to me that the Fisher exact test, and
the various formulations of the χ2 test, are con-
cerned with very vague null hypotheses (H0). I pre-
fer tests in which H0 is much more specific: for

Table 3 Results of R.A. Fisher’s thought experiment on
the ability of a lady to distinguish whether milk or tea was
added first to the cup [8]

Actual design Row

Milk first Tea first Total

Milk first 3 1 4
Lady’s

decisions
Tea first 1 3 4
Column total 4 4 8

The lady was informed in advance that she would be presented
with 8 cups of tea, in 4 of which the tea had been added first,
in 4 the milk. The exact probability for the null hypothesis that
the lady was unable to distinguish the order is obtained by the
sum of the point probabilities (Formula 4) for rearrangements
of the Table in which the observed, or more extreme, values
would occur. Thus, two-sided P = 0.22857 + 0.0142857 +
0.22857 + 0.0142857 = 0.48573.

Table 4 Properties of exact tests on 2 × 2 tables of
frequencies

Test
Null

hypothesis Conditioning

Fisher’s Vague Both marginal
totals fixed

Odds ratio OR = 1 Column
marginal
totals fixed

Exact χ2 Columns and rows
independent

Unconditional

Difference
between
proportions

p1 − p2 = 0 Unconditional

Ratio between
proportions

p1/p2 = 1 Unconditional

Conditioning means ‘fixed in advance by the design of the
experiment’. In real-life experiments, both marginal totals can
never be fixed in advance. Column totals are usually fixed in
advance if they represent treatment groups.

instance, that OR = 1, p1 − p2 = 0, or p1/p2 = 1
(Table 4).

There is a further problem with the Fisher exact
test. It is a conditional test, in which the column
and marginal totals in a 2 × 2 table are fixed in
advance. This was so in Fisher’s thought experiment
(Table 3), but it is almost inconceivable that this
could be achieved in a real-life experiment. In the
case that H0 is that OR = 1, there is no difficulty if
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one regards the column totals as group sizes. Tests
on proportions, for instance, that p1 − p2 = 0, or
p1/p2 = 1, are unconditional. But there are complex
theoretical and computational difficulties with these.
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Appendix: Software Packages for
Permutation Tests

I list only those programs that are commercially
available. I give first place to those that operate
under the Microsoft Windows system. There is an
excellent recent and comparative review of several of
these [23, 24]. The remaining programs operate under
DOS. I shall mention only one of the latter, which
I have used. The remaining DOS programs require
the user to undertake programming, and I do not list
these. All the commercial programs have their own
datafile systems. I have found dfPowerDBMS/Copy
v. 8 (Dataflux Corporation, Cary NC) invaluable
in converting any spreadsheet into the appropriate
format for almost any statistics program.

Microsoft Windows

StatXact v.6 with Cytel Studio (Cytel Software Cor-
poration, Cambridge MA). StatXact is menu-driven.
For differences between/among group means, it caters
for two independent groups, matched pairs, and the
equivalent of one-way ANOVA. It does not have
a routine for two-way ANOVA. For differences
between/among group mean ranks, it caters for the
Wilcoxon-Mann-Whitney test, the Wilcoxon signed-
rank test for matched pairs, the Kruskal-Wallis test
for k independent group mean ranks, and the Fried-
man test for k matched groups. For categorical data,
it provides a great number of tests. These include the
Fisher exact test, exact χ2, a test on OR = 1, tests
on differences and ratios between proportions; and
for larger and more complex tables of frequencies,
the Cochran–Armitage test on ordered categorical
data.

LogXact (Cytel Software Corporation, Cambridge
MA). This deals exclusively with exact logistic

regression analysis for small samples. However,
it does not cater for stepwise logistic regression
analysis.

SAS v. 8.2 (SAS Institute Inc, Cary NC). SAS
has introduced modules for exact tests, developed
by the Cytel Software Corporation. These include
PROC FREQ, PROC MULTTEST, and PROC
NPAR1WAY, PROC UNIVARIATE, and PROC
RANK. NPAR1WAY provides permutation tests on
the means of two or more independent groups, but not
on more than two related groups. PROCRANK caters
for a variety of tests on mean ranks, and PROCFREQ
a large number of exact tests on tables of frequencies.

Testimate v. 6 (Institute for Data Analysis and Study
Planning, Gauting/Munich). This caters for a vari-
ety of exact rank-order tests and tests on tables of
frequency, but no tests on means.

SPSS (SPSS Inc, Chicago IL). This very popular
statistics package has an Exact Tests add-on (leased
from StatXact), with routines for a wide range
of exact tests on categorical data, some on rank-
ordered data, but none on differences between/among
means.

DOS Programs

RT v. 2.1 (West Inc., Cheyenne WY). This is Bryan
Manly’s program, based on his book [18]. One
important attribute is that it provides for two-way
ANOVA carried out by permutation, in which the
interaction can be extracted. However, it has not
been developed since 1991, though Bryan Manly
hopes that someone will take on the task of
translating it onto a Windows platform (personal
communication).
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Randomized Block
Design: Nonparametric
Analyses
In a randomized block design, there are, in addition
to the experimental factor or factors of interest, one
or more nuisance factors (see Nuisance Variables)
influencing the measured responses. We are not inter-
ested in evaluating the contributions of these nuisance
factors. For example, gender may be relevant in
studying smoking cessation, but, in a comparative
evaluation of a particular set of smoking cessation
techniques, we would not be concerned with assess-
ing the influence of gender per se. However, we
would be interested in controlling the gender influ-
ence. One can control such nuisance factors by a
useful technique called blocking (see Block Ran-
dom Assignment), which can reduce or eliminate
the contribution these nuisance factors make to the
experimental error. The basic idea is to create homo-
geneous blocks or strata in which the levels of the
nuisance factors are held constant, while the lev-
els of the experimental factors are allowed to vary.
Each estimate of the experimental factor effect within
a block is more efficient than estimates across all
the samples. When one pools these more efficient
estimates across blocks, one should obtain a more
efficient estimate than would have been available
without blocking [3, 9, 13].

One way to analyze the randomized block design
is to use standard parametric analysis of variance
(ANOVA) methods. However, these methods require
the assumption that the experimental errors are nor-
mally distributed. If the errors are not normally dis-
tributed, or if there are outliers in the data, then
parametric analyses may not be valid [2]. In this
article, we will present a few distribution-free tests,
which do not require the normality assumption. These
nonparametric analyses include the Wilcoxon signed
rank test (see Signed Ranks Test), Friedman’s test,
the aligned rank test, and Durbin’s test.

The Sign Test for the Randomized
Complete Block Design with Two
Treatments

Consider the boys’ shoe-wear data in Table 1, which
is from [3]. Two sole materials, A and B, were

Table 1 Boys’ shoe-wear. Example: the amount of wear
measured for two different materials A and B

Boy Material A Material B

1 13.2 (L)a 14.0 (R)b

2 8.2 (L) 8.8 (R)
3 10.9 (R) 11.2 (L)
4 14.3 (L) 14.2 (R)
5 10.7 (R) 11.8 (L)
6 6.6 (L) 6.4 (R)
7 9.5 (L) 9.8 (R)
8 10.8 (L) 11.3 (R)
9 8.8 (R) 9.3 (L)

10 13.3 (L) 13.6 (R)

aleft sole; bright sole.

randomly assigned to the left sole or right sole for
each boy. Each boy is a block, and has one A-soled
shoe and one B-soled shoe. The goal was to determine
whether or not there was any difference in wearing
quality between the two materials, A and B.

The sign test (see Binomial Distribution: Esti-
mating and Testing Parameters) is a nonparametric
test to compare the two treatments in such designs.
It uses the signs of the paired differences, (B – A),
to construct the test statistic [12]. To perform the
sign test, we count the number of positive paired
differences, P+. Under the null hypothesis of no treat-
ment difference, P+ has a binomial distribution with
parameters n = 10 and p = 0.5, where n is the num-
ber of blocks with nonzero differences. If the sample
size is large, then one might use the normal approx-
imation. That is,

Z = P+ − n/2√
n/4

(1)

is approximately distributed as the standard normal
distribution. For the small sample data in Table 1,
we have P+ = 8, and the exact binomial P value
is 0.109.

The Wilcoxon Signed Rank Test for the
Randomized Complete Block Design with
Two Treatments

The sign test uses only the signs of the paired
differences, but ignores their magnitudes. A more
powerful test, called the Wilcoxon signed rank test,
uses both the signs and the magnitudes of the
differences. This signed rank test can also be used to
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analyze the paired comparison designs. The following
steps show how to construct the Wilcoxon signed
rank test [12]. First, compute the paired differences
and drop all the pairs whose paired differences are
zero. Second, rank the absolute values of the paired
differences across the remaining blocks (pairs) (see
Rank Based Inference). Third, assign to the resulting
ranks the sign of the differences whose absolute value
yielded that rank. If there is a tie among the ranks,
then use the mid ranks. Fourth, compute the sum
of the ranks with positive signs T+ and the sum of
the ranks with negative signs T−. T = min(T+, T−)

is the test statistic. Reject the null hypothesis of no
difference if T is small.

If the sample size is small, then the exact distri-
bution of the test statistic should be used. Tables of
critical values for T appear in many textbooks, and
can be computed in most statistical software pack-
ages. If the sample size n (the number of pairs with
nonzero differences) is large, then the quantity

Z = T − n(n + 1)/4√
n(n + 1)(2n + 1)/24

(2)

is approximately distributed as the standard normal.
For the boys’ shoe-wear data in Table 1, the signed
ranks are listed in Table 2. We find that T = 3,
Z = −2.5, and the approximate P value, based on
the normal approximation, is 0.0125. Since the sam-
ple size is not especially large, we also compute
the P value based on the exact distribution, which
is 0.0078.

The small P value suggests that the two sole
materials were different. Compared to the sign test
P value of 0.109, the Wilcoxon signed rank test

Table 2 Signed ranks for Boys’ shoe-wear data

Boy Material A Material B
Difference
(B − A) Signed

1 13.2 (L)a 14.0 (R)b 0.8 9
2 8.2 (L) 8.8 (R) 0.6 8
3 10.9 (R) 11.2 (L) 0.3 4
4 14.3 (L) 14.2 (R) −0.1 −1
5 10.7 (R) 11.8 (L) 1.1 10
6 6.6 (L) 6.4 (R) −0.2 −2
7 9.5 (L) 9.8 (R) 0.3 4
8 10.8 (L) 11.3 (R) 0.5 6.5
9 8.8 (R) 9.3 (L) 0.5 6.5

10 13.3 (L) 13.6 (R) 0.3 4

aleft sole; bright sole.

P value is much smaller. This is not surprising, since
the Wilcoxon signed rank test considers both the signs
and the ranks of the differences, and hence it is more
powerful (see Power).

Friedman’s Test for the Randomized
Complete Block Design

Friedman’s test [5] is a nonparametric method for
analyzing randomized complete block designs, and
it is based on the ranks of the observations within
each block. Consider the example in Table 3, which
is an experiment designed to study the effect of four
drugs [8]. In this experiment, there are five litters of
mice, and four mice from each litter were chosen
and randomly assigned to four drugs (A, B, C, and
D). The lymphocyte counts (in thousands per cubic
millimeter) were measured for each mouse. Here,
each litter was a block, and all four drugs were
assigned once and only once per block. Since all four
treatments (drugs) are compared in each block (litter),
this is a randomized complete block design.

To compute the Friedman test statistic, we first
rank the observations from different treatments within
each block. Assign mid ranks in case of ties. Let b

denotes the number of blocks, t denotes the num-
ber of treatments, yij (i = 1, . . . , b, j = 1, . . . , t)
denotes the observation in the ith block and j th treat-
ment, and Rij denotes the rank of yij within each
block. The Friedman test statistic is based on the sum
of squared differences of the average rank for each
treatment from the overall average rank. That is,

FR =
t∑

j=1

(R̄j − R̄)2

σ 2
R̄j

(3)

where R̄j is the average rank for treatment j , R̄ is
the overall average rank, and the denominator is the

Table 3 Lymphocyte counts

Drugs

Litter A B C D

1 7.1 6.7 7.1 6.7
2 6.1 5.1 5.8 5.4
3 6.9 5.9 6.2 5.7
4 5.6 5.1 5.0 5.2
5 6.4 5.8 6.2 5.3
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variance of the first term in the numerator. Note that
this variance does not depend on the treatment group,
but retains the subscript because it is the variance of
a quantity indexed by this subscript. Under the null
hypothesis, the Friedman test statistic has a chi-square
distribution with (t − 1) degrees of freedom. We
reject the null hypothesis that there is no difference
between treatments if FR is large.

If there are no ties within blocks, then we have

σ 2
R̄j

= t (t + 1)

12b
, (4)

and Friedman’s test statistic reduces to

FR = 12

bt (t + 1)

t∑
j=1

R2
.j − 3b(t + 1). (5)

If there are ties within blocks, then we have

σ 2
R̄j

= t (t + 1)

12b
× D, (6)

where

D = 1 −

b∑
i=1

Ti

bt (t2 − 1)
, Ti =

∑
k

(S3
k − Sk), (7)

k ranges over the number of ties in the ith block,
and Sk is the number of observations at the kth
tied value.

To compute Friedman’s test statistic for the data
in Table 3, we first compute the ranks within each
block. These are listed in Table 4.

We have

t∑
j=1

(R̄j − R̄)2 = (19.5/5 − 2.5)2

+ (8.5/5 − 2.5)2 + (13.5/5 − 2.5)2

+ (8.5/5 − 2.5)2 = 3.28,

D = 1 −

b∑
i=1

Ti

bt (t2 − 1)
= 1 − 12

5 × 4 × (42 − 1)

= 0.96,

σ 2
R̄j

= t (t + 1)

12b
× D = 4 × (4 + 1)

12 × 5
× 0.96 = 0.32.

(8)

Table 4 The ranks of the Lymphocyte count data

Drugs

Litter A B C D

1 3.5 1.5 3.5 1.5
2 4 1 3 2
3 4 2 3 1
4 4 2 1 3
5 4 2 3 1
Rank sum 19.5 8.5 13.5 8.5

So FR = 3.28/0.32 = 10.25. Asymptotically, FR

has as its null distribution that of the chi-squared
random variable with (t − 1) degrees of freedom.
The P value for our obtained test statistic of 10.25,
based on the chi-squared distribution with 3 df,
is 0.0166, and indicates that the drug effects are
different. The exact distribution (see Exact Methods
for Categorical Data) of the Friedman test statistic
can be used for small randomized complete block
designs. Odeh et al. [10] provided the critical values
of the Friedman test for up to six blocks and
six treatments.

Aligned Rank Test for Randomized
Complete Block Design

Friedman’s test is based on the rankings within
blocks, and it has relatively low power when the
number of blocks or treatments is small. An alter-
native is to align the rankings. That is, we subtract
from the observation in each block some estimate of
the location of the block to make the blocks more
comparable. The location-subtracted observations are
called aligned observations. We rank all the aligned
observations from all the blocks instead of ranking
them only within each block, and we use the aligned
ranks to compute the test statistic. This is called the
aligned rank test [6]. The aligned rank test statistic is
the same as Friedman’s test statistic except that the
aligned rank test computes the ranks differently.

For the example in Table 3, the aligned rank test
statistic is 10.53. We again evaluate this against
the chi-squared distribution with (t − 1) = 3 df and
obtain a P value of 0.0146, slightly smaller than
that associated with Friedman’s test. For this data,
the difference between the aligned rank test and
Friedman’s test is not very pronounced, but, in some
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cases, the more powerful aligned rank test can have
a much smaller P value than the Friedman’s test.

Durbin’s Test for Balanced Incomplete
Blocks Design

In a balanced incomplete block design, the block
size k is smaller than the number of treatments
t because it is impractical or impossible to form
homogeneous blocks of subjects as large as t . As
a result, not all of the treatments can be compared
within a block, and this explains the term incomplete.
The design is balanced, which means that each pair
of treatments is compared in the same number of
blocks as every other pair of treatments. And each
block contains the same number of subjects and each
treatment occurs the same number of times. In such
a design, the appropriate subset of k treatments are
randomized to the subjects within a particular block.

Table 5 is an example of a balanced incomplete
block design [1]. In this study, the measurements
are (percentage elongation -300) of specimens of
rubber stressed at 400 psi. The blocks are 10 bales
of rubber, and two specimens were taken from each
bale. Each specimen was assigned to one of the five
tests (treatments). We are interested in finding out
whether there is any difference among the five tests.

Notice that each pair of treatments occurs together
in exactly one bale. Durbin’s test [4] can be used to
test the treatment difference in a balanced incomplete
block design. We first rank the observations within
each block, and assign mid ranks for ties. Durbin’s

Table 5 Measurements (percentage elongation −300) of
rubber stressed at 400 psi

Treatment

Bale 1 2 3 4 5

1 35 16
2 20 10
3 13 26
4 25 21
5 16 5
6 21 24
7 27 16
8 20 37
9 15 20

10 31 17

test statistic is

DR = 12(t − 1)

rt (k − 1)(k + 1)

t∑
j=1

R2
.j − 3r(t − 1)(k + 1)

k − 1
,

(9)

where t = 5 is the number of treatments, k = 2 is
the number of subjects per block (k < t), r = 4 is
the number of times each treatment occurs, and R.j

is the sum of the ranks assigned to the j th treatment.
Under the null hypothesis that there are no treatment
differences, DR is distributed approximately as chi-
squared, with (t − 1) degrees of freedom. For the
example in Table 5, we have

DR = 12 × (5 − 1)

4 × 5 × (2 − 1) × (2 + 1)

× (72 + 62 + 42 + 82 + 52)

− 3 × 4 × (5 − 1) × (2 + 1)

2 − 1
= 8 (10)

with four degrees of freedom. The P value of 0.0916
indicates that the treatments are somewhat different.
Durbin’s test reduces to Friedman’s test if the number
of treatments is the same as the number of units
per block.

Cochran–Mantel–Haenszel Row Mean
Score Statistic

The Sign test, Friedman’s test, the aligned rank
test, and Durbin’s test are all special cases of
the Cochran–Mantel–Haenszel (CMH) (see Man-
tel–Haenszel Methods) row mean score statistic with
the ranks as the scores (see [11]). Suppose that we
have a set of qs × r contingency tables. Let nhij be
the number of subjects in the hth stratum in the ith
group and j th response categories, phi+ = nhi+/nh

and ph+j = nh+j /nh. Let

n
′
h = (nh11, nh12, . . . , nh1r , . . . , nhs1, . . . , nhsr ),

P
′
h∗+ = (ph1+, . . . , phs+),

P
′
h+∗ = (ph+1, . . . , ph+r ). (11)

Then

E(nhij |H0) = mhij = nhphi+ph+j ,

E(nh|H0) = mh = nh[Ph+∗ ⊗ Ph∗+],
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V ar(nh|H0) = Vh = n2
h

(nh − 1)
((DPh+∗ − Ph+∗P

′
h+∗)

⊗ (DPh∗+ − Ph∗+P
′
h∗+)) (12)

where ⊗ denotes the left-hand Kronecker product,
DPh+∗ and DPh∗+ are diagonal matrices with ele-
ments of the vectors Ph+∗ and Ph∗+ as the main
diagonals. The general CMH statistic [7] is

QCMH = G
′
V−1

G G, (13)

where

G =
∑

h

Ah(nh − mh),

VG=
∑

h

AhVhA
′
h. (14)

where Ah is a matrix, and different choices of Ah

provide different statistics, such as the correlation
statistic, the general association statistic, and so on.
To perform the test based on the mean score statis-
tic, we have Ah = a

′
h ⊗ [I(s−1), 0(s−1)], where ah =

(ah1, . . . , ahr ) are the scores for the j th response
level in the hth stratum [11]. If we use the ranks
as the scores, and there is one subject per row and
one subject per column in the contingency table of
each stratum, then the CMH mean score statistic is
identical to Friedman’s test. The sign test, aligned
rank test, and Durbin’s test can also be computed
using the CMH mean score statistic with the ranks as
the scores.
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Randomized Block
Designs

Sir Ronald A. Fisher’s insight that random assign-
ment to treatment groups probabilistically balances
all possible confounders and thus allows for a causal
inference is one of the most important statistical
contributions of the twentieth century (see Random-
ization). This contribution undoubtedly explains the
popularity of randomized designs in many disci-
plines, including the behavioral sciences. However,
even though nuisance variables no longer need to
be regarded as possible confounders with random
assignment, these variables nevertheless continue to
contribute to variance within groups in completely
randomized designs. The magnitude of these effects
is often substantial in the behavioral sciences, because
for many phenomena of interest there are sizable
systematic individual differences between individ-
uals. The presence of such individual differences
within groups serves to lower power and preci-
sion because variance due to such differences is
attributed to error in completely randomized designs.
In contrast, this variance is separately accounted for
in the randomized block design (RBD) and thus
does not inflate the variance of the error term, thus
typically yielding greater power and precision in
the RBD.

The basic idea of an RBD is first to form
homogeneous blocks of individuals. Then individ-
uals are randomly assigned to treatment groups
within each block. Kirk [2] describes four types
of possible dependencies: (a) repeated measures,
(b) subject matching, (c) identical twins or litter-
mates, and (d) pairs, triplets, and so forth, matched
by mutual selection such as spouses, roommates,
or business partners. The repeated measures (also
known as within-subjects) application of the RBD
(see Repeated Measures Analysis of Variance) is
especially popular in psychology because it is typ-
ically much more efficient than a between-subjects
design.

It is incumbent on the researcher to identify a
blocking variable that is likely to correlate with
the dependent variable of interest in the study (see
Matching). For example, consider a study with
60 research participants comparing three methods
of treating depression, where the Beck Depression

Inventory (BDI) will serve as the dependent vari-
able at the end of the study. An ideal blocking
variable in this situation would be each individ-
ual’s BDI score at the beginning of the study prior
to treatment. If these scores are available to the
researcher, he/she can form 20 blocks of 3 indi-
viduals each: the first block would consist of the
3 individuals with the 3 highest BDI scores, the
next block would consist of the 3 individuals with
the 3 next highest scores, and so forth. Then the
researcher would randomly assign 1 person within
each block to each of the 3 treatment groups. The
random assignment component of the RBD resem-
bles that of the completely randomized design, but
the random assignment is said to be restricted in
the RBD because it occurs within levels of the
blocking variable, in this case, baseline score on
the BDI.

The RBD offers two important benefits rela-
tive to completely randomized designs. First, the
reduction in error variance brought about by block-
ing typically produces a more powerful test of the
treatment effect as well as more precise estimates
of effects. In this respect, blocking is similar to
analysis of covariance [3, 4]. Second, a poten-
tial problem in a completely randomized design
is covariate imbalance [1], which occurs when
groups differ substantially from one another on a
nuisance variable despite random assignment. The
RBD minimizes the risk of such imbalance for the
blocking variable. It is also important to acknowl-
edge that blocking a variable that turns out not
to be related to the dependent variable comes at
a cost, because degrees of freedom are lost in
the RBD, thus requiring a larger critical value and
thereby risking a loss instead of a gain in power
and precision.
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Randomized Response
Technique

The randomized response technique is an approach
that aims to get accurate answers to a sensitive ques-
tion that respondents might be reluctant to answer
truthfully, for example, ‘have you ever had an abor-
tion?’ The randomized response technique protects
the respondent’s anonymity by offering both the ques-
tion of interest and an innocuous question that has a
known probability (α) of yielding a ‘yes’ response,
for example,

1. Flip a coin. Have you ever had an abortion?
2. Flip a coin. Did you get a head?

A random device is then used by the respondent to
determine which question to answer. The outcome
of the randomizing device is seen only by the
respondent, not by the interviewer. Consequently
when the interviewer records a ‘yes’ response, it
will not be known whether this was a yes to the
first or second question [2]. If the probability of the
random device posing question one (p) is known, it is
possible to estimate the proportion of yes responses to
questions one (π), from the overall proportion of yes
responses (P = n1/n), where n is the total number

of yes responses in the sample size n.

�̂ = P − (1 − p)α

p
(1)

So, for example, if P = 0.60, (360/600)p = 0.80
and α = 0.5, then �̂ = 0.125. The estimated variance
of �̂ is

Var(�̂) = �̂(1 − �̂)

n

+
(1 − p)2α(1 − α) + p(1 − p)

[p(1 − α) + α(1 − p)]
np2

(2)

For the example here, this gives Var(�̂) = 0.0004.
Further examples of the application of the tech-

nique are given in [1].
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Range

If the smallest score in a set of data is 10 and
the largest is 300 then the range is 300 − 10 =
290. The range has the advantage over just quoting
the maximum and minimum values in that it is
independent of the part of the scale where those
scores occur. Thus, if the largest value were 400 and
the smallest 110, then the range would still be 290.

A disadvantage of the range, compared to many
other measures of spread, is that it is based solely
on the numbers at the two ends of a set. Thus, if

a single value at one extremity of a set of data is
widely separated from the rest of the set, then this
will have a large effect on the range. For example,
the range of the set 5, 7, 9, 11, 13 is 8, whereas if the
largest value were 200 instead of 13, then the range
would be 195. (Notice that the same range would
be produced when an extreme score occurred at the
other end of the set: 5, 193, 195, 197, 200.) Hence,
the range is better quoted alongside other measures of
spread that are less affected by extreme scores, such
as the interquartile range, rather than on its own.
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Rank Based Inference

In the behavioral sciences, a researcher often does
not wish to assume that the measurements in an
experiment came from one or more normal popula-
tions. When the population distributions are unknown
(but have the same shape), an alternative approach to
hypothesis testing can be based on the ranks of the
data. For example, data on reaction times are typi-
cally skewed and outliers or unusual results can exist
in situations where results from a new experimental
treatment are being compared with those from a well
established procedure. When comparing treatment
and control groups, the two samples are combined
and ranked. Then, rather than use the traditional two-
sample t statistic that compares the sample averages,
we use the Mann–Whitney–Wilcoxon (MWW) (see
Wilcoxon–Mann–Whitney Test) statistic that com-
pares the average ranks in the two samples. One
advantage is that the null distribution of the MWW
statistic does not depend on the common but unspec-
ified shape of the underlying populations. Another
advantage is that the MWW statistic is more robust
against outliers and gross errors than the t statistic.
Finally, the MWW test is more efficient (have greater
power) than the t Test when the tails of the popula-
tions are only slightly heavier than normal and almost
as efficient (95.5%) when the populations are nor-
mal. Consider also that the data may come directly
as ranks. A group of judges may be asked to rank
several objects and the researcher may wish to test
for differences among the objects. The Friedman rank
statistic (see Friedman’s Test) is appropriate in this
case.

Most of the simple experimental designs (one-
sample, two-sample, one-way layout, two-way lay-
out (with one observation per cell), correlation, and
regression) have rank tests that serve as alternatives
to the traditional tests that are based on least squares
methods (sample means). For the designs listed
above, alternatives include the Wilcoxon signed rank
test, the MWW test, the Kruskal–Wallis test, the
Friedman test, Spearman’s rank correlation (see
Spearman’s Rho), and rank tests for regression coef-
ficients (see Nonparametric Regression), respec-
tively. There were just under 1500 citations to the
above tests in social science papers as determined by
the Social Science Citation Index (1956–2004). The

Kruskal–Wallis (KW ) statistic is used for the one-
way layout and can be thought of as an extension of
the MWW test for two samples. As in the case of
the MWW, the data is combined and ranked. Then
the average ranks for the treatments are compared to
the overall rank average which is (N + 1)/2 under the
null hypothesis of equal populations, where N is the
combined sample size. When the average ranks for
the treatments diverge sufficiently from this overall
average rank, the null hypothesis of equal treatment
populations is rejected. This test corresponds directly
to the one-way analysis of variance F Test.

The nonparametric test statistics in the one- and
two-sample designs have corresponding estimates
associated with them. In the case of the Wilcoxon
signed rank statistic, the corresponding estimate of
the center of the symmetric distribution (including
the mean and median) is the median of the pairwise
averages of the data values. This estimate, called the
one-sample Hodges–Lehmann estimate, combines
the robustness of the median with the efficiency of
averaging data from a symmetric population. In the
two-sample case, the Hodges–Lehmann estimate of
the difference in the locations of the two populations
is the median of the pairwise differences. In addi-
tion, the test statistics can be inverted to provide
confidence intervals for the location of the sym-
metric population or for the difference of locations
for two populations. The statistical package, Minitab,
provides these estimates and confidence intervals
along with the tests. Reference [3] is an excellent
source for further reading on rank-based methods.
Next we discuss estimation and testing in the linear
model.

In a general linear model, the least squares
approach entails minimizing a sum of squared residu-
als to produce estimates of the regression coefficients
(see Multiple Linear Regression). The correspond-
ing F Tests are based on the reduction in sum of
squares when passing from the reduced to the full
model, where the reduced model reflects the null
hypothesis. Rank methods in the linear model fol-
low this same strategy. We replace the least squares
criterion by a criterion that is based on the ranks of
the residuals. Then we proceed in the same way as
a least squares analysis. Good robustness and effi-
ciency properties of the MWW carry over directly
to the estimates and tests in the linear model. For
a detailed account of this approach, see [3] for an
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applied perspective and [2] for the underlying theory
with examples.

Computations are always an important issue.
Many statistical packages contain rank tests for
the simple designs mentioned above but not esti-
mates. Minitab includes estimates and confidence
intervals along with rank tests for the simple
designs. Minitab also has an undocumented rank
regression command rreg that follows the same
syntax as the regular regression command. The
website http://www.stat.wmich.edu/slab/
RGLM/ developed by McKean provides a broad range
of tests, estimates, standard errors, and data plots
for the general linear model. See reference [1] for
additional discussion and examples based on the
website. Below, we will illustrate the use of the
website.

First we sketch the rank-based approach to infer-
ence in the linear model, and then we will out-
line how this approach works in a simple analysis
of covariance. For i = 1, . . . , n, let ei = yi − β0 −
xT

i β be the ith residual or error term, where xT
i =

(xi1, . . . , xip) are the known regression constants
and βT = (β1, . . . , βp) are the unknown regression
coefficients. The error distribution is assumed to
be continuous and have median zero with no fur-
ther assumptions. We denote by F(e) and f (e)

the distribution and density functions of the errors,
respectively. We call this the general linear model,
since regression, analysis of variance, and analysis
of covariance can be analyzed with this model. In
matrix notation, we have y = β01 + Xβ + e where y
is an n × 1 vector of responses, 1 is an n × 1 vector
of all ones, X is the n × p full rank design matrix,
β is the p × 1 vector of regression coefficients, and
e is the n × 1 vector of errors.

In least squares, we minimize the criterion
function �e2

i to find the estimates of the regression
coefficients. This least squares criterion function
is equivalent to ��i<j (ei − ej )

2 for inference
on (β1, . . . , βp). For rank-based inference, we
replace this criterion function by ��i<j |ei − ej |.
But ��i<j |ei − ej | is proportional to D(full) =√

12�(Rank(ei) − (N + 1)/2)ei . Hence, rather than
a quadratic function of the residuals, we have a linear
function of the residuals with the weights determined
by the ranks of the residuals. The rank estimate of β

is found by minimizing D(full), which is a measure
of the dispersion of the full model residuals. For
testing a null hypothesis, we write D(reduced) for the

dispersion of the residuals with β constrained to the
null hypothesis. Then RD = D̂(reduced) − D̂(full)
is the reduction in dispersion as a result of fitting
the reduced (null) model, where the hat indicates that
D has been evaluated at the respective reduced and
full model estimates of β.

Throughout the inference, we need a scaling factor
similar to σ 2, the variance of the error distribution, in
least squares. This factor is τ = (

√
12

∫
f 2(e)de)−1,

where f is the density function of the error distri-
bution. In the case of normal errors, τ is equal to√

(π/3)σ . This scaling parameter can be estimated
using a density estimate based on the full model
residuals.

This leads to the following basic results for
inference: the rank-based estimate β̂ is approximately
normally distributed with mean β and covariance
matrix τ 2XT X, where X is the matrix of regression
constants. The estimate of β0 is the median of the
residuals, yi − xT

i β̂, and it is approximately normally
distributed with mean β0 and variance (n4f 2(0))−1

when the design matrix has been centered. Further,
for testing H0 : Mβ = 0, where M is a q × p matrix
of full row rank, FR = 2RD/qτ̂ is approximately
distributed as F(q, n − p − 1). We now illustrate this
approach on a simple analysis of covariance.

The website http://www.stat.wmich.edu/
slab/RGLM/ was used for computations for this
example, and it can be used for a wide variety
of models and designs. In this experiment, three
advertising media (radio, newspaper, and television)
were compared. The experimental units were 15 fast
food restaurants located in comparable but different
cities, five for each of the media. The response
variable y was profits in thousands of dollars. The
restaurants were roughly of the same size but had
differing levels of food wastage. The percentage of
food wastage x was used as a covariate. For example,
there was 1.0% in the first restaurant under radio. The
data is given in Table 1.

The website provides, along with the significance
testing and estimation (with standard errors), data
plots, residual plots, and standardized residual plots
including histograms, boxplots, and Q–Q plots (see
Probability Plots). We report here the results of
testing for a covariate effect and for a media effect.
We find FR = 2RD/qτ̂ = 92.6 with a P value =
0.0001 for the null hypothesis that all media are the
same. For the null hypothesis that the coefficient of
the covariate x is zero, the P value is effectively
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Table 1 Profits in thousands of dollars(y) and
Percent food wastage(x)

radio newspaper television

x y x y x y

1.0 30 2.1 24 3.4 17
1.4 18 2.6 20 3.9 11
1.9 13 3.1 7 4.3 3
2.5 6 3.6 4 4.7 −6
2.7 3 4.1 −5 5.2 −10

zero. Removing the covariate effect and considering
data plots shows that the profits decline from radio
to television. Least squares results in a very similar
analysis. However, if y = 6 in the fourth row of
radio is entered incorrectly as y = 60, the analysis
is essentially the same for the rank tests but the least
squares test is no longer significant for either of the
null hypotheses, illustrating the relative robustness of
the rank tests. In the original data, the coefficient
of determination based on the rank approach is 0.90
while it is 0.97 for least squares. This coefficient is
often used in data analysis to assess the quality of the
fitted model. In the following paragraphs, we discuss
robust coefficients of determination.

We now consider the correlation model in which
x is a p-dimensional random vector with distribution
function M(x) and density function m(x). We also
let H(x, y) and h(x, y) denote the joint distribution
and density functions of (x, y), respectively. Then
h(x, y) = f (y − β0 − xT β)m(x). We are interested
in a robust measure of the relationship between
y and x; that is, a robust measure of association
between y and x. As with the traditional measure of
determination, our robust measure will be zero if and
only if y and x are independent. Hence, independence
becomes the null hypothesis and this translates into
β = 0 so that h(x, y) = f (y − β0)m(x).

We consider the traditional measure first. Assume
without loss of generality that E(x) = 0 and E(e) =
0. Let Var(e) = σ 2

e and let � = E(xxT ) denote the
variance–covariance matrix of x. Then the traditional
coefficient of determination is given by

R
2 = βT �β

σ 2
e + βT �β

. (1)

Note that R
2

is a measure of association between
y and x. It lies between 0 and 1, and it is 0 if and

only if y and x are independent, since y and x are
independent if and only if β = 0.

Let (x1, y1), . . . , (xn, yn) be a random sample
from the above correlation model. In order to obtain
a consistent estimate of R

2
, treat xi as fixed and

estimate the parameters by least squares in the full
model and then again in the reduced model in which
β = 0. The reduction in sum of squares is SSR =
SST − SSE , and a consistent estimate of R

2
is the

familiar R2 = SSR/SST . The traditional F statistic
is F = (SSR/p)/MSE where MSE = SSE/(n − p −
1). Finally, recall that R2 can be reexpressed as

R2 = SSR

SSR + (n − p − 1)SSE
=

p

n−p−1 F

1 + p

n−p−1F
. (2)

We first introduce the robust estimate and then
discuss the measure that it estimates (see Robust
Testing Procedures). The rank test described above
for testing H0 : β = 0 is FR = 2RD/pτ̂ , and RD

is the reduction in dispersion when passing from
the reduced to the full model. It is analogous to
the reduction in sum of squares in the traditional
approach based on least squares. We simply replace
F by FR in the expression above to get

Rrank =
p

n−p−1FR

1 + p

n−p−1FR

= RD

RD + (n − p − 1)(̂τ /2)
.

The statistic Rrank is robust because it is a one-to-
one function of the robust test statistic FR . Further, it
lies between 0 and 1, having the values 1 for a perfect
fit and 0 for a complete lack of fit. These properties
make Rrank an attractive coefficient of determination
for regression problems. Note that Rrank is a ratio of
scales, while R2 is a ratio of variances. In general,
Rrank estimates a different parameter than R2. Thus
caution is needed in comparing the two statistics.
However, like R2, Rrank can be used for comparison
of hierarchical models.

The statistic Rrank is a consistent estimate for
Rrank = RD/(RD + τ/2), where

RD =
∫ √

12(G(y) − 1
2 )yg(y)dy

−
∫ √

12(F (y) − 1
2 )yf (y)dy, (3)
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and G(y) and g(y) are the marginal distribution and
density functions of y, respectively. This measure
is between 0 and 1 and is 0 if and only if y and
x are independent. This is the robust coefficient of
determination. In general, Rrank and R

2
differ, they

are one-to-one functions of each other when (x, y)
has a multivariate normal distribution. Define

R
∗
rank = 1 −

[
1 − Rrank

1 − Rrank(1 − π/6)

]2

. (4)

Then, under multivariate normality, R
∗
rank = R

2
.

The corresponding statistic is R∗
rank which is defined

in terms of Rrank. Now, under multivariate normality
(see Catalogue of Probability Density Functions),
R∗

rank and R2 estimate the same quantity.
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Rasch Modeling

History of the Rasch Model

In 1952, the Danish mathematician Georg Rasch
(1901–1980), then consultant for a project of the
Ministry of Social Affairs, introduced a multiplica-
tive Poisson model for the analysis of reading errors
of school children. He considered the number of
errors made by testee Sv in text Ii as a realization
of a Poisson variable with parameter λvi (see Cata-
logue of Probability Density Functions) measuring
the testee’s ‘proneness’ to errors when reading that
particular text. He then split λvi into a factor per-
taining to the testee, Sv’s reading ability θv , and a
factor pertaining to the text, the difficulty δi of text
Ii . To him as a mathematician it was immediate, in
virtue of a well-known theorem about Poisson vari-
ables, to draw the following conclusion: if a testee
had read two texts Ii and Ij , the probability of observ-
ing kvi and kvj errors in these two texts, conditional
on the total sum of kvi + kvj = kv. errors, had to
follow a Binomial distribution characterized by kv.

and parameter π = 1/(1 + δj/δi) (see Catalogue of
Probability Density Functions).

This opened Rasch’s eyes for a novel approach
to measurement in behavioral science: since parame-
ter π no longer depended on the testee parameter θv ,
data from all testees who had read the same two texts
could be pooled to obtain a (maximum likelihood)
estimate (see Maximum Likelihood Estimation) of
π , from which in turn an estimate of the quotient
of the text difficulties, δi/δj , was obtainable. This
enabled a measurement of the relative difficulties of
the texts – in a specific sense – independently of the
sample of testees, and this procedure could of course
be extended to the simultaneous comparison of more
than two texts. He considered such comparisons of
text difficulties as objective because the result was
generalizable over particular children tested, what-
ever their individual reading abilities might have
been. Later Rasch [19] denoted functions that made
such a comparison feasible comparators, and compar-
isons carried out in that manner specifically objective.

Instrumental for this was the splitting of parameter
λ into a product of a testee’s ability and the text’s
difficulty. When Rasch in 1953 analyzed intelligence
test data for the Danish army, he decided to carry the
same principle over to the area of test analysis. First,

he sought for a suitable item response function (IRF)
P(+|Sv, Ii) = f (ξv, εi), where ‘+’ denoted a correct
response, ξv the testee’s ability, and εi the easiness of
test item Ii ; as a particularly simple algebraic function
mapping the positive reals on the semiopen interval
[0, 1), he chose f = x/(1 + x). Then he conceived
x to be a product of the testee’s ability ξv and the
item’s easiness εi , namely, x = ξvεi , with ξv ≥ 0
and εi ≥ 0. This model is now generally denoted the
‘Rasch Model’ (RM), but is usually reparameterized
by taking the logarithms rather than Rasch’s original
item and person parameters: θv = ln(ξv) as testee
ability and βi = − ln(εi) as item difficulty.

Definition and Some Basic Properties of
the RM

The RM for dichotomous responses (denoted ‘+’ and
‘−’) is defined as

P(Xvi = 1|θv, βi) = exp(θv − βi)

1 + exp(θv − βi)
, (1)

where Xvi is the response variable with realization
xvi = 1 if testee Sv gives response ‘+’ to Ii , and
xvi = 0 if Sv’s response to Ii is ‘−’; −∞ < θv < ∞
is the latent ability of Sv, and −∞ < βi < ∞ the
difficulty of item Ii . All item responses are assumed
to be ‘locally independent’, that is, the probability
of any response pattern in a test of length k is
the product of k probabilities (1) or complements
thereof. Parameters θv and βi are defined only up
to an arbitrary additive normalization constant c; the
latter is usually specified by either setting one item
parameter to zero (e.g., β1 = 0), or setting

∑
i βi = 0.

The form of (1) implies that all IRFs are parallel
curves. This means that, if the RM is to fit a set
of data, all items must have (approximately) equal
discrimination.

The probability of a complete (n × k) item score
matrix X as a function of the unknown parameters
(i.e., the so-called likelihood function) can be shown
to depend only on the marginal sums of X, namely,
on the raw scores rv = ∑

i xvi and the item marginals
x.i = ∑

v xvi . This implies that the rvi and the x.i

contain all the relevant information in the data with
respect to the parameters (i.e., are jointly sufficient
statistics-see Estimation), whereas the individual
response patterns yield no additional information
about the parameters. This is a remarkable asset of the
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RM: throughout a century of psychological testing,
the number-correct (or raw) score in intelligence
and other attainment tests has been employed as a
summary of a testee’s test achievement; if the RM
holds for a particular test, this fact yields a rigorous
justification for the use of the raw scores. Therefore,
ascertaining whether the RM fits a given set of
test data is an enterprise of considerable practical
importance.

Another noteworthy property of the RM is that
the conditional probability (or likelihood) of an item
score matrix X, given all raw scores rv , is a function
of the item parameters only. (This parallels Rasch’s
earlier observation about the conditional distribution
of the number of reading errors in two texts, given the
testee’s total number of reading errors.) The condi-
tional probability can thus serve as a comparator for
the item parameters, enabling specifically objective
comparisons of the item difficulties. (Symmetrically,
specifically objective comparisons between persons
are also possible, but carrying them out directly
is impractical under most realistic conditions. The
way to compare persons is to first estimate all item
parameters and then to estimate the person param-
eters by considering the item parameters as given
constants.)

These two favorable properties of the RM – suf-
ficiency of the raw scores and of the item marginals,
specifically objective comparisons between items and
between testees – raises the question of whether other
models exist that share these properties with the RM.
Within a framework of locally independent items with
continuous, strictly monotone IRFs with lower lim-
its zero (i.e., no guessing) and upper limits one, the
answer is ‘no’. It can be shown that, within this
framework, a family of RMs follows from either
of the following assumptions: (a) sufficiency of the
raw score for the person parameter; (b) existence of
a nontrivial likelihood function that can serve as a
specifically objective comparator for the items or the
testees; (c) existence of a nontrivial sufficient statis-
tic for the testee parameter that is independent of
the item parameters; and (d) stochastically consis-
tent ordering of the items. (On formal definitions and
proofs, see Chapter 2 of [7].) The term ‘family of
RMs’ refers to all models of the form (1) where,
however, the parameters θv and βi are replaced by
aθv + c and aβi + c, respectively. Therein, the con-
stant c, which immediately cancels from (1), is the
normalization constant mentioned above, and a > 0

is an unspecified discrimination parameter, namely,
the maximal slope of the (parallel) IRFs. One may set
α = 1, of course, which immediately yields the RM,
but it has to be kept in mind that this specification is
arbitrary.

These results have important consequences regard-
ing an age-old question in behavioral science: What
are the measurement properties of psychological or
educational tests? If, for a given set of data X, the
RM is found to fit and the parameters are adequately
estimated, the scales of the parameters θ and β are
unique only up to linear transformations aθ + c and
aβ + c, with arbitrary a > 0 and arbitrary normal-
ization constant c. From this it is concluded that the
scales are interval scales (see Scales of Measure-
ment) with a common measurement unit.

There is one more caveat, though: The proofs
leading to these conclusions rest on the assumption
that there are a testee population and a dense universe
of items such that both the person and the item
parameters can vary continually. While the first
assumption appears to be acceptable – for instance,
growth of ability is usually conceived as continuous –
the second assumption may be questioned. In the
special case, however, that the item parameters are
assumed to be k fixed discrete rational numbers,
the conclusion about the measurement properties of
the RM becomes somewhat weaker: abilities are
measurable only on an ordered metric scale which
has interval scale properties at certain lattice points
(which are typically spaced narrowly), but elsewhere
allows only an ordering of abilities. For practical
purposes, however, the scale can still be considered
an interval scale.

Parameter Estimation and Testing of Fit

Various approximate methods for parameter estima-
tion have been proposed by Rasch and some of
his students, but under the perspective that estima-
tors should be unique, statistically consistent, and
should have known asymptotic properties, only two
approaches seem to prevail. The probably most attrac-
tive method is the conditional maximum likelihood
(CML) method which maximizes the conditional
probability of X, given the raw scores rv , in terms of
the item parameters. As mentioned above, this likeli-
hood function is independent of the person param-
eters and thus is a comparator function – in the
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spirit of Rasch – for establishing specifically objec-
tive comparisons of the items. In finite samples, the
normalized CML estimates are unique if a certain
directed graph C associated with matrix X is strongly
connected, see [7]; checking this weak connectivity
condition is easy in practice, using standard tools
of graph theory. If a weak necessary and sufficient
condition given by Pfanzagl [16] is met by the dis-
tribution of the person parameters in the respective
testee population, the estimators are consistent and
asymptotically normally distributed around the true
parameters βi for fixed test length k and n → ∞.
The standard errors of the estimates β̂i can be deter-
mined from the information matrix. The estimator
is not efficient, though, but the loss of statistical infor-
mation entailed by conditioning on the raw scores is
very slight, see [5]. Programs for CML estimation
are, for example, LPCM-Win [8] and OPLM [21].

Another approach to the estimation of the βi is
the marginal maximum likelihood (MML) method. In
the so-called parametric MML, a latent population
distribution of the θ-parameters is specified, for
instance, a normal distribution with unknown mean µ

and standard deviation σ . To calculate the likelihood
of the data under such an enhanced RM requires
integration over θ , leading to the elimination of the
person parameters from the likelihood function. The
latter is then maximized with respect to both the
item and distribution parameters. If the assumption
about the latent population distribution happens to be
true, then the parametric MML method is consistent
and asymptotically efficient. If, on the other hand,
the distributional assumption is not true, then the
MML method can be strongly biased and even loses
the property of consistency. A popular program for
parametric MML estimation in the RM (and also for
more general item response models like the two- and
three-parameter logistic models) is BILOG [14].

Yet another method is nonparametric MML where
the latent distribution is replaced by a step function
with at most (k + 2)/2 (if k is even) or (k + 1)/2
(if k is odd) nodes on the θ-axis. The respective
areas under the step function are then estimated along
with the item parameters. De Leeuw and Verhelst
[4] have shown that with the RM this method is
asymptotically equivalent to CML. Pfanzagl [16] has
proved that the RM is the only model where, under
the assumption of an unknown latent distribution of θ ,
the item parameters are identifiable via nonparametric
MML. (This is one more argument for the RM.)

From a practical point of view, the two most
promising candidates among the estimation methods
seem to be CML and parametric MML. (Nonparamet-
ric MML is asymptotically equivalent to CML and
thus needs not be considered separately.) The choice
should depend on the researcher’s faith in a particular
latent population distribution. Specifying the latent
distribution, however, is always problematic: it has
to be kept in mind that assuming, for instance, a
normal distribution for a given population makes it
practically impossible that the same holds for sub-
populations like the male and female testees as well.
Choosing CML implies a slight loss of precision of
the estimates but, on the other hand, circumvents dis-
tributional assumptions that may entail a serious bias
of the estimators.

Closely related to the question of item parame-
ter estimation is the problem of testing of fit: only
if the statistical consistency and asymptotic distri-
bution (i.e., normality) of the estimators have been
verified, it becomes possible to establish powerful test
methods for assessing fit and/or testing other hypothe-
ses on the parameters. Rasch [18] had mainly used
heuristic graphical methods for the assessment of fit
by checking whether the most characteristic prop-
erty of the RM – independence of the item parameter
estimates of the testees’ abilities – could be empiri-
cally verified. Andersen [2] has shown that this null
hypothesis can be tested by means of a conditional
likelihood ratio (CLR) test: the sample is split in two
or more subsamples which differ significantly with
respect to their raw score distributions (e.g., in testees
with above versus below average raw scores), and the
item parameter estimates in these subgroups are com-
pared with those of the total group by means of the
respective conditional likelihoods. The same can be
done by splitting the sample on the basis of an exter-
nal criterion like age, gender, education, etc. Some
authors, however, observed that these tests some-
times fail to reject the null hypothesis when there
actually is lack of fit. Glas and Verhelst, see Chapter
5 of [7], therefore developed several powerful tests
of fit, both global and item-wise. Ponocny [17] pro-
posed nonparametric tests for hypotheses than can
be chosen arbitrarily, based on a Monto-Carlo pro-
cedure. Klauer [11] and Fischer [6] developed exact
single-case tests and a CML estimation method for
the amount of change of θv between two time points,
for instance, for the assessment of development or of
a treatment effect in an individual.
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Once the item parameters have been estimated
and the fit of the RM has been established
satisfactorily, the person parameters can be easily
estimated by straightforward maximum likelihood.
Many researchers see a disadvantage of ML estimates
of θ in the fact that for raw score rv = 0 the person
parameter estimate diverges to −∞, and for rv = k,
to ∞. Warm [22] has therefore suggested a weighted
ML estimator that yields finite values even for these
extreme scores. (On further details about person
parameter estimation, see [10]).

Remarks on Application of the RM, and
an Example

A very wide range of applications of the RM both to
achievement tests and questionnaires with dichoto-
mous item format is seen in the literature. These
abundant applications are often motivated as fol-
lows. If a scale consisting of dichotomous items has
been constructed with the intention to measure a sin-
gle latent trait via the simple raw score, then the
RM should hold for that scale. Therefore, the RM
is applied to check these assumptions. Two neces-
sary conditions, however, are often overlooked: first,
undimensionality in the sense of the RM (see Item
Response Theory (IRT) Models for Dichotomous
Data) is a very strict requirement that can hold, for
example, in a subscale of an intelligence test for
items with homogeneous content, such like those of
the Standard Progressive Matrices test or Gittler’s [9]
cubes test of spatial ability; but unidimensionality is
extremely unlikely to occur in omnibus intelligence
scales or, even more so, in questionnaires. Second,
the IRFs are assumed (a) to tend to the lower limit
zero and (b) the upper limit one. In order to satisfy
these requirements, the response format must exclude
guessing (or, at least, the guessing probabilities must
be very low); this implies that a correct response
occurs only if the testee has solved the item, so that
this event is a reliable indicator of the respective
ability. Technically, in questionnaires with response
format ‘yes’ versus ‘no’ (or ‘+’ versus ‘−’) there
is an extremely high guessing probability – namely,
0.50 – and hence there can be no certainty that the
response ‘+’ is an indicator of the trait of interest;
the testee could as well have checked the response
categories arbitrarily. Therefore, most applications of
the dichotomous RM to questionnaire scales are of

little scientific value. (On generalized Rasch models
for polytomous ordered response items, see below.)

To illustrate the procedure of an application of
the RM, the analysis of a data sample from n =
1160 testees who took Gittler’s ‘3DW’ test [9] of
spatial ability is now sketched. In each of the k = 17
items, a cube X is presented to the testee which
is known to display different patterns on each of
its sides, however, only three of them can be seen.
Simultaneously with X, six other cubes are also
presented, one of which may be equal to X but is
shown in a rotated position. The testee is asked to
point out which of the latter cubes is the same as X.
The testee is moreover instructed to choose one of the
alternative response categories ‘None of the cubes is
equal to X’ or ‘Don’t know’ if she/he feels uncertain
whether any of the cubes equals X.

First the item parameters βi are estimated by
means of the CML method for the total sample. Then
the data are split in two subsamples with raw scores
below versus above the average raw score (denoted
‘Group L’ and ‘Group H’ for short). By virtue of the
property of specific objectivity, the item parameter
estimates in these two subgroups, denoted β̂L

i and
β̂H

i , should be the same except for sampling errors.
Therefore, the points with coordinates (β̂L

i , β̂H
i ) in

Figure 1 should fall near the straight line through
the origin with slope 1. As can be seen, this is
the case; the ellipses around the k = 17 points can
be interpreted as confidence regions for α = 0.05
with semiaxes 1.96σL

i in the horizontal and 1.96σH
i

in the vertical direction. None of the points falls
significantly apart from the line with slope 1.

This graphical control of the model is comple-
mented by Andersen’s [2] asymptotic CLR test: the
log-likelihood is ln LT = −7500.95 for the total sam-
ple, ln LL = −3573.21 for Group L, and ln LH =
−3916.91 for Group H. Therefore, Andersen’s test
statistic is χ2 = −2[ln LT − (ln LL + ln LH)] = −2
[−7500.95 − (−3573.21 − 3916.91)] = 21.65 with
df = 16, which is nonsignificant for α = 0.05 (the
critical value being χ2

α = 26.29). The H0 that the RM
fits the data is therefore retained under this test. (Simi-
larly, when the sample is split by either of the external
criteria gender, age, or education level, the respective
test statistics are also nonsignificant.) This supports
the hypothesis that the RM fits the data sufficiently
well.

Another graphical tool for the assessment of fit is
shown in Figure 2 (for three arbitrarily selected items



Rasch Modeling 5

2

1

0

−1

−2
−2 −1 0 1 2

Low scoring group L

6

1
16

12

13
2

15
8

3 79
11

4
10

5

17

14H
ig

h 
sc

or
in

g 
gr

ou
p 

H

Figure 1 Graphic control of the RM for the 3DW items

of different difficulty levels, I6 with β̂6 = −1.06, I10

with β̂10 = 1.02, and I15 with β̂15 = −0.01). It shows
the IRFs (1) based on the parameter estimates as a
function of θ , and ‘empirical IRFs’ based on the rel-
ative frequencies of correct responses in the different
raw score subgroups. These relative frequencies were
slightly smoothed using a so-called normal kernel
smoother with a bandwidth of 3 adjacent frequen-
cies at the margins and bandwidth 5 elsewhere. The
confidence intervals for the estimates of the ordi-
nates for α = 0.05 are shown as dotted lines. (The
graphs for the remaining items are similar.) This

nicely supports the hypothesis that the RM fits the
items.

If the researcher has satisfied him(her)self that
the RM fits, further advantages can be taken of
the particular properties of the model. For instance,
under the assumption that the item parameters have
been estimated sufficiently well, the estimates can be
considered as known constants and exact conditional
tests can be made of the H0 that the person parameters
of two individuals are equal, or that the person
parameters of the same person tested at two time
points or under two different testing conditions are
equal. ‘Exact’ means that the tests are based on the
exact conditional distribution of the two scores, given
their sum, rather than on asymptotic theory. To make
such tests, it is not required that the two persons (or
the same person at two time points) take exactly the
same items: it suffices to present two item samples
from the (unidimensional) item pool for which the
RM has been found to hold. These item samples may
be identical, or overlapping, or disjoint. In the present
case, given that the item pool comprises only k = 17
items, there would be little point in choosing different
(i.e., smaller) subsamples of items. Suppose therefore
that the complete test is given to two testees (or the
same testee twice), and the H0 is to be tested that
the two person parameters are equal (i.e., the H0 of
‘no change’). The empirical researcher needs only to
apply Table 1 which gives the significance levels for
all possible score combinations r1 and r2 of the two
testees (or of one testee at two time points) under
the specified H0, based on the so-called ‘Mid-P-
Method’ (cf. [6]). For example, in the following score

P = 1

P = 0

6

15

10

−3 −2 −1 0 1 2 3

Theta

Figure 2 Theoretical and empirical IRFs for items 6, 10, and 15
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Table 1 Significances of score combinations in the 3DW test (two-sided exact tests
with α = 0.05)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 s s S S T T T T T T T T T T 0
1 . s s S S T T T T T T T T 1
2 . s S S S T T T T T T 2
3 . s s S S T T T T T 3
4 s . s s S S T T T T 4
5 s . . s s S S T T T 5
6 S s . s s S S T T 6
7 S s . . s s S T T 7
8 T S s . . s S S T 8
9 T S S s . . s S T 9
10 T T S s s . . s S 10
11 T T S S s s . s S 11
12 T T T S S s s . . s 12
13 T T T T S S s s . s 13
14 T T T T T S S s s . 14
15 T T T T T T S S S s . 15
16 T T T T T T T T S S s s . 16
17 T T T T T T T T T T S S s s 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Note: Rows correspond to r1, columns to r2. Entries ‘.’ denote significance level 0.10, ‘s’
level 0.05, ‘S’ level 0.01, and ‘T’ level 0.001.

combinations (r1, r2), score r2 would be the lowest
score that is significantly higher than score r1, under a
two-sided alternative hypothesis with α = 0.05: (0,4),
(1,6), (2,8), (3,9), (4,10), (5,11), (6,12), (7,13), (8,14),
(9,15), (10,16), (11,16), (12,17), (13,17).

The simplicity of the application of this table
illustrates the advantages of having a test to which
the RM can be fitted. Therefore, it is recommended
to employ the RM whenever possible as a guideline
for test development rather than just as a means for
post hoc analysis of test data.

Some Extensions of the RM

Many extensions of the RM and of Rasch’s approach
to measurement have been proposed. One group
of them comprises models for dichotomous item
responses, the other polytomous response models.

A. Dichotomous extensions. The linear logistic test
model (LLTM) assumes that the item difficulty
parameters of an RM can be explained as weighted
sums of certain basic parameters assigned, for
instance, to rules or cognitive operations involved in
the solution process. The CML estimation method,
uniqueness conditions, asymptotic properties, and

conditional likelihood ratio tests generalize directly
form the RM to the LLTM. Studies trying to explain
item parameters as weighted sums of parameters of
cognitive operations or rules have often failed to
be successful, however, because of lack of fit. The
primary importance of the LLTM therefore seems
to lie in studies with experimental or longitudinal
designs (see Clinical Trials and Intervention Stud-
ies and Longitudinal Data Analysis) where the basic
parameters are, for instance, effects of treatments
given prior to – or experimental conditions prevailing
at – the testing occasion. The LLTM can moreover
be reformulated as a multidimensional longitudinal
model, assigning different latent dimensions to dif-
ferent items without, however, requiring assumptions
about the true dimensionality of the latent space.
This linear logistic model with relaxed assumptions
(LLRA) can serve to measure effects of treatments
in educational, applied, or clinical psychology. (On
these models, see Chapters 8 and 9 of [7].) Analo-
gous to the LLTM is Linacre’s [12] FACETS model.
Another kind of dichotomous generalization of the
RM is the mixed RM by Rost [20], which assumes
the existence of c > 1 latent classes between which
the item parameters of the RM are allowed to dif-
fer. Yet another direction of generalization aims at
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relaxing the assumption of equal discrimination of all
items: the one parameter logistic model (OPLM) by
Verhelst et al. [21] presumes a small set of discrete
rational discrimination parameters αi and assigns one
of them, by means of a heuristic procedure, to each
item. The difference between the OPLM and the two-
parameter logistic (or Birnbaum) model lies in the
nature of the discrimination parameters: in the lat-
ter, they are free parameters, while in the OPLM
they are constants chosen by hypothesis. Sophisti-
cated test methods are needed, of course, to verify or
reject such hypotheses. Statistics to test the fit of the
OPLM are given by Verhelst and Glas in Chapter 12
of [7].

B. Polytomous extensions. Andrich [3] and Mas-
ters [13] have introduced undimensional rating scale
models for items with ordered response categories
(like ‘strongly agree’, ‘rather agree’, ‘rather disagree’,
‘strongly disagree’), namely, the rating scale model
(RSM) and the partial credit model (PCM). The for-
mer assumes equal response categories for all items,
whereas the latter allows for a different number and
different definition of the response categories per
item. The RM is a special case of the RSM, and
the RSM a special case of the PCM. Fischer and
Ponocny (see Chapter 19 of [7]) have embedded a
linear structure in the parameters of these models
analogously to the LLTM mentioned above. CML
estimation, conditional hypothesis tests, and mul-
tidimensional reparameterizations are generalizable
to this framework, as in the LLTM. These mod-
els are particularly suited for longitudinal and treat-
ment effect studies. The individual-centered exact
conditional tests of change are also applicable in
these polytomous models (cf. [6]). A still more gen-
eral class of multidimensional IRT models with lin-
ear structures embedded in the parameters has been
developed by Adams et al. [1, 23]; these authors rely
on parametric MML methods. Müller [15], moreover,
has proposed an extension of the RM allowing for
continuous responses.
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Rasch Models for
Ordered Response
Categories

Introduction

This entry explains the latent response structure and
process compatible with the Rasch model (RM)
for ordered response categories in standard formats
(see Rasch Modeling). It considers the rationale
for the RM but is not concerned with details of
parameter estimation and tests of fit. There are a
number of software packages that implement the
RM at an advanced level. Detailed studies of the
theory and applications of the RM can be found
in [10], [11], [16], and [17].

Standard formats involve one response in one
of the categories deemed a priori to reflect levels
of the latent trait common in quantifying attitude,
performance, and status in the social sciences. They
are used by analogy to measurement in the natural
sciences. Table 1 shows typical formats for four
ordered categories.

The Model and its Motivation

The RM was derived from the following requirement
of invariant comparisons:

The comparison between two stimuli should be
independent of which particular individuals were
instrumental for the comparison.

Symmetrically, a comparison between two indi-
viduals should be independent of which particular
stimuli within the class considered were instrumental
for comparison [14, p. 332].

Rasch was not the first to require such invariance,
but he was the first to formalize it in the form
of a probabilistic mathematical model. Following
a sequence of derivations in [14], [1], and [3], the

model was expressed in the form

P {Xni = x} = 1

γni

exp

(
−

x∑
k=0

τk + x(βn − δi)

)
,

(1)

where (a) Xni = x is an integer random variable char-
acterizing m + 1 successive categories, (b) βn and δi

are respectively locations on the same latent contin-
uum of person n and item i, (c) τk, k = 1, 2, 3, . . . , m

are m thresholds which divide the continuum into
to m + 1 ordered categories and which, without
loss of generality, have the constraint

∑m
k=0 τk = 0,

and (d) γni = ∑m
x=0 exp(−∑x

k=0 τk + x(βn − δi)) is
a normalizing factor that ensures that the probabili-
ties in (1) sum to 1. For convenience of expression,
though it is not present, τ0 ≡ 0. The thresholds are
points at which the probabilities of responses in one
of the two adjacent categories are equal.

Figure 1 shows the probabilities of responses
in each category, known as category characteristic
curves (CCCs) for an item with three thresholds and
four categories, together with the location of the
thresholds on the latent trait.

In (1) the model implies equal thresholds across
items, and such a hypothesis might be relevant in
example 3 of Table 1. Though the notation used
in (1) focuses on the item–person response process
and does not subscript the thresholds with item i,
the derivation of the model is valid for the case that
different items have different thresholds, giving [20]

P {Xni = x} = 1

γni

exp

(
−

x∑
k=1

τki + x(βn − δi)

)
,

(2)

in which the thresholds τki, k = 1, 2, 3, . . .mi,
∑mi

k=0
τki = 0, are subscripted by i as well as k.τ0i ≡ 0.
Such differences in thresholds among items might be
required in examples of 1 and 2 of Table 1.

Models of (1) and (2) have become known as
the rating scale model and partial credit models

Table 1 Standard response formats for the Rasch model

Example Category 1 Category 2 Category 3 Category 4

1 Fail < Pass < Credit < Distinction
2 Never < Sometimes < Often < Always
3 Strongly disagree < Disagree < Agree < Strongly agree



2 Rasch Models for Ordered Response Categories

1.0

.5

.0
−6 −5 −4 −3 −2 −1 0 1 2 3

Fail Pass

Credit

Distinction

Personal location (logits)
bF/P

bP/C bC/D

P
ro

ba
bi

lit
y

1

0

2

3

Figure 1 Category characteristic curves showing the probabilities of responses in each of four ordered categories

respectively. Nevertheless, they have an identical
response structure and process for a single person
responding to a single item.

Let δki = δi + τki, δ0i ≡ 0. Then (2) simplifies to

P {Xni = x} = 1

γni

exp
x∑

k=1

(βn − δki)

= 1

γni

exp

(
xβn −

x∑
k=1

δki

)
. (3)

In this form, the thresholds δki are immediately
comparable across items; in the form of (2), the τki

are referenced to the location δiof item i, which
is the mean of the thresholds δki for each item,
that is, δi = δ̄ki . It is convenient to use (3) in some
illustrations and applications.

Elimination of Person Parameters

The formalization of invariance of comparisons rests
on the existence of sufficient statistics, which implies
that conditional on that statistic, the resultant distri-
bution is independent of the relevant parameter. The
sufficient statistic for the person parameter βnis sim-
ply the total score r = ∑I

i=1 xni . Then for a pair
of items i and j , and using directly the responses
xni, xnj the conditional equation

P {xni, xni |rn = xni + xni}

= 1

�nij

exp
xni∑
k=1

(−δki) exp
xnj∑
k=1

(−δkj ), (4)

where �nij = ∑
(xni , xnj |rn)

exp
∑xni

k=1 (−δki) exp
∑xnj

k=1
(−δkj ) is the summation over all possible pairs of
responses given a total score of rn. Equation (4) is
clearly independent of the person parameters βn, n =
1, 2, . . .N . It can be used to estimate the item thresh-
old parameters independently of the person parame-
ters. In the implementation of the estimation, (4) may
be generalized by considering all possible pairs of
items or conditioning on the total score across more
than two items. Different software implements the
estimation in different ways. The person parameters
are generally estimated following the estimation of
the item parameters using the item parameter esti-
mates as known. Because there are generally many
less items than persons, the procedure for estimating
the person parameters by conditioning out the item
parameters is not feasible. Direct maximum likeli-
hood estimates of the person parameters are biased
and methods for reducing the bias have been devised.

Controversy and the Rasch Model

The construction of a model on the basis of a
priori requirements rather than on the basis of
characterizing data involves a different paradigm
from the traditional in the data model relationship.
In the traditional paradigm, if the model does not
fit the data, then consideration is routinely given to
finding a different model which accounts for the data
better. In the Rasch paradigm, the emphasis is on
whether the data fit the chosen model, and if not,
then consideration is routinely given to understanding
what aspect of the data is failing to fit the model.
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The RM has the required structure of fundamen-
tal measurement or additive conjoint measurement
in a probabilistic framework (see Measurement:
Overview) [9, 19]. This is the main reason that those
who adhere to the RM and try to construct data that fit
it, give for adhering to it and for trying to collect data
that fit it. In addition, they argue that the constructing
measuring instruments, is not simply a matter of char-
acterizing data, but a deliberate attempt to construct
measures which satisfy important properties, and that
the RM provides an operational criterion for obtain-
ing fundamental measurement. Thus, the data from
a measuring instrument are seen to be deliberately
constructed to be empirical valid and at the same
time satisfy the requirements of measurements [5].
Some controversy, which has been discussed in [7],
has arisen from this distinctive use of the RM.

Short biographies of Rasch can be found in [2],
[6], and [18].

The Latent Structure of the Model

The RM for dichotomous responses, which special-
izes from (3) to

P {Xni = x} = exp x(βn − δi)

1 + exp(βn − δi)
; x ∈ {0, 1}, (5)

is also the basis of the RM for more than two ordered
categories. In this case there is only the one threshold,
the location of the item δi .

The Derivation of the Latent Structure Assuming a
Guttman Pattern

To derive the latent structure of the model, assume
an instantaneous latent dichotomous response process
{Ynki = y}, y ∈ {0, 1} at each threshold [3]. Let this
latent response take the form

P {Ynki = y} = 1

ηni

exp y(βn − δki), (6)

where ηki is the normalizing factor ηni = 1 + exp
(βn − δki).

Although instantaneously assumed to be inde-
pendent, there is only one response in one of
m + 1 categories. Therefore, the responses must be
latent (see Latent Variable). Furthermore, if the
responses were independent, there would be 2m pos-
sible response patterns. Therefore, the responses must

also be dependent and a constraint must be placed
on any process in which the latent responses at
the thresholds are instantaneously considered inde-
pendent. The Guttman structure provides this con-
straint in exactly the required way. Table 2 shows
the responses according to the Guttman structure for
three items.

The rationale for the Guttman patterns in Table 2
[12] is that for unidimensional responses across
items, if a person succeeds on an item, then the
person should succeed on all items that are easier
than that item and that if a person failed on an
item, then the person should fail on all items more
difficult than that item. A key characteristic of the
Guttman pattern is that the total score across items
recovers the response pattern perfectly. Of course,
with experimentally independent items, that is, where
each item is responded to independently of every
other item, it is possible that the Guttman structure
will not be observed in data and that given a particular
total score the Guttman pattern will not be observed.

The rationale for the Guttman structure, as with
the ordering of items in terms of their difficulty, is
that the thresholds with an item are required to be
ordered, that is

τ1 < τ2 < τ3 · · · < τm−1 < τm. (7)

This requirement of ordered thresholds is inde-
pendent of the RM – it is required by the Guttman
structure and ordering of the categories. However, it
is completely compatible with the structure of the
responses in the RM and implies that a person at
the threshold of two higher categories is at a higher
location than a person at the boundary of two lower
categories. For example, it requires that a person who
is at the threshold between a Credit and Distinc-
tion in the first example in Table 1, and reflected in
Figure 1, has a higher ability than a person who is at
the threshold between a Fail and a Pass. That is, if
the categories are to be ordered, then the thresholds

Table 2 The Guttman structure with dichoto-
mous items in difficulty order

Items 1 2 3 Total score

0 0 0 0
1 0 0 1
1 1 0 2
1 1 1 3
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that define them should also be ordered. The deriva-
tion of the model with this requirement is shown in
detail in [3].

To briefly outline this derivation, consider the case
of only four ordered categories as in Table 1 and
therefore three thresholds. Then if the responses at
the thresholds were independent, the probability of
any set of responses across the thresholds is given by

P {yn1i , yn2i, yn3i} =
3∏

k=1

exp ynki(βn − δki)

1 + exp(βn − δki)
, (8)

where the sum of probabilities of all patterns∑
All

∏3
k=1

exp ynki(βn − δki)

1 + exp(βn − δki)
= 1.

The subset of Guttman G patterns has a probability
of occurring

� =
∑
G

3∏
k=1

exp yni(βn − δxi)

1 + exp(βn − δxi)

=

∑
G

exp
3∑

k=1

ynki(βn − δki)

3∏
k=1

(1 + exp(βn − δki))

< 1. (9)

Then the probability of a particular Guttman
response pattern, conditional on the response being
one of the Guttman patterns, is given by

P {yn1i , yn2i , yn3i |G}

=
exp

3∑
k=1

yni(βn − δki)

3∏
i=1

(1 + exp(βn − δki))

/
�

=
exp

3∑
k=1

yni(βn − δki)

3∏
k=1

(1 + exp(βn − δki))

/∑
G

exp
3∑

k=1

ynki(βn − δki)

3∏
k=1

(1 + exp(βn − δki))

=
exp

3∑
k=1

yni(βn − δki)

∑
G

exp
3∑

k=1

ynki(βn − δki)

. (10)

For example, suppose the response pattern is
{1, 1, 0}, in which case the total score is 2. Then

P {1, 1, 0|G}
= exp[1(βn − δ1i) + 1(βn − δ2i ) + 0(βn − δ3i)]∑

G

exp
3∑

i=1

ynki(βn − δki)

= exp(2βn − δ1i − δ2i)∑
G

exp
3∑

i=1

ynki(βn − δki)

. (11)

Notice that the coefficient of the person loca-
tion βnin the numerator of (11) is 2, the total
score of the number of successes at the thresh-
olds. This scoring can be generalized and the
total score can be used to define the Guttman
response pattern. Thus, define the integer random
variable Xni = x ∈ {0, 1, 2, 3}as the total score for
each of the Guttman patterns: 0 ≡ (0, 0, 0), 1 ≡
(1, 0, 0), 2 ≡ (1, 1, 0), 3 ≡ (1, 1, 1). Then (11) sim-
plifies to

P {Xni = x} = exp(xβn − δ1i − δ2i . . . − δxi)

3∑
x=0

exp
x∑

k=1

k(βn − δki)

, (12)

which is the special case of (3) in the case of just
three thresholds and four categories.

Effectively, the successive categories are scored
with successive integers as in elementary analyses of
ordered categories. However, no assumption of equal
distances between thresholds is made; the thresholds
are estimated from the data and may be unequally
spaced. The successive integer scoring rests on the
discrimination of the latent dichotomous responses
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Figure 2 Probabilities of responses in each of four ordered categories showing the probabilities of the latent dichotomous
responses at the thresholds

at the thresholds within an item being the same.
Although the successive categories are scored with
successive integers, it is essential to recognize that
the response in any category implies a success at
thresholds up to and including the lower thresh-
old defining a category and failure on subsequent
thresholds including the higher threshold defining
a category. That is, the latent response structure
of the model is a Guttman pattern of successes
and failures at all the thresholds. Figure 2 shows
Figure 1 augmented by the probabilities of the latent
dichotomous responses at the thresholds according
to (6).

The Derivation of the Latent Structure Resulting
in the Guttman Pattern

This response structure is confirmed by considering
the ratio of the probability of a response in any
category, conditional on the response being in one
of two adjacent categories. The probability of the
response being in the higher of the two categories
is readily shown to be

P {Xni = x}
P {Xni = x − 1} + P {Xni = x}
= exp(βn − δxi)

1 + exp(βn − δxi)
, (13)

which is just the dichotomous model at the threshold
defined in (6).

This conditional latent response between two adja-
cent categories is dichotomous and again latent. It is

an implication of the latent structure of the model
because there is no sequence of observed conditional
responses at the thresholds: there is just one response
in one of the m categories.

In the above derivation, a Guttman pattern based
on the ordering of the thresholds was imposed on an
initially independent set of responses. Suppose now
that the model is defined by the latent responses at
the thresholds according to (13). Let

P {Xni = x}
P {Xni = x − 1} + P {Xni = x} = Px, (14)

and its complement

P {Xni = x − 1}
P {Xni = x − 1} + P {Xni = x} = Qx = 1 − Px.

(15)

Then it can be shown readily that

P {Xni = x} = P1P2P3 . . . .PxQx+1Qx+2 . . .Qm/D,

(16)

where D = Q1Q2Q3 . . .Qm + P1Q2Q3 . . .Qm + P1

P2Q3 . . . .Qm + . . . P1P2P3 . . . Pm.
Clearly, the particular response Xni = x implies

once again successes at the first xthresholds and fail-
ures at all the remaining thresholds. That is, the
response structure results in successes at the thresh-
olds consistent with the Guttman pattern. This in
turn implies an ordering of the thresholds. Thus,
both derivations lead to the same structure at
the thresholds.



6 Rasch Models for Ordered Response Categories

The Log Odds Form and Potential for
Misinterpretation

Consider (12) again.
Taking the ratio of the response in two adjacent

categories gives the odds of success at the threshold:

P {Xni = x}
P {Xni = x − 1} = exp(βn − δxi). (17)

Taking the logarithm gives

ln
P {Xni = x}

P {Xni = x − 1} = βn − δxi . (18)

This log odds form of the model, while simple,
eschews its richness and invites making up a response
process that has nothing to do with the model. It does
this because it can give the impression that there is an
independent response at each threshold, an interpre-
tation which incorrectly ignores that there is only one
response among the categories and that the dichoto-
mous responses at the thresholds are latent, implied,
and never observed. This form loses, for example,
the fact that the probability of a response in any cat-
egory is a function of all thresholds. This can be seen
from the normalizing constant denominator in (3),
which contains all thresholds. Thus, the probability
of a response in the first category is affected by the
location of the last threshold.

Possibility of Reversed Thresholds in Data

Although the ordering of the thresholds is required in
the data and the RM is compatible with such ordering,
it is possible to have data in which the thresholds,
when estimated, are not in the correct order. This
can occur because there is only one response in one
category, and there is no restriction on the distribution
of those responses.

The relative distribution of responses for a single
person across triplets of successive categories can
be derived simply from (16) for pairs of successive
categories:

P {Xni = x}
P {Xni = x − 1} = exp(βn − δxi) (19)

and

P {Xni = x + 1}
P {Xni = x} = exp(βn − δx+1.i ). (20)

Therefore,

P {Xni = x}
P {Xni = x − 1}

P {Xni = x}
P {Xni = x + 1}

= exp(δx+1,i − δxi). (21)

If δx+1,i > δxi , then δx+1i − δxi > 0, exp(δx+1,i −
δxi) > 1 then from (21),

[P {Xni = x}]2 > P {Xni = x − 1}P {Xni = x + 1}.
(22)

Because each person responds only in one cate-
gory of an item, there is no constraint in the responses
to conform to (22); this is an empirical matter. The
violation of order can occur even if the data fit
the model statistically. It is a powerful property of
the RM that the estimates of the thresholds can be
obtained independently of the distribution of the per-
son parameters, indicating that the relationship among
the thresholds can be inferred as an intrinsic structure
of the of the operational characteristics of the item.

Figure 3 shows the CCCs of an item in which
the last two thresholds are reversed. It is evident
that the threshold between Pass and Credit has a
greater location than the threshold between Credit and
Distinction. It means that if this is accepted, then the
person who has 50% chance of being given a Credit
or a Distinction has less ability than a person who
has 50% chance of getting a Pass or a Credit. This
clearly violates any a-priori principle of ordering of
the categories. It means that there is a problem with
the empirical ordering of the categories and that the
successive categories do not reflect increasing order
on the trait.

Other symptoms of the problem of reversed
thresholds is that there is no region in Figure 3 in
which the grade of Credit is most likely and that the
region in which Credit should be assigned is unde-
fined – it implies some kind of negative distance.
Compatible with the paradigm of the RM, reversed
threshold estimates direct a closer study of the possi-
ble reasons that the ordering of the categories are not
working as intended.

Although lack of data in a sample in any category
can result in estimates of parameters with large stan-
dard errors, the key factor in the estimates is the rela-
tionship amongst the categories of the implied proba-
bilities of (22). These cannot be inferred directly from
raw frequencies in categories in a sample. Thus, in the
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Figure 3 Category characteristic curves showing the probabilities of responses in each of four ordered categories when
the thresholds are disordered

case of Figure 2, any single person whose ability esti-
mate is between the thresholds identified by βC/D and
βP/C will, simultaneously, have a higher probability
of a getting a Distinction and a Pass than getting a
Credit. This is not only incompatible with ordering of
the categories, but it is not a matter of the distribution
of the persons in the sample of data analyzed.

To consolidate this point, Table 3 shows the fre-
quencies of responses of 1000 persons for two items
each with 12 categories. These are simulated data,
which fit the model to have correctly ordered thresh-
olds. It shows that in the middle categories, the
frequencies are very small compared to the extremes,
and in particular, the score of 5 has a 0 frequency for
item 1. Nevertheless, the threshold estimates shown
in Table 4 have the required order. The method of
estimation, which exploits the structure of responses

among categories to span and adjust for the cate-
gory with 0 frequency and conditions out the person
parameters, is described in [8]. The reason that the
frequencies in the middle categories are low or even
0 is that they arise from a bimodal distribution of
person locations. It is analogous to having heights
of a sample of adult males and females. This too
would be bimodal and therefore heights somewhere
in between the two modes would have, by definition,
a low frequency. However, it would be untenable
if the low frequencies in the middle heights would
reverse the lines (thresholds) which define the units
on the ruler. Figure 4 shows the frequency distribu-
tion of the estimated person parameters and confirms
that it is bimodal. Clearly, given the distribution, there
would be few cases in the middle categories with
scores of 5 and 6.

Table 3 Frequencies of responses in two items with 12 categories

Item 0 1 2 3 4 5 6 7 8 9 10 11

I0001 81 175 123 53 15 0 8 11 51 120 165 86
I0002 96 155 119 57 17 5 2 26 48 115 161 87

Table 4 Estimates of thresholds for two items with low frequencies in the middle categories

Threshold estimates

Item δ̂i 1 2 3 4 5 6 7 8 9 10 11

1 0.002 −3.96 −2.89 −2.01 −1.27 −0.62 −0.02 0.59 1.25 2.00 2.91 4.01
2 −0.002- −3.78 −2.92 −2.15 −1.42 −0.73 −0.05 0.64 1.36 2.14 2.99 3.94
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The Collapsing of Adjacent Categories

A distinctive feature of the RM is that summing the
probabilities of adjacent categories, produces a model
which is no longer a RM. In particular, dichotomizing
in that way is not consistent with the model. That is,
taking (3), and forming

P {Xni = x} + P {Xni = x + 1}

= 1

γni

exp

(
−

x∑
k=1

τki + x(βn − δi)

)

+ 1

γni

exp

(
−

x+1∑
k=1

τki + x(βn − δi)

)
(23)

gives (23) which cannot be reduced to the form
of (3). This result has been discussed in [4], [13] and
was noted by Rasch [15]. It implies that collapsing
categories is not arbitrary but an integral property of
the data revealed through the model. This nonarbi-
trariness in combining categories contributes to the
model providing information on the empirical order-
ing of the categories.

The Process Compatible with the Rasch
Model

From the above outline of the structure of the RM,
it is possible to summarize the response process that
is compatible with it. The response process is one
of simultaneous ordered classification. That is, the
process is one of considering the property of an
object, which might be a property of oneself or of
some performance, relative to an item with two or
more than two ordered categories, and deciding the
category of the response.

The examples in Table 1 show that each succes-
sive category implies the previous category in the
order and in addition, reflects more of the assessed
trait. This is compatible with the Guttman struc-
ture. Thus, a response in a category implies that
the latent response was a success at the lower of
the two thresholds, and a failure at the greater of
the two thresholds. And this response determines the
implied latent responses at all of the other thresh-
olds. This makes the response process a simultaneous
classification process across the thresholds. The fur-
ther implication is that when the manifest responses
are used to estimate the thresholds, the threshold
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locations are themselves empirically defined simul-
taneously - that is, the estimates arise from data in
which all the thresholds of an item were involved
simultaneously in every response. This contributes
further to the distinctive feature of the RM that it
can be used to assess whether or not the categories
are working in the intended ordering, or whether on
this feature, the empirical ordering breaks down.
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Rater Agreement

Introduction

Human judgment is prone to error that researchers
routinely seek to quantify, understand, and minimize.
To quantify the quality of nominal judgments, agree-
ment among multiple raters of the same target is
examined using either global summary indices, such
as Cohen’s kappa (see Rater Agreement – Kappa),
or by modeling important properties of the judgment
process using latent class analysis. In this entry, we
give an overview of the latent class analysis approach
to nominal scale rater agreement data.

Latent class models of rater agreement assume
there is an underlying or ‘true’ latent category to
which each target belongs, and that clues to the nature
of this latent class, and to the nature of the judgment
process itself, can be found in the observed classifi-
cations of multiple raters. With targets belonging to
only one of the latent classes, manifest disagreement
among observed judgments requires that at least one
judgment be erroneous. However, without knowledge
of the true latent class, or a ‘gold standard’ indicator
of the true latent class, correct and erroneous judg-
ments cannot be distinguished. Even though individ-
ual target classifications cannot be directly established
at the latent level, given certain assumptions are ful-
filled, latent class analysis can nevertheless estimate
overall misclassification probabilities.

Data Example

To illustrate the rater agreement models we discuss in
this article, suppose that 212 patients were diagnosed
according to four raters as either ‘schizophrenic’
or ‘not schizophrenic.’ For two categories and four
raters, there are 16 possible rating profiles, which
are given in the first four columns of Table 1. The
frequency with which each profile occurred is given
in the fifth column.1 As the frequencies in this table
show, all four judges agree on 111 of the 212 targets.
In other words, in approximately 48% of the targets
there is at least some disagreement among the judges.

The Latent Class Model

The event A = i, i = 1, . . . , I , indicates a target
assigned to the ith category by rater A. Similarly,

Table 1 Rating profile frequencies, n, of psychiatric diag-
noses according to four raters, A1, A2, A3, A4, where
‘1’ = schizophrenic and ‘2’ = not schizophrenic

A1 A2 A3 A4 n

1 1 1 1 12
1 1 1 2 10
1 1 2 1 4
1 1 2 2 8
1 2 1 1 10
1 2 1 2 6
1 2 2 1 7
1 2 2 2 8
2 1 1 1 0
2 1 1 2 1
2 1 2 1 1
2 1 2 2 8
2 2 1 1 8
2 2 1 2 15
2 2 2 1 15
2 2 2 2 99

X = t , t = 1, . . . , T , indicates a target truly belongs
to the t th latent class. The probabilities of these
events are denoted as P(A = i) = πA(i) and P(X =
t) = πX(t), respectively. The conditional probability
(see Probability: An Introduction) that a rater will
assign a target of the t th latent class to the ith cat-
egory is denoted as P(A = i|X = t) = πA|X(i|t). To
avoid unnecessarily complex notation, the illustra-
tive latent class model example we present in this
chapter (viz. Table 1) assumes four raters, denoted as
A1, A2, A3, and A4.

Latent class analysis is based on the assumption
of local (conditional) independence (see Conditional
Independence). According to this assumption, mul-
tiple judgments of the same target are independent.
Therefore, the raters and latent status joint probability
factors as

πA1A2A3A4X(i, j, k, l, t)

= πA1|X(i|t)πA2|X(j |t)πA3|X(k|t)πA4|X(l|t)πX(t).

(1)

This raters and latent status joint probability can
be related to the rating profile probability by

πA1A2A3A4(i, j, k, l) =
T∑

t=1

πA1A2A3A4X(i, j, k, l, t).

(2)
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This formula shows that the probabilities of the
rating profiles, the left-side of (2), are obtained by
collapsing the joint probability πA1A2A3A4X(i, j, k,
l, t) over the levels of the latent class variable.
Combining (1) and (2) yields

πA1A2A3A4(i, j, k, l)

=
T∑

t=1

πA1|X(i|t)πA2|X(j |t)πA3|X(k|t)πA4|X(l|t)πX(t)

(3)

This equation relates the probabilities of the
observed rating profiles to conditional response prob-
abilities and the latent class probabilities. For this
model to be identified, it is necessary, though not
sufficient, for the degrees of freedom, calculated
as df = IR − (RI − R + 1)T , where R denotes the
number of raters, to be nonnegative.

Although the present review of latent class mod-
els only involves one categorical latent variable, the
model is applicable also to more than one categor-
ical latent variable. This is because the cells in a
cross-classification can be represented equivalently
as categories of a single nominal variable. Thus, if
models are presented in terms of multiple latent vari-
ables – as is often the case when modeling rater
agreement data – this is done only for conceptual
clarity, not out of statistical necessity. We return to
this issue in the next section.

Furthermore, it is often desirable to restrict the
probabilities on the right-hand side of (3), either for
substantive reasons or to ensure model identification.
Probabilities can be fixed to known values, set equal
to one another, or any combination of the two. The
wide variety of rater agreement latent class models
found in the literature emerges as a product of the
wide variety of restrictions that can be imposed on
the model probabilities.

Distinguishing Target Types

In the rater agreement literature, it has become
increasingly popular to introduce a second latent class
variable that reflects the common recognition that
targets differ not only with respect to their status on
the substantive latent variable of interest but also with
respect to the target’s prototypicality with respect to
the latent class (e.g., [6]). These ‘target type’ models
consider the ease with which targets can be classified,

although ‘ease’ in this context is only metaphorical
and should not necessarily be equated with any
perceived experience on the part of the raters.

We will illustrate the operation of the target type
latent class variable by considering three target types;
obvious, suggestive, and ambiguous. Where Y is the
target type latent variable, we arbitrarily define Y = 1
for obvious targets, Y = 2 for suggestive targets, and
Y = 3 for ambiguous targets. The latent variables X

and Y are assumed to be fully crossed. In other words,
all possible combinations of levels of X and Y have
a positive probability of occurrence. However, we do
not assume populations that necessarily involve all
three target types.

Obvious Targets. Targets belonging to the obvious
latent class can be readily identified. These targets are
often referred to as prototypes or ‘textbook cases’. To
formalize this idea, one restricts the conditional prob-
abilities πA|XY (i|t, 1) = δit , where δit = 1 if i = t and
δit = 0 else. Because this restriction is motivated by
characteristics of the targets, it applies to all raters in
the same manner. In connection with the local inde-
pendence assumption, and continuing our four judge
example, one obtains

πA1A2A3A4|Y (i, j, k, l|1) = δijklπX|Y (i|1), (4)

where δijkl = 1 if i = j = k = l and δijkl = 0 else.

Suggestive Targets. While targets belonging to the
suggestive latent class are not obvious, their rate of
correct assignment is better than chance. Suggestive
targets possess features tending toward, but not
decisively establishing, a particular latent status. In
this sense, the suggestive targets are the ones for
which the latent class model has been developed.
Formally speaking, the suggestive class model is

πA1A2A3A4|Y (i, j, k, l|2)

=
T∑

t=1

πA1|XY (i|t, 2)πA2|XY (j |t, 2)πA3|XY (k|t, 2)

× πA4|XY (l|t, 2)πX|Y (t |2). (5)

Note that (5) is equivalent to (3).

Ambiguous Targets. Judgments of ambiguous tar-
gets are no better than random. In conditional prob-
ability terms, this means that ambiguous target judg-
ments do not depend on the target’s true latent class.
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In other words, πA|XY (i|t, 3) = πA|Y (i|3). Together
with the local independence assumption, this yields

πA1A2A3A4|Y (i, j, k, l|3)

= πA1|Y (i|3)πA2|Y (j |3)πA3|Y (k|3)πA4|Y (l|3).

(6)

Models Having a Single Target Type

Having delineated three different target types, it is
possible to consider models that focus on a single tar-
get type only. Of the three possible model classes, –
models for suggestive, obvious, or ambiguous tar-
gets – only models for suggestive targets are typically
of interest to substantive researchers. Nevertheless,
greater appreciation of the latent class approach can
be gained by briefly considering the three situations
in which only a single target type is present.

Suggestive Targets Only. Because latent class
models for rater agreement are based on the premise
that for each observed category there exists a cor-
responding latent class, it is natural to consider the
general latent class model that has as many latent
classes as there are observed categories. In other
words, one can consider the general latent class model
for which T = I . This model has been considered by,
for example, Dillon and Mulani [2].2

Fitting this model to the data given in Table 1
produces an acceptable model fit. Specifically, one
obtains X2 = 9.501 and G2 = 10.021 based on df =
7, allowing for one boundary value. Boundary values
are probabilities that are estimated to be either zero or
one. For the hypothetical population from which this
sample has been taken the prevalence of schizophre-
nia is estimated to be πX(1) = 0.2788. Individual
rater sensitivities, πAr |X(1|1), for r = 1, 2, 3, 4 are
estimated as 1.0000, .5262, .5956, and .5381. Sim-
ilarly, individual rater specificities, πAr |X(2|2), are
estimated as .9762, .9346, .8412, and .8401.

Obvious Targets Only. If only obvious targets are
judged, there would be perfect agreement. Every
rater would be able to identify the latent class to
which each target correctly belongs. Of course, in this
situation, statistical models would be unnecessary.

Ambiguous Targets Only. If a population consists
only of ambiguous targets, the quality of the judg-
ments would be no better than chance. Consequently,

the judgments would be meaningless from a sub-
stantive perspective. Nevertheless, it is possible to
distinguish at least two different modes either of
which could underlie random judgments. First, raters
could produce random judgments in accordance with
category specific base-rates, that is, base-rates that
could differ across raters. Alternatively, judgments
could be random in the sense of their being evenly
distributed among the categories.

Models Having Two Types of Targets

Allowing for two different types of targets produces
three different model classes of the form

πA1A2A3A4(i, j, k, l) = πA1A2A3A4|Y (i, j, k, l|u)πY (u)

+ πA1A2A3A4|Y (i, j, k, l|v)πY (v),

(7)

where u, v = 1, 2, 3. For models that include only
obvious and ambiguous targets, u = 1 and v = 3;
for obvious and suggestive targets only, u = 1 and
v = 2; and for suggestive and ambiguous targets
only, u = 2 and v = 3. Of course, in each of the
three cases the two conditional probabilities on the
right-hand side of (7) will be replaced with the
corresponding expressions given in (4), (5), and (6).
Because the resulting model equations are evident,
they are not presented.

Obvious and Ambiguous Targets. Treating all tar-
gets as either obvious or ambiguous has been sug-
gested by Clogg [1] and by Schuster and Smith [8].
Fitting this model to the data example yields a poor
fit. Specifically, one obtains X2 = 22.6833 and G2 =
28.1816 based on df = 9. The proportion of obvious
targets, πY (1), is estimated as 44.80%. Among these,
only 8.43% are estimated to be schizophrenic, that
is, πX |Y (1|1) = .0843. The rater specific probabili-
ties of a schizophrenia diagnosis for the ambiguous
targets, πAr |Y (1|3), r = 1, 2, 3, 4, are .4676, .2828,
.4399, and .4122 respectively. Clearly, while raters
one, three, and four seem to behave similarly when
judging ambiguous targets, the second rater’s behav-
ior is different from the other three. Note that this
model does not produce a prevalence estimate of
schizophrenia for ambiguous targets.

Obvious and Suggestive Targets. Treating all tar-
gets as either obvious or suggestive has been con-
sidered by Espeland and Handelman [3]. Fitting this
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model to the data produces an acceptable model
fit. Specifically, one obtains X2 = 6.5557 and G2 =
7.1543 based on df = 5, allowing for one boundary
value. The proportion of obvious targets is esti-
mated as 23.43%. Among these, only 5.22% are
estimated to be schizophrenic, that is, πX |Y (1|1) =
.0522. Similarly, among the 76.57% suggestive tar-
gets one estimates 35.32% to be schizophrenic, that
is, πX |Y (1|1) = .3532. The individual rater sensitiv-
ities for the suggestive targets, πAr |XY (1|1, 2), r =
1, 2, 3, 4, are 1.0000, .5383, .6001, .5070, and the
corresponding specificities, πAr |XY (2|2, 2), are .9515,
.8994, .7617, and .7585. Overall, the values for the
sensitivities and specificities are very similar to the
model that involves only suggestive targets.

Suggestive and Ambiguous Targets. Treating all
targets as either suggestive or ambiguous has been
considered by Espeland and Handelman [3] and by
Schuster and Smith [8]. Fitting this model to the data
yields an acceptable model fit of X2 = 1.8695 and
G2 = 1.7589 based on df = 4, allowing for three
boundary values. The proportion of suggestive tar-
gets, πY (2), is estimated to be 85.81% of which
28.30% are schizophrenic, that is, πX |Y (1|2) = .2830.
The individual rater sensitivities for the sugges-
tive targets, πAr |XY (1|1, 2), r = 1, 2, 3, 4, are 1.0000,
.5999, .6373, .5082 for raters A1 to A4, and the
corresponding specificities, πAr |XY (2|2, 2), are .9619,
.9217, .8711, and 1.0000. The rater specific probabil-
ities of a schizophrenia diagnosis for the ambiguous
targets are .2090, .0000, .3281, and .9999 for raters
A1 to A4. It is remarkable how much the likelihood
of a schizophrenia diagnosis for ambiguous targets
differs for raters two and four. If the relatively large
number of boundary values is not indicative of an
inappropriate model, then it is as if rater 2 will not
diagnose schizophrenia unless there is enough spe-
cific evidence of it, while rater 4 views ambiguity as
diagnostic of schizophrenia. Note that this model can-
not produce a prevalence estimate of schizophrenia
for ambiguous targets.

Three Types of Targets

When the population of targets contains all three
types, one obtains

πA1A2A3A4(i, j, k, l) = πA1A2A3A4|Y (i, j, k, l|1)πY (1)

+ πA1A2A3A4|Y (i, j, k, l|2)πY (2)

+ πA1A2A3A4|Y (i, j, k, l|3)πY (3), (8)

where, as before, each of the three conditional
probabilities on the right-hand side are replaced
using (4–6). Although this model follows naturally
from consideration of different targets, we are not
aware of an application of this model in the literature.
For the present data example the number of param-
eters of this model exceeds the number of rating
profiles, and, therefore, the model is not identified.

Espeland and Handelman [3] have discussed this
model assuming equally probable categories. In this
case, the model can be fitted to the data in Table 1.
However, for the present data set, the probability of
ambiguous targets is estimated to be zero. Therefore,
the model fit is essentially equivalent to the model
involving only obvious and suggestive targets.

Discussion

Table 2 summarizes the goodness-of-fit statistics for
the models fitted to the data in Table 1. When
comparing the goodness-of-fit statistics of different
models one has to keep in mind that differences
between likelihood-ratio statistics follow a central
chi-square distribution only if the models are nested.
Thus, the only legitimate comparisons are between
Model 1 and Model 3 (�G2 = 2.8663, �df = 3, p =
.413) and between Model 1 and Model 4 (�G2 =
8.2617, �df = 3, p = .041). Clearly, insofar as these
data are concerned allowing for obvious targets in
addition to suggestive targets does not improve model
fit considerably. However, allowing for ambiguous
targets in addition to suggestive targets improves the
model fit considerably.

Depending on the target type, additional restric-
tions can be imposed on the latent class model. In
particular, for suggestive targets one can constrain
the hit-rates, πA|X(i|i), to be equal across raters,

Table 2 Goodness-of-fit statistics for models fitted to the
data in Table 1. The models are specified in terms of the
target types involved

Model Target-types df X2 G2

1 Y = 2 7 9.5010 10.0206
2 Y = 1, Y = 3 9 22.6833 28.1816
3 Y = 1, Y = 2 5 6.5557 7.1543
4 Y = 2, Y = 3 4 1.8695 1.7589
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across categories, or across raters and categories
simultaneously, see [2] or [8] for details. Alterna-
tively, one can constrain error-rates across raters
or targets.

For ambiguous targets the response probabili-
ties can be constrained to be equal across raters,
that is, πAr |Y (i|3) = πAq |Y (i|3) for r �= q. It is also
possible to define random assignment more restric-
tively, such as requiring each category be equally
probable. In this case, each of the four proba-
bilities on the right-hand side of (6) would be
replaced with 1/I , where Is denotes the number
of categories.

Of course, the restrictions for suggestive and
ambiguous targets can be combined. In particu-
lar, if the rater panel has been randomly selected,
one should employ restrictions that imply homo-
geneous rater margins, that is, πAr

(i) = πAq
(i) for

r �= q. For random rater panels one could also con-
sider symmetry models, that is, models that imply
πA1A2A3A4(i, j, k, l) is constant for all permutations
of index vector (i, j, k, l ).

Finally, an alternative way in which a second type
of latent variable can be introduced is to assume
two different rater modes or states in which the
raters operate [5], which is an idea closely related
to the models proposed by Schutz [9] and Perrault
and Leigh [7]. Raters in reliable mode judge tar-
gets correctly with a probability of 1.0, while raters
in unreliable mode will ‘guess’ the category. This
model is different from the target type models inas-
much as the representation of the rater mode will
require a separate latent variable for each rater. In
addition, the rater modes are assumed independent.
Therefore, the model involves restrictions among the
latent variables, which is not the case for traditional
latent class models.

Notes

1. A similar data set has been presented by Young,
Tanner, and Meltzer [10].

2. However, note that for a given number of raters, the
number of latent classes that are identifiable may
depend on the number of observed categories. For
dichotomous ratings, model identification requires at
least three raters. In cases of either three or four
categories, four raters are required to ensure model
identification (see [4]).
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Whether there is agreement or consensus among
raters or observers on their evaluation of the objects
of interest is one of the key questions in the behav-
ioral sciences. Social workers assess whether par-
ents provide appropriate rearing environments for
their children. School psychologists evaluate whether
a child needs to be placed in a special class. If
agreement among raters is low or absent, it begs
many questions, including the validity of the guide-
lines or criteria, and the reliability of the raters
involved in their judgment. Thus, it is important
to establish rater agreement in the behavioral sci-
ences. One way to measure rater agreement is to
have two raters make independent observations on
the same group of objects, to classify them into a
limited number of categories, and then to see to
what extent the raters’ evaluations overlap. There are
several measures to assess rater agreement for this
type of situation. Of all measures, Cohen’s kappa
(κ , [1]) is one of the best known and most fre-
quently used measures to assess the extent of agree-
ment by raters in a summary statement for entire
observations [3].

Cohen’s kappa measures the strength of rater
agreement against the expectation of independence of
ratings. Independence of ratings refers to a situation
where the judgment made by one rater or observer is
independent of, or unaffected by, the judgment made
by the other rater. Table 1 illustrates a typical cross-
classification table of two raters (see Contingency
Tables). Three classification categories by both raters
are completely crossed, resulting in a square table
of nine cells. Of the nine cells, the three diagonal
cells from the left to the right, shaded, are called
the agreement cells. The remaining six other cells

are referred to as the disagreement cells. The num-
bers in the cells are normally frequencies, and are
indexed by mij . Subscripts i and j index I rows and
J columns. m11, for example, indicates the number
of observations for which both raters used Category
1. The last row and column in Table 1 represent the
row and column totals. m1i indicates the row total
for Category 1 by Rater A, whereas mi1 indicates the
column total for Category 1 by Rater B. N is for
the total number of objects that are evaluated by the
two raters.

Cohen’s kappa is calculated by

κ̂ =
∑

pii −
∑

pi.p.i

1 −
∑

pi.p.i

,

where
∑

pii and
∑

pi.p.i indicate the observed
and the expected sample proportions of agree-
ment based on independence of ratings, respec-
tively. Based on Table 1, the observed propor-
tion of agreement can be calculated by adding
frequencies of all agreement cells and dividing
the total frequency of agreement by the number
of total observations,

∑
pii = ∑

mii/N = (m11 +
m22 + m33)/N . The expected sample proportion of
agreement can be calculated by summing the prod-
ucts of the row and the column sums for each cat-
egory, and dividing the sum by the squared total
number of observations,

∑
pi.p.i = ∑

mi.m.i/N
2 =

(m1imi1 + m2imi2 + m3imi3)/N
2.

The numerator of Cohen’s kappa formula suggests
that when the observed proportion of cases in which
the two independent raters agree is greater than the
expected proportion, then kappa is positive. When
the observed proportion of agreement is less than the
expected proportion, Cohen’s kappa is negative. In
addition, the difference in magnitude between the
observed and the expected proportions is factored
into Cohen’s kappa calculation. The greater the

Table 1 A typical cross-classification of rater agreement

Rater B

Category 1 Category 2 Category 3 Row sum

Category 1 m11 m12 m13 m1i

Rater A
Category 2 m21 m22 m23 m2i

Category 3 m31 m32 m33 m3i

Column Sum mi1 mi2 mi3 N
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Table 2 Cross-classification of rater agreement when Cohen’s kappa = 0.674

Psychologist B

Securely attached Resistant or ambivalent Avoidant Row sum

Securely Attached 64 4 2 70

Psychologist A
Resistant or Ambivalent 5 4 1 10
Avoidant 1 2 17 20

Column Sum 70 10 20 100

difference between the two proportions, the higher
the absolute value of Cohen’s kappa. The difference
is scaled by the proportion possible for improvement.
Namely, the denominator of the formula indicates
the difference between the perfect agreement (i.e.,
Cohen’s kappa = 1) and the expected proportion of
agreement. In sum, Cohen’s kappa is a measure of
the proportion of agreement relative to that expected
based on independence. κ can also be characterized
as a measure of proportionate reduction in error
(PRE; [2]). A κ value multiplied by 100 indicates the
percentage by which two raters’ agreement exceeds
the expected agreement from chance.

Perfect agreement is indicated by Cohen’s kappa
= 1. Cohen’s kappa = 0 if ratings are completely
independent of each another. The higher Cohen’s
kappa, the better the agreement. Although it is rare,
it is possible to have a negative Cohen’s kappa
estimate. A negative kappa estimate indicates that
observed agreement is worse than expectation based
on chance. Cohen’s kappa can readily be calculated
using a general purpose statistical software package
and a significance test is routinely carried out to
see whether κ is different from zero. In many
instances, however, researchers are more interested
in the magnitude of Cohen’s kappa than in its
significance. While there are more than one suggested
guidelines for acceptable or good agreement, in
general, a κ̂ value less than 0.4 is considered as
fair or slight agreement. A κ̂ value greater than 0.4
is considered as good agreement (see [3] for more
information).

Cohen’s kappa can be extended to assess agree-
ment by more than two raters. It can also be used to
assess ratings or measurements carried out for multi-
ple occasions across time. When more than two raters
are used in assessing rater agreement, the expected
proportion of agreement can be calculated by utiliz-
ing a standard main effect loglinear analysis.

Data Example

Suppose two psychologists observed infants’ reac-
tions to a separation and reunion situation with
their mothers. Based on independent observations,
psychologists A and B determined the attachment
styles of 100 infants. Typically 70%, 10%, and
20% of infants are classified as Securely Attached,
Resistant or Ambivalent, and Avoidant, respectively.
Table 2 shows an artificial data example. The pro-
portion of observed agreement is calculated at 0.85
(i.e., (64 + 4 + 17)/100 = 0.85), and the expected
agreement is calculated at 0.54 (i.e., (70 ∗ 70 +
10 ∗ 10 + 20 ∗ 20)/10 000 = 0.54). The difference
of 0.31 in proportion between the observed and
expected agreement is compared against the maxi-
mum proportion that can be explained by rater agree-
ment. κ̂ = (0.85 − 0.54)/(1 − 0.54) = 0.674, with
standard error = 0.073, z = 8.678, p < 0.01. Thus,
we conclude that two psychologists agree to 67.4%
more than expected by chance, and that the agree-
ment between two psychologists is significantly better
than chance.
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Rater Agreement –
Weighted Kappa

One of the characteristics of Cohen’s kappa (κ , [1])
(see Rater Agreement – Kappa) is that any dis-
crepancy between raters is equally weighted as zero.
On the other hand, any agreement means absolute
agreement between raters, and is equally weighted
as one. Thus, the distinction between agreement and
disagreement is categorical. For example, Table 1
from the article on Cohen’s kappa (see Rater Agree-
ment – Kappa) shows three agreement cells and six
disagreement cells. In deriving Cohen’s kappa, all
six disagreement cells are treated equally. However,
there could be situations in which the discrepancy
between adjacent categories such as Categories 1
and 2 can be considered as partial agreement as
opposed to complete disagreement. In those situa-
tions, Cohen’s weighted kappa [2] can be used to
reflect the magnitude of agreement. Thus, Cohen’s
weighted kappa is used when categories are mea-
sured by ordinal (or interval) scales. What we mean
by ordinal is that categories reflect orderly magnitude.
For example, categories of Good, Average, and Bad
reflect a certain order in desirability. The disagree-
ment by raters between Good and Average, or Aver-
age and Bad can be considered as less of a problem
than the discrepancy between Good and Bad, and fur-
thermore, the disagreement by one category or scale
can sometimes be considered as partial agreement.

Cohen’s weighted kappa is calculated by

κ̂w =
∑

ωij pij − ∑
ωij pi .p.j

1 − ∑
ωij pi .p.j

, (1)

where the ωij are the weights, and
∑

ωij pij and∑
ωij pi . p.j are the weighted observed and the

weighted expected sample proportions of agreement,

based on the assumption of independence of ratings,
respectively (see Rater Agreement – Kappa). Sub-
scripts i and j index I rows and J columns. The
weights take a value between zero and one, and
they should be ratios. For example, the weight of
one can be assigned to the agreement cells (i.e.,
ωij = 1, if i = j .), and 0.5 can be given to the partial
agreement cells of adjacent categories (i.e., ωij = 0.5,
if |i − j | = 1.). And zero for the disagreement cells
that are off by more than one category (i.e., ωij = 0,
if |i − j | > 1.). Thus, all weights range from zero to
one, and the weights of 1, 0.5, and 0 are ratios of one
another (see Table 1). Cohen’s weighted kappa tends
to be higher than Cohen’s unweighted kappa because
weighted kappa takes into account partial agreement
between raters (see [3] for more information).

Data Example

Suppose two teachers taught a course together and
independently graded 100 students in their class.
Table 2 shows an artificial data example. Students
were graded on an ordinal scale of A, B, C, D,
or F grade. The five diagonal cells, shaded, indi-
cate absolute agreement between two teachers. These
cells get a weight of one. The adjacent cells that
differ just by one category get a weight of 0.75
and the adjacent cells that differ by two and three
categories get weights of 0.50 and 0.25, respectively.
The proportions of the weighted observed agreement
and the weighted expected agreement are calculated
at 0.92 and 0.71, respectively. Cohen’s weighted
kappa is calculated at 0.72 (e.g., κ̂w = (0.92 −
0.71)/(1 − 0.71)) with standard error = 0.050, z =
14.614, p < 0.01. This value is higher than the
value for Cohen’s unweighted kappa = 0.62 with
standard error = 0.061, z = 10.243, p < 0.01. The
10% increase in agreement reflects the partial weights

Table 1 An example of weights

Rater B

Category 1 Category 2 Category 3

Category 1 1(1) 0.5(0) 0(0)
Rater A Category 2 0.5(0) 1(1) 0.5(0)

Category 3 0(0) 0.5(0) 1(1)

Note: The numbers in parenthesis indicate weights of Cohen’s unweighted kappa.
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Table 2 Two teachers’ ratings of students’ grades (weights in parenthesis)

Teacher B

A B C D F Row sum

A 14 2 1 0 0 17(1) (0.75) (0.50) (0.25) (0)

B 4 25 1 0 36(0.75) (1) (0.75) (0.50) (0.25)

Teacher A C 1 3

1

18 5 0 27(0.50) (0.75) (1) (0.75) (0.50)

D 0 3 14 1 19(0.25) (0.50) (0.75) (1) (0.75)

F 0 0 0 0 1
(0) (0.25) (0.50) (0.75) (1)

Column
sum

19 31 28 20 2 N = 100

6

1

given to the adjacent cells by one, two, and three
categories.
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Rater Bias Models

Rater bias occurs when behavioral ratings reflect
characteristics of the rater in addition to those of
the target. As such, rater bias is a type of method
variance (i.e., systematically contributes variance to
behavioral ratings that are due to sources other than
the target). Rater personality, response styles (e.g.,
the tendency to rate leniently or severely), normative
standards, implicit theories (e.g., stereotypes, halo
effects) and even mood can influence ratings of a
target’s behaviors.

In phenotypic research, rater biases are of concern
because they result in disagreement between raters
while at the same time inflating correlations between
variables that are rated by the same rater [2]. In
twin studies (see Twin Designs), the effects of rater
biases are more complex. When both members of a
twin pair are assessed by the same rater, rater biases
act to inflate estimates of shared environmental
variance. That is, there is covariance between the
biases that affect the ratings of each twin such
that the rater tends to consistently overestimate or
underestimate the behavior of both cotwins. This
consistency across cotwins would act to inflate the
similarity of both monozygotic (MZ) and dizygotic
(DZ) twins. Thus, the correlation between cotwins is
due in part to bias covariance. Since bias covariance
would not be expected to differ according to twin
type, its net effect will be to result in overestimates
of shared environmental variance. However, if each
member of a twin pair is assessed by a different
informant, rater biases will result in overestimates
of nonshared environmental variance. Here, there
is no bias covariance between the ratings of each
twin – different raters will have different biases that
influence their behavioral ratings. Thus, rater bias
will be specific to each twin and will contribute to
differences between cotwins and, consequently, will
be included in estimates of nonshared environment in
quantitative genetic analyses.

Rater bias can be incorporated into quantitative
genetic models [e.g., [1, 3]]. According to the Rater
Bias model, observed scores are a function of the
individual’s latent phenotype, rater bias, and unreli-
ability. The basic model requires at least two raters,
each of whom has assessed both cotwins. Under this
model, it is assumed that raters agree because they
are assessing the same latent phenotype (i.e., what

is common between raters is reliable trait variance).
This latent phenotype is then decomposed into its
genetic and environmental components. Disagree-
ment between raters is assumed to be due to rater
bias and unreliability. The model includes latent bias
factors for each rater that account for bias covari-
ance between the rater’s ratings of each twin (i.e.,
what is common within a rater across twins is
bias). Unreliability is modeled as rater-specific, twin-
specific variances. Thus, this model decomposes the
observed variance in ratings into reliable trait vari-
ance, rater bias, and unreliability; and allows for
estimates of genetic and environmental influences on
the reliable trait variance independent of bias and
error [1].

As indicated above, the Rater Bias model assumes
that rater bias and unreliability are the only reasons
why raters disagree, but this may not be the case.
Different raters might have different perspectives
or knowledge about the target’s behaviors. There-
fore, it is important to evaluate the relative fit of
the Rater Bias model against a model that allows
raters to disagree because each rater provides dif-
ferent but valid information regarding the target’s
behavior. Typically, the Rater Bias model is com-
pared to the Psychometric model (also known at
the Common Pathway model). Like the Rater Bias
model, this model suggests that correlations between
raters arise because they are assessing a common phe-
notype that is influenced by genetic and/or environ-
mental influences; however, this model also allows
genetic and environmental effects specific to each
rater. Thus, behavioral ratings include a common phe-
notype (accounting for agreement between raters) and
specific phenotypes unique to each rater (account-
ing for disagreement between raters). As with the
Rater Bias model, the common phenotype repre-
sents reliable trait variance. Because neither rater
bias nor unreliability can result in the systematic
effects necessary to estimate genetic influences, the
specific genetic effects represent real effects that
are unique to each rater [4]. Specific shared envi-
ronmental influences may, however, be confounded
by rater biases. When the Psychometric model pro-
vides a relatively better fit to the data than the
Rater Bias model and rater-specific genetic vari-
ances estimated, it suggests that rater differences are
not simply due to rater bias (i.e., that the raters
to some extent assess different aspects of the tar-
get’s behaviors).
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Reactivity

Reactivity is a threat to the construct validity of
observational and intervention studies that refers to
the unintended reaction of participants on being
observed, or, more in general, on being in a study.
It can entail a threat to the construct validity of
outcomes or a threat to the construct validity of
treatments [4, 5, 12].

Reactivity as a threat to the outcome construct
validity may be involved if some sort of reactive
or obtrusive assessment procedure is used, that is,
an assessment procedure for which it is obvious to
the participants that some aspect of their function-
ing is being observed or measured [13, 14]. Reac-
tivity can occur both with respect to pretests and
with respect to posttests. For example, in self-report
pretests, participants may present themselves in a way
that makes them eligible for a certain treatment [1].
Posttests can become a learning experience if certain
ideas presented during the treatment ‘fall into place’
while answering a posttreatment questionnaire [3].
Pretest as well as posttest reactivity yields obser-
vations or measurements that tap different or more
complex constructs (including participant perceptions
and expectations) than the constructs intended by
the researcher.

Reactivity as a threat to the treatment construct
validity may be involved if participants are very
much aware of being part of a study and inter-
pret the research or treatment setting in a way that
makes the actual treatment different from the treat-
ment as planned by the researcher [9, 11]. Such
confounding treatment reactivity can be found in
the research literature under different guises: hypoth-
esis guessing within experimental conditions [10],
demand characteristics [6], placebo effects [2], and
evaluation apprehension [7]. A closely related risk
for treatment construct invalidity is formed by (see
Expectancy Effect by Experimenters) [8], but here
the prime source for bias are the interpretations of
the researcher himself, while in reactivity, the inter-
pretations of the participants are directly at issue.

Finally, it should be remarked that reactivity is a
validity threat to both quasi-experiments and ‘true’
experiments. Random assignment procedures clearly
provide no solution to reactivity problems. In fact,

the random assignment itself might be responsible
for changes in the measurement structure or meaning
of the constructs involved, even before the intended
treatment is brought into action [1]. In-depth discus-
sion and presentation of methods to obtain unobtru-
sive measures and guidelines to conduct nonreactive
research can be found in [9], [13], and [14].
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Receiver Operating
Characteristics Curves

The receiver operating characteristics curve, better
known as ROC and sometimes called receiver oper-
ating curve or relative operating characteristics, is
the principal graphical device for signal detection
theory (SDT). While ROCs were originally devel-
oped in engineering and psychology [3], they have
become very common in medical diagnostic research
(see [6] for a recent textbook, and also journals such
as Medical Decision Making, Radiology, Investiga-
tive Radiology).

Consider an example: I receive about 100 emails
a day, most of which are unsolicited junk mail. When
each email arrives, it receives a ‘spamicity’ value
from an email filter. Scores close to 1 mean that the
filter predicts the email is ‘spam’; scores close to 0
predict the email is nonspam (‘ham’). I have to decide
above what level of spamicity, I should automatically
delete the emails. For illustration, suppose the data for
1000 emails and two different filters are those shown
in Table 1.

The two most common approaches for analyzing
such data are logistic regression and SDT. While
in their standard forms, these are both types of the
generalized linear model, they have different origins
and different graphical methods associated with them.
However, the basic question is the same: what
is the relationship between spamicity and whether
the email is spam or ham? ROCs are preferred
when the decision criterion is to be determined and
when the decision process itself is of interest, but
when discrimination is important researchers should
choose the logistic regression route. Because both

these approaches are based on similar methods [1],
it is sometimes advisable to try several graphical
methods and use the ones which best communicate
the findings.

There are two basic types of curves: empirical
and fitted. Empirical curves show the actual data
(sometimes with slight modifications). Fitted curves
are based on some model. The fitted curves vary on
how much they are influenced by the data versus the
model. In general, the more parameters estimated in
the model, the more influence the data will have.
Because of this, some ‘fitted’ models are really
just empirical curves that have been smoothed (see
Kernel Smoothing) (see [5] and [6] for details of
the statistics underlying these graphs).

The language of SDT is explicitly about accuracy
and focuses on two types: sensitivity and specificity.
Sensitivity means being able to detect spam when
the email is spam; and specificity means just saying
an email is spam if it is spam. In psychology, these
are usually referred to as hits (or true positives) and
correct rejections. The opposite of specificity is the
false alarm rate: the proportion of time that the filter
predicts that real email. Suppose the data in Table 1
were treated as predicting ham if spamicity is 0.5 or
less and predicting spam if it is above. Table 2 shows
the breakdown of hits and false alarms by whether an
email is or is not spam, and whether the filter decrees
it as spam or ham. Included also are the calculations
for hit and false alarm rates. The filters only provide
a spamicity score. I have to decide above what level
of spamicity the email should be deleted. The choice
of criterion is important. This is dealt with later and is
the main advantage of ROCs over other techniques.

It is because all the values on one side of a crite-
rion are classified as either spam or ham that ROCs
are cumulative graphs. Many statistical packages

Table 1 The example data used throughout this article. Each filter had 1000 emails, about half of which were spam. The
filter gave each email a spamicity rating

Spamicity ratings

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Filter one
Email is ham 47 113 30 122 104 41 21 20 4 1 0
Email is spam 0 2 3 10 78 66 27 114 3 28 166
Filter two
Email is ham 199 34 0 44 11 40 17 8 21 66 63
Email is spam 51 37 3 20 21 45 21 11 17 74 197
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Table 2 The decision table if the criterion to delete emails was that the spamicity scores be 0.6 or above. While the two
filters have similar hit rates, the first filter has a much lower false alarm rate (i.e., better specificity)

Filter 1 Filter 2

<= 0.5 > 0.6 Rate <= 0.5 > 0.6 Rate Total
Is ham 457 correct rejection 46 false alarm 9% 328 correct rejection 175 false alarm 35% 503
Is spam 159 miss 338 hit 68% 177 miss 320 hit 64% 497
Total 616 384 505 495 1000

have cumulative data transformation functions (for
example, in SPSS the CSUM function), so this can
be done easily in mainstream packages. In addition,
good freeware is available (for example, ROCKIT,
RscorePlus), macros have been written for some gen-
eral packages (for example, SAS and S-Plus), and
other general packages contain ROC procedures (for
example, SYSTAT). For each criterion, the number
of hits and false alarms is divided by the number of
spam and ham emails, respectively.

Figures 1(a) and 1(b) are the standard empirical
ROCs and the fitted binormal curves (using Rscore-
Plus [2]). The program assumes ham and spam vary
on some dimension of spaminess (which is related

to, but not the same as, the variable spamicity) and
that these distributions of ham and spam are nor-
mally distributed on this dimension. The normal dis-
tribution assumption is there for historical reasons
though nowadays researchers often use the logis-
tic distribution, which yields nearly identical results
and is simpler mathematically; the typical package
offers both these alternatives plus others. In psychol-
ogy, usually normality is assumed largely because
Swets [3] showed that much psychological data fits
with this assumption (and therefore also with the
logistic distribution). In other fields like medicine,
this assumption is less often made [6]. ROCs usu-
ally show the concave pattern of Figures 1(a) and
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Figure 1 (a) and (b) plot the empirical hit rate and false alarm rates with fitted binormal model. Figures (c) and (d) show
these graphs after they have been normalized so that the fitted line is straight
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Figure 2 The models for filters (a) and (b) based on the fitted ROCs. The vertical lines show the 10 different
response criteria

1(b). The diagonal lines stand for chance respond-
ing, and the further away from the diagonal the
more diagnostic the variable spamicity is. Thus, com-
paring these two ROCs shows that the first filter
is better.

The data are more easily seen if they are trans-
formed so that the predicted lines are straight. These
are sometimes called normalized, standardized, or
z -ROCs. They can be calculated with the inverse
normal function in most statistics packages and are
available in most SDT software. These are shown
in Figures 1(c) and 1(d). The straight lines in these
graphs provide two main pieces of information. First,
if the slopes are near 1, which they are for both these
graphs, then they suggest the distributions for ham
and spam have the same variance. The distance from
the line to the diagonal is a measure of diagnosticity.
If the slope of the line is 1, then this distance is the
same at all points on the line and it corresponds to
the SDT statistic d

′
. If the slope is not 1, then the

distance between the diagonal and the line depends
on the particular decision criterion. Several statistics
are available for this (see [5] and [6]).

The fitted models in Figures 1(a–d) can be
shown as normal distributions. Figures 2(a) and 2(b)
indicate how well the ham and the spam can be sep-
arated by the filters. For the first filter, the spam
distribution is about two standard deviations away
from the ham distribution, while it is only about one
standard deviation adrift for the second filter. The
decision criteria are also included on these graphs.

For example, the far left criterion is at the cut-off
between 0.0 and 0.1 on the spamicity variable. As
can be seen, for the second filter the criteria are all
close together, which means the users would have less
choice about where along the dimension they could
choose a criterion. These graphs are useful ways of
communicating the findings.

An obvious question is whether the normal dis-
tribution assumption is valid. There are statistical
tests that look at this, but it can also be exam-
ined graphically. Note, however, that as these graphs
are cumulative, the data are not independent. Conse-
quently, conducting standard regressions for the data
in Figures 1(c) and 1(d) is not valid, and in these
cases, the analysis should be done on the noncumu-
lative data or using specialized packages like those
cited earlier.

More advanced and less restrictive techniques are
discussed in [6], but are relatively rare. The more
common procedure is simply to draw straight lines
between each of the observed points. This is called
the trapezoid method because the area below the line
between each pair of points is a trapezoid. Summing
these trapezoids gives a measure called A. This tends
to underestimate the area under real ROC curves. The
values of A can range between 0 and 1 with chance
discrimination as 0.5. The first filter has A = 0.92
and the second has A = 0.73.

An important characteristic of SDT is how the
relative values of sensitivity and specificity are
calculated and used to determine a criterion. In the
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spam example, having low specificity would mean
many real emails (ham) are labelled as spam and
deleted. Arguably, this is more problematic than hav-
ing to delete a few unsolicited spam. Therefore, if my
filter automatically deletes messages, I would want
the criterion to be high because specificity is more
important than sensitivity.

To decide the relative value of deleting ham and
not deleting spam, an equation from expected utility
theory needs to be applied (slightly adapting the
notation from [3], p.127):

Sopt = P(ham)

P (spam)
× VCR − VFA

VHit − Vmiss
(1)

where Sopt is the optimal slope, P (ham) is the
probability that an item will be ham, P (spam) is 1 –
P(ham), VCR is the value of correctly not identifying
ham as spam (this will be positive), VFA is the value of
incorrectly identifying ham as spam (negative), VHit

is the value of correctly identifying spam (positive),
and Vmiss is the value of not identifying spam
(negative). (It is worth noting here that a separate
study is needed to estimate these utilities unless the
minimum sensitivity or specificity is set externally;
in such cases, simply go to this value on the ROC.)
Thus, the odds value (see Odds and Odds Ratios)
of ham is directly proportional to the slope. It is
important to realize how important this baseline is
for deciding the decision criterion. Often, people do
not consider the baseline information when making
decisions (see [4]).

Once Sopt is found, if one of the standard fitted
ROC curves is used, then the optimal decision point
is where the curve has this slope. For more complex

fitted curves and empirical curves, start in the upper
left-hand corner of the ROC with a line of slope
Sopt and move towards the opposite corner. The point
where the line first intersects the ROC shows where
the optimal decision criterion should be. Because
there are usually only a limited number of possible
decision criteria, the precision of this method is
usually adequate to identify the optimal criterion.

This discussion only touches the surface of an
exciting area of contemporary statistics. This general
procedure has been expanded to many different
experimental designs (see [2] and [5]), and has been
generalized for meta-analyses, correlated and biased
data, robust methods, and so on [6].
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Recursive Models

In behavioral research, statistical models are often
recursive, meaning that causality flows only in one
direction. In other words, these models only include
unidirectional effects (e.g., variable A influences
variable B, which in turn influences variable C; see
Figure 1).

These cross-sectional recursive models do not
include circular effects or reciprocal causation (e.g.,
variable A influences variable B, which in turn
influences variable A; see Figure 2(a)), nor do they
permit feedback loops (variable A influences variable
B, which influences variable C, which loops back to
influence variable A; see Figure 2(b)).

In addition, recursive models do not allow vari-
ables that are linked in a causal chain to have corre-
lated disturbance terms (also known as ‘error terms’
or ‘residuals’). If all of these criteria for being recur-
sive are met, then the model is identified – that is, a
unique value can be obtained for each free parameter
from the observed data, yielding a single solution for
all equations underlying the model (see Identifica-
tion) [1, 4].

Distinctions are sometimes made between mod-
els that are ‘recursive’ versus ‘fully recursive’. In
a fully recursive model (or a ‘fully saturated recur-
sive model’), each variable directly influences all
other variables that follow it in the causal chain;
Figure 3(a) displays an example. Fully recursive
models are exactly identified (or ‘just identified’).

A CB

Figure 1 Graphical representation of a basic recur-
sive model

A CB

A CB

(a)

(b)

Figure 2 Examples of nonrecursive models; (a) non-
recursive model depicting reciprocal causation between
variables A and B and (b) nonrecursive model depicting
a feedback loop between variables A and C

It is impossible to disconfirm these models, because
they will fit any set of observations perfectly. More-
over, fully recursive models often lack parsimony,
being as complex as the observed relationships [3].
For these reasons, fully recursive models are most
useful in the context of exploratory data analysis, but
they are suboptimal for the testing of theoretically
derived predictions.

Models that are recursive (but not fully so), on the
other hand, omit one or more direct paths in the causal
chain. In other words, some variables only influence
other variables indirectly. In Figure 3(b), for instance,
variable A influences variable D only by way of
variables B and C (i.e., variables B and C mediate the
effects of A on D). This amounts to a more restrictive
model (i.e., constraining the direct relationship from
variable A to variable D to zero) than in the fully
recursive case, so these not-fully-recursive models are
more impressive when they fit well [2, 3]. Recursive
models in the behavioral sciences typically fall into
this ‘not fully saturated’ category.

In contrast to recursive models, nonrecursive mod-
els include bidirectional or feedback effects (dis-
played in Figures 2(a) and 2(b), respectively), and/or
they contain correlated disturbances for variables that
are part of the same causal chain. Nonrecursive mod-
els are intuitively appealing in the behavioral sci-
ences, given that many phenomena in the real world
would seem to have mutual influences or feedback
loops. However, a major drawback of nonrecursive
models is that estimation can be difficult, especially
with cross-sectional data. These models are often
underidentified, meaning that there is more than one

A

(a)

(b)

C

B D

A

C

B D

Figure 3 Variants of recursive models; (a) fully recursive
model and (b) (not fully) recursive model



2 Recursive Models

possible value for one or more parameters (see Iden-
tification); that is, multiple estimates fit the data
equally well, making it impossible to arrive at a sin-
gle unique solution [2]. For this reason, nonrecursive
models are less common than recursive models in
behavioral research.
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Regression Artifacts

Regression toward the mean has a long and some-
what confusing history. The term was invented by
Galton [3] in 1886 when he noted that tall par-
ents tended to have somewhat shorter children. Its
presence is readily apparent in everyday life. Movie
sequels tend to be worse than the original movies,
married couples tend to experience a decline in mari-
tal satisfaction over time, and therapy usually results
in improvement in symptoms.

The formal definition of regression toward the
mean is as follows: Given a set of scores measured
on one variable, X, it is a mathematical necessity that
the expected value of a score on another variable, Y,
will be closer to the mean, when both X and Y are
measured in standard deviation units. As an example,
if a person were two standard deviation units above
the mean on intelligence, the expectation would be
that the person would be less than two standard
deviation units above the mean on any other variable.
Typically, regression toward the mean is presented in
terms of the same variable measured at two times,
but it applies to any two variables measured on the
same units or persons. As discussed by Campbell
and Kenny [1], regression toward the mean does not
depend on the assumption of linearity, the level of
measurement of the variables (i.e., the variables can
be dichotomous), or measurement error. Given a less
than perfect correlation between X and Y, regression
toward the mean is a mathematical necessity. It
is not something that is inherently biological or
psychological, although it has important implications
for both biology and psychology.

Regression toward the mean applies in both direc-
tions, from Y to X as well as from X to Y. For
instance, Galton [3] noticed that tall children tended
to have shorter parents. Regression toward the mean
does not imply increasing homogeneity over time
because it refers to expected or predicted scores, not
actual scores. On average, scores regress toward the
mean, but some scores may regress away from the
mean and some may not change at all.

Campbell and Kenny [1] discuss several ways to
illustrate graphically regression toward the mean. The
simplest approach is a scatterplot. An alternative is
a pair-link diagram. In such a diagram, there are two
vertical bars, one for X and one for Y. An individual
unit is represented by a line that goes from one

bar to the other. A particularly useful method for
displaying regression toward the mean is a Galton
squeeze diagram [1], which is shown in Figure 1.
The left axis represents the scores on one measure,
the pretest, the right axis represents the means on
the second measure, the posttest. The line connecting
the two axes represents the score on one measure
and the mean score of those on the second measure.
Regression toward the mean is readily apparent.

Because regression toward the mean refers to
standard scores and an entire distribution of scores, its
implications are less certain for raw scores. Consider,
for instance, a measure of educational ability on
which children are measured. All children receive
some sort of intervention, and all are remeasured on
that same variable. If the children improve at the
second testing (i.e., the mean of the second testing
is greater than the mean on the first testing), can
we attribute that improvement to regression toward
the mean or to the intervention? Without further
information, we would be unable to answer the
question definitively. If the children in the sample
were below the mean in that population at time
one and the mean and variance of the scores in
the population was the same at both times without
any intervention, then it is likely that the change is
due to regression toward the mean. Of course, an
investigator is not likely to know whether the children
in the study are below the population mean and
whether the population mean and standard deviation
are unchanging.
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Figure 1 A Galton squeeze diagram illustrating regression
toward the mean
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Because raw scores do not necessarily regress
toward the mean, some (e.g., [5]) have argued that
regression toward the mean is not a problem in inter-
preting change. However, it should be realized that
regression toward the mean is omnipresent with stan-
dard scores and therefore it has implications, uncer-
tain though they are, for the interpretation of raw
score change. Certainly, a key signal that regression
toward the mean is likely to be a problem is when
there is selection of extreme scores from a distribu-
tion.

Further complications also arise when two popula-
tions are studied over time. Consider two populations
whose means and standard deviations differ from
each other but their means and standard deviations do
not change over time. If at time one, a person from
each of the two populations is selected and these two
persons have the very same score, at time two the two
persons would not be expected to have the same score
because each is regressing toward a different mean.
It might be that one would be improving and the
other worsening. Furby [2] has a detailed discussion
of this issue.

Gilovich [4] and others have discussed how it
is that lay people fail to take into account regres-
sion toward the mean in everyday life. For example,
some parents think that punishment is more effective
than reward. However, punishment usually follows
bad behavior and, given regression toward the mean,
the expectation is for improvement. Because reward
usually follows good behavior, the expectation is a
decline in good behavior and an apparent ineffec-
tiveness of reward. Also, Harrison and Bazerman [6]

discuss the often unnoticed effects of regression
toward the mean in organizational contexts.

Regression toward the mean has important impli-
cations in prediction. In situations in which one has
little information to make a judgment, often the best
advice is to use the mean value as the prediction. In
essence, the prediction is regressed to the mean.

In summary, regression toward the mean is a uni-
versal phenomenon. Nonetheless, it can be difficult
to predict its effects in particular applications.
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Regression Discontinuity
Design

Thistlewaite and Campbell [9] published the first
example of a regression discontinuity design, the
only quasi-experimental design that can yield unbi-
ased estimates of the treatment effects [3, 4, 6, 7].
More extensive treatments of this design appear
in [2], [8], [10], [11], and [12].

With the regression discontinuity design, the
experimenter assigns participants to treatment condi-
tions using a cutoff score on an assignment variable
that is measured prior to treatment and is at least
an ordinal measurement scale. The assignment vari-
able is often a measure of need or merit, meaning
that those who need a treatment or merit a reward
the most are also the most likely to receive it. This
feature of the design provides an ethical alternative
when objections occur to randomly assigning needy
or meritorious participants to a treatment, or to ran-
domly depriving others of those same treatments.

The simplest design places units scoring on one
side of the cutoff into the treatment condition, and
those on the other side into the control condition.
This design is diagrammed as shown in Table 1:

Table 1 A diagram of the regression
discontinuity design

OA C X O

OA C O

where OA is the assignment variable, C indicates
that participants are assigned to conditions using a
cutoff score, X denotes treatment, O is a posttest
observation, and the position of these letters from
left to right indicates the time sequence in which
they occur. If j is a cutoff score on OA, then any
participant scoring greater than or equal to j is in
one group, and anything less than j is in the other.
For example, suppose an education researcher imple-
ments a treatment program to improve math skills of
third graders, but resource restrictions prohibited pro-
viding the treatment to all third-graders. Instead, the
researcher could administer all third-graders a test
of math achievement, and then assign those below
a cutoff score on that test to the treatment, with

those above being in the control group. If we draw a
scatterplot of the relationship between scores on the
assignment variable (horizontal axis) and scores on a
math outcome measure (vertical axis), and if the train-
ing program improved math skills, the points in the
scatterplot on the treatment side of the cutoff would
be displaced upwards to reflect higher posttest math
scores. And a regression line (see Regression Mod-
els) would show a discontinuity at the cutoff, that is,
the size of the treatment effect. If the treatment had
no effect, a regression line would not have this dis-
continuity. Shadish et al. [8] present many real-world
studies that used this design. Many variants of the
basic regression discontinuity design exist that allow
comparing more than two conditions, that combine
regression discontinuity with random assignment or
with a quasi-experiment, or that improve statistical
power [8, 10].

In most other quasi-experiments, it is difficult
to rule out plausible alternative explanations for
observed treatment effects – what Campbell and
Stanley [1] call threats to internal validity. Threats
to internal validity are less problematic with the
regression discontinuity design, especially when the
change in the regression line occurs at the cutoff and
is large. Under such circumstances, it is difficult to
conceive of reasons other than treatment that such
a change in the outcome measure would occur for
those immediately to one side of the cutoff, but not
for those immediately to the other side.

Statistical regression (see Regression to the
Mean) may seem to be a plausible threat to internal
validity with the regression discontinuity design. That
is, because groups were formed from the extremes
of the distribution of the assignment variable, a
participant scoring high on the assignment variable
will likely not score as high on the outcome
measure, and a participant scoring low on the
assignment variable will likely not score as low on
the outcome measure. But this regression does not
cause a discontinuity in the regression line at the
cutoff; it simply causes the regression line to turn
more horizontal.

Selection is not a threat even though groups were
selected to be different. Selection can be controlled
statistically because the selection mechanism is fully
known and measured. Put intuitively, the small dif-
ference in scores on the assignment variable for
participants just to each side of the cutoff is not likely
to account for a large difference in their scores on the
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outcome measure at the cutoff. History is a plausi-
ble threat if other interventions use the same cutoff
for the same participants, which is usually unlikely.
Because both groups are administered the same test
measures, testing, per se, would not likely result in
differences between the two groups. For the threat
of instrumentation to apply, changes to the mea-
surement instrument would need to occur exactly at
the cutoff value of the assignment variable. Attrition,
when correlated with treatment assignment, is prob-
ably the most likely threat to internal validity with
this design.

In the regression discontinuity design, like a ran-
domized experiment, the selection process is com-
pletely known and perfectly measured – the condition
that must be met in order to successfully adjust for
selection bias and obtain unbiased estimates of treat-
ment effects. The selection process is completely
known, assignment to conditions is based solely
on whether a participant’s score on the assignment
variable is above or below the cutoff. No other
variables, hidden or observed, determine assignment.
Selection is perfectly measured because the pretest is
strictly used to measure the selection mechanism. For
example, if IQ is the assignment variable, although IQ
scores imperfectly measure global intelligence, they
have no error as a measure of how participants got
into conditions.

The design has not been widely utilized because
of a number of practical problems in implement-
ing it. Two of those problems are unique to the
regression discontinuity design. Treatment effect esti-
mates are unbiased only if the functional form of
the relationship between the assignment variable and
the outcome measure is correctly specified, includ-
ing nonlinearities and interactions. And statistical
power of the regression discontinuity design is always
lower than a comparably sized randomized experi-
ment. Other problems are shared in common with a
randomized experiment. Treatment assignment must
adhere to the cutoff, just as assignment must adhere to
a randomized selection process. In both cases, treat-
ment professionals are not allowed to use judgment
in assigning treatment. Cutoff-based assignments may
be difficult to implement when the rate of partici-
pants entering the study is too slow or too fast [5].
Treatment crossovers may occur when participants
assigned to treatment do not take it, or participants

assigned to control end up being treated. Despite
these difficulties, the regression discontinuity design
holds a special place among cause-probing meth-
ods and deserves more thoughtful consideration when
researchers are considering design options.
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Regression Model Coding
for the Analysis of
Variance

Using a multiple linear regression (MR) program to
carry out analysis of variance (ANOVA) has certain
advantages over use of an ANOVA program. They
use the same statistical model (ordinary least squares,
OLS), and thus make the same assumptions (normal
distribution of population residuals from the model).
Ordinarily, one’s conclusions from an ANOVA will
be the same as those from MR for the same data.
However, with MR, you can code directly for tests
of study hypotheses, whereas ANOVA can require a
two-step process, beginning with tests of the signif-
icance of model ‘factors’, followed by specific tests
relevant to your hypotheses. Second, MR permits
using as many covariates as needed for substan-
tive questions, including potential interactions among
covariates. Third, MR permits tests of interactions of
covariates with research factors, whereas analysis of
covariance assumes such interactions to be absent
in the population. Fourth, MR allows elimination of
improbable and uninterpretable higher-order interac-
tions in complex designs, improving the statistical
power of the other tests. Finally, MR allows alterna-
tive treatments of unequal group ns, whereas standard
ANOVA programs select a particular one (see Type
I, Type II and Type III Sums of Squares). How-
ever, OLS MR programs handle repeated measures
analysis of variance awkwardly at best.

How do you do it? An ANOVA study design con-
sists of one or more research ‘factors’. Each factor
has two or more groups (categories) with participants
in each group. Thus, one research factor (A) can
consist of the three levels of some experimentally
induced independent variable (IV). Another factor
(B) can consist of four different ages, ethnicities, or
litters of origin, and a third factor (C) can consist of
two different testing times during the day. Thus, this
study would consist of 3(A) × 4(B) × 2(C) = 24 dif-
ferent combinations or conditions; each combination
includes some fraction of the total N participants on
whom we have measured a dependent variable (DV).
In an ANOVA, these three factors would be tested
for significant differences among group means on the
DV by the following F tests:

A with gA − 1 = 2 df (degrees of freedom)
B with gB − 1 = 3 df,
C with gC − 1 = 1 df,
A × B interaction with 2 df × 3 df = 6 df ,
A × C interaction with 2 df × 1 df = 2 df ,
B × C interaction with 3 df × 1 df = 3 df ,
A × B × C interaction with 2 df × 3 df × 1 df =
6 df , with a total of 2 + 3 + 1 + 6 + 2 + 3 + 6 =
23 df .

In a MR analysis of the same data, each of
these 23 df is represented by a unique independent
variable. These variables are usually created by
coding each research factor and their interactions
using one or more of the following coding systems.

Dummy variable coding : To dummy variable code
each factor with g groups, each of the g − 1 groups
is coded 1 on one and only one of the coded
variables representing the factor and 0 on all the
others. The ‘left out’ group is coded 0 on all g − 1
variables. When these g − 1 variables are entered
into the regression analysis, (counterintuitively) the
regression coefficient for each of the variables reflects
the mean difference between the group coded 1 and
the ‘left out’ group consistently coded 0. Thus, a
statistical test of the coefficient provides a test for that
difference. For this reason, dummy variable coding is
most appropriate when there is a group that is logical
to compare with all other groups in the research
factor. The F -value for the contribution to R2 of
the g − 1 variables is precisely the same as it would
have been for the ANOVA. However, the statistical
power for the comparison of certain groups with the
control group can be greater when the hypothesis
of a difference from the control group is weak for
some other groups. This occurs because the tests
of group-control comparisons will not necessarily
require an overall significant F test prior to the
individual comparisons.

Effects coding of the g − 1 variables results in a
contrast of each group’s mean with the mean of the
set of group means. This coding method is similar to
dummy variable coding with an important difference
and a very different interpretation. Instead of one
group being selected as the reference group and coded
0 on all g − 1 variables, one group is coded −1
rather than 0 on every variable. This group should
be selected to be the group of least interest because
now the g − 1 regression coefficients contrast each of
the other group means with the mean of the g group
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Table 1 Alternative codes for three variables representing a four-group factor

Research factor Dummy variable Effects Contrasts A Contrasts B

Group L 1, 0, 0 1, 0, 0 +0.5, −0.5, 0 +0.5, +0.5, +0.5
Group M 0, 1, 0 −1, −1, −1 (least important) +0.5, +0.5, 0 +0.5, −0.5, −0.5
Group N 0, 0, 1 0, 1, 0 −0.5, 0, −0.5 −0.5, +0.5, −0.5
Group P 0, 0, 0 (reference) 0, 0, 1 −0.5, 0, +0.5 −0.5, −0.5, +0.5

means. No explicit comparison of the ‘−1’ group is
represented in the regression coefficients, although it
makes the usual contribution to the overall test of
the variance in the group means, which is exactly
equivalent to any of the other coding methods. (See
Table 1 for dummy and effects codes for a four-group
factor).

Contrast coding is an alternative method of coding
the g − 1 variables representing the research factor.
Contrast coding is actually not a single method,
but a set of methods designed to match at least
some of the study hypotheses. Thus, again, these
tests are carried out directly in MR, whereas an
ANOVA will typically provide an omnibus F test
of a research factor that will need to be followed
up with planned comparisons. Let us compare two
alternative contrast codes representing a four-group
research factor, comprised of groups L, M, N, and P,
for which we will need three variables.

Suppose our primary interest is in whether groups
L and M are different from groups N and P. In order
for the regression coefficient to reflect this contrast,
we will make the difference between the variable
codes for these groups = 1. Thus, we code L and
M participants = 1.0 and N and P participants = 0
on the first IV1. At this point, we invoke the first
rule of contrast coding: let the sum of the codes
for each variable = 0, and recode L = M = +0.5
and N = P = −0.5. Our second major interest is
in whether there are differences between L and M.
Therefore, for IV2 : L = −0.5 and M = +0.5, and,
since we want to leave them out of consideration,
N = P = 0.

Our third major interest is in whether there are
differences between N and P. Therefore, for IV3 :
N = −0.5, P = +0.5, and L = M = 0. At this point,
we invoke the second rule of contrast coding: let
the sum of the products of each pair of variables =
0. The product of the codes for IV1 and IV2 is
(0.5 × −0.5) = −0.25 for group L, (0.5 × 0.5) =
+0.25 for M, and 0 for N and P. The code product
of IV1 and IV3 is (±0.5 × 0) = 0 for L and M,

(−0.5 × −0.5) = 0.25 for N and (−0.5 × 0.5) =
−0.25 for P which also sum to 0. The IV2 – IV3

products similarly sum to 0. Finally, although the
tests of statistical significance do not require it,
a third rule also is useful: for each variable, let
the difference between the negative weights and
the positive weights = 1. Under these conditions,
with these three variables in the regression equation
predicting the dependent variable, the first coefficient
equals the difference between combined groups L
and M as compared to groups N and P, with its
appropriate standard error (SE ) and significance (t
or F ) test. The second regression coefficient equals
the difference between groups L and M, with its
appropriate SE and test, and the third coefficient
equals the difference between groups N and P.

Suppose our study had a different content that
made a different set of contrasts appropriate to our
hypotheses. Perhaps the first contrast was the same L
and M versus N and P as above, but the second was
more appropriately a contrast of L and N (= +0.5)

with M and P (= −0.5). The third variable that will
satisfy the code rules would combine L = P = +0.5
and M = N = −0.5 (see Table 1).

A given study can use whatever combination of
dummy variable, effects, and contrast codes that fits
the overall hypotheses for different research factors.
The coded variables representing the factors are then
simply multiplied to create the variables that will rep-
resent the interactions among the factors (see Inter-
action Effects). Thus, if a given study participant had
1, 0, 0 on the three dummy variables representing
the first factor and −0.5, −0.5, 0.25 on three con-
trast variables representing the second research factor,
there would be nine variables representing the inter-
action between these factors. This participant would
be scored −0.5, −0.5, 0.25, 0, 0, 0, 0, 0, 0. Because
the first factor is dummy variable coded, all interac-
tions are assessed as differences on the second factor
contrasts between a particular group coded 1 and the
reference group. The first three variables, therefore,
reflect these differences for the group including this
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participant and the reference group on the three con-
trasts represented by the codes for the second research
factor. The next six variables provide the same infor-
mation for the other two groups coded 1 on the first
factor variables 2 and 3, respectively.

Suppose that sample sizes in study cells repre-
senting the different combinations of research factors
are not all equal. The analysis used in computer
ANOVA programs in this case is equivalent to MR
using effects codes, with regression coefficients con-
trasting each group’s mean with the equally weighted
mean of the g group means. Alternatively, rarely the
investigator wishes the statistical tests to take the
different cell sizes into account because their num-
bers appropriately represent the population of interest.
Such a ‘weighted means’ set of comparisons involves
using ratios of group sample sizes as coefficients
(see Cohen, Cohen, West, & Aiken, 2003, p. 329 for
details). (See Type I, Type II and Type III Sums of
Squares.)

Repeated measure ANOVAs have multiple error
terms, each of which would need to be identified
in a separate MR using different functions of the
original DV. Thus, MR is not generally employed.
If the advantages of a regression model are desired,
repeated DVs are better handled by multilevel regres-
sion analysis, in which, however, the statistical model
is Maximum Likelihood rather than OLS. One advan-
tage of this method is that it does not require that
every trial is available for every individual. Codes
of ‘fixed effects’ in such cases may employ the
same set of options as described here. ‘Nested’
ANOVA designs in which groups corresponding to
one research factor (B) are different for different lev-
els of another research factor (A) are also currently
usually managed in multilevel MR.

PATRICIA COHEN
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Regression Models

Regression is the most widely used procedure for
analysis of observational, or nonexperimental, data
in the behavioral sciences. A regression model offers
an explanation of behavior in the form of an equa-
tion, tested against systematically gathered empirical
cases. The simplest regression model may be written
as follows:

Y = a + bX + e (1)

where Y = the dependent variable (the phenomenon
to be explained) and X = the independent variable
(a factor that helps explain, or at least predict, the
dependent variable). The regression coefficient, b,
represents the link between X and Y . The constant
value, a, is always added to the prediction of Y from
X, in order to reduce the level of error. The last
term, e, represents the error that still remains after
predicting Y .

The regression model of Eq. 1 is bivariate, with
one independent variable and one dependent variable.
A regression model may be multivariate, with two
or more independent variables and one dependent
variable. Here is a multiple regression model, with
two independent variables:

Y = a + bX + cZ + e (2)

where Y = the dependent variable, X and Z =
independent variables, a = the constant, b and c =
regression coefficients, and e = error. This multiple
regression model has advantages over the bivariate
regression model, first, because it promises a more
complete account of the phenomenon under study,
and second, because it more accurately estimates the
link between X and Y .

The precise calculations of the link between the
independent and dependent variables come from
application of different estimation techniques, most
commonly that of ordinary least squares (OLS) (see
Least Squares Estimation). When researchers ‘run
regressions’, the assumption is that the method of
calculation is OLS unless otherwise stated. The least
squares principle minimizes the sum of squared errors
in the prediction of Y , from a line or plane. Since
the principle is derived from the calculus, the sum
of these squared errors is guaranteed ‘least’ of all
possibilities, hence the phrase ‘least squares’. If

a behavioral scientist says ‘Here is my regression
model and here are the estimates’, most likely the
reference is to results from a multiple regression
equation estimated with OLS.

Let us consider a hypothetical, but not implausi-
ble, example. Suppose a scholar of education policy,
call her Dr. Jane Brown, wants to know why some
American states spend more money on secondary
public education than others. She proposes the fol-
lowing regression model, which explains differential
support for public secondary education as a function
of median income, elderly population, and private
schools in the state:

Y = a + bX + cZ + dQ + e, (3)

where Y = the per pupil dollar expenditures (in
thousands) for secondary education by the state
government, X = median dollar income of those in
the state workforce; Z = people over 65 years of age
(in percent); Q = private school enrollment in high
schools of the state (scored 1 if greater than 15%,
0 otherwise).

Her hypotheses are that more income means more
expenditure, that is, b > 0; more elderly means less
expenditure, that is, c < 0; and a substantial private
school enrollment means less expenditure, that is,
d < 0. To test these hypotheses, she gathers the
variable scores on the 48 mainland states from a
2003 statistical yearbook, enters these data into the
computer and, using a popular statistical software
package, estimates the equation with OLS. Here are
the results she gets for the coefficient estimates, along
with some common supporting statistics:

Y = 1.31 + .50∗X − 0.29Z − 4.66∗Q + e

(0.44) (3.18) (1.04) (5.53)

R2 = 0.55 N = 48 (4)

where Y, X, Z, Q and e are defined and measured
as with Eq. 3; the estimates of coefficients a, b, c,
and d are presented; e is the remaining error; the
numbers in parentheses below these coefficients are
absolute t-ratios; the ∗ indicates statistical signifi-
cance at the 0.05 level; the R2 indicates the coefficient
of multiple determination; N is the size of the sam-
ple of 48 American states, excluding Alaska and
Hawaii.

These findings suggest that, as hypothesized,
income positively affects public high school spend-
ing, while the substantial presence of private schools
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negatively affects it. This assertion is based on the
signs of the coefficients b and d, respectively, +
and −, and on their statistical significance at 0.05.
This level of statistical significance implies that, if
Dr. Brown claims income matters for education, the
claim is probably right, with 95% certainty. Put
another way, if she did the study 100 times, only
5 of those times would she not be able to con-
clude that income related to education. (Note that
the t-ratios of both coefficients exceed 2.0, a com-
mon rule-of-thumb for statistical significance at the
0.05 level.) Further, contrary to hypothesis, a greater
proportion of elderly in the state does not impact
public high school spending. This assertion is based
on the lack of statistical significance of coefficient
c, which says we cannot confidently reject the pos-
sibility that the percentage elderly in a state is not
at all related to these public expenditures. Perhaps,
for instance, with somewhat different measures, or
a sample from another year, we might get a very
different result from the negative sign we got in
this sample.

Having established that there is a link between
income and spending, what is it exactly? The coef-
ficient b = 0.50 suggests that, on average, a one-
unit increase in X (i.e., $1000 more in income)
leads to a 0.50 unit increase in Y (i.e., a $500
increase in education expenditure). So we see that an
income dollar translates strongly, albeit not perfectly,
into an education dollar, as Dr. Brown expected.
Further, we see that states that have many pri-
vate schools (over 15%) are much less likely to
fund public high school education for, on average,
it is 4.66 ×1000 = $4660 per pupil less in those
states.

How well does this regression model, overall,
explain state differences in public education spend-
ing? An answer to this question comes from the R2,
a statistic that reports how well the model fits the
data. Accordingly, the R2 here indicates that 55%
of the variation in public high school expenditures
across the states can be accounted for. Thus, the
model tells us a lot about why states are not the same
on this variable. However, almost half the variation
(1 − 0.55 = 0.45) is left unexplained, which means
an important piece of the story is left untold. Dr.
Brown should reconsider her explanation, perhaps
including more variables in the model to improve its
theoretical specification.

With a classical regression model, the OLS coeffi-
cients estimate real-world connections between vari-
ables, assuming certain assumptions are met. The
assumptions include no specification error, no mea-
surement error, no perfect multicollinearity, and a
well-behaved error term. When these assumptions are
met, the least squares estimator is BLUE, standing
for Best Linear Unbiased Estimator. Among other
things, this means that, on average, the estimated
coefficients are true. Once assumptions are violated,
they may be restored by variable transformation,
or they may not. For example, if, in a regression
model, the dependent variable is dichotomous (say,
values are 1 if some property exists and 0 other-
wise), then no transformation will render the least
squares estimator BLUE. In this case, an alterna-
tive estimator, such as maximum likelihood (MLE),
is preferred.

The need to use MLE, usually in order to achieve
more efficient estimation, leads to another class of
regression models, which includes logistic regres-
sion (when the dependent variable is dichotomous),
polytomous logistic regression (when the dependent
variable is ordered), or poisson regression (see Gen-
eralized Linear Models (GLM))(when the depen-
dent variable is an event count). Other kinds of
regression models, which may use a least squares
solution, are constructed to deal with other potential
assumption violations, such as weighted least squares
(to handle heteroskedasticity), local regression (to
inductively fit a curve), censored regression (to deal
with truncated observations on the dependent vari-
able), seemingly unrelated regression (for two equa-
tions related through correlated errors but with differ-
ent independent variables), spatial regression (for the
problem of geographic autocorrelation), spline regres-
sion when there are smooth turning points in a line
(see Scatterplot Smoothers), or stepwise regression
(for selecting a subset of independent variables that
misleadingly appears to maximize explanation of the
dependent variable). All these variations are regres-
sion models of some sort, united by the notion that
a dependent variable, Y , can be accounted for some
independent variable(s), as expressed in an equation
where Y is a function of some X(s).

Further Reading

Draper, N.R. & Smith, H. (1998). Applied Regression Analysis,
3rd Edition, Lawrence Erlbaum, Mahwah.
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Fox, J. (2000). Nonparametric Simple Regression: Smoothing
Scatterplots, Sage Publications, Thousand Oaks.

Kennedy, P. (2003). A Guide to Econometrics, 5th Edition, MIT
Press, Cambridge.

Lewis-Beck, M.S. (1980). Applied Regression: An Introduction,
Sage Publications, Beverly Hills.

Long, J.S. (1997). Regression Models for Categorical and Lim-
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Regression to the Mean

Francis Galton discovered regression to the mean
in the 1800s; he referred to it as a ‘tendency
toward mediocrity’ [1, p. 705]. In 1877, his work
with sweet peas revealed that large parent seeds
tended to produce smaller seeds and that small
parent seeds tended to produce larger seeds [3].
Later, Galton confirmed that the same principle
operated with human height: Tall parents tended to
produce children who were shorter and short parents
tended to have children who were taller. In all these
examples, subsequent generations moved closer to the
mean (regressed toward the mean) than the previous
generation. These observations led to the definition
of regression to the mean: extreme scores tend to
become less extreme over time. Regression is always
in the direction of a population mean [2].

Regression to the mean may lead people to draw
incorrect causal conclusions. For example, a parent
who uses punishment may conclude that it is effective
because a child’s bad behavior becomes better after
a spanking. However, regression to the mean would
predict that the child’s behavior would be better
shortly after bad behavior.

In the context of measurement, regression to the
mean is probably due to measurement error. For
example, if we assume that any measurement is made
up of a true score + error, a high degree of error
(either positive or negative) on one measurement
should be followed by a lower degree of error on
a subsequent measurement, which would result in a
second score that is closer to the mean than the first
score. For example, if a student guesses particularly
well on a multiple-choice test, the resulting score will
be high. On a subsequent test, the same student will
likely guess correctly at a lower rate, thus resulting
in a lower score. However, the lower score is due
to error in measurement rather than the student’s
knowledge base.

Regression to the mean can be problematic
in experimental situations; Cook and Campbell [2]
listed it (‘statistical regression’, p. 52) as a threat to
internal validity. In a repeated measures or prepost
design, the experimenter measures the participants
more than once (see Repeated Measures Analysis
of Variance). Regression to the mean would predict
that low scorers would tend to score higher on the
second measurement and that high scorers would tend
to score lower on the second measurement. Thus, a
change in scores could occur as a result of a statistical
artifact rather than because of an independent variable
in an experiment. This potential problem becomes
even greater if we conduct an experiment in which
we use pretest scores to select our participants. If we
choose the high scorers in an attempt to decrease their
scores (e.g., depression or other psychopathology) or
if we choose low scorers in an attempt to increase
their scores (e.g., sociability, problem-solving behav-
ior), regression to the mean may account for at least
some of the improvement we observe from pre- to
posttest [4].

Although regression to the mean is a purely statis-
tical phenomenon, it can lead people to draw incorrect
conclusions in real life and in experimental situations.
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Relative Risk

Quantifying risk and assessing risk involve the cal-
culation and comparison of probabilities, although
most expressions of risk are compound measures
that describe both the probability of harm and its
severity (see Risk Perception). The way risk assess-
ments are presented can have an influence on how
the associated risks are perceived. You might, for
example, be worried if you heard that occupational
exposure at your place of work doubled your risk
of serious disease compared to the risk working
at some other occupation entailed. You might be
less worried, however, if you heard that your risk
had increased from one in a million to two in a
million. In the first case, it is relative risk that
is presented, and in the second, it is an absolute
risk.

Relative risk is generally used in medical studies
investigating possible links between a risk factor and
a disease. Formally relative risk is defined as

Relative risk = incidence rate among exposed

incidence rate among nonexposed
.

(1)

Thus, a relative risk of five, for example, means
that an exposed person is five times as likely to have
the disease than a person who is not exposed.

Relative risk is an extremely important index of
the strength of the association (see Measures of
Association) between a risk factor and a disease (or
other outcome of interest), but it has no bearing on
the probability that an individual will contract the
disease. This may explain why airline pilots who
presumably have relative risks of being killed in
airline crashes that are of the order of a thousandfold
greater than the rest of us occasional flyers can still
sleep easy in their beds. They know that the absolute
risk of their being the victim of a crash remains
extremely small.

BRIAN S. EVERITT
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Reliability: Definitions
and Estimation

Reliability refers to the degree to which test scores
are free from error. Perfectly reliable scores would
contain no error and completely unreliable scores
would be composed entirely of error. In classical test
theory, reliability is defined precisely as the ratio of
the true score variance to the observed score variance
and, equivalently, as one minus the ratio of error
score variance to observed score variance:

ρXX′ = σ 2
T

σ 2
X

= 1 − σ 2
E

σ 2
X

, (1)

where ρXX′ is the reliability, σ 2
X is the observed

score variance, σ 2
E is the error score variance, and

σ 2
T is the true score variance (see [2, 4]). If σ 2

E = 0,
then ρXX′ = 1, while if σ 2

E = σ 2
X (i.e., error is at

its maximum possible value), then ρXX′ = 0. The
symbol for reliability is the (hypothetical) correlation
of a test score, X, with an independent administration
of itself, X′.

Estimates of Reliability

True and error scores are not observable, so relia-
bility must be estimated. Several different kinds of
estimates have been proposed. Each estimate may
suffer from various sources of error and, thus, no sin-
gle estimate is best for all purposes. Generalizability
theory may be used to conduct a generalizability
study that can be helpful in understanding various
sources of error, including interacting influences [1].

Test-retest reliability estimates require adminis-
tration of a test form on two separate occasions
separated by a period of time (the ‘retest period’).
The correlation of the test scores across the two
administrations is the reliability estimate. The retest
period may be quite short (e.g., minutes) or quite
long (months or years). Sometimes, different retest
periods are chosen, resulting in multiple test-retest
estimates of reliability. For most tests, reliabilities
decrease with longer retest periods, but the rate of
decline decreases as the retest period becomes longer.

Test-retest reliability estimates may be biased
because the same form is used on two occasions

and test-takers may recall the items and answers
from the initial testing (‘memory effects’). Also,
during the retest period, it is possible that the
test-taker’s true standing on the test could change
(due to learning, maturation, the dynamic nature of
the assessed trait, etc.). These ‘maturation effects’
might be a cause for the reliability estimate to
underestimate the reliability at a single point in
time. As a practical matter, test-retest reliability
estimates entail the costs and logistical problems of
two independent administrations.

Parallel forms estimates of reliability require the
preparation of parallel forms of the test. By defini-
tion, perfectly parallel forms have equal reliability but
require different questions. Both forms are adminis-
tered to each test-taker and the correlation of the two
scores is the estimate of reliability.

Parallel forms reliability estimates eliminate the
‘memory effects’ concerns that plague test-retest
estimates but there still may be ‘practice effects’
and if the two forms are not administered on the
same occasion, ‘maturation effects’ may degrade the
estimate. As a partial answer to these concerns,
administration of forms is generally counterbalanced.
However, perhaps the most serious problem with this
estimate can occur when the forms are substantially
nonparallel. Reliability will be misestimated to the
degree that the two forms are not parallel.

Split-half reliability estimates are computed from a
single administration by creating two (approximately)
parallel halves of the test and correlating them. This
represents the reliability of half the test, and the
Spearman–Brown formula is used to ‘step up’ the
obtained correlation to estimate the reliability of the
entire form.

Split-half reliability estimates retain many of the
same strengths and pitfalls as parallel forms estimates
while avoiding a second administration. To the extent
that the method of dividing the items into halves
does not create parallel forms, the reliability will
be underestimated – because the lack of parallelism
suppresses their correlation and also because the
‘stepping up’ method assumes essentially parallel
forms. Also, different splitting methods will produce
differing results. Common splitting methods include
random assignment; odd versus even items; first-half
versus second-half; and methods based on content or
statistical considerations.

The coefficient alpha and Kuder–Richardson
methods – commonly referred to generically as
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internal consistency methods – are very common
estimates computed from single administrations.
These methods are based on the assumption that the
test measures a single trait and each item is essentially
parallel to all other items. These methods compare
the common covariance among items to the overall
variability. Greater covariance among the items leads
to higher estimates of reliability. Coefficient alpha is
also commonly interpreted as the theoretical mean of
all possible split-half estimates (based on all possible
ways that the halves could be split).

Internal consistency methods make relatively
stronger assumptions about the underlying test items
and suffer from inaccuracies when these assumptions
are not met. When the test items are markedly
nonparallel, these reliability estimates are commonly
taken to be lower-bound estimates of the true
reliability. However, because these methods do not
involve repeated administrations, they may be quite
different from test-retest or parallel forms estimates
and are unsuited to estimating the stability of test
scores over time.

Other Reliability Topics

Standard Error of Measurement. The standard
error of measurement (SEM) is the standard deviation
of the error score component. The SEM is very
important because it can be used to characterize the
degree of error in individual or group scores. The
SEM is

SEM = σE = σX

√
1 − ρXX′ . (2)

For users of test information, the SEM may be
far more important and useful than the reliability.
By assuming that the error component of a test
score is approximately normally distributed, the SEM
can be used to construct a true score confidence
interval around an observed score. For example, if an
individual’s test score is 10 and the test has an SEM
of 1.0, then the individual’s true score is about 95%
likely to be between 8 and 12 (or more correctly, 95%
of the candidate confidence bands formed in this way
will contain the unknown true scores of candidates).

The interpretation of the SEM should incorporate
the kind of reliability estimate used. For example, a
common question raised by test-takers is how they
might score if they retest. Confidence intervals using

a test-retest reliability are probably best suited to
answering such questions.

Reliability is not Invariant Across Subpopulations.
Although reliability is commonly discussed as an
attribute of the test, it is influenced by the variability
of observed scores (σ 2

X) and the variability of true
scores (σ 2

T ). The reliability of a test when used
with some subpopulations will be diminished if
the subpopulation has a lower variability than the
general population. For example, an intelligence
test might have a high reliability when calculated
from samples drawn from the general population
but when administered to samples from narrow
subpopulations (e.g., geniuses), the reduced score
variability causes the reliability to be attenuated; that
is, the intelligence test is less precise in making fine
distinctions between geniuses as compared to ranking
members representative of the breadth of the general
population.

As a consequence, test developers should care-
fully describe the sample used to compute reliability
estimates and test users should consider the com-
parability of the reliability sample to their intended
population of test-takers.

The Spearman-Brown Formula. The Spearman–
Brown formula provides a means to estimate the
effect of lengthening or shortening a test:

ρ∗
XX′ = nρXX′

1 + (n − 1)ρXX′
, (3)

where ρ∗
XX′ is the new (estimated) reliability, n is

the fraction representing the change in test length
(n = 0.5 implies halving test length, n = 2 implies
doubling) and ρXX′ is the current reliability of the test.
A critical assumption is that the final test is essentially
parallel to the current test (technically, the old and
new forms must be ‘tau-equivalent’). For example, if
a 10-item exam were increased to 30 items, then the
Spearman–Brown reliability estimate for the 30-item
exam would only be accurate to the extent that the
additional 20 items have the same characteristics as
the existing 10.

True Score Correlation. The correlation between
the observed score and the true score is equal to
the square root of the reliability: ρXT = √

(ρXX′ ). If
the classical test theory assumptions regarding the
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independence of error score components are true,
then the observed test score, X, cannot correlate with
any variable more highly than it does with its true
score, T . Thus, the square root of the reliability is
considered an upper bound on correlations between
test scores and other variables. This is primarily a
concern when the test score reliability is low. A
correlation of 0.60 between a test score and a criterion
may be quite high if the reliability of the test score is
only about 0.40. In this case, the observed correlation
of 0.60 is about the maximum possible (

√
0.40).

These considerations give rise to the standard
formula for estimating the correlation between two
variables as if they were both perfectly reliable:

ρTXTY
= ρXY√

ρXX′ρYY ′
, (4)

where ρTXTY
is the estimated correlation between the

true scores of variables X and Y , ρXY is the observed
correlation between variables X and Y , ρXX′ is the
reliability of score X, and ρYY ′ is the reliability of
score Y . This hypothetical relationship is primarily
of interest when comparing different sets of variables
without the obscuring effect of different reliabilities
and when assessing the correlation of two constructs
without the obscuring effect of the unreliability of
the measures.

Reliability for Speeded Tests

Some estimates of reliability are not applicable to
highly speeded tests. For example, split-half and
internal consistency estimates of reliability are inap-
propriate for highly speeded tests. Reliability methods
that involve retesting are probably best, although they

may be subject to practice effects. A generalizabil-
ity study may be particularly helpful in identifying
factors that influence the reliability of speeded tests.

Reliability and IRT

Reliability is a concept defined in terms of classical
test theory. Modern item response theory (IRT) pro-
vides much stronger and more flexible results (see, for
example, [3]). Such results reveal that reliability and
SEM are simplifications of the actual characteristics
of tests. In place of reliability and SEM, IRT pro-
vides information functions for tests and items. The
inverse of the test information function provides the
standard error of measurement at a particular point
on the latent trait (see Latent Variable). IRT analy-
sis generally reveals that scores near the middle of the
score distribution are considerably more reliable (i.e.,
have lower SEM) than scores in the tails of the distri-
bution. This often means that ordering test-takers in
the upper and lower percentiles is unreliable, perhaps
to the point of being arbitrary.
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Repeated Measures
Analysis of Variance

In many studies carried out in the behavioral sci-
ences and related disciplines. The response variable is
observed on each subject under a number of different
conditions. For example, in an experiment reported
in [6], the performance of field-independent and field-
dependent subjects (twelve of each type) in a reverse
Stroop task was investigated. The task required read-
ing of words of two types, color and form names,
under three cue conditions – normal, congruent, and
incongruent. For instance, the word ‘yellow’ dis-
played in yellow would be congruent, whereas ‘yel-
low’ displayed in blue would be incongruent. The
dependent measure was the time (msec) taken by
a subject to read the words. The data are given in

Table 1. Note that each subject in the experiment has
six time measurements recorded. The response vari-
able is time in milliseconds.

The data in Table 1 contain repeated measure-
ments of a response variable on each subject.
Researchers, typically, adopt the repeated measures
paradigm as a means of reducing error variability
and/or as a natural way of assessing certain phe-
nomena (e.g., developmental changes over time, and
learning and memory tasks). In this type of design,
effects of experimental factors giving rise to the
repeated measurements (the so-called within subject
factors; word type and cue condition in Table 1) are
assessed relative to the average response made by
a subject on all conditions or occasions. In essence,
each subject serves as his or her own control, and,
accordingly, variability caused by differences in aver-
age response time of the subjects is eliminated from
the extraneous error variance. A consequence of this

Table 1 Field independence and a reverse Stroop task

Form names Color names

Subject
Normal

condition
Congruent
condition

Incongruent
condition

Normal
condition

Congruent
condition

Incongruent
condition

Field-independent
1 191 206 219 176 182 196
2 175 183 186 148 156 161
3 166 165 161 138 146 150
4 206 190 212 174 178 184
5 179 187 171 182 185 210
6 183 175 171 182 185 210
7 174 168 187 167 160 178
8 185 186 185 153 159 169
9 182 189 201 173 177 183

10 191 192 208 168 169 187
11 162 163 168 135 141 145
12 162 162 170 142 147 151

Field-dependent

13 277 267 322 205 231 255
14 235 216 271 161 183 187
15 150 150 165 140 140 156
16 400 404 379 214 223 216
17 183 165 187 140 146 163
18 162 215 184 144 156 165
19 163 179 172 170 189 192
20 163 159 159 143 150 148
21 237 233 238 207 225 228
22 205 177 217 205 208 230
23 178 190 211 144 155 177
24 164 186 187 139 151 163
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is that the power to detect the effects of within-
subject experimental factors is increased compared to
testing in a between-subject design. But this advan-
tage of a repeated measures design comes at the cost
of an increase in the complexity of the analysis and
the need to make an extra assumption about the data
than when only a single measure of the response
variable is made on each subject (see later). This
possible downside of the repeated measures approach
arises because the repeated observations made on a
subject are very unlikely to be independent of one
another. In the data in Table 1, for example, an indi-
vidual who reads faster than average under say one
cue condition, is likely to read faster than average
under the other two cue conditions. Consequently,
the repeated measurements are likely to be corre-
lated, possibly substantially correlated. Note that the
data in Table 1 also contains a between-subject fac-
tor, cognitive style with two levels, field-independent
and field-dependent.

Analysis of Variance for Repeated
Measure Designs

The variation in the observations in Table 1 can
be partitioned into a part due to between-subject
variation, and a part due to within-subject variation.
The former can then be split further to give a
between-cognitive style mean square and an error
term that can be used to calculate a mean square ratio
and assessed against the appropriate F distribution to
test the hypothesis that the mean reading time in the
population of field-dependent and field-independent
subjects is the same (see later for the assumptions
under which the test is valid).

The within-subject variation can also be separated
into parts corresponding to variation between the
levels of the within-subject factors, their interaction,
and their interaction with the between-subject factor
along with a number of error terms. In detail, the
partition leads to sums of squares and so on for each
of the following:

• Cue condition, Cognitive style × Cue condition,
error;

• Word type, Cognitive style × Word type, error;
• Cue condition × Word type, Cognitive style ×

Cue condition × Word type, error.

Again, mean square ratios can be formed using
the appropriate error term and then tested against
the relevant F distribution to provide tests of the
following hypotheses:

• No difference in mean reading times for differ-
ent cue conditions, and no cognitive style × cue
condition interaction.

• No difference in mean reading time for the two
types of word, and no interaction of word type
with cognitive style.

• No interaction between cue condition and word
type, and no second order interaction of cognitive
style, cue condition, and word type.

Full details of both the model behind the partition
of within-subject variation and the formulae for the
relevant sums of squares and so on are given in [2,
4]. The resulting analysis of variance table for the
cognitive style data is given in Table 2.

Before interpreting the results in Table 2, we
need to consider under what assumptions is such an
analysis of variance approach to repeated measure
designs valid? First, for the test of the between-
subject factor, we need only normality of the response
and homogeneity of variance, both familiar from the
analysis of variance of data not involving repeated
measures. But, for the tests involving the within-
subject factors, there is an extra assumption needed to
make the F tests valid, and it is this extra assumption
that is particularly critical in the analysis of vari-
ance ANOVA of repeated measures data. The third
assumption is known as sphericity, and requires that
the variances of the differences between all pairs
of repeated measurements are equal to each other
and the same in all levels of the between-subject
factors. The sphericity condition also implies a con-
straint on the covariance matrix (see Correlation
and Covariance Matrices) of the repeated measure-
ments, namely, that this has a compound symmetry
structure, i.e., equal values on the main diagonal
(the variances of the response under the different
within-subject experimental conditions), and equal
off-diagonal elements (the covariances of each pair
of repeated measures). And this covariance matrix
has to be equal in all levels of the between-group
factors.

If, for the moment, we simply assume that the
cognitive style data meet the three assumptions of
normality, homogeneity, and sphericity, then the
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Table 2 Repeated measures analysis of variance of reverse Stroop data

Source Sum of squares DF Mean square Mean square ratio P value

Cognitive style 17578.34 1 17578.34 2.38 0.137
Error 162581.49 22 7390.07 2.38

Word type 22876.56 1 22876.56 11.18 0.003
Word type × cognitive style 4301.17 1 4301.17 2.10 0.161
Error 45019.10 22 2046.32

Condition 5515.39 2 2757.69 21.81 <0.001
Condition × Cognitive style 324.06 2 162.03 1.28 0.288
Error 5562.56 44 126.42

Word type × Condition 450.17 2 225.08 3.14 0.053
Word type × Condition ×

Cognitive style
111.05 2 55.53 0.78 0.467

Error 3153.44 44 71.67
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Figure 1 Interaction plot for cue condition × word type
means

results in Table 2 lead to the conclusion that mean
reading time differs in the three cue conditions and
for the two types of word. There is also a suggestion
of a cue condition × word type interaction. The
mean reaction times for the three cue conditions
are; normal −179.6 msec, congruent −184.3 msec,
incongruent −194.5 msec. Under the incongruent
condition, reaction times are considerably longer than
under the other two conditions. The mean reaction
times for the two word types are: form names
−198.8 msec, color names −173.5 msec. Reaction
times are quicker for the color names. To examine
the cue condition × word type interaction, a graph of
the six relevant mean reaction times is useful. This
is shown in Figure 1 (see Interaction Plot). There is
some slight evidence that the difference in reaction

time means for the two word conditions is greater in
the normal condition than in the other two conditions.

What happens if the assumptions are not valid?
Concentrating on the one specific to repeated mea-
sures data, namely, sphericity, if this is not valid then
the F tests in the repeated measures analysis of vari-
ance are positively biased, leading to an increase in
the probability of rejecting the null hypothesis when it
is true, that is, increasing the size of the Type I error
over the nominal value set by the researcher. This
will lead to an investigator claiming a greater num-
ber of ‘significant’ results than are actually justified
by the data.

How likely are repeated measures data in behav-
ioral science experiments to depart from the spheric-
ity assumption? This is a difficult question to answer,
but if the within-subjects conditions are given in a
random order to each subject in the study, then the
assumption is probably easier to justify than when
they are presented in the same order, particularly if
there is a substantial time difference between the first
condition and the last. The problem is that, in the
latter case, observations closer together in time are
likely to be more highly correlated than those taken
further apart, thus violating the required compound
symmetry structure for the repeated measures covari-
ance matrix.

Where departures from sphericity are suspected
or, perhaps, indicated by the formal test for the con-
dition (see Sphericity Test), there are two approaches
that might be used:
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1. Correction factors,
2. Multivariate analysis of variance (MANOVA).

Correction Factors in the Analysis of
Variance of Repeated Measures Data

The effects of departures from the sphericity assump-
tion in a repeated measures analysis of variance have
been considered in [3, 5], and it has been shown that
the extent to which a set of repeated measures data
deviates from the sphericity assumption can be sum-
marized in terms of a quantity that is a function of the
covariances and variances of the measures (see [2]
for an explicit definition). Furthermore, an estimate
of this quantity based upon sample variances and
covariances can be used to decrease the degrees of
freedom of the F tests for within-subject effects, to
account for the departure from sphericity. (In fact,
two different estimates of the correction factor have
been suggested, one by Greenhouse and Geisser [3],
and one by Huynh and Feldt [5].) The result is that
larger mean square ratio values will be needed to
claim statistical significance than when the correc-
tion is not used; consequently, the increased risk of
falsely rejecting the null hypothesis is confronted.
For the cognitive style data, the adjusted P values
obtained using each estimate of the correction fac-
tor are shown in Table 3. Note that since word type
has only two levels, the ‘corrected’ values are iden-
tical to those in Table 2, and for these data, the P

values that do change do not differ greatly from the
uncorrected values in Table 2. (This is, perhaps, not
surprising here since the test for sphericity indicates
that the assumption is valid.) More detailed examples
of the use of this correction factor approach are given
in [2, 4].

Table 3 Adjusted P values for reverse Stroop data

Factor
Greenhouse/

Geisser
Huynh/
Feldt

Word type 0.003 0.003
Word type

× Cognitive style
0.161 0.161

Condition <0.001 <0.001
Condition

× Cognitive style
0.286 0.287

Word type × Condition 0.063 0.057
Word type × Condition

× Cognitive style
0.447 0.460

Multivariate Analysis of Variance for
Repeated Measure Designs

An alternative to the use of the correction factors
in the analysis of repeated measures data when the
sphericity assumption is judged to be inappropriate
is to use a multivariate analysis of variance. Details
are given in [2], but the essential feature of this
approach is to transform the repeated measures so
that they characterize different aspects of the within-
subject factors, that is, main effects and interactions,
and then use multivariate test criteria on the result-
ing sets of variables in the usual way. For example,
in the cognitive style data, differences between the
three cue conditions could be represented by differ-
ences (averaged over word types) between normal
and congruent, and congruent and incongruent. The
cue condition × word type interaction effect would
involve differences between color and form names for
these same differences in cue conditions. In the mul-
tivariate situation, there is no single test statistic that
is always the most powerful for detecting all types of
departures from the null hypothesis of the equality of
mean vectors, and a number of different test statistics
are in use. For details of these test statistics and the
differences between them, see the multivariate analy-
sis of variance entry. (Here, since there are only two
groups involved, all the test criteria are equivalent.)

The results from the multivariate procedure are
given in Table 4. (Note that since word type has only
two levels, the multivariate result is equivalent to the
univariate result given in Table 2.) The results again
indicate highly significant condition and word type
main effects, but, here, the condition × word type
interaction is, unlike in the univariate analysis, also
highly significant.

The main advantage of using MANOVA for the
analysis of repeated measures designs is that no
assumptions now have to be made about the pattern
of covariances between the repeated measures. In
particular, these covariances need not satisfy the
compound symmetry condition. A disadvantage of
using MANOVA for repeated measures is often stated
to be the technique’s relatively low power when
the assumption of compound symmetry is actually
valid. However, the power of the univariate and
multivariate analysis of variance approaches when
compound symmetry holds is compared in [1] with
the conclusion that the latter is nearly as powerful as
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Table 4 Multivariate analysis of variance of reverse Stroop data

Effect Value F Hypothesis df Error df P value

Word type:
Pillai’s trace 0.34 11.18 1 22 0.003
Wilk’s lambda 0.66 11.18 1 22 0.003
Hotelling’s trace 0.51 11.18 1 22 0.003
Roy’s largest root 0.51 11.18 1 22 0.003

Word type × Cognitive style:
Pillai’s trace 0.09 2.10 1 22 0.161
Wilk’s lambda 0.91 2.10 1 22 0.161
Hotelling’s trace 0.10 2.10 1 22 0.161
Roy’s largest root 0.10 2.10 1 22 0.161

Condition:
Pillai’s trace 0.66 20.73 2 21 <0.001
Wilk’s lambda 0.34 20.73 2 21 <0.001
Hotelling’s trace 1.97 20.73 2 21 <0.001
Roy’s largest root 1.97 20.73 2 21 <0.001

Condition × Cognitive style:
Pillai’s trace 0.13 1.63 2 21 0.220
Wilk’s lambda 0.87 1.63 2 21 0.220
Hotelling’s trace 0.16 1.63 2 21 0.220
Roy’s largest root 0.16 1.63 2 21 0.220

Word type × Condition:
Pillai’s trace 0.37 5.32 2 21 0.014
Wilk’s lambda 0.66 5.32 2 21 0.014
Hotelling’s trace 0.51 5.32 2 21 0.014
Roy’s largest root 0.51 5.32 2 21 0.014

Condition × Word type
× Cognitive style:

Pillai’s trace 0.48 0.53 2 21 0.595
Wilk’s lambda 0.95 0.53 2 21 0.595
Hotelling’s trace 0.51 0.53 2 21 0.595
Roy’s largest root 0.51 0.53 2 21 0.595

the former when the number of observations exceeds
the number of repeated measures by more than 20.

Summary

An analysis of variance can often be safely applied
to repeated measures data arising from psychological
experiments when the within-subject conditions are
presented in a random order to each subject, since
with such designs, the sphericity assumption is likely
to be justified. There is, however, one type of repeated
measures data where sphericity is very unlikely to
hold, namely, longitudinal data. For such data, the
only within-subject factor is “time”, and so random-
ization is no longer an option. Consequently, it is
very likely that observations taken closer together in

the study will be more similar than those separated
by a longer time interval; consequently, assuming
compound symmetry will not, in general, be sensi-
ble. For this reason, longitudinal data requires more
sophisticated approaches, for example, linear multi-
level models. Such models can also deal with the
frequently occurring practical problem of missing
data in longitudinal data sets, in particular when such
observations are missing because subjects drop out of
the study (see Dropouts in Longitudinal Studies:
Methods of Analysis).

References

[1] Davidson, M.L. (1972). Univariate versus multivariate
tests in repeated measures experiments, Psychological
Bulletin 77, 446–452.



6 Repeated Measures Analysis of Variance

[2] Everitt, B.S. (2000). Statistics for Psychologists, Lawrence
Erlbaum, Mahwah.

[3] Greenhouse, S.W. & Geisser, S. (1959). On the meth-
ods in the analysis of profile data, Psychometrika 24,
95–112.

[4] Howell, D.C. (2002). Statistical Methods for Psychology,
Duxbury, Pacific Grove.

[5] Huynh, H. & Feldt, L.S. (1976). Estimated of the correc-
tion for degrees of freedom for sample data in random-
ized block and split-plot designs, Journal of Educational
Statistics 1, 69–82.

[6] Pahwa, A. & Broota, K.D. (1981). Field-independence,
field dependence as a determinant of colour-word inter-
ference, Journal of Psychological Research 30, 55–61.

Further Reading

Crowder, M.J. & Hand, D.J. (1990). Analysis of Repeated
Measures, Chapman & Hall, London.

(See also Generalized Estimating Equations
(GEE); Generalized Linear Mixed Models;
Marginal Models for Clustered Data)

BRIAN S. EVERITT



Replicability of Results

BRUCE THOMPSON

Volume 4, pp. 1741–1743

in

Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

 John Wiley & Sons, Ltd, Chichester, 2005



Replicability of Results

Quantitative researchers seek to identify relation-
ships that recur under stated conditions. Scholars
in the physical sciences have the luxury of the
idiosyncrasies of human personality not confound-
ing their results. A physicist observing a quark
and a neutrino running away from each other may
make an inference that these two atomic particles
have like charges. The physicist need not qualify
generalizations with statements about the nutrition
of the quark during gestation, or the quality of
schooling received by different quarks during their
early years.

The business of behavioral science is much more
difficult. Behavioral scientists attempt to formulate
generalizations about people, which hold up reason-
ably well, but recognize that few statements apply
equally well to all people. Behavioral scientists
attempt to overcome the vagaries of individual differ-
ences in various ways, including conducting studies
with large numbers of people, so that the idiosyn-
crasies may ‘wash out’ within the large sample.

Some behavioral scientists erroneously believe
that statistical significance testing evaluates the repli-
cability of results. In fact, statistical significance does
not evaluate result replicability, as Cohen [1] and
others [10] have shown. Because statistical tests do
not evaluate result replicability, and replicability is
very important, other methods must be used to test
result replicability.

Thompson [9] suggested that there are two kinds
of replicability evidence: external and internal. Exter-
nal replicability evidence requires the researchers to
conduct the research study a second time, to deter-
mine whether the results are stable.

Another form of external replicability analy-
sis involves ‘meta-analytic thinking’ (see Meta-
Analysis) in which the researcher focuses on explic-
itly and directly comparing study effect sizes with the
effect sizes in the related prior studies [2, 11, 13]. If
all the effects across studies are similar, the researcher
has more confidence that the results in a given study
are not purely serendipitous.

The most persuasive evidence of result repli-
cability is actual study replication. The problem
is that most researchers do not have the time
or the resources to replicate every study prior to

publishing their results or submitting their the-
ses. In such cases, internal replicability analy-
ses [9] are a partial substitute for true external
replication.

The basic idea of internal replicability analyses
is to mix up the participants in different ways, to
determine whether the results remain stable across
different combinations of people. The intent is to
approximate modeling the variations in personalities
that would occur if an actual new sample had been
drawn. These internal replicability analyses are never
as good as true replication, but are generally more
informative as regards replicability compared to what
many researchers do to establish replicability of their
results - nothing!

There are three primary principles of logic for
conducting internal replicability analyses: cross-
validation, the jackknife, and the bootstrap. (Carl
Huberty has suggested combining the latter two meth-
ods to create another alternative - the jackstrap. The
more serious point is that the researcher can do
whatever seems reasonable to evaluate result repli-
cability, even if the approach has not been previ-
ously employed.)

Traditionally, cross-validation involves randomly
splitting the sample into two nonoverlapping sub-
samples, replicating the analysis in both subsamples,
and then conducting additional empirical analyses
to determine whether the results are similar in
the two subsamples. Thompson [6] provides details
in a heuristic example for the multiple regres-
sion case. Factor analytic examples are provided by
Thompson [12].

The jackknife was popularized by John Tukey.
In the jackknife, the primary resampling mechanism
is to redo the analysis by successively dropping out
subsets of participants of a given size, k (e.g., k = 1,
k = 2). For example, the researcher might drop out
subsets of participants where each dropped subset is
size 1. In a regression involving 300 participants,
the analysis would be done with all 300 participants.
And the regression would then be done 300 more
times, each with a sample size equal to n − 1, where
a different participant is dropped each time.

The bootstrap was popularized by Bradley Efron;
[3] is a readable explanation. Lunneborg [4] provides
a technical but comprehensive explanation. Here
resamples are drawn each of a size n, but typically are
drawn with replacement. For example, in a regression
analysis involving 250 participants, the first resample
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might be drawn such that Wendy’s data on all the
variables is drawn as a set five times, while Deborah’s
data is not drawn at all. However, in the second
resample, Wendy’s data might not be drawn at all,
while Deborah’s data might be drawn three times.

Usually when the bootstrap is invoked, thousands
of resamples are drawn and analyzed. Indeed, both
the jackknife and the bootstrap are called ‘com-
putationally intensive’, because they usually cannot
be done unless specialized software is used to exe-
cute the numerous analyses required. This software,
though not part of SPSS, is widely available, espe-
cially as regards the bootstrap.

The cross-validation method is the least sophisti-
cated of the three methods because it involves only
one sample split. The problem is that for a given
data set numerous splits are possible, and different
splits might yield contradictory results as regards the
same data.

Because both the jackknife and the bootstrap are
computationally intensive, but the bootstrap has the
appeal of mixing up the participants in very many
ways to see if the results remain stable, researchers
considering these two choices quite frequently opt
for the bootstrap. Although the bootstrap sounds like
a tremendous amount of work, the work is done
by a modern microcomputer in seconds, and is thus
quite painless.

A special challenge arises when using the boot-
strap with multivariate statistics (see Multivariate
Analysis: Overview). Multivariate statistics will usu-
ally yield several functions or factors in a given
analysis. The orders of the factors may arbitrarily
vary across resamples. This is only a logistical
issue, because usually the order of a given con-
struct is not that meaningful. But some way must be
found to compare a given construct across the thou-
sands of resamples such that apples are compared
to apples [12]. Thompson [5] proposed invoking a
special statistical rotation method, called Procrustean
rotation, to solve this problem (see Procrustes Anal-
ysis). This solution has been generalized to bootstrap
factor analysis [5], descriptive discriminant analy-
sis [8], and canonical correlation analysis [7].
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Reproduced Matrix

A reproduced matrix (symbolized as �̂) is a matrix
of correlations or covariances that is calculated from
parameter estimates obtained for a path analytic
(see Path Analysis and Path Diagrams), factor
analytic (see Factor Analysis: Confirmatory), or
latent variable structural equation model. Take,
for example, the hypothetical path model shown in
Figure 1. If we were to gather data on the X and Y

variables shown in this figure, we could estimate this
model’s parameters in the following three equations:

Y1 = α1 + γ11X1 + γ12X2 + γ13X3 + d1 (1a)

Y2 = α2 + β21Y1 + γ23X3 + γ24X4 + d2 (1b)

Y3 = α3 + β31Y1 + β32Y2 + d3 (1c)

and calculate �̂ in part from the estimated model
parameters. �̂ actually consists of three conceptually
distinct parts, however, correlations (or covariances)
among the endogenous variables (�̂YY ′), correlations
among the exogenous variables (�̂XX ′ ), and correla-
tions between the exogenous and endogenous vari-
ables (�̂XY = �̂

′
YX ) so that overall

�̂ =
[

�̂YY ′ �̂YX

�̂XY �̂XX ′

]
. (2)

As is shown in Figure 1, the exogenous variables
are assumed to be correlated (as is usually the case)
so that �̂XX ′ is given from the data. However, cor-
relations between the Xs and Y s in �̂XY result
from various functions of model parameters, includ-
ing direct effects of Xs on Y s (e.g., the effect of
X1 on Y1 − γ11), indirect effects of Xs on Y s (e.g.,
the effect of X1 on Y2 through Y1 − γ11β21), and/or
common causal effects (e.g., X3 affects both Y1 and
Y2 − γ13γ23). Similarly, correlations among the Y s in

X1

Y3

g24

g13

g12

g23

b21

b31

b32

X2

X3

X4 d2

d3

d1

Y2

Y1

g11

Figure 1 Hypothetical path model

�̂YY ′ also arise from direct effects (e.g., the effect
of Y1 on Y2 − β21), indirect effects (the effect of
Y1 on Y3 through Y2 − β21β32), and common causal
effects (Y1 affects both Y2 and Y3 − β21β31). So, once
the model’s parameters in (1a) through (1c) are esti-
mated from data, they can be used to calculate or
reproduce the correlations among the variables in
the model by using the parameter estimates to solve
the equations reflecting the decomposition of effects
specified by the model.

An important question is whether the reproduced
correlations equal (or approximate) the observed cor-
relations calculated directly from data. The repro-
duced matrix will equal (or approximate) the observed
correlations if (a) the model being estimated is cor-
rect, or (b) as many model parameters are estimated
as there are elements in the observed correlation
matrix. However, neither of these will generally be
the case. First, it is widely accepted that models
that are tested in the behavioral sciences are rarely
‘true’ (see [2]). Second, most models in the behav-
ioral sciences estimate fewer (and often many fewer)
parameters than elements in the matrix of correlations
among variables in the model, and this is true of the
hypothetical model in Figure 1. This can be seen by
rewriting (1a) through (1c) as follows:

Y1 = α1 + γ11X1 + γ12X2

+ γ13X3 + 0X4 + d1 (3a)

Y2 = α2 + β21Y1 + 0X1 + 0X2

+ γ23X3 + γ24X4 + d2 (3b)

Y3 = α3 + β31Y1 + β32Y2

+ 0X1 + 0X2 + 0X3 + 0X4 + d3 (3c)

where the bold elements represent ‘zero-effect’
hypotheses, that is, hypotheses that certain effects
that could be estimated within a particular model
are actually zero. If a model contains no zero-effect
hypotheses, then as many parameters are estimated as
there are elements in the observed correlation matrix
and the reproduced correlation matrix will equal the
observed correlation matrix by tautology.1 For mod-
els in which there are one or more ‘zero restrictions’
as in (3a) through (3c), the reproduced correlation
matrix will not necessarily equal the observed corre-
lation matrix and, in fact, it most likely will not. This
is because one or more of the zero restrictions may be
incorrect (i.e., the true effect is actually nonzero) or
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the restriction may hold only approximately. There
are a number of ways that the plausibility of zero-
effect hypotheses can be tested (see [1]), but the
most popular, omnibus statistical test is the χ2 statis-
tic based on the maximum likelihood fit function
(χ2 = (n − 1)FML) where n = sample size and

FML = log |�̂| + tr(S �̂
−1

) − log |S | − (p + q),

(4)

where log refers to the natural logarithm, S refers
to the observed or sample correlation (or covari-
ance) matrix, |W | and tr(W) denote the determi-
nant and trace of matrix W, respectively, and p

and q refer to the number of Y and X variables,
respectively. If the model’s zero restrictions are (at
least approximately) tenable, then the discrepancy
log |�̂| − log |S | from (4) will be small as will the
discrepancy tr(S �̂

−1
) − (p + q) so that the result-

ing χ2 will also tend to be ‘small.’ If one or more
zero restrictions do not hold, the discrepancy between
�̂ and S increases, along with the FML discrepancy
function and the χ2 statistic. As such, the χ2 statis-
tic is a badness-of-fit index that is inexorably tied
to the discrepancy between the observed and repro-
duced correlation (or covariance) matrices and whose
degrees of freedom is closely related to the number

of zero restrictions that are imposed on the model
tested. Large and statistically significant χ2 statistics
indicate that one or more zero restrictions imposed
in a path, factor analytic, or latent variable structural
equation model are implausible.
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Note

1. The issue of model identification is actually much
more complex an issue than can be treated here. Our
humble goal is merely to introduce some notions
related to model identification as they help under-
stand the important role of the reproduced matrix in
assessing model fit.

(See also Factor Analysis: Confirmatory)

CHARLES E. LANCE
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Resentful Demoralization

Resentful demoralization is a validity threat in inter-
vention studies (see Clinical Trials and Interven-
tion Studies) in which comparison groups not obtain-
ing a desirable treatment are aware of this inequity or
find out about this during the study, become discour-
aged or retaliatory, and as a result perform worse on
the outcome measures [4, 5]. The prototypical setting
for this threat to operate is a randomized two-group
intervention study with a treatment group and a no-
treatment control group in which treatment allocation
is obtrusive and participants in the control group
get deprived of certain facilities offered to the par-
ticipants in the treatment group. As a consequence,
people in the control group could feel neglected and
behave differently than they would have behaved if
they had not known about the favorable interven-
tion in the treatment group. The most likely effect
of resentful demoralization is that the observed treat-
ment effect gets inflated and that the intervention
program looks more effective than it actually is.

As a social interaction threat to validity, this con-
found has the same basis as compensatory rivalry
(i.e., perceived inequality between the comparison
groups), but the emotional and behavioral reaction
that is involved, is quite the opposite. Whereas in
case of compensatory rivalry the participants in the
deprived group(s) become competitive, in case of
resentful demoralization they get dejected or vindic-
tive and bring about inferior performance. For both
threats, the treatment effects become confounded by
the differential motivation to perform, but in the case
of compensatory rivalry, the treatment effect probably
gets underestimated, while in the case of resent-
ful demoralization it gets overestimated because of
the confound.

Campbell and Stanley [3] already hinted at this
problem when they warned us of the possibility
of ‘reactive arrangements’ in experimental research,
but the term ‘resentful demoralization’ made its first
appearance in Cook and Campbell’s list of internal
validity threats [4]. According to Shadish, Cook, and
Campbell [5], resentful demoralization is even so
closely associated with the treatment construct itself
that it should be included as part of the treatment
construct description. Therefore, in their revised list
Shadish et al. [5] classified this confound among
the threats to construct validity. According to these

authors, internal validity threats are disturbing factors
that can occur even without a treatment, while this is
obviously not the case with resentful demoralization:
‘The problem of whether these threats should count
under internal or construct validity hinges on exactly
what kinds of confounds they are. Internal validity
confounds are forces that could have occurred in the
absence of the treatment and could have caused some
or all of the outcome observed’ (p. 95).

Resentful demoralization is clearly related to com-
pensatory rivalry, but is also related to other construct
and internal validity threats as well. If participants
have the impression that they are treated unfairly,
then they could try to get the beneficial treatment
anyhow, resulting in compensatory equalization. Or
if the demoralization is vast, then the participants
of the control group might decide to stop partici-
pation altogether, resulting in differential attrition.
Furthermore, notice that, although the prototypical
setting described above is a randomized trial in which
treatment allocation is conspicuous, also a quasi-
experiment working with eligible participants for
one of the treatment arms is particularly susceptible
to this kind of bias.

Resentful demoralization can be avoided or min-
imized by isolating the comparison groups in time
(e.g., using a waiting list condition) or space (e.g.,
using geographically remote groups), or making the
participants unaware of the intervention being applied
(e.g., using blinding). If no such design control is
possible, poststudy assessment strategies could be
useful, for instance, by asking the participants in
a debriefing whether they felt uncomfortable being
assigned to the control condition, and by relating
these responses to the outcome.

A good example of the latter strategy is given in
the prospective study by Berglund et al. [1, 2] in
which 98 of the 199 cancer patients who wanted to
participate in the study were randomly assigned to the
structured rehabilitation program ‘Starting Again’,
and the other patients were assigned to the control
condition. This program consisted of 11 two-hour
sessions focusing on physical training, information,
and training of coping skills for cancer patients,
and although the results were generally positive, the
researchers were suspicious about the possibility of
resentful demoralization because the patients were
aware of the treatment assignment procedure by the
informed consent. However, their poststudy analysis
showed that although a few patients may have been
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resentful, this did not significantly affect the outcome
variables. Furthermore, they were able to compare the
101 patients assigned to the control condition with 73
patients who did not wish to participate in the study in
the first place, and found no negative effects resulting
from being randomized to the control condition.

As a conclusion, if assignment-related motiva-
tional effects, such as resentful demoralization, in
some of the comparison groups are suspected, then
researchers should be cautious about any causal gen-
eralization of the treatment. However, in intervention
studies that have to deal with these potentially con-
founding motivational effects, the credibility of the
results may be strengthened by design control, post-
study assessment, and qualified interpretations.
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Residual Plot

The residuals in a regression analysis (see Multiple
Linear Regression) (or related, e.g., analysis of
variance) are the difference between the scores on
the outcome variable predicted from the regression
equation and the observed scores. The distributional
(and other) assumptions that are made when using
regression analysis relate to the residuals, rather than
the outcome variable. Residuals can be transformed
in different ways to improve their interpretability
(see Residuals). Here, when we refer to residuals,
we generally mean studentized-deleted residuals (also
known as externally studentized residuals), unless
explicitly stated otherwise.

Draper and Smith [2] suggest that residuals should
be plotted

• overall, in a histogram or boxplot;
• against the time in which the data were collected,

in a scatterplot;
• against the predicted values of the outcome vari-

able;
• against the independent variable(s);
• in any other way that seems to be sensible.

Distribution of Residuals

The distribution of the residuals should always be
examined to check for normality and for outliers. If
outliers are detected, these may be further examined,
and tested for statistical significance. If the data are
nonnormal, this may suggest that a transformation of
the data would be appropriate (although it is possible
for a normally distributed outcome variable to give
rise to nonnormal residuals).

The following data were taken from a study
examining 51 women who were undergoing a biopsy
for breast cancer. Anxiety, depression, and self-
esteem were measured one week before undergoing
the biopsy for breast cancer, and on the day that they
underwent the biopsy. The analysis presented looks
at anxiety on the day of the biopsy as an outcome,
and predictors are anxiety, depression, and self-
esteem, measured one week before the biopsy. The
predictors had a large and highly significant effect on
the outcome variable (R2 = 0.82, p < 0.001). The
standardized coefficients were −0.17 (p = 0.039) for

self-esteem, 0.192 (p = 0.030) for depression, and
0.644 (p < 0.001) for anxiety.

The residuals can be examined using a histogram,
probability plots or boxplots – each gives the same
information, but presents it in a slightly different
format. Although any of the types of residual can
be used, the most useful is probably the studentized-
deleted (also known as the externally studentized, or
the jack-knifed) residual, because this is the most
easily interpreted.

The histogram (Figure 1) shows that distribution
is approximately symmetrical, but the tails of the
distribution may be heavier than we would expect
from a normal distribution – we might consider them
to be outliers.

The probability plot (Figure 2) similarly shows
that the distribution is symmetrical and deviates away
from the normal distribution – probability plots are
poor at detecting outlying cases, and so it is not
clear that there are potential outliers here. Finally,
Figure 3 shows the box plots for three types of resid-
uals, the standardized, studentized (also known as the
internally studentized) and the studentized-deleted.
The distribution of the studentized-deleted residuals
seems to have wider tails than the other distributions.
The boxplot is also useful for identifying outliers –
there are clearly three points that might be consid-
ered to be outliers. The largest one of these has a
studentized-deleted residual of 3.77. The Bonferroni-
corrected probability of finding a studentized residual
with an absolute value of 3.77 is equal to 0.07 and
close to the conventional cutoff of 0.05. However, we
should not discard data without good reason, and tak-
ing a conservative approach would be better in this
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Figure 1 Histogram of studentized-deleted residuals
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Figure 2 Normal probability plot of studentized-deleted
residuals
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Figure 3 Boxplots of standardized residual, studentized
residual, and studentized-deleted residual. Note that the
studentized-deleted residual has the larger variance, and the
residuals appear to be more extreme

case, so we shall leave the data point in the file. (It
is still probably worth treating the case with some
suspicion, and ensuring that there is nothing else that
leads us to have misgivings about it.)

Residuals Against Time

Plotting residuals against time or participant number
in a scatterplot, where participant number reveals the

order in which the data were collected, is the next task
(see Index Plots). This serves two purposes: first, it
reassures us that there is no linear relation with time,
and second, it can be used to detect violations of the
independence assumption.

If the data were collected over a period (as
they almost certainly were), then it is possible that
something has changed over that period which would
have had an effect on the data. This may need to
be taken into account or may invalidate the research.
There are a number of ways in which time might have
an effect. If the data were collected over the course of
a day, it is possible that the conditions changed over
that day – the experimenter may have become more
tired, a piece of equipment may have gradually lost its
calibration, the room temperature may have gradually
increased, for example. In physiological studies, it is
possible that the substance under examination may
have decayed over time – if the control group is
analyzed first, this might lead to a spurious result
if the effect of time is not taken into account.

Figure 4 shows the scatterplot of the studentized
residual against the participant number. Note that here
I have added two reference lines, at ±1.96, indicating
that 95% of the points should lie between these lines.
Figure 4 also contains a loess regression line (see
Scatterplot Smoothers) which can help to identify
any trend in the data.

Examining Figure 4 suggests two possible effects
that may have occurred in these data. First, there
seems to be a trend in that the residuals are increasing
in value over time. In this case, where it appears that
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Figure 4 Scatterplot of studentized residuals plotted
against participant number with loess regression line
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there is a monotonic relationship, we can examine the
correlation between the residuals and the participant
number. This result is not statistically significant
(r = 0.14, p = 0.33), and therefore does not support
the hypothesis.

The second possibility shown by this graph is
that the variance is nonconstant at different levels
of the predictor variable. This effect is known as
heteroscedasticity (see Heteroscedasticity and Com-
plex Variation). One possible cause of heteroscedas-
ticity of these residuals is the reliability changing over
time – in the case that may occur here, it may be
that the measurements of the outcome variable are
increasing in reliability over time, and that there is
more error at the start of the study than at the end.
It could be that the increase in measurement relia-
bility is caused by the experimenter becoming more
familiar with the procedure or with a piece of equip-
ment. We can test the heteroscedasticity assumption
using White’s test, and we find that χ2 = 3.16, df =
2, p = 0.21; again, there is no statistical evidence
to support the hypothesis that the variance is non-
constant.

The second use of this type of residual plot is that
it can help us detect violations of the independence
assumption in Generalized Linear Model analyses.

It is assumed in regression that residuals are
independent – that is, knowing the value of one
residual should not help us predict the value of
the next residual. For example, if we tested our
participants in groups or batches, we might find
that the groups were in some way similar to each
other – if our outcome was alcohol consumption, it
is feasible that there might be a conformity effect,
and in some groups everyone drank a lot, and
in others everyone drank little (it is also possible
that the opposite effect might have occurred – one
person drinking heavily may have stopped the others
from drinking as much). Similarly, this problem
may occur if we select participants who are in
some way in naturally occurring groups, and where
these groupings might affect the outcome variable –
common examples of this problem include children
in classroom groups, patients treated by the same
general practitioner (GP) or hospital and students
living in the same hall of residence. Figure 5 shows a
scatterplot of participant number against the residual
for 35 participants. The chart shows that there are
five groups of participants, the first with positive
residuals, then a group with negative residuals, and
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Figure 5 Plot of participant number against residual,
where there are clustered data with loess regression line

so on. The loess line has been added, to emphasize
this effect. This type of effect is (or should be)
relatively rare – researchers are increasingly aware of
the problems of clustered data, and either try to avoid
the clustering or alternatively take it into account (see
[3] and [4]).

The second way in which nonindependence may
occur is if the previous measurement is in some
way predictive of the next measurement (or any
future measurement.) The most common example of
this effect is in time-series designs, where instead
of measuring multiple people on one occasion, one
person (or a small number of people) is measured
on multiple occasions. If we are measuring reaction
time, it is possible that this will slow down towards
the end of a long series of trials. If we are measuring
mood over the course of a number of days, my
mood yesterday is likely to be a better predictor
of my mood today than it is of my mood next
Tuesday.

If graphical examination of the data reveals that
there is a clustering effect that was not anticipated,
then either the Durbin–Watson test or a runs test
should be carried out to examine whether the effect
is statistically significant.

Residuals Plotted Against Predicted Values

Perhaps the most important plot is that of the resid-
uals plotted against the fitted values, shown in
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Figure 6 Standardized predicted values plotted against
studentized-deleted residuals. Additional horizontal lines
have been drawn at ±1.96 on the y-axis

Figure 6. This can be used to reveal several dif-
ferent potential problems: outliers, nonlinearity, het-
eroscedasticity, and nonnormality.

Outliers are revealed in this graph as cases that are
far from the other cases – the graph has additional
gridlines extending from the y-axis and ±1.96. We
would expect 95% of cases to lie within these lines.
The point at the top of the graph, with a residual
approaching four is particularly problematic.

The points in the graph should form a straight
line across the chart – there should be no tendency
of the residuals to be above or below zero at any
point. Figure 7 shows the general shape that is
indicative of a nonlinear relationship in the data,
and hence that the violation of linearity has been
violated.

The same plot allows us to examine the assump-
tion of constant variance across the range of pre-
dicted values. Here we would be looking for a con-
stant spread of the residuals around the center line.
Figure 8 shows the shape of the plot that would be
expected if the nonconstant variance assumption were
to be violated.

Finally, something that is occasionally disturbing
to data analysts is the presence of stripes, which
make the residual plot look rather different from the
examples generally presented in textbooks. Stripes
occur because of the measurement properties of the
variables – the measures are treated as continuous,
but are actually discrete. In Figure 9, the outcome
variable is a test with seven items, which are scored as
correct or incorrect. Each individual therefore scores

Figure 7 Scatterplot of residuals against predicted values
showing nonlinearity

Figure 8 Scatterplot of residuals against predicted values,
showing nonconstant variance

Figure 9 Residual plot showing the presence of stripes

a whole number, from a minimum of zero to a
maximum of seven.

Cook and Weisberg [1] provide an excellent guide
to graphics in regression; there is a computer program
(ARC) to accompany the book.
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Residuals

It is (too) commonly believed that distributional
assumptions for many statistical tests are made on
the variables – this is not the case: for most statis-
tical techniques, the assumptions that are made are
dependent on the distribution of the residuals.

Consider a group of 10 individuals, of different
ages, who have been presented with a quiz that
measured their knowledge of a range of areas. The
age of each person and the number of items that
they recalled are shown in the first two columns of
Table 1. If we fit a least squares linear regression
model to these data, we find that

x̂ = 0.223 × a + 12.52, (1)

where x is the score and a is the age of the individual.
The hat on the x indicates that this is a predicted
score, not the actual score. The 95% confidence
interval for the regression coefficient is 0.063 to
0.383, and the associated significance is 0.012.

In other words, we would expect that people who
are one year older will score 0.223 points higher on
the quiz.

If we wished to use the actual score for each
individual, we need to add a term to take account
of the difference between the predicted score and the
score that each individual achieved – we refer to this
as error (ei), and these are the residuals.

xi = 0.223 × a + 12.52 + ei (2)

Table 1 Data, predicted values, and residuals

Age
(a)

Number of items
correct (x)

Predicted
score (x̂)

Residual
(x − x̂ = e)

20 15 16.98 −1.98
25 21 18.10 2.90
30 19 19.21 −0.21
35 18 20.33 −2.33
40 21 21.44 −0.44
45 25 22.56 2.44
50 22 23.67 −1.67
55 26 24.79 1.21
60 31 25.90 5.10
65 22 27.02 −5.02

(The i subscript has been added to index each
individual.) Rearranging this equation gives:

ei = xi − (0.223 × a + 12.52) (3)

However, note that the part of the equation
0.223 × a + 12.52 is equal to x̂, therefore we can
substitute this into the equation, giving:

ei = xi − x̂i (4)

These values are shown in Table 1.
In regression and related analyses (analysis of

variance, t Test, analysis of covariance, etc.), we
assume that the residuals are sampled from a nor-
mally distributed population with a mean equal
to zero.

To illustrate the difference between the distribution
of the variables and the distribution of the residu-
als, consider the simple example of an independent
samples t Test. Figure 1 shows that the distribution
of the outcome variable appears to be positively
skewed. Figure 2 shows the distribution of two differ-
ent groups – here it can be seen that the distribution
in Figure 1 is actually comprised of two different dis-
tributions, one for each of two groups, and that the
group with the higher mean has a smaller sample
size. The predicted values in this case are simply the
means for each of the two groups, and so the residuals
are the difference between each value and the mean
for that group. Figure 3 shows the distribution of the
residuals – this is clearly from a normal distribution.

In the case of the two group t Test, it was easy to
see how the distribution of the variable could make
us believe that we may have had a problem with our
variable – in a more complex analysis, for example,
if we were to carry out an analysis of covariance, in
an experiment with a 2 × 2 design and a covariate,

Figure 1 Histogram that shows distribution of out-
come variable
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Figure 2 Histogram that shows distribution of two groups

Figure 3 Histogram of residuals

it could be difficult to relate the distribution of the
residuals to the distribution of the outcome variable.

One particular reason to examine residuals is
to ensure that there are no outliers or influential
cases. An outlier is a case with an unusual value,
or combination of values, in a dataset – we are
concerned about outliers because that individual will
have undue influence on our parameter estimates.

Univariate outliers can be detected through the
usual data cleaning procedures; however, there are
other types of outliers, termed multivariate outliers,
which cannot be detected through such methods (see
Outlier Detection). Consider the dataset shown in
Table 1 – but with one additional subject, a 15-
year-old, who scores 33 on the test. The 15-year-
old is younger than the other participants, but not
excessively younger, and 33 is the highest score on
the test, but not excessively high (see Table 2). From
the scatterplot in Figure 4, we see that this individual
(indicated on the chart with the solid black spot) does
seem to lie outside of the main set of points.

If we reanalyze our regression with this addi-
tional case, we find that the regression coefficient
has dropped to 0.067 (95% CI −0.173, +0.308;

Table 2 Data including outlier observation, new predicted
values and residuals

Age
(a)

Number of items
correct (x)

Predicted
score (x̂)

Residual
(x − x̂ = e)

15 33 21.32 11.68
20 15 21.65 −6.65
25 21 21.99 −0.99
30 19 22.33 −3.33
35 18 22.66 −4.66
40 21 23.00 −2.00
45 25 23.34 1.66
50 22 23.67 −1.67
55 26 24.01 1.99
60 31 24.35 6.65
65 22 24.68 −2.68
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Figure 4 Scatterplot of score versus age. Solid black spot
indicates a potential outlier

p = 0.542). This individual has obviously had con-
siderable influence on our analysis and has caused us
to dramatically alter our conclusions. Table 2 shows
the new predicted scores and residuals. Simply scan-
ning the residuals by eye shows that the first case
does have a residual that is higher than the others.
We could also view these data using a histogram or
a boxplot, such as in Figure 5.

Transformation of Residuals

Standardized Residuals. Residuals in their raw
form are difficult to interpret, as the scale is that of the
outcome variable – they are not in a common metric
that we can interpret. Residuals can be transformed
in a number of different ways to a metric that we
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Figure 5 Boxplot of residuals, showing outlier

understand better, for example, to a normal or a
t distribution. We should note from the outset that
there are differences among the names given for
these different transformations by different books and
computer programs.

An additional problem is the lack of common
names for the different types of residuals, which I
shall point out along the way. (A further warning is
required here – computer programs are also incon-
sistent with their naming – different programs will
use different names for the same thing, and the same
name for different things. It is important to know
exactly what the program is doing when using any of
these statistics.)

The first type of transformation is to divide the
residuals by their standard deviation, to produce
residuals with a standard normal distribution (mean =
0, standard deviation = 1) in a large sample, and t

distribution (with df equal to n − k − 2) in a smaller
sample. These are also referred to as unit normal
deviate residuals by Draper and Smith [2].

The standardized residual (es) for each case is
given by:

es
i = ei

se

(5)

where ei is the residual for each case, and se is the
standard deviation of the residuals. (Also be warned
that some references, for example, Fox [3], use the
term ‘standardized residual’ to refer to what we shall
call ‘studentized residuals’.) Note that the standard
deviation of the residuals is given by:

se =
√

�e2

n − k − 1
(6)

We must incorporate k, the number of predictor
variables, into the equation as well as the sample
size. (Although in large samples, this will have a
negligible effect on the calculation; given that we are
almost certainly using a computer, we might as well
do it properly.)

Because standardized residuals follow an approx-
imately standard normal distribution, we can make
statements about the likelihood of different values
arising. We would expect approximately 1 case in
20 to have an absolute value greater than 2, 1 case
in 100 to fall outside an absolute value of 2.6, and 1
in 1000 to fall beyond 3.1. If, therefore, we have a
case with an absolute standardized residual of 3, in
a sample size of 50, we should consider looking at
that case.

In the data of people’s ages and their scores,
the sum of squared residuals is equal to 279.5,
and the standard deviation is therefore equal to
the square root of 279.5/(11 − 1 − 1), which gives
5.57. Dividing each of the raw residuals by 5.57
will therefore give the standardized residuals (see
column 5 of Table 3).

Studentized Residuals. There is a problem with the
use of standardized residuals; some [4] have argued
that they should not be called standardized residuals
at all. The problem that we need to address is that the
variances of the residuals are not equal, as we have
considered them to be. The variance of the residual is
dependent on the scores on the predictor variables. In
the case of analyses with one predictor variable, the
variance of the residual depends on the distance of
the predictor variable from its mean – extreme scores
on the predictor variable are associated with lower
variance of the residuals. In the multiple predictor
case, the distance from the centroid of all predictor
variables is used to ascertain the variance of the
residuals.

The distance from the mean or from the centroid
of all predictor variables is called the leverage, (see
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Table 3 Predicted scores, residuals, and hat (leverage) values for original data

Age
(a)

Number of items
correct (x)

Predicted
score (x̂)

Residual
(x − x̂ = e)

Standardized
residual

Leverage
(hat value)

Studentized
residual

Studentized deleted
residual

20 15 16.98 −1.98 2.10 0.32 2.54 3.00
25 21 18.10 2.90 −1.19 0.25 −1.37 −1.28
30 19 19.21 −0.21 −0.18 0.18 −0.20 −0.19
35 18 20.33 −2.33 −0.60 0.14 −0.64 −0.62
40 21 21.44 −0.44 −0.84 0.11 −0.88 −0.85
45 25 22.56 2.44 −0.36 0.10 −0.38 −0.37
50 22 23.67 −1.67 0.30 0.11 0.31 0.32
55 26 24.79 1.21 −0.30 0.14 −0.32 −0.32
60 31 25.90 5.10 0.36 0.18 0.39 0.40
65 22 27.02 −5.02 1.19 0.25 1.37 1.49

Leverage Plot) or the hat value, or h, and is the
diagonal element of the hat matrix. The minimum
value of hi is 1/n, the maximum is 1. As might be
expected by now, however, there is not complete
agreement about the nomenclature – the leverage
has a second form, the centred leverage, h∗, which
has a minimum value of zero, and a maximum of
(N − 1)/N .

Most computer programs use the leverage (h);
SPSS, however, uses the centred leverage (h∗) but
refers to it as ‘leverage’ – the only clue is that the
help file says that the minimum value is zero and the
maximum is (N − 1)/N .

When we have the leverage values, these can be
used to correct the estimate of the standard deviation
of the residuals and calculate the studentized residual
(e′), using the following equation.

e′
i = ei

se

√
1 − hi

(7)

And once again, we note the different titles that
are given to these – Cohen et al. [1] call these
internally studentized residuals, Fox [3] calls these
standardized residuals, and Draper and Smith [2], to
ensure that there really is no confusion, call them the
ei /{(1 − Rii )s

2}1/2 form of the residuals (noting of
course, that they choose to refer to the hat matrix as
R rather than H).

The studentized residuals for our example are
shown in Table 3.

Studentized Deleted Residuals. We have dealt
with one problem with the residuals, but we have
yet another. The residuals do not quite follow a t

distribution – if we wanted to use the residuals to

ascertain the probability of such a value arising, we
need to calculate the studentized deleted residuals.

The standardized residual and the studentized
residual are calculated on the basis of the standard
deviation of the residuals. However, the residual
has an influence on the standard deviation of the
residuals, in two ways. First, where the residual is
large, the standard deviation will be larger, because
that residual will be used in the calculation of the
standard deviation – this will have the effect of
shrinking the residual. Second, where the case has
had an influence on the regression estimates (as is
likely if it is an outlier), the regression line will be
drawn toward the case, and so the size of the residual
will again shrink.

The solution is to remove the case from the
dataset, run the regression analysis again, estimate
the regression line and the standard deviation of the
residuals, then replace the case, and calculate the
standardized and studentized residuals. In fact, this
can be found using the equation given earlier for stu-
dentized residual e′ except that se is calculated with
the offending case omitted. The deleted studentized
residuals for our example can be seen in Table 3.

As would be expected by now, the deleted stu-
dentized residual is also known by other names,
principally as the externally studentized residual, but
also as the jackknifed residual.

The deleted studentized residual is distributed as
a t distribution, with n − k − 2 degrees of freedom.
The null hypothesis that we can test using this
value is that a case with a studentized residual that
large should have arisen by chance. We can examine
the largest absolute studentized deleted residual and
calculate the associated probability (it is unlikely that
tables will be of much use here, you will need to use
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a computer). The probability associated with a value
of t of 3.00 is 0.017 – we would therefore consider
that there was support for the hypothesis that the case
was not sampled from the same population as the
other residuals and should consider this case to be an
outlier. Using this criterion, and a 5% cut off, we will
find that 5% of our cases are outliers – obviously not
a useful way to proceed. The alternative is to correct
this probability by using Bonferroni correction – that
is, we either multiply the probability associated with
the case by N , or alternatively (and equivalently)
we divide the cutoff that we are using (typically
0.05) by N . Taking the first approach, multiplying
the probability by N (which is 11), we find the
Bonferroni corrected probability to be 0.017 × 11 =
0.19. This is above the cutoff of 0.05, and therefore
we do not have sufficient evidence against the null
hypothesis that the case is sampled from the same
population. (Equivalently, we could divide our cutoff
of 0.05 by 11, to give a new value of 0.0045; by this

criteria also, we do not have evidence against the
null hypothesis.) This analysis has, of course, been
affected by the smallness of the size of the sample,
which was purely for illustrative purposes.
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Residuals in Structural
Equation, Factor Analysis,
and Path Analysis Models

Several types of residuals have been considered
for structural equation, factor analysis, and path
analysis models. They represent different aspects of
discrepancies between model and data.

The traditional residuals, which can be referred to
as covariance structure residuals (CSRs), are defined
as element-wise differences between the empirical
covariance matrix S for a given set of observed vari-
ables, Z1, Z2, . . . , Zk , and the implied (reproduced)
covariance matrix �(θ) by a fitted model, M , where
θ is the vector of model parameters (k > 1). Denoting
the CSRs by rij in an empirical application they are
obtained as rij = sij − σij (θ̂), where sij and σij (θ̂)

symbolize the elements in ith row and j th column
in S and �(θ̂), respectively, and �(θ̂) designates
the model-implied covariance matrix at the param-
eter estimator (i, j = 1, . . . , k). The CSRs play an
important role in evaluating the overall fit of the
model. In particular, the chi-square goodness-of-fit
test statistic (see Goodness of Fit for Categorical
Variables) when testing adequacy of M – that is,
the null hypothesis that there exists a point θ∗ in
the parameter space of M , such that �(θ∗) = �∗,
where �∗ is the population covariance matrix of
Z1, Z2, . . . , Zk – can be viewed, for practical pur-
poses, as a weighted sum of the CSRs. Specifically,
when maximum likelihood estimation (ML) method
is used, the fit function FML = − ln |S(�(θ))−1| +
tr(S(�(θ))−1) − k (e.g., [2]; |.| designates determi-
nant and tr(.) matrix trace) can be approximated by
the sum of squared CSRs weighted by corresponding
elements of the inverse implied covariance matrix,
[�ML(θ̂)]−1; these residuals are similarly related to
fit functions with other methods (e.g., [3]). When the
mean structure is analyzed – that is, M is fitted to
the covariance matrix S and means m1, m2, . . . , mk

of Z1, Z2, . . . , Zk , respectively – also mean structure
residuals (MSRs) can be obtained as mi − µi(θ̂),
where µi(θ̂) is the ith variable mean implied by
the model at the parameter estimator (i = 1, . . . , k).
The CSRs and MSRs contain information about the
location and degree of lack of fit of M , and in this
sense may be considered local indices of fit (see also

below). Standardized CSRs larger than 2 in absolute
value may be viewed as indicative of a considerable
lack of fit of M at least with regard to the pair of
variables involved in each such residual; for a given
model, however, these residuals are not independent
of one another, and thus caution is advised when more
than a few such residuals are examined in this way.
Generally, a large positive (standardized) CSR may
suggest that introduction of a parameter(s) further
contributing to the relationship between the two vari-
ables involved may lead to model fit improvement;
similarly, a negative (standardized) CSR with large
absolute value may suggest that deleting or modi-
fying the value of a parameter(s) currently involved
in the variables’ relationship may lead to marked
improvement of model fit. Residuals discussed thus
far can be routinely obtained for structural equation,
factor analysis, and path analysis models with popular
structural equation modeling software, such as LIS-
REL, EQS, MPLUS, SEPATH, RAMONA, and SAS
PROC CALIS (see Structural Equation Modeling:
Software).

In addition to these residuals, individual case
residuals (ICRs) can also be obtained that pertain to
each studied individual (case) and dependent variable.
In a path analysis model, say Y = BY + �X + E –
where Y is a vector of dependent observed variables,
X is that of independent observed variables, E is
the vector of error terms, and B and � are cor-
responding coefficient matrices (such that I − B is
invertible, where I is the identity matrix of appropri-
ate size) – ICRs result as rp = Yp − (I − B)−1�Xp ,
where Xp and Yp are the vectors of the pth indi-
vidual’s values on the independent and dependent
variables, respectively, and rp is the vector of his/her
residuals (that is of the same size as Y; p = 1, . . . , N ,
with N denoting sample size). Estimates of these
ICRs are furnished by substituting B and � in the
last equation with their estimates obtained when fit-
ting the model (cf. [4]). In a factor analysis model,
Y = �η + ε – where η is the vector of latent fac-
tors (fewer in number than observed variables), �

is the factor loading matrix, and ε that of error
terms – ICRs are obtained as rp = Yp − �fp, where
fp is the vector of factor scores pertaining to the
pth case (p = 1, . . . , N ; [1, 5]). Estimates of these
residuals are furnished when substituting � in the
last equation with its estimate (along with the fac-
tor score – e.g., Bartlett – estimates) obtained when
fitting the model. In a structural equation model
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(with fewer factors than observed variables), Y =
�η + ε and η = Bη + ζ – where B is the structural
regression matrix and ζ the vector of latent dis-
turbances – ICRs are obtained as rp = Yp − �(I −
B)−1gp, where gp is the vector of the pth individ-
ual’s factor scores for the model Y = �(I − B)−1ζ +
e(p = 1, . . . , N ; e being model error term). Esti-
mates of these ICRs are furnished when in the equa-
tion rp = Yp − �(I − B)−1gp estimates of � and B
(along with factor score estimates) are substituted ([1,
5]; p = 1, . . . , N). Extended individual case residu-
als (EICRs) for structural equation and factor analysis
models with less latent than observed variables are
discussed in Raykov & Penev [5]. The EICRs rep-
resent ICRs that are obtained using a nonorthogonal
projection with a model error covariance matrix, and
have been shown to differ across particular equiva-
lent models [5]. Latent individual residuals (LIRs) are
discussed in Raykov & Penev [6], which reflect indi-
vidual case residuals with regard to a latent relation-
ship, and can be used for purposes of studying latent
variable relationships, as exemplified in Raykov &
Penev [6].
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Resistant Line Fit

A simple way of representing a linear relationship
between two variables in a functional form on a
scatterplot is to fit a resistant line. The aim is to find
a line that makes the deviations in the y direction
(the residuals) as small as possible while resisting
the influence of any outlying points (outliers).

The initial line is found by splitting the n ordered
x values (with their associated y values) into three
approximately equal sized groups or batches. Any
observations with the same x value should be kept
together in the same batch and, ideally, the left
(small x) and right (large x) batches should each
contain the same number of observations. The medi-
ans for the x and associated y values in the left
and right batches (xL, xR, yL, yR) determine the line
through the point cloud. (Note that the pairing of
the x and y values is ignored when finding the
medians.)

If all we require is a quick visual indication
of fit, then the initial resistant line is that which
passes through the left and right batch x and y

medians on the scatterplot; if the middle batch
median deviates markedly from the line, this suggests
possible nonlinearity.

Rough values of the slope b and intercept a

for the resistant line can be obtained directly from
the graph to give an equation for the fitted y

values ŷi = a + bxi(i = 1, . . . , n). Alternatively, the
coefficients can be found, using the medians, from
the expressions b = (yR − yL)/(xR − xL) and a =
mean(yR − bxR, yM − bxM, yL − bxL).

We can also assess linearity by looking at the
half-slopes instead of ‘by eye’. The left half-slope
is the slope of the line joining the medians of the
left and middle batches. Similarly, the right half-
slope is that of the line between the medians of the
middle and right batches. A minor modification of the
slope formula given above is all that is required to
obtain these values. If one of the half-slopes is more
than twice the other, that is, the half-slope ratio is
greater than two, we should not be attempting to fit
a straight line.

A polishing routine can then used to adjust the
line if the residuals (the differences between the
observed and fitted y values) show any distinct
pattern on a scatterplot of the residuals against the
x values (or indeed on a stem and leaf plot). In

essence, what we try to do is to balance up the
size of the (median) residuals in the left and right
batches.

To polish the line, we go through the same ini-
tial steps of the fitting process but this time using
the residuals as new y values and find the slope
bres. Next, we adjust b by adding the value bres to
it, then recalculate the intercept and finally obtain
the residuals for this new fitted line. The proce-
dure is repeated if necessary until the residuals show
no evidence of a relationship with the x values,
that is, they have zero slope. Generally, the slope
changes by smaller and smaller amounts at each
iteration, eventually converging to a stable value.
Clearly, these iterations are tedious to do by hand
and thus are best left to statistical packages such
as Minitab (see Software for Statistical Analy-
ses).

As an illustration, suppose that our data (see
Table 1) are Semester 1 and Semester 2 examination
scores (each out of a maximum of 50) achieved
by a sample of 11 students on a two-semester ele-
mentary statistics course. Naturally, we have already
inspected a scatterplot (see Figure 1) and are fairly
confident that there is a linear relationship between
the variables; we note, however, one observation
(10, 39) that is distinctly out of line with the
remainder of the data. To fit a resistant line with
Semester 1 score on the x axis, we split the data
into three batches and find the medians for the x and
y values:

The initial resistant line determined by the medi-
ans is superimposed on the scatterplot in Figure 1. It
seems to pass a little too high of center for small val-
ues of x (apart from the ‘outlier’), although we have

Table 1 Semester 1 and Semester 2 examination scores
on an elementary statistics course

x (Semester 1) y (Semester 2)

10 39
15 xL = 17 17 yL = 21
19 21
20 21
25 29
28 xM = 28 37 yM = 29
30 24
32 33
38 xR = 39 36 yR = 39
40 42
44 43
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Figure 2 Residual plot for initial resistant line fit

to be careful not to be too dogmatic because our data
set is very small. Also, as the line does not miss the
middle batch median by much, nonlinearity is not a
worry.

The equation of the initial resistant line calculated
from the slope and intercept formulae given earlier
is ŷi = 6.76 + 0.82xi (i = 1, 2, . . . , 11). Although it
is difficult to discern any pattern in the residual plot
(Figure 2), except that the residuals seem to be a lit-
tle larger for middle sized x values, we shall allow
Minitab to do some polishing for us. Minitab takes a
few further iterations to come up with a final equation
ŷi = 3.81 + 0.91xi (i = 1, 2, . . . , 11). In passing, we
note that the half slope ratio is 1.25, confirming a
fairly linear relationship.

Superimposing this polished line on the scatterplot
(Figure 3), we see that new line has been shifted
downward on the left side and now passes a little
closer to the points with smaller x values and
even further away from our outlier. This seems a
reasonable fit to the data and would allow us to make
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Figure 3 Scatterplot with initial (solid) and polished
(dotted) resistant lines
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Figure 4 Scatterplot with polished resistant (solid) and
least squares (dotted) lines overlaid

some cautious predictions about performance at the
end of Semester 2.

Suppose though that we had just pressed ahead
with traditional least squares regression for these
data. The equation of the least squares line is ŷi =
17.38 + 0.50xi (i = 1, 2, . . . , 11), which has a con-
siderably higher intercept and a smaller slope than
our polished resistant line (see Figure 4). The least
squares line has been pulled toward the observa-
tion (10, 39), which we had already branded as
an outlier.

To overcome the effect of this anomalous obser-
vation, we shall have to omit it from the analysis.
The equation of regression line then becomes ŷi =
4.60 + 0.88xi (i = 1, 2, . . . , 10), which is quite close
to our resistant line solution.

As we have seen, resistant line fitting can be
a useful alternative to the least squares method
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for describing the relationship between two vari-
ables when the presence of outliers makes the
latter procedure risky. However, it is essentially
an exploratory technique and lacks the inferential
framework of traditional regression analysis. Fur-
ther discussion of resistant line fitting can be found
in [1].
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Retrospective Studies

A retrospective study is a type of observational
study (no random assignment to groups) in which the
events being studied have already occurred, before
the study has begun. Information on such events
may already have been collected, perhaps for admin-
istrative purposes (e.g., employment records), or it
may be obtained by questioning individuals. For
example, Hart et al. [6] interviewed the carers of
patients diagnosed with Alzheimer’s disease. The
interviewees were asked about the presence and dura-
tion of patients’ symptoms such as anxiety, which
had occurred in the past three years. Case-control
studies are generally retrospective, indeed, the term
retrospective study originally referred to this type
of design [8]. The past experiences, (e.g., smoking
behavior) of those identified as having a particular
disease (e.g., lung cancer) or outcome (the cases),
are compared with those who do not (the controls).
A further type of retrospective study is the histori-
cal, or retrospective, cohort study [5]. A group or
cohort of individuals is identified, based on charac-
teristics found in historical databases such as accom-
modation, employment, medical (including case notes
and charts), military or school records. Information
on exposures and disease or outcome of interest is
obtained from these or other records, and the cohort
is followed up over ‘historical time’. In other words,
the cohort will be studied from a point backward in
time, up to the more recent past, or present. For exam-
ple, Zammit et al. [10] studied a historical cohort of
over 50 000 Swedish males, who had originally been
conscripted for compulsory military training during
1969–1970. A variety of demographic and other
information, including self-reported cannabis use, had
been collected and stored. Zammit et al. [10] sought
to establish whether cannabis use (the exposure) was
a risk factor for schizophrenia (the disease). The orig-
inal records were accessed and linked to historical
psychiatric diagnostic information, obtained from the
Swedish hospital discharge registry, for the period
1970–1996. The odds of developing schizophrenia
over this period for persons reporting cannabis use
during 1969–1970 were then compared with the odds
for those who did not. In contrast, a prospective
cohort study (see Prospective and Retrospective
Studies) is one in which individuals are selected

based on their current, rather than their past, char-
acteristics. Information is then collected from the
beginning of the study until some point in the future.
Prospective studies readily allow the directionality of
events to be examined (e.g., is cannabis use a conse-
quence of psychiatric illness rather than a probable
cause? [2]), but suffer from the problem of drop-
outs (a particular problem in studies involving illicit
drug users [3]). Prospective studies can be extremely
expensive and time-consuming. This is especially true
if a large cohort has to be followed up over many
years until the event of interest (e.g., Alzheimer’s
disease) occurs [1, 9, 4], in which case retrospec-
tive studies may be the only practical option. Ret-
rospective studies readily and (comparatively) inex-
pensively allow the analysis of many thousands of
individuals, over several decades, provided that the
necessary historical information has been collected,
or can be remembered. Memories may be highly
inaccurate [1], and database information incomplete.
Changes in measurement and diagnostic methods
may also have occurred over time. For events such as
suicide, however, there may be no alternative to the
use of retrospective studies [1]. In practice, the dis-
tinction between prospective and retrospective studies
can be somewhat blurred. A prospective cohort study
might have a retrospective component, for example,
individuals may be initially asked about their child-
hood experiences. Finally, either a prospective, or
retrospective, cohort study, may provide data for a
nested case-control study [5, 9] in which cohort mem-
bers identified as having a particular diagnosis (e.g.,
depression) or outcome are compared with those who
do not. Further information about retrospective stud-
ies can be found in [1], [4], [5], [8] and [9] with a
light-hearted example given in [7].
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Reversal Design

Reversal designs [1] are a type of single-case design
used to examine the effect of a treatment on the
behavior of a single participant. The researcher mea-
sures the behavior of the participant repeatedly during
what is referred to as the baseline phase. After the
baseline has been established, the researcher imple-
ments the treatment and continues to repeatedly mea-
sure the behavior during the treatment phase. The
researcher then removes the treatment and reestab-
lishes the baseline condition. Since the treatment is
withdrawn during this third phase, many refer to this
type of design as a withdrawal design.

One typically expects the behavior will be stable
during the baseline phase, improve during the treat-
ment phase, and then reverse, or move back toward
baseline levels during the second baseline phase.
When improvement is seen during the treatment
phase, some may question whether this improvement
was the result of the treatment or whether it resulted
from maturation or some event that happened to coin-
cide with treatment implementation. If we see the
behavior return to baseline levels during the second
baseline phase, these alternative explanations seem
less plausible, and we feel more comfortable attribut-
ing the behavior changes to the treatment. Put another
way, the reversal increases the internal validity of
the design.

The minimum number of phases in a reversal
design is three: a baseline phase (A), followed by a
treatment phase (B), followed by the second baseline
phase (A). It is possible, however, to extend the
basic ABA design to include more phases, creating
other phase designs, such as an ABAB design or an
ABABAB design.

Reversal designs also vary in how the phase shifts
are determined. In some cases, the assignment is
systematic, for example, a researcher may decide
that there will be eight observations in each phase.
This method works well when baseline observations
are constant, which allows one to assume temporal

stability and use what has been referred to as the
scientific solution to causal inference. When base-
line observations are not constant, inferences become
more difficult and one may alter the method of
assigning phase shifts to facilitate drawing treat-
ment–effect inferences.

One option is to use a response-guided strategy in
which the data are viewed and conditions are changed
after the researcher judges the data within a phase to
be stable. If the researcher is able to identify and con-
trol the factors leading to variability in the baseline
data, the variability can be reduced, hopefully lead-
ing to constancy in the later baseline observations and
relatively straightforward inferences about treatment
effects (see Multiple Baseline Designs).

When baseline variability cannot be controlled,
one may turn to statistical methods for making treat-
ment–effect inferences, which may motivate the use
of some restricted form of randomization to choose
the intervention points. For example, the intervention
points could be chosen randomly under the con-
straint that there are at least five observations in
each phase. A randomization test (see Randomiza-
tion Based Tests) [3] could then be constructed to
allow inference about the presence of a treatment
effect. To make inferences about the size of a treat-
ment effect when confronted with variable baseline
data, one could turn to statistical modeling options
(see Statistical Models) [2].
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Risk Perception

Alistair Cooke in A Letter from America during the
Gulf War of 1990 told the sad story of an American
family of four who cancelled their planned holiday
to Europe because of the fears of terrorist attacks on
the country’s airlines. They decided to drive to San
Francisco instead. At the last junction, before leaving
their small Midwest town, they collided with a large
truck with fatal consequences for them all.

Life is a risky business and deciding which
risks are worth taking and which should be avoided
has important implications both for an individual’s
lifestyle, and the way society operates. The bene-
fits gained from taking a risk need to be weighed
against the possible disadvantages. An acceptable risk
is proportional to the amount of benefits. For the
individual, living life to the fullest means achiev-
ing a balance between reasonable and unreasonable
risk, and this balance is dependent largely on the
individual’s personality. But, in society as a whole,
where the same balancing act is required, it has to
be achieved through political action and legislation.
If risks could be assessed and compared in a calm
and rational manner, it would benefit both individuals
and society. There is, however, considerable evidence
that such assessment and comparison is not straight-
forward.

Defining and Quantifying Risk

A dictionary definition of risk is ‘the possibility
of incurring misfortune or loss’. (The word risk is
derived from the Greek word ‘rhiza’, which refers to
such hazards of sailing as: too near the cliffs, contrary
winds, turbulent downdraughts, and swirling tides
(see Relative Risk)). Quantifying risk and assessing
risk involves the calculation and comparison of
probabilities, although most expressions of risk are
compound measures that describe both the probability
of harm and its severity. Americans, for example, run
a risk of about 1 in 7000 of dying in a traffic accident.
This probability is derived by noting that in the year
2000 there were about 40 000 traffic accident deaths
among a population of about 280 000 in the United
States. The figure of 1 in 7000 expresses the overall
risk to society. The risk to any particular individual
clearly depends on her exposure: how much she is

on the road, where she drives and in what weather,
whether she is psychologically accident prone, what
mechanical condition the vehicle is in, and so on.
Because gauging risk is essentially probabilistic, it
follows that a risk estimate can assess the overall
chance that an untoward event will occur, but it is
powerless to predict any specific event. Just knowing
that the probability of tossing a head with a fair
coin is one-half leaves one unable to predict which
particular tosses will result in heads and which
in tails.

Risk Perception

Risk perception is one’s opinion of the likelihood of
the risk that is associated with a certain activity or
lifestyle. Risk perception is be influenced by soci-
ological, anthropological, and psychological factors,
with the result that people vary considerably in which
risks they consider acceptable and which they do not,
even when they agree on the degree of risk involved.
For example, many people with no fear of traveling
large distances by car or train consider the prospect of
flying, even with a well-respected commercial airline,
to be a nightmare, often requiring several trips to the
airport bar before being able to board the airplane.
For others, air travel represents the very model of a
low-risk form of transport. As Table 1 shows, flying
is actually one of the safest forms of transport.

Perhaps one reason for some people’s excessive
and clearly misguided fear of flying is the general
view that being killed in a plane crash must be a
particularly nightmarish way to die. Another possi-
bility is that the flying phobic considers the sky an
alien environment, and this consideration distorts the
perception of the risk involved. A third possible rea-
son is that flying accidents are more prominent in the
media than those involving automobiles, although the
latter are far more common. Perception of risk is also
likely to be influenced by whether we feel in control
of a perceived risk.

Table 1 Causes of death and their probability

Cause of death Probability

Car trip across the United States 1 in 14 000
Train trip across the United States 1 in 1 000 000
Airline accident 1 in 10 000 000



2 Risk Perception

Research shows that people tend to overestimate
the probability of unfamiliar, catastrophic, and well-
publicized events and to underestimate the probability
of unspectacular or familiar events that claim one
victim at a time. For example, in one study [2],
respondents rated 90 hazards, each with respect to
18 qualitative characteristics such as whether the risk
was voluntary or involuntary, personally controllable
or not, and known to those exposed or not. A
principal component analysis of the data identified
two major components, and the location of the 90
hazards with respect to those two components. The
first factor was labeled as ‘dread’ risk. This factor
related judgments of scales such as uncontrollability,
fear, and involuntariness of exposure. Hazards that
rate high on this factor include nuclear weapons,
nerve gas, and crime. Hazards that rate low on
this factor include home appliances and bicycles.
A second factor, labeled ‘unknown risk’ related
judgments of the observability of risks, such as
whether or not the effects are delayed in time, the
familiarity of the risk, and whether or not the risks
are known to science. Hazards that rate high on
this dimension include solar electric power, DNA
research and satellites; those that rate low include
motor vehicles, fire fighting, and mountain climbing.

Slovic, Fischhoff, and Lichtenstein [2] conclude
that perceptions of risk are clearly related to the
position of an activity in the principal component
space, particularly in respect of the ‘dread’ factor.
The higher a hazard’s score on this factor, the higher
its perceived risk, the more people want to see its
current risks reduced, and the more they want to
see strict regulation employed to achieve the desired
reduction in risk. It seems that the risks that kill
people and the risks that scare people are different.

The findings in [2] are supported by the results of
polls of college students and members of the League
of Women Voters in Oregon. Both groups consid-
ered nuclear power their number-one ‘present risk of
death’, far riskier than motor vehicle accidents, which
kill almost 42 000 Americans each year, or cigarette
smoking, which kills 150 000, or handguns, which kill
17 000. Experts in risk assessment in the same poll
considered motor vehicle accidents their number-one
risk, with nuclear power below the risk of swimming,
railroads, and commercial aviation. Here, the experts
seem to have the most defendable conclusions. Aver-
age annual fatalities expected from nuclear power,
according to most scientific estimates, are fewer than

10. Nuclear power does not appear to merit its risk
rating of number one. It appears that the two well-
educated and influential segments of the American
public polled in Oregon seem to have been misin-
formed. The misinformants are not difficult to iden-
tify. Journalists report almost every incident involv-
ing radiation. A truck containing radioactive material
is involved in an accident, a radioactive source is tem-
porarily lost, a container leaks radioactive materials –
all receive nationwide coverage, whereas the 300
Americans killed each day in other types of accidents
are largely ignored. Reports in the media concentrate
on issues and situations that frighten – and there-
fore interest – readers and viewers. The media fills
its coverage with opinions (usually from interested
parties) rather than facts or logical perspectives. In
terms of nuclear power, for example, phrases such
as deadly radiation and lethal radioactivity are com-
mon, but the corresponding deadly cars and lethal
water would not sell enough newspapers, although
thousands of people are killed each year in auto-
mobile accidents and by drowning. The problem is
highlighted by a two-year study of how frequently
different modes of death become front-page stories
in the New York Times. It was found that the range
was from 0.02 stories per 1000 annual deaths from
cancer to 138 stories per 1000 annual deaths from
airplane crashes.

Misperception of risk fueled by the media can
lead to unreasonable public concern about a hazard,
which can cause governments to spend a good deal
more to reduce risk in some areas and a good deal
less in other areas. Governments may, for example,
spend huge amounts of money protecting the public
from, say, nuclear radiation, but are unlikely to be so
generous in trying to prevent motor vehicle accidents.
They react to loudly voiced public concern in the first
case and to the lack of it in the second. But, if vast
sums of money are spent on inconsequential hazards,
little will be available to address those that are really
significant.

Examples of disparities that make little sense are
not hard to find. In the late 1970s, for example, the
United States introduced new standards on emissions
from coke ovens in steel mills. The new rules limited
emissions to a level of no more than 0.15 mg/m3 of
air. To comply with this regulation, the steel industry
spent $240 million a year. Supporters of the change
estimated that it would prevent about 100 deaths from
cancer and respiratory disease each year, making the
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average annual cost per life saved $2.4 million. It
is difficult to claim that this is money well spent
when a large scale program to detect lung cancer in
its earliest stages, for example, might be expected to
extend the lives of 7000 cancer victims an average of
one year for $15 000 each, and when the installation
of special cardiac-care units in ambulances could
prevent 24 000 premature deaths a year at an average
cost of a little over $200 for each year of life.

Politicians often sanction huge expenditures to
save an identifiable group of trapped miners, but
not to improve mine safety or to reduce deaths
among the scores of anonymous miners who die
from preventable work related causes each year.
Politically, at least, Joseph Stalin might have got it
just about right when he mused that a single death is
a tragedy, but a million deaths is a statistic.

Risk Presentation

The ability to make a rational assessment of risk is
important for the individual, but also for a society
that hopes to be governed by sensible, justifiable poli-
cies and legislation. It is unfortunate that, in general,
people have both a limited ability to interpret proba-
bilistic information and a mistrust of experts (sadly,
statisticians in particular). But, rather than dismiss-
ing public understanding of technical issues as being
insufficient for ‘rational’ decision making, experts
(including statisticians) need to make a greater effort
to increase the public’s appreciation of how to eval-
uate and compare risks. Risks can be presented in
ways that make them more transparent. For example,
risks presented as annual fatality rates per 100 000
persons fail to reflect the fact that some hazards such
as pregnancy and motor cycle accidents cause death
at a much earlier age than other hazards such as lung
cancer caused by smoking. One way to overcome
this problem is to calculate the average loss of life
expectancy due to exposure to the hazard. Table 2
gives some examples of risks presented in this way.

So, for example, the average age at death for
unmarried males is 3500 days younger than the corre-
sponding average for men who are married. This does
not, of course, imply a cause (marrying) and effect
(living 10 years longer) relationship that is applica-
ble to every individual, although it does, in general
terms at least, imply that the institution of marriage is
‘good’ for men. And, the ordering in Table 2 should

Table 2 Life expectancy reduction from a number of
hazards

Risk Days lost

Being unmarried – male 3500
Cigarette smoking – male 2250
Heart disease 2100
Being unmarried – female 1600
Cancer 980
Being 20% overweight 900
Low socioeconomic status 700
Stroke 520
Motor vehicle accidents 207
Alcohol 130
Suicide 95
Being murdered 90
Drowning 41
Job with radiation exposure 40
Illicit drugs 18
Natural radiation 8
Medical X rays 7
Coffee 6
Oral contraceptives 5
Diet drinks 2
Reactor accidents 2
Radiation from nuclear industry 0.02

largely reflect society’s and government’s ranking of
priorities for increasing the general welfare of its cit-
izens. Thus, rather than introducing legislation about
the nuclear power industry or diet drinks, a rational
government should set up computer dating services
that stress the advantages of marriage (particularly
for men) and encouraging people to control their eat-
ing habits. It is hard to justify spending any money or
effort on reducing radiation hazards or dietary hazards
such as saccharin.

Perhaps the whole problem of the public’s appre-
ciation of risk evaluation and risk perception would
diminish if someone could devise a simple scale of
risk akin to the Beaufort scale for wind speed or the
Richter scale for earthquakes. Such a ‘riskometer’
might provide a single number that would allow
meaningful comparisons among risks from all types
of hazards, whether they be risks due to purely vol-
untary activities (smoking and hang gliding), risks
incurred in pursuing voluntary, but virtually neces-
sary, activities (travel by car or plane, eating meat),
risks imposed by society (nuclear waste, overhead
power lines, legal possession of guns), or risks
due to acts of God (floods, hurricanes, lightning
strikes).



4 Risk Perception

Table 3 Risk index values based on Paulos [1]. The lower
the number, the greater the risk

Event or activity Risk index

Playing Russian roulette once a year 0.8
Smoking 10 cigarettes a day 2.3
Being struck by lightning 6.3
Dying from a bee sting 6.8

One such scale is described by Paulos [1], and
is based on the number of people who die each
year pursuing various activities. If one person in
N dies, the associated risk index is set at log10 N ;
‘high’ values indicate hazards that are not of great
danger, whereas ‘low’ values suggest activities to
be avoided if possible. (A logarithmic scale is used
because the risks of different events and activities
differ by several orders of magnitudes.) If everybody
who took part in a particular pursuit or was subjected
to a particular exposure died, then Paulos’s risk index
value becomes zero, corresponding to certain death.
(Life is an example of such a deadly pursuit.) In the
United Kingdom, 1 in every 8000 deaths each year
results from motor vehicle accidents; consequently,
the risk index value for motoring is 3.90. Table 3
shows examples of values for other events.

Paulos’s risk index would need refinement to
make it widely acceptable and practical. Death,
for example, is not the only concern; injury and
illness are also important consequences of expo-
sure to hazards and would need to be quantified
in any worthwhile ‘index’. But, if such an index
could be devised, it might help prevent the cur-
rent, often sensational approach to hazards and
risks that is adopted by most journalists. A suit-
able riskometer rating might help improve both
media performance and the general public’s percep-
tion of risks.

Summary

The general public’s perceptions of risk are often
highly inaccurate, but by underestimating common

risks while exaggerating exotic ones, we may end up
protecting ourselves against unlikely perils while fail-
ing to take precautions against those that are far more
dangerous. For example, people may be persuaded
by sensational news stories that chemicals and pesti-
cides considerably increase the risk of certain types
of cancer. Perhaps they do, but the three main causes
of cancer remain smoking, dietary imbalance, and
chronic infections. Statisticians, psychologists, and
others should put more effort into finding ways of
presenting risks so that they may be more rationally
appraised and compared. This is unlikely to be easy
because people tend to form opinions rather quickly,
usually in the absence of strong supporting evidence.
Strong beliefs about risk, once formed, change very
slowly and are extraordinarily persistent in the face
of contrary evidence. Risk communication research
must take up this challenge if the public is ever going
to be persuaded to be rational about risk.
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Robust Statistics for
Multivariate Methods

Robust statistics, as a concept, probably dates back
to the prehistory of statistics. It has, however, been
formalized in the sixties by the pioneering work of
Huber [9, 10] and Hampel [6, 7]. Robust statistics
is an extension of classical statistics, which takes
into account the fact that models assumed to have
generated the data at hand are only approximate. It
provides tools to investigate the robustness properties
of a statistic T (such as estimators, test statistics) as
well as robust estimators and robust testing proce-
dures (see Robust Testing Procedures).

Although one would easily agree that models can
only describe approximately the reality, what is more
difficult to understand is the effect of this fact on
the properties of classical statistics T for which it
is assumed that models are exact. Suppose that the
hypothetical (multivariate) model is denoted by F

but that the data at hand have been generated by the
general mixture Fε = [1 − ε]F + εH , with H a con-
tamination distribution. Assuming Fε means that the
data have been generated by the model F with prob-
ability [1 − ε] and by a contamination distribution
H with probability ε. Note that a particular case for
H is a distribution assigning a probability of one to
an arbitrary point, that is, producing so-called out-
liers. If ε is large, the contamination distribution has
an important weight in the mixture distribution and
an analysis based on Fε (assuming F as the cen-
tral model) is meaningless. On the other hand, if
ε is small, an analysis based on Fε should not be
entirely determined by the contamination. It is, there-
fore, important to find or construct statistics T that are
not entirely determined by data contamination, that
is, robust under slight model deviations (see Finite
Mixture Distributions).

A well-known tool to assess the effect (on the
bias of T ) of infinitesimal amounts ε of contami-
nation is the influence function (IF ) introduced by
Hampel [6, 7] and further developed in [8]. Another
tool is the breakdown point (BDP ), which measures
the maximal amount ε of (any type of) contamina-
tion that T can withstand before it ‘breaks down’ or
gives unreliable results (see for example [8]). A statis-
tic T with bounded IF is said to be robust (in the
infinitesimal sense). It should be stressed that most

classical procedures are not robust, and, in particular,
all classical procedures for models based on the mul-
tivariate normal distribution (see Catalogue of Prob-
ability Density Functions) are not robust. This is the
case, for example, for regression models (see Multi-
ple Linear Regression), factor analysis, structural
equation models, linear multilevel models (which
include repeated measures analysis of variance).

In practice, to detect observations from a contam-
ination distribution (i.e., contaminated data) is not
an obvious task. For models based on the p-variate
normal distribution Fµ,� , a useful measure is the
Mahalanobis distance di defined on each (multivari-
ate) observation xi by

d2
i = (xi − µ)T �−1 (xi − µ) (1)

The di takes into account the covariance structure
of the data, which is very important in multivari-
ate settings (see Multivariate Analysis: Overview).
Indeed, as an example we consider scores on psycho-
logical tests collected for the study of age differences
in working memory (see [1] for more details), which
is presented as a multi scatterplot in Figure 1. A
close look at the scatterplot between the variables
ML1TOT and ML2TOT reveals that there is a minor-
ity of subjects not ‘fitting’ the covariance structure
described by the bulk of data (i.e., the majority). On
the other hand, on the univariate level, that is, when
looking a the scores only on one of each variable,
this minority of subjects has not so extreme scores.
The point here is that, when dealing with multivari-
ate models, the screening of the data at the univariate
level is not sufficient to detect contaminated data (see
Multivariate Outliers).

Unfortunately, scatter plots show only the behav-
ior of the data at the bivariate level, and (exact)
bivariate normality does not imply (exact) normal-
ity of higher orders. It is, therefore, important to be
able to rely on general measures such as (1). How-
ever, (1) supposes the parameters µ, � to be known,
which, in practice, is never the case. If nonrobust
estimators are used, then they are biased in the pres-
ence of data contamination, which means that the di

will in the best case not reveal the right contaminated
data (masking effect), and, in the worst, reveal false
contaminated data.

Robust statistics for multivariate models have
first been used for the estimation of multivariate
mean (location) and covariance (scatter). In this
setting, it is desirable for the robust estimators to
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Figure 1 Multiscatter plot of the working memory study data

be affine equivariant (a linear transformation of
the data results in a known transformation of the
estimates), to have relatively high BDP (see [13]) and
to be computationally efficient. The first high BDP
affine equivariant estimator is the minimum volume
ellipsoid (MVE) proposed by [17]. The ellipsoid (of
dimension p) containing at least half of the data with
minimum volume is found and the sample mean and
covariance of these data define the MVE. The latter is
very computationally intensive, and is known to have
poor efficiency. However, it is used, for example, to
detect contaminated data or as a starting point for
more efficient estimators based on weighted means
and covariances.

A general class of estimators in which one can find
robust ones is the class of M-estimators (see [10]) that
generalize maximum likelihood estimators (MLE).
M-estimators (see M Estimators of Location) are
defined for general parametric models Fθ as the
solution in θ of

1

n

n∑
i=1

ψ(xi , θ) = 0 (2)

When the ψ-function is the score function s(x, θ) =
(∂/∂θ) log f (x, θ), one gets the MLE. Such estima-
tors, under very mild conditions, have known asymp-
totic properties that can be used for inference (see
e.g., [8]). For the multivariate normal model, another
popular class of estimators is the class of S-estimators
(see [18]), which can be computed iteratively by
means of

1

n

n∑
i=1

w
µ

i (µ − xi ) = 0 (3)

1

n

n∑
i=1

[
wδ

i � − w
η

i (xi − µ)(xi − µ)T
] = 0 (4)

where the weights w
µ

i , w
η

i , wδ
i are decreasing func-

tions of the Mahalanobis distances di . Note that when
the former are equal to 1 for all i, one gets the
classical sample means and covariances. The choice
for the weights define different estimators (see e.g.,
[16]). When there are missing data, [1] proposed an
adaptation of (3) and (4) as an alternative to the
EM algorithm (see [4]). For the working memory
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data (which include missing data), the correlation
between ML1TOT and ML2TOT was found to be
0.84 (robust estimation), whereas it is equal to 0.20
when using the EM algorithm. Other robust estima-
tors for multivariate location and scatter (and their
statistical properties) can be found in, for example,
[3], [5], [11], [12], [14], [19], [20], [21], [22] and
[23].

Although the multivariate normal distribution (see
Catalogue of Probability Density Functions) is the
central distribution for several models, the covariance
matrix is not always present in a free form. Indeed,
like in structural equations models or in mixed
linear models (see Linear Multilevel Models), the
true covariance matrix is structured. For example, it
could be supposed that the variances are all equal, and
the covariances are all equal (one-way ANOVA with
repeated measures). In these cases, it is important to
estimate the covariance matrix by taking into account
its structure, and not just estimate it freely, and then
‘plug-in’ the estimate in the model to estimate the
other parameters. [2] proposed a general class of S-
estimators for constrained covariance matrices that
can be used for example with mixed linear models.

When the models are not based on the multivariate
normal distribution, robust statistics become more
complex. The Mahalanobis distance does not play
anymore a role, and another measure for detecting
contaminated data needs to be specified. For M-
estimators, [10] proposed a weighting scheme based
on the score function itself, that is,

ψ(x, θ) = wc(x, θ)s(x, θ) (5)

with

wc(x, θ) = min

{
1;

c

‖s(x, θ)‖
}

(6)

where ‖x‖ =
(∑p

j=1 x2
j

)1/2
denotes the Euclidian

norm. Observations corresponding to large (absolute)
value of the score function are hence downweighted.
The score function in a sense replaces the Maha-
lanobis distance for multivariate normal models. The
parameter c can be chosen for efficiency arguments.
With nonsymmetric models, (5) leads to inconsistent
estimators, and, therefore, a shift needs to be added to
(5) to make the M-estimator consistent (see for exam-
ple, [8] and [15]). This can make the robust estimator
computationally nearly unfeasible. With nonnormal
multivariate models, robust statistics, therefore, still
need to be further developed.
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Robust Testing
Procedures

The term robust testing procedure roughly refers
to hypothesis testing methods that are relatively
insensitive to violations of the assumptions upon
which they are based. This means, in particular,
that a robust testing procedure should achieve two
fundamental goals. The first is that the actual type I
error probability is reasonably close to the nominal
level. So if some hypothesis is tested at the .05 level,
for example, the actual probability of a type I error
should be reasonably close to .05. The second is that
small shifts or changes in a distribution should not
have an undue influence on power, the probability
of detecting situations where the null hypothesis is
false. In particular, if a hypothesis testing procedure
has high power under normality, power should remain
reasonably high when data are sampled from a
slightly nonnormal distribution.

The mathematical tools for studying and under-
standing robustness issues have advanced consider-
ably during the last forty years. The mathematical
foundations of these methods are summarized by
Hample, Ronchetti, Rousseeuw, and Stahel [1] and
Huber [2]. A description of these methods, written
at a more elementary level, is provided by Staudte
and Sheather [3]. Briefly, these tools provide a way
of studying and characterizing the effect that small
changes in a distribution have on measures of loca-
tion (such as the mean) and dispersion (such as the
usual variance). This has led to an understanding of
why conventional hypothesis testing methods, such as
the two-sample Student’s t Test, and ANOVA F test,
(see Catalogue of Parametric Tests) are not robust,
contrary to what was initially thought. Not only do
they suffer from problems when trying to control
the probability of a type I error but also arbitrar-
ily small departures from normality can substantially
lower power relative to other techniques that might
be used (see Robustness of Standard Tests).

Also, these mathematical tools have formed the
foundation for new inferential methods that deal
with the problems now known to plague conven-
tional techniques. For example, a common way of
improving efficiency relative to the sample mean is
to downweight outliers. But this leads to a technical
problem: the usual method for estimating standard

errors no longer applies. If, for example, outliers
are simply removed and standard methods for means
are applied to the remaining data, the wrong stan-
dard error is being used, which can result in poor
control over the probability of a type I error. But,
owing to the new mathematical and statistical tools
that have emerged, theoretically sound estimates are
now available.

When comparing two or more groups of partic-
ipants, there are many ways of improving control
over the probability of a type I error versus conven-
tional methods based on means. Each approach has
advantages and disadvantages, which are discussed
in Wilcox [4]. For a more detailed description writ-
ten at a slightly more advanced level, see Wilcox [5].
Some of these methods deal directly with measures
of location, roughly referring to a value intended to
reflect what is typical. The mean and median are the
best-known examples, but today other measures of
location have been found to have practical value such
as trimmed means and M-estimators of location (see
Trimmed Means).

Conventional methods for means can suffer from
low power for three general reasons: unequal vari-
ances, skewness, and sampling from distributions
where outliers are relatively common. (The term out-
liers refers to values that are unusually small or large.)
All three create serious concerns, but perhaps outliers
are particularly troublesome. One reason is that mod-
ern outlier detection methods suggest that outliers
are rather common. Another reason is that outliers
can inflate the usual sample variance, which in turn
can mean low power (see Robustness of Standard
Tests). But even if no outliers are detected, skew-
ness and unequal variances can result in relatively
low power as well.

One general approach when trying to avoid low
power, due to nonnormality, is to replace means with
a measure of location that provides reasonably high
power under normality, but unlike methods based
on means, relatively high power is achieved when
sampling from nonnormal distributions. A crucial
feature of these alternative estimators is that they deal
directly with outliers. Methods based on medians can
offer improved control over the probability of a type
I error, but their power is relatively unsatisfactory
when the data are normal. But other measures of
location, such as trimmed means and M-estimators,
satisfy both criteria. No single method dominates, but
there are several inferential techniques that appear
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to perform well for a broad range of situations
(e.g., [5]).

As for regression and correlation, conventional
hypothesis testing methods inherit all of the practical
problems associated with conventional methods for
comparing groups based on means, and new prob-
lems are introduced. Again, vastly improved meth-
ods have been derived [5]. For example, even under
normality, it is known that heteroscedasticity is a
serious practical problem when using the ordinary
least squares estimator (see Least Squares Estima-
tion), but methods that deal with this problem are
available. Also, both heteroscedasticity and nonnor-
mality can result in relatively poor power when using
ordinary least squares, but many modern estimators
provide relatively high power under both normality
and homoscedasticity as well as nonnormality and

heteroscedasticity. Like methods intended to improve
on the sample mean, they are based on techniques that
are relatively insensitive to outliers.
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Robustness of Standard
Tests

Standard hypothesis-testing methods make two cru-
cial assumptions: normality and homoscedasticity
(equal variances). These methods include student’s t ,
the analysis of variance (ANOVA) F test, and basic
methods for testing hypotheses about least squares
regression parameters and Pearson’s correlation (see
Multiple Linear Regression; Catalogue of Para-
metric Tests). If either or both of these assumptions
are violated, it is questionable whether these meth-
ods provide an adequate control over the probability
of type I errors, and whether they have high power
relative to other methods that might be used. Early
investigations into the robustness of the ANOVA F by
Box [1] seemed to suggest that it is indeed relatively
insensitive to violations of assumptions. But more
recent results summarized by Hampel, Ronchetti,
Rousseeuw and Stahel [3], Huber [4], Staudte and
Sheather [5], and Wilcox [7–9] paint a decidedly dif-
ferent picture. These newer results might appear to
contradict results reported by Box, but this is not the
case. New theoretical results have helped improve
our understanding of where to look for problems, the
result being the realization that any method for com-
paring groups based on means can be expected to
have serious practical difficulties for a broad range
of situations.

Consider, for example, the usual one-way ANOVA
F test for independent groups. Box [1] reported the-
oretical and empirical results on how unequal vari-
ances affect the probability of a type I error, assuming
normality. Let R be the largest (population) standard
deviation among the groups divided by the smallest
standard deviation. Box limited his numerical results
to situations where R ≤ √

3. No reason was given for
not considering larger ratios, perhaps because at the
time there were few, if any, studies looking into how
much the standard deviations might differ in practice.
But, various empirical studies summarized by Wilcox
and Keselman [10] suggest that much larger ratios
are common. When comparing two groups only, and
when sampling from a normal distribution, reason-
ably good control over the probability of a type I
error is achieved except possibly for very small sam-
ple sizes. However, for unequal sample sizes, or when
sampling from a nonnormal distribution, this is no

longer the case as indicated, for example, in [7–10].
Even under normality with four or more groups,
unequal variances can result in poor control over the
probability of a type I error, and nonnormality exac-
erbates this problem.

A basic requirement of any method is that under
random sampling, it should converge to the correct
answer as the sample sizes get large. For example,
when computing a 0.95 confidence interval, the actual
probability coverage should approach 0.95. With
unequal sample sizes, there are general conditions
where student’s t does not satisfy this criterion [2].

A rough rule is that, as an experimental design
becomes more complicated, standard hypothesis test-
ing methods become more sensitive to violations of
assumptions. For example, under normality and with
equal sample sizes, student’s t is relatively robust in
terms of type I errors when the variances are unequal,
but this is no longer the case when using the ANOVA
F with four or more groups.

There are at least three general reasons why con-
ventional methods for means can have relatively low
power: unequal variances, skewness, and sampling
from distributions where outliers are relatively com-
mon. Outliers are values that are unusually large
or small. Outliers are of particular concern because
modern outlier detection methods suggest they are
rather common and because they can inflate the
usual sample variance, which in turn can mean
low power.

As an illustration, consider the following data.

Group 1 : 6 9 19 9 8 12 14 11 14
Group 2 : 4 7 2 10 15 11 1 3.

The sample means are 11.3 and 6.6, respectively,
and student’s t rejects at the 0.05 level. Now sup-
pose the largest value in the first group is increased
to 34. Then, the mean for the first group increases
from 11.3 to 13, so the difference between the
two means has increased from 4.7 to 6.4, yet we
no longer reject; the P value is 0.08. Increas-
ing the largest value to 80, the mean for the first
group increases to 18, yet the P value increases
to 0.19. The reason is that the sample variance
has increased as well. The value 80, for example,
is an outlier among the data for the first group,
and it inflates the sample variance to the point
that we no longer reject, even though the differ-
ence between the sample means has increased as
well. Even small departures from normality can cause
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problems, a result that became evident with the
publication of a seminal paper by Tukey [6]. The-
oretical results were developed during the 1960s
with the goal of dealing with this problem [3–5],
and they form the basis of a wide range of mod-
ern inferential techniques [7–10]. Modern robust
testing procedures not only deal with low power
due to nonnormality, they substantially reduce prob-
lems associated with skewness and heteroscedas-
ticity (see Heteroscedasticity and Complex Varia-
tion).
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Runs Test

Two-sample Runs Test

The Wald–Wolfowitz [3] runs test dates from 1940,
making it one of the earliest nonparametric tests.
It provides a test of a common distribution for
two independent random samples. However, the test
has low power relative to such alternatives as the
Kolmogorov–Smirnov or Cramér–von Mises two-
sample tests and has declined in popularity, as
attested to by [1] and [2].

Let (x1, x2, . . . , xn) and (y1, y2, . . . , ym) be inde-
pendent random samples of sizes n and m from the
two random variables, X and Y . The scale of mea-
surement of the two random variables is at least
ordinal and, to avoid problems with ties, ought to
be strictly continuous (see Scales of Measurement).

The hypothesis to be nullified is that the two
random variables have a common distribution. The
alternative is that the two distributions differ.

Arrange the combined samples from smallest to
largest and identify each observation with its source.
As an example, Table 1 gives the ranked algebra
achievement scores of two samples of students, one
taught by the present method (P), and one by a
proposed new method (N).

Table 1 Ranked algebra achievement scores

Score 60 64 67 68 69 70 71 72 73 79 80 84

Method N N P N P N N P N P P P

Count the number of runs of the two sources. Here,
the number is eight, beginning with a run of two ‘N’s,

followed by a run of one ‘P’, and finishing with a run
of three ‘P’s. If the distribution of achievement scores
is the same under the two methods of instruction, the
scores should be well mixed, leading to many short
runs. If the distributions differ, the number of runs
will be small. Is eight a small enough number of
runs as to be unlikely under the null hypothesis?

The runs test is a permutation or randomiza-
tion test (see Permutation Based Inference; Ran-
domization Based Tests). The null reference dis-
tribution consists of the number of runs for all
924 possible permutations of the observations, six
attributed to the present method, and six to the new
method. This test is implemented, for example, in the
XactStat and SC (www.mole-soft.demon.co.uk)
packages. The exact Wald–Wolfowitz runs test in SC
reports a probability of eight or fewer runs under
the null hypothesis at 759/924, approximately .82.
No evidence is provided by this test against the
null hypothesis.
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Sample Size and Power
Calculation

If a random sample of N observations is drawn from a
population, the precision with which sample statistics
(e.g., sample means) estimate corresponding popula-
tion parameters is determined largely by the number
of observations. When population distributions are
at least approximately normal, the precision of these
estimates can be calculated from simple formulas in
which N plays a prominent role.

For example, the formula for the standard error of
the mean (SEM) is

SEM =
√

σ 2

N
. (1)

The standard error of the difference between two
independent sample means (SEM1−M2) is

SEM1−M2 =
√

σ 2
1

N1
+ σ 2

2

N2
. (2)

If you know, or can estimate, both the level of
precision you wish to attain and the variability of
scores in the population, it is easy to solve for the
sample size needed to attain that level of precision.
For example, suppose you would like to be 95%
certain that the mean response on a survey that uses
a five-point response scale is within 0.25 scale points
of the population mean, and your best estimate of the
population standard deviation is σ = 0.92. You can
easily rearrange the formula for the standard error of
the mean to find the N needed to attain this level of
accuracy, using

Nneeded = 1/[(desired precision level/1.96)2/σ 2].

(3)

If σ = 0.92, a sample with N = 52 (i.e., 1/

[(0.25/1.96)2/0.922] = 52) will provide an estimate
of the population mean that achieves the desired level
of precision. Similarly, if you would like to be 95%
certain that the difference between mean responses
in two independent samples (with SDs of 0.90 and
0.85, respectively) is within 0.25 scale points of the
population difference, you can rearrange the formula
for the standard error of the difference between

sample means. In this example, you will need samples
of N = 94 (i.e., 1/[(0.25/1.96)2/(0.902 + 0.852)] =
94) to attain the desired level of precision.

Hypothesis Testing – Comparisons of
Means

The power of a statistical test of a null hypothesis
is defined as the probability that a test statistic will
lead you to reject this null hypothesis when it is
in fact false. For example, if you use analysis of
variance to compare the means in k samples drawn
from populations with different means, power is
the probability that you will correctly conclude that
these means differ. Statistical power is determined by
three key parameters: (a) the population difference
in means, or the effect size, (b) the decision criteria
used to define results as statistically significant,
and (c) the number of observations [1–5]. Power is
highest when there are in fact large differences in
population means, when less stringent criteria are
used to define statistical significance (e.g., p < .05 vs.
p < .01), and/or when large samples are used.

One of the primary applications of power analy-
sis is to determine the sample size needed to have
a reasonable chance of rejecting the null hypothe-
sis. Standards and conventions vary somewhat across
fields, but power must usually be substantially above
0.50 to be judged adequate [5], and power levels
of 0.80 or above are usually sought [1]. A number
of approaches have been suggested for estimating
power; models based on the noncentral F distribu-
tion [6, 7] can be applied to a wide range of data-
analytic techniques [5]. For example, the test statistic
used to evaluate differences in sample means in the
analysis of variance (F = MSbetween/MSwithin) is
distributed as a noncentral F , where the degree of
noncentrality reflects the size of the difference in pop-
ulation means. The null hypothesis that population
means are identical would produce a noncentrality
parameter of zero. Thus, comparing the observed F

with the values obtained from a table of the sim-
ple (central) F distribution provides a test of the
plausibility of the null hypothesis. The greater the
difference in population means (i.e., the larger the
value of the noncentrality parameter), the more the
population distribution of F values will shift upward,
and the greater the likelihood that the obtained F

will exceed the critical value of F used to define a
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Table 1 Sample size required to attain power = 0.80(α = 0.05)

Effect size: % of
variance explained

k = number of
means

N = sample
size

nj = number of
subjects per cell

0.01 2 777 389
3 956 318
4 1077 270
5 1266 253

0.10 2 74 37
3 92 31
4 104 26
5 116 24

0.20 2 34 17
3 44 15
4 51 13
5 57 11

statistically significant result. Effect sizes are often
expressed in terms of statistics such as the stan-
dardized mean difference (d) or the percentage of
variance accounted for by differences in group means
(η2, or its equivalent, R2).

Power increases as a nonlinear function of N . As
the standard error formulas shown earlier suggest,
power functions more closely track the square root
of N than the absolute value of N . Table 1 lists
the sample size needed to obtain a power of 0.80
for rejecting the null hypothesis as a function of the
effect size and the number of means compared (k),
given the decision criterion α = 0.05. In this table,
the effect size is indexed by the proportion of variance
accounted for by differences between group means in
the population [5]; both the total sample size needed
and the number of subjects per cell needed are shown
in Table 1 (Tables in Cohen [1] are presented in terms
of nj ).

For example, if you are comparing the means of
three groups, and you expect that differences between
groups account for 10% of the variance in scores
in the population, you will need at least N = 92
observations to attain power of 0.80. If you expect a
smaller effect size, for example that group differences
account for 1% of the variance in scores, a much
larger sample will be needed to achieve power of
0.80 (here, N = 956).

Power analyses in analysis of variance designs
with multiple factors (see Factorial Designs) or
repeated measures (see Repeated Measures Anal-
ysis of Variance) follow the same general principle,
that power is higher when the population effects are
large or when the sample sizes are larger. However,

in a complex design, you might have substantially
different levels of power for different questions that
are asked in the study. In multifactor designs, you
will generally have more power when asking ques-
tions about main effects (i.e., the simple effects of
noise and illumination) than about interactions, but
the level of power of each in an analysis of variance
model is influenced by both the population effect size
and the number of observations that go into calculat-
ing each of the sample means to be compared.

Power analyses can be extended to complex
multivariate procedures (see Multivariate Analy-
sis: Overview). Stevens [8] discusses applications of
power analysis in multivariate analysis of variance.
Cohen [1] discusses power analyses for a wide range
of statistical techniques. Both sources include exten-
sive tables for estimating power, and these can be
used to determine the number of cases needed to
reach power of 0.80 (or whatever other convention is
used to define adequate power) for the great majority
of statistical procedures used in the behavioral and
social sciences.
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Sampling Distributions

A statistic is a summary measure that can be cal-
culated from a sample (a subset of a population). A
sampling distribution is the probability distribution
of a statistic. The goal of inferential statistics is to
use such summary measures to make inferences about
parameters that describe the population from which
the sample is drawn. Knowledge of the sampling dis-
tribution of particular statistics is essential to derive
these inferences, and much effort in statistical science
has been devoted to achieving this (for an intro-
duction to statistical inference see, for example, [1]
and entries on Classical Statistical Inference: Prac-
tice versus Presentation, Deductive Reasoning and
Statistical Inference, and Neyman–Pearson Infer-
ence). To appreciate the concept of the sampling
distribution, we need to first consider the frequen-
tist’s model (see Probability: Foundations of) of
how data come about.

Population and Sample

The collection of individuals about whom informa-
tion is desired is usually referred as the population or
more specifically the target population. For example,
we might be interested in the prevalence of depres-
sion in a clearly defined clinical population (patients
who have been given a certain diagnosis, are within
a specified age range, are members of a particular
ethnic group, etc.). Since it is impractical and often
impossible to measure the outcome of interest (here
absence/presence of depression) for every member
of the target population, a subset of the population
(sample) is selected for study. Statistical inferences
depend on the assumption of randomness where a
random sample of size n is a subset of n of the mem-
bers from the relevant population where the subset
is chosen in such a way that every possible subset
of size n has the same chance of being selected as
any other.

A parameter is a characteristic that describes
the target population in the same way a statistic
describes a sample. For example, in our depression
example, the outcome of interest is a binary variable
with possible values ‘1’ (depressed) and ‘0’ (not
depressed) and its distribution in the population
is characterized completely by the proportion of

individuals who have depressive symptoms. (When
relating to the population, a proportion is also often
referred to as a probability.) Where a statistic is
used to find out about or as a stand in for a
population parameter, it is specifically called an
estimator statistic or, for short, an estimator. If it
forms the basis of a statistical test, it is known as
a test statistic. Here, we shall look at statistics in
the context of estimation. For example, an intuitive
(and as it turns out a ‘good’, see later) estimator
of the proportion of individuals with depression in
the target population is the proportion of individuals
with such symptoms in the sample. Note that in
the frequentist’s approach to statistical inference,
the population (true) parameter is assumed to be
a fixed quantity. In contrast, the estimator statistic
is a random quantity since it is a function of the
data collected.

Sampling Variability

While sampling individuals saves time and money,
the value calculated for the sample will almost
certainly differ from the population parameter since
not all individuals are sampled; the statistic is said
be affected by sampling error. For example, if the
true prevalence of depression was 20%, and we find
that in a sample of 50 patients, 12 had depressive
symptoms, then our sample estimate of 12/50 =
24% would be affected by a sampling error of 4%.
Each sample might have a different sampling error
introducing what is known as sampling variability
of the statistic. The amount of sampling variability
will reduce as the sample size increases and more of
the population elements are investigated. To visualize
this, we can employ a computer to repeatedly draw
random samples of sizes n = 50 and n = 100 from
a population with true prevalence 20% (i.e., from
a Bernoulli distribution with success probability 0.2
(see Catalogue of Probability Density Functions)
and calculate the proportion of individuals with
depression (= successes) for each sample. Figure 1
illustrates the observed sample proportions by means
of histograms. We see that most proportion estimates
are near the true parameter value of 0.2 (say within
a distance of 0.1) with the average deviation from
the true parameter value being larger for the smaller
(n = 50) samples.
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Figure 1 Simulated distribution of sample proportion of successes for two different sample sizes (10 000 simulation runs).
The curves show normal density approximations to the histograms

Standard Error and Properties of
Estimators

Figure 1 shows the sampling distribution of the
proportion of successes based on simulations that
mimic the data-generating process. As with any

probability distribution, two important characteristics
are its mean and variance (or first and sec-
ond moments (see Expectation; Moments)). The
expected value of the sampling distribution is also
called the expected value or mean of the statistic.
The standard deviation of the sampling distribution
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measures the average departure of the estimator from
its long-term average and serves to quantify the pre-
cision of the estimator statistic. To distinguish it from
the standard deviation of the population distribution,
it is referred to as the standard error of the statistic or,
for short, the standard error. Note that in contrast to
the standard deviation of the population the standard
error is affected by sample size. From our simula-
tion, we calculate the expected value of the propor-
tion statistic as E(P ) ≈ 0.2; that is, almost the true
parameter 0.2. The value of the standard error of the
proportion statistic Pn varies with sample size and we
calculate that approximately s.e.(P50) ≈ 0.057 and
s.e.(P100) ≈ 0.040; that is, if we draw a sample of
size n = 50 and estimate the proportion, we will on
average be 5.7% away from the expected value of
the proportion statistic, while if we were to increase
the sample size to n = 100, our average imprecision
would reduce to 4%.

The sampling distribution provides a means by
which to compare different estimators. Intuitively
good estimators should hit the true population
parameter on average. More formally, a desirable
property of an estimator is that its expectation
should equal the population parameter that it is
aiming to estimate, irrespective of what that value
is, that is, that it is unbiased for the parameter
of interest. For example, our simulation suggests
that the sample proportion is unbiased for the
population proportion. (Unbiasedness can be shown
to hold theoretically for any value of the population
proportion.) When the estimator is unbiased, its
standard error is the square root of the average
squared deviation of the sample estimates from the
population parameter; or in other words, an average
sampling error. The sampling error generated by
two alternative unbiased estimators can therefore
be compared by their standard errors. Under some
circumstances, unbiased estimators can be shown to
attain the smallest variance that is possible within
a particular probability model (see Information
Matrix; Estimation).

The estimators discussed above are more specif-
ically known as point estimators. Knowledge of the
sampling distribution of relevant statistics also allows
the construction of interval estimators, which are
more commonly referred to as confidence intervals.
The second strand of classical statistical inference –
the testing of hypotheses about the parameters of

the population (or populations) at a given signifi-
cance level – also requires knowledge of the sam-
pling distribution of a test statistic under the relevant
null hypothesis. Finally, since quality measures of
inferential methods such as the standard error of an
estimator, the width of a confidence interval, or the
power of a test, all depend on the sample size, knowl-
edge of the sampling distribution is essential to plan
the appropriate size of a study (see Power).

How to Derive the Sampling Distribution?

Having made the case that the sampling distribution is
an essential tool for statistical inference, the question
might be asked ‘How can the sampling distribution of
a statistic be derived from a single observed sample?’.
After all, the considerations above assumed that we
knew the population parameter of interest and could
therefore mimic the repeated random sampling from
the population. In practice, we do not know the true
parameter and we only have one (random) sample.
In general, the answer is that we have to specify
the probability distribution in the population so that
statistical theory or empirical resampling techniques
can provide the sampling distribution of a statistic.

Parametric statistical methods assume a param-
eterized probability distribution in the population.
Preferably, such a model assumption should be based
on theory or derived empirically from the observed
data. However, when theoretical results are not avail-
able and the data are sparse, a parameterized shape
of the distribution is often simply assumed for con-
venience. Once a parametric distribution model has
been specified, analytic results often facilitate expres-
sion of the sampling distribution as a function of
the (unknown) population parameters. Alternatively,
computing intensive methods such as the parametric
bootstrap that resample from the estimated popula-
tion distribution can be used to generate the sampling
distribution (see Bootstrap Inference). In contrast,
nonparametric statistical methods derive sampling
distributions without parameterization of the popula-
tion distribution. Resampling methods, in particular,
the nonparametric bootstrap, which resamples from
the empirical distribution of a sample, are useful in
this respect (see Bootstrap Inference).

The theoretical derivations of sampling distribu-
tions can involve considerable amounts of probability
theory, and here we just mention two well-known
principles for derivation.
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1. Let µ denote the population mean of a con-
tinuous variable of interest and σ the popula-
tion standard deviation. If the population has a
bell-shaped distribution (a normal distribution,
see Catalogue of Probability Density Func-
tions), then the sample mean X̄=(1/n)

∑n
i=1 Xi ,

where Xi denotes the observation on the ith
object in the sample of size n, also has a
normal distribution with mean µ and standard
error σ/

√
n. In other words, when normality

can be assumed in the target population, then
the sample mean is an unbiased estimator of
the population mean and as the sample size n

increases, its standard error decreases by the
factor 1/

√
n. The standard error of the sample

mean is commonly estimated from the sample
by replacing the population standard deviation
in σ/

√
n by a suitable estimator. For a nor-

mal population, the sample standard deviation

s = (1/(n − 1))

√∑
i (Xi − X̄)2 is an unbiased

estimator for σ .
2. When the sample size is sufficiently large, an

important statistical theorem, the central limit
theorem, states that the sample mean has mean
µ and standard error σ/

√
n, irrespective of the

distributional shape in the population. The larger
the sample size, the better the approximation of
the sampling distribution of the sample mean
by the normal distribution. We can apply the
central limit theorem to the depression example,
where we were sampling from a population
with a binary outcome. Since the proportion
of ‘1s’ in a set with binary elements is the
same as the arithmetic mean of the ‘0’ and ‘1’
values, the unknown prevalence of depression is

the population mean. We can therefore estimate
it by the unbiased sample mean (the sample
proportion of ‘1s’) and know that the standard
error of this estimator is approximately σ/

√
n.

The population standard deviation is a function
of the population distribution and for binary
outcomes is known to be σ = √

(p(1 − p)),
where p denotes the probability of observing a
‘1’. We can therefore estimate the standard error
of the proportion statistic by

√
(Pn(1 − Pn))/

√
n.

For example, if 12 out of a sample of 50 subjects
showed depressive symptoms, we would estimate
the prevalence of depression in the clinical target
population as 24% and the standard error of the
proportion estimator as

√
(0.24(1 − 0.24)/50) =

0.0604 or approximately 6%. Comparison of this
to the true standard error of the sample proportion
of 5.7% shows that the procedure has performed
reasonably well.

To conclude, sampling distributions are needed
to carry out statistical inferences. They describe the
effects of sampling error on statistics as a function
of sample size. Frequently encountered sampling
distributions are the normal distribution, Student’s
t distribution, the chi-square distribution and the F
distribution (see Catalogue of Probability Density
Functions).
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Sampling Issues in
Categorical Data

Introduction

A categorical variable is one for which the mea-
surement scale consists of a set of categories [5].
Categorical variables may have categories that are
naturally ordered (ordinal variables), or have no
natural order (nominal variables). For example, the
variable ‘health status’ with categories ‘excellent’,
‘good’, ‘satisfactory’, and ‘poor’ is an ordinal vari-
able, as is age with categories ‘young’, ‘middle age’,
and ‘old’. Alternatively, variables such as politi-
cal party affiliation, with categories ‘Democratic’,
‘Republican’, ‘Libertarian’, and ‘Independent’, or sex
with categories ‘male’ and ‘female’ are examples of
nominal variables (see Scales of Measurement).

In most studies with categorical data, the sampling
units (e.g., people) are classified simultaneously on
the levels of the categorical variables. For instance,
we might categorize people simultaneously by health
status, age, party affiliation, and sex. One particular
unit might then be described as a Democratic, young
male in good health. The results of cross-classifying
the sampling units are frequently arranged as counts
in a contingency table. The simplest example of
a contingency table is the 2 × 2 cross-classification
of the sampling units into one of the four cells
defined by the two levels of the two variables. When
expressed in terms of observed frequencies, a 2 × 2
table might be represented as shown in Table 1.

When expressed in terms of probabilities, a 2 × 2
table might be represented as shown in Table 2.

Table 1 Observed frequencies

f11 f12 | f1.

f21 f22 | f2.

f.1 f.2 | f..

Table 2 Probabilities

p11 p12 | p1.

p21 p22 | p2.

p.1 p.2 | p..

Example of a 2 × 2 Contingency Table

In this example, the results are from an experiment
concerned with the association between the true
length of a line and the length as perceived by the
subjects. Subjects were shown two lines, one line was
longer than 12 in. and one line was shorter than 12
in. The subjects were to decide whether the line they
were shown was actually longer or shorter than 12
in. The contingency table is shown in Table 3.

The null hypothesis is that a subject’s perception
of a line’s length is not related to its true length.
Stated more formally, if correct, this null hypothesis
implies that the conditional probability of being in
column 1, given that an observation belongs to a
known row, is the same for both rows:

p11

p1.

= p21

p2.

. (1)

This also implies that

p11

p.1
= p12

p.2
. (2)

Taken together, these two equalities result in the
odds ratio (α) (also known as the cross-products
ratio) [6]:

α =

(
p11

p12

)
(

p21

p22

) = p11p22

p12p21
= 1. (3)

When α > 1, the two variables are positively asso-
ciated; when α < 1, the two variables are negatively
associated. However, odds ratios are not symmetric
around one: An odds ratio larger than one by a given
amount indicates a smaller effect than an odds ratio
smaller than one by the same amount. While the mag-
nitude of an odds ratio is restricted to range between
zero and one, it is literally unrestricted above one,

Table 3 Results of perception of line length experiment

True length

Perceived
length ≤12′′ >12′′ Total

≤12′′ 6 1 7
>12′′ 1 6 7

Total 7 7 14
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allowing the ratio to potentially take on any value. If
the natural logarithm (ln) of the odds ratio is taken,
the odds ratio is symmetric above and below one,
with ln(1) = 0.

Under the null hypothesis of independence (α =
1), the expected frequency in cell i, j is

eij = fi.f.j

f..

. (4)

Thus, the χ2 goodness-of-statistic can be used as
a test of independence:

χ2 =

∑
i

∑
j

(fij − eij )
2

eij

= f..(f11f22 − f12f21)
2

f1.f2.f.1f.2

= 14{(6)(6) − (1)(1)}2

(7)(7)(7)(7)

= 7.143, df = 1, p = .01. (5)

The odds ratio also indicates a substantial relation-
ship between perceived and true line length:

α =

(
6

14

)(
6

14

)
(

1

14

)(
1

14

) = 35.999,

ln(35.99) = 3.583. (6)

Subjects were more than three-and-a-half times
more likely to correctly judge the line length than not.

Effects of Sampling Method

Statistical inferences concerning a contingency table
require knowledge of how the observations were
sampled. The theoretical probability distribution that
best models how the data were sampled should
ideally be identified, although in the case of a
contingency table of any dimension, the χ2 goodness-
of-fit test is valid under a wide range of sampling
schemes [1, 3]. Nonetheless, it is still useful to
explicitly define the method of sampling, if for no
other reason than the influence of the sampling
model on our interpretation of the data [4]. Therefore,
we consider three different sampling methods that

have been use to elicit subjects’ responses to the
line lengths.

Sampling Method 1: The Hypergeometric
Distribution

Consider the situation in which there were seven
lines longer than 12 in. and seven lines shorter than
12 in. When asked to judge line length, subjects
were informed that there would be seven of both
types. This constrains f1., f2., f.1, and f.2 to each
equal a specific number, in this case seven. When
all of the marginal totals are fixed by design, the
underlying distribution of responses is best described
by the hypergeometric distribution (see Catalogue of
Probability Density Functions).

The hypergeometric distribution is defined as
follows for a 2 × 2 contingency table [6]. Given a
sample space containing a finite number of elements,
suppose that the elements are divided into K = 4
mutually exclusive and exhaustive cells, with f11

in cell 1, f12 in cell 2, f21 in cell 3, and f22 in
cell 4. A sample of f.. observations is drawn at
random without replacement. Then the probability
of a specific configuration of a contingency table is
given by the hypergeometric probability

p(f11, f12, f21, f22; f..) = f1.!f2.!f.1!f.2!

f..!f11!f12!f21!f22!
. (7)

Using the line length response data, the probability
of this contingency table’s configuration is

p(6, 1, 1, 6; 14) = 7!7!7!7!

14!6!1!1!6!
= .01. (8)

When the sampling model required by the experi-
mental design follows a hypergeometric distribution,
the marginal totals are fixed. This type of experimen-
tal design is frequently used to test the homogeneity
of distributions; that is, the distribution of responses
is the same across two levels of a variable [7]. In
our example, a test of homogeneity would exam-
ine whether the probability of correctly identifying
the line length category was the same for both line
length categories.

Sampling Method 2: The Binomial Distribution

Consider the situation again in which there were
seven lines longer than 12 in. and seven lines shorter
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than 12 in. When asked to judge line length, subjects
are not informed that there are seven of both types.
Although subjects are aware that there will be a total
of 14 lines to judge, and that there are two types of
lines, no information is given as to the distribution of
the lines in the two categories. Thus, no constraints
are placed on the specific values of the f1., f2., f.1,
and f.2 marginal totals. In this situation, where f.. is
fixed, and where each observation can result in one
of two choices (i.e., the line is longer or shorter than
12 in.; the probability of selecting either is .5), the
probability of the contingency table is given by the
binomial probability

p(f+; f.., p) = f..!

f+!(f.. − f+)!
(p)f+(1 − p)f..−f+ ,

(9)

where f+ = the number of correct classifications [3].
Thus, for our data, the binomial probability of the
contingency table is

p(12; 14, .5) = 14!

12!(2)!
(.5)12(.5)2 = .01. (10)

Binomial distributions occur when the number of
classes = 2 (the line is longer or shorter than 12 in.),
each class having a known probability p of selection.
Here, p = 7/14 = .5.

Under the same experimental conditions, where
subjects are unaware of how many there are of each
type of line, but know the types of lines is greater
than two, each with a known probability of selec-
tion, the contingency table’s configuration follows the
multinomial probability distribution. Thus, the multi-
nomial distribution is a generalization of the binomial
distribution.

Sampling Method 3: The Negative Binomial
Distribution

Now we consider the situation in which there are
still only two types (classes) of lines, but the total
number f.. of lines is not fixed. Here, we are
interested in the f.. required to successfully judge

a certain number (f+) of lines. Thus, f.. is left free
to vary but f+ is fixed. Let us assume that the line
length experiment was stopped when we found that
subjects had correctly judged 12 lines. Therefore, 14
judgments were required to produce 12 successful
ones. Observations generated from this experimental
design follow a negative binomial distribution [2, 3]
(see Catalogue of Probability Density Functions):

p(f..; f+, p)

= (f.. − 1)!

(f+ − 1)!(f.. − f+)!
(p)f+(1 − p)f..−f+ . (11)

The negative binomial probability of our contin-
gency table’s specific configuration is

p(14; 12, .5) = (13)!

(11)!(2)!
(.5)12(.5)2 = .01. (12)

As noted earlier, under all three sampling methods,
the hypergeometric, the binomial, and the negative
binomial, the probability of our specific contingency
table is the same.
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Saturated Model

A saturated model contains as many parameters as
there are data points, providing a perfect fit to the
data [1]. Consider as an example a log-linear model
fit to a contingency table. A loglinear model that
specifies all possible main effects and interactions is
saturated because the number of parameters equals
the number of cells of the table. Saturated models
have no residual variance – the deviance is zero –
and are most useful for comparing the fit of hierar-
chically nested models (see Hierarchical Models).

A model’s identification status is an issue espe-
cially relevant to the concept of a saturated model.
Models can be (a) under-identified, (b) just-identified,
or (c) over-identified [4]. Under-identification occurs
when not enough relevant data is available to obtain
unique parameter estimates. Note that when the
degrees of freedom of a model is negative, at
least one its parameters is under-identified. Just-
identified models are always identified in a trivial
way: Just-identification occurs when the number of
data elements equals the number of parameter to
be estimated. This is the saturated model. If the
model is just-identified, a solution can always be
found for the parameter estimates that will result in
perfect fit – a discrepancy function equal to zero.
Over-identification occurs when the number of data
points available is greater than that which is needed
to obtain a unique solution for all of the parameters.
In fact, with an over-identified model, the degrees of
freedom are always positive so that model fit can
be explicitly tested. An over-identified model also
implies that, for at least one of the model parame-
ters, there is more than one model equation that the
solution to the parameter must satisfy. The number of
additional equations the solution must satisfy is gen-
erally referred to as the number of over-identifying
constraints.

Most of the familiar statistical models within
the family of the Generalized Linear Model are
saturated or just-identified owing to restrictions that
are placed on the parameters of the models [3].
Without these restrictions, the models would be
under-identified. For example, let us consider the
standard analysis of variance (ANOVA) model. For
i = 1, . . . , n and j = 1, . . . , m, with m fixed, let

yij ∼ N(µj , σ 2),

µj = α + θj , (1)

where yij is person i’s outcome in treatment j, µj

is the population mean, θj is the difference between
the mean of group j and the population mean,
and α is the model’s intercept. The parameters of
interest are α, θ1, . . . , θm; however, the model is
under-identified. One restriction among several that
can be introduced to just-identify the analysis of
variance (ANOVA) model is to impose the restriction
is that

∑m
j=1 θj = 0. Because θj = α − µj , it follows

that α = (1/m)
∑m

j=1 µj . Therefore, α represents
a constant effect for the population, which is an
average of all the cell means, whereas θj = µj −
(1/m)

∑m
j=1 µj represents the deviation of the cell

mean µj from the average of all of the cell means.
It is, therefore, the main effect due to the j th level
of the factor. Importantly, the statistical meaning of
the parameters α and θ depends on the identification
restriction.

A fully specified log-linear model is another
example of a saturated, just-identified model. For
instance, suppose that we wish to investigate the
relationships between two categorical variables, X

and Y , where X has I categories and Y has J

categories. Then the saturated (‘full’) loglinear model
is

log(mij ) = λ + λiX + λjY + λijXY, (2)

for each combination of the I × J levels of the m

cells, i = 1, 2, . . . , I , and j = 1, 2, . . . J . Log(mij ) is
the log of the expected cell frequency of the cases for
cell ij in the contingency table; µ is the overall mean
of the natural log of the expected frequencies; λiX is
the main effect for variable X, λjY is the main effect
for variable Y , and λijXY is the interaction effect for
variables X and Y .

In order for the saturated loglinear model be just-
identified, constraints must be imposed on the param-
eters. Several alternative constraint specifications will
accomplish this [5]. For example, as in the analysis
of variance (ANOVA) model, we may require that
the sum of the parameters over all categories of each
variable be zero. For a 2 × 2 table in which two vari-
ables, X (two categories) and Y (two categories):

λ1X + λ2X = 0,

λ1Y + λ2Y = 0,

λ11XY + λ12XY = 0,
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λ21XY + λ22XY = 0,

λ11XY + λ21XY = 0, (3)

which implies that

λ1X = −λ2X,

λ1Y = −λ2Y, (4)

and

λ11XY = −λ21XY = −λ12XY = λ22XY. (5)

These restrictions result in the estimation of four
parameters: One parameter estimated for λ, one
parameter estimated for X (corresponding to the first
category), one parameter for Y (corresponding to
the first category of Y ), and one parameter for the
interaction of X and Y (corresponding to the first
categories of X and Y . The values of the remain-
ing parameters are derived from the four estimated
parameters. The model is saturated – just-identified –
because the model, which has four cells, has four
estimated parameters. The expected cell frequencies
will exactly match the observed frequencies. In order
to find a more parsimonious model that is explic-
itly testable, an unsaturated model must be specified
that introduces one or more over-identifying con-
straints on the parameter estimates. Such a model
has degrees of freedom greater than zero, and can
be achieved by setting some of the effect parameters
to zero.

For example, if both categorical variables are
mutually independent, then the following indepen-
dence model describes the relationship between X

and Y :

log(mij ) = λ + λiX + λjY. (6)

Further, we may decide that Y is not a significant
predictor of the cell frequencies:

log(mij ) = λ + λiX, (7)

or alternatively, that X is not:

log(mij ) = λ + λjY. (8)

Conceivably, neither X nor Y may be useful,
resulting in the most restricted baseline model:

log(mij ) = λ. (9)

The examples of unsaturated loglinear models
given above are hierarchically nested models. Hierar-
chical models include all lower terms composed from
variables in the highest terms in the model. Therefore,
the model

log(mij ) = λ + λiX + λijXY (10)

would not be considered a nested model – for the
λijXY term to be present in the model, both of its
constituent variables must be as well. The choice
of a preferred model is typically based on the for-
mal comparison of goodness-of-fit statistics associ-
ated with hierarchically nested models: the likeli-
hood ratios and/or deviances of nested models are
compared to determine whether retaining the more
parsimonious model of the two results in a sig-
nificant decrement in the fit of the model to the
data [2]. A significant decrement in fit implies that
the expected frequencies generated by the more par-
simonious model are significantly less close to the
observed frequencies.
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Savage, Leonard Jimmie

Born: November 20, 1917, in Michigan, USA.
Died: November 1, 1971, in Connecticut, USA.

Although L.J. Savage is not a name that many psy-
chologists would instantly recognize, his achievement
in producing a coherent system for Bayesian think-
ing and inference lay behind much of the 1960s
movement in psychology to replace classical Ney-
man Pearson inference with its Bayesian equiva-
lent (see Bayesian Statistics) (see [2], for both an
instance of the approach and one of its early key
documents, and the classic textbook by [4]). This
also led to a lively experimental program in behav-
ioral decision making founded in part on Bayesian
inferential premises, one which was even taken up
by Tversky and Kahneman, the inventors of Biases
and Heuristics, with their long-running investigation
into so-called base rate problems using the Green and
Blue Taxi Cab story and variants as illustrative mate-
rial (see [3] for an overview of the early material). Of
course, the motivation for much of the experimental
work in psychology was to see how far human deci-
sions approximated the normative ones prescribed by
Bayes theory, but there was also a commitment to
Bayes theory itself as a better way of making infer-
ences in the face of uncertainty, the avowed aim of
classical statistical inference, which leads us back
to Savage.

He was educated initially at the University of
Michigan’s Ann Arbor campus and received a B.S.
in mathematics in 1938, with a Ph.D. in 1941 on
an aspect of pure mathematics, specifically differen-
tial geometry. During his year at Princeton’s Institute
of Advanced Study (1941–1942) he came to the
attention of John von Neumann, whose own work
on the theory of games became a later inspiration
for Savage. Neumann encouraged Savage to turn to
statistics, and he joined the Statistical Research Group
at Columbia University in 1943. It was during his
tenure at the University of Chicago that he wrote
his most influential book The Foundation of Statis-
tics [5]. Somewhat in the same frame of mind as
Freud who, in his Project for a Scientific Psychology
of 1895, attempted to characterize his emerging ideas
about psychoanalysis in terms of current medical

and physiological knowledge, Savage first of all laid
out his ideas on personal probability and utility and
then attempted to reinterpret classical statistical infer-
ence using these new concepts. Again, like Freud, he
admitted defeat over the project, but only in the pref-
ace to the second edition! The book also shows the
significance of Bruno de Finetti’s work on subjec-
tive probability and his key notion of exchangeability
to the power and novelty of the approach. From a
realization of the drawbacks of all nonpersonalis-
tic orientations to probability and inference, Savage
gradually developed an alternative, Bayesian form of
inference, where the personally assessed prior prob-
abilities of events are transformed into probabilities
a posteriori in the light of new information, also per-
sonally assessed. The implications of this new form of
inference, and the statistical novelties that flow from
it, have not yet been fully realized or worked through
and are likely to absorb the energies of statisticians
for some time to come.

For Savage himself, the Foundations represented
something of a high point, although he was to publish
an important book with Dubins, which recast gambles
as a form of stochastic or probabilistic process [1].
He also moved to the University of Michigan in
1960, and then finally to Yale where he stayed
until his comparatively early death at the age of 53.
Savage is important not only for his own work but
also because he introduced American (and British)
statistics to de Finetti and hence to the possibility
of an alternative and powerful form of statistical
modeling and inference.
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Scales of Measurement

The behavioral scientist who speaks of ‘scales of
measurement’ almost certainly is thinking of the
hierarchy of measurement scales proposed by psy-
chophysicist S. S. Stevens [5.] A scale was said to be
created by specifying the rules by which numbers are
assigned to objects or events in such a way that there
will be a one-to-one correspondence between some
of the properties of the measured things and some of
the properties of the measurements. Stevens defined
four different types of scales, nominal, ordinal, inter-
val, and ratio, based on the extent to which empir-
ical relationships among the measured objects or
events correspond to numerical relationships among
the measurements (see Measurement: Overview).

If the measurement rules are such that the mea-
surements can be used to establish the equivalence
of objects with respect to the measured characteristic,
then the scale is said to be nominal. As an example
of a nominal scale, consider the assignment of the
number 1 to all pets that are cats, 2 for dogs, and 3
for other types of pets.

If, in addition to the ability to establish equiva-
lence, the rules allow one to establish order of the
measured characteristic, then the scale is considered
to be an ordinal scale. In Table 1, imagine that each
‘o’ in the first row represents a bead and that each
of the beads is identical in mass. The numbers in
the rows below represent measurements of the mass
of the strings of beads. For Scale O, the order of
the assigned numbers is identical to the order of the
objects’ masses, so the scale is ordinal.

Notice that Scale O does not allow one to establish
equivalence of differences. Objects A and B differ
in mass by the same amount as objects B and C,
but the difference in the numerical measurements for
objects A and B is not the same as that for B and
C. With Scale I, one can determine equivalence of
differences. The difference in mass between objects

Table 1 Illustration of Stevens’ Measurement Rules

Object A B C D E

Beads o oo oooo oooooooo
Scale O −1.2 0 2 3 6
Scale I −2 0 2 6 14
Scale R 0 2 4 8 16

A and B is equal to the difference in mass between
objects B and C, just as the difference between the
measurements of objects A and B is equal to the
difference in measurements between objects B and
C. A scale that allows one to establish equivalence,
order, and equivalence of differences is called an
interval scale.

Scale I allows one to establish equivalence of
differences but not of ratios. Object D has twice the
mass of object C, and object E has twice the mass
of the object D, but the ratio of the measurements
for objects D/C does not equal that for objects E/D.
Equivalence of ratios can, however, be determined
with Scale R. A scale that allows one to establish
equivalence, order, equivalence of differences, and
equivalence of ratios is called a ratio scale.

Stevens opined that the four scales are best char-
acterized by the types of transformations that can be
applied to them without distorting the structure of the
scale. With a nominal scale, one can substitute any
new set of numbers (or other symbols) for the old
set without destroying the ability to establish equiva-
lence. For example, instead of using ‘1’, ‘2’, and ‘3’
to represent cats, dogs, and other types of pets, we
could use ‘A’, ‘B’, and ‘C’. With an ordinal scale, one
can apply any order-preserving transformation (such
as ranking) and still have an ordinal scale. With an
interval scale, only a positive linear transformation
will produce another interval scale. With a ratio scale,
only multiplying the measurements by a positive con-
stant will produce another ratio scale.

Stevens’s scales of measurement can be thought of
in terms of the nature of the relationship between the
observed measurements and the true scores (the true
amounts of the measured characteristic, that is, scores
on the underlying construct or latent variable).
Winkler and Hays [8] presented the following list of
criteria used to determine scale of measurement:

1. Two things will receive different measurements
only if they are truly nonequivalent on the
measured characteristic.

2. Object A will receive a larger score than does
object B only if object A truly has more of
the measured characteristic than does object B.
This will be the case when the measurements
are related to the true scores by a positive
monotonic function.

3. Where Ti represents the true amount of the
measured characteristic for object i, and Mi
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represents the score obtained when measuring
object i, Mi = a + bTi , b > 0. That is, the
measurements are a positive linear function of
the true scores.

4. Mi = a + bTi , b > 0, a = 0. That is, the mea-
surements are a positive linear function of the
true scores, and the intercept is zero. The zero
intercept is often called a ‘true zero point’ – an
object that receives a score of zero has absolutely
none of the measured attribute.

To be ratio, a scale must satisfy all four of the
criteria listed above; to be interval, only the first three;
to be ordinal, only the first two; to be nominal, only
the first.

In addition to defining four scales of measurement,
Stevens argued that the type of statistics that are
‘permissible’ on a set of scores is determined, in
part, by the scale of measurement. Consider Stevens’s
recommendations regarding measures of location.
The mode is permissible for any scale, even the
nominal scale. If there are 20 cats, 15 dogs, and 12
pets of other types in the shop, cats are the modal
pet whether we represent cats, dogs, and others with
the numerals 1, 2, and 3, or 1, 4, and 9, or any other
three numerals. The median is permissible only for
scales that are at least ordinal. It does not matter
whether we measure the mass of the pets in the shop
in grams, kilograms, or simple ranks – the computed
median will represent the same amount of mass with
any positive monotonic transformation of the true
masses. The mean is permissible only for scales that
are at least interval. Imagine that we have five pets,
named A, B, C, D, and E. Their true masses are
1, 2, 3, 6, and 18, respectively, for a mean of 6.
Pet D has a mass exactly equal to the mean mass.
Suppose our interval data for these pets is defined by
M = 10 + 2T . The observed scores are 12, 14, 16,
22, and 46, respectively, for a mean of 22. Again, pet
D has a mass exactly equal to the mean mass. Now
suppose we have ordinal data, such as simple ranks.
The observed scores are 1, 2, 3, 4, and 5, respectively,
for a mean of 3. Now it is pet C that appears to have
a mass exactly equal to the mean mass, but that is
not true.

Stevens’s belief that the scale of measurement
should be considered when choosing which statisti-
cal analysis to employ (the measurement view) was
embraced by some and rejected by others. Some of
the former authored statistics texts that taught social

scientists to consider scale of measurement of great
importance when selecting an appropriate statistical
analysis [2]. Most controversial was the suggestion
that parametric statistics require at least interval level
data but that nonparametric statistics were permissi-
ble with ordinal data. Many statisticians attacked the
measurement view [2, 7], while others defended it [3,
6]. Those opposed to the measurement view argued
that the only assumptions necessary when using para-
metric statistics are mathematical, such as normality
and homogeneity of variance. Those favoring the
measurement view argued that behavioral researchers
are interested in drawing conclusions about under-
lying constructs, not just observed variables, and
accordingly they must consider the scale of measure-
ment, that is, the nature of the relationship between
true scores and observed scores.

Imagine that we are interested in testing the
hypothesis that the mean aggressiveness of cats is
identical to the mean aggressiveness of dogs and
that this hypothesis is absolutely true with respect
to the latent variable. If the relationship between
our measurements and the true scores is not linear,
the population means on our measurement variable
may well not be equivalent. Accordingly, testing
hypotheses about the means of latent variables seems
more risky with noninterval data than with interval
data. The real fly in the ointment here is that one
never really knows with certainty the nature of
the relationship between the latent variable and the
measured variable – for my example, what is the
nature of the function relating common measures
of animal aggressiveness with the ‘true’ amounts
of aggressiveness? How can one ever know with
confidence if such measurements represent interval
data or not? In some circumstances, one need not
worry about whether or not the data are interval. If
one assumes normality and homogeneity of variance,
then differences in the means of an observed variable
do indicate that the means on the latent variable also
differ, regardless of whether the measurements are
interval or merely ordinal [1].

One’s attitude to the relationship between scale of
measurement and the choice of an appropriate sta-
tistical analysis may be determined by one’s more
basic ideas about the nature of measurement [4].
Someone who believes that useful measurements are
those that capture interesting empirical relationships
among the measured objects or events (representa-
tional theory) will argue that scale of measurement is
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an important characteristic to consider when choosing
a statistical analysis, at least when conclusions are to
be scale-free. The operationist, by contrast, believes
that measurements are always scale-specific, and thus
choice of statistical analysis is unrelated to scale of
measurement.

Ultimately, one’s decision about whether a set of
data represents interval or merely ordinal measure-
ment is largely a matter of faith. When one counts
number of bites, aggressive postures, and submis-
sive postures of fighting mice and combines them
into a composite measure of aggressiveness, what
is the nature of the relationship between these mea-
surements and the ‘true’ amounts of aggressiveness
displayed by these animals in ‘concrete reality’? Is
the relationship linear or not? How could one ever
answer such a metaphysical question with certainty?
One way to evade this dilemma is to treat reality
as being constructed or invented rather than discov-
ered and then argue that the results of the parametric
statistical analysis apply only to that ‘abstract real-
ity’ which is a linear function of our measurements.
Such a defining of ‘reality’ in terms of the observed
variables is not much different from a similar device
often employed by applied statisticians, defining a
population from a sample – the population for which
these statistical inferences are made is that popula-
tion for which this sample could be considered to be
a random sample.

References

[1] Davison, M.L. & Sharma, A.R. (1988). Parametric statis-
tics and levels of measurement, Psychological Bulletin
104, 137–144.

[2] Gaito, J. (1980). Measurement scales and statistics: resur-
gence of an old misconception, Psychological Bulletin 87,
564–567.

[3] Maxwell, S.E. & Delaney, H.D. (1985). Measurement and
statistics: an examination of construct validity, Psycholog-
ical Bulletin 97, 85–93.

[4] Michell, J. (1986). Measurement scales and statistics: a
clash of paradigms, Psychological Bulletin 100, 398–407.

[5] Stevens, S.S. (1951). Mathematics, measurement, and
psychophysics, in Handbook of Experimental Psychology,
S.S. Stevens, ed., Wiley, New York, pp. 1–49.

[6] Townsend, J.T. & Ashby, F.G. (1984). Measurement
scales and statistics: the misconception misconceived,
Psychological Bulletin 96, 394–401.

[7] Velleman, P.F. & Wilkinson, L. (1993). Nominal, ordinal,
interval, and ratio typologies are misleading, The Ameri-
can Statistician 47, 65–72.

[8] Winkler, R.L. & Hays, W.L. (1975). Statistics: Probabil-
ity, Inference, and Decision, 2nd Edition, Holt Rinehart
& Winston, New York.

KARL L. WUENSCH



Scaling Asymmetric Matrices

YOSHIO TAKANE

Volume 4, pp. 1787–1790

in

Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

 John Wiley & Sons, Ltd, Chichester, 2005



Scaling Asymmetric
Matrices

Tables with the same number of rows and columns are
called square tables. In square tables, corresponding
rows and columns often represent the same entities
(objects, stimuli, variables, and so on). For example,
the ith row of the table represents stimulus i, and
the ith column also represents the same stimulus i.
Let xij denote the element in the ith row and the j th
column of the table. (We often call it ij th element
of the table.) We use X (in matrix form) to denote
the entire table collectively. Element xij indicates
(the strength of) some kind of relationship between
the row entity (stimulus i) and the column entity
(stimulus j ). Square tables, in which xij �= xji for
some combinations of i and j , are called asymmetric
tables. In matrix notation, this is written as X′ �= X,
where X′ indicates the transpose of X.

Asymmetric tables arise in a number of different
guises. In some cases, the kind of relationship rep-
resented in the table is antisymmetric. For example,
suppose you have a set of stimuli, and you ask a
group of subjects whether they prefer stimulus i or
j for each pair of stimuli. Since j cannot be pre-
ferred to i if i is preferred to j , the preference
choice constitutes an antisymmetric relationship. Let
xij denote the number of times i is preferred to j .
Tables representing antisymmetric relationships are
usually asymmetric. These types of tables are often
skew-symmetric, or can easily be turned into one
by a simple transformation (e.g., yij = log(xij /xji)).
In the skew symmetric table, yji = −yij (Y

′ = −Y ).
Skew symmetric data, such as the one just described,
are often represented by the difference between the
preference values of the two stimuli involved. Let
ui represent the preference value of stimulus i. Then,
yij = ui − uj . Case V of Thurstone’s law of compar-
ative judgment [8], and Bradley-Terry-Luce (BTL)
model [1, 7] are examples of this class of models.
The scaling problem here, is to find estimates of ui’s,
given a set of observed values of yij ’s.

Here is an example: The top panel of Table 1
gives observed choice probabilities among four music
composers, labeled as B, H, M and S. Numbers in the
table indicate the proportions of times row composers
are preferred to column composers. Let us apply the
BTL model to this data set. The second panel of

Table 1 The BTL model applied to preference choice data
involving four music composers

Observed choice probabilities

B H M S

B .500 .895 .726 .895
H .105 .500 .147 .453
M .274 .853 .500 .811
S .105 .547 .189 .500

Matrix of yij = log(xij /xji )

B 0 2.143 .974 2.143
H −2.143 0 −1.758 −.189
M −.974 1.758 0 1.457
S −2.143 .189 −1.457 0

Estimated preference values

1.315 −1.022 .560 −0.853

the table gives the skew symmetric table obtained
by applying the transformation, yij = log(xij /xji),
to the observed choice probabilities. Least squares
estimates of preference values for the four composers
are obtained by row means of this skew symmetric
table. B is the most preferred, M the second, then S,
and H the least. Something similar can also be done
with Thurstone’s Case V model. The only difference
it makes is that normal quantile (deviation) scores
are obtained, when the matrix of the observed choice
probabilities is converted into a skew symmetric
matrix. The rest of the procedure remains essentially
the same as in the BTL model.

Asymmetric tables can also arise from proxim-
ity relationships, which are often symmetric. In some
cases, they exhibit asymmetry, however. For exam-
ple, you may ask a group of subjects to identify
the stimulus presented out of n possible stimuli, and
count the number of times stimulus i is ‘confused’
with stimulus j . This is called stimulus recognition
(or identification) data, and it is usually asymmetric.
There are a number of other examples of asymmetric
proximity data such as mobility tables, journal cita-
tion data, brand loyalty data, discrete panel data on
two occasions, and so on. In this case, the challenge
is in explaining the asymmetry in the tables.

A variety of models have been proposed for asym-
metric proximity data. Perhaps the simplest model is
the quasi-symmetry model (see Quasi-symmetry in
Contingency Tables). The quasi-symmetry is char-
acterized by xij = aibj cij , where ai and bj are row
and column marginal effects, and cij = cji indicates
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a symmetric similarity between i and j . This model
postulates that after removing the marginal effects,
the remaining relation is symmetric. (The special
case, in which ai = bi for all i, leads to a full
symmetric model.) The quasi-symmetry also satisfies
the cycle condition stated as xij xjkxki = xjixkj xik .
In some cases, the symmetric similarity parameter,
cij , may further be represented by a simpler model,
cij = exp(−dij ), or cij = exp(−d2

ij ), where dij is the
Euclidean distance between stimuli i and j , repre-
sented as points in a multidimensional space.

DEDICOM (DEcomposing DIrectional COMpo-
nents, [4]) attempts to explain asymmetric relation-
ships between n stimuli by a smaller number of
asymmetric relationships. The DEDICOM model is
written as X = ARA′, where R is a square asym-
metric matrix of order r (capturing asymmetric
relationships between r components, where r is
assumed much smaller than n), and A is an n by r

matrix that relates the latent asymmetric relationships
among the r components to the observed asymmetric
relationships among the n stimuli. Several algorithms
have been developed to fit the DEDICOM model.
To illustrate, the DEDICOM model is applied to
a table of car switching frequencies among 16
types of cars [4]. (This table indicates frequencies
with which a purchase of one type of car is fol-
lowed by a purchase of another type by the same
consumer.) Table 2 reports the analysis results [5].
Labels of the 16 car types consist of two com-
ponents. The first three characters mainly indicate
size (SUB = subcompact, SMA = small specialty,
COM = compact, MID = midsize, STD = standard,
and LUX = luxury), and the fourth character indi-
cates mainly origin or price (D = domestic, C =
captive imports, I = imports, L = low price, M =
medium price, and S = specialty). The top portion
of the table gives the estimated A matrix (nor-
malized so that A′A = I ), from which we may
deduce that the first component (dimension) rep-
resents plain large and mid-size cars, the second
component represents fancy large cars, and the third
represents small/specialty cars. The bottom portion
of the table represents the estimated R matrix that
captures asymmetry relationships among the three
components. There are more switches from 1 to 3,
1 to 2, and 2 to 3 than the other way round. This
three-component DEDICOM model captures 86.4%
of the total SS (sum of squares) in the original data.

Table 2 DEDICOM applied to car switch-
ing data

Matrix A

Dimension

Car Class 1 2 3

SUBD .13 −.02 .36
SUBC .02 .00 .03
SUBI .03 .01 .30
SMAD .01 .03 .53
SMAC .00 .00 .00
SMAI .00 .01 .09
COML .24 −.11 .17
COMM .10 −.01 .06
COMI .02 .00 .03
MIDD .54 .00 .12
MIDI .02 .00 .02
MIDS .09 .24 .58
STDL .68 −.08 −.18
STDM .32 .67 −.27
LUXD −.23 .69 .05
LUXI .00 .02 .01

Matrix R (divided by 1000)

dim. 1 127 57 78
dim. 2 26 92 23
dim. 3 17 12 75

Any asymmetric table can be decomposed into the
sum of a symmetric matrix (Xs), and a skew symmet-
ric matrix (Xsk). That is, X = Xs + Xsk , where Xs =
(X + X′)/2, and Xsk = (X − X′)/2. The two parts
are often analyzed separately. Xs is often analyzed
by a symmetric model (such as the inner product
model or a distance model like those for cij described
above). Xsk , on the other hand, is either treated like a
skew symmetric matrix arising from an antisymmet-
ric relationship, or by CASK (Canonical Analysis of
SKew symmetric data, [3]). The latter decomposes
Xsk in the form of AKA′, where K consists of 2 by

2 diagonal blocks of the form

(
0 kl

−kl 0

)
for the lth

block. This representation can be analytically derived
from the singular value decomposition of Xsk .

Generalized GIPSCAL [6] and HCM (Hermitian
Canonical Model, [2]) analyze both parts (Xs and
Xsk) simultaneously. The former represents X by
B(Ir + K)B ′ (where the BB ′ part represents Xs and
the BKB ′ part represents Xsk), under the assumption
that the skew symmetric part of R (that is,, (R −
R′)/2) in DEDICOM is positive definite. The HCM
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first forms an hermitian matrix, H , by H = Xs +
iXsk (where i is a symbol for an imaginary number,
i = √−1), and obtains the eigenvalue-vector decom-
position of H .
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Scaling of Preferential
Choice

Choice data can be collected by either observing
choices in the daily context of the decision makers or
by asking a person directly to state their preferences
for a single or multiple sets of options. Both data
types, which are referred to as revealed and stated
preference data (Louviere et al. [5]), may yield sim-
ilar outcomes. For instance, in an election votes for
political candidates represent revealed choice data.
Rankings of the same candidates in a survey shortly
before the election are an example for stated choice
data. The stated preference data may prove useful
in predicting the election outcome and in provid-
ing more information about the preference differences
among the candidates than would be available from
the election results alone.

Scaling models serve the dual purpose to summa-
rize stated and revealed choice data and to facilitate
the forecasting of choices made by decision makers
facing possibly new or different variants of the choice
options (Marshall & Bradlow [9]). The representa-
tion determined by the scaling methods can provide
useful information for identifying both option char-
acteristics that influence the choices and systematic
sources of individual differences in the evaluation of
these option characteristics. For example, in the elec-
tion study, voters may base their decision on a set
of attributes (e.g., integrity, leadership) but differ in
the weights they assign to the attribute values for the
different candidates. An application of scaling mod-
els to the voting data may both reveal these attributes
and provide insights about how voters differ in their
attribute assessments of the candidates.

The relationship between the attribute values and
the corresponding preference judgments may be
monotonic or nonmonotonic. Thus, decision makers
may assess ‘higher’ attribute values as more favor-
able than ‘lower’ ones (e.g., quality of a product), or
they may prefer a certain quantity of an attribute and
dislike deviations in either directions from it (e.g.,
sweetness of a drink). In the latter case, individuals
choose the option that is closest to their ‘ideal’ option
where closeness is a function of the distance between
the choice option and the person – specific ideal (De
Leuuw [2]). Distance between choice options may be
defined in various ways. Applications in the literature

include approaches based on the Euclidean measure
in a continuous attribute space and tree structures in
which both choice and ideal options are represented
by nodes (Carroll & DeSoete [1]). In either case, the
interpretation of individual preference differences is
much simplified provided decision makers use the
same set of attributes in assessing the choice options.

Thurstone’s [14] random-utility approach has
been highly influential in the development of many
scaling models. Noting that choices by the same
person may vary even under seemingly identical
conditions, Thurstone argued that choices could be
described as realizations of random variables that
represent the options’ effects on a person’s sensory
apparatus. According to this framework, a choice of
an option i by decision maker j is determined by
an unobserved utility assessment, υij , that can be
decomposed into a systematic and a random part:
υij = µij + εij . The person-specific item mean µij

is assumed to stay the same in repeated evalua-
tions of the item but the random contribution εij

varies from evaluation to evaluation according to
some distribution. Thurstone (1927) postulated that
the εij ’s follow a normal distribution. The assump-
tion that the εij ’s are independently Gumbel or
Gamma distributed leads to scaling models proposed
by Luce [6] and Stern [12]), respectively. Marden [8]
and Takane [13] provide general discussions of these
different specifications.

According to the latent utility framework, choos-
ing the most preferred option is equivalent to select-
ing the option with the largest utility. Thus, an
important feature of this choice process is that it is
comparative in nature. A selected option may be the
best one out of a set of available options but it may be
rejected in favor of other options that are added sub-
sequently to the set of options. Because choices are
inherently comparative, the origin of the utility scale
cannot be identified on the basis of the choices alone.
One item may be preferred to another one but this
result does not allow any conclusions about whether
either of the items are attractive or unattractive.

One may question the use of randomness as a
device to represent factors that determine the forma-
tion of preferences but are unknown to the observer.
However, because, in general, it is not feasible to
identify or measure all relevant choice determinants
(such as all attributes of the choice options of the
person choosing, or of environmental factors), it is
not possible to answer conclusively the question of
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whether the choice process is inherently random or
is determined by a multitude of different factors.
Fortunately, for the development of scaling models
this issue is not critical because either position arrives
at the same conclusion that choices are described best
in terms of their probabilities of occurrence (Manski
& McFadden [7]).

In recent years, a number of scaling models have
been developed that by building on Thurstone’s
random-utility approach take into account systematic
time and individual-difference effects (Keane [4]).
Concurrently, with these developments experimental
research in judgment and decision making demon-
strated that choice processes are subject to many
influences that go beyond the simple evaluations of
items. For example, different framings of the same
choice options may trigger different associations and
evaluations with the results that seemingly minor
changes in the phrasing of a question or in the pre-
sentation format can lead to dramatic changes in the
response behavior of a person (Kahneman [3]). One
major conclusion of this research is that the tradi-
tional assumption of respondents having well-defined
preferences should be viewed as a hypothesis that
needs to be tested as part of any modeling efforts.

Preference Data

Typically, stated choice data are collected in the form
of incomplete and/or partial rankings. Consider a
set of J choice alternatives (j = 1, . . . , J ) and n

decision makers (i = 1, . . . , n). For each decision
maker i and choice alternative j, a vector xij of
observed variables is available that describe partially
the pair (i, j ). Incomplete ranking data are obtained
when a decision maker considers only a subset of the
choice options. For example, in the method of paired
comparison, two choice options are presented at a
time, and the decision maker is asked to select the
more preferred one. In contrast, in a partial ranking
task, a decision maker is confronted with all choice
options and asked to provide a ranking for a subset
of the J options. For instance, in the best–worst
method, a decision maker is instructed to select the
best and worst options out of the offered set of choice
options. Both partial and incomplete approaches can
be combined by offering multiple distinct subsets of
the choice options and obtain partial or complete
rankings for each of them. For instance, a judge may

be presented with all
(
J

2

)
option pairs sequentially and

asked to select the more preferred item in each case.
Presenting choice options in multiple blocks has

several advantages. First, the judgmental task is sim-
plified since only a few options need to be considered
at a time. Second, it is possible to investigate whether
judges are consistent in their evaluations of the choice
options. For example, if options are presented in
pairs, one can investigate whether respondents are
transitive in their comparisons, that is, whether they
prefer j to l when they choose j over k and k

over l. Third, obtaining multiple judgments from each
decision maker simplifies analyses of how individu-
als differ in their preferences for the choice options.
Individual-difference analyses are discussed in more
detail in the next section. These advantages need to be
balanced with possible boredom and learning effects
that may affect a person’s evaluation of the choice
options when the number of blocks is large.

Revealed choice data differ from stated choice
data in a number of ways. Perhaps, most importantly
the set of choice alternatives may be unknown and
may vary among decision makers in systematic ways.
The lack of knowledge of the considered choice set
complicates any inferences about the relative advan-
tages of the selected options. Moreover, only top
choices are observed typically which provide little
information about the nonchosen options. Finally, the
timing and context of the revealed choices may vary
from person to person which reduces the interindivid-
ual comparability of the results. For these reasons, it
is useful frequently to combine revealed with stated
choice data to obtain a richer and more informative
understanding of the underlying preferences of the
decision makers.

Thurstonian Models for Preference Data

The choices made by person i for a single choice
set can be summarized by an ordering vector ri . For
instance, ri = (h, j, . . . , l, k) indicates that choice
option h is judged superior to option j which in
turn is judged superior to the remaining options, with
the least preferred option being k. The probability of
observing this ordering vector can be written as

Pr(ri = (h, j, . . . , l, k)|ξ )

= Pr[(υih − υij > 0) ∩ . . . ∩ (υil − υik > 0)],

(1)
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where ξ contains the parameters of the postulated
distribution function for υij . Let Ci be a (J −
1) × J contrast matrix that indicates the sign of
the differences among the ranked items for a given
ranking ri of J items. For example, for J = 3, and
the ordering vectors ri = (j, l, k) and ri ′ = (k, j, l),
the corresponding contrast matrices take on the form

Ci =
[

1 0 −1
0 −1 1

]
and Ci ′ =

[−1 1 0
1 0 −1

]
,

(2)

where the three columns of the contrast matrices
correspond to the items j , k, and l, respectively. (1)

can then be written as

Pr(ri |ξ ) = Pr(Ciυ i > 0), (3)

where υ i = (υi1, . . . , υiJ ) contains the option utility
assessments of person i. If, as proposed by Thur-
stone [14], the rankers’ judgments of the J items are
multivariate normal (see Catalogue of Probability
Density Functions) with mean vector µ and covari-
ance matrix � (see Correlation and Covariance
Matrices), the distribution of the pairwise differences
of the υ’s is also multivariate normal. Consequently,
the probability of observing the rank order vector ri

can be determined by evaluating an (J − 1)–variate
normal distribution,

Pr(ri |ξ ) = |�i |−
1
2

(2 π)
(J−1)

2

∫ ∞

0
· · ·

∫ ∞

0
exp{− 1

2 (δi − x)′�−1
i (δi − x)} dx, (4)

where δi = Ci µ and �i = Ci�C′
i . Both the mean

utilities and their covariances may be related to
observed covariates xij to identify systematic sources
of individual differences in the evaluation of the
choice options.

When a decision maker chooses among the options
for T choice sets, we obtain a (J × T ) order-
ing matrix Ri = (ri1, . . . , riT ) containing person’s i

rankings for each of the choice set. With multiple-
choice sets, it becomes possible to distinguish explic-
itly between within- and between-choice set vari-
ability in the evaluation of the choice options. Both
sources of variation are confounded when prefer-
ences for only a single choice set are elicited. For

example, when respondents compare sequentially all
possible pairs of choice options, T = (

J

2

)
, the proba-

bility of observing the ordering matrix Ri is obtained
by evaluating a

(
J

2

)
-dimensional normal distribution

function with mean vector Aiµ and covariance matrix
Ai�Ai + �. The rows of Ai contain the contrast vec-
tors cik corresponding to the choice outcome for the
k-th choice set and � is a diagonal matrix containing
the within-choice-set variances.

For large J and/or T , the evaluation of the normal
distribution function by numerical integration is not
feasible with current techniques. Fortunately, alter-
native methods are available based on Monte Carlo
Markov chain methods (see Markov Chain Monte
Carlo and Bayesian Statistics) (Yao et al. [16],
Tsai et al. [15]) or limited-information approxima-
tions (Maydeu-Olivares [10]) that can be used for
estimating the mean and covariance structure of
the choice options. Especially, limited-information
methods are sufficiently convenient from a compu-
tationally perspective to facilitate the application of
Thurstonian scaling models in routine work.

An Application: Modeling the Similarity
Structure of Values

An important issue in value research is to identify the
basic value dimensions and their underlying structure.
According to a prominent theory by Schwartz [11]
the primary content aspect of a value is the type of
goal it expresses. Based on extensive cross-cultural
research, this author identified 10 distinct values: [1]
power, [2] achievement, [3] hedonism, [4] stimula-
tion, [5] self-direction, [6] universalism, [7] benevo-
lence, [8] tradition, [9] conformity, and [10] security.
The circular pattern in Figure 1 displays the similarity
and polarity relationships among these values. The
closer any two values in either direction around the
circle, the more similar their underlying motivations.
More distant values are more antagonistic in their
underlying motivations. As a result of these hypothe-
sized relationships, one may expect that associations
among the value items exhibit systematic increases
and decreases depending on their closeness and their
degree of polarity.

To test this hypothesized value representation,
binary paired comparison data were collected from a
random sample of 338 students at a North-American
university. The students were asked to indicate for
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Figure 1 Hypothesized circumplex structure of ten moti-
vationally distinct types of values

each of the 45 pairs formed on the basis of the 10
values, which one was more important as a guiding
principle in their life. The respondents were highly
consistent in their importance evaluations with less
than 5% of the pairwise judgments being intransitive.

Figure 2 displays the first two principal compo-
nents of the estimated covariance matrix �̂ of the ten
values. Because the origin of the value scale cannot
be identified on the basis of the pairwise judgments,

the estimated coordinates may be rotated or shifted in
arbitrary ways, only the distances between the esti-
mated coordinates should be interpreted. Item posi-
tions that are closer to each other have a higher
covariance than points that are further apart. Consis-
tent with the circular value representation, the first
component contrasts self-enhancement values with
values describing self-transcendence and the sec-
ond component contrasts openness-to-change with
conservation values. However, the agreement with
the circumplex structure is far from perfect. Sev-
eral values, most notably ‘self-direction’ and ‘secu-
rity’, deviate systematically from their hypothesized
positions.

Concluding Remarks

Scaling models are useful in providing parsimonious
descriptions of how individuals perceive and evaluate
choice options. However, preferences may not always
be well-defined and may depend on seemingly irrel-
evant contextual conditions (Kahneman [3]). Diverse
factors such as the framing of the choice task and the
set of offered options have been shown to influence
strongly choice outcomes. As a result, generalizations
of scaling results to different choice situations and
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Figure 2 The two major dimensions of the covariance matrix �̂ estimated from pairwise value judgments
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options require much care and frequently need to be
based on additional validation studies.
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Scatterplot Matrices

When researchers are interested in the relationships
between pairs of several continuous variables, they
often produce a series of scatterplots for each of the
pairs. It can be convenient to view these together on
a single screen or page using what is usually called a
scatterplot matrix (though sometimes referred to as a
draftman’s plot). Many statistical packages have this
facility. With k variables, there are k(k − 1)/2 pairs,
and therefore for even small numbers of variables
the number of scatterplots can be large. This means
each individual scatterplot on the display is small. An
example is shown in Figure 1.

Scatterplot matrices are useful for quickly ascer-
taining all the bivariate relationships, but because of
the size of the individual scatterplot it may be difficult
to fully understand the relationship. Some of the extra
facilities common for two variable scatterplots, such
as adding symbols and including confidence limits
on regression lines, would create too much clutter
in a scatterplot matrix. Here, we have included a
line for the linear regression and the univariate his-
tograms. Any more information would be difficult to
decipher.

Figure 1 just shows bivariate relationships. Some-
times, it is useful to look at the bivariate relationship
between two variables at different values or lev-
els of a third variable. In this case, we produce
a trellis display or casement display. Consider the
following study [3] in which participants heard lists
of semantically associated words and were played a
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Figure 1 A scatterplot matrix that shows the bivariate
relationships between two personality measures (DES –
dissociation, CFQ – cognitive failures questionnaire) and
impairment from secondary tasks on three working memory
tasks (VPT – visual patterns, DIGIT – digit span, CORSI –
Corsi block test). Data from [2]

piece of music. Later, they were asked to recall the
words, and how many times the participant recalled
a semantically related word that was not originally
presented (a lure) was recorded. Figure 2 shows the
relationship between the number of lures recalled
and how much the participant liked the music. There
were two experimental conditions. In the first, par-
ticipants were told to recall as many as words as
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Figure 2 The relationship between liking the music and the number of critical lures recalled depends on the recall task.
A random jitter has been added to the points that all are visible. Data from [3]
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they could. The more the participant liked the music,
the fewer lures were recalled. The argument is that
the music put these people in a good mood so they
felt satisfied with their recall so did not try as hard.
In the second condition, participants were told to
recall as many as words as they felt like. Here,
the more people liked the music, the more lures
they recalled, that is, if they were happy because
of the music, they continued to feel like recalling
words.

Trellis scatterplots can be used with more than one
conditioning variable. However, with more than two
conditioning variables, they can be difficult to inter-
pret. If multivariate relationships are of interest, other
techniques, such as three-dimensional scatterplots
and bubble plots, are more appropriate.

A useful source for further information on scatter-
plot matrices is [1].
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Scatterplot Smoothers

The scatterplot is an excellent first exploratory graph
with which to study the dependence of two variables.
Often, understanding of the relationship between the
two variables is aided by adding the result of a simple
linear fit to the plot. Figure 1 shows such a plot
for the average oral vocabulary size of children at
various ages.

Here, the linear fit does not seem adequate to
describe the growth in vocabulary size with increas-
ing age, and some form of polynomial curve might
be more appropriate. Since the plotted observations
show a tendency to an ‘S’ shape, a cubic might be
a possibility. If such a curve is fitted to the data, it
appears to fit the available data well but between the
observations, it rises and then drops again. Conse-
quently, as a model of language acquisition, it leads
to the absurd implication that newborns have large
vocabularies, which they lose by the age on one, then
their vocabulary increases until the age of six, when
children start to forget words rather rapidly! Not a
very sensible model.

An alternative to using parametric curves to fit
bivariate data is to use a nonparametric approach in
which we allow the data themselves to suggest the
appropriate functional form. The simplest of these
alternatives is to use a locally weighted regression or
loess fit, first suggested by Cleveland [1]. In essence,
this approach assumes that the variables x and y are
related by the equation

yi = g(xi)+ ∈i , (1)

where g is a ‘smooth’ function and the ∈i are
random variables with mean zero and constant scale.
Values ŷi used to ‘estimate’ the yi at each xi are
found by fitting polynomials using weighted least
squares with large weights for points near to xi

and small weights otherwise. So smoothing takes
place essentially by local averaging of the y-values
of observations having predictor values close to
a target value. Adding such a plot to the data
is often a useful alternative to the more familiar
parametric curves such as simple linear or polynomial
regression fits (see Multiple Linear Regression;
Polynomial Model) when the bivariate data plotted
is too complex to be described by a simple parametric
family. Figure 2 shows the result of fitting a locally
weighted regression curve to the vocabulary data. The
locally weighted regression fit is able to follow the
nonlinearity in the data although the difference in the
two curves is not great.

An alternative smoother that can often usefully
be applied to bivariate data is some form of spline
function. (A spline is a term for a flexible strip of
metal or rubber used by a draftsman to draw curves.)
Spline functions are polynomials within intervals of
the x-variable that are connected across different
values of x. Figure 3, for example, shows a linear
spline function, that is a piecewise linear function, of
the form

f (x) = β0 + β1X + β2(X − a)+

+ β3(X − b)+ + β4(X − c)+
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Figure 1 Scatterplot of average vocabulary score against age showing linear regression fit
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5

4

3

2

0 1 2 3 4 5 6

f(
X

)

X

Figure 3 A linear spline function with knots at a = 1,
b = 3, c = 5. Taken with permission from [3]

where (u)+ = u u > 0

= 0 u ≤ 0, (2)

The interval endpoints, a, b, and c are called
knots. The number of knots can vary according
to the amount of data available for fitting the
function.

The linear spline is simple and can approxi-
mate some relationships, but it is not smooth and
so will not fit highly curved functions well. The
problem is overcome by using piecewise polyno-
mials, in particular, cubics, which have been found
to have nice properties with good ability to fit
a variety of complex relationships. The result is

a cubic spline that arises formally by seeking a
smooth curve g(x) to summarize the dependence of
y on x, which minimizes the rather daunting expres-
sion:

∑
[yi − g(xi)]

2 + λ

∫
g′′(x)2dx, (3)

where g′′(x) represents the second derivative of
g(x) with respect to x. Although when written for-
mally this criterion looks a little formidable, it is
really nothing more than an effort to govern the
trade-off between the goodness-of-fit of the data
(as measured by

∑
[yi − g(xi)]

2) and the ‘wig-
gliness’ or departure of linearity of g measured
by

∫
g′′(x)2dx; for a linear function, this part of

(3) would be zero. The parameter λ governs the
smoothness of g, with larger values resulting in a
smoother curve.

The solution to (3) is a cubic spline, that is, a
series of cubic polynomials joined at the unique
observed values of the explanatory variable, xi .
(For more details, see [2]). Figure 4 shows a fur-
ther scatterplot of the vocabulary data now containing
linear regression, locally weighted regression, and
spline smoother fits. When interpolating a number
of points, a spline can be a much better solution
than a polynomial interpolant, since the polynomial
can oscillate wildly to hit all the points; polyno-
mial fit the data globally, while splines fit the data
locally.

Locally weighted regressions and spline smoothers
are the basis of generalized additive models.
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Figure 4 Scatterplot of vocabulary score against age showing linear regression, locally weighted regression, and spline fits
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Scatterplots

Scatterplots are typically used to display the relation-
ship, or association, between two variables. Examples
include the relationship between age and salary and
that between inches of rainfall in a month and the
number of car accidents. Both variables need to be
measured on some continuum or scale. If there is a
natural response variable or a predicted variable, then
it should be placed on the y-axis. For example, age
would be placed on the x-axis and salary on the y-
axis because it is likely that you would hypothesize
that salary is, in part, dependant on age rather than
the other way round.

Consider the following example. The estimated
number of days in which students expect to take
to complete an essay is compared with the actual
number of days taken to complete the essay. The
scatterplot in Figure 1 shows the relationship between
the estimated and actual number of days.

Most statistical packages allow various options
to increase the amount of information presented. In
Figure 1, a diagonal line is drawn, which corresponds
to positions where estimated number of days equals
actual number of days. Overestimators fall below the
diagonal, and underestimators fall above the diagonal.
You can see from this scatterplot that most students
underestimated the time it took them to complete the
essay. Box plots are also included here to provide
univariate information.

Other possible options include adding different
regression lines to the graph, having the size of the
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Figure 1 A scatterplot of estimated and actual essay
completion times with overlapping case points

points represent their impact on the regression line,
using ‘sunflowers’, and ‘jittering’. The use of the
sunflowers option and jittering option allow multi-
ple observations falling on the same location of the
plot to be counted. Consider Figures 2(a), (b), and
(c). Participants were presented with a cue event from
their own autobiography and were asked whether that
event prompted any other memory [2]. Because par-
ticipants did this for several events, there were 1865
date estimates in total. If a standard scatterplot is pro-
duced comparing the year of the event with the year
of the cueing event, the result is Figure 2(a). Because
of the large number of events, and the fact that many
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Figure 2 Scatterplots comparing the year of a remembered event with the year of the event that was used to cue the
memory. Adapted from Wright, D.B. & Nunn, J.A. (2000). Similarities within event clusters in autobiographical memory,
Applied Cognitive Psychology 14, 479–489, with permission from John Wiley & Sons Ltd
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overlap, this graph does not allow the reader to deter-
mine how many events are represented by each point.

In Figure 2(b), each data point has had a ran-
dom number (uniformly distributed between -0.45
and +0.45) added to both its horizontal and vertical
component. The result is that coordinates with more
data points have more dots around them. Jittering is
particularly useful with large data sets, like this one.
Figure 2(c) shows the sunflower option. Here, indi-
vidual coordinates are represented with sunflowers.
The number of petals represents the number of data
points. This option is more useful with smaller data
sets. More information on jittering and sunflowers
can be found in, for example, [1].

It is important to realize that a scatterplot does
not summarize the data; it shows each case in terms

of its value on variable x and its value on variable
y. Therefore, the choice of regression line and the
addition of other summary information can be vital
for communicating the main features in your data.
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Scheffé, Henry

Born: April 11, 1907, in New York, USA.
Died: July 5, 1977, in California, USA.

Born in New York City, Scheffé attended elementary
school in New York and graduated from high school
in Islip, Long Island, in 1924. In 1928, he went to
study mathematics at the University of Wisconsin
receiving his B.A. in 1931. Four years later, he was
awarded a Ph.D. for his thesis entitled ‘Asymptotic
solutions of certain linear differential equations in
which the coefficient of the parameter may have a
zero’. Immediately after completing his doctorate,
Scheffé began a career as a university teacher in pure
mathematics. It was not until 1941 that Scheffé’s
interests moved to statistics and he joined Samuel
Wilks and his statistics team at Princeton. From here
he moved to the University of California, and then
to Columbia University where he became chair of
the statistics department. In 1953, he left Columbia
for Berkeley where he remained until his retirement
in 1974.

Much of Scheffé’s research was concerned with
particular aspects of the linear model (e.g., [2]),
particularly, of course, the analysis of variance,

resulting in 1959 in the publication of his classic
work, The Analysis of Variance, described in [1] in
the following glowing terms:

Its careful exposition of the different principal mod-
els, their analyses, and the performance of the pro-
cedures when the model assumptions do not hold is
exemplary, and the book continues to be a standard
list and reference.

Scheffé’s book has had a major impact on generations
of statisticians and, indirectly, on many psychologists.
In 1999, the book was reprinted in the Wiley Classics
series [3].

During his career, Scheffé became vice president
of the American Statistical Association and president
of the International Statistical Institute and was
elected to many other statistical societies.

References

[1] Lehmann, E.L. (1990). Biography of Scheffé, Dictionary
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Second Order Factor
Analysis: Confirmatory

To motivate the discussion of confirmatory second-
order factor analysis, a basic illustration will be pro-
vided to highlight the salient features of the topic. For
pedagogical reason, the example will be used when
all the variables are measured and then it will be
repeated when some of the variables are not measured
or are latent. This contrast emphasizes the functional
similarities between these two approaches and asso-
ciates the commonly known regression analysis (see
Multiple Linear Regression) with the more complex
and less familiar factor analysis.

MEASURED VARIABLES. Assume that a random
sample of individuals from a specified population
has been assessed on Thurstone’s Primary Mental
Abilities (PMA) scales. Concretely, these abilities are
as follows:

Verbal Meaning (VRBM) – a vocabulary recall
ability test;
Word Grouping (WORG) – a test of vocabulary
recall ability;
Number Facility (NUMF) – a measure of arith-
metic reasoning ability;
Letter Series (LETS) – tests reasoning ability by
letter series; and
Number Series (NUMS) – a reasoning ability test
that uses number series.

Second, assume that the same individuals are mea-
sured on Horn and Cattell’s Crystallized and Fluid
Intelligences. Specifically, these two intelligences are
as follows:

Crystallized Intelligence (GC) – measured learned
or stored knowledge; and
Fluid Intelligence (GF) – evaluates abstract reason-
ing capabilities.

Third, consider that once again these individu-
als are tested on Spearman’s General Intelligence
(G), which is a global construct of general ability or
intelligence. Notice that in moving from the Primary
Mental Abilities to Crystallized and Fluid Intelli-
gences to General Intelligence, there is a movement
from more specific to more general constructs, which
could be considered nested, that is, the more specific

variables are a subset of the more general variables.
Finally, it is implicit that these variables are infallible
or are assessed without measurement error.

First-order regression analysis. If these eight vari-
ables were all assessed, then one could evaluate how
well the more general Crystallized (GC) and Fluid
(GF) Intelligences predict the Primary Mental Abili-
ties using multivariate multiple regression analysis.
Precisely, the regression of the PMA scales onto
Crystallized and Fluid Intelligences become

VRBM = β1
0 + β1

1 GC + β1
2 GF + e1,

WORG = β2
0 + β2

1 GC + β2
2 GF + e2,

NUMF = β3
0 + β3

1 GC + β3
2 GF + e3,

LETS = β4
0 + β4

1 GC + β4
2 GF + e4,

and NUMS = β5
0 + β5

1 GC + β5
2 GF + e5, (1)

where β
j

0 are the intercepts for predicting the j th out-
come Primary Mental Abilities variable, and where
β

j

1 and β
j

2 are the partial regression coefficients
or slopes for predicting the j th outcome variable
from Crystallized and Fluid Intelligences, respec-
tively. Lastly, e1 to e5 are errors of prediction, that
is, what is not explained by the prediction equation
for each outcome variable.

Given knowledge of these variables, one could
speculate that Crystallized Intelligence would be
related to the Verbal Meaning and Word Group-
ing abilities, whereas Fluid Intelligence would pre-
dict the Number Facility, Letter Series, and Word
Grouping abilities. Hence, the regression coeffi-
cients, β1

1 , β2
1 , β3

2 , β4
2 , and β5

2 , would be substantial,
while, β1

2 , β2
2 , β3

1 , β4
1 , and β5

1 , would be relatively
much smaller.

Second-order regression analysis. Along this line
of development, Crystallized (GC) and Fluid (GF)
Intelligences could be predicted by General Intelli-
gence (G) by multivariate simple regression analysis.
Concretely, the regression equations are

GC = β6
0 + β6

1 G + e6

and GF = β7
0 + β7

1 G + e7, (2)

where β6
0 and β7

0 are the intercepts for predicting each
of the Crystallized and Fluid Intelligence outcome
variables, and where β6

1 and β7
1 are the partial

regression coefficients or slopes for predicting the
two outcome variables from General Intelligence
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respectively. Additionally, e6 and e7 again are errors
of prediction. Substantively, one might conjecture
that General Intelligence predicts Fluid Intelligence
more than it does Crystallized Intelligence, hence β6

1
would be less than β7

1 .
LATENT VARIABLES. Suppose that Fluid (gf) and

Crystallized (gc) Intelligences and General Intelli-
gence (g) are not observed or measured, but instead
they are latent variables. (Note that the labels on
these three variables have been changed from upper
to lower case to indicate that they are unobserved.)
Thus, the impact of these variables must be deter-
mined by latent variable or factor analysis. As before,
this analysis might be viewed in a two-step process:
A first-order and a second-order factor analysis.

First-order factor analysis. If the five PMA vari-
ables were assessed, then one could evaluate how
well the latent Crystallized (gc) and Fluid (gf) Intel-
ligences predict the Primary Mental Abilities using
a first-order factor analysis. (For details see Factor
Analysis: Confirmatory) Precisely, the regression
equations are

VRBM = τ 1
0 + λ1

1gc + λ1
2gf + ε1,

WORG = τ 2
0 + λ2

1gc + λ2
2gf + ε2,

NUMF = τ 3
0 + λ3

1gc + λ3
2gf + ε3,

LETS = τ 4
0 + λ4

1gc + λ4
2gf + ε4,

and NUMS = τ 5
0 + λ5

1gc + λ5
2gf + ε5, (3)

where τ
j

0 are the intercepts for predicting the j th
observed outcome Primary Mental Abilities variable,
and where λ

j

1 and λ
j

2 are the partial regression coef-
ficients or slopes for predicting the j th outcome
variable from unobserved Crystallized and Fluid
Intelligences, respectively. Unlike multiple regression
analysis, in factor analysis, the errors, ε1 to ε5, are
now called unique factors and each contain two enti-
ties, a specific factor and a measurement error. For
example, the unique factor, ε1, consists of a specific
factor that contains what is not predicted in Ver-
bal Meaning by Crystallized and Fluid Intelligences
and a measurement error induced by imprecision in
the assessment of Verbal Meaning. Notice that these
regression coefficients and errors have been relabeled
to emphasize that the predictors are now latent vari-
ables and to be consistent with the nomenclature used
in LISREL, a commonly used computer package for
these analyses (see Structural Equation Modeling:

Software), but that their interpretation is analogous
to those in the measured variable section.

As before, one could speculate that Crystallized
Intelligence would be related to the Verbal Meaning
and Word Grouping abilities, whereas Fluid Intel-
ligence would predict the Number Facility, Letter
Series, and Word Grouping abilities. Unfortunately,
unlike before, the (latent) variables or factors, gc
and gf, are unknown, which creates an indetermi-
nacy in the previous equations, that is, the regression
coefficients cannot be uniquely determined. A stan-
dard solution to this problem is the use of marker
or reference variables. Specifically for each factor,
an observed variable is selected that embodies the
factor. For example, since Crystallized Intelligence
could be considered learned knowledge, one might
select Verbal Meaning, accumulated knowledge, to
represent it. For this case, the intercept is equated to
zero (τ 1

0 ≡ 0); the slope associated with gc equated
to one (λ1

1 ≡ 1) and the slope associated with gf
equated to zero (λ1

2 ≡ 0). Hence for Verbal Meaning,
the regression equation becomes VRBM = gc +ε1. By
similar reasoning, Number Facility could serve as a
reference variable for Fluid Intelligence, because they
are linked by reasoning ability. Hence, for Number
Facility, the regression equation is NUMF = gf +ε3.
Implicit is that the associated intercept and slope for
gc are zero (τ 3

0 ≡ 0 and λ3
1 ≡ 0) and that the slope

for gf is one (λ3
2 ≡ 1).

Again, in keeping with our theoretical speculation
(i.e., that VRBM and WORG are highly predicted
from gc, but not gf, and vice versa for NUMF, LETS,
and NUMS), the regression coefficients or loadings,
λ2

1, λ4
2, and λ5

2, would be substantial, while λ2
2, λ4

1, and
λ5

1, would be relatively much smaller.
Second-order factor analysis. Similar to second-

order regression analysis, the latent variables, Crys-
tallized (gc) and Fluid (gf) Intelligences, could be
predicted by General Intelligence (g) by a second-
order factor analysis. Concretely,

gc = α1
0 + γ 1

1 g + ζ 1

and gf = α2
0 + γ 2

1 g + ζ 2, (4)

where α1
0 and α2

0 are the intercepts for predict-
ing each of the Crystallized and Fluid Intelligence
outcome variables, and where γ 1

1 and γ 2
1 are the

regression coefficients or slopes for predicting the
two outcome variables from General Intelligence,
respectively. Further, ζ 1 and ζ 2 are second-order
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specific factors or what has not been predicted by
General Intelligence in Crystallized and Fluid Intel-
ligences, respectively. Lastly, recognize that mea-
surement error is not present in these second-order
specific factors, because it was removed in the first
order equations.

As before, one might conjecture that General Intel-
ligence relates more to Fluid Intelligence than it pre-
dicts Crystallized Intelligence. Furthermore, as with
the first-order factor analysis, there is indeterminacy
in that the regression coefficients are not unique.
Hence, again a reference variable is required for each
latent variable or second-order factor. For example,
Fluid Intelligence could be selected as a reference
variable. Thus, the intercept and slope for it will be
set to zero and one respectively (α2

0 ≡ 0 and γ 2
1 ≡ 1).

So, the regression equation for Fluid Intelligence
becomes gf = g + ζ 2.

TECHNICAL DETAILS. In the foregoing discus-
sion, similarities between multiple regression and
factor analysis were developed by noting the lin-
earity of the function form or prediction equation.
Additionally, first- and second-order models were
developed separately. Parenthetically, when origi-
nally developed, a first-order factor analysis would
be performed initially and then a second-order fac-
tor would be undertaken using these initial results
(or, more accurately, the variances and covariances
between the first-order factors). It is the current prac-
tice to perform both the first- and second-order factor
analysis in the same model or at the same time. More-
over, remember that for the confirmatory approach,
in either the first- or second-order factor analytic

model, a priori specifications are required to ensure
the establishment of reference variables.

In the previous developments, the regression coef-
ficients or parameters were emphasized because they
denote the linear relationships among the variables.
It is important to note that there are also means, vari-
ances, and covariances associated with the second-
order factor analytic model. Specifically, the second-
order factor – General Intelligence in the example –
has a mean and a variance parameter. Note that if
there was more than one second-order factor, there
would be additional mean, variance, and covariance
parameters associated with it. Also, the second-order
specific factors typically have variance and covari-
ance parameters (the mean of these specific factors
are assumed to be zero). Finally, each of the unique
factors from the first-order model has a variance
parameter (by assumption, their means and covari-
ances are zero).

If normality of the observed variables is ten-
able, then all of these parameters may be determined
by a statistical technique called maximum likeli-
hood estimation. Further, a variety of theoretical
hypotheses may be evaluated or tested by chi-square
statistics.

For example, one could test if Verbal Meaning and
Word Grouping are predicted only by Crystallized
Intelligence by hypothesizing that the regression
coefficients for Fluid Intelligence are zero, that is,
λ1

2 = 0 and λ2
2 = 0.

JOHN TISAK AND MARIE S. TISAK
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Selection Study (Mouse
Genetics)

Some of the earliest systematic studies on the inher-
itance of behavioral traits in animals involved artifi-
cial selection. These include Tolman’s selection for
‘bright’ and ‘dull’ maze learners in 1924, Rundquist’s
selection for ‘active’ and ‘inactive’ rats in a running
wheel in 1933, and Hall’s 1938 selection for ‘emo-
tional’ and ‘nonemotional’ rats in an open field. These
pioneering studies triggered an interest in selective
breeding for a large variety of behavioral and neuro-
biological traits that has persisted into the twenty-first
century. For a description of early studies and some of
the subsequent large-scale behavioral selection stud-
ies that followed, see [2] and [5].

Selection experiments appear simple to carry out
and most are successful in altering the levels of
expression of the selected behavior in only a few
generations. Indeed, for centuries preceding the first
genetic experiments of Mendel, animal breeders
successfully bred for a variety of behavioral and
related characters in many species. The simplicity
of artificial selection experiments is deceptive, how-
ever, and the consummate study requires a consid-
erable effort to avoid problems that can undermine
the reliability of the genetic information sought. Fre-
quently, this genetic information includes the real-
ized narrow heritability (h2), the proportion of the
observed phenotypic variance that is explained by
additive genetic variance, but more often the geno-
typic correlations (see Gene-Environment Correla-
tion) between the selected trait and other biobehav-
ioral measures. A lucid account of the quantitative
genetic theory related to selection and related issues
involving small populations can be found in [1].
Some key issues are summarized here.

Realized heritability of the selected trait is esti-
mated from the ratio of the response to selection to
the selection differential:

h2 = Response

Selection differential

= Offspring mean − Base population mean

Selected parent mean − Base population mean

(1)

Normally, selection is bidirectional, with extreme
scoring animals chosen to be parents for high and
low lines, and the heritability estimates averaged.
In the rare case where the number of animals
tested in the base population is so large that the
effective N of each of the selected parent groups
exceeds 100, (1) will work well, even in a sin-
gle generation, although h2 is usually estimated
from several generations by regressing the genera-
tion means on the cumulative selection differential.
Also, when parent Ns are very large and the off-
spring of high and low lines differ significantly on
any other nonselected trait, one can conclude that
the new trait is both heritable and genetically corre-
lated with the selected trait, although the correlation
cannot be estimated unless h2 of the new trait is
known [3].

Since few studies involve such large parent groups
in each breeding generation, most selection exper-
iments are complicated by the related effects of
inbreeding, random genetic drift, and genetic differ-
entiation among subpopulations at all genetic loci.
Over succeeding generations, high-trait and low-trait
lines begin to differ on many genetically influenced
characters that are unrelated to the trait being selected
for. The magnitude of these effects is a function of
the effective breeding size (Ne), which influences
the increment in the coefficient of inbreeding (�F )
that occurs from one generation to the next. When
selected parents are randomly mated, �F = 1/(2Ne).
When sib matings are excluded, �F = 1/(2Ne + 4).
Ne is a function of the number of male and female
parents in a selected line that successfully breed in a
generation:

Ne = 4NmNf

Nm + Nf
(approx.) (2)

Ne is maximized when the number of male and
female parents is equal. Thus, when the parents
of a selected line consist of 10 males and 10
females, Ne = 20 for that generation, whereas Ne =
15 when the breeding parents consist of 5 males and
15 females.

When selection is carried out over many gen-
erations, alleles that increase and decrease expres-
sion of the selected trait continue to segregate into
high- and low-scoring lines, but inbreeding and con-
sequently random drift are also progressing at all
loci. If we define the base population as having an
inbreeding coefficient of zero, then the inbreeding
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coefficient in any subsequent selected generation, t ,
is approximately:

Ft = 1 − [(1 − �F1) × (1 − �F2)

× (1 − �F3) × · · · × (1 − �Ft)] (3)

If Ne, and thus �F , are constant over generations, (3)
simplifies to Ft = 1 − (1 − �F)t . Typically, how-
ever, over many generations of selection, Ne fluctu-
ates and may even include some ‘genetic bottleneck’
generations, where Ne is quite small and �F large.
It can be seen from (3) that bottlenecks can substan-
tially increase cumulative inbreeding. For example,
maintaining 10 male and 10 female parents in each
generation of a line for 12 generations will result in an
Ft of approximately 1 − (1 − 0.025)12 = 0.26, but, if
in just one of those 12 generations only a single male
successfully breeds with the 10 selected females, Ne

drops from 20 to 3.6 for that generation, causing Ft

to increase from 0.26 to 0.35.
As inbreeding continues over successive genera-

tions, within-line genetic variance decreases by 1 − F

and between-line genetic variance increases by 2F

at all loci. Selected lines continue to diverge on
many genetically influenced traits due to random
drift, which is unrelated to the trait being selected
for. Genetic variance contributed by drift can also
exaggerate or suppress the response to selection and
is partly responsible for the variability in generation
means as selection progresses. Without genotyping
subjects, the effects of random drift can only be

assessed by having replicated selected lines. One can-
not obtain empirical estimates of sampling variation
of realized heritabilities in experiments that do not
involve replicates. Since the lines can diverge on
unrelated traits by drift alone, the lack of replicate
lines also poses problems for the common practice of
comparing high and low lines on new traits thought
to be genetically related to the selected trait. Unless
inbreeding is extreme or heritability low, the size
of a high-line versus low-line mean difference in
phenotypic SD units can help determine if the dif-
ference is too large to be reasonably due to genetic
drift [4].
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Sensitivity Analysis

Introduction

Consider an experiment in which varying dosage
levels of a drug are randomly assigned to groups
of individuals. If the randomization is successfully
implemented, the groups of subjects will be balanced
with respect to all variables other than the dosage lev-
els of interest, at least on average (and if the groups
are sufficiently large, effectively in practice also). The
beauty of randomization is that the groups are bal-
anced not only with respect to measured variables,
but also with respect to unmeasured variables. In a
nonrandomized situation, although one may control
for observed explanatory variables, one can never
guarantee that observed associations are not due to
unmeasured variables. Selection bias, in which the
chances of observing a particular individual depend
on the values of their responses and explanatory
variables, is another potential source of bias. A fur-
ther source of bias is due to measurement error in
the explanatory variable(s) (in the randomized exam-
ple this could correspond to inaccurate measurement
of the dosage received, though it could also corre-
spond to other explanatory variable). This problem
is sometimes referred to as errors-in-variables and
is discussed in detail in [1]. Many other types of
sensitivity analysis are possible (for example, with
respect to prior distributions in a Bayesian analysis)
(see Bayesian Statistics), but we consider confound-
ing, measurement error, and selection bias only. For
more discussion of these topics in an epidemiological
context, see [4, Chapter 19].

A general approach to sensitivity analyses is to
first write down a plausible model for the response
in terms of accurately measured explanatory variables
(some of which may be unobserved), and with respect
to a particular selection model. One may then derive
the induced form of the model, in terms of observed
variables and the selection mechanism assumed in
the analysis. The parameters of the derived model
can then be compared with the parameters of inter-
est in the ‘true’ model, to reveal the extent of bias.
We follow this approach, but note that it should be
pursued only when the sample size in the original
study is large, so that sampling variability is neg-
ligible; references in the discussion consider more
general situations.

In the following, we assume that data are not
available to control for bias. So in the next section,
we consider the potential effects of unmeasured
confounding. In the errors-in-variables context, we
assume that we do observe ‘gold standard’ data in
which a subset of individuals provides an accurate
measure of the explanatory variable, along with the
inaccurate measure. Similarly, with respect to selec-
tion bias, we assume that the sampling probabilities
for study individuals are unknown and cannot be con-
trolled for (as can be done in matched case-control
studies, see [4, Chapter 16] for example), or that
supplementary data on the selection probabilities of
individuals are not available, as in two-phase methods
(e.g., [6]); in both of these examples, the selection
mechanism is known from the design (and would lead
to bias if ignored, since the analysis must respect the
sampling scheme).

Sensitivity to Unmeasured Confounding

Let Y denote a univariate response and X a uni-
variate explanatory variable, and suppose that we
are interested in the association between Y and X,
but Y also potentially depends on U , an unmea-
sured variable. The discussion in [2] provided an
early and clear account of the sensitivity of an
observed association to unmeasured confounding, in
the context of lung cancer and smoking. For simplic-
ity, we assume that the ‘true’ model is linear and
given by

E[Y |X, U ] = α∗ + Xβ∗ + Uγ ∗. (1)

Further assume that the linear association between
U and X is E[X|U ] = a + bX. Roughly speaking,
a variable U is a confounder if it is associated
with both the response, Y , and the explanatory
variable, X, but is not be caused by Y or on the
causal pathway between X and Y . For a more
precise definition of confounding, and an extended
discussion, see [4, Chapter 8]. We wish to derive the
implied linear association between Y and X, since
these are the variables that are observed. We use
iterated expectation to average over the unmeasured
variable, given X:

E[Y |X] = EU |X {E[Y |X, U ]}
= EU |X

{
α∗ + Xβ∗ + Uγ ∗}



2 Sensitivity Analysis

= α∗ + Xβ∗ + E[U |X]γ ∗

= α∗ + Xβ∗ + (a + bX)γ ∗ = α + Xβ,

where α = α∗ + γ ∗a and, of more interest,

β = β∗ + γ ∗b. (2)

Here the ‘true’ association parameter, β∗, that
we would like to estimate, is represented with a
∗ superscript, while the association parameter that
we can estimate, β, does not have a superscript.
Equation (2) shows that the bias β − β∗ is a function
of the level of association between X and U (via the
parameter b), and the association between Y and U

(via γ ∗). Equation (2) can be used to assess the effects
of an unmeasured confounding using plausible values
of b and γ ∗, as we now demonstrate though a simple
example.

Example Consider a study in which we wish to
estimate the association between the rate of oral
cancer and alcohol intake in men over 60 years of
age. Let Y represent the natural logarithm of the rate
of oral cancer, and let us suppose that we have a two-
level alcohol variable X with X = 0 corresponding to
zero intake and X = 1 to nonzero intake. A regression
of Y on X gives an estimate β̂ = 1.20, so that the rate
of oral cancer is e1.20 = 3.32 higher in the X = 1
population when compared to the X = 0 population.

The rate of oral cancer also increases with tobacco
consumption (which we suppose is unmeasured in
our study), however, and the latter is also positively
associated with alcohol intake. We let U = 0/1 rep-
resent no tobacco/tobacco consumption. Since U is
a binary variable, E[U |X] = P(U = 1|X). Suppose
that the probability of tobacco consumption is 0.05
and 0.45 in those with zero and nonzero alcohol
consumption respectively; that is P(U = 1|X = 1) =
0.05 and P(U = 1|X = 0) = 0.45, so that a = 0.05
and a + b = 0.45, to give b = 0.40. Suppose further,
that the log rate of oral cancer increases by γ ∗ =
log 2.0 = 0.693 for those who use tobacco (in both
alcohol groups). Under these circumstances, from (2),
the true association is

β̂∗ = β̂ − γ ∗b = 1.20 − 0.693 × 0.40 = 0.92, (3)

so that the increase in the rate associated with
alcohol intake is reduced from 3.32 to exp(0.92) =
2.51.

In a real application, the sensitivity of the associ-
ation would be explored with respect to a range of
values of b and γ ∗.

Sensitivity to Measurement Errors

In a similar way, we may examine the potential
effects of measurement errors in the regressor X. As
an example, consider a simple linear regression and
suppose the true model is

Y = E[Y |X] + ε∗ = α∗ + β∗X + ε∗ (4)

where E[ε∗] = 0, var(ε∗) = σ ∗2
ε . Rather than mea-

sure X, we measure a surrogate W where

W = X + δ (5)

with E[δ] = 0, var(δ) = σ 2
δ , and cov(δ, ε∗) = 0. The

least squares estimator of β∗ in model (4), from a
sample (Xi, Yi), i = 1, . . . , n, has the form

β̂∗ =

1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

1

n

n∑
i=1

(Xi − X̄)2

= cov(X, Y )

var(X)
. (6)

In the measurement error situation we fit the model

Y = E[Y |W ] + ε = α + βW + ε (7)

where E[ε] = 0, var(ε) = σ 2
ε . The least squares esti-

mator of β in model (7), from a sample (Wi, Yi),
i = 1, . . . , n, has the form

β̂ =

1

n

n∑
i=1

(Wi − W̄ )(Yi − Ȳ )

1

n

n∑
i=1

(Wi − W̄ )2

= cov(W, Y )

var(W)
, (8)

and to assess the extent of bias, we need to compare
E[β̂] with β∗. From (8) we have
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β̂ =

1

n

n∑
i=1

(Xi + δi − X̄ − δ̄)(Yi − Ȳ )

1

n

n∑
i=1

(Xi + δi − X̄ − δ̄)2

=

1

n

n∑
i=1

(Xi −X̄)(Yi −Ȳ ) + 1

n

n∑
i=1

(δi −δ̄)(Yi −Ȳ )

1

n

n∑
i=1

(Xi −X̄)2 + 2

n

n∑
i=1

(Xi −X̄)(δi −δ̄) + 1

n

n∑
i=1

(δi −δ̄)2

= cov(X, Y ) + cov(δ, Y )

var(X) + 2cov(X, δ) + var(δ)
. (9)

Under the assumptions of our model, cov(δ, Y ) =
0 and cov(X, δ) = 0 and so, from (6)

E[β̂] ≈ cov(X, Y )

var(X) + var(δ)

= cov(X, Y )/var(X)

1 + var(δ)/var(X)
= β∗r

where the attenuation factor

r = var(X)

var(X) + σ 2
δ

(10)

describes the amount of bias by which the estimate is
attenuated toward zero. Note that with no measure-
ment error (σ 2

δ = 0), r = 1, and no bias results, and
also that the attenuation will be smaller in a well-
designed study in which a large range of X is avail-
able. Hence, to carry out a sensitivity analysis, we can
examine, for an observed estimate β̂, the increase in
the true coefficient for different values of σ 2

δ via

β̂∗ = β̂

r
. (11)

It is important to emphasize that the above deriva-
tion was based on a number of strong assumptions
such as independence between errors in Y and in
W , and constant variance for errors in both Y and
W . Care is required in more complex situations,
including those in which we have more than one
explanatory variable. For example, if we regress Y on
both X (which is measured without error), and a sec-
ond explanatory variable is measured with error, then
we will see bias in our estimator of the coefficient

associated with X, if there is a nonzero correlation
between X and the second variable (see [1] for more
details).

Example Let Y represent systolic blood pressure
(in mmHg) and X sodium intake (in mmol/day), and
suppose that a linear regression of Y on W produces
an estimate of β̂ = 0.1 mmHg, so that an increase in
daily sodium of 100 mmol/day is associated with an
increase in blood pressure of 10 mmHg. Suppose also
that var(X) = 4 mmHg. Table 1 shows the sensitivity
of the coefficient associated with X, β∗, to different
levels of measurement error; as expected, the estimate
increases with increasing measurement error.

Sensitivity to Selection Bias

This section concerns the assessment of the bias that
is induced when the probability of observing the data
of a particular individual depends on the data of that
individual. We consider a slightly different scenario
to those considered in the last two sections, and
assume we have a binary outcome variable, Y , and a

Table 1 The effect of measurement error when
var(X) = 4

Measurement
error σ 2

δ

Attenuation
factor r

True

estimate β̂∗

0 0 0.1
1 0.8 0.125
2 0.67 0.15
4 0.5 0.2
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binary exposure, X, and let p∗
x = P(Y = 1|X = x),

x = 0, 1, be the ‘true’ probability of a Y = 1 outcome
given exposure x, x = 0, 1. We take as parameter of
interest the odds ratio:

OR∗ = P(Y = 1|X = 1)/P(Y = 0|X = 1)

P(Y = 1|X = 0)/P(Y = 0|X = 0)

= p∗
1/(1 − p∗

1)

p∗
0/(1 − p∗

0)
, (12)

which is the ratio of the odds of a Y = 1 outcome
given exposed (X = 1), to the odds of such an
outcome given unexposed (X = 0).

We now consider the situation in which we do
not have constant probabilities of responding (being
observed) across the population of individuals under
study, and let R = 0/1 correspond to the event
nonresponse/response, with response probabilities:

P(R = 1|X = x, Y = y) = qxy, (13)

for x = 0, 1, y = 0, 1; and we assume that we do not
know these response rates. We do observe estimates

s = P(R = 1|X = 1, Y = 1)/P(R = 1|X = 0, Y = 1)

P(R = 1|X = 1, Y = 0)/P(R = 1|X = 0, Y = 0)
= q11/q01

q10/q00
. (16)

of px = P(Y = 1|X = x, R = 1), the probability of
a Y = 1 outcome given both values of x and given
response. The estimate of the odds ratio for the
observed responders is then given by:

OR = P(Y = 1|X = 1, R = 1)/P(Y = 0|X = 1, R = 1)

P(Y = 1|X = 0, R = 1)/P(Y = 0|X = 0, R = 1)
= p1/(1 − p1)

p0/(1 − p0)
. (14)

To link the two odds ratios we use Bayes theorem
on each of the terms in (14) to give:

OR =
P(R = 1|X = 1, Y = 1)P(Y = 1|X = 1)

P(R = 1|X = 1)

/P(R = 1|X = 1, Y = 0)P(Y = 0|X = 1)

P(R = 1|X = 1)

P(R = 1|X = 0, Y = 1)P(Y = 1|X = 0)

P(R = 1|X = 0)

/P(R = 1|X = 0, Y = 0)P(Y = 0|X = 0)

P(R = 1|X = 0)

= p∗
1/(1 − p∗

1)

p∗
0/(1 − p∗

0)
× q11q00

q10q01
= OR∗ × s, (15)

where the selection factor s is determined by the
probabilities of response in each of the exposure-
outcome groups. It is of interest to examine situations
in which s = 1 and there is no bias. One such situ-
ation is when qxy = ux × vy , x = 0, 1; y = 0, 1, so
that there is ‘no multiplicative interaction’ between
exposure and outcome in the response model. Note
that ux and vy are not the marginal response proba-
bilities for, respectively, exposure, and outcome.

Example Consider a study carried out to exam-
ine the association between childhood asthma and
maternal smoking. Let Y = 0/1 represent absence/
presence of asthma in a child and X = 0/1 rep-
resent nonexposure/exposure to maternal smoking.
Suppose a questionnaire is sent to parents to deter-
mine whether their child has asthma and whether the
mother smokes. An odds ratio of ÔR = 2 is observed
from the data of the responders, indicating that the
odds of asthma is doubled if the mother smokes.

To carry out a sensitivity analysis, there are a
number of ways to proceed. We write

Suppose that amongst noncases, the response rate in
the exposed group is q times that in the unexposed
group (that is q10/q00 = q), while amongst the cases,

the response rate in the exposed group is 0.8q times
that in the unexposed group (i.e., q11/q01 = 0.8q). In



Sensitivity Analysis 5

this scenario, s = 0.8 and

ÔR
∗ = ÔR

0.8
= 2

0.8
= 2.5, (17)

and we have underestimation because exposed cases
were underrepresented in the original sample.

Discussion

In this article we have considered sensitivity analyses
in a number of very simple scenarios. An extension
would be to simultaneously consider the combined
sensitivity to multiple sources of bias. We have also
considered the sensitivity of point estimates only, and
have not considered hypothesis testing or interval
estimation. A comprehensive treatment of observa-
tional studies and, in particular, the sensitivity to
various forms of bias may be found in [3]. The above
derivations can be extended to various different mod-
eling scenarios, for example, [5] examines sensitivity
to unmeasured confounding in the context of Poisson
regression in spatial epidemiology.
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Sensitivity Analysis in
Observational Studies

Randomization Inference and Sensitivity
Analysis

Randomized Experiments and Observational
Studies

In a randomized experiment (see Randomization),
subjects are assigned to treatment or control groups
at random, perhaps by the flip of a coin or perhaps
using random numbers generated by a computer [7].
Random assignment is the norm in clinical trials of
treatments intended to benefit human subjects [21,
22]. Intuitively, randomization is an equitable way
to construct treated and control groups, conferring
no advantage to either group. At baseline before
treatment in a randomized experiment, the groups
differ only by chance, by the flip of the coin that
assigned one subject to treatment, another to control.
Therefore, comparing treated and control groups
after treatment in a randomized experiment, if a
common statistical test rejects the hypothesis that
the difference in outcomes is due to chance, then
a treatment effect is demonstrated. In contrast, in
an observational study, subjects are not randomly
assigned to groups, and outcomes may differ in
treated and control groups for reasons other than
effects caused by the treatment. Observational studies
are the norm when treatments are harmful, unwanted,
or simply beyond control by the investigator.

In the absence of random assignment, treated and
control groups may not be comparable at baseline
before treatment. Baseline differences that have been
accurately measured in observed covariates can often
be removed by matching, stratification or model
based adjustments [2, 28, 29]. However, there is
usually the concern that some important baseline
differences were not measured, so that individuals
who appear comparable may not be. A sensitivity
analysis in an observational study addresses this
possibility: it asks what the unmeasured covariate
would have to be like to alter the conclusions of the
study. Observational studies vary markedly in their
sensitivity to hidden bias: some are sensitive to very
small biases, while others are insensitive to quit large
biases.

The First Sensitivity Analysis

The first sensitivity analysis in an observational
study was conducted by Cornfield, et al. [6] for
certain observational studies of cigarette smoking
as a cause of lung cancer; see also [10]. Although
the tobacco industry and others had often suggested
that cigarettes might not be the cause of high rates
of lung cancer among smokers, that some other
difference between smokers and nonsmokers might
be the cause, Cornfield, et al. found that such an
unobserved characteristic would need to be a near
perfect predictor of lung cancer and about nine
times more common among smokers than among
nonsmokers. While this sensitivity analysis does not
rule out the possibility that such a characteristic might
exist, it does clarify what a scientist must logically
be prepared to assert in order to defend such a claim.

Methods of Sensitivity Analysis

Various methods of sensitivity analysis exist. The
method of Cornfield, et al. [6] is perhaps the best
known of these, but it is confined to binary responses;
moreover, it ignores sampling variability, which is
hazardous except in very large studies. A method
of sensitivity analysis that is similar in spirit to the
method of Cornfield et al. will be described here;
however, this alternative method takes account of
sampling variability and is applicable to any kind
of response; see, for instance, [25, 26, 29], and
Section 4 of [28] for detailed discussion. Alternative
methods of sensitivity analysis are described in [1, 5,
8, 9, 14, 18, 19, 23, 24], and [33].

The sensitivity analysis imagines that in the pop-
ulation before matching or stratification, subjects are
assigned to treatment or control independently with
unknown probabilities. Specifically, two subjects who
look the same at baseline before treatment – that is,
two subjects with the same observed covariates –
may nonetheless differ in terms of unobserved covari-
ates, so that one subject has an odds of treatment
that is up to � ≥ 1 times greater than the odds for
another subject. In the simplest randomized exper-
iment, everyone has the same chance of receiving
the treatment, so � = 1. If � = 2 in an observational
study, one subject might be twice as likely as another
to receive the treatment because of unobserved pre-
treatment differences. The sensitivity analysis asks
how much hidden bias can be present – that is, how
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large can � be – before the qualitative conclusions
of the study begin to change. A study is highly
sensitive to hidden bias if the conclusions change
for � just barely larger than 1, and it is insensi-
tive if the conclusions change only for quite large
values of �.

If � > 1, the treatment assignments probabilities
are unknown, but unknown only to a finite degree
measured by �. For each fixed � ≥ 1, the sensitiv-
ity analysis computes bounds on inference quantities,
such as P values or confidence intervals. For � = 1,
one obtains a single P value, namely the P value for
a randomized experiment [7, 16, 17]. For each � > 1,
one obtains not a single P value, but rather an inter-
val of P values reflecting uncertainty due to hidden
bias. As � increases, this interval becomes longer,
and eventually it become uninformative, including
both large and small P values. The point, �, at which
the interval becomes uninformative is a measure of
sensitivity to hidden bias. Computations are briefly
described in Section titled ‘Sensitivity Analysis Com-
putations’ and an example is discussed in detail in
Section titled ‘Sensitivity Analysis: Example’.

Sensitivity Analysis Computations

The straightforward computations involved in a sen-
sitivity analysis will be indicated briefly in the case of
one standard test, namely Wilcoxon’s signed rank test
for matched pairs (see Distribution-free Inference,
an Overview) [17]. For details in this case [25] and
many others, see Section 4 of [28]. The null hypoth-
esis asserts that the treatment is without effect, that
each subject would have the same response under the
alternative treatment. There are S pairs, s = 1, . . . , S

of two subjects, one treated, one control, matched
for observed covariates. The distribution of treatment
assignments within pairs is simply the conditional
distribution for the model in Section titled ‘Methods
of Sensitivity Analysis’ given that each pair includes
one treated subject and one control. Each pair yields
a treated-minus-control difference in outcomes, say
Ds . For brevity in the discussion here, the Ds will
be assumed to be untied, but ties are not a problem,
requiring only slight change to formulas. The abso-
lute differences, |Ds |, are ranked from 1 to S, and
Wilcoxon’s signed rank statistic, W , is the sum of
the ranks of the positive differences, Ds > 0.

For the signed rank statistic, the elementary com-
putations for a sensitivity analysis closely paral-
lel the elementary computations for a conventional

analysis. This paragraph illustrates the computa-
tions and may be skipped. In a moderately large
randomized experiment, under the null hypothesis
of no effect, W is approximately normally dis-
tributed with expectation S (S + 1) /4 and variance
S (S + 1) (2S + 1) /24; see Chapter 3 of [17]. If one
observed W = 300 with S = 25 pairs in a random-
ized experiment, one would compute S (S + 1)/4 =
162.5 and S (S + 1) (2S + 1)/24 = 1381.25, and
the deviate Z = (300 − 162.5)/

√
(1381.25) = 3.70

would be compared to a Normal distribution to
yield a one-sided P value of 0.0001. In a mod-
erately large observational study, under the null
hypothesis of no effect, the distribution of W is
approximately bounded between two Normal dis-
tributions, with expectations µmax = λ S (S + 1)/2
and µmin = (1 − λ) S (S + 1)/2, and the same vari-
ance σ 2 = λ (1 − λ) S (S + 1) (2S + 1)/6, where λ =
�/ (1 + �). Notice that if � = 1, these expressions
are the same as in the randomized experiment. For
� = 2 and W = 300 with S = 25 pairs, one computes
λ = 2/ (1 + 2) = 2/3, µmax = (2/3) 25 (25 + 1)/2 =
216.67, µmin = (1/3) 25 (25 + 1)/2 = 108.33, and
σ 2 =(2/3) (1/3) 25 (25+1) (2 × 25+1)/6=1227.78;
then two deviates are calculated, Z1 =(300 − 108.33)

/
√

(1227.78) = 5.47 and Z2 = (300 − 108.33)/√
(1227.78) = 2.38, which are compared to a Nor-

mal distribution, yielding a range of P values from
0.00000002 to 0.009. In other words, a bias of magni-
tude � = 2 creates some uncertainty about the correct
P value, but it would leave no doubt that the differ-
ence is significant at the conventional 0.05 level.

Just as W has an exact randomization distribution
useful for small S, so too there are exact sensi-
tivity bounds. See [31] for details including S-Plus
code.

Sensitivity Analysis: Example

A Matched Observational Study of an
Occupational Hazard

Studies of occupational health usually focus on work-
ers, but Morton, Saah, Silberg, Owens, Roberts and
Saah [20] were worried about the workers’ chil-
dren. Specifically, they were concerned that workers
exposed to lead might bring lead home in clothes and
hair, thereby exposing their children as well. They
matched 33 children whose fathers worked in a bat-
tery factory to 33 unexposed control children of the
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Table 1 Blood lead levels, in micrograms of lead per decaliter of blood, of exposed children
whose fathers worked in a battery factory and age-matched control children from the neighborhood.
Exposed father’s lead exposure at work (high, medium, low) and hygiene upon leaving the factory
(poor, moderate, good) are also given. Adapted for illustration from Tables 1, 2 and 3 of Morton,
et al. (1982). Lead absorption in children of employees in a lead-related industry, American Journal
of Epidemiology 115, 549–555. [20]

Pair s Exposure Hygiene
Exposed child’s
Lead level µg/dl

Control child’s
Lead level µg/dl

Dose
Score

1 high good 14 13 1.0
2 high moderate 41 18 1.5
3 high poor 43 11 2.0...

...
...

...
...

...
33 low poor 10 13 1.0

Median 34 16

same age and neighborhood, and used Wilcoxon’s
signed rank test to compare the level of lead found
in the children’s blood, measured in µg of lead
per decaliter (dl) of blood. They also measured the
father’s level of exposure to lead at the factory, classi-
fied as high, medium, or low, and the father’s hygiene
upon leaving the factory, classified as poor, moder-
ate, or good. Table 1 is adapted for illustration from
Tables 1, 2, and 3 of Morton, et al. (1982) [20]. The
median lead level for children of exposed fathers was
more than twice that of control children, 34 µg/dl
versus 16 µg/dl.

If Wilcoxon’s signed rank test W is applied to the
exposed-minus-control differences in Table 1, then
the difference is highly significant in a one-sided
test, P < 0.0001. This significance level would be
appropriate in a randomized experiment, in which
children were picked at random for lead exposure.
Table 2 presents the sensitivity analysis, computed
as in Section titled ‘Sensitivity Analysis Computa-
tions’. Table 2 gives the range of possible one-sided
significance levels for several possible magnitudes of
hidden bias, measured by �. Even if the matching
of exposed and control children had failed to con-
trol an unobserved characteristic strongly related to
blood lead levels and � = 4.25 times more common
among exposed children, this would still not explain
the higher lead levels found among exposed chil-
dren.

Where Table 2 focused on significance levels,
Table 3 considers the one sided 95% confidence inter-
val, [̂τlow, ∞), for an additive effect obtained by
inverting the signed rank test [28]. If the data in
Table 1 had come from a randomized experiment

Table 2 Sensitivity analysis for one-sided significance
levels in the lead data. For unobserved biases of various
magnitudes, the table gives the range of possible signifi-
cance levels

� min max

1 <0.0001 <0.0001
2 <0.0001 0.0018
3 <0.0001 0.0136
4 <0.0001 0.0388
4.25 <0.0001 0.0468
5 <0.0001 0.0740

Table 3 Sensitivity analysis for one-sided
confidence intervals for an additive effect
in the lead data. For unobserved biases
of biases of various magnitudes, the table
gives smallest possible endpoint for the
one-sided confidence interval

� min τ̂low

1 10.5
2 5.5
3 2.5
4 0.5
4.25 0.0
5 −1.0

(� = 1) with an additive treatment effect τ , then
we would be 95% confident that father’s lead expo-
sure had increased his child’s lead level by τ̂low =
10.5 µg/dl [17]. In an observational study with � > 1,
there is a range of possible endpoints for the 95%
confidence interval, and Table 3 reports the small-
est value in the range. Even if � = 3, we would
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Table 4 Sensitivity to hidden bias in four observational
studies. The randomization test assuming no hidden bias is
highly significant in all four studies, but the magnitude of
hidden bias that could alter this conclusion varies markedly
between the four studies

Treatment � = 1 (�, max P value)

Smoking/Lung Cancer
Hammond [11]

<0.0001 (5, 0.03)

Diethylstilbestrol/
vaginal cancer
Herbst, et al. [12]

<0.0001 (7, 0.054)

Lead/Blood lead
Morton, et al. [20]

<0.0001 (4.25, 0.047)

Coffee/MI Jick,
et al. [15]

0.0038 (1.3, 0.056)

be 95% confident exposure increased lead levels by
2.5 µg/dl.

Studies Vary in Their Sensitivity to Hidden Bias

Studies vary markedly in their sensitivity to hidden
bias. As an illustration, Table 4 compares the sensi-
tivity of four studies, a study of smoking as a cause
of lung cancer [11], a study of prenatal exposure to
diethylstilbestrol as a cause of vaginal cancer [12],
the lead exposure study [20], and a study of coffee
as a cause of myocardial infarction [15].

If no effect is tested using a conventional test
appropriate for a randomized experiment (� = 1), the
results are highly significant in all four studies. The
last column of Table 4 indicates sensitivity to hidden
bias, quoting the magnitude of hidden bias � ≥ 1
needed to produce an upper bound on the P value
close to the conventional 0.05 level. The study [12]
of the effects of diethylstilbestrol becomes sensitive
at about � = 7, while the study [15] of the effects
of coffee becomes sensitive at � = 1.3. A small bias
could explain away the effects of coffee, but only
an enormous bias could explain away the effects of
diethylstilbestrol. The lead exposure study, although
quite insensitive to hidden bias, is about halfway
between these two other studies, and is slightly more
sensitive to hidden bias than the study of the effects
of smoking.

Reducing Sensitivity to Hidden Bias

Accurately predicting a highly specific pattern of
associations between treatment and response is often

said to strengthen the evidence that the effects of the
treatment caused the association. For instance, Cook,
Campbell, and Peracchio [3] write: ‘Conclusions are
more plausible if they are based on evidence that cor-
roborates numerous, complex, or numerically precise
predictions drawn from a descriptive causal hypothe-
sis.’ Hill [13] and Weiss [34] emphasized the role of
a dose response relationship. Cook and Shadish [4]
write: ‘Successful prediction of a complex pattern of
multivariate results often leaves few plausible alter-
native explanations.’

Does successful prediction of a complex pattern of
associations affect sensitivity to hidden bias? It may,
or it may not, and the degree to which it has done
so can be appraised using methods similar to those
in Section titled ‘Sensitivity Analysis Computations’.
See [27] and [30] for methods of analysis, and [32]
for issues in research design. The issues will be
illustrated using the example in Table 1.

Recall that exposed fathers were classified by their
degree of exposure and their hygiene upon leaving
the factory. If the fathers’ exposure to lead at work
were the cause of the higher lead levels among
exposed children, then one would expect more lead
in the blood of children whose fathers had higher
exposure and poorer hygiene. Here, exposed children
are divided into three groups of roughly similar
size. The 13 exposed children in the category (high
exposure, poor hygiene) were assigned a score of 2.0.
Low exposure with any hygiene was assigned a score
of 1, as was good hygiene with any exposure, and
there were 12 such exposed children. The remaining
8 exposed children in intermediate situations were
assigned a score of 1.5; they had either high exposure
with moderate hygiene or medium exposure with
poor hygiene. (None of the 33 matched children had
medium exposure with moderate hygiene, although
one unmatched child not used here fell into this
category.)

The coherent or dose signed rank statistic D

gives greater weight to matched pairs with higher
doses [27, 30]. Table 5 compares the sensitivity to
hidden bias of the usual Wilcoxon signed rank test
W , which ignores doses, to the sensitivity of the
coherent signed rank statistic. In particular, Table 5
gives the upper bound on the one-sided significance
level for testing no effect. For W , this is the same
computation as in Table 2. In fact, the coherent
pattern of associations is somewhat less sensitive to
hidden bias in this example: the upper bound on the
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Table 5 Coherent patterns of associa-
tions can reduce sensitivity to hidden bias.
Upper bounds on one-sided significance
levels in the lead data, ignoring and using
dose information

� Wilcoxon W Coherent D

1 <0.0001 <0.0001
3 0.0136 0.0119
4.35 0.0502 0.0398
4.75 0.0645 0.0503

P value for W ignoring doses is just above 0.05 at
� = 4.35, but using doses with D the corresponding
value is � = 4.75.

Exposed children had higher lead levels than
unexposed controls, and also exposed children with
higher exposures had higher lead levels than exposed
children with lower lead levels. A larger hidden bias
is required to explain this pattern of associations than
is required to explain the difference between exposed
and control children. In short, accurate prediction of
a pattern of associations may reduce sensitivity to
hidden bias, and whether this has happened, and the
degree to which it has happened, may be appraised
by a sensitivity analysis.
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Sequential Decision
Making

Well-known examples of fixed-length mastery tests
in the behavioral sciences include pass/fail deci-
sions in education, certification, and successfulness
of therapies. The fixed-length mastery problem has
been studied extensively in the literature within the
framework of (empirical) Bayesian decision the-
ory [9] (see Bayesian Item Response Theory Esti-
mation). In this approach, the following two basic
elements are distinguished: A measurement model
relating the probability of a correct response to stu-
dent’s (unknown) true level of functioning, and a loss
structure evaluating the total costs and benefits for
each possible combination of decision outcome and
true level of functioning. Within the framework of
Bayesian decision theory [2, 5], optimal rules (i.e.,
Bayes rules) are obtained by minimizing the posterior
expected losses associated with all possible decision
rules. Decision rules are hereby prescriptions specify-
ing for each possible observed response pattern what
action has to be taken. The Bayes principle assumes
that prior knowledge about student’s true level of
functioning is available and can be characterized by
a probability distribution called the prior. This prior
probability represents our best prior beliefs concern-
ing student’s true level of functioning; that is, before
any item yet has been administered.

The test at the end of the treatment does not
necessarily have to be a fixed-length mastery test but
might also be a sequential mastery test (SMT). In
this case, in addition to the actions declaring mastery
or nonmastery, also the action of to continue testing
and administering another random item is available.
Sequential mastery tests are designed with the goal
of maximizing the probability of making correct
classification decisions (i.e., mastery and nonmastery)
while at the same time minimizing test length [6].
For instance, Ferguson [3] showed that average test
lengths could be reduced by half without sacrificing
classification accuracy.

The purpose of this entry is to derive optimal
rules for SMT in the context of education using the
framework of Bayesian sequential decision theory [2,
5]. The main advantage of this approach is that costs
of testing (i.e., administering another random item)
can be taken explicitly into account.

Bayesian Sequential Principle Applied to
SMT

It is indicated in this section how the framework of
Bayesian sequential decision theory, in combination
with the binomial distribution for modeling response
behavior (i.e., the measurement model) and adopting
threshold loss for the loss function involved, is
applied to SMT.

Framework of Bayesian Sequential Decision
Theory

Three basic elements can be identified in Bayesian
sequential decision theory. In addition to a measure-
ment model and a loss function, costs of administer-
ing one additional item must be explicitly specified
in this approach. Doing so, posterior expected losses
corresponding to the mastery and nonmastery deci-
sions can now be calculated straightforward at each
stage of testing. As far as the posterior expected loss
corresponding to continue testing concerns, this quan-
tity is determined by averaging the posterior expected
losses corresponding to each of the possible future
classification outcomes relative to observing those
outcomes (i.e., the posterior predictive distributions).
Optimal rules (i.e., Bayesian sequential rules) are
now obtained by minimizing the posterior expected
losses associated with all possible decision rules at
each stage of testing using techniques of backward
induction (i.e., dynamic programming). This tech-
nique starts by considering the final stage of testing
(where the option to continue testing is not available)
and then works backward to the first stage of testing.

Notation

In order to classify within a reasonable period of
time those students for whom the decision of declar-
ing mastery or nonmastery is not as clear-cut, a
sequential mastery test is supposed to have a max-
imum length of n (n ≥ 1). Let the observed item
response at each stage of testing k (1 ≤ k ≤ n) for
a randomly sampled student be denoted by a dis-
crete random variable Xk , with realization xk . The
observed response variables X1, . . . , Xk are assumed
to be independent and identically distributed for each
value of k, and take the values 0 and 1 for respectively
incorrect and correct responses to item k. Further-
more, let the observed number-correct score after
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k items have been administered be denoted by a
discrete random variable Sk = X1 + · · · + Xk , with
realization sk = x1 + · · · + xk (0 ≤ sk ≤ k).

Student’s true level of functioning is unknown
due to measurement and sampling error. All that
is known is his/her observed number-correct score
sk . In other words, the mastery test is not a perfect
indicator of student’s true performance. Therefore,
let student’s (unknown) true level of functioning be
denoted by a continuous random variable T on the
latent proportion-correct metric, with realization t

(0 ≤ t ≤ 1).
Finally, a criterion level tc (0 ≤ tc ≤ 1) on T must

be specified in advance by the decision-maker using
methods of standard-setting (e.g., [1]). A student is
considered a true nonmaster and true master if his/her
true level of functioning t is smaller or larger than tc,
respectively.

Threshold Loss and Costs of Testing

Generally speaking, as noted before, a loss function
evaluates the total costs and benefits of all possible
decision outcomes for a student whose true level of
functioning is t . These costs may concern all relevant
psychological, social, and economic consequences
which the decision brings along. As in [6], here the
well-known threshold loss function is adopted as
the loss structure involved. The choice of this loss
function implies that the ‘seriousness’ of all possible
consequences of the decisions can be summarized
by possibly different constants, one for each of the
possible classification outcomes.

For the sequential mastery problem, following
Lewis and Sheehan [6], a threshold loss function can
be formulated as a natural extension of the one for the
fixed-length mastery problem at each stage of testing
k as shown in Table 1.

The value e represents the costs of administering
one random item. For the sake of simplicity, these

Table 1 Table for threshold loss function at stage k

(1 ≤ k ≤ n) of testing

True level of functioning

Decision T ≤ tc T > tc

Declaring nonmastery ke l01+ ke
Declaring mastery l10+ ke ke

costs are assumed to be equal for each classification
outcome as well as for each testing occasion. Apply-
ing an admissible positive linear transformation [7],
and assuming the losses l00 and l11 associated with the
correct classification outcomes are equal and take the
smallest values, the threshold loss function in Table 1
was rescaled in such a way that l00 and l11 were equal
to zero. Hence, the losses l01 and l10 must take posi-
tive values.

The ratio l10/l01 is denoted as the loss ratio R,
and refers to the relative losses for declaring mastery
to a student whose true level of functioning is below
tc (i.e., false positive) and declaring nonmastery to
a student whose true level of functioning exceeds tc
(i.e., false negative).

The loss parameters lij (i, j = 0, 1; i �= j ) associ-
ated with the incorrect decisions have to be empiri-
cally assessed, for which several methods have been
proposed in the literature. Most texts on decision the-
ory, however, propose lottery methods [7] for assess-
ing loss functions empirically. In general, the con-
sequences of each pair of actions and true level of
functioning are scaled in these methods by looking at
the most and least preferred outcomes. But, in prin-
ciple, any psychological scaling method can be used.

Measurement Model

Following Ferguson [3], in the present entry the well-
known binomial model will be adopted for the proba-
bility that after k items have been administered, sk of
them have been answered correctly (see Catalogue
of Probability Density Functions). Its distribution
at stage k of testing for given student’s true level of
functioning t , P(sk|t), can be written as follows:

P(sk|t) =
(

k

sk

)
t sk (1 − t)k−sk . (1)

If each response is independent of the other, and
if student’s probability of a correct answer remains
constant, the distribution function of sk , given true
level of functioning t , is given by (1). The binomial
model assumes that the test given to each student
is a random sample of items drawn from a large
(real or imaginary) item pool [10]. Therefore, for
each student a new random sample of items must
be drawn in practical applications of the sequential
mastery problem.
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Optimizing Rules for the Sequential
Mastery Problem

In this section, it will be shown how optimal rules
for SMT can be derived using the framework of
Bayesian sequential decision theory. Doing so, given
an observed item response vector (x1, . . . , xk), first
the Bayesian principle will be applied to the fixed-
length mastery problem by determining which of
the posterior expected losses associated with the two
classification decisions is the smallest. Next, applying
the Bayesian principle again, optimal rules for the
sequential mastery problem are derived at each stage
of testing k by comparing this quantity with the
posterior expected loss associated with the option to
continue testing.

Applying the Bayesian Principle to the
Fixed-length Mastery Problem

As noted before, the Bayesian decision rule for the
fixed-length mastery problem can be found by mini-
mizing the posterior expected losses associated with
the two classification decisions of declaring mastery
or nonmastery. In doing so, the posterior expected
loss is taken with respect to the posterior distribu-
tion of T . It can easily be verified from Table 1
and (1) that mastery is declared when the posterior
expected loss corresponding to declaring mastery is
smaller than the posterior expected loss correspond-
ing to declaring nonmastery, or, equivalently, when
sk is such that

(l10 + ke)P(T ≤ tc|sk) + (ke)P(T > tc|sk)

< (ke)P(T ≤ tc|sk) + (l01 + ke)P(T > tc|sk),

(2)

and that nonmastery is declared otherwise. Rearrang-
ing terms, it can easily be verified from (2) that
mastery is declared when sk is such that

P(T ≤ tc|sk) <
1

1 + R
, (3)

and that nonmastery is declared otherwise.
Assuming a beta prior for T , it follows from an

application of Bayes’ theorem (see Bayesian Belief
Networks) that under the assumed binomial model
from (1), the posterior distribution of T will be a
member of the beta family again (the conjugacy

property, see, e.g., [5]). In fact, if the beta func-
tion B(α, β) with parameters α and β (α, β > 0)
is chosen as prior distribution (i.e., the natural con-
jugate of the binomial distribution) and student’s
observed number-correct score is sk from a test of
length k, then the posterior distribution of T is
B(α + sk, k − sk + β). Hence, assuming a beta prior
for T , it follows from (3) that mastery is declared
when sk is such that

B(α + sk, k − sk + β) <
1

1 + R
, (4)

and that nonmastery is declared otherwise.
The uniform distribution on the standard interval

[0,1] as a noninformative prior will be assumed in
this entry, which results as a special case of the beta
distribution B(α, β) for α = β = 1 (see Catalogue
of Probability Density Functions). In other words,
prior true level of functioning can take on all values
between 0 and 1 with equal probability. It then
follows immediately from (4) that mastery is declared
when sk is such that

B(1 + sk, k − sk + 1) <
1

1 + R
, (5)

and that nonmastery is declared otherwise. The beta
distribution has been extensively tabulated [8]. Nor-
mal approximations are also available [4].

Derivation of Bayesian Sequential Rules

Let dk(x1, . . . , xk) denote the decision rule yield-
ing the minimum of the posterior expected losses
associated with the two classification decisions at
stage k of testing, and let the posterior expected
loss corresponding to this minimum be denoted as
Vk(x1, . . . , xk). Bayesian sequential rules can now
be found by using the following backward induction
computational scheme: First, the Bayesian sequen-
tial rule at the final stage n of testing is computed.
Since the option to continue testing is not available at
this stage of testing, it follows immediately that the
Bayesian sequential rule is given by dn(x1, . . . , xn),
and its corresponding posterior expected loss by
Vn(x1, . . . , xn).

To compute the posterior expected loss associated
with the option to continue testing at stage (n − 1)
until stage 0, the risk Rk(x1, . . . , xk) will be intro-
duced at each stage k (1 ≤ k ≤ n) of testing. Let the
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risk at stage n be defined as Vn(x1, . . . , xn). Gen-
erally, given response pattern (x1, . . . , xk), the risk
at stage (k − 1) is then computed inductively as a
function of the risk at stage k as:

Rk−1(x1, . . . , xk−1) = min{Vk−1(x1, . . . , xk−1),

E[Rk(x1, . . . , xk−1, Xk)|x1, . . . , xk−1]}. (6)

The posterior expected loss corresponding to
administering one more random item after (k − 1)
items have been administered, E[Rk(x1, . . . , xk−1,

Xk)|x1, . . . , xk−1], can then be computed as the
expected risk at stage k of testing as

E[Rk(x1, . . . , xk−1), Xk|x1, . . . , xk−1]

=
xk=1∑
xk=0

Rk(x1, . . . , xk)P (Xk = xk|x1, . . . , xk−1),

(7)

where P(Xk = xk|x1, . . . , xk−1) denotes the posterior
predictive distribution of Xk at stage (k − 1) of
testing. Computation of this conditional distribution
is deferred until the next section. Note that (7)
averages the posterior expected losses associated with
each of the possible future classification outcomes
with weights corresponding to the probabilities of
observing those outcomes.

The Bayesian sequential rule at stage (k − 1) is
now given by: Administer one more random item
if E[Rk(x1, . . . , xk−1, Xk)|x1, . . . , xk−1] is smaller
than Vk−1(x1, . . . , xk−1); otherwise, decision dk−1

(x1, . . . , xk−1) is taken. The Bayesian sequential rule
at stage 0 denotes the decision whether or not to
administer at least one random item.

Computation of Posterior Predictive
Distributions

As is clear from (7), the posterior predictive distri-
bution P(Xk = xk|x1, . . . , xk−1) is needed for com-
puting the posterior expected loss corresponding to
administering one more random item at stage (k − 1)
of testing. Assuming the binomial distribution as
measurement model and the uniform distribution
B(1,1) as prior, it was shown (e.g., [5]) that P(Xk =
1|x1, . . . , xk−1) = (1 + sk−1)/(k + 1), and, thus, that
P(Xk = 0|x1, . . . , xk−1) = [1 − (1 + sk−1)/(k + 1)]
= (k − sk−1)/(k + 1).

Determination of Appropriate Action for
Different Number-correct Score

Using the general backward induction scheme dis-
cussed earlier, for a given maximum number n

(n ≥ 1) of items to be administered, a program
BAYES was developed to determine the appropriate
action (i.e., nonmastery, continuation, or mastery) at
each stage k of testing for different number-correct
score sk .

As an example, the appropriate action is depicted
in Table 2 as a closed interval for a maximum of
20 items (i.e., n = 20). Students were considered as
true masters if they knew at least 55% of the subject
matter. Therefore tc was fixed at 0.55. Furthermore,
the loss corresponding to the false mastery decision
was perceived twice as large as the loss corresponding
to the false nonmastery decision (i.e., R = 2). On a
scale in which one unit corresponded to the constant
costs of administering one random item (i.e., e = 1),
therefore, l10 and l01 were set equal to 200 and
100, respectively. These numerical values reflected
the assumption that the losses corresponding to
taking incorrect classification decisions were rather

Table 2 Appropriate action calculated by stage of testing
and number-correct score

Appropriate action by number-correct score

Stage of
testing Nonmastery Continuation Mastery

0 0
1 [0,1]
2 0 [1,2]
3 0 [1,3]
4 [0,1] [2,4]
5 [0,1] [2,4] 5
6 [0,2] [3,5] 6
7 [0,2] [3,5] [6,7]
8 [0,3] [4,6] [7,8]
9 [0,4] [5,7] [8,9]

10 [0,4] [5,7] [8,10]
11 [0,5] [6,8] [9,11]
12 [0,5] [6,8] [9,12]
13 [0,6] [7,9] [10,13]
14 [0,7] [8,9] [10,14]
15 [0,7] [8,10] [11,15]
16 [0,8] [9,10] [11,16]
17 [0,9] [10,11] [12,17]
18 [0,10] 11 [12,18]
19 [0,11] [12,19]
20 [0,12] [13,20]
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large relative to the costs of administering one
random item.

As can be seen from Table 2, at least five random
items need to be administered before mastery can
be declared. However, in principle, nonmastery can
be declared already after administering two random
items. Also, generally a rather large number of items
have to be answered correctly before mastery can
be declared. This can be accounted for the relatively
large losses corresponding to false positive decisions
(i.e., 200) relative to the losses corresponding to false
negative decisions (i.e., 100). In this way, relatively
large posterior expected losses from taking false
positive decisions can be avoided.

Discussion and Conclusions

In this entry, using the framework of Bayesian
sequential decision theory, optimal rules for the
sequential mastery problem (nonmastery, mastery,
or to continue testing) in the context of education
were derived. It should be emphasized, however,
that the Bayes sequential principle is especially
appropriate when costs of testing can be assumed
to be quite large. For instance, when testlets (i.e.,
blocks of parallel items) rather than single items
are considered. Also, the proposed strategy might
be appropriate in the context of sequential testing
problems in psychodiagnostics. Suppose that a new
treatment (e.g., cognitive-analytic therapy) must be
tested on patients suffering from some mental health
problem (e.g., anorexia nervosa). Each time after
having exposed a patient to the new treatment,
it is desired to make a decision concerning the
effectiveness/ineffectiveness of the new treatment or
to continue testing and exposing the new treatment
to another random patient suffering from the same

mental health problem. In such clinical situations,
costs of testing generally are quite large and the
Bayesian sequential approach might be considered as
an alternative to fixed-length mastery tests.
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Sequential Testing

When a clinical trial is carried out, it is often desir-
able to stop the trial early if there is convincing
evidence that one treatment is superior to the others or
there is clearly no difference between the treatments.
The use of sequential methods can lead to substantial
reductions in the numbers of patients required com-
pared with a fixed-sample design in order to achieve
the same power. The methods involve the monitor-
ing of a test statistic, and the trial is stopped as soon
as this statistic crosses some stopping boundary. The
stopping boundary is chosen in order that the trial
has a given type I error probability and power for
detecting a prespecified treatment difference. Since
the development of sequential methods in the 1940s,
there is now a wide range of methods available. The
method to be used depends on such considerations
as the type of patient response being observed, the
testing problem under consideration, and how many
treatments there are.

Most of the work on sequential testing in the
1950s and 1960s focused on the fully-sequential
case, that is, the data are inspected after each new
patient’s response. Many of the early sequential meth-
ods developed for clinical trials are described in
the classic book [1]. The often impractical nature of
fully-sequential methods led to the development of
group-sequential methods in the 1970s. With these
methods, the data are inspected after each group of
patient responses, and approaches are available for
both equal and unequal group sizes. For a given type
I error probability and power, the values of the stop-
ping boundary are computed numerically for each
of the planned interim analyses [4]. Two statistical
packages are available for the design of sequential
clinical trials–PEST 4 [2] and EaSt-2000 [3]. Both
packages also incorporate methods for drawing statis-
tical inferences upon termination, such as confidence
intervals.

As an example, suppose that we wish to compare
two treatments A and B when patient response
is binary. Then, the usual measure of treatment

difference is the log odds ratio (see Odds and Odds
Ratios) θ = log{pAqB/(pBqA)}, where pA and pB

are the success probabilities for the two treatments,
and qA = 1 − pA and qB = 1 − pB. Following [5],
one approach is to use the statistics

Z = nBSA − nASB

nA + nB
and

V = nAnB(SA + SB)(nA + nB − SA − SB)

(nA + nB)3
, (1)

where nA and nB are the numbers of patients on
the two treatments, and SA and SB are the numbers
of successes. For example, if the probability of
success for treatment B is expected to be about
pB = 0.6 and we wish to test whether treatment A
leads to an improvement of pA = 0.8, then, for a
given type I error probability of α = 0.05 and power
of 1 − β = 0.9, we can use PEST 4 to obtain the
stopping boundary for the test. After each group
of patients, the value of Z is plotted against the
value of V until a point falls outside of the stopping
boundaries. Depending on which boundary is crossed
first, we either conclude that treatment A leads to an
improvement or that there is insufficient evidence of
a treatment difference.
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Setting Performance
Standards: Issues,
Methods

Standardized tests are used for many purposes. Such
purposes include which students are eligible for
high school graduation, which applicants pass a
licensure test, and who, among qualified applicants,
will receive scholarships or other awards and prices.
In order to make these decisions, typically one or
more score values is identified from the possible test
scores to be the ‘passing score’ or ‘cutscore’.

Setting performance standards, or cutscores, is
often referred to as ‘standard setting’. This is
because, by determining the passing score, the ‘stan-
dard’ is set for the score needed to pass the test.
Standard setting methods are often differentiated by
whether they focus on the test takers (the examinee
population) or on the test questions. Methods are pre-
sented that illustrate both of these approaches.

Examinee Focused Methods

Two different examinee focused methods are dis-
cussed. The first method includes strategies whereby
examinees are assigned to performance categories by
someone who is qualified to judge their performance.
The second method uses the score distribution on the
test to make examinee classifications.

When using the first of these methods, people
who know the examinees well (for example, their
teachers) are asked to classify them into performance
categories. These performance categories could be
simply ‘qualified to pass’ or ‘not qualified to pass’,
or more complex, such as ‘Basic’, ‘Proficient’ and
‘Advanced’. When people make these classifications,
they do not know how the examinees did on the test.
After examinees are classified into the performance
categories, the test score that best separates the
classification categories is determined.

The second general approach to setting cutscores,
using examinee performance data, is through ‘norm-
based methods’. When using norm-based methods,
the scores from the current examinee group are
summarized, calculating the average (or mean) of the
set of scores and some measure of how spread out

across the score range the test scores fall (variability).
In some applications, the cutscore is set at the mean
of the score distribution or the mean plus or minus
a measure of score variability (standard deviation).
Setting the passing score above the mean (say one
standard deviation above the mean) would, in a bell-
shaped score distribution, pass about 15% of the
examinees; likewise, setting the passing score one
standard deviation below the mean would fail about
15% of the examinees.

Test-based Methods

Test-based methods for setting passing scores con-
sider the questions that comprise the test. Before
discussing test-based methods, it is necessary to know
more about the kinds of questions that comprise the
test. Many tests are composed of multiple-choice test
items. These items have a question and then several
(often four) answer choices from which the exami-
nee selects the right or best answer. Multiple-choice
test items are often favored because they are quick
and easy to score and, with careful test-construction
efforts, can cover a broad range of content in a rea-
sonable length of testing time.

Other tests have questions that ask the examinee
to write an answer, not select an answer from a set
list (such as with multiple-choice items). Sometimes
these types of questions are called constructed-
response questions because the examinee is required
to construct a response. Some agencies find these
kinds of questions appealing because they are seen
as more directly related, in some situations, to the
actual work that is required.

The methods used for setting passing scores will
vary based on the type of questions and tasks that
comprise the test. In every case, however, a panel of
experts is convened (called subject matter experts , or
SMEs). Their task is to work with the test content
in determining the recommended minimum passing
score for the test, or in some situation, the multiple
cutscores for making performance classifications for
examinees (such as Basic, Proficient, and Advanced).

Multiple-choice Questions

Until recently, most of the tests that were used
in standard setting contained only multiple-choice
questions. The reasons for this were mostly because
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of the ability to obtain a lot of information about
the examinees’ skill levels in a limited amount of
time. The ease and accuracy of scoring were also a
consideration in the popularity of the multiple-choice
test question in high-stakes testing. Two frequently
used standard setting methods for multiple-choice
questions are described.

Angoff Method. The most prevalent method for
setting cutscores on multiple-choice tests for making
pass/fail decisions is the Angoff method [1]. Using
this method, SMEs are asked to conceptualize an
examinee who is just barely qualified to function at
the designated performance level (called the mini-
mally competent candidate, or MCC). Then, for each
item in the test, the SMEs are asked to estimate the
probability that a randomly selected MCC would be
able to correctly answer the item. The SMEs work
independently when making these predictions. Once
these predictions have been completed, the probabili-
ties assigned to the items in the test are added together
for each SME. These estimates are then averaged
across the SMEs to determine the overall minimum
passing score. Because the SMEs will vary in their
individual estimates of the minimum passing score,
it is possible to also compute the variability in their
minimum passing score estimates. The smaller the
variability, the more cohesive the SMEs are in their
estimates of the minimum passing score. Sometimes
this variability is used to adjust the minimum passing
score to be either higher or lower than the average
value.

In most application of the Angoff standard setting
method, more than one set of estimates is obtained
from the SME. The first set (described above) is
often called Round 1. After Round 1, SMEs are
typically given additional information. For example,
they may be told the groups’ Round 1 minimum
passing score value and the range, so they can learn
about the level of cohesion of the panel at this
point. In addition, it is common for the SMEs to
be told how recent examinees performed on the test.
The sharing of examinee performance information
is somewhat controversial. However, it is often the
case that SMEs need performance information as a
reality check. If data are given to the SMEs, then it
is customary to conduct a second round of ratings,
called Round 2. The minimum passing scores are
then calculated using the Round 2 data in a manner
identical to that for the Round 1 estimates. Again,

panels’ variability may be used to adjust the final
recommended minimum passing score.

There have been many modifications to the Angoff
method, so many in fact that there is not a single,
standard set of procedures that define the Angoff
standard setting method. Variations include whether
or not performance data is provided between Rounds,
whether or not there is more than one round, whether
or not SMEs may discuss their ratings, and how
the performance estimates are made by the SMEs.
Another difference in the application of the Angoff
method is the definitions for the skill levels for
the MCC.

Bookmark Method. Another standard setting
method that is used with multiple-choice questions
(and also with mixed formats that include multiple-
choice and constructed-response question) is called
the Bookmark Method [2]. In order to conduct this
method, the test questions have to be assembled
into a special booklet with one item per page and
organized in ascending order of difficulty (easiest to
hardest). SMEs are given a booklet and asked to
page through the booklet until they encounter the
first item that they believe that the MCC would
have less than at 67% chance of answering correctly.
They place their bookmark on the page prior to
that item in the booklet. The number of items that
precedes the location of the bookmark represents an
individual SME’s estimate of the minimum passing
score. The percent level (here identified as 67%)
is called the response probability (RP); RP values
other than 67% are sometimes used. Individual SME
estimates of the minimum passing score are shared
with the group, usually graphically. After discussion,
SMEs reconsider their initial bookmark location.
This usually continues through multiple rounds, with
SME’s minimum passing scores estimates shared
after each round. Typically there is large diversity
in minimum passing score estimates after round
1, but the group often reaches a small variability
in minimum passing score estimates following the
second or third round.

Constructed-response Questions

As stated previously, constructed-response questions
ask the examinee to prepare a response to a question.
This could be a problem-solving task for mathemat-
ics, preparing a cognitive map for a reading passage,
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presenting a critical reasoning essay on a contempo-
rary problem. What is common across these tasks is
that the examinee cannot select an answer but rather
must construct one. Another distinguishing feature of
constructed-response questions is that they typically
are worth more than one point. There is often a scor-
ing rubric or scoring system used to determining the
number of points an examinee’s answer will receive
for each test question.

There are several methods for setting standards
on constructed-response tests. One method, called
Angoff extension [3] asks the SMEs to estimate the
total number of points that the MCC is likely to
earn out of the total available for that test ques-
tion. The calculation of the minimum passing score
is similar to that for the Angoff method, except
that the total number of points awarded to each
question is added to calculate the minimum pass-
ing score estimate for each SME. As with the
Angoff method, multiple rounds are usually con-
ducted with some performance data shared with the
SMEs between rounds.

Another method used with constructed-response
questions is called the Analytical Judgment (AJ)
method [5]. For this method, SME read examples of
examinee responses and assign them into multiple
performance categories. For example, if the purpose
were to set one cutscore (say for Passing), the
categories would be ‘Clearly Failing’, ‘Failing’,
‘Nearly Passing’, ‘Just Barely Passing’, ‘Passing’,
and ‘Clearly Passing’. Usually a total of 50 examinee
responses are collected for each constructed-response
questions, containing examples of low, middle, and
high performance. Scores on the examples are not
shown to the SMEs. After the SMEs have made
their initial categorizations of the example papers into
these multiple performance categories, the examples
that are assigned to the ‘Nearly Passing’ and ‘Just
Barely Passing’ categories are identified. The scores
on these examples are averaged and the average score
is used as the recommended minimum passing score.
Again, the variability of scores that were assigned
to these two performance categories may be used
to adjust the minimum passing score. An advantage
of this method is that actual examinee responses are
used in the standard setting effort. A disadvantage of
the method is that it considers the examinees’ test
responses question by question, without an overall
consideration of the examinees’ test performance. A

variation of this method, called the Integrated Judg-
ment Method [4] has SMEs consider the questions
individually and then collectively in making only one
overall test classification decision into the above mul-
tiple categories.

Other methods exist for use with constructed-
response questions but they are generally consistent
with the two approaches identified above. More
information about these and other standard setting
methods can be found in Cizek’s 2001 book titled
Setting Performance Standards: Concepts, Methods,
and Perspectives.

Conclusion

Tests are used for a variety of purposes. Because
decisions are based on test performance, the score
value for passing the test must be determined. Typi-
cally, a standard setting procedure is used to iden-
tify recommended values for these cutscores. The
final decision about the value of the cutscore is a
policy decision that should be made by the govern-
ing agency.

Tests serve an important purpose. It is desired to
certify that the examinee does have the requisite skills
and competencies needed to graduate from school
programs, practice in an occupation or profession,
or receive elevated status within a profession. If
the passing scores on these tests are not set appro-
priately, there is no assurance that these outcomes
will be achieved. Therefore, it is critically impor-
tant that sound methods are used when determining
these cutscores.
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Sex-Limitation Models

Sex differences are one of the most marked and fre-
quently reported features of behavioral phenotypes.
Many aspects of emotional difficulties within the
internalizing arena are more prevalent in females
than males. For example, depression is roughly twice
as common in women than in men [3]. In contrast,
males show higher levels of externalizing or behav-
ioral problems, with conduct problems two to three
times as common in males than females [4]. Another
area in which males show higher rates than females is
in learning and communication difficulties. For exam-
ple, language delays are more common in boys than
girls, and autism is also more prevalent in males
than females. As a result of these widespread sex
differences, behavioral scientists have focused con-
siderable attention on trying to identify methods by
which to explore their origins. Sex limitation mod-
els use a structural equation model-fitting approach
with twin or adoption data to test for both quantita-
tive and qualitative sex differences in the genetic and
environmental etiology of the phenotype.

A first step in any examination of sex dif-
ferences is to establish whether there are mean
or variance differences between the two sexes.
Or, alternatively, if the phenotype is a disorder,
whether there are prevalence differences between
the sexes. All these features can be left free to
differ between the two sexes in structural equa-
tion models, providing a more accurate fit to the
data. Having established these core differences, the
next step is to examine whether there are either
quantitative and/or qualitative sex differences in the
genetic and environmental etiology. In twin stud-
ies (see Twin Designs) and adoption studies, the
simple ACE model divides the sources of vari-
ance into additive genetic influence (A), common
or shared environment (C: environmental influences
that make family members similar to one another)
and nonshared environment (E: environmental influ-
ences that make family members different from one
another).

Quantitative Sex Differences

Quantitative sex differences refer to there being dif-
ferent relative proportions of genetic, shared, and

nonshared environmental influence on the phenotype
for the two sexes. Thus, with twin data, if there is a
greater difference in resemblance between monozy-
gotic (MZ) females and dizygotic (DZ) females than
there is between the two groups in males, this indi-
cates greater heritability for females. In order to
test for differences of this kind, two parallel mod-
els must be run. First, a model in which A, C, and E
are free to differ for males and females is run (het-
erogeneity or free model). Next, a model is run in
which these parameters are fixed to be of the same
size (homogeneity or constrained model). As the con-
strained model is ‘nested’ within the free model, the
difference in fit between the two can be examined
by looking at the change in chi-square, which is
itself distributed as a chi-square with an associated
degrees of freedom (difference between the degrees
of freedom for the two models) and P value. A sig-
nificant difference in the fit of these two models
indicates a significant difference in the relative influ-
ence of A, C, and E on males and females for the
trait.

In order to illustrate this type of effect, we take
as an example some data published on antisocial
behavior (ASB) in a sample of Swedish adoles-
cents [2]. As can be seen in Figure 1, the intra-
class correlations are given for 5 groups: MZ male,
DZ male, MZ female, DZ female, DZ opposite-
sex. One clear feature of these data is that while
the DZ male and female correlations are similar,
the MZ female correlation is significantly higher
than the male MZ correlation. This indicates a
greater genetic influence on females as compared

0.5
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MZM DZM MZF DZF DZO

Figure 1 Within-pair correlations for nonaggressive anti-
social behavior in young Swedish twins. Adapted from
Eley, T.C., Lichtenstein, P. & Stevenson, J. (1999) [2]
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Table 1 Quantitative and qualitative sex-limitation models for nonaggressive antisocial behavior in young Swedish Twins

Males Females DZOS

Model a2 c2 e2 a2 c2 e2 rA rC AIC χ2 df p

1b 0.47a 0.29a 0.24a 0.47a 0.29a 0.24a 0.5 1.0 4.83 28.83 12 0.01
2c 0.26a 0.47a 0.27a 0.60a 0.19a 0.21a 0.5 1.0 −2.82 15.18 9 0.09
3 0.30a 0.44a 0.26a 0.41a 0.37a 0.22a 0.14 1.0 −6.10 9.91 8 0.27
4 0.30a 0.44a 0.26a 0.41a 0.37a 0.22a 0.5 0.69 −6.10 9.91 8 0.27

aDenotes a parameter that could not be dropped from the model without significant deterioration in the fit.
bModel 1 fits significantly worse than models 2 (p < .01), 3 & 4 (p < .001).
cModel 2 fits significantly worse than models 3 & 4 (p < .05).

to males. In the constrained model, A, C, and E
were estimated at 47, 29, and 24%, respectively.
In contrast, for the sexes-free model, these parame-
ters were 26, 47, and 27%, respectively, for males
and 60, 19, and 21% for females. The difference
in fit (chi-square) between the two models was
13.65 for 3 degrees of freedom, which is signifi-
cant at the 1% level (see Table 1). Thus, there is
a clear quantitative sex difference in the etiology
of nonaggressive antisocial behavior in this sample
of Swedish young people. However, there is also
another interesting feature of the intraclasss correla-
tions in Figure 1, which is that the DZ opposite-sex
correlation is significantly lower than that for the
same-sex pairs. This is indicative of a qualitative sex
difference.

Qualitative Sex Differences

While it is clear that genes and environment could
influence the two sexes to a different extent, what is
also of interest is that there may be differences in
the specific aspects of the genetic or environmental
influence for males and females. In other words,
there may be different genes that make antisocial
behavior heritable in girls from those that influence
this phenotype in boys. Qualitative sex differences
take this model-fitting approach one step further and
allow for the examination of whether the genetic or
environmental influences on the phenotype are the
same in both boys and girls. DZ opposite-sex pairs
allow us to examine this issue because any decrease
in resemblance between them relative to same-sex
DZ pairs is indicative of a lower level of sharing
of either genes or environment. This is tested for
either by allowing the genetic correlation between
members of DZ opposite-sex pairs to be free rather

than fixed to 0.5 as is the case for same-sex pairs,
or by leaving the shared environment correlation for
DZO pairs free to be estimated rather than fixed
at 1.0. Unfortunately, because there is only one
more unit of information in this model (the DZO
covariance), only one of these effects can be tested
at any one time.

As noted above, in the data from the young
Swedish twins, the DZO correlation was rather lower
than that for the male or female DZ pairs (0.46
as compared to 0.58 and 0.60 respectively). The fit
for the two models where either the genetic correla-
tion or the shared environment correlation between
members of the DZO pairs were left free to vary
are given in the final two rows of Table 1. As can
be seen, these models have identical fit, which is
often the case, as it is difficult to distinguish between
these two models. However, both of the qualitative
sex difference models fit significantly better than the
model with quantitative sex differences only, and the
genetic and shared environment correlations are esti-
mated at 0.14 (as compared to 0.5) and 0.69 (as
compared to 1.0), respectively. This indicates that
there are somewhat different genetic and/or shared
environmental influences on nonaggressive antiso-
cial behavior in girls and boys. Furthermore, in this
model, there are still significant differences between
the relative impact of genes and environment on
males and females, with estimates of 30, 44, and 26%,
respectively, for genes, shared, and nonshared envi-
ronment in boys, and 41, 37, and 22%, respectively,
in girls.

Sex Limitation and Extreme Scores

The models described above refer to sex differences
in the origins of individual differences in the normal
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range. There are two approaches that can be taken
when examining sex differences in more extreme phe-
notypes. First, with disorders, a threshold model can
be undertaken. This can allow for sex differences in
the threshold on the estimated liability (above which
individuals express the disorder), and also both quan-
titative and qualitative sex differences on the causes
of variation in this underlying liability distribution.
This approach can also be used for data that are
very skewed, and that are best modeled as a series
of categories with thresholds in between each on an
underlying liability. However, if the phenotype is
a continuous measure (e.g., depression symptoms),
in addition to examining sex effects on the distri-
bution of the full range of scores it may be of
interest to examine sex effects on extreme scores
(i.e., those with high depressive symptoms, thus at
high risk for disorder). To examine quantitative sex
differences in extreme scores, a regression approach
is used [1] (see DeFries–Fulker Analysis) in which
the co-twins’ scores are predicted from the probands’
scores (those in the extreme group), the degree of
genetic relatedness (1.0 for MZ pairs, 0.5 for DZ
pairs), sex, and the interactions between sex and both
the proband score and the degree of genetic related-
ness. The interaction between sex and proband score
provides an overall indication of whether there are
male–female differences in twin resemblance, and
the interaction between sex and genetic relatedness
indicates the difference in heritability between the
two sexes. As noted in DeFries–Fulker Analysis,
the core feature of this approach is that following
transformation, mean scores for the co-twin groups
fall between 0 and 1 and can be interpreted in a
similar way to correlations. A model-fitting approach
to this method also allows for the testing of qual-
itative sex differences [5]. The likelihood of both
quantitative and qualitative sex differences is indi-
cated by the relative size of MZ versus DZ co-twin
means in males versus females, and in the compar-
ison of DZO co-twin means with the same-sex DZ
co-twins means. Figure 2 illustrates a pattern of trans-
formed co-twin means indicative of both quantitative
and qualitative sex differences. Examination of the
data implies a heritability for males of around 80%,
as compared to 40% for the females. Furthermore,
the DZO co-twin mean is much lower than either
the male or female DZ mean, indicating a quali-
tative sex difference in the influence of genes and
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DZO co-twin mean

Population
mean

1.0

Figure 2 Hypothetical distribution of transformed popu-
lation, proband, and co-twin means indicating both quanti-
tative and qualitative sex differences

environment on extreme group membership for this
trait.

Summary

In addition to the basic sex effects (mean, prevalence,
and variance difference), a model-fitting approach can
be used to test for two main types of sex difference:
quantitative sex differences (level of genetic and
environmental influence on males versus females)
and qualitative sex differences (different genes impact
on males versus females). These models can be tested
for variation in the full range of scores, for the
liability underlying a disorder, or for the membership
of an extreme group defined as being at one or other
end of a normally distributed trait. Such findings can
be informative particularly with regard to molecular
genetics. If there are different genes impacting on a
trait in males versus females, then molecular genetic
work needs to be undertaken on the two sexes
independently. Similarly, for such finding with regard
to environmental influence, social researchers need to
examine the two sexes separately.
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Shannon, Claude E

Born: April 30, 1916, in Michigan, USA.
Died: February 24, 2001, in Massachusetts, USA.

For most psychologists, Shannon is known and
admired for only one piece of work, his 1948 paper
on information theory and the mathematics of com-
munication systems (see the accessible version in
Shannon and Weaver, [5]). Although information the-
ory approaches to cognition flourished in the 1950s
and 1960s, culminating in Garner’s textbook on
information and structure dated 1962 [2], it is now
only of historical interest, although one could spec-
ulate that the recent interest in complexity theory
might once again have psychologist’s dusting off
their copies of ‘A Mathematical Theory of Commu-
nication’. However, at that time, information theory
appeared to offer a universal way of defining and
assessing information and processing capacity, lead-
ing people like George Miller to argue in 1956 for the
existence of the ‘magical number 7′ as the capacity
limit to the human information processing system [3].
None of this would have been possible without the
somewhat eccentric and reclusive electrical engineer
Shannon.

Shannon’s early education was at the University
of Michigan, where he obtained BSc degrees in math-
ematics and electrical engineering in 1936, while he
had obtained an MSc and a PhD by 1940 from the
Massachusetts Institute of Technology (MIT), with
a pioneering thesis on the Boolean analysis of log-
ical switching circuits for the former degree, and
one on population genetics for the latter. He had
also worked at MIT with Vannevar Bush (who was
later to invent hypertext as a way of structuring and
accessing knowledge) on an early form of computer,
the differential analyzer. Shannon’s next move was
to the prestigious Bell Laboratories of AT&T Bell
Telephones in New Jersey, where he stayed until
1972, latterly as a consultant. In the interim, he
became a visiting member of the faculty at MIT in
1956, and then Donner Professor of Science there
from 1958 onward until his retirement two decades
later.

Earlier on in 1948 he had published his key
paper on the mathematics of information and com-
munication where he defined the information in any

message as its predictability, thus turning it into a
probabilistic measure. He also noted that all sig-
nals could be represented digitally to any degree
of precision, that is, by binary digits or ‘bits’, an
abbreviation that was also claimed by John Tukey.
Thus, information could be represented as the sum
of the (log2) of the probabilities of the events in
an array of signals. The difference in stimulus and
response information also defined the channel capac-
ity of the system, and much work was done by
psychologists in the 1950s and 1960s to measure
this for many types of stimuli. Shannon also showed
that the addition of extra bits in a message that
was subject to noise or interference improved the
reception of that message, leading to the concept of
redundancy, an idea exploited by Attneave [1] in per-
ception and by Miller [4] for the recall of simple
strings.

Shannon was a somewhat retiring scientist who
did most of his work behind closed doors. He also
alarmed his colleagues at both Bell and MIT by riding
a unicycle from his small collection of such machines
down the corridors of these august institutions. It is
even rumored that one unicycle was equipped with an
asymmetric hub, which attracted crowds to see him
progress in an up and down, sinusoidal fashion along
the corridor! His other early contributions were to
computer encryption, and the creation of unbreakable
codes for military use, again drawing on the ideas
first set out so eloquently in 1948. Later efforts were
concentrated on AI and computing, in particular the
formal outline of a practical Turing machine, ideas
that had to await the age of the solid state device
before seeing their implementation.
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Shared Environment

Behavior genetic twin studies partition variance in a
behavior into genetic and environmental influences.
Environmental influences can be further divided into
shared (also called common) environment and non-
shared (or unique) environment. When behavior
geneticists refer to shared environment, they are refer-
ring to environmental influences that make sibling
more similar to one another. Examples of shared envi-
ronmental influences could include growing up in
the same home, shared parental rules and upbring-
ing, shared family experiences, sharing the same
school and community, and peers that are common
to both siblings.

In general, genetically informative studies of
behavioral variation have not found a strong role
for shared environment. In fact, behavior genetic
research consistently demonstrates little or no effect
of shared environment for many outcomes, includ-
ing personality, psychopathology, and adult IQ [4].
Studies of children and adolescents have found more
consistent evidence of shared environmental effects,
as one might expect when children are still liv-
ing together at home. Shared environment is widely
accepted as an important influence on conduct prob-
lems and juvenile delinquency, and IQ in child-
hood [2, 4, 7, 8, 10]. Additionally, for substance
use behaviors, the initiation of substance use appears
to show evidence of shared environmental effects,
but once an individual begins to use the substance,
genetic influences gradually assume a greater role
in impacting the behavior. In other words, parents
and peers may have a big effect on whether (or
when) one starts to drink or smoke, but once they
initiate, an individual’s own specific genetic predispo-
sitions assume greater influence on their subsequent
use. This is evident in a longitudinal study of alco-
hol use among Finnish adolescents, whose frequency
of alcohol use was measured at ages 16, 17, and
18.5. At age 16, more than 50% of the variation
in frequency of alcohol use was attributed to shared
environmental effects, but by age 18.5, less than a
third was, as genetic influences had assumed a much
greater role [5]. This is a common finding in the
literature: shared environmental influences tend to
decrease across the life span. As siblings increas-
ingly gain independence from their families, make
their own decisions, grow into adults, and start their

own careers and families, the impact of shared envi-
ronment is largely displaced by genetic influences and
unique environmental experiences.

So how can it be that there is so little evidence
for strong shared environmental influences on behav-
ior? Part of the confusion stems from the fact that
shared environment – as behavior geneticists use the
term – is not necessarily environmental effects that
siblings objectively share, but rather, environmen-
tal events that make them more similar. Therefore,
it is possible that an environmental event, such as
parental divorce, could be objectively shared by both
siblings, and yet have different effects on each child.
For example, one sibling might react to the divorce
by trying to please the parents by being on his/her
best behavior in an attempt to reunite the parents.
However, another sibling might react to the divorce
by acting out, engaging in substance use and delin-
quent behavior, in a rebellious attempt to ‘get back
at’ the parents. In this case, the environmental event
was shared by the siblings, but it had the effect of
making them different from one another rather than
more similar. In this case, parental divorce would
be classified as a ‘nonshared environment’ because
it made the siblings’ behavior more diverse. Thus,
shared environment is not synonymous with fam-
ily environment, and a lack of evidence supporting
shared environmental effects should not be inter-
preted as evidence that family influences are not
important. Familial influences may be nonshared, in
the respect that they serve to make siblings dif-
ferent, rather than similar. Furthermore, nonfamil-
ial influences, such as peer groups, can be shared
and serve to make siblings more alike. The distinc-
tion between objectively shared environments and
the term ‘shared environment’ as used by behavior
geneticists is important when interpreting the litera-
ture [9].

Another reason that shared environmental influ-
ences might not be widespread in the literature is
that classic twin studies are not particularly pow-
erful for detecting shared environmental influences.
The problem is that the ‘a’ and ‘c’ parameters,
representing additive genetic, and common (shared)
environmental effects, respectively, are highly corre-
lated. Power analyses have indicated that in order
to detect a common environmental effect of even
50%, more than 100 pairs of twins of each zygos-
ity are needed. As the influence of common envi-
ronment decreases, the number of pairs needed to
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detect the effect increases exponentially. Power is
further decreased when the outcome is binary, such
as affected or unaffected status. Gene-environment
correlation can also contribute to inflated estimates
of genetic influence at the expense of shared environ-
ment.

Despite these limitations, behavior genetic studies
are advancing to better characterize shared environ-
mental influences. While traditional behavior genetic
designs modeled shared environment latently, twin
researchers are increasingly measuring aspects of
the shared environment and incorporating specific
environmental measures into genetically informative
designs. These models have more power to detect
environmental effects, even when these environments
only have small effects. In a study by Kendler and
colleagues [3], parental loss was included in the clas-
sic biometrical twin model and contributed signifi-
cantly to the variance in major depression – despite
the fact that shared environmental influences were not
significant when modeled latently. We have studied
effects of parental monitoring and home atmosphere
on behavior problems in 11- to 12-year-old Finnish
twins; both parental monitoring and home atmosphere
contributed significantly to the development of chil-
dren’s behavior problems, accounting for 2 to 5%
of the total variation, and as much as 15% of the
total common environmental effect. Recent research
in the United Kingdom found neighborhood depri-
vation influenced behavior problems, too, account-
ing for about 5% of the effect of shared environ-
ment [1]. Incorporation of specific, measured envi-
ronments into genetically informative designs offers
a powerful technique to study and specify environ-
mental effects.

Another new development in studying the shared
environment has been to partition the shared environ-
ment into more distinct components. As mentioned
previously, shared environmental effects can include
everything from parents and peers, to school and
community influences. In a unique design used by
our research group in studying Finnish twins, a class-
mate control of the same gender and age was included
for each twin. All members of each dyad shared the
same neighborhood, school, and classroom, but only
the co-twins shared common household experience.
In this way, the classic shared environment compo-
nent could be separated into family environment and
school/neighborhood environment. Studying a large
sample of 11- to 12-year-old same-sex Finnish twins,

sampled from more than 500 classrooms throughout
Finland, we found that for some behaviors, includ-
ing early onset of smoking and drinking, there were
significant correlations for both control-twin and con-
trol–control dyads. This demonstrates that for these
behaviors, the shared environment includes signifi-
cant contributions from nonfamilial environments –
schools, neighborhoods, and communities [6].

In conclusion, shared environment refers to any
environmental event that makes siblings more similar
to each other. It can include family, peer, school, and
neighborhood effects; however, each of these poten-
tial environmental effects can also be nonshared if
they have the effect of making siblings different from
one another. New developments in behavior genetics
are making it possible to specify shared environments
of importance and to tease apart familial and nonfa-
milial effects.
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Shepard Diagram

In a general nonmetric scaling situation (see Mul-
tidimensional Scaling), using the Shepard–Kruskal
approach, we have data yi, . . . , yn and a model fi(θ)

with a number of free parameters θ . Often this is a
nonmetric multidimensional scaling model, in which
the model values are distances, but linear models and
inner product models can be and have been treated
in the same way. We want to choose the parame-
ters in such a way that the rank order of the model
approximates the rank order of the data as well as
possible.

In order to do this, we construct a loss function of
the form

σ(θ, ŷ) =
n∑

i=1

wi(ŷi − fi(θ))2,

where the wi are known weights. We then minimize
σ over all ŷ that are monotone with the data y and
over the parameters θ (see Monotonic Regression).

After we have found the minimum, we can make a
scatterplot with the data y on the horizontal axis and
the model values f on the vertical axis. This is what
we would also do in linear or nonlinear regression
analysis. In nonmetric scaling, however, we also have
the ŷ, which are computed by monotone regression.
We can add the ŷ to vertical axis and use them to
draw the best-fitting monotone step function through
the scatterplot. This shows the optimal scaling of
the data, in this case the monotone transformation of
the data, which best fits the fitted model values. The
scatterplot with y and f , and ŷ drawn in, is called the
Shepard diagram. In Figure 1, we show an example
from a nonmetric analysis of the classical Rothkopf
Morse code confusion data [2]. The stimuli are 36
Morse code signals. The raw data are the proportions
pij , which signals i and j were judged to be the same
by over 500 subjects. Dissimilarities were computed
using the transformation
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Figure 1 Shepard diagram Morse code data

δij = −1

2
log

pijpji

piipjj

,

which is suggested by both Shepard’s theory of stim-
ulus generalization and by Luce’s choice model for
discrimination (see [1] for details). A nonmetric scal-
ing analysis in two dimensions of these dissimilarities
gives the Shepard diagram in Figure 1.
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Sibling Interaction Effects

The effects of social interaction (see Social Interac-
tion Models) among siblings to individual differences
in behavior were first discussed by Eaves [3] and
later by Carey [1] and others. In the context of
behavior genetic research, social interaction effects
reflect that alleles may cause variation in one or more
traits of individuals carrying these alleles, but may
also, through social interaction, influence the phe-
notypes of individuals who do not carry them [4].
Social interactions between siblings thus create an
additional source of variance and generate genotype-
environment covariance if the genes causing the
social interaction overlap with the genes that influ-
ence the phenotype under study.

Social interaction effects between siblings can
either be cooperative (imitation) or competitive (con-
trast), depending on whether the presence in the
family of, for example, a high-scoring sibling inhibits
or facilitates the behavior of the other siblings. Coop-
eration implies that behavior in one sibling leads to
similar behavior in the other siblings. In the case of
competition, the behavior in one child leads to the
opposite behavior in the other child.

In the classical twin design, cooperation or pos-
itive interaction leads to increased twin correlations
for both monozygotic (MZ) and dizygotic (DZ) twins.
The relative increase is larger for DZ than for MZ cor-
relations, and the pattern of correlations thus resem-
bles the pattern that is seen if a trait is influenced
by common environmental factors. Positive interac-
tions have been observed for traits such as antisocial
tendencies [2]. Negative sibling interaction, or com-
petition, will result in MZ correlations, which are
more than twice as high as DZ correlations, a pat-
tern also seen in the presence of genetic dominance.
Such a pattern of correlations has been reported
in genetic studies of Attention Deficit Hyperactivity
Disorder (ADHD) and related phenotypes in children
(e.g., [6]). In adults, a pattern of high MZ and low
DZ correlations has been observed for anger [7].

In data obtained from parental ratings of the
behavior of their children, the effects of cooperation
and competition may be mimicked (e.g., [8]). When
parents are asked to evaluate and report upon their
children’s phenotype, they may compare the behav-
ior. In this way, the behavior of one child becomes
the standard against which the behavior of the other

child is rated. Parents may stress either similarities or
differences between children, resulting in an apparent
cooperation or competition effect.

The presence of an interaction effect, either true
sibling interaction or rater bias, is indicated by dif-
ferences in MZ and DZ variances. If the interaction
effect is cooperative the variances of MZ and DZ
twins are both inflated, and this effect is greatest
on the MZ variance. The opposite is observed if
the effect is competitive; MZ and DZ variances are
both deflated and again this effect is greatest on the
MZ variance. In addition to heterogeneity in MZ and
DZ variances, the presence of interaction affects MZ
and DZ correlations. Under competition MZ corre-
lations are much larger than DZ correlations. Under
cooperation MZ correlations are less than twice the
DZ correlation. These patterns of correlations are not
only consistent with contrast and cooperation effects,
but also with genetic nonadditivity (e.g., genetic
dominance) and common environmental influences,
respectively. In order to distinguish between these
alternatives, it thus is crucial to consider MZ and DZ
variance-covariance structures in addition to MZ and
DZ correlations.

Rietveld et al. [5] carried out a simulation study
to determine the statistical power to distinguish
between the two alternatives of genetic dominance
and social interaction. The results showed that when
both genetic dominance and contrast effects are
present, genetic dominance is more likely to go unde-
tected in the classical twin design than the interac-
tion effect. Failure to detect the presence of genetic
dominance leads to slightly biased estimates of addi-
tive genetic, unique environmental, and interaction
effects (see ACE Model). Competition is more eas-
ily detected in the absence of genetic dominance. If
the significance of the interaction effect is evaluated
while also modeling genetic dominance, small con-
trast effects are likely to go undetected, resulting in a
relatively large bias in estimates of the other param-
eters. Alternative designs, such as including pairs
of unrelated siblings reared together to the classi-
cal twin study, or including the nontwin siblings of
twins, increases the statistical power to detect contrast
effects as well as the power to distinguish between
genetic dominance and contrast effects.

Sibling interaction will go undetected in the classi-
cal twin design if the genes responsible for the inter-
action differ from the genes which influence the trait.
In such cases, a comparison with data from singletons
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may permit further investigation. In parental ratings,
the question whether an interaction effect represents
true sibling interaction or rater bias also must be
resolved through the collection of additional data, for
example, from teachers.
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Sign Test

The logic of the nonparametric Sign test is ‘almost
certainly the oldest of all formal statistical tests as
there is published evidence of its use long ago by J.
Arbuthnott (1710)!’ [6, p. 65]. The modern version
of this procedure is generally credited to Sir Ronald
A. Fisher in 1925. Early theoretical development
with applications appeared in [1].

The Sign test is often used to test a population
median hypothesis, or with matched data as a test
for the equality of two population medians. It is
based upon the number of values above or below
the hypothesized median. Gibbons [4] positioned it
as a counterpart of the parametric one-sample t Test.
However, Hollander and Wolfe [5] stated ‘generally,
(but not always) the sign test is less efficient than the
signed rank test’.

Assumptions

Data may be discrete or continuous variables. It
is assumed that the data are symmetric about the
median, with no values equal to the hypothesized
population median. There are a variety of pro-
cedures to handle values located at the median,
including (a) deleting them from the analysis and
(b) alternating the assignment for or against the
null hypothesis.

Hypotheses

The null hypothesis being tested is H0 : M = M0,
where M is the population median and M0 is a
hypothesized value for that parameter. The nondirec-
tional alternative hypothesis is H1 : M �= M0. Direc-
tional alternative hypotheses are of the form H1 :
M < M0 and H1 : M > M0.

Procedure

Each xi is compared with M0. If xi > M0, then a
plus sign ‘+’ is recorded. If xi < M0, then a minus
sign ‘−’ is recorded. In this way, all data are reduced
to ‘+’ and ‘−’ signs. If the alternative hypothesis is
H1 : M > M0, the logic of the test would indicate

that there will be more plus signs than minus signs.
If there are values equal to the median, count half of
them as plus and half as minus.

Test Statistic

The test statistic is the number of ‘+’ signs or
the number of ‘−’ signs. If the expectation under
the alternative hypothesis is that there will be a
preponderance of ‘+’ signs, the test statistic is the
number of ‘−’ signs. Similarly, if the expectation is
a preponderance of ‘−’ signs, the test statistic is the
number of ‘+’ signs. If the test is two-tailed, use the
smaller of the two counts. Thus,

S = the number of ‘ + ’ or ‘ − ’ signs

(depending upon the context).

Large Sample Size

The large sample approximation is given by

S∗ = S − (n/2)√
n/4

,

where S is the test statistic and n is the sample
size. S∗ is compared to the standard normal z scores
for the appropriate α level. Monte Carlo simulations
conducted by Fahoome and Sawilowsky [3] and
Fahoome [2] indicated that n should not be less
than 50.

Example

Consider the following sample data (n = 15). The
null hypothesis is H0 : M = 18, which is to be tested
against the alternative hypothesis H0 : M �= 18.

20 33 4 34 13 6 29 17 39 26
+ + − + − − + − + +
13 9 33 16 36
− − + − +

Each of the scores is assigned a plus or a minus,
depending on whether the score is above or below
the median. The number of minuses is 7 and the
number of pluses is 8. Thus, choose S = 7. Using
a table of critical values, S is not significant and the



2 Sign Test

null hypothesis cannot be rejected on the basis of the
evidence provided by the sample.
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Signal Detection Theory

Signal-detection theory is one of psychology’s most
notable achievements, but it is not a theory about
typical psychological phenomena such as memory,
attention, vision or psychopathology (even though
it applies to all of those areas and more). Instead,
it is a theory about how we use evidence to make
decisions. The evidence could be almost anything
(e.g., the intensity of an auditory perception, the
strength of a retrieved memory, or the number of
symptoms suggestive of schizophrenia), and the task
of the decision-maker is to decide whether or not
enough evidence exists to declare the presence of the
condition in question (e.g., the presence of a tone or
a remembered item or a disease).

What makes decisions like these difficult is that we
sometimes think we hear sounds that did not, in fact,
occur. Similarly, faces sometimes seem familiar even
upon first encounter, and symptoms of schizophre-
nia can be exhibited even by people who do not
suffer from the disease. That being the case, we can-
not make a positive decision merely because there is
the slightest evidence pointing in the positive direc-
tion. Instead, there must be enough evidence, and
signal-detection theory is all about understanding the
process of deciding that there is, indeed, sufficient
evidence to make a positive decision.

Signal-detection theory was initially introduced to
the field of psychology in the area of psychophysics
(Green & Swets, 1966), where the prototypical task
was to decide whether a tone was presented on a
particular trial or not. Since then, the basic detection
framework has been much more broadly applied, such
that it is now the major decision theory in tasks
as diverse as recognition memory and diagnostic
radiology. To illustrate the basic principles of signal-
detection theory, a standard recognition memory task
will be considered, though many other domains of
application would do just as well. In a typical
recognition task, participants are presented with a
list of stimuli (e.g., a series of faces) followed by
a recognition test involving items that appeared on
the list (the targets) randomly intermixed with items
that did not appear on the list (the lures, which are
also known as distractors). The recognition test is the
signal-detection task in this example. In the simplest
case, the targets and lures are presented one at a time
for a yes/no recognition decision (‘yes’ means that

the item is judged to have appeared on the list), and
there is an equal number of each. The proportion of
targets that receive a correct ‘yes’ response is the hit
rate (HR), and the proportion of lures that receive
an incorrect ‘yes’ response is the false alarm rate
(FAR).

Although a test item falls into one category or
the other (i.e., the item is either a target or a
lure), a signal-detection analysis of the recognition
task begins with the assumption that the test items
vary continuously along a psychologically meaning-
ful dimension. That dimension need not be named,
but leaving it unspecified often seems somehow
wrong to those who are new to the theory. Thus,
for the sake of illustration only, we might name
that dimension ‘familiarity’ (at least for the spe-
cific case of recognition memory). When presented
with a test item on a recognition test, the partici-
pant will experience some sense of familiarity, and
this holds true even for the lures. The familiarity
of the lures might be low, on average, but some
sense of familiarity will occur for each one (per-
haps because the face somewhat resembles a face
that appeared on the list or because it resembles
an acquaintance, etc.). Moreover, the lures will not
all generate the exact same low level of familiar-
ity. Instead, they will generate a range of familiar-
ity values (i.e., a distribution of values). Some of
that variability arises because items presumably dif-
fer in inherent familiarity (e.g., an average-looking
face might seem more familiar than a strange-looking
face). Variability can also arise from internal sources.
That is, even two faces with the same inherent
levels of familiarity may generate different inter-
nal responses due to moment-to-moment processing
differences. Thus, variability in subjective evidence
always exists, even in the simplest auditory detection
experiment in which the same physical stimulus is
presented on many trials.

The left distribution in Figure 1 represents the
hypothetical distribution of familiarity values asso-
ciated with the lures on a recognition test. The mean
of that distribution occurs at a relatively low point on
the familiarity scale (labeled µLure, although its true
value is unknown), and the distribution itself simply
reflects the fact that some of the lures have a higher
familiarity value than the mean whereas others have
a lower familiarity value than the mean. This distri-
bution is analogous to the ‘noise’ distribution in an
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mTargetmLure c

Familiarity

'Yes''No'

Low High

TargetsLures

Figure 1 Prototypical signal-detection model of a Yes/No
recognition memory test

auditory perception experiment (i.e., trials in which a
to-be-detected tone is not presented).

The targets that are presented during the recog-
nition test also have some mean familiarity value
(labeled µTarget), but that mean value is relatively
high because the faces were recently seen on a list.
Once again, though, all of the faces do not have the
same high familiarity value. Instead, there is a dis-
tribution of familiarity values about the mean. In the
hypothetical example shown in Figure 1, the distribu-
tion of familiarity values associated with the targets
is also assumed to be Gaussian (i.e., normal), and it
is assumed to have the same standard deviation as the
lure distribution. This distribution is analogous to the
‘signal’ (i.e., white noise plus tone) distribution in an
auditory detection experiment. Note that the equal-
variance assumption is not required, and it is often
not true in practice, but Figure 1 depicts the simplest
version of detection theory.

The crux of the decision problem is this: how
familiar must a test item be before it is declared to
have appeared on the list? It is somewhat frustrating
to realize that there is no obvious answer to this ques-
tion, and it is up to the participant to pick a criterion
familiarity value above which items receive a ‘yes’
response. In the hypothetical example illustrated in
Figure 1, the participant has placed the decision cri-
terion at the point labeled ‘c’ on the familiarity scale,
which happens to be halfway between the means
of the target and lure distributions. In a case like

mTargetmLure

Familiarity

Low High

mTargetmLure

Familiarity

Low High

TargetsLures

TargetsLures

'Yes''No'

'Yes''No'

Hit rate: 0.50

FA rate: 0.02

Hit rate: 0.98

FA rate: 0.50

Figure 2 An illustration of conservative (upper panel) and
liberal (lower panel) placements of the decision criterion

that, the HR would be 0.84 (i.e., 84% of the tar-
gets yield a familiarity greater than c) and the FAR
would be 0.16 (i.e., 16% of the lures yield a famil-
iarity greater than c), where the HR is the proportion
of targets that receives a correct ‘yes’ response and
the FAR is the proportion of lures that receives an
incorrect ‘yes’ response. But a more conservative par-
ticipant, illustrated in the upper panel of Figure 2,
might place the criterion at a higher point on the
familiarity scale, in which case both the HR and the
FAR would both be lower. This conservative partic-
ipant requires that a test item generate a familiarity
value greater than µTarget before saying ‘yes’. Only
50% of targets and approximately 2% of the lures
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exceed that familiarity value, so the HR for this par-
ticipant would be 0.50 and the FAR would be 0.02.
A liberal participant, illustrated in the lower panel
of Figure 2, might instead only require that a test
item generate a familiarity value greater than µLure

before saying ‘yes,’ in which case the HR would be
0.98 and the FAR would be 0.50. In practice, partici-
pants exhibit variability just like this (i.e., some have
high hit and FARs whereas others have low hit and
FARs).

What is the appropriate measure of memory per-
formance for these participants? A natural choice
would be to use the percentage of correct responses,
but the problem with that choice is that it does not
remain constant as bias changes. The neutral, conser-
vative and liberal observers in the example above all
have the same memory (i.e., the distributions are the
same distance apart for each) – they differ only in
their willingness to say ‘yes’. That is, they differ in
bias, not in their ability to discriminate targets from
lures. If half the test items are targets and half are
lures, then percent correct is equal to the average of
the HR and the correct rejection rate, where the cor-
rect rejection rate is equal to 1 minus the FAR. For the
neutral, conservative and liberal observers, percent
correct is equal to 84%, 74% and 74%, respectively.
The value should remain constant because memory
remains constant, and the fact that it does not reveals
a flaw with that measure.

A better approach would be to use the distance
between the means of the target and lure distribu-
tions as a measure of discriminability and to use
the location of the decision criterion as a measure
of bias. An intuitively appealing measure like the
percentage of correct responses conflates these two
separable properties of discriminative performance.
The measure of discriminability derived from detec-
tion theory is d

′
, which is the distance between the

means of the target and lure distributions in stan-
dard deviation units (not in units of familiarity). In
the example shown in Figure 1, d

′
is equal to 2.0.

That is, the means are 2 standard deviations apart.
Had the items on the list been given less study time,
d

′
would be less than 2.0 (down to a minimum of

0, at which point chance responding would prevail).
Had the items been given more study time, d

′
would

be greater than 2.0 (up to a practical maximum of
about 4, at which point very few mistakes would be
made).

The formula for computing d
′

is z(HR) - z(FAR),
where z(p) is the z-score associated with the cumu-
lative normal probability of p. Thus, for the neutral
participant, d

′ = z(0.84) − z(0.16), which is approx-
imately equal to 1 −1, or 2. For the conserva-
tive participant, d

′ = z(0.50) − z(0.02), which is also
approximately equal to 2. And for the liberal partici-
pant, d

′ = z(0.98) − z(0.50), which, again, is approx-
imately 2.0. Thus, detection theory provides a means
of computing discriminability independent of bias. In
this hypothetical example, the hit and FARs vary
across observers, but the ability to discriminate a
target from a lure (i.e., the distance between the
means of the target and lure distributions) remains
constant.

A plot of the HR vs. the FAR over different levels
of bias is called the Receiver Operating Characteris-
tic (ROC; see Receiver Operating Characteristics
Curves). The typical ROC traces out a curvilinear
path (some sense of this can be obtained by plotting
the 3 pairs of hit and FARs discussed above), and
the entire path represents a single value of d

′
over a

continuous range of bias. Note that d
′

is an excellent
choice of dependent measure when the equal-variance
model applies. When an unequal-variance model is
applicable, other detection-related measures are more
appropriate [1, 2].

Detection theory also provides various ways to
specifically quantify the degree of bias. One common
measure is C, which is the distance from the point of
intersection between the two distributions (i.e., from
the midpoint) to the location of the criterion (again, in
standard deviation units). The computational formula
for C is: −0.5∗[z(HR) + z(FAR)]/d

′
. This value

will be zero for the unbiased case (i.e., criterion mid-
way between the distributions), but it will be positive
for more conservative (i.e., higher) placements of the
criterion and negative for more liberal (i.e., lower)
placements of the criterion. For the neutral, conser-
vative and liberal responders considered above, the d

′

is 2.0 for all three and the corresponding C values are
0, 0.5, and −0.5. Thus, for any pair of hit and FARs,
one can compute a bias-free discriminability mea-
sure (d

′
) and a measure of the participant’s degree of

bias (C).
It is important to emphasize that d

′
and C are

measured in standard deviation units. We do not
really know anything about the underlying distri-
butions (i.e., we do not know their means or their
standard deviations), but we can compute d

′
and C
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from the obtained hit and FARs nonetheless. It seems
like magic until you realize, for example, that if a par-
ticipant has a HR of 0.84 and a FAR of 0.16, there is
no way to draw the equal-variance Gaussian signal-
detection depiction of those values except as drawn in
Figure 1. The distributions must be placed two stan-
dard deviations apart, and the criterion must be placed
halfway between. No other arrangement would cor-
respond to a HR of 0.84 and a FAR of 0.16 (and this
remains true even if we do not know what to name
the decision axis, which has been named ‘familiarity’
in Figure 1 for the sake of illustration only).

The great value of signal-detection theory lies not
only in its ability to separate discriminability and
bias measures (which a measure like percent correct
cannot do) but also in its ability to conceptualize

the underlying decision processes associated with an
extremely wide range of endeavors. The conceptual
utility of graphical depictions such as those shown in
Figures 1 and 2 is hard to overstate whether the topic
in question is perception, memory, or psychiatric
diagnosis (to name just a few areas of application).
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Signed Ranks Test

The nonparametric [4] Signed Ranks procedure pro-
vides a test of a hypothesis about the magnitude of the
location parameter for a sample. It can be employed
with a single sample to test a hypothesis about the
median of the population sampled or with the dif-
ferences between paired samples to test a hypothesis
about the median of the population of such differ-
ences.

Although the nonparametric Wilcoxon Rank Sum
test (see Wilcoxon–Mann–Whitney Test) is consid-
erably more powerful than the parametric indepen-
dent samples t Test under departures from population
normality, the Wilcoxon Signed Ranks test presents
more modest power advantages over the paired sam-
ples t Test.

Assumptions

It is assumed that the paired differences are inde-
pendent, and originate from a symmetric, continuous
distribution.

Hypotheses

The null hypothesis is H0 : θ = θ0, which is tested
either against the nondirectional alternative H1 : θ �=
θ0 or against one of the directional alternatives H1 :
θ < θ0 or H1 : θ > θ0.

Procedure

In the one-sample case, compute the differences, Di ,
by the formula

Di = xi − θ0 (1)

and in the paired samples case

Di = (xi2 − xi1) − θ0, (2)

where, for example, xi1 could be a ‘before’ or
‘pretest’ score and xi2 an ‘after’ or ‘posttest’ score.

Next, assign ranks, Ri , to the absolute values of
these differences in ascending order, keeping track of
the individual signs.

Test Statistic

The test statistic is the sum of either the positive ranks
or the negative ranks. If the alternative hypothesis
suggests that the sum of the positive ranks should be
larger, then

T − = the sum of ranks of the negative differences.

(3)

If the alternative hypothesis suggests that the sum
of the negative ranks should be larger, then

T + = the sum of ranks of the positive differences.

(4)

For a two-tailed test, T is the smaller of the two
rank sums. The total sum of the ranks is

N(N + 1)

2
,

which gives the following relationship

T + = N(N + 1)

2
− T −. (5)

Large Sample Sizes

The large sample approximation is

z =
T − N(N + 1)

4√
N(N + 1)(2N + 1)

24

, (6)

where T is the test statistic. The resulting z is
compared to the standard normal z for the appropri-
ate alpha level. Monte Carlo simulations conducted
by [3] and [2] indicated that the large sample approx-
imation requires a minimum sample size of 10 for
α = 0.05 and 22 for α = 0.01. Among others, [1]
provides tables to be used with smaller sample sizes.

Example

A two-sided Wilcoxon Signed Rank test, with α =
0.05, is computed on the following data set.

Test Score 87 90 88 88 89 91 89
Retest Score 90 85 94 97 96 90 99
Di 3 −5 6 9 7 −1 10
Ri 2 3 4 6 5 1 7
Negative

Ranks
3 1
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The obtained value, T , is the sum of the two
negative ranks: 3 + 1 = 4. The critical value for N =
7 is 3. Because 4 > 3, the null hypothesis is rejected
in favor of the alternative hypothesis that the median
change in scores, from test to retest, differs from zero.
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Simple Random
Assignment

There are two types of simple random assignment –
unrestricted random assignment and the random allo-
cation rule (see Randomization). Unrestricted ran-
dom assignment occurs when each subject in a ran-
domized study is assigned to one of K possible
treatments with a fixed probability, such as 1/K ,
independent of all previous assignments in the study.
Neither the total sample size of the study nor the sam-
ple size for each treatment group needs to be known
in advance to use this procedure. For a study with
two treatments and equal allocation to each treatment,
unrestricted random assignment is equivalent to using
a simple toss of a fair coin to allocate each subject
to a treatment.

In practice, allocation is usually conducted not
with coins but rather using random numbers gen-
erated from a computer. In contrast to unrestricted
random assignment, the random allocation rule does
require the total sample size of the study and the
sample sizes in each treatment group to be known in
advance. A randomly chosen subset of the subjects in
the study is assigned to one treatment group. If there
are only two treatment groups, then the unselected
subjects comprise the other treatment group. If there
are more than two treatment groups, then another
randomly chosen subset is assigned to another treat-
ment group, and so on, with the remaining subjects
assigned to the last treatment group. For example, if
four subjects were to be randomized to two groups,
with two subjects to be randomized to each group,
then there would be six possible pairs of subjects to
make up the first group: {1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, and {3, 4}. By the random allocation rule, each
of these six groups is selected with the same prob-
ability, specifically 1/6. In general, if there are two
treatment groups and equal allocation to each, then
the random allocation rule has (2n)!/(n!)2 possible
allocation sequences and unrestricted randomization
has 22n possible allocation sequences, where there
are 2n subjects in total, and n are assigned to each
group for the random allocation rule. With unre-
stricted randomization, n is the expected size of each
treatment group.

For both types of simple random assignment, the
marginal (unconditional) probability of assignment to

a treatment is the same for each subject. For two
treatments with equal allocation, each subject has the
same probability, 1/2, of being assigned to a treatment,
over the set of all possible permutations, with both
types of simple random assignment. With unrestricted
random assignment, each subject still has the same
constant conditional probability of assignment to each
treatment, even given all the previous assignments.
However, with the random allocation rule, the condi-
tional probability of assignment to a treatment is not
constant for each subject. For example, if four sub-
jects were to be randomized to two groups using the
random allocation rule and the first two subjects have
both been randomized to the first treatment group,
then the next two subjects would have no chance of
being in the first treatment group.

One benefit of unrestricted random assignment
is that it is the only allocation method to com-
pletely eliminate the type of selection bias that results
from the random allocation process being predictable,
thereby allowing an investigator to enter a specific
subject into the study based on the concordance
between this subject’s characteristics and the next
treatment to be assigned [2]. Note that many random-
ized studies are unmasked so that the prior assign-
ments are known. Even those that are masked in
theory may not be fully masked, so that at least
some of the prior assignments are known. In such
a case, any patterns created by restrictions on the
random allocation allow for prediction of the future
assignments [1]. It is in this context that unrestricted
random assignment can be appreciated for its lack of
any restrictions on the random allocation, and hence
its resistance to selection bias [3].

For the random allocation rule, there is a small
chance for selection bias in an unmasked study. Cer-
tainly, the last allocation is predictable, and depend-
ing on the allocation sequence, more allocations may
also be predictable. The maximum number of pre-
dictable allocations is the size of the largest treatment
group. For example, if four subjects were to be ran-
domized to two groups and the first two subjects have
been randomized to the first treatment group, then
the investigator would know that the next two sub-
jects would be in the second treatment group. The
third and fourth allocations would be predictable. But
if the allocation sequence were instead ABAB, then
only the fourth allocation would be predictable [3].
The opportunity for selection bias can be eliminated
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if all the subjects are allocated simultaneously rather
than sequentially as they enter the study [1].

Although complete random assignment is perhaps
the easiest allocation method to understand and
implement, it is not widely used in practice. This is
due mainly to the possibility of treatment imbalance –
imbalances in the number of subjects assigned to
each treatment – at any stage in the study. The
imbalance in the numbers allocated to each group
can be substantial if the sample size is small, and
even if the sample size is large, it is still possible
that there would be a gross imbalance during the
early stages of the study. Imbalances in the size
of the treatment groups can reduce the power to
detect any true differences between the two treatment
groups. The reduction in power is small, except for
extreme imbalances. For example, if a study has 90%
power with equal balance between treatments (1 : 1
assignment), then the power is reduced to about 85%
if the imbalance in treatments is as extreme as 7 : 3
or greater [5].

If 20 subjects are being randomized to two treat-
ments with 1 : 1 assignment (10 to each group on
average, but this perfect balance would not be
forced), then the probability of obtaining a 3 : 2 imbal-
ance (12 subjects being assigned to one treatment and
eight subjects being assigned to the other treatment)
or worse is about 50%. With 100 subjects, this proba-
bility reduces to 5% [4]. As the sample size increases
even further, this probability approaches 0%. These
imbalances can reduce the power of the study to
detect any true difference, but this concern can be
addressed by using random allocation. However, both
types of simple random assignment can be subject to
accidental and chronological bias [3]. Accidental bias
occurs when the subjects enrolled at one point in time
differ systematically from those subjects enrolled at
a later time but in the same study.

Consider the myriad number of ways that ambient
conditions can change during the course of a study –
study personnel may leave and be replaced, economic
factors may change, new legislation may take effect
during the study, flu season or allergy season may
occur during one part of the study but not during
another part of the study, and so on. These systematic
differences that occur over time may not be measur-
able, or the variables that do measure them may not
be recorded. This becomes a concern if a dispropor-
tionate number of subjects at one time are enrolled

to one group, and a disproportionate number of sub-
jects at another time are enrolled to the other group.
This is chronological bias [3], and more restrictions
on the random allocation than simply terminal bal-
ance tend to be needed to minimize or eliminate it.
We see, then, that there is a trade-off, in that more
restrictions are needed to control chronological bias,
yet fewer restrictions are required to control selection
bias that arises from prediction of future assignments.
It is generally impossible to simultaneously eliminate
both [3], although a few exceptions to this rule of
thumb exist [1]. In most cases, there will be covari-
ate imbalances across the treatment groups, whether
simple random assignment is used or not. However,
complete random assignment has the smallest chance
for accidental bias, while random allocation has a
slightly larger chance [6].

Treatment imbalances do not invalidate the statis-
tical tests that are generally performed to compare the
treatment groups as long as they are random. Chrono-
logical bias, while called a bias, is actually a random
error that is just as likely to favor one treatment group
as it is to favor another. If it is the cause of a covariate
imbalance, then standard inference is still unbiased.
However, selection bias is a true bias, and so if it
is the cause of a covariate imbalance, then standard
comparisons are not unbiased, and standard tests are
not valid. This, and the fact that unrestricted random
assignment eliminates selection bias, is one reason to
consider using it.
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Simple Random Sampling

When a census of the entire population of interest is
difficult to obtain, a sample is often used. There are
many sampling designs that can be used to obtain a
sample that would hopefully be representative of the
population, and among these sampling designs, sev-
eral allocate the same inclusion probability to each
unit in the population (see Survey Sampling Pro-
cedures). Of course, for this to be the case, one
would need the sampling frame from which units
are selected to match the population of interest. Oth-
erwise, any unit not in the sampling frame cannot
be selected, or, rather, is selected with probability
zero.

If the sampling frame is equivalent to the popula-
tion of interest, and if each unit in the population
(or sampling frame) has the same inclusion prob-
ability, and if all the units are independent, then
we have a simple random sample. The indepen-
dence refers to the selection probability, so that
knowledge that not only does each unit have a
common selection probability but also each pair of
units has a (different) common selection probabil-
ity. Another way to formulate this is to state that
each sample consisting of a given number of units
has the same probability of becoming the selected
sample.

Simple random sampling treats each element in
the population as being equally important; if this
is true, then it would make sense that each unit
would be sampled with equal probability. Sometimes
this is not the case. For example, the population
may be heterogeneous, with small but important
subgroups that need to be represented adequately. In
such a case, one might want to over-sample from
these small subgroups. Also, if it is known that the
subgroups are relatively equally well represented in
the population, then this fact might be exploited
to ensure balance in the sample, as well as in the
population. For example, if sampling is undertaken
without regard to gender, then it is possible that a
gross imbalance would occur in the sample, in which
case one gender would have more precise estimation
than the other. Specifying a common number of
males and females, and possibly selecting simple
random samples from each, would guard against
this potential problem. Of course, such a compound
simple random sample does not itself constitute a

simple random sample, because not all subgroups
would have the same probability of being selected.
For example, a subgroup with unequal numbers of
males and females would have probability zero of
being selected.

Simple random sampling may be conducted with
replacement or without replacement. As the name
would suggest, simple random sampling with replace-
ment involves sampling with replacement from the
population. Each element in the population may be
selected into the sample more than once. Consider,
for example, an urn with 20 numbered balls. To
obtain a sample of five balls by simple random sam-
pling with replacement, one needs to draw a ball
randomly from the urn five times, but after each
selection the ball is put back into the urn before
the next draw. Therefore, the sampling population
remains the same for each draw. If we denote the
size of the total population by N , then each unit
has a chance of 1/N to be selected into the sam-
ple at each selection. A specific sample of size n

has a chance of (1/N)n of being selected. This
design has been modified to create the play-the-
winner rule of patient allocation to clinical trials.
Specifically, after a ball is selected, one replaces not
only the selected ball but also more balls of the same
color or of a different color depending on the out-
comes [2].

In simple random sampling without replacement,
units are sampled from the population without
replacement. Consider the same example as above.
To obtain a sample of 5 balls from the urn with
20 numbered balls by simple random sampling
without replacement, one draws a ball randomly
from the urn 5 times. But now the ball is not
replaced after the selection, so after each draw,
the population is different from what it was during
the previous draw. After 5 draws, only 15 balls
are left in the urn. And unlike the simple random
sampling with replacement, the 5 balls in the sample
are always distinct. With a population of size
N , the chance of obtaining a specific sample of
size n is 1/

(
N

n

)
. The probability of obtaining a

specific sample is now different from what it was
when sampling with replacement. Note that even
a simple random sample, be it with replacement
or without, cannot confer independence to multiple
observations taken from the same unit that was
selected [1].
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Simple V Composite Tests

In a statistical test to test if a statistic S is
significantly bigger than some fixed value c, the
chance or sampling distributions of S based on
an appropriate null hypothesis has to be assumed.
This usually takes the form of supposing that S

is c plus a variable error with an expected value
of 0. Thus, under the null hypothesis the expected
value of S is c and all the variation in the observed
value of S is due to sampling error. The P value
is then the probability of getting an S as or more
extreme than was observed from this distribution (in a
two-tailed test) (see Classical Statistical Inference:
Practice versus Presentation). A more usual way
of presenting this is to suppose that c is the value
of an unknown parameter θ that is involved in the
specification of the sampling distribution and that
the null hypothesis H0 is θ = c. This hypothesis is
called a simple hypothesis if θ is the only unknown
parameter in the sampling distribution. Examples of
tests of simple hypotheses include testing that a penny
is fair on the basis of the proportion of heads in 100
tosses or that the mean IQ of a class is equal to 100,
where IQs are supposed to be normally distributed
with a standard deviation of 15.

Where the sampling distribution has more than one
unknown parameter, the null hypothesis H0 θ = c is
said to be composite. Thus, a test of whether the mean
IQ of a class is equal to 100, where IQs are supposed
to be normally distributed with a standard deviation to
be estimated from the data, is a composite hypothesis.
However, composite hypotheses can involve several
parameters. A composite null hypothesis has the gen-
eral form θ1 = c1, θ2 = c2, . . . θk = ck with k degrees
of freedom, where the θs are unknown parameters
and the cs fixed values. The general form incorporates
hypotheses like θ1 = θ2 = θ3, . . . = θk as these can be
rewritten as θ1 − θ2 = 0, θ2 − θ3 = 0 . . . θk−1 − θk =
0 with k − 1 degrees of freedom. This is because
the sampling distribution can be reexpressed using
the differences between adjacent θs plus the average
value of θ instead of the θs themselves. Examples
of tests of composite hypotheses include analyses of
variance, which test the hypothesis that the means of
several groups are the same, chi-square tests with sev-
eral degrees of freedom, and meta analyses, which

test the hypothesis that there is an effect present in a
number of studies.

Statistical tests are also used to test nonparametric
hypotheses. This term is somewhat loose and can be
used in at least two ways [2]. First, it can apply to
hypotheses where the probability distribution of the
data is not specified. Examples here include using a
Mann Whitney test (see Wilcoxon–Mann–Whitney
Test) to test for differences between two sets of
data that have been assumed to have been randomly
sampled from identically shaped but unknown distri-
butions and tests based on bootstrap methods where
the sampling distributions are generated by randomly
sampling the observed data to generate empirical
distributions (see [1] and Bootstrap Inference). A
second usage is that a nonparametric hypothesis can
take the form that a set of data is consistent with some
probability model or law with an unknown parame-
ter or parameters. For example, one might wish to
test the hypothesis that a set of data is normally dis-
tributed where both the mean and standard deviation
are unknown. Such hypotheses are too complex to be
entirely evaluated by the results of a single statistical
test (see Model Evaluation; Model Selection).

Finally, it should be noted that all statistical tests
of hypotheses whether simple, composite, or nonpara-
metric, ultimately reduce the data to a single statistic.
Even where a statistical test is derived from multi-
variate sampling distributions, the test can be seen
as assessing whether its P value, itself a univari-
ate statistic, is too small to be attributed to chance.
On the other hand, if a composite null hypothesis
has several degrees of freedom, it may be decom-
posed in a number of ways into independent compo-
nent null hypotheses each with 1 degree of freedom
(see Multiple Comparison Procedures). By test-
ing these component hypotheses, more information
about how the overall hypotheses are violated can be
obtained though this raises the possibility of artifac-
tually increasing the achieved levels of significance
(see Multiple Testing). It should also be noted that
rejection of any component hypothesis itself implies
a rejection of the overall hypothesis. Thus, despite the
problems of multiple testing, where one has good rea-
son for expecting that an effect with several degrees
of freedom will conform to a particular pattern, the
probability of rejecting the overall null hypothesis can
be increased by using a test that incorporates these
expectations.
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Simulation Methods for
Categorical Variables

The simulation of real processes is a strong and legit-
imate tool in the hand of the research worker [1]. The
parameters and variables used in simulation models
can be discretely or continuously distributed. Under
many conditions, discretely distributed variables are
called categorical variables. They are called cat-
egorical random variables if they possess random
characteristics. The following list presents examples
of tasks that can meaningfully be approached using
categorical random variables

1. Monte Carlo Sampling [9, 10]: the computer
draws random samples from a population; sam-
pling can be uniform, stratified, or by way of
bootstrap resampling.

2. Statistical Design or Simulation Design [8, 11]:
the following is a typical question for which
simulation methods are employed: which sam-
ple size minimizes the cost of an expensive
series of experiments. Costs can arise from the
number of trials or the sample size, but also
from the loss that results from falsely rejecting
true hypotheses.

3. Numerical mathematics [4, 13]: Calculation of
distributions that are either algebraically not
tractable or can be calculated only with
great effort; examples of such distributions
include mixtures of various discrete distributions
(see Finite Mixture Distributions). Statistical
research concerning the performance of tests or
the power of tests heavily relies on the means of
simulations (e.g., [14]).

4. Stochastic processes of national or business econ-
omy : Simulation studies are used to test models
of changes in population parameters and their
impact on a national economy. Categorical ran-
dom variates in such a study are, for instance, the
number and the gender distribution of children
in families.

5. Random sampling to circumvent problems with
complete enumeration [12, 15]: For reasons of
time or computer capacity, complete enumeration
often causes problems. Therefore, random com-
binations are often drawn. Examples of appli-
cations include the optimization of the order of

steps in a process, the optimization of breeding
processes, or the minimization of costs. The cat-
egorical random variates in these examples are
the order of objects, the genetic patterns of the
parental population, and the costs that come with
combinations of parameters.

Discrete Distributions

A random variable that can assume the discrete values
0, 1, 2, . . . , n has a discrete distribution. In applied
research, the discrete distribution, that is, the set
of probabilities of patterns of variable categories,
is almost always found by analyzing the data of a
sample. Examples of such data include responses to
questionnaires, code patterns in observational studies,
or measurements that are categorized. Other discrete
variables describe, for example, the gender distribu-
tion at universities over the last 25 years, or the distri-
bution of countries that visiting students come from.

Discrete distributions are often derived by oper-
ations on discrete variables, for example, the sum
function of one or more categorical variables. For
example, the sum of 5 dichotomous variables that
are scored as 0 and 1 is a binomially distributed
random variable (see Catalogue of Probability Den-
sity Functions) with the six possible outcomes
0, 1, 2, . . . , 5. An example of such a distribution
describes the number of girls in families with
5 children.

One of the best known ways to create a mul-
tivariate discrete distribution is to cross two or
more discrete variables. This operation yields a con-
tingency table. Suppose we study the relationship
between customer gender (G; female = 1; male = 2)

and time of the day of shopping (T ; 0 − 8 A.M. =
0; 8 A.M. − 4 P.M. = 1; 4 P.M. − 12 P.M. = 2). Cross-
ing G with T results in the two-dimensional G × T

contingency table.

Elements of a Simulation Study

Most simulations involve using computers. Research-
ers write programs using general purpose software
such as FORTRAN, software specialized for math-
ematical problems such as MAPLE [3], or the pro-
gramming tools provided by the general purpose sta-
tistical software packages such as SAS or SPSS [13].
The integral parts of a simulation study with categor-
ical random variables are:
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1. description of the question that the simulation
will answer; examples of such questions are the
estimation of the power of a statistical test, the
estimation of the β-error, or the examination of
relationships in cross-classifications;

2. a model with a comprehensive list of the factors
under study, for example, all categorical vari-
ables, the α-error, the sample size, the smallest
difference of interest between a cell probability
and the probability under independence;

3. a good random number generator that creates
uniformly distributed random numbers; alterna-
tively, for large samples, a generator that creates
normally distributed random numbers;

4. algorithms that generate the desired discrete dis-
tribution from the uniformly distributed random
numbers, for instance, the random frequencies of
a contingency table;

5. algorithms for the analysis of individual trials,
for example, the test of a particular hypothesis
for a particular cross-classification; storing of the
results of the tests for the individual trial;

6. algorithms that summarize the results for the
individual trials; for example, these algorithms
describe the number of trials in which a hypoth-
esis was rejected.

Generation of Discrete Random Numbers for
Small Samples

Many programming environments provide acceptable
generators for uniformly distributed random num-
bers. However, new generators are constantly being
developed [7]. Most generators allow one to cre-
ate reproducible series of random numbers. These
are series that are the same each time the genera-
tor is invoked. However, most generators also allow
one to create series that are hard to reproduce. For
this option, a random function is used that deter-
mines the seed or the beginning of a series. As
a compromise, one can reject the first k numbers
from a series, with k determined anew for each
simulation run.

If random numbers are needed that reflect a
particular distribution, for example, the binomial
distribution with n classes and an a priori specified
probability for the occurrence of the target element
A of {A, B}, a number of options exists. The three
most important ones are:

1. Using existing programs. This option implies
using a developer environment that provides the
needed random number generators. For example,
the environment MAPLE provides the uniform
generator random; SAS provides the binomial
generator RanBin; NEWRAN provides the bino-
mial generator Binomial ; or CenterSpace pro-
vides the binomial generator RandGenBinomial.

2. Transforming uniform random numbers. Here,
one typically starts from an existing uniform ran-
dom number generator that a programming envi-
ronment such as Turbo Pascal, C, FORTRAN, or
C++ makes available. The random numbers from
these generators are then transformed such that
the desired distribution results. The probabilities
of the categories of the targeted distribution must
be determined a priori.

3. Implementing stochastic processes. First, a draw-
ing process is started using the uniform random
number generator. Then, a stochastic process is
used to select numbers such that the desired dis-
tribution results. Here again, the probabilities of
the categories of the targeted distribution must
be determined a priori.

The transformation of an uniformly distributed
random number from the [0, 1] interval to any dis-
cretely distributed random variable with n classes (=
categories) is a mapping of the [0, 1] interval onto
the probability axis of the cumulative sum distribu-
tion. If the discrete probabilities are 0 < p1 < p2 <

· · · < pn = 1.0, the simplest (but by no means the
fastest) transformation method involves a series of if-
statements. The following example uses the language
of Turbo Pascal. Any other programming language
could be used. The function RANDOM that is used
in this example yields uniformly distributed random
numbers from the [0, 1] interval, where the num-
ber 1 does not occur. The cumulative probabilities
must be given in the vector p. That is, the program-
mer must either initialize the vector with the correct
probabilities, or write program code that results in
these probabilities. The first element of the vector p
is p1, the second is p1 + p2, and so on. The last ele-
ment has the value p1 + p2 + · · · + pn. This value
is always 1.0, that is, the simulation is exhaustive.
In the example, k is the running index, and the
quantity U is a dummy variable. The number of cat-
egories is n. The resulting quantity x has the desired
distribution.
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U:=RANDOM
for k:=n downto 1 do if
(U<p[k]) then x:=k;

The stochastic drawing process of the binomial
distribution is, for example, the drawing of white
or black balls from an urn with returning each ball
to the urn after registering its color, that is, with
replacement. The probability of drawing a white ball
is p, that of a black ball is 1 − p. One generates
a uniformly distributed random number 0 ≤ U ≤ 1,
using the function RANDOM, and takes ‘white’ or
sets event = 1 if U < p. Alternatively, one takes
‘black’ or event = 0 if U ≥ p. The desired n-class
distribution is found by adding the n drawing events
with values of 0 or 1. The categorical random variable
is binomially distributed with he n + 1 categories
being 0, 1, 2, . . . , n. The following code (in Turbo
Pascal) illustrates this procedure:

x:=0;
for k:=1 to n do if (RANDOM<p)
then x:=x+1;

Whereas the first example (the transformation
procedure above) is applicable to any distribution
with a finite number of categories (as was mentioned
above, the probabilities of the categories must be
known), this second procedure creates only binomial
distributions.

Generation of Discrete Random Numbers for
Large Samples

If the expected frequency of a category is greater than
9, one can save computing time by using an approx-
imative solution. Naturally, approximative solutions
imply compromises concerning the characteristics of
the resulting distribution. To give an example, we
consider the generation of 2 × 2 × 2 contingency
tables with eight cells and multinomial distribution
(see Catalogue of Probability Density Functions).
The sample size N is assumed to be greater than
100. The probability pj of Cell j should be known
in this case. Therefore, the expectancy ej = Npj is
known also. Each cell frequency nj of the eight
cells is binomially distributed with N + 1 categories
0, 1, 2, . . . , N , according to the cell probability pj .
The variance of a binomially distributed frequency is
σ 2 = Npj(1 − pj ). Neglecting the mostly insignif-
icant skew of the binomial distribution, and also

neglecting the mostly small deviation of the value
1 − pj from the value 1, we can use the normal dis-
tribution of the cell frequency with mean Npj and
variance σ 2 = Npj as a sufficiently good approxima-
tion of the binomial distribution of a cell frequency.

To illustrate this method of creating binomially
distributed cell frequencies, we now describe the
calculation of a single discrete random cell frequency
nj by the following Turbo Pascal code. The quantity
r is a real dummy variable, the variable j indicates
the cell number.

r:=N*p[j];
(* Expectation of cell j*)

r:=r+NORMRAND*sqrt(r);
(* Adding standard deviation *)

if (r<0) then r:=0; (* Check
against negative number *)

n[j]:=round(r); (* make it discrete
and store *)

The sum of all cell frequencies nj , S, is the desired
sample size, N .

If there is no generator available that creates
N{0; 1}, that is, normally distributed random num-
bers, one can use the method of summing 12 uni-
formly distributed random numbers from the interval
[0, 1]. The Turbo Pascal code for this procedure is

Function NORMRAND : real;
(* normally {N,0;1}
distributed using the central
limit theorem of Gauss *)

var sum: real;
i: integer;

begin
sum:=0;
for i:=1 ro 12 do sum:=sum+
RANDOM; NORMRAND:=sum−6;

end;

The procedure proposed by Box and Muller
(1957) works with nearly the same speed. It uses
two random numbers, r1 and r2, with uniform [0,
1] distribution, and transforms them to be a normally
distributed N{0; 1} random number. The transfor-
mation uses the mathematical functions square root,
natural logarithm, and sine. The generated values are
not limited to the interval between −6 and +6, as
are the values generated by the method of summing
12 uniformly distributed random numbers. The Turbo
Pascal code for Box and Muller’s method follows.
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Function NORMRAND : real;
(* normally N{0;1}

distributed random numbers
using a transformation by
Box and Muller *)

var r1 : real;
(* Number pi is pre-defined

in Turbo Pascal *)
begin

repeat r1:=RANDOM
until r1>0;

NORMRAND:=sqrt(−2*ln(r1))*
sin(2*pi*RANDOM);

end;

Generation of Other Discrete Distributions

In behavioral research, a small number of basic
theoretical discrete distributions is used. Among
these are the binomial, the multinomial, the product-
multinomial, the hypergeometric, and the Poisson
distributions [6] (see Catalogue of Probability Den-
sity Functions). If one draws samples from samples
from a population, we find ourselves in a situa-
tion in which frequencies follow both the binomial
and the hypergeometric distributions. This case is of
practical interest, because questionnaires are often
administered in small units of larger entities, for
example, departments of a college, small subsidiary
plants.

The Poisson distribution is a special case because
the number of categories is not restricted a priori.
If categories exist with numbers k � λ, where λ

is the expectation, then these categories come with
very small probabilities, one truncates the distribution
by eliminating large values of k. The remaining
probabilities are then distributed proportionally to
the first n categories. When programming Poisson
processes, the transformation method is preferred
over programming as a stochastic process.

In the following paragraphs, we illustrate the cre-
ation of a binomial distribution in a two-dimensional
cross-classification. In the first step, we use the trans-
formation method to generate Poisson-distributed
random numbers.

In the following example, we simulate the answers
that exactly 100 women and 100 men gave to a
question. The question concerned a symptom such
as headaches. The answers were scaled as 1 = none
to 5 = severe. We assume λf = 2.5 for the female
respondents, and λm = 3.5 for the male respondents.

The following steps are performed to generate the
code for the 2 × 5 contingency table CT[i, k ], with
i = 1, 2 and k = 1, . . . , 5.

1. Set all cells of CT[i, k ] to zero.
2. Compute, using the Poisson formula Pk =

λk/k!e−λ for k = 1, 2, . . . , 5, the 2 × 5 class
probabilities, and store them into the vectors Pf

for women and Pm for men.
3. Calculate the two sums of probabilities SPf

and SPm from the two vectors Pf and Pm to
truncate the distributions. Divide the probabilities
in vector Pf by SPf , and Pm by SPm (renorming
by prorating).

4. Calculate the cumulative probabilities in the
vectors Pf and Pm using commands such as ‘for
k := 2 to 5 do P[k] := P[k] + P[k − 1];’

5. Repeat 100 times the algorithm ‘U := RAN-
DOM; for k := 5 downto 1 do if (U < Pf[k])
then x := k; CT[1,x] := CT[1,x] + 1;’. This al-
gorithm yields the simulated frequencies for the
female respondents.

6. Repeat 100 times the algorithm ‘U := RAN-
DOM; for k := 5 downto 1 do if (U < Pf[k])
then x := k; CT[2,x] := CT[2,x] + 1;’. This al-
gorithm yields the simulated frequencies for the
male respondents.

7. After completing Step 6, the contingency table
is ready for further analysis, for example, for
calculation of a test statistic that describes the
association between Gender and headaches.

In the following sections, we illustrate the stochas-
tic drawing process of creating random numbers
for discrete distributions for the case in which the
class probabilities are unknown. The drawing pro-
cess for the hypergeometric distribution (see Cata-
logue of Probability Density Functions) uses the
urn example, just as for the binomial distribution,
but without replacing the ball. As a consequence,
each drawing changes the probabilities of the balls
that remain in the urn. Let Np be the total num-
ber of balls (respondents, responses, observations)
in a subpopulation, for example, the employees
of a factory, and the number of white balls ip,
and the number of black balls jq = Np − jp. The
start probability p of white balls is p = jp/Np.
The following code, in Turbo Pascal, illustrates the
drawing process for the generation of hypergeomet-
rically distributed random numbers x with value
range 0, 1, . . . , min(n, jp). The parameters of this
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process are the a priori probability p, the num-
ber n of categories, and the size Np of the sub-
population.

x:=0;
for k:=1 to n do
begin if RANDOM<p then begin
x:=x+1; jp=jp−1; end;

p:=jp/(Np−k);
end;

An extension of the binomial distribution is the
multinomial distribution. This is the distribution of
variables with more than two categories. Examples
of such variables are the die with six possible num-
bers and the k = 5 possible categories for a question
in a questionnaire. In simulations, the researcher has
to determine the probabilities p1, p2, . . . , pk of the
alternatives. The simplest option is to specify a uni-
form distribution, as what one would expect of a
good die. Generally, finding these probabilities is
often the goal of the simulation process. The ran-
dom variate X is, after k drawings. k-dimensional,
that is, x1

n is the frequency of Alternative A1, x2
n

is the frequency of Alternative A2, and so on. The
generation of a multinomial distribution can be per-
formed using the above transformation procedure. We
compute the vector p of the cumulative probabilities,
set all elements of vector x to zero, and apply the
random generation n times. After the n drawings,
we find the k multinomially distributed frequencies
as elements of vector x, that is, x1, x2, . . . , xk, each
of which has the value range 0, 1, . . . , n. This pro-
cedure is illustrated by the following Turbo Pascal
code.

U:=RANDOM;
for k:=5 downto 1 do if
(U<p[k]) then j:=k;

x[j]:=x[j]:+1;
A product-multinomial distribution results from

simultaneously analyzing two or more multinomial
distributions, each of which having the same number
of categories. The drawings of the different multi-
nomial distributions are performed separately. The
drawing process is the same as described above for
the multinomial distribution. The result of a product-
multinomial drawing can most conveniently be pre-
sented in the form of a cross-tabulation. For example,
50 men and 100 women respond to the same ques-
tion using a 5-category response format. The resulting

table has 2 × 5 cells. Let the first row contain the
response frequencies of the male respondents. These
frequencies can assume the values 0, 1, 2, . . . , 50.
This applies accordingly to the response frequencies
for the women, in the second row. The total sum of
all frequencies is 150. The row totals are 50 and 100,
respectively.

A combined binomial-hypergeometric distribution
results from drawing n < Np respondents from a
finite subpopulation of size Np , without replacement.
The Turbo Pascal program given below illustrates
this procedure. For this program, we need two loop
counters, i and j , the a priori probability p for
the occurrence of Alternative A1 from {A1, A2} in
the finite basic population, the size Np of our sub-
population, the number of classes, n, a dummy
vector b for storing the Np scores of the alter-
natives A1/A2. From the vector b, the algorithm
draws randomly the n respondents. Variable x has
the desired binomial-hypergeometric distribution with
value range 0, 1, 2, . . . , n.

For j:=1 to Np do (* Create
binomially distributed 0 or 1 *)
if RANDOM<p then b[j]:=1
else b[j]:=0;

i:=0;
x:=0;
repeat
j:=round(Np*RANDOM+0.5);
(* Random access index *)

if ((j>0) and (j<=Np))
then (* Check of
index range *)

begin
if b[j]>=0 then
(* Check whether
selected already *)

begin
x:=x+b[j];

(* add 0 or 1 *)
b[j]:= −−1;

(* mark proband
as selected *)

i:=i+1;
(* count selected
probands *)

end;
end;

until (i=n);
(* Stop with case n *)
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Analysis and Registration of the Elementary
Events and Statistical Summary

The analysis of a single drawing varies depending
on the aims of a study [5]. In most studies, results
are derived directly from the random numbers. In
our example with the Poisson distribution, one could
calculate a X2-statistic for the cross-classification
with the random numbers. The same applies to the
example in which a product-multinomial distribution
was simulated. Alternatives include studies in which
running processes are simulated, for example, the
evolution of a population. Here, we have a starting
state, and after a finite number of drawings, we
reach the end state. In this case, the computation of
statistical summaries is already part of the analysis
of the individual drawing. However, the result of
the individual drawing is not of interest per se. One
needs the summary of large numbers of drawings for
reliable results.

The statistical summary describes the result of the
simulation. In our example with the two-dimensional
cross-classifications, the summary presents the num-
ber NA of times the null hypothesis was rejected
in relation to the total number of all simulation tri-
als, NR . A second result can be the Type II error
(β or the complement of the statistical power of a
test), calculated as β = 1 − NA/NR . Typically, sim-
ulation studies are meaningful because of the vari-
ation of parameters. In our examples with the two-
dimensional cross-classification, we can, for instance,
increase the sample size from N = 20 to N = 200 in
steps of �N = 20. Based on the results of this vari-
ation in N , we can produce graphs that show the
degree to which the β-error depends on the sample
size, N , while holding all other parameters constant
(for an example, see [14]). Using this example, one
can also show that the individual table is not really
of interest. For the individual table, the β-error can
only be either 0% or 100%, because we accept the
correct alternative hypothesis or we reject it.

Using Different Computers and Parallel
Computing

Simulation experiments of statistical problems are
prototypical tasks for multiple computers and parallel
computing. Suppose researchers have written a com-
puter program or have produced it using a developer

environment, they can run the program under dif-
ferent parameter combinations using different com-
puters. This way, the time needed for a study can
be considerably shortened, the number of parameters
can be increased, or the range of parameter variation
can be broadened.

If a computer with multiple processors is available,
for example, a machine with 256 processor units, one
can employ software for parallel computing. The task
of the programmer here is to start 256 trials using
256 random number processes (using 256 different
seeds). At the end, the 256 resulting matrices need to
be summarized.

Presenting Discrete Distributions

For most observed discrete distributions, theoretical
distributions are defined. (see Catalogue of Prob-
ability Density Functions) These include the bino-
mial, the hypergeometric and the multinomial distri-
butions. The graphical representation of the density
distribution is, because of the categorical nature of the
distributions, a bar diagram (see Bar Chart) rather
than a smooth curve. The probability of each class or
category is shown by the corresponding height of a
bar. These can be compared with bars whose height
is determined by the theoretical distribution, that is,
the comparison bars function as expected values. This
way, the results of a simulation study can be evalu-
ated with reference to some theoretical distribution.

The graphical representation of contingency tables
with many cells is more complex. Here, the mosaic
methods proposed by Friendly [2] are most useful.
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Simultaneous Confidence
Interval

It is sometimes desirable to construct confidence
intervals for a number of population parameters
at the same time. The problems associated with
this are demonstrated most simply by considering
intervals that are independent (in the sense that they
are constructed from independent data sources). If
two independent 95% confidence intervals are to
be computed, then the probability that both will
contain the true value of their estimated parameter is
0.95 × 0.95 = 0.9025. The probability that three such
intervals will all contain their true parameter value
falls to 0.95 × 0.95 × 0.95 = 0.857. It is apparent
that the more such intervals are to be computed,
the smaller will be the probability that they will all
contain their true parameter value. With independent
confidence intervals, it would be relatively easy to
increase the level of confidence for the individual
intervals so as to make the overall confidence equal
to 0.95. With two intervals, each could be constructed
to give 97.47% confidence, since 0.9747 × 0.9747 =
0.950. With three intervals, each could be constructed
to give 98.30% confidence, since 0.9830 × 0.9830 ×
0.9830 = 0.950.

With truly independent confidence intervals,
which are addressing very different questions,
researchers are not likely to be overconcerned
about having a simultaneous confidence statement
for all their estimated parameters. However, in the
behavioral sciences, the construction of simultaneous
confidence intervals is most commonly associated
with experiments containing k conditions (k >

2). In such situations, researchers often wish to
estimate the difference in population means for
each pair of conditions, and to express these as
confidence intervals. The number of such pair-
wise comparisons is equal to k(k − 1)/2, and this
figure increases rapidly as the number of conditions
increases. Furthermore, the desired intervals are
not statistically independent as the data from each
condition contribute to the construction of more than
one interval (see Multiple Testing).

The simple multiplication rule used above with
independent confidence intervals is no longer appro-
priate when the confidence intervals are not inde-
pendent, but the approach is basically the same. The

individual intervals are constructed at a higher con-
fidence level in such a way as to provide, say, 95%
confidence that all the intervals will contain their true
parameter value. One of the most commonly used
approaches employs the studentized range statistic [1,
2], and is the confidence interval version of Tukey’s
Honestly Significant Difference test (see Multiple
Comparison Procedures). It will serve to illustrate
the general approach.

For any pair of conditions, i and j , in a simple
k-group study, the simultaneous 95% confidence
interval for the difference in their population means
is given by

(X̄i − X̄j ) − q0.05,k,N−k

√
MS error

n
≤ µi − µj

≤ (X̄i − X̄j ) + q0.05,k,N−k

√
MS error

n
(1)

where MS error is the average of the sample variances
of the k conditions, n is the number of observations in
each condition (assumed equal), and q0.05,k,N−k is the
critical value of the studentized range statistic for k

conditions, and N − k degrees of freedom, at the 0.05
significance level. By way of illustration, consider
an experiment with k = 3 conditions each with n =
21 randomly assigned participants. With k = 3 and
N − k = 60, the critical value of the studentized
range statistic at the 0.05 level is 3.40. If the means
of the samples on the dependent variable were 77.42,
69.52 and 64.97, and the MS error was 216.42, then
the simultaneous 95% confidence intervals for the
difference between the population means would be

−3.01 ≤ µ1 − µ2 ≤ 18.81
1.54 ≤ µ1 − µ3 ≤ 23.36

−6.36 ≤ µ2 − µ3 ≤ 15.46
(2)

If confidence intervals are constructed in this way
for all the pairs of conditions in an experiment,
then the 95% confidence statement applies to all of
them simultaneously. That is to say, over repeated
application of the method to the data from differ-
ent experiments, for 95% of the experiments all the
intervals constructed will include their own true pop-
ulation difference. The additional confidence offered
by such techniques is bought at the expense of a
rather wider interval for each pair of conditions than
would be required if that pair were the sole interest
of the researcher. In the example, only the confidence
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interval for the difference in means between condi-
tions 1 and 3 does not include zero. Thus, Tukey’s
Honestly Significant Difference test would show only
these two conditions to differ significantly from one
another at the 0.05 level.

bsa588Scheffé [2] provided a method for con-
structing simultaneous confidence intervals for all
possible contrasts (actually an infinite number) in a k-
group study, not just the simple comparisons between
pairs of conditions. But, once again, this high level of
protection is bought at the price of each interval being
wider than it would have been if it had been the only
interval of interest to the researcher. As an example
of the particular flexibility of the approach, consider
an experiment with five conditions. Following inspec-
tion of the data, it may occur to the researcher that
the first two conditions actually have a feature in
common, which is not shared by the other three con-
ditions. Scheffé’s method allows a confidence interval
to be constructed for the difference between the pop-
ulation means of the two sets of conditions (i.e., for
µ1&2 − µ3&4&5), and for any other contrast that might
occur to the researcher. If Scheffé’s method is used
to construct a number (possibly a very large number)

of 95% confidence intervals from the data of a study,
then the method ensures that in the long run for at
most 5% of such studies would any of the calculated
intervals fail to include its true population value.

Like Tukey’s Honestly Significant Difference test,
Scheffé’s test (see Multiple Comparison Proce-
dures) is usually applied in order to test nil null
hypotheses (see Confidence Intervals). However, it
can be applied to test whether two sets of condi-
tions have means that differ by some value other
than zero, for example, H0 : µ1&2 − µ3&4&5 = 3. Any
hypothesized difference that is not included in the cal-
culated simultaneous 95% confidence interval would
be rejected at the 0.05 level by a Scheffé test.
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[2] Scheffé, H. (1953). A method for judging all contrasts in
the analysis of variance, Biometrika 40, 87–104.

CHRIS DRACUP



Single-Case Designs

PATRICK ONGHENA

Volume 4, pp. 1850–1854

in

Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

 John Wiley & Sons, Ltd, Chichester, 2005



Single-Case Designs

Single-case designs refer to research designs that
are applied to experiments in which one entity is
observed repeatedly during a certain period of time,
under different levels (‘treatments’) of at least one
independent variable. The essential characteristics
of such single-case experiments are (a) that only
one entity is involved (single-case), and (b) that
there is a manipulation of the independent vari-
able(s) (experiment). These characteristics imply that
(c) the entity is exposed to all levels of the inde-
pendent variable (like in a within-subject design),
and (d) that there are repeated measures or observa-
tions (like in a longitudinal or time series design).
In this characterization of single-case designs, we
use the generic term ‘entity’ to emphasize that,
although ‘single-case’ is frequently equated with
‘single-subject’, also experiments on a single school,
a single family or any other specified ‘research unit’
fit the description [1, 15, 18, 20].

A Long Tradition and a Growing Impact

Single-case designs have a long history in behavioral
science. Ebbinghaus’ pivotal memory research and
Stratton’s study on the effect of wearing inverting
lenses are classical nineteenth century experiments
involving a single participant that had a tremen-
dous impact on psychology [6]. During the twentieth
century, the influential work of Skinner [27] and
Sidman [26] provided the major impetus for con-
tinued interest in these kind of designs, and it was
their methodological approach that laid the founda-
tions of the current popularity of single-case research
in behavior modification and clinical psychology [1,
18], neuropsychology [3, 31], psychopharmacology
[4, 5], and educational research [20, 22].

In these areas, single-case research is evidently
one of the only viable options if rare or unique con-
ditions are involved, but it also seems to be the
research strategy of first choice in research settings
where between-entity variability is considered negli-
gible or if demonstration in a single case is sufficient
to confirm the existence of a phenomenon or to refute
a supposedly universal principle. Another potential
motivation to embark upon single-case research is
its (initial) focus on the single case, which mimics

the care for the individual patient that is needed in
clinical work. In such applied settings, generaliza-
tion is sometimes only a secondary purpose, which
can be achieved by replication and aggregation of
single-case results. In addition, the replicated single-
case designs model is much more consistent with
the way in which consecutive patients are entered
into clinical trials than the random sampling model
underlying many group designs and standard statisti-
cal techniques.

Single-case Designs, Case Studies, and
Time Series

Single-case research using experimental designs
should not be confused with case study research or
observational time series research. In a traditional
case study approach, a single phenomenon is also
studied intensively, but there is not necessarily a
purposive manipulation of an independent variable
nor are there necessarily repeated measures (see
Case Studies). Furthermore, most case studies are
reported in a narrative way while results of single-
case experiments usually are presented numerically
or graphically, possibly accompanied by sophisticated
statistical analyses. In observational time series
research, there are also repeated measures and very
often complex statistical analyses, but the main
difference with single-case experiments lies in the
absence of a designed intervention. Although time
series intervention analyses can be applied to
results from simply designed interrupted time series
experiments (if the number of observations is large
enough), a designed intervention is not crucial for
time series research. Incidentally, the vast majority
of applications of time series analysis concern mere
observational series.

To Randomize or not to Randomize

An important consideration in designing a single-
case experiment is whether or not to randomize (i.e.,
to randomly assign measurement occasions to treat-
ments) [10]. This randomization provides statistical
control over both known and unknown confound-
ing variables that are time-related (e.g., ‘history’
and ‘maturation’), and very naturally leads to a sta-
tistical test based on the randomization as it was
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implemented in the design, a so-called random-
ization test [8, 9, 28]. In this way, randomization
can improve both the internal and the statistical-
conclusion validity of the study (see Internal Valid-
ity). In a nonrandomized single-case experiment (e.g.,
in an operant response-guided experiment), one has to
be very cautious when attributing outcome changes to
treatment changes. In a nonrandomized intervention
study, for example, one usually does not control the
variables that covary with the intervention, or with
the decision to intervene, making it very difficult to
rule out response-guided biases [28] or regression
artifacts. Therefore, the control aspect of randomiza-
tion might be considered as essential to single-case
experiments as it is to multiple-case experiments and
clinical trials [10, 11, 28].

We can distinguish two important schedules by
which randomization can be incorporated into the
design of a single-case experiment. In the first sched-
ule, the treatment alternation is randomly determined
and this gives rise to the so-called alternation designs.
In the second schedule, the moment of intervention
is randomly determined, and this gives rise to the
so-called phase designs. Both randomized alternation
and randomized phase designs will be presented in
the next two sections, followed by a discussion of
two types of replications: simultaneous and sequential
replications (see Interrupted Time Series Design).

Randomized Alternation Designs

In alternation designs, any level of the independent
variable could be present at each measurement occa-
sion. For example, in the completely randomized
single-case design, the treatment sequence is ran-
domly determined only taking account of the number
of levels of the independent variable and the num-
ber of measurement occasions for each level. If there
are two levels (A and B), with three measurement
occasions each, then complete randomization implies
a random selection among twenty possible assign-
ments.

If some sequences of a complete randomization
are undesirable (e.g., AAABBB), then other families
of alternation designs can be devised by applying the
classical randomization schemes known from group
designs. For example, a randomized block single-
case design is obtained in the previous setting if
the treatments are paired, with random determination

of the order of the two members of the pair. The
selection occurs among the following eight possibil-
ities: ABABAB, ABABBA, ABBAAB, ABBABA,
BABABA, BABAAB, BAABBA, and BAABAB.

Although this randomized block single-case design
is rampant in double-blind single-patient medication
trials [16, 17, 23], it is overly restrictive if one only
wants to avoid sequences of identical treatments.
Therefore, a randomized version of the alternating
treatments design was proposed, along with an algo-
rithm to enumerate and randomly sample the set of
acceptable sequences [25]. For the previous example,
a constraint of two consecutive identical treatments
at most results in six possibilities in addition to the
eight possibilities listed for the randomized block
single-case design: AABABB, AABBAB, ABAABB,
BBABAA, BBAABA, and BABBAA.

This larger set of potential randomizations is
of paramount importance to single-case experiments
because the smallest P value that can be obtained
with the corresponding randomization test is the
inverse of the cardinality of this set. If the set is
too small, then the experiments have zero statistical
power. Randomized alternating treatments designs
may guarantee sufficient power to detect treatment
effects while avoiding awkward sequences of identi-
cal treatments [12, 25].

It should be noted that more complex alterna-
tion designs also can be constructed if there are
two or more independent variables. For example, a
completely randomized factorial single-case design
follows on from crossing the levels of the indepen-
dent variables involved.

Randomized Phase Designs

If rapid and frequent alternation of treatments is
prohibitive, then researchers may opt for a phase
design. In phase designs, the complete series of
measurement occasions is divided into treatment
phases and several consecutive measurements are
taken in each phase. The simplest phase design is
the AB design or the basic interrupted time series
design. In this design, the first phase of consecutive
measurements is taken under one condition (e.g., a
baseline or control condition) and the second phase
under another condition (e.g., a postintervention or
treatment condition). All sorts of variations and
extensions of this AB design can be conceived of:
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ABA or withdrawal and reversal designs, ABAB,
ABABACA designs, and so on [1, 15, 18, 20].

In phase designs, the order of the phases is fixed,
so the randomization cannot be applied to the treat-
ment sequence like in alternation designs. However,
there is one feature that can be randomized without
distorting the phase order and that is the moment
of phase change (or the moment of intervention).
In such randomized phase designs, only the number
of available measurement occasions, the number of
phases (c.q., treatments), and the minimum lengths
of the phases should be specified [9, 24]. A ran-
domized AB design with six measurement occasions
and with at least one measurement occasion in each
phase, for example, implies the following five possi-
bilities: ABBBBB, AABBBB, AAABBB, AAAABB,
and AAAAAB. There are, of course, many more
repeated measurements in the phase designs of typical
applications (e.g., by using a diary or psychophysi-
cal measures) and often it is possible to add phases
and thereby increase the number of phase changes. In
fact, a large number of measurement occasions and/or
more than one phase change is necessary to obtain
sufficient statistical power in these designs [14, 24].

Simultaneous and Sequential Replication
Designs

Replication is the obvious strategy for demonstrating
or testing generalizability of single-case results. If
the replications are planned and part of the design,
then the researcher has the option to conduct the
experiments at the same time or conduct them one
by one.

Simultaneous replication designs are the designs
in which the replications (alternation or phase single-
case designs) are carried out at the same time.
The most familiar simultaneous replication design is
the multiple baseline across participants design (see
Multiple Baseline Designs). In such a design, several
AB phase designs are implemented simultaneously
and the intervention is applied for each separate
participant at a different moment [1]. The purpose
of the simultaneous monitoring is to control for
historical confounding variables. If an intervention is
introduced in one of the phase designs and produces
a change for that participant, while little or no change
is observed for the other participants, then it is less
likely that other external events are responsible for

the observed change, than if this change was observed
in an isolated phase design.

Randomization can be introduced very easily in
simultaneous replication designs by just applying
the randomization schedules in the several phase
and/or alternation designs separately [24]. In addition,
between-case constraints can be imposed, for exam-
ple, to avoid simultaneous intervention points or to
obtain systematic staggering of the intervention in the
multiple baseline across participants design [19].

If the replications are carried out one by one,
then we have a sequential replication design. Also
for these designs, a lot of options are available to the
applied researcher, depending on whether the separate
designs should be very similar (e.g., the same number
of measurement occasions for all or some of the
designs) and whether between-case comparisons are
part of the design [22].

The statistical power of the corresponding ran-
domization tests for both simultaneous and sequential
replication designs is already adequate (>0.80) for
designs with four participants and a total of twenty
measurement occasions (for a range of effect sizes
(see Effect Size Measures), autocorrelations and sig-
nificance levels likely to be relevant for behavioral
research) [13,21]. In addition, the sequential repli-
cation design also provides an opportunity to apply
powerful nonparametric or parametric meta-analytic
procedures (see Meta-Analysis) [2, 7, 24, 29, 30].
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Single and Double-blind
Procedures

Suppose we want to test the effectiveness of a drug
administered in the form of a pill. We could randomly
assign patients to two groups, a treatment group
that received the drug and a control group that did
not, and then measure changes in the patients (see
Clinical Trials and Intervention Studies). However,
this design would not be adequate to evaluate the
drug because we could not be sure that any changes
we observed in the treatment condition were a result
of the drug itself. It is well known that patients may
derive some benefit simply from the belief that they
are being treated, quite apart from any effects of the
active ingredients in the pill.

The study could be improved by giving patients
in the control group a placebo, pills that have the
same appearance, weight, smell, and taste as those
used in the drug condition but do not contain any
active ingredients. Our goal would be to have a sit-
uation in which any systematic differences between
groups were due only to the effects of the drug itself.
We could assign patients randomly to the groups so
that there were no systematic differences in patient
characteristics between them. However, in order to
rule out possible bias resulting from patients’ expec-
tations, it is important that they not be informed as to
whether they have been assigned to the drug or the
placebo/control condition. By not informing patients
about condition assignments, we are employing what
is called a single-blind procedure.

Another possible source of bias may occur because
of what may be referred to as experimenter effects
(see Expectancy Effect by Experimenters). The

expectations and hopes of researchers may influence
the data by causing subtle but systematic differences
in how the researchers interact with patients in
different conditions, as well as how the data are
recorded and analyzed. Moreover, not only do the
patient and experimenter effects described above
constitute possible sources of bias that might threaten
the validity of the research, the two types of bias
can interact. Even if the patients are not explicitly
told about the details of the research design and
condition assignments, they may learn about them
through interactions with the research personnel who
are aware of this information, thereby reintroducing
the possibility of bias due to patient expectations. If
we try to rule out these sources of bias by withholding
information from both subjects and researchers, we
are said to be using a double-blind procedure. The
purpose of double-blind procedures is to rule out
any bias that might result from knowledge about the
experimental conditions or the purpose of the study
by making both participants and researchers ‘blind’
to such information.

These ideas generalize to many kinds of behav-
ioral research. The behavior of participants and
researchers may be influenced by many factors other
than the independent variable – see for example, [1].
Factors such as information or misinformation about
the purpose of the experiment may combine with
motivation to obtain particular findings, or to please
the experimenter, thereby causing the data to differ
from what they would be without this information.
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Skewness

In everyday language, the terms ‘skewed’ and
‘askew’ are used to refer to something that is out
of line or distorted on one side. When referring to
the shape of frequency or probability distributions,
‘skewness’ refers to asymmetry of the distribution.
A distribution with an asymmetric tail extending out
to the right is referred to as ‘positively skewed’ or
‘skewed to the right’, while a distribution with an
asymmetric tail extending out to the left is referred
to as ‘negatively skewed’ or ‘skewed to the left’.

Karl Pearson [2] first suggested measuring skew-
ness by standardizing the difference between the
mean and the mode, that is, sk = (µ − mode)/σ .
Population modes are not well estimated from sample
modes, but one can estimate the difference between
the mean and the mode as being three times the
difference between the mean and the median [3],
leading to the following estimate of skewness: skest =
(3(M − median))/s. Some statisticians use this mea-
sure but with the ‘3’ eliminated.

Skewness has also been defined with respect to
the third moment about the mean: γ1 = (

∑
(X −

µ)3)/nσ 3, which is simply the expected value of the
distribution of cubed z scores. Skewness measured in
this way is sometimes referred to as ‘Fisher’s skew-
ness’. When the deviations from the mean are greater
in one direction than in the other direction, this statis-
tic will deviate from zero in the direction of the
larger deviations. From sample data, Fisher’s skew-
ness is most often estimated by g1 = (n

∑
z3)/((n −

1)(n − 2)). For large sample sizes (n > 150), g1 may
be distributed approximately normally, with a stan-
dard error of approximately

√
(6/n). While one could

use this sampling distribution to construct confidence

intervals for or tests of hypotheses about γ1, there is
rarely any value in doing so.

It is important for behavioral researchers to
notice skewness when it appears in their data. Great
skewness may motivate the researcher to investigate
outliers. When making decisions about which mea-
sure of location to report (means being drawn in the
direction of the skew) and which inferential statis-
tic to employ (one that assumes normality or one
that does not), one should take into consideration the
estimated skewness of the population. Normal distri-
butions have zero skewness. Of course, a distribution
can be perfectly symmetric but far from normal.
Transformations commonly employed to reduce (pos-
itive) skewness include square root, log, and recipro-
cal transformations.

The most commonly used measures of skewness
(those discussed here) may produce surprising results,
such as a negative value when the shape of the
distribution appears skewed to the right. There may
be superior alternative measures not in common
use [1].
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Slicing Inverse Regression

Dimensionality and Effective Dimension
Reduction Space

Dimensionality is an issue that often arises and sets a
severe limitation in the study of every scientific field.
In the routine practice of regression analysis (see
Multiple Linear Regression), the curse of dimen-
sionality [11] may come in at the early exploratory
stage. For example, a 2-D or 3-D scatterplot can
be successfully applied to examine the relationship
between the response variable and one or two input
variables. But, when the dimension of regressors
gets larger, this graphical approach could become
laborious, and it is important to focus only on a
selective set of projection directions. In the paramet-
ric regression setting, simple algebraic functions of
x are used to construct a link function for applying
the least squares or maximum likelihood methods.
In the nonparametric regression setting, the class
of fitted functions is enlarged. The increased flexi-
bility in fitting via computation intensive smoothing
techniques, however, also increases the modeling dif-
ficulties that are often encountered with larger number
of regressors.

Li [12] introduced the following framework for
dimension reduction in regression:

Y = g(β ′
1x, . . . β ′

kx, ε). (1)

The main feature of (1) is that g is completely
unknown and so is the distribution of ε, which is inde-
pendent of the p-dimensional regressor x. When k is
smaller than p, (1) imposes a dimension reduction
structure by claiming that the dependence of Y on x
only comes from the k variates, β ′

1x, . . . , β ′
kx, but the

exact form of the dependence structure is not spec-
ified. Li called this k-dimensional space spanned by
the k β vectors the e.d.r. (effective dimension reduc-
tion) space and any vector in this space is referred
to as an e.d.r. direction. The aim is to estimate the
base vectors of the e.d.r. space. The notion of e.d.r.
space and its role in regression graphics are fur-
ther explored in Cook [4]. The primary goal of Li’s
approach is to estimate the e.d.r. directions first so
that it becomes easier to explore data further with
either the graphical approach or the nonparametric
curve-smoothing techniques.

Special Cases of Model (1)

Many commonly used models in regression can be
considered as special cases of model (1). We separate
them into one-component models (k = 1) and the
multiple-component models (k > 1). One-component
models (k = 1) include the following:

1. Multiple linear regression. g(β ′x, ε) = a +
β ′x + ε.

2. Box–Cox transformation. g(β ′x, ε) = hλ(a +
β ′x + ε), where hλ(·) is the power transformation
function with power parameter λ given by

hλ(t) =
{

(tλ − 1)/λ if λ �= 0,

ln (t) if λ = 0.
(2)

3. Additive error models. g(β ′x, ε) = h(β ′x) + ε,
where h(·) is unknown.

4. Multiplicative error models. g(β ′x, ε) = µ +
εh(β ′x), where h(·) is usually assumed to
be known.
Multiple-component models (k > 1) include the
following:

5. Projection pursuit regression (Friedman and
Stuetzle [8]). g(β ′

1x, . . . β ′
kx, ε) = h1(β

′
1x) + · · ·

+ hr(β
′
rx) + ε, where r may be unequal to k.

6. Heterogeneous error models. g(β ′
1x, β ′

2x, ε) =
h1(β

′
1x) + εh2(β

′
2x).

More detailed discussions about these models can
be found in [4, 15].

An Example

The following example will be used to illustrate
the concept and implementation of SIR throughout
this article. Six independent standard normal random
variables, x = (x1, . . . , x6), with 200 observations
each are generated. The response variable Y is
generated according to the following two-component
model:

y = g(β ′
1x, β ′

2x, ε)

= β ′
1x

0.5 + (β ′
2x + 1.5)2

+ 0 · ε, (3)

where β ′
1 = (1, 1, 0, 0, 0, 0) and β ′

2 = (0, 0, 1, 1,

0, 0). We employ this noise free model for an easier
explanation.
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y

b′1x

b′2x

Figure 1 The response surface for function in (2)

Contour Plots and Scatterplot Matrix

The response surface of (2) is depicted in Figure 1. A
different way to visualize the structure of the response

variable Y is to overlay the scatter plot of β ′
1x and β ′

2x
with the contours of (3), (Figure 2). Because the vec-
tors β ′

1 = (1, 1, 0, 0, 0, 0) and β ′
2 = (0, 0, 1, 1, 0, 0)

are not given, how to identify these components is
the most challenging issue in a regression problem.
One possible way of constructing a contour plot of the
response variable on the input variables is through the
scatter-plot matrix of paired variables in x. Here, we
show only three scatter plots of (x1, x2), (x3, x4), and
(x5, x6). The upper panel of Figure 3 gives the stan-
dard scatter plots of the three paired variables. Since
they are all independently generated, no interesting
information can be extracted from these plots.

We can bring in the contour information about
the response variable to these static scatter plots
through color linkage. However, because of the
black–white printing nature of the Encyclopedia, the
range information about Y is coded in black and
white. In the lower panel of Figure 3, each point in
the scatter plots shows the relative intensity of the
corresponding magnitude of the response variable Y .
The linear structure of Y relative to (x1, x2) (the first
component) can be easily detected from this plot.
There also appears to be some nonlinear structure
in the scatterplot of (x3, x4) (the second component);
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Figure 2 Scatter plot of β
′
1x and β
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2x with contours of Y from (2)
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Figure 3 Upper panel: Standard scatter plots of (x1, x2), (x3, x4), and (x5, x6). Lower panel: Same sets of scatter plots as
in upper panel except that each point is coded with the relative intensity showing the corresponding value of the response
variable Y

but it is not as visible as the first component. No
interesting pattern can be identified from plots related
to (x5, x6) as one would expect.

Principal Component Analysis (PCA) and
Multiple Linear Regression (MLR)

For our regression problem, the matrix map of the
raw data matrix (Y , x) is plotted as Figure 4(a). In
a matrix map, each numerical value in a matrix is
represented by a color dot (gray shade). Owing to
lack of color printing, ranges for all the variables, (Y ,
x) are linearly scaled to [0, 1] and coded in a white
to black-gray spectrum. Please see Chen et al. [3] for
an introduction to matrix map visualization.

Even for regression problems, principal compo-
nent analysis (PCA) is often used to reduce the
dimensionality of x. This is not going to work for
our example since all the input variables are inde-
pendently generated. A PCA analysis utilizes only

the variation information contained in the input vari-
ables. No information about the response variable Y

is taken into consideration in constructing the eigen-
value decomposition of the covariance matrix of x
(see Correlation and Covariance Matrices). The
sample covariance matrix for the six input variables
in the example is also plotted as a matrix map in
Figure 4(b). Since these variables are generated inde-
pendently with equal variances, no structure with
interesting pattern is anticipated from this map. The
PCA analysis will produce six principal components
with nearly equal eigenvalues. Thus, no reduction of
dimension can be achieved from the performance of a
PCA analysis on this example. What the SIR analysis
does can be considered as a weighted PCA analysis
that takes the information of response variable Y

into account.
Multiple linear regression (MLR) analysis, on

the other hand, can pick up some partial information
from the two-component model in (2). MLR studies



4 Slicing Inverse Regression

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

(b) (f)

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

Sliced Y

Range(X)

Min(Y )

Min(X )

Min(Y)

Max(Y )

Max(X)

Max(Y )

Max (|

Y x1 x2 x3 x4 x5 x6

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

Y x1 x2 x3 x4 x5 x6 Y x1 x2 x3 x4 x5 x6 Y m1 m2 m3 m4 m5 m6

m1
m1

m2

m2

m3

m3

m4

m4

m5

m5

m6

m6

|)Σ−Max (| |)Σ ΣmΣx

Σ

›

›
›

›
›

›
›

›
›

›
›

›
›

›
›

›
›

›

››››

›

› › › › ›

› › › › ›

(a) (c) (d) (e)
Range(Y )

Figure 4 Matrix map of the raw data matrix (Y , x) with a PCA analysis and the SIR algorithm. (a) Original (unsorted)
matrix map. (b) Sample covariance matrix of x in (a), �̂x. (c) Sorted (by rank of Y ) map. (d) Sliced sorted map. (e) Map
for sliced mean matrix, m̂. (f) Sample covariance matrix of m̂, �̂m

the linear relationship of a linear combination of the
input variables x to the response variable Y . For our
example, MLR will identify the linear relationship of
Y to the first component β ′

1x, but not the nonlinear
structure of the second component β ′

2x on Y .

Implementation and Theoretical
Foundation of SIR

Inverse Regression

Conventional functional-approximation and curve-
smoothing methods regress Y against x (forward

regression, E(Y |x)). The contour plot in Figure 2 and
gray-shaded scatter plots in Figure 3 give the hint
to the basic concept of SIR; namely, to reverse the
role of x and Y as in the general forward regres-
sion setup. We treat Y as if it were the indepen-
dent variable and treat x as if it were the depen-
dent variable. SIR estimates the e.d.r. directions
based on inverse regression. The inverse regression
curve η(y) = E(x|Y = y) is composed of p simple
regressions, E(xj |y), j = 1, . . . , p. Thus, one essen-
tially deals with p one-dimension to one-dimension
regression problems, rather than a high-dimensional
forward regression problem. Instead of asking the
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question ‘given x = xo, what value will Y take’? in
the forward regression framework, SIR rephrase the
problem as ‘given Y = y, what values will x take’?
Instead of local smoothing, SIR intends to gain global
insight on how Y changes as x changes by studying
the reverse – how does the associated x region vary
as Y varies.

The SIR Algorithm

Following are the steps in conducting the SIR
analysis on a random sample (Yi, xi), i = 1, . . . , n.
Figure 4(a) gives the matrix map of our example
with n = 200 and p = 6. No interesting pattern is
expected from Figure 4(a) because the observations
are listed in a random manner.

1. Sort the n observations (Yi, xi), i = 1, . . . , n

according to the magnitudes of Yi’s. For our
example, Figure 4(c) shows a smoothed spec-
trum of the ranks of Yis with corresponding linear
relationship of (x1, x2) and nonlinear structure of
(x3, x4). The sorted (x5, x6) do not carry infor-
mation on the Yis.

2. Divide the range of Y into H slices Sh, for
h = 1, . . . , H . Let p̂h (= 0.1 in this example)
be the proportion of Yis falling into the hth slice.
H = 10 slices are used in our example, yielding
20 observations per slice.

3. Compute the sample mean of the xis for
each slice, m̂h = (np̂h)

−1 ∑
Yi∈Sh

xi , and form

the weighted covariance matrix, �̂m = ∑H
h=1 p̂h

(m̂h − x̄)(m̂h − x̄), where x̄ is the sample mean
of all xis. Figure 4(e) gives the matrix map of the
corresponding slice means. The linear and non-
linear structures of the Yi’s on (x1, x2, x3, x4) are
even more apparent now.

4. Estimate the covariance matrix of x with

�̂x = n−1
n∑

i=1

(xi − x̄)(xi − x̄). (4)

Find the SIR directions by conducting the eigen-
value decomposition of �̂m with respect to �̂x:
for λ̂1 ≥ · · · ≥ λ̂p, solve

�̂mbj = λ̂j �̂xb̂j , j = 1, . . . , p. (5)

The weighted covariance matrix �̂m in Fig-
ure 4(f) shows a strong two-component structure

Table 1 The first two eigenvectors (with standard
deviations and ratios) and eigenvalues with P values of
SIR for model (2)

First vector (−0.72 −0.68 −0.01 −0.01 0.07 0.01)
S.D. (0.04 0.04 0.04 0.04 0.04 0.04)
Ratio (−17.3 −16.1 −0.2 −0.1 1.9 0.3)
Second vector (−0.01 0.08 −0.67 −0.72 0.05 −0.02)
S.D. (0.09 0.10 0.09 0.09 0.09 0.09)
Ratio (−0.2 0.9 −7.6 −7.7 0.5 −0.2)
Eigenvalues (0.76 0.38 0.06 0.03 0.02 0.02)
P values (0.0 3.8E-7 0.62 NA NA NA)

compared to that of the sample covariance matrix
�̂x in Figure 4(b).

5. The ith eigenvector bi is called the ith SIR
direction. The first few (two for the exam-
ple) SIR directions can be used for dimension
reduction.

The standard SIR output of the example is summa-
rized in Table 1 along with graphical comparisons of
Y against two true e.d.r. directions with two estimated
directions illustrated in Figure 5.

Some Heuristics

Let us take another look at the scatter plot of β ′
1x

and β ′
2x along with the contours of Y in Figure 2.

When the range of Y is divided into H slices, it is
possible to use either equal number of observations
per slice or equal length of interval per slice. We
took the former option here, yielding 20 observations
per slice. This is illustrated in Figure 6(a), with the
contour lines drawn from the generated Yis. The mean
of the 20 observations contained in a slice is marked
by a square with a number indicating which slice it
comes from. The location variation of these sliced
means along these two components suggests that the
slicing-mean step of SIR actually is exploiting the
relationship structure of Y against the two correct
components of x. This further leads to the well-
structured sliced mean matrix shown in Figure 4(e)
and the two-component weighted covariance matrix
�̂m shown in Figure 4(f).

Theoretical Foundation of SIR

The computation of SIR is simple and straightfor-
ward. The first three steps of the SIR algorithm
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Figure 5 True view (upper panel) and SIR view (lower panel) of model (2)
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Figure 6 The scatter plot of β
′
1x and β

′
2x with the contours of Yis. (a) Yis generated from model (2). (b) Yis generated

from model (4)

produce a crude estimate of the inverse regres-
sion curve η(y) = E(x|Y = y) through step functions
from m̂h, h = 1, . . . , H . The SIR theorem (Theo-
rem 3.1, [12]) states that under the dimension reduc-
tion assumption in model (1), the centered inverse
regression curve η(y) − E(x) is contained in the
linear subspace spanned by �xβi, i = 1, . . . , k, pro-
vided a linear design condition (Condition 3.1, [12])
on the distribution of x holds. When this is the case,
the covariance matrix of η(Y ) can be written as a

linear combination of �xβiβ
′
i�x, i = 1, . . . , k. Thus,

any eigenvector bi with nonzero eigenvalue λi from
the eigenvalue decomposition

cov[η(Y )]bi = λi�xbi (6)

must fall into the e.d.r. space. Now, because the
covariance matrix of the slice average, �̂m, gives
an estimate of cov[η(Y )], the fourth step of the
SIR algorithm is just a sample version of (6). It
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is noteworthy that more sophisticated nonparametric
regression methods, such as kernel, nearest neighbor,
or smoothing splines can be used to yield a better
estimate of the inverse regression curve.

On the basis of the theorem, SIR estimates have
been shown to be root-n consistent. They are not
sensitive to the number of slices used. Significance
tests are available for determining the dimensionality.
Further discussions on the theoretical foundation of
SIR can be found in Brillinger [1], Chen and Li [2],
Cook and Weisberg [5], Cook and Wetzel [6], Duan
and Li [7], Hall and Li [9], Hsing and Carroll [10],
Li [12, 13], Li and Duan [16], Schott [17], Zhu and
Fang [18], and Zhu and Ng [19].

Extensions

Regression Graphics and Graphical Regression

One possible problem, but not necessary a disadvan-
tage, for SIR is that it does not attempt to directly
formulate (estimate) the function form of g in model
(1). Instead, advocates of SIR argue that users can
gain better insights about the relationship structure
after visualizing how the response variable Y is asso-
ciated with reduced input variables. This data analysis
strategy is a reversal of the standard practice, which
relies on model specification. In a high-dimensional
situation, without informative graphical input, formal
model specification is seldom efficient. See Cook [4]
for more detailed discussion on graphical regression.

Limitations and Generalizations of SIR

SIR successfully finds the two true directions of
model (2). But, sometimes, it may not work out as
well as expected. To investigate the reason behind,
let us change (2) to the following:

y = g(β ′
1x, β ′

2x, ε)

= β ′
1x

0.5 + (β ′
2x)2

+ 0 · ε. (7)

We generate 200 Yis according to (7) while keeping
the same set of input variables x used earlier. The
same scatter plot of β ′

1x and β ′
2x is overlaid with

the contours of the new Yis in Figure 6(b). The
symmetric center of each contour is now shifted
up to the horizontal axis, resulting in a symmetric

contour structure along the second component β ′
2x.

This symmetrical pattern causes the slice means to
spread only along the first component and SIR fails
in identifying the second component. However, SIR
can still find the first component.

The above argument holds for any symmetric
function form and the inverse regression curve may
not span the entire e.d.r. space. One possible remedy
to this problem is to use statistics other than the mean
in each slice. For example, the covariance matrix
from each slice can be computed and compared with
each other. From the contour plot in Figure 6(b), we
see that the magnitude of variances within each slice
does vary along the second direction. This suggests
that slicing the covariance matrix may be able to help.
Unfortunately, this second moment–based strategy is
not as effective as the first moment–based SIR in
finding the first component because the slice vari-
ances do not change much along this direction. This
interesting phenomenon suggests a possible hybrid
technique. That is to combine the directions identi-
fied by the first moment SIR and second moment SIR
in order to form the complete e.d.r. space. There are
several variants of SIR-related dimension reduction
strategy such as SAVE ([5]) and SIRII ([12]). These
procedures are related to the method of principal Hes-
sian directions ([14]).
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Snedecor, George Waddell

Born: October 20, 1881, in Memphis, USA.
Died: February 20, 1974, in Amherst, USA.

George Snedecor was born in Tennessee in 1882 and
graduated from the University of Alabama in 1905
with a B.S. degree in mathematics and physics. He
then moved to Michigan State, where he obtained
a Master’s degree in physics. In 1913, he accepted
a position at Iowa State to teach algebra, and soon
persuaded his department to allow him to introduce
courses in the relatively new field of statistics. He
remained at Iowa State until his retirement.

While George Snedecor did not make many major
contributions to the theory of statistics, he was one
of the field’s most influential pioneers. In 1924, he
paired with Henry Wallace, later to become vice
president under Roosevelt, to jointly publish a manual
on machine methods for computational and statistical
methods [4]. Three years later, Iowa State formed the
Mathematical Statistics Service headed by Snedecor
and A. E. Brandt. Then, in 1935, the Iowa Agriculture
Experiment Station formed a Statistical Section that
later became the Department of Statistics at Iowa
State. This was the first department of statistics in the
United States. Again, George Snedecor was its head.

Beginning in the early 1930s, Snedecor invited
eminent statisticians from Europe to spend summers
at Iowa. R. A. Fisher was one of the first to come,
and he came for several years. His influence on
Snedecor’s interest in experimental design and the
analysis of variance was significant, and in 1937,
Snedecor published the first of seven editions of his
famous Statistical Methods [3]. (This work was later
written jointly by Snedecor and W. G. Cochran, and
is still in press.)

As is well-known, R. A. Fisher developed the
analysis of variance, and in his 1924 book, included

an early table for evaluating the test statistic. In
1934, Snedecor published his own table of F =
σ̂ 2

Treatment/σ̂
2
Error, which derives directly from the cal-

culations of the analysis of variance [2]. He named
this statistic F in honor of Fisher, and it retains that
name to this day [1].

Snedecor’s department included many eminent
and influential statisticians of the time, among whom
were Gertrude Cox and William Cochran, both
of whom he personally recruited to Iowa. He was
president of the American Statistical Association in
1948, and made an Honorary Fellow of the British
Royal Statistical Society (1954). Like many other
major figures in statistics at the time (e.g., Egon
Pearson and Gertrude Cox), he apparently never
earned a Ph. D. However, he was awarded honorary
D. Sc. degrees from both North Carolina State
University (1956) and Iowa State University (1958).
In 1976, the Committee of Presidents of Statistical
Societies established the George W. Snedecor Award.
This honors individuals who were instrumental in the
development of statistical theory in biometry.
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Social Interaction Models

Social interaction is modeled in behavior genetics
as the influence of one individual’s phenotype on
another, usually within the same family [1, 2]. The
principle feature of social interaction in such mod-
els is that the phenotype of a given individual (P1)

has an additional source of influence besides the more
usually considered additive genetic (A1), shared fam-
ily environmental (C1), and nonshared environmental
(E1) influences (see ACE Model). This additional
source of influence is the phenotype of another indi-
vidual (P2), who is often a sibling and, in the tradi-
tional twin study, a monozygotic or dizygotic twin.

Thus, the linear path model changes from: P1 =
aA1 + cC1 + eE1 to P1 = sP2 + aA1 + cC1 + eE1. Of
course, in a sibling pair, there is usually no reason to
suppose asymmetry of influence (although allowance
can be made for such asymmetry in the case of, for
example, parents and offspring, or siblings of differ-
ent ages, or of different sex.) In the symmetrical case,
P2 = sP1 + aA2 + cC2 + eE2. If s is positive, then we
would be modeling cooperative social interactions or
imitation; if s is negative, then we would be modeling
competitive social interactions or contrast.

We have

P1 = sP2 + aA1 + cC1 + eE1

P2 = sP1 + aA2 + cC2 + eE2 (1)

or

P1 − sP2 = aA1 + cC1 + eE1

P2 − sP1 = aA2 + cC2 + eE2 (2)

or

(I − B)P = aA + cC + eE, (3)

where I is a 2 by 2 identity matrix, B is a 2 by
2 matrix with zeros on the leading diagonal and
s in each of the off diagonal positions, and P, A,
C, and E are each 2 by 1 vectors of the corre-
sponding phenotypes, and genetic and environmental
influences.

With a little rearrangement, we see that

P = (I − B)−1(aA + cC + eE), (4)

and then the expected covariance matrix (see
Covariance/variance/correlation) of the phenotypes
is the usual expectation for the given type of
pair of relatives, premultiplied by (I − B)−1 and
postmultiplied by its transpose.

As a consequence, both the expected phenotypic
variances of individuals, and the expected covari-
ances between pairs of individuals, are changed by
social interaction and the extent of those changes
depends on the a priori correlation of the interact-
ing pair. Thus, in the presence of cooperative social
interaction, the phenotypic variance will be increased,
but more so for monozygotic twin pairs than dizy-
gotic twin pairs or full siblings and, in turn, more so
for these individuals than for pairs of adopted (not
biologically related) siblings. The family covariance
will also be increased in the same general pattern,
but the proportional increase will be greater for the
less closely related pairs. Thus, the overall effect
of cooperative social interaction will be similar to
that of a shared family environment (which in a
sense it is), but will differ in its telltale differential
impact on the phenotypic variances of individuals
from different types of interacting pairs. For cat-
egorical traits, such as disease diagnoses, different
prevalences in different types of interacting pairs
may be detected [2].

In the presence of competitive social interactions,
the consequences depend on the details of the param-
eters of the model but the signature characteristic
is that, in addition to phenotypic variances differ-
ing for pairs of different relationship, typically in
the opposite pattern than for cooperative interactions,
the pattern of pair resemblance suggests nonadditive
genetic influences. The model predicts negative fam-
ily correlations under strong competition. These have
sometimes been reported for such traits as toddler
temperament [4] or childhood hyperactivity, but they
may result from the rater contrasting one child with
another, especially when a single reporter, such as
a parent, is rating both members of a pair of sib-
lings [5].

Although social interactions are of considerable
theoretical interest, convincing evidence for the
effects of such interactions is hard to find in the
behavior genetic literature. The prediction that phe-
notypic variances are dependent on what kind of
pair is being considered is implicitly tested whenever
a standard genetic and environmental model is fit-
ted to empirical data, and it has rarely been found
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wanting. ‘For IQ, educational attainment, psycho-
metric assessments of personality, social attitudes,
body mass index, heart rate reactivity, and so on, the
behavior genetic literature is replete with evidence
for the absence of the effects of social interactions.’
([3], p. 209.) Thus, the take home message from
behavior genetics may be that social interactions,
at least those occurring within the twin or sibling
context, appear to have surprisingly little effect on
individual differences in the traits routinely studied
by psychologists.
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Social Networks

Network analysis is the interdisciplinary study of
social relations and has roots in anthropology, soci-
ology, psychology, and applied mathematics. It con-
ceives of social structure in relational terms, and its
most fundamental construct is that of a social net-
work, comprising at the most basic level a set of
social actors and a set of relational ties connecting
pairs of these actors. A primary assumption is that
social actors are interdependent, and that the rela-
tional ties among them have important consequences
for each social actor as well as for the larger social
groupings that they comprise.

The nodes or members of the network can be
groups or organizations as well as people. Network
analysis involves a combination of theorizing, model
building, and empirical research, including (possibly)
sophisticated data analysis. The goal is to study net-
work structure, often analyzed using such concepts
as density, centrality, prestige, mutuality, and role.
Social network data sets are occasionally multidi-
mensional and/or longitudinal, and they often include
information about actor attributes, such as actor age,
gender, ethnicity, attitudes, and beliefs.

A basic premise of the social network paradigm
is that knowledge about the structure of social rela-
tionships enriches explanations based on knowledge
about the attributes of the actors alone. Whenever
the social context of individual actors under study is
relevant, relational information can be gathered and
studied. Network analysis goes beyond measurements
taken on individuals to analyze data on patterns of
relational ties and to examine how the existence and
functioning of such ties are constrained by the social
networks in which individual actors are embedded.
For example, one might measure the relations ‘com-
municate with’, ‘live near’, ‘feel hostility toward’,
and ‘go to for social support’ on a group of work-
ers. Some network analyses are longitudinal, viewing
changing social structure as an outcome of under-
lying processes. Others link individuals to events
(affiliation networks), such as a set of individuals
participating in a set of community activities.

Network structure can be studied at many different
levels: the dyad, triad, subgroup, or even the entire
network. Furthermore, network theories can be pos-
tulated at a variety of different levels. Although this
multilevel aspect of network analysis allows different

structural questions to be posed and studied simulta-
neously, it usually requires the use of methods that
go beyond the standard approach of treating each
individual as an independent unit of analysis. This is
especially true for studying a complete or whole net-
work: a census of a well-defined population of social
actors in which all ties, of various types, among all
the actors are measured. Such analyses might study
structural balance in small groups, transitive flows of
information through indirect ties, structural equiva-
lence in organizations, or patterns of relations in a
set of organizations.

For example, network analysis allows a researcher
to model the interdependencies of organization mem-
bers. The paradigm provides concepts, theories, and
methods to investigate how informal organizational
structures intersect with formal bureaucratic struc-
tures in the unfolding flow of work-related actions
of organizational members and in their evolving sets
of knowledge and beliefs. Hence, it has informed
many of the topics of organizational behavior, such
as leadership, attitudes, work roles, turnover, and
computer-supported cooperative work.

Historical Background

Network analysis has developed out of several
research traditions, including (a) the birth of sociom-
etry in the 1930s spawned by the work of the psychia-
trist Jacob L. Moreno; (b) ethnographic efforts in the
1950s and 1960s to understand migrations from tribal
villages to polyglot cities, especially the research of
A. R. Radcliffe–Brown; (c) survey research since the
1950s to describe the nature of personal commu-
nities, social support, and social mobilization; and
(d) archival analysis to understand the structure of
interorganizational and international ties. Also note-
worthy is the work of Claude Lévi-Strauss, who
was the first to introduce formal notions of kin-
ship, thereby leading to a mathematical algebraic
theory of relations, and the work of Anatol Rapoport,
perhaps the first to propose an elaborate statistical
model of relational ties and flow through various
nodes.

Highlights of the field include the adoption of
sophisticated mathematical models, especially dis-
crete mathematics and graph theory, in the 1940s
and 1950s. Concepts such as transitivity, structural
equivalence, the strength of weak ties, and central-
ity arose from network research by James A. Davis,
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Samuel Leinhardt, Paul Holland, Harrison White,
Mark Granovetter, and Linton Freeman in the 1960s
and 1970s. Despite the separateness of these many
research beginnings, the field grew and was drawn
together in the 1970s by formulations in graph the-
ory and advances in computing. Network analysis,
as a distinct research endeavor, was born in the
early 1970s. Noteworthy in its birth is the pioneer-
ing text by Harary, Norman, and Cartwright [4]; the
appearance in the late 1970s of network analysis
software, much of it arising at the University of Cal-
ifornia, Irvine; and annual conferences of network
analysts, now sponsored by the International Net-
work for Social Network Analysis. These well-known
‘Sunbelt’ Social Network Conferences now draw as
many as 400 international participants. A number of
fields, such as organizational science, have experi-
enced rapid growth through the adoption of a network
perspective.

Over the years, the social network analytic per-
spective has been used to gain increased understand-
ing of many diverse phenomena in the social and
behavioral sciences, including (taken from [8])

• Occupational mobility
• Urbanization
• World political and economic systems
• Community elite decision making
• Social support
• Community psychology
• Group problem solving
• Diffusion and adoption of information
• Corporate interlocking
• Belief systems
• Social cognition
• Markets
• Sociology of science
• Exchange and power
• Consensus and social influence
• Coalition formation

In addition, it offers the potential to understand
many contemporary issues, including (see [1])

• The Internet
• Knowledge and distributed intelligence
• Computer-mediated communication
• Terrorism
• Metabolic systems
• Health, illness, and epidemiology, especially

of HIV

Before a discussion of the details of various
network research methods, we mention in passing a
number of important measurement approaches.

Measurement

Complete Networks

In complete network studies, a census of network ties
is taken for all members of a prespecified population
of network members. A variety of methods may
be used to observe the network ties (e.g., survey,
archival, participant observation), and observations
may be made on a number of different types of
network tie. Studies of complete networks are often
appropriate when it is desirable to understand the
action of network members in terms of their location
in a broader social system (e.g., their centrality in
the network, or more generally in terms of their
patterns of connections to other network members).
Likewise, it may be necessary to observe a complete
network when properties of the network as a whole
are of interest (e.g., its degree of centralization,
fragmentation, or connectedness).

Ego-centered Networks

The size and scope of complete networks generally
preclude the study of all the ties and possibly all
the nodes in a large, possibly unbounded popula-
tion. To study such phenomena, researchers often use
survey research to study a sample of personal net-
works (often called ego-centered or local networks).
These smaller networks consist of the set of specified
ties that links focal persons (or egos) at the centers
of these networks to a set of close ‘associates’ or
alters. Such studies focus on an ego’s ties and on
ties among ego’s alters. Ego-centered networks can
include relations such as kinship, weak ties, frequent
contact, and provision of emotional or instrumental
aid. These relations can be characterized by their vari-
ety, content, strength, and structure. Thus, analysts
might study network member composition (such as
the percentage of women providing social or emo-
tional support, for example, or basic actor attributes
more generally); network characteristics (e.g., per-
centage of dyads that are mutual); measures of rela-
tional association (do strong ties with immediate kin
also imply supportive relationships?); and network
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structure (how densely knit are various relations? do
actors cluster in any meaningful way?).

Snowball Sampling and Link Tracing
Studies

Another possibility, to study large networks, is simply
to sample nodes or ties. Sampling theory for networks
contains a small number of important results (e.g.,
estimation of subgraphs or subcomponents; many
originated with Ove Frank) as well as a number
of unique techniques or strategies such as snowball
sampling, in which a number of nodes are sampled,
then those linked to this original sample are sampled,
and so forth, in a multistage process. In a link-tracing
sampling design, emphasis is on the links rather
than the actors – a set of social links is followed
from one respondent to another. For hard-to-access
or hidden populations, such designs are considered
the most practical way to obtain a sample of nodes.
Related are recent techniques that obtain samples,
and based on knowledge of certain characteristics
in the population and the structure of the sampled
network, make inferences about the population as a
whole (see [5, 6]).

Cognitive Social Structures

Social network studies of social cognition investigate
how individual network actors perceive the ties of
others and the social structures in which they are con-
tained. Such studies often involve the measurement
of multiple perspectives on a network, for instance,
by observing each network member’s view of who
is tied to whom in the network. David Krackhardt
referred to the resulting data arrays as cognitive social
structures. Research has focused on clarifying the
various ways in which social cognition may be related
to network locations: (a) People’s positions in social
structures may determine the specific information to
which they are exposed, and hence, their perception;
(b) structural position may be related to characteristic
patterns of social interactions; (c) structural position
may frame social cognitions by affecting people’s
perceptions of their social locales.

Methods

Social network analysts have developed methods and
tools for the study of relational data. The techniques

include graph theoretic methods developed by math-
ematicians (many of which involve counting various
types of subgraphs); algebraic models popularized
by mathematical sociologists and psychologists; and
statistical models, which include the social relations
model from social psychology and the recent family
of random graphs first introduced into the network
literature by Ove Frank and David Strauss. Software
packages to fit these models are widely available.

Exciting recent developments in network methods
have occurred in the statistical arena and reflect the
increasing theoretical focus in the social and behav-
ioral sciences on the interdependence of social actors
in dynamic, network-based social settings. Therefore,
a growing importance has been accorded the problem
of constructing theoretically and empirically plausible
parametric models for structural network phenomena
and their changes over time. Substantial advances in
statistical computing are now allowing researchers to
more easily fit these more complex models to data.

Some Notation

In the simplest case, network studies involve a single
type of directed or nondirected tie measured for all
pairs of a node set N = {1, 2, . . . , n} of individual
actors. The observed tie linking node i to node j

(i, j ∈ N) can be denoted by xij and is often defined
to take the value 1 if the tie is observed to be
present and 0 otherwise. The network may be either
directed (in which case xij and xji are distinguished
and may take different values) or nondirected (in
which case xij and xji are not distinguished and are
necessarily equal in value). Other cases of interest
include the following:

1. Valued networks, where xij takes values in the
set {0, 1, . . . , C − 1}.

2. Time-dependent networks, where xijt represents
the tie from node i to node j at time t .

3. Multiple relational or multivariate networks,
where xijk represents the tie of type k from node
i to node j (with k ∈ R = {1, 2, . . . , r}, a fixed
set of types of tie).

In most of the statistical literature on network
methods, the set N is regarded as fixed and the
network ties are assumed to be random. In this case,
the tie linking node i to node j may be denoted by the
random variable Xij and the n × n array X = [Xij ]
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of random variables can be regarded as the adjacency
matrix of a random (directed) graph on N .

Graph Theoretic Techniques

Graph theory has played a critical role in the
development of network analysis. Graph theoretical
techniques underlie approaches to understanding
cohesiveness, connectedness, and fragmentation in
networks. Fundamental measures of a network
include its density (the proportion of possible ties in
the network that are actually observed) and the degree
sequence of its nodes. In a nondirected network,
the degree di of node i is the number of distinct
nodes to which node i is connected. Methods for
characterizing and identifying cohesive subsets in a
network have depended on the notion of a clique (a
subgraph of network nodes, every pair of which is
connected) as well as on a variety of generalizations
(including k-clique, k-plex, k-core, LS -set, and k-
connected subgraph).

Our understanding of connectedness, connectivity,
and centralization is also informed by the distribution
of path lengths in a network. A path of length k from
one node i to another node j is defined by a sequence
i = i1, i2, . . . , ik+1 = j of distinct nodes such that ih
and ih+1 are connected by a network tie. If there is
no path from i to j of length n − 1 or less, then j

is not reachable from i and the distance from i to
j is said to be infinite; otherwise, the distance from
i to j is the length of the shortest path from i to
j . A directed network is strongly connected if each
node is reachable from each other node; it is weakly
connected if, for every pair of nodes, at least one of
the pair is reachable from the other. For nondirected
networks, a network is connected if each node is
reachable from each other node, and the connectivity,
κ , is the least number of nodes whose removal results
in a disconnected (or trivial) subgraph.

Graphs that contain many cohesive subsets as
well as short paths, on average, are often termed
small world networks, following early work by
Stanley Milgram, and more recent work by Duncan
Watts. Characterizations of the centrality of each
actor in the network are typically based on the
actor’s degree (degree centrality), on the lengths of
paths from the actor to all other actors (closeness
centrality), or on the extent to which the shortest
paths between other actors pass through the given

actor (betweenness centrality). Measures of network
centralization signify the extent of heterogeneity
among actors in these different forms of centrality.

Algebraic Techniques

Closely related to graph theoretic approaches is
a collection of algebraic techniques that has been
developed to understand social roles and structural
regularities in networks. Characterizations of role
have developed in terms of mappings on networks,
and descriptions of structural regularities have been
facilitated by the construction of algebras among
labeled network walks. An important proposition
about what it means for two actors to have the same
social role is embedded in the notion of structural
equivalence: Two actors are said to be structurally
equivalent if they are relate to and are related to by
every other network actor in exactly the same way
(thus, nodes i and j are structurally equivalent if, for
all k ∈ N, xik = xjk and xki = xkj ). Generalizations
to automorphic and regular equivalence are based on
more general mappings on N and capture the notion
that similarly positioned network nodes are related to
similar others in the same way.

Statistical Techniques

A simple statistical model for a (directed) graph
assumes a Bernoulli distribution (see Catalogue of
Probability Density Functions), in which each edge,
or tie, is statistically independent of all others and
governed by a theoretical probability Pij . In addi-
tion to edge independence, simplified versions also
assume equal probabilities across ties; other versions
allow the probabilities to depend on structural param-
eters. These distributions often have been used as
models for at least 40 years, but are of questionable
utility because of the independence assumption.

Dyadic Structure in Networks

Statistical models for social network phenomena have
been developed from their edge-independent begin-
nings in a number of major ways. The p1 model
recognized the theoretical and empirical importance
of dyadic structure in social networks, that is, of
the interdependence of the variables Xij and Xji .
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This class of Bernoulli dyad distributions and their
generalization to valued, multivariate, and time-
dependent forms gave parametric expression to ideas
of reciprocity and exchange in dyads and their devel-
opment over time. The model assumes that each dyad
(Xij , Xji) is independent of every other, resulting in
a log-linear model that is easily fit. Generalizations
of this model are numerous, and include stochas-
tic block models, representing hypotheses about the
interdependence of social positions and the pattern-
ing of network ties; mixed models, such as p2; and
latent space models for networks.

Null Models for Networks

The assumption of dyadic independence is question-
able. Thus, another series of developments has been
motivated by the problem of assessing the degree and
nature of departures from simple structural assump-
tions like dyadic independence. A number of con-
ditional uniform random graph distributions were
introduced as null models for exploring the struc-
tural features of social networks. These distributions,
denoted by U|Q, are defined over subsets Q of the
state space �n of directed graphs and assign equal
probability to each member of Q. The subset Q is
usually chosen to have some specified set of proper-
ties (e.g., a fixed number of mutual, asymmetric, and
null dyads). When Q is equal to �n, the distribution is
referred to as the uniform (di)graph distribution, and
is equivalent to a Bernoulli distribution with homoge-
neous tie probabilities. Enumeration of the members
of Q and simulation of U|Q are often straightfor-
ward, although certain cases, such as the distribution
that is conditional on the indegree and outdegree of
each node i in the network, require more complicated
approaches.

A typical application of these distributions is to
assess whether the occurrence of certain higher-order
(e.g., triadic) features in an observed network is
unusual, given the assumption that the data arose
from a uniform distribution that is conditional on
plausible lower-order (e.g., dyadic) features. This
general approach has also been developed for the
analysis of multiple networks. The best known exam-
ple is probably Frank Baker and Larry Hubert’s
quadratic assignment procedure (QAP) for networks.
In this case, the association between two graphs
defined on the same set of nodes is assessed using
a uniform multigraph distribution that is conditional

on the unlabeled graph structure of each constituent
graph.

Extradyadic Local Structure in Networks

A significant step in the development of paramet-
ric statistical models for social networks was taken
by Frank and Strauss [3] with the introduction of
the class of Markov random graphs, denoted as p∗
by later researchers. This class of models permitted
the parameterization of extradyadic local structural
forms, allowing a more explicit link between some
important theoretical propositions and statistical net-
work models. These models are based on the fact that
the Hammersley–Clifford theorem provides a general
probability distribution for X from a specification of
which pairs (Xij , Xkl) of tie random variables are
conditionally dependent, given the values of all other
random variables.

These random graph models permit the parameter-
ization of many important ideas about local structure
in univariate social networks, including transitivity,
local clustering, degree variability, and centralization.
Valued, multiple, and temporal generalizations also
lead to parameterizations of substantively interest-
ing multirelational concepts, such as those associated
with balance and clusterability, generalized transitiv-
ity and exchange, and the strength of weak ties. Pseu-
domaximum likelihood estimation is easy; maximum
likelihood estimation is difficult, but not impossible.

Dynamic Models

A significant challenge is to develop models for the
emergence of network phenomena, including the evo-
lution of networks and the unfolding of individual
actions (e.g., voting, attitude change, decision mak-
ing) and interpersonal transactions (e.g., patterns of
communication or interpersonal exchange) in the con-
text of long-standing relational ties. Early attempts to
model the evolution of networks in either discrete
or continuous time assumed dyad independence and
Markov processes in time. A step towards continuous
time Markov chain models for network evolution
that relaxes the assumption of dyad independence
has been taken by Tom Snijders and colleagues.
This approach also illustrates the potentially valu-
able role of simulation techniques for models that
make empirically plausible assumptions; clearly, such
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methods provide a promising focus for future devel-
opment. Computational models based on simulations
are becoming increasingly popular in network anal-
ysis; however, the development of associated model
evaluation approaches poses a significant challenge.

Current research, including future challenges, such
as statistical estimation of complex model parameters,
model evaluation, and dynamic statistical models for
longitudinal data, can be found in [2]. Applications
of the techniques and definitions mentioned here can
be found in [7] and [8].

References

[1] Breiger, R., Carley, K. & Pattison, P., eds (2003).
Dynamic Social Network Modeling and Analysis, The
National Academies Press, Washington.

[2] Carrington, P.J., Scott, J. & Wasserman, S., eds (2004).
Models and Methods in Social Network Analysis, Cam-
bridge University Press, New York.

[3] Frank, O. & Strauss, D. (1986). Markov graphs, Journal
of the American Statistical Association 81, 832–842.

[4] Harary, F., Norman, D. & Cartwright, D. (1965). Struc-
tural Models for Directed Graphs, Free Press, New York.

[5] Killworth, P.D., McCarty, C., Bernard, H.R., Shel-
ley, G.A. & Johnsen, E.C. (1998). Estimation of sero-
prevalence, rape, and homelessness in the U.S. using a
social network approach, Evaluation Review 22, 289–308.

[6] McCarty, C., Killworth, P.D., Bernard, H.R., Johnsen,
E.C. & Shelley, G.A. (2001). Comparing two methods for
estimating network size, Human Organization 60, 28–39.

[7] Scott, J. (1992). Social Network Analysis, Sage Publica-
tions, London.

[8] Wasserman, S. & Faust, K. (1994). Social Network Anal-
ysis: Methods and Applications, Cambridge University
Press, New York.

Further Reading

Boyd, J.P. (1990). Social Semigroups: A Unified Theory of
Scaling and Bockmodeling as Applied to Social Networks,
George Mason University Press, Fairfax.

Friedkin, N. (1998). A Structural Theory of Social Influence,
Cambridge University Press, New York.

Monge, P. & Contractor, N. (2003). Theories of Communica-
tion Networks, Oxford University Press, New York.

Pattison, P.E. (1993). Algebraic Models for Social Networks,
Cambridge University Press, New York.

Wasserman, S. & Galaskiewicz, J., eds (1994). Advances in
Social Network Analysis, Sage Publications, Thousand
Oaks.

Watts, D. (1999). Small Worlds: The Dynamics of Networks
Between Order and Randomness, Princeton University
Press, Princeton.

Wellman, B. & Berkowitz, S.D., eds (1997). Social Structures:
A Network Approach, (updated Edition), JAI, Greenwich.

STANLEY WASSERMAN, PHILIPPA PATTISON

AND DOUGLAS STEINLEY



Social Psychology

CHARLES M. JUDD AND DOMINIQUE MULLER

Volume 4, pp. 1871–1874

in

Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

 John Wiley & Sons, Ltd, Chichester, 2005



Social Psychology

Social psychologists are interested in the ways behav-
ior is affected by the social situations in which
people find themselves. Recurring topics of research
interest in this subdiscipline include (a) stereotyping,
prejudice, and intergroup behavior; (b) interpersonal
attraction and close relationships; (c) behavior in
small groups and group decision making; (d) social
influence, conformity, and social norms; (e) attitudes
and affective responses to social stimuli; and (f) dya-
dic interaction and communication. These topics do
not exhaust the list of social psychological interests,
but they are representative of the broad array of social
behaviors that have attracted research attention.

As an empirical discipline, social psychology has
taken pride in its use of systematic observation
methods to reach conclusions about the causes, pro-
cesses, and consequences of social behavior. In this
endeavor, it has historically adopted an experimental
perspective by simulating social environments in the
laboratory and other settings, and gathering data on
social behavior in those settings. The impetus for this
approach came from the seminal influence of Kurt
Lewin (and his students) who showed how impor-
tant social phenomena can be captured in simulated
experimental environments. For example, to study the
effects of different leadership styles in small groups,
Lewin and colleagues [7] examined the consequences
of democratic and autocratic leadership styles in sim-
ulated small group interactions.

In this empirical approach, participants are typi-
cally randomly assigned to various experimental con-
ditions (see Randomization) (e.g., a democratic or
autocratic leader) and differences in their responses
(e.g., observed behaviors, self-reports on question-
naires) are calculated. Accordingly, statistical proce-
dures in experimental social psychology have been
dominated by examining and testing mean differences
using t Tests and analysis of variance procedures.
A typical report of experimental results in social
psychological journals gives condition means (and
standard deviations) and the inferential statistic that
shows that the observed mean differences are sig-
nificantly different from zero. Accordingly, tradi-
tional null hypothesis testing has been the dominant
approach, with attention given only recently to report-
ing effect size estimates or confidence intervals for
observed means (and for their differences).

Experimental designs in social psychology have
become increasingly complex over the years, incor-
porating multiple (crossed) experimental factors (see
Factorial Designs), as researchers have hypothesized
that the effects of some manipulations depend on
other circumstances or events. Accordingly, anal-
ysis of variance models with multiple factors are
routinely used, with considerable attention focused
on statistical interactions (see Interaction Effects):
Does the effect of one experimental factor depend
upon the level of another? In fact, it is not unusual
for social psychological experiments to cross three or
more experimental factors, with resulting higher order
interactions that researchers attempt to meaningfully
interpret. One of our colleagues jokingly suggests that
a criterion for publication in the leading social psy-
chological journals is a significant (at least two-way)
interaction.

For some independent variables of interest to
social psychologists, manipulations are done ‘within
participants’, exposing each participant in turn to
multiple levels of a factor, and measuring responses
under each level (see Repeated Measures Analysis
of Variance). This has seemed particularly appro-
priate where the effects of those manipulations are
short-lived, and where one can justify assumptions
about the lack of carry-over effects. Standard analy-
sis of variance courses taught to social psychologists
have typically included procedures to analyze data
from within-participant designs, which are routinely
used in experimental and cognitive psychological
research as well. Thus, beyond multifactorial analy-
ses of variance, standard analytic tools have included
repeated measures analysis of variance models and
split-plot designs.

While social psychologists have traditionally been
very concerned about the integrity of their experimen-
tal manipulations and the need to randomly assign
participants to experimental conditions (e.g., [3]),
they have historically been much less concerned
about sampling issues (see Experimental Design).
In fact, the discipline has occasionally been subjected
to substantial criticism for its tendency to rely on
undergraduate research participants, recruited from
psychology courses where ‘research participation’ is
a course requirement (see [9]). The question raised
is about the degree to which results from social
psychological experiments can be generalized to a
public broader than college undergraduates. From a



2 Social Psychology

statistical point of view, the use of convenience sam-
ples such as undergraduates who happen to enroll
in psychology classes means that standard inferential
statistical procedures are difficult to interpret since
there is no known population from which one has
sampled. Rather than concluding that a statistically
significant difference suggests a true difference in
some known population, one is left with hypothet-
ical populations and unclear inferences such as ‘If I
were to repeat this study over and over again with
samples randomly chosen from the unknown hypo-
thetical population from which I sampled, I would
expect to continue to find a difference.’

A classic interaction perspective in social psychol-
ogy, again owing its heritage to Kurt Lewin, is that
situational influences on social behavior depend on
the motives, aspirations, and attributes of the partic-
ipants: Behavior results from the interaction of the
personality of the actor and the characteristics of
the situation. Accordingly, many social psychologi-
cal studies involve at least one measured, rather than
manipulated, independent variable, which is typically
a variable that characterizes a difference among par-
ticipants. Because many social psychologists received
training exclusively in classic analysis of variance
procedures, the analysis of designs, where one or
more measured independent variables are crossed
with other factors, has routinely been accomplished
by dividing the measured variable into discrete cat-
egories, by, for example, a median split (see Cat-
egorizing Data), and including this variable in a
factorial analysis of variance. This practice leads to a
loss of statistical power and, occasionally, to biased
estimates [8]. Recently, however, because of the pio-
neering effort of Jacob Cohen [4] and others, social
psychologists began to appreciate that analysis of
variance is a particular instantiation of the general-
ized linear model. Accordingly, both categorical and
more continuously measured independent variables
(and their interactions) can be readily included in
models that are estimated by standard ordinary least
squares regression programs. As social psychologists
have become more familiar with the wide array of
models estimable under the general linear model,
they have increasingly strayed from the laboratory,
measuring and manipulating independent variables
and using longitudinal designs to assess naturally
occurring changes in behavior overtime and in dif-
ferent situations.

With these developments, social psychologists
have been forced to confront the limitations inher-
ent in their standard analytic toolbox, specifically
assumptions concerning the independence of errors
or residuals in both standard analysis of variance
and ordinary least squares regression procedures
(see Regression Models). Admittedly, they use spe-
cific techniques for dealing with nonindependence
in repeated measures designs, in which participants
are repeatedly measured under different levels of one
or more independent variables. But the assumptions
underlying repeated measures analysis of variance
models, specifically the assumption of equal covari-
ances among all repeated observations, seems too
restrictive for many research designs where data
are collected overtime from participants in naturally
occurring environments.

In many situations of interest to social psychol-
ogists, data are likely to exhibit nested structures,
wherein observations come from dyads, small groups,
individuals who are located in families, and so forth.
These nested structures mean that observations within
groupings are likely to be more similar to each other
than observations that are from different groupings.
For instance, in collecting data on close relationships,
it is typical to measure both members of a num-
ber of couples, asking, for instance, about levels of
marital satisfaction. Unsurprisingly, observations are
likely to show resemblances due to couples. Or, in
small group research, we may ask for the opinions
of group members who come from multiple groups.
Again, it is likely that group members agree with
each other to some extent. Or, on a larger scale, if
we are interested in behavior in larger organizations,
we may sample individuals who are each located in
different organizations.

Additional complications arise when individuals
or dyads or groups are measured overtime, with,
perhaps, both the interval of observations and the fre-
quency of observations varying. For instance, a social
psychologist might ask each member of a couple to
indicate emotional responses each time an interac-
tion between them lasted more than five minutes.
What might be of interest here is the consistency
of the emotional responses of one member of the
couple compared to the other’s and the degree to
which that consistency varied with other known fac-
tors about the couple. Clearly, standard analysis of
variance and ordinary least squares regression proce-
dures cannot be used in such situations. Accordingly,
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social psychologists are increasingly making use of
more general models for nested and dependent data,
widely known as multilevel modeling procedures (see
Linear Multilevel Models) or random regression
models [2, 5]. Although the use of such analytic
approaches to data is still not widespread in social
psychology, their utility for the analysis of complex
data structures involving dependent observations sug-
gests that they will become standard analytic tools in
social psychology in the near future.

In addition to these advances in analytic practices,
social psychologists have also become more sophisti-
cated in their use of analytic models for dichotomous-
dependent variables. The use of logistic regression
procedures, for instance, is now fairly widespread
in the discipline. Such procedures have significantly
extended the range of questions that can be asked
about dichotomous variables, permitting, for instance,
tests of higher order interactions.

Additionally, while the focus has historically been
on the assessment of the overall impact of one or
more independent variables on the dependent vari-
able, social psychologists have become increasingly
interested in process questions such as what is the
mediating process by which the impact is produced?
Thus, social psychologists have increasingly made
use of analytic procedures designed to assess media-
tion. Given this and the long-standing interest in the
discipline in statistical interactions, it is no accident
that the classic article on procedures for assessing
mediation and moderation was written by two social
psychologists and published in a leading social psy-
chological outlet [1].

All of the procedures discussed up to this point
involve the estimation of relationships between vari-
ables thought to assess different theoretical constructs
such as the effect of a manipulated independent vari-
able on an outcome variable. Additionally, statistical
procedures are used in social psychology to sup-
port measurement claims, such as that a particular
variable successfully measures a construct of the-
oretical interest [6]. For these measurement claims,
both exploratory and, more recently, confirmatory
factor analysis (see Factor Analysis: Confirmatory)
procedures are used. Exploratory factor analysis (see
Factor Analysis: Exploratory) is routinely used
when one develops a set of self-report questions,
designed, for instance, to measure a particular atti-
tude, and one wants to verify that the questions
exhibit a pattern of correlations that suggests they

have a single underlying factor in common. In this
regard, social psychologists are likely to conduct a
principal factoring (see Principal Component Anal-
ysis) or components analysis to demonstrate that
the first factor or component explains a substantial
amount of the variance in all of the items. Occasion-
ally, researchers put together items that they suspect
may measure a number of different latent factors (see
Latent Class Analysis; Latent Variable) or con-
structs that they are interested in ‘uncovering’. This
sort of approach has a long history in intelligence
testing, where researchers attempted to uncover the
‘true’ dimensions of intelligence. However, as that
literature suggests, this use of factor analysis is filled
with pitfalls. Not surprisingly, if items that tap a given
factor are not included, then that factor cannot be
‘uncovered’. Additionally, a factor analytic solution
is indeterminant, with different rotations yielding dif-
ferent definitions of underlying dimensions.

Recently, confirmatory factor analytic models
have become the approach of choice to demonstrate
that items measure a hypothesized underlying
construct. In this approach, one hypothesizes a latent
factor structure that involves one or more factors,
and then examines whether the item covariances
are consistent with that structure. Additionally,
structural equation modeling procedures are
sometimes used to model both the relationships
between the latent constructs and the measured
variables, and also the linear structural relations
among those constructs. This has the advantage
of estimating the relationships among constructs
potentially unbiased by measurement error, because
those errors of measurement are modeled in the
confirmatory factor analysis part of the estimation.
The use of structural equation modeling procedures
will remain limited in social psychology, however,
for they are not efficient at examining interactive and
nonlinear predictions.

In summary, social psychologists are abundant
users of statistical and data analytic tools. They pride
themselves on the fact that theory evaluation in their
discipline ultimately rests on gathering data through
systematic observation that can be used to either bol-
ster theoretical conjectures or argue against them.
As a function of being usually trained in psychol-
ogy departments, their standard analytic tools have
been those taught in experimental design courses.
However, social psychologists often collect data that
demand other data analytic approaches. Gradually,
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social psychologists are becoming sophisticated users
of these more flexible approaches. In fact, the statis-
tical demands of some of the data routinely collected
by social psychologists means that many new devel-
opments in statistical tools for behavioral and social
scientists are being developed by social psycholo-
gists. And it is no accident that in many psychology
departments, the quantitative and analytic courses are
now being taught by social psychologists, consider-
ably expanding the traditional analysis of variance
and experimental design emphases of such courses.
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Social Validity

Social validity is a concept that is used in intervention
research in which the focus is on treatment, pre-
vention, rehabilitation, education, and, indeed, any
area in which the goal is to produce change in
human behavior and adaptive functioning (see Clini-
cal Trials and Intervention Studies). The concept
of ‘social’ in the term emphasizes the views and
perspectives of individuals who are stakeholders, con-
sumers, or recipients of the intervention. Social valid-
ity raises three questions in the context of designing,
implementing, and evaluating interventions: (a) Are
the goals of the intervention relevant to everyday
life? (b) Are the intervention procedures acceptable
to consumers and to the community at large? (c) Are
the outcomes of the intervention important; that is, do
the changes make a difference in the everyday lives
of individuals to whom the intervention was directed
or those who are in contact with them? The focus
is on whether consumers of the interventions find the
goals, intervention, and outcomes, reasonable, accept-
able, and useful.

Background

Social validation grew out of work in applied behav-
ior analysis, an area of behavior modification within
psychology [1, 2]. Applied behavior analysis draws
on operant conditioning, a type of learning elaborated
by B. F. Skinner [7] and that focuses on antecedents,
behaviors, and consequences. In the late 1950s and
early 1960s, the principles, methods, and techniques
of operant conditioning, developed in animal and
human laboratory research, were extended to prob-
lems of treatment, education, and rehabilitation in
applied settings. The applications have included a
rather broad array of populations (infants, children
adolescents, adults), settings (e.g., medical hospitals,
psychiatric hospitals, schools [preschool through col-
lege], nursing homes), and contexts (e.g., professional
sports, business and industry, the armed forces) [3].

Social validation was initially developed by Mon-
trose Wolf [8], a pioneer in applied behavior analysis,
to consider the extent to which the intervention was
addressing key concerns of individuals in everyday
life. In applying interventions to help people, he rea-
soned, it was invariably important to ensure that the

interventions, their goals, and the effects that were
attained were in keeping with the interests of indi-
viduals affected by them.

An Example

Consider as an example the application of oper-
ant conditioning principles to reduce self-injurious
behavior in seriously disturbed children. Many chil-
dren with pervasive developmental disorder or severe
mental retardation hit or bite themselves with such
frequency and intensity that physical damage can
result. Using techniques to alter antecedents (e.g.,
prompts, cues, and events presented before the behav-
ior occurs) and consequences (e.g., carefully arranged
incentives and activities), these behaviors have been
reduced and eliminated [6].

As a hypothetical example, assume for a moment
that we have several institutionalized children who
engage in severe self-injury such as head banging
(banging head against a wall or pounding one’s head)
or biting (biting one’s hands or arms sufficiently to
draw blood). We wish to intervene to reduce self-
injury. The initial social validity question asks if
the goals are relevant or important to everyday life.
Clearly they are. Children with self-injury cannot
function very well even in special settings, often
must be restrained, and are kept from a range of
interactions because of the risk to themselves and
to others. The next question is whether the inter-
ventions are acceptable to consumers (e.g., children
and their families, professionals who administer the
procedures). Aversive procedures (e.g., punishment,
physical restraint, or isolation) might be used, but
they generally are unacceptable to most profession-
als and consumers. Fortunately, effective procedures
are available that rely on variations of reinforcement
and are usually quite acceptable to consumers [3, 6].

Finally, let us say we apply the intervention and
the children show a reduction of self-injury. Let us
go further and say that before the intervention, the
children of this example hit themselves a mean of
100 times per hour, as observed directly in a special
classroom of a hospital facility. Let us say further
that treatment reduced this to a mean of 50 times.
Does the change make a difference in everyday life?
To be sure, a 50% reduction is large, but still not
likely to improve adjustment and functioning of the
individuals in everyday life. Much larger reductions,
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indeed, elimination of the behaviors, are needed to
have clear social impact.

Extensions

The primary application of social validity has evolved
into a related concept, ‘clinical significance’that
focuses on the outcomes of treatment in the context of
psychotherapy for children, adolescents, and adults.
The key question of clinical significance is the third
one of social validity, namely, does treatment make a
difference to the lives of those treated? Clinical tri-
als of therapy (e.g., for depression, anxiety, marital
discord) often compare various treatment conditions
or treatment and control conditions. At the end of
the study, statistical tests are usually used to deter-
mine whether the group differences and whether the
changes from pre- to post-treatment are statistically
significant. Statistical significance is not intended to
reflect important effects in relation to the functioning
of individuals. For example, a group of obese indi-
viduals (e.g., >90 kilograms overweight) who receive
treatment may lose a mean of nine kilograms, and this
change could be statistically significant in comparison
to a control group that did not receive treatment. Yet,
the amount of weight lost is not very important or
relevant from the standpoint of clinical significance.
Health (morbidity and mortality) and adaptive func-
tioning (e.g., activities in everyday life) are not likely
to be materially improved with such small changes
(see Effect Size Measures).

Treatment evaluation increasingly supplements
statistical significance with indices of clinical signif-
icance to evaluate whether the changes are actually
important to the patients or clients, and those with
whom they interact (e.g., spouses, coworkers). There
are several indices currently in use such as evaluating
whether the level of symptoms at the end of treatment

falls within a normative range of individuals func-
tioning well in everyday life, whether the condition
that served as the basis for treatment (e.g., depres-
sion, panic attacks) is no longer present, and whether
the changes made by the individual are especially
large [4, 5]. Social validity and its related but more
focused concept of clinical significance have fostered
increased attention to whether treatment outcomes
actually help people in everyday life. The concept
has not replaced other ways of evaluating treatment,
for example, statistical significance, magnitude of
change, but has expanded the criteria by which to
judge intervention effects.
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Software for Behavioral
Genetics

Historical Background

The term software was coined in the 1950s by the
eminent statistician John Tukey (1915–2000). It
usually refers to the program and algorithms used
to control the electronic machinery (hardware) of a
computer, and may include the documentation. Typ-
ically, software consists of source code, which is
then compiled into machine-executable code which
the end user applies to a specific problem. This
general scenario applies to software for genetically
informative studies, and might be considered to have
existed before Professor Tukey invented the term in
the mid twentieth Century. Algorithms are at the
heart of software, and this term dates back to the
ninth century Iranian mathematician, Al-Khawarizmi.
Although formal analysis of data collected from twins
did not begin until the 1920s, it was, nevertheless,
algorithmic in form. A heuristic estimate of heri-
tability, such as twice the difference between the MZ
and the DZ correlations, may be implemented using
mental arithmetic, the back of an envelope, or on a
supercomputer. In all cases the algorithm constitutes
software; it is only the hardware that differs.

Software for Model-fitting

Much current behavior genetic analysis is built upon
the statistical framework of maximum likelihood,
attributed to Ronald Fisher [4]. As its name sug-
gests, maximum likelihood requires an algorithm for
optimization, of which there are many: some general
and some specific to particular applications. All such
methods use input data whose likelihood is computed
under a particular statistical model. The values of the
parameters of this model are not known, but it is often
possible to obtain the set of values that maximize
the likelihood. These maximum likelihood estimates
have two especially desirable statistical properties;
they are asymptotically unbiased, and have minimum
variance of all asymptotically unbiased estimates.
Therefore, in the analysis of both genetic linkage
(see Linkage Analysis) using genetic markers, and
of twin studies to estimate variance components,

there was motivation to pursue these more complex
methods. This section focuses on twin studies and
their extensions.

Before the advent of high-speed computers,
maximum likelihood estimation would typically
involve: (a) writing out the formula for the
likelihood; (b) finding the first and second derivatives
of this function with respect to the parameters of
the model; and (c) solving the (often nonlinear)
simultaneous equations to find those values of
the parameters that maximize the likelihood, that
is, where the first derivatives are zero and the
second derivatives are negative. The first of these
steps is often relatively simple, as it typically
involves writing out the formula for the probability
density function (pdf ) (see Catalogue of Probability
Density Functions) of the parameters of the model.
In many cases, however, the second and third steps
can prove to be challenging or intractable. Therefore,
the past 25 years has seen the advent of software
designed to estimate parameters under increasingly
general conditions.

Early applications of software for numerical opti-
mization (see Optimization Methods) to behav-
ior genetic data primarily consisted of purpose-built
computer programs which were usually written in
the high-level language FORTRAN, originally devel-
oped in the 1950s by John Backus. From the 1960s
to the 1980s this was very much the language of
choice, mainly because a large library of numerical
algorithms had been developed with it. The availabil-
ity of these libraries saved behavior geneticists from
having to write quite complex code for optimization
themselves. Two widely used libraries were MINUIT
from the (Centre Européen de Recherche Nucléaire)
(CERN) and certain routines from the E04 library of
the Numerical Algorithms group (NAg). The latter
were developed by Professor Murray and colleagues
in the Systems Optimization Laboratory at Stanford
University. A key advantage of these routines was
that they incorporated methods to obtain numerical
estimates of the first and second derivatives, rather
than requiring the user to provide them. Alleviated
of the burden of finding algebraic expressions for
the derivatives, behavior geneticists in the 1970s and
1980s were able to tackle a wider variety of both
statistical and substantive problems [3, 7].

Nevertheless, some problems remained which cur-
tailed the widespread adoption of model-fitting by
maximum likelihood. Not least of these was that
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the geneticist had to learn to use FORTRAN or a
similar programming language in order to fit mod-
els to their data, particularly if they wished to fit
models for which no suitable software was already
available. Those skilled in programing were able to
assemble loose collections of programs, but these typ-
ically involved idiosyncratic formats for data input,
program control and interpretation of output. These
limitations in turn made it difficult to communi-
cate use of the software to other users, difficult to
modify the code for alternative types of data or
pedigree structure, and difficult to fit alternative sta-
tistical models. Fortunately, the development by Karl
Jöreskog and Dag Sörbom of a more general program
for maximum likelihood estimation, called LISREL,
alleviated many of these problems [1, 8]. Although
other programs, such as COSAN, developed by C.
Fraser & R. P. McDonald [5] existed, these proved
to be less popular with the behavior genetic research
community. In part, this was because they did not
facilitate the simultaneous analysis of data collected
from multiple groups, such as from MZ and DZ twin
pairs, which is a prerequisite for estimating heritabil-
ity and other components of variance. The heart of
LISREL’s flexibility was its matrix algebra formula
for the specification of what are now usually called
structural equation models In essence, early ver-
sions of the program allowed the user to specify the
elements of matrices in the formula:
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,

(1)

where A = (I − B)−1. The somewhat cumbersome
expression (1) is the predicted covariance within a set
of dependent y variables (upper left), within a set of
independent variables, x (lower right) and between
these two sets (lower left and upper right). Using
this framework, a wide variety of models may be
specified. The program was used in many of the
early (1987–1993) workshops on Methodology for
Genetic Studies of Twins and Families, and was used
in the Neale and Cardon [12] text. What was par-
ticularly remarkable about LISREL, COSAN, and
similar products that emerged in the 1980s was that
they formed a bridge between a completely gen-
eral programming language such as FORTRAN or

C, and a purpose-built piece of software that was
limited to one or two models or types of input data.
These programs allowed the genetic epidemiologist
to fit, by maximum likelihood, a vast number of
models to several types of summary statistic, pri-
marily means and correlation and covariance matri-
ces, and all without the need to write or compile
FORTRAN.

Although quite general, some problems could not
be tackled easily within the LISREL framework,
and others appeared insurmountable. These problems
included the following:

1. A common complication in behavior genetic
studies is that human families vary in size and
configuration, whereas the covariance matrices
used as input data assumed an identical structure
for each family.

2. Data collected from large surveys and interviews
are often incomplete, lacking responses on one
or more items from one or more relatives.

3. Genetic models typically specify many linear
constraints among the parameters; for exam-
ple, in the ACE model the impact of genetic
and environmental factors on the phenotypes is
expected to be the same for twin 1 and twin 2
within a pair, and also for MZ and DZ pairs.

4. Certain models – such as those involving mixed
genetic and cultural transmission from parent to
child [12] – require nonlinear constraints among
the parameters.

5. Some models use a likelihood framework that is
not based on normal theory.

6. Methods to handle, for example, imperfect diag-
nosis of identity-by-descent in sib pairs, or
zygosity in twin pairs, require the specification
of the likelihood as a finite mixture distribution.

7. Tests for genotype X environment (or age
or sex) interactions may involve continuous or
discrete moderator variables.

8. Model specification using matrices is not straight-
forward especially for the novice.

These issues led to the development, by the author
of this article and his colleagues, of the Mx soft-
ware [10, 11]. Many of the limitations encountered
in the version of LISREL available in the early 1990s
have been lifted in recent versions (and in LISREL’s
competitors in the marketplace such as EQS, AMOS
and MPLUS). However, at the time of writing, Mx
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seems to be the most popular program for the anal-
ysis of data from twins and adoptees. In part, this
may be due to economic factors, since Mx is freely
distributed while the commercial programs cost up to
$900 per user.

Mx was initially developed in 1990, using FOR-
TRAN and the NPSOL numerical optimizer from
Professor Walter Murray’s group [6]. Fortunately,
compiled FORTRAN programs still generate some
of the fastest executable programs of any high-level
programming language. An early goal of Mx was to
liberate the user from the requirement to use the sin-
gle (albeit quite general) matrix algebra formula that
LISREL provided. Therefore, the software included a
matrix algebra interpreter, which addressed problem
three because large numbers of equality constraints
could be expressed in matrix form. It also permit-
ted the analysis of raw data with missing values,
by maximizing the likelihood of the observed data,
instead of the likelihood of summary statistics, which
simultaneously addressed problems one and two.
Facilities for matrix specification of linear and non-
linear constraints addressed problem four.

Problem five was partially addressed by the advent
of user-defined fit functions, which permit parameter
estimation under a wider variety of models and statis-
tical theory. In 1994, raw data analysis was extended
by permitting the specification of matrix elements
to contain variables from the raw data to overcome
problem seven. This year also saw the development
of a graphical interface to draw path diagrams and
fit models directly to the data (problem eight) and
the following year mixture distributions were added
to address problem six. More recently, developments
have focused on the analysis of binary and ordi-
nal data; these permit a variety of Item Response
Theory (see Item Response Theory (IRT) Models
for Dichotomous Data) and Latent Class models
to be fitted relatively efficiently, while retaining the
genetic information in studies of twins and other rel-
atives. These developments are especially important
for behavior genetic studies, since conclusions about
sex-limitation and genotype-environment interaction
may be biased by inconsistent measurement [9].

The development of both commercial and non-
commercial software continues today. Many of the
features developed in Mx have been adopted by the
commercial packages, particularly the analysis of raw
data. There is also some progress in the development
of a package for structural equation model-fitting

package written in the R language (http://r-
project.org). Being an open-source project, this
development is should prove readily extensible. Over-
all, the feature sets of these programs overlap, so that
each program has some unique features and some that
are in common with some of the others.

Several new methods, most notably Bayesian
approaches involving Monte Carlo Markov Chain
(MCMC) (see Markov Chain Monte Carlo and
Bayesian Statistics) algorithms permit greater flexi-
bility in model specification, and in some instances
have more desirable statistical properties [2]. For
example, estimation of (genetic or environmental or
phenotypic) factor scores is an area where the MCMC
approach has some clear advantages. Bayesian fac-
tor score estimates will incorporate the error inher-
ent in the estimates of the factor loadings, whereas
traditional methods will assume that the factor load-
ings are known without error and are thus artifi-
cially precise. Future developments in this area seem
highly likely.
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Software for Statistical
Analyses

Introduction

One of the first statistical packages on the market
was the Biomedical Statistical Software Package
(BMDP), developed in 1960 at the University of
California, Los Angeles. One of the reasons for its
popularity was that it was written in FORTRAN,
which was a major computer language in the 1950s
and 1960s.

In 1968, three individuals from Stanford Univer-
sity, Norman Nie, a social scientist, ‘Tex’ Hull, a
programmer with an MBA, and Dale Bent, an oper-
ations researcher, developed the Statistical Package
for the Social Sciences (SPSS) for analyzing a mul-
titude of social science research data. McGraw-Hill
published the first manual for SPSS in 1970. In the
mid-1980s, SPSS was first sold for personal computer
use [18].

Statistical Analysis Systems (SAS) software was
developed in the early 1970s at North Carolina State
University by a number of students who discovered
that there was no software for managing and ana-
lyzing agricultural data. These students wrote the
software for a variety of student projects, which pro-
vided the impetus for SAS [16].

MINITAB was developed by Barbara Ryan,
Thomas Ryan, and Brian Joiner in 1972 in an
attempt to make statistics more interesting to students.
Because SPSS, SAS, and BMDP were difficult
for undergraduates, these innovators constructed a
software program that could be learned in about one
hour of class time [13]. For an overview of the history
of the major statistical software companies, see the
statistics site at George Mason University [6].

Modern Statistical Software

The eight general purpose software packages listed in
Table 1 perform descriptive statistics, multiple linear
regression, analysis of variance (ANOVA), analysis
of covariance (ANCOVA), multivariate analysis,
and nonparametric methods (see Distribution-free
Inference, an Overview). For each package, a web-
site and system compatibility are shown.

The hierarchical linear modeling program descri-
bed in Table 2 estimates multivariate linear mod-
els from incomplete data and imports data from
other statistical packages. It computes latent variable
analysis, ordinal and multinomial regression for
two-level data (see Logistic Regression), and gen-
eralized estimating equations with robust stan-
dard errors.

Table 3 lists six programs that perform meta-
analyses. Biostat has a variety of meta-analysis

Table 1 General statistical packages

Name Website Compatibility

BMDP http://www.statsol.ie/bmdp/bmdp.htm Windows 95, 98, 2000, NT
JMP www.jmpdiscovery.com Windows 95, 98, 2000, NT;

Macintosh OS 9.1 or higher
MINITAB www.minitab.com Windows 98, 2000, NT, Me, XP
SAS http://www.sas.com Windows 95, 98, 2000, NT, XP
SPSS http://www.spss.com Windows 95, 98, 2000, NT, XP
STATA http://www.stata.com Windows 98, 2000, NT, XP;

Macintosh OS X 10.1; UNIX
STATISTICA http://www.statsoftinc.com Windows 95, 98, 2000, NT, Me,

XP; Macintosh
SYSTAT http://www.systat.com Windows 95, 98, 2000, NT, XP

Table 2 Hierarchical linear modeling

Name Website Compatibility

HLM-5 http://www.ssicentral.com/hlm/hlm.htm Windows 95, 98, 2000, NT, XP; UNIX
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Table 3 Meta-analysis

Name Website Compatibility

Biostat http://www.meta-analysis.com Windows 95, 98, 2000, NT
Meta http://users.rcn.com/dakenny/meta.htm DOS
Meta-analysis http://www.lyonsmorris.com/MetaA/links.htm Windows 95, 98, NT, Me;

MacIntosh OS
Meta-analysis 5.3 http://www.fu.berlin.de/gesund engl/meta e.htm IBM compatibles (DOS 3.3

or higher)
MetaWin 2.0 http://www.metawinsoft.com Windows 95, 98, NT
WeasyMA http://www.weasyma.com Windows 95, 98, 2000, NT,

XP

Table 4 Power analysis

Name Website Compatibility

G*Power http://www.psych.uni-duesseldorf.de/aap/projects/gpower DOS or MacIntosh
OS systems

Power analysis http://www.math.yorku.ca/SCS/online/power/ Program on website
PASS-2002 http://www.ncss.com Windows 95, 98,

2000, NT, Me,
XP

Java applets
for power

http://www.stat.uiowa.edu/∼rlenth/power/index.html Program on website

Power and
precision

http://www.power-analysis.com Windows 95, 98,
2000, NT

Power on http://www.macupdate.com/info.php/id/7624 MacIntosh OS X
10.1 or later

StudySize 1.0 http://www.studysize.com/index.htm Windows 95, 98,
2000, NT, XP

algorithms. It provides effect size indices, moderator
variables (see Moderation), and forest plots. Meta
computes and pools effect sizes, and tests whether the
average effect size differs from zero. Meta-analysis
performs the Hunter-Schmidt method. It computes
effect sizes and corrects for range restriction and
sampling error. Meta-analysis 5.3 has algorithms
utilizing exact probabilities and effect sizes (d or
r). The program also provides cluster analysis and
stem-and-leaf displays of correlation coefficients.
MetaWin 2.0 computes six different effect sizes and
performs cumulative and graphical analyses. It reads
text, EXCEL, and Lotus files. WeasyMA performs
cumulative analyses and it provides funnel, radial,
and forest plots.

Rothstein, McDaniel, and Borenstein [15] pro-
vided a summary and a brief evaluative statement
(e.g., user friendliness) of eight meta-analytic soft-
ware programs. They found the programs Meta, True
EPISTAT, and DSTAT to be user friendly.

The seven programs listed in Table 4 compute
power analyses. G*Power, PASS-2002, and Power
and Precision compute power, sample size, and effect
sizes for t Tests, ANOVA, regression, and chi-square.
G*power is downloadable freeware. Power Analysis
by Michael Friendly and the Java Applet for Power
by Russ Lenth are interactive programs found on
their websites. Power Analysis computes power and
sample size for one effect in a factorial ANOVA
design, whereas the Java Applet for Power computes
power for the t Test, ANOVA, and proportions. Power
On computes the power and sample sizes needed for
t Tests. StudySize 1.0 computes power and sample
size for t Tests, ANOVA, and chi-square. It also
computes confidence intervals and performs Monte
Carlo simulations.

The website http://www.insp.mx/dinf/
stat list.html lists a number of additional power
programs. Yu [21] compared the Power and Pre-
cision package [2], PASS, G*Power, and a SAS



Software for Statistical Analyses 3

Table 5 Qualitative data analysis packages

Name Website Compatibility

AtlasT.ti http://www.atlasti.de/features.shtml Windows 95, 98, 2000, NT, XP;
MacIntosh; SUN

NUD*IST – N6 http://www.qsr.com Windows 2000, Me, XP
Nvivo 2.0 http://www.qsr.com Windows 2000, Me, XP

Table 6 Structural equation modeling

Name Website Compatibility

AMOS 5 http://www.smallwaters.com/amos/features.html Windows 98, Me, NT4, 2000, XP
EQS 6.0 http://www.mvsoft.com/eqs60.htm Windows 95, 98, 2000, NT, XP;

UNIX
LISREL 8.5 http://www.ssicentral.com/lisrel/mainlis.htm Windows 95, 98, 2000, NT, XP;

MacIntosh OS 9

Macro developed by Friendly [5]. Yu recommended
the Power and Precision package (which is marketed
by SPSS, Inc. under the name Sample Power) because
of its user-friendliness and versatility. In a review
of 29 different power programs [20], the programs
nQuery advisor, PASS, Power and Precision, Statis-
tical Power Analysis, Stat Power, and True EPISTAT
were rated highest with regard to ease of learning.
PASS received the highest mark for ease of use.

Three packages that analyze qualitative data (see
Qualitative Research) are listed in Table 5. Atlas.ti
generates PROLOG code for building knowledge
based systems and performs semiautomatic coding
with multistring text search and pattern matching.
It integrates all relevant material into Hermeneutic
Units, and creates and transfers knowledge networks
between projects. NUD*IST – N6 provides rapid
handling of text records, automated data process-
ing, and the integration of qualitative and quanti-
tative data. It codes questionnaires or focus group
data. NVivo 2.0 performs qualitative modeling and
integrated searches for qualitative questioning. It
provides immediate access to interpretations and
insights, and tools that show, shape, filter, and
assay data.

Barry [1] compared Atlas.ti and NUD*IST across
project complexity, interconnected versus sequential
structure, and software design. According to Barry,
Atlas.ti’s strengths were a well-designed interface
that was visually attractive and creative, and its
handling of simple sample, one timepoint projects.
She believed that NUD*IST had a better searching

structure and was more suitable for complex projects,
although it was not as visually appealing as Atlas.ti.

Structural equation modeling packages are listed
in Table 6. AMOS 5 fits multiple models into a
single analysis. It performs missing data modeling
(via casewise maximum likelihood), bootstrap sim-
ulation, outlier detection, and multiple fit statistics
such as Bentler–Bonnet and Tucker–Lewis indices.
EQS 6.0 performs EM-type missing data methods,
heterogeneous kurtosis methods, subject weighting
methods, multilevel methods, and resampling and
simulation methods and statistics. LISREL 8.5 per-
forms structural equation modeling with incomplete
data, multilevel structural equation modeling, for-
mal inference based recursive modeling, and mul-
tiple imputation and nonlinear multilevel regression
modeling.

Kline [8] analyzed the features of AMOS, EQS,
and LISREL and concluded that AMOS had the most
user-friendly graphical interface; EQS had numer-
ous test statistics and was useful for nonnormal data;
LISREL had flexibility in displaying results under
a variety of graphical views. He concluded that
all three programs were capable of handling many
SEM situations (see Structural Equation Model-
ing: Software).

The package in Table 7 not only computes
confidence intervals for effect sizes but it also
performs six different simulations that could be used
for teaching concepts such as meta-analysis and
power. The program runs under Microsoft Excel97
or Excel2000.
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Table 7 Confidence intervals for effect sizes

Name Website Compatibility

ESCI http://www.latrobe.edu.au/psy/esci/ Windows 95, 98, 2000, NT, Me, XP

Evaluating Statistical Software:
A Consumer Viewpoint

Articles comparing statistical software often focus on
the accuracy of the statistical calculations and tests
of random number generators (e.g., [12]). But, Kuo-
nen and Roehrl [9] list characteristics that may be
of more utility to the behavioral researcher. These
characteristics are performance (speed and mem-
ory); scalability (maximizing computing power); pre-
dictability (computational time); compatibility (gen-
eralizable code for statistical packages or comput-
ers); user-friendliness (easy to learn interfaces and
commands); extensibility (‘rich, high-level, object-
oriented, extensive, and open language’ (p. 10));
intelligent agents (understandable error messages);
and good presentation of results (easy-to-understand,
orderly output). All information should be labeled
and presented in an easy to read font type and
relatively large font size. Moreover, it should fit
neatly and appropriately paged on standard paper
sizes.

Kuonen and Roehrl [9] evaluated nine statis-
tical software packages on seven of these char-
acteristics (excluding predictability). They found
that no major statistical software package stands
out from the rest and that many of them have
poor performance, scalability, intelligent agents, and
compatibility. For additional reviews of a wider
range of major statistical software packages, see
www.stats.gla.ac.uk/cti/activities/re
views/alphabet.html.

Problems with Statistical Software
Packages

Researchers often blindly follow the statistical soft-
ware output when reporting results. Many assume that
the output is appropriately labeled, perfectly com-
puted, and is based on up-to-date procedures. Indeed,
each subsequent version of a statistical software pack-
age generally has more cutting edge procedures and
is also more user friendly. Unfortunately, there are

still a number of difficulties that these packages have
not solved. The examples that follow are certainly
not exhaustive, but they demonstrate that researchers
should be more cognizant of the theory and con-
cepts surrounding a statistical technique rather than
simply parroting output. As one example, behav-
ioral science researchers often correlate numerous
measures. Many of these measures contain individ-
ual factors that are also contained in the correlation
matrix. It is common to have, for example, a 15 × 15
correlation matrix and associated probability values
of tests of the null hypothesis that ρ = 0 for each
correlation. These probabilities are associated with
the standard F , t , or z Tests. Numerous researchers
(e.g., [4]) have suggested that multiple F , t , or z

tests for testing the null hypothesis that ρ = 0, may
lead to an inflation of Type I error (see Multi-
ple Comparison Procedures). In some cases, the
largest correlation in the matrix may have a Type
I error rate that is above. 40! To guard against this
Type I error rate inflation, procedures such as the
multistage Bonferroni [10], step up Bonferroni [14]
and step down Bonferroni [7], and the rank order
method [19] have been proposed. In standard sta-
tistical software packages, these and other options
are not available, leaving the researcher to resort to
either a stand-alone software program or to ignore
the issue completely.

As a second example, Levine and Hullett [11]
reported that in SPSS for Windows 9.0 (1998),
the measure of effect size in the generalized lin-
ear models procedure was labeled as eta squared,
but it should have been labeled as partial eta
squared. According to Levine and Hullett, the mea-
sure of effect size was correctly labeled in the doc-
umentation, but not in the actual printouts. Hence,
researchers were more likely to misreport effect sizes
for two-way or larger ANOVAs. In some cases,
they noted that the effect sizes summed to more
than 1.0. Fortunately, in later editions of SPSS
for Windows, the label was changed to partial eta
squared, so effect size reporting errors should be
reduced for output from this and future versions of
SPSS.
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Finding Other Behavioral Statistical
Software

Although many statistical software packages perform
a wide variety of statistics, there are times when soft-
ware packages may not provide a specific hypothesis
test. For example, suppose an industrial psychologist
correlated salary with job performance at time 1, and
after providing a 5% raise, correlated salary and job
performance six months later. This constitutes test-
ing the null hypothesis of no statistically significant
difference between dependent population correlations
with zero elements in common (ρ12 = ρ34). As an
additional example, suppose an educational psychol-
ogist was interested in determining if the correlation
between grade point average and scholastic aptitude
test scores are different for freshmen, sophomores,
juniors, and seniors. This tests the null hypothesis that
there are no statistically significant differences among
independent population correlations (ρ1 = ρ2 = ρ3 =
ρ4). Finally, suppose one wanted to orthogonally
break a large chi-square contingency table into indi-
vidual 2 × 2 contingency tables using the Bresna-
han and Shapiro [3] methodology. In all three cases,
researchers either need to perform the computational
procedures by hand, which is extremely cumbersome,
or ask their local statistician to program them. For-
tunately, during the past 25 years, many behavioral
statisticians published stand-alone programs that aug-
ment the standard statistical software packages. In
many cases, the programs are available free or a nom-
inal cost. One source of statistical software is a book
by Silver and Hittner [17], a compendium of more
than 400 peer-reviewed stand-alone statistical pro-
grams. They provided a description of each program,
its source, compatibility and memory requirements,
and information for obtaining the program.

A number of journals publish statistical soft-
ware. Applied Psychological Measurement sporadi-
cally includes the Computer Program Exchange that
features one-page abstracts of statistical software.
Behavior Research Methods, Instruments, and Com-
puters is a journal that is devoted entirely to com-
puter applications. The Journal of Statistical Software
is an Internet peer-reviewed journal that publishes
and reviews statistical software, manuals, and user’s
guides.

A number of website links provide free or nom-
inal cost statistical software. The website (http://

members.aol.com/johnp71/index.html), dev-
eloped by John C. Pezzullo, guides users to free
statistical software, some of which are downloads
available on a 30-day free trial basis. This extremely
well-documented, highly encompassing website lists
a wide variety of general packages, subset packages,
survey, testing, and measurement software, program-
ming languages, curve fitting and modeling soft-
ware, and links to other free software. The websites
http://www.statserv.com/softwares.html
and http://www.statistics.com/content/
commsoft/fulllist.php3 provide lists of sta-
tistical software packages that range from gen-
eral purpose programs such as SPSS to more
specific purpose programs such as BILOG3 for
Item Response Theory. These websites provide
brief descriptions and system compatibilities for
more than 100 statistical programs. The website
http://sociology.ca/sociologycalinks.
html has links to a variety of statistical software
package tutorials.

The Future of Statistical Software

Although it is difficult to prognosticate the future,
there have been trends over the past few years that
may continue. First, the major statistical software
packages will continue to be upgraded in terms of
user-friendly interface and general statistical tech-
niques. This upgrading may include asking questions
of the user, similar to that of income tax software, to
assure that the design and analysis are appropriate.
Help files and error messages will also be more user
friendly. Moreover, widely used individual statistical
techniques (e.g., meta-analysis and reliability gener-
alization) will continue to be provided as separate
programs offered by statistical software companies or
by individual statisticians. The programming of less
widely used techniques (e.g., testing the difference
between two independent intraclass correlations),
will still be performed by individual statisticians,
although, there may be fewer outlets for their pub-
lication. Hopefully, there will be additional print or
online statistical software journals that will describe
computer programs understandably for the applied
researcher. Without additional peer-reviews of sta-
tistical software for seldom-used techniques, these
statistical programs may not meet acceptable stan-
dards for quality and quantity.
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Spearman, Charles
Edward

Born: September 10, 1863, in London, England.
Died: September 17, 1945, in London, England.

Charles Spearman’s entry into academic life was
not by any conventional route. On leaving school,
he served as an Army officer, mainly in India, for
almost 15 years. It seems, however, that military
duties were mixed with reading about philosophy and
psychology [10]. In 1897, having just completed a
two-year course at the Army Staff College, Spearman
resigned his commission and, though entirely self-
taught, set out for Germany to study experimental
psychology in Wundt’s laboratory in Leipzig.

Although Spearman eventually obtained a PhD
in 1906, his studies had been interrupted by a
recall in 1900 to serve as a staff officer during
the South African war. And it was during the few
months between his release from these duties early
in 1902 and returning to Leipzig that he carried
out some mental testing studies on schoolchildren,
which laid the foundations for his ‘Two-Factor The-
ory’ of human ability as well as his pioneering work
on correlation and factor analysis. These investi-
gations were published in the American Journal of
Psychology in 1904 ([6] and [7]) – a remarkable
achievement for someone with no academic quali-
fications other than ‘passed staff college’.

Spearman’s system hypothesized an underlying
factor common to all intellectual activity and a sec-
ond factor specific to the task; later on, these became
known as g and s. Furthermore, whilst individu-
als were assumed to possess g (and s) to different
degrees, g would be invoked to different degrees by
different tasks. In Spearman’s view, once the effects
of superfluous variables and observational errors had
been reduced to a minimum, the hierarchical pattern
of intercorrelations of measurements on a ‘hotch-
potch’ of abilities gave ample evidence of a common
factor with which any intellectual activity was ‘satu-
rated’ to a specific, measurable degree. In obtaining
numerical values for these ‘saturations’, Spearman
had carried out a rudimentary factor analysis, which,
at last, promised a way of measuring general intelli-
gence, sought after for so long by those in the field
of psychological testing.

However, Spearman’s two-factor theory was by
no means universally acclaimed. Indeed, for the best
part of the next 30 years, Spearman would engage in
very public battles with critics on both sides of the
Atlantic. Some, such as Edward Thorndike and Louis
Thurstone, doubted that human ability or intelligence
could be captured so neatly. Others, especially Karl
Pearson (whose correlational methods Spearman had
adapted), Godfrey Thomson, William Brown (early
in his career), and E.B. Wilson saw grave faults in
Spearman’s mathematical and statistical arguments
(see [4]). Spearman’s Herculean effort to establish
the two-factor theory as the preeminent model of
human intelligence reached its peak in 1927 with
the publication of The Abilities of Man [9]. But,
more sophisticated, multiple factor theories would
gradually overshadow this elegantly simple system.

In 1907, Spearman had returned to England to his
first post at University College, London (UCL) as
part-time Reader in Experimental Psychology. Four
years later, he was appointed as the Grote Professor of
Mind and Logic and head of psychology and, finally,
in 1928, he became Professor of Psychology until
his retirement as Emeritus Professor in 1931. He was
elected a Fellow of the Royal Society in 1924 and
received numerous other honours.

Perhaps Spearman’s chief legacy was to put
British psychology on the international map by cre-
ating the first significant centre of psychological
research in the country. The ‘London School’, as it
became known, was renowned for its rigorous pursuit
of the scientific and statistical method for study-
ing human abilities – an approach entirely consonant
with principles advocated by Francis Galton in the
previous century.

Nowadays, however, Spearman is remembered
almost solely for his correlational work, especially
the rank correlation coefficient (see Spearman’s
Rho) (although it is not entirely clear that the
version we know today is in fact what Spearman
developed [2]), and the so-called Spearman–Brown
reliability formula. Although for a long time there
were doubts and heated debates (mainly because of
claims and stories put about by Cyril Burt, a former
protégé and his successor as Professor of Psychology
at UCL) about who exactly was the originator of
factor analysis, Spearman’s status as its creator is now
firmly established (see [1] and [3]).

And yet, paradoxically, Spearman himself regard-
ed this psychometric and statistical work as secondary
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to his far more ambitious mission – establishing fun-
damental laws of psychology, which would encom-
pass not just the processes inherent in the two-factor
theory, but all cognitive activity (see [8]). In spite of
his own hopes and claims, Spearman never succeeded
in developing this work much beyond an embryonic
system. Ironically, though, some of his key ideas have
recently reemerged within cognitive psychology.

After retirement, Spearman had continued publish-
ing journal articles and books as well as travelling
widely. By the early 1940s, however, he was in fail-
ing health and poor spirits. His only son had been
killed during the evacuation of Crete in 1941 and he
was suffering from blackouts which made working,
and life in general, a trial. A bad fall during such
an episode in the late summer of 1945 led to a bout
of pneumonia. He was admitted to University Col-
lege Hospital where he took his own life by jumping
from a fourth floor window. Spearman believed in
the right of individuals to decide when their lives
should cease.

Further material about Charles Spearman’s life
and work can be found in [5] and [10].
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Spearman’s Rho

Spearman’s rho, rs , is a measure of correlation based
on ranks (see Rank Based Inference). It is useful
when the raw data are ranks, as for example job
applicants, or when data are ordinal. Examples of
ordinal data include common rating scales based
on responses ranging from ‘strongly disagree’ to
‘strongly agree’. Figure 1 shows examples of metric
data where rs , is useful. Panel B demonstrates a
nonlinear monotonic relation. Panel C demonstrates
the effect of an ‘outlier’.

Spearman’s rho is simply the normal Pearson
product moment correlation r computed on the
ranks of the data rather than the raw data.

Calculation

In order to calculate rs , it is first necessary to rank
both the X and Y variable as shown in Table 1. Then
for each pair of ranked values the difference between
the ranks, D, is calculated, so that the simple formula
in (1) [1] can be used to calculate rs

rs = 1 −
6

∑
D2

N(N2 − 1)
. (1)

Equation (1) overestimates rs if there are ties.
Equations for adjusting for ties exist, but are cum-
bersome. The simplest method [1] is to use averaged
ranks, where tied values are all given the average
rank of their positions. Thus, a data set (1, 2, 2, 4)
would have ranks (1, 2.5, 2.5, 4).

Table 1 Ranking of data to calculate rs

X 2 3 5 7 8 40
Y 8 4 5 6 7 1

Rank X 6 5 4 3 2 1
Rank Y 1 5 4 3 2 6

D2 25 0 0 0 0 25

Hypothesis Testing

For the null hypothesis of no association, that is,
rs = 0, and N > 10, (2) gives a statistic that is t-
distributed with N − 2 degrees of freedom [1]

t = rs

√
N − 2√

1 − rs
2

. (2)

Accurate Tables for N ≤ 10 are provided by
Kendall & Gibbons [2].

Confidence limits and hypotheses about values
of rs other than 0 can be obtained by noting that
the Fisher transformation gives a statistic zr that is
normally distributed with variance 1/(N − 3)

zr = 1

2
ln

[
1 + rs

1 − rs

]
. (3)

Comparison with Pearson’s r
and Kendall’s τ

Figure 1 illustrates comparisons of r , rs and
Kendall’s tau, τ . For normally distributed data with a
linear relation, parametric tests based on r are usually
more powerful than rank tests based on either rs or
τ . So in panel A: r = 0.46, p = 0.044; rs = 0.48,
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Figure 1 Three relations between Y and X to demonstrate comparisons between r , rs , and τ
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p = 0.032; τ = 0.32, p = 0.052. Panel B shows a
nonlinear relation, with the rank coefficients better
at detecting a trend: r = −0.82; rs = −0.99; τ =
−0.96, all of course highly significant. Panel C shows
that rank coefficients provide better protection against
outliers: r = 0.56, p = 0.010; rs = 0.18, p = 0.443;
τ = 0.15, p = 0.364. The outlier point (29, 29) no
longer causes a spurious significant correlation.
Experts [1, 2] recommend τ over rs as the best rank
based procedure, but rs is far easier to calculate if a
computer package is not available.
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Sphericity Test

Repeated measures (see Repeated Measures Analy-
sis of Variance) or longitudinal designs (see Lon-
gitudinal Data Analysis) are used frequently by
researchers in the behavioral sciences where anal-
ysis of variance F tests are typically used to assess
treatment effects. However, these tests are sensitive
to violations of the assumptions on which they are
based, particularly when the design is unbalanced
(i.e., group sizes are unequal) [6].

To set the stage for a description of sphericity, con-
sider a hypothetical study described by Maxwell and
Delaney [10, p. 534] where 12 subjects are observed
in each of four conditions (factor K), for exam-
ple, at 30, 36, 42, and 48 months of age, and the
dependent measure (Y ) ‘is the child’s age-normed
general cognitive score on the McCarthy Scales of
Children’s Abilities’. In this simple repeated mea-
sures design, the validity of the within-subjects main
effects F test of factor K rests on the assumptions
of normality, independence of errors, and homo-
geneity of the treatment-difference variances (i.e.,
circularity or sphericity) [3, 14, 15]. Homogene-
ity of treatment-difference variances means that for
all possible differences in scores among the lev-
els of the repeated measures variable [i.e., Y (30) −
Y (36), Y (30) − Y (42), . . . , Y (42) − Y (48)], the pop-
ulation variances of these differences are equal. For
designs including a between-subjects grouping fac-
tor (J ), the validity of the within-subjects main
and interaction tests (F(K) and F(JK)) rest on two
assumptions, in addition to those of normality and
independence of errors. First, for each level of the
between-subjects factor J , the population treatment-
difference variances among the levels of K must
be equal. Second, the population covariance matri-
ces (see Correlation and Covariance Matrices) at
each level of J must be equal. Since the data obtained
in many disciplines rarely conform to these require-
ments, researchers using these traditional procedures
will erroneously claim treatment effects when none
are present, thus filling their literature with false pos-
itive claims.

McCall and Appelbaum [12] provide an illustra-
tion as to why in many areas of behavioral science
research (e.g., developmental psychology, learning
psychology), the covariances between the levels of
the repeated measures variable will not conform to

the required covariance pattern for a valid univari-
ate F test. They use an example from develop-
mental psychology to illustrate this point. Specif-
ically, adjacent-age assessments typically correlate
more highly than developmentally distant assess-
ments (e.g., ‘IQ at age three correlates 0.83 with IQ
at age four but 0.46 with IQ at age 12’); this type
of correlational structure does not correspond to a
circular (spherical) covariance structure. That is, for
many applications, successive or adjacent measure-
ment occasions are more highly correlated than non-
adjacent measurement occasions, with the correlation
between these measurements decreasing the farther
apart the measurements are in the series. Indeed, as
McCall and Appelbaum note ‘Most longitudinal stud-
ies using age or time as a factor cannot meet these
assumptions’ (p. 403). McCall and Appelbaum also
indicate that the covariance pattern found in learn-
ing experiments would also not likely conform to
a spherical pattern. As they note, ‘experiments in
which change in some behavior over short periods
of time is compared under several different treat-
ments often cannot meet covariance requirements’
(p. 403).

When the assumptions of the conventional F tests
have been satisfied, the tests will be valid and
will be uniformly most powerful for detecting
treatment effects when they are present. These
conventional tests are easily obtained with the major
statistical packages (e.g., SAS [16] and SPSS [13];
see Software for Statistical Analyses). Thus, when
assumptions are known to be satisfied, behavioral
science researchers can adopt the conventional
procedures and report the associated P values, since,
under these conditions, these values are an accurate
reflection of the probability of observing an F value
as extreme or more than the observed F statistic.

The result of applying the conventional tests
of significance to data that do not conform to
the assumptions of (multisample) sphericity will
be that too many null hypotheses will be falsely
rejected [14]. Furthermore, as the degree of non-
sphericity increases, the conventional repeated mea-
sures F tests become increasingly liberal [14].

When sphericity/circularity does not exist, the
Greenhouse and Geisser [2] and Huynh and Feldt [4]
tests are robust alternatives to the traditional tests,
provided that the design is balanced or that the
covariance matrices across levels of J are equal
(see Repeated Measures Analysis of Variance). The
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empirical literature indicates that the Greenhouse and
Geisser and Huynh and Feldt adjusted degrees of
freedom tests are robust to violations of multisample
sphericity as long as group sizes are equal [6].
The P values associated with these statistics will
provide an accurate reflection of the probability of
obtaining these adjusted statistics by chance under
the null hypotheses of no treatment effects. The major
statistical packages [SAS, SPSS] provide Greenhouse
and Geisser and Huynh and Feldt adjusted P values.
However, the Greenhouse and Geisser and Huynh
and Feldt tests are not robust when the design is
unbalanced [6].

In addition to the Geisser and Greenhouse [2]
and Huynh and Feldt [4] corrected degrees of free-
dom univariate tests, other univariate, multivariate,
and hybrid analyses are available to circumvent
the restrictive assumption of (multisample) spheric-
ity/circularity. In particular, Johansen’s [5] proce-
dure has been found to be robust to violations of
multisample sphericity in unbalanced repeated mea-
sures designs (see [8]). I refer the reader to [6], [7],
and [9].

I conclude by noting that one can assess the (multi-
sample) sphericity/circularity assumption with formal
test statistics. For completely within-subjects repeated
measures designs, sphericity can be checked with
Mauchly’s [11] W-test. If the design also contains
between-subjects grouping variables, then multisam-
ple sphericity is checked in two stages (see [3]).
Specifically, one can test whether the population
covariance matrices are equal across the between-
subjects grouping variable(s) with Box’s modified
criterion M (see [3]), and if this hypothesis is not
rejected, whether sphericity exists (with Mauchly’s
W-test). However, these tests have been found
to be problematic; that is, according to Kesel-
man et al. [8] ‘These tests indicate that even when
data is obtained from normal populations, the tests
for circularity (the M and W criteria) are sensi-
tive to all but the most minute departures from
their respective null hypotheses, and consequently
the circularity hypothesis is not likely to be found
tenable’ (p. 481). Thus, it is recommended that
researchers adopt alternative procedures, as previ-
ously noted, for assessing the effects of repeated
measures/longitudinal variables. Lastly, it should be
noted that Boik [1] discusses multisample spheric-
ity for repeated measures designs containing multiple
dependent variables.
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Standard Deviation

The standard deviation (SD) is a measure of spread
or dispersion. It is defined as the (positive) square
root of the variance. Thus, we can find the SD of a
population, or of a sample of data, or estimate the
SD of a population, by taking the square root of the
appropriate version of the calculated variance. The
standard deviation for a sample is often represented
as S, while for the population, it is denoted by σ .

The standard deviation has an advantage over the
variance because it is expressed in the same units
as the original measure, whereas the variance is in
squared units of the original measure. However, it is
still affected by extreme scores.

The SD is a way of putting the mean of a set
of values in context. It also facilitates comparison

of the distributions of several samples by showing
their relative spread. Moreover, the standard devia-
tion of the distribution of various statistics is also
called the standard error. The standard error of the
mean (SEM), for instance, is important in inferential
procedures such as the t Test.

Finally, if a set of data has a normal distribution,
then approximately 68% of the population will have
a score within the range of one standard deviation
below the mean to one standard deviation above the
mean. Thus, if IQ were normally distributed and the
mean in the population were 100 and the standard
deviation were 15, then approximately 68% of people
from that population would have an IQ of between
85 and 115 points.

DAVID CLARK-CARTER
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Standard Error

Any statistic is a random variable and, thus, has
its own distribution, called a sampling distribution.
The standard error is the standard deviation of
the sampling distribution of a statistic. The most
commonly encountered standard error is the standard
error of the mean (SEM), which is a measure of the
spread of means of samples of the same size from a
specific population. Imagine that a sample of a given
size is taken randomly from a population and the
mean for that sample is calculated and this process is
repeated an infinite number of times from the same
population. The standard deviation of the distribution
of these means is the standard error of the mean. It is
found by dividing the standard deviation (SD) for the

population by the square root of the sample size (n):

SEM = SD√
n

. (1)

Suppose that the population standard deviation of
people’s recall of words is known to be 4.7 (though
usually, of course, we do not know the population SD
and must estimate it from the sample), and that we
have a sample of six participants, then the standard
error of the mean number of words recalled would
be 4.7/

√
6 = 1.92.

The standard error of the mean is a basic element
of parametric hypothesis tests on means, such as
the z-test and the t Test, and of confidence intervals
for means.
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Standardized Regression
Coefficients

Standardized regression coefficients, commonly
referred to as beta weights (β), convey the extent
to which two standardized variables are linearly
related in regression analyses (see Multiple Lin-
ear Regression). Mathematically, the relationship
between unstandardized (b) weights and standardized
(β) weights is

b = β
σy

σx

or β = b
σx

σy

(1)

where σx and σy are the standard deviations of
the predictor and criterion variables respectively.
Because standardized coefficients reflect the rela-
tionship between a predictor and criterion variable
after converting both the z-scores, beta weights vary
between −1.00 and +1.00.

In the simple regression case, a standardized
regression coefficient is equal to the correlation (rxy)
between the predictor and criterion variable. With
multiple predictors, however, the predictor intercor-
relations must be controlled for when computing
standardized regression coefficients. For example, in
situations with two predictor variables, the standard-
ized coefficients (β1 and β2) are computed as

β1 = ry1 − ry2r12

1 − r2
12

β2 = ry2 − ry1r12

1 − r2
12

(2)

where ry1 and ry2 are the zero-order correlations
between each predictor and the criterion and r2

12 is
the squared correlation between the two predictor
variables.

Like unstandardized coefficients, standardized
coefficients reflect the degree of change in the

criterion variable associated with a unit change
in the predictor. Since the standard deviation of
a standardized variable is 1, this coefficient is
interpreted as the associated standard deviation
change in the criterion.

Standardized regression coefficients are useful
when a researcher’s interest is the estimation of
predictor–criterion relationships, independent of the
original units of measure. For example, consider
two researchers studying the extent to which cog-
nitive ability and conscientiousness accurately pre-
dict academic performance. The first researcher mea-
sures cognitive ability with a 50-item, multiple-choice
test; conscientiousness with a 15-item, self-report
measure; and academic performance with college
grade point average (GPA). By contrast, the second
researcher measures cognitive ability with a battery of
tests composed of hundreds of items, conscientious-
ness through a single-item peer rating, and academic
performance through teacher ratings of student per-
formance. Even if the correlations between the three
variables are identical across these two situations,
the unstandardized regression coefficients will dif-
fer, given the variety of measures used by the two
researchers. As a result, direct comparisons between
the unstandardized coefficients associated with each
of the predictors across the two studies cannot be
made because of scaling differences. Standardized
regression weights, on the other hand, are indepen-
dent of the original units of measure. Thus, a direct
comparison of relationships across the two studies is
facilitated by standardized regression weights, much
like correlations facilitate generalizations better than
covariances. This feature of standardized regression
weights is particularly appealing to social scientists
who (a) frequently cannot attach substantive mean-
ing to scale scores and (b) wish to compare results
across studies that have used different scales to mea-
sure specific variables.

RONALD S. LANDIS
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Stanine Scores

A stanine score is a type of standardized score.
Instead of standardizing the original scores to have
a mean of 0 and standard deviation (SD) of 1, as
is the case of z -scores, the scores are transformed
into a nine-point scale; hence, the name stanine as an
abbreviation for standard nine. The original scores
are generally assumed to be normally distributed
or to have been ‘normalized’ by a normalizing
transformation. The transformation to stanine scores
produces a distribution with a mean of 5 and a
standard deviation of 1.96.

Table 1 Percentages of the distribution for each stanine
score

Stanine score 1 2 3 4 5 6 7 8 9
Percentage 4 7 12 17 20 17 12 7 4

The percentages of a distribution falling into each
stanine score are shown in Table 1.

We see from the table that, for example, 11% of
the distribution will have a stanine score of 2 or less;
in other words, 11% of a group of people taking the
test would achieve a stanine score of either 1 or 2. As
with any standardized scoring system, stanine scores
allow comparisons of the scores of different people
on the same measure or of the same person over
different measures.

The development of stanine scoring is usually
attributed to the US Air Force during the Second
World War [1].
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Star and Profile Plots

Plotting multivariate data is often a useful step in
gathering insights into their possible structure; these
insights may be useful in directing later, more formal
analyses (see Multivariate Analysis: Overview).
An excellent review of the many possibilities is
given in [1]. For comparing the relative variable
values of the observations in small- or moderate-
sized multivariate data sets, two similar approaches,
the star plot and the profile plot, can, on occasions,
be helpful.

In the star plot, each multivariate observation (suit-
ably scaled) is represented by a ‘star’ consisting of
a sequence of equiangular spokes called radii, with
each spoke representing one of the variables. The
length of a spoke is proportional to the variable value
it represents relative to the maximum magnitude of
the variable across all the observations in the sample.
A line is drawn connecting the data values for each
spoke.
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Figure 1 Star plots for air pollution data from four cities
in the United States
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Figure 2 Profile plots for air pollution data from four cities in the United States
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Table 1 Air pollution data for four cities in the United States

SO2

(µg/m3)
Temp
( °F) Manuf Pop

Wind
(miles/h)

Inches
(miles/h) Days

Atlanta 24 61.5 368 497 9.1 48.34 115
Chicago 110 50.6 3344 3369 10.4 34.44 122
Denver 17 51.9 454 515 9.0 12.95 86
San Francisco 12 56.7 453 71.6 8.7 20.66 67

SO2: Sulphur dioxide content of air,
Temp: Average annual temperature,
Manuf: Number of manufacturing enterprises employing 20 or more workers,
Pop: Population size,
Wind: Average annual wind speed,
Precip: Average annual precipitation,
Days: Average number of days with precipitation per year.

In a profile plot, a sequence of equispaced ver-
tical spikes is used, with each spike represent-
ing one of the variables. Again, the length of
a given spike is proportional to the magnitude
of the variable it represents relative to the maxi-
mum magnitude of the variable across all observa-
tions.

As an example, consider the data in Table 1
showing the level of air pollution in four cities in the
United States along with a number of other climatic
and human ecologic variables.

The star plots of the four cities are shown in
Figure 1 and the profile plots in Figure 2. In both
diagrams, Chicago is clearly identified as being
very different from the other cities. In the profile

plot, the remaining three cities appear very sim-
ilar, but in the star plot, Atlanta is identified as
having somewhat different characteristics form the
other two.

Star plots are available in some software packages,
for example, S-PLUS, and profile plots are easily
constructed using the command line language of the
same package.

Reference
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State Dependencezy

It is often observed in the behavorial sciences that the
current outcome of a dynamic process depends on
prior outcomes, even after controlling or adjusting
for covariates. The outcome is often categorical
with different categories corresponding to different
‘states’, giving rise to the term state dependence.

Examples of state dependence include (a) the ele-
vated risk of committing a crime among previous
offenders and (b) the increased probability of experi-
encing future unemployment among those currently
unemployed.

Let yit be the state for unit or subject i at
time or occasion t and xit a vector of observed
covariates. For simplicity, we consider dichotomous
states (yit = 1 or yit = 0) and two occasions t = 1, 2.
State dependence then occurs if

Pr(yi2|xi2, yi1) �= Pr(yi2|xi2). (1)

Statistical models including state dependence are
often called autoregressive models, Markov models
(see Markov Chains) [4] or transition models [1].

James J. Heckman, [2, 3] among others, has
stressed the importance of distinguishing between
true and spurious state dependence in social sci-
ence. In the case of true state dependence, the
increased probability of future unemployment is
interpreted as ‘causal’. For instance, a subject hav-
ing experienced unemployment may be less attractive
employers than an identical subject not having expe-
rienced unemployment. Alternatively, state depen-
dence may be apparent, which is called spurious

stateto dependence. In this case, past unemploy-
ment has no ‘causal’ effect on future unemployment.
It is rather unobserved characteristics of the sub-
ject (unobserved heterogeneity) not captured by the
observed covariates xit that produce the dependence
over time. Some subjects are just more prone to expe-
rience unemployment than others, perhaps because
they are not ‘suitable’ for the labor market, regard-
less of their prior unemployment record and observed
covariates.

Letting ζi denote unobserved heterogeneity for
subject i, spurious state dependence occurs if there
is state dependence as in the first equation, but the
dependence on the previous state disappears when we
condition on ζi ,

Pr(yi2|xi2, yi1, ζi) = Pr(yi2|xi2, ζi). (2)
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Statistical Models

Statistical analysis, like breathing, is so routinely
performed that we typically do not understand very
well exactly what it is that we are doing. Statistical
modeling begins with measurements that are attached
to units (see Measurement: Overview). Very often
the units are persons, but they may be other animals,
objects, or events. It is important to understand that
a measurement may refer not to a single entity,
but possibly to multiple entities. For example, a
measure of aggression refers to at least two people,
the victim and the perpetrator, not just one person.
Sometimes a measurement refers to multiple levels.
So, for instance, children can be in classrooms
and classrooms can be in schools. Critical then
in statistical analysis is determining the appropriate
units and levels.

An essential part of statistical analysis is the devel-
opment of a statistical model. The model is one
or more equations. In each equation, a variable or
set of variables are explained. These variables are
commonly called dependent variables in experimen-
tal studies or outcome variables in nonexperimental
studies. For these variables, a different set of vari-
ables are used to explain them and, hence, are called
explanatory variables.

Some models are causal models (see Linear Sta-
tistical Models for Causation: A Critical Review)
for which there is the belief that a change in an
explanatory variable changes the outcome variable.
Other models are predictive in the sense that only a
statistical association between variables is claimed.

Normally, a statistical model has two different
parts. In one part, the outcome variables are explained
by explanatory variables. Thus, some of the variation
of a variable is systematically explained. The second
part of the model deals with what is not explained
and is the random piece of the model. When these
two pieces are placed together, the statistical model
can be viewed as [1]

DATA = FIT + ERROR. (1)

The ‘fit’ part can take on several different func-
tional forms, but very often the set of explanatory
variables is assumed to have additive effects. In
deciding whether to have a variable in a model, a

judgment of the improvement fit and, correspond-
ingly, reduction of error must be made.

A fundamental difficulty in statistical analysis is
how much complexity to add to the model. Some
models have too many terms and are too complex,
whereas other models are too simple and do not
contain enough variables. A related problem is how
to build such a model. One can step up and start
with no variables and keep adding variables until
‘enough’ variables are added. Alternatively, one can
step down and start with a large model and strip out of
the model unnecessary variables. In some cases, the
most complicated model can be stated. Such a model
is commonly referred to as the saturated model.

Not all explanatory variables in statistical anal-
ysis are the same. Some variables are the essential
variables of interest and the central question of the
research is their effect. Other variables, commonly
called covariates, are not of central theoretical inter-
est. Rather, they are included in the model for two
fundamentally different reasons. Sometimes they are
included because they are presumed to reduce error.
At other times, they are included because they are
correlated with a key explanatory variable and so
their effects need to be controlled.

Decisions about adding and removing a term from
a model involves model comparison; that is, the fit of
two models are compared: Two models are fit, one of
which includes the explanatory variable and the other
does not. If the variable is needed in the model, the
fit of the latter model would be better than that of
the former.

Another issue in statistical analysis is the scaling
of variables in statistical models. Sometimes variables
have an arbitrary scaling. For instance, gender might
be dummy coded (0 = male and 1 = female) or effect
coded (−1 = male and 1 = female) coding. The final
model should be the very same model, regardless of
the coding method used.

The errors in the model are typically assumed
to have some sort of distribution. One commonly
assumed distribution that is assumed is the normal
distribution (see Catalogue of Probability Density
Functions). Very typically, assumptions are made
that units are randomly and independently sampled
from that distribution.

Classically, in statistical analysis, a distinction
is made concerning descriptive versus inferential
statistics. Basically, descriptive statistics concerns
the estimation of the model and its parameters. For
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instance, if a multiple regression equation were
estimated, the descriptive part of the model concerns
the coefficients, the intercept and slopes, and the error
variance. Inferential statistics focuses on decision
making: Should a variable be kept in the model or
are the assumptions made in the model correct?

Model building can either be confirmatory or
exploratory [2] (see Exploratory Data Analysis).
In confirmatory analyses, the steps are planned in
advance. For instance, if there are four predictor
variables in a model, it might be assumed that three
of the variables were important and one was not. So,
we might first see if the fourth variable is needed,
and then test that the three that were specified are in
fact important. In exploratory analyses, researchers
go where the data take them. Normally, statistical
analyses are a mix of exploratory and confirmatory
analyses. While it is often helpful to ask the data
a preset set of questions, it is just as important to
let the data provide answers to questions that were
not asked.

A critical feature of statistical analysis is an
understanding of how much the data can tell us.
One obvious feature is sample size. More complex
models can be estimated with larger sample sizes.

However, other features are important. For instance,
the amount of variation, the design of research,
and the precision of the measuring instruments are
important to understand. All too often, researchers
fail to ask enough of their data and so perform
too limited statistical analyses. Alternatively, other
researchers ask way too much of their data and
attempt to estimate models that are too complex
for the data. Finding the right balance can be a
difficult challenge.

References
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Stem and Leaf Plot

Stem and leaf plots, together with box plots, form
important parts of the graphical portfolio bequeathed
us by John Tukey, the inventor of exploratory data
analysis (EDA). These plots trade in on the unavoid-
able redundancy found in Western number systems
in order to produce a more compact display. They
can also be thought of as value-added histograms in
that while both displays yield the same distributional
information, stem and leaf plots allow the original
sample to be easily reconstituted, thus enabling the
analyst to quickly read off such useful measures as
the median and the upper and lower quartiles.

The stem in the plot is the most significant part of
a number, that is, the largest or most left-hand value,
while the leaf is the increasingly less significant right-
hand parts of a number. So in the number 237, 2
could be the stem, thus making 3 and 7 the leaves. In
most instances, a sample will contain relatively few
differently valued stems, and hence many redundant
stems, while the same sample is likely to have much
more variation in the value of the leaves, and hence
less redundancy in the leaf values. What Tukey did to
reduce this redundancy was to create a display made
up of a single vertical column of numerically ordered
stems, with the appropriate leaves attached to each
stem in the form of a horizontal, ordered row. An
example using the first 20 readings of ‘Pulse After
Exercise’ (variable Pulse2) from Minitab’s Pulse
dataset (see Figure 1) will illustrate these notions.
(Notice that Minitab has decided on a stem width
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Figure 1 Stem and leaf plot of ‘Pulse After Exercise’ data
(first 20 readings on variable Pulse2). Column 1 shows the
up-and-down cumulated COUNTS; column 2 contains the
STEM values, and column 3 the LEAVES

of 5 units, so there are two stems valued 6, two 7s,
two 8s, and so on, which are used to represent the
numbers 60 to 64 and 65 to 69, 70 to 74 and 75 to
79, 80 to 84 and 85 to 89 respectively).

Reading from the left, the display in Figure 1
consists of three columns, the first containing the
cumulative count up to the middle from the lowest
value (58), and down to the middle from the highest
value (118); the second lists the ordered stems, and
the final column the ordered leaves. Thus the very
first row of the plot (1 5|8) represents the number
58, which is the smallest number in the sample and
hence has a cumulated value of 1 in the first column.
The sample contains nothing in the 60s, so there
are no leaves for either stem, and the cumulative
total remains 1 for these stems. However, there are
three readings in the low 70s (70, 72 and 72), hence
the fourth row reads as 7|022. This row also has a
cumulative total upward from the lowest reading of
(1 + 3) = 4, thus giving a complete row of (4 7|022).
The next row has six numbers (75, four 76s, and a
78), with the row reading 7|566668, that is, a stem of
7 and six leaves. The cumulative total upward from
the smallest number of 58 in this row is therefore
(1 + 3 + 6) = 10, which is exactly half the sample
size of 20 readings, and hence is the stopping point
for this particular count. Finally, the next row reads
10 8|002444, which is the compact version of the
numbers 80, 80, 82, 84, 84 and 84, while the 10 in
the first position in the row represents the cumulative
count from the largest pulse of 118 down to the
middle of the sample.

Although the major role of the stem and leaf
plot is to display the distributional properties of a
single sample, it also easy to extract robust measures
from it by simply counting up from the lowest
value or down from the highest using the cumulative
figures in column 1. Thus, in our sample of 20, the
lower quartile is the interpolated value lying between
the fifth and sixth numbers from the bottom, that
is, 75.25, while the upper quartile is a similarly
interpolated value of 84, with the median lying
midway between the two middle numbers of 78 and
80, that is, 79. Overall, the data looks single peaked
and somewhat biased toward low pulse values, a
tendency that shows up even more strongly with the
full 92 observations.

Stem and leaf plots are, however, less useful for
comparing several samples because of their complex-
ity, with the useful upper limit being two samples
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Figure 2 Back-to-back stem and leaf plots of the ‘Pulse
after Exercise’ data: males on the left, females on the right

for which the back-to-back stem and leaf plot was
invented. This consists of the stem and leaf plot for
one sample staying orientated as above, with the sec-
ond one rotated through 180° in the plane and then
butted up against the first. The example in Figure 2
again draws again on the Minitab Pulse dataset,
this time using all 92 ‘pulse before exercise’ read-
ings (variable Pulse1); the left-hand readings are for

males, the right for females – note that the counts
columns have been omitted to reduce the chart clutter.
Although the female data seems little more peaked
than the male, the spreads and medians do not appear
to differ much.

Further information on stem and leaf plots can be
found in [1–3].
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Stephenson, William

Born: May 14 1902, Chopwell, Co. Durham, UK.
Died: June 14 1989, Columbia, MO.

Initially trained in Physics at the University of
Durham (BSc, 1923; MSc, 1925; PhD, 1927),
Stephenson also completed his Diploma in the The-
ory and Practice of Teaching there which brought him
into contact with Godfrey Thomson, one of the pio-
neers of factor analysis. Inspired by his encounter
with Thomson to explore the application of factor
analysis in the study of mind, Stephenson moved in
1926 to University College, London to study psy-
chophysics with Charles Spearman, and work as
Research Assistant to Spearman and to Cyril Burt.
He also became interested in psychoanalysis and in
1935 began analysis with Melanie Klein.

In 1936, Stephenson accepted an appointment as
Assistant Director of the newly established Oxford
Institute of Experimental Psychology. War service
interrupted his career and he served as a Consul-
tant to the British Armed Forces, rising to the rank
of Brigadier General. He became Reader in Experi-
mental Psychology in 1942 and successor to William
Brown as Director of the Institute of Experimental
Psychology in 1945. Failing to secure the first Oxford
Chair in Psychology (filled by George Humphrey in
1947), Stephenson emigrated to the United States,
first to the University of Chicago as a Visiting Pro-
fessor of Psychology and then in 1955, when a perma-
nent academic post at Chicago was not forthcoming,
to Greenwich, Connecticut as Research Director of
a leading market research firm, Nowland & Co. In
1958, he became Distinguished Research Professor
of Advertising at the School of Journalism, Univer-
sity of Missouri, Columbia, where he remained until
his retirement in 1972.

Spearman once described Stephenson as the fore-
most ‘creative statistician’ of the psychologists of
his generation, a view that was endorsed by Egon
Brunswik when he wrote that ‘Q-technique [was] the
most important development in psychological statis-
tics since Spearman’s introduction of factor anal-
ysis’ [1]. Stephenson was a central figure in the
development of, and debates about psychometrics
and factor analysis. Although the idea of correlat-
ing persons rather than traits or test items had been

proposed as early as 1915 by Cyril Burt [2], it was
Stephenson who saw the potential of this procedure
for psychological analysis. He first put forward his
ideas about Q-methodology in a letter to Nature in
1935 [4]. A detailed exposition together with a chal-
lenge to psychology ‘to put its house in scientific
order’ did not appear until 1953 [5]. In his writings,
Stephenson employs a distinction (first put forward
by Godfrey Thomson) between correlating persons
(Q-methodology) and the traditional use of factor
analysis in psychometrics to correlate traits or test
items (R-methodology). Q-methodology applies to a
population of tests or traits, with persons as variables;
R-methodology to a population of persons, with tests
or traits as variables. Q-methodology provides a tech-
nique for assessing a person’s subjectivity or point
of view, especially concerning matters of value and
preference. Stephenson rejected the ‘reciprocity prin-
ciple’ promoted by Burt and Cattell that Q and R are
simply reciprocal solutions (by rows or by columns)
of a single data matrix of scores from objective tests.
Q-methodology was seen by Stephenson as involving
two separate data matrices, one containing objective
scores (R), the other containing data of a subjective
kind reflecting perceived representativeness or signif-
icance (Q). This was a matter about which Burt and
Stephenson eventually agreed to differ in a jointly
published paper [3] (see R & Q Analysis).

When used with multiple participants, Q-
methodology identifies the views that participants
have in common and is therefore a technique
for the assessment of shared meaning. Stephenson
also developed Q for use with a single participant
with multiple conditions of instruction [5, 7]. The
single case use of Q affords a means of exploring
the structure and content of the views that
individuals hold about their worlds (for example, the
interconnections between a person’s view of self, of
ideal self, and of self as they imagine they are seen
by a variety of significant others).

In developing his ideas about Q-methodology,
Stephenson eschewed Cartesian mind-body dualism,
thus reflecting an important influence on his thinking
of the transactionalism of John Dewey and Arthur
Bentley, and the interbehaviorism of Jacob Kantor.
His functional and processual theory of self was
heavily influenced by Kurt Koffka and Erving Goff-
man [9]. Building on the work of Johan Huizinga
and Wilbur Schramm, Stephenson also developed a
theory of communication that focused on the social
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and pleasurable aspects of communication as opposed
to the exchange of information [6, 8]. Following his
retirement, Stephenson devoted much of his time to
writing a series of papers on what had been one
of his earliest preoccupations, the exploration of the
links between quantum theory and subjectivity [10].
Many of Stephenson’s central notions are succinctly
brought together in a posthumously published mono-
graph [11].

References

[1] Brunswik, E. (1952). Letter to Alexander Morin, Asso-
ciate Editor, University of Chicago Press, May 20,
Western Historical Manuscript Collection, Ellis Library,
University of Missouri-Columbia, Columbia, 1.

[2] Burt, C. (1915). General and specific factors underlying
the emotions, British Association Annual Report 84,
694–696.

[3] Burt, C. & Stephenson, W. (1939). Alternative views
on correlations between persons, Psychometrika 4(4),
269–281.

[4] Stephenson, W. (1935). Technique of factor analysis,
Nature 136, 297.

[5] Stephenson, W. (1953). The Study of Behavior: Q-
Technique and its Methodology, University of Chicago
Press, Chicago.

[6] Stephenson, W. (1967). The Play Theory of Mass Com-
munication, University of Chicago Press, Chicago.

[7] Stephenson, W. (1974). Methodology of single case
studies, Journal of Operational Psychiatry 5(2), 3–16.

[8] Stephenson, W. (1978). Concourse theory of communi-
cation, Communication 3, 21–40.

[9] Stephenson, W. (1979). The communicability and oper-
antcy of the self, Operant Subjectivity 3(1), 2–14.

[10] Stephenson, W. (1988). Quantum theory of subjectivity,
Integrative Psychiatry 6, 180–195.

[11] Stephenson, W. (1994). Quantum Theory of Advertising,
School of Journalism, University of Missouri-Columbia,
Columbia.

JAMES GOOD



Stevens, S S

ROBERT B. FAUX

Volume 4, pp. 1900–1902

in

Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

 John Wiley & Sons, Ltd, Chichester, 2005



Stevens, S S

Born: November 4, 1906, in Ogden Utah, USA.
Died: January 18, 1973, in Vail, USA.

S.S. Stevens was a twentieth-century American
experimental psychologist who conducted founda-
tional research on sensation and perception, princi-
pally in psychoacoustics. However, it is the critical
role Stevens played in the development of measure-
ment and operationism for which he is probably best
known by psychologists and social scientists in gen-
eral [1, 2].

Upon completion of high school in 1924, Stevens’
went to Belgium and France as a Mormon mis-
sionary. In 1927, his missionary work completed,
Stevens entered the University of Utah where he
took advanced courses in the humanities and social
sciences and made a failed attempt at algebra [6].
After two years, he transferred to Stanford Univer-
sity where he took a wide variety courses without
ever declaring a major, threatening his graduation
from that institution. He did graduate in 1931 and
was accepted into Harvard Medical School. A $50.00
fee and the requirement to take organic chemistry
during the summer persuaded Stevens that medical
school was not for him. He enrolled in Harvard’s
School of Education, reasoning that the tuition of
$300.00 was the cheapest way to take advantage of
the school’s resources. He found only one course
in education that looked interesting: an advanced
statistic course taught by T.L. Kelley. At this time
Stevens also took a course in physiology with W.J.
Crozier. While exploring Crozier’s laboratory one
day Stevens encountered B.F. Skinner plotting data.
Skinner explained that he was plotting eating curves
for rats and that they could be described by power
functions. Stevens admitted that he did know what
power functions were to which Skinner replied that
the best way for him to overcome such inferiority in
mathematics was to learn it; advice Stevens was to
take seriously [6, 9].

Among the most critical and far-reaching expe-
riences for Stevens at this time was his intellectual
relationship with E. G. Boring, the sole professor of
psychology at Harvard at this time, as psychology
was still affiliated with the philosophy department.
It was while he was conducting an experiment for

Boring on color perception Stevens recounts that his
scientific career began: He discovered a law-like rela-
tionship between color combinations, distance, and
perception. This resulted in his first published exper-
iment. Eventually transferring from education to psy-
chology, Stevens defended his dissertation on tonal
attributes in May of 1933. Stevens was to remain at
Harvard, first as an instructor of psychology, then as
Professor of Psychophysics, a title conferred in 1962,
until his death [9].

Stevens also audited courses in mathematics as
well as in physics, becoming a Research Fellow in
Physics for some time. In 1936 he settled on psy-
chology as his profession [6, 9]. After this he spent
a year with Hallowell Davis studying electrophysiol-
ogy at Harvard Medical School. This proved to be
another fruitful intellectual relationship, culminating
in the book Hearing in 1938 [7]. This book was for
many years considered a foundational text in psy-
choacoustics. In addition to this work, Stevens did
research on the localization of auditory function. In
1940 he established the Psycho-Acoustic Laboratory
at Harvard. Stevens gathered a group of distinguished
colleagues to help in this work, among them were
G. A. Miller and G. von Békésy. It was during his
tenure in Stevens’ laboratory that von Békésy won
the Nobel Prize for his work on the ear [6, 9]. Inter-
estingly, Stevens was quite uncomfortable in his role
as classroom instructor. The only teaching for which
Stevens felt affinity was the give and take of labo-
ratory work with apprentices and editorial work with
authors. This is reflected in Stevens’ ability to attract
a group of gifted collaborators.

For many, Stevens’ most important achievement
was the discovery of the Psychophysical Power Law
or Stevens’ Law [4]. This law describes the link
between the strength of a stimulus, for example, a
tone, and the corresponding sensory sensation, in this
case loudness. In 1953 Stevens began research in
psychophysics that would upend a longstanding psy-
chophysical law that stated that as the strength of
a stimulus grew geometrically (as a constant ratio),
sensation of that stimulus grew arithmetically – a
logarithmic function. This is known as the Weber-
Fechner Law. This view of things held sway for many
years despite a lack of empirical support. Finding
accurate ways to measure experience was a funda-
mental question in psychophysics since its inception
in the nineteenth century. Stevens set about finding
a more accurate measure of this relationship. He was
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able to demonstrate that the relationship between the
subjective intensity of a stimulus and its physical
intensity itself was not a logarithmic function but
was, rather, a power function. He did this by having
observers assign numbers to their subjective impres-
sions of a stimulus, in this case a tone [8, 9]. The
results of Stevens’ research were better explained as
power functions than as logarithmic functions. That
is, equal ratios in the stimulus corresponded to equal
ratios in one’s subjective impressions of the stimu-
lus. Stevens was also able to demonstrate that such a
relationship held for different modalities [4, 9].

Stevens’ interest in the nature of measurement and
operationism stemmed from his research in psychoa-
coustics. As noted previously, throughout the history
of psychophysics more accurate measures of experi-
ence were continually being sought. It was Stevens’
belief that the nature of measurement needed to be
clarified if quantification of sensory attributes was
to take place [6]. Throughout the 1930s Stevens set
about trying to elucidate the nature of measurement.
Harvard University at this time was a hotbed of
intellectual debate concerning the nature of science.
Stevens was exposed to the ideas of philosopher A.N.
Whitehead, physicist P. Bridgman, and mathemati-
cian G.D. Birkhoff. Near the end of the decade there
was an influx of European philosophers, many from
the Vienna Circle, among whom was Rudolf Carnap.
At Carnap’s suggestion, Stevens organized a club to
discuss the Science of Science. Invitations were sent
and in late October 1940 the inaugural meeting took
place with P.W. Bridgman discussing operationism.
Bridgman argued that measurement should be based
upon the operations that created it rather than on what
was being measured. Throughout the latter half of the
1930s Stevens published several papers on the con-
cept of operationism [6]. For Stevens, as for many
psychologists, operationism was a way to reintroduce
rigor in the formulation of concepts [6]. Measure-
ment and operationism proved to be quite alluring
to psychologists, as it was believed that if psychol-
ogy was to be taken seriously as a positivistic science
it required rigorous measurement procedures akin to
those of physics [2, 9].

Stevens recounts that his attempt to explicate the
nature of measurement and describe various scales
at a Congress for the Unity of Science Meeting
in 1939 was unsuccessful. Initially, Stevens identi-
fied three scales: ordinal, intensive, and extensive.
From feedback given at the Congress Stevens set

about forming various scales and describing the oper-
ations he used to form them [6]. Finally, in a 1946
paper Stevens presented his taxonomy of measure-
ment scales: nominal, ordinal, interval, and ratio
(see Scales of Measurement). Following Bridgman,
Stevens defined each of his scales based upon the
operations used to create it, leaving the form of the
scale invariant, rather than upon what was being
measured. Stevens further argued that these opera-
tions maintained a hierarchical relationship with each
other [3]. Nominal scales have no order, they are used
simply to distinguish among entities. For instance:
1 = Tall, 2 = Short, 3 = Large, 4 = Small. Neither
arithmetical nor logical operations can be performed
on nominal data. Ordinal scales are comprised of
rank orderings of events. For example, students rela-
tive rankings in a classroom: Student A has achieved
a rank of 100; Student B, a rank of 97; Student
C, a rank of 83; and so on. Because the intervals
between ranks are variable arithmetical operations
cannot be carried out; however, logical operations
such as ‘more than’ and ‘less than’ are possible. Inter-
val scales maintain order and have equal intervals, in
other words they have constant units of measurement,
as in scales of temperature. The arithmetical opera-
tions of addition and subtraction are permitted, as are
logical operations. Ratio scales also maintain constant
units of measurement and have a true zero point, thus
allowing values to be expressed as ratios.

Stevens argued that each scale type was charac-
terized by an allowable transformation that would
leave the scale type invariant. For example, nomi-
nal scales allow one-to-one substitutions of numbers
as they only identify some variable [9]. Stevens used
the property of invariance to relate measurement
scales to certain allowable statistical procedures. For
instance, the correlation coefficient r will retain its
value under a linear transformation [5]. This view
of measurement scales could be used as a guide to
choosing appropriate statistical techniques was chal-
lenged from the time of its appearance and contin-
ues to be [2]. However, despite its many challenges,
Stevens’ views on measurement were quickly and
widely disseminated to the psychological community.
This occurred most notably through Stevens’ mem-
bership in the Psychological Round Table. This group
of experimental psychologists met yearly from 1936
until 1946 to discuss the latest advancements in the
discipline [1].
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To this day Stevens’ views on measurement main-
tain their influence in psychology [2, 9]. Most stu-
dents of psychology in their statistics classes become
familiar with Stevens’ four measurement scales, often
without any reference to Stevens himself. Almost
from its inception as a distinct academic discipline,
the nature of psychology has been questioned. Is it,
indeed, a science? Can it be a science? The attrac-
tion of Stevens’ scales of measurement was that
they offered a degree of rigor that lent legitimacy to
psychology’s claim to be a science. In many ways
Stevens continued the tradition begun by Gustav
Fechner and Wilhelm Wundt, among others in the
nineteenth century, of applying the rigors of mathe-
matics and science to psychological questions such
as the relationship between a stimulus and the con-
comitant subjective experience of that stimulus [9].
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Stratification

The word ‘stratify’ means ‘to make layers’ in Latin.
When a population is composed of several subpopu-
lations and the subpopulations vary considerably on
the factors in which we are interested, stratification
can reduce variability of the estimates by dividing the
population into relatively homogeneous subgroups
and treating each subgroup separately. This concept
can be applied for stratified sampling (sampling from
within each stratum) and stratified random alloca-
tion of subjects that need not constitute a random
sample, stratified or not (see Survey Sampling Pro-
cedures). The purpose of stratified sampling is to
obtain more precise estimates of variables of inter-
est. Stratified sampling divides the whole population
into more homogeneous subpopulations (also called
strata) in such a way that every observation in the
population belongs to one and only one stratum (a
partition). From each stratum, a sample is selected
independent of other strata. The simplest method is
to use a simple random sample in each stratum.

The population estimate is then computed by
pooling the information from each stratum together.
For example, one may conduct a survey to find out the
average home price in the United States. The simplest
method may be a simple random sample, by which
each home in the United States has an equal chance
to be selected into the sample. Then the estimated
average home price in the United States would be
the average home price in the sample. However,
home prices around metropolitan areas, such as New
York and Washington, DC, tend to be much higher
than those in rural areas. In fact, the variable of
interest, rural versus urban, and the influence it
exerts on home prices, is not dichotomous, but rather
more continuous. One can exploit this knowledge by
defining three strata based on the size of the city
(rural, intermediate, metropolitan).

The average home price would then be computed
in each stratum, and the overall estimated home
price in United States would be obtained by pooling
the three average home prices with some weight
function. This would result in the same estimate as
that obtained from simple random sampling if the
weight function were derived from the proportions
of each type in the sample. That is, letting X1/n1,
X2/n2, and X3/n3 denote the average (in the sample)
home prices in rural, intermediate, and metropolitan

areas, with X = X1 + X2 + X3 and n = n1 +
n2 + n3, one finds that X/n = (X1/n1)(n1/n) +
(X2/n2)(n2/n) + (X3/n3)(n3/n). However, the
key to stratified sampling is that the weight functions
need not be the observed proportions n1/n, n2/n,
and n3/n. In fact, one can use weights derived from
external knowledge (such as the number of homes
in each type of area), and then the sampling can
constrain n1, n2, and n3 so that they are all equal
to each other (an equal number of homes would be
sampled from each type of area).

This approach, with making use of external weight
functions (to reflect the proportion of each stratum
in the population, instead of in the sample), results
in an estimated average home price obtained with
smaller variance compared to that obtained from sim-
ple random sampling. This is because each estimate
is based on a more homogeneous sample than would
otherwise be the case. The drawback of this strati-
fied sampling design is that it adds complexity to the
survey, and sometimes the improvement in the esti-
mation, which may not be substantial in some cases,
may not be worth the extra complexity that stratified
sampling brings to the design [3].

Stratification is also used in random allocation (as
opposed to the random sampling just discussed). In
the context of a comparative trial (see Clinical Trials
and Intervention Studies), the best comparative
inference takes place when all key covariates are
balanced across the treatment groups. When a false
positive finding, or a Type I error occurs, this is
because of differences across treatment groups in key
predictors of the outcome. Such covariate imbalances
can also cause Type II errors, or the masking of a true
treatment effect.

Stratification according to prognostic factors, such
as gender, age, smoking status, or number of children,
can guarantee balance with respect to these factors.
A separate randomization list, with balance built in,
is prepared for each stratum. A consequence of this
randomization within strata is that the numbers of
patients receiving each treatment are similar not only
in an overall sense, but also within each stratum.
Generally, the randomization lists across the various
strata are not only separate, but also independent.
A notable exception is a study of etanercept for
children with juvenile rheumatoid arthritis [4], which
used blocks within each of two strata, and the
corresponding blocks in the two strata were mirror
images of each other [1].
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The problem with this stratification method is that
the number of strata increases quickly as the number
of prognostic factors or as the level of a prognostic
factor increases. Some strata may not have enough
patients to be randomized. Other restricted random-
ization procedures (also called stratified randomiza-
tion procedures) include, for example, the random-
ized block design, the maximal procedure [2], and
minimization [6].

Within each block, one can consider a variety of
techniques for the randomization. The maximal pro-
cedure [2] has certain optimality properties in terms
of balancing chronological bias and selection bias,
but generally, the random allocation rule [5] is used
within each block within each stratum. This means
that randomization actually occurs within blocks
within strata and is conducted without any restric-
tions besides the blocking itself and the balance it
entails at the end of each block. So, for example,
if the only stratification factor were gender, then
there would be two strata, male and female. This
means that there would be one (balanced for treat-
ment groups) randomization for males and another
(balanced for treatment groups) randomization for
females. If blocking were used within strata, with
a fixed block size of four, then the only restriction
within the strata would be that each block of four
males and each block of four females would have
two subjects allocated to each treatment group.

The first four males would constitute a block, as
would the first four females, the next four females,
the next four males, and so on. There is a limit
to the number of strata that can be used to advan-
tage [7]. Each binary stratification factor multiplies
the existing number of strata by two; stratification
factors with more than two levels multiply the exist-
ing number of strata by more than two. For example,
gender is binary, and leads to two strata. Add in
smoking history (never, ever, current) and there are
now 2 × 3 = 6 strata. Add in age bracket (classified
as 20–30, 30–40, 40–50, 50–60, 60–70) and this
six gets multiplied by five, which is the number of
age brackets. There are now 30 strata.

If a study of a behavioral intervention has only
100 subjects, then on average there would be slightly
more than three subjects per stratum. This situa-
tion would defeat the purpose of stratification in
that the treatment comparisons within the strata
could not be considered robust. Minimization [6]
can handle more stratification factors than can a

stratified design. The idea behind minimization is
that an imbalance function is minimized to deter-
mine the allocation, or at least the allocation that
is more likely. That is, a subject to be enrolled is
sequentially allocated (provisionally) to each treat-
ment group, and for each such provisional alloca-
tion, the resulting imbalance is computed. The treat-
ment group that results in the smallest imbalance
will be selected as the favored one. In a deter-
ministic version, the subject would be allocated to
this treatment group. In a stochastic version, this
treatment group would have the largest allocation
probability.

As a simple example, suppose that the trial is
underway and 46 subjects have already been enrolled,
23 to each group. Suppose further that the two
strongest predictors of outcome are gender and age
(over 40 and under 40). Finally, suppose that cur-
rently Treatment Group A has four males over 40,
five females over 40, seven males under 40, and
seven females under 40, while Treatment Group B
has eight males over 40, four females over 40, six
males under 40, and five females under 40. The 47th
subject to be enrolled is a female under 40. Pro-
visionally place this subject in Treatment Group A
and compute the marginal female imbalance to be
(5 + 7 + 1 − 4 − 5) = 4, the marginal age imbalance
to be (7 + 7 + 1 − 6 − 5) = 4, and the joint female
age imbalance to be (7 + 1 − 5) = 3.

Now provisionally place this subject in Treatment
Group B and compute the marginal female imbalance
to be (5 + 7 − 4 − 5 − 1) = 2, the marginal age
(under 40) imbalance to be (7 + 7 − 6 − 5 − 1) = 2,
and the joint female age imbalance to be (7 − 5 −
1) = 1. Using joint balancing, Treatment Group B
would be preferred, as 1 is less than three. Again, the
actual allocation may be deterministic, as in simply
assign the subject to the group that leads to better
balance, B in this case, or it may be stochastic, as in
make this assignment with high probability. Using
marginal balancing, this subject would still either
be allocated to Treatment Group B or have a high
probability of being so allocated, as 2 is less than 4.
Either way, then, Treatment Group B is favored for
this subject. One problem with minimization is that is
leads to predictable allocations, and these predictions
can lead to strategic subject selection to create an
imbalance in a covariate that is not being considered
by the imbalance function.
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Structural Equation
Modeling: Categorical
Variables

Introduction

Structural equation models (SEMs) comprise two
components, a measurement model and a structural
model. The measurement model relates observed
responses or ‘indicators’ to latent variables and
sometimes to observed covariates. The structural
model then specifies relations among latent variables
and regressions of latent variables on observed vari-
ables. When the indicators are categorical, we need
to modify the conventional measurement model for
continuous indicators. However, the structural model
can remain essentially the same as in the continuous
case.

We first describe a class of structural equa-
tion models also accommodating dichotomous and
ordinal responses [5]. Here, a conventional mea-
surement model is specified for multivariate nor-
mal ‘latent responses’ or ‘underlying variables’. The
latent responses are then linked to observed categor-
ical responses via threshold models yielding probit
measurement models.

We then extend the model to generalized latent
variable models (e.g., [1], [13]) where, conditional
on the latent variables, the measurement models are
generalized linear models which can be used to
model a much wider range of response types.

Next, we briefly discuss different approaches to
estimation of the models since estimation is con-
siderably more complex for these models than for
conventional structural equation models. Finally, we
illustrate the application of structural equation models
for categorical data in a simple example.

SEMs for Latent Responses

Structural Model

The structural model can take the same form regard-
less of response type. Letting j index units or sub-
jects, Muthén [5] specifies the structural model for
latent variables ηj as

ηj = α + Bηj + �x1j + ζ j . (1)

Here, α is an intercept vector, B a matrix of struc-
tural parameters governing the relations among the
latent variables, � a regression parameter matrix for
regressions of latent variables on observed explana-
tory variables x1j and ζ j a vector of disturbances
(typically multivariate normal with zero mean). Note
that this model is defined conditional on the observed
explanatory variables x1j . Unlike conventional SEMs
where all observed variables are treated as responses,
we need not make any distributional assumptions
regarding x1j .

In the example considered later, there is a sin-
gle latent variable ηj representing mathematical rea-
soning or ‘ability’. This latent variable is regressed
on observed covariates (gender, race and their
interaction),

ηj = α + γ x1j + ζj , ζj ∼ N(0, ψ), (2)

where γ is a row-vector of regression parameters.

Measurement Model

The distinguishing feature of the measurement model
is that it is specified for latent continuous responses
y∗

j in contrast to observed continuous responses yj as
in conventional SEMs,

y∗
j = ν + �ηj + Kx2j + εj . (3)

Here ν is a vector of intercepts, � a factor loading
matrix and εj a vector of unique factors or ‘mea-
surement errors’. Muthén and Muthén [7] extend the
measurement model in Muthén [5] by including the
term Kx2j where K is a regression parameter matrix
for the regression of y∗

j on observed explanatory vari-
ables x2j . As in the structural model, we condition
on x2j .

When εj is assumed to be multivariate normal (see
Catalogue of Probability Density Functions), this
model, combined with the threshold model described
below, is a probit model (see Probits). The variances
of the latent responses are not separately identified
and some constraints are therefore imposed. Muthén
sets the total variance of the latent responses (given
the covariates) to 1.

Threshold Model

Each observed categorical response yij is related to a
latent continuous response y∗

ij via a threshold model.
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Figure 1 Threshold model for ordinal responses with
three categories (This figure has been reproduced from [13]
with permission from Chapman and Hall/CRC.)

For ordinal observed responses it is assumed that

yij =




0 if −∞ < y∗
ij ≤ κ1i

1 if κ1i < y∗
ij ≤ κ2i...

...
...

S if κSi < y∗
ij ≤ ∞.

(4)

This is illustrated for three categories (S = 2) in
Figure 1 for normally distributed εi , where the areas
under the curve are the probabilities of the observed
responses.

Either the constants ν or the thresholds κ1i are
typically set to 0 for identification. Dichotomous
observed responses simply arise as the special case
where S = 1.

Generalized Latent Variable Models

In generalized latent variable models, the measure-
ment model is a generalized linear model of the form

g(µj ) = ν + �ηj + Kx2j , (5)

where g(·) is a vector of link functions which may be
of different kinds handling mixed response types (for
instance, both continuous and dichotomous observed
responses or ‘indicators’). µj is a vector of con-
ditional means of the responses given ηj and x2j

and the other quantities are defined as in (3). The
conditional models for the observed responses given
µj are then distributions from the exponential fam-
ily (see Generalized Linear Models (GLM)). Note
that there are no explicit unique factors in the model

because the variability of the responses for given val-
ues of ηj and x2j is accommodated by the conditional
response distributions. Also note that the responses
are implicitly specified as conditionally independent
given the latent variables ηj (see Conditional Inde-
pendence).

In the example, we will consider a single latent
variable measured by four dichotomous indicators or
‘items’ yij , i = 1, . . . , 4, and use models of the form

logit(µij ) ≡ ln

(
Pr(µij )

1 − Pr(µij )

)
= νi + λiηj ,

ν1 = 0, λ1 =1. (6)

These models are known as two-parameter logistic
item response models because two parameters (νi

and λi) are used for each item i and the logit link
is used (see Item Response Theory (IRT) Models
for Dichotomous Data). Conditional on the latent
variable, the responses are Bernoulli distributed (see
Catalogue of Probability Density Functions) with
expectations µij = Pr(yij = 1|ηj ). Note that we have
set ν1 = 0 and λ1 = 1 for identification because the
mean and variance of ηj are free parameters in (2).
Using a probit link in the above model instead of
the more commonly used logit would yield a model
accommodated by the Muthén framework discussed
in the previous section.

Models for counts can be specified using a log link
and Poisson distribution (see Catalogue of Proba-
bility Density Functions). Importantly, many other
response types can be handled including ordered and
unordered categorical responses, rankings, durations,
and mixed responses; see for example, [1, 2, 4, 9, 11,
12 and 13] for theory and applications. A recent book
on generalized latent variable modeling [13] extends
the models described here to ‘generalized linear latent
and mixed models’ (GLLAMMs) [9] which can han-
dle multilevel settings and discrete latent variables.

Estimation and Software

In contrast to the case of multinormally distributed
continuous responses, maximum likelihood estima-
tion cannot be based on sufficient statistics such
as the empirical covariance matrix (and possibly
mean vector) of the observed responses. Instead, the
likelihood must be obtained by somehow ‘integrat-
ing out’ the latent variables ηj . Approaches which



Structural Equation Modeling: Categorical Variables 3

work well but are computationally demanding include
adaptive Gaussian quadrature [10] implemented in
gllamm [8] and Markov Chain Monte Carlo methods
(typically with noninformative priors) implemented
in BUGS [14] (see Markov Chain Monte Carlo and
Bayesian Statistics).

For the special case of models with multinor-
mal latent responses (principally probit models),
Muthén suggested a computationally efficient limited
information estimation approach [6] implemented in
Mplus [7]. For instance, consider a structural equa-
tion model with dichotomous responses and no
observed explanatory variables. Estimation then pro-
ceeds by first estimating ‘tetrachoric correlations’
(pairwise correlations between the latent responses).
Secondly, the asymptotic covariance matrix of the
tetrachoric correlations is estimated. Finally, the
parameters of the SEM are estimated using weighted
least squares (see Least Squares Estimation), fitting
model-implied to estimated tetrachoric correlations.
Here, the inverse of the asymptotic covariance matrix
of the tetrachoric correlations serves as weight matrix.

Skrondal and Rabe-Hesketh [13] provide an exten-
sive overview of estimation methods for SEMs with
noncontinuous responses and related models.

Example

Data

We will analyze data from the Profile of American
Youth (US Department of Defense [15]), a survey
of the aptitudes of a national probability sample of
Americans aged 16 through 23. The responses (1:
correct, 0: incorrect) for four items of the arithmetic
reasoning test of the Armed Services Vocational
Aptitude Battery (Form 8A) are shown in Table 1 for
samples of white males and females and black males
and females. These data were previously analyzed by
Mislevy [3].

Model Specification

The most commonly used measurement model for
ability is the two-parameter logistic model in (6) and
(2) without covariates.

Item characteristic curves, plots of the probability
of a correct response as a function of ability, are

given by

Pr(yij = 1|ηj ) = exp(νi + λiηj )

1 + exp(νi + λiηj )
. (7)

and shown for this model (using estimates under M1

in Table 2) in Figure 2.
We then specify a structural model for ability ηj .

Considering the covariates

• [Female] Fj , a dummy variable for subject j

being female
• [Black] Bj , a dummy variable for subject j

being black
we allow the mean abilities to differ between the four
groups,

ηj = α + γ1Fj + γ2Bj + γ3FjBj + ζj . (8)

This is a MIMIC model where the covariates affect
the response via a latent variable only.

A path diagram of the structural equation model is
shown in Figure 3. Here, observed variables are rep-
resented by rectangles whereas the latent variable is
represented by a circle. Arrows represent regressions
(not necessary linear) and short arrows residual vari-
ability (not necessarily an additive error term). All
variables vary between subjects j and therefore the
j subscripts are not shown.

We can also investigate if there are direct effects
of the covariates on the responses, in addition to the
indirect effects via the latent variable. This could
be interpreted as ‘item bias’ or ‘differential item
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Figure 2 Item characteristic curves for items 1 to 4 (This
figure has been reproduced from [13] with permission from
Chapman and Hall/CRC.)
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Table 1 Arithmetic reasoning data

Item Response

1 2 3 4
White
Males

White
Females

Black
Males

Black
Females

0 0 0 0 23 20 27 29
0 0 0 1 5 8 5 8
0 0 1 0 12 14 15 7
0 0 1 1 2 2 3 3
0 1 0 0 16 20 16 14
0 1 0 1 3 5 5 5
0 1 1 0 6 11 4 6
0 1 1 1 1 7 3 0
1 0 0 0 22 23 15 14
1 0 0 1 6 8 10 10
1 0 1 0 7 9 8 11
1 0 1 1 19 6 1 2
1 1 0 0 21 18 7 19
1 1 0 1 11 15 9 5
1 1 1 0 23 20 10 8
1 1 1 1 86 42 2 4

Total: 263 228 140 145

Source: Mislevy, R.J. Estimation of latent group effects (1985). Journal of the American Statistical Association 80, 993–997 [3].

Table 2 Estimates for ability models

M1 M2 M3

Parameter Est (SE) Est (SE) Est (SE)

Intercepts
ν1 [Item1] 0 – 0 – 0 –
ν2 [Item2] −0.21 (0.12) −0.22 (0.12) −0.13 (0.13)
ν3 [Item3] −0.68 (0.14) −0.73 (0.14) −0.57 (0.15)
ν4 [Item4] −1.22 (0.19) −1.16 (0.16) −1.10 (0.18)
ν5 [Item1] × [Black] × [Female] 0 – 0 – −1.07 (0.69)

Factor loadings
λ1 [Item1] 1 – 1 – 1 –
λ2 [Item2] 0.67 (0.16) 0.69 (0.15) 0.64 (0.17)
λ3 [Item3] 0.73 (0.18) 0.80 (0.18) 0.65 (0.14)
λ4 [Item4] 0.93 (0.23) 0.88 (0.18) 0.81 (0.17)

Structural model
α [Cons] 0.64 (0.12) 1.41 (0.21) 1.46 (0.23)
γ1 [Female] 0 – −0.61 (0.20) −0.67 (0.22)
γ2 [Black] 0 – −1.65 (0.31) −1.80 (0.34)
γ3 [Black] × [Female] 0 – 0.66 (0.32) 2.09 (0.86)
ψ 2.47 (0.84) 1.88 (0.59) 2.27 (0.74)

Log-likelihood −2002.76 −1956.25 −1954.89
Deviance 204.69 111.68 108.96
Pearson X2 190.15 102.69 100.00

Source: Skrondal, A. & Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural
Equation Models, Chapman & Hall/CRC, Boca Raton [13].
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Figure 3 Path diagram of MIMIC model

functioning’ (DIF), that is, where the probability of
responding correctly to an item differs for instance
between black women and others with the same
ability (see Differential Item Functioning). Such
item bias would be a problem since it suggests that
candidates cannot be fairly assessed by the test. For
instance, if black women perform worse on the first
item (i =1) we can specify the following model for
this item:

logit[Pr(y1j = 1|ηj )] = β1 + β5FjBj + λ1ηj . (9)

Results

Table 2 gives maximum likelihood estimates based
on 20-point adaptive quadrature estimated using
gllamm [8]. Estimates for the two-parameter logis-
tic IRT model (without covariates) are given under
M1, for the MIMIC model under M2 and for the
MIMIC model with item bias for black women on
the first item under M3. Deviance and Pearson X2

statistics are also reported in the table, from which
we see that M2 fits better than M1. The variance
estimate of the disturbance decreases from 2.47 for
M1 to 1.88 for M2 because some of the variability
in ability is ‘explained’ by the covariates. There is
some evidence for a [Female] by [Black] interaction.
While being female is associated with lower ability
among white people, this is not the case among black
people where males and females have similar abili-
ties. Black people have lower mean abilities than both
white men and white women. There is little evidence
suggesting that item 1 functions differently for black
females.

Note that none of the models appear to fit well
according to absolute fit criteria (see Model Fit:
Assessment of). For example, for M2, the deviance
is 111.68 with 53 degrees of freedom, although the
Table 1 is perhaps too sparse to rely on the χ2

distribution.

Conclusion

We have discussed generalized structural equation
models for noncontinuous responses. Muthén sug-
gested models for continuous, dichotomous, ordinal
and censored (tobit) responses based on multivari-
ate normal latent responses and introduced a limited
information estimation approach for his model class.

Recently, considerably more general models have
been introduced. These models handle (possibly
mixes of) responses such as continuous, dichotomous,
ordinal, counts, unordered categorical (polytomous),
and rankings. The models can be estimated using
maximum likelihood or Bayesian analysis.
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Structural Equation
Modeling: Checking
Substantive Plausibility

There is little doubt that without the process of val-
idation, the undertaking of test development means
little. Regardless of the reliability of an instrument
(see Reliability: Definitions and Estimation), it is
impossible for its developers, let alone its users, to
be certain that any conclusions drawn from sub-
jects’ scores have meaning. In other words, without
an understanding of the substantive plausibility of
a set of measurement criteria, its implications can-
not be confidently stated. It is widely accepted that
for a test to be accepted as ‘valid’, numerous stud-
ies using different approaches are often necessary,
and even then, these require an ongoing validation
process as societal perceptions of relevant constructs
change [2].

The classic work regarding the process of con-
struct validation was that of Cronbach and Meehl [6].
Construct validation involves a three-step process;
construct definition, construct operationalization, and
empirical confirmation. Some of the methods com-
monly used to develop empirical support for con-
struct validation are Campbell and Fiske’s [5] mul-
titrait–multimethod matrix method (MTMM) (see
Factor Analysis: Multitrait–Multimethod; Multi-
trait–Multimethod Analyses) and factor analysis.
However, contemporary structural equation mod-
eling techniques [4] serve as good methods for
evaluating what Cronbach and Meehl termed the
nomological network (i.e., the relationship between
constructs of interests and observable variables, as
well as among the constructs themselves).

The process of construct validation usually starts
with the theoretical analysis of the relationship
between relevant variables or constructs. Sometimes
known as the substantive component of construct
validation, this step requires the definition of the
construct of interest and its theoretical relation-
ship to other constructs. For example, while it is
a generally accepted fact that the degree of sub-
stance addiction is dependent on the length of sub-
stance use (i.e., short-term vs. chronic) [10], research
has also demonstrated a relationship between drug

dependence and parental alcohol norms [8], conse-
quences of use [11], and various personality fac-
tors [10]. A theoretical relationship could therefore
be established between drug dependence – the con-
struct to be validated – and these previously men-
tioned variables.

The next step in the process of construct valida-
tion requires the operationalization of the constructs
of interest in terms of measurable, observed variables
that relate to each of the specified constructs. Given
the above mentioned example, length of substance
use could easily be defined as years, months, or
weeks of use, while parental alcohol norms could
be assessed using either presently available instru-
ments assessing parental alcohol use (e.g., the Alco-
hol Dependence Scale [12]) or some other measure
of parental norms and expectancies regarding the use
of alcohol and drugs. The consequences of past alco-
hol or drug use can be assessed as either number,
or severity, of negative consequences associated with
drinking. Various personality factors such as fatal-
ism and loneliness can be assessed using available
personality scales (e.g., the Social and Emotional
Loneliness Scale for Adults [7]). The final structural
equation model – nomological network – is shown in
Figure 1.

The last step in the process of construct validation,
empirical confirmation, requires the use of structural
equation modeling to assess and specify the relation-
ships between the observed variables, their related
constructs, and the construct of interest. In its broad-
est sense, structural equation modeling is concerned
with testing complex models for the structure of
functional relationships between observed variables
and constructs, and between the constructs them-
selves, one of which is the construct to be validated.
Often, constructs in structural equation modeling are
referred to as latent variables. The functional rela-
tionships are described by parameters that indicate the
magnitude of the effect (direct or indirect) that inde-
pendent variables have on dependent variables. Thus,
a structural equation model can be considered a series
of linear regression equations relating dependent
variables to independent variables and other depen-
dent variables. Those equations that describe the
relations between observed variables and constructs
are the measurement part of the model; those equa-
tions that describe the relations between constructs
are the structural part of the model (see All-X Mod-
els; All-Y Models). The coefficients determining the
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Drug
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Length of
drug use 

Parental
alcohol norms

Fatalism
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Consequences
of use

Figure 1 Nomological network for drug dependence

relations are usually the parameters we are inter-
ested in solving. By estimating the magnitude and
direction of these parameters, one can evaluate the
nomological network and hence provide evidence
for construct validity. For example, in the model
of Figure 1, we are hypothesizing that an observed
score on the Alcohol Dependence Scale (not shown)
is significantly and positively related to the construct
of drug dependence. This relationship is part of the
measurement model for drug dependence. Each con-
struct has its own measurement model. To provide
another example, we are also hypothesizing that the
construct of length of drug use is significantly and
positively related to the construct of drug depen-
dence. This relation is part of the structural model
linking the construct of interest, drug dependence, to
the other constructs.

The most common sequence followed to confirm
the nomological network is to first examine the
individual measurement models of the constructs and
then proceed to examine the structural model relating
these constructs [1], although many variations to this
sequence have been suggested [3, 9]. However one
proceeds to evaluate the different components of
the nomological network, ultimately the global fit
of the nomological network must be evaluated. A
great many indices of fit have been developed for
this purpose, most of which define global fit in terms
of the discrepancy between the observed data and that
implied by the model parameters [4]. It is not until
each component, both individually and combined, of

the nomological network has been confirmed that one
has strong evidence of construct validity.
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Structural Equation
Modeling: Latent Growth
Curve Analysis

Learning and development are ubiquitous. When
new skills are acquired, when attitudes and interests
develop, people change. Measuring change demands
a longitudinal perspective (see Longitudinal Data
Analysis), with multiple waves of data collected on
representative people at sensibly spaced intervals (see
Panel Study). Multiwave data is usually analyzed by
individual growth curve modeling using a multilevel
model for change (see Generalized Linear Mixed
Models and [6]). Recently, innovative methodolo-
gists [2–4] have shown how the multilevel model
for change can be mapped onto the general covari-
ance structure model, such as that implemented in
LISREL (see Structural Equation Modeling: Soft-
ware). This has led to an alternative approach to
analyzing change known as latent growth modeling.
In this chapter, we describe and link these two anal-
ogous approaches.

Our presentation uses four waves of data on the
reading scores of 1740 Caucasian children from the
Early Childhood Longitudinal Study (ECLS -K; [5]).
Children’s reading ability was measured in the Fall
and Spring of kindergarten and first grade – we
assume that test administrations were six months
apart, with time measured from entry into kinder-
garten. Thus, in our analyses, predictor t – repre-
senting time – has values 0, 0.5, 1.0 and 1.5 years.
Finally, we know the child’s gender (FEMALE :
boy = 0, girl = 1), which we treat as a time-invariant
predictor of change1.

Introducing Individual Growth Modeling

In Figure 1, we display empirical reading records for
ten children selected from the larger dataset. In the
top left panel is the growth record of child #15013, a
boy, with observed reading score on the ordinate and
time on the abscissa. Reading scores are represented
by a ‘+’ symbol and are connected by a smooth
freehand curve summarizing the change trajectory.
Clearly, this boy’s reading ability improves during
kindergarten and first grade. In the top right panel,
we display similar smoothed change trajectories for

all ten children (dashed trajectories for boys, solid
for girls, plotting symbols omitted to reduce clutter).
Notice the dramatic changes in children’s observed
reading scores over time, and how disparate they are
from child to child. The complexity of the collec-
tion, and because true reading ability is obscured by
measurement error, makes it hard to draw defensi-
ble conclusions about gender differences. However,
perhaps the girls’ trajectories do occupy higher ele-
vations than those of the boys, on average.

Another feature present in the reading trajectories
in the top two panels of Figure 1 is the apparent
acceleration of the observed trajectories between Fall
and Spring of first grade. Most children exhibit
moderate growth in reading over the first three waves,
but their scores increase dramatically over the last
time period. The score of child #15013, for instance,
rises modestly between waves 1 and 2 (20 to 28
points), modestly again between waves 2 and 3
(28 to 39 points), and then rapidly (to 66 points)
by the fourth wave. Because of this nonlinearity,
which was also evident in the entire sample, we
transformed children’s reading scores before further
analysis (Singer & Willett [6, Chapter 6] comment
on how to choose an appropriate transformation).
We used a natural log transformation in order to
‘pull down’ the top end of the change trajectory
disproportionally, thereby linearizing the accelerating
raw trajectory.

In the lower panels of Figure 1, we redisplay the
data in the newly transformed logarithmic world.
The log-reading trajectory of child #15013 is now
approximately linear in time, with positive slope. To
dramatize this, we have superimposed a linear trend
line on the transformed plot by simply regressing
the log-reading scores on time using ordinary least
squares regression (OLS) analysis for that child
(see Least Squares Estimation; Multiple Linear
Regression). This trend line has a positive slope,
indicating that the log-reading score increases during
kindergarten and first grade. In the lower right
panel, we display OLS-fitted linear trajectories for
all ten children in the subsample and reveal the
heterogeneity in change that remains across children
(albeit change in log-reading score). In subsequent
analyses, we model change in the log-reading scores
as a linear function of time.

The individual change trajectory can be described
by a ‘within-person’ or ‘level-1’ individual growth
model ([6], Ch. 3). For instance, here we hypothesize
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Figure 1 Observed raw and transformed trajectories of reading score over kindergarten and first grade for ten children
(boys = dashed; girls = solid). Top panel : (a) raw reading score versus time for child #15013, with observed data points
(+’s) connected by a smoothed freehand trajectory, (b) smoothed freehand trajectories for all 10 children. Bottom panel :
(a) log-reading score versus time for child #15013, with an OLS-estimated linear change trajectory, (b) OLS-estimated
linear trajectories for all children

that the log-reading score, Yij , of child i on occasion
j is a linear function of time, t :

Yij = {π0i + π1i tj } + εij , (1)

where i = 1, 2, . . . , 1740 and j = 1, 2, 3, 4 (with,
as noted earlier, t1 = 0, t2 = 0.5, t3 = 1.0 and t4 =

1.5 years, respectively). We have bracketed the sys-
tematic part of the model to separate the orderly
temporal dependence from the random errors, εij ,
that accrue on each measurement occasion. Within the
brackets, you will find the individual growth param-
eters, π0i and π1i :
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• π0i is the intercept parameter, describing the
child’s true ‘initial’ log-reading score on entry
into kindergarten (because entry into kindergarten
has been defined as the origin of time).

• π1i is the slope (‘rate of change’) parameter,
describing the child’s true annual rate of change
in log-reading score over time. If π1i is positive,
true log-reading score increases with time.

If the model is correctly specified, the individual
growth parameters capture the defining features of
the log-reading trajectory for child i. Of course,
in specifying such models, you need not choose a
linear specification – many shapes of trajectory are
available, and the particular one that you choose
should depend on your theory of change and on your
inspection of the data [6, Chapter 6].

One assumption built deeply into individual
growth modeling is that, while every child’s change
trajectory has the same functional form (here, linear
in time), different children may have different values
of the individual growth parameters. Children may
differ in intercept (some have low log-reading ability
on entry into kindergarten, others are higher) and in
slope (some children change more rapidly with time,
others less rapidly). Such heterogeneity is evident in
the right-hand lower panel of Figure 1.

We have coded the trajectories in the right-hand
panels of Figure 1 by child gender. Displays like
these help to reveal systematic differences in change
trajectory from child to child, and help you to
assess whether interindividual variation in change is
related to individual characteristics, like gender. Such
‘level-2’ questions – about the effect of predictors
of change – translate into questions about ‘between-
person’ relationships among the individual growth
parameters and predictors like gender. Inspecting the
right-hand lower panel of Figure 1, for instance, you
can ask whether boys and girls differ in their initial
scores (do the intercepts differ by gender?) or in the
rates at which their scores change (do the slopes differ
by gender?).

Analytically, we can handle this notion in a second
‘between-person’ or ‘level-2’ statistical model to
represent interindividual differences in change. In
the level-2 model, we express how we believe the
individual growth parameters (standing in place of
the full trajectory) depend on predictors of change.
For example, we could investigate the impact of
child gender on the log-reading trajectory by positing

the following pair of simultaneous level-2 statistical
models:

π0i = γ00 + γ01 FEMALE i + ζ0i

π1i = γ10 + γ11 FEMALE i + ζ1i , (2)

where the level-2 residuals, ζ0i and ζ1i , represent
those portions of the individual growth parameters
that are ‘unexplained’ by the selected predictor of
change, FEMALE. In this model, the γ coefficients
are known as the ‘fixed effects’ and summarize
the population relationship between the individual
growth parameters and the predictor. They can be
interpreted like regular regression coefficients. For
instance, if the initial log-reading ability of girls is
higher than boys (i.e., if girls have larger values
of π0i , on average) then γ01 will be positive (since
FEMALE = 1, for girls). If girls have higher annual
rates of change (i.e., if girls have larger values of π1i ,
on average), then γ11 will be positive. Together, the
level-1 and level-2 models in (1) and (2) make up the
multilevel model for change ([6], Ch. 3).

Researchers investigating change must fit the mul-
tilevel model for change to their longitudinal data.
Many methods are available for doing this (see [6],
Chs. 2 and 3), the simplest of which is exploratory, as
in Figure 1. To conduct data-analyses efficiently, the
level-1 and level-2 models are usually fitted simul-
taneously using procedures now widely available in
major statistical packages. The models can also be
fitted using covariance structure analysis, as we
now describe.

Latent Growth Modeling

Here, we introduce latent growth modeling by show-
ing how the multilevel model for change can be
mapped onto the general covariance structure model.
Once the mapping is complete, all parameters of the
multilevel model for change can be estimated by fit-
ting the companion covariance structure model using
standard covariance structure analysis (CSA) soft-
ware, such as AMOS, LISREL, EQS, MPLUS, etc.
(see Structural Equation Modeling: Software).

To conduct latent growth analyses, we lay out
our data in multivariate format, in which there is
a single row in the dataset for each person, with
multiple (multi-) variables (-variate) containing the
time-varying information, arrayed horizontally. With
four waves of data, multivariate format requires four
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columns to record each child’s growth record, each
column associated with a measurement occasion. Any
time-invariant predictor of change, like child gender,
also has its own column in the dataset. Multivariate
formatting is not typical in longitudinal data analysis
(which usually requires a ‘person-period’ or ‘univari-
ate’ format), but is required here because of the nature
of covariance structure analysis. As its name implies,
CSA is an analysis of covariance structure in which,
as an initial step, a sample covariance matrix (and
mean vector) is estimated to summarize the associa-
tions among (and levels of) selected variables, includ-
ing the multiple measures of the outcome across
the several measurement occasions. The data-analyst
then specifies statistical models appropriate for the
research hypotheses, and the mathematical implica-
tions of these hypotheses for the structure of the
underlying population covariance matrix and mean
vector are evaluated against their sample estimates.
Because latent growth analysis compares sample and
predicted covariance matrices (and mean vectors), the
data must be formatted to support the estimation of
covariance matrices (and mean vectors) – in other
words, in a multivariate format.

Note, finally, that there is no unique column in
the multivariate dataset to record time. In our multi-
variate format dataset, values in the outcome vari-
able’s first column were measured at the start of
kindergarten, values in the second column were mea-
sured at the beginning of spring in kindergarten, etc.
The time values – each corresponding to a particular
measurement occasion and to a specific column of
outcome values in the dataset – are noted by the ana-
lyst and programmed directly into the CSA model.
It is therefore more convenient to use latent growth
modeling to analyze change when panel data are time-
structured – when everyone has been measured on
an identical set of occasions and possesses complete
data. Nevertheless, you can use latent growth model-
ing to analyze panel datasets with limited violations
of time-structuring, by regrouping the full sample
into subgroups who share identical time-structured
profiles and then analyzing these subgroups simulta-
neously with CSA multigroup analysis (see Factor
Analysis: Multiple Groups).

Mapping the Level-1 Model for Individual Change
onto the CSA Y-measurement Model

In (1), we specified that the child’s log-reading
score, Yij , depended linearly on time, measured from

kindergarten entry. Here, for clarity, we retain sym-
bols t1 through t4 to represent the measurement timing
but you should remember that each of these time sym-
bols has a known value (0, 0.5, 1.0, and 1.5 years,
respectively) that is used when the model is fitted.
By substituting into the individual growth model, we
can create equations for the value of the outcome on
each occasion for child i:

Yi1 = π0i + π1i t1 + εi1

Yi2 = π0i + π1i t2 + εi2

Yi3 = π0i + π1i t3 + εi3

Yi4 = π0i + π1i t4 + εi4 (3)

that can easily be rewritten in simple matrix form, as
follows:


Yi1

Yi2

Yi3

Yi4


 =




0
0
0
0


 +




1 t1
1 t2
1 t3
1 t4




[
π0i

π1i

]
+




εi1

εi2

εi3

εi4


 . (4)

While this matrix equation is unlike the represen-
tation in (1), it says exactly the same thing – that
observed values of the outcome, Y, are related to
the times (t1, t2, t3, and t4), to the individual growth
parameters (π0i and π1i ), and to the measurement
errors (εi1, εi2, εi3, and εi4). The only difference
between (4) and (1) is that all values of the outcome
and of time, and all parameters and time-specific
residuals, are arrayed neatly as vectors and matri-
ces. (Don’t be diverted by the strange vector of zeros
introduced immediately to the right of the equals
sign – it makes no difference to the meaning of the
equation, but it will help our subsequent mapping
of the multilevel model for change onto the general
CSA model).

In fact, the new growth model representation in (4)
maps straightforwardly onto the CSA Y-Measurement
Model, which, in standard LISREL notation, is

Y = τy + �yη + ε, (5)

where Y is a vector of observed scores, τy is a
vector intended to contain the population means of
Y, �y is a matrix of factor loadings, η is a vector of
latent (endogenous) constructs, and ε is a vector of
residuals2. Notice that the new matrix representation
of the individual growth model in (4) matches the
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CSA Y-Measurement Model in (5) providing that the
observed and latent score vectors are set to:

Y =



Yi1

Yi2

Yi3

Yi4


 , η =

[
π0i

π1i

]
, ε =




εi1

εi2

εi3

εi4


 (6)

and providing that parameter vector τy and loading
matrix �y are specified as containing the following
constants and known times:

τy =



0
0
0
0


 , �y =




1 t1
1 t2
1 t3
1 t4


 . (7)

Check this by substituting from (6) and (7)
into (5) and multiplying out – you will conclude that,
with this specification of score vectors and parameter
matrices, the CSA Y-Measurement Model can act as,
or contain, the individual growth trajectory from the
multilevel model for change.

Notice that (1), (3), (4), (5), and (6) all permit the
measurement errors to participate in the individual
growth process. They state that level-1 residual εi1

disturbs the true status of the ith child on the first
measurement occasion, εi2 on the second occasion,
εi3 on the third, and so on. However, so far, we have
made no claims about the underlying distribution
from which the errors are drawn. Are the errors
normally distributed, homoscedastic, and independent
over time within-person? Are they heteroscedastic
or auto-correlated? Now that the individual change
trajectory is embedded in the Y-Measurement Model,
we can easily account for level-1 error covariance
structure because, under the usual CSA assumption
of a multivariate normal distribution for the errors,
we can specify the CSA parameter matrix �ε to
contain hypotheses about the covariance matrix of ε.
In an analysis of change, we usually compare nested
models with alternative error structures to identify
which error structure is optimal. Here, we assume that
level-1 errors are distributed normally, independently,
and heteroscedastically over time within-person:3

�ε =



σε1
2 0 0 0

0 σε2
2 0 0

0 0 σε3
2 0

0 0 0 σε4
2


 . (8)

Ultimately, we estimate all level-1 variance com-
ponents on the diagonal of �ε and reveal the

action of measurement error on reading score on
each occasion.

The key point is that judicious specification of
CSA score and parameter matrices forces the level-1
individual change trajectory into the Y-Measurement
Model in a companion covariance structure analysis.
Notice that, unlike more typical covariance structure
analyses, for example, confirmatory factor analysis
(see Factor Analysis: Confirmatory) the �y matrix
in (7) is entirely specified as a set of known constants
and times rather than as unknown latent factor
loadings to be estimated. Using the Y-Measurement
Model to represent individual change in this way
‘forces’ the individual-level growth parameters, π0i

and π1i , into the endogenous construct vector η,
creating what is known as the latent growth vector,
η. This notion – that the CSA η-vector can be forced
to contain the individual growth parameters – is
critical in latent growth modeling, because it suggests
that level-2 interindividual variation in change can
be modeled in the CSA Structural Model, as we
now show.

Mapping the Level-2 Model for Interindividual
Differences in Change onto the CSA Structural
Model

In an analysis of change, at level-2, we ask whether
interindividual heterogeneity in change can be pre-
dicted by other variables, such as features of the
individual’s background and treatment. For instance,
in our data-example, we can ask whether between-
person heterogeneity in the log-reading trajectories
depends on the child’s gender. Within the growth-
modeling framework, this means that we must check
whether the individual growth parameters – the true
intercept and slope standing in place of the log-
reading trajectories – are related to gender. Our anal-
ysis therefore asks: Does initial log-reading ability
differ for boys and girls? Does the annual rate at
which log-reading ability changes depend upon gen-
der? In latent growth modeling, level-2 questions like
these, which concern the distribution of the individ-
ual growth parameters across individuals and their
relationship to predictors, are addressed by specify-
ing a CSA Structural Model. Why? Because it is in
the CSA structural model that the vector of unknown
endogenous constructs η – which now contains the
all-important individual growth parameters, π0i and
π1i – is hypothesized to vary across people.
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Recall that the CSA Structural Model stipulates
that endogenous construct vector η is potentially
related to both itself and to exogenous constructs ξ

by the following model:

η = α + �ξ + Bη + ζ , (9)

where α is a vector of intercept parameters, � is a
matrix of regression coefficients that relate exogenous
predictors ξ to outcomes η, B is a matrix of regression
coefficients that permit elements of the endogenous
construct vector η to predict each other, and ζ is a
vector of residuals. In a covariance structure analy-
sis, we fit this model to data, simultaneously with the
earlier measurement model, and estimate parameters
α, � and B. The rationale behind latent growth mod-
eling argues that, by structuring (9) appropriately, we
can force parameter matrices α, � and B to contain
the fixed effects central to the multilevel modeling
of change.

So, what to do? Inspection of the model for
systematic interindividual differences in change in (2)
suggests that the level-2 component of the multilevel
model for change can be reformatted in matrix form,
as follows:[

π0i

π1i

]
=

[
γ00

γ10

]
+

[
γ01

γ11

]
[FEMALE i]

+
[

0 0
0 0

] [
π0i

π1i

]
+

[
ζ0i

ζ1i

]
, (10)

which is identical to the CSA Structural Model in (9),
providing that we force the elements of the CSA B
parameter matrix to be zero throughout:

B=
[

0 0
0 0

]
(11)

and that we permit the α vector and the � matrix to
be free to contain the fixed-effects parameters from
the multilevel model for change:

α=
[

γ00

γ10

]
, �=

[
γ01

γ11

]
(12)

and providing we can force the potential predictor
of change – child gender – into the CSA exogenous
construct vector, ξ . In this new level-2 specification
of the structural model, the latent intercept vector, α,
contains the level-2 fixed-effects parameters γ00 and
γ10, defined earlier as the population intercept and
slope of the log-reading trajectory for boys (when

FEMALE = 0). The � matrix contains the level-
2 fixed-effects parameters γ01 and γ11, representing
increments to the population average intercept and
slope for girls, respectively. By fitting this CSA
model to data, we can estimate all four fixed effects.

When a time-invariant predictor like FEMALE
is present in the structural model, the elements of
the latent residual vector ζ in (10) represent those
portions of true intercept and true slope that are
unrelated to the predictor of change – the ‘adjusted’
values of true intercept and slope, with the linear
effect of child gender partialled out. In a covariance
structure analysis of the multilevel model for change,
we assume that latent residual vector ζ is distributed
normally with zero mean vector and covariance
matrix 
,


 = Cov{ζ } =
[

σ 2
ζ0

σζ01

σζ10 σ 2
ζ1

]
, (13)

which contains the residual (partial) variances and
covariance of true intercept and slope, controlling
for the predictor of change, FEMALE. We estimate
these level-2 variance components in any analysis
of change.

But there is one missing link that needs resolv-
ing before we can proceed. How is the hypothesized
predictor of change, FEMALE, loaded into the exoge-
nous construct vector, ξ? This is easily achieved via
the so-far-unused CSA X-Measurement Model. And,
in the current analysis, the process is disarmingly sim-
ple because there is only a single infallible predictor
of change, child gender. So, in this case, while it
may seem a little weird, the specification of the X-
Measurement Model derives from a tautology:

FEMALE i = (0) + (1)(FEMALE i ) + (0). (14)

This, while not affecting predictor FEMALE, facil-
itates comparison with the CSA X-Measurement
Model:

X = τx + �xξ + δ. (15)

By comparing (14) and (15), you can see that the
gender predictor can be incorporated into the analysis
by specifying an X-Measurement Model in which:

• Exogenous score vector X contains one element,
the gender predictor, FEMALE, itself.

• The X-measurement error vector, δ, contains a
single element whose value is fixed at zero,
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embodying the assumption that gender is mea-
sured infallibly (with ‘zero’ error).

• The τ x mean vector contains a single element
whose value is fixed at zero. This forces the
mean of FEMALE (which would reside in τ x if
the latter were not fixed to zero) into the CSA
latent mean vector, κ , which contains the mean
of the exogenous construct, ξ , in the general
CSA model.

• The matrix of exogenous latent factor loadings �x

contains a single element whose value is fixed at
1. This forces the metrics of the exogenous
construct and its indicator to be identical.

Thus, by specifying a CSA X-Measurement Model
in which the score vectors are

X = [FEMALE i] , δ = [ 0 ] (16)

and the parameter matrices are fixed at:

τx = [ 0 ] , �x = [ 1 ] , (17)

we can make the CSA exogenous construct ξ repre-
sent child gender. And, since we know that exoge-
nous construct ξ is a predictor in the CSA Structural
Model, we have succeeded in inserting the predictor
of change, child gender, into the model for interindi-
vidual differences in change. As a final consequence
of (14) through (17), the population mean of the pre-
dictor of change appears as the sole element of the
CSA exogenous construct mean vector, κ :

κ = Mean{ξ } = [µFEMALE ] (18)

and the population variance of the predictor of change
appears as the sole element of CSA exogenous
construct covariance matrix :

 = Cov{ξ } = [
σ 2

FEMALE

]
. (19)

Both of these parameter matrices are estimated
when the model is fitted to data. And, although we do
not demonstrate it here, the X-Measurement Model
in (14) through (19) can be reconfigured to accom-
modate multiple time-invariant predictors of change,
and even several indicators of each predictor con-
struct if available. This is achieved by expanding
the exogenous indicator and constructing score vec-
tors to include sufficient elements to contain the new
indicators and constructs, and the parameter matrix

Table 1 Trajectory of change in the logarithm of chil-
dren’s reading score over four measurement occasions dur-
ing kindergarten and first grade, by child gender. Parameter
estimates, approximate P values, and goodness of fit statis-
tics from the multilevel model for change, obtained with
latent growth modeling (n = 1740)

Effect Parameter Estimate

Fixed effects :
γ00 3.1700***
γ10 0.5828***
γ01 0.0732***
γ11 −0.0096

Variance components :
σ 2

ε1
0.0219***

σ 2
ε2

0.0228***
σ 2

ε3
0.0208***

σ 2
ε4

0.0077***
σ 2

ζ0
0.0896***

σ 2
ζ1

0.0140***
σζ0ζ1 −0.0223***

Goodness of fit :
χ2 1414.25***
Df 7

∼= p < .10, ∗ = p < .05, ∗∗ = p < .01, ∗ ∗ ∗ = p < .00.

�x is expanded to include suitable loadings (Wil-
lett and Singer [6; Chapter 8] give an example with
multiple predictors).

So, the CSA version of the multilevel model for
change – now called the latent growth model – is
complete. It consists of the CSA X-Measurement, Y-
Measurement, and Structural Models, defined in (14)
through (19), (4) through (8), and (9) through (13),
respectively and is displayed as a path model in
Figure 2. In the figure, by fixing the loadings associ-
ated with the outcome measurements to their constant
and temporal values, we emphasize how the endoge-
nous constructs were forced to become the individual
growth parameters, which are then available for pre-
diction by the hypothesized predictor of change. We
fitted the latent growth model in (4) through (14) to
our reading data on the full sample of 1740 children
using LISREL (see Appendix I). Table 1 presents full
maximum-likelihood (FML) estimates of all relevant
parameters from latent regression-weight matrix �

and parameter matrices , α, and 
.
The estimated level-2 fixed effects are in the

first four rows of Table 1. The first and second
rows contain estimates of parameters γ00 and γ10,
representing true initial log-reading ability (γ̂00 =



8 Structural Equation Modeling: Latent Growth Curve Analysis

ei1 ei 2 ei3 ei4

Yi1 Yi2 Yi3 Yi4

1 1 1
1

0
0.5 1.0 1.5

p0i p1i

z0i z1i

g01
g11

FEMALEi

FEMALEi

1

0

Figure 2 Path diagram for the hypothesized latent growth
in reading score. Rectangles represent observed indicators,
circles represent latent constructs, and arrows and their
associated parameters indicate hypothesized relationships

3.170, p < .001) and true annual rate of change
in log-reading ability (γ̂10 = 0.583, p < .001) for
boys (for whom FEMALE = 0). Anti-logging tells
us that, on average, boys: (a) begin kindergarten
with an average reading ability of 23.8 (= e3.1700),
and (b) increase their reading ability by 79% (=
100(e0.5828 − 1)) per year. The third and fourth rows
contain the estimated latent regression coefficients γ01

(0.073, p < .001) and γ11 (−0.010, p > .10), which
capture differences in change trajectories between
boys and girls. Girls have a higher initial level
of 3.243 (= 3.170 + 0.073) of log-reading ability,
whose anti-log is 25.6 and a statistically signifi-
cant couple of points higher than the boys. How-
ever, we cannot reject the null hypothesis associated
with γ11 (−0.010, p > .10) so, although the estimated
annual rate of increase in log-reading ability for girls
is 0.572 (= 0.5828 − 0.0096), a little smaller than
boys, this difference is not statistically significant.
Nonetheless, anti-logging, we find that girls’ reading

−0.5 0 0.5 1 1.5 2
3

3.4

3.8

4.2

Time (years)

Lo
g-

re
ad

in
g

Girls

Boys

Fitted log-reading scores

(a)

−0.5 0 0.5 1 1.5 2
20

35

50

65

Time (years)
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Boys

R
ea

di
ng

Fitted reading scores

(b)

Figure 3 Fitted log-reading and reading trajectories over
kindergarten and first grade for prototypical Caucasian
children, by gender

ability increases by about 78% (= 100(e0.5828 − 1))

per year, on average. We display fitted log-reading
and reading trajectories for prototypical boys and
girls in Figure 3 – once de-transformed, the trajec-
tories are curvilinear and display the acceleration we
noted earlier in the raw data.

Next, examine the random effects. The fifth
through eighth rows of Table 1 contain estimated
level-1 error variances, one per occasion, describ-
ing the measurement fallibility in log-reading score
over time. Their estimated values are 0.022, 0.023,
0.021, and 0.008, respectively, showing considerable
homoscedasticity over the first three occasions but
measurement error variance decreases markedly in
the spring of first grade. The tenth through twelfth
rows of Table 1 contain the estimated level-2 variance
components, representing estimated partial (residual)
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variances and partial covariance of true initial status
and rate of change, after controlling for child gender
(see Partial Correlation Coefficients). We reject the
null hypothesis associated with each variance com-
ponent, and conclude that there is predictable true
variation remaining in both initial status and rate
of change.

Conclusion: Extending the Latent
Growth-Modeling Framework

In this chapter, we have shown how a latent growth-
modeling approach to analyzing change is created
by mapping the multilevel model for change onto
the general CSA model. The basic latent growth
modeling approach that we have described can be
extended in many important ways:

• You can include any number of waves of longi-
tudinal data, by simply increasing the number of
rows in the relevant score vectors. Including more
waves generally leads to greater precision for the
estimation of the individual growth trajectories
and greater reliability for measuring change.

• You need not space the occasions of measure-
ment equally, although it is most convenient if
everyone in the sample is measured on the same
set of irregularly spaced occasions. However, if
they are not, then latent growth modeling can still
be conducted by first dividing the sample into
subgroups of individuals with identical tempo-
ral profiles and using multigroup analysis to fit
the multilevel model for change simultaneously
in all subgroups.

• You can specify curvilinear individual change.
Latent growth modeling can accommodate poly-
nomial individual change of any order (provided
sufficient waves of data are available), or any
other curvilinear change trajectory in which indi-
vidual status is linear in the growth parameters.

• You can model the covariance structure of the
level-1 measurement errors explicitly. You need
not accept the independence and homoscedastic-
ity assumptions of classical analysis unchecked.
Here, we permitted level-1 measurement errors
to be heteroscedastic, but other, more general,
error covariance structures can be hypothesized
and tested.

• You can model change in several domains
simultaneously, including both exogenous and

endogenous domains. You simply extend the
empirical growth record and the measurement
models to include rows for each wave of data
available, in each domain.

• You can model intervening effects, whereby an
exogenous predictor may act directly on endoge-
nous change and also indirectly via the influence
of intervening factors, each of which may be time-
invariant or time varying.

In the end, you must choose your analytic strategy
to suit the problems you face. Studies of change can
be designed in enormous variety and the multilevel
model for change can be specified to account for all
manner of trajectories and error structures. But, it is
always wise to have more than one way to deal with
data – latent growth modeling often offers a flexible
alternative to more traditional approaches.

Notes

1. The dataset is available at http://
gseacademic.harvard.edu/∼willetjo/.

2. Readers unfamiliar with the general CSA model
should consult Bollen [1].

3. Supplementary analyses suggested that this was
reasonable.

Appendix I Specimen LISREL Program

/*Specify the number of variables
(indicators) to be read from
the external data-file of
raw data*/
data ni=6

/*Identify the location of the
external data-file*/
raw fi = C:\Data\ECLS.dat

/*Label the input variables and
select those to be analyzed*/
label
id Y1 Y2 Y3 Y4 FEMALE
select
2 3 4 5 6 /

/*Specify the hypothesized covariance
structure model*/
model ny=4 ne=2 ty=ze ly=fu,

fi te=di,fi c
nx=1 nk=1 lx=fu,fi tx=fr
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td=ze ph=sy,fr c
al=fr ga=fu,fr be=ze

ps=sy,fr
/*Label the individual growth

parameters as endogenous
constructs (eta’s)*/
le
pi0 pi1

/*Label the predictor of change as
an exogenous construct (ksi) */
lk
FEMALE

/*Enter the required ‘‘1’s’’ and
measurement times into the
Lambda-Y matrix*/
va 1 ly(1,1) ly(2,1) ly(3,1)
ly(4,1)

va 0.0 ly(1,2)
va 0.5 ly(2,2)
va 1.0 ly(3,2)
va 1.5 ly(4,2)

/*Enter the required scaling factor
‘‘1’’ into the Lambda-X matrix*/
va 1.0 lx(1,1)

/*Free up the level-1 residual
variances to be estimated*/
fr te(1,1) te(2,2) te(3,3) te(4,4)

/*Request data-analytic output to 5
decimal places*/
ou nd=5
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Structural Equation
Modeling: Mixture
Models

Introduction

This article discusses a modeling framework that
links two well-known statistical methods: struc-
tural equation modeling (SEM) and latent class or
finite mixture modeling. This hybrid approach was
proposed independently by Arminger and Stein [1],
Dolan and Van der Maas [4], and Jedidi, Jagpal and
DeSarbo [5]. Here, we refer to this approach as mix-
ture SEM or latent class SEM.

There are two different ways to view mixture
SEM. One way is as a refinement of multivariate
normal (MVN) mixtures (see Finite Mixture Distri-
butions), where the within-class covariance matrices
are smoothed according to a postulated SEM struc-
ture. MVN mixtures have become a popular tool for
cluster analysis [6, 10], where each cluster corre-
sponds to a latent (unobservable) class. Names that
are used when referring to such a use of mixture mod-
els are latent profile analysis, mixture-model cluster-
ing, model-based clustering, probabilistic clustering,
Bayesian classification, and latent class clustering.
Mixture SEM restricts the form of such latent class
clustering, by subjecting the class-specific mean vec-
tors and covariance matrices to a postulated SEM
structure such as a one-factor, a latent-growth, or an
autoregressive model. This results in MVN mixtures
that are more parsimonious and stable than models
with unrestricted covariance structures.

The other way to look at mixture SEM is as an
extension to standard SEM, similar to multiple group
analysis. However, an important difference between
this and standard multiple group analysis, is that in
mixture SEM group membership is not observed.
By incorporating latent classes into an SEM model,
various forms of unobserved heterogeneity can be
detected. For example, groups that have identical
(unstandardized) factor loadings but different error
variances on the items in a factor analysis, or groups
that show different patterns of change over time.
Dolan and Van der Maas [4] describe a nice appli-
cation from developmental psychology, in which (as
a result of the existence of qualitative development

stages) children who do not master certain types of
tasks have a mean and covariance structure that dif-
fers from the one for children who master the tasks.

Below, we first introduce standard MVN mixtures.
Then, we show how the SEM framework can be used
to restrict the means and covariances. Subsequently,
we discuss parameter estimation, model testing, and
software. We end with an empirical example.

Multivariate Normal Mixtures

Let yi denote a P -dimensional vector containing
the scores for individual i on a set of P observed
continuous random variables. Moreover, let K be
the number of mixture components, latent classes,
or clusters, and πk the prior probability of belonging
to latent class or cluster k or, equivalently, the size
of cluster k, where 1 ≤ k ≤ K . In a mixture model,
it is assumed that the density of yi , f (yi |θ), is
a mixture or a weighted sum of K class-specific
densities fk(yi |θ k) [4, 10]. That is,

f (yi |π , θ) =
K∑

k=1

πkfk(yi |θ k). (1)

Here, θ denotes the vector containing all unknown
parameters, and θ k the vector of the unknown param-
eters of cluster k.

The most common specification for the class-
specific densities fk(yi |θ k) is multivariate normal
(see Catalogue of Probability Density Functions),
which means that the observed variables are assumed
to be normally distributed within latent classes, possi-
bly after applying an appropriate nonlinear transfor-
mation. Denoting the class-specific mean vector by
µk , and the class-specific covariance matrix by �k ,
we obtain the following class-specific densities:

fk(yi |µk, �k) = (2π)−P/2|�k|−1/2

× exp

{
−1

2
(yi − µk)

′ �−1
k (yi − µk)

}
. (2)

In the most general specification, no restrictions are
imposed on µk and �k parameters; that is, the
model-based clustering problem involves estimating
a separate set of means, variances, and covariances
for each latent class. Although in most clustering
applications, the main objective is finding classes that
differ with respect to their means or locations, in the
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MVN mixture model, clusters may also have different
shapes.

An unrestricted MVN mixture model with K latent
classes contains (K − 1) unknown class sizes, K · P
class-specific means, K · P class-specific variances
and K · P · (P − 1)/2 class-specific covariances. As
the number of indicators and/or the number of latent
classes increases, the number of parameters to be
estimated may become quite large, especially the
number of free parameters in �k . Thus, to obtain
more parsimony and stability, it is not surprising that
restrictions are typically imposed on the class-specific
covariance matrices.

Prior to using SEM models to restrict the covari-
ances, a standard approach to reduce the number of
parameters is to assume local independence. Local
independence means that all within-cluster covari-
ances are equal to zero, or, equivalently, that the
covariance matrices, �k , are diagonal matrices. Mod-
els that are less restrictive than the local independence
model can be obtained by fixing some but not all
covariances to zero, or, equivalently, by assuming
certain pairs of y’s to be mutually dependent within
latent classes.

Another approach to reduce the number of param-
eters, is to assume the equality or homogeneity of
variance–covariance matrices across latent classes;
that is, �k = �. Such a homogeneous or class-
independent error structure yields clusters having the
same forms but different locations. This type of con-
straint is equivalent to the restrictions applied to the
covariances in linear discriminant analysis. Note that
this between-class equality constraint can be applied
in combination with any structure for �.

Banfield and Raftery [2] proposed reparameter-
izing the class-specific covariance matrices by an
eigenvalue decomposition:

�k = λkDkAkD′
k. (3)

The parameter λk is a scalar, Dk is a matrix with
eigenvectors, and Ak is a diagonal matrix whose
elements are proportional to the eigenvalues of �k .
More precisely, λk = |�k|1/d , where d is the number
of observed variables, and Ak is scaled such that
|Ak| = 1.

A nice feature of the above decomposition is
that each of the three sets of parameters has a
geometrical interpretation: λk indicates what can be
called the volume of cluster k, Dk its orientation,
and Ak its shape. If we think of a cluster as a

clutter of points in a multidimensional space, the
volume is the size of the clutter, while the orientation
and shape parameters indicate whether the clutter is
spherical or ellipsoidal. Thus, restrictions imposed on
these matrices can directly be interpreted in terms
of the geometrical form of the clusters. Typical
restrictions are to assume matrices to be equal across
classes, or to have the forms of diagonal or identity
matrices [3].

Mixture SEM

As an alternative to simplifying the �k matrices using
the eigenvalue decomposition, the mixture SEM
approach assumes a covariance-structure model.
Several authors [1, 4, 5] have proposed using such
a mixture specification for dealing with unobserved
heterogeneity in SEM. As explained in the intro-
duction, this is equivalent to restricting the within-
class mean vectors and covariance matrices by an
SEM. One interesting SEM structure for �k that
is closely related to the eigenvalue decomposition
described above is a factor-analytic model (see Fac-
tor Analysis: Exploratory) [6, 11]. Under the factor-
analytic structure, the within-class covariances are
given by:

�k = �k�k�
′
k + �k. (4)

Assuming that there are Q factors, �k is a P × Q

matrix with factor loadings, �k is a Q × Q matrix
containing the variances of, and the covariances
between, the factors, and �k is a P × P diagonal
matrix containing the unique variances. Restricted
covariance structures are obtained by setting Q < P

(for instance, Q = 1), equating factor loadings across
indicators, or fixing some factor loading to zero.
Such specifications make it possible to describe the
covariances between the y variables within clusters
by means of a small number of parameters.

Alternative formulations can be used to define
more general types of SEM models. Here, we use
the Lisrel submodel that was also used by Dolan
and Van der Maas [4]. Other alternatives are the full
Lisrel [5], the RAM [8], or the conditional mean and
covariance structure [1] formulations.

In our Lisrel submodel formulation, the SEM
for class k consists of the following two (sets of )
equations:

yi = νk + �kηik + εik (5)
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ηik = αk + Bkηik + ς ik. (6)

The first equation concerns the measurement part
of the model, in which the observed variables are
regressed on the latent factors ηik . Here, νk is a vector
of intercepts, �k a matrix with factor loadings and
εik a vector with residuals. The second equation is
the structural part of the model, the path model for
the factors. Vector αk contains the intercepts, matrix
Bk the path coefficients and vector ς ik the residuals.
The implied mean and covariance structures for latent
class k are

µk = νk + �k(I − Bk)
−1αk (7)

�k = �k(I − Bk)
−1�k(I − B′

k)
−1�′

k + �k, (8)

where �k and �k denote the covariance matrices
of the residuals εik and ς ik . These equations show
the connection between the SEM parameters, and the
parameters of the MVN mixture model.

Covariates

An important extension of the mixture SEM described
above is obtained by including covariates to predict
class membership, with possible direct effects on the
item means. Conceptually, it makes sense to distin-
guish (endogenous) variables that are used to identify
the latent classes, from (exogenous) variables that are
used to predict to which cluster an individual belongs.

Using the same basic structure as in 1, this yields
the following mixture model:

f (yi |zi , π, θ) =
K∑

k=1

πk(zi ) fk(yi |θ k). (9)

Here, zi denotes person i’s covariate values. Alter-
native terms for the z’s are concomitant variables,
grouping variables, external variables, exogenous
variables, and inputs. To reduce the number of param-
eters, the probability of belonging to class k given
covariate values zi , πk(zi ), will generally be restricted
by a multinomial logit model; that is, a logit model
with ‘linear effects’ and no higher order interactions.

An even more general specification is obtained
by allowing covariates to have direct effects on the
indicators, which yields

f (yi |zi , π, θ) =
K∑

k=1

πk(zi ) fk(yi |zi , θk). (10)

The conditional means of the y variables are now
directly related to the covariates, as proposed by
Arminger and Stein [1]. This makes it possible to
relax the implicit assumption in the previous spec-
ification, that the influence of the z’s on the y’s
goes completely via the latent classes (see, for
example, [9]).

Estimation, Testing, and Software

Estimation

The two main estimation methods in mixture SEM
and other types of MVN mixture modeling are
maximum likelihood (ML) and maximum poste-
rior (MAP). The log-likelihood function required
in ML and MAP approaches can be derived from
the probability density function defining the model.
Bayesian MAP estimation involves maximizing the
log-posterior distribution, which is the sum of the
log-likelihood function and the logs of the priors for
the parameters (see Bayesian Statistics).

Although generally, there is not much difference
between ML and MAP estimates, an important advan-
tage of the latter method is that it prevents the occur-
rence of boundary or terminal solutions: probabilities
and variances cannot become zero. With a very small
amount of prior information, the parameter estimates
are forced to stay within the interior of the parame-
ter space. Typical priors are Dirichlet priors for the
latent class probabilities, and inverted-Wishart priors
for the covariance matrices. For more details on these
priors, see [9].

Most mixture modeling software packages use the
EM algorithm, or some modification of it, to find
the ML or MAP estimates. In our opinion, the ideal
algorithm starts with a number of EM iterations, and
when close enough to the final solution, switches
to Newton–Raphson. This is a way to combine the
advantages of both algorithms – the stability of EM
even when far away from the optimum, and the speed
of Newton–Raphson when close to the optimum (see
Optimization Methods).

A well-known problem in mixture modeling anal-
ysis is the occurrence of local solutions. The best
way to prevent ending with a local solution is to
use multiple sets of starting values. Some computer
programs for mixture modeling have automated the
search for good starting values using several sets of
random starting values.
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When using mixture SEM for clustering, we are
not only interested in the estimation of the model
parameters, but also in the classification of individual
into clusters. This can be based on the posterior class
membership probabilities

πk(yi , zi , π, θ) = πk(zi ) fk(yi |zi , θk)

K∑
k=1

πk(zi ) fk(yi |zi , θk)

. (11)

The standard classification method is modal alloca-
tion, which amounts to assigning each object to the
class with the highest posterior probability.

Model Selection

The model selection issue is one of the main research
topics in mixture-model clustering. Actually, there
are two issues involved: the first concerns the deci-
sion about the number of clusters, the second con-
cerns the form of the model, given the number of
clusters. For an extended overview on these topics,
see [6].

Assumptions with respect to the forms of the
clusters, given their number, can be tested using stan-
dard likelihood-ratio tests between nested models,
for instance, between a model with an unrestricted
covariance matrix and a model with a restricted
covariance matrix. Wald tests and Lagrange mul-
tiplier tests can be used to assess the significance
of certain included or excluded terms, respectively.
However, these kinds of chi-squared tests cannot be
used to determine the number of clusters.

The approach most often used for model selection
in mixture modeling is to use information criteria,
such as AIC, BIC, and CAIC (Akaike, Bayesian,
and Consistent Akaike Information Criterion). The
most recent development is the use of computation-
ally intensive techniques like parametric bootstrap-
ping [6] and Markov Chain Monte Carlo methods [3]
to determine the number of clusters, as well as their
forms.

Another approach for evaluating mixture models
is based on the uncertainty of classification, or, equiv-
alently, the separation of the clusters. Besides the
estimated total number of misclassifications, Good-
man–Kruskal lambda, Goodman–Kruskal tau, or
entropy-based measures can be used to indicate how
well the indicators predict class membership.

Software

Several computer programs are available for estimat-
ing the various types of mixture models discussed
in this paper. Mplus [7] and Mx [8] are syntax-
based programs that can deal with a very general
class of mixture SEMs. Mx is somewhat more gen-
eral in terms of model possible constraints. Latent
GOLD [9] is a fully Windows-based program for esti-
mating MVN mixtures with covariates. It can be used
to specify restricted covariance structures, including
a number of SEM structures such as a one-factor
model within blocks of variables, and a compound-
symmetry (or random-effects) structure.

An Empirical Example

To illustrate mixture SEM, we use a longitudi-
nal data set made available by Patrick J. Curran
at ‘http://www.duke.edu/∼curran/’. The vari-
able of interest is a child’s reading recognition
skill measured at four two-year intervals using the
Peabody Individual Achievement Test (PIAT) Read-
ing Recognition subtest. The research question of
interest is whether a one-class model with its implicit
assumption that a single pattern of reading develop-
ment holds universally is correct, or whether there
are different types of reading recognition trajectories
among different latent groups. Besides information
on reading recognition, we have information on the
child’s gender, the mother’s age, the child’s age, the
child’s cognitive stimulation at home, and the child’s
emotional support at home. These variables will be
used as covariates. The total sample size is 405,
but only 233 children were measured at all assess-
ments. We use all 405 cases in our analysis, assuming
that the missing data is missing at random (MAR)
(see Dropouts in Longitudinal Data). For param-
eter estimation, we used the Latent GOLD and Mx
programs.

One-class to three-class models (without covari-
ates) were estimated under five types of SEM struc-
tures fitted to the within-class covariance matrices.
These SEM structures are local independence (LI),
saturated (SA), random effects (RE), autoregressive
(AR), and one factor (FA). The BIC values reported
in Table 1 indicate that two classes are needed when
using a SA, AR, or FA structure.1 As is typically the
case, working with a misspecified covariance struc-
ture (here, LI or RE), yields an overestimation of
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Table 1 Test results for the child’s reading recognition
example

Model log-likelihood # parameters BIC

A1. 1-class LI −1977 8 4003
A2. 2-class LI −1694 17 3490
A3. 3-class LI −1587 26 3330
B1. 1-class SA −1595 14 3274
B2. 2-class SA −1489 29 3151
B3. 3-class SA −1459 44 3182
C1. 1-class RE −1667 9 3375
C2. 2-class RE −1561 19 3237
C3. 3-class RE −1518 29 3211
D1. 1-class AR −1611 9 3277
D2. 2-class AR −1502 19 3118
D3. 3-class AR −1477 29 3130
E1. 1-class FA −1611 12 3294
E2. 2-class FA −1497 25 3144
E3. 3-class FA −1464 38 3157
F. D2 + covariates −1401 27 2964

the number of classes. Based on the BIC criterion,
the two-class AR model (Model D2) is the model
that is preferred. Note that this model captures the
dependence between the time-specific measures with
a single path coefficient, since the coefficients associ-
ated with the autoregressive component of the model
are assumed to be equal for each pair of adjacent time
points.

Subsequently, we included the covariates in the
model. Child’s age was assumed to directly affect
the indicators, in order to assure that the encountered
trajectories are independent of the child’s age at
the first occasion. Child’s gender, mother’s age,
child’s cognitive stimulation, and child’s emotional
support were assumed to affect class membership.
According to the BIC criterion, this model (Model
F) is much better than the model without covariates
(Model D2).

According to Model F, Class 1 contains 61%
and class 2 39% of the children. The estimated
means for class 1 are 2.21, 3.59, 4.51, and 5.22,
and for class 2, 3.00, 4.80, 5.81, and 6.67. These
results show that class 2 starts at a higher level
and grows somewhat faster than class 1. The esti-
mates of the class-specific variances are 0.15, 0.62,
0.90 and 1.31 for class 1, and 0.87, 0.79, 0.94,
and 0.76 for class 2. This indicates that the within-
class heterogeneity increases dramatically within
class 1, while it is quite stable within class 2. The

estimated values of the class-specific path coeffi-
cients are 1.05 and 0.43, respectively, indicating
that even with the incrementing variance, the auto-
correlation is larger in latent class 1 than in latent
class 2.2

The age effects on the indicators are highly
significant. As far as the covariate effects on the
log-odds of belonging to class 2 instead of class 1
are concerned, only the mother’s age is significant.
The older the mother, the higher the probability of
belonging to latent class 2.

Notes

1. BIC is defined as minus twice the log-likelihood plus
ln(N) times the number of parameters, where N is
the sample size (here 450).

2. The autocorrelation is a standardized path coefficient
that can be obtained as the product of the unstan-
dardized coefficient and the ratio of the standard
deviations of the independent and the dependent vari-
able in the equation concerned. For example, the
class 1 autocorrelation between time points 1 and
2 equals 1.05(

√
0.15/

√
0.62).
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Structural Equation
Modeling: Multilevel

Multilevel Factor Models

Suppose that for each individual i we observe a set
of R continuous responses {yri : r = 1, . . . , R}. In
standard factor analysis, we assume that the pair-
wise correlations between the responses are wholly
explained by their mutual dependency on one or more
underlying factors, also called latent variables. If
there is only one such factor, the factor model may
be written:

yri = αr + λrηi + eri , (1)

where αr is the grand mean for response r , ηi is
a factor with loading λr for response r , and eri is
a residual. We assume that both the factor and the
residuals are normally distributed. In addition, we
assume that the residuals are uncorrelated, which
follows from the assumption that the correlation
between the responses is due to their dependency on
the factor; conditional on this factor, the responses
are independent.

A further assumption of model (1) is that the
y’s are independent across individuals. Often, how-
ever, individuals will be clustered in some way, for
example, in areas or institutions, and responses for
individuals in the same cluster are potentially cor-
related. In the context of regression analysis, multi-
level or hierarchical models have been developed to
account for within-cluster correlation and to explore
between-cluster variation. Multilevel models include
cluster-level residuals or random effects that repre-
sent unobserved variables operating at the cluster
level; conditional on the random effects, individuals’
responses are assumed to be independent (see Gen-
eralized Linear Mixed Models). The factor model
has also been extended to handle clustering, lead-
ing to a multilevel factor model (see [3, 5]). In the
multilevel factor model, in addition to having resid-
uals at both the individual and cluster level as in
a multilevel regression model, there may be factors
at both levels. Suppose, for example, that academic
ability is assessed using a series of tests. An individ-
ual’s score on each of these tests is likely to depend
on his overall ability (represented by an individual-
level factor) and the ability of children in the same

school (a school-level factor). A multilevel extension
of (1) with a single factor at the cluster level may be
written:

yrij = αr + λ(1)
r η

(1)
ij + λ(2)

r η
(2)
j + urj + erij , (2)

where yrij is response r for individual i(i =
1, . . . , nj ) in cluster j (j = 1, . . . , J ), η

(1)
ij and η

(2)
j

are factors at the individual and cluster levels (levels
1 and 2 respectively) with loadings λ(1)

r and λ(2)
r ,

and urj and erij are residuals at the individual and
cluster levels. We assume η

(1)
ij ∼ N(0, σ 2

η(1)), η
(2)
j ∼

N(0, σ 2
η(2)), urj ∼ N(0, σ 2

ur) and erij ∼ N(0, σ 2
er ).

As is usual in factor analysis, constraints on either
the factor loadings or the factor variances are required
in order to fix the scale of the factors. In the example
that follows, we will constrain the first loading of
each factor to one, which constrains each factor
to have the same scale as the first response. An
alternative is to constrain the factor variances to one.
If both the factors and responses are standardized to
have unit variance, factor loadings can be interpreted
as correlations between a factor and the responses. If
responses are standardized and constraints are placed
on factor loadings rather than factor variances, we
can compute standardized loadings for a level k factor
(omitting subscripts) as λ(k)∗

r = λ(k)
r ση(k).

The model in (2) may be extended in a number of
ways. Goldstein and Browne [2] propose a general
factor model with multiple factors at each level,
correlations between factors at the same level, and
covariate effects on the responses.

An Example of Multilevel Factor Analysis

We will illustrate the application of multilevel factor
analysis using a dataset of science scores for 2439
students in 99 Hungarian schools. The data consist of
scores on four test booklets: a core booklet with com-
ponents in earth science, physics and biology, two
biology booklets and one in physics. Therefore, there
are six possible test scores (one earth science, three
biology, and two physics). Each student responds to
a maximum of five tests, the three tests in the core
booklet, plus a randomly selected pair of tests from
the other booklets. Each test is marked out of ten.
A detailed description of the data is given in [1].
All analysis presented here is based on standardized
test scores.
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Table 1 Pairwise correlations (variances on diagonal) at school and student levels

E. Sc. core Biol. core Biol. R3 Biol. R4 Phys. core Phys. R2

School level
E. Sc. core 0.16
Biol. core 0.68 0.22
Biol. R3 0.51 0.68 0.07
Biol. R4 0.46 0.67 0.46 0.23
Phys. core 0.57 0.89 0.76 0.62 0.24
Phys. R2 0.56 0.77 0.58 0.64 0.77 0.16

Student level
E. Sc. core 0.84
Biol. core 0.27 0.78
Biol. R3 0.12 0.13 0.93
Biol. R4 0.14 0.27 0.19 0.77
Phys. core 0.26 0.42 0.10 0.29 0.77
Phys. R2 0.22 0.34 0.15 0.39 0.43 0.83

Table 2 Estimates from two-level factor model with one factor at each level

Student level School level

λ(1)
r (SE) λ(1)∗

r σ 2
er (SE) λ(2)

r (SE) λ(2)∗
r σ 2

ur (SE)

E. Sc. core 1a 0.24 0.712 (0.023) 1a 0.36 0.098 (0.021)
Biol. core 1.546 (0.113) 0.37 0.484 (0.022) 2.093 (0.593) 0.75 0.015 (0.011)
Biol. R3 0.583 (0.103) 0.14 0.892 (0.039) 0.886 (0.304) 0.32 0.033 (0.017)
Biol. R4 1.110 (0.115) 0.27 0.615 (0.030) 1.498 (0.466) 0.53 0.129 (0.029)
Phys. core 1.665 (0.128) 0.40 0.422 (0.022) 2.054 (0.600) 0.73 0.036 (0.013)
Phys. R2 1.558 (0.133) 0.37 0.526 (0.030) 1.508 (0.453) 0.54 0.057 (0.018)

aConstrained parameter.

Table 1 shows the correlations between each pair
of standardized test scores, estimated from a multi-
variate multilevel model with random effects at the
school and student levels. Also shown are the vari-
ances at each level; as is usual with attainment data,
the within-school (between-student) variance is sub-
stantially larger than the between-school variance.
The correlations at the student level are fairly low.
Goldstein [1] suggests that this is due to the fact that
there are few items in each test so the student-level
reliability is low. Correlations at the school level (i.e.,
between the school means) are moderate to high, sug-
gesting that the correlations at this level might be well
explained by a single factor.

The results from a two-level factor model, with a
single factor at each level, are presented in Table 2.
The factor variances at the student and school levels
are estimated as 0.127(SE = 0.016) and 0.057(SE =
0.024) respectively. As at each level the standardized

loadings have the same sign, we interpret the factors
as student-level and school-level measures of over-
all attainment in science. We note, however, that the
student-level loadings are low, which is a result of the
weak correlations between the test scores at this level
(Table 1). Biology R3 has a particularly low loading;
the poor fit for this test is reflected in a residual vari-
ance estimate (0.89), which is close to the estimate
obtained from the multivariate model (0.93). Thus,
only a small amount of the variance in the scores for
this biology test is explained by the student-level fac-
tor, that is, the test has a low communality. At the
school level the factor loadings are higher, and the
school-level residual variances from the factor model
are substantially lower than those from the multi-
variate model. The weak correlations between the
test scores and the student-level factor suggest that
another factor at this level may improve the model.
When a second student-level factor is added to the
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model, however, the loadings on one factor have very
large standard errors (results not shown). Goldstein
and Browne [2] consider an alternative specification
with two correlated student-level factors, but we do
not pursue this here. In their model, the loadings for
physics on one factor are constrained to zero, and on
the other factor, zero constraints are placed on the
loadings for all tests except physics.

Multilevel Structural Equation Models

While it is possible to include covariates in a multi-
level factor model (see [2]), we are often interested
in the effects of covariates on the underlying fac-
tors rather than on each response. We may also
wish to allow a factor to depend on other factors.
A structural equation model (SEM) consists of two
components: (a) a measurement model in which the
multivariate responses are assumed to depend on fac-
tors (and possibly covariates), and (b) a structural
model in which factors depend on covariates and pos-
sibly other factors.

A simple multilevel SEM is:

yrij = αr + λ(1)
r η

(1)
ij + urj + erij (3)

η
(1)
ij = β0 + β1xij + uj + eij . (4)

In the structural model (4), the individual-level
factor is assumed to be a linear function of a covariate
xij and cluster-level random effects uj , which are
assumed to be normally distributed with variance
σ 2

u . Individual-level residuals eij are assumed to be
normally distributed with variance σ 2

e . To fix the scale

of η
(1)
ij , the intercept in the structural model, β0, is

constrained to zero and one of the factor loadings is
constrained to one.

The model defined by (3) and (4) is a mul-
tilevel version of what is commonly referred to
as a multiple indicators multiple causes (MIMIC)
model. If we substitute (4) in (3), we obtain a
special case of the multilevel factor model with
covariates, in which uj is a cluster-level factor
with loadings equal to the individual-level fac-
tor loadings. If we believe that the factor struc-
ture differs across levels, a cluster-level factor can
be added to the measurement model (3) and uj

removed from (4). A further equation could then be
added to the structural model to allow the cluster-
level factor to depend on cluster-level covariates.
Another possible extension is to allow for depen-
dency between factors, either at the same or different
levels.

In the MIMIC model x is assumed to have
an indirect effect on the y’s through the factor.
The effect of x on yr is λ(1)

r β1. If instead we
believe that x has a direct effect on the y’s, we
can include x as an explanatory variable in the
measurement model. A model in which the same
covariate affects both the y’s and a factor is not
identified (see [4] for a demonstration of this for a
single-level SEM).

An Example of Multilevel Structural
Equation Modeling

We illustrate the use of multilevel SEM by applying
the MIMIC model of (3) and (4) to the Hungarian

Table 3 Estimates from a two-level MIMIC model

Measurement model λ(1)
r (SE) σ 2

er (SE) σ 2
ur (SE)

E. Sc. core 1a 0.717 (0.023) 0.095 (0.019)
Biol. core 1.584 (0.095) 0.490 (0.021) 0.023 (0.011)
Biol. R3 0.628 (0.083) 0.892 (0.039) 0.033 (0.017)
Biol. R4 1.150 (0.100) 0.613 (0.030) 0.128 (0.028)
Phys. core 1.727 (0.109) 0.406 (0.021) 0.033 (0.012)
Phys. R2 1.491 (0.105) 0.537 (0.029) 0.053 (0.018)

Structural model Estimate (SE)

β1 −0.133 (0.018)
σ 2

e 0.117 (0.013)
σ 2

u 0.077 (0.015)

aConstrained parameter.
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science data. We consider one covariate, gender,
which is coded 1 for girls and 0 for boys. The
results are shown in Table 3. The parameter estimates
for the measurement model are similar to those
obtained for the factor model (Table 2). The results
from the structural model show that girls have
significantly lower overall science attainment (i.e.,
lower values on η

(1)
ij ) than boys. A standardized

coefficient may be calculated as β∗
1 = β1/σe. In

our example β̂∗
1 = −0.39, which is interpreted as

the difference in standard deviation units between
girls’ and boys’ attainment, after adjusting for school
effects (uj ). We may also compute the proportion of
the residual variance in overall attainment that is due
to differences between schools, which in this case is
0.077/(0.077 + 0.117) = 0.40.

Estimation and Software

A multilevel factor model may be estimated in
several ways using various software packages.
A simple estimation procedure, described in [1],
involves fitting a multivariate multilevel model to
the responses to obtain estimates of the within-
cluster and between-cluster covariance matrices,
possibly adjusting for covariate effects. These
matrices are then analyzed using any SEM software
(see Structural Equation Modeling: Software).
Muthén [6] describes another two-stage method,
implemented in MPlus (www.statmodel.com),
which involves analyzing the within-cluster and
between-cluster covariances simultaneously using
procedures for multigroup analysis. Alternatively,
estimation may be carried out in a single
step using Markov chain Monte Carlo (MCMC)
methods (see [2]), in MLwiN (www.mlwin.com) or
WinBUGS (www.mrc-bsu.cam.ac.uk/bugs/).

Multilevel structural equation models may also be
estimated using Muthén’s two-stage method. Simulta-
neous analysis of the within-covariance and between-
covariance matrices allows cross-level constraints to
be introduced. For example, as described above, the
MIMIC model is a special case of a general fac-
tor model with factor loadings constrained to be
equal across levels. For very general models, how-
ever, a one-stage approach may be required; examples
include random coefficient models and models for
mixed response types where multivariate normality
cannot be assumed (see [7] for further discussion of

the limitations of two-stage procedures). For these
and other general SEMs, Rabe–Hesketh et al. [7]
propose maximum likelihood estimation, which has
been implemented in gllamm (www.gllamm.org), a
set of Stata programs. An alternative is to use Monte
Carlo Markov Chain methods, which are available in
WinBUGS (see Markov Chain Monte Carlo and
Bayesian Statistics).

A common problem in the analysis of multivariate
responses is missing data. For example, in the
Hungarian study, responses are missing by design
as each student was tested on the core booklet plus
two randomly selected booklets from the remaining
three. The estimation procedures and software for
multilevel SEMs described above can handle missing
data, under a ‘missing at random’ assumption.

In the analysis of the Hungarian science data, we
used MLwiN to estimate the multilevel factor model
and WinBUGS to estimate the multilevel MIMIC
model. The parameter estimates and standard errors
presented in Tables 2 and 3 are the means and
standard errors from 20 000 samples, with a burn-in
of 2000 samples.

Further Topics

We have illustrated the application and interpreta-
tion of simple multilevel factor models and SEMs in
analyses of the Hungarian science data. In [2], exten-
sions to more than one factor at the same level and
correlated factors are considered. Other generaliza-
tions include allowing for additional levels, which
may be hierarchical or cross-classified with another
level, and random coefficients. For instance, in the
science attainment example, schools may be nested
in areas and the effect of gender on attainment may
vary across schools and/or areas.

We have restricted our focus to models for mul-
tilevel continuous responses. In many applications,
however, responses will be categorical or a mix-
ture of different types. For a discussion of multilevel
SEMs for binary, polytomous, or mixed responses,
see [7] and Structural Equation Modeling: Cate-
gorical Variables.

We have not considered multilevel structures that
arise from longitudinal studies, where the level one
units are repeated measures nested within individuals
at level two. (See Multilevel and SEM Approaches
to Growth Curve Modeling for a discussion of
multilevel SEMs for longitudinal data.)
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Structural Equation
Modeling: Nonstandard
Cases

A statistical model is only valid when certain assump-
tions are met. The assumptions of structural equa-
tion models (SEM) can be roughly divided into
two types: structural and distributional [22]. Struc-
tural assumptions demand that no intended (observed
or theoretical) variables are omitted from the model
under consideration, and that no misspecifications
are made in the equations underlying the proposed
model. Distributional assumptions include linearity
of relationships, completeness of data, multivariate
normality (see Multivariate Normality Tests), and
adequate sample size. With real data obtained under
typical data gathering situations, violations of these
distributional assumptions are often inevitable. So,
two general questions can be asked about these distri-
butional assumptions: (a) What are the consequences
of violating them? (b) What strategies should be used
to cope with them? In this article, each of these ques-
tions is addressed.

Linearity of Relationships

Not all relationships examined in the social and
behavioral sciences are linear. Fortunately, various
procedures are available to test such nonlinearities.
Kenny and Judd [11] formulated the first nonlin-
ear SEM model. Their approach used the product
of observed variables to define interaction effects
in latent variables. The equation y = α + γ1ξ1 +
γ2ξ2 + γ3ξ1ξ2 + ζ was used to describe both the
direct effects of ξ1 and ξ2 on y and the interactive
effect ξ1ξ2. To model the interaction of ξ1 and ξ2, mul-
tiplicative values of the interactive effect were cre-
ated. Jöreskog and Yang [10] expanded the approach
and illustrated how, even with more elaborate models,
a one-product term variable is sufficient to identify all
the parameters in the model. But even this approach
is difficult to apply in practice due to the compli-
cated nonlinear constraints that must be specified,
and the need for large samples. If the interacting
variable is discrete (e.g., gender), or can be made
so by forming some data groupings, a multisample

approach can be easily applied (see Factor Anal-
ysis: Multiple Groups). Based on the multisample
approach, the interaction effects become apparent as
differences in the parameter estimates when the same
model is applied to the grouped sets of data created.
Jöreskog [8] recently introduced the latent variable
score approach to test interaction effects. The factor
score approach does not require the creation of prod-
uct variables or the sorting of the data based on a
categorization of the potential interacting variables.
The approach can also be easily implemented using
the PRELIS2 and SIMPLIS programs [9, 25] (see
Structural Equation Modeling: Software). Various
chapters in Schumacker and Marcoulides [26] discuss
both the technical issues and the different methods
of estimation available for dealing with nonlinear
relationships.

Multivariate Normality

Four estimation methods are available in most SEM
programs: Unweighted Least Squares (ULS), Gener-
alized Least Squares (GLS), Asymptotically Distribu-
tion Free (ADF) – also called Weighted Least Squares
(WLS) (see Least Squares Estimation), and Maxi-
mum Likelihood (ML). ML and GLS are used when
data are normally distributed. The simplest way to
examine normality is to consider univariate skewness
and kurtosis. A measure of multivariate skewness
and kurtosis is called Mardia’s coefficient and its nor-
malized estimate [4]. For normally distributed data,
Mardia’s coefficient will be close to zero, and its
normalized estimate nonsignificant. Another method
for judging bivariate normality is based on a plot of
the χ2 percentiles and the mean distance measure of
individual observations. If the distribution is normal,
the plot of the χ2 percentiles and the mean distance
measure should resemble a straight line [13, 19].

Research has shown that the ML and GLS meth-
ods can be used even with minor deviations from
normality [20] – the parameter estimates generally
remain valid, although the standard errors may not.
With more serious deviations the ADF method can be
used as long as the sample size is large. With smaller
sample sizes, the Satorra-Bentler robust method of
parameter estimation (a special type of ADF method)
should be used.

Another alternative to handling nonnormal data is
to make the data more ‘normal-looking’ by apply-
ing a transformation on the raw data. Numerous



2 Structural Equation Modeling: Nonstandard Cases

transformation methods have been proposed in the
literature. The most popular are square root transfor-
mations, power transformations, reciprocal transfor-
mations, and logarithmic transformations.

The presence of categorical variables may also
cause nonnormality. Muthén [14] developed a cate-
gorical and continuous variable methodology (imple-
mented in Mplus (see Structural Equation Mod-
eling: Software) [16]), which basically permits the
analysis of any combination of dichotomous, ordered
polytomous, and measured variables. With data stem-
ming from designs with only a few possible response
categories (e.g., ‘Very Satisfied’, ‘Somewhat Satis-
fied’, and ‘Not Satisfied’), the ADF method can also
be used with polychoric (for assessing the degree
of association between ordinal variables) or polyse-
rial (for assessing the degree of association between
an ordinal variable and a continuous variable) cor-
relations. Ignoring the categorical attributes of data
obtained from such items can lead to biased results.
Fortunately, research has shown that when there are
five or more response categories (and the distribu-
tion of data is normal) the problems from disregard-
ing the categorical nature of responses are likely to
be minimized.

Missing Data

Data sets with missing values are commonly encoun-
tered. Missing data are often dealt with by ad hoc
procedures (e.g., listwise deletion, pairwise deletion,
mean substitution) that have no theoretical justifi-
cation, and can lead to biased estimates. But there
are a number of alternative theory-based proce-
dures that offer a wide range of good data analytic
options. In particular, three ML estimation algorithms
are available: (a) the multigroup approach [1, 15],
which can be implemented in most existing SEM
software; (b) full information maximum likelihood
(FIML) estimation, which is available in LISREL [9],
EQS6 [5], AMOS [2], Mplus [16], and Mx [18]; and
(c) the Expectation Maximization (EM) algorithm,
which is available in SPSS Missing Values Anal-
ysis, EMCOV [6], and NORM [24]. All the avail-
able procedures assume that the missing values are
either missing completely at random (MCAR) or
missing at random (MAR) (see Dropouts in Lon-
gitudinal Data; Dropouts in Longitudinal Studies:
Methods of Analysis). Under MCAR, the proba-
bility of a missing response is independent of both

the observed and unobserved data. Under MAR, the
probability of a missing response depends only on the
observed responses. The MCAR and MAR conditions
are also often described as ignorable nonresponses.
But sometimes respondents and nonrespondents with
the same observed data values differ systematically
with respect to the missing values for nonrespon-
dents. Such cases are often called nonignorable non-
responses or data missing not at random (MNAR),
and, although there is usually no correction method
available, sometimes, a case-specific general model-
ing approach might work.

To date, the FIML method has been shown to yield
unbiased estimates under both MCAR and MAR
scenarios, including data with mild deviations from
multivariate normality. This suggests that FIML can
be used in a variety of empirical settings with missing
data. Multiple imputation is also becoming a popu-
lar method to deal with missing data. Multiple data
sets are created with plausible values replacing the
missing data, and a complete data set is subsequently
analyzed [7]. For dealing with nonnormal missing
data, the likelihood-based approaches developed by
Arminger and Sobel [3], and Yuan and Bentler [27]
may work better.

Outliers

Real data sets almost always include outliers. Some-
times, outliers are harmless and do not change the
results, regardless of whether they are included or
deleted from the analyses. But, sometimes, they
have much influence on the results, particularly on
parameter estimates. Assuming outliers can be cor-
rectly identified, deleting them is often the preferred
approach. Another approach is to fit the model to the
data without the outliers and inspect the results to
examine the impact of including them in the analysis.

Power and Sample Size Requirements

A common modeling concern involves using the
appropriate sample size. Although various sample
size rules-of-thumb have been proposed in the lit-
erature (e.g., 5–10 observations per parameter, 50
observations per variable, 10 times the number of
free model parameters), no one rule can be applied
to all situations encountered. This is because the sam-
ple size needed for a study depends on many factors
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including the complexity of the model, distribution
of the variables, amount of missing data, reliabil-
ity of the variables, and strength of the relationships
among the variables. Standard errors are also partic-
ularly sensitive to sample size issues. For example,
if the standard errors in a proposed model are over-
estimated, significant effects can easily be missed.
In contrast, if standard errors are underestimated,
significant effects can be overemphasized. As a con-
sequence, proactive Monte Carlo analyses should be
used to help determine the sample size needed to
achieve accurate Type I error control and parame-
ter estimation precision. The methods introduced by
Satorra and Saris [21, 23], and MacCallum, Brown,
and Sugawara [12] can be used to assess the sam-
ple size in terms of power of the goodness of fit of
the model. Recently, Muthén and Muthén [17] illus-
trated how Mplus can be used to conduct a Monte
Carlo study to help decide on sample size and deter-
mine power.
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Structural Equation
Modeling: Nontraditional
Alternatives

Introduction

Within the broad family of multivariate analytical
techniques (see Multivariate Analysis: Overview),
the boundaries that associate similar techniques
or separate nominally different techniques are not
always clear. Structural equation modeling (SEM)
can be considered a generalization of a wide class
of multivariate modeling techniques. Nevertheless,
there are a variety of techniques which, in compari-
son to conventional SEM, are similar enough on some
dimensions but different enough in procedure to be
labeled variant SEM methods. (Not all of the creators
of these methods would appreciate this characteriza-
tion.) Each of these methods addresses one or more
of the problems which can stymie or complicate con-
ventional SEM analysis, so SEM users ought to be
familiar with these alternative techniques. The aim
here is to briefly introduce some of these techniques
and give SEM users some sense of when these meth-
ods might be employed instead of, or in addition to,
conventional SEM techniques.

Partial Least Squares

Partial Least Squares (PLS) is now the name for
a family of related methods. For the most part,
the essential distinction between these methods and
conventional SEM is the same as the distinction
between principal component analysis and factor
analysis. Indeed, PLS can be thought of as ‘a
constrained form of component modeling’ [5], as
opposed to constrained modeling of common factors.
The strengths and weaknesses of PLS versus SEM
largely follow from this distinction.

Origin

PLS was invented by Herman Wold, in the 1960s,
under the inspiration of Karl Jöreskog’s pioneering
work in SEM. Wold, a renowned econometrician (he
invented the term, ‘recursive model’, for example)

was Jöreskog’s mentor. Wold’s intent was to develop
the same kind of structural analysis technique but
starting from the basis of principal component analy-
sis. In particular, reacting to SEM’s requirements for
large samples, multivariate normality, and substan-
tial prior theory development, Wold aimed to develop
a structural modeling technique that was compati-
ble with small sample size, arbitrary distributions,
and what he termed weak theory. Like many terms
associated with PLS, the meaning of ‘weak theory’
is not precisely clear. McDonald [12] strongly criti-
cized the methodology for the ad hoc nature of its
methods.

Goals

Unlike conventional SEM, PLS does not aim to
test a model in the sense of evaluating discrepan-
cies between empirical and model-implied covariance
matrices. Eschewing assumptions about data distribu-
tions or even about sample size, PLS does not pro-
duce an overall test statistic like conventional SEM’s
χ2. Instead, the stated aim of PLS is to maximize
prediction of (that is, to minimize the unexplained
portion of) dependent variables, especially dependent
observed variables. Indeed, PLS analysis will show
smaller residual variances, but larger residual covari-
ances, than conventional SEM analysis of the same
data. PLS analysis ‘develops by a dialog between the
investigator and the computer’ [20] – users estimate
models and make revisions until they are satisfied
with the result.

Estimation of model parameters is purely a
byproduct of this optimization effort. Unlike con-
ventional SEM, PLS parameter estimates are not
generally consistent, in the sense of converging on
population values as sample size approaches infin-
ity. Instead, PLS claims the property of ‘consistency
at large’ [20]. PLS parameter estimates converge on
population values as both sample size and the num-
ber of observed variables per construct both approach
infinity. In application, PLS tends to overestimate
structural parameters (known here as ‘inner rela-
tions’) and underestimate measurement parameters
(known here as ‘outer relations’) [20]. The literature
argues that this is a reasonable trade, giving up the
ability to accurately estimate essentially hypothetical
model parameters [7] for an improved ability to pre-
dict the data; in other words, it is a focus on the ends
rather than the means.
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Inputs

At a minimum, Partial Least Squares can be con-
ducted on the basis of a correlation matrix and a
structure for relations between the variables. Ideally,
the user will have the raw data. Since PLS does
not rely on distributional assumptions and asymp-
totic properties, standard errors for model parameters
are estimated via jackknifing (randomly omitting
data points and reestimating model parameters, and
observing the empirical variation in the parameter
estimates), while model quality is evaluated, in part,
through a blindfolding technique (repeatedly estimat-
ing the model parameters with random data points
omitted, each time using those parameter estimates
to predict the values of the missing data points, and
observing the accuracy of these estimates) known as
the Stone–Geisser test [7]. Wold [20] specified that
the data could be ‘scalar, ordinal, or interval’.

Because PLS proceeds in a stepwise fashion
through a series of regressions, rather than attempt-
ing to estimate all parameters simultaneously, and
because it does not rely on distributional assump-
tions, sample size requirements for PLS are said to
be substantially lower than those for conventional
SEM [3], but there is little specific guidance. On the
one hand, Wold [20] asserted that PLS comes into
its own in situations that are ‘data-rich but theory-
primitive’, and the ‘consistency at large’ property
suggests that larger sample size will improve results.
Chin [3], borrowing a regression heuristic, suggests
finding the larger of either (a) the largest number of
arrows from observed variables pointing to any one
block variable (see below), or (b) the largest number
of arrows from other block variables pointing to any
one block variable, and multiplying by 10.

While PLS does not focus on model testing in
the same way as conventional SEM, PLS users are
still required to specify an initial model or structure
for the variables. PLS is explicitly not a model-
finding tool like exploratory factor analysis [5] (see
Factor Analysis: Exploratory). Each observed vari-
able is uniquely associated with one block variable.
These block variables serve the same role in a PLS
model as common factor latent variables do in SEM.
However, block variables in PLS are not latent vari-
ables [12] – they are weighted composites of the
associated observed variables, and hence observable
themselves. This means that the block variables share
in all aspects of the observed variables, including ran-
dom error, hence the bias in parameter estimation as

compared to conventional SEM. But it also means
that the PLS user can always assign an unambigu-
ous score for each block variable for each case. In
SEM, because the latent variables are not composites
of the observed variables, empirical ‘factor scores’
(expressions of a latent variable in terms of the
observed variables) can never be more than approxi-
mate, nor is there one clearly best method for deriving
these scores.

Besides specifying which observed variables are
associated with which block, the user must also spec-
ify how each set of observed variables is associated
with the block variable. The user can choose to
regress the observed variables on the block variable
or to regress the block variable on the observed vari-
ables. If the first choice is made for all blocks, this
is known as ‘Mode A’. If the second choice is made
for all blocks, this is known as ‘Mode B’, while mak-
ing different choices for different blocks is known as
‘Mode C’ (see Figure 1). Users cannot make differ-
ent choices for different variables within a block, but
it is expected that users will try estimating the model
with different specifications in search of a satisfac-
tory outcome.

The best-known implementations of PLS are lim-
ited to recursive structural models. Relations between
block variables may not include reciprocal relations,
feedback loops, or correlated errors between block

J K L

Mode A

J K L

J K L

Mode B

Mode C

Figure 1 Three modes for estimating relations between
observed variables and block variables in partial least
squares
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variables. Hui [8] developed a procedure and pro-
gram for PLS modeling of nonrecursive models (see
Recursive Models), but it seems to have been lit-
tle used.

Execution

PLS parameter estimation proceeds iteratively. Each
iteration involves three main steps [20]. The first step
establishes or updates the value of each block vari-
able as a weighted sum of the measures in the block.
Weights are standardized to yield a block variable
with a variance of 1. The second step updates esti-
mates of the ‘inner relations’ and ‘outer relations’
parameters. The ‘inner relations’ path weights are
updated through least squares regressions, as indi-
cated by the user’s model. For the ‘outer relations’
part of this step, each block variable is replaced by a
weighted sum of all other block variables to which it
is directly connected. Wold [20] specified that these
sums were weighted simply by the sign of the cor-
relation between the two blocks – hence each block
variable is replaced by a ‘sign-weighted sum’. For
example, the J block variable in Figure 1 would
be replaced by the K block variable, weighted by
the sign of the correlation between J and K . The
K block variable would be replaced by a sum of
the J and L block variables, each weighted by the
signs of the (J, K ) and (K, L) correlations. From
here, the procedure for estimating the ‘outer relations’
weights depends on the choice of mode. For Mode
A blocks, each observed variable in a given block
is regressed on the sign-weighted composite for its
block, in a set of independent bivariate regressions
(see Multivariate Multiple Regression). For Mode
B blocks, the sign-weighted composite is regressed on
all the observed variables in the block, in one multi-
ple regression. Then the next iteration begins by once
again computing the values of the block variables as
weighted sums of their observed variables. Estimation
iterates until the change in values becomes smaller
than some convergence criterion. Chin [3] notes that
while different PLS incarnations have used slightly
different weighting schemes, the impact of those dif-
ferences has never been substantial.

Output and Evaluation

PLS produces estimates of path weights, plus R2

calculations for dependent variables and a block

correlation matrix. For Mode A blocks, PLS also
produces loadings, which are approximations to the
loadings one would derive from a true factor model.
Given raw data, PLS will also produce jackknifed
standard errors and a value for the Stone–Geisser
test of ‘predictive relevance’.

Falk and Miller [5] cautiously offer a number
of rules of thumb for evaluating the quality of the
model resulting from a PLS analysis. At the end,
after possible deletions, there should still be three
measures per block. Loadings, where present, should
be greater than 0.55, so that the communalities
(loadings squared) should be greater than 0.30. Every
predictor should explain at least 1.5% of the variance
of every variable that it predicts. R2 values should
be above 0.10, and the average R2 values across all
dependent block variables should be much higher.

PLS Variants and PLS Software

Again, PLS describes a family of techniques rather
than just one. Each step of the PLS framework is sim-
ple in concept and execution, so the approach invites
refinement and experimentation. For example, Svante
Wold, Herman Wold’s son, applied a form of PLS
to chemometrics (loosely, the application of statistics
to chemistry), as a tool for understanding the com-
ponents of physical substances. As a result, the Proc
PLS procedure currently included in the SAS package
is designed for this chemometrics form of PLS, rather
than for Herman Wold’s PLS. There are undoubt-
edly many proprietary variations of the algorithm and
many proprietary software packages being used com-
mercially. The most widely used PLS software must
surely be Lohmöller’s [11] LVPLS. The program is
not especially user-friendly, as it has not benefited
from regular updates. Lohmöller’s program and a user
manual are distributed, free, by the Jefferson Psy-
chometrics Laboratory at the University of Virginia
(http://kiptron.psyc.virginia.edu/dis
claimer.html). Also in circulation is a beta ver-
sion of Chin’s PLSGraph [4], a PLS program with a
graphical user interface.

Tetrad

In many ways, Tetrad represents the polar oppo-
site of PLS. There is a single Tetrad methodology,
although that methodology incorporates many tools
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and algorithms. The rationale behind the method-
ology is fully specified and logically impeccable,
and the methodology aims for optimality in well-
understood terms. Going beyond PLS, which was
designed to enable analysis in cases where theory is
weak, the creators of Tetrad regard theory as largely
irrelevant: ‘In the social sciences, there is a great
deal of talk about the importance of “theory” in con-
structing causal explanations of bodies of data. . . .
In many of these cases the necessity of theory is
badly exaggerated.’ [17]. Tetrad is a tool for search-
ing out plausible causal inferences from correlational
data, within constraints. Tetrad and related tools have
found increasing application by organizations facing
a surplus of data and a limited supply of analysts.
These tools and their application fall into a field
known as ‘knowledge discovery in databases’ or ‘data
mining’ [6]. Academic researchers may turn to such
tools when they gain access to secondary commercial
data and want to learn about structures underlying
that data. Extensive online resources are available
from the Tetrad Project at Carnegie Mellon University
(http://www.phil.cmu.edu/projects/
tetrad/) and from Pearl (http://bayes.cs.
ucla.edu/jp home.html and http://bayes.
cs.ucla.edu/BOOK-2K/index.html).

Origin

Tetrad was developed primarily by Peter Spirtes,
Clark Glymour, and Richard Scheines [17], a group
of philosophers at Carnegie-Mellon University who
wanted to understand how human beings develop
causal reasoning about events. Prevailing philoso-
phy lays out rigorous conditions which must be met
before one can defensibly infer that A causes B.
Human beings make causal inferences every day
without bothering to check these conditions – some-
times erroneously, but often correctly. From this
basis, the philosophers moved on to study the con-
ditions under which it was possible to make sound
causal inferences, and the kinds of procedures that
would tend to produce the most plausible causal infer-
ences from a given body of data. Their research, in
parallel with contributions by Judea Pearl [14] and
others, produced algorithms which codified proce-
dures for quickly and automatically uncovering pos-
sible causal structures that are consistent with a given
data set. The Tetrad program gives researchers access
to these algorithms.

Goals

As noted above, the explicit aim of Tetrad is
to uncover plausible inferences about the causal
structure that defines relationships among a set of
variables. Tetrad’s creators deal with causality in
a straightforward way. By contrast, conventional
SEM deals gingerly with causal claims, having
hardly recovered from Ling’s [10] caustic review of
Kenny’s [9] early SEM text, Correlation and Causal-
ity. Today, any mention of the phrase, ‘causal model-
ing’ (an early, alternate name for structural equation
modeling), is almost sure to be followed by a dis-
claimer about the near impossibility of making causal
inferences from correlational data alone. SEM users,
as well as the researchers associated with the Tetrad
program, are well aware of the typically nonex-
perimental nature of their data, and of the various
potential threats to the validity of causal inference
from such data. Nevertheless, the aim of Tetrad is
to determine which causal inferences are consistent
with a given data set. As Pearl [14] notes, however,
the defining attribute of the resulting inferences is
not ‘truth’ but ‘plausibility’: the approach ‘identifies
the mechanisms we can plausibly infer from non-
experimental data; moreover, it guarantees that any
alternative mechanism will be less trustworthy than
the one inferred because the alternative would require
more contrived, hindsighted adjustment of parameters
(i.e., functions) to fit the data’.

Inputs

Tetrad proceeds by analysis of an empirical correla-
tion matrix. Sampling is a key issue for researchers
in this area. Both [14] and [18] devote considerable
attention to the problem of heterogeneity – of a given
data set including representative of different popula-
tions. Even if all of the represented populations con-
form to the same structural equation model, but with
different population values for some parameters, the
combined data set may fit poorly to that same model,
with the parameters freely estimated [13]. This phe-
nomenon, discussed in this literature under the title,
‘Simpson’s Paradox’ (see Paradoxes), explains why
researchers must take care to ensure that data are
sampled only from homogeneous populations. As
noted below, Tetrad does not actually estimate model
parameters, so sample size need only be large enough
to stably estimate the correlation matrix. Still, larger
samples do improve precision.



Structural Equation Modeling: Nontraditional Alternatives 5

Unlike conventional SEM, however, users of
Tetrad are not expected to have a full theoretical
model, or any prior knowledge about the causal
structure. Still, Tetrad does exploit prior knowledge.
Researchers can impose constraints on the relations
between variables – requiring either that a certain
relation must exist, or that it must not exist – whether
those constraints arise from broad theory or from
logical considerations related to such factors as time
order. Thus, one might allow ‘parent’s occupation’ to
have a causal effect on ‘child’s occupation’, but might
disallow a relationship in the opposite direction.
Tetrad does not accommodate nonrecursive relation-
ships – the authors view such structures as incompat-
ible with common sense notions of cause and effect.

Far more important than broad ‘theory’, for the
Tetrad user, are logical analysis and the set of
assumptions which they are willing to make. One
key assumption involves ‘causal sufficiency’ [17]. A
set of observed variables is causally sufficient if the
causal structure of those variables can be explained
purely by relations among those variables them-
selves. If a set of observed variables are causally
sufficient, then there literally are no latent or unob-
served variables involved in a Tetrad analysis. If the
researcher does not believe that the set of variables
is causally sufficient, they can employ Tetrad algo-
rithms that search for latent variables – for variables
outside the data set that explain relations between the
observed variables.

Thus, besides providing the correlation matrix, the
researcher faces two key choices. First, will they
assume causal sufficiency, or not? The assumption
greatly simplifies and speeds execution, but a false
assumption here invalidates the analysis. In addition,
the researcher must select an alpha or Type I error
probability. Two key tools for model selection are
the tetrad and the partial correlation. A tetrad is a
function of the covariances or correlations of four
variables:

τABCD = σAB σCD − σAC σBD (1)

A tetrad that is equal to zero is called a vanishing
tetrad. Different model structures may or may not
imply different sets of vanishing tetrads. For example,
if four observed variables are all reflective measures
of the same common factor (see Figure 2), then all
tetrads involving the four factors vanish. But even if
one of the four variables actually measures a different
factor, all tetrads still vanish [17].

All tetrads vanish

Figure 2 Two measurement models with different sub-
stantive implications, yet both implying that all tetrads
vanish

The partial correlation of variables B and C, given
A, is:

ρBC .A = ρBC − ρAB × ρAC√
1 − ρ2

AB

√
1 − ρ2

AC

(2)

A zero partial correlation suggests no direct rela-
tionship between two variables. For example, for
three mutually correlated variables A, B, and C,
ρBC .A = 0 suggests either that A is direct or indi-
rect predictor of both B and C or that A mediates
the relationship between B and C. By contrast, if A

and B predict C, then ρAB .C �= 0, even if A and B

are uncorrelated [17].
When the program is determining whether tetrads

and partial correlations are equal to 0, it must take
account of random sampling error. A smaller value
for alpha, such as .05, will mean wider confidence
intervals when Tetrad is determining whether a cer-
tain quantity is equal to 0. As a result, the program
will identify more potential restrictions which can
be imposed, and will produce a more parsimonious
and determinate model. A larger value, such as .10
or greater, will lead to fewer ‘nonzero’ results, pro-
ducing a less determinate and more saturated model,
reflecting greater uncertainty for any given sam-
ple size.

Execution

Tetrad’s method of analysis is based on a rigorous
logic which is detailed at length in [14] and [17],
and elsewhere. In essence, these authors argue that
if a certain causal structure actually underlies a data
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set, then the vanishing (and nonvanishing) tetrads
and zero (and nonzero) partial correlations and other
correlational patterns which are logically implied by
that structure will be present in the data, within
random sampling error. Only those patterns that
are implied by the true underlying structure should
be present. Certainly, there may be multiple causal
structures that are consistent with a certain data
set, but some of these may be ruled out by the
constraints imposed by the researcher. (The Tetrad
program is designed to identify all causal structures
that are compatible with both the data and the prior
constraints.) Therefore, if a researcher determines
which correlational patterns are present, and which
causal structures are consistent with the empirical
evidence and with prior constraints, then, under
assumptions, the most plausible causal inference is
that those compatible causal structures are, in fact,
the structures that underlie the data.

Tetrad uses algorithms to comb through all of the
available information – correlations, partial correla-
tions, tetrads, and prior constraints – in its search
for plausible causal structures. These algorithms have
emerged from the authors’ extensive research. Differ-
ent algorithms are employed if the researcher does not
embrace the causal sufficiency assumption. Some of
these algorithms begin with an unordered set of vari-
ables, where the initial assumption is that the set of
variables are merely correlated, while others require
a prior ordering of variables. The ideal end-state is
a model of relations between the variables that is
fully directed, where the observed data are explained
entirely by the causal effects of some variables upon
other variables. In any given case, however, it may
not be possible to achieve such a result given the
limitations of the data and the prior constraints. The
algorithms proceed by changing mere correlations
into causal paths, or by deleting direct relationships
between pairs of variables, until the system is as fully
ordered as possible.

Outputs

The chief output of Tetrad analysis is information
about what sorts of constraints on relations between
variables can be imposed based on the data. Put
another way, Tetrad identifies those permitted causal
structures that are most plausible. If causal sufficiency
is not assumed, Tetrad also indicates what sorts of
latent variables are implied by its analysis, and which

observed variables are affected. Tetrad also identifies
situations where it cannot resolve the direction of
causal influence between two variables.

Unlike conventional SEM or even PLS, Tetrad
produces no parameter estimates at all. Computation
of tetrads and partial correlations does not require
parameter estimates, so Tetrad does not require
them. Users who want parameter estimates, stan-
dard errors, and fit indices, and so forth might esti-
mate the model(s) recommended by Tetrad analysis
using some conventional SEM package. By contrast,
researchers who encounter poor fit when testing a
model using a conventional SEM package might con-
sider using Tetrad to determine which structures are
actually consistent with their data. Simulation stud-
ies [18] suggest researchers are more likely to recover
a true causal structure by using Tetrad’s search algo-
rithms, which may return multiple plausible models,
than they will by using the model modification tools
in conventional SEM software.

Confirmatory Tetrad Analysis

While Partial Least Squares and Tetrad are probably
the two best-known methodologies in this class, oth-
ers are certainly worth mentioning. Bollen and Ting
([1, 2, 19]) describe a technique called confirmatory
tetrad analysis (CTA). Unlike Tetrad, CTA aims to
test whether a prespecified model is consistent with
a data set. The test proceeds by determining, from
the structure of the model, which tetrads ought to
vanish, and then empirically determining whether or
not those tetrads are actually zero. As compared to
SEM, CTA has two special virtues. First, as noted
above, tetrads are computed directly from the corre-
lation matrix, without estimating model parameters.
This is a virtue in situations where the model in
question is not statistically identified [1]. Being not
identified means that there is no one unique best set
of parameter estimates. SEM users have the freedom
to specify models that are not statistically identified,
but the optimization procedures in conventional SEM
packages generally fail when they encounter such a
model. Identification is often a problem for mod-
els that include causal or formative indicators [2],
for example. Such indicators are observed variables
that are predictors of, rather than being predicted by,
latent variables, as in Mode B estimation in PLS
(see Figure 1). In conventional SEM, when a latent
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variable has only formative indicators, identification
problems are quite likely. For such a model, CTA
can formally test the model, by way of a χ2 test
statistic [1].

A second virtue of CTA is that two competing
structural equation models which are not nested in
the conventional sense may be nested in terms of
the vanishing tetrads that they each imply [1]. When
two models are nested in conventional SEM terms,
it means, in essence, that the free parameters of
one model are a strict subset of those in the other
model. Competing nested models can be evaluated
using a χ2 difference test, but if the models are
not nested, then the χ2 difference test cannot be
interpreted. Other model comparison procedures exist
within conventional SEM, but they do not readily
support hypothesis testing. If the vanishing tetrads
implied by one model are a strict subset of the
vanishing tetrads implied by the other, then the two
models are nested in tetrad terms, and a comparison
of such models yields a χ2 difference test. Models
may be nested in tetrad terms even if they are not
nested in conventional SEM terms, so conventional
SEM users may find value in CTA, in such cases. In
addition, avoiding parameter estimation may enable
model testing at lower sample sizes than are required
by conventional SEM.

The largest hurdle for CTA appears to be the prob-
lem of redundant tetrads ([1], [19]). For example,
if τABCD = ρAB ρCD − ρAC ρBD = 0, then it necessar-
ily follows that τACBD = ρAC ρBD − ρAB ρCD is also 0.
Thus, CTA involves determining not only which van-
ishing tetrads are implied by a model, but also which
vanishing tetrads are redundant. Testing the model,
or comparing the competing models, proceeds from
that point.

HyBlock

William Rozeboom’s HyBall ([15, 16]) is a com-
prehensive and flexible package for conducting
exploratory factor analysis (EFA). One module in
this package, known as HyBlock, performs a kind
of structured exploratory factor analysis that may be
a useful alternative to the sparse measurement models
of conventional SEM. In using HyBlock, a researcher
must first allocate the variables in a data set into
blocks of related variables. The user must also spec-
ify how many common factors are to be extracted

from each block and the structural linkages between
blocks. Like PLS and Tetrad, HyBlock is limited to
recursive structural models. HyBlock conducts the
blockwise factor analysis and estimates the between-
block structural model, generating both parameter
estimates and familiar EFA diagnostics. Thus, one
might view HyBlock as an alternative to PLS that is
firmly grounded in factor analysis. Alternatively, one
might view HyBlock as an alternative to conventional
SEM for researchers who believe that their measures
are factorially complex.

Conclusion

Conventional SEM is distinguished by large-sample
empirical testing of a prespecified, theory-based
model involving observed variables which are linked
to latent variables through a sparse measurement
model. Methodologies which vary from these design
criteria will continue to have a place in the multivari-
ate toolkit.
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Structural Equation
Modeling: Overview

Structural equation modeling (SEM) has been his-
torically referred to as linear structural relationships,
covariance structure analysis, or latent variable
modeling. SEM has traditionally tested hypothe-
sized theoretical models that incorporate a correla-
tion methodology with correction for unreliability of
measurement in the observed variables. SEM mod-
els have currently included most statistical applica-
tions using either observed variables and/or latent
variables, for example, multiple linear regres-
sion, path analysis, factor analysis, latent growth
curves (see Structural Equation Modeling: Latent
Growth Curve Analysis), multilevel, and interaction
models (see Generalized Linear Mixed Models).
Six basic steps are involved in structural equation
modeling: model specification, model identification,
model estimation, model testing, model modification,
and model validation.

Model Specification

A researcher uses all relevant theory and related
research to develop a theoretical model, that is, spec-
ifies a theoretical model. A theoretical model estab-
lishes how latent variables are related. The researcher
wants the specific theoretical model to be confirmed
by the observed sample variance–covariance data.
A researcher must decide which observed variables
to include in the theoretical model and how these
observed variables measure latent variables. Model
specification implies that the researcher specifies
observed and latent variable relationships in a the-
oretical model and designates which parameters in
the model are important. A model is properly spec-
ified when the true population model is consistent
with the theoretical model being tested, that is, the
sample variance–covariance matrix is sufficiently
reproduced by the theoretical model. The goal of
SEM is to determine whether the theoretical model
generated the sample variance–covariance matrix.
The sample variance–covariance matrix therefore
implies some underlying theoretical model (covari-
ance structure).

The researcher can determine the extent to which
the theoretical model reproduces the sample vari-
ance–covariance matrix. The theoretical model pro-
duces an implied variance–covariance matrix whose
elements are subtracted from the original sample
variance–covariance matrix to produce a residual
variance–covariance matrix. If the residual values
are larger than expected, then the theoretical model
is misspecified. The theoretical model misspecifica-
tion can be due to errors in either not including
an important variable or in including an unimpor-
tant variable. A misspecified theoretical model results
in bias parameter estimates for variables that may
be different from the true population model. This
bias is known as specification error and indicates
that the theoretical model may not fit the sam-
ple variance–covariance data and be statistically
acceptable.

Model Identification

A researcher must resolve the model identification
problem prior to the estimation of parameters for
observed and latent variables in the theoretical model.
Model identification is whether a unique set of param-
eter estimates can be computed, given the theoretical
model and sample variance–covariance data. If many
different parameter estimates are possible for the the-
oretical model, then the model is not identified, that
is, indeterminacy exists in the model. The sample
variance–covariance data may also fit more than one
theoretical model equally well. Model indeterminacy
occurs when there are not enough constraints in the
theoretical model to obtain unique parameter esti-
mates for the variables. Model identification problems
are solved by imposing additional constraints in the
theoretical model, for example, specifying latent vari-
able variance.

Observed and latent variable parameters in a the-
oretical model must be specified as a free parameter,
a fixed parameter, or a constrained parameter. A
free parameter is a parameter that is unknown and
a researcher wants to estimate it. A fixed parameter
is a parameter that is not free, rather fixed to a specific
value, for example, 0 or 1. A constrained parameter
is a parameter that is unknown, but set to equal one or
more other parameters. Model identification therefore
involves setting variable parameters as fixed, free, or
constrained (see Identification).
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There have been traditionally three types of model
identification distinctions. The three types are distin-
guished by whether the sample variance–covariance
matrix can uniquely estimate the variable parame-
ters in the theoretical model. A theoretical model is
underidentified when one or more variable param-
eters cannot be uniquely determined, just-identified
when all of the variable parameters are uniquely
determined, and overidentified when there is more
than one way of estimating a variable parameter(s).
The just- or overidentified model distinctions are
considered model identified, while the underidenti-
fied distinction yields unstable parameter estimates,
and the degrees of freedom for the theoretical model
are zero or negative. An underidentified model can
become identified when additional constraints are
imposed, that is, the model degrees of freedom equal
one or greater.

There are several conditions for model identifica-
tion. A necessary, but not sufficient, condition for
model identification, is the order condition, under
which the number of free variable parameters to be
estimated must be less than or equal to the number
of distinct values in the sample variance–covariance
matrix, that is, only the diagonal variances and one set
of off-diagonal covariances are counted. The number
of distinct values in the sample variance–covariance
matrix is equal to p(p + 1)/2, where p is the number
of observed variables. A saturated model (all vari-
ables are related in the model) with p variables has
p(p + 3)/2 free variable parameters. For a sample
variance–covariance matrix S with 3 observed vari-
ables, there are 6 distinct values [3(3 + 1)/2 = 6]
and 9 free (independent) parameters [3(3 + 3)/2] that
can be estimated. Consequently, the number of free
parameters estimated in any theoretical model must
be less than or equal to the number of distinct val-
ues in the variance–covariance matrix. While the
order condition is necessary, other sufficient condi-
tions are required, for example, the rank condition.
The rank condition requires an algebraic determi-
nation of whether each parameter in the model can
be estimated from the sample variance–covariance
matrix and is related to the determinant of the matrix.

Several different solutions for avoiding model
identification problems are available to the researcher.
The first solution involves a decision about which
observed variables measure each latent variable. A
fixed parameter of one for an observed variable or a
latent variable will set the measurement scale for that

latent variable, preventing scale indeterminacy in the
theoretical model for the latent variable. The second
solution involves a decision about specifying the the-
oretical model as recursive or nonrecursive. A recur-
sive model is when all of the variable relationships
are unidirectional, that is, no bidirectional paths exist
between two latent variables (see Recursive Mod-
els). A nonrecursive model is when a bidirectional
relationship (reciprocal path) between two latent vari-
ables is indicated in the theoretical model. In nonre-
cursive models, the correlation of the latent variable
errors should be included to correctly estimate the
parameter estimates for the two latent variables. The
third solution is to begin with a less complex theo-
retical model that has fewer parameters to estimate.
The less complex model would only include vari-
ables that are absolutely necessary and only if this
model is identified would you develop a more com-
plex theoretical model. A fourth solution is to save the
model-implied variance–covariance matrix and use it
as the original sample variance–covariance matrix. If
the theoretical model is identified, then the parame-
ter estimates from both analyses should be identical.
A final solution is to use different starting values
in separate analyses. If the model is identified, then
the estimates should be identical. A researcher can
check model identification by examining the degrees
of freedom for the theoretical model, the rank test, or
the inverse of the information matrix.

Model Estimation

A researcher can designate initial parameter estimates
in a theoretical model, but more commonly, the SEM
software automatically provides initial default esti-
mates or start values. The initial default estimates
are computed using a noniterative two-stage least
squares estimation method. These initial estimates are
consistent and rather efficient relative to other itera-
tive methods. After initial start values are selected,
SEM software uses one of several different estima-
tion methods available to calculate the final observed
and latent variable parameter estimates in the the-
oretical model, that is, estimates of the population
parameters in the theoretical model (see Structural
Equation Modeling: Software).

Our goal is to obtain parameter estimates in
the theoretical model that compute an implied vari-
ance–covariance matrix �, which is as close as
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possible to the sample variance–covariance matrix
S. If all residual variance–covariance matrix ele-
ments are zero, then S − � = 0 and χ2 = 0, that is, a
perfect fit of the theoretical model to the sample vari-
ance–covariance data. Model estimation therefore
involves the selection of a fitting function to mini-
mize the difference between � and S. Several fitting
functions or estimation methods are currently avail-
able: unweighted or ordinary least squares (ULS or
OLS) (see Least Squares Estimation), generalized
least squares (GLS), maximum likelihood (ML),
weighted least squares (WLS) (see Least Squares
Estimation), and asymptotic distribution free (ADF).
Another goal in model estimation is to use the cor-
rect fit function to obtain parameter estimates that are
unbiased, consistent, sufficient, and efficient, that is,
robust (see Estimation).

The ULS or OLS parameter estimates are con-
sistent, but have no distributional assumptions or
associated statistical tests, and are scale-dependent,
that is, changes in the observed variable measure-
ment scale yield different sets of parameter estimates.
The GLS and ML parameter estimates are not scale-
dependent so any transformed observed variables will
yield parameter estimates that are related. The GLS
and ML parameter estimates have desirable asymp-
totic properties (large sample properties) that yield
minimum error variance and unbiased estimates. The
GLS and ML estimation methods assume multivari-
ate normality (see Catalogue of Probability Density
Functions) of the observed variables (the sufficient
conditions are that the observations are independent,
identically distributed, and kurtosis is zero). The
WLS and ADF estimation methods generally require
a large sample size and do not require observed vari-
ables to be normally distributed.

Model estimation with binary and ordinal
scaled observed variables introduces a parameter
estimation problem in structural equation modeling
(see Structural Equation Modeling: Categorical
Variables). If observed variables are ordinal
scaled or nonnormally distributed, then GLS and
ML estimation methods yield parameter estimates,
standard errors, and test statistics that are not
robust. SEM software uses different techniques to
resolve this problem: a categorical variable matrix
(CVM) that does not use Pearson product-moment
correlations or an asymptotic variance–covariance
matrix based on polychoric correlations of two
ordinal variables, polyserial correlations of an ordinal

and an interval variable, and Pearson product-
moment correlations of two interval variables. All
three types of correlations (Pearson, polychoric, and
polyserial) are then used to create an asymptotic
covariance matrix for analysis in the SEM software.
A researcher should not use mixed types of
correlation matrices or variance–covariance matrices
in SEM software, rather create a CVM or asymptotic
variance–covariance matrix.

The type of estimation method to use with differ-
ent theoretical models is still under investigation. The
following recommendations, however, define current
practice. A theoretical model with interval scaled
multivariate normal observed variables should use the
ULS or OLS estimation method. A theoretical model
with interval scaled multivariate nonnormal observed
variables should use GLS, WLS, or ADF estima-
tion methods. A theoretical model with ordinal scaled
observed variables should use the CVM approach or
an asymptotic variance–covariance matrix with WLS
or ADF estimation methods.

Model Testing

Model testing involves determining whether the sam-
ple data fits the theoretical model once the final
parameter estimates have been computed, that is, to
what extent is the theoretical model supported by
the sample variance–covariance matrix. Model test-
ing can be determined using an omnibus global test of
the entire theoretical model or by examining the indi-
vidual parameter estimates in the theoretical model.

An omnibus global test of the theoretical model
can be determined by interpreting several differ-
ent model fit criteria. The various model fit criteria
are based on a comparison of the theoretical model
variance–covariance matrix � to the sample vari-
ance–covariance matrix S. If � and S are similar,
then the sample data fit the theoretical model. If �

and S are quite different, then the sample data do
not fit the theoretical model. The model fit criteria
are computed on the basis of knowledge of the satu-
rated model (all variable relationships defined), inde-
pendence model (no variable relationships defined),
sample size, degrees of freedom and/or the chi-square
value, and range in value from 0 (no fit) to 1 (perfect
fit) for several subjective model fit criteria.

The model fit criteria are categorized according
to model fit, model parsimony, and model compar-
ison. Model fit is interpreted using the chi-square
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(χ2),goodness-of-fit index (GFI), adjusted goodness-
of-fit index (AGFI), or root-mean-square residual
(RMR). The model fit criteria are based on a dif-
ference between the sample variance–covariance
matrix (S) and the theoretical model–reproduced
variance–covariance matrix (�). Model compari-
son is interpreted using the Tucker–Lewis index
(TLI), Bentler–Bonett Non-Normed fit index (NNFI),
Bentler–Bonett Normed fit index (NFI), or the
Bentler comparative fit index (CFI) (see Goodness
of Fit). The model comparison criteria compare a
theoretical model to an independence model (no
variable relationships defined). Model parsimony is
interpreted using the normed chi-square (NC), par-
simonious fit index (PNFI or PCFI), or Akaike
information criterion (AIC). The model parsimony
criteria are determined by the number of estimated
parameters required to achieve a given value for chi-
square, that is, an overidentified model is compared
with a restricted model.

Model testing can also involve interpreting the
individual parameter estimates in a theoretical model
for statistical significance, magnitude, and direc-
tion. Statistical significance is determined by testing
whether a free parameter is different from zero, that
is, parameter estimates are divided by their respective
standard errors to yield a test statistic. Another inter-
pretation is whether the sign of the parameter estimate
agrees with expectations in the theoretical model. For
example, if the expectation is that more education
will yield a higher income level, then an estimate
with a positive sign would support that expectation.
A third interpretation is whether the parameter esti-
mates are within an expected range of values. For
example, variances should not have negative values
and correlations should not exceed one. The inter-
pretation of parameter estimates therefore considers
whether parameter estimates are statistically signifi-
cant, are in the expected direction, and fall within an
expected range of acceptable values; thus, parame-
ter estimates should have a practical and meaningful
interpretation.

Model Modification

Model modification involves adding or dropping
variable relationships in a theoretical model. This
is typically done when sample data do not fit the
theoretical model, that is, parameter estimates and/or

model test criteria are not reasonable. Basically, the
initial theoretical model is modified and the new
modified model is subsequently evaluated.

There are a number of procedures available for
model modification or what has been termed a specifi-
cation search. An intuitive way to consider modifying
a theoretical model is to examine the statistical sig-
nificance of each parameter estimated in the model.
If a parameter is not statistically significant, then
drop the variable from the model, which essentially
sets the parameter estimate to zero in the modified
model. Another intuitive method is to examine the
residual matrix, that is, the differences between the
sample variance–covariance matrix S and the theo-
retical model reproduced variance–covariance matrix
� elements. The residual values in the matrix should
be small in magnitude and similar across variables.
Large residual values overall indicate that the the-
oretical model was not correctly specified, while a
large residual value for a single variable indicates a
problem with that variable only. A large standard-
ized residual value for a single variable indicates that
the variable’s covariance is not well defined in the
theoretical model. The theoretical model would be
examined to determine how this particular covari-
ance could be explained, for example, by estimating
parameters of other variables.

SEM software currently provides model modifica-
tion indices for variables whose parameters were not
estimated in the theoretical model. The modification
index for a particular variable indicates how much
the omnibus global chi-square value is expected to
decrease in the modified model if a parameter is esti-
mated for that variable. A modification index of 50
for a particular variable suggests that the omnibus
global chi-square value for the modified model would
be decreased by 50. Large modification indices for
variables offer suggestions on how to modify the the-
oretical model by adding variable relationships in the
modified model to yield a better fitting model.

Other model modification indices in SEM software
are the expected parameter change, Lagrange mul-
tiplier, and Wald statistics. The expected parameter
change (EPC) statistic indicates the estimated change
in the magnitude and direction of variable parame-
ters if they were to be estimated in a modified model,
in contrast to the expected decrease in the omnibus
global chi-square value. The EPC is especially infor-
mative when the sign of a variable parameter is not
in the expected direction, that is, positive instead
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of negative. The EPC in this situation would sug-
gest that the parameter for the variable be fixed. The
lagrange multiplier (LM) statistic is used to evaluate
the effect of freeing a set of fixed parameters in a the-
oretical model. The Lagrange multiplier statistic can
consider a set of variable parameters and is therefore
considered the multivariate analogue of the modifica-
tion index. The Wald (W) statistic is used to evaluate
whether variables in a theoretical model should be
dropped. The Wald (W) statistic can consider a set
of variable parameters and is therefore considered
the multivariate analogue of the individual variable
critical values.

Empirical research suggests that model modifi-
cation is most successful when the modified model
is similar to the underlying population model that
reflects the sample variance–covariance data. Theo-
retically, many different models might fit the sample
variance–covariance data. Consequently, new speci-
fication search procedures generate all possible mod-
els and list the best fitting models based on certain
model fit criteria, for example, chi-square, AIC, BIC.
For example, a multiple regression equation with 17
independent variables predicting a dependent variable
would yield 217th or 131,072 regression models, not
all of which would be theoretically meaningful. SEM
software permits the formulation of all possible mod-
els; however, the outcome of any specification search
should still be guided by theory and practical consid-
erations, for example, the time and cost of acquiring
the data.

Model Validation

Model validation involves checking the stability and
accuracy of a theoretical model. Different methods
are available using SEM software: replication, cross-
validation, simulation, bootstrap, jackknife, and
specification search. A researcher should ideally seek
model validation using additional random samples of
data (replication), that is, multiple sample analysis
with the same theoretical model. The other validation
methods are used in the absence of replication to
provide evidence of model validity, that is, the
stability and accuracy of the theoretical model.

Cross-validation involves randomly splitting a
large sample data set into two smaller data sets. The
theoretical model is analyzed using each data set to
compare parameter estimates and model fit statistics.

In the simulation approach, a theoretical model is
compared to a known population model; hence, a
population data set is simulated using a random num-
ber generator with a known population model. The
bootstrap technique is used to determine the stabil-
ity of parameter estimates by using a random sample
data set as a pseudo-population data set to repeatedly
create randomly sampled data sets with replacement.
The theoretical model is analyzed using all of the
bootstrap data sets and results are compared. The
jackknife technique is used to determine the impact
of outliers on parameter estimates and fit statistics by
creating sample data sets where a different data value
is excluded each time. The exclusion of a single data
value from each sample data set identifies whether an
outlier data value is influencing the results. Specifica-
tion search examines all possible models and selects
the best model on the basis of a set of model fit crite-
ria. This approach permits a comparison of the initial
theoretical model to other plausible models that are
supported by the sample data.

SEM Software

Several structural equation modeling software pack-
ages are available to analyze theoretical models. A
theoretical model is typically drawn using squares or
rectangles to identify observed variables, small circles
or ellipses to identify observed variable measurement
error, larger circles or ellipses to identify latent vari-
ables, curved arrows to depict variable correlation,
and straight arrows to depict prediction of depen-
dent variables by independent variables. A graphical
display of the theoretical model therefore indicates
direct and indirect effects amongst variables in the
model.

Four popular SEM packages are Amos, EQS,
Mplus, and LISREL. Amos employs a graphical user
interface with drawing icons to create a theoretical
model and link the model to a data set, for exam-
ple, SPSS save file. EQS incorporates a statistics
package, model diagrammer, and program syntax to
analyze theoretical models. EQS can use either a
graphical display or program syntax to analyze mod-
els. Mplus integrates random effect, factor, and latent
class analysis in both cross-sectional and longitudinal
settings for single-level and multilevel designs. LIS-
REL is a matrix command language that specifies
the type of matrices to use for a specific theoreti-
cal model including which parameters are free and
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Figure 1 Basic Structural Equation Model

fixed. LISREL includes a data set preprocessor pro-
gram, PRELIS, to edit and analyze sample data.
LISREL also includes a program with simple lan-
guage commands, SIMPLIS, to input data and specify
a theoretical model (see Structural Equation Mod-
eling: Software).

All four SEM software packages include excellent
documentation, tutorials, and data set examples to
illustrate how to analyze different types of theoretical
models. The SEM software packages are available at
their respective Internet web sites and include student
versions:

Amos: http://www.spss.com/amos
EQS: http://www.mvsoft.com/
Mplus http://www.statmodel.com/
LISREL: http://www.ssicentral.com/

SEM Example

The theoretical model (Figure 1) depicts a single
independent latent variable predicting a single depen-
dent latent variable. The independent latent variable is
defined by two observed variables, X1 and X2, with
corresponding measurement error designated as E1
and E2. The dependent latent variable is defined by
two observed variables, Y1 and Y2, with correspond-
ing measurement error designated as E3 and E4. The
parameter estimate or structure coefficient of interest
to be estimated is indicated by the asterisk (*) on the
straight arrow from the independent latent variable
to the dependent latent variable with D1 represent-
ing the error in prediction. The computer output will

also yield an R-squared value that indicates how well
the independent latent variable predicts the dependent
latent variable.

Further Reading
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6; 0-8039-7409-4 (pbk).

Marcoulides, G. & Schumacker, R.E., eds (1996). Advanced
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Lawrence Erlbaum Associates, Mahwah.

Marcoulides, G.A. & Schumacker, R.E. (2001). Advanced
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Techniques, Lawrence Erlbaum Associates, Mahwah.
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Nontraditional Alternatives)
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Structural Equation
Modeling: Software

Introduction

The first widely distributed special-purpose software
for estimating structural equation models (SEM)
appeared more than twenty years ago. The earliest
packages were written with the Fortran programming
language and designed to run on mainframe comput-
ers, in an age when computing time was a scarce
commodity and users punched instructions on stacks
of cards. Features and terminology reminiscent of
that earlier time still survive in the latest versions
of some older SEM packages. While SEM software
has become much more sophisticated, professional
and user-friendly over the years, SEM software still
is not what it could be. There is still substantial room
for improvement.

Today, researchers can choose from a variety of
packages that differ markedly in terms of their intel-
lectual heritage, interface, statistical sophistication,
flexibility, integration with other statistical packages,
and price. Researchers may find that a few key criteria
will substantially narrow their list of possible choices.
Then again, packages regularly add capabilities, often
mimicking their competitors, so any purchase or use
decision should be based on the latest information.

This overview includes only packages that are
primarily designed to estimate conventional structural
equation models, with extensions. It excludes
packages which are designed for SEM variants such
as Tetrad and Partial Least Squares (see Structural
Equation Modeling: Nontraditional Alternatives).
It also excludes sophisticated modeling packages
such as aML (http://www.applied-ml.com/)
or GLLAMM (http://www.gllamm.org/), which
are powerful and flexible tools but which lack many
of the features, such as a broad array of fit indices
and other fit diagnostics from the SEM literature, that
users would expect in a SEM package.

Choices

At least a dozen packages are available whose pri-
mary or major purpose is the estimation of structural
equation models. Typically, each package began as a

tool created by leading SEM researchers to facilitate
their own analyses, only gradually being adapted to
the needs of a larger body of customers. This ori-
gin as a tool for a SEM expert may partly explain
why these packages seem to offer so little help to
the average or novice user. This article starts with
a brief overview of most of the known packages, in
alphabetical order.

The Amos package, written by James Arbuckle
and distributed by SPSS (http://www.spss.com/
amos/) was unusual when it first appeared. It was
perhaps the first SEM package to be designed for
a graphical computing environment, like Microsoft
Windows. Taking advantage of the environment’s
capabilities, Amos allowed users to specify models by
drawing them, and offered users a set of drawing tools
for the purpose. (Amos also includes a command lan-
guage called Amos Basic.) Amos was also an early
leader in implementing advanced missing data tech-
niques (see Missing Data). While these capabilities
have been copied, to a certain degree, by other lead-
ing programs, Amos retains a reputation for being
easy to use, and the package has continued to add
innovations in this area.

Proc Calis, written by Wolfgang Hartmann, is a
procedure within the SAS package (http://www.
sas.com/). In the early 1980s, Proc Calis was
arguably the most sophisticated SEM package avail-
able. Its ability to specify constraints on model
parameters as nonlinear functions of other param-
eters was instrumental in allowing researchers to
model quadratic effects and multiplicative interac-
tions between latent variables [2] (see Structural
Equation Modeling: Nonstandard Cases). Over the
intervening years, however, Proc Calis has not added
features and extended capabilities to keep pace with
developments.

EQS, written by Peter Bentler, has long been one
of the leading SEM packages, thanks to the extensive
contributions of its author, both to the program and
to the field of SEM (http://www.mvsoft.com/).
EQS was long distinguished by special features for
dealing with nonnormal data, such as a kurtosis-
adjusted χ2 statistic [4], and superior procedures
for modeling ordinal data (see Ordinal Regression
Models).

LISREL, written by Karl Jöreskog and Dag
Sörbom, pioneered the field of commercial SEM soft-
ware, and it still may be the single most widely used
and well-known package (http://www.



2 Structural Equation Modeling: Software

ssicentral.com/). Writers have regularly blurred
the distinction between LISREL as software and SEM
as statistical method. Along with EQS, LISREL was
an early leader in offering procedures for modeling
ordinal data. Despite their program’s advantage in
terms of name recognition, however, the pressure of
commercial and academic competition has forced the
authors to continue updating their package. LISREL’s
long history is reflected both in its clear Fortran
legacy and its enormous worldwide knowledge base.

Mplus (http://www.statmodel.com/), writ-
ten by Linda and Bengt Muthén, is one of the
newest entrants, but it inherits a legacy from Bengt
Muthén’s earlier program, LISCOMP. Besides main-
taining LISCOMP’s focus on nonnormal variables,
Mplus has quickly built a reputation as one of the
most statistically sophisticated SEM packages. Mplus
includes tools for finite mixture modeling and latent
class analysis that go well beyond conventional SEM,
but which may point to the future of the discipline.

Mx (http://griffin.vcu.edu/mx/), written
by Michael Neale, may be as technically sophisticated
as any product on the market, and it has one
distinguishing advantage: it’s free. The software, the
manual, and a graphical interface are all available free
via the Internet. At its core, perhaps, Mx is really a
matrix algebra program, but it includes everything
that most users would expect in a SEM program,
as well as leading edge capabilities in modeling
incomplete data and in finite mixture modeling (see
Finite Mixture Distributions).

SEPATH, written by James Steiger, is part of the
Statistica statistical package (http://www.
statsoftinc.com/products/advanced.html
# structural). SEPATH incorporates many of
Steiger’s innovations relating to the analysis of cor-
relation matrices. It is one of the few packages
that automatically provides correct estimated standard
errors for parameter estimates from SEM analysis of
a Pearson correlation matrix (see Correlation and
Covariance Matrices). Most packages still produce
biased estimated standard errors in this case, unless
the user takes some additional steps.

Other SEM packages may be less widely dis-
tributed but they are still worth serious consider-
ation. LINCS, written by Ronald Schoenberg, and
MECOSA, written by Gerhard Arminger, use the
GAUSS (http://www.aptech.com/) matrix alge-
bra programming language and require a GAUSS
installation. RAMONA, written by Michael Browne

and Gerhard Mels, is distributed as part of the Sys-
tat statistical package (http://www.systat.com/
products/Systat/productinfo/?sec=1006).
SEM, by John Fox, is written in the open-source R
statistical programming language (http://
socserv.socsci.mcmaster.ca/jfox/Misc/
sem/index.html). Like Mx, Fox’s SEM is free,
under an open-source license.

Finally, STREAMS (http://www.mwstreams.
com/) is not a SEM package itself, but it may
make SEM packages more user-friendly and easier to
use. STREAMS generates language for, and formats
output from, a variety of SEM packages. Users who
need to take advantage of specific SEM package
capabilities might use STREAMS to minimize the
training burden.

Criteria

Choosing a SEM software package involves potential
tradeoffs among a variety of criteria. The capabilities
of different SEM packages change regularly – Amos,
EQS, LISREL, Mplus, and Mx have all announced
or released major upgrades in the last year or two–so
it is important to obtain updated information before
making a choice.

Users may be inclined to choose a SEM package
that is associated with a more general statistical pack-
age which they already license. Thus, licensees of
SPSS, SAS, Statistica, Systat, or GAUSS might favor
Amos, Proc Calis, SEPath, RAMONA or MECOSA,
respectively. Keep in mind that leading SEM pack-
ages will generally have the ability to import data
in a variety of file formats, so users do not need to
use the SEM software associated with their general
statistical package in order to be able to share data
across applications.

Many SEM packages are associated with spe-
cific contributors to SEM, as noted previously.
Researchers who are familiar with a particular con-
tributor’s approach to SEM may prefer to use the
associated software. Beyond general orientation, a
given contributor’s package may be the only one
that includes some of the contributor’s innovations.
Over time, successful innovations do tend to be dupli-
cated across programs, but users cannot assume that
any given package includes tools for dealing with all
modeling situations. Currently, for example, Amos
does not include any procedures for modeling ordi-
nal data, while Proc Calis does not support multiple
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group analysis, except when all groups have exactly
the same sample size. Some features are largely
exclusive, at least for the moment. Mplus and Mx
are the only packages with tools for mixture modeling
and latent class analysis. This allows these programs
to model behavior that is intrinsically categorical,
such as voting behavior, and also provides addi-
tional options for dealing with heterogeneity in a data
set [3]. Similarly, only LISREL and Mplus have pro-
cedures for obtaining correct statistical results from
modeling ordinal data without requiring exceptionally
large sample sizes.

‘Ease of use’ is a major consideration for most
users, but there are many different ways in which
a package can be easy to use. Amos pioneered
the graphical specification of models, using drawing
tools to specify networks of observed and latent
variables. Other packages followed suit, to one extent
or another. Currently, LISREL allows users to modify
a model with drawing tools but not to specify
an initial model graphically. On the other hand,
specifying a model with drawing tools can become
tedious when the model involves many variables,
and there is no universal agreement on how to
graphically represent certain statistical features of a
model. Menus, ‘wizards’ or other helps may actually
better facilitate model specification in such cases.
Several packages allow users to specify models
through equation-like statements, which can provide
a convenient basis for specifying relations among
groups of variables.

‘Ease of use’ can mean ease of interpreting results
from an analysis. Researchers working with multiple,
competing models can easily become overwhelmed
by the volume of output. In this regard, Amos and
Mx have special features to facilitate comparisons
among a set of competing models.

‘Ease of use’ can also mean that it is easy to
find help when something goes wrong. Unfortunately,
no SEM package does an excellent job of helping
users in such a situation. To a great extent, users
of any package find themselves relying on fellow
users for support and advice. Thus, the popularity
and history of a particular package can be important
considerations. On that score, veteran packages like
LISREL offer a broad population of users and a deep
knowledge base, while less widely used packages like
Proc Calis present special problems.

‘Ease of use’ could also relate to the ability to
try out a product before committing to a major

purchase. Many SEM packages offer ‘student’ or
‘demo’ versions of the software, usually offering
full functionality but only for a limited number
of variables. Some packages do not offer a demo
version, which makes the purchase process risky and
inconvenient. Obviously, free packages like Mx do
not require demo versions.

Finally, users may be concerned about price.
Developing a full-featured SEM package is no small
task. Add to that the costs of supporting and promot-
ing the package, factor in the small user base, relative
to more general statistical packages, and it is not sur-
prising that SEM packages tend to be expensive. That
said, users should give special consideration to the
Mx package, which is available free via the Internet.
Mx offers a graphical interface and a high degree
of flexibility, although specifying some model forms
will involve some programming work. Still, templates
are available for conducting many types of analysis
with Mx.

Room for Improvement

SEM software has come a long way from the opaque,
balky, idiosyncratic, mainframe-oriented packages of
the early 1980s, but today’s SEM packages still
frustrate and inconvenience users and fail to facil-
itate SEM analysis as well as they could, given
only the tools available today. SEM packages have
made it easier to specify basic models, but speci-
fying advanced models may require substantial pro-
gramming, often giving rise to tedious errors, even
though there is very little user discretion involved,
once the general form of the advanced model is cho-
sen. Users sometimes turn to bootstrap and Monte
Carlo methods, as when sample size is too small
for stable estimation, and several packages offer
this capability. Yet, users find themselves ‘jump-
ing through hoops’ to incorporate these results into
their analyses, even though, once a few choices
are made, there really is nothing left but tedium.
There is much more to be done in designing
SEM packages to maximize the efficiency of the
researcher.

Most SEM packages do a poor job of help-
ing users when something goes wrong. For exam-
ple, when a user’s structural equation model is
not identified – meaning that the model’s parame-
ters cannot be uniquely estimated – SEM packages
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either simply fail or point the user to one par-
ticular parameter that is involved in the problem.
Pointing to one parameter, however, may direct the
user more to the symptoms and away from the
fundamental problem in the model. Bekker, Mer-
ckens and Wansbeek [1] demonstrated a procedure,
implemented via a Pascal program, that indicates all
model parameters that are not identified, but this pro-
cedure has not been adopted by any major SEM
package.

Several packages have taken steps in the area of
visualization, but much more could be done. Con-
firmatory factor analysis measurement models imply
networks of constraints on the patterns of covari-
ances among a set of observed variables. When
such a model performs poorly, there are sets of
covariances that do not conform to the implied con-
straints. Currently, SEM packages will point to par-
ticular elements of the empirical covariance matrix
where the model does a poor job of reproduc-
ing the data, and they will also point to particu-
lar parameter constraints that contribute to lack of
fit. But again, as with identification, this is not the
same as showing the user just how the data con-
tradict the network of constraints implied by the
model.

Packages could probably improve the advice
that they provide about how a researcher might
improve a poorly fitting model. Spirtes, Scheines,
and Glymour [5] have demonstrated algorithms for
quickly finding structures that are consistent with
data, subject to constraints. Alongside the diagnos-
tics currently provided, SEM packages could offer
more insight to researchers by incorporating algo-
rithms from the stream of research associated with
the Tetrad program.

SEM users often find themselves struggling in
isolation to interpret results that are somewhat vague,
even though there is a large body of researcher
experience with SEM generally and with any given
program in particular. One day, perhaps, programs
will not only generate results but will also help
researchers evaluate those results, drawing on this
body of experience to give the individual research
greater perspective. This type of innovation – giving
meaning to numbers – is emerging from the field
of artificial intelligence, and it will surely come to
structural equation modeling, one day.
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Structural Equation
Modeling and Test
Validation

Ideally, test and measurement validation entails the-
oretical as well as empirical studies (see Validity
Theory and Applications). Moreover, the term val-
idation implies a process that takes place over time,
often in a sequentially articulated fashion. The choice
of statistical methods and research methodology for
empirical data analyses is of course central to the via-
bility of validation studies. The purpose of this entry
is to describe developments in test and measurement
validation as well as an important advancement in the
statistical methods used in test validation research,
structural equation modeling. In particular, a gener-
alized linear structural equation model (GLISEM)
that is a latent variable extension of a generalized
linear model (GLIM) is introduced and shown to
be particularly useful as a statistical methodology for
test and measurement validation research.

A Brief Overview of Current Thinking
in Test Validation

Measurement or test score validation is an ongoing
process wherein one provides evidence to support the
appropriateness, meaningfulness, and usefulness of
the specific inferences made from scores about indi-
viduals from a given sample and in a given context.
The concept, method, and process of validation are
central to constructing and evaluating measures used
in the social, behavioral, health, and human sciences,
for without validation, any inferences made from a
measure are potentially meaningless.

The above definition highlights two central fea-
tures in current thinking about validation. First, it
is not the measure per se that is being validated
but rather the inferences one makes from a measure.
This distinction between the validation of a scale and
the validation of the inferences from scores obtained
from a scale may appear subtle at first blush but, in
fact, it has significant implications for measurement
and testing because it highlights that the validity of
the inferences one makes from test scores is some-
what bounded by place, time, and use of the scores
resulting from a measurement operation.

The second central feature in the above definition
is the clear statement that inferences made from
all empirical measures, irrespective of their apparent
objectivity, have a need for validation. That is, it
matters not whether one is using an observational
checklist, an ‘objective’ educational, economic, or
health indicator such as number of students finishing
grade 12, or a more psychological measure such
as a self-report depression measure, one must be
concerned with the validity of the inferences.

It is instructive to contrast contemporary thinking
in validity theory with what is commonly seen in
many introductory texts in research methodology in
the social, behavioral, health, and human sciences.

The Traditional View of Validity

The traditional view of validity focuses on (a) validity
as a property of the measurement tool, (b) a measure
is either valid or invalid, various types of valid-
ity – usually four – with the test user, evaluator,
or researcher typically assuming only one of the
four types is needed to have demonstrated validity,
(c) validity as defined by a set of statistical method-
ologies, such as correlation with a gold-standard, and
(d) reliability is a necessary, but not sufficient, con-
dition for validity.

The traditional view of validity can be summarized
in Table 1.

The process of validation then simply portrayed
as picking the most suitable strategy from Table 1
and conducting the statistical analyses. The basis
for much validation research is often described as
a correlation with the ‘gold standard’; this cor-
relation is commonly referred to as a validity
coefficient.

The Contemporary View of Validity

Several papers are available that describe important
current developments in validity theory [4, 5, 9, 12,
13, 20]. The purpose of the contemporary view of
validity, as it has evolved over the last two decades,
is to expand upon the conceptual framework and
power of the traditional view of validity seen in most
introductory methodology texts. In brief, the recent
history of validity theory is perhaps best captured by
the following observations.
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Table 1 The traditional categories of validity

Type of validity What does one do to show this type of validity?

Content Ask experts if the items (or behaviors) tap the construct of interest.
Criterion-related:

A. Concurrent Select a criterion and correlate the measure with the criterion measure
obtained in the present

B. Predictive Select a criterion and correlate the measure with the criterion measure
obtained in the future

Construct (A. Convergent and
B. Discriminant):

Can be done several different ways. Some common ones are (a) correlate to
a ‘gold standard’, (b) factor analysis, (c) multitrait multimethod
approaches

1. Validity is no longer a property of the measure-
ment tool but rather of the inferences made from
the scores.

2. Validity statements are not dichotomous (valid/
invalid) but rather are described on a continuum.

3. Construct validity is the central most important
feature of validity.

4. There are no longer various types of validity
but rather different sources of evidence that can
be gathered to aid in demonstrating the validity
of inferences.

5. Validity is no longer defined by a set of statistical
methodologies, such as correlation with a gold-
standard but rather by an elaborated theory and
supporting methods.

6. As one can see in Zumbo’s [20] volume, there
is a move to consider the consequences of
inferences from test scores. That is, along with
the elevation of construct validity to an over-
all validity framework for evaluating test inter-
pretation and use came the consideration of
the role of ethical and social consequences as
validity evidence contributing to score mean-
ing. This movement has been met with some
resistance. In the end, Messick [14] made the
point most succinctly when he stated that one
should not be simply concerned with the obvi-
ous and gross negative consequences of score
interpretation, but rather one should consider
the more subtle and systemic consequences of
‘normal’ test use. The matter and role of con-
sequences still remains controversial today and
will regain momentum in the current climate
of large-scale test results affecting educational
financing and staffing, as well as health care out-
comes and financing in the United States and
Canada.

7. Although it was initially set aside in the move
to elevate construct validity, content-based evi-
dence is gaining momentum again in part due to
the work of Sireci [19].

8. Of all the threats to valid inferences from test
scores, test translation is growing in awareness
due to the number of international efforts in
testing and measurement (see, for example, [3]).

9. And finally, there is debate as to whether relia-
bility is a necessary but not sufficient condition
for validity; it seems that this issue is better
cast as one of measurement precision so that
one strives to have as little measurement error
as possible in their inferences. Specifically, reli-
ability is a question of data quality, whereas
validity is a question of inferential quality. Of
course, reliability and validity theory are inter-
connected research arenas, and quantities derived
in the former bound or limit the inferences in the
latter.

In a broad sense, then, validity is about evalu-
ating the inferences made from a measure. All of
the methods discussed in this encyclopedia (e.g., fac-
tor analysis, reliability, item analysis, item response
modeling, regression, etc.) are directed at building
the evidential basis for establishing valid inferences.
There is, however, one class of methods that are
particularly central to the validation process, struc-
tural equation models. These models are particu-
larly important to test validation research because
they are a marriage of regression, path analysis, and
latent variable modeling (often called factor analy-
sis). Given that the use of latent variable structural
equation models presents one of the most excit-
ing new developments with implications for validity
theory, the next section discusses these models in
detail.
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Generalized Linear Structural Equation
Modeling

In the framework of modern statistical theory, test
validation research involves the analysis of covari-
ance matrices among the observed empirical data that
arise from a validation study using covariance struc-
ture models. There are two classes of models that are
key to validation research: confirmatory factor anal-
ysis (CFA) (see Factor Analysis: Confirmatory) and
multiple indicators multiple causes (MIMIC) models.
The former have a long and rich history in vali-
dation research, whereas the latter are more novel
and are representative of the merger of the structural
equation modeling and item response theory tradi-
tions to what will be referred to as generalized linear
structural equation models. Many very good exam-
ples and excellent texts describing CFA are widely
available (e.g., [1, 2, 10]). MIMIC models are a rela-
tively novel methodology with only heavily statistical
descriptions available.

An Example to Motivate the Statistical
Problem

Test validation with SEM will be described using the
Center for Epidemiologic Studies Depression scale
(CES-D) as an example. The CES-D is useful as a
demonstration because it is commonly used in the
life and social sciences. The CES-D is a 20-item scale
introduced originally by Lenore S. Radloff to measure
depressive symptoms in the general population. The
CES-D prompts the respondent to reflect upon his/her
last week and respond to questions such as ‘My sleep
was restless’ using an ordered or Likert response
format of ‘not even one day’, ‘1 to 2 days’, ‘3 to
4 days’, ‘5 to 7 days’ during the last week. The items
typically are scored from zero (not even one day) to
three (5–7 days). Composite scores, therefore, range
from 0 to 60, with higher scores indicating higher
levels of depressive symptoms. The data presented
herein is a subsample of a larger data set collected
in northern British Columbia, Canada. As part of
a larger survey, responses were obtained from 600
adults in the general population -290 females with an
average age of 42 years with a range of 18 to 87 years,
and 310 males with an average age of 46 years and a
range of 17 to 82 years.

Of course, the composite scale score is not the
phenomenon of depression, per se, but rather is

related to depression such that a higher composite
scale score reflects higher levels of the latent variable
depression. Cast in this way, two central questions
of test validation are of interest: (a) Given that the
items are combined to created one scale score, do
they measure just one latent variable? and (b) Are
the age and gender of the respondents predictive of
the latent variable score on the CES-D? The former
question is motivated by psychometric necessities
whereas the latter question is motivated by theoretical
predictions.

CFA Models in Test Validation

The first validation question described above is
addressed by using CFA. In the typical CFA model,
the score obtained on each item is considered to be
a linear function of a latent variable and a stochastic
error term. Assuming p items and one latent variable,
the linear relationship may be represented in matrix
notation as

y = �η + ε, (1)

where y is a (p × 1) column vector of continuous
scores for person i on the p items, � is a (p × 1) col-
umn vector of loadings (i.e., regression coefficients)
of the p items on the latent variable, η is the latent
variable score for person i, and ε is (p × 1) column
vector of measurement residuals. It is then straight-
forward to show that for items that measure one latent
variable, (1) implies the following equation:

� = ��′ + �, (2)

where � is the (p × p) population covariance matrix
among the items and � is a (p × p) matrix of
covariances among the measurement residuals or
unique factors, �′ is the transpose of �, and �

is as defined above. In words, (2) tells us that the
goal of CFA, like all factor analyses, is to account
for the covariation among the items by some latent
variables. In fact, it is this accounting for the observed
covariation that is fundamental definition of a latent
variable – that is, a latent variable is defined by local
or conditional independence.

More generally, CFA models are members of
a larger class of general linear structural mod-
els for a p-variate vector of variables in which
the empirical data to be modeled consist of the
p × p unstructured estimator, the sample covariance
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matrix, S, of the population covariance matrix,
∑

.
A confirmatory factor model is specified by a vec-
tor of q unknown parameters, θ , which in turn may
generate a covariance matrix,

∑
(θ), for the model.

Accordingly, there are various estimation methods
such as generalized least-squares or maximum like-
lihood with their own criterion to yield an estimator
θ̂ for the parameters, and a legion of test statis-
tics that indicate the similarity between the esti-
mated model and the population covariance matrix
from which a sample has been drawn (i.e.,

∑ =∑
(θ)). That is, formally, one is trying to ascertain

whether the covariance matrix implied by the mea-
surement model is the same as the observed covari-
ance matrix,

S ∼= �̂�̂′ + �̂ = �(θ̂) = �̂, (3)

where the symbols above the Greek letters are
meant to imply sample estimates of these popula-
tion quantities.

As in regression, the goal of CFA is to minimize
the error (in this case, the off-diagonal elements of
the residual covariance matrix) and maximize the fit
between the model and the data. Most current indices
of model fit assess how well the model reproduces the
observed covariance matrix.

In the example with the CES-D, a CFA model with
one latent variable was specified and tested using a
recent version of the software LISREL (see Struc-
tural Equation Modeling: Software). Because the
CES-D items are ordinal (and hence not continu-
ous) in nature (in our case a four-point response
scale) a polychoric covariance matrix was used as
input for the analyses. Using a polychoric matrix
is an underlying variable approach to modeling
ordinal data (as opposed to an item response the-
ory approach). For a polychoric correlation matrix
(see Polychoric Correlation), an underlying con-
tinuum for the polytomous scores is assumed and
the observed responses are considered manifestations
of respondents exceeding a certain number of latent
thresholds on that underlying continuum. Conceptu-
ally, the idea is to estimate the latent thresholds and
model the observed cross-classification of response
categories via the underlying latent continuous vari-
ables. Formally, for item j with response categories
c = 0, 1, 2, . . . , C − 1, define the latent variable y*
such that

yj = c if τc < y∗
j < τc+1, (4)

where τc, τc+1 are the latent thresholds on the
underlying latent continuum, which are typically
spaced at nonequal intervals and satisfy the constraint
−∞ = τ0 < τ1 < · · · < τC−1 < τC = ∞. It is worth
mentioning at this point that the latent distribution
does not necessarily have to be normally distributed,
although it commonly is due to its well understood
nature and beneficial mathematical properties, and
that one should be willing to believe that this
model with an underlying latent dimension is actually
realistic for the data at hand.

Suffice it to say that an examination of the fit
indices for our example data with the CES-D, such
as the root mean-squared error of approximation
(RMSEA), a measure of model fit, showed that the
one latent variable model was considered adequate,
RMSEA = 0.069, with a 90% confidence interval for
RMSEA of 0.063 to 0.074.

The single population CFA model, as described
above, has been generalized to allow one to test the
same model simultaneously across several popula-
tions. This is a particularly useful statistical strategy
if one wants to ascertain whether their measure-
ment instrument is functioning the same away in
subpopulations of participants (e.g., if a measure
functioning the same for males and females). This
multigroup CFA operates with the same statistical
engine described above with the exception of taking
advantage of the statistical capacity of partitioning a
likelihood ratio Chi-square and hence testing a series
of nested models for a variety of tests of scale level
measurement invariance (see [1], for details).

MIMIC Models in Test Validation

The second validation question described above
(i.e., are age and gender predictive of CES-D
scale scores?) is often addressed by using ordinary
least-squares regression by regressing the observed
composite score of the CES-D onto age and the
dummy coded gender variables. The problem with
this approach is that the regression results are biased
by the measurement error in the observed composite
score. Although widely known among psychometri-
cians and statisticians, this bias is ignored in a lot of
day-to-day validation research.

The more optimal statistical analysis than using
OLS regression is to use SEM and MIMIC models.
MIMIC models were first described by Jöreskog
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and Goldberger [7]. MIMIC models, in their essence,
posit a model stating that a set of possible observed
explanatory variables (sometimes called predictors
or covariates) affects latent variables, which are
themselves indicated by other observed variables.
In our example of the CES-D, the age and gender
variables are predictors of the CES-D latent variable,
which itself is indicated by the 20 CES-D items. Our
example highlights an important distinction between
the original MIMIC models discussed over the last
three decades and the most recent developments
in MIMIC methodology – in the original MIMIC
work the indicators of the latent variable(s) were all
continuous variables. In our case, the indicators for
the CES-D latent variables (i.e., the CES-D items)
are ordinal or Likert variables. This complicates the
MIMIC modeling substantially and, until relatively
recently, was a major impediment to using MIMIC
models in validation research.

The recent MIMIC model for ordinal indicator
variables is, in short, an example of the merging
of statistical ideas in generalized linear models (e.g.,
logit and probit models) and structural equation mod-
eling into a generalized linear structural modeling
framework [6, 8, 16, 17, 18]. This new framework
builds on the correspondence between factor ana-
lytic models and item response theory (IRT) models
(see, e.g., [11]) and is a very general class of models
that allow one to estimate group differences, inves-
tigate predictors, easily compute IRT with multiple
latent variables (i.e., multidimensional IRT), investi-
gate differential item functioning, and easily model
complex data structures involving complex item and
test formats such as testlets, item bundles, test method
effects, or correlated errors all with relatively short
scales, such as the CES-D.

A recent paper by Moustaki, Jöreskog, and
Mavridis [15] provides much of the technical detail
for the generalized linear structural equation model-
ing framework discussed in this entry; therefore, I
will provide only a sketch of the statistical approach
to motivate the example with the CES-D. In this light,
it should be noted that these models can be fit with
either Mplus or PRELIS-LISREL. I chose to use the
PRELIS-LISREL software, and hence my description
of the generalized linear structural equation model
will use Jöreskog’s notation.

To write a general model allowing for predictors
of the observed (manifest) and latent variables, one
extends (1) with a new matrix that contains the

predictors x

y∗ = �z + Bx + u, where

z = Dw + δ, (5)

and u is an error term representing a specific factor
and measurement error and y∗ is an unobserved
continuous variable underlying the observed ordinal
variable denoted y, z is a vector of latent variables, w

is a vector of fixed predictors (also called covariates),
D is a matrix of regression coefficients and δ is a
vector of error terms which follows a N(0, I ). Recall
that in (1) the variable being modeled is directly
observed (and assumed to be continuous), but in (5)
it is not.

Note that because the PRELIS-LISREL approach
does not specify a model for the complete p-
dimensional response pattern observed in the data,
one needs to estimate the model in (5) with PRELIS-
LISREL one follows two steps. In the first step (the
PRELIS step), one models the univariate and bivari-
ate marginal distributions to estimate the thresholds
and the joint covariance matrix of y∗, x, and w and
their asymptotic covariance matrix. In the PRELIS
step there is no latent variable imposed on the esti-
mated joint covariance matrix hence making that
matrix an unconstrained covariance matrix that is just
like a sample covariance matrix, S, in (3) above for
continuous variables. It can therefore be used in LIS-
REL for modeling just as if y∗ was directly observed
using (robust) maximum likelihood or weighted least-
squares estimation methods.

Turning to the CES-D example, the validity
researcher is interested in the question of whether
age and gender are predictive of CES-D scale scores.
Figure 1 is the resulting generalized MIMIC model.
One can see in Figure 1 that the correlation of age
and gender is, as expected from descriptive statis-
tics of age for each gender, negative. Likewise, if
one were to examine the t values in the LISREL
output, both the age and gender predictors are statis-
tically significant. Given the female respondents are
coded 1 in the binary gender variable, as a group
the female respondents scored higher on the latent
variable of depression. Likewise, the older respon-
dents tended to have a lower level of depression
compared to the younger respondents in this sam-
ple, as reflected in the negative regression coefficient
in Figure 1. When the predictive relationship of age
was investigated separately for males and females via
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this generalized MIMIC model, age was a statisti-
cally significant (negative) predictor for the female
respondents and age was not a statistically significant
for male respondents. Age is unrelated to depression
level for men, whereas older women in this sample
are less depressed than younger women. This sort of
predictive validity information is useful to researchers
using the CES-D and hence supports, as described at
the beginning of this entry, the inferences made from
CES-D test scores.
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Structural Zeros

Empty or zero cells in a contingency table can
be classified as either structural zeros or random
(sampling) zeros. A sampling zero occurs when the
observed cell count in the table is zero, while its
expected value is not. This is especially likely when
both the sample size and the cell probability are
small. For any positive cell probability, however,
increasing the sample size sufficiently will ensure
that with high probability, the cell count will not
be zero; that is, there will not be a random zero.
In contrast, increasing the sample size does not have
this effect on structural zeros. This is because a cell
with a structural zero has an expected value of zero.
Clearly, as a nonnegative random variable, this means
that its variance is also zero, and that not only did no
observations in the data set at hand fall into that cell,
but in fact that no observation could fall into that
cell. The cell count is zero with probability one.

Sampling zeros are part of the data and contribute
to the likelihood function (see Maximum Likelihood
Estimation) and model fitting, while structural zeros
are not part of the data [1]. Therefore, they do not
contribute to the likelihood function or model fitting.
A contingency table containing structural zeros is, in
some sense, an incomplete table and special analy-
sis methods are needed to deal with structural zeros.
Agresti [1] gave an example of a contingency table
(Table 1) with a structural zero [1]. The study inves-
tigated the effect of primary pneumonia infections in
calves on secondary pneumonia infections. The 2 × 2
table has primary infection and secondary infection
as the row variable and the column variable, respec-
tively. Since a secondary infection is not possible
without a primary infection, the lower left cell has
a structural zero. If any of the other three cells had
turned out to have a zero count, then they would have
been sampling zeros.

Table 1 An Example of a Structural Zero in a 2 × 2
Contingency Table

Secondary infection

Primary Yes No

Yes a (π11) b (π12) π1+
No – c (π22) π2+

π+1 π+2

Other examples in which structural zeros may
arise include cross-classifications by number of
children in a household and number of smoking chil-
dren in a household, number of felonies committed
on a given day in a given area and number of these
felonies for which at least one suspect was arrested
and charged with the felony in question, and num-
ber of infections experienced and number of serious
infections experienced for patients in a study. Yu and
Zelterman [4] presented a triangular table with fam-
ilies classified by both number of siblings (1–6) and
number of siblings with interstitial pulmonary fibrosis
(0–6). The common theme is that the initial classifi-
cation bears some resemblance to a Poisson variable,
or a count variable, and the secondary variable bears
some resemblance to a binary classification of each
Poisson observation.

The structural zero occurs because of the restric-
tion on the number of binary ‘successes’ imposed by
the total Poisson count; that is, there cannot be a fam-
ily with two children and three children smokers, or a
day with six felonies and eight felonies with suspects
arrested, or a patient with no infection but one serious
infection. Table 1 of [4] is triangular for this reason
too; that is, every cell above the main diagonal, in
which the number of affected siblings would exceed
the number of siblings, is a structural zero.

For two-way frequency tables, the typical analyses
are based on Pearson’s χ2 test or Fisher’s exact test
(see Exact Methods for Categorical Data). These
are tests of association (see Measures of Associ-
ation) of the row and column variables. The null
hypothesis is that the row and column variables are
independent, while the alternative hypothesis is that
the variables are associated. The usual formulation
of ‘no association’ is that the cell probabilities in any
given column are common across the rows, or p(1,1)
= p(2,1) and p(1,2) = p(2,2), with more such equal-
ities if the table has more than two rows and/or more
than two columns. But if one cell is a structural zero
and the corresponding cell in the same column is not,
then the usual null hypothesis makes no sense. Even
under the null hypothesis, the cell probabilities can-
not be the same owing to the zero count cells, so the
row and column variables are not independent even
under the null hypothesis. This is not as big a prob-
lem as it may first appear, however, because further
thought reveals that interest would not lie in the usual
null hypothesis anyway. In fact, there is no reason to
even insist on the usual two-way structure at all.
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The three possible outcomes in the problem of pri-
mary and secondary pneumonia infections of calves
can be displayed alternatively as a one-way layout,
or a 1 × 3 table with categories for no infection,
only a primary infection, or a combination of a pri-
mary and a secondary infection. This new variable
is the information-preserving composite endpoint [2].
Agresti considered testing if the probability of the
primary infection is the same as the conditional prob-
ability of a secondary infection given that the calf got
the primary infection [1]; that is, the null hypothe-
sis can be written as H0 : π1+ = π11/π1+. Tang and
Tang [3] developed several exact unconditional meth-
ods on the basis of the above null hypothesis. The
one-way layout can be used for the other examples
as well, but two-way structures may be used with
different parameterizations.

Instead of number of children in a household
and number of smoking children in a household, for
example, one could cross-classify by number of non-
smoking children and number of smoking children.
This would avoid the structural zero. Likewise, struc-
tural zeros could be avoided by cross-classifying by

the number of felonies committed on a given day in a
given area without an arrest and the number of these
felonies for which at least one suspect was arrested
and charged with the felony in question. Finally, the
number of nonserious infections experienced and the
number of serious infections experienced for patients
in a study could be tabulated with two-way structure
and no structural zeros.
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Subjective Probability and
Human Judgement

How good are people at judging probabilities? One
early benchmark used for comparison was Bayes’
theorem (see Bayesian Belief Networks). Bayes’
theorem defines mathematically how probabilities
should be combined and can be used as a normative
theory of the way in which subjective probabilities
representing degrees of belief attached to the truth
of hypotheses should be revised in the light of new
information. Bayes’ theorem states that the posterior
odds of the hypothesis being correct in the light of
new information is a product of two elements: the
prior odds of the hypothesis being correct before the
information is observed and the likelihood ratio of
the information, given that the hypothesis is correct
or incorrect (see Bayesian Statistics).

In the 1960s, Ward Edwards and his colleagues
conducted a number of studies using the book-
bag and poker-chip paradigm. A typical experiment
would involve two opaque bags. Each bag contained
100 colored poker-chips in different, but stated,
proportions of red to blue. One – bag A contains
70 red chips and 30 blue, while the second – bag B
contains 30 red chips and 70 blue. The experimenter
first chooses one bag at random and then draws a
series of chips from it. After each draw, the poker-
chip is replaced and the bag well shaken before the
next chip is drawn. The subject’s task is to say how
confident he/she is – in probability terms – that the
chosen bag is bag A, containing predominantly red
chips, or bag B, containing predominantly blue chips.
As the bag was drawn randomly from two bags, our
prior odds that we have bag A (or bag B) are 0.5/0.5.
If we draw (say) a red chip, we know the likelihood of
this is 0.7 if we have bag A and 0.3 if we have bag B.
We thus multiply 0.5/0.5 × 0.07/0.03 to discover the
posterior odds (0.35/0.15 = 0.7/0.3). The posterior
odds computed after the first draw then become the
prior odds for computing the impact of the second
draw and the process repeated subsequently.

A crucial aspect of the logic of these studies
is that the experimenter is able to say what the
correct subjective probabilities should be for the
participants by the simple expedient of calculating
them using Bayes’ theorem. All of the information
required as inputs to Bayes’ theorem is explicit and

unambiguous. Ironically, though this meant that the
subjectivity of probability was not a part of the
studies, in the sense that the experimenters assumed
that they could objectively compute that the correct
answer – which they would be able to assume –
should be the same for all the participants faced with
the same evidence.

The fact that the experimenter assumes he is able
to calculate what the subjective probabilities should
be for all of the participants was absolutely neces-
sary if one was to be able to judge judgment by this
method. However, it is also an indication of the artifi-
ciality of the task – and is at the root of the difficulties
that were to emerge with interpreting the partici-
pants’ behavior. The experiments conducted with this
procedure produced a good deal of evidence that
human judgment under these conditions is not well
described by Bayes’ theorem. Although participants’
opinion revisions were proportional to the values cal-
culated from Bayes’ rule, they did not revise their
opinions sufficiently in the light of the evidence,
a phenomenon that was labeled conservatism . The
clear suggestion was that human judgment was to
this extent poor, although there was some debate as
to the precise reason for this. It might be due to a
failure to understand the impact of the evidence or to
an inability to aggregate the assessments according to
Bayes’ theorem. Aside from any theoretical interest
in these possibilities, there were practical implications
of this debate. If people are good at assessing proba-
bilities, but poor at combining them (as Edwards [5]
suggested), then perhaps they could be helped; a rel-
atively simple remedy would be to design a support
system that took the human assessments and com-
bined them using Bayes’ theorem. However, if they
were poor at assessing the component probabilities,
then there would not be much point in devising sys-
tems to help them aggregate these.

Before any firm conclusions were reached as to the
cause of conservatism, however, the research explor-
ing the phenomenon fizzled out. The reasons for this
seem to be twofold. One cause was the emergence
of the heuristics and biases research and, in partic-
ular, the discovery of what Kahneman and Tver-
sky [19] called base-rate neglect. Base-rate neglect
is the exact opposite of conservatism – according
to this account of judgment, people, far from being
conservative about opinion revision, disregard prior
odds and are only influenced by the likelihood ratio.
Before this development occurred, however, there
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was growing disquiet as to the validity of the book-
bag experimental method as a basis for judging real-
world judgment.

A number of studies had shown considerable
variability in the amount of conservatism manifested
according to various, quite subtle differences in the
task set to participants. For example, the diagnosticity
of the data seemed an important variable. Imagine,
instead of our two bags with a 70/30 split in the
proportions of blue and red poker-chips, the bags
contained 49 red and 51 blue or 49 blue and 51
red chips. Clearly, two consecutive draws of a blue
chip would not be very diagnostic as to which of the
two bags we were sampling from. Experiments have
shown that the more diagnostic the information, the
more conservative is the subject. When information
is very weakly diagnostic, as in our example, human
probability revision, rather than being conservative,
can be too extreme [29].

DuCharme and Peterson [4] argued that the fact
that the information was restricted to one of two
different possibilities (red chip or blue chip) meant
that there were very few possible revisions that could
be made. In the real world, information leading to
revision of opinion does not have discrete values,
but may more fairly be described as varying along
a continuum. In an experimental study, DuCharme
and Peterson used a hypothesis test consisting of
the population of male heights and the population
of female heights. The participants’ task was to
decide which population was being sampled from,
based on the information given by randomly sampling
heights from one of the populations. Using this
task, DuCharme and Peterson found conservatism
greatly reduced to half the level found in the more
artificial tasks. They concluded that this was due to
their participants’ greater familiarity with the data-
generating process underlying their task.

The argument concerning the validity of the con-
clusions from the book-bag and poker-chip paradigm
was taken further by Winkler and Murphy [35]. Their
article entitled ‘Experiments in the laboratory and
the real world’ argued that the standard task dif-
fered in several crucial aspects from the real world.
For example, the bits of evidence that are presented
to experimental participants are conditionally inde-
pendent; knowing one piece of information does not
change the impact of the other. Producing one red
chip from the urn and then replacing it does not affect
the likelihood of drawing another red chip. However,

in real-world probability revision, this assumption
often does not make sense.

For example, consider a problem posed by medical
diagnosis. Loss of appetite is a symptom which,
used in conjunction with other symptoms, can be
useful for identifying the cause of certain illnesses.
However, if I know that a patient is nauseous, I
know that they are more likely (than in the absence
of nausea) to experience loss of appetite. These two
pieces of information, therefore, are not conditionally
independent and so, when making my diagnosis, I
should not revise my opinion on seeing the loss
of appetite symptom as much as I might, before
knowing about the nausea symptom, to diagnose
diseases indicated by loss of appetite.

Winkler and Murphy argued that in many real-
world situations lack of conditional independence of
the information would render much of it redundant.
In the book-bag task, participants may have been
behaving much as they do in more familiar situations
involving redundant information sources. Winkler
and Murphy considered a range of other artificialities
with this task and concluded that ‘conservatism may
be an artifact caused by dissimilarities between the
laboratory and the real world’.

Heuristics and Biases

From the early 1970s, Kahneman and Tversky pro-
vided a formidable series of demonstrations of human
judgmental error and linked these to the opera-
tion of a set of mental heuristics – mental rules of
thumb – that they proposed the brain uses to sim-
plify the process of judgment. For example, Tversky
and Kahneman [30] claimed that human judgment
is overconfident, ignores base rates, is insufficiently
regressive, is influenced by arbitrary anchors, induces
illusory correlations, and misconceives randomness.
These foibles, they argued, indicated that the under-
lying judgment process was not normative (i.e., it did
not compute probabilities using any kind of mental
approximation to Bayes’ theorem), but instead used
simpler rules that were easier for the brain to imple-
ment quickly.

The idea, spelled out in [18], is that, due to lim-
ited mental processing capacity, strategies of sim-
plification are required to reduce the complexity of
judgment tasks and make them tractable for the kind
of mind that people happen to have. Accordingly,
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the principal reason for interest in judgmental biases
was not merely that participants made errors, but
that it supported the notion that people made use
of relatively simple, but error-prone, heuristics for
making judgments.

One such heuristic is representativeness . This
heuristic determines how likely it is that an event
is a member of a category according to how similar
or typical the event is to the category. For example,
people may judge the likelihood that a given individ-
ual is employed as a librarian by the extent to which
the individual resembles a typical librarian. This may
seem a reasonable strategy, but it neglects considera-
tion of the relative prevalence of librarians. Tversky
and Kahneman found that when base rates of dif-
ferent categories vary, judgments of the occupations
of described people were correspondingly biased due
to base-rate neglect. People using the representative-
ness heuristic for forecasting were employing a form
of stereotyping in which similarity dominates other
cues as a basis for judgment and decision-making.

In Kahneman and Tversky’s [19] experiments
demonstrating neglect of base rates, participants were
found to ignore information concerning the prior
probabilities of the hypotheses. For example, in
one study, participants were presented with the fol-
lowing brief personal description of an individual
called Jack:

Jack is a 45-year old man. He is married and has
four children. He is generally conservative, careful,
and ambitious. He shows no interest in political and
social issues and spends most of his free time on his
many hobbies which include home carpentry, sailing,
and mathematical puzzles.

Half the participants were told that the description
had been randomly drawn from a sample of 70
engineers and 30 lawyers, while the other half were
told that the description was drawn from a sample
of 30 engineers and 70 lawyers. Both groups were
asked to estimate the probability that Jack was an
engineer (or a lawyer). The mean estimates of the
two groups of participants were only very slightly
different (50 vs 55%). On the basis of this result and
others, Kahneman and Tversky concluded that prior
probabilities are largely ignored when individuating
information was made available.

Although participants used the base rates when
told to suppose that they had no information whatso-
ever about the individual (a ‘null description’), when
a description designed to be totally uninformative

with regard to the profession of an individual called
Dick was presented, complete neglect of the base
rates resulted.

Dick is a 30-year-old man. He is married with no
children. A man of high ability and high motivation,
he promises to be quite successful in his field. He is
well liked by his colleagues.

When confronted with this description, participants
in both base rate groups gave median estimates of
50%. Kahneman and Tversky concluded that when
no specific evidence is given, the base rates were
properly utilized; but when worthless information is
given, base rates were neglected.

Judgment by representativeness was also invoked
by Tversky and Kahneman [32] to explain the con-
junction fallacy whereby a conjunction of events is
judged more likely than one of its constituents. This
is a violation of a perfectly simple principle of prob-
ability logic: If A includes B, then the probability of
B cannot exceed A. Nevertheless, participants who
read a description of a woman called Linda who had
a history of interest in liberal causes gave a higher
likelihood to the possibility that she was a femi-
nist bank clerk than to the possibility that she was
a bank clerk – thereby violating the conjunction rule.
Although it may seem unlikely that someone who had
interests in liberal causes would be a bank clerk, but
a bit more likely that she were a feminist bank clerk,
all feminist bank clerks are of course bank clerks.

Another heuristic used for probabilistic judgment
is availability. This heuristic is invoked when people
estimate likelihood or relative frequency by the
ease with which instances can be brought to mind.
Instances of frequent events are typically easier to
recall than instances of less frequent events, so
availability will often be a valid cue for estimates
of likelihood. However, availability is affected by
factors other than likelihood. For example, recent
events and emotionally salient events are easier
to recollect. It is a common experience that the
perceived riskiness of air travel rises in the immediate
wake of an air disaster. Applications for earthquake
insurance in California are apparently higher in the
immediate wake of a major quake. Judgments made
on the basis of availability then are vulnerable to bias
whenever availability and likelihood are uncorrelated.

The anchor and adjust heuristic is used when
people make estimates by starting from an initial
value that is adjusted to yield a final value. The



4 Subjective Probability and Human Judgement

claim is that adjustment is typically insufficient. For
instance, one experimental task required participants
to estimate various quantities stated in percentages
(e.g., the percentage of African countries in the UN).
Participants communicated their answers by using a
spinner wheel showing numbers between 0 and 100.
For each question, the wheel was spun and then
participants were first asked whether the true answer
was above or below this arbitrary value. They then
gave their estimate of the actual value. Estimates were
found to be considerably influenced by the initial
(entirely random) starting point (cf. [34]).

The research into heuristics and biases provided
a methodology, a very vivid explanatory framework
and a strong suggestion that judgment is not as good
as it might be. However, the idea that all of this
should be taken for granted was denied by the pro-
ponents of the research some time ago. For example,
Kahneman and Tversky [20] made clear that the main
goal of the research was to understand the processes
that produce both valid and invalid judgments. How-
ever, it soon became apparent that: ‘although errors
of judgment are but a method by which some cogni-
tive processes are studied, the method has become a
significant part of the message’ [20, p. 494]. So, how
should we regard human judgment?

There has been an enormous amount of discussion
of Tversky and Kahneman’s findings and claims.
Researchers in the heuristics and biases tradition have
sometimes generated shock and astonishment that
people seem so bad at reasoning with probability
despite the fact that we all live in an uncertain world.
Not surprisingly, and as a consequence, the claims
have been challenged. The basis of the challenges
has varied. Some have questioned whether these
demonstrations of biases in judgment apply merely
to student samples or also to experts operating in
their domain of expertise. Another argument is that
the nature of the tasks set to participants gives a
misleading perspective of their competence. A third
argument is that the standards for the assessment of
judgment are inappropriate.

Criticisms of Heuristics and Biases
Research

Research following Tversky and Kahneman’s orig-
inal demonstration of base-rate neglect established
that base rates might be attended to more (though

usually not sufficiently) if they were perceived
as relevant [1], had a causal role [31], or were
‘vivid’ rather than ‘pallid’ in their impact on the
decision-maker [27]. However, Gigerenzer, Hell, and
Blank [10] have argued that the real reason for vari-
ations in base-rate neglect has nothing to do with
any of these factors per se, but because the different
tasks may, to varying degrees, encourage the sub-
ject to represent the problem as a Bayesian revision
problem. They claimed that there are few inferences
in real life that correspond directly to Bayesian revi-
sion where a known base-rate is revised on the
basis of new information. Just because the exper-
imenter assumes that he has defined a Bayesian
revision problem does not imply that the subject
will see it the same way. In particular, the partic-
ipants may not take the base rate asserted by the
experimenter as their subjective prior probability.
In Kahneman and Tversky’s original experiments,
the descriptions were not actually randomly sam-
pled (as the participants were told), but especially
selected to be ‘representative’ of the professions. To
the extent that the participants suspected that this was
the case then they would be entitled to ignore the
offered base rate and replace it with one of their own
perception.

In an experiment, Gigerenzer et al. [10] found
that when they let the participants experience the
sampling themselves, base-rate neglect ‘disappeared’.
In the experiment, their participants could examine
10 pieces of paper, each marked lawyer or engineer
in accord to the base rates. Participants then drew
one of the pieces of paper from an urn and it
was unfolded so they could read a description of
an individual without being able to see the mark
defining it as being of a lawyer or engineer. In these
circumstances, participants clearly used the base rates
in a proper fashion. However, in a replication of the
verbal presentation where base rates were asserted,
rather than sampled, Kahneman and Tversky’s base-
rate neglect was replicated.

In response to this, Kahneman and Tversky [21]
argued that a fair summary of the research would
be that explicitly presented base rates are gener-
ally underweighted, but not ignored. They have
also pointed out that in Gigerenzer et al.’s exper-
iment [10], participants who sampled the infor-
mation themselves still produced judgments that
deviated from the Bayesian solution in the direc-
tion predicted by representativeness. Plainly, then
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representativeness is useful for predicting judgments.
However, to the extent that base rates are not
entirely ignored (as argued in an extensive review
of the literature by Koehler [23]), the heuristic ratio-
nale for representativeness is limited. Recall that
the original explanation for base-rate neglect was
the operation of a simple heuristic that reduced
the need for integration of multiple bits of infor-
mation. If judgments in these experiments reflect
base rates – even to a limited extent – it is hard to
account for by the operation of the representativeness
heuristic.

Tversky and Kahneman [32] reported evidence
that violations of the conjunction rule largely disap-
peared when participants were requested to assess the
relative frequency of events rather than the probabil-
ity of a single event. Thus, instead of being asked
about likelihood for a particular individual, partici-
pants were requested to assess how many people in
a survey of 100 adult males had had heart attacks
and then were asked to assess the number of those
who were both over 55 years old and had had heart
attacks. Only 25% of participants violated the con-
junction rule by giving higher values to the latter
than to the former. When asked about likelihoods
for single events, it is typically the vast majority of
participants who violate the rule. This difference in
performance between frequency and single-event ver-
sions of the conjunction problem has been replicated
several times since (cf. [8]).

Gigerenzer (e.g., [8], [9] has suggested that people
are naturally adapted to reasoning with information
in the form of frequencies and that the conjunction
fallacy ‘disappears’ if reasoning is in the form of
frequencies for this reason. This suggests that the dif-
ficulties that people experience in solving probability
problems can be reduced if the problems require par-
ticipants to assess relative frequency for a class of
events rather than the probability of a single event.
Thus, it follows that if judgments were elicited with
frequency formats there would be no biases. Kah-
neman and Tversky [21] disagree and argue that the
frequency format serves to provide participants with
a powerful cue to the relation of inclusion between
sets that are explicitly compared, or evaluated in
immediate succession. When the structure of the con-
junction is made more apparent, then participants who
appreciate the constraint supplied by the rule will be
less likely to violate it. According to their account,

salient cues to set inclusion, not the frequency infor-
mation per se, prompted participants to adjust their
judgment.

To test this explanation, Kahneman and Tver-
sky [21] reported a new variation of the conjunction
problem experiment where participants made judg-
ments of frequencies, but the cues to set inclusion
were removed. They presented participants with the
description of Linda and then asked their partici-
pants to suppose that there were 1000 women who
fit the description. They then asked one group of par-
ticipants to estimate how many of them would be
bank tellers; a second independent group of partic-
ipants were asked how many were bank tellers and
active feminists; a third group made evaluations for
both categories. As predicted, those participants who
evaluated both categories mostly conformed to the
conjunction rule. However, in a between-groups com-
parison of the other two groups, the estimates for
‘bank tellers and active feminists’ were found to be
significantly higher than the estimates for bank tellers.
Kahneman and Tversky argue that these results show
that participants use the representativeness heuris-
tic to generate their judgments and then edit their
responses to respect class inclusion where they detect
cues to that relation. Thus, they concluded that the
key variable controling adherence to the conjunc-
tion rule is not the relative frequency format per
se, but the opportunity to detect the relation of class
inclusion.

Other authors have investigated the impact of
frequency information [7, 12, 13, 24] and concluded
that it is not the frequency information per se, but
the perceived relations between the entities that is
affected by different versions of the problem, though
this is rejected by Hoffrage, Gigerenzer, Krauss, and
Martignon [15].

We need to understand more of the reasons under-
lying the limiting conditions of cognitive biases –
how it is that seemingly inconsequential changes in
the format of information can so radically alter the
quality of judgment. Biases that can be cured so sim-
ply cannot be held to reveal fundamental characteris-
tics of the processes of judgment. Gigerenzer’s group
has recently developed an alternative program of
research studying the efficacy of simple heuristics –
rather than their association with biases (see Heuris-
tics: Fast and Frugal). We consider the changing
and disputed interpretations given to another claimed
judgmental bias next.
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Overconfidence

In the 1970s and 1980s, a considerable amount of evi-
dence was marshaled for the view that people suffer
from an overconfidence bias. Typical laboratory stud-
ies of calibration ask participants to answer question
such as

‘Which is the world’s longest canal?’ (a) Panama
(b) Suez

Participants are informed that one of the answers
is correct and are then required to indicate the answer
that they think is correct and state how confident
they are on a probability scale ranging from 50
to 100% (as one of the answers is always correct,
50% is the probability of guessing correctly). To
be well calibrated, assessed probability should equal
percentage correct over a number of assessments
of equal probability. For example, if you assign
a probability of 70% to each of 10 predictions,
then you should get 7 of those predictions correct.
Typically, however, people tend to give overconfident
responses – their average confidence is higher than
their proportion of correct answers. For a full review
of this aspect of probabilistic judgment, see [25]
and [14].

Overconfidence of judgments made under uncer-
tainty is commonly found in calibration studies and
has been recorded in the judgments of experts. For
example, Christensen-Szalanski and Bushyhead [3]
explored the validity of the probabilities given by
physicians to diagnoses of pneumonia. They found
that the probabilities were poorly calibrated and very
overconfident; the proportion of patients who turned
out to have pneumonia was far less than the probabil-
ity statements implied. These authors had previously
established that the physicians’ estimates of the prob-
ability of a patient having pneumonia were signifi-
cantly correlated with their decision to give a patient
a chest X ray and to assign a pneumonia diagnosis.

Wagenaar and Keren [33] found overconfidence in
lawyers’ attempts to anticipate the outcome of court
trials in which they represented one side. As they
point out, it is inconceivable that the lawyers do not
pay attention to the outcomes of trials in which they
have participated, so why do they not learn to make
well-calibrated judgments? Nonetheless, it is possi-
ble that the circumstances in which the lawyers, and
other experts, make their judgments, and the circum-
stances in which they receive feedback, combine to

impede the proper monitoring of feedback necessary
for the development of well-calibrated judgments. A
consideration of the reports of well-calibrated experts
supports this notion; they all appear to be cases where
some explicit unambiguous quantification of uncer-
tainty is initially made and the outcome feedback is
prompt and unambiguous.

The most commonly cited example of well-
calibrated judgments is weather forecasters’ estimates
of the likelihood of precipitation [26], but there are
a few other cases. Keren [22] found highly experi-
enced tournament bridge players (but not experienced
nontournament players) made well-calibrated fore-
casts of the likelihood that a contract, reached during
the bidding phase, would be made, and Phillips [28]
reports well-calibrated forecasts of horse races by
bookmakers. In each of these three cases, the judg-
ments made by the experts are precise numerical
statements and the outcome feedback is unambiguous
and received promptly and so can be easily compared
with the initial forecast. Under these circumstances,
the experts are unlikely to be insensitive to the expe-
rience of being surprised; there is very little scope
for neglecting, or denying, any mismatch between
forecast and outcome.

However, ‘ecological’ theorists (cf. [25]) claim
that overconfidence is an artifact of the artificial
experimental tasks and the nonrepresentative sam-
pling of stimulus materials. Gigerenzer et al. [11] and
Juslin [16] claim that individuals are well adapted
to their environments and do not make biased judg-
ments. Overconfidence is observed because the typi-
cal general knowledge quiz used in most experiments
contains a disproportionate number of misleading
items. These authors have found that when knowl-
edge items are randomly sampled, the overconfidence
phenomenon disappears. For example, Gigerenzer
et al. [11] presented their participants with items gen-
erated with random pairs of the German cities with
more than 100 000 inhabitants and asked them to
select the biggest and indicate their confidence they
had done so correctly. With this randomly sampled
set of items, there was no overconfidence.

Moreover, with conventional general knowledge
quizzes, participants are aware of how well they
are likely to perform overall. Gigerenzer et al. [11]
found that participants are really quite accurate at
indicating the proportion of items that they have
correctly answered. Such quizzes are representative
of general knowledge quizzes experienced in the
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past. Thus, even when they appear overconfident with
their answers to the individual items, participants
are not overconfident about their performance on the
same items as a set. Note that this observation is
consistent with Gigerenzer’s claim that though people
may be poor at representing and so reasoning with
probabilities about single events they can effectively
infer probabilities when represented as frequencies.

Juslin et al. [17] report a meta-analysis compar-
ing 35 studies, where items were randomly selected
from a defined domain, with 95 studies where items
were selected by experimenters. While overconfi-
dence was evident for selected items, it was close to
zero for randomly sampled items, which suggests that
overconfidence is not simply a ubiquitous cognitive
bias. This analysis suggests that the appearance of
overconfidence may be an illusion created by research
and not a cognitive failure by respondents.

Moreover, in cases of judgments of repeated
events (weather forecasters, horse race bookmak-
ers, tournament bridge players), experts make well-
calibrated forecasts. In these cases, respondents might
be identifying relative frequencies for sets of similar
events rather than judging likelihood for individual
events. And, if we compare studies of the calibra-
tion of probability assessments concerning individual
events (e.g., [36]) with those where subjective assess-
ments have been made for repetitive predictions of
events [26], we observe that relatively poor cali-
bration has been observed in the former, whereas
relatively good calibration has been observed in
the latter.

Another idea relevant to the interpretation of the
evidence of overconfidence comes from Erev, Wall-
sten, and Budescu [6], who have suggested that over-
confidence may, to some degree, reflect an underlying
stochastic component of judgment. Any degree of
error variance in judgment would create a regres-
sion that appears as overconfidence in the typical
calibration analysis of judgment. When any two vari-
ables are not perfectly correlated – and confidence
and accuracy are not perfectly correlated – there will
be a regression effect. So, it is that a sample of the
(adult) sons of very tall fathers will, on average, be
shorter than their fathers, and, at the same time, a
sample of the fathers of very tall sons will, on aver-
age, be shorter than their sons.

Exploring this idea, Budescu, Erev, and Wall-
sten [2] presented a generalization of the results from

the Erev et al. [6] article, which shows that overconfi-
dence and its apparent opposite, underconfidence, can
be observed simultaneously in one study, depending
upon whether probabilistic judgments are analyzed
by conditionalizing accuracy as a function of confi-
dence (the usual method showing overconfidence) or
vice versa.

Conclusions

Although there has been a substantial amassing of
evidence for the view that humans are inept at dealing
with uncertainty using judged – subjective – proba-
bility, we also find evidence for a counterargument.
It seems that disparities with basic requirements of
probability theory can be observed when people are
asked to make judgments of probability as a measure
of propensity or strength of belief. The counterargu-
ment proposes that people may be very much better
at reasoning under uncertainty than this research sug-
gests when they are presented with tasks in a manner
that permits them to conceive of probability in fre-
quentist terms. This debate is currently unresolved
and highly contentious. Nevertheless, for those with
the hope of using subjective probabilities as inputs
into decision support systems, we hope we have gone
some way toward demonstrating that human judg-
ments of uncertainty are worth considering as a valu-
able resource, rather than as objects to be regarded
with suspicion or disdain.
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Summary Measure
Analysis of Longitudinal
Data

There are a variety of approaches to the analysis of
longitudinal data, including linear mixed effects
models and generalized estimating equations. But
many investigators may prefer (initially at least) to
use a less complex procedure. One that may fit
the bill is summary measure analysis, the essential
feature of which is the reduction of the repeated
response measurements available on each individual
in the study, to a single number that is considered
to capture an essential feature of the individual’s
response over time. In this way, the multivariate
nature of the repeated observations is transformed to
univariate. The approach has been in use for many
years – see [3].

Choosing a Summary Measure

The most important consideration when applying a
summary measure analysis is the choice of a suitable
summary measure, a choice that needs to be made
before any data are collected. The measure chosen
needs to be relevant to the particular questions of
interest in the study and in the broader scientific
context in which the study takes place. A wide range
of summary measures have been proposed as we see
in Table 1. In [1], it is suggested that the average
response over time is often likely to be the most

relevant, particularly in intervention studies such as
clinical trials.

Having chosen a suitable summary measure, the
analysis of the longitudinal data becomes relatively
straightforward. If two groups are being compared
and normality of the summary measure is thought to
be a valid assumption, then an independent samples
t Test can be used to test for a group difference, or
(preferably) a confidence interval for this difference
can be constructed in the usual way. A one-way anal-
ysis of variance can be applied when there are more
than two groups if again the necessary assumptions of
normality and homogeneity hold. If the distributional
properties of the selected summary measure are such
that normality seems difficult to justify, then nonpara-
metric analogues of these procedures might be used
(see Catalogue of Parametric Tests; Distribution-
free Inference, an Overview).

An Example of Summary Measure
Analysis

The summary measure approach can be illustrated
using the data shown in Table 2 that arise from a
study of alcohol dependence. Two groups of subjects,
one with severe dependence and one with moderate
dependence on alcohol, had their salsolinol excretion
levels (in millimoles) recorded on four consecutive
days. (Salsolinol is an alkaloid with a structure similar
to heroin.)

Using the mean of the four measurements avail-
able for each subject as the summary measure fol-
lowed by the application of a t Test and the con-
struction of a confidence interval leads to the results

Table 1 Possible summary measures (taken from [2])

Type of data Question of interest Summary measure

Peaked Is overall value of outcome variable the same in
different groups?

Overall mean (equal time intervals) or area
under curve (unequal intervals)

Peaked Is maximum (minimum) response different between
groups?

Maximum (minimum) value

Peaked Is time to maximum (minimum) response different
between groups?

Time to maximum (minimum) response

Growth Is rate of change of outcome different between groups? Regression coefficient
Growth Is eventual value of outcome different between groups? Final value of outcome or difference between

last and first values or percentage change
between first and last values

Growth Is response in one group delayed relative to the other? Time to reach a particular value (e.g., a fixed
percentage of baseline)
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Table 2 Salsolinol excretion data

Day

Subject 1 2 3 4

Group 1 (Moderate dependence)
1 0.33 0.70 2.33 3.20
2 5.30 0.90 1.80 0.70
3 2.50 2.10 1.12 1.01
4 0.98 0.32 3.91 0.66
5 0.39 0.69 0.73 3.86
6 0.31 6.34 0.63 3.86

Group 2 (Severe dependence)
7 0.64 0.70 1.00 1.40
8 0.73 1.85 3.60 2.60
9 0.70 4.20 7.30 5.40

10 0.40 1.60 1.40 7.10
11 2.50 1.30 0.70 0.70
12 7.80 1.20 2.60 1.80
13 1.90 1.30 4.40 2.80
14 0.50 0.40 1.10 8.10

Table 3 Results from using the mean as a summary
measure for the data in Table 2

Moderate Severe

Mean 1.80 2.49
sd 0.60 1.09
n 6 8

t = −1.40, df = 12, p = 0.19, 95% CI: [−1.77, 0.39]

shown in Table 3. There is no evidence of a group
difference in salsolinol excretion levels.

A possible alternative to the use of the mean
as summary measure is the maximum excretion
level recorded over the four days. Testing the null
hypothesis that the measure has the same median
in both populations using a Mann-Whitney (see
Wilcoxon–Mann–Whitney Test) test results in a test
statistic of 36 and associated P value of 0.28. Again,

there is no evidence of a difference in salsolinol
excretion levels in the two groups.

Problems with the Summary Measure
Approach

In some situations, it may be impossible to identify a
suitable summary measure and where interest centers
on assessing details of how a response changes over
time and how this change differs between groups,
then summary measure analysis has little to offer.
The summary measure approach to the analysis of
longitudinal data can accommodate missing data by
simply using only the available observations in its
calculation, but the implicit assumption is that values
are missing completely at random. Consequently, in,
say, clinical trials in which a substantial number of
participants drop out before the scheduled end of the
trial, the summary measure approach is probably not
to be recommended.
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Survey Questionnaire
Design

Introduction

Survey statisticians have long distinguished two
major sources of error in survey estimates – sampling
error and measurement error. Sampling error arises
because the survey does not collect data from the
entire population and the characteristics of the sample
may not perfectly match those of the population
from which it was drawn (see Survey Sampling
Procedures). Measurement error arises because the
information collected in the survey differs from
the true values for the variables of interest. The
discrepancies between survey reports and true values
can arise because the survey questions measure the
wrong thing or because they measure the right
thing but do it imperfectly. For example, the survey
designers may want to measure unemployment, and,
in fact, most developed countries conduct regular
surveys to monitor employment and unemployment
rates. Measuring unemployment can be tricky. How
does one classify workers with a job but on
extended sick leave? A major problem is asking
the right questions, the questions that are needed
to classify each respondent correctly. Another major
problem is inaccurate reporting. Even if the questions
represent the concept of interest, respondents may
still not report the right information because they
misunderstand the questions or they do not know
all the relevant facts. For example, they may not
know about the job search activities of other family
members. The goal of survey questionnaire design is
simple – it is to reduce such measurement errors to a
minimum, subject to whatever cost constraints apply
to the survey.

There are two basic methods for attaining this
goal. First, questionnaire designers attempt to write
questions that follow well-established principles for
survey questions. Texts with guidelines for writ-
ing survey questions have been around for at least
fifty years, appearing at about the same time as the
first texts on survey sampling (for an early exam-
ple, see [9]). Initially, these texts offered guidelines
that were based on the experiences of the authors,
but over the years a large base of methodological
research has accumulated and this work has provided

an empirical foundation for the questionnaire design
guidelines (see, e.g. [14]). In addition, over the last
twenty years or so, survey researchers have drawn
more systematically on research in cognitive psychol-
ogy to understand how respondents answer questions
in surveys. This work, summarized in [15] and [17],
has provided a theoretical grounding for the prin-
ciples of questionnaire design. Traditionally, survey
researchers have thought of writing survey questions
as more on an art than a science, but, increasingly,
because of the empirical and theoretical advances of
the last twenty years, survey researchers have begun
referring to the science of asking questions [13].

Aside from writing good questions in the first
place, the other strategy for minimizing measure-
ment error is to test survey questions and cull out
or improve questions that do not seem to yield accu-
rate information. There are several tools questionnaire
designers use in developing and testing survey ques-
tions. These include both pretesting methods such as
cognitive interviews or pilot tests used before the sur-
vey questionnaire is fielded, and methods that can be
applied as the survey is carried out such as recon-
tacting some of the respondents and asking some
questions a second time.

The Questionnaire Design Process

Questionnaire design encompasses four major activi-
ties. The first step often consists of library research,
in which the questionnaire designers look for existing
items with desirable measurement properties. There
are few general compilations of existing survey items.
As a result, survey researchers generally rely on sub-
ject matter experts and earlier surveys on the same
topic as sources for existing questions.

The next step is to assemble the questions into a
draft questionnaire; the draft is usually a blend of both
existing and newly written items. The initial draft
often undergoes some sort of expert review. Ques-
tionnaire design experts may review the questionnaire
to make sure that the questions adhere to question-
naire design principles and that they are easy for the
interviewers to administer and for the respondents
to understand and answer. Subject matter experts
may review the draft to make sure that the survey
will yield all the information needed in the analysis
and that the questions correspond to the concepts of
interest. For instance, the concept of unemployment
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involves both not having a job and wanting one; the
survey questions must adequately cover both aspects
of the concept. Subject matter experts are typically in
the best position to decide whether the survey ques-
tions as drafted will meet the analytical requirements
of the survey. When the questionnaire includes ques-
tions about a new topic, the questionnaire designers
may also conduct one or more focus groups, a pro-
cedure described in more detail below, to discover
how members of the survey population think about
the topic of interest and the words and phrases they
use in talking about it. Respondents are more likely to
answer the questions accurately when the questions
match their experiences and circumstances, and when
they use familiar terminology.

Rarely does a survey questionnaire go into the
field without having been pretested in some way.
Thus, the third step in the questionnaire design pro-
cess typically involves testing, evaluating, and revis-
ing the questionnaire prior to conducting the survey.
Two types of pretesting are commonly used. The first
is called cognitive interviewing. Cognitive interviews
are generally conducted in a centralized laboratory
setting rather than in the field. The purpose of these
interviews is to discover how respondents answer the
questions and whether they encounter any cognitive
difficulties in formulating their answers. The cog-
nitive interviewers administer a draft of the survey
questions. They may encourage the respondents to
think out loud as they answer the questions or they
may administer follow-up probes designed to explore
potential problems with the draft survey items. The
second type of pretest is a pilot test, or a small-
scale version of the main study. Pretest interviewers
may interview 50 to 100 respondents. The size of the
pretest sample often reflects the size and budget of
the main survey. The survey designers may evaluate
this trial run of the questionnaire by drawing on sev-
eral sources of information. Often, they examine the
pilot test responses, looking for items with low vari-
ances or high rates of missing data. In addition, the
questionnaire designers may conduct a ‘debriefing’
with the pilot test interviewers, eliciting their input on
such matters as the items that seemed to cause prob-
lems for the interviewers or the respondents. Pilot
tests sometimes incorporate experiments comparing
two or more methods for asking the questions and, in
such cases, the evaluation of the pretest results will
include an assessment of the experimental results. Or
the pilot test may include recording or monitoring the

interviews. The point of such monitoring is to detect
items that interviewers often do not read as written
or items that elicit frequent requests for clarification
from the respondents. On the basis of the results of
cognitive or pilot test interviews, the draft question-
naire may be revised, often substantially. The pilot
test may reveal other information about the question-
naire, such as the average time needed to administer
the questions, which may also feed into the evaluation
and revision of the questions.

The final step is to administer questions in the
real survey. The evaluation of the questions does not
necessarily stop when the questionnaire is fielded,
because the survey itself may collect data that are
useful for evaluating the questions. For example,
some education surveys collect data from both the
students and their parents, and the analysis can
assess the degree that the information from the
two sources agrees upon. Low levels of agreement
between sources would suggest high levels of mea-
surement error in one or both sources. Similarly,
surveys on health care may collect information both
from the patient and from medical records, allow-
ing an assessment of the accuracy of the survey
responses. Many surveys also recontact some of the
respondents to make sure the interviewers have not
fabricated the data; these ‘validation’ interviews may
readminister some of the original questions, allow-
ing an assessment of the reliability of the questions.
Thus, the final step in the development of the ques-
tionnaire is sometimes an after-the-fact assessment of
the questions, based on the results of the survey.

Tools for Testing and Evaluating Survey
Questions

Our overview of the questionnaire design process
mentioned a number of tools survey researchers use
in developing and testing survey questions. This
section describes these tools – expert reviews, focus
groups, cognitive testing, pilot tests, and split-ballot
experiments – in more detail.

Expert Reviews. Expert reviews refer to two dis-
tinct activities. One type of review is carried out by
substantive experts or even the eventual analysts of
the survey data. The purpose of these substantive
reviews is to ensure that the questionnaire collects all
the information needed to meet the analytic objectives
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of the survey. The other type of review features ques-
tionnaire design experts, who review the wording of
the questions, the response format and the particular
response options offered, the order of the questions,
the instructions to interviewers for administering the
questionnaire, and the navigational instructions (e.g.,
‘If yes, please go to Section B’). Empirical evalu-
ations [10] suggest that questionnaire design experts
often point out a large number of problems with draft
questionnaires.

Sometimes, the experts employ formal checklists
of potential problems with questions. Several check-
lists are available. Lessler and Forsyth [8], for exam-
ple, present a list of 25 types of potential problems
with questions. Such checklists are generally derived
from a cognitive analysis of the survey response
process and the problems that can arise during that
process (see, e.g., [15] and [17]). The checklists often
distinguish various problems in comprehension of the
questions, the recall of information needed to answer
the questions, the use of judgment and estimation
strategies, and the reporting of the answer. One set
of researchers [6] has even developed a computer
program that diagnoses 12 major problems with sur-
vey questions, most of them involving comprehension
issues, thus providing an automated, if preliminary,
expert appraisal. To illustrate the types of problems
included in the checklists, here are the 12 detected
by Graesser and his colleagues’ program:

1. complex syntax,
2. working memory overload,
3. vague or ambiguous noun phrase,
4. unfamiliar technical term,
5. vague or imprecise predicate or relative term,
6. misleading or incorrect presupposition,
7. unclear question category,
8. amalgamation of more than one question cate-

gory,
9. mismatch between the question category and the

answer option,
10. difficulty in accessing (that is, recalling) infor-

mation,
11. respondent unlikely to know answer, and
12. unclear question purpose.

Focus Groups. Before they start writing the survey
questions, questionnaire designers often listen to
volunteers discussing the topic of the survey. These
focus group discussions typically include 6 to 10

members of the survey population and a moderator
who leads the discussion. Questionnaire designers
often use focus groups in the early stages of the
questionnaire design process to learn more about the
survey topic and to discover how the members of the
survey population think and talk about it (see Focus
Group Techniques).

Suppose, for example, one is developing a ques-
tionnaire on medical care. It is useful to know what
kinds of doctors and medical plans respondents actu-
ally use and it is also useful to know whether they are
aware of the differences between HMOs, other types
of managed care plans, and fee-for-service plans. In
addition, it is helpful to know what terminology they
use in describing each sort of plan and how they
describe different types of medical visits. The more
that the questions fit the situations of the respondents,
the easier it will be for the respondents to answer
them. Similarly, the more closely the questions mirror
the terminology that the respondents use in everyday
life, the more likely it is that the respondents will
understand the questions as intended.

Focus groups can be an efficient method for get-
ting information from several people in a short period
of time, but the method does have several limitations.
Those who take part in focus groups are typically vol-
unteers and they may or may not accurately represent
the survey population. In addition, the number of par-
ticipants in a focus group may be a poor guide to the
amount of information produced by the discussion.
No matter how good the moderator is, the discussion
often reflects the views of the most articulate partic-
ipants. In addition, the discussion may veer off onto
some tangent, reflecting the group dynamic rather
than the considered views of the participants. Finally,
the conclusions from a focus group discussion are
often simply the impressions of the observers; they
may be unreliable and subject to the biases of those
conducting the discussions.

Cognitive Interviewing. Cognitive interviewing is
a family of methods designed to reveal the strategies
that respondents use in answering survey questions. It
is descended from a technique called ‘protocol anal-
ysis’, invented by Herbert Simon and his colleagues
(see, e.g., [5]). Its purpose is to explore how peo-
ple deal with higher-level cognitive problems, like
solving chess problems or proving algebraic theo-
rems. Simon asked his subjects to think aloud as
they worked on such problems and recorded what
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they said. These verbalizations were the ‘protocols’
that Simon and his colleagues used in testing their
hypotheses about problem solving. The term ‘cogni-
tive interviewing’ is used somewhat more broadly to
cover a range of procedures, including:

1. concurrent protocols, in which respondents ver-
balize their thoughts while they answer a ques-
tion;

2. retrospective protocols, in which they describe
how they arrived at their answers after they
provide them;

3. confidence ratings, in which they rate their con-
fidence in their answers;

4. definitions of key terms, in which respondents
are asked to define terms in the questions;

5. paraphrasing, in which respondents restate the
question in their own words, and

6. follow-up probes, in which respondents answer
questions designed to reveal their response strate-
gies.

This list is adopted from a longer one found in [7].
Like focus groups, cognitive interviews are typically
conducted with paid volunteers. The questionnaires
for cognitive interviews include both draft survey
questions and prescripted probes designed to reveal
how the respondents understood the questions and
arrived at their answers. The interviewers may also
ask respondents to think aloud as they answer some
or all of the questions. The interviewers generally
are not field interviewers but have received special
training in cognitive interviewing.

Although cognitive interviewing has become a
very popular technique, it is not very well stan-
dardized. Different organizations emphasize different
methods and no two interviewers conduct cognitive
interviews in exactly the same way. Cognitive inter-
views share two of the main drawbacks with focus
groups. First, the samples of respondents are typically
volunteers so the results may not be representative of
the survey population. Second, the conclusions from
the interviews are often based on the impressions of
the interviewers rather than objective data such as the
frequency with which specific problems with an item
are encountered.

Pilot Tests. Pilot tests or field tests of a question-
naire are mini versions of the actual survey conducted
by field interviewers under realistic survey condi-
tions. The pilot tests use the same mode of data

collection as the main survey. For instance, if the
main survey is done over the telephone, then the
pilot test is done by the telephone as well. Pilot tests
have some important advantages over focus groups
and cognitive interviews; they often use probability
samples of the survey population and they are done
using the same procedures as the main survey. As a
result, they can provide information about the data
collection and sampling procedures – Are they prac-
tical? Do the interviews take longer than planned to
complete? – as well as information about the draft
questionnaire.

Pilot tests typically yield two main types of infor-
mation about the survey questionnaire. One type con-
sists of the feedback from the pilot test interviewers.
The reactions of the interviewers are often obtained
in an interviewer debriefing, where some or all of
the field test interviewers meet for a discussion of
their experiences with the questionnaire during the
pilot study. The questionnaire designers attend these
debriefing sessions to hear the interviewers present
their views about questions that do not seem to be
working and other problems they experienced dur-
ing the field test. The second type of information
from field test is the data – the survey responses
themselves. Analysis of the pretest data may produce
various signs diagnostic of questionnaire problems,
such as items with high rates of missing data, out-of-
range values, or inconsistencies with other questions.
Such items may be dropped or rewritten.

Sometimes pilot tests gather additional quantita-
tive data that is useful for evaluating the questions.
These data are derived from monitoring or recording
the pilot test interviews and then coding the inter-
changes between the interviewers and respondents.
Several schemes have been developed for system-
atically coding these interactions. Fowler and Can-
nell [4] have proposed and applied a simple scheme
for assessing survey questions. They argue that coders
should record for each question whether the inter-
viewer read the question exactly as worded, with
minor changes, or with major changes that altered
the meaning of the questions. In addition, the coders
should record whether the respondent interrupted the
interviewer before he or she had finished reading the
question, asked for clarification of the question, and
gave an adequate answer, a don’t know or refusal
response, or an answer that required further prob-
ing from the interviewer. Once the interviews have
been coded, the questionnaire designers can examine
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a variety of statistics for each item, including the per-
centage of times the interviewers departed from the
verbatim text in administering the item, the percent-
age of respondents who asked for clarification of the
question, and the percentage of times the interviewer
had to ask additional questions to obtain an accept-
able answer. All three behaviors are considered signs
of poorly written questions.

Relative to expert reviews, focus groups, and
cognitive testing, field tests, especially when sup-
plemented by behavior coding, yields data that are
objective, quantitative, and replicable.

Split-ballot Experiments. A final method used in
developing and testing questionnaires is the split-
ballot experiment. In a split-ballot experiment, ran-
dom subsamples of the respondents receive different
versions of the questions or different methods of
data collection, for example, self-administered ques-
tions versus questions administered by interviewers,
or both. Such experiments are generally conducted
as part of the development of questionnaires and
procedures for large-scale surveys, and they may be
embedded in a pilot study for such surveys. A discus-
sion of the design issues raised by such experiments
can be found in [16]; examples can be found in [3]
and [16].

Split-ballot experiments have the great virtue that
they can clearly show what features of the questions
or data collection procedures affect the answers. For
example, the experiment can compare different word-
ings of the questions or different question orders. But
the fact that two versions of the questionnaire pro-
duce different results does not necessarily resolve
the question of which version is the right one to
use. Experiments can produce more definitive results
when they also collect some external validation data
that can be used to measure the accuracy of the
responses. For example, in a study of medical care,
the researchers can compare the survey responses to
medical records, thereby providing some basis for
deciding which version of the questions yielded the
more accurate information. In other cases, the results
of a methodological experiment may be unambigu-
ous even in the absence of external information.
Sometimes there is a strong a priori reason for think-
ing that reporting errors follow a particular pattern
or direction. For example, respondents are likely to
underreport embarrassing or illegal behaviors, like
illicit drug use. Thus, a strong reason for thinking

that a shift in a specific direction (such as higher
levels of reported drug use) represents an increase
in accuracy.

The major drawback to methodological exper-
iments is their complexity and expense. Detect-
ing even moderate differences between experimental
groups may require substantial numbers of respon-
dents. In addition, such experiments add to the burden
on the survey designers, requiring them to develop
multiple questionnaires or data collection protocols
rather than just one. The additional time and expense
of this effort may exceed the budget for question-
naire development or delay the schedule for the main
survey too long. For these reasons, split-ballot exper-
iments are not a routine part of the questionnaire
design process.

Combining the Tools. For any particular survey,
the questionnaire design effort is likely to employ
several of these tools. The early stages of the process
are likely to rely on relatively fast and inexpensive
methods such as expert reviews. Depending on how
much of the questionnaire asks about a new topic,
the questionnaire designers may also conduct one
or more focus groups. If the survey is fielding a
substantial number of new items, the researchers are
likely to conduct one or more rounds of cognitive
testing and a pilot test prior to the main survey.
Typically, the researchers analyze the pilot study
data and carry out a debriefing of the pilot test
interviewers. They may supplement this with the
coding and analysis of data on the exchanges between
respondents and interviewers. If there are major
unresolved questions about how the draft questions
should be organized or worded, the survey designers
may conduct an experiment to settle them.

The particular combination of methods used in
developing and testing the survey questionnaire for
a given survey will reflect several considerations,
including the relative strengths and weaknesses of
the different methods, the amount of time and money
available for the questionnaire design effort, and the
issues that concern the survey designers the most.
The different questionnaire design tools yield dif-
ferent kinds of information. Cognitive interviews,
for example, provide information about respondents’
cognitive difficulties with the questions but are less
useful for deciding how easy it will be for interview-
ers to administer the questions in the field. Expert
reviews are a good, all-purpose tool but they yield
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educated guesses rather than objective data on how
the questions are likely to work. Pilot tests are essen-
tial if there are concerns about the length of the
questionnaire or other practical issues that only can be
addressed by a dry run of the questionnaire and data
collection procedures under realistic field conditions.
If the questionnaire requires the use of complicated
response aids or new software for administering the
questions, a field test and interviewer debriefing are
likely to be deemed essential. And, of course, deci-
sions about what tools to use and how many rounds
of the testing to carry out are likely to reflect the
overall survey budget, the amount of prior experience
with this or similar questionnaires, and other factors
related to cost and schedule.

Standards for Evaluating Questions

Although the goal for questionnaire design is straight-
forward in principle – to minimize survey error and
cost – as a practical matter, the researchers may have
to examine various indirect measures of cost or qual-
ity. In theory, the most relevant standards for judging
the questions are their reliability and validity; but
such direct measures of error are often not available
and the researchers are forced to fall back on such
indirect indicators of measurement error as the results
of cognitive interviews. This section takes a more
systematic look at the criteria questionnaire designers
use in judging survey questions.

Content Standards. One important nonstatistical
criterion that the questionnaire must meet is whether
it covers all the topics of interest and yields all
the variables needed in the analysis. It does not
matter much whether the questions elicit accurate
information if it is not the right information. Although
it might seem a simple matter to make sure the survey
includes the questions needed to meet the analytical
objectives, there is often disagreement about the best
strategy for measuring a given concept and there
are always limits on the time or space available
in a questionnaire. Thus, there may be deliberate
compromises between full coverage of a particular
topic of interest and cost. To keep the questionnaire
to a manageable length, the designers may include a
subset of the items from a standard battery in place
of the full battery or they may explore certain topics
superficially rather than in the depth they would
prefer.

Statistical Standards: Validity and reliability. Of
course, the most fundamental standards for a question
are whether it yields consistent and accurate informa-
tion. Reliability and validity (see Validity Theory
and Applications) are the chief statistical measures
of these properties.

The simplest mathematical model for a survey
response treats it as consisting of components – a
true score and an error:

Yit = µi + εit , (1)

in which Yit refers to the reported value for respon-
dent i on occasion t , µi refers to the true score for
that respondent, and εit to the error for the respon-
dent on occasion t (see Measurement: Overview).
The true score is the actual value for the respondent
on the variable of interest and the error is just the
discrepancy between the true score and the reported
value. The idea of a true score makes more intuitive
sense when the variable involves some readily verifi-
able fact or behavior – say, the number of times the
respondent visited a doctor in the past month. Still,
many survey researchers find the concept useful even
for subjective variables, for example, how much the
respondent favors or opposes some policy. In such
cases, the true score is defined as the mean across the
hypothetical population of measures for the concept
that are on the same scale (see, e.g., [1]).

Several assumptions are often made about the
errors. The simplest model assumes first that, for any
given respondent, the expected value of the errors
is zero and, second, that the correlation between the
errors for any two respondents or between those for
the same respondent on any two occasions is zero.
The validity of the item is usually defined as the
correlation between Yit and µi . The reliability is
defined as the correlation between Yit and Yit ′ , where
t and t’ represent two different occasions. Under the
simplest model, it is easy to show that validity (V )
is just:

V = Cov(Y, µ)

[Var(Y )Var(µ)]1/2

= Var(µ)

[Var(Y )Var(µ)]1/2

= Var(µ)1/2

Var(Y )1/2
(2)

in which Cov(Y, µ) is the covariance between the
observed values and the true scores and Var(Y ) and
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Var(µ) are their variances. Under this model, the
validity is just the square of the reliability.

As a practical matter, the validity of a survey
item is often estimated by measuring the correla-
tion between the survey reports and some external
‘gold standard,’ such as administrative records or
some other measure of the variable of interest that
is assumed to be error-free or nearly error-free. Reli-
ability is estimated in one of two ways. For simple
variables derived from a single item, the item may
be administered to the respondent a second time in
a reinterview. Rather than assessing the reliability by
calculating the correlation between the two responses,
survey researchers often calculate the gross discrep-
ancy rate – the proportion of respondents classified
differently in the original interview and the reinter-
view. This approach is particularly common when
the survey report yields a simple categorical vari-
able such as whether the respondent is employed
or not. The gross discrepancy rate is a measure
of unreliability rather than reliability. For variables
derived from multi-item batteries, the average corre-
lation among the items in the battery or some related
index, such as Cronbach’s alpha [2], is typically used
to assess reliability.

The model summarized in (1) is often unrealis-
tically simple and more sophisticated models relax
one or more of its assumptions. For example, it is
sometimes reasonable to assume that errors for two
different respondents are correlated when the same
interviewer collects the data from both. Other mod-
els allow the true scores and observed values to be on
different scales of measurement or allow the observed
scores to reflect the impact of other underlying vari-
ables besides the true score on the variable of interest.
These other variables affecting the observed score
might be other substantive constructs or measurement
factors, such as the format of the questions (see [12]
for an example).

Cognitive Standards. Most questionnaire design
efforts do not yield direct estimates of the reliabil-
ity or validity of the key survey items. As noted,
the typical procedure for estimating validity is to
compare the survey responses to some external mea-
sure of the same variable, and this requires addi-
tional data collection for each survey item to be
validated. Even obtaining an estimate of reliabil-
ity typically requires recontacting some or all of
the original respondents and administering the items

a second time. The additional data collection may
exceed time or budget constraints. As a result, many
survey design efforts rely on cognitive testing or
other indirect methods to assess the measurement
properties of a given survey item. The assumptions
of this approach are that if respondents consistently
have trouble understanding a question or remember-
ing the information needed to answer it, then the
question is unlikely to yield accurate answers. The
evidence that respondents have difficulty compre-
hending the question, retrieving the necessary infor-
mation, making the requisite judgments, and so on
often comes from cognitive interviews. Alternatively,
questionnaire design experts may flag the question
as likely to produce problems for the respondents or
evidence of such problems may arise from the behav-
ior observed in the pilot interviews. For example, a
high percentage of respondents may ask for clarifi-
cation of the question or give inadequate answers.
Whatever the basis for their judgments, the devel-
opers of survey questionnaires are likely to assess
whether the draft questions seem to pose a reason-
able cognitive challenge to the respondents or are
too hard for respondents to understand or answer
accurately.

Practical Standards. Surveys are often large-scale
efforts and may involve thousands of respondents and
hundreds of interviewers. Thus, a final test for a sur-
vey item or survey questionnaire is whether it can
actually be administered in the field in a standardized
way and at a reasonable cost. Interviewers may have
difficulty reading long questions without stumbling;
or they may misread questions involving unfamil-
iar vocabulary. Any instructions the interviewers are
supposed to follow should be clear. Both individ-
ual items and the questionnaire as a whole should
be easy for the interviewers to administer. The bet-
ter the questionnaire design, the less training the
interviewers will need. In addition, it is important
to determine whether the time actually needed to
complete the interview is consistent with the bud-
get for the survey. These practical considerations
are often the main reasons for conducting a pilot
test of the questionnaire and debriefing the pilot
interviewers.

Increasingly, survey questionnaires take the form
of computer programs. The reliance on electronic
questionnaires raises additional practical issues – Is
the software user-friendly? Does it administer the
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items as the authors intended? Do interviewers or
respondents make systematic errors in interacting
with the program? The questionnaire design process
may include an additional effort – usability testing –
to address these practical questions.

Conclusion

Designing survey questionnaires is a complex activ-
ity, blending data collection and statistical analy-
sis with subjective impressions and expert opinions.
Well-validated principles for writing survey questions
are gradually emerging and questionnaire designers
can now consult a substantial body of evidence about
how to ask questions. For a summary of recent devel-
opments, see [11]. Still, for any particular survey, the
questionnaire designers often have to rely on low-cost
indirect indicators of measurement error in writing
specific questions. In addition, the questionnaire that
is ultimately fielded is likely to represent multiple
compromises that balance statistical considerations,
such as reliability and validity, against practical con-
siderations, such as length, usability, and cost. Survey
questionnaire design remains a mix of art and science,
a blend of practicality and principle.
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Survey Sampling
Procedures

Survey sampling provides a method of obtaining
information about a population based on a sample
selected from the population. A population is the
totality of elements or individuals about which one
wants to obtain information. A sample is a portion
of the population that has been selected randomly.
A sample characteristic is used to estimate the
population characteristic. The cost of surveying all
the elements in a population can be high, and the
time for surveying each member of the population
can be enormous. Sampling can provide a savings in
cost and time.

Parameters or characteristics of the population
are estimated from statistics that are characteris-
tics of the sample. The estimates may differ by
only ±2.5% from the actual population values.
For example, in 2004, public opinion polls in the
United States obtained information about approxi-
mately 300 million people from a sample of 1500
people. If in the sample of 1500, say, 600 favor
the president’s performance, the sample statistic is
600/1500 = 0.4. The statistic 0.4 or 40% differs by
only 2.5% from the population parameter 19 out of 20
times a sample of this size is taken. Thus, this sample
would indicate that the interval 37.5 to 42.5% esti-
mates the lower and upper bound of an interval that
contains the percentage who favor the president’s per-
formance. About 95 out of 100 times a sample of this
size (1500) would produce an interval that contains
the population value.

Instrument of Survey Sampling

A questionnaire is usually designed to obtain infor-
mation about a population from sampled values (see
Survey Questionnaire Design). The questionnaire
should be as brief as possible, preferably not more
than two or three pages. The questionnaire should
have a sponsor that is well known and respected by
the sampled individuals. For example, if the popula-
tion is a group of teachers, the teachers will be more
likely to respond if the survey is sponsored by a rec-
ognizable and respected teacher organization. Also,
money incentives such as 50¢ or a $1.00 included

with the mailing improve the response rate on mailed
questionnaires.

The questionnaire should begin with easy-to-
answer questions; more difficult questions should be
placed toward the end of the questionnaire. Demo-
graphic questions should be placed toward the begin-
ning of the questionnaire because these questions are
easy to answer. Care should be taken in construct-
ing questions so that the questions are not offensive.
For example rather than asking, ‘How old are you’ a
choice of appropriate categories is less offensive. For
example, ‘Are you 20 or younger?’ ‘Are you 20 to
30?’ and so on is less offensive. A few open-ended
questions should be included to allow the respondent
to clearly describe his or her position on issues not
included in the body of the questionnaire.

Questionnaires should be tested in a small pilot
survey before the survey is implemented to be sure
the desired information is selected and the questions
are easily understood. The pilot survey should include
about 30 respondents.

Type of Question

Again, some open-ended questions should be used to
allow the respondent freedom in defining his or her
concerns. The Likert scale of measurement should be
used on the majority of the questions. For example,

Strongly
disagree

Mildly
disagree

Dis-
agree

Neu-
tral Agree

Mildly
agree

Strongly
agree

1 2 3 4 5 6 7

The Likert scale is easily converted to a form that
computers can process.

The Frame

The sample in survey sampling is randomly selected
from a frame or list of elements in the population.
A random selection means each element of the
population has an equal chance of being selected.
Numbers can be assigned to each member of the
population 1, 2, . . . , N , where N is the total number
in the population. Then random numbers can be used
to select the sample elements.

Often a list of the population elements does not
exist. Other methods will work for this type of
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problem and are discussed in the Selection Meth-
ods section.

Collection of the Sample Information

The basic methods of obtaining responses in survey
sampling are personal interview, mail questionnaire,
telephone interview, or electronic responses via com-
puters. Personal interviews are accurate but very
expensive and difficult if the population includes a
large geographic area. The person conducting the
interview must be careful to be neutral and must not
solicit preferred responses.

Mail questionnaires (see Mail Surveys) are inex-
pensive but the response rate is usually low, some-
times less than 10%. Incentives such as enclosing a
dollar or offering the chance to win a prize increase
response rates to 20 to 30%. Additional responses can
be obtained by second and third mailings to those
who failed to respond. Responses from first, second,
and third mailings should be compared to see if trends
are evident from one mailing to the other. For exam-
ple, people who feel strongly about an issue may be
more likely to respond to the first mailing than people
who are neutral about an issue.

Telephone interviews are becoming more difficult
to obtain because the general public has grown tired
of tele-marketing and the aggravation of telephone
calls at inconvenient times. In the United States,
approximately 95% of the general population has
telephones and of these, 10 to 15% of telephone
numbers are unlisted. Random digit dialing allows
unlisted numbers to be included in the sample by
using the prefix for an area to be sampled, for
example 756-XXXX. The XXXX is a four digit
random number that is selected from a list of random
numbers. This procedure randomly selects telephone
numbers in 756 exchange.

Electronic methods of sampling are the most re-
cently developed procedures (see Internet Research
Methods). Internet users are sampled and incentives
are used to produce a high response rate. Samples are
easily selected at low cost via the computer.

Selection Methods

The simple random sample in which each element has
an equal chance of selection is the most frequently
used selection method when a frame or list of

elements exists (see [2]). A systematic sample in
which every kth element is selected is often easier to
obtain than a random sample. If N is the number in
the population and n the sample size, then k = N/n,
where k is rounded to the nearest whole number.
The starting point 1 to k is randomly selected. If
the sampled elements are increasing in magnitude,
for example, inventory ordered by value from low-
cost items to high-cost items, a systematic sample
is better than a random sample. If the elements to
be sampled are periodic, for example sales Monday
through Saturday, then a random sample is better
than a systematic sample because a systematic sample
could select the same day each time. If the population
is completely random, then systematic and random
sample produce equivalent results.

If a population can be divided into groups of
similar elements called strata, then a stratified random
sample is appropriate (see Stratification). Random
samples are selected from each stratum, which insures
that the diversity of the population is represented
in the sample and an estimate is also obtained for
each stratum.

If no frame exists, a cluster sample is possible. For
example, to estimate the number of deer on 100 acres,
the 100 acres can be divided into one-acre plots on
a map. Then a random sample of the one-acre plots
can be selected and the number of deer counted for
each selected plot. Suppose five acres are selected
and a total of 10 deer are found. Then the estimate
for the 100 acres would be 2 deer per acre and 200
for the 100 acres.

Sample Size

An approximate estimate of the sample size can
be determined from the following two equations
(see [1]). If you are estimating an average value for
a quantitative variable, (1) can be used.

n =
(

2σ

B

)2

, (1)

where n is the sample size, σ is the population
standard deviation, and B is the bound on the error.
The bound on the error is the maximum differences
between the true value and the stated value with
probability. 9544. An estimate of σ may be obtained
in three ways: (a) estimate σ from historical studies,
(b) estimate σ from (range of values /6) ∼= σ , and
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(c) obtain a pilot sample of 30 or more elements
and estimate σ by calculating σ̂ (the sample standard
deviation), (see 2).

For example, if you wanted to estimate miles per
gallon, mpg, for a large population of automobiles
within 2 mpg, then B would equal 2. A pilot sample
can be taken and σ̂ is used to estimate σ where σ̂ is
found from equation

σ̂ =
√∑n

i=1 (Xi − X̄)2

n − 1
, (2)

where Xi is the sample value and X̄ is the sample
mean. For the above example, suppose σ ∼= 4. Then
using (1)

n =
(

2(4)

2

)2

= 16. (3)

A sample of size 16 would produce a sample mean
mpg that differs from the population mean mpg by 2
mpg or less.

If a population proportion (percentage) is to be
estimated, the sample size is found from (4).

n =
(

2

B

)2

p(1 − p), (4)

where B is the bound on the error of the estimate, n is
the sample size, and, p is the population proportion.
The population proportion can be estimated three
ways: (a) use historical values of p, (b) obtain a
pilot sample of 30 or more elements and estimate
p, and (c) use p = .5 because this produces the
widest interval.

An example of determining the sample size nec-
essary to estimate the population proportion is given

below when no information exists about the value
of p. Suppose an estimate of the proportion of vot-
ers that favor a candidate is to be estimated within
±3% points. If there is no information from previous
research, we select p = .5. Then B = .03 and n is
determined from (4)

n =
(

2

.03

)2

.5.5 = 1111.11 or 1112. (5)

Consider another example. If a low percentage is
to be estimated like the proportion of defective light
bulbs that is known to be 5% or less, then use p = .05
to estimate the proportion of defectives. If we want to
estimate the percentage within ±1%, we use B = .01.

Then from (4)

n =
(

2

.01

)2

.05(.95) = 1900. (6)

In summary, survey sampling procedures allow
estimates of characteristics of populations (param-
eters) from characteristics of a sample (statistics).
The procedure of survey sampling saves time and
cost, and the accuracy of estimates is relatively
high.
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Survival Analysis

In many studies the main outcome is the time
from a well-defined time origin to the occurrence
of a particular event or end-point. If the end-point
is the death of a patient the resulting data are
literally survival times. However, other end-points are
possible, for example, the time to relief of symptoms
or to recurrence of a particular condition, or simply
to the completion of an experimental task. Such
observations are often referred to as time to event data
although the generic term survival data is commonly
used to indicate any time to event data.

Standard statistical methodology is not usually
appropriate for survival data, for two main reasons:

1. The distribution of survival time in general is
likely to be positively skewed and so assuming
normality for an analysis (as done for exam-
ple, by a t Test or a regression) is probably
not reasonable.

2. More critical than doubts about normality, how-
ever, is the presence of censored observations,
where the survival time of an individual is
referred to as censored when the end-point of
interest has not yet been reached (more pre-
cisely right-censored ). For true survival times
this might be because the data from a study are
analyzed at a time point when some participants
are still alive. Another reason for censored event
times is that an individual might have been lost
to follow-up for reasons unrelated to the event of
interest, for example, due to moving to a loca-
tion which cannot be traced. When censoring
occurs all that is known is that the actual, but
unknown, survival time is larger than the cen-
sored survival time.

Specialized statistical techniques that have been
developed to analyze such censored and possibly
skewed outcomes are known as survival analysis.
An important assumption made in standard survival
analysis is that the censoring is noninformative, that
is that the actual survival time of an individual is
independent of any mechanism that causes that indi-
vidual’s survival time to be censored. For simplicity
this description also concentrates on techniques for
continuous survival times - for the analysis of discrete
survival times see [3, 6].

A Survival Data Example

As an example, consider the data in Table 1 that
contain the times heroin addicts remained in a clinic
for methadone maintenance treatment [2]. The study
(n = 238) recorded the duration spent in the clinic,
and whether the recorded time corresponds to the
time the patient leaves the programme or the end
of the observation period (for reasons other than the
patient deciding that the treatment is ‘complete’). In
this study the time of origin is the date on which
the addicts first attended the methadone maintenance
clinic and the end-point is methadone treatment
cessation (whether by patient’s or doctor’s choice).
The durations of patients who were lost during the
follow-up process are regarded as right-censored. The
‘status’ variable in Table 1 takes the value unity if
methadone treatment was stopped, and zero if the
patient was lost to follow-up. In addition a number
of prognostic variables were recorded;

1. one of two clinics,
2. presence of a prison record
3. and maximum methadone dose prescribed.

The main aim of the study was to identify pre-
dictors of the length of the methadone mainte-
nance period.

Survival Analysis Concepts

To describe survival two functions of time are of
central interest. The survival function S(t) is defined
as the probability that an individual’s survival time,
T , is greater than or equal to time t , that is,

S(t) = Prob(T ≥ t) (1)

The graph of S(t) against t is known as the survival
curve. The survival curve can be thought of as a par-
ticular way of displaying the frequency distribution
of the event times, rather than by say a histogram.

In the analysis of survival data it is often of some
interest to assess which periods have the highest
and which the lowest chance of death (or whatever
the event of interest happens to be), amongst those
people at risk at the time. The appropriate quantity
for such risks is the hazard function, h(t), defined as
the (scaled) probability that an individual experiences
the event in a small time interval δt , given that
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Table 1 Durations of heroin addicts remaining in a methadone treatment programme (only five patients from each clinic
are shown)

Prison record Maximum
Time (1 = ‘present’, methadone

Patient ID Clinic Status (days) 0 = ‘absent’) (mg/day)

1 1 1 428 0 50
2 1 1 275 1 55
3 1 1 262 0 55
4 1 1 183 0 30
5 1 1 259 1 65

. . .

103 2 1 708 1 60
104 2 0 713 0 50
105 2 0 146 0 50
106 2 1 450 0 55
109 2 0 555 0 80
. . .

the individual has not experienced the event up to
the beginning of the interval. The hazard function
therefore represents the instantaneous event rate for
an individual at risk at time t . It is a measure of
how likely an individual is to experience an event
as a function of the age of the individual. The
hazard function may remain constant, increase or
decrease with time, or take some more complex form.
The hazard function of death in human beings, for
example, has a ‘bath tub’ shape. It is relatively high
immediately after birth, declines rapidly in the early
years and then remains pretty much constant until
beginning to rise during late middle age.

In formal, mathematical terms, the hazard function
is defined as the following limiting value

h(t) = lim
δt→0

[
Prob(t ≤ T < t + δt |T ≥t)

δt

]
(2)

The conditional probability is expressed as a prob-
ability per unit time and therefore converted into a
rate by dividing by the size of the time interval, δt .

A further function that features widely in survival
analysis is the integrated or cumulative hazard func-
tion, H(t), defined as

H(t) =
∫ t

0
h(u) du (3)

The hazard function is mathematically related to the
survivor functions. Hence, once a hazard function is
specified so is the survivor function and vice versa.

Nonparametric Procedures

An initial step in the analysis of a set of survival
data is the numerical or graphical description of the
survival times. However, owing to the censoring this
is not readily achieved using conventional descriptive
methods such as boxplots and summary statistics.
Instead survival data are conveniently summarized
through estimates of the survivor or hazard function
obtained from the sample.

When there are no censored observations in the
sample of survival times, the survival function can
be estimated by the empirical survivor function

Ŝ(t) = Number of individuals with event times ≥ t

Number of individuals in the data set
(4)

Since every subject is ‘alive’ at the beginning of the
study and no-one is observed to survive longer than
the largest of the observed survival times then

Ŝ(0) = 1 and Ŝ(t) = 0 for t > tmax (5)

Furthermore the estimated survivor function is
assumed constant between two adjacent death times
so that a plot of Ŝ(t) against t is a step function that
decreases immediately after each ‘death’. However,
this simple method cannot been used when there
are censored observations since the method does
not allow for information provided by an individual
whose survival time is censored before time t to be
used in the computing of the estimate at t .
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The most commonly used method for estimating
the survival function for survival data containing cen-
sored observations is the Kaplan–Meier or product-
limit-estimator [8]. The essence of this approach is
the use of a product of a series of conditional prob-
abilities. This involves ordering the rsample event
times from the smallest to the largest such that

t(1) ≤ t(2) ≤ · · · ≤ t(r) (6)

Then the survival curve is estimated from the formula

Ŝ(t) =
∏

j |t(j)≤t

(
1 − dj

rj

)
(7)

where rj is the number of individuals at risk at
t(j) and dj is the number experiencing the event
of interest at t(j). (Individuals censored at t(j) are
included in rj .) For example, the estimated survivor
function at the second event time t(2) is equal to the
estimated probability of not experiencing the event
at time t(1) times the estimated probability, given
that the individual is still at risk at time t(2), of not
experiencing it at time t(2).

The Kaplan-Meier estimators of the survivor
curves for the two methadone clinics are displayed
in Figure 1. The survivor curves are step func-
tions with decrease at the time points when patients
ceased methadone treatment. The censored observa-
tions in the data are indicated by the ‘cross’ marks
on the curves.

The variance of the Kaplan-Meier estimator of the
survival curve can itself be estimated from Green-
wood’s formula and once the standard error has been
determined point-wise symmetric confidence inter-
vals can be found by assuming a normal distribution
on the original scale or asymmetric intervals can be
constructed after transforming Ŝ(t) to a value on the
continuous scale, for details see [3, 6].

A Kaplan-Meier type estimator of the hazard
function is given by the proportion of individuals
experiencing an event in an interval per unit time,
given that they are at risk at the beginning of the
interval, that is

h̃(t) = dj

rj

(
t(j+1) − t(j)

) (8)

Integration leads to the Nelson-Aalen or Altshuler’s
estimator of the cumulative hazard function, H̃ (t),
and employing the theoretical relationship between
the survivor function and the cumulative hazard func-
tion to the Nelson-Aalen estimator of the survivor
function. Finally, it needs to be noted that rele-
vant functions can be estimated using the so-called
life-table or Actuarial estimator. This approach is,
however, sensitive to the choice of intervals used
in its construction and therefore not generally rec-
ommended for continuous survival data (readers are
referred to [3, 6]).
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Figure 1 Kaplan-Meier survivor curves for the heroin addicts data
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Standard errors and confidence intervals can be
constructed for all three functions although the esti-
mated hazard function is generally considered ‘too
noisy’ for practical use. The Nelson-Aalen estimator
is typically used to describe the cumulative hazard
function while the Kaplan-Meier estimator is used
for the survival function.

Since the distribution of survival times tends to
be positively skewed the median is the preferred
summary measure of location. The median event time
is the time beyond which 50% of the individuals in
the population under study are expected to ‘survive’,
and, once the survivor function has been estimated
by Ŝ(t), can be estimated by the smallest observed
survival time, t50, for which the value of the estimated
survivor function is less than 0.5. The estimated
median survival time can be read from the survival
curve by finding the smallest value on the x-axis for
which the survival proportions reaches less than 0.5.
Figure 1 shows that the median methadone treatment
duration in clinic 1 group can be estimated as 428
days while an estimate is not available for clinic
2 since more than 50% of the patients continued
treatment throughout the study period. A similar
procedure can be used to estimate other percentiles of
the distribution of the survival times and approximate
confidence intervals can be found once the variance
of the estimated percentile has been derived from the
variance of the estimator of the survivor function.

In addition to comparing survivor functions graph-
ically a more formal statistical test for a group
difference is often required. In the absence of cen-
soring a nonparametric test, like the Mann-Whitney
test could be used (see Distribution-free Infer-
ence, an Overview). In the presence of censor-
ing the log-rank or Mantel-Haenszel test [9] is the
most commonly used nonparametric test. It tests
the null hypothesis that the population survival
functions S1(t), S2(t), . . . , Sk(t) are the same in k

groups.
Briefly, the test is based on computing the

expected number of events for each observed event
time in the data set, assuming that the chances of
the event, given that subjects are at risk, are the
same in the groups. The total number of expected
events is then computed for each group by adding
the expected number of events for each event time.
The test finally compares the observed number of
events in each group with the expected number of

events using a chi-squared test with k − 1 degrees of
freedom, see [3, 6].

The log-rank test statistic, X2, weights contribu-
tions from all failure times equally. Several alter-
native test statistics have been proposed that give
differential weights to the failure times. For exam-
ple, the generalized Wilcoxon test (or Breslow test)
uses weights equal to the number at risk. For the
heroin addicts data in Table 1 the log-rank test (X2 =
27.9 on 1 degree of freedom, p < 0.0001) detects a
significant clinic difference in favor of longer treat-
ment durations in clinic 2. The Wilcoxon test puts
relatively more weight on differences between the
survival curves at earlier times but also reaches sig-
nificance (X2 = 11.6 on 1 degree of freedom, p =
0.0007).

Modeling Survival Times

Modeling survival times is useful especially when
there are several explanatory variables of interest.
For example the methadone treatment durations of
the heroin addicts might be affected by the prognos-
tic variables maximum methadone dose and prison
record as well as the clinic attended. The main
approaches used for Modeling the effects of covari-
ates on survival can be divided roughly into two
classes – models for the hazard function and mod-
els for the survival times themselves. In essence these
models act as analogies of multiple linear regression
for survival times containing censored observations,
for which regression itself is clearly not suitable.

Proportional Hazards Models

The main technique is due to Cox [4] and known
as the proportional hazards model or, more simply,
Cox’s regression. The approach stipulates a model
for the hazard function. Central to the procedure
is the assumption that the hazard functions for two
individuals at any point in time are proportional, the
so-called proportional hazards assumption. In other
words, if an individual has a risk of the event at
some initial time point that is twice as high as another
individual, then at all later times the risk of the
event remains twice as high. Cox’s model is made
up of an unspecified baseline hazard function, h0(t),
which is then multiplied by a suitable function of an
individual’s explanatory variable values, to give the
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individual’s hazard function. Formally, for a set of p

explanatory variables, x1, x2, . . . , xp, the model is

h(t) = h0(t) exp

(
p∑

i=1

βixi

)
(9)

where the terms β1, . . . , βp are the parameters of
the model which have to be estimated from sample
data. Under this model the hazard or incidence rate
ratio, h12, for two individuals, with covariate values
x11, x12, . . . , x1p and x21, x22, . . . , x2p

h12 = h1(t)

h2(t)
= exp

[
p∑

i=1

βi(x1i − x2i )

]
(10)

does not depend on t . The interpretation of the
parameter βi is that exp(βi) gives the incidence rate
change associated with an increase of one unit in
xi , all other explanatory variables remaining constant.
Specifically, in the simple case of comparing hazards
between two groups, exp(β), measures the hazard
ratio between the two groups. The effect of the
covariates is assumed multiplicative.

Cox’s regression is considered a semiparamet-
ric procedure because the baseline hazard function,
h0(t), and by implication the probability distribution
of the survival times does not have to be specified.
The baseline hazard is left unspecified; a different
parameter is essentially included for each unique sur-
vival time. These parameters can be thought of as
nuisance parameters whose purpose is merely to con-
trol the parameters of interest for any changes in the
hazard over time. Cox’s regression model can also
be extended to allow the baseline hazard function
to vary with the levels of a stratification variable.
Such a stratified proportional hazards model is use-
ful in situations where the stratifier is thought to affect
the hazard function but the effect itself is not of pri-
mary interest.

A Cox regression can be used to model the
methadone treatment times from Table 1. The model
uses prison record and methadone dose as explana-
tory variables whereas the variable clinic, whose
effect was not of interest, merely needed to be taken
account of and did not fulfill the proportional haz-
ards assumption, was used as a stratifier. The esti-
mated regression coefficients are shown in Table 2.
The coefficient of the prison record indicator vari-
able is 0.389 with a standard error of 0.17. This
translates into a hazard ratio of exp(0.389) = 1.475
with a 95% confidence interval ranging from 1.059 to
2.054. In other words a prison record is estimated to
increase the hazard of immediate treatment cessation
by 47.5%. Similarly the hazard of treatment cessation
was estimated to be reduced by 3.5% for every extra
mg/day of methadone prescribed.

Statistical software packages typically report three
different tests for testing regression coefficients, the
likelihood ratio (LR) test (see Maximum Likelihood
Estimation), the score test (which for Cox’s propor-
tional hazards model is equivalent to the log-rank
test) and the Wald test . The test statistic of each of
the tests can be compared with a chi-squared dis-
tribution to derive a P value. The three tests are
asymptotically equivalent but differ in finite samples.
The likelihood ratio test is generally considered the
most reliable and the Wald test the least. Here pres-
ence of a prison record tests statistically significant
after adjusting for clinic and methadone dose (LR
test: X2 = 5.2 on 1 degree of freedom, p = 0.022)
and so does methadone dose after adjusting for clinic
and prison record (LR test: X2 = 30.0 on 1 degree
of freedom, p < 0.0001).

Cox’s model does not require specification of the
probability distribution of the survival times. The haz-
ard function is not restricted to a specific form and
as a result the semiparametric model has flexibility
and is widely used. However, if the assumption of

Table 2 Parameter estimates from Cox regression of treatment duration on maximum methadone dose prescribed and
presence of a prison record stratified by clinic

Effect estimate 95% CI for exp(β)

Predictor variable

Regression

coefficient (β̂)

Standard error(√
var(β̂)

) Hazard ratio

(exp(β̂))

Lower
limit

Upper
limit

Prison record 0.389 0.17 1.475 1.059 2.054
Maximum methadone dose −0.035 0.006 0.965 0.953 0.978
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a particular probability distribution for the data is
valid, inferences based on such an assumption are
more precise. For example estimates of hazard ratios
or median survival times will have smaller standard
errors. A fully parametric proportional hazards model
makes the same assumptions as Cox’s regression but
in addition also assumes that the baseline hazard
function, h0(t), can be parameterized according to
a specific model for the distribution of the survival
times. Survival time distributions that can be used
for this purpose, that is that have the proportional
hazards property, are principally the Exponential,
Weibull, and Gompertz distributions (see Catalogue
of Probability Density Functions). Different distri-
butions imply different shapes of the hazard function,
and in practice the distribution that best describes the
functional form of the observed hazard function is
chosen – for details see [3, 6].

Models for Direct Effects on Survival Times

A family of fully parametric models that assume
direct multiplicative effects of covariates on survival
times and hence do not rely on proportional hazards
are accelerated failure time models. A wider range
of survival time distributions possesses the accel-
erated failure time property, principally the Expo-
nential, Weibull, log-logistic, generalized gamma, or
lognormal distributions. In addition this family of
parametric models includes distributions (e.g., the
log-logistic distribution) that model unimodal hazard
functions while all distributions suitable for the pro-
portional hazards model imply hazard functions that
increase or decrease monotonically. The latter prop-
erty might be limiting, for example, for Modeling the
hazard of dying after a complicated operation that
peaks in the postoperative period.

The general accelerated failure time model for the
effects of p explanatory variables, x1, x2, . . . , xp, can

be represented as a log-linear model for survival
time, T , namely,

ln(T ) = α0 +
p∑

i=1

αixi + error (11)

where α1, . . . , αp are the unknown coefficients of the
explanatory variables and α0 an intercept parameter.
The parameter αi reflects the effect that the ith
covariate has on log-survival time with positive
values indicating that the survival time increases
with increasing values of the covariate and vice
versa. In terms of the original time scale the model
implies that the explanatory variables measured on
an individual act multiplicatively, and so affect the
speed of progression to the event of interest.

The interpretation of the parameter αi then is that
exp(αi) gives the factor by which any survival time
percentile (e.g., the median survival time) changes
per unit increase in xi , all other explanatory variables
remaining constant. Expressed differently, the proba-
bility, that an individual with covariate value xi + 1
survives beyond t , is equal to the probability, that an
individual with value xi survives beyond exp(−αi)t .
Hence exp(−αi) determines the change in the speed
with which individuals proceed along the time scale
and the coefficient is known as the acceleration factor
of the ith covariate.

Software packages typically use the log-linear for-
mulation. The regression coefficients from fitting a
log-logistic accelerated failure time model to the
methadone treatment durations using prison record
and methadone dose as explanatory variables and
clinic as a stratifier are shown in Table 3. The neg-
ative regression coefficient for prison suggests that
the treatment durations tend to be shorter for those
with a prison record. The positive regression coeffi-
cient for dose suggests that treatment durations tend
to be prolonged for those on larger methadone doses.

Table 3 Parameter estimates from log-logistic accelerated failure time model of treatment duration on maximum
methadone dose prescribed and presence of a prison record stratified by clinic

Effect estimate 95% CI for exp(α)

Regression Standard Acceleration
Predictor coefficient error factor Lower Upper
variable (α̂) (

√
var(â)) (exp(−α̂)) limit limit

Prison record −0.328 0.140 1.388 1.054 1.827
Maximum methadone dose 0.0315 0.0055 0.969 0.959 0.979
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The estimated acceleration factor for an individual
with a prison record compared with one without
such a record is exp(0.328) = 1.388, that is, a prison
record is estimated to accelerate the progression to
treatment cessation by a factor of about 1.4. Both
explanatory variables, prison record (LR test: X2 =
5.4 on 1 degree of freedom, p = 0.021) and maxi-
mum methadone dose prescribed (LR test: X2 = 31.9
on 1 degree of freedom, p < 0.0001) are found to
have statistically significant effects on treatment dura-
tion according to the log-logistic accelerated failure
time model.

Summary

Survival analysis is a powerful tool for analyzing
time to event data. The classical techniques Kaplan-
Meier estimation, proportional hazards, and accel-
erated failure time Modeling are implemented in
most general purpose statistical packages with the
S-PLUS and R packages having particularly exten-
sive facilities for fitting and checking nonstandard
Cox models, see [10]. The area is complex and one
of active current research. For additional topics such
as other forms of censoring and truncation (delayed
entry), recurrent events, models for competing risks,
multistate models for different transition rates, and
frailty models to include random effects the reader is
referred to [1, 5, 7, 10].
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Symmetry: Distribution
Free Tests for

Nonparametric tests for the median of a distribution
and the related estimation of confidence intervals for
that parameter assume that the distribution sampled
is symmetric about the median. To avoid obtaining
misleading results, a preliminary test for distribution
symmetry is advisable.

Tests for Symmetry of Distribution

The four tests of symmetry selected for mention here
have been shown to have reasonable power to detect
asymmetric distributions and are either widely used
or easy to apply.

The Gupta test proposed in 1967 [3] and [4]
is based on the set of pair-wise comparisons of
the sample data. For each pair of data points, the
statistic δij is assigned a value of 1 if (xi + xj )

is greater than twice the sample median or 0 oth-
erwise. The sum of these δij s will be large if the
underlying distribution is skewed to the right, small
if it is skewed to the left, and intermediate in
value if the distribution is symmetric. After center-
ing and standardization, the test statistic is asymp-
totically distributed as the standard normal random
variable. The approach is explained in detail in [4],
and has been built into the SC statistical pack-
age (www.mole-software.demon.co.uk) as the
Gupta procedure.

The Randles et al. test, published in 1980 [5]
and [6], is based on the set of triplets of data
points. For each unique set of three data points,
the statistic ζijk is assigned the value 1/3 if the
mean of the three data points, (xi, xj , xk), is greater
than their median, 0 if the mean and median are
equal, and −1/3 if the median is larger than the
mean. The sum of these ζijks will be large and
positive if the underlying distribution is skewed to
the right, large and negative if the distribution is
skewed to the left, and small if the distribution is
symmetric. After standardization, this sum enjoys, at
least asymptotically, a normal sampling distribution
under the null, symmetric hypothesis. Details are
given in [5].

The Boos test, described in 1982 [1], is based
on the set of absolute differences between the
n(n + 1)/2 Walsh averages and their median, the
one-sample Hodges–Lehmann estimator. When
summed, large values are suggestive of an underlying
asymmetric distribution. Critical asymptotic values
for a scaling of the sum of absolute deviations are
given in [1].

The Cabilio & Masaro test, presented in 1996
[2], features simplicity of computation. The test
statistic,

SK = [
√

n(Mn − Mdn)]

Sd
, (1)

requires for its computation only four sample quan-
tities – size, mean, median, and standard deviation.
The test’s authors recommend comparing the value
of the test statistic, SK , against the critical values in

Table 1 Empirical quantiles of the distribution of SK (normal samples)

n Q90 Q95 Q97.5 n Q90 Q95 Q97.5

5 0.88 1.07 1.21 6 0.71 0.88 1.02
7 0.91 1.13 1.30 8 0.77 0.96 1.13
9 0.92 1.15 1.35 10 0.81 1.01 1.19

11 0.93 1.17 1.37 12 0.83 1.05 1.24
13 0.93 1.18 1.39 14 0.85 1.08 1.27
15 0.94 1.19 1.41 16 0.86 1.10 1.30
17 0.94 1.19 1.41 18 0.87 1.11 1.32
19 0.94 1.20 1.42 20 0.88 1.12 1.33
21 0.95 1.20 1.43 22 0.89 1.13 1.35
23 0.95 1.21 1.43 24 0.89 1.14 1.36
25 0.95 1.21 1.44 26 0.90 1.15 1.37
27 0.95 1.21 1.44 28 0.90 1.15 1.37
29 0.95 1.21 1.44 30 0.91 1.16 1.38
∞ 0.97 1.24 1.48
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Table 1, reproduced here from [2] with the permis-
sion of the authors.

These critical values were obtained by calibrating
the test against samples from a particular symmetric
distribution, the normal. However, the nominal sig-
nificance level of the test appears to hold for other
symmetric distributions, with the exception of the
Cauchy and uniform distributions (see Catalogue of
Probability Density Functions) [2].

Comments

The power of the four tests of distribution symmetry
have been evaluated and compared, [2] and [6].
Briefly, the Randles et al. test dominates the Gupta
test [6], while the Boos and Cabilio–Masaro tests
appear to be superior to Randles et al. [2]. Although
the Boos test may have a slight power advantage
over the Cabilio–Masaro procedure, the ease of
application of the latter suggests that the assumption
of symmetry might more frequently be checked than
it has been in the past. It should be noted, however,

that tests of symmetry appear to have fairly low
power to detect asymmetric distributions when the
sample size is smaller than 20 [6].

References

[1] Boos, D.D. (1982). A test for asymmetry associated with
the Hodges-Lehmann estimator, Journal of the American
Statistical Association 77, 647–651.

[2] Cabilio, P. & Masaro, J. (1996). A simple test of
symmetry about an unknown median, The Canadian
Journal of Statistics 24, 349–361.

[3] Gupta, M.K. (1967). An asymptotically nonparametric
test of symmetry, Annals of Mathematical Statistics 38,
849–866.

[4] Hollander, M. & Wolfe, D.A. (1973). Nonparametric
Statistical Methods, Wiley, New York.

[5] Hollander, M. & Wolfe, D.A. (1999). Nonparametric
Statistical Methods, 2nd Edition, Wiley, New York.

[6] Randles, H., Fligner, M.A., Pollicello, G. & Wolfe, D.A.
(1980). An asymptotically distribution-free test for sym-
metry versus asymmetry, Journal of the American Statis-
tical Association 75, 168–172.

CLIFFORD E. LUNNEBORG



Symmetry Plot

SANDY LOVIE

Volume 4, pp. 1989–1990

in

Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

 John Wiley & Sons, Ltd, Chichester, 2005



Symmetry Plot

This plot does exactly what it says on the tin,
that is, it provides a graphical test of whether a
sample is symmetrically distributed about a measure
of location; in this case, the median. Having such
information about a sample is useful in that just
about all tests of significance assume that the parent
population from which the sample came is at least
symmetrical about some location parameter and, in
effect, that the sample should not markedly violate
this condition either. A further linked role for the
plot is its use in evaluating transformations to achieve
symmetry, particularly following schemes like the
ladder of powers advocated for Exploratory Data
Analysis (see, for example [2]).

The plot itself is built up by first ordering the
data and calculating a median, if necessary, by
interpolation for even numbered samples. Secondly,
each reading in the sample is subtracted from the
median, thus reexpressing all the sample values as
(signed and ordered) distances from the median.
Then, these distances are expressed as unsigned
values, whilst still keeping separate those ordered
distances that lie above the median from those below
it. Next, as with the empirical quantile-quantile
(EQQ) plot, the ordered values above and below the
median are paired in increasing order of size, and
then plotted on a conventional scatterplot. Here the
zero/zero origin represents the median itself, with the
ascending dots representing the ordered pairs, where
the lowest one represents the two smallest distances
above and below the median, the next higher dot the
next smallest pair, and so on. Also, as with the EQQ
plot, a 45 °comparison line is placed on the plot to
represent perfect symmetry about the median (note
that the x and y axes of the scatterplot are equal in all
respects, hence the angle of the line). All judgements
as to the symmetry of the sample are therefore made
relative to this line. The statistics package Minitab
adds a simple histogram of the data to its version
of the plot, thus aiding in its interpretation (see
Software for Statistical Analyses).

The three illustrative plots below are from Minitab
and use the Pulse data set. Figure 1 is a symmetry
plot of the raw data for 35 human pulse readings after
exercise (running on the spot for one minute). Here,
the histogram shows a marked skew to the left, which
shows up on the full plot as the data, both lying below

the comparison line and increasingly divergent from
it, as one moves to the right. However, if the data
had been skewed to the right, then the plotted data
would have appeared above the comparison line.

The next two plots draw on transforms from the
ladder of powers to improve the symmetry of the
data. The first applies a log10 transform to the data,
while the second uses a reciprocal (1/x) transform
(see Transformation). Notice that the log transform
in Figure 2 improves the symmetry of the histogram a
little, which shows up in the symmetry plot as data,
which are now somewhat closer to the comparison
line and less divergent from it than in the raw plot.

However, this is improved on even further in
Figure 3, where the histogram is even more sym-
metric, and the data of the symmetry plot is much
closer and much less divergent than in the log trans-
formed plot.

54443424144

54

44

34

24

14

4

Lo
w

er
 d

is
ta

nc
e 

to
 m

ed
ia

n

Upper distance to median

1251007550

10

5

0

Figure 1 Symmetry plot of raw ‘pulse after exercise’ data
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Figure 2 Symmetry plot of the log transformed ‘pulse
after exercise’ data
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Figure 3 Symmetry plot of the reciprocal transformed
‘pulse after exercise’ data

Interestingly, a somewhat more complex transform
lying between the two chosen here from the ladder
of powers, the reciprocal/square root (1/

√
x), gen-

erates a symmetry plot (not included here), which
reproduces many of the aspects of Figure 3 for the

bulk of the data on the left-hand side of the plot,
and also draws the somewhat anomalous data point
on the far right, much closer to the comparison line.
Although analyses of the resulting data might be more
difficult to interpret, this transform is probably the
one to choose if you want your (transformed) results
to conform to the symmetry assumption behind all
those tests of significance!

More information on symmetry plots can be found
in [1], pages 29 to 32.
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Tau-Equivalent and
Congeneric Measurements

It is a well-known fact that the reliability of a test,
defined as the ratio of true score to observed score
variance, cannot generally be determined from a
single test administration, but requires the use of a
parallel test. More often than not, parallel tests are not
available. In such cases, two approaches are popular
to obtain indirect information on the reliability of the
test: either lower bounds to reliability can be used, or
one may resort to hypotheses about the nature of the
test parts.

Evaluating lower bounds to the reliability, such
as Guttman’s λ3 [6], better known as coefficient
alpha [4] has gained wide popularity. A lower bound
that is nearly always better than alpha is Guttman’s
λ4. It is the highest alpha that can be obtained by
splitting up the items in two parts (not necessar-
ily of equal numbers) and treating those two parts
as novel ‘items’. Jackson and Agunwamba [8] pro-
posed the greatest lower bound (glb) to reliability.
It exceeds all conceivable lower bounds by using the
available information implied by the observed covari-
ance matrix exhaustively. A computational method
for the glb has been proposed by Bentler & Wood-
ward [3], also see [19]. Computation of the glb has
been implemented in EQS 6.

When lower bounds are high enough, the reliabil-
ity has been shown adequate by implication. How-
ever, when lower bounds are low, they are of limited
value. Also, some lower bounds to reliability involve
a considerable degree of sampling bias. To avoid
these problems, it is tempting to look to alternative
approaches, by introducing hypotheses on the nature
of the test parts, from which the reliability can be
determined at once. Two of such hypotheses are well-
known in classical test theory.

Tau Equivalence

The first hypothesis is that of (essentially) tau-
equivalent tests. Test parts X1, . . . , Xk are essentially
tau-equivalent when for i, j = 1, . . . , k,

Tj = Ti + aij . (1)

This implies that the true scores of the test parts
are equal up to an additive constant. When the
additive constants are zero, the test parts are said
to be tau-equivalent. Novick and Lewis [14] have
shown that coefficient alpha is the reliability (instead
of merely a lower bound to it) if and only if the test
parts are essentially tau-equivalent.

Unfortunately, the condition for essential tau-
equivalence to hold in practice is prohibitive: All
covariances between test parts must be equal. This
will only be observed when k = 2 or with con-
trived data. Moreover, the condition of equal covari-
ances is necessary, but not sufficient for essential
tau-equivalence. For instance, let Y1, Y2 and Y3 be
three uncorrelated variables with zero means and unit
variances, and let the test parts be X1 = Y2 + Y3,
X2 = Y1 + Y3, and X3 = Y1 + Y2. Then, the covari-
ance between any two test parts is 1, but the test
parts are far from being essentially tau-equivalent,
which shows that having equal covariances is neces-
sary but not sufficient for essential tau-equivalence.
Because the necessary condition will never be satis-
fied in practice, coefficient alpha is best thought of
as a lower bound (underestimate) to the reliability of
a test.

Congeneric Tests

A weaker, and far more popular hypothesis, is that of
a congeneric test, consisting of k test parts satisfying

Tj = cij Ti + aij , (2)

which means that the test parts have perfectly cor-
related true scores. Equivalently, the test parts are
assumed to fit a one-factor model. Essential tau equiv-
alence is more restricted because it requires that the
weights cij in (2) are unity. For the case k = 3,
Kristof has derived a closed-form expression for the
reliability of the test, based on this hypothesis. It
is always at least as high as alpha, and typically
better [10]. Specifically, there are cases where it coin-
cides with or even exceeds the greatest lower bound
to reliability [20].

For k > 3, generalized versions of Kristof’s coef-
ficients have been proposed. For instance, Gilmer and
Feldt [5] offered coefficients that could be evaluated
without having access to powerful computers. They
were fully aware that these coefficients would be
supplanted by common factor analysis (see History
of Factor Analysis: A Psychological Perspective)
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based coefficients by the time large computers would
be generally available. Nowadays, even the smallest
of personal computers can evaluate the reliability of
a test in the framework of common factor analysis,
assuming that the one-factor hypothesis is true. For
instance, McDonald [13], also see Jöreskog [9] for a
similar method, proposed estimating the loadings on
a single factor and evaluating the reliability as the
ratio of the squared sum of loadings to the test vari-
ance. When k = 3, this yields Kristof’s coefficient.
Coefficients like Kristof’s and McDonald’s have been
considered useful alternatives to lower bounds like
glb, because they aim to estimate, rather than under-
estimate, reliability, and they lack any reputation of
sampling bias. However, much like the hypothesis of
essential tau-equivalence, the one-factor hypothesis is
problematic.

The Hypothesis of Congeneric Tests is
Untenable for k > 3, and Undecided
Otherwise

The hypothesis of congeneric tests relies on the
existence of communalities to be placed in the
diagonal cells of the item covariance matrix, in
order to reduce the rank of that matrix to one.
The conditions under which this is possible have
been known for a long time. Spearman [17] already
noted that unidimensionality is impossible (except
in contrived cases) when k > 3. Accordingly, when
k > 3, factor analysis with only one common factor
will never give perfect fit. More generally, Wilson
and Worcester [23], Guttman [7], and Bekker and
De Leeuw [1] have argued that rank reduction of
a covariance matrix by communalities does not
carry a long way. Shapiro [15] has proven that the
minimal reduced rank that can possibly be achieved
will be at or above the Ledermann bound [11]
almost surely. It means that the minimal reduced
rank is almost surely at or above 1 when k = 3,
at or above 2 when k = 4, at or above 3 when
k = 5 or 6, and so on. The notion of ‘almost
surely’ reflects the fact that, although covariance
matrices that do have lower reduced rank are easily
constructed, they will never be observed in practice.
It follows that the hypothesis of congeneric tests
is nearly as unrealistic as that of essential tau-
equivalence. It may be true only when there are three
or fewer items.

Even when reduction to rank 1 is possible, this is
not sufficient for the hypothesis to be true: We merely
have a necessary condition that is satisfied. The
example of X1, X2, and X3 with three uncorrelated
underlying factors Y1, Y2, and Y3, given above in the
context of tau-equivalence, may again be used to
demonstrate this: There are three underlying factors,
yet communalities that do reduce the rank to 1 do
exist (being 1, 1, and 1). The bottom line is that the
hypothesis of congeneric tests cannot be rejected, but
still may be false when k = 3 or less, and it has to be
rejected when k > 3. ‘Model-based coefficients are
not useful if the models are not consistent with the
empirical data’ [2]. Reliability coefficients based on
the single-factor hypothesis are indeed a case where
this applies.

Sampling Bias

Lower bounds to reliability do not rest on any
assumption other than that error scores of the test
parts correlate only with themselves and with the
observed scores they belong with. On the other hand,
lower bounds do have a reputation for sampling bias.
Whereas coefficient alpha tends to slightly underesti-
mate the population alpha [21, 24], Guttman’s λ4, and
the greatest lower bound in particular, may grossly
overestimate the population value when computed
in small samples. For instance, when k = 10 and
the population glb is 0.68, its average sample esti-
mate may be as high as 0.77 in samples of size
100 [16].

It may seem that one-factor-based coefficients
have a strong advantage here. But this is not true.
When k = 3, Kristof’s coefficient often coincides
with glb, and for k > 3, numerical values of McDon-
ald’s coefficient are typically very close to the glb. In
fact, McDonald’s coefficient demonstrates the same
sampling bias as glb in Monte Carlo studies [20].
Because McDonald’s and other factor analysis–based
coefficients behave very similarly to the glb and have
the same bias problem, and, in addition, rely on a
single-factor hypothesis, which is either undecided
or false, the glb is to be preferred.

Bias Correction of the glb

Although the glb seems superior to single-factor-
based coefficients of reliability, when the test is
hypothesized to be unidimensional, this does not
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mean that the glb must be evaluated routinely for
the single administration of an arbitrary test. The
glb has gained little popularity, mainly because of
the sampling bias problem. Bias correction methods
are under construction [12, 22], but still have not
reached the level of accuracy required for practical
applications. The problem is especially bad when the
number of items is large relative to sample size. Until
these bias problems are over, alpha will prevail as the
lower bound to reliability.

Reliability versus Unidimensionality

Reliability is often confused with unidimensional-
ity. A test can be congeneric, a property of the true
score parts of the items, yet have large error vari-
ances, a property of the error parts of the items, and
the reverse is also possible. Assessing the degree
of unidimensionality is a matter of assessing how
closely the single factor fits in common factor anal-
ysis. Ten Berge and Sočan [20] have proposed a
method of expressing unidimensionality as the per-
centage of common variance explained by a single
factor in factor analysis, using the so-called Minimum
Rank Factor Method of Ten Berge and Kiers [18].
However, this is a matter of taste and others pre-
fer goodness-of-fit measures derived from maximum-
likelihood factor analysis.

References

[1] Bekker, P.A. & De Leeuw, J. (1987). The rank
of reduced dispersion matrices, Psychometrika 52,
125–135.

[2] Bentler, P.M. (2003). Should coefficient alpha be
replaced by model-based reliability coefficients? Paper
Presented at the 2003 Annual Meeting of the Psychome-
tric Society, Sardinia.

[3] Bentler, P.M. & Woodward, J.A. (1980). Inequalities
among lower bounds to reliability: with applications to
test construction and factor analysis, Psychometrika 45,
249–267.

[4] Cronbach, L.J. (1951). Coefficient alpha and the internal
structure of tests, Psychometrika 16, 297–334.

[5] Gilmer, J.S. & Feldt, L.S. (1983). Reliability estimation
for a test with parts of unknown lengths, Psychometrika
48, 99–111.

[6] Guttman, L. (1945). A basis for analyzing test-retest
reliability, Psychometrika 10, 255–282.

[7] Guttman, L. (1958). To what extent can communalities
reduce rank, Psychometrika 23, 297–308.

[8] Jackson, P.H. & Agunwamba, C.C. (1977). Lower
bounds for the reliability of the total score on a

test composed of non-homogeneous items: I. Algebraic
lower bounds, Psychometrika 42, 567–578.
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Teaching Statistics to
Psychologists

In the introduction to his 1962 classic statistical text,
Winer [7] describes the role of the statistician in a
research project as similar to that of an architect; that
is, determining whether the efficacy of a new drug
is superior to that of competing products is similar
to designing a building with a particular purpose
in mind and in each case, there is more than one
possible solution. However, some solutions are more
elegant than others and the particulars of the situation,
whether they are actual patient data or the size and
placement of the building site, place boundaries on
what can and cannot be accomplished.

What is the best way to teach the science and art
of designing and conducting data analysis to today’s
graduate students in psychology? Perhaps history
can be our guide, and so we begin by first asking
what graduate education in statistics was like when
today’s senior faculty were students, then ask what
is current common practice, and finally ask what the
future might hold for tomorrow’s graduate students.
I propose the following:

• Graduate training in statistics has greatly changed
over the last few decades in ways that are both
helpful and harmful to students attempting to
master statistical methodology.

• The major factor in this change is the
development of computerized statistical packages
(see Software for Statistical Analyses) which,
when used in graduate education, cause students
trained in experimental design to be more
broadly but less thoroughly trained.

• ‘Point and click’ statistical programs allow indi-
viduals without professional training access to
procedures they do not understand. The avail-
ability of statistical packages to individuals with-
out professional statistical training might lead to
a guild environment where psychologists could
play an important role.

The Recent Past

Perusal of ‘classic’ texts such as Lindquist [5],
Kirk [4], McNemar [6], Winer [7], Guilford and
Fruchter [1], Hayes [2], and Keppel [3] suggests that

30 to 35 years ago (or just one generation ago in
terms of the approximate length of an academic
career), psychology graduate education emphasized
descriptive measures, correlational techniques, and
especially multiple regression (see Multiple Linear
Regression) and the analysis of variance including
post hoc tests and trend analysis (see Multiple
Comparison Procedures). Statistical techniques
were taught via hand calculation methods using
small data sets. Computationally demanding methods
such as factor analysis, time series analysis,
discriminant and cluster analysis (see Cluster
Analysis: Overview) as well as residual analysis (see
Residuals) in multiple regression and multivariate
analysis of variance (see Multivariate Analysis:
Overview) were not typically presented to all
students. These advanced techniques were generally
presented to students whose professional success
would depend upon mastery of those particular
skills. For instance, a graduate student preparing
for a career investigating personality, intelligence,
or social psychology was much more likely to
receive thorough training in factor analytic techniques
(see History of Factor Analysis: A Psychological
Perspective; Factor Analysis: Confirmatory) than
a student studying classical or operant conditioning.
There is little need for understanding the difference
between varimax and orthomax rotations in factor
analysis if one is pointing to a career observing rats
in operant chambers. Statistical training of that era
was subdiscipline specific.

For all students of this bygone era, training heavily
emphasized experimental design. Graduate students
of 30–35 years ago were taught that the best way to
fix a problem in the data was not to get into trouble in
the first place, and so the wise course of action was to
employ one of several standard experimental designs.
Texts such as Lindquist [5] and Kirk [4] instructed
several decades’ worth of students in the pros and
cons of various experimental designs as well as the
proper course of analysis for each design.

Current State

What has changed in graduate training since then and
why? The answer is that computer-based statistical
packages have become commonplace and altered the
face of graduate statistical education in psychology.
In times past, data analysis was so time consuming
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and labor intensive that it had to be planned care-
fully, prior to conducting the actual study. In that
era, one could not easily recover from design errors
through statistical control, especially when the size of
the data set was large. Today, studies involving neu-
roimaging techniques such as fMRI and EEG result
in tens of thousands and even millions of data points
per subject, all potentially requiring a baseline cor-
rection, an appropriate transformation, and, possibly,
covariates. The sheer hand labor of such an analysis
without computer assistance is beyond imagination.

Currently, most graduate programs in psychology
expect their students to gain competency in some
statistical package, although there is a considerable
amount of variability in how that goal is met. A sur-
vey of 60 masters and doctoral programs in psychol-
ogy at colleges and universities in the United States
provides a glimpse of the statistical packages used
in graduate education. Individual faculty members
who indicated that they were responsible for gradu-
ate training in statistics were asked if their department
had a standard statistical package for graduate train-
ing. All 60 respondents replied that some statistical
package was a part of graduate training and their
responses are presented in Table 1.

These same faculty members were asked how
graduate students gained mastery of a statistical pack-
age; their responses are presented in Table 2. While
most graduate programs appear to have a formal
course dedicated to teaching a particular statistical

Table 1 Standard statistical packages in graduate pro-
grams (N = 60)

Statistical program of choice Percent respondents

SPSS 45
SAS 15
Minitab 5
Systat 5
No standard 25
Other 5

Table 2 Methods that graduate programs use to ensure
student mastery of statistical packages (N = 60)

How is a statistical package taught? Percent respondents

Through a dedicated course 55
No course; through lab and research 25
Both course and lab/research 15
No standard method 5

package, some programs integrate the statistical pack-
age into laboratory courses or teach it as part of an
advisor’s research program. One rationale for teach-
ing the use of a statistical package during research
training instead of in a formal course is that with the
former, students are likely to learn material appropri-
ate to their immediate professional life. A contrasting
view is that in a formal course that cuts across
the domain boundaries of psychology, students are
exposed to a wide variety of statistical techniques
that may be useful in the future. Because many pro-
fessionals start their career in one field but end up
elsewhere in academia or in industry, breadth of skill
may be preferable to depth, at least for the interme-
diate level of graduate training.

Statistical packages also provide graduate students
with tools that were not typically a part of the
common curriculum a generation ago. Respondents to
the survey indicated that cluster analysis, discriminant
analysis, factor analysis, binary logistic regression,
and categorical regression are processes generally
presented to graduate students because they have
access to a statistical package. Furthermore, a wide
assortment of two- and three-dimensional graphs and
other visual techniques for exploring relationships are
now presented to graduate students.

What is the Impact of Statistical Packages
on Today’s Graduate Education?

Providing graduate students with access to statisti-
cal packages has dramatically changed the breadth
of their education. To assay the magnitude of the
change, faculty in the survey were asked what top-
ics they would keep or drop if their current statistical
package was no longer available for graduate educa-
tion. Faculty replied that anova, extensive discussion
of post hoc analysis, orthogonal contrasts, power
analysis and eta-squared (see Effect Size Measures)
would still be covered but with very simple examples.
Currently, they expect their students to fully master
such techniques for a wide variety of settings. They
also indicated that a variety of regression techniques
would still be taught as would the fundamentals of
factor analysis.

However, the survey respondents agreed almost
unanimously that coverage of statistical techniques
that are computationally intensive such as manova,
cluster analysis, discriminant analysis, and complex



Teaching Statistics to Psychologists 3

factor analytic techniques (see Factorial Designs;
Repeated Measures Analysis of Variance) would
be reduced or eliminated if students did not have
access to a statistical package. The comments of these
professional educators suggest that today’s graduate
students are exposed to a wider range of statistical
techniques and are considerably more adept at data
manipulations and massaging than their counterparts
of 30–35 years ago.

What is the Future?

The evolution of statistical programs suggests that
they will become ‘smarter’ and will interact with the
user by suggesting analyses for particular data sets.
As the programs become easier to use and available to
a wider audience, will biostatisticians still be needed?
Perhaps the answer lies in Winer’s [7] description
of statisticians as architects. Today, one can easily
purchase a computer program that helps design
a kitchen, office, or home. Have these programs
eliminated the need for architects? The answer is ‘not
at all’, except for the simplest applications. When
homeowners can use a software product to play with
the design of an addition or a house, they are more
likely to conceive of a project that requires the skill of
a professional. The same may happen in biostatistics.
Just as certification as an architect is necessary for
a practitioner’s license, we may see the emergence
of a ‘guild’ that certifies professional statisticians
after sufficient coursework and some demonstration
of technical ability. Statistical packages can impart
skill, but they cannot impart wisdom. The challenge
for faculty who are training tomorrow’s graduate
students in biostatistics is to ensure that we impart
more than knowledge of statistics; we need to teach
the wisdom that comes from experience.

Conclusion

It would be easy to assume that the impact of sta-
tistical packages upon graduate education is merely
to increase the range of techniques that are taught.
The real sea change is in how the analytic process
itself is approached conceptually. Before the advent
of statistical packages, a student was taught to care-
fully plan analyses prior to actual computation, and
this plan guided as well as constrained the design.
In contrast, today’s students are taught to break the
data into various subsets and then to examine it
from all angles. Such sifting and winnowing is so
time consuming if performed by hand that exten-
sive exploratory data analyses that are common today
were all but impossible in the earlier era. Students
now have the possibility of seeing more in the data
than was possible a generation ago but at the cost of
a deeper understanding of how the view was derived.
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Teaching Statistics:
Sources

Teachers of statistics are aware of the dismal rep-
utation of their discipline among students, but they
work to improve it by displaying delight in the topic
and by using clever demonstrations and activities.
Fortunately, there is a population of useful, inter-
esting material available. The books and periodicals
reviewed here include sources that stand alone as fas-
cinating reading for teachers and students, as well as
books that appeal to teachers who want to enliven
their classes. The comments here proceed from books
to periodicals, with more general material preceding
the more technical.

The 1954 classic by Huff [4], How to lie with
statistics, is an entertaining depiction of statistics
in everyday life. Its main limitation is that its con-
tent is, at times, quite outdated. Few of us would
now be impressed with college graduates who earn
a beginning salary of $10 000. Although the exam-
ples do not always lend themselves to updating,
they illustrate universal and timeless pitfalls. Instruc-
tors can generate current examples of these pit-
falls.

A recent philosophical descendent of Huff’s book
is Best’s [1] Damned Lies and Statistics, which pro-
vides many examples of dubious statistics and how
they originated. The book opens with what Best con-
siders the worst possible social statistic: the ‘fact’
that the number of children gunned down in the
United States has doubled every year since 1950.
The book documents the history of this number.
It also includes sources of bad statistics, ‘mutant’
statistics that arise when original values are misin-
terpreted or distorted, and inappropriate comparisons
using superficially plausible statistics. Best illustrates
how statistics that are important to social issues can
take on a life of their own and confuse rather than
illuminate those issues. Students will enjoy this book
and instructors can use it to enhance classroom pre-
sentations and discussions.

Paulos’s [5] entertaining book, Once upon a num-
ber: The hidden mathematical logic of stories, takes
the same approach as Best’s. Both cite examples of
events in everyday life that relate to social contro-
versies and public policies. The anecdotes selected
by Paulos illustrate the general principles of statistics

and probabilities (see Probability: An Introduction)
found in many facets of life. He offers compelling
examples of how to think using statistics. One of
his important messages is that generalizations from
a single instance can be faulty because they may be
highly idiosyncratic. He also identifies questions that
statistics can answer and how to appropriately apply
those statistics. For instance, he discusses the statis-
tics associated with why we invariably have to wait
longer in line than we think we should, a phenomenon
of interest to those of us who always think we pick
the wrong line. Paulos invokes probability to show
that minority populations are statistically (and realis-
tically) more prone to encountering racism than are
people in majority populations. Because many of the
illustrations involve people and their behavior, this
book is particularly useful for statistics classes in the
behavioral and social sciences. This volume uses the
same clear approach that Paulos took in his previous
books on numerical literacy.

Readers get a more technical, but still highly
readable, presentation of statistics and probability in
Holland’s [3] volume, What are the chances? Exam-
ples range widely. They include how the random
distribution of rare events such as cancer creates clus-
ters in a few locations (neighborhoods or buildings),
the probabilities of Prussian soldiers being kicked to
death by their horses between 1875 and 1894, and
probabilities linked to waiting times in queues and
traffic jams. The examples are supported by formu-
las, tables, and graphs. Holland emphasizes that the
meaning of the data comes from their interpretation,
but that interpretations are fraught with their own
difficulties. Sampling is emphasized as is measure-
ment error, which is explained quite nicely. Readers
generally familiar with statistical notation and the
rudiments of normal distributions (see Catalogue
of Probability Density Functions) and factorials
(i.e., instructors who have completed a graduate level
statistics course) will be able to fathom the points
Holland makes. This book shows both the use and
limitations of statistics.

Both the Paulos and the Holland books can serve
to augment classroom discussions. In addition, both
are likely to be accessible to competent and moti-
vated students who have mastered the rudimentary
statistical concepts.

A quite different book by Gelman and Nolan [2],
Teaching statistics: A bag of tricks, focuses on activ-
ities and demonstrations. The authors’ audience is
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statistics teachers in secondary schools and colleges.
An introductory topics section contains demonstra-
tions and activities that match the contents of virtually
any beginning statistics course in the behavioral and
social sciences. The numerous demonstrations and
activities illustrate important statistical concepts and
provide excellent exercises in critical thinking. Con-
sequently, the instructor can use varied exercises
in different classes. The in-class activities include
a simple memory demonstration that can be used
to illustrate confidence intervals and an evaluation
of newspaper articles that report data. The authors
present the important message that researchers are
bound by ethical principles in their use of data.
The second segment of Gelman and Nolan’s book
gives the logistics for the successful implementa-
tion of the demonstrations and activities. This part
of the book will certainly be of interest to beginning
teachers, but it contains helpful hints for veterans as
well.

Statistics teachers can benefit from two of the
handbooks of articles reprinted from the journal
Teaching of Psychology [6] and [7]. The two vol-
umes devoted to teaching statistics contain nearly five
dozen articles. These books resemble that of Gel-
man and Nolan in that they all feature activities and
demonstrations that instructors have used success-
fully in their classes. The entries in the handbooks
were written by a diverse set of statistics teachers
and cover a wide variety of topics. The examples
are broad enough to be useful to instructors in all
of the behavioral sciences. The topics of many arti-
cles overlap with those of Gelman and Nolan, but
the entries in the handbooks provide pedagogical
advice as well as activities and demonstrations. For
instance, there are sections on topics such as devel-
oping student skills, evaluating successes in statistics,
and presenting research results. Many of the activities
and demonstrations in these handbooks are accompa-
nied by at least a basic empirical evaluation of their
effects on student learning.

In addition to books, several periodicals publish
activities, demonstrations, and lecture enhancements
The quarterly magazine Chance (not be confused
with the gambling magazine with the same title)
publishes articles on topics such as the misuse of
statistics in the study of intelligence, Bayesian statis-
tics in cancer research, teacher course evaluations,
and the question of who wrote the 15th book of
Oz. Feature articles illustrate the value of relying

on statistical knowledge to help address the impor-
tant issues in our lives. The articles are typically
very engaging, although the authors do not dumb
down the content. Sometimes the reading requires
diligence because of the complexity of the statisti-
cal issues, but the articles are worth the work. Most
of the time, readers with a modicum of knowledge
of statistical ideas and notation will find the writing
accessible. (One vintage article [from 1997] discussed
the statistics associated with waiting in lines for vari-
ous services. Statisticians’ fascination with time spent
waiting suggests that they spend an inordinate amount
of time doing nothing, but that they are quite produc-
tive during those times.) Chance has regular columns
on sport, visual presentation of data, book reviews,
and other topics.

A periodical with a more narrow orientation is
the Journal of Statistics Education, published by the
American Statistical Association three times a year.
This online journal is available free on the Internet.
Its featured articles involve some aspect of peda-
gogy. A recent volume included articles on teaching
power and sample size, using the Internet in teach-
ing statistics, the use of analogies and heuristics in
teaching statistics, and the use of student-specific
datasets in the classroom. In addition, a column
‘Teaching Bits: A Resource for Teachers of Statis-
tics’ offers brief excerpts of current events that are
of relevance to teaching statistics. The journal also
offers data sets that can be downloaded from the
Internet.

The journal Teaching of Psychology publishes arti-
cles on teaching statistics. As the journal title sug-
gests, the material is oriented toward the discipline of
psychology, but there are regular articles on teaching
statistics that are suitable for other behavioral sci-
ences. This journal is the organ of the Society for the
Teaching of Psychology. A parallel journal, Teach-
ing Sociology, also publishes occasional articles on
teaching statistics and research methods.

The periodical, American Statistician, includes the
‘Teacher’s Corner’. The entries associated with teach-
ing are often quite technical and involve advanced
topics in statistics. They are less likely to be relevant
to students in the behavioral sciences.

Psychological Methods appears quarterly. The
articles are usually fairly technical and are addressed
to sophisticated researchers. Recent topics included
new approaches to regression analyses (see Regres-
sion Models) meta-analysis, and item response



Teaching Statistics: Sources 3

theory (IRT). The material in this journal is best
suited for advanced students. Although the intent
of most articles is not pedagogical, the articles can
help instructors bring emerging statistical ideas to
their classrooms.

Finally, the Open Directory Project (http://
www.dmoz.org/Science/Math/Statistics/)
is an Internet site that provides a wealth of infor-
mation on teaching statistics. This site provides a
compendium of useful web addresses on a vast array
of topics, including statistics education. The web
pages to which the Open Directory Project sends
you range from light-hearted and humorous (the three
most common misspellings of statistics) to the very
serious (e.g., an interactive Internet environment for
teaching undergraduate statistics). There is also an
interesting link to a web page that evaluates the use
of statistics in the media. The Open Directory Project
site has links to virtually any topic being covered in
an introductory level statistics class, as well as links
to more advanced topics for higher level students.
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Telephone Surveys

In recent years, telephone surveys have become
increasingly popular and almost commonplace. When
the methodology of telephone surveys was devel-
oped in the 1970s, many assumed that telephone
surveys would replace face-to-face surveys for the
most part. While this did not occur, telephone sur-
veying is the preferred approach in many cases [2].
Telephone survey methodologies have undergone dra-
matic changes and examination in the last 20 years.
Telephone survey methodology is widely used. As
a result of recent advances in telephone technol-
ogy, the methodology is viewed as both valid and
reliable. Telephone surveys are efficient and effec-
tive means of collecting data that can aid decision-
making processes in both the public and private
sectors [5].

When designing the questionnaire, it is often eas-
ier and safer to borrow questions that have been
used and tested previously (see Survey Question-
naire Design). This allows for comparability of the
questions across time and place. The introductory
spiel is the standardized introduction read by an
interviewer when contact is made with a possible eli-
gible household or respondent. A carefully worded
introduction is of utmost importance. A weak intro-
ductory spiel can lead to refusals and nonresponse
error. During the introduction, the potential respon-
dent decides whether to cooperate [3]. The credibility
of the interviewer and the survey must be estab-
lished in the introduction. The introduction must
reduce the respondent’s fears and skepticism by pro-
viding assurances of legitimacy. Lyon suggests [5]
that the introduction should always include (a) the
interviewer’s full name; (b) the organization and/or
its sponsor that is conducting the research; (c) the
survey’s general topics; (d) the procedure for selec-
tion; (e) a screening technique; and (f) an assurance
of confidentiality. Following the introduction, the
screening technique selects a particular individual
within the household to be interviewed. The screen-
ing technique is designed to systematically select
respondents by age and sex, so that every individual
in each sampled household has an equal probabil-
ity of being selected, thereby ensuring a representa-
tive sample.

Advantages of Telephone Surveys

Telephone surveys have numerous advantages. The
most important advantage is the ability to main-
tain quality control throughout the data collection
process [4]. A second advantage is cost efficiency.
Telephone surveys are much less expensive than
face-to-face interviews but more expensive than
mail surveys.

The third major advantage of telephone surveys
is their short turn around time. The speed with
which information is gathered and processed is much
faster than that of any other survey method. A
telephone survey takes 10 to 20% less time than
the same questions asked in a face-to-face inter-
view [4]. When a central interviewing facility with
several phone banks is used, it is possible for 10
callers to complete approximately 100 interviews
in an evening. Hence, large nationwide studies can
be completed in a short time. By polling only a
few hundred or a few thousand persons, researcher
can obtain accurate and statistically reliable infor-
mation about tens of thousands or millions of per-
sons in the population. This assumes, of course, that
proper techniques are implemented to avoid survey
errors in sampling, coverage, measurement, and non-
response [2].

A fourth advantage is the ability to reach most
homes as a result of methodological advances in
random-digit dialing (RDD) and the proliferation of
phones. It is estimated by the US census that approx-
imately 97% of US households have a telephone.
RDD has improved telephone survey methodology.
RDD uses a computer to select a telephone sam-
ple by random generation of telephone numbers.
There are several different techniques for generat-
ing an RDD sample. The most common technique
begins with a list of working exchanges in the
geographical area from which the sample is to be
drawn. The last four digits are computer gener-
ated by a random procedure. RDD procedures have
the advantage of including unlisted numbers that
would be missed if numbers were drawn from a
telephone directory. Telephone numbers also can be
purchased from companies that create the sampling
pool within a geographic area, including numbers
for RDD surveying (see Survey Sampling Proce-
dures).

A fifth advantage is that telephone interviewers
do not have to enter high-crime neighborhoods or



2 Telephone Surveys

enter people’s homes, as is required for face-to-face
interviewers. In some cases, a respondent will be
more honest in giving socially disapproved answers
if they do not have to face the interviewer. Likewise,
it is possible to probe into more sensitive areas over
the phone than it is in face-to-face interviews [1]. The
major differences between telephone interviewing
and face-to-face interviewing is that the interviewer’s
voice is the principal source of interviewing bias. By
not seeing the interviewer, respondents are free from
the biases that would be triggered by appearance,
mannerisms, gestures, and expressions. On the other
hand, the interviewer’s voice must project an image
of a warm, pleasant person who is stimulating to
talk to and who is interested in the respondent’s
views.

Other advantages found in [5] include the abil-
ity to probe, the ability to ask complex questions
with complex skip patterns (with computer-assisted
telephone-interviewing, CATI), the ability to use long
questionnaires, the assurance that the desired respon-
dent completes the questionnaire, and the ability to
monitor the interviewing process.

CATI is a survey method in which a printed
questionnaire is not used. Instead, the questions
appear on the screen of a computer terminal, and
the answers are entered directly into a computer
via the keyboard or mouse. The major advantages
of this procedure are that it allows for the use of
a complex questionnaire design with intricate skip
patterns. It also provides instant feedback to the
interviewer if an impossible answer is entered, and
it speeds up data processing by eliminating inter-
mediate steps. The computer is programmed not
only to present the next question after a response
is entered but also to determine from the response
exactly which question should be asked next. The
computer branches automatically to the next ques-
tion according to the filter instructions. CATI can
randomly order the sequence of possible response
categories and incorporate previous answers into the
wording of subsequent items. The CATI software
also can control the distribution of the sampling
pool and dial the appropriate phone number for the
interviewer. During the polling process, the supervi-
sory staff are able to access the interviewer’s com-
pleted calls, the duration of each call, response rates,
and listen in to assure the accuracy of the script.
When CATI is properly implemented, the quality of

the data is improved and survey errors are often
reduced [2, 4, 5].

Disadvantages of Telephone Surveys

Despite the numerous advantages, telephone surveys
have limitations. During a telephone interview, it
is not possible to use visual aids. The length of
the survey is another concern. Owing to respon-
dent fatigue, most telephone surveys should not be
longer than 15 min. Face-to-face interviews can be
longer, up to 20 to 30 min. In face-to-face inter-
views, the interviewer can assess body language and
notice respondent fatigue. While complex skip pat-
terns are easy to use with the CATI system, long,
involved questions with many response categories are
hard to follow in a telephone interview. The tele-
phone methodology is hampered by the proliferation
of marketing and sales calls veiled as ‘research’.
Many respondents distrust telephone surveys and
want to know what you are selling. Also, a short-
coming of the telephone survey is the ease with
which a potential respondent can hang up. It is
quite easy to terminate the interview or make up
some excuse for not participating at that time [1].
Another problem is the potential coverage error –
every demographic category (i.e., sex, age, and gen-
der) is not equally willing to answer the phone and
complete a survey – although this can be avoided
with an appropriate screening technique. Techno-
logical advances such as answering machines and
caller ID have contributed to nonresponse rates as
potential respondents screen incoming calls. Despite
the several limitations of telephone survey methods,
the advantages usually outweigh the disadvantages,
resulting in an efficient and effective method for col-
lecting data.
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Test Bias Detection

During the 1970s considerable attention was given
to developing fair selection models in the context
of college admissions and job entry. These models
put heavy emphasis on predictive validity, and in
one way or another they all address the possibility
of differences in the predictor–criterion relationship
for different groups of interest. With the exception
of Cleary’s regression model, most other models
proposed were shown to be mutually contradictory
in their goals and assumptions.

There is a growing consensus in the measurement
community that bias refers to any construct-irrelevant
source of variance that results in systematically
higher or lower scores for identifiable groups of
examinees. In regard to test use, the core meaning
of fairness is comparable validity : A fair test is
one that yields comparable and valid scores from
person to person, group to group, and setting to
setting. However, fairness, like validity, is not just
a psychometric issue. It is also a social value, and
therefore alternative views about its essential features
will persist.

As the use of educational and psychological tests
continues to grow, an increasing number of decisions
that have profound effects on individuals’ lives are
being made based on test scores, despite the fact
that most test publishers caution against the use of
a single score for decision-making purposes. Tests
are instruments that are designed to provide evidence
from which inferences are drawn and on the basis
from which such decisions are made. The degree to
which this evidence is credible constitutes the validity
of the test, and it should hold for all groups among the
intended test-taking population (see Validity Theory
and Applications).

Concerns of possible gender and/or ethnic biases
in the use of various tests have drawn the attention
of test users and test developers as well as of the
public in general. A view of fairness, frequently
used by the public, involves equality of testing
outcomes. In the public debate on this issue the
terms test unfairness, cultural unfairness, and test
bias are often used interchangeably to refer to
differences in test performance among subgroups
of social interest. However, the idea that fairness
requires overall performance or passing rates to
be equal across groups is not the one generally

accepted in the professional literature. In fact, Cole
and Zieky [12] claim that: ‘If the members of the
measurement community currently agree on any
aspect of fairness, it is that score differences are
not proof of bias’ (p. 375). This is because test
outcomes may validly document group differences
that are real and that may be reflective, in part,
of unequal opportunity to learn and other possible
reasons.

Bias refers to any construct1 under-representation
or construct-irrelevant components of test scores
that differentially affect the performance of different
groups of test takers. Construct-irrelevant variance
exists when the ‘test contains excess reliable variance
that is irrelevant to the interpreted construct’ [30].
The effect of such irrelevant sources of variance on
scores is referred to as measurement bias. Sources
of irrelevant variance that result in systematically
higher or lower scores for members of particular
groups are of potential concern for both predictors
and criteria. Determining whether measurement bias
is present is often difficult, as this requires evaluating
an observed score in relation to the unobservable
construct of interest.

Fairness in Terms of Equitable Treatment
of All Examinees

One way to reduce measurement bias is to assure
equitable treatment of all examinees through test
design and development practices intended from an
early stage to prevent bias. Equity in terms of testing
conditions, access to practice materials, performance
feedback, retest opportunities, and providing reason-
able accommodations for test-takers with disabili-
ties when appropriate, are important aspects of fair-
ness. Equitable treatment of all examinees is directly
related to establishing construct validity and the fair-
ness of the testing process [42]. It is useful to distin-
guish two kinds of comparability relevant to construct
validity and fairness – comparability of score inter-
pretation and task comparability. Comparability of
score interpretation means that the properties of the
test itself and its external relationships with other
variables are comparable across groups and settings.
Comparability of score interpretation is important in
justifying uniform score use for different groups and
in different circumstances. Task comparability means
that the test task elicits the same cognitive processes
across different groups and different circumstances.
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Fairness of Accommodations. Within task compa-
rability, two types of processes may be distinguished:
those that are relevant to the construct measured
and those that are irrelevant to the construct but
nonetheless involved in task performance (possibly
like reading aloud in mathematics). Comparability
of construct-relevant processes across groups is nec-
essary for validity. Ancillary or construct-irrelevant
processes may, however, be modified without jeop-
ardizing score interpretation. This provides a fair
and legitimate basis for accommodating tests to the
needs of students with disabilities and those who
are English-language learners [40]. Thus, compara-
ble validity and test fairness do not necessarily
require identical task conditions, but rather common
construct-relevant processes with ignorable construct-
irrelevant or ancillary processes that may be different
across individuals and groups. Such accommodations
must be justified with evidence that score meanings
have not been eroded in the process.

The general issue of improving the accessibility
of a test must be considered within an assessment
design framework that can help the assessment plan-
ner maximize validity within the context of specific
assessment purposes, resources, and other constraints.
Evidenced-centered assessment design (ECD), which
frames an assessment as embodying an eviden-
tiary argument, has been suggested as a promising
approach in this regard [21].

Detecting Bias at the Item Level. Statistical pro-
cedures to identify test items that might be biased
have existed for many years [3, 29]. One approach to
examining measurement bias at the item level is to
perform a differential item functioning (DIF) anal-
ysis, focusing on the way that comparable or matched
people in different groups perform on each test item.
DIF procedures are empirical ways to determine if
the item performance of comparable subgroups is
different. DIF occurs when a statistically signifi-
cant difference in performance on an individual test
item occurs across two or more groups of exami-
nees, after the examinees have been matched on total
test/subtest scores [20, 22]. DIF methodologies and
earlier methods share a common characteristic in that
they detect unfairness of a single item relative to the
test as a whole, rather than detecting pervasive unfair-
ness. Thus, in the extremely unlikely case that all
items were biased to exactly the same degree against

exactly the same groups, no items would be identified
as unfair by current DIF methods [42].

DIF analysis is not appropriate in all testing
situations. For example, it requires data from large
samples and if only for this reason DIF analyses
are more likely to be used in large-scale educational
settings and are not likely to become a routine or
expected part of the test development and validation
process in employment settings.

DIF methods have been an integral part of test
development procedures at several major educa-
tional test publishers since the 1980s [41]. Empirical
research in domains where DIF analyses are com-
mon has rarely found sizable and replicable DIF
effects [34]. However, it is worth noting that aggre-
gations of DIF data have often led to generalizations
about what kind of items to write and not to write.
This in turn led to two outcomes: (a) fewer items
with significant DIF values were found, because those
with large DIF values were no longer being written;
and (b) test fairness guidelines, which had previously
been very distinct from empirical evaluations of test
fairness, began to incorporate principles and proce-
dures based on empirical (DIF) findings, rather than
rely exclusively on the touchstone of social consensus
on removing offensive or inappropriate test material.

Linked to the idea of measurement bias at the item
level is the concept of an item sensitivity review.
The fundamental purpose of fairness reviews is to
implement the social value of not presenting test-
takers with material that they are likely to find
offensive or upsetting. In such a review, items are
reviewed by individuals with diverse perspectives
for language or content that might have differing
meanings to members of various subgroups. Even
though studies have noted a lack of correspondence
between test items identified as possibly biased by
statistical and by judgmental means [7, 37], major
test publishers in the United States have instituted
judgmental review processes designed to identify
possibly unfair items and offensive, stereotyping, or
alienating material (e.g., [16]).

Fairness Through the Test Design Process

It is important to realize that group differences can
be affected intentionally or unintentionally by choices
made in test design. Many choices made in the design
of tests have implications for group differences. Such
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differences are seldom completely avoidable. Fair test
design should, however, provide examinees compa-
rable opportunity, insofar as possible, to demonstrate
knowledge and skills they have acquired that are rel-
evant to the purpose of the test [39]. Given that in
many cases there are a number of different ways to
predict success at most complex activities (such as
in school or on a job), test developers should care-
fully select the relevant constructs and the ways to
operationalize the measurement of those constructs
to provide the best opportunity for all subgroups to
demonstrate their knowledge.

As guidance to the test-construction process, ETS
Standards for Quality and Fairness state that: ‘Fair-
ness requires that construct-irrelevant personal char-
acteristics of test-takers have no appreciable effect
on test results or their interpretation’ (p. 17) [16].
More specifically, ETS standards recommends adopt-
ing the following guidelines: (a) treat people with
respect in test materials; (b) minimize the effects
of construct-irrelevant knowledge or skills; (c) avoid
material that is unnecessarily controversial, inflam-
matory, offensive, or upsetting; (d) use appropriate
terminology to refer to people; (e) avoid stereotypes;
and (f) represent diversity in depictions of people.

Fairness as Lack of Predictive Bias

During the mid-1960s, concurrent with the Civil
Rights Movement, measurement professionals began
to pay increasing attention to score differences on
educational and psychological tests among groups
(often referred to as adverse impact). Considerable
attention has been given to developing fair selection
models in the context of college admissions and job
entry. These models put heavy emphasis on predictive
validity, and in one way or another they all address
the possibility of differences in the predictor-criterion
relationship for different groups of interest.

Fair Selection Models – mid-1960s and 1970s.
Differential prediction (also called predictive bias;
see AERA/APA/NCME Standards, 1999, for defini-
tion [2]) by race and gender in the use of assess-
ment instruments for educational and personnel selec-
tion has been a long-standing concern. In trying to
explicate the relation between prediction and selec-
tion, Willingham and Cole [39] and Cole [10] have
pointed out that prediction has an obvious and impor-
tant bearing on selection, but it is not the same thing –

prediction involves an expected level of criterion
performance given a particular test score; selection
involves the use of that score in decision-making.
Cleary’s [8] model stipulated that no predictive bias
exists if a common regression line can describe
the predictive relationship in the two groups being
compared. Other selection models [9, 14, 26, 38]
were developed in the 1970s taking into account the
fact that any imperfect predictor will fail to select
members of a lower-scoring group in proportion to
their rate of criterion success. The models all require
setting different standards of acceptance for indi-
viduals in different groups to achieve group equity
as defined by the model. Petersen and Novick [32]
pointed out that the various models are fundamen-
tally incompatible with one another at the level of
their goals and assumptions and lead to contradictory
recommendations, unless there is perfect prediction –
and even given perfect prediction, these are com-
peting selection models based on differing selection
goals, and will thus always be mutually contradictory.
As a result of the continuous public and profes-
sional discussion around test bias there was a growing
recognition that fair selection is related to funda-
mental value differences. Several utility models were
developed that go beyond the above selection mod-
els in that they require specific value positions to be
articulated [13, 18, 32, 35]. In this way, social val-
ues are explicitly incorporated into the measurement
involved in selection models. Such models were sel-
dom utilized in practice, as they require data that are
difficult to obtain. More importantly, perhaps, they
require application of dichotomous definitions of suc-
cess and failure that are themselves methodologically
and conceptually rather arbitrary and problematic.

After the intense burst of fairness research in
the late 1960s and early 1970s described above,
Flaugher [17] noted that there was no generally
accepted definition of the concept ‘fair’ with respect
to testing. Willingham and Cole [39] concluded that
the effort to determine which model, among the
variety of such models proposed, best represented
fair selection was perhaps the most important policy
debate of the 1970s among measurement specialists.

Current View of Test Bias

The contemporary professional view of bias is that
it is an aspect of validity. A commonly used defi-
nition of test bias is based on a lack of predictive
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bias. The AERA/APA/NCME Standards [2] defines
predictive bias as ‘the systematic under- or overpre-
diction of criterion performance for people belonging
to groups differentiated by characteristics not relevant
to criterion performance’ (p 179). This perspective
(consistent with the Cleary model) views predictor
use as unbiased if a common regression line can be
used to describe the predictor-criterion relationship
for all subgroups of interest. If the predictive relation-
ship differs in terms of either slopes or intercepts, bias
exists because systematic errors of prediction would
be made on the basis of group membership [11, 19,
25, 27, 28, 31]. Whether or not subgroup differences
on the predictor are found, predictive bias analyses
should be undertaken when there are questions about
whether a predictor and a criterion are related in the
same way for relevant subgroups.

Several technical concerns need to be considered
when trying to quantify predictive bias:

1. Analysis of predictive bias requires an unbiased
criterion. It is possible for the same bias to exist
in the predictor and the criterion, or it may be that
there are different forms of bias in the criterion
itself across groups, and that these biases might,
however unlikely that may be, would cancel each
other out.

2. The issue of statistical power to detect slope
and intercept differences should be taken into
account. Small total or subgroup sample sizes,
unequal subgroup sample sizes, range restriction,
and predictor or criterion unreliability are factors
contributing to low power [1].

3. When discussing bias against a particular group
in the admissions process, the entire set of
variables used in selection should be taken into
consideration, not just parts of it. The inclusion
of additional variables may dramatically change
the conclusions about predictive bias [26, 33].

Differential prediction by race has been widely
investigated in the domain of cognitive ability. For
White-African American and White-Hispanic com-
parisons, slope differences are rarely found. While
intercept differences are not uncommon, they typ-
ically take the form of overprediction of minority
group performance [4, 15, 23, 24, 36]. Similar results
were found by Beller [5, 6] for the Psychometric
Entrance Test (PET) used as one of two compo-
nents for admissions to higher education in Israel.

There were few indications of bias in using PET,
and when found, they were in favor of the minority
groups. In other words, the use of a common regres-
sion line overpredicted the criterion scores for the
minority groups.

Studies investigating sex bias in tests (e.g., [40])
found negligible opposing effects of under- and
overprediction of criterion scores when using gen-
eral scholastic test scores and achievement scores,
respectively. These opposing effects tend to offset
each other, and it is therefore not surprising that an
actual admission score, which often consists of both
general scholastic test and achievement scores, is gen-
erally unbiased (e.g., [5]).

Conclusion

Much of the criticism of psychological tests is derived
from the observation that ethnic and gender groups
differ extensively in test performance. Criticism is
generally stronger if the groups that show relatively
poor performance are also socioeconomically disad-
vantaged. Much of the polemic concerning test bias
confuses several issues: (a) differences in test per-
formance among groups are often regarded, in and
of themselves, as an indication of test bias, ignor-
ing performance on the external criterion that the test
is designed to predict. Often, groups that perform
poorly on tests also tend to perform poorly on mea-
sures of the criterion. Furthermore, analysis of the
relationship between tests and criteria often reveals
similar regression lines for the various groups; and
(b) the issue of test bias is often confused with the
possibility of bias in the content of some individual
items included in a test. Group differences in test per-
formance are attributed to specific item content, and
rather than eliminating problematic items in a sys-
tematic way (i.e., checking all items for differential
performance), this confusion has, in some cases, led
to suggestions of a wholesale rejection of reliable and
valid test batteries.

Nevertheless, there is a growing recognition in the
measurement community that, even though score dif-
ferences alone are not proof of bias, score differences
may not all be related to the measured constructs;
and that even valid differences may be misinterpreted
to the detriment of the lower-scoring groups when
scores are used for important purposes such as selec-
tion. The fundamental question remains the degree
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to which the observed group differences reflect real,
underlying psychological processes, and the degree
to which group differences simply reflect the way the
tests were constructed.

The current edition of the Standards for Educa-
tional and Psychological Testing [2] indicates that
fairness ‘is subject to different definitions and inter-
pretations in different social and political circum-
stances’. With regard to test use, the core meaning
of fairness is comparable validity: A fair test is one
that yields comparable and valid scores from person
to person, group to group, and setting to setting. How-
ever, fairness, like validity, is not just a psychometric
issue. It also rests on social values. Thus alternative
views about its essential features will persist.

Note

1. A construct is a set of knowledge, skills, abilities, or
traits a test in intended to measure.
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Test Construction

Item response theory (IRT) (see Item Response
Theory (IRT) Models for Polytomous Response
Data; Item Response Theory (IRT) Models for
Rating Scale Data) provides an appealing conceptual
framework for test construction due, in large part,
to the item and test information function. The item
information function provides a measure of how
much psychometric information an item provides at
a given ability level, θ . For dichotomously-scored
items calibrated using the three-parameter logistic
IRT model, the item information function for item
i is calculated as:

Ii(θ) = D2a2
i (1 − ci)

(ci + eDai(θ−bi ))(1 + e−Dai(θ−bi ))2
, (1)

where D = 1.7, ai is the item discrimination param-
eter, bi is the item difficulty parameter, and ci is the
pseudo-chance parameter [9]. (To illustrate key con-
cepts, the three-parameter logistic IRT model is used
because it often provides the best fit to data from
multiple-choice tests. The item and test information
function for select polytomous item response mod-
els are described in Chapters 2 through 9 of van der
Linden and Hambleton [12]). For any given θ , the
amount of information increases with larger values
of ai and decreases with larger values of ci . That is,
item discrimination reflects the amount of informa-
tion an item provides assuming the pseudo-chance
level is relatively small.

The test information function is an extension of
the item information function. The test information
function is the sum of the item information functions
at a given θ :

I (θ) =
n∑

i=1

Ii(θ), (2)

where Ii(θ) is the item information and n is the
number of test items. This function defines the rela-
tionship between ability and the psychometric infor-
mation provided by a test. The more information
each item contributes, the higher the test informa-
tion function. The test information function is also
related directly to measurement precision because the
amount of information a test provides at a given θ

is inversely proportional to the precision with which

ability is estimated at that θ-value, meaning:

SE(θ) = 1√
I (θ)

, (3)

where SE(θ) is the standard error of estimation.
SE(θ) is the standard deviation of the asymptoti-
cally normal distribution for those examinees who
have a maximum likelihood estimate of θ . The stan-
dard error of estimation can be used to compute a
confidence interval for the corresponding θ-values
across the score scale, which promotes a more accu-
rate interpretation of the ability estimates. The stan-
dard error of estimation varies across ability level,
unlike the standard error of measurement in classi-
cal test theory which is constant for all ability levels,
because test information frequently varies across abil-
ity level.

Basic Approach to Test Construction Using
Item and Test Information Functions

Both the item and test information functions are used
in test construction. Lord [8] outlined the following
four-step procedure, first suggested by Birnbaum [4],
for designing a test using calibrated items from an
item bank:

Step 1: Decide on the shape desired for the test
information function. The desired function
is called the target information function.
Lord [8] called the target information func-
tion a target information curve.

Step 2: Select items with item information func-
tions that will fill the hard-to-fill areas under
the target information function.

Step 3: Cumulatively add up the item information
functions, obtaining at all times the infor-
mation function for the part-test composed
of items already selected.

Step 4: Continue until the area under the target
information function is filled up to a sat-
isfactory approximation.

Steps 3 and 4 are easily understood, but steps 1
and 2 require more explanation.

The shape of the target information function, iden-
tified in Step 1, must be specified with the purpose
of the test in mind. For example, a norm-referenced
test designed to evaluate examinees across a broad
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Figure 1 Target information function for three hypothetical tests designed for different purposes

range of ability levels would have a uniform tar-
get information function that spans much of the
θ-scale. A criterion-referenced test designed to differ-
entiate examinees at an ‘acceptable standard’ located
at θ = −1.0 and a ‘standard of excellence’ located at
θ = 1.0 would, by comparison, have a target infor-
mation function with two information peaks near the
θ cut scores associated with these two standards. A
licensure test designed to identify minimally compe-
tent examinees, which could be operationally defined
as a score above θ = −1.0, would have a target infor-
mation function with one peak near the θ cut score.
These three hypothetical target information functions
are illustrated in Figure 1.

Once the target information function is specified in
step 1, then item selection in step 2 can be conducted
using one of two statistically-based methods. The first
item selection method is maximum information. It
provides the maximum value of information for an
item regardless of its location on the θ-scale. For
the three-parameter logistic IRT model, maximum
information is calculated as:

Ii(θ)MAX = D2a2
i

8(1 − ci)2

× [
1 − 20ci − 8c2

i + (1 + 8ci)
3/2] , (4)

where D = 1.7, ai is the discrimination parameter,
and ci is the pseudo-chance parameter [9]. Maxi-
mum information is often used in test construction
because it provides a method for selecting the most
discriminating items from an item bank. However,
one problem that can arise when using the most
discriminating items is estimation bias: Items with
large expected ai parameters are likely to overes-
timate their true ai values because the correlation
between the expected and true parameters is less than
1.0. Estimation bias is problematic when develop-
ing a test using the most discriminating items [i.e.,
items with the largest Ii(θ)MAX values] because the
ai parameters will be inflated relative to their true
values and, as a result, the test information function
will be overestimated [6, 7]. This outcome could lead
to overconfidence in the accuracy of the examinees’
ability estimates, given the test information function
at a given θ is inversely proportional to the precision
of measurement at that ability level.

The second item selection method is theta maxi-
mum. It provides the location on the θ-scale where
an item has the most information. For the three-
parameter model, theta maximum is calculated as:

θi(I )MAX = bi + 1

Dai

ln
1 + √

1 + 8ci

2
, (5)
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Table 1 Item parameters, maximum information, and theta maximum values for four
example items

Item a-parameter b-parameter c-parameter Ii(�)MAX θi(I )MAX

1 0.60 −1.10 0.20 0.18 −1.01
2 0.70 0.14 0.19 0.25 0.25
3 0.64 0.91 0.19 0.21 1.01
4 0.50 −2.87 0.19 0.13 −2.79

where D = 1.7, ln is the natural logarithm, ai is the
discrimination parameter, bi is the difficulty parame-
ter, and ci is the pseudo-chance parameter [9]. Theta
maximum is influenced primarily by the difficulty
parameter because it reflects the location (i.e., bi

value) rather than the height (i.e., ai value) of the
item information function. Moreover, the bi estimates
tend to be more accurate than the ai estimates. There-
fore, theta maximum often contains less estimation
bias than maximum information thereby producing a
more consistent estimate of the test information func-
tion [5] which, in turn, yields a more reliable measure
of θ .

A simple example helps illustrate the differences
between Ii(θ)MAX and θi(I )MAX. Table 1 contains the
a-, b-, and c-parameter estimates for four items along
with their Ii(θ)MAX and θi(I )MAX values. Figure 2
shows the information function for each item. If the
goal was to select the most discriminating item from
this set, then item 2 would be chosen because it
has maximum information [i.e., Ii(θ)MAX = 0.25].
If, on the other hand, the goal was to select the

item that was most discriminating at θ = −1.0, then
item 1 would be chosen because it has maximum
information around this point on the theta scale [i.e.,
θi(I )MAX = −1.01]. Notice that item 1 is not the
most discriminating item, overall, but it does yield the
most information at θ = −1.0, relative to the other
three items.

Developments in Test Construction Using
Item and Test Information Functions

Rarely are tests created using item selection meth-
ods based on statistical criteria alone. Rather, tests
must conform to complex specifications that include
content, length, format, item type, cognitive lev-
els, reading level, and item exposure, in addi-
tion to statistical criteria. These complex speci-
fications, when combined with a large bank of
test items, can make the test construction task,
as outlined by Lord [8], a formidable one because
items must be selected to meet a statistical tar-
get information function while at the same time
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satisfying a large number of test specifications
(e.g., content) and constraints (e.g., length). Opti-
mal test assembly procedures have been developed
to meet this challenge [11]. Optimal test assembly
requires the optimization of a test attribute (e.g.,
target information function) using a unique com-
bination of items from a bank. The goal in opti-
mal test assembly is to identify the set of feasi-
ble item combinations in the bank given the test
specifications and constraints. The assembly task
itself is conducted using an computer algorithm
or heuristic. Different approaches have been devel-
oped to automate the item selection process in
order to optimize the test attribute including 0–1
linear programming [1], heuristic-based test assem-
bly [10], network-flow programming [2], and optimal
design [3]. These advanced test construction proce-
dures, which often use item and test information
functions, now incorporate the complex specifications
and constraints characteristic of modern test design
and make use of computer technology. But they
also maintain the logic inherent to Lord’s [8] proce-
dure demonstrating why the basic four-step approach
is fundamental for understanding and appreciat-
ing developments and key principles in optimal
test assembly.
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Test Construction:
Automated

In large-scale educational measurement, thousands of
candidates have to be tested and the results of these
tests might have major impact on candidate’s lives.
Imagine, for example, the consequences of failing on
an admission test for someone’s professional career.
Because of this, great care is given to the process of
testing. Careful psychometric planning of high-stakes
tests consists of several steps.

First, decisions are made about the kind of abilities
that have to be measured, and about the character-
istics of the test. These decisions result in a test
blueprint. In this blueprint, the test length is speci-
fied and some rules for content balancing and/or other
characteristics are defined.

The next step is to write items for the test. Instead
of writing and pretesting items for each single test
form over and over again, the concept of item banking
was introduced. Items are written and pretested on
a continuous basis and the item characteristics and
statistics are stored in an item bank. In most item
banks for large-scale testing, the item statistics are
calculated on the basis of item response theory (IRT)
models. In IRT measurement models, item parameters
and person parameters are modeled separately [2].
Apart from sampling variation, the item parameters
do not depend on the population or on the other
items in the test. Because of this property, items
that are calibrated can be used for different group of
candidates that belong to the same population. (For a
more detailed introduction to IRT, see [2] and [3].)

The final step is to select items from the bank and
to compose a test. Optimal test construction deals
with the problem of how to select those items that
meet the specifications in the best way. All kinds of
smart decision rules have been developed to select the
items. The main objective for most tests is to maxi-
mize measurement precision. When IRT models are
applied, measurement precision is determined by the
amount of information in the test [3]. Birnbaum [1]
presented a rather general approach for test construc-
tion. His algorithm consisted of the following steps.

1. Decide on the shape of the desired test informa-
tion function.

2. Select items from the pool with information func-
tions to fill areas under the target-information
function.

3. After each item is added to the test, calculate the
test information function.

4. Continue selecting items until the test informa-
tion function approximates the desired shape.

However, Birnbaum’s approach does not take all
kinds of realistic test characteristics into account.
It just focuses the amount of information, that is,
the measurement precision of the test. If more
and more test characteristics have to be added to
the construction problem, the approach becomes
hard to adapt. Optimal test construction is a
generalization of Birnbaum’s approach that does
take these realistic characteristics into account [7].
In the mid-1980s, the first methods for optimal
test construction were developed. The observation
was made that test construction is just one example
of a selection problem. Other well-known selection
problems are flight-scheduling, work-scheduling,
human resource planning, inventory management,
and the traveler–salesman problem. In order to solve
optimal-test-construction problems, methods to solve
these selection problems had to be translated and
applied in the area of test development.

Multiple Objectives

Like most real-world selection problems, optimal test
construction is a rather complex problem. For exam-
ple, a test blueprint might prefer the selection of those
items that simultaneously maximize the information
in the test, minimize the exposure of the items, opti-
mize item bank usage, balance content, minimize the
number of gender-biased items, provide most infor-
mation for diagnostic purposes, and so on. Besides,
in test blueprints, some of these objectives are usu-
ally favored above others. To make the problem even
more complicated, most mathematical programming
algorithms can only handle single-objective selection
problems instead of multiple-objective ones.

Three different strategies have been developed
to solve multiple-objective selection problems [10].
These strategies are classified as methods based on
(a) prior, (b) progressive, and (c) posterior weighting
of the importance of different objectives. It should be
mentioned that the names of the groups of methods
might be a little bit confusing because these names
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have different meaning in terminology of Bayesian
Statistics.

For prior weighting, an inventory of preferences
of objectives is made first. On the basis of this order,
a sequence of single-objective selection problems
is formulated and solved. For progressive methods,
a number of solutions are presented to the test
assembler. On the basis of his/her preference, a new
single-objective selection problem is formulated, and
this process is repeated until an acceptable solution
is found. For posterior methods, all different kinds
of priority orderings of objectives are taken into
account. The solutions that belong to all different
priority orderings are presented to the test assembler.
From all these solutions, the preferred one is chosen.
Methods in all groups do have in common that a
multiple-objective problem is reformulated into one
or a series of single-objective problems. They just
differ in the way the priority of different objectives
is implemented in the method.

The Methods

For optimal test construction, it is important that
the methods are easy to interpret and easy to han-
dle. Two methods from the class of prior weighting
methods are generally used to solve optimal-test-
construction problems. When the 0–1 Linear Pro-
gramming (LP) [8] is applied, a target is formulated
for the amount of information, the deviation from
the target is minimized, and bounds on the other
objectives are imposed. For the weighted deviation
method [5], targets are formulated for all objec-
tives, and a weighted deviation from these targets
is minimized.

The general 0–1 LP model for optimal construc-
tion of a single test can be formulated as:

min y (1)

subject to:∣∣∣∣∣
I∑

i=1

Ii(θk)xi − T (θk)

∣∣∣∣∣ ≤ y ∀k,

(target information) (2)

I∑
i=1

ac · xi ≤ nc ∀c, (generic constraint) (3)

I∑
i=1

xi = n, (total test length) (4)

xi ∈ {0, 1}. (decision variables) (5)

In (1) and (2), the deviation between the target-
information curve and the information in the test is
minimized for several points θk , k = 1, . . . , K , on the
ability scale. The generic constraint (3) denotes the
possibility to include specifications for all kinds of
item and test characteristics in the model. Constraints
can be included to deal with item content, item type,
the word count of the item, the time needed to answer
the item, or even constraints to deal with inter-item
dependencies. (For an overview of test-construction
models, see [7].) The test length is defined in (4),
and (5) is a technical constraint that makes sure
that items are either in the test (xi = 1) or not
(xi = 0).

When the weighted deviation model (WDM) is
applied, the test blueprint is used to formulate
goals for all item and test characteristics. These
goals are seen as desirable properties. During the
test-construction process, items that minimize the
deviations from these goals are selected. If it is
possible, the goals will be met. Otherwise, the devi-
ations of the goal are as small as possible. For
some characteristics, it is more important that the
goals are met than for others. By assigning differ-
ent weights to the characteristics, the impacts of the
deviations differ. In this way, an attempt is being
made to guarantee that the most important goals will
be met when the item bank contains enough good-
quality items.

The WDM model can be formulated as:

min
∑

j

wjdj (minimize weighted deviation) (6)

subject to:∣∣∣∣∣
I∑

i=1

Ii(θk)xi − T (θk)

∣∣∣∣∣ ≤ dk ∀k,

(target information) (7)

I∑
i=1

ac · xi − nc ≤ dc ∀c,

(generic constraint) (8)

xi ∈ {0, 1} dj ≥ 0. (decision variables) (9)

Where the variables dj denote the deviations and
wj denotes the weight of deviation j .

Both the 0–1 LP model and the WDM have
been successfully applied to solve the optimal-
test-construction problems. Which method to prefer
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Table 1 Overview of different test-construction models

Parallel test
forms

For security reasons, or when a test is administered in several testing windows, parallel tests have to
be assembled. Several definitions of parallelness exist, but the concept of weakly parallel tests is
most often applied. This means that the same set of constraints is met by the tests and the test
information functions are identical. To assemble parallel tests, item variables xi are replaced by
variables xij ∈ {0, 1} that indicate whether item i is selected for test j . The number of decision
variables grows linearly, but the complexity of the problem grows exponentially.

Item sets Some items in the pool may be grouped around a common stimulus. When a test is administered,
all items for this stimulus have to be presented consecutively and sometimes a minimum or
maximum number of items from this set need to be selected. To assemble a test with item sets, a
model can be extended with decision variables zs ∈ {0, 1} that denote whether set s is selected for
the test.

Classical test
construction

Besides IRT, classical test theory (CTT) is still often applied to assemble tests. One of the
drawbacks of CTT is that classical item parameters depend on the population and the other items
in the test. When the assumption can be made that the population of the examinees hardly
changes, optimal test construction might also be possible for classical test forms. A common
objective function is to optimize Cronbach’s alpha, a lower bound to the reliability of the test.

Test for multiple
abilities

For many tests, several abilities are involved in answering the items correctly. In some cases, all
abilities are intentional, but in other cases, some of them are considered nuisance. When only one
dominant ability is present, the others might be ignored; otherwise, the easiest approach is to
optimize Kullback–Leibler information instead of Fisher Information, because its
multidimensional form still is a linear function of the items in the test.

Computerized
adaptive
testing

In Computerized adaptive testing, the items are selected sequentially during test administration.
Difficulty of the items is adapted to the estimated ability level of the examinee. For each new
item, a test assembly problem has to be solved. Since most test characteristics are defined at test
level and item selection happens at item level, somehow these characteristics at test level have to
be built in the lower level model of selecting the next item.

Multi-stage
testing

In multi-stage testing, a test consists of a network of smaller tests. After finishing the first small
test, an examinee is directed to the next test on the basis of his/her ability level. In this way, the
difficulty level of the small tests is adapted to the estimated ability level of the examinee. For
assembling such a network of small tests, sets of small tests that only differ in difficulty level
have to be first assembled. Then these tests have to be assigned to a stage in the network.
Optimal multi-stage test assembly is very complicated because all routes through the network
have to result in tests that meet the test characteristics.

depends on the way the item and test characteris-
tics are described in the test blueprint. When a very
strict formulation of characteristics is used in the
test blueprint, the 0–1 LP model seems preferable,
because it guarantees that the resulting test meets all
constraints. The WDM model is more flexible. It also
gives the test assembler more opportunities to prior-
itize some characteristics above others.

Several Test-Construction Models

In equations 1 to 5 and 6 to 9, general models
are given for optimal construction of a single test.
Many different models are available for different test-
construction problems [7]. An overview of different

models is given in Table 1. In this table, the special
features of the models are described.

Current Developments

In the past twenty years, many optimal-test-construct-
ion models have been developed and algorithms for
test construction have been fine-tuned. Although tests
are assembled to be optimal, this does not imply that
their quality is perfect. An upper bound to the quality
of the test is defined by the quality of items in the
pool. The next step in optimization, therefore, is to
optimize composition and usage of the item pool.

Optimum item pool design [9] focuses on item
pool development in management. An optimal blue-
print is developed to guide the item writing process.
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This blueprint is not only based on test characteristics,
but also takes features of the item selection algorithm
into account. The goal of these design methods is to
develop an item pool with minimal costs and optimal
item usage.

Besides, exposure-control methods have been
developed that can be used to optimize the usage
of item banks. These methods are applicable for test-
ing programs that use an item pool over a period of
time. In optimal test construction, the best items are
selected for a test. As a consequence, a small portion
of the items in the pool is selected for the major-
ity of the tests. This problem became most obvious
when computerized adaptive testing was introduced.
To deal with problems of unequal usage of items in
the pool, several exposure-control methods are avail-
able, both to deal with overexposure of the popular
items (e.g., Sympson–Hetter method [6]) or to deal
with underexposure (e.g., progressive method [4]).
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Test Dimensionality:
Assessment of

Test scores are viewed as representations of a the-
oretical construct, or set of constructs, hypothe-
sized to underlie examinee performances. A test
score is typically interpreted as the manifestation
of one or more latent traits (see Latent Variable)
that the test is designed to measure. An exami-
nation of the structural aspect of construct valid-
ity [33] involves an assessment of test dimension-
ality. That is, the degree to which the dimen-
sional structure of the response matrix is consistent
with the domain(s) hypothesized to underlie per-
formance must be examined. Assessing the dimen-
sional structure of a response matrix therefore con-
stitutes a central psychometric activity in that the
primary concern of any organization involved in
assessment is to ensure that scores and decisions
reported to examinees are accurate and valid reflec-
tions of the proficiencies that were intended to be
targeted by the examination. As well, understanding
the dimensional structure of a test is important for
other psychometric activities such as equating and
calibration.

The term test dimensionality is, in some sense,
misleading because it does not refer only to the par-
ticular set of items comprising a test. Rather, the
dimensionality of a test is a function of the inter-
action between the set of items and the group of
examinees responding to those items. An examination
of the responses of examinee populations responding
to the same set of items might quite possibly result
in different conclusions regarding the dimensions
underlying the trait. The differences among differ-
ent examinee populations on variables that might be
important in responding to the test items such as cur-
riculum, prior experience, age, and so on, must be
carefully considered before any generalizations are
made.

What is meant by test dimensionality has been
debated in the literature and is still unclear. Early
work considered test dimensionality to be related to
test homogeneity and reliability. Current definitions
relate test dimensionality to some form of the princi-
ple of local independence (LI ).

Definitions of Dimensionality

Dimensionality Based on Local Independence

The principle of local independence is achieved
when for fixed levels of a vector of latent traits
(θ) the responses for an examinee are statistically
independent. More formally, if the item responses
for p items are represented by random variables Y =
Y1, Y2, . . . , Yp, then the responses to the p are locally
independent when, for m latent traits � having fixed
values θ ,

P(Y1 = y1, Y2 = y2, . . . , Yp = yp|� = θ)

=
p∏

j=1

P(Yj = yj |� = θ). (1)

The definition of local independence in (1) invol-
ves all 2p higher-order interactions among the items
and is known as strong local independence (SLI ).
A less stringent version of local independence
considers only the second-order interactions among
the items. Here, local independence holds if for all
item responses Yj = yj and Yk = yk (j �= k; j, k =
1, . . . p),

P(Yj = yj , Yk = yk|� = θ) = P(Yj = yj |� = θ)

× P(Yk = yk|� = θ). (2)

In practice, (2) is usually assessed by

p∑
j=1

p∑
k=1

j �=k

cov(Yj , Yk|� = θ) = 0. (3)

This definition of LI, known as weak local inde-
pendence (WLI ), only requires that the covariances
between all pairs of items be zero for fixed values of
the latent traits.

The existence of SLI implies WLI. As well,
under multivariate normality, SLI holds if WLI is
valid [29]. The very little research comparing analy-
ses on the basis of the two forms of LI has found no
practical differences between them [24].

McDonald [27] and McDonald and Mok [32]
assert that the principle of local independence
provides the definition of a latent trait. More formally,
they state that �1, �2, . . . , �m are the m latent traits
underlying the item responses if and only if, for
� = θ , SLI holds. Now, in practice, this definition
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has been relaxed to require WLI instead of SLI. Using
this definition, the number of dimensions underlying
test responses (dLI) is equal to m.

Definitions of latent traits and test dimensionality
using either SLI or WLI are based on precise
theoretical requirements of statistical independence.
As such, these two principles are reflective of the
more general principle of strict local independence.

This is a mathematical definition of test dimen-
sionality based on latent traits that, some have argued
[11, 12], sometimes fails to capture all the depen-
dencies among the item responses. Furthermore, it is
possible to satisfy the mathematical definition yet not
fully account for all of the psychological variables
affecting the item responses. For example, suppose
examinees, in a test of reading comprehension, were
asked to read a passage relating to Greek Theatre
and then answer a series of questions relating to the
passage. It is quite possible that a single trait would
account for the mathematical dependencies among
the items. However, although local independence is
satisfied by a single mathematical latent trait, there
might be two psychological traits that influence the
responses to the items. An examinee’s response to
an item might be influenced by some level of pro-
ficiency related to general reading comprehension as
well as some specific knowledge of Greek Theatre.
These two traits are confounded in the single latent
trait that results in local independence [10].

Other researchers (e.g., [38, 42, 43]) state that the
mathematical definition based on strict local inde-
pendence is too stringent because it considers both
major and minor dimensions. They argue that minor
dimensions, although present mathematically, do not
have an important influence on the item responses
and probably are unimportant in a description of the
dimensionality underlying the item responses [38].
This notion is the basis for a definition of essential
dimensionality described next.

Dimensionality Based on Essential Independence

Using the same notation as above, Stout [43] states
that a response vector, y, of p items is said to
be essentially independent (EI ) with regard to the
latent variables �, if, for every pair of responses
yj , yk(j, k = 1, . . . , p),

2

p(p − 1)

∑
1≤j<k≤p

|cov(yj , yk)|� = θ |

→ 0 as p → ∞. (4)

EI is similar to WLI in that it only considers pair-
wise dependencies among the items. However, unlike
WLI, EI does not require that conditional item covari-
ances be equal to zero. Rather, EI requires that the
mean |cov(yj , yk)|� = θ | across item pairs is small
(approaches 0) as test length p increases. As a result,
EI only considers dominant dimensions while WLI
in theory requires all dimensions, however minor, to
satisfy (2) or (3). The essential dimensionality (dEI)
can subsequently be defined as the smallest number of
dimensions required for EI to hold. From the above
definitions, it is clear that dEI ≤ dLI. In the instance
where dEI = 1, the item response matrix is said to be
essentially unidimensional.

Methods to Assess Dimensionality

Owing to the increasing popularity of item response
theory (IRT) (see Item Response Theory (IRT)
Models for Polytomous Response Data; Item
Response Theory (IRT) Models for Rating Scale
Data), most early work in the assessment of test
dimensionality focused specifically on the assessment
of unidimensionality. Hattie [15, 16], in a compre-
hensive review of such techniques, identified indices
that purported to assess whether a test was unidi-
mensional. He found that most of the indices used
(e.g., those based on reliability, homogeneity, prin-
cipal components) were ad hoc in nature and were
not based on any formal definition of dimensional-
ity. There appeared to be confusion regarding the
concepts of homogeneity, internal consistency, and
dimensionality. For example, although the degree of
reliability of a test was thought to be related to its
dimensionality (i.e., higher reliability was indicative
of a more unidimensional test), Green, Lissitz, and
Mulaik [13] showed that it is possible for coefficient
alpha to be large with a five-dimensional test.

Today’s methods to assess dimensionality are
more theoretically sound because they are based
on either local independence or essential indepen-
dence [8]. The methods, in some way, are related
to the principles of local and essential independence
because they provide indices measuring the degree
to which the data are not conditionally independent.
Some methods provide global indices while others
assess dimensionality by assessing the amount of con-
ditional dependence present between pairs of items.
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Methods Based on Local Independence

Factor analysis is the regression of an observed
variable on one or more unobserved variables. In
dichotomous item scoring, Y is an observed binary
variable having a value of 0 for an incorrect response
and 1 for a correct response. The unobserved vari-
able(s) are the latent traits needed to correctly answer
these items.

Original factor analytic work described a linear
relationship between the binary responses and the
latent traits, and parameters were estimated by fitting
a phi correlation matrix. There are two important
weaknesses to this approach. First, predicted values
of the dependent variable may be either greater than
1 or less than 0 where, in fact, the item scores are
bounded by 0 and 1. This model misspecification
leads, in some cases, to additional spurious factors
described initially as ‘difficulty factors.’ McDonald
and Ahlawat [31] clarified the issue by suggesting
that these factors are attributable to the misfit of the
model at the upper and lower extremes of the item
response function where the relationship between the
trait and item responses is nonlinear.

The fitting of a tetrachoric correlation matrix
was suggested as a possible alternative to the fitting
of the phi correlation matrix. While having a sound
theoretical basis, there are practical issues associated
with the calculation of a tetrachoric correlation matrix
that do not allow for the general recommendation
of this approach. First, non-Gramian matrices and
Heywood cases have been reported. Also, the fitting
of tetrachoric matrices has been found to yield
poor results in the presence of guessing in the
item responses. This is not surprising because the
underlying latent distribution of each item assumed
in calculating the tetrachoric correlations are the
equivalent of a two-parameter normal ogive function,
not the three-parameter function that would include
a parameter for guessing [25].

Over the past few decades, a number of weighted
least-squares estimation methods have been proposed
within the context of structural equation modeling
for use in linear confirmatory factor analytic mod-
els with dichotomous variables [3, 5, 21, 35]. The fit
of a given m-dimensional factor model is typically
assessed using a robust chi-square statistic. One limi-
tation of using such methods for assessing dimension-
ality is that the recommended sample size is typically

prohibitive in practical applications. Recently, diago-
nally weighted least-squares estimation methods [36]
implemented in the software packages Mplus [37]
and PRELIS/LISREL [22] have proven more useful
with smaller sample sizes (see Structural Equation
Modeling: Software). However, neither package cur-
rently offers an adjustment for guessing or smooth-
ing when analyzing a tetrachoric correlation matrix.
More research is needed to assess the utility of these
approaches for assessing dimensionality.

McDonald [28] showed that the nonlinear rela-
tionship between the probability of correctly answer-
ing an item and the underlying trait(s) could be
approximated by a third-order polynomial model.
He classified this as a model that is linear in its
coefficients but nonlinear in the traits [30]. McDon-
ald’s polynomial approximation is implemented in
the computer program NOHARM [7]. Parameters
are estimated by fitting the joint proportions among
the items by unweighted least squares (see Least
Squares Estimation). McDonald states that the
magnitudes and patterns of the residual joint propor-
tions (i.e., the difference between the observed and
predicted values of the off-diagonal components of
the matrix of joint proportions) provides evidence of
the degree to which the fitted model achieves local
independence. The sum or mean of the absolute resid-
uals have been found to be generally related to the
number of dimensions underlying the item response
matrix [14, 16, 24]. As well as providing the resid-
ual joint proportions, NOHARM currently provides
Tanaka’s goodness of fit index [47] as a measure of
model fit. This index has been used in structural equa-
tion modeling but little research has been carried out
as to its utility in this context.

Another statistic using the residual joint propor-
tions from NOHARM is the Approximate χ2 statis-
tic [9]. The Approximate χ2 statistic was proposed
as an ad hoc method to be used to aid practition-
ers when other, more theoretically sound procedures,
are inappropriate. Although the authors acknowledge
limitations of the statistic, the Approximate χ2 statis-
tic has performed quite well in identifying the correct
dimensional structure with simulated data based on
compensatory item response models [9, 48]. As with
any significance test, the null hypothesis will always
be rejected with large enough samples and caution
should always be used when interpreting the results.

The common item responses models based on the
normal ogive or logistic functions have been shown
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to be special cases of a more general nonlinear factor
analytic model [28, 46]. McDonald [30] places these
IRT models (see Item Response Theory (IRT) Mod-
els for Polytomous Response Data; Item Response
Theory (IRT) Models for Rating Scale Data) into a
third classification of factor analytic models – models
that are nonlinear in both their coefficients and traits.

The full-information factor analysis (FIFA) meth-
ods proposed by Bock, Gibbons, and Muraki [1] and
implemented in TESTFACT 4.0 [2] yield parameter
estimates and fit statistics for a m-dimensional item
response model. FIFA is theoretically sound because
it uses information from the 2p response patterns
instead of only pairwise relationships to estimate the
model parameters and thus uses the strong principle
of local independence.

A measure of model misfit in TESTFACT is given
by the likelihood ratio χ2 test. Mislevy [34] indicates
that this statistic might poorly approximate the theo-
retical chi-square distribution due to the incomplete
cells in the 2p response-pattern table. The authors of
TESTFACT suggest the use of the difference between
two likelihood ratio χ2 statistics from nested models
to test whether a higher dimensional model yields a
significantly better fit to the data.

Little research has been carried out to investigate
the performance of these statistics. However, Knol
and Berger [24] found that the chi-square difference
test was unable to correctly identify the number of
dimensions in simulated data. De Champlain and
Gessaroli [6], in a study investigating the effects of
small samples and short test lengths, reported inflated
rejections of the assumption of unidimensionality
for unidimensionally simulated data. More research
under a wider variety of conditions is warranted.

Other methods have been specifically developed to
assess the amount of conditional dependence present
in pairs of items assuming a single trait underly-
ing the responses. The Q3 statistic is a measure of
conditional correlation between two items [49]. Chen
and Thissen [4] assessed the performance of four
measures of association – (a) Pearson χ2, (b) Like-
lihood Ratio G2, (c) Standardized φ Coefficient Dif-
ference, and (d) Standardized Log-Odds Ratio Differ-
ence (τ) – to test for conditional association between
binary items in their two-way joint responses. These
statistics are computed by comparing the cells in the
2 × 2 tables of observed and expected joint frequen-
cies where the expected joint frequencies are obtained
from an IRT model. Much more detail is available in

Chen and Thissen [4]. Some results of investigations
of the performance of these indices can be found in
Chen and Thissen [4], Yen [49], and Zwick [51].

The utility of parametric models in assessing test
dimensionality is dependent upon the item response
model specified and the distributional assumptions of
the latent trait(s). Incorrect assumptions and/or model
specification might lead to inaccurate conclusions
regarding the test dimensionality.

Holland and Rosenbaum [19] discuss an approach
to assess the conditional independence among
pairs of items without assuming an underlying
item response model. Their procedure is based
on the work of Holland [18] and Rosenbaum [39].
Conditional association for each pair of items is tested
with the Mantel–Haenszel statistic [26]. Hattie [16]
suggested that this approach was promising because
of its link to local independence. However, relatively
little research has been carried out studying the
effectiveness of the procedure. See Ip [20] for a
discussion of some issues.

Ip [20] states that little research has been given
to controlling the Type I error rate associated with
multiple tests inherent in testing the many item pairs
for local independence. He proposes a method using
a step-down Mantel–Haenzel approach to control for
family-wise error rates. Ip suggests that this method
might be used to provide more detailed information
after a global test has concluded that a response
matrix is not unidimensional.

Methods Based on Essential Independence

Over the past 15 to 20 years, Stout and his col-
leagues have carried out considerable work develop-
ing nonparametric methods based on the principle of
essential independence described earlier. This work,
while still being developed and refined, has resulted
in three primary methods that aim to identify the
nature and amount of multidimensionality in a test:
(a) DIMTEST [42, 45] tests the null hypothesis that
a response matrix is essentially unidimensional; (b)
DETECT [23, 50] provides an index quantifying the
amount of dimensionality present given a particular
clustering or partitioning of the items in a test; and,
(c) HCA/CCPROX [40], using agglomerative hierar-
chical cluster analysis, attempts to identify clusters of
items that reflect the true (approximate) dimensional-
ity underlying a set of item responses.
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DIMTEST is the most popular and widely used
procedure. Quite generally, DIMTEST tests the null
hypothesis of essential unidimensionality by compar-
ing the magnitudes of the conditional covariances of
a subset of items, AT1, chosen to be (a) as unidimen-
sional as possible, and (b) as dimensionally dissimilar
to the other items on the test, with the conditional
covariances of another subset of items on the test
(PT). In the original version of DIMTEST, another
subset of the test items, AT2, having the same num-
ber of items and similar item difficulties as AT1, is
used to adjust the T -statistic for preasymptotic bias.
Nandakumar [38] provides a more detailed explana-
tion of DIMTEST.

DIMTEST generally has performed well with sim-
ulated data; it has high power in rejecting unidimen-
sionality with multidimensional data and maintains a
Type I error rate close to nominal values when the
simulated data are unidimensional. However, Type
I error rates are inflated in cases where AT1 has
high-item discriminations relative to the other items
on the test. In this case, AT2 often fails to ade-
quately correct the T -statistic. As well, DIMTEST is
not recommended for short test lengths (<20 items)
because the necessary partitioning of items into AT1,
AT2, and PT results in too few items in each sub-
group for a proper analysis. Seraphine [41] concluded
that DIMTEST had poorer performance in simula-
tion studies where the data were based on noncom-
pensatory or partially noncompensatory models. A
comprehensive investigation of the performance of
DIMTEST is provided by Hattie, Krakowski, Rogers,
and Swaminathan [17].

Research into DIMTEST (and DETECT and
HCA/CCPROX) is continuing. Recent research has
suggested the use of nonparametric IRT paramet-
ric bootstrap method to correct for the preasymp-
totic bias in the T -statistic in DIMTEST. A method
to use DIMTEST, HCA/CCPROX, and DETECT
together to investigate multidimensionality is out-
lined by Stout, Habing, Douglas, Kim, Roussos, and
Zhang [44].

Other Issues

The assessment of test dimensionality is com-
plex. Disagreement exists in several areas such as
whether dimensions should be defined and interpreted
using psychological or statistical criteria, whether

dimensions should be interpreted as only being exam-
inee characteristics that influence the responses or
whether item characteristics (such as item dependen-
cies within a testlet) should be also be considered,
and whether only dominant dimensions should be
included in the definition and interpretation. Added
to this are the different approaches to dimensionality
assessment, including methods to investigate whether
a test is unidimensional, others that attempt to find the
number of dimensions, and yet others whose purpose
is to determine the dimensional structure underlying
the responses.

Although not discussed here, methods such as
those based on factor analysis enable a more detailed
analysis of the dimensional structure including the
relative strengths of each dimension and the relative
strengths of each dimension on individual items.

Essential versus Local Independence in Practice

Essential independence as defined by Stout [42, 43]
requires that the conditional covariances among pairs
of items are approximately zero. In this way, it
uses the weak principle of local independence as
its basis but, in theory, differs from WLI because
it does not require that the conditional covariances
be equal to zero. In practice, both methods evaluate
whether the conditional covariances are sufficiently
small to conclude that the proposed dimensional
structure explains the item covariances. No distinc-
tion is made as to whether the conditional covariances
are due to sampling error or the effect of additional
or minor nuisance dimensions. In practice, the con-
clusions reached by the approaches associated with
the two principles are usually quite similar. Further
discussions are found in Gessaroli [8] and McDonald
and Mok [32].

Dimensional Structure

The nature of the dimensionality underlying tests can
be complex. Simple structure occurs when each trait
influences independent clusters of items on the test.
That is, each item is related to only one trait. In sim-
ulation studies, the amount of multidimensionality is
often manipulated by either increasing or decreasing
the magnitudes of the intertrait correlations. Higher
intertrait correlations result in less multidimensional-
ity, in the sense that the magnitudes of the conditional
are smaller when fitting a unidimensional model. In
the extreme case, perfectly correlated traits result in
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a unidimensional model. Items may also be related to
more than one trait. This, combined with correlations
among the traits, leads to complex multidimensional
structures that are often difficult to identify with the
dimensionality assessment methods described above.
In general, the dimensionality assessment methods
function best when the data have simple structure.

Confirmatory Analyses

The dimensionality assessment methods described
earlier are exploratory. However, knowledge of the
examinees, curriculum, test blueprint, and so on
might lead a researcher to ask whether a particular
model fits the data. In such cases, the researcher
has a priori expectations about the traits underlying
the performance as well as the relationship of the
items to these traits. For example, an expectation of a
model having simple structure might be tested. Factor
analysis provides a logical basis for performing
these confirmatory analyses. As of now, NOHARM
provides the only analytical program for confirmatory
factor analysis. However, TESTFACT 4.0 estimates
parameters for a bifactor model. DIMTEST can
be used in a confirmatory mode by allowing the
researcher to choose items to be placed in the AT1
subtest. Methods to use DIMTEST, HCA/CCPROX,
and DETECT in a confirmatory way are outlined in
Stout, et al. [44].

Polytomous Item Responses

The discussion so far has been limited to the dimen-
sionality assessment of binary-coded item responses.
The relatively little work carried out for polytomous
data has largely been extensions of existing methods
for the binary case. Poly-DIMTEST is an extension
of DIMTEST and can be used to test the assumption
of essential unidimensionality. The structural equa-
tion modeling literature provides many extensions of
binary to polytomous data [21]. Ip [20] discusses an
extension of the assessment of conditional association
between pairs of items to polytomous data.
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Test Translation

‘When we sometimes despair about the use of lan-
guage as a tool for measuring or at least uncovering
awareness, attitude, percepts and belief systems, it is
mainly because we do not yet know why questions
that look so similar actually produce such very differ-
ent results, or how we can predict contextual effects
on a question, or in what ways we can ensure that the
respondents will all use the same frame of reference
in answering an attitude question’ [19, p. 49].

The Problem

Translating a test from the language in which it
was originally written (the ‘source’ language) to a
new language (the ‘target’ language) is not a simple
process. Problems in test translation can be thought of
as problems of test inequality – before we accept the
value of a translated test, we should have evidence
of its semantic and conceptual equivalence to the
original scale. In the following, we define semantic
and conceptual equivalence, and suggest strategies
for maximizing the equivalence of a translated test
and the source test, as well as ways of identifying
inequality when it is present.

Semantic Equivalence

Definition

Two tests are semantically equivalent if the iden-
tification of words in the target language test has
identical or similar meanings to those used in the
source language scale. As an example of how seman-
tic equivalence go awry, we cite a Spanish translation
of the Readiness to Change Questionnaire (RCQ),
which is used to assess stages of change among sub-
stance abusers [20]. This Spanish translation of the
test has been criticized as having several items that do
adequately capture the ideas or meanings expressed
by the corresponding English items [7]. In item seven
of the RCQ, the English version appears as ‘Anyone
can talk about wanting to do something about drink-
ing, but I am actually doing something about it.’ This
was translated to ‘Cualquiera puede manifestarar [sic]
su intención de hacer algo en relaciócon la bebida,

pero yo ya estoy haciéndolo.’ The word ‘manifestar’
(which was misspelled as ‘manifestarar’) means ‘to
manifest’, and is defined as ‘to make evident or cer-
tain by showing or displaying’ [17]. However, this
definition did not relate to the original English ver-
sion, which states the idea ‘to talk about wanting’.
Consequently, using the action verb ‘manifestar’ in
the translated Spanish version did not convey, nor
interpret, the original English action ‘to talk about
wanting’. Further, in the English version, a cognitive
process is being described, whereas in the translated
Spanish version, an action is being described. In the
following section, we describe five methods for con-
firming the semantic equivalence of source and target
language versions of a scale.

Confirming Semantic Equivalence

Direct Translation. In direct translation, the source
language test is translated into the target language,
presumably by someone who is fluent in both lan-
guages. This is the extent of the translation process.
Obviously, as a method for developing semantically
equivalent scales, direct translation leaves much to
be desired. No external checks on the fidelity of the
translation are made; semantic equivalence is taken
on faith.

Translation/Back-translation. This is perhaps the
most common method for developing semantically
equivalent scales. Translation/back-translation is a
cyclical process in which the source language test is
translated into the target language scale. Then, a sec-
ond translator attempts to translate the target language
test back into the original source language scale. If
this translation is not judged sufficiently close to
the original source language, another target language
translation is attempted that tries to eliminate dis-
crepancies. This process continues until the target
language test satisfactorily captures the wording and
meaning of the original source language scale.

Ultimate Test. The ultimate test is a two-step
process [5]. In the first step, a respondent is asked
to perform a behavior using the instructions from
the target language version of the scale. Presumably,
if the respondent performs the correct behavior, we
are sure that at least the instructions are semantically
equivalent.
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In the second step, bilingual respondents are
assigned randomly to four groups. The first group
is administered the test in the source language, the
second group is administered the test in the target
language, the third group is administered the first half
of the test in the source language and the second
half in the target language, and the fourth group is
administered the first half of the test in the target
language and the second half in the source language.
Using the four-group design, semantic equivalence
is indicated if the response distributions of the four
groups do not statistically differ, and if the correlation
between the two halves of the test in the third and
fourth groups is statistically significant.

Parallel Blind Technique. In this technique, two
target language versions of the test are independently
created, after which the versions are compared, with
any differences being reconciled for a third and final
version [23].

Random Probe Technique. Here, the target lan-
guage test is administered to target language speakers.
In addition to responding to the items, the respondents
provide explanations for their responses. These expla-
nations should uncover any misconceptions about the
meaning of the items [8].

Solving Problems of Semantic Equivalence

Although the five procedures discussed above will
help identify problems in semantic equivalence, they
all, by definition, occur after the initial test transla-
tion. Potentially less effort and time will be spent
if potential problems in semantic equivalence are
addressed during the initial construction of the target
language version of the scale. We offer three sugges-
tions for how to maximize the probability of semantic
equivalence when the source language version of the
test is first constructed.

Write with Translation in Mind. Behling and
Law [3] strongly advise researchers to ‘write
with translation in mind’. That is, the source
language version of the test should be written
using words, phrases, sentence structures, and
grammatical forms that will facilitate the later
translation of the scale. They provide a number
of useful suggestions: (a) write short sentences

(b) where possible, write sentences in the active
rather than passive voice, (c) repeat nouns rather
than substitute with ambiguous pronouns, (d) do
not use colloquialisms, metaphors, slang, out-dated
expressions or unusual words, (e) avoid conditional
verbs such as ‘could’, ‘would’, and ‘should’, (f) avoid
subjective qualifiers such as ‘usually’, ‘somewhat’, ‘a
bit’, and so on, (g) do not use interrogatively worded
sentences, nor double negatives.

Decentering. Decentering follows the same itera-
tive sequence as translation/back-translation with one
critical difference: Both the target language version
and the source language version of the test can be
revised during this process [5]. Specifically, follow-
ing the identification of discrepancies between the
back-translated test and the source language scale,
decisions are made as to whether the flaws in the tar-
get language or source language versions of the test
are responsible. Thus, either version can be revised.
Once revisions have been made, the translation/back-
translation cycle begins anew, continuing until the
versions are judged to be sufficiently equivalent
semantically.

Multicultural Team Approach. In this approach, a
bilingual team constructs the two-language versions
of the test in tandem. Some applications of this
approach result in two scales that, while (presumably)
measuring the same construct, comprise different
items in order to capture cultural differences in how
the construct is expressed.

Conceptual Equivalence

Definition

Conceptually equivalent scales measure the same
construct. Problems associated with conceptually
inequivalent scales have to do with the operational-
ization of the construct in the source language version
of the test – whether the test items represent an ade-
quate sampling of behaviors reflecting the construct
in both the source and target language versions of
the scale. Conceptual inequality often occurs from
differences in the true dimensionality of a construct
between cultures. The dimensionality of a construct
refers to how many factors or aspects there are to
the construct; for example, the construct of intel-
ligence is sometimes described by two factors or
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dimensions, fluid and crystallized intelligence. While
the source language test may be sufficient to cap-
ture the hypothesized dimensionality of the construct,
the target language version may not because the con-
struct has a different dimensionality across cultures.
For example, Smith et al. [21] evaluated whether the
three factors used to describe responses in the United
States to a circadian rhythm test – the construct here
being a preference for morning or evening activities –
was adequate to describe responses in Japan. The
researchers found that one of the three factors was
poorly represented in the data from a Japanese lan-
guage version of the scale. In the following section,
we describe four statistical approaches to evaluating
the conceptual equality of different language versions
of a scale.

Statistically Confirming Conceptual Equivalence

Correlations with Other Scales. Correlations
between the target language version of the test
and other scales should be similar to correlations
between the source language version and the same
scales. For example, in English-speaking samples, we
would expect a relatively high correlation between
the RCQ and the SOCRATES, because both measure
a substance abuser’s readiness to change. We should
also expect a similarly high correlation between the
two scales in Spanish-speaking samples. Finding
a comparable correlation does not provide strong
evidence for conceptual equivalence, but neither
does finding an incomparable correlation, because
differences in correlation could be due to flaws in
translation (a lack of semantic equality).

Exploratory Factor Analysis. Exploratory factor
analysis (see Factor Analysis: Exploratory) is a
technique for identifying latent variables (factors)
by using a variety of measured variables. The anal-
ysis is considered exploratory when the concern is
with determining how many factors are necessary to
explain the relationships among the measured vari-
ables. Similarity of the factor structures found in the
source and target language samples is evidence of
conceptual equivalence. Although confirmatory fac-
tor analysis (see Factor Analysis: Confirmatory)
(see below) is generally more useful for evaluating
conceptual equivalence, exploratory factor analysis
can still be of assistance, especially if the source and

target language versions of the scales are being con-
structed simultaneously, as in the multicultural team
approach described earlier.

There are several methods available for compar-
ing the similarity of factors found in the source
and target language samples. The congruence coef-
ficient [10] measures the correlation between two
factors. Another measure, the salient variable sim-
ilarity index [6], evaluates the similarity of factors
based on how many of the same items load ‘sig-
nificantly’ (saliently) on both. Configurative match-
ing [13] determines factor similarity by determining
the correlations between factors from two samples
that are rotated simultaneously.

Confirmatory Factor Analysis. In contrast to the
raw empiricism involved in ‘discovering’ factors in
exploratory factor analysis, confirmatory factor anal-
ysis (CFA) is a ‘hypotheticist procedure designed to
test a hypothesis about the relationship of certain
hypothetical common factor variables, whose number
and interpretation are given in advance’ [18, p. 265].
In general terms, CFA is not concerned with dis-
covering a factor structure, but with confirming the
existence of a specific factor structure. Therein lies
its relevance to evaluating the conceptual equiva-
lence of source language and target language scales.
Assuming we have confirmed our hypothesized factor
structure for the source language scale, we want to
determine whether the target language test has the
same factor structure. In order for the two factor
structures to be considered conceptually equivalent,
a confirmatory factor model is specified that simul-
taneously tests equality in five areas: (a) number of
factors (i.e., the dimensionality of the factor struc-
ture), (b) magnitude of the item loadings on the
factors, (c) correlations among the factors, (d) error
variances of the items, and (e) factor means.

Most CFA software programs allow one to test
whether the same model fits across multiple samples.
Space prohibits a detailed description of the proce-
dures involved in CFA. Kline [14] provides an excel-
lent introduction, and Kojima et al. [15] is a clear
example of an application of CFA to equivalence in
test translation. Typically, we begin by specifying
that all parameters of the model (i.e., factor load-
ings, factor correlations, error variances, and factor
means) are identical for the source and target lan-
guage test samples. This model of factor invariance
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(identical factor structures) is evaluated by examin-
ing one or more indices of the model’s fit to the data.
One of the most widely used indices for assessing
the fit of a model is the χ2(chi-square) goodness-
of-fit statistic. When evaluating factor invariance
and testing factorial invariance, researchers are inter-
ested in a nonsignificant χ2 goodness-of-fit test. A
nonsignificant χ2 indicates that the two scales are
factor-invariant, that there is conceptual equivalence
between the source and the target language scales.
On the other hand, a significant χ2 indicates that the
two scales are not factor-invariant, but differ in one
or more of the five ways noted above. The idea that
the two scales are well described by identical factor
structures is rejected by the data.

If the χ2 goodness-of-fit statistic indicates that
factor structures differ between samples, we usu-
ally proceed to discover why they differ. The word
‘discover’ is important because now we are no longer
interested in confirming the equality of the two scales,
but in exploring why they are unequal. Although the
procedures involved in this exploration differ from
those used in traditional exploratory factor analysis,
philosophically and scientifically, we have returned
to the raw empiricism of exploratory factor analysis.
Various models are fit to the two sample data, allow-
ing the two samples to differ in one of the five ways
noted above, and equating across the other four. For
example, we might specify that the factor correlations
differ between the two samples, but specify that the
number of factors, the factor loadings, the item error
variances, and the factor means be the same. Each of
the revised models (M1) is associated with its own χ2

goodness-of-fit statistic, which is compared to the χ2

statistic associated with the factor invariance model
(M0), the model that specified equality between the
source and target language scales on all parameters.
The χ2 associated with M1 must always be no smaller
than the χ2 associated with M0. If the difference in
the two model chi-squares, which is also chi-square
distributed, is significant, M1 fits the data better than
M0. Our interpretation at this point would be that
the factor correlations differ between the two scales.
The process of model modification could take any
number of paths at this point; opinion varies as to
the ‘best’ sequence of model modifications [4]. We
could choose to specify, one at a time, test inequal-
ity on either the number of factors, factor loadings,
item error variances, or factor means while specify-
ing equality on the other parameters. Alternatively,

we could specify a model that retains test inequality
for the factor correlations, and add, one at a time,
test inequality for the number of factors, item error
variances, or factor means. Let us call either of these
models M2. We would then evaluate the significance
of χ2

M2
− χ2

M1
, and use that result to determine sub-

sequent model modifications, until, finally, we find
a model that fits the data well and whose fit can-
not be improved by any other subsequent model
modifications. The researcher must always bear in
mind, however, that the validity of the final model is
quite tentative, and should be cross-validated on new
samples. In any event, unless the model of factor
invariance, M0, fits the data well, the source and tar-
get language scales are not conceptually equivalent.

Item Response Theory. Item response theory (IRT)
is another powerful method for testing conceptual
equivalence (see Item Response Theory (IRT)
Models for Dichotomous Data). Again, space limi-
tations prohibit us from discussing IRT in detail; [9]
provides an excellent introduction and [2] is a clear
example of an application of IRT to equivalence in
test translation.

In IRT, the probability of a correct response to
an item is modeled using one or more parameters. A
typical set of item parameters is item difficulty and
item discrimination. For two tests to be conceptu-
ally equivalent, corresponding items on the tests must
have identical item difficulties and item discrimina-
tions. In IRT, an item is said to have differential
item functioning (DIF) when the item difficulty and
item discrimination of the same item on two ver-
sions of the test differ significantly. DIF can be tested
statistically using a number of methods. The param-
eter equating method [16] tests differences between
two tests’ item parameters using a chi-square statis-
tics. The Mantel–Haenszel method [11] (see Item
Bias Detection: Classical Approaches) also uses a
chi-square statistic to test whether the observed fre-
quencies of responses to one test version differs sig-
nificantly from the frequencies expected if there were
no differences in the item parameters. When all items
within a scale are assumed to have the same discrim-
ination, a t Test, the item difficulty shift statistic [12],
is used to test for differences in an item’s difficulty
between two tests. Yet another measure of item DIF
is the mean square residual [24], which involves ana-
lyzing the fit of each item in the source language test
group and the target language test group. An item
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should either fit or fail to fit in a similar manner
for both samples; thus it relates to the concept being
measured in the same way for each group. Thissen
et al. [22] describe a model comparison method for
testing DIF that is analogous to the model comparison
method used to test for factor invariance in CFA. Item
parameter estimates are obtained from a model that
equates the parameters between the two groups, and
item parameter estimates are obtained from a second
model that allows one or more of the item parameters
to differ between the two groups. If the difference
between the two models’ chi-squares is significant,
the item parameters differ between the groups.

Some methods for detecting DIF do not require
IRT estimation of item parameters. For example, the
delta-plot method [1] involves plotting pairs of item
difficulties (deltas) for the same item from the two
groups. If the two tests are conceptually equivalent,
we would expect that the item difficulties would order
themselves in the same way in the two groups, thus
forming a 45° line from the origin when plotted.

Conclusion

Although the methods involved in confirming seman-
tic and conceptual equivalence have been described
separately, in practice, it is frequently difficult to
determine whether apparent flaws in test translation
are attributable to the one or the other or both.
For example, in [21] the researchers attributed factor
structure differences not to true cultural differences
in the nature of the construct (conceptual inequiv-
alence), but to flaws in the Japanese translation
(semantic inequivalence). Although the researchers
were certain that semantic inequivalence was the
culprit, the evidence they present, at least to our
understanding, does not argue strongly for the lack of
either type of equivalence. No doubt, in this study,
and in many other studies, test translation problems
will arise from a bit of each.
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Tetrachoric Correlation

The tetrachoric correlation is used to correlate
two artificially dichotomized variables, X and Y ,
which have a bivariate-normal distribution (see Cat-
alogue of Probability Density Functions) [8]. In a
bivariate-normal distribution, the distribution of Y is
normal at fixed values of X, and the distribution of X

is normal at fixed values of Y . Two variables that are
bivariate-normally distributed must each be normally
distributed. The calculation of the tetrachoric corre-
lation involves corrections that approximate what the
Pearson product-moment correlation would have
been if the data had been continuous. If instead of the
tetrachoric correlation, the Pearson product-moment
correlation formula is directly applied to the data (we
are not willing to assume that X and Y are truly
bivariate-normally distributed), the resulting correla-
tion is referred to as a phi correlation.

Tetrachoric correlations are often useful in behav-
ioral genetic research (see Correlation Issues in
Genetics Research). For example, we might have
twin concordance data for a psychiatric illness such
as schizophrenia; either both twins are diagnosed as
schizophrenic (concordant twins) or only one of the
co-twins is diagnosed as schizophrenic (discordant
twins) [4]. Instead of assuming that is there is true
phenotypic discontinuity in schizophrenia due to a
single gene of large effect, we assume that the dis-
continuity is an arbitrary result of classifying people
by kind rather than by degree. In the latter case,
the phenotype is truly continuous, the result of many
independent genetic factors, leading to a continuous
distribution of genotypes for schizophrenia. Models
that assume that a continuous distribution of geno-
types underlie an artificially dichotomized phenotype
are referred to as continuous liability models [7].

The genetic analysis of continuous liability models
(see Liability Threshold Models) assumes that the
liability for the phenotype (e.g., schizophrenia) in
pairs of twins is bivariate-normal with zero mean
vector and a correlation ρ between the liabilities
of twin pairs. This is the tetrachoric correlation. If
both twins are above a genetic threshold t, then both
twins will be diagnosed as schizophrenic. If both are
below the genetic threshold, then neither twin will be
diagnosed as schizophrenic. If one twin is above the
threshold and the other below, then the first will be
diagnosed as schizophrenic and the other will not.

The probability that both twins will be diagnosed
as schizophrenic is thus

p11 =
∞∫
t

∞∫
t

θ(x, y, ρ)dydx, (1)

where θ(x, y, ρ) is the bivariate-normal probability
function. Similarly, the probability that the first twin
will be diagnosed as schizophrenic and the second
will not is

p10 =
∞∫
t

t∫
−∞

θ(x, y, ρ)dydx. (2)

Similar expressions follow for the other categories of
twin diagnosis, p01 and p00.

In order to obtain values for t , the genetic thresh-
old, and ρ, the tetrachoric correlation between twins,
the bivariate-normal probability integrals are evalu-
ated numerically for selected values of t and ρ values
that maximize the likelihood of the data [3]. The
observed data are the number of twin pairs in each
of the four cells of the twin contingency table for
schizophrenia. Thus, the log-likelihood to be maxi-
mized for a given contingency table is

L = C +
∑

i

∑
j

Nij ln pij , (3)

where C is some constant. Estimates of t and ρ that
produce the largest value of L for a contingency table
are maximum likelihood estimates.

As an example of computing the tetrachoric cor-
relation for a dichotomous phenotype, consider the
monozygotic twin concordance data (N = 56 pairs)
for a male homosexual orientation from [2]:

Twin1

Yes No

Yes 29 14
Twin 2

No 13 0

Assuming a model in which a homosexual orien-
tation is due to additive genetic and random envi-
ronmental effects, the tetrachoric correlation between
monozygotic twins is 0.50. The phi correlation
between the twins’ observed dichotomized pheno-
types is 0.32.



2 Tetrachoric Correlation

The tetrachoric correlation is also often used in
the factor analysis of dichotomous item data for the
following reason. In the context of cognitive test-
ing, where an item is scored ‘right’ or ‘wrong’, a
measure of the difficulty of an item is the propor-
tion of the sample that passes the item [1]. Factor
analyzing binary item data on the basis of phi corre-
lations may lead to the extraction of spurious factors
known as difficulty factors, because there may be a
tendency to yield factors defined solely by items of
similar difficulty. Why difficulty factors are produced
by factoring phi correlations has been attributed to
the restricted range of phi correlations; −.8 ≤ 0 ≤
−.8 [5], and to the erroneous application of the lin-
ear common factor model to the inherently nonlinear
relationship that may exist between item responses
and latent factors [6]. In either case, use of the tetra-
choric correlation instead of the phi correlation may
prevent the occurrence of spurious difficulty factors.
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Theil Slope Estimate

The Linear Regression Model

In simple linear regression, the expected or mean
value of a response variable, Y , is modeled as a linear
function of the value of an explanatory variable, X:

E(Y |X = xi) = α + βxi, (1)

(see Multiple Linear Regression); that is, for each
value of X of interest to the researcher, the values
of Y are distributed about this mean value. A ran-
domly chosen observation, yi , from the distribution
of responses for X = xi is modeled as

yi = α + βxi + ei, (2)

where ei is a random draw from a distribution of
deviations. The task in regression is to estimate the
unknown regression constants, α and β, and, often,
to test hypotheses about their values.

Estimation and hypothesis testing depend upon
a sample of n paired observations, (xi , yi), i =
1, 2, . . . , n. The n values of the explanatory vari-
able are treated as fixed constants, values specified
by the researcher.

The Least Squares Estimates of the
Regression Parameters

The most common estimates of the regression param-
eters are those based on minimizing the average
squared discrepancy between the sampled values of
Y and the estimated means of the distributions from
which they were sampled (see Least Squares Esti-
mation); that is, we choose as estimates of the linear
model intercept and slope those values, α̂ and β̂, that
minimize the mean squared deviation:

MSD = 1
n

n∑
i=1

[
yi − (̂

α − β̂xi

)]2
. (3)

The resulting estimates can be expressed as func-
tions of the sample means, standard deviations,

and correlation: β̂ = rxy[SD(y)/SD(x)] and α̂ =
y − β̂x.

The Normal Linear Regression Model

The normal regression model assumes that response
observations are sampled independently and that the
deviations, the eis, are distributed as the normal ran-
dom variable with a mean of zero and a variance,
σ 2, that does not depend upon the value of xi . Under
this model, the least squares slope and intercept esti-
mates are unbiased and with sampling distributions
that are normal with variances that are a function of
σ 2 and the mean and variance of the xis. As σ 2 is
estimated by (n/n − 2)MSD, this leads to hypoth-
esis tests and confidence-bound estimates based on
one of Student’s t distributions.

Nonparametric Estimation and Hypothesis
Testing

The least squares slope estimate can be influenced
strongly by one or a few outlying observations
thus providing a misleading summary of the general
strength of relation of the response observations to
the level of the explanatory variable. A more robust
estimator has been proposed by Theil [4].

Order the paired observations, (xi , yi), in terms of
the sizes of the xis, letting (x[1], y1) designate the pair
with the smallest value of X and (x[n], yn) the pair
with the largest value of X.

For every pair of explanatory variable scores
for which x[j ] < x[k], we can compute the two-
point slope

Sjk = (yk − yj )

(x[k] − x[j ])
. (4)

If there are no ties in the values of X, there will be
(n − 1)n/2 such slopes; if there are ties, the number
will be smaller.

The Theil slope estimator is the median of these
two-point slopes,

β̂T = Mdn(Sjk). (5)

Outlying observations will be accompanied by
two-point slopes that are either unusually small
or unusually large. These are discounted in the
Theil estimator.

Conover [1] describes how the ordered set of two-
point slopes, the Sjks, can be used as well to find a
confidence interval for β.

An intercept estimator related to the Theil slope
estimate has been proposed by Hettmansperger,



2 Theil Slope Estimate

McKean & Sheather [2]. If we use the Theil slope
estimate to compute a set of differences of the
form, ai = yi − β̂T xi , then the regression intercept
can be estimated robustly by the median of these
differences,

α̂H = Mdn(ai). (6)

To carry out Theil’s nonparametric test of the
hypothesis that β = β0, we first compute the n dif-
ferences, Di = yi − β0xi . If β has been correctly
described by the null hypothesis, any linear depen-
dence of the yis on the xis will have been accounted
for. As a result, the Dis will be uncorrelated with
the xis. Hollander and Wolf [3] propose carrying out
Theil’s test by computing Kendall’s rank corre-
lation between the Dis and the xis, τ (D, x), and
testing whether τ differs significantly from zero.
Conover [1] suggests using the Spearman rank cor-
relation, ρ(D, x), for the same test. Hollander and
Wolf [3] provide, as well, an alternative derivation
of the Theil test.

Example

As an example of the influence of an outlier on
the estimation of regression parameters, [5] gives the
artificial example in Table 1.

The y value of 12.74 clearly is out of line with
respect to the other observations. The least squares
estimates of the regression parameters are α̂ = 3.002
and β̂ = 0.500. As there are no ties among the x val-
ues, there are 55 two-point slopes. Their median pro-
vides the Theil estimate of the slope parameter, β̂T =
0.346. The corresponding Hettmansperger intercept
estimate is α̂H = 4.004. Both differ considerably
from the least squares estimates.

Table 1 An Anscombe
influence example

x y

4 5.39
5 5.73
6 6.08
7 6.42
8 6.77
9 7.11

10 7.46
11 7.81
12 8.15
13 12.74
14 8.84

Following the procedure outlined in [1], the 95%
confidence interval for β is given by the 17th and 39th
of the ordered two-point slopes: [0.345, 0.347]. When
one ignores the aberrant two-point slopes associated
with the point (13, 12.74), the other two-point slopes
are in remarkable agreement for this example.
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Thomson, Godfrey Hilton

Born: March 27, 1881, in Carlisle, England.
Died: February 9, 1955, in Edinburgh, Scotland.

Godfrey Thomson’s life did not start propitiously.
His parents separated when he was an infant and his
mother took him to live with her own mother and
sisters in her native village of Felling, on industrial
south Tyneside. There he attended local schools until
the age of 13, narrowly avoiding being placed into
work as an engineering patternmaker by winning
a scholarship to Rutherford College in Newcastle-
upon-Tyne. Three years later, he was taken on as
a pupil-teacher (essentially, an apprenticeship) in
his old elementary school in Felling, but had to
attend Rutherford College’s science classes in the
evenings and weekends. His performance in the
London University Intermediate B.Sc. examinations
earned him a Queen’s Scholarship in 1900, which
allowed him to embark on a full-time science course
and also train as a teacher at the Durham College
of Science (later renamed Armstrong College) in
Newcastle, at that time part of the University of
Durham. He graduated in 1903, with a distinction
in Mathematics and Physics, the year after obtaining
his teaching certificate. With the aid of a Pemberton
Fellowship from Durham, he set off to study at the
University of Strasburg in 1903, gaining a Ph.D. for
research on Hertzian waves three years later.

The Queen’s Scholarship, however, had strings
attached that required the beneficiary to teach for
a certain period in ‘in an elementary school, the
army, the navy, or the workhouse’. Apparently, an
assistant lectureship at Armstrong College qualified
under these headings! As teaching educational psy-
chology was one of Thomson’s duties, he felt obliged
to learn something of psychology generally, and was
mildly surprised to find that he enjoyed the experi-
ence. However, it was during a summer vacation visit
to C. S. Myers’s laboratory in Cambridge in 1911 that
his interest was caught by William Brown’s book
The Essentials of Mental Measurement [1]. Although
Thomson’s initial foray was on the psychophysical
side (and led to publications that earned him a D.Sc.
in 1913), he was also intrigued by Brown’s criticisms
of Charles Spearman’s two-factor theory of human
ability. According to Thomson [7], sitting at his fire-
side and armed with only a dice, a house slipper,

and a notepad, he was able to generate sets of arti-
ficial scores with a correlational structure consistent
with Spearman’s theory, but without needing its cor-
nerstone, the single underlying general factor g. The
publication of this finding in 1916 [3] marked both
the start of Thomson’s many significant contributions
to the debates on intelligence and the newly emerg-
ing method of factor analysis, and also of a long
running, and often bitter, quarrel with Spearman.

Thomson’s own notion of intelligence evolved
into his ‘sampling hypothesis’ in which the mind
was assumed to consist of numerous connections or
‘bonds’ and that, inevitably, tests of different men-
tal abilities would call upon overlapping samples
of these bonds. In Thomson’s view, therefore, the
correlational structure that resulted suggested a statis-
tical rather than a mental phenomenon. The Factorial
Analysis of Human Ability [4], published in five edi-
tions between 1939 and 1951, was Thomson’s major
work on factor analysis. He also coauthored with
Brown several further editions in 1921, 1925, and
1940, of the book, The Essentials of Mental Mea-
surement, that had so fired him in 1911.

However, it is for his work on devising men-
tal tests that Thomson is best remembered. This
began in 1920 for the newly promoted Professor
Thomson with a commission from Northumberland
County Council for tests that could be used in less-
privileged schools to select pupils who merited the
opportunity of a secondary education – as Thom-
son himself had benefited many years earlier. By
1925, after a year spent in the United States with
E. L. Thorndike, he had accepted a chair of edu-
cation at Edinburgh University, with the associated
post of Director of Moray House teacher training
college, and had begun to formulate what became
known as the Moray House tests; these tests would be
widely used in schools throughout the United King-
dom and many other countries. Thomson and his
many collaborators were also involved in a large-
scale study of how the test results from schoolchil-
dren related to various social factors, including fam-
ily size and father’s occupation, and to geographi-
cal region.

Thomson received many honors from learned
societies and academies abroad. He was knighted in
1949. Even after retiring in 1951, he was still writing
and working diligently on data from a longitudinal
Scottish study. Thomson’s final book, The Geometry
of Mental Measurement [6], was published in 1954.



2 Thomson, Godfrey Hilton

‘God Thom’, as he was nicknamed (though not
wholly affectionately), by his students in Edinburgh,
died from cancer in 1955 at the age of 73.

Further material on Thomson’s life and work can
be found in [2, 5, 7].
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Three Dimensional (3D)
Scatterplots

A standard scatterplot is appropriate to display the
relationship between two continuous variables. But
what happens if there are three variables? If the third
variable is categorical, it is customary to print differ-
ent symbols for the different points. If the variable
is metric, then many packages allow the user to set
the size of the data points to represent the value on
the third variable and the result is the bubble plot.
This is what is normally recommended when graph-
ing three continuous variables and the sample size
is small. Another possibility is to make a series of
two-variable scatterplots for each bivariate compari-
son, sometimes called a scatterplot matrix. But if it
is the three-way relationships that is of interest, these
bivariate scatterplots are not appropriate.

An alternative procedure available in many graph-
ics packages is to plot the data points for three
variables in a three dimensional space. Like the stan-
dard scatterplot, the data points are placed at their
appropriate location within a coordinate space, but,
this time, the space is three dimensional. Because
paper and computer screens are two dimensional, it
is important to use some of the available features,
such as rotation of axes, so that the all the dimensions
are clear.

Figure 1(a) shows data on the baseline scores for
working memory span using three tests: digit span,
visual spatial span, and Corsi block span [1]. These
were expected to be moderately correlated, and they
are. While this plot can help in understanding the
patterns in the data, it can still be difficult to make
sense of the data. The Corsi task is more complex
than the other two tasks, and the researchers were
interested in how well the digit and visual spatial
tasks could predict the Corsi scores. The result-
ing regression plane has been added to Figure 1(b).
This helps to show the general pattern of the cloud
of data points. Other planes could be used instead
(for example, from more robust methods, polynomi-
als, etc.).

There is a sense in which the three-dimensional
scatterplots attempt to make the two-dimensional
page into a three-dimensional object, and this can
never be wholly satisfactory. Using size, contours,
and colors to show values on other dimensions within
a two-dimensional space are often easier for the
reader to interpret.
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Figure 1 Showing three dimensions in a scatterplot. Figure 1a shows only the data points. Figure 1b includes the linear
regression plane
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Three-mode Component
and Scaling Methods

Introduction

What is Three-mode Analysis?

Most statistical methods are used to analyze the
scores of objects (subjects, groups, etc.) on a num-
ber of variables, and the data can be arranged in
a two-way matrix, that is, a rectangular arrange-
ment of rows (objects) and columns (variables) (see
Multivariate Analysis: Overview). However, data
are often far more complex than this, and one such
complexity is that data have been collected under
several conditions or at several time points; such
data are referred to as three-way data (see Figure 1).
Thus, for each condition there is a matrix, and the
set of matrices for all conditions can be arranged
next to each other to form a broad matrix of sub-
jects by variables times conditions. Alternatively, one
may create a tall matrix of subjects times condi-
tions by variables. The third possibility is to arrange
the set of matrices in a three-dimensional block or
three-way array, so that metaphorically the data now
fit into a box. The collection of techniques that
attempt to analyze such data boxes are referred to
as three-mode methods, and making sense of such
data is the art of three-mode analysis. Thus three-
mode analysis is the analysis of data that fit into
boxes.

k = 1

k = K

X1

k = 1

1...j...J

1...i...I

1...i...I

k = K 1...i...IX3

X2

X1

k = 1 k = K
1...j...J 1...j...J1...j...J

1...i...I X3X2X1

Three-way array

Broad matrix

Tall matrix

Figure 1 Two-way matrices and a three-way array

Usually a distinction is made between three-way
and three-mode. The word way is more general
and points to the three-dimensional arrangement
irrespective of the content of the data, while the
word mode is more specific and refers to the content
of each of the ways. Thus objects, variables, and
conditions can be the three modes of a data array.
When the same entities occur twice, as is the case in
a correlation matrix, and we have correlation matrices
for the same variables measured in several samples,
one often speaks of a two-mode three-way data array,
where the variables and the samples are the two
modes. However, to avoid confusion and wordiness,
we generally refer to three-way data and three-way
arrays, and to three-mode methods and three-mode
analysis, with the exception of the well-established
name of three-way analysis of variance. The word
two-mode analysis is then reserved for the analysis
of two-way matrices.

Why Three-mode Analysis?

Given that there are so many statistical and data-
analytic techniques for two-way data, why are these
not sufficient for three-way data? The simplest answer
is that two-mode methods do not respect the three-
way design of the data. Such disrespect is not unusual
as, for instance, time series data are often analyzed
as if the time mode was an unordered mode and the
time sequence is only used in interpretation.

Three-way data are supposedly collected because
all three modes were necessary to answer the per-
tinent research questions. Such research questions
can be facetiously summarized as: ‘Who does what
to whom and when?’, or more specifically: ‘Which
groups of subjects behave differently on which vari-
ables under which conditions?’ or in an agricultural
setting ‘Which plant varieties behave in a specific
way in which locations on which attributes?’. Such
questions cannot be answered with two-mode meth-
ods, because there are no separate parameters for all
three modes. When analyzing three-way data with
two-mode methods, one has to rearrange the data as
in Figure 1, and this means that either the subjects
and conditions are combined to a single mode (‘tall
matrix’) or the variables and conditions are so com-
bined (‘broad matrix’). Thus, two of the modes are
always confounded and no independent parameters
for these modes are present in the model itself.



2 Three-mode Component and Scaling Methods

In general, a three-mode model is much more
parsimonious for three-way data then an appropriate
two-mode model. To what extent this is true depends
very much on the specific model used. In some three-
mode component models, low-dimensional represen-
tations are defined for all three modes, which can lead
to enormous reductions in parameters. Unfortunately,
it cannot be said that this means that automatically
the results of a three-mode analysis are always eas-
ier to interpret. Again this depends on the questions
asked and the data and models used.

An important aspect of three-mode models, espe-
cially in the social and behavioral sciences, is that
they allow the analysis of individual differences. The
subjects from whom the data have been collected
do not disappear in sufficient statistics for distribu-
tions, such as means, (co)variances or correlations,
and possibly higher-order moments such as the kur-
tosis and skewness, but they are examined in their
own right. This implies that often the data at hand
are taken as is, and not necessarily as a random
sample from a larger population in which the subjects
are in principle exchangeable. Naturally, this affects
the generalizability but that is considered inevitable.
At the same time, however, the subjects are rec-
ognized as the ‘data generators’ and are awarded a
special status, for instance, when statistical stability
is determined via bootstrap or jackknife procedures.
Furthermore, it is nearly always the contention of the
researcher that similar samples are or may become
available, so that at least part of the results are valid
outside the context of the specific sample.

Three-way Data

As mentioned above, three-way data fit into three-
dimensional boxes, which in the social and behavioral
sciences often take the form of subjects by variables
by conditions.

The first way (subjects) has index i running along
the vertical axis, the second way or variables index j

runs along the horizontal axis, and the third way or
conditions index k runs along the ‘depth’ axis of the
box. The number of levels in each way is I , J , and
K . The I × J × K three-way data matrix X is thus
defined as the collection of elements, xijk with the
indices i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K .

Athree-way array can also be seen as a collection
‘normal’ (=two-way) matrices or slices. There are
three different arrangements for this, as is shown in

Figure 2 Slices of a three-mode data array; horizontal,
lateral and frontal, respectively

Figure 3 Fibers of a three-mode data array; columns,
rows, and tubes, respectively

Figure 2. Furthermore, one can break up a three-way
matrix into one-way submatrices (or vectors), called
fibers (see Figure 3). The slices are referred to as
frontal slices, horizontal slices, and lateral slices. The
fibers are referred to rows, columns, and tubes. The
prime reference paper for three-mode terminology
is [35].

A Brief Example: Abstract Paintings

Consider the situation in which a number of persons
(Mode 1) have rated twenty abstract paintings (Mode
2) using some 10 different rating scales which
measure the feelings these paintings elicit (Mode
3). Suppose a researcher wants to know if there
is a common structure underlying the usage of the
rating scales with respect to the paintings, how
the various subjects perceive this common structure,
and/or whether subjects can be seen as types or
combination of types in their use of the rating scales
to describe their emotions. Although all subjects
might agree on the kinds (or dimensions) of feelings
elicited by the paintings, for some subjects some of
these dimensions might be more important and/or
more correlated than for other subjects, and one could
imagine that different types of subjects evaluate the
paintings in different ways. One can gain insight into
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such problems by constructing graphs or clusters not
only for the paintings, and for the rating scales, but
also for the subjects, and find ways to combine the
information from all three modes into a coherent story
about the ways people look at and feel about abstract
paintings.

Models and Methods for Three-way Data

Three-mode Component Models

Three-mode analysis as an approach towards ana-
lyzing three-way data started with Ledyard Tucker’s
publications [53, 54, 55]). By early 2004, his work
on three-mode analysis was cited about 500 to 600
times in the journal literature. He called his main
model three-mode factor analysis, but it is now gen-
erally referred to as three-mode component analysis,
or more specifically the Tucker3 model. Before his
series papers, various authors had investigated ways
to deal with sets of matrices, especially from a purely
linear algebra point of view, but studying three-way

data really started with Tucker’s seminal work. In
the earlier papers, Tucker formulated two models
(the principal component model and a common fac-
tor model) and several computational procedures. He
also wrote and collaborated on about 10 applications,
not all of them published. Levin, one of his Ph.D.
students, wrote an expository paper on applying the
technique in psychology [44]. After that, the num-
ber of applications and theoretical papers gradually,
but slowly, increased. A second major step was taken
when Kroonenberg and De Leeuw [38] presented an
improved, least-squares solution for the original com-
ponent model as well as a computer program to carry
out the analysis. Kroonenberg [37] also presented an
overview of the then state of the art with respect to
Tucker’s component model, as well as an annotated
bibliography [36].

Table 1 gives an overview of the major three-
mode models which are being used in practice.
Without going into detail here, a perusal of the table
will make clear how these models are related to one
another by imposing restrictions or adding extensions.

Table 1 Major component and scaling models for three-way data

Model Sum notation Matrix and vector notation

SVD xij ≈
S∑

s=1

wss(aisbjs) X = AWB′ =
S∑

s=1

wss(as ⊗ bs )

Tucker2 xijk ≈
P∑

p=1

Q∑
q=1

hpqk(aipbjq) Xk ≈ AHkB′

Tucker3 xijk ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr(aipbjqckr ) X ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr (ap ⊗ bq ⊗ cr )

Parafac xijk ≈
S∑

s=1

w̃kss(ãis b̃js) [w̃kss = gsss c̃ks] Xk ≈ ÃW̃kB̃′

xijk ≈
S∑

s=1

gsss(ãis b̃js c̃ks ) X ≈
S∑

s=1

gsss(ãs ⊗ b̃s ⊗ c̃s)

IDIOSCAL xii′k ≈
P∑

p=1

P∑
p′=1

hpp′k(aipai′p′ ) Xk ≈ AHkA′

INDSCAL xii′k ≈
S∑

s=1

w̃kss(ãis ãi′s ) [w̃kss = gsss c̃ks] Xk ≈ ÃW̃kÃ′

xijk ≈
S∑

s=1

gsss(ãis ãi′s c̃ks) X ≈
S∑

s=1

gsss(ãs ⊗ ãs ⊗ c̃s)

Notes: G = (gpqr ) is a full P × Q × R core array, Hk is a full P × Q slice of the extended core array; W and Wk are diagonal
S × S matrices. Unless adorned with a tilde (∼), A = (aip), B = (bjq ), and C = (ckr ) are orthonormal. The scaling models are
presented in their inner-product form.
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These relationships are explained in some detail in [3,
33, 34], and [37].

Three-mode Factor Models

A stochastic version of Tucker’s common three-
mode factor model was first proposed by Bloxom
[8], and this was further developed by Bentler and
coworkers ([5, 6, 7], and [43]). Bloxom [9] dis-
cussed Tucker’s factor models in term of higher-
order composition rules. Much later the model was
treated in extenso with many additional features
by Oort ([46, 47]), while Kroonenberg and Oort
[39] discuss the link between stochastic three-mode
factor models and three-mode component models
for what they call multimode covariance matri-
ces. Multimode PLS models were developed by
Lohmöller [45].

Parallel Factor Models

Parallel to the development of three-mode component
analysis, Harshman ([25, 26]) conceived a component
model which he called the parallel factors model –
(PARAFAC). He conceived this model as an extension
of regular component analysis and, using the paral-
lel proportional profiles principle proposed by Cattell
[18], he showed that the model solved the rotational
indeterminacy of ordinary two-mode principal com-
ponent analysis.

At the same time, Carroll and Chang [15] proposed
the same model, calling it canonical decomposition
(CANDECOMP). However, their development was pri-
marily related to individual differences scaling, and
their main contribution was to algorithmic aspects of
the model without further developing the full poten-
tial for the analysis of ‘standard’ three-way arrays.
This is the main reason why in this article the model
is consistently referred to as the Parafac model.

A full-blown exposé of the model and some exten-
sions is contained in [27] and [28], a more applied
survey can be found in [29], and a tutorial with
a chemical slant in [11]. The Parafac model has
seen a large upsurge in both theoretical development
and applications, when it was realized in (analyt-
ical) chemistry that physical models of the same
form were encountered frequently and the parame-
ter estimation of these models could be solved by
the Parafac/Candecomp algorithm; for details see the
book by Smilde, Geladi, and Bro [52].

Three-mode Models for Categorical Data

Van Mechelen and coworkers have developed a com-
pletely new paradigm for tackling binary three-mode
data using Boolean algebra to construct models and
express relations between parameters, see especially
[19]. Another important approach to handling cate-
gorical data was presented by Sands and Young [50]
who used optimal scaling of the categorical vari-
ables in conjunction with the Parafac model. Large
three-way contingency tables have been tackled with
three-mode correspondence analysis [13] and asso-
ciation models [2].

Hierarchies of Three-mode Component Models

Hierarchies of three-way models from both the
French and Anglo-Saxon literature, which include the
Tucker2 and Tucker3 models respectively, have been
presented by Kiers ([33, 34]).

Individual Differences Scaling Models

The work of Carroll and Chang [15] on individual
differences multidimensional scaling, or the INDSCAL

model, formed a milestone in three-way analysis, and
by early 2004 their paper was cited around 1000
times in the journal literature. They extended exist-
ing procedures for two-way data, mostly symmetric
summed similarity matrices, to three-way data, build-
ing upon less far-reaching earlier work of Horan
[30]. Over the years, various relatives of this model
have been developed, and important from this arti-
cle’s point of view are the IDIOSCAL model [16] a
less restricted variant of INDSCAL, the Parafac model
which can be interpreted as an asymmetric INDSCAL

model and the Tucker2 model which also belongs to
the class of individual differences models of which
it is the most general representative. The INDSCAL

model has also been called a ‘generalized subjective
metrics model’ [50]. Other similar models have been
developed within the context of multidimensional
scaling, and general discussions of individual dif-
ferences models and their interrelationships can, for
instance, be found in [3] and [56] and their references.

Three-mode Cluster Models

Carroll and Arabie [14] developed a clustering ver-
sion of the INDSCAL model with a set of common
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clusters with each sample or subject in the third mode
having individual weights associated with these clus-
ters. The procedure was called individual differences
clustering–INDCLUS and is applied to sets of simi-
larity matrices. Within that tradition, several further
models were suggested, including some (ultrametric)
tree models (see, for example, [17] and [22]).

Sato and Sato [51] presented a fuzzy clustering
method for three-mode data by treating the problem
as a multicriteria optimization problem and searching
for a Pareto efficient solution. Coppi [21] is another
contribution to this area.

On the basis of multivariate modeling using max-
imum likelihood estimation Basford [4] developed
a mixture method approach to clustering three-mode
continuous data and this approach has seen consider-
able application in agriculture. Extensions to categor-
ical data can be found in Hunt and Basford [31], while
further contributions in this vein have been made by
Rocci and Vichi [48].

Other Three-way and Three-mode Models and
Techniques

In several other fields, three-mode and three-way
developments have taken place such as unfold-
ing, block models, longitudinal data, clustering tra-
jectories, conjoint analysis, PLS modeling, and so
on, but an overview will not be given here. In
France, several techniques for three-mode analysis
have been developed, especially STATIS [41] and
AFM [23] which are being used in francophone and
Mediterranean countries, but not much elsewhere. An
extensive bibliography on the website of the Three-
Mode Company contains references to most of the
papers dealing with three-mode and three-way issues
(http:\\three-mode.leidenuniv.nl\).

Multiway and Multimode Models

Several extensions now exist generalizing three-mode
techniques to multiway data. The earliest references
are probably [15] for multiway CANDECOMP, [40]
for generalizing Tucker’s nonleast squares solution
to the Tucker4 model, and [32] for generalizing the
least-squares solution to analyze the Tuckern model.
The book [52] contains the references to the many
developments that have taken place especially in
chemometrics with respect to multiway modeling.

Detailed Examples

In this section, we will present two examples of
the analysis of three-way data: one application of
the Tucker3 model and one application of individual
differences scaling.

A Tucker3 Component Analysis: Stress and
Coping at School

Coping Data: Description. The small example
data set to demonstrate three-mode data consists
of the ratings of 14 selected Dutch primary school
children (mean age 9.8 years). On the basis of the
results of a preliminary three-mode analysis, these
14 children were selected from a larger group of 390
children so that they were maximally different from
each other and had relatively clear structures in the
analysis (for a full account, see [49]).

The children were presented with a question-
naire describing six situations: Restricted in class
by the teacher (TeacherNo), restricted at home by
the mother (MotherNo), too much work in class
(WorkLoad), class work was too difficult (TooDiffi-
cult), being bullied at school (Bullied) and not being
allowed to participate in play with the other chil-
dren (NotParticipate). For each of these situations,
the children had to indicate what they felt (Emotions:
Sad, Angry, Annoyed, Afraid) and how they gener-
ally dealt with the situation (Strategies: Avoidance
Coping, Approach Coping, Seeking Social Support,
Aggression). The data set has the form of 6 situations
by 8 emotions and strategies by 13 children.

The specific interest of the present study is
whether children have a different organization of
the interrelations between situations, and emotions &
strategies. In particular, we assume that there is a
single configuration of situations and a single config-
uration of emotions & strategies, but not all children
use the same strategies and do not have the same
emotions when confronted with the various situations.
In terms of the analysis model, we assume that the
children may rotate and stretch or shrink the two con-
figurations before they are combined. In other words,
the combined configuration of the situations and the
emotions & strategies may look different from one
child to another.

The Tucker3 model and fit to the data. The
Tucker3 model (see Table 1) has component matrices
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for each of the three modes A, B, and C, and a
core array G which contains information about the
strength of the relationships of the components from
the three modes. In particular, in the standard form
of the model, g2

pqr indicates the explained variability
of the pth components of the children, the qth
component of the emotions & strategies and the rth
component of the situations (see Figure 6, Panel 1).

The model chosen for this example was the 3 ×
3 × 2-model with 3 children components, 3 emotion
& strategy components, and 2 situation components
with a relative fit of 0.45. The components of the
modes account for 0.27 0.11, and 0.07 (children),
0.26, 0.12, and 0.07 (emotions & strategies), and
0.29 and 0.16 (situations); all situations fit reasonably
(i.e., about average = 0.45) except for restricted
by the mother (MotherNo, relative fit = 0.18). The
standardized residuals of the emotions and strategies
were about equal, but the variability in Afraid,
Social Support, and Aggression was not well fitted
compared to the average of 0.45 (0.17, 0.10, and
0.19, respectively). The relative fit of most children
was around the average, except that children 6 and
14 fitted rather badly (0.14 and 0.08, respectively).

Interpretation. Individual differences between chil-
dren. The 14 children were children were selected
to show individual differences and these differences
are evident from the graphs of the subject space:
Component 1 versus 2 (Figure 4) and Components
1 versus 3 (Figure 5). To get a handle on the kind
of individual differences the scores of the children
on the components were correlated with background
variables available. The highest correlations for the
first component were with ‘Happy in school’, ‘Qual-
ity of relationship with the teacher’, ‘Having a good
time at school’ (average about 0.65). On the whole
for most children except for 1 and 6 who have neg-
ative values on the first component, their scores on
the first component go together with positive scores
on general satisfaction with school. The second com-
ponent correlated with ‘Not ill versus ill’ (however,
only 10 and 1 were ill at the time) and Emotional sup-
port by the teacher (about 0.55 with 3,6,7 low scores
and 1,8,13 high ones). Finally, the third component
correlated 0.70 with Internalizing problem behavior
(a CBCL scale–see [1]), but only 8 of the 14 have
valid scores on this variable, so that this cannot be
taken too seriously. The height of the correlations
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Figure 5 Coping data: three-dimensional children space:
1st versus 3rd Component

makes that we can use these variables for interpreta-
tion of the biplots as shown below, but correlations
based on 14 scores with missing values on some of
them do not make for very strong statements.

Even though the correlations are all significant,
one should not read too much into them with respect
to generalizing to the sample (and population) from
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which they were drawn, as the children were a highly
selected set from the total group, but it serves to
illustrate that appropriate background information can
be used to enhance the interpretability of the subject
space.

How children react differently in different situations.
The whole purpose of the analysis is to see whether
and how the children use different coping strategies
and have different emotions in the situation presented
to them. To evaluate this, we may look at joint biplots
(see [37], Chap. 6). Figure 6 gives a brief summary
of their construction. For, say, the rth component of
the third mode C, the corresponding core slice Gr

is divided between the other two modes A and B
to construct the coordinates for the joint biplot. In
particular, A∗ and B∗ are computed using a singular
value decomposition of the core slice Gr = Ur�rVr .

Evaluating several possibilities, it was decided to
use the Situation mode as reference mode (i.e., mode
C in Figure 6), so that the Children and Emotions
& Strategies appear in the joint biplot. For the first
situation component the three joint biplot dimensions
accounted for 21.8%, 7.2%, and 0.4% respectively
so that only the first two biplot dimensions needed
to be portrayed, and the same was true for the
second situation component where the three joint
biplot dimensions accounted for 10.3%, 5.2%, and
0.0001%, respectively.
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for component cr
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Figure 6 Joint biplot construction for the r th component
of the third mode C

To facilitate interpretation, two joint biplots are
presented for the first situation component. One plot
(Figure 7) for the situations loading positively on the
component (Being bullied and Not being allowed to
participate), and one plot (Figure 8) for the situations
loading negatively on the component (Class work
too difficult and Too much work in class). This can
be achieved by mirroring one of the modes around
the origin. Here, this was done for the emotions &
strategies. The origin in this graph is the estimated
mean scores for all emotions & strategies and a zero
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value on the component of the situations represent
the estimated mean of that situation. To interpret
the plot, the projections of children on the emotions
& strategies are used, with high positive values
indicating that the child has comparatively high
scores for such an emotion (strategy). The situations
weight the values of these projections, so that it can
be established whether the child uses a particular
emotion in a particular situation relative to other
situations.

Bullying and not being allowed to participate (1st
situation component). Most children, especially 5,
8, 9, 11, 12, and 13, use an avoidant coping strategy
comparatively more often than an approach coping
strategy when bullied or being left out (Figure 7).
From the external variables we know that these are
typically the children who are happy at school and
who do well. Only child 1 (which is not so happy
at school and does not do so well) seems to do the
reverse, that is, using an approach coping rather than
an avoidant coping strategy. Child 10 who according
to the external variables is more ill than the others,
is particularly angry and annoyed in such situations,
while 2 and 7 resort towards aggressive behavior.
Large differences with respect to social support are
not evident.

Class work too difficult and too much work in class
(1st situation component). When faced with too
difficult or too much class work, the well-adjusted
children, especially 5, 8, 9, 11, 12, and 13, use an
approach coping strategy comparatively more often
than an avoidant coping strategy, and only 1 seems
to do the reverse, that is, using an avoidant rather than
an approach coping strategy (Figure 8). Child 10 who
is more ill than the others, is somewhat aggressive
in such situations, while the more robust children
2 and 7 are particularly angry and rather annoyed.
Large differences with respect to social support are
not evident.

Restricted by the teacher and the mother (2nd situ-
ation component). These two situations have high
loadings on the second situation components and not
on the first, so that the joint plot associated with
this component should be inspected. For the chil-
dren who are happy at school and do well (i.e., 3,
4, 8, 12, 13), being restricted by the teacher and
to a lesser extent by the mother is particularly met
with avoidance coping, 10 and 11 are comparatively
angry as well, 5 seeks some social support and is
relatively angry, afraid, and sad (Figure 9). Child
14 is fairly unique in that it uses more approach
coping, but it is comparatively sad and annoyed
as well. Children 2, 6, and 7 are primarily more
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angry and annoyed but do not favor one particu-
lar strategy over an another, and finally child 9’s
reaction is primarily one of anger over any other
emotions.

Note that being bullied also has sizable (negative)
loading on the second situation dimension, indicating
that being bullied is more complex than is shown
in Figure 7 and the reverse pattern from the one
discussed for being restricted by the teacher and
the mother is true for bullying. To get a complete
picture for bullying the information of the two joint
plots should be combined, which is not easy to
do. In a paper especially devoted to the substantive
interpretation of the data, one would probably search
for a rotation of the situation space such that bullying
loads only on one component and interpret the
associated joint plot especially for bullying; however,
this will not be pursued here.

INDSCAL and IDIOSCAL: Typology of Pain

Pain data: Description. In this example, subjects
were requested to indicate the similarities between
certain pain sensations. The question is whether the
subjects perceived pain in a similar manner, and in
which way and to what extent pain sensations were
considered as being similar.

The similarities were converted to dissimilarities
to make them comparable to distances, but we will
treat the dissimilarities as squared distances. As is
shown in the MDS-literature, double-centering squared
distances gives scalar products which can be ana-
lyzed by scalar-product models, such as INDSCAL and
IDIOSCAL (see [15] and also Table 1). The INDSCAL

model assumes that there exists a common stim-
ulus configuration, which is shared by all judges
(subjects), and that this configuration has the same
structure for all judges, except that they may attach
different importance (salience) to each of the (fixed)
axes of the configuration. This results in some judges
having configurations which are stretched out more
along one of the axes. The IDIOSCAL model is similar
except that each judge may rotate the axes of the com-
mon configuration over an angle before stretching.

Apart from the investigation into pain perception,
we were also interested in examining for this data
set Arabie, Carroll, and De Sarbo’s [3] claim that
IDIOSCAL ‘[..] has empirically yielded disappointing
results in general’ (p. 45) by comparing the IDIOSCAL

and INDSCAL models.

Results. On the basis of a preliminary analysis, 16
of the 41 subjects were chosen for this example on
the basis of the fit of the IDIOSCAL model to their
data. The analysis reported here is a two-component
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Table 2 Pain Data: IDIOSCAL subject weights and cosines and INDSCAL subject weights
(sorted with respect to INDSCAL weights)

Type of

IDIOSCAL

subject weights
IDIOSCAL

cosines
INDSCAL

subject weights

subject (1,1) (2,2) (1,2) (1,2) (1,1) (2,2)

Control 0.71 0.15 −0.27 −0.82 0.45 0.03
Chronic Pain 0.59 0.20 −0.22 −0.64 0.38 0.05
Chronic Pain 0.66 0.25 −0.18 −0.46 0.37 0.13
Control 0.53 0.22 −0.15 −0.44 0.31 0.09
Control 0.66 0.09 −0.03 −0.13 0.29 0.19
Chronic Pain 0.41 0.23 −0.24 −0.79 0.28 0.02
Control 0.50 0.14 −0.06 −0.22 0.24 0.14

RSI Pain 0.42 0.32 0.27 0.75 0.07 0.42
RSI Pain 0.53 0.32 0.19 0.45 0.16 0.38
Chronic Pain 0.34 0.45 0.17 0.44 0.09 0.36
RSI Pain 0.52 0.24 0.15 0.44 0.16 0.33
RSI Pain 0.45 0.29 0.12 0.34 0.15 0.31
Chronic Pain 0.35 0.47 0.08 0.19 0.14 0.30
Control 0.51 0.30 0.08 0.22 0.19 0.30
Control 0.25 0.32 0.08 0.32 0.08 0.23
RSI Pain 0.52 0.09 0.04 0.16 0.22 0.19

IDIOSCAL solution with a fit of 39.2%, indicating
that the data are very noisy. In Figure 10 violent
pains, such as shooting, burning, cramping, intense
pain are in the same region of the space, as are
the less dramatic ones, such are mild, moderate, and
annoying, and also tiring, miserable, and distressing
form a group.

The subject weights are shown in the left-hand
panel of Table 2. The table provides the weights
allocated to the first dimension and to the second
dimension as well as the ‘individual orientation’
expressed as a cosine between the two dimensions.
Clearly the subjects fall in two groups, those that
put the dimensions under an acute angle and those
that put them at an obtuse angle. Proof enough for an
individual differences of orientation scaling, it seems.
However, one problem is that for identifiability of the
model, it has to be assumed that the stimulus space
is orthogonal. To check whether this was problematic
we also performed an INDSCAL analysis. This analysis
provided a fit of 38.3%, hardly worse than the
previous analysis, and given that its interpretation
is more straightforward it is clearly to be preferred.
The additional complexity of the IDIOSCAL model was
only apparent in this case and the results support the
conclusion in [3].

In Figure 10, we have drawn the orientation of
the two INDSCAL axes, which have an inner product
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Figure 10 Grigg pain data: two-dimensional IDIOSCAL

stimulus space with the best fitting INDSCAL axes

of −0.31 and thus make an angle of 108 degrees.
In the right hand panel of Table 2, we see the
INDSCAL subject weights, which also show the two
groups found earlier. Staying with the basic INDSCAL

interpretation, we see that one group of subjects
(1,2,3,10,11,12,13,14) tends to emphasize the axis of
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burning, shooting, intense, cramping pain in contrast
with mild, numbing, and tiring. The other group of
subjects (5,6,7,8,9,15,16) contrast mild and moderate
pain with intense, tiring, distressing, and miserable,
and place burning and shooting somewhere in the
middle.

In the original design, the subjects consisted
of three groups: chronic pain sufferers, repetitive-
strain-injury sufferers, and a control group. If the
information available is correct, then the empirical
division into two groups runs right through two of
the design groups, but all of the RSI sufferers are
in the second group. In drawing conclusions, we
have to take into consideration that the subjects in
this example are a special selection from the real
sample.

Further Reading

The earliest book length treatment of three-mode
component models is [37], followed by [12], which
emphasizes chemistry application, as does the recent
book [52]. Multiway scaling models were extensively
discussed in [3], and a recent comprehensive treat-
ment of multidimensional scaling, which contains
chapters on three-way scaling methods, is [10], while
also [24] is an attractive recent book on the analysis
of proximity data which also pays attention to three-
way scaling.

Two collections of research papers on three-
mode analysis have been published, which contain
contributions of many people who were working in
the field at the time. The first collection, [42], contains
full-length overviews including the most extensive
treatment of the Parafac model [27] and [28]. The
second collection, [20], consists of papers presented
at the 1988 conference on Multiway analysis in
Rome. Finally, several special issues on three-mode
analysis have appeared over the years: Computational
Analysis & Data Analysis, 18(1) in 1994, Journal
of Chemometrics, 14(3) in 2000, and Journal of
Chemometrics, 18(1) in 2004.
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Thurstone, Louis Leon

Born: May 29, 1887, in Chicago.
Died: September 19, 1955, near Rapid City,

Michigan.

Born in 1887 in Chicago to Swedish immigrants,
Louis Leon Thunström began school in Berwyn,
IL, moved with his parents to Centerville, MS, to
Stockholm, Sweden, and back to Jamestown, NY –
all before turning 14. Refusing to return to the United
States without his books, Leon personally carried his
three favorites onboard ship, among them Euclid. At
18, his name appeared in print for the first time in a
Scientific American letter, suggesting how to manage
the tension between Niagara Fall’s tourists and its
energy output. Shortly thereafter, to ease assimilation,
his parents changed the spelling of the family name
to Thurstone. After high school, Thurstone entered
Cornell and studied engineering. As one of his
undergraduate projects, Thurstone built – and later
patented – a motion picture camera and projector
that eliminated flicker. Those designs attracted the
attention of Thomas Edison, who invited Thurstone
to spend the summer following his 1912 master of
engineering degree as an assistant in Edison’s lab.

Thurstone became an engineering instructor at the
University of Minnesota in the fall of 1912. While
teaching, Thurstone pursued an interest in learning
and enrolled in undergraduate experimental psychol-
ogy courses. His interest and the inspired instruction
he received prompted him to seek graduate study
in psychology. In 1914 at age 27, he entered the
University of Chicago. In 1915 and 1916, Thurstone
accepted a graduate assistantship in applied psychol-
ogy from Walter Bingham at the Carnegie Institute
of Technology. In 1917, Thurstone received a Ph.D.
from the University of Chicago, apparently without
being in residence for at least two years. His dis-
sertation, published in 1919, examined the learning
curve equation. Thurstone joined the Carnegie faculty
and advanced from assistant to full professor and to
department chair. Between 1919 and 1923, Thurstone
created psychometric instruments assessing aptitude,
clerical skill, ingenuity, and intelligence.

Carnegie closed its applied psychology program
in 1923, and Thurstone moved to Washington, D.C.,
to work for the Institute for Government Research, a

foundation trying to improve civil service examina-
tions. The American Council on Education (ACE)
was located in the same Dupont Circle building
as the foundation’s office. Thurstone engaged the
ACE’s staff in conversation centering on creating
college admission examinations, and in 1924, the
ACE began to financially support Thurstone in that
endeavor. The tests Thurstone developed in this ini-
tiative during the following years included linguis-
tic and quantitative subscores and evolved into the
Scholastic Aptitude Test, or SAT. The year 1924 also
saw Thurstone’s marriage to Thelma Gwinn and his
accepting an offer to join the University of Chicago
faculty.

Measurement theory drew Thurstone’s attention
during the early years at Chicago, 1924 through 1928.
In contrast to psychophysical scales that related stim-
ulation to experience, Thurstone developed theory
and techniques for scaling psychological dimensions
without physical referents, deriving accounts using
dispersion as a unit of psychological measure [5].
Beginning in the late 1920s, this work grew into pro-
cedures that explored the structure of latent variables
underlying the response patterns he found using his
scaled instruments. Thurstone’s influential concept of
‘simple structure’ (see History of Factor Analysis:
A Statistical Perspective) guided the use of fac-
tor analysis in describing psychologically meaningful
constructs. The development of multiple factor anal-
ysis is among his most widely known achievements.
Notably, he reinterpreted ‘g’ in Spearman’s theory
of general intelligence as a special case of a multidi-
mensional factor structure [3, 4].

In the coming years, Leon and Thelma employed
factor analytic techniques to improve college entrance
exams and to measure primary mental abilities. Their
work bore much fruit, including providing the Uni-
versity of Chicago with the country’s first credit
by examination. Colleagues also recognized Thur-
stone’s accomplishments. He was elected president
of the American Psychological Association in 1932,
elected charter president of the Psychometric Soci-
ety in 1936, and elected to the National Academy
of Sciences (NAS) in 1938. Shortly after the NAS
election, Ernest Hilgard reports being a dinner guest in
Thurstone’s home and remembers Thurstone express
surprise that as the son of immigrants, he (Thurstone)
could successfully follow such a circuitous route to
academic success.
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During much of the twentieth century, Thurstone
was a leading figure in psychometric and psychophys-
ical theory and practice and in the investigation of
attitudes, intelligence, skills, and values. His commit-
ment to the scientific process is perhaps best seen in
the weekly Wednesday evening seminars he conducted
in his home – chalkboard and all – over the course
of 30 years, often hosting 30 people at a time, con-
versing primarily over work in progress. After retiring
from Chicago in 1952, he accepted a position at the
University of North Carolina-Chapel Hill, where he
established the L. L. Thurstone Psychometrics Labo-
ratory. The home he and Thelma built near the campus
included a seminar room with a built-in chalkboard
where the seminar tradition continued unabated. On
leave from Chapel Hill in the spring of 1954, Thur-
stone returned to Sweden as a visiting professor at the
University of Stockholm, lecturing there and at other
universities in northern Europe. This would be his last
trip to the continent. In September 1955, Thurstone
died at his summer home on Elk Lake in Michigan’s
upper peninsula (see [1], [2], [6] for more details of
his life and work).
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Time Series Analysis

Time Series Data

A time series is a set of observations xt , each
one associated with a particular time t , and usually
displayed in a time series plot of xt as a function
of t . The set of times T at which observations are
recorded may be a discrete set, as is the case when
the observations are recorded at uniformly spaced
times (e.g., daily rainfall, hourly temperature, annual
income, etc.), or it may be a continuous interval,
as when the data is recorded continuously (e.g., by
a seismograph or electrocardiograph). A very large
number of practical problems involve observations
that are made at uniformly spaced times. For this
reason the, present article focuses on this case,
indicating briefly how missing values and irregularly-
spaced data can be handled.

Example 1 Figure 1 shows the number of acciden-
tal deaths recorded monthly in the US. for the years
1973 through 1978. The graph strongly suggests (as
is usually the case for monthly data) the presence
of a periodic component with period 12 correspond-
ing to the seasonal cycle of 12 months, as well as
a smooth trend accounting for the relatively slow
change in level of the series, and a random component
accounting for irregular deviations from a determin-
istic model involving trend and seasonal components
only.
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Figure 1 Monthly accidental deaths in the US from 1973
through 1978
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Figure 2 The Australian All-Ordinaries Index of Stock
Prices on 521 successive trading days up to July 18, 1994
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Figure 3 The daily percentage changes in the all-ordinar-
ies index over the same period

Example 2 Figure 2 shows the closing value in
Australian dollars of the Australian All-Ordinaries
index (an average of 100 stocks sold on the Aus-
tralian Stock Exchange) on 521 successive trading
days, ending on July 18, 1994. It displays irregu-
lar variation around a rather strong trend. Figure 3
shows the daily percentage changes in closing value
of the index for each of the 520 days ending on July
18, 1994. The trend apparent in Figure 2 has virtu-
ally disappeared, and the series appears to be varying
randomly around a mean value close to zero.

Objectives

The objectives of time series analysis are many
and varied, depending on the particular field of
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application. From the observations x1, . . . , xn, we
may wish to make inferences about the way in which
the data are generated, to predict future values of the
series, to detect a ‘signal’ hidden in noisy data, or
simply to find a compact description of the available
observations.

In order to achieve these goals, it is necessary to
postulate a mathematical model (or family of mod-
els), according to which we suppose that the data
is generated. Once an appropriate family has been
selected, we then select a specific model by esti-
mating model parameters and checking the resulting
model for goodness of fit to the data. Once we are
satisfied that the selected model provides a good rep-
resentation of the data, we use it to address questions
of interest. It is rarely the case that there is a ‘true’
mathematical model underlying empirical data, how-
ever, systematic procedures have been developed for
selecting the best model, according to clearly speci-
fied criteria, within a broad class of candidates.

Time Series Models

As indicated above, the graph of the accidental deaths
series in Figure 1 suggests representing xt as the sum
of a slowly varying trend component, a period-12
seasonal component, and a random component that
accounts for the irregular deviations from the sum of
the other two components. In order to take account
of the randomness, we suppose that for each t , the
observation xt is just one of many possible values of
a random variable Xt that we might have observed.
This leads to the following classical decomposition
model for the accidental deaths data,

Xt = mt + st + Yt , t = 1, 2, 3, . . . , (1)

where the sequence {mt } is the trend component
describing the long-term movement in the level of
the series, {st } is a seasonal component with known
period (in this case, 12), and {Yt } is a sequence
of random variables with mean zero, referred to as
the random component. If we can characterize mt ,
st , and Yt in simple terms and in such a way that
the model (1) provides a good representation of the
data, then we can proceed to use the model to make
forecasts or to address other questions related to the
series. Completing the specification of the model by
estimating the trend and seasonal components and
characterizing the random component is a major part

of time series analysis. The model (1) is sometimes
referred to as an additive decomposition model (see
Additive Models). Provided the observations are all
positive, the multiplicative model,

Xt = mtstYt , (2)

can be reduced to an additive model by taking
logarithms of each side to get an additive model for
the logarithms of the data.

The general form of the additive model (1) sup-
poses that the seasonal component st has known
period d (12 for monthly data, 4 for quarterly data,
etc.), and satisfies the conditions

st+d = st and
d∑

t=1

st = 0, (3)

while {Yt } is a weakly stationary sequence of random
variables, that is, a sequence of random variables
satisfying the conditions,

E(Yt ) = µ, E(Y 2
t ) < ∞ and

Cov(Yt+h, Yt ) = γ (h) for all t, (4)

with µ = 0. The function γ is called the autocovari-
ance function of the sequence {Yt }, and the value
γ (h) is the autocovariance at lag h. In the special
case when the random variables Yt are independent
and identically distributed, the model (1) is a clas-
sical regression model and γ (h) = 0 for all h �= 0.
However, in time series analysis, it is the depen-
dence between Yt+h and Yt that is of special interest,
and which allows the possibility of using past obser-
vations to obtain forecasts of future values that are
better in some average sense than just using the
expected value of the series. A measure of this depen-
dence is provided by the autocovariance function. A
more convenient measure (since it is independent of
the origin and scale of measurement of Yt ) is the
autocorrelation function,

ρ(h) = γ (h)

γ (0)
. (5)

From observed values y1, . . . , yn of a weakly station-
ary sequence of random variables {Yt }, good estima-
tors of the mean µ = E(Yt ) and the autocovariance
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function γ (h) are the sample mean and sample auto-
covariance function,

µ̂ = 1

n

n∑
i=1

yi (6)

and

γ̂ (h) = 1

n

n−|h|∑
i=1

(yi+|h| − µ̂)(yi − µ̂), −n < h < n,

(7)

respectively. The autocorrelation function of {Yt } is
estimated by the sample autocorrelation function,

ρ̂(h) = γ̂ (h)

γ̂ (0)
. (8)

Elementary techniques for estimating mt and st

can be found in many texts on time series anal-
ysis (e.g., [6]). More sophisticated techniques are
employed in the packages X-11 and the updated ver-
sion X-12 described in [12], and used by the US
Census Bureau. Once estimators m̂t of mt and ŝt of
st have been obtained, they can be subtracted from
the observations to yield the residuals,

yt = xt − m̂t − ŝt . (9)

A stationary time series model can then be fitted to
the residual series to complete the specification of the
model. The model is usually chosen from the class of
autoregressive moving average (or ARMA) processes,
defined below in ARMA Processes.

Instead of estimating and subtracting off the trend
and seasonal components to generate a sequence of
residuals, an alternative approach, developed by Box
and Jenkins [4], is to apply difference operators to
the original series to remove trend and seasonality.
The backward shift operator B is an operator that,
when applied to Xt , gives Xt−1. Thus,

BXt = Xt−1, BjXt = Xt−j , j = 2, 3, . . . .

The lag-1 difference operator is the operator ∇ =
(1 − B). Thus,

∇Xt = (1 − B)Xt = Xt − Xt−1. (10)

When applied to a polynomial trend of degree p,
the operator ∇ reduces it to a polynomial of degree
p − 1. The operator ∇p , denoting p successive

applications of ∇, therefore, reduces any polynomial
trend of degree p to a constant. Usually, a small
number of applications of ∇ is sufficient to eliminate
trends encountered in practice. Application of the
lag-d difference operator, ∇d = (1 − Bd) (not to be
confused with ∇d ) to Xt gives

∇dXt = (1 − Bd) = Xt − Xt−d , (11)

eliminating any seasonal component with period d. In
the Box–Jenkins approach to time series modeling,
the operators ∇ and ∇d are applied as many times as
is necessary to eliminate trend and seasonality, and
the sample mean of the differenced data subtracted to
generate a sequence of residuals yt , which are then
modeled with a suitably chosen ARMA process in
the same way as the residuals (9).

Figure 4 shows the effect of applying the operator
∇12 to the accidental deaths series of Figure 1. The
seasonal component is no longer apparent, but there is
still an approximately linear trend. Further application
of the operator ∇ yields the series shown in Figure 5
with relatively constant level. This new series is a
good candidate for representation by a stationary time
series model.

The daily percentage returns on the Australian All-
Ordinaries Index shown in Figure 2 already show no
sign of trend or Seasonality, and can be modeled as
a stationary sequence without preliminary detrending
or deseasonalizing.

In cases where the variability of the observed
data appears to change with the level of the data,
a preliminary transformation, prior to detrending
and deseasonalizing, may be required to stabilize
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Figure 4 The differenced series {∇12xt , t = 13, . . . , 72}
derived from the monthly accidental deaths {x1, . . . , x72}
shown in Figure 1
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Figure 5 The differenced series {∇∇12xt , t = 14, . . . , 72}
derived from the monthly accidental deaths {x1, . . . , x72}
shown in Figure 1

the variability. For this purpose, a member of the
family of Box–Cox transformations (see e.g., [6]) is
frequently used.

ARMA Processes

For modeling the residuals {yt } (found as described
above), a very useful parametric family of zero-
mean stationary sequences is furnished by the
autoregressive moving average (or ARMA) processes.
The ARMA(p, q) process {Yt } with autoregressive
coefficients, φ1, . . . , φp , moving average coefficients,
θ1, . . . , θq , and white noise variance σ 2, is defined
as a weakly stationary solution of the difference
equations,

(1 − φ1B − · · · − φpBp)Yt

= (1 + θ1 + · · · + θqB
q)Zt , t = 0, ±1, ±2, . . . ,

(12)

where B is the backward shift operator, the polynomi-
als φ(z) = 1 − φ1z − · · · φpzp and θ(z) = 1 + θ1z +
· · · + θqz

q have no common factors, and {Zt } is a
sequence of uncorrelated random variables with mean
zero and variance σ 2. Such a sequence {Zt } is said to
be white noise with mean 0 and variance σ 2 , indicated
more concisely by writing {Zt } ∼ WN(0, σ 2).

The equations (12) have a unique stationary solu-
tion if, and only if, the equation φ(z) = 0 has no
root with |z| = 1, however, the possible values of
φ1, . . . , φp are usually assumed to satisfy the stronger

restriction,

φ(z) �= 0 for all complex z such that |z| ≤ 1. (13)

The unique weakly stationary solution of equa-
tion (12) is then

Yt =
∞∑

j=0

ψjZt−j , (14)

where ψj is the coefficient of zj in the power-series
expansion,

θ(z)

φ(z)
=

∞∑
j=0

ψjz
j , |z| ≤ 1.

Since Yt in (14) is a function only of Zs , s ≤ t , the
series {Yt } is said to be a causal function of {Zt }, and
the condition (13) is called the causality condition for
the process (12). (Condition (13) is also frequently
referred to as a stability condition.)

In the causal case, simple recursions are available
for the numerical calculation of the sequence {ψj }
from the autoregressive and moving average coeffi-
cients φ1, . . . , φp , and θ1, . . . , θq (see e.g., [6]). To
every noncausal ARMA process, there is a causal
ARMA process with the same autocovariance func-
tion, and, under the assumption that all of the joint
distributions of the process are multivariate normal,
with the same joint distributions. This is one reason
for restricting attention to causal models. Another
practical reason is that if {Yt } is to be simulated
sequentially from the sequence {Zt }, the causal rep-
resentation (14) of Yt does not involve future values
Zt+h, h > 0.

A key feature of ARMA processes for model-
ing dependence in a sequence of observations is
the extraordinarily large range of autocorrelation
functions exhibited by ARMA processes of differ-
ent orders (p, q) as the coefficients φ1, . . . , φp, and
θ1, . . . , θq , are varied. For example, if we take any
set of observations, x1, . . . , xn and compute the sam-
ple autocorrelations, ρ̂(0)(= 1), ρ̂(1), . . . , ρ̂(n − 1),
then for any k < n, it is always possible to find a
causal AR(k) process with autocorrelations ρ(j) sat-
isfying ρ(j) = ρ̂(j ) for every j ≤ k.

The mean of the ARMA process defined by (12)
is E(Yt ) = 0, and the autocovariance function can
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be found from the equations obtained by multiply-
ing each side of (12) by Yt−j , j = 0, 1, 2, . . . , tak-
ing expectations and solving for γ (j) = E(YtYt−j ).
Details can be found in [6].

Example 3 The causal ARMA(1,0) or AR(1) pro-
cess is a stationary solution of the equations

Yt = φYt−1 + Zt , |φ| < 1, {Zt } ∼ WN(0, σ 2).

The autocovariance function of {Yt } is ρ(h) = σ 2φ|h|/
(1 − φ2).

Example 4 The ARMA(0, q) or MA(q) process is
the stationary series defined by

Yt =
q∑

j=0

θjZt−j , θ0 = 1, {Zt } ∼ WN(0, σ 2).

The autocovariance function of {Yt } is γ (h) =
σ 2 ∑|h|

j=0
θj θj+|h| if h ≤ q and γ (h) = 0 otherwise.

A process {Xt } is said to be an ARMA process
with mean µ if {Yt = Xt − µ} is an ARMA process
as defined by equations of the form (12)).

In the following section, we consider the problem
of fitting an ARMA model of the form (12), that is,
φ(B)Yt = θ(B)Zt , to the residual series y1, y2, . . . ,

generated as described in Time Series Models. If the
residuals were obtained by applying the differenc-
ing operator (1 − B)d to the original observations
x1, x2, . . . , then we are effectively fitting the model

φ(B)(1 − B)dXt = θ(B)Zt , {Zt } ∼ WN(0, σ 2)

(15)

to the original data. If the order of the polynomials
φ(B) and θ(B) are p and q respectively, then
the model (15) is called an ARIMA(p, d, q) model
for {Xt }. If the residuals yt had been generated
by differencing also at some lag greater than 1 to
eliminate seasonality, say, for example, yt = (1 −
B12)(1 − B)dxt , and the ARMA model (12) were
then fitted to yt , then the model for the original data
would be a more general ARIMA model of the form,

φ(B)(1 − B12)(1 − B)dXt = θ(B)Zt ,

{Zt } ∼ WN(0, σ 2). (16)

Selecting and Fitting a Model to Data

In Time Series Models, we discussed two methods
for eliminating trend and seasonality with the aim of
transforming the original series to a series of resid-
uals suitable for modeling as a zero-mean stationary
series. In ARMA Processes, we introduced the class
of ARMA models with a wide range of autocorrela-
tion functions. By suitable choice of ARMA param-
eters, it is possible to find an ARMA process whose
autocorrelations match the sample autocorrelations of
the residuals y1, y2, . . . , up to any specified lag. This
is an intuitively appealing and natural approach to
the problem of fitting a stationary time series model.
However, except when the residuals are truly gen-
erated by a purely autoregressive model (i.e., an
ARMA(p, 0) model), this method turns out to give
greater large-sample mean-squared errors than the
method of maximum Gaussian likelihood described
in the following paragraph.

Suppose for the moment that we know the orders
p and q of the ARMA process (12) that is to
be fitted to the residuals y1, . . . , yn, and suppose
that β = (φ1, . . . , φp, θ1, . . . , θq, σ 2), is the vector of
parameters to be estimated. The Gaussian likelihood
L(β; y1, . . . , yn), is the likelihood computed under
the assumption that the joint distribution from which
y1, . . . , yn are drawn is multivariate normal (see
Maximum Likelihood Estimation). Thus,

L(β; y1, . . . , yn) = (2π)−n/2(det �n)
−1/2

× exp

(
−1

2
yn�

−1
n yn

)
, (17)

where yn = (y1, . . . , yn)
′, �n is the matrix of auto-

covariances
[
γ (i − j)

]n

i,j=1, and γ (h) is the auto-
covariance function of the model defined by (12).
Although direct calculation of L is a daunting task,
L can be reexpressed in the innovations form of
Schweppe [22], which is readily calculated from the
minimum mean-squared error one-step linear pre-
dictors of the observations and their mean-squared
errors. These in turn can be readily calculated from
the innovations algorithm (see [5]).

At first glance, maximization of Gaussian like-
lihood when the observations appear to be non-
Gaussian may seem strange. However, if the noise
sequence {Zt } in the model (12) is any independent
identically distributed sequence (with finite variance),
the large-sample joint distribution of the estimators
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(assuming the true orders are p and q) is the same
as in the Gaussian case (see [15], [5]). This large-
sample distribution has a relatively simple Gaussian
form that can be used to specify large-sample confi-
dence intervals for the parameters (under the assump-
tion that the observations are generated by the fitted
model).

Maximization of L with respect to the parameter
vector β is a nonlinear optimization problem, requir-
ing the use of an efficient numerical maximization
algorithm (see Optimization Methods). For this rea-
son, a variety of simpler estimation methods have
been developed. These generally lead to less efficient
estimators, which can be used as starting points for
the nonlinear optimization. Notable among these are
the Hannan–Rissanen algorithm for general ARMA
processes, and the Yule–Walker and Burg algorithms
for purely autoregressive processes.

The previous discussion assumes that the orders
p and q are known. However, this is rarely, if
ever, the case, and they must be chosen on the
basis of the observations. The choice of p and q is
referred to as the problem of order selection. The
shape of the sample autocorrelation function gives
some clue as to the order of the ARMA(p, q) model
that best represents the data. For example, a sample
autocorrelation function that appears to be roughly of
the form φ|h| for some φ such that |φ| < 1 suggests
(see Example 3) that an AR(1) model might be
appropriate, while a sample autocorrelation function
that is small in absolute value for lags h > q suggests
(see Example 4) that an MA(r) model with r ≤ q

might be appropriate.
A systematic approach to the problem was sug-

gested by Akaike [1] when he introduced the infor-
mation criterion known as AIC (see Akaike’s Cri-
terion). He proposed that p and q be chosen by
minimizing AIC(β̂(p, q)), where β̂(p, q) is the max-
imum likelihood estimator of β for fixed p and q

and

AIC(β) = −2 ln(L(β)) + 2(p + q + 1). (18)

The term 2(p + q + 1) can be regarded as a penalty
factor that prevents the selection of excessive values
for p and q and the accumulation of additional
parameter estimation errors. If the data are truly
generated by an ARMA(p, q) model, it has been
shown that the AIC criterion tends to overestimate
p and q and is not consistent as the sample size

approaches infinity. Consistent estimation of p and
q can be obtained by using information criteria
with heavier penalty factors such as the (Bayesian
information criterion) BIC. Since, however, there is
rarely a ‘true’ model generating the data, consistency
is not necessarily an essential property of order
selection methods. It has been shown in [23] that
although the AIC criterion does not give consistent
estimation of p and q, it is optimal in a certain
sense with respect to prediction of future values of
the series. A refined small-sample version of AIC,
known as AICC, has been developed in [18], and
a comprehensive account of model selection can be
found in [7].

Having arrived at a potential ARMA model for the
data, the model should be checked for goodness of fit
to the data. On the basis of the fitted model, the mini-
mum mean-squared error linear predictors Ŷt of each
Yt in terms of Ys , s < t , and the corresponding mean-
squared errors st can be computed (see Prediction
below). In fact, they are computed in the course of
evaluating the Gaussian likelihood in its innovations
form. If the fitted model is valid, the properties of the
rescaled one-step prediction errors (Yt − Ŷt )/

√
(st )

should be similar to those of the sequence Zt /σ in the
model (12), and can, therefore, be used to check the
assumed white noise properties of {Zt } and whether
or not the assumption of independence and/or normal-
ity is justified. A number of such tests are available
(see e.g., [6], chap. 5.)

Prediction

If {Yt } is a weakly stationary process with mean,
E(Yt ) = µ, and autocovariance function, Cov(Yt+h,

Yt ) = γ (h), a fundamental property of conditional
expectation tells us that the ‘best’ (minimum mean
squared error) predictor of Yn+h, h > 0, in terms of
Y1, . . . , Yn, is the conditional expectation E(Yn+h|
Y1, . . . , Yn). However, this depends in a complicated
way on the joint distributions of the random variables
Yt that are virtually impossible to estimate on the
basis of a single series of observations y1, . . . , yn.
However, if the sequence {Yt } is Gaussian, the best
predictor of Yn+h in terms of Y1, . . . , Yn is a linear
function, and can be calculated as described below.

The best linear predictor of Yn+h in terms
of {1, Y1, . . . , Yn}, that is, the linear combination
PnYn+h = a0 + a1Y1 + · · · + anYn, which minimizes
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the mean squared error, E[(Yn+h−a0− · · · − anYn)
2],

is given by

PnYn+h = µ +
n∑

i=1

ai(Yn+1−i − µ), (19)

where the vector of coefficients a = (a1, . . . , an)
′

satisfies the linear equation,

�na = γ n(h), (20)

with γ n(h) = (γ (h), γ (h + 1), . . . , γ (h + n − 1)

and �n = [γ (i − j)]ni,j=1. The mean-squared error of
the best linear predictor is

E(Yn+h − PnYn+h)
2 = γ (0) − a′γ n(h). (21)

Once a satisfactory model has been fitted to the
sequence y1, . . . , yn, it is, therefore, a straightforward
but possibly tedious matter to compute best linear
predictors of future observations by using the mean
and autocovariance function of the fitted model
and solving the linear equations for the coefficients
a0, . . . , an. If n is large, then the set of linear
equations for a0, . . . , an is large, and, so, recursive
methods using the Levinson–Durbin algorithm or the
Innovations algorithm have been devised to express
the solution for n = k + 1 in terms of the solution for
n = k, and, hence, to avoid the difficulty of inverting
large matrices. For details see, for example, [6],
Chapter 2.

If an ARMA model is fitted to the data, the special
linear structure of the ARMA process arising from the
defining equations can be used to greatly simplify
the calculation of the best linear h-step predictor
PnYn+h and its mean-squared error, σ 2

n (h). If the
fitted model is Gaussian, we can also compute 95%
prediction bounds, PnYn+h ± 1.96σn(h). For details
see, for example, [6], Chapter 5.

Example 5 In order to predict future values of the
causal AR(1) process defined in Example 3, we can
make use of the fact that linear prediction is a linear
operation, and that PnZt = 0 for t > n to deduce that

PnYn+h = φPnYn+h−1 = φ2PnYn+h−2 = · · ·
= φhYn, h ≥ 1.

In order to obtain forecasts and prediction bounds
for the original series that were transformed to gen-
erate the residuals, we simply apply the inverse trans-
formations to the forecasts and prediction bounds for
the residuals.

The Frequency Viewpoint

The methods described so far are referred to as
‘time-domain methods’ since they focus on the evo-
lution in time of the sequence of random variables
X1, X2, . . . representing the observed data. If, how-
ever, we regard the sequence as a random func-
tion defined on the integers, then an alternative
approach is to consider the decomposition of that
function into sinusoidal components, analogous to
the Fourier decomposition of a deterministic function.
This approach leads to the spectral representation of
the sequence {Xt }, according to which every weakly
stationary sequence has a representation

Xt =
∫ π

−π

eiωt dZ(t), (22)

where {Z(t), −π ≤ t ≤ π} is a process with uncor-
related increments. A detailed discussion of this
approach can be found, for example, in [2], [5],
and [21], but is outside the scope of this arti-
cle. Intuitively, however, the expression (22) can
be regarded as representing the random function
{Xt, t = 0, ±1, ±2 . . .} as the limit of a linear combi-
nation of sinusoidal functions with uncorrelated ran-
dom coefficients. The analysis of weakly stationary
processes by means of their spectral representation is
referred to as ‘frequency domain analysis’ or spectral
analysis. It is equivalent to time-domain analysis, but
provides an alternative way of viewing the process,
which, for some applications, may be more illuminat-
ing. For example, in the design of a structure subject
to a randomly fluctuating load, it is important to be
aware of the presence in the loading force of a large
sinusoidal component with a particular frequency in
order to ensure that this is not a resonant frequency
of the structure.

Multivariate Time Series

Many time series arising in practice are best analyzed
as components of some vector-valued (multivariate)
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time series {Xt} = (Xt1, . . . , Xtm)′ in which each
of the component series {Xti, t = 1, 2, 3, . . .} is a
univariate time series of the type already discussed.
In multivariate time series modeling, the goal is to
account for, and take advantage of, the dependence
not only between observations of a single component
at different times, but also between the different
component series. For example, if Xt1 is the daily
percentage change in the closing value of the Dow-
Jones Industrial Average in New York on trading
day t , and if Xt2 is the analogue for the Australian
All-Ordinaries Index (see Example 2), then {Xt } =
(Xt1, Xt2)

′ is a bivariate time series in which there
is very little evidence of autocorrelation in either of
the two component series. However, there is strong
evidence of correlation between Xt1 and X(t+1)2,
indicating that the Dow-Jones percentage change on
day t is of value in predicting the All-Ordinaries
percentage change on day t + 1. Such dependencies
in the multivariate case can be measured by the
covariance matrices,

�(t + h, t) = [
cov(X(t+h),i , Xt,j )

]m

i,j=1 , (23)

where the number of components, m, is two in
this particular example. Weak stationarity of the
multivariate series {Xt} is defined as in the univariate
case to mean that all components have finite second
moments and that the mean vectors E(Xt ) and
covariance matrices �(t + h, t) are independent of t .

Much of the analysis of multivariate time series
is analogous to that of univariate series, multivariate
ARMA (or VARMA) processes being defined again
by linear equations of the form (12) but with vector-
valued arguments, and matrix coefficients. There are,
however, some new important considerations aris-
ing in the multivariate case. One is the question
of VARMA nonidentifiability. In the univariate case,
an AR(p) process cannot be reexpressed as a finite
order moving average process. However, this is not
the case for VAR(p) processes. There are simple
examples of VAR(1) processes that are also VMA(1)
processes. This lack of identifiability, together with
the large number of parameters in a VARMA model
and the complicated shape of the likelihood surface,
introduces substantial additional difficulty into max-
imum Gaussian likelihood estimation for VARMA
processes. Restricting attention to VAR processes
eliminates the identifiability problem. Moreover, the
fitting of a VAR(p) process by equating covariance

matrices up to lag p is asymptotically efficient and
simple to implement using a multivariate version of
the Levinson-Durbin algorithm (see [27], and [28]).

For nonstationary univariate time series, we dis-
cussed in the section ‘Objectives’ the use of differ-
encing to transform the data to residuals suitable for
modeling as zero-mean stationary series. In the mul-
tivariate case, the concept of cointegration, due to
Granger [13], plays an important role in this connec-
tion. The m-dimensional vector time series {Xt } is
said to be integrated of order d (or I (d)) if, when the
difference operator ∇ is applied to each component
d − 1 times, the resulting process is nonstationary,
while if it is applied d times, the resulting series is
stationary. The I (d) process {Xt} is said to be coin-
tegrated with cointegration vector α, if α is an m × 1
vector such that {α′Xt } is of order less than d. Coin-
tegrated processes arise naturally in economics. [11]
gives as an illustrative example the vector of tomato
prices in Northern and Southern California (say Xt1

and Xt2, respectively). These are linked by the fact
that if one were to increase sufficiently relative to the
other, the profitability of buying in one market and
selling in the other would tend to drive the prices
together, suggesting that although the two series sepa-
rately may be nonstationary, the difference varies in a
stationary manner. This corresponds to having a coin-
tegration vector α = (1, −1)′. Statistical inference for
multivariate models with cointegration is discussed
in [10].

State-space Models

State-space models and the associated Kalman recur-
sions have had a profound impact on time series
analysis. A linear state-space model for a (possibly
multivariate) time series {Yt , t = 1, 2, . . .} consists of
two equations. The first, known as the observation
equation, expresses the w-dimensional observation
vector Yt as a linear function of a v-dimensional state
variable Xt plus noise. Thus,

Yt = GtXt + Wt , t = 1, 2, . . . , (24)

where {Wt} is a sequence of uncorrelated random
vectors with E(Wt ) = 0, cov(Wt ) = Rt , and {Gt } is
a sequence of w × v matrices. The second equation,
called the state equation, determines the state Xt+1

at time t + 1 in terms of the previous state Xt and a
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noise term. The state equation is

Xt+1 = FtXt + Vt , t = 1, 2, . . . , (25)

where {Ft } is a sequence of v × v matrices, {Vt }
is a sequence of uncorrelated random vectors with
E(Vt ) = 0, cov(Vt ) = Qt , and {Vt} is uncorrelated
with {Wt } (i.e., E(WtV′

s) = 0 for all s and t). To
complete the specification, it is assumed that the
initial state X1 is uncorrelated with all of the noise
terms {Vt} and {Wt }.

An extremely rich class of models for time series,
including and going well beyond the ARIMA mod-
els described earlier, can be formulated within this
framework (see [16]). In econometrics, the structural
time series models developed in [17], in which trend
and seasonal components are allowed to evolve ran-
domly, also fall into this framework. The power of the
state-space formulation of time series models depends
heavily on the Kalman recursions, which allow best
linear predictors and best linear estimates of various
model-related variables to be computed in a routine
way. Time series with missing values are also readily
handled in the state-space framework.

More general state-space models, in which the
linear relationships (24) and (25) are replaced by
the specification of conditional distributions, are also
widely used to generate an even broader class of
models, including, for example, models for time
series of counts such as the numbers of reported new
cases of a particular disease (see e.g., [8]).

Additional Topics

Although linear models for time series data have
found broad applications in many areas of the
physical, biological, and behavioral sciences, there
are also many areas where they have been found
inadequate. Consequently, a great deal of attention
has been devoted to the development of nonlinear
models for such applications. These include thresh-
old models, [25], bilinear models, [24], random-
coefficient autoregressive models, [20]), Markov
switching models, [14], and many others. For finan-
cial time Series, the ARCH (autoregressive condi-
tionally heteroscedastic) model of Engle [9], and its
generalized version, the GARCH model of Boller-
slev [3], have been particularly successful in mod-
eling financial returns data of the type illustrated in
Figure 4.

Although the sample autocorrelation function of
the series shown in Figure 4 is compatible with
the hypothesis that the series is an independent and
identically distributed white noise sequence, the sam-
ple autocorrelation functions of the absolute values
and the squares of the series are significantly dif-
ferent from zero, contradicting the hypothesis of
independence. ARCH and GARCH processes are
white noise sequences that are nevertheless depen-
dent. The dependence is introduced in such a way that
these models exhibit many of the distinctive features
(heavy-tailed marginal distributions and persistence
of volatility) that are observed in financial time series.

The recent explosion of interest in the modeling
of financial data, in particular, with a view to solving
option-pricing and asset allocation problems, has led
to a great deal of interest, not only in ARCH and
GARCH models, but also to stochastic volatility
models and to models evolving continuously in time.
For a recent account of time series models specifically
related to financial applications, see [26].

Apart from their importance in finance, contin-
uous-time models provide a very useful framework
for the modeling and analysis of discrete-time series
with irregularly spaced data or missing observations.
For such applications, see [19].
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Tolerance and Variance
Inflation Factor

In regression analysis (see Regression Models), one
outcome is regressed onto one or more predictors
in order to explain the variation in the outcome
variable. Where there is more than one predictor
variable, the relationships between the predictors can
affect both the regression estimate and the standard
error of the regression estimate (see Multiple Linear
Regression).

In its original usage, multicollinearity referred to
a perfect linear relationship between the indepen-
dent variables, or a weighted sum of the independent
variables; however, it is now used to refer to large
(multiple) correlations amongst the predictor vari-
ables, known as collinearity.

The effect of collinearity is to increase the stan-
dard error of the regression coefficients (and hence
to increase the confidence intervals and decrease the
P values).

The standard error of a regression estimate of the
variable j (β̂j ) is given by

se(β̂j ) =
√

σ 2

�x2
j

× 1

1 − R2
j

(1)

where R2
j is the R2 found when regressing all other

predictors onto the predictor j . (Note that when
there is only one variable in the regression equation,
or when the correlation between the predictors is
equal to zero, the value for the part of the equation
1/(1 − R2

j ) is equal to 1.) The term 1/(1 − R2
j )

is known as the variance inflation factor (VIF).
When the correlation changes from 0 (or when
additional variables are added), the value of the VIF
increases, and the value of the standard error of the
regression parameter increases with the square root
of the VIF.

The reciprocal of the VIF is called the tolerance. It
is equal to 1 − R2

j , where each predictor is regressed
on all of the other predictors in the analysis.

A rule of thumb that is sometimes given for the
tolerance and the VIF is that the tolerance should not
be less than 0.1, and that therefore the VIF should
not be greater than 10, although this is dependent on
other factors, not least the sample size.

Further information on these measures can be
found in [1].
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Transformation

A transformation is any systematic alteration in a
set of scores such that some characteristics of the
scores are changed while other characteristics remain
unchanged. Transformations of a set of scores are
done for several reasons. Statistically, transforma-
tions are done to provide a data set that possesses
characteristics that make it acceptable for a vari-
ety of parametric statistical procedures. In analysis
of variance applications, a data set that is nor-
mally distributed and that possesses homogeneity of
variance across treatment conditions is necessary to
draw appropriate inferences about mean differences
between conditions. Normality of the distribution of a
set of scores and equality in the scale units on a mea-
sure is a necessary precondition for the application
of the multivariate analyses (e.g., factor analyses,
structural equation modeling) routinely applied in
the social and behavioral sciences. When data are
not normally distributed, transformations that produce
distributions that more closely approximate normality
can be used, provided it is reasonable to assume that
the underlying construct being measured is normally
distributed. Transformations are also done frequently
to provide data that are more easily communicated to
the consuming public (e.g., percentiles, IQ scores).

The data we use in the behavioral sciences involve
the assignment of numbers to objects that have some
meaning in terms of the objects’ physical properties.
In considering the use of statistical analyses to
summarize or analyze data, it is important that
the transformations involved in these analyses and
summaries do not alter the meaning of the basic
properties to which they refer. Stevens [1] is credited
with providing the widely accepted classification of
scales into nominal, ordinal, interval, and ratio types
(see Scales of Measurement). A nominal scale is
a measurement that we use to categorize objects
into discrete groups (e.g., gender, race, political
party). In the case of nominal data, any one-to-
one transformation that retains the categorization of
individual cases into discrete groups is permissible.
Typical summary statistics in this instance are the
number of groups, the number of cases, and the
modal category. An ordinal scale is one in which
we can rank order cases such that they are greater or
less than other cases on the attribute measured (e.g.,
class rank, pleasantness of odors). In this case, we

report the median, percentiles, and the interquartile
range as summary measures and can perform any
transformation that preserves the rank order of the
cases being measured. An interval scale (temperature)
has rank order properties but, in addition, the intervals
between cases are seen as equal to each other.
Appropriate summary statistics include the mean and
standard deviation. Associations between variables
measured on interval scales can be expressed as
Pearson correlations, which are the basic unit of
many multivariate analysis techniques. Any linear
transformation is appropriate; the mean and standard
deviation may be changed, but the rank order and
relative distance between cases must be preserved.
Finally, ratio scales (e.g., height, weight) include a
meaningful zero point and allow the expression of the
equality of ratios. Only multiplicative transformations
will preserve the unique properties of a ratio scale,
an absolute zero point, and the capacity to form
meaningful ratios between numbers on the scale.

Examples of some commonly used transforma-
tions are provided below (see Table 1) where X might
be the original scores on some scale and T1 to T6

represent different transformations.
In this table, the first four transformations have

been accomplished by adding, subtracting, multiply-
ing, and dividing the original numbers by 2. Each of
these four transformations is a linear transformation
in that the mean and standard deviation of the column
of numbers is changed, but the rank order and the rel-
ative size of the intervals between units on the scale
remains unchanged. Further, if one computed Pear-
son correlations between these four transformations
and the original numbers, all would correlate 1.00.
The shape of the distribution of all five sets of num-
bers would be identical. These transformations are
said to preserve the interval nature of these numbers
and are routinely part of the computation of various
statistics. Note that T1 and T2 would be inappropriate

Table 1 Common transformations of a set of raw scores
(X)

X T1 T2 T3 T4 T5 T6

0 2 −2 0 0 0 0.00
1 3 −1 2 0.5 1 1.00
2 4 0 4 1.0 4 1.41
3 5 1 6 1.5 9 1.73
4 6 2 8 2.0 16 2.00
5 7 3 10 2.5 25 2.24
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with ratio data since the zero point is not preserved.
The ratios between corresponding points on the trans-
formed scale and the original scale do not have the
same meaning.

The fifth transformation above was produced by
taking the square of the original numbers and the
sixth one was produced by taking the square root.
These transformations might be used if the original
distribution of a set of numbers was not normal or
otherwise appropriate for statistical analyses such as
analyses of variance. For example, reaction times to
a stimulus might include a majority of short times
and some very long ones. In this case, a square root
transformation would make the data more appropri-
ate for the use of parametric statistical computations.
If a square, square root, or other nonlinear trans-
formation is used, it is important to recognize that
the units of measurement have been changed when
we interpret or speak of the data. These transfor-
mations are said to be nonlinear; not only are the
means and standard deviations of the transformed
data different than X, but the size of the intervals
between points on the scale are no longer uniform, the
distribution of scores are altered, and the Pearson cor-
relations between X and these two transformed scores
would be less than 1.00. Other nonlinear transforma-
tions that are sometimes used include logarithmic and
reciprocal transformations. One guide for the selec-
tion of an appropriate nonlinear transformation is to
consider the ratio of the largest transformed score to
the smallest transformed score and select the trans-
formation that produces the smallest ratio. Using this
‘rule of thumb’, one is reducing the influence of
extreme scores or outliers in an analysis, making
it more likely that key assumptions of normality of
the score distribution and homogeneity of variance
are met.

There have been several popularly used transfor-
mations whose primary purpose was to increase the
ability to communicate the meaning of data to the
general public or to make data comparable across
different sets of scores. One of the most widely used
linear transformations is the z-score or standardized
score. In this case, the mean of a set of scores is
subtracted from the original or raw scores for each
individual and this difference is divided by the stan-
dard deviation. Since the raw score is transformed by
subtracting and dividing by a constant (i.e., the mean
and standard deviation), this is a linear transforma-
tion (see examples above). Raw scores and z-scores

are correlated 1.00 and have the same distribution
but different means and standard deviations. Since
the means and standard deviations of all z-scores are
0 and 1 respectively, z-scores are often used to com-
pare individuals’ scores on two or more measures.
It is important to recognize that the z transformation
does not result in a normal distribution of scores; if
the original distribution was skewed, the transformed
one will also be skewed.

The standard or z-score includes decimal numbers,
and half the scores (if the distribution is normal or
nearly so) are negative. For this reason, it is common
practice to perform a second linear transformation on
the z-scores so that they have a different mean and
standard deviation. Standard scores on the Graduate
Record Examination, for example, are transformed
by multiplying the standard score by 100 and adding
500. This provides a score whose mean and standard
deviation are 500 and 100 respectively. Many other
test scores are reported as ‘T’ scores. These are
transformed z-scores that have been multiplied by 10
and to which 50 has been added. So they have means
and standard deviations of 50 and 10 respectively.

One early and well-known nonlinear transforma-
tion of scores in the behavioral sciences was the
computation of an intelligence quotient (IQ) by Ter-
man [2]. The IQ was computed by taking the person’s
mental age as measured by the test, dividing it by
the person’s chronological age, and multiplying by
100. This was a nonlinear transformation of scores
since persons’ chronological ages were not constant.
This index helped to popularize the IQ test because it
produced numbers that appeared to be readily inter-
pretable by the general public. The fact that the IQ
was unusable for measured attributes that had no rela-
tionship to chronological age and the fact that mental
growth tends to asymptote around age 20 doomed the
original IQ transformation. Today’s IQs are usually
‘deviation IQs’ in which a standard score for people
of particular age groups is computed and then trans-
formed as above to create a distribution of scores with
the desired mean and standard deviation.

If a normal distribution of scores is desired (i.e.,
we hold the assumption that a variable is normally
distributed and we believe that the measurement scale
we are using is faulty), we can transform a set
of scores to a normal distribution. This mathemat-
ical transformation is available in many statistical
texts (e.g., [3]). A relatively old normalizing trans-
formation of scores was the stanine distribution. This
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transformation was done by computing the percent-
ages of cases falling below a certain raw score and
changing that raw score to its normal distribution
equivalent using what is known about the normal
density function and tables published at the end of
most statistics texts.

Another common nonlinear transformation is the
percentile scale. A percentile is the percentage of
cases falling below a given raw score. Since the num-
ber of cases falling at each percentile is a constant
(e.g., all percentile scores for a data set contain-
ing 1000 cases represent 10 cases), the distribution
of percentiles is rectangular in shape, rather than
normal or the shape of the original data. This dis-
tributional property means that it is inappropriate to
use statistics that assume normally distributed data.
The primary reason for computing percentiles is for
public consumption since this index appears to be
more easily understood and communicated to a sta-
tistically unsophisticated audience. Percentiles are
the means of communicating many achievement test
scores.

Transformations are useful tools both in providing
a distribution of scores that is amenable to a variety
of statistical analyses and in helping statisticians
communicate the meaning of scores to the general
public. It is, however, important to remember that
we make certain assumptions about the phenomenon
of interest when we transform scores and that we
must return to the basic unit of measurement when
we consider the practical implications of the data we
observe or the manipulations of some variable(s).
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Tree Models

Tree models, also known as multinomial process tree
models, are data-analysis tools widely used in behav-
ioral sciences to measure the contribution of different
cognitive processes underlying observed data. They
are developed exclusively for categorical data, with
each observation belonging to exactly one of a finite
set of categories. For categorical data, the most gen-
eral statistical distribution is the multinomial distri-
bution, in which observations are independent and
identically distributed over categories, and each cat-
egory has associated with it a parameter representing
the probability that a random observation falls within
that category. These probability parameters are gener-
ally expressed as functions of the statistical model’s
parameters, that is, they redefine the parameters of
the multinomial distribution. Linear (e.g., analysis of
variance) and nonlinear (e.g., log-linear and logit)
models are routinely used for categorical data in a
number of fields in the social, behavioral, and biolog-
ical sciences. All that is required in these models is a
suitable factorial experimental design, upon which a
model can be selected without regard to the substan-
tive nature of the paradigm being modeled.

In contrast, tree models are tailored explicitly to
particular paradigms. In tree models, parameters that
characterize the underlying process are often unob-
servable, and only the frequencies in which observed
data fall into each category are known. A tree model
is thus a special structure for redefining the multi-
nomial category probabilities in terms of parameters
that are designed to represent the underlying cog-
nitive process that leads to the observed data. Tree
models are formulated to permit statistical inference
on the process parameters using observed data.

Tree models reflect a particular type of cognitive
architecture that can be represented as a tree, that is,
a graph having no cycles. In a tree that depicts the
underlying cognitive process, each branch represents
a different sequence of processing stages, resulting
in a specific response category. From one stage to
the next immediate stage in a processing sequence,
one parameter is assigned to determine the link
probability. The probability associated with a branch
is the product of the link probabilities along that
branch. Each branch must correspond to a category
for which the number of observations is known;
however, there can be more than one branch for a

given category. The observed response patterns can
thus be considered as the final product of a number
of different cognitive processes, each of which occurs
with a particular probability.

A key characteristic of tree models is that cate-
gory probabilities are usually nonlinear polynomial
functions of the underlying process parameters (in
contrast to the classical models for categorical data
mentioned above, which all have linearity built in
at some level). On the other hand, tree models are
much less detailed than more sophisticated cognitive
models like neural networks. Thus, while tree models
capture some, but not all, of the important vari-
ables in a paradigm, they are necessarily approximate
and incomplete, and hence are confined to particular
paradigms. Despite this disadvantage, the statistical
tractability of a tree model makes it an attractive alter-
native to standard, multipurpose statistical models.

A comprehensive review of the theory and appli-
cations of tree models is given in Batchelder and
Riefer (1999) [1]. For readers interested in learn-
ing more about tree models and statistical inference,
Xiangen Hu has developed an informative website at
http://irvin.psyc.memphis.edu/gpt/.

An Example: ‘Who Said What’ Task

To illustrate the structure of a tree model, consider
the ‘Who Said What’ task. Perceivers first observe a
discussion that involves members of two categories
(e.g., men and women). In a subsequent recognition
test, subjects are shown a set of discussion statements
and asked to assign each statement to its speaker.
Apart from statements that occurred in the discussion
(called old statements), new statements are also
included in the assignment phase. For each statement,
participants must assign Source A (male), Source
B (female), or N (new statement). Figure 1 depicts
a tree model for the three types of statements.
Note that there are a total of 7 process parameters
{D1, D2, d1, d2, a, b, and g}, 15 branches, and 9
response categories (A, B, and N for each tree).

The model assumes that a participant first detects
whether a statement is old or new with probability
D1, D2, or b for source A, B, or new statements,
respectively. If an old statement is correctly detected
as old, then d1 and d2 capture the capacity to
correctly assign the old statement to source A and
B, respectively. If the participant cannot directly
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Figure 1 Tree models representing “who said what” task

attribute a statement to a source (with probability
1–di, i = 1, 2), a guessing process determines the
statement’s source – the effectiveness of this process
is measured by parameter a. If a statement is new,
then another guessing process (the effectiveness of
which is measured by parameter g) is used to
determine the statement’s source. Finally, if an old
statement is not detected as old (with probability
1–Di, i = 1, 2), it is treated as a new statement; as
such, the branches emanating from 1–Di, i = 1, 2,
reproduce the new statement tree.

Several observations emerge from this example.
First, the sequential nature of the process is based
on both cognitive theory and assumptions about how
statements are assigned to sources. Second, some
parameters (e.g., a, g, and b) appear in more than
one tree, implying, for example, that the probability
of assigning a statement that is incorrectly detected as
new to Source A is equal to the probability of assign-
ing an incorrectly identified new statement to Source
A. Since most of the parameters can be interpreted
as conditional probabilities (i.e., conditional on the
success or failure of other processes), it would per-
haps be more appropriate to use different parameters
to represent the same cognitive process in different
trees. However, if S denotes the number of process
parameters and J the number of resulting data cate-
gories, S must be no larger than J –1 for the model to

be statistically well defined. As a result, model real-
ism may be traded off to gain model tractability and
statistical validity.

Finally, note that the category probabilities are the
sums of the products of the underlying processing
parameters. For example, the probability of correctly
identifying a statement from Source A isP(A|A) =
D1d1 + D1(1 − d1)a + (1 − D1)bg. Similarly, the
probability that a random observation falls into
each of the other eight categories can be expressed
as a function of the seven process parameters
(D1, D2, d1, d2, a, b, g). As such, the objective of
tree modeling is to draw statistical inference
on the process parameters using the sample
frequencies of observations that fall into each data
category, thus providing insight into the unknown
cognitive processes.
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Trellis Graphics

Suppose in an investigation of crime in the USA we
are interested in the relationship between crime rates
in different states and the proportion of young males
in the state, and whether this relationship differs
between southern states and the others. To inspect the
relationship graphically we might plot two graphs; the
first a scatterplot of crime rate against proportion of
young males for the southern states and the second
the corresponding scatterplot for the rest. Such a
diagram is shown in Figure 1 based on data given
in [4].

Figure 1 is a simple example of a general scheme
for examining high-dimensional structure in data
by means of conditional one-, two- and three-
dimensional graphs, introduced in [2]. The essential
feature of such trellis displays (or casement displays
as they sometimes called see Scatterplot Matrices)
is the multiple conditioning that allows some type of
graphic for two or more variables to be plotted for
different values of a given variable (or variables). In
Figure 1, for example, a simple scatterplot for two
variables is shown conditional on the values of a

third, in this case categorical, variable. The aim of
trellis graphics is to help in understanding both the
structure of the data and how well proposed models
for the data actually fit.

Some Examples of Trellis Graphics

Blood Glucose Levels

Crowder and Hand [3] report an experiment in which
blood glucose levels are recorded for six volunteers
before and after they had eaten a test meal. Record-
ings were made at times −15,0,30,60,90,120,180,240,
300 and 360 min after feeding time. The whole pro-
cess was repeated six times, with the meal taken at
various times of the day and night. A trellis display
of the relationship between glucose level and time
for each subject, conditioned on the time a meal was
taken is shown in Figure 2. There are clear differ-
ences in the way glucose level changes over time
between the different meal times.

Married Couples

In [4] a set of data that give the heights and ages
of both couples in a sample of married couples
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Figure 1 Scatterplots of crime rate against number of young males for southern states and other states
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Figure 4 Three-dimensional drop-line plots for crime in southern and non-southern states

is presented. Figure 3 shows a scatterplot of the
height of the wife against the height of the husband
conditioned on four intervals of the age of the
husband. In each of the four panels the fitted least
squares regression line is shown. There is some
suggestion in this diagram that amongst the youngest
and the oldest husbands there is a stronger tendency
for taller men to marry taller women than in the two
intermediate age groups.

Crime in the USA

Finally we can return to the data set used for
Figure 1 to illustrate a further trellis graphic (see
Figure 4). Here a three-dimensional ‘drop-line’ plot is
constructed for southern and non-southern states. The
variables are CR-crime rate as defined in Figure 1,
YM-number of young men as defined in Figure 1,
and ED-educational level given by the mean number
of years of schooling ×10 of the population 25 years
old and over.

Some other examples of trellis graphics are given
in [5].

Trellis graphics are available in S-PLUS as descri-
bed in [1].
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Trend Tests for Counts
and Proportions

Cochran–Armitage Trend Test

In an R by 2 or 2 by C contingency table, where
one variable is binary and the other is ordinal, the
Cochran–Armitage test for trend can be used to test
the trend in the contingency table. The binary variable
can represent the response, and the ordinal variable
can represent an explanatory variable with ordered
levels. In an R by 2 table, the trend test can test
whether the proportion increases or decreases along
the row variable. In a 2 by C table, the trend test
can test whether the proportion increases or decreases
along the column variable.

For an R by 2 table, the Cochran–Armitage trend
statistic [2, 4] is defined as

Z2 =

(
R∑

i=1

ni1(xi − x̄)

)2

p+1p+2

R∑
i=1

ni+(xi − x̄)2

, (1)

where ni1 is the count of response 1 (column 1)
for the ith row, ni+ is the sum count of the ith
row, p+1 is the sample proportion of response 1
(column 1), p+2 is the sample proportion of response
2 (column 2), xi is the score assigned to the ith row,
and x̄ = ∑R

i=1 ni+xi /n.
The statistic Z2 has an asymptotic chi-squared dis-

tribution with 1 degree of freedom (see Catalogue of
Probability Density Functions). The null hypothesis
is that the proportion pi1 = ni1/ni+ is the same across
all levels of the exploratory variable. The alterna-
tive hypothesis is that the proportion either increases
monotonically or decreases monotonically along the
exploratory variable. If we are interested in the direc-
tion of the trend, then the statistic Z can be used,
which has an asymptotically standard normal distri-
bution under the null hypothesis.

A simple score selection [6] is to use the cor-
responding row number as the score for that row.
Other score selection can be used based on the spe-
cific problem.

The trend test is based on the linear probability
model, where the response is the binomial propor-
tion, and the exploratory variable is the score of each
level of the ordinal variable. Let πi1 denote the prob-
ability of response 1 (column 1), and pi1 denote the
sample proportion for i = 1, . . . , R. We have

πi1 = α + β(xi − x̄). (2)

The weighted least squares regression (see Least
Squares Estimation) gives the estimate of α and β,
which are

α̂ = p+1,

β̂ =

R∑
i=1

ni+(pi1 − p+1)(xi − x̄)

R∑
i=1

ni+(xi − x̄)2

. (3)

The Pearson statistic for testing independence for
an R by 2 table is

χ2 =

R∑
i=1

ni+(pi1 − p+1)
2

p+1p+2

=

R∑
i=1

ni+(pi1 − π̂i1 + π̂i1 − p+1)
2

p+1p+2

=

R∑
i=1

ni+(pi1 − π̂i1)
2 +

R∑
i=1

ni+(π̂i1 − p+1)
2

p+1p+2

=

R∑
i=1

ni+(pi1 − π̂i1)
2

+
R∑

i=1

ni+(p+1 + β̂(xi − x̄) − p+1)
2

p+1p+2

=

R∑
i=1

ni+(pi1 − π̂i1)
2

p+1p+2
+

R∑
i=1

ni+β̂2(xi − x̄)2

p+1p+2
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=

R∑
i=1

ni+(pi1 − π̂i1)
2

p+1p+2
+

(
R∑

i=1

ni1(xi − x̄)

)2

p+1p+2

R∑
i=1

ni+(xi − x̄)2

.

(4)

Basically, we can decompose the Pearson Statis-
tics into two parts. The first part tests the goodness
of fit of the linear model, and the second part is the
Cochran–Armitage Statistic for testing a linear trend
in the proportions [1].

Exact Cochran–Armitage Test for Trend

An Exact test for trend can be used if the asymptotic
assumptions are not met (see Exact Methods for
Categorical Data). For example, the sample size
may not be large enough, or the data distribution
may be sparse, skewed, and so on. Exact test for
trend is based on the exact conditional method for
contingency tables. Conditional on the row totals and
column totals, to test independence against a trend,
the exact P value is the sum of the probabilities
for those tables having a test statistic larger than or
equal to the observed test statistic Z2. In practice, the
sufficient statistic, T = ∑

xini1, can be used as a test
statistic to compute the exact P value.

Jonckheere–Terpstra Trend Test

In an R by C contingency table, where the col-
umn variable represents an ordinal response, and
the row variable can be nominal or ordinal, some-
times we are interested in testing whether the
ordered response follows either an increasing or
decreasing trend across the rows. For example, fol-
lowing the omnibus Kruskal–Wallis test for dif-
ferences among doses of a sleeping medication,
we might want to determine whether the pro-
portion of subjects who fall asleep within 30
minutes increases as the dose increases. The Jonck-
heere–Terpstra trend test is designed to test the null
hypothesis that the distribution of the response vari-
able is the same across the rows [9]. The alternative
hypothesis is that

s1 ≤ s2 ≤ · · · ≤ sR or s1 ≥ s2 ≥ · · · ≥ sR, (5)

with at least one of the equalities being strict,
where si represents the ith row effect. Unlike
the Cochran–Armitage test, the inequality tested
by the Jonckheere–Terpstra test is not necessarily
linear. The Jonckheere–Terpstra trend test was
proposed independently by Jonckheere [7] and
Terpstra [10], and it is a nonparametric test based
on the sum of the Mann–Whitney–Wilcoxon (see
Wilcoxon–Mann–Whitney Test) statistic M. To
compare row i and row i ′, we have

Mii ′ =
ni∑

j=1

ni′∑
j ′=1

I (ni ′j ′ − nij ), (6)

where I (x) is equal to 0, 1/2, 1 for x < 0, x = 0,
and x > 0 respectively. Then the Jonckheere–Terp-
stra trend test statistic is

J =
R−1∑
i=1

R∑
i ′=i+1

Mii ′ . (7)

Under the null hypothesis that there is no differ-
ence among the rows, the standardized test

J ∗ = J − uJ

σJ

(8)

is asymptotically distributed as a standard normal
variable, where uJ is the expected mean and σJ is
the expected standard deviation under the null. Here

uJ =

(
n2 −

R∑
i=1

n2
i+

)

4
, (9)

and the variance is

σ 2
J = 1

72

(
n2(2n + 3) −

R∑
i=1

[n2
i+(2ni+ + 3)]

)
.

(10)

The Jonckheere–Terpstra test is generally more
powerful than the Kruskal–Wallis test, and should
be used instead if there is specific interest in a trend
in the data.

A modified variance adjusting for the tied values
can also be used [8]. We calculate

σ ∗2
J = J1

d1
+ J2

d2
+ J3

d3
, (11)
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where

J1 = n(n − 1)(2n + 5),

−
R∑

i=1

ni+(ni+ − 1)(2ni+ + 5),

−
C∑

j=1

n+j (n+j − 1)(2n+j + 5),

J2 =
(

R∑
i=1

ni+(ni+ − 1)(ni+ − 2)

)
,

×

 C∑

j=1

n+j (n+j − 1)(n+j − 2)


 ,

J3 =
(

R∑
i=1

ni+(ni+ − 1)

)
 C∑

j=1

n+j (n+j − 1)




d1 = 72, d2 = 36n(n − 1)(n − 2), d3 = 8n(n − 1).

(12)

When there are no ties, all ni+ = 1 and J2 = J3 =
0, resulting in σ ∗2

J = σ 2
J .

The asymptotic Jonckheere–Terpstra test is also
equivalent to Kendall’s tau.

We can also compute the exact Jonckheere–Terp-
stra trend test, which is a permutation test [3],
requiring computation of the test statistic for all
permutations of a contingency table.

Example

This example illustrates the use of the Cochran–
Armitage trend test. Table 1 is a data set from [5].
This is a retrospective study of the lung cancer
and tobacco smoking among patients in hospitals in
several English cities. One question of interest is
whether subjects with higher numbers of cigarettes
daily are more likely to have lung cancer. We use
the equal interval scores {1, 2, 3, 4, 5, 6}. The trend
test statistic Z2 = 129 for df = 1, and the P value is
less than 0.0001. This indicates that there is a strong
linear trend along the row variable, the daily average
number of cigarettes.

Alternatively, we could compute the Jonckheere–
Terpstra test. For the asymptotic test, J = 10 90781,
p < .0001, and z = −10.59; whereas for the exact

Table 1 Retrospective study of lung cancer and tobacco
smoking. Reproduced from Doll, R. & Hill, A.B. (1952).
A study of the aetiology of carcinoma of the lung, British
Medical Journal 2, 1271–1286 [5]

Disease group

Daily average
Number of cigarettes

Lung cancer
patients

Control
patient

None 7 61
<5 55 129
5–14 489 570
15–24 475 431
25–49 293 154
50+ 38 12

test, evidence for the inequality of the patient and
control distributions is even stronger, p < .000001.

Both the Cochran–Armitage and Jonckheere–
Terpstra tests result in the conclusion that the pro-
portion of lung cancer increases as the daily average
number of cigarettes increases.
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Trimmed Means

A trimmed mean is computed by removing a pro-
portion of the largest and smallest observations and
averaging the values that remain. Included as a spe-
cial case are the usual sample mean (no trimming)
and the median. As a simple illustration, consider the
11 values 6, 2, 10, 14, 9, 8, 22, 15, 13, 82, and 11. To
compute a 10% trimmed mean, multiply the sample
size by 0.1 and round the result down to the near-
est integer. In the example, this yields g = l. Then,
remove the g smallest values, as well as the g largest,
and average the values that remain. In the illustration,
this yields 12. In contrast, the sample mean is 17.45.
To compute a 20% trimmed mean, proceed as before;
only, now g is 0.2 times the sample sizes rounded
down to the nearest integer. Some researchers have
considered a more general type of trimmed mean [2],
but the description just given is the one most com-
monly used.

Why trim observations, and if one does trim, why
not use the median? Consider the goal of achiev-
ing a relatively low standard error. Under normality,
the optimal amount of trimming is zero. That is, use
the untrimmed mean. But under very small depar-
tures from normality, the mean is no longer optimal
and can perform rather poorly (e.g., [1], [3], [4],
[8]). As we move toward situations in which out-
liers are common, the median will have a smaller
standard error than the mean, but under normality,
the median’s standard error is relatively high. So, the
idea behind trimmed means is to use a compromise
amount of trimming with the goal of achieving a rel-
atively small standard error under both normal and
nonnormal distributions. (For an alternative approach,
see M Estimators of Location). Trimming obser-
vations with the goal of obtaining a more accurate
estimator might seem counterintuitive, but this result
has been known for over two centuries. For a non-
technical explanation, see [6].

Another motivation for trimming arises when
sampling from a skewed distribution and testing some

hypothesis. Skewness adversely affects control over
the probability of a type I error and power when
using methods based on means (e.g., [5], [7]). As
the amount of trimming increases, these problems are
reduced, but if too much trimming is used, power can
be low. So, in particular, using a median to deal with
a skewed distribution might make it less likely to
reject when in fact the null hypothesis is false.

Testing hypotheses on the basis of trimmed means
is possible, but theoretically sound methods are not
immediately obvious. These issues are easily addres-
sed, however, and easy-to-use software is available
as well, some of which is free [7, 8].
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T-Scores

T -scores are standardized scores. However, unlike
z -scores, which are standardized to have a mean of
0 and an SD of 1, the T -scoring system (due to
McCall [1]) produces a distribution of new scores
with a mean of 50 and an SD of 10. The easiest way
of calculating a T -score is to find the z-score first and
then apply the following simple linear transformation:

T = z × 10 + 50. (1)

T -scoring gives the same benefits as any other
standardizing system in that, for instance, it makes
possible direct comparisons of a person’s scores over
different, similarly scored, tests. However, it has the
additional advantage over z-scores of producing new

scores that are easier to interpret since they are always
positive and expressed as whole numbers.

If the original scores come from a normal pop-
ulation with a known mean and SD, the resulting
T -scores will be normally distributed with mean 50
and SD of 10. Thus, we can convert these back to
z-scores and then use standard normal tables to find
the percentile point for a given T -score.

T -scoring is the scoring system for several test
instruments commonly used in psychology, such as
the MMPI.
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Tukey, John Wilder

Born: June 16, 1915, in Massachusetts, USA.
Died: July 26, 2000, in New Jersey, USA.

It is almost impossible to be a true polymath in mod-
ern science, if only because of the intense pressure to
specialize as early as possible. John Tukey was one
of the few exceptions to this rule in that he made
fundamental contributions to many distinct areas of
science including statistics, computing, and mathe-
matics, where the latter meant his early love, topol-
ogy. What seems to characterize all his work is an
unwillingness to accept the accepted; thus, his most
extensively articulated area of work, Exploratory
Data Analysis (or EDA), sidesteps twentieth century
statistical obsessions with inference to concentrate on
extracting new meanings from data. In other words,
EDA is perhaps best seen as an attempt to recre-
ate an inductive approach to statistics, which may
or may not have actually existed in the past. Cer-
tainly, Tukey’s massive search for novel measures of
location in place of the mean using large scale com-
puter simulations seems to reflect his wish to both
query the foundations of statistics and to make foun-
dational changes in the discipline [1]. Such a work
also mirrors the long running historical debates in
the eighteenth and nineteenth centuries over the def-
inition and role of the mean in statistics, where these
were most decidedly not the unproblematic issues
that they appear today (see [4], [5]). Tukey’s inven-
tion of novel graphical methods can also be viewed
in something like the same light, that is, as both
an undermining throwback to the nineteenth century
when plots and other displays were central tools for
the statistician, and as solutions to modern problems
making use of modern technology such as computers,
visual displays, and plotters.

Tukey’s early life was somewhat isolated and pro-
tected in that he was an only child with most of his
education coming from his mother, who acted as a
private tutor, since, being married, she was unable
to practice her original training as a teacher. Tukey’s
father was also a school teacher, whose metier was
Latin. Tukey’s early degrees were from Brown Uni-
versity (bachelors and masters in chemistry, 1936 and
1937). He then moved to Princeton with the initial
aim of obtaining a PhD in chemistry, but saw the

error of his ways and switched to mathematics (see
the transcript of his early Princeton reminiscence’s
in [6]). After finishing his graduate work in topol-
ogy and obtaining his doctorate in 1939, he was
appointed to an assistant professorship in the Mathe-
matics Department in Princeton and full professorship
in 1950 at the age of 35. Meanwhile, he had dis-
covered statistics when working during the war for
Fire Control Research based in Princeton from 1941
to 1945. Other important workers attached to this
unit were Tukey’s statistical mentor Charles Winsor,
Albert Tucker, and Claude Shannon. After the war,
he alternated between Princeton and the Bell Labora-
tories at Murray Hill, New Jersey. The earliest work
of note is his influential text with Blackman on the
analysis of power spectra, which appeared in 1959.
But while still maintaining an interest in this field,
including the use of computers in the approxima-
tion of complex functions (his well regarded paper
on fast Fourier transforms, for example, had been
published jointly with Cooley in 1964), Tukey had,
nevertheless, begun to move into EDA via the study
of robustness and regression residuals (see Robust
Testing Procedures; Robustness of Standard Tests;
Regression Models). The public side of this finally
emerged in 1977 in the two volumes on EDA [7],
and EDA and regression [3], the latter written jointly
with Frederick Mosteller.

The initial reaction to these books was strongly
positive on many statisticians part, but there were
equally strong negative reactions as well. The British
statistician Ehrenberg, for example, is quoted as
saying that if he had not known who the author
was he would have dismissed EDA as a joke.
Happily EDA survived and flourished, particularly
in the resuscitation and redirecting of regression
analysis from a rather fusty nineteenth century area of
application of least squares methods into a dynamic
and multifaceted technique for the robust exploration
of complex data sets. Further, a great many of
the displays pioneered by Tukey are now staple
fodder in just about all the statistics packages that
one can point to, from the hand-holding ones like
SPSS and Minitab, to the write-your-own-algorithm
environments of S, S-Plus and R. Tukey’s defense of
this apparent fuzziness is well known, arguing as he
did on many occasions that an approximate answer to
the correct question is always preferable to a precise
one to an incorrect one. Tukey in his long and fruitful
career has also inspired generations of students and
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coworkers, as may be seen from the published volume
of collaborative work. In addition, his collected works
now run to nine volumes, although I suspect that this
is not the final count; while the latest book of his that
I can find is one written jointly with Kaye Basford on
the graphical analysis of some classic plant breeding
trials [2], which he published a year before his death
at the age of 84!
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Tukey Quick Test

The Tukey procedure [4] is a two-independent-
samples test of differences in location. It is an alter-
native to the parametric t Test. Despite its simplic-
ity, Neave and Worthington [3] noted that it is ‘an
entirely valid and distribution-free test’. It has the
benefit of easily memorized critical values.

Procedure

The first step is to identify the maximum score in
the sample (AMax) with the smaller median and also
the minimum score in sample (BMin) with the larger
median. The second step is to count the number of
scores in sample B that are lower than AMax and also
the number of scores in sample A that are higher than
BMin.

Hypotheses

The null hypothesis, Ho, is that there is no difference
in the two population medians or that the two samples
were drawn from the same population. The alternative
hypothesis, H1, is that the populations sampled have
different medians or the samples originate from
different populations.

Assumptions

Tukey’s test assumes there are no tied values, espe-
cially at the extreme ends. Neave and Worthing-
ton [3] suggested an iterative method of breaking ties
in all possible directions, computing the test statis-
tic T for each iteration, and making the decision
based on the average value of T . Monte Carlo results
by Fay and Sawilowsky [2] and Fay [1] indicated
that a simpler procedure for resolving tied values
is to randomly assign tied values for or against the
null hypothesis.

Test Statistic

The test statistic, T , is the sum of the two counts
described above. Critical values for the two-tailed test

Table 1 Sample data

Sample A Sample B

201 334
333 418
335 419
340 442
420 469

417

are easily remembered. As long as the ratio of the two
sample sizes is less than 1.5, the critical values for
α = 0.05 and 0.01 are 7 and 10, respectively. Critical
values for the one-tailed test are 6 and 9. Additional
tabled critical values appear in [3].

Example

Consider the data from two samples in the table
below (Table 1).

AMax = 420 from sample A, and BMin = 334 from
sample B. Four scores in sample B are lower than
AMax (334, 418, 419, and 417). Three scores in Group
A are higher than BMin (335, 340, and 420). The
test statistic is T = 3 + 4 = 7, which is significant at
α = 0.050. Thus, the null hypothesis of no difference
in location is rejected in favor of the alternative that
Sample B has the larger median.
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Tversky, Amos

Born: March 16, 1937, in Haifa.
Died: June 2, 1996, in California.

There are two, somewhat different, Amos Tver-
sky’s: one is the high profile co-inventor (with
Daniel Kahneman) of cognitive biases and heuristics,
the other the considerably more retiring mathemat-
ical psychologist heavily involved with the devel-
opment of polynomial conjoint measurement, the
recent Great White Hope of psychological mea-
surement [3]. Although Tversky will almost cer-
tainly be remembered for his joint attack on the
statistical complacency of a generation of psychol-
ogists, and the ramifications of both the Law of
Small Numbers and a raft of related phenom-
ena, the more rigorous side of his contribution
to mathematical psychology should not be over-
looked.

Tversky’s early education was at the Hebrew
University of Jerusalem after a year of army service
as a paratrooper, when he had been awarded a
military decoration for rescuing a fellow soldier who
had got into trouble laying an explosive charge.
He also served his country in 1967 and 1973.
After graduating from the University in 1961 with
a BA in philosophy and psychology, Tversky had
immediately moved to the University of Michigan
in America to take a PhD with Ward Edwards,
then the leading behavioral decision theorist. He was
also taught mathematical psychology at Michigan by
Clyde Coombs whose deep interest in scaling theory
had rubbed off on Tversky. On obtaining his PhD
in 1965, he had then travelled to the east coast for
a year’s work at the Harvard Centre for Cognitive
Studies. He returned to the Hebrew University in
1966 where he was made full professor in 1972.
Interspersed with his time in Israel was a stretch
from 1970 as a fellow at Stanford University’s
Centre for the Advanced Study of the Behavioral
Sciences. In 1978, he finally joined the Psychology
Department at Stanford where he remained until his
death.

In 1969, Tversky had been invited by Daniel
Kahneman, his near contemporary at the Hebrew
University, to give a series of lectures to the Univer-
sity on the human assessment of probability. From

this early collaboration came experimental demon-
stration of the Law of Small Numbers, and the
rest, as they say, is history. Kahneman and Tver-
sky presented a set of deceptively simple stories
recounting statistical problems to a series of math-
ematically and statistically sophisticated audiences.
The results showed the poor quality of the statis-
tical intuitions of these groups, leading Kahneman
and Tversky to invent an ever expanding set of
biases and cognitive short cuts (heuristics), includ-
ing the best known ones of representativeness (the
small mirrors the large in all essential elements),
and availability (the probability that people assign
to events is a direct function of how easily they
are generated or can be retrieved from memory).
Others include the conjunction fallacy, regression to
the mean, anchoring and adjustment, and the sim-
ulation heuristic, where the latter has triggered a
veritable explosion of research into what is termed
‘counterfactual’ reasoning or thinking, that is, ‘but
what if. . .’ reasoning (see Counterfactual Reason-
ing). The movement also attracted additional studies
outside the immediate Tversky–Kahneman, axis, for
example, the work of Fischhoff on the hindsight
bias (‘I always knew it would happen’), while the
notion of biases and heuristics seemed to offer a
framework for other related studies, such as those
on illusory correlation, vividness, and human proba-
bility calibration. Indeed, Tversky’s later economics-
orientated Prospect theory threatened to account
for most behavioral studies of risk and gambling!
This approach also generated the notion of deci-
sion frames, that is, the idea that all choices are
made within a context, or, put another way, that peo-
ple’s risky decision making can only be understood
if you also understand the setting in which it
takes place (classic accounts of the material can
be found in [2], with extensive updates contained
in [1]). Not too surprisingly, the theme of heuris-
tics and biases has also been taken up enthusiasti-
cally by cognitive social psychologists (see [4] for
the initial reaction) (see Decision Making Strate-
gies).

Kahneman was (jointly) awarded the Nobel Prize
for Economics in 2003 for his work on what is now
termed Behavioral Economics. Unfortunately, since
the Prize cannot be awarded posthumously, Tversky
missed being honoured for his seminal contribution
to this new and exciting area.
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Twin Designs

Introduction

The classical twin study compares the phenotypic
resemblances of identical or monozygotic (MZ) and
fraternal or dizygotic (DZ) twins. MZ twins derive
from the splitting of one fertilized zygote and there-
fore inherit identical genetic material. DZ twins are
first-degree relatives because they develop from sep-
arately fertilized eggs and are 50% genetically iden-
tical on average. It follows that a greater within-pair
similarity in MZ compared to DZ twins suggests that
genetic variance influences the trait under study.

The discovery of the twin method is usually
ascribed to Galton [9] although it is uncertain
whether Galton was aware of the distinction between
MZ and DZ twins [22]. It was not until almost 50
years later that explicit descriptions of the classical
twin method were published [14, 25].

Terminology

To disentangle and to quantify the contributions that
genes and the environment make to human complex
traits, data are required either from relatives who
are genetically related but who grow up in unrelated
environments (‘twin adoption design’ (see Adoption
Studies)), or from relatives who grow up in similar
environments but are of differing genetic relatedness
(‘twin design’) [1]. Most twin studies that have been
conducted over the past 80 years are of the latter
type. Only two major studies of the former type
have been conducted, one in Minnesota [2] and
one in Sweden [17]. These studies have found, for
example, that monozygotic twins reared apart from
early in life are almost as similar in terms of general
cognitive ability as are monozygotic twins reared
together, a result suggesting strong genetic influence
and little environmental influence caused by growing
up together in the same family. These influences are
typically called (see Shared Environment) because
they refer to environmental factors contributing to
the resemblance between individuals who grow up
together [20]. Nonshared environmental influences,
on the other hand, refer to environmental factors
that make individuals who grow up together different
from one another.

Twinning

One reason why a predominant number of twin
studies have utilized the twin design instead of the
twin adoption design is that twins typically grow up
together, thus it is much easier to find a large number
of participants for the classic twin study. In humans,
about 1 in 85 live births are twins. The numbers of
identical and same-sex fraternal twins are approxi-
mately equal. That is, of all twin pairs, about one
third are identical twins, one third are same-sex fra-
ternal twins, and one third are opposite-sex fraternal
twins. The rate of twinning differs across countries,
increases with maternal age, and may even be inher-
ited in some families. Greater numbers of fraternal
twins are the result of the increased use of fertil-
ity drugs and in vitro fertilization, whereas the rate
of identical twinning is not affected by these fac-
tors [20].

Zygosity Determination

The best way to determine twin zygosity is by
means of DNA markers (polymorphisms in DNA
itself). If a pair of twins differs for any DNA
marker, they must be fraternal because identical twins
are identical genetically. If a reasonable number of
markers are examined and no differences are found,
it can be concluded that the twin pair is identical.
Physical similarity on highly heritable traits such
as eye color, hair color, or hair texture as well as
reports about twin confusion are also often used for
zygosity determination. If twins are highly similar
for a number of physical traits, they are likely to
be identical. Using physical similarity to determine
twin zygosity typically yields accuracy of more than
90% when compared to genotyping data from DNA
markers (e.g., [5]).

Deriving Heritability and Environmental
Estimates from Twin Correlations

Comparing the phenotypic (see Genotype) resem-
blance of MZ and DZ twins for a trait or measure
under study offers a first estimate of the extent to
which genetic variance is associated with phenotypic
variation of that trait. If MZ twins resemble each
other to a greater extent than do DZ twins, the heri-
tability (h2) of the trait can be estimated by doubling
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the difference between MZ and DZ correlations, that
is, h2 = 2(rMZ − rDZ) [7]. Heritability is defined as
the proportion of phenotypic differences among indi-
viduals that can be attributed to genetic differences
in a particular population. Whereas broad-sense heri-
tability involves all additive and nonadditive sources
of genetic variance, narrow-sense heritability is lim-
ited to additive genetic variance. The proportion of
the variance that is due to the shared environment
(c2) can be derived from calculating c2 = rMZ − h2

where rMZ is the correlation between MZ twins
because MZ similarity can be conceptualized as h2

(similarity due to genetic influences) +c2 (similar-
ity due to shared environmental influences). Substi-
tuting 2(rMZ − rDZ) for h2 offers another way of
calculating shared environment (c2 = 2rDZ − rMZ).
In other words, the presence of shared environmen-
tal influences on a certain trait is suggested if DZ
twin similarity exceeds half the MZ twin similarity
for that trait. Similarly, nonadditive genetic effects
(dominance and/or epistasis) are implied if DZ twin
similarity is less than half the MZ twin correlation.
Finally, nonshared environmental influences (e2) can
be estimated from e2 = rtt − rMZ where rtt is the test-
retest reliability of the measure. If 1 − rMZ is used to
estimate e2 instead, the resulting nonshared environ-
mental influences are confounded with measurement
error. For example, in studies of more than 10,000
MZ and DZ twin pairs on general cognitive ability
(g), the average MZ correlation is 0.86, which is near
the test-retest reliability of the measures, in contrast
to the DZ correlation of 0.60 [21]. Based on this data,
application of the above formulae results in a heri-
tability estimate of h2 = 0.52, shared environmental
estimate of c2 = 0.34 and nonshared environmental
influence/measurement error estimate of e2 = 0.14.

Thus, given that MZ and DZ twin correlations are
available, this straightforward set of formulae can be
used to derive estimates of genetic and environmen-
tal influences on any given trait under study. Instead
of the Pearson product-moment correlation coef-
ficient, twin similarity is typically calculated using
intra-class correlation (ICC1.1; [24]) which is iden-
tical to the former only if there are no mean or
variance differences between the twins.

Requirements and Assumptions

It should be noted that for a meaningful interpreta-
tion of twin correlations in the described manner, a

number of assumptions have to be met: The absence
of assortative mating for the trait in question, the
absence of G(enotype) – E(nvironment) correlation
and interaction, and the viability of the Equal Envi-
ronments Assumption. Each of these assumptions will
be addressed briefly below.

Assortative mating describes nonrandom mat-
ing that results in similarity between spouses and
increases correlations and the genetic similarity for
first-degree relatives if the trait under study shows
genetic influence. Assortative mating can be inferred
from spouse correlations which are comparably low
for some psychological traits (e.g., personality), yet
are substantial for others (e.g., intelligence), with
average spouse correlations of about .40 [10]. In twin
studies, assortative mating could result in underesti-
mates of heritability because it raises the DZ cor-
relation but does not affect the MZ correlation. If
assortative mating were not taken into account, its
effects would be attributed to the shared environment.

Gene-Environment Correlation describes the
phenomenon that genetic propensities can be cor-
related with individual differences in experiences.
Three types of G × E correlations are distinguished:
passive, evocative, and active [19]. Previous research
indicates that genetic factors often contribute substan-
tially to measures of the environment, especially the
family environment [18]. In the classic twin study,
however, G × E correlation is assumed to be zero
because it is essentially an analysis of main effects.

G × E interaction (see Gene-Environment Inter-
action) is often conceptualized as the genetic control
of sensitivity to the environment [11]. Heritability
that is conditional on environmental exposure can
indicate the presence of a G × E interaction. The clas-
sic twin study does not address G × E interaction.

The classic twin model assumes the equality of
pre- and postnatal environmental influences within
the two types of twins. In other words, the Equal
Environments Assumption (EEA) assumes that envi-
ronmentally caused similarity is roughly the same
for both types of twins reared in the same family.
Violations of the EEA because MZ twins experi-
ence more similar environments than DZ twins would
inflate estimates of genetic influences. The EEA has
been tested in a number of studies and even though
MZ twins appear to experience more similar envi-
ronments than DZ twins, it is typically concluded
that these differences do not seem to be responsi-
ble for the greater MZ twin compared to DZ twin



Twin Designs 3

similarity [3]. For example, empirical studies have
shown that within a group of MZ twins, those pairs
who were treated more individually than others do
not behave more differently [13, 15]. Another way
of putting the EEA to a test is studying twins who
were mislabeled by their parents, that is, twins whose
parents thought that they were dizygotic when they
were in fact monozygotic and vice versa. Results typi-
cally show that the similarity of mislabeled twin pairs
reflects their biological zygosity to a much greater
extent than their assumed zygosity [12, 23].

In recent years, the prenatal environment among
twins has received increasing attention (e.g., [4]).
About two thirds of MZ twin pairs are monochorionic
(MC). All DZ twins are dichorionic (DC). The type of
placentation in MZ twins is a consequence of timing
in zygotic diversion. If the division occurs at an
early stage (up to day 3 after fertilization), the twins
will develop separate fetal membranes (chorion and
amnion), that is, they will be dichorionic diamniotic.
When the division occurs later (between days 4
and 7), the twins will be monochorionic diamniotic.
For anthropological measures (such as height), a
‘chorion effect’ has been documented: Within-pair
differences are larger in MC-MZs than in DC-MZs.
Findings for cognitive and personality measures are
less consistent. If possible, chorionicity should be
taken into account in twin studies even if the above
example shows that failing to discriminate between
MC and DC MZ twin pairs does not necessarily lead
to an overestimate of heritability. The importance of
the prenatal maternal environment on IQ has been
demonstrated in a recent meta-analysis [6].

Structural Equation Modeling

The comparison of intra-class correlations between
MZ versus DZ twins can be regarded as a reason-
able first step in our understanding of the etiology
of particular traits. This approach, however, can-
not accommodate the effect of gender on variances
and covariances of opposite-sex DZ twins. To model
genetic and environmental effects as the contribution
of unmeasured (latent) variables to phenotypic dif-
ferences, Structural Equation Modelling (SEM) is
required. Analyzing unvariate data from MZ and DZ
twins by means of SEM offers numerous advances
over the mere use of correlations, including an overall

statistical fit of the model, tests of parsimonious sub-
models, and maximum likelihood confidence inter-
vals for each latent influence included in the model.
The true strength of SEM, however, lies in its applica-
tion to multivariate and multigroup data. During the
last decade powerful models and programs to effi-
ciently run these models have been developed [16].
Extended twin designs and the simultaneous analy-
sis of correlated traits are among the most important
developments that go beyond the classic twin designs,
yet still use the information inherently available in
twins [1].

Outlook

Results from classical twin studies have made a
remarkable contribution to one of the most dra-
matic developments in psychology during the past
few decades: The increased recognition of the impor-
tant contribution of genetic factors to virtually every
psychological trait [20], particularly for phenotypes
such as autism [8]. Currently, worldwide registers
of extensive twin data are being established and
combined with data from additional family members
offering completely new perspectives in a refined
behavioral genetic research [1]. Large-scale longi-
tudinal twin studies (see Longitudinal Designs in
Genetic Research) such as the Twins Early Develop-
ment Study (TEDS) [26] offer opportunities to study
the etiology of traits across time and at the extremes
and compare it to the etiology across the continuum
of trait expression. In this way, twin data remains
a valuable and vital tool in the toolbox of behav-
ior genetics.

References

[1] Boomsma, D., Busjahn, A. & Peltonen, L. (2002).
Classical twin studies and beyond, Nature Reviews
Genetics 3, 872–882.

[2] Bouchard Jr, T.J., Lykken, D.T., McGue, M., Segal, N.L.
& Tellegen, A. (1990). Sources of human psychological
differences: the Minnesota study of twins reared apart,
Science 250, 223–228.

[3] Bouchard Jr, T.J. & Propping, P. (1993). Twins as a Tool
of Behavioral Genetics, John Wiley & Sons, New York.

[4] Carlier, M. & Spitz, E. (2000). The twin method, in
Neurobehavioral Genetics: Methods and Applications,
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Twins Reared Apart
Design

Studies of identical twins raised apart from birth pro-
vide direct estimates of genetic influence on behavior.
This is because when twins are brought up separately,
in uncorrelated environments and with minimal or
no contact until adulthood, their trait similarity is
associated with their shared genes. Fraternal, or non-
identical, twins reared apart offer investigators an
important control group, as well as opportunities
for tests of various interactions between genotypes
and environments. Separated twins are rare, relative
to twins reared together. However, there have been
seven studies of reared apart twins, conducted in
six countries. They include the United States, Great
Britain, Denmark, Japan, Sweden, and Finland [9].
Identifying reared apart twins has been easier in
Scandinavian nations where extensive population reg-
istries are maintained.

Heritability, the portion of population variance
associated with genetic differences in measured traits
can be calculated more efficiently using twins reared
apart than twins reared together. For example, 400
to 500 identical and 400 to 500 fraternal twin pairs
reared together allow heritability to be estimated
with the same degree of confidence as 50 MZ twin
pairs reared apart [5]. This is because heritability
is estimated directly from reared apart twins and
indirectly from reared together twins.

Findings from reared apart twin studies have been
controversial. Four key objections have been raised:
(a) twins reared by relatives will be more similar than
twins reared by unrelated families; (b) twins sepa-
rated late will be more alike than twins separated
early; (c) twins meeting before they are tested will be
more similar than twins meeting later because of their
increased social contact; and (d) similarities in twins’
separate homes will be associated with their measured
similarities [12]. These objections have, however, been
subjected to testing and can be ruled out [1, 2].

A large number of analyses can be conducted
by using the family members of reared apart twins
in ongoing studies. It is possible to compare twin-
spouse similarity, spouse–spouse similarity and sim-
ilarity between the two sets of offspring who are
‘genetic half-siblings’ [8]. Another informative addi-
tion includes the unrelated siblings with whom the

twins were raised; these comparisons offer tests of the
extent to which shared environments are associated
with behavioral resemblance among relatives [11].

A large number of reared apart twin studies
have demonstrated genetic influence on psycholog-
ical, physical, and medical characteristics [1]. One
of the most provocative findings concerns person-
ality development. A personality study combining
four twin groups (identical twins raised together and
apart; fraternal twins raised together and apart) found
that the degree of resemblance was the same for
identical twins raised together and identical twins
raised apart [13]. The shared environment of the
twins reared together did not make them more similar
than their reared apart counterparts; thus, person-
ality similarity in family members is explained by
their similar genes, not by their similar environments.
However, twins reared together are somewhat more
alike in general intelligence than twins reared apart;
the intraclass correlations are 0.86 and 0.75, respec-
tively [6]. These values may be misleading because
most twins reared together are measured as children
(when the modest effects of the shared family envi-
ronment on ability are operative), while twins reared
apart are measured as adults. It is possible that adult
twins reared together would be as similar in intelli-
gence as adult twins reared apart.

Studies of identical reared apart twins are natural
co-twin control studies, thus providing insights into
environmental effects on behavior. For example, it is
possible to see if differences in twins’ rearing histo-
ries are linked to differences in their current behavior.
An analysis of relationships between IQ and rearing
family measures (e.g., parental socioeconomic status,
facilities in the home) did not find meaningful asso-
ciations [2]. Case studies of selected pairs are also
illustrative in this regard. Twins in one set of identical
British women were raised by parents who provided
them with different educational opportunities. Despite
these differences, the twins’ ability levels were quite
close and both twins were avid readers of the same
type of books.

Twins reared apart can also be used to examine
evolutionary-based questions and hypotheses [10].
A finding that girls raised in father-absent homes
undergo early sexual development and poor social
relationships has attracted attention [4]. It has been
suggested that studies of MZ female cotwins reared
separately in father-absent and father-present homes
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could clarify factors underlying this behavioral pat-
tern [3]. Further discussion of the potential role of
reared apart twins in evolutionary psychological work
is available in Mealey [7].
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Two by Two Contingency
Tables

In a two by two contingency table, both the row
variable and the column variable have two levels,
and each cell represents the count for that specific
condition. This type of table arises in many different
contexts, and can be generated by different sampling
schemes. We illustrate a few examples.

• Randomly sample subjects from a single group
and cross classify each subject into four cate-
gories corresponding to the presence or absence
of each of two conditions. This yields a multino-
mial distribution, and each cell count is consid-
ered to be the result of an independent Poisson
process. For example, the 1982 General Social
Survey [1] was used to sample and classify indi-
viduals by their opinions on gun registration and
the death penalty. This sampling scheme yields a
multinomial distribution with four outcomes that
can be arranged as a 2 × 2 table, as in Table 1.
The row variable represents the opinion on gun
registration, and the column variable represents
the opinion on the death penalty.

• Randomly sample subjects from each of two
groups, and classify each of them by a single
binary variable. This results in two independent
binomial distributions (see Catalogue of Proba-
bility Density Functions). For example, a study
was designed to study whether cigarette smoking
is related to lung cancer [6]. Roughly equal num-
bers of lung cancer patients and controls (without
lung cancer) were asked whether they smoked or
not (see Table 2).

• Randomly assign subjects (selected with or with-
out randomization) to one of two treatments, and
then classify each subject by a binary response.

Table 1 Opinions on the death penalty cross-classified
with opinions on gun registration

Gun
Death penalty

registration Favor Oppose Total

Favor 784 236 1020
Oppose 311 66 377

Total 1095 302 1397

Table 2 Lung cancer and smoking

Lung cancer

Smoker Yes No Total

Yes 647 622 1269
No 2 27 29

Total 649 649 1298

Table 3 Treatment and depression improvement

Depression improved?

Treatment Yes No Total

Pramipexole 8 4 12
Placebo 2 8 10

Total 10 12 22

For example, a preliminary randomized, placebo-
controlled trial (see Clinical Trials and Inter-
vention Studies) was conducted to determine the
antidepressant efficacy of pramipexole in a group
of 22 treatment-resistant bipolar depression out-
patients [8]. The data are as in Table 3.

Under the null hypothesis that the two treatments
produce the same response in any given subject
(that is, that response is an attribute of the subject,
independent of the treatments, so that there are some
patients destined to respond and others destined not
to) [2], the column totals are fixed and the cell counts
follow the hypergeometric distribution.

In a two by two table, we are interested in
studying whether there is a relationship between
the row variable and column variable. If there is
an association, then we also want to know how
strong it is, and how the two variables are related
to each other. The following topics in the paper
will help us understand these questions. We use
Table 4 to represent any arbitrary two by two table,

Table 4 Generic two-by-two table

Row variable

Column variable Level 1 Level 2 Total

Level 1 n11 n12 n1+
Level 2 n21 n22 n2+
Total n+1 n+2 n
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where n11, n12, n21, n22 represent the cell counts,
n1+, n2+, n+1, n+2 represent the row totals and col-
umn totals, respectively, and n represents the total
count in the table.

χ2 Test of Independence

For a two by two contingency table, an initial
question is whether the row variable and the col-
umn variable are independent or not, and the χ2

test of independence is one method that can be
used to answer this question. Given that all the
marginal totals (row totals and column totals) are
fixed under the null hypothesis that the row variable
and column variable are independent, the expected
value of nij , assuming independence of rows and
columns, is

mij = ni+n+j

n
, (1)

and Pearson proposed the test statistic

χ2 =
2∑

i=1

2∑
j=1

(nij − mij )
2

mij

. (2)

If the cell counts are large enough, then χ2 has
approximately a chi-square distribution with one de-
gree of freedom. Large values of χ2 lead to the
rejection of the null hypothesis of no association. For
contingency Table 1, χ2 = 5.15 with one degree of
freedom, and the P value is 0.0232, which suggests
that there is an association between one’s opinion
on gun registration and one’s opinion on the death
penalty. Generally, the conventional wisdom is that
all the expected cell counts mij should be larger
than five for the test to be valid, and that if some
cell counts are small, then Fisher’s exact test (see
Exact Methods for Categorical Data) can be used
instead. This is not a very sensible plan, however,
because it would be quite difficult to justify the
use of an approximate test given the availability
of the exact test it is trying to approximate [2, 4].
Moreover, it has been demonstrated that even if all
expected cell counts exceed five, the approximate
test can still give different results from the exact
test. Just as it is a better idea to wear a seat belt
in all weather rather than just in inclement weather,
the safe approach is to select an exact test all
the time. Hence Fisher’s exact test should be used

instead of the chi-square test, for any expected cell
counts.

Difference in Proportions

If there is an association based on the chi-square test
of independence, or preferably Fisher’s exact test,
then we may be interested in knowing how the two
variables are related. One way is to study the pro-
portions for the two groups, and see how they differ.
The difference in proportions is used to compare the
conditional (on the row) distributions of a column
response variable across the two rows. For these mea-
sures, the rows are treated as independent binomial
samples. Consider Table 1, as an example. Let π1

and π2 represent the probabilities of favoring death
penalty for those favoring and opposing gun regis-
tration from the population, respectively. Then we
are interested in estimating the difference between π1

and π2. The sample proportion (using the notation of
Table 4) of those favoring the death penalty, among
those favoring gun registration, is p1 = n11/n1+, and
has expectation π1 and variance π1(1 − π1)/n1+, and
the sample proportion of those favoring the death
penalty among those opposing gun registration can
be computed accordingly. Thus, the difference in pro-
portions has expectation of

E(p1 − p2) = π1 − π2, (3)

and variance (using the notation of Table 4)

σ 2(p1 − p2) = π1(1 − π1)

n1+
+ π2(1 − π2)

n2+
, (4)

and the estimated variance (using the notation of
Table 4) is

σ̂ 2(p1 − p2) = p1(1 − p1)

n1+
+ p2(1 − p2)

n2+
. (5)

Then a 100(1 − α) % confidence interval for
π1 − π2 is

p1 − p2 ± zα/2σ̂ (p1 − p2). (6)

For Table 1, we have

p1 − p2 = 784

1020
− 311

377
= 0.7686 − 0.8249

= −0.0563, (7)
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and

σ̂ 2(p1 − p2) = 0.7686(1 − 0.7686)

1020

+ 0.8249(1 − 0.8249)

377
= 0.000557.

(8)

So the 95% confidence interval for the true
difference is −0.0563 ± 1.96(0.0236), or (−0.010,
−0.103). Since this interval contains only negative
values, we can conclude that π1 − π2 < 0, so people
who favor gun registration are less likely to favor the
death penalty.

Relative Risk and Odds Ratio

To compare how the two groups differ, we can use
the difference of the two proportions. Naturally, we
can also use the ratio of the two proportions, and
this is called the relative risk. The estimated relative
risk is

RR = p1

p2
= n11/n1+

n21/n2+
, (9)

and the estimated variance of log (RR) is

σ̂ 2(log(RR)) = 1

n11
− 1

n1+
+ 1

n21
− 1

n2+
. (10)

Thus a 100(1 − α) % confidence interval for the
relative risk π1/π2 is

exp(RR ± zα/2σ̂ (log(RR))). (11)

Instead of computing the ratio of the proportion of
yes for group 1 versus group 2, we can also compute
the ratio of the odds of yes for group 1 versus for
group 2. This is called the odds ratio. The estimated
odds ratio is

OR = p1/(1 − p1)

p2/(1 − p2)
= n11n22

n12n21
, (12)

and the estimated variance of log(OR) is

σ̂ 2(log(OR)) = 1

n11
+ 1

n12
+ 1

n21
+ 1

n22
. (13)

Then a 100(1 − α) % confidence interval for odds
ratio π1/(1 − π1)/π2/(1 − π2) is

exp(OR ± zα/2σ̂ (log(OR))). (14)

The sample odds ratio is either to 0 or ∞ if any
nij = 0, and it is undefined if both entries are 0 for
a row or column. To solve this problem, a modified
estimate can be used by adding 1/2 to each cell count,
and its variance can be estimated accordingly. The
relationship between the odds ratio and the relative
risk is shown in the following formula

RR = OR × 1 − p1

1 − p2
. (15)

Unlike the relative risk, the odds ratio can be used
to measure an association no matter how the data
were collected. This is very useful for rare disease
retrospective studies such as the study in Table 2.
In such a study, we cannot obtain the relative risk
directly, however, we can still compute the odds ratio.
Since 1 − p1 ≈ 1 and 1 − p2 ≈ 1 for rare diseases,
the relative risk and odds ratio are numerically very
close in such studies, and so the odds ratio can be
used to estimate the relative risk. For example, if
p1 = 0.01 and p2 = 0.001, then we have

RR = p1

p2
= 10, and

OR = p1/(1 − p1)

p2/(1 − p2)
= 0.01/0.99

0.001/0.999
= 10.09,

(16)

which are very close. For the data in Table 2, we have

OR = P(E/D)/P (Ē/D)

P (E/D̄)/P (Ē/D̄)
= P(E ∩ D)/P (Ē ∩ D)

P (E ∩ D̄)/P (Ē ∩ D̄)

= P(D/E)/P (D/Ē)

P (D̄/E)/P (D̄/Ē)
≈ P(D/E)

P (D/Ē)
= RR, (17)

since P(D̄/E)andP(D̄/Ē) are almost 1 for rare
disease. So

RR ≈ OR = n11n22

n12n21
= 647 × 27

622 × 2
= 14.04. (18)

This statistic indicates that the risk of getting
lung cancer is much higher for smokers than it is
for nonsmokers.

Sensitivity, Specificity, False Positive Rate,
and False Negative Rate

These measures are commonly used when evaluating
the efficacy of a screening test for a disease outcome.
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Table 5 VAP diagnosis results

Chest radiograph

Disease status Diagnosis + Diagnosis − Total

VAP 12 1 13
No VAP 8 4 12

Total 20 5 25

Table 5 contains a study assessing the accuracy
of chest radiograph (used to detect radiographic
infiltrates) for the diagnosis of ventilator associated
pneumonia (VAP) [7]. The sensitivity is the true
proportion of positive diagnosis results among the
VAP patients, and the specificity is the true proportion
of negative diagnosis results among those without
VAP. Both the sensitivity and the specificity can be
estimated by

Sensitivity = n11

n1+
= P(Diagnosis + |VAP)

Specificity = n22

n2+
= P(Diagnosis − |No VAP)

(19)

For the data in Table 5, sensitivity = 12/13 = 0.92
and specificity = 4/12 = 0.33.

Sensitivity is also called the true positive rate, and
specificity is also called the true negative rate. They
are closely related to two other two rates, specifically
the false positive rate and the false negative rate. The
false negative rate is the true proportion of negative
diagnosis results among the VAP patients, and the
false positive rate is the true proportion of positive
diagnosis results among those without VAP. The false
positive rate and false negative can be estimated by

False positive rate = n21

n2+
= P(Diagnosis + |No VAP)

= 1 − specificity

False negative rate = n12

n1+
= P(Diagnosis − |VAP)

= 1 − sensitivity., (20)

Another useful term is the false discovery rate,
which is the proportion of subjects without VAP
among all the positive diagnosis results.

Fisher’s Exact Test

When the sample size is small, the χ2 test based
on large samples may not be valid, and Fisher’s
exact test can be used to test the independence of a
contingency table. For given row and column totals,
the value n11 determines the other three cell counts
(there is but one degree of freedom). Under the
null hypothesis of independence, the probability of
a particular value n11 given the marginal totals is

P(n11) = (n1+!n2+!)(n+1!n+2!)

n!(n11!n12!n21!n22!)
, (21)

which is the hypergeometric probability function (see
Catalogue of Probability Density Functions). One
would enumerate all possible tables of counts consis-
tent with the row and column totals ni+ and n+j . For
each one, the associated conditional probability can
be calculated using the above formula, and the sum
of these probabilities must be one. To test indepen-
dence, the P value is the sum of the hypergeometric
probabilities for those tables at least as favorable to
the alternative hypothesis as the observed one. That
is, for a given two by two table, the P value of the
Fisher exact test is the sum of all the conditional prob-
abilities that correspond to tables that are as extreme
as or more extreme than the observed table. Con-
sider Table 3, for example. The null distribution of
n11 is the hypergeometric distribution defined for all
the two by two tables having row totals and column
totals (12,10) and (10,12). The potential values for
n11 are (0, 1, 2, 3, . . . , 10). First, we can compute the
probability of the observed table as

P(4) = (12!10!)(10!12!)

22!(8!4!2!8!)
= 0.0344. (22)

Other possible two by two tables and their proba-
bilities are[

10 2
0 10

]
Prob = 0.0001

[
9 3
1 9

]
Prob = 0.0034[

7 5
3 7

]
Prob = 0.1470

[
6 6
4 6

]
Prob = 0.3001[

5 7
5 5

]
Prob = 0.3086

[
4 8
6 4

]
Prob = 0.1608[

3 9
7 3

]
Prob = 0.0408

[
2 10
8 2

]
Prob = 0.0046[

1 11
9 1

]
Prob=0.0002

[
0 12
10 0

]
Prob=0.0000015

(23)
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Together with the observed probability, these
probabilities sum up to one. The sum of the proba-
bilities of the tables in the two-sided rejection region
is 0.0427. This rejects the null hypothesis of inde-
pendence (at the customary 0.05 level), and suggests
that treatment and improvement are correlated. The
one-sided rejection region would consist of the tables
with upper-left cell counts of 10, 9, and 8, and the
one-sided P value is 0.0001 + 0.0034 + 0.0344 =
0.0379. Fisher’s exact test can be conservative, and
so one can use the mid-P value or the P value inter-
val [3].

Simpson’s Paradox

For a 2 × 2 × 2 contingency table, Simpson’s Para-
dox refers to the situation in which a marginal
association has a different direction from the con-
ditional associations (see Measures of Association).
In a 2 × 2 × 2 contingency table, if we cross clas-
sify two variables X and Y at a fixed level of binary
variable Z, we can obtain two 2 × 2 tables with vari-
ables X and Y and they are called partial tables.
If we combine the two partial tables, we can obtain
one 2 × 2 table and this is called the marginal table.
The associations in the partial tables are called par-
tial associations, and the association in the marginal
table is called marginal association. Table 6 is a
2 × 2 × 2 contingency table that studied the rela-
tionship between urinary tract infections (UTI) and
antibiotic prophylaxis (ABP) [9].

The last section of Table 6 displays the marginal
association. As we can see, 3.28% of the patients
who used antibiotic prophylaxis got UTI, and 4.64%
of patients who did not use antibiotic prophylaxis got
UTI. Clearly, the probability of UTI is lower for those
who used antibiotic prophylaxis than it is for those

who did not. This is consistent with previous findings
that antibiotic prophylaxis is effective in preventing
UTI. But now consider the first two partial tables in
Table 6, which display the conditional associations
between antibiotic prophylaxis and UTI. When the
patients were from four hospitals with low incidence
of UTI, the probability of UTI is higher for those
who used antibiotic prophylaxis 1.80% − 0.70% =
1.10%. It might seem that to compensate for this
reversed effect, the patients from the four hospitals
with high incidence of UTI would have shown a very
strong trend in the direction of higher UTI incidence
for those without the antibiotic prophylaxis. But alas
this was not the case. In fact, the probability of UTI
is higher for those who used antibiotic prophylaxis
13.25% − 6.51% = 6.74%.

Thus, controlling for hospital type, the probability
of UTI is higher for those who used antibiotic
prophylaxis. The partial association gives a different
direction of association compared to the marginal
associations. This is called Simpson’s Paradox [9].
The reason that the marginal association and partial
associations have different directions is related to
the association between the control variable, hospital
type, and the other two variables. First, consider the
association between hospital type and the usage of
antibiotic prophylaxis based on the marginal table
with these two variables. The odds ratio equals

1113 × 1520

(720 × 166)
= 14.15, (24)

which indicates a strong association between hospital
type and the usage of antibiotic prophylaxis. Patients
from the four hospitals with low incidence of UTI
were more likely to have used antibiotic prophylaxis.
Second, the probability of UTI is tautologically
higher for the four high incidence hospitals. The odds

Table 6 Urinary tract infections (UTI) and antibiotic prophylaxis (ABP)

Antibiotic
UTI?

Hospital prophylaxis Yes No Percentage

Patients from four hospitals with Yes 20 1093 1.80%
Low incidence of UTI (≤ 2.5%) No 5 715 0.70%

Patients from four hospitals with Yes 22 144 13.25%
High incidence of UTI (> 2.5%) No 99 1421 6.51%

Total Yes 42 1237 3.28%
No 104 2136 4.64%
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ratio based on the marginal table of hospital and
UTI is

25 × 1565

(1808 × 121)
= 0.18. (25)

An explanation of the contrary results in Simp-
son’s Paradox is that there are other confounding
variables that may have been unrecognized.
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Two-mode Clustering

Data in the behavioral sciences often can be written in
the form of a rectangular matrix. Common examples
include observed performances denoted in a person
by task matrix, questionnaire data written in a person
by item matrix, and semantic information written in
a concept by feature matrix. Rectangular matrix data
imply two sets of entities or modes, the row mode
and the column mode.

Within the family of two-mode data, several
subtypes may be distinguished. Common subtypes
include case by variable data that denote the value
(data entry) that each of the variables (columns)
under study takes for each case (row) under study,
contingency table data (see Contingency Tables) that
denote the frequency (data entry) with which each
combination of a row entity and a column entity
is being observed, and categorical predictor/criterion
data that denote the value of some criterion variable
(data entry) observed for each pair of values of two
categorical predictor variables (corresponding to the
elements of the row and column modes).

Two-mode data may be subjected to various kinds
of clustering methods. Two major subtypes are indi-
rect and direct approaches. Indirect clustering meth-
ods presuppose the conversion of the two-mode data
into a set of (one-mode) proximities (similarities or
dissimilarities see Proximity Measures) among the
elements of either the row or the column mode;
this conversion is usually done as a separate step
prior to the actual cluster analysis. Direct clustering
methods, on the other hand, directly operate on the
two-mode data without a preceding proximity trans-
formation. Several direct clustering methods yield a
clustering of the elements of only one of the modes
of the data. Optionally, such methods can be applied
twice to yield successively a clustering of the row
entities and a clustering of the column entities.

As an alternative, one may wish to rely on
direct two-mode clustering methods. Such methods
yield clusterings of rows and columns simultaneously
rather than successively. The most important advan-
tage of simultaneous approaches is that they may
reveal information on the linkage between the two
modes of the data.

As most methods of data analysis, two-mode
clustering methods imply a reduction of the data,
and, hence, a loss of information. The goal of the

clustering methods, however, is that the loss is
as small as possible with regard to the particular
subtype of information that constitutes the target of
the clustering method under study, and into which the
method aims at providing more insight. For case by
variable data, the target information typically consists
of the actual values the variables take for each of
the cases; two-mode clustering methods for this type
of data aim at reconstructing these values as well
as possible. Furthermore, for contingency table data,
the target information typically pertains to the amount
of dependence between the row and column modes,
whereas for categorical predictor/criterion data it
consists of the amount of interaction as implied by
the prediction of the data entries on the basis of the
categorical row and column variables.

Basic Two-mode Clustering Concepts

Since the pioneering conceptual and algorithmic work
by Hartigan [3] and Bock [1], a large number of
quite diverse simultaneous clustering methods has
been developed. Those range from heuristic ad hoc
procedures, over deterministic structures estimated
in terms of some objective or loss function, to
fully stochastic model-based approaches. A structured
overview of the area can be found in [4].

To grasp the multitude of methods, two conceptual
distinctions may be useful:

1. The nature of the clusters: a cluster may be
a set of row elements (row cluster), a set of
column elements (column cluster), or a Cartesian
product of a set of row elements and a set of
column elements (data cluster). One may note
that each data cluster as obtained from a two-
mode clustering procedure always implies a row
and a column cluster; the reverse, however, does
not necessarily hold.

2. The set-theoretical structure of a particular set
of clusters or clustering (see also Figure 1, to
be discussed below): this may be (a) a parti-
tioning, (b) a nested clustering (i.e., a clustering
that includes intersecting clusters, albeit such
that intersecting clusters are always in a subset-
superset relation), and (c) an overlapping cluster-
ing (i.e., a clustering that includes intersecting,
nonnested clusters).
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(a) (b) (c)

Figure 1 Schematic representation of hypothetical examples of three types of two-mode clustering: (a) partitioning,
(b) nested clustering, (c) overlapping clustering

The data clustering constitutes the cornerstone
of any two-mode cluster analysis. As such it is
the key element in the representation of the value,
dependence, or interaction information in the data.
For case by variable data, this representation (and,
more in particular, the reconstruction of the data
values) further relies on parameters (scalar or vector)
associated with the data clusters. Otherwise, we will
limit the remainder of this exposition to case by
variable data.

In general, two-mode clustering methods may
be considered that yield row, column and data
clusterings with different set-theoretical structures as
distinguished above. However, here we will consider
further only methods that yield row, column, and data
clusterings of the same type. Taking into account
the three possible set-theoretical structures, we will
therefore focus on the three types of clustering as
schematically presented in Figure 1.

In what follows, we will briefly present one
instance of each type of clustering method. Each
instance will further be illustrated making use of
the same 14 × 11 response by situation data matrix
obtained from a single participant who was asked to
rate the applicability of each of 14 anxiety responses
to each of 11 stressful situations, on a 5-point
scale ranging from 1 (=not applicable at all) to 5
(=applicable to a strong extent).

Partitioning

Two-mode partitioning methods of a data matrix
X imply a partitioning of the Cartesian product
of the row and column modes that is obtained
by fully crossing a row and a column partitioning
(see leftmost panel in Figure 1). In one common
instance of this class of methods, each data cluster

A × B is associated with a (scalar) parameter µA,B .
The clustering and parameters are further such that
all entries xab (with a ∈ A, b ∈ B) are as close as
possible to the corresponding value µA,B (which acts
as the reconstructed data value). This implies that
row entries of the same row cluster behave similarly
across columns, that column entries of the same
column cluster behave similarly across rows, and that
the data values are as homogeneous as possible within
each data cluster.

The result of a two-mode partitioning of the
anxiety data is graphically represented in Figure 2.
The representation is one in terms of a so-called
heat map, with the estimated µA,B-parameters being
represented in terms of grey values. The analysis
reveals, for instance, an avoidance behavior class
(third row cluster) that is associated fairly strongly
with a class of situations that imply some form
of psychological assessment (third column clus-
ter).

Nested Clustering

One instance in this class of methods is two-mode
ultrametric tree modeling. In this method, too, each
data cluster A × B is associated with a (scalar)
parameter µA,B . As for all two-mode clustering
methods for case by variable data that are not
partitions, ultrametric tree models include a rule for
the reconstruction of data entries in intersections
of different data clusters. In the ultrametric tree
model, the data reconstruction rule makes use of
the Maximum (or Minimum) operator. In particular,
the clustering and µA,B-parameters are to be such
that all entries xab are as close as possible to
the maximum (or minimum) of the µA,B-values of
all data clusters A × B to which (a, b) belongs.
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R heart beats faster
R uneasy feeling

R emotions disrupt action

R perspires
R needs to urinate

R mouth dry 
R immobilized

R full feeling in stomach
R loose bowels

R nausea 

R not exhilarated 
R want to avoid 

R not enjoy 
R not seek such experiences

Legend:

1 2 3 4 5

Figure 2 Two-mode partitioning of anxiety data

Optionally, a data cluster can be interpreted as a
feature that applies to the row and column entries
involved in it.

Part of the result of a two-mode ultrametric
tree analysis of the anxiety data (making use of
a constrained optimization algorithm) is graphically
represented as a tree diagram in Figure 3. (The
representation is limited to a subset of situations
and responses to improve readability.) In Figure 3,
the data clusters correspond to the vertical lines and
comprise all leaves at the right linked to them. The
µA,B-values can further be read from the hierarchical
scale at the bottom of the figure. As such, one can
read from the lower part of Figure 3 that the two
psychological assessment-related situations ‘consult
counseling bureau’ and ‘psychological experiment’
elicit ‘not enjoy’ and ‘not feel exhilarated’ with
strength 5, and ‘not seek experiences like this’ with
strength 4.5.

Overlapping Clustering

Hierarchical classes models [2] are overlapping two-
mode clustering methods for case by variable data
that make use of a data reconstruction rule with
a Maximum (or Minimum) operator. In case of
positive real-valued data, the hierarchical classes
model can be considered a generalization of the two-
mode ultrametric tree, with each data cluster again
being associated with a µA,B-parameter, and with the
clustering and parameters being such that all entries
xab are as close as possible to the maximum of
the µA,B-values of all data clusters A × B to which
(a, b) belongs. The generalization implies that row,
column, and data clusters are allowed to overlap. The
row and column clusters of the model then can be
considered to be (possibly overlapping) types that
are associated with a value of association strength
as specified in the model. A distinctive feature of
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R want to avoid

S final exam

S alone in woods at night

S speech before large group

R not seek experiences like this

R not enjoy the challenge

R not feel exhilarated

S consult counseling bureau

S psychological experiment

1 2 3 4 5

Figure 3 Part of a two-mode ultrametric tree for anxiety data

R not exhilaratedR perspire
R need to urinate

R mouth dry
R immobilized

R full feeling in stomach
R loose bowels

R nausea
R emotions disrupt action

R heart beats faster
R uneasy feeling

R want to avoid
R not enjoy

R not seek such experiences

S new date
S ledge high on mountain
S sailing boat rough sea

S job interview

S auto trip
S psychological experiment
S consult counseling bureau
S alone in woods at night 

S speech before large group
S match in front of audience

S final exam

3 3

Figure 4 Overlapping clustering (HICLAS-R model) of anxiety data

hierarchical classes models further reads that they
represent implicational if-then type relations among
row and among column elements.

The result of a hierarchical classes analysis of
the anxiety data is presented in Figure 4. A data
cluster can be read from this figure as the set of
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all situations and responses linked to a particular
zigzag; the µA,B-value associated with this cluster
is further attached as a label to the zigzag. The
represented model, for instance, implies that the two
psychological assessment-related situations elicit ‘not
exhilarated’ and ‘not enjoy’ with value 3 (encircled
number). From the representation, one may further
read that, for instance, if a situation elicits ‘not
enjoy’ (with some association value) then it also
elicits ‘not exhilarated’ (with at least the same
value of association strength) (see Cluster Analysis:
Overview; Overlapping Clusters).

Software

Two-mode clustering methods mostly have not been
incorporated in general purpose statistical packages.
Exceptions include variants of a nested method (two-
way joining) due to Hartigan as incorporated within
Statistica and Systat, and an overlapping method
(Boolean factor analysis) as incorporated within
BMDP. A number of two-mode clustering meth-
ods are available from their developers as stand-alone

programs. Finally, more specific packages are being
developed within specialized areas such as bioinfor-
matics, in particular, for applications in microarray
data analysis (see Microarrays).
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Two-way Factorial:
Distribution-Free Methods

The classical tests for main effects and interaction in
a J × K two-way factorial design are the F tests
in the two-way fixed-effects analysis of variance
(ANOVA) (see Fixed and Random Effects), with
the assumptions of normality, independence, and
equal variances of errors in the J × K cells. When all
assumptions are met and the null hypotheses are true,
the sampling distribution of each F is distributed as
a theoretical F distribution with appropriate degrees
of freedom, in which the F -critical values cut off
exactly the set α in the upper tail.

When any assumption is violated, the sam-
pling distributions might not be well-fit by the
F distributions, and the F -critical values might not
cut off exactly α. Also, violation of assumptions
can lead to poor power properties, such as when
the power of F decreases as differences in means
increase. The extent to which the F -statistics are
resistant to violations of the assumptions is called
robustness , and is often measured by how close the
true α in the sampling distribution is to the set α, and
by having power functions where power increases
as mean differences increase. Also, power should
be compared for different statistical methods in the
same circumstances, with preference being given to
those methods that maintain control of α and have
the best power.

Alternatives to relying on the robustness of the
F tests might be available in the area of nonpara-
metric methods. These methods are so named because
their early ancestors were originally designed to test
hypotheses that had no parameters, but were tests of
equality of entire distributions. Many of the modern
nonparametric methods test hypotheses about param-
eters, although often not the means nor treatment
effects of the model. They also free the researcher
from the normality assumption of the ANOVA (see
Distribution-free Inference, an Overview).

Such alternative methods include permutation
tests [5], bootstrap tests [6], the rank transform [7],
aligned ranks tests [9], tests on trimmed means [21],
and a rank-based ANOVA method that allows het-
eroscedastic variances, called the BDM method (after
the surnames of the authors of [4]). Some of these
are more general procedures that can be useful

when combined with any statistic, for example, the
bootstrap method might be combined with tests on
trimmed means, using the bootstrap to make the deci-
sion on the hypothesis rather than using a standard
critical value approach.

Permutation Tests

Permutation tests (see Linear Models: Permutation
Methods) rely on permuting the observations among
treatments in all ways possible, given the design of
the study and the treatments to be compared. For
each permutation, a treatment comparison statistic is
computed, forming a null reference distribution. The
proportion of reference statistics equal to or more
extreme than that computed from the original data is
the P value used to test the null hypothesis. If the
number of permissible permutations is prohibitively
large, the P value is computed from a large random
sample of the permutations.

Using a simple 2 × 2 example with n = 2 per
cell, if the original data were as in Table 1, then one
permutation of the scores among the four treatment
combinations would be as in Table 2.

Permutation tests rely on the original sampling,
so the permutation illustrated above would be appro-
priate for a completely randomized two-way design.
As the random sample of subjects was randomly
assigned two to each cell, any permutation of the
results, two scores to each cell would be permissi-
ble. Observations may be exchanged between any
pair of cells. For randomized block designs, however,
the only permissible permutations would be those in

Table 1 Original data

1 3

2 4

5 7

6 8

Table 2 Permutation
of data

3 1

2 7

8 4

6 5
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Table 3 Bootstrap sample
of data

3 1

1 7

8 6

8 5

which scores are exchanged between treatments but
within the same block. Software for permutation tests
includes [5, 12, 14, 16, and 17].

Bootstrap Tests

Bootstrap tests follow a pattern similar to permutation
tests except that the empirical distribution is based on
B random samples from the original data rather than
all possible rearrangements of the data. Put another
way, the bootstrap uses sampling with replacement.
So from the original data above, a possible sample
with replacement would be as in Table 3.

A generally useful taxonomy is given by [13] for
some of these methods that use an empirically gener-
ated sampling distribution. Consider these methods as
resampling methods, and define the sampling frame
from which the sample is to be selected as the set of
scores that was actually observed. Then, resampling
can be done without replacement (the permutation
test) or with replacement (the bootstrap). Both of
these use the original sample size, n, as the sam-
ple size for the resample (using a subsample of size
m < n leads to the jackknife).

The percentile bootstrap method for the two-way
factorial design is succinctly covered in [21, p. 350].
For broader coverage, [6] and [10] give book-length
coverage of the topic, including the percentile
bootstrap method. Software for bootstrap tests
includes [12], and macros from www.sas.com [15].

Rank Transform

The concept behind the rank transform is to substitute
ranks for the original observations and compute the
usual statistic (see Rank Based Inference). While
this concept is simple and intuitively appealing, and
while it works in some simpler settings (including
the correlation, the two-independent-sample case, and
the one-way design), it has some problems when

applied to the two-way factorial design. Notably, the
ranks are not independent, resulting in F tests that
do not maintain α-control. Put another way, the linear
model and the F tests are not invariant under the rank
transformation. Ample evidence exists that the rank
transform should not be considered for the two-way
factorial design [2, 18, 19, and 20] but it persists in
the literature because of suggestions like that in [15].

Indeed, documentation for the SAS programming
language [15] suggest that a wide range of linear
model hypotheses can be tested nonparametrically by
taking ranks of the data (using the RANK procedure)
and using a regular parametric procedure (such as
GLM or ANOVA) to perform the analysis. It is likely
that these tests are as suspect in the wider context of
linear models as for the J × K factorial design.

Other authors [11] have proposed analogous rank-
based tests that rely on chi-squared distributions,
rather than those of the t and F random variables.
However, [20] establishes that these methods have
problems similar to those that employ F tests.

Aligned Ranks Tests

When one or more of the estimated sources in the
linear model are first subtracted from the scores,
and the subsequent residuals are then ranked, the
scores are said to have been aligned, and the tests are
called aligned ranks tests [9]. Results for the two-
way factorial design show problems with liberal α

for some F tests in selected factorial designs with cell
sizes of 10 or fewer [20]. However, results from other
designs, such as the factorial Analysis of Covariance
(ANCOVA), are promising for larger cell sizes, that
is, 20 or more [8].

Tests on Trimmed Means

For a method that is based on robust estimators,
tests on 20% trimmed means are an option. For the
ordered scores in each cell, remove 20% of both the
largest and smallest scores, and average the remaining
60% of the scores, yielding a 20% trimmed mean. For
example, if n = 10, then 0.2(n) = 0.2(10) = 2. If the
data for one cell are

23 24 26 27 34 35 38 45 46 56,

then the process to get the 20% trimmed mean would
be to remove the 23 and 24 and the 46 and 56. Then
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the 20% trimmed mean would sum 26 through 45 to
get 205, then divide by 0.6n to get 205/6 = 34.17.

The numerators of the test statistics for the main
effects and interactions are functions of these trimmed
means. The denominators of the test statistics are
functions of 20% Winsorized variances (see Win-
sorized Robust Measures).

To obtain Winsorized scores for the data in each
cell, instead of removing the 20% largest and smallest
scores, replace the 20% smallest scores with the
next score up in order, and replace the 20% largest
scores with the next score down in order. Then
compute the unbiased sample variance on these
Winsorized scores.

For the data above, the 20% Winsorized scores
would be

26 26 26 27 34 35 38 45 45 45

and the 20% Winsorized variance would be obtained
by computing the unbiased sample variance of these
n = 10 Winsorized scores, yielding 68.46.

For complete details on heteroscedastic methods
using 20% trimmed means and 20% Winsorized vari-
ances, see [21]. While t Tests or F tests based on
trimmed means and Winsorized variances are not
nonparametric methods, they are robust to nonnor-
mality and unequal variances, and provide an alter-
native to the two-way ANOVA. Of course, when
combined with, say, bootstrap sampling distributions,
tests based on trimmed means take on the additional
property of being nonparametric.

BDM

Heteroscedastic nonparametric F tests for factorial
designs that allow for tied values and test hypotheses
of equality of distributions were developed by [4].
This method, called the BDM method (after the
authors of [4]), is based on F distributions with
estimated degrees of freedom generalized from [3].
All of the N observations are pooled and ranked,
with tied ranks resolved by the mid-rank solution
where the tied observations are given the average of
the ranks among the tied values. Computation of the
subsequent ANOVA-type rank statistics (BDM tests)
is shown in [21, p. 572]. Simulations by [4] showed
these BDM tests to have adequate control of α and
competitive power.

Hypotheses

The hypotheses tested by the factorial ANOVA for
the A main effect, B main effect, and interaction,
are, respectively,

Ho: αj = µj − µ = 0 for all j = 1 to J

Ho: αk = µk − µ = 0 for all k = 1 to K

Ho: αβjk = µjk − µj − µk + µ = 0 for all

j = 1 to J, for all k = 1 to K. (1)

Some of the rank procedures might claim to test
hypotheses where rank mean counterparts are substi-
tuted for the appropriate µ’s in the above hypotheses,
but in reality they test truly nonparametric hypothe-
ses. Such hypotheses are given as a function of the
cumulative distribution for each cell, Fjk (x), see [1].
Fj. is the average of the Fjk (x) across the K levels of
B, F.k is the average of the Fjk (x) across the J levels
of A, and F.. is the average of the Fjk (x) across the
JK cells. Then the hypotheses tested by these non-
parametric methods for the A main effect, B main
effect, and interaction, are, respectively,

Ho: Aj = Fj. − F.. = 0 for all j = 1 to J

Ho: Bk = F.k − F.. = 0 for all k = 1 to K

Ho: ABjk = Fjk (x) − Fj. − Fk + F.. = 0 for all

j = 1 to J, for all k = 1 to K. (2)

So the permutation tests, bootstrap tests, aligned
ranks tests, and BDM all test this last set of hypothe-
ses. The tests based on trimmed means test hypothe-
ses about population trimmed means, unless, of
course, they are used in the bootstrap. Practically,
the nonparametric tests allow a researcher to say that
the distributions are different, without specifying a
particular parameter for the difference.
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Type I, Type II and Type
III Sums of Squares

Introduction

In structured experiments to compare a number of
treatments, two factors are said to be balanced if each
level of the first factor occurs as frequently at each
level of the second. One example of this is a random-
ized block design, where each level of J treatments
occurs only once in each of the K blocks; thus, every
possible block-treatment combination occurs once. In
balanced designs, blocks and treatments are orthog-
onal factors.

Orthogonal factors are linearly independent: When
graphed in n-dimensional space, orthogonal factors
lie at a right angle (90°) to one another. As in other
linearly independent relationships, orthogonal factors
are often, but not always, uncorrelated with one
another [4]. Orthogonal factors become correlated if,
upon centering the factors, the angle between the
factors deviates from 90°.

In balanced designs, (1) least-squares estimates
(see Least Squares Estimation) of treatment param-
eters (each of the factor’s levels) are simply the con-
trast of the levels’ means, and (2) the sum of squares
for testing the main effect of A depends only on the
means of the factor’s levels and does not involve
elimination of blocks [3]. Property (2) implies that
each level of the blocking variable contributes equally
to the estimation of the main effect. Whenever prop-
erties (1) and (2) are true, the factor and blocking
variable are orthogonal, and as a result, the factor’s
main effect is estimated independently of the blocking
variable. Similarly, in a two-way ANOVA design in
which cells have equal numbers of observations and
every level of factor A is crossed once with every
level of factor B, the A and B main effects are inde-
pendently estimated, neither one affecting the other
(see Factorial Designs).

Properties (1) and (2) also hold in another type
of orthogonal design, the Latin square. In an n × n

Latin square, each of the n treatments occurs only
once in each row and once in each column. Here,
treatments are orthogonal to both rows and columns.
Indeed, rows and columns are themselves orthogonal.
Thus, when we say that a Latin square design is an

orthogonal design, we mean that it is orthogonal for
the estimation of row, column, and main effects.

In nonorthogonal designs, the estimation of the
main effect of one factor is determined in part by
the estimation of the main effects of other factors.
Nonorthogonal factors occur when the combination
of their levels is unbalanced. Generally speaking,
unbalanced designs arise under one of two circum-
stances: either one or more factor level combinations
are missing because of the complete absence of obser-
vations for one or more cells or factor level combi-
nations vary in number of observations.

Whenever nonorthogonality is present, the effects
in an experiment are confounded (yoked). Consider
the two 3 × 3 designs below in which each cell’s
sample size is given.

Design I

B
1 2 3

1 5 5 5
A 2 5 5 5

3 5 5 0

Design II

B
1 2 3

1 5 5 5
A 2 5 5 5

3 5 5 2

In both designs, factors A and B are confounded,
and thus, nonorthogonal. In Design I, nonorthogo-
nality is due to the zero frequency of cell a3b3: (see
Structural Zeros) main effect B (i.e., comparing lev-
els B1, B2, and B3) is evaluated by collapsing within
each level of B rows A1, A2, and A3. However,
while A1, A2, and A3 are available to be collapsed
within B1 and B2, only A1 and A2 are available
within B3. As a result, the main effect hypothesis for
factor B cannot be constructed so that its marginal
means are based on cell means that have all of the
same levels of factor A. Consequently, the test of
B’s marginal means is confounded and dependent on
factor A’s marginal means. Similarly, the test of A’s
marginal means is confounded and dependent on fac-
tor B’s marginal means. In Design II, factors A and
B are confounded because of the smaller sample size
of cell a3b3: the main effect hypothesis for factor B
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(and A) cannot be constructed so that each of factor
A’s (and B’s) levels are weighted equally in testing
the B (and A) main effect.

Sum of Squares

In an orthogonal or balanced ANOVA, there is no
need to worry about the decomposition of sums of
squares. Here, one ANOVA factor is independent
of another ANOVA factor, so a test for, say, a sex
effect is independent of a test for, say, an age effect.
When the design is unbalanced or nonorthogonal,
there is not a unique decomposition of the sums of
squares. Hence, decisions must be made to account
for the dependence between the ANOVA factors in
quantifying the effects of any single factor. The
situation is mathematically equivalent to a multiple
regression model where there are correlations among
the predictor variables. Each variable has direct and
indirect effects on the dependent variable. In an
ANOVA, each factor will have direct and indirect
effects on the dependent variable. Four different types
of sums of squares are available for the estimation of
factor effects. In an orthogonal design, all four will
be equal. In a nonorthogonal design, the correct sums
of squares will depend upon the logic of the design.

Type I SS

Type I SS are order-dependent (hierarchical). Each
effect is adjusted for all other effects that appear
earlier in the model, but not for any effects that
appear later in the model. For example, if a three-way
ANOVA model was specified to have the following
order of effects,

A, B, A × B, C, A × C, B × C, A × B × C,

the sums of squares would be calculated with the
following adjustments:

Effect Adjusted for

A –
B A

A × B A, B

C A, B, A × B

A × C A, B, C, A × B

B × C A, B, C, A × B, A × C

A × B × C A, B, C, A × B, A × C, A × B × C

Type I SS are computed as the decrease in the
error SS (SSE) when the effect is added to a model.
For example, if SSE for Y = A is 15 and SSE for
Y = A × B is 5, then the Type I SS for B is 10. The
sum of all of the effects’ SS will equal the total model
SS for Type I SS – this is not generally true for the
other types of SS (which exclude some or all of the
variance that cannot be unambiguously allocated to
one and only one effect). In fact, specifying effects
hierarchically is the only method of determining the
unique amount of variance in a dependent variable
explained by an effect. Type I SS are appropriate for
balanced (orthogonal, equal n) analyses of variance
in which the effects are specified in proper order
(main effects, then two-way interactions, then three-
way interactions, etc.), for trend analysis where
the powers for the quantitative factor are ordered
from lowest to highest in the model statement, and
the analysis of covariance (ANCOVA) in which
covariates are specified first. Type I SS are also used
for hierarchical step-down nonorthogonal analyses
of variance [1] and hierarchical regression [2]. With
such procedures, one obtains the particular SS needed
(adjusted for some effects but not for others) by
carefully ordering the effects. The order of effects
is usually based on temporal priority, on the causal
relations between effects (an outcome should not
be added to the model before its cause), or on
theoretical importance.

Type II SS

Type II SS are the reduction in the SSE as a result of
adding the effect to a model that contains all other
effects except effects that contain the effect being
tested. An effect is contained in another effect if
it can be derived by deleting terms in that effect –
for example, A, B, C, A × B, A × C, and B × C are
all contained in A × B × C. The Type II SS for our
example involve the following adjustments:

Effect Adjusted for

A B, C, B × C

B A, C, A × C

A × B A, B, C, A × C, B × C

C A, B, A × B

A × C A, B, C, A × B, B × C

B × C A, B, C, A × B, A × C

A × C A, B, C, A × B, A × C, B × C



Type I, Type II and Type III Sums of Squares 3

When the design is balanced, Type I and Type II
SS are identical.

Type III SS

Type III SS are identical to those of Type II SS
when the design is balanced. For example, the
sum of squares for A is adjusted for the effects
of B and for A × B. When the design is unbal-
anced, these are the SS that are approximated by
the traditional unweighted means ANOVA that uses
harmonic mean sample sizes to adjust cell totals:
Type III SS adjusts the sums of squares to estimate
what they might be if the design were truly balanced.
To illustrate the difference between Type II and Type
III SS, consider factor A to be a dichotomous variable
such as gender. If the data contained 60% females and
40% males, the Type II sums of squares are based on
those percentages. In contrast, the Type III SS assume
that the sex difference came about because of sam-
pling and tries to generalize to a population in which
the number of males and females is equal.

Type IV SS

Type IV SS differ from Types I, II, and III SS in that
it was developed for designs that have one or more

empty cells, that is, cells that contain no observations.
(see Structural Zeros) Type IV SS evaluate marginal
means that are based on equally weighted cell means.
They yield the same results as a Type III SS if all
cells in the design have at least one observation.
As a result, with Type IV SS, marginal means of
one factor are based on cell means that have all
of the same levels of the other factor, avoiding the
confounding of factors that would occur if cells were
empty.
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Ultrametric Inequality

The triangular inequality holds for a metric
space: d(x, z) ≤ d(x, y) + d(y, z) for any triplet
of points x, y, z. In addition, the properties
of symmetry (d(x, y) = d(y, x)) and positive
definiteness (d(x, y) ≥ 0 with x = y if d(x, y) = 0)
are respected.

The ‘strong triangular inequality’ or ultrametric
inequality is d(x, z) ≤ max {d(x, y), d(y, z)} for any
triplet x, y, z.

An ultrametric space implies respect for a range of
stringent properties. For example, the triangle formed
by any triplet is necessarily isosceles, with the two
large sides equal, or is equilateral.

Consider the dissimilarity data shown on the left
side of Table 1. (For instance, this could be the sim-
ilarity of performance between five test subjects on
a scale of 1 = very similar, to 9 = very dissimilar.)
The single link criterion was used to construct the
dendrogram shown (Figure 1). On the right side of
Table 1, the ultrametric distances defined from the
sequence of agglomeration values are given.

Among the ultrametric distances, consider for
example, d(2, 3), d(3, 4), and d(4, 1). We see that
d(2, 3) ≤ max {d(3, 4), d(4, 1)} since here we have
5 ≤ max {5, 4}. We can turn around any way we
like what we take as x, y, z but with ultramet-
ric distances, we will always find that d(x, z) ≤
max {d(x, y), d(y, z)}.

Table 1 Left: original pairwise dissimilarities. Right:
derived ultrametric distances

1 2 3 4 5 1 2 3 4 5
1 0 4 9 5 8 0 4 5 4 5
2 4 0 6 3 6 4 0 5 3 5
3 9 6 0 6 3 5 5 0 5 3
4 5 3 6 0 5 4 3 5 0 5
5 8 6 3 5 0 5 5 3 5 0

|
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|

|

|

... 3 ... 4

| | |

| | ... 2 ... 3

| | | |

| | | ... 1 ... 3

| | | ||
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1 2 4 3 5 Ranks
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+ +

+ +

+ +

+ +

Figure 1 Resulting dendrogram

In data analysis, the ultrametric inequality is
important because a hierarchical clustering is tanta-
mount to defining ultrametric distances on the objects
under investigation. More formally, we say that in
clustering, a bijection is defined between a rooted,
binary, ranked, indexed tree, called a dendrogram
(see Hierarchical Clustering), and a set of ultra-
metric distances ([1], representing work going back
to the early 1960s; [2]).
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Ultrametric Trees

Let us call the row of a data table an observation
vector. In the following, we will consider the case of
n rows. The set of rows will be denoted I .

Hierarchical agglomeration on n observation vec-
tors, i ∈ I , involves a series of pairwise agglomer-
ations of observations or clusters (see Hierarchical
Clustering). In Figure 1 we see that observation vec-
tors x1 and x2 are first agglomerated, followed by the
incorporation of x3, and so on. Since an agglomera-
tion is always pairwise, we see that there are precisely
n − 1 agglomerations for n observation vectors.

We will briefly look at three properties of a
hierarchical clustering tree (referred to as conditions
(i), (ii) and (iii)). A hierarchy, H , is a set of sets, q.
Each q is a subset of I . By convention, we include
I itself as a potential subset, but we do not include
the empty set. Our input data (observation vectors),
denoted x1, x2, . . . are also subsets of I . All subsets
of I are collectively termed the power set of I. The
notation sometimes used for the power set of I is 2I .
Condition (i) is that the hierarchy includes the set I ,
and this corresponds to the top (uppermost) level in
Figure 1. Condition (ii) requires that x1, x2, . . . are in
H , and this corresponds to the bottom (lowermost)
level in Figure 1. Finally, condition (iii) is that
different subsets do not intersect unless one is a
member of the other that is, they do not overlap other
than through 100% inclusion of one in the other.

In Figure 1, the observation set I = {x1, x2, . . . ,

x8}. The x1, x2, . . . are called singleton sets (as

7

6

5

4

3

2

1

0

0

0 1

1

0 1

0 1

0 1

0 1

0 1

x1 x2 x3 x4 x5 x6 x7 x8

Figure 1 Labeled, ranked dendrogram on 8 terminal
nodes. Branches labeled 0 and 1

opposed to clusters), and are associated with terminal
nodes in the dendrogram tree.

A dendrogram, displayed in Figure 1, is the name
given to a binary, ranked tree, which is a convenient
representation for the set of agglomerations (see
Hierarchical Clustering).

Now we will show the link with the ultramet-
ric inequality. An indexed hierarchy is the pair
(H, ν) where the positive function defined on H ,
that is, ν : H → �+, (�+ denotes the set of pos-
itive real numbers) satisfies ν(i) = 0 if i ∈ H is a
singleton; and q ⊂ q ′ ��⇒ ν(q) < ν(q ′). Function
ν is the agglomeration level. Typically the index, or
agglomeration level, is defined from the succession
of agglomerative values that are used in the creation
of the dendrogram. In practice, this means that the
hierarchic clustering algorithm used to produce the
dendrogram representation yields the values of ν.

The distance between any two clusters is based
on the ‘common ancestor’, that is, how high in the
dendrogram we have to go to find a cluster that
contains both. Take q ⊂ q ′, let q ⊂ q ′′ and q ′ ⊂ q ′′,
and let q ′′ be the lowest level cluster for which this
is true. Then if we define D(q, q ′) = ν(q ′′), it can be
shown that D is an ultrametric.

In practice, we start with our given data, and
a Euclidean or other dissimilarity, we use some
compactness agglomeration criterion such as min-
imizing the change in variance resulting from the
agglomerations, and then define ν(q) as the dissimi-
larity associated with the agglomeration carried out.

The standard agglomerative hierarchical clustering
algorithm developed in the early 1980s is based on
the construction of nearest neighbor chains, followed
by agglomeration of reciprocal nearest neighbors. For
a survey, see Murtagh [1, 2].
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Unidimensional Scaling

Unidimensional scaling is the special one-dimension-
al case of multidimensional scaling. It is often dis-
cussed separately, because the unidimensional case
is quite different from the general multidimensional
case. It is applied in situations in which we have a
strong reason to believe there is only one interest-
ing underlying dimension, such as time, ability, or
preference. In the unidimensional case, we do not
have to choose between different metrics, such as
the Euclidean metric, the City Block metric, or the
Dominance metric (see Proximity Measures). Unidi-
mensional scaling techniques are very different from
multidimensional scaling techniques, because they
use very different algorithms to minimize their loss
functions.

The classical form of unidimensional scaling starts
with a symmetric and nonnegative matrix � = {δij }
of dissimilarities and another symmetric and nonneg-
ative matrix W = {wij } of weights. Both W and �

have a zero diagonal. Unidimensional scaling finds
coordinates xi for n points on the line such that

σ(x) = 1

2

n∑
i=1

n∑
j=1

wij (δij − |xi − xj |)2 (1)

is minimized. Those n coordinates in x define the
scale we were looking for.

To analyze this unidimensional scaling problem in
more detail, let us start with the situation in which we
know the order of the xi , and we are just looking for
their scale values. Now |xi − xj | = sij (x)(xi − xj ),
where sij (x) = sign(xi − xj ). If the order of the xi is
known, then the sij (x) are known numbers, equal to
either −1 or +1 or 0, and thus our problem becomes
minimization of

σ(x) = 1

2

n∑
i=1

n∑
j=1

wij (δij − sij (xi − xj ))
2 (2)

over all x such that sij (xi − xj ) ≥ 0. Assume, without
loss of generality, that the weighted sum of squares
of the dissimilarities is one. By expanding the sum
of squares we see that

σ(x) = 1 − t ′V t + (x − t)′V (x − t). (3)

Here V is the matrix with off-diagonal elements
vij = −wij and diagonal elements vii = ∑n

j=1 wij .

Also, t = V +r , where r is the vector with elements
ri = ∑n

j=1 wij δij sij , and V + is a generalized inverse
of V . If all the off-diagonal weights are equal, we
simply have t = r/n.

Thus, the unidimensional scaling problem, with
a known scale order, requires us to minimize
(x − t)′V (x − t) over all x, satisfying the order
restrictions. This is a monotone regression problem,
possibly with a nondiagonal weight matrix, which can
be solved quickly and uniquely by simple quadratic
programming methods.

Now for some geometry. The vectors x satisfying
the same set of order constraints form a polyhedral
convex cone K in �n. Think of K as an ice-cream
cone with its apex at the origin, except for the fact that
the ice-cream cone is not round, but instead bounded
by a finite number of hyperplanes. Since there are n!
different possible orderings of x, there are n! cones,
all with their apex at the origin. The interior of the
cone consists of the vectors without ties, intersections
of different cones are vectors with at least one tie.
Obviously, the union of the n! cones is all of �n.

Thus, the unidimensional scaling problem can be
solved by solving n! monotone regression problems,
one for each of the n! cones [2]. The problem
has a solution, which is at the same time very
simple and prohibitively complicated. The simplicity
comes from the n! subproblems, which are easy to
solve, and the complications come from the fact that
there are simply too many different subproblems.
Enumeration of all possible orders is impractical for
n > 10, although using combinatorial programming
techniques makes it possible to find solutions for n

as large as 30 [6].
Actually, the subproblems are even simpler than

we suggested above. The geometry tells us that we
solve the subproblem for cone K by finding the
closest vector to t in the cone, or, in other words, by
projecting t on the cone. There are three possibilities.
Either t is in the interior of its cone, or on the
boundary of its cone, or outside its cone. In the first
two cases, t is equal to its projection, in the third case,
the projection is on the boundary. The general result
in [1] tells us that the loss function σ cannot have a
local minimum at a point in which there are ties, and,
thus, local minima can only occur in the interior of
the cones. This means that we can only have a local
minimum if t is in the interior of its cone [4], and it
also means that we actually never have to compute
the monotone regression. We just have to verify if t



2 Unidimensional Scaling

is in the interior, if it is not, then σ does not have a
local minimum in this cone.

There have been many proposals to solve the com-
binatorial optimization problem of moving through
the n! cones until the global optimum of σ has been
found. A recent review is [7].

We illustrate the method with a simple example,
using the vegetable paired-comparison data from [5,
p. 160]. Paired comparison data are usually given in a
matrix P of proportions, indicating how many times
stimulus i is preferred over stimulus j . P has 0.5
on the diagonal, while corresponding elements pij

and pji on both sides of the diagonal add up to 1.0.
We transform the proportions to dissimilarities by
using the probit transformation zij = �−1(pij ) and
then defining δij = |zij |. There are nine vegetables
in the experiment, and we evaluate all 9! = 362 880
permutations. Of these cones, 14 354 or 4% have a
local minimum in their interior. This may be a small
percentage, but the fact that σ has 14 354 isolated
local minima indicates how complicated the unidi-
mensional scaling problem is. The global minimum
is obtained for the order given in Guilford’s book,
which is Turnips < Cabbage < Beets < Aspara-
gus < Carrots < Spinach < String Beans < Peas
< Corn. Since there are no weights in this example,
the optimal unidimensional scaling values are the row
averages of the matrix with elements sij (x)δij . Except
for a single sign change of the smallest element
(the Carrots and Spinach comparison), this matrix
is identical to the probit matrix Z. And because the
Thurstone Case V scale values are the row averages
of Z, they are virtually identical to the unidimensional
scaling solution in this case.

The second example is quite different. It has
weights and incomplete information. We take it
from an early paper by Fisher [3], in which he
studies crossover percentages of eight genes on the
sex chromosome of Drosophila willistoni. He takes
the crossover percentage as a measure of distance,
and supposes the number nij of crossovers in Nij

observations is binomial. Although there are eight
genes, and thus

(8
2

) = 28 possible dissimilarities,
there are only 15 pairs that are actually observed.
Thus, 13 of the off-diagonal weights are zero, and
the other weights are set to the inverses of the
standard errors of the proportions. We investigate
all 8! = 40 320 permutations, and we find 78 local
minima. The solution given by Fisher, computed by
solving linearized likelihood equations, has Reduced
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Figure 1 Genes on Chromosome

< Scute < Peach < Beaded < Rough < Triple
< Deformed < Rimmed. This order corresponds
with a local minimum of σ equal to 40.16. The
global minimum is obtained for the permutation that
interchanges Reduced and Scute, with value 35.88. In
Figure 1, we see the scales for the two local minima,
one corresponding with Fisher’s order and the other
one with the optimal order.

In this entry, we have only discussed least squares
metric unidimensional scaling. The first obvious
generalization is to replace the least squares loss
function, for example, by the least absolute value
or L1 loss function. The second generalization is
to look at nonmetric unidimensional scaling. These
generalizations have not been studied in much detail,
but in both, we can continue to use the basic geometry
we have discussed. The combinatorial nature of the
problem remains intact.

References

[1] De Leeuw, J. (1984). Differentiability of Kruskal’s stress
at a local minimum, Psychometrika 49, 111–113.

[2] De Leeuw, J. & Heiser, W.J. (1977). Convergence of cor-
rection matrix algorithms for multidimensional scaling, in
Geometric Representations of Relational Data, J.C., Lin-
goes, ed., Mathesis Press, Ann Arbor, pp. 735–752.

[3] Fisher, R.A. (1922). The systematic location of genes by
means of crossover observations, American Naturalist 56,
406–411.

[4] Groenen, P.J.F. (1993). The majorization approach to
multidimensional scaling: some problems and extensions,
Ph.D. thesis, University of Leiden.



Unidimensional Scaling 3

[5] Guilford, J.P. (1954). Psychometric Methods, 2nd Edition,
McGraw-Hill.

[6] Hubert, L.J. & Arabie, P. (1986). Unidimensional scal-
ing and combinatorial optimization, in Multidimensional
Data Analysis, J. De Leeuw, W. Heiser, J. Meulman &
F. Critchley, eds, DSWO-Press, Leiden.

[7] Hubert, L.J., Arabie, P. & Meulman, J.J. (2002a). Linear
unidimensional scaling in the L2-Norm: basic optimiza-
tion methods using MATLAB, Journal of Classification
19, 303–328.

JAN DE LEEUW



Urban, F M

HELEN ROSS

Volume 4, pp. 2097–2098

in

Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

 John Wiley & Sons, Ltd, Chichester, 2005



Urban, F M

Born: December 28, 1878, Brünn, Moravia (now
Austria).

Died: May 4, 1964, Paris, France.

F. M. Urban’s main claim to fame was the probability
weightings that he added to the calculation of the
psychometric function. In 1968, he was ranked the
14th most famous psychologist, but is now almost
forgotten – so much so that a professor who was
equipping a new psychological laboratory reputedly
attempted to order a set of Urban weights. There are
few biographical sources about him, and even his
usual first name is in doubt (see [1]).

Friedrich Johann Victor Urban was born into a
German-speaking family in Austro-Hungary. He is
known by the initials F. M. because he adopted
Friedrich Maria as a pen name, which became Freder-
ick Mary, or perhaps Francis M., in the United States.
He studied philosophy at the University of Vienna
from 1897, obtaining a Ph.D. in 1902 in aesthetics.
He also studied probability under Wilhelm Wirth at
the University of Leipzig. He taught psychological
acoustics at Harvard University in 1904–1905. His
main work on statistics was conducted from 1905
at the University of Pennsylvania, where he rose to
assistant professor in 1910. He published in German
and English in 1908–1909 [3, 4]. He was elected a
member of the American Psychological Association
in 1906, the American Association for the Advance-
ment of Science in 1907, and a Fellow of the latter in
1911. Urban’s life in America ended in 1914, when
he returned home and married Adele Königsgarten.
Lacking US citizenship, he was not allowed to return
to the United States on the outbreak of war. He moved
to Sweden, and spent 1914 to 1917 in Götheborg
and Stockholm, where he did research at the Kung-
liga Vetenskapliga Akademien. He returned to Brünn
in 1917, and served in the Austrian army. Moravia
became part of the Czechoslovak Republic in 1918.
Urban then worked as an insurance statistician, his
Czech language ability being inadequate for a uni-
versity post. He corresponded with his colleagues

abroad, and continued to publish in German and
English on psychometry and psychophysics. He also
translated into German J. M. Keynes’s A Treatise on
Probability (1926) and J. L. Coolidge’s An Introduc-
tion to Mathematical Probability (1927). He and his
Jewish wife stayed in Brünn throughout the Second
World War, suffering Hitler’s invasion, the bomb-
ing of their house, the Russian ‘liberation’, and the
expulsion of German speakers by the returning Czech
regime. He was put in a concentration camp first by
the Russians and then by the Czechs. He was released
owing to pleas from abroad, but was forced to leave
Czechoslovakia in 1948. He and his wife went to
join their elder daughter first in Norway, and then in
Brazil (1949–52), where he lectured on factor anal-
ysis at São Paulo University. In 1952, they moved
in with their younger daughter in France, living in
Toulon and, finally, Paris.

Urban’s many contributions to statistics are dis-
cussed in [2]. The Müller–Urban weights are a
refinement to the least squares solution for the psy-
chometric function, when P values are transformed
to z values. Müller argued that the proportions near
0.5 should be weighted most, while Urban argued that
those with the smallest mean-square error should be
weighted most. The combined weightings were labo-
rious to calculate, and made little difference to the
final threshold values. The advent of computers and
new statistical procedures has relegated these weights
to history.
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Utility Theory

The term utility is commonly used in two ways. First,
following the usage of the utilitarian philosophers,
it refers to the total amount of pleasure (or pain)
that an action or a good can bring to those affected
by it. According to this view, utility is a function
of experience. If an apple has more utility than
an orange, this means that it brings more pleasure
to the person eating it. A second view of utility
is that it is a way of representing behaviors, such
as choices or expressed preferences, without any
reference to the experience arising from what is
chosen. For instance, if someone is offered either an
apple or an orange, and they choose an apple, we
would describe this preference by assigning a higher
utility number to the apple than to the orange. This
number would say nothing about whether that person
would gain more or less pleasure from the apple,
but only that they chose the apple. The first use of
the term is most closely associated with utilitarian
philosophers, pre-twentieth-century economists, and
psychologists. The second use is associated with
twentieth-century economists.

Daniel Bernoulli is the father of utility theory.
He developed the theory to solve the St Petersburg
paradox. The paradox revolves around the value
placed on the following wager: A fair coin is to
be tossed until it comes up heads, at which point
those who have paid to play the game will receive
2n ducats, where n is the number of the toss when
heads came up. For instance, if the first head comes
up on the third toss the player will receive 8 ducats.
Prior to Bernoulli, mathematicians held the view that
a gamble was worth its expected monetary value,
meaning the sum of all possible outcomes multiplied
by their probability (see Expectation). Yet although
the expected monetary value of the St Petersburg
wager is infinite:

∞∑
n=1

1

2n
2n = 1 + 1 + 1 + · · · = ∞, (1)

nobody would be willing to pay more than a few
ducats for it.

Bernoulli argued that people value this wager
according to its expected utility rather than its
expected monetary value, and proposed a specific
relationship between utility and wealth: the ‘utility

resulting from any small increase in wealth will be
inversely proportional to the quantity of goods pre-
viously possessed’ [3]. This implies that the utility
of wealth increases logarithmically with additional
increments: u(w) = log(w). With this utility function,
the St Petersburg paradox was resolved because:

∞∑
n=1

1

2n
log(2n) = 2 log 2 < ∞. (2)

As Menger showed [8], this solution does not hold
for all versions of the St Petersburg gamble. For
instance, if the payoff is e2n

, the expected utility of the
wager is still infinite even with a logarithmic utility
function. The paradox can be completely solved only
with a bounded utility function. Nonetheless, through
this analysis Bernoulli introduced the three major
themes of utility theory: first, the same outcome
has different utility for different people; second,
the relationship between wealth and utility can be
described mathematically; third, utility is marginally
diminishing, so that the increase in utility from each
additional ducat is less than that from the one before.

It is clear that Bernoulli viewed utility as an index
of the benefit or good that a person would get from
their income. This view was central to the utilitarians,
such as Godwin and Bentham, who considered util-
ity to be a quantity reflecting the disposition to bring
pleasure or pain. These philosophers, who wrote in
the eighteenth and nineteenth centuries, maintained
that the goal of social and personal action is to maxi-
mize the sum of the utility of all members of society.
Many utilitarian philosophers (and the economists
who followed them, such as Alfred Marshall) pointed
out that if utility were a logarithmic function of
wealth, then transferring wealth from the rich to the
poor would maximize the total utility of society.
This argument was based on two assumptions that
have been difficult to maintain: utility is measurable,
and interpersonal comparisons of utility are possi-
ble [1, 4].

At the turn of the twentieth century, economists
realized that these assumptions were not needed for
economic analysis, and that they could get by with
a strictly ordinal utility function [5, 9]. The idea is
that through their choices consumers show which of
the many possible allocations of their income they
prefer (see Demand Characteristics). In general, for
any pair of allocations, a consumer will either be
indifferent between them, or prefer one to the other.
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By obtaining binary choices between allocations, it
is possible to draw indifference curves. To predict
such choices, we just need to know which allocations
are on the highest indifference curve. This change
in thinking was not only a change in mathematics
from interval to ordinal measurement (see Scales of
Measurement; Measurement: Overview) but also a
conceptual revolution. Utility, as used by economists,
lost its connection with ‘pleasure and pain’ or other
measures of benefit.

One limitation of ordinal utility was that it dealt
only with choices under certainty – problems such
as the St Petersburg paradox could not be discussed
using ordinal utility language. In the mid-twentieth
century, Von Neumann and Morgenstern [11] rein-
troduced the concept of choice under uncertainty
with expected utility theory. They showed that just
as indifference maps can be drawn from consistent
choices between outcomes, so cardinal utility func-
tions (i.e., those measurable on an interval scale) can
be derived from consistent choices between gambles
or lotteries. Von Neumann and Morgenstern, how-
ever, did not reinstate the link between utility and
psychology. They did not view utility as a cause,
but a reflection, of behavior: we do not choose an
apple over an orange because it has more utility, but
it has more utility because we chose it. They showed
that if choices between lotteries meet certain formal
requirements then preferences can be described by a
cardinal utility function. The following assumptions
summarize these requirements:

Assumption 1 Ordering of alternatives. For each
pair of prizes or lotteries an agent will either be
indifferent (∼) between them or prefer one to the
other (�). That is, either A � B, B � A or A∼B.

Assumption 2 Transitivity. If A � B and B � C,
then A � C.

Assumption 3 Continuity. If an agent prefers A to
B to C, then there is some probability p which makes
a lottery offering A with probability p, and C with
probability (1 − p) equal in utility to B. That is B
∼ (p, A; 1 − p, C).

Assumption 4 Substitutability. Prizes in lotteries
can be replaced with lotteries having the same
value. Using the outcomes from Assumption 3, the
lottery (q, X; 1 − q, B) is equivalent to (q, X; 1 −
q, (p, A; 1 − p, C)).

Assumption 5 Independence of irrelevant alter-
natives. If two lotteries offer the same outcome
with identical probabilities, then the preferences
between the lotteries will depend only on the other
(unshared) outcomes. If A � B, then (p, A; 1 − p, C)

� (p, B; 1 − p, C).

Assumption 6 Reduction of compound lotteries. A
compound lottery is a lottery over lotteries. The
reduction of compound lotteries condition means that
such a lottery is equivalent to one that has been
reduced using the standard rules of probability. For
instance, consider the two lotteries, Z and Z′, in
Figure 1: Assumption 6 states that Z ∼ Z′.

If these assumptions hold then a cardinal utility
function, unique up to a linear transformation, can be
derived from preferences over lotteries. Researchers
view these assumptions as ‘axioms of rationality’
because they seem, intuitively, to be how a rational
person would behave [10].

One way of doing so is via the certainty equivalent
method of calculating utilities [12]. In this method,
the decision maker first ranks all relevant prizes or
outcomes from best to worst. An arbitrary utility
value, usually 0 and 1, is given to the worst (W) and
best (B) outcome. Then for each intermediate out-
come X the decision maker specifies the probability
p that would make them indifferent between X for

A

B

p

Z=
B

A

q

1−q

r

1−r

1−p

A

B

pq + (1
−p)r

p(1−q) + (1−p)(1−r)

Z ′ =

Figure 1 Assumption 6 implies indifference between Z
and Z′ (Z ∼ Z′)



Utility Theory 3

sure and the lottery (p, B; 1 − p, W). The utility of
X is then found by replacing u(W) = 0 and u(B) = 1
in the calculation:

u(X) = pu(B) + (1 − p) u(W) = p. (3)

If different values had been assigned to u(W) and
u(B), the resultant utility scale would be a linear
transformation of this one.

A further development of utility theory is
subjective expected utility theory, which incorporates
subjective probabilities. Ramsey, de Finetti and
Savage [10] showed that probabilities as well as
utilities could be axiomatized, with choices that
reflect probabilities being used to derive a subjective
utility function.

Current Thinking About Utility

Neither expected utility nor subjective expected util-
ity theory has proved to be a good descriptive theory
of choice. An early challenge came from Maurice
Allais [2] who showed that independence of irrel-
evant alternatives could be routinely violated. The
challenge, known as ‘Allais Paradox’, shows that the
variance of the probability distribution of a gam-
ble affects preferences. In particular there is strong
empirical evidence that subjects attach additional psy-
chological value or utility to an outcome if it has
zero variance (certainty effect [6]). Allais rejected
the idea that behaviors inconsistent with the standard
axioms are irrational and claimed that ‘rationality can
be defined experimentally by observing the actions
of people who can be regarded as acting in a ratio-
nal manner’ [2]. One consequence of this has been
a number of non-expected utility theories that either
relax or drop some of the assumptions, or else sub-
stitute them with empirically derived generalizations.
The most influential of these is prospect theory [6],
which is based on observations of how decision mak-
ers actually behave. It differs from expected utility
theory in that the probability function is replaced by
a nonlinear weighting function, and the utility func-
tion with a value function. The weighting function
puts too much weight on low probabilities, too little
on moderate to high probabilities, and has a discon-
tinuity for changes from certainty to uncertainty. The
value function is defined over deviations from current
wealth. It is concave for increasing gains, and convex
for losses. This leads to the reflection effect, which

means that if a preference pattern is observed for
gains, the opposite pattern will be found for losses.
For example, people are generally risk averse for
gains ($10 for sure is preferred to a 50/50 chance
of $20 or nothing), but risk seeking for losses (a
50/50 chance of losing $20 is preferred to a sure loss
of $10).

One issue that is currently the focus of much
attention is whether it is possible to find a mea-
sure of utility that reflects happiness or pleasure, as
originally envisaged by the utilitarians. People often
choose options that appear objectively ‘bad’ for them,
such as smoking or procrastinating, yet if utility is
derived from choice behavior it means the utility
of these bad options is greater than that of options
that seem objectively better. If we are interested in
questions of welfare, there is a practical need for a
measure of utility that would permit us to say that
‘X is better than Y, because it yields more utility’.
One suggestion comes from Daniel Kahneman, who
argues for a distinction between ‘experienced utility’
(the pain or pleasure from an outcome, the definition
adopted by utilitarians), and ‘decision utility’ (utility
as reflected in decisions, the definition adopted by
modern economists) [7]. Through such refinements
in the definition of utility, researchers like Kahne-
man aspire to reintroduce Bernoulli and Bentham’s
perspective to the scientific understanding of utility.
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Validity Theory and
Applications

Measurement in the behavioral sciences typically
refers to measuring characteristics of people such as
attitudes, knowledge, ability, or psychological func-
tioning. Such characteristics, called constructs, are
hard to measure because unlike objects measured in
the physical sciences (such as weight and distance),
they are not directly observable. Therefore, the valid-
ity of measures taken in the behavioral sciences is
always suspect and must be defended from both the-
oretical and empirical perspectives.

In this entry, I discuss validity theory and describe
current methods for validating assessments used in
the behavioral sciences. I begin with a description of a
construct, followed by descriptions of construct valid-
ity and other validity nomenclature. Subsequently,
the practice of test validation is described within the
context of Kane’s [8] argument-based approach to
validity and the current Standards for Educational
and Psychological Testing (American Educational
Research Association (AERA), American Psycho-
logical Association (APA), and National Council on
Measurement in Education, [1]).

Constructs, Validity, and Construct
Validity

The term construct has an important meaning in
testing and measurement because it emphasizes the
fact that we are not measuring tangible attributes (see
Latent Variable). Assessments attempt to measure
unobservable attributes such as attitudes, beliefs,
feelings, knowledge, skills, and abilities. Given this
endeavor, it must be assumed that (a) such attributes
exist within people and (b) they are measurable.
Since we do not know for sure if such intangible
attributes or proficiencies really exist, we admit they
are ‘constructs’; they are hypothesized attributes we
believe exist within people. Hence, we ‘construct’
these attributes from educational and psychological
theories. To measure these constructs, we typically
define them operationally through the use of test
specifications and other elements of the assessment
process [6].

Cronbach and Meehl [5] formally defined ‘con-
struct’ as ‘some postulated attribute of people,
assumed to be reflected in test performance’ (p. 283).
The current version of the Standards for Educational
and Psychological Testing [1] defines a construct as
‘the concept or characteristic that a test is designed to
measure’ (p. 173). Given that a construct is invoked
whenever behavioral measurement exists [9, 10], the
validity of behavioral measures are often defined
within the framework of construct validity. In fact,
many validity theorists describe construct validity as
equivalent to validity in general. The Standards bor-
row from Messick [10] and other validity theorists
to underscore the notion that validity refers to infer-
ences about constructs that are made on the basis of
test scores.

According to the Standards, construct validity is:

A term used to indicate that the test scores are to
be interpreted as indicating the test taker’s standing
on the psychological construct measured by the test.
A construct is a theoretical variable inferred from
multiple types of evidence, which might include the
interrelations of the test scores with other variables,
internal test structure, observations of response pro-
cesses, as well as the content of the test. In the
current standards, all test scores are viewed as mea-
sures of some construct, so the phrase is redundant
with validity. The validity argument establishes the
construct validity of a test. (AERA et al. [1], p. 174)

The notion that construct validity is validity in
general asserts that all other validity modifiers, such
as content or criterion-related validity, are merely
different ways of ‘cutting validity evidence’ ([10],
p. 16). As Messick put it, ‘Construct validity is based
on an integration of any evidence that bears on the
interpretation or meaning of the test scores’ (p. 17).

Before the most recent version of the Standards,
validity was most often discussed using three cat-
egories – content validity, criterion-related validity,
and construct validity [11]. Although many theorists
today believe terms such as content and criterion-
related validity are misnomers, an understanding of
these traditional ways of describing the complex
nature of validity is important for understanding con-
temporary validity theory and how to validate infer-
ences derived from test scores. We turn to a brief
description of these traditional categories. Following
this description, we summarize the key aspects of
contemporary validity theory, and then describe cur-
rent test validation practices.
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Traditional Validity Categories: Content,
Criterion-related, and Construct Validity

Prior to the 1980s, most discussions of validity
described it as comprising the three aforementioned
types or aspects – content, criterion-related, and con-
struct. Content validity refers to the degree to which
an assessment represents the content domain it is
designed to measure. There are four components of
content validity – domain definition, domain rele-
vance, domain representation, and appropriate test
construction procedures [11]. The domain definition
aspect of content validity refers to how well the
description of the test content, particularly the test
specifications, is regarded as adequately describing
what is measured and the degree to which it is con-
sistent with other theories and pragmatic descriptions
of the targeted construct. Domain relevance refers
to the relevance of the items (tasks) on a test to
the domain being measured. Domain representation
refers to the degree to which a test adequately repre-
sents the domain being measured. Finally, appropriate
test construction procedures refer to all processes
used when constructing a test to ensure that test
content faithfully and fully represents the construct
intended to be measured and does not measure irrel-
evant material.

The term content domain is often used in describ-
ing content validity, but how this domain differs
from the construct is often unclear, which is one rea-
son why many theorists believe content validity is
merely an aspect of construct validity. Another argu-
ment against the use of the term content validity is
that it refers to properties of a test (e.g., how well
do these test items represent a hypothetical domain?)
rather than to the inferences derived from test scores.
Regardless of the legitimacy of the term content
validity, it is important to bear in mind that the con-
structs measured in the behavioral sciences must be
defined clearly and unambiguously and evaluations
of how well the test represents the construct must be
made. Validating test content is necessary to establish
an upper limit on the validity of inferences derived
from test scores because if the content of a test can-
not be defended as relevant to the construct measured,
then the utility of the test scores cannot be trusted.

The second traditional validity category is crite-
rion-related validity, which refers to the degree to
which test scores correlate with external criteria that
are considered to be manifestations of the construct of

interest. There are two subtypes of criterion validity –
predictive validity and concurrent validity. When
the external criterion data are gathered long after
a test is administered, such as when subsequent
college grades are correlated with earlier college
admissions test scores, the validity information is of
the predictive variety. When the external criterion
data are gathered about the same time as the test data,
such as when examinees take two different test forms,
the criterion-related validity is of the concurrent
variety. The notion of criterion-related validity has
received much attention in the validity literature,
including the importance of looking at correlations
between test scores and external criteria irrelevant
to the construct measured (i.e., discriminant validity)
as well as external criteria commensurate with the
construct measured (i.e., convergent validity, [2]).

The last category of validity is construct valid-
ity, and as mentioned earlier, it is considered to be
the most comprehensive form of validity. Tradition-
ally, construct validity referred to the degree to which
test scores are indicative of a person’s standing on a
construct. After introducing the term, Cronbach and
Meehl [5] stated ‘Construct validity must be inves-
tigated whenever no criterion or universe of content
is accepted as entirely adequate to define the qual-
ity to be measured’ (p 282). Given that a finite
universe of content rarely exists and valid external
criteria are extremely elusive, it is easy to infer that
construct validity is involved whenever validity is
investigated. Therefore, contemporary formulations
of validity tend to describe content and criterion-
related validity not as types of validity, but as ways
of accumulating construct validity evidence. Using
this perspective, evidence that the content of a test is
congruent with the test specifications and evidence
that test scores correlate with relevant criteria are
taken as evidence that the construct is being mea-
sured. But construct validity is more than content and
criterion-related validity. As described in the excerpt
from the Standards given earlier, studies that evaluate
the internal structure of a test (e.g., factor analysis
studies), differential item functioning (item bias),
cultural group differences (test bias), and unintended
and intended consequences of a testing program all
provide information regarding construct validity.

Fundamental Characteristics of Validity

The preceding section gave an historical perspective
on validity and stressed the importance of construct
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validity. We now summarize fundamental characteris-
tics of contemporary validity theory, borrowing from
Sireci [13]. First, validity is not an intrinsic property
of a test. A test may be valid for one purpose, but
not for another, and so what we seek to validate in
judging the worth of a test is the inferences derived
from the test scores, not the test itself. Therefore,
an evaluation of test validity starts with an identifi-
cation of the specific purposes for which test scores
are being used. When considering inferences derived
from test scores, the validator must ask ‘For what pur-
poses are tests being used?’ and ‘How are the scores
being interpreted?’

Another important characteristic of contemporary
validity theory is that evaluating inferences derived
from test scores involves several different types of
qualitative and quantitative evidence. There is not
one study or one statistical test that can validate a
particular test for a particular purpose. Test validation
is continuous, with older studies paving the way for
additional research and newer studies building on the
information learned in prior studies.

Finally, it should be noted that although test devel-
opers must provide evidence to support the validity
of the interpretations that are likely to be made from
test scores, ultimately, it is the responsibility of the
users of a test to evaluate this evidence to ensure that
the test is appropriate for the purpose(s) for which it
is being used.

Messick succinctly summarized the fundamental
characteristics of validity by defining validity as ‘an
integrated evaluative judgment of the degree to which
evidence and theoretical rationales support the ade-
quacy and appropriateness of inferences and actions
based on test scores or other modes of assessment’
(p. 13). By describing validity as ‘integrative’, he
championed the notion that validity is a unitary con-
cept centered on construct validity. He also paved the
way for the argument-based approach to validity that
was articulated by Kane [8], which is congruent with
the Standards. We turn now to a discussion of test
validation from this perspective.

Test Validation: Validity Theory Applied
in Practice

To make the task of validating inferences derived
from test scores both scientifically sound and man-
ageable, Kane [8] suggested developing a defensible
validity ‘argument’. In this approach, the valida-
tor builds an argument on the basis of empirical

evidence to support the use of a test for a par-
ticular purpose. Although this validation framework
acknowledges that validity can never be established
absolutely, it requires evidence that (a) the test mea-
sures what it claims to measure, (b) the test scores
display adequate reliability, and (c) test scores dis-
play relationships with other variables in a manner
congruent with its predicted properties. Kane’s prac-
tical perspective is congruent with the Standards,
which provide detailed guidance regarding the types
of evidence that should be brought forward to sup-
port the use of a test for a particular purpose. For
example, the Standards state that

A sound validity argument integrates various strands
of evidence into a coherent account of the degree
to which existing evidence and theory support
the intended interpretation of test scores for spe-
cific uses. . . Ultimately, the validity of an intended
interpretation. . . relies on all the available evidence
relevant to the technical quality of a testing system.
This includes evidence of careful test construction;
adequate score reliability; appropriate test adminis-
tration and scoring; accurate score scaling, equating,
and standard setting; and careful attention to fairness
for all examinees. . . (AERA et al. [1], p. 17)

Two factors guiding test validation are evalu-
ating construct underrepresentation and construct-
irrelevant variance. As Messick [10] put it, ‘Tests are
imperfect measures of constructs because they either
leave out something that should be included. . . or else
include something that should be left out, or both’
([10], p. 34). Construct underrepresentation refers to
the situation in which a test measures only a por-
tion of the intended construct (or content domain)
and leaves important knowledge, skills, and abili-
ties untested. Construct-irrelevant variance refers to
the situation in which the test measures proficien-
cies irrelevant to the intended construct. Examples of
construct-irrelevant variance undermining test score
interpretations are when computer proficiency affects
performance on a computerized mathematics test, or
when familiarity with a particular item format (e.g.,
multiple-choice items) affects performance on a read-
ing test.

To evaluate construct underrepresentation, a test
evaluator searches for content validity evidence. A
preliminary question to answer is ‘How is the con-
tent domain defined?’ In employment, licensure, and
certification testing, job analyses often help determine
the content domain to be tested. Another important
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question to answer is ‘How well does the test rep-
resent the content domain?’ In educational testing,
subject matter experts (SMEs) are used to evalu-
ate test items and judge their congruence with test
specifications and their relevance to the constructs
measured (see [4] or [12] for descriptions of meth-
ods for evaluating content representativeness). Thus,
traditional studies of content validity remain impor-
tant in contemporary test validation efforts (see [14]
for an example of content validation of psychological
assessments).

Evaluating construct-irrelevant variance involves
ruling out extraneous behaviors measured by a
test. An example of construct-irrelevant variance is
‘method bias’, where test scores are contaminated
by the mode of assessment. Campbell and Fiske [2]
proposed a multitrait-multimethod framework for
studying construct representation (e.g., convergent
validity) and construct-irrelevant variance due to
method bias.

Investigation of differential item functioning (DIF)
is another popular method for evaluating construct-
irrelevant variance. DIF refers to a situation in which
test takers who are considered to be of equal pro-
ficiency on the construct measured, but who come
from different groups, have different probabilities of
earning a particular score on a test item. DIF is a sta-
tistical observation that involves matching test takers
from different groups on the characteristic measured
and then looking for performance differences on an
item. Test takers of equal proficiency who belong to
different groups should respond similarly to a given
test item. If they do not, the item is said to function
differently across groups and is classified as a DIF
item (see [3], or [7] for more complete descriptions
of DIF theory and methodology). Item bias is present
when an item has been statistically flagged for DIF
and the reason for the DIF is traced to a factor irrel-
evant to the construct the test is intended to measure.
Therefore, for item bias to exist, a characteristic of
the item that is unfair to one or more groups must be
identified. Thus, a determination of item bias requires
subjective judgment that a statistical observation (i.e.,
DIF) is due to some aspect of an item that is irrel-
evant to the construct measured. That is, difference
observed across groups in performance on an item is
due to something unfair about the item.

Another important area of evaluation in contempo-
rary validation efforts is the analysis of the fairness of
a test with respect to consistent measurement across

identifiable subgroups of examinees. One popular
method for looking at such consistency is analysis
of differential predictive validity. These analyses are
relevant to tests that have a predictive purpose such
as admissions tests used for college, graduate schools,
and professional schools. In differential predictive
validity analyses, the predictive relationships across
test scores and criterion variables are evaluated for
consistency across different groups of examinees. The
typical groups investigated are males, females, and
ethnic minority groups. Most analyses use multiple
linear regression to evaluate whether the regression
slopes and intercepts are constant across groups [15].

Summary

In sum, contemporary test validation is a complex
endeavor involving a variety of studies aimed toward
demonstrating that a test is measuring what it claims
to measure and that potential sources of invalidity are
ruled out. Such studies include dimensionality anal-
yses to ensure the structure of item response data
is congruent with the intended test structure, dif-
ferential item functioning analyses to rule out item
bias, content validity studies to ensure the relevance
and appropriateness of test content, criterion-related
validity studies to evaluate hypothesized relationships
among test scores and external variables, and sur-
veys of invested stakeholders such as test takers and
test administrators. Relatively recent additions to test
validation are studies focusing on social consider-
ations associated with a testing program including
unintended consequences such as narrowing the cur-
riculum to improve students’ scores on educational
tests. It should also be noted that evidence of adequate
test score reliability is a prerequisite for support-
ing the use of a test for a particular purpose since
inconsistency in measurement due to content sam-
pling, task specificity, ambiguous scoring rubrics, the
passage of time, and other factors adds construct-
irrelevant variance (i.e., error variance) to test scores.

References

[1] American Educational Research Association, American
Psychological Association, & National Council on Mea-
surement in Education. (1999). Standards for Educa-
tional and Psychological Testing, American Educational
Research Association, Washington.



Validity Theory and Applications 5

[2] Campbell, D.T. & Fiske, D.W. (1959). Convergent and
discriminant validation by the multitrait-multimethod
matrix, Psychological Bulletin 56, 81–105.

[3] Clauser, B.E. & Mazor, K.M. (1998). Using statistical
procedures to identify differentially functioning test
items, Educational Measurement: Issues and Practice
17(1), 31–44.

[4] Crocker, L.M., Miller, D. & Franks, E.A. (1989).
Quantitative methods for assessing the fit between test
and curriculum, Applied Measurement in Education 2,
179–194.

[5] Cronbach, L.J. & Meehl, P.E. (1955). Construct valid-
ity in psychological tests, Psychological Bulletin 52,
281–302.

[6] Downing, S.M. & Haladyna, T.M., eds (2005). Hand-
book of Testing, Lawrence Erlbaum, Mahwah.

[7] Holland, P.W. & Wainer, H. eds (1993). Differential Item
Functioning, Lawrence Erlbaum, Hillsdale.

[8] Kane, M.T. (1992). An argument based approach to
validity, Psychological Bulletin 112, 527–535.

[9] Loevinger, J. (1957). Objective tests as instruments of
psychological theory, Psychological Reports 3,(Mono-
graph Supplement 9), 635–694.

[10] Messick, S. (1989). Validity, in Educational Measure-
ment, 3rd Edition, R. Linn, ed., American Council on
Education, Washington, pp. 13–100.

[11] Sireci, S.G. (1998a). The construct of content validity,
Social Indicators Research 45, 83–117.

[12] Sireci, S.G. (1998b). Gathering and analyzing content
validity data, Educational Assessment 5, 299–321.

[13] Sireci, S.G. (2003). Validity, Encyclopedia of Psy-
chological Assessment, Sage Publications, London,
pp. 1067–1069.

[14] Vogt, D.S., King, D.W. & King, L.A. (2004). Focus
groups in psychological assessment: enhancing content
validity by consulting members of the target population,
Psychological Assessment, 16, 231–243.

[15] Wainer, H. & Sireci, S.G. (2005). Item and test bias, in
Encyclopedia of Social Measurement Volume 2, Elsevier,
San Diego, pp. 365–371.

STEPHEN G. SIRECI



Variable Selection

STANLEY A. MULAIK

Volume 4, pp. 2107–2110

in

Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

 John Wiley & Sons, Ltd, Chichester, 2005



Variable Selection

In selecting variables for study, it is necessary to have
a clear idea of what a variable is. For mathematicians,
it is a quantity that may assume any one of a
set of values, such as the set of integers, the set
of real numbers, the set of positive numbers, and
so on. But when mathematics is used to model
the world, the schema of a mathematical variable
must be put in correspondence to something in the
world. This is possible because the schema of an
object is that an object comes bearing attributes
or properties. For example, a particular person will
have a certain color for the eyes, another for the
hair, a certain weight, a certain height, a certain
age: ‘John has brown eyes, blonde hair, is 180 cm
tall, weighs 82 kg, and is 45 years old’. Eye color,
hair color, height, weight, and age are all variables
(in a more general sense). For example, eye color
pertains to the set (blue, brown, pink, green, hazel,
gray, black). No person’s eye color can assume more
than one of the members of this set in any one
eye at any one time. Eye color is not a quantity,
but it varies from person to person and no person’s
eye can be more than one of the members of
this set. One might map eye colors to integers,
but such a mapping might not represent anything
particularly interesting other than a way to distinguish
individuals’ eye color with numerical names. On
the other hand, weight is a quantity and pertains
to the set of weights in some unit of measurement
represented by positive real numbers. How a number
gets assigned to the person to be his or her weight
involves measurement, and this is a complex topic
of it own (see Measurement: Overview and [2]).
In behavioral and social sciences, variables may be
identified with the responses an individual makes
to items of a questionnaire. These may be scaled
to represent measurements of some attribute that
persons have. We will assume that the variables to
be studied are measurements.

A frequent failing of researchers who have not
mastered working with quantitative concepts is that
in their theorizing they often fail to think of their
theoretical constructs as variables. But then they
seek to study them statistically using methods that
require that they work with variables. A common
mistake that may mislead one’s thinking is not to
think of them as quantities or by names of quantities.

For example, a researcher may hypothesize a causal
relationship between ‘leader–follower exchange’ and
‘productivity’, or between ‘academic self-concept’
and ‘achievement’. These do not refer to quantities,
except indirectly. ‘Leader–follower exchange’ does
not indicate which aspect of an exchange between
leader and follower is being measured and how
it is a quantity. Is it ‘the degree to which the
leader distrusts the follower to carry out orders’?
Is it ‘the frequency with which the follower seeks
advice from the leader’? Is it ‘the extent to which
the leader allows the follower to make decisions
on his own’? And what is ‘productivity’? What is
produced? Can it be quantified? As for ‘academic
self-concept’, there are numerous variables by which
one may describe oneself. So, which is it? Is it ‘the
degree to which the individual feels confident with
students of the opposite sex’? Is it ‘the frequency with
which the individual reports partying with friends
during a school year’? Is it ‘the number of hours
the individual reports he/she studies each week’?
And is ‘achievement’ measured by ‘GPA’ or ‘final
exam score’, or ‘postgraduate income’? When one
names variables, one should name them in a way
that accurately describes what is measured. Forcing
one to use words like ‘degree’, ‘extent’, ‘frequency’,
‘score’, ‘number of’ in defining variables will help
in thinking concretely about what quantities have
influence on other quantities, and improve the design
of studies.

Selecting variables for regression. Suppose Y is
a criterion (dependent) variable to be predicted and
Xi is a predictor (independent variable) in a set of p

predictors. It is known that the regression coefficient
between variable Xi and variable Y is

βYi = ρYi|12···(i)···p
σY |12···(i)···p
σi|12···(i)···p

, (1)

where ρYi|12···(i)···p is the partial correlation between
the criterion Y and predictor Xi , with the pre-
dicted effects of all other predictors subtracted out
of them. (Note ‘12 · · · (i) · · · p’ means ‘the variables
X1, X2 through to Xp with variable Xi not included’.)
σY |12···(i)···p is the conditional standard deviation of the
dependent variable Y , with the predicted effects of
all predictor variables except variable Xi subtracted
out. σi|12···(i)···p is the conditional standard deviation
of Xi , with the predicted effects of all other pre-
dictors subtracted from it. So, the regression weight
represents the degree to which the part of Xi that
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is relatively unique with respect to the other pre-
dictors is still related to a part of the criterion not
predicted by the other variables. This means that an
ideal predictor is one that has little in common with
the other predictors but much in common with the
criterion Y . In an ideal extreme case, the predic-
tors have zero correlations among themselves, so that
they have nothing in common among them, but each
of the predictors has a strong correlation with the
criterion.

There are several posthoc procedures for select-
ing variables as predictors in regression analysis.
The method of simultaneous regression estimates the
regression coefficients of all of the potential predic-
tor variables given for consideration simultaneously.
Thus, the regression weight of any predictor is rel-
ative to the other predictors included, because it
concerns the relationship of the predictor to the cri-
terion variable, with the predicted effects of other
predictors subtracted out. The success of the set of
predictors is given by the multiple correlation coef-
ficient R (see Multiple Linear Regression). This
quantity varies between 0 and 1, with one indicat-
ing perfect prediction by the predictors. The squared
multiple correlation R2 gives the proportion of the
variance of the criterion variable accounted for by
the full set of predictors. One way of assessing the
importance of a variable to prediction is to com-
pute the relative gain in the proportion of vari-
ance accounted for by adding the variable to the
other variables in the prediction set. Let W be the
full set of p predictors including Xj . Let V be
the set of p − 1 predictors W − {Xj }. Then r2

yj ·V =
(R2

y·W − R2
y·V )/(1 − R2

y·V ) is the relative gain in pro-
portion of variance accounted for due to including
variable Xj with the predictors in set V . Here, r2

yj ·V
is also the squared partial correlation of variable Xj

with criterion variable Y , holding constant the vari-
ables in V.R2

y·W is the squared multiple correlation for
predicting Y from the full set of predictors W.R2

y·V is
the squared multiple correlation for predicting Y from
the reduced set V.r2

yj ·V can be computed for each
variable and relative importance compared among
the predictors. It is possible also to test whether
the absolute incremental gain in proportion of vari-
ance accounted for due to variable Xj is significantly
different from zero. This is given by the formula
F = (R2

y·W − R2
y·V )/[(1 − R2

y·W)(N − p − 1)]. F is
distributed as chi squared with 1 and (N − p − 1)

degrees of freedom. (Source: [1], pp. 719–720).

Another method is the hierarchical method. The
predictor variables are arranged in a specific rational
order based on the research question. We begin by
entering the first variable in the order and determine
the degree to which it explains variance in the
dependent variable. We then examine how much the
next variable in the order adds to the proportion
of variance accounted for beyond the first, then
how much the next variable afterwards adds to the
proportion of variance accounted for beyond the first
two, and so on, to include finally the pth predictor
beyond the first p − 1 predictors. In the end, the
R2 for the full set will be the same as in the
simultaneous method, and the regression weights
will be the same. But this method can suggest at
what point what variables might be dropped from
consideration (Source: [1], pp. 731–732).

In addition to this procedure based on rational
ordering, entry can be based on empirical ordering.
The method of stepwise regression begins with no
preset order to the variables. Usually, one begins with
the variable that has the largest squared correlation
with the criterion. Then one pairs the first variable
with each of the other variables and computes a
squared multiple correlation for each pair with the
criterion. One adds the variable from the remaining
variables that produces the largest squared multiple
correlation among the pairs. One also computes the
relative gain in proportion of variance accounted for.
Then one seeks a third variable from the remaining
predictors, which when added to the first two, pro-
duces the largest squared multiple correlation with
the criterion. Again one also computes the relative
gain in proportion of variance accounted for. And
one keeps on until either one has selected all of the
variables or comes to a point where no additional
variable adds a meaningful or significant increment
in proportion of variance accounted for. If one accom-
panies this with significance tests for the gain, it can
involve many tests which are not statistically inde-
pendent (Source: [1], pp. 732–735).

One can also proceed in a backward or step-down
direction, beginning with all the variables and elim-
inating, one at a time, variables that successively
account for the least decrement in the squared mul-
tiple correlation at each step until one gets to a step
where any additional elimination of variables would
seriously decrease the squared multiple correlation at
that point.
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An important disadvantage of empirical entry/
selection is that it capitalizes on chance. This is
particularly important when predictors are highly
related to one another. In a given data set, any of the
empirical entry procedures might lead to a certain
order of entry, whereas in another data set, with
values drawn from the same populations of values,
the order might be quite different.
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Variance

The variance is defined as the mean of the squared
deviations of a set of numbers about their mean. If a
population consists of the set of values X1, X2, . . . ,

Xn(i = 1, 2, . . . , n), then the population variance,
usually denoted by σ 2, is

σ 2 =
∑
i

(Xi − M)2

n
, (1)

where M is the population mean.
This formula is also appropriate for finding the

variance of a sample in the unlikely event that
we know the population mean. However, if we are
dealing with a sample and we are also obliged to
calculate the sample mean, X̄, then dividing the sum
of squared deviations by a value fewer than the
number of scores in the set (n − 1) produces the best
estimate of the variance in the population from which
the sample was obtained. This form, often denoted by
S2, is called the sample variance and is defined as

S2 =
∑
i

(Xi − X̄)2

n − 1
. (2)

It is this version of the variance that is usually
reported by statistical software. Notice, though, that
as the sample size increases, there will be less and
less difference between the values of the variance
obtained using n or (n − 1). Even for small samples,
if the variance is required only for descriptive pur-
poses, it is usually immaterial as to which divisor
is used.

Table 1 shows the number of words recalled by a
hypothetical sample of six participants in a study of

Table 1 Variance calculations for word recall data

Participant
Words

recalled
Deviation
from mean

Squared
deviation

1 5 −2.5 6.25
2 7 −0.5 0.25
3 6 −1.5 2.25
4 9 1.5 2.25
5 11 3.5 12.25
6 7 −0.5 0.25

short-term memory. The mean recall for the sample is
7.5 words. The sum of the squared deviations is 23.5.

The version of the variance treating the data
as a population (that is dividing this sum of the
squared deviations by 6) is 3.92, while the version
of the variance that estimates the population variance
(dividing by 5) is 4.7.

Calculating variances using the above method can
be tedious, so it is worth noting that there are easier
computational forms (see, for example, [1]).

As with other summary statistics that rely equally
on all the numbers in the set, the variance can be
severely affected by extreme scores. Nonetheless, the
variance underlies inferential procedures such as the
analysis of variance, while other methods, such as
standardizing a set of data, draw on its close relative,
the standard deviation.
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Variance Components

Variability is a ubiquitous feature of character-
istics and attributes studied in human populations.
Its prominence is a result of our interest in the
details of behavioral, attitudinal, economic, and med-
ical outcomes, aspects in which human subjects differ
widely and with limited predictability. Without vari-
ability, there is not much to study about a population,
because one or a few of its members then inform
about the population completely. On the other hand,
explanation of variability, in the form of a mecha-
nism describing its causes, is the ultimate and often
unachievable research goal. Such goals are pursued
by various regression models and their extensions,
and the commonly used terminology in connection
with imperfect model fit, such as ‘unexplained varia-
tion’, implies a failure of the research effort. Such a
pessimistic view is often poorly supported. In many
situations, we have to resign ourselves to a descrip-
tion of variability less complete than by regression.
Variance components are a key device for such a
description, and they are associated with factors or
contexts involved in the analyzed study. The contexts
may be introduced deliberately, or be an unavoidable
nuisance feature. For example, when essays (exam-
ination papers) are graded by raters, the raters are
such a context. Their training and instruction aims to
reduce the differences among the raters, but eradicat-
ing them completely is not possible [4].

In this example, the elementary observations
(essays) are clustered within raters; the essays graded
by a rater form clusters or level-2 units (see Clus-
tered Data). Even if the essays are assigned to
raters uninformatively (at random, or with no regard
for any factor associated with their quality), the
scores assigned to them have an element of simi-
larity brought on by being graded by the same rater.
Inferences are desired for each essay and an ‘average’
or typical rater; we wish to generalize our findings
from the incidental to the universal. Hence the term
generalizability theory introduced by [1] (see Gener-
alizability).

In practice, we come across several contexts ‘inter-
fering’ with our observations simultaneously. For
example, intellectual or academic abilities can be
studied only indirectly, by observing individuals’
performances on tasks that represent the domain of

abilities, and assessing the performances by raters
using scales constructed with simplicity in mind.
Here, the assessment (testing) instrument, or the indi-
vidual tasks, the setting (occasion) of the text or
examination, and the raters are factors (or contexts)
associated with variation. That is, if a different test-
ing instrument were used (and the settings of all other
contexts held fixed), the assessments of the (same)
subjects would be different. If a different rater graded
a particular response, the score assigned may be dif-
ferent. Ability, with the appropriate qualification, is
regarded as a characteristic of an individual, whereas
the individual’s performances vary around the ability,
depending on the momentary disposition, the balance
of questions, tasks, or the like, in the assessment
instrument and the rater’s judgment, which may be
inconsistent over replications and may differ among
the raters. Thus, apart from the variation in the ability,
that is of key inferential interest, several other sources
contribute to the variation of the outcomes (scores) –
in a hypothetical replication of the study, different
scores would be recorded. These nuisance contexts
are unavoidable, or have to be introduced, because
assessment (measurement) cannot be conducted in a
contextual vacuum. The levels (or settings) of a con-
text can be regarded as a population, thus introducing
the sampling-design issue of good representation of
a context in the study. This clarifies the scope of the
inference – for what range of settings the conclusions
are intended and are appropriate.

For the case of a single context, let yij be the
outcome for elementary-level unit (say, subject) i in
setting j (say, group, cluster, or unit at level 2). The
simplest nontrivial model that describes yij is

yij = µ + δj + εij , (1)

where µ is the overall mean that corresponds to
(population-related) averaging over settings and ele-
ments, δj is the deviation specific to setting j , j =
1, . . . , J , and εij represents the deviation of sub-
ject i, i = 1, . . . , nj , from the setting-specific mean
µ + δj . The deviations δj and εij are mutually inde-
pendent random samples from centered distributions
with respective variances σ 2

1 and σ 2
2 . Usually, these

distributions are assumed to be normal, often as a
matter of expedience because the normal distribution
is closed with respect to addition: that is, if a and b

are normally distributed random variables, then so is
their total a + b, with mean E(a) + E(b) and variance
var(a) + var(b) + 2cov(a, b).
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As var(yij ) = σ 2
1 + σ 2

2 , it is meaningful to call
σ 2

1 and σ 2
2 the variance components associated with

subjects and settings, respectively. The deviations
δj cause the observations yij to be correlated –
observations within settings are more similar than
observations in general. We have

cor(yij , yi ′j ) = σ 2
2

σ 2
1 + σ 2

2

(2)

for any pair of observations i �= i ′ in the same setting.
If a single setting j were studied, this correlation
could not be recognized (identified); δj and µ would
be confounded:

yij = µj + εij (3)

and, as µj is a constant (unchanged in replications),
the outcomes are mutually independent, each with
variance σ 2

1 . That is, var(yij |j) = σ 2
1 . (Instead of

conditioning on setting j we can condition on the
expectation µj .) If the setting-specific expectations
µj were the observations, σ 2

2 would be identified as
their variance. It is essential to distinguish between
µj and µ, even when the study involves a single
setting j of the context. Otherwise, an unjustified
generalization is made that all the settings of the
context are identical. Also, the parameter µ should
be qualified by the population (class) of contexts;
different classes of a context are associated with
different values of µ.

When several contexts are present each of them is
represented by a variance (component). The contexts
may be nested, as with individuals within house-
holds, streets, towns, and countries, or crossed, as
with examination papers rated separately by two
raters, each drawn from the same pool (see Cross-
classified and Multiple Membership Models). In
general, nested contexts are much easier to handle
analytically, although estimation and other forms of
inference simplify substantially when the numbers of
observations within the combinations of levels of the
contexts are equal (balanced design).

When the context-specific deviations are additive,
as in

yhij = µ + δh + γi + εhij (4)

(contexts h and i are crossed), either a suitable nota-
tion has to be introduced, or the model supplemented
with a description of how the contexts appear in the
data and in the relevant populations. For example,
each level h of one context can occur with each level

i of the other context. The covariance of two observa-
tions is equal to the total of the variance components
for the contexts shared by the two observations. For
example, cov(yhij , yhi ′j ′) = σ 2

δ .
Variance component models can be combined with

regression. The model in (1) has the extension

yij = xijβ + δj + εij , (5)

where xij are the covariates associated with the
element ij . Each covariate may be defined for the
elements ij or for the setting j (of the context); a
more detailed model formulation is

yij = x1,ijβ1 + x2,jβ2 + δj + εij , (6)

in which the covariates x1,ij are defined for the
elements and x2,j for the settings. A variable defined
for the elements may be constant within settings;
xij ≡ x∗

j ; this may be the case only in the sample (it
would not be the case in each replication), or in the
relevant population. Conversely, each context-level
variable xj can be regarded as an elementary-level
variable by defining x

†
ij ≡ xj .

In most research problems, the role of the covari-
ates is to reduce the variance components var(εij ) =
σ 2

1 and var(δj ) = σ 2
2 . Adding a context-level covari-

ate to x can reduce only the context-level variance
σ 2

2 , whereas the addition of an elementary-level vari-
able to x can reduce both σ 2

1 and σ 2
2 . A variable

with the same distribution at each setting of the
context reduces only the within-context variation.
Variables with both within- and between-setting com-
ponents of variation can reduce both variance com-
ponents. Counterintuitive examples in which vari-
ance components are increased when the model is
expanded by one or several variables are given
in [6].

The model in (5) involves several restrictive
assumptions. First, linearity is often adopted as a
matter of analytical convenience. It can be dispensed
with by replacing the predictor xβ with a general
function f (x; θ) which would, nevertheless, involve a
functional form of f . Next, the variance components
are constant. Heteroscedasticity of the context can be
introduced by assuming a functional form for var(δj ),
dependent on some variables (see Heteroscedasticity
and Complex Variation). No generality is lost by
assuming that these variables are a subset of x.
The simplest nontrivial example assumes that the
levels of the context belong to a small number
of categories (subpopulations), each with its own
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variance. In another example, var(δj ) = exp(mj ),
where mj is a function of the population size of
context j .

The deviation of the context from the average
regression xβ need not be constant. A natural way
of introducing this feature is by random coefficients,
or by a more general pattern of between-context
variation:

yij = xijβ + zij δj + εij , (7)

where z is a subset of the variables in x. Now
var(zijδj ) = zij�z�

ij , where � = var(δj ). If all vari-
ables in z are defined for elements the model in
(7) has an interpretation in terms of varying within-
context regressions. But the variation part of the
model, zijδj , may, in principle, involve any variables.
Including a context-level variable in z is meaningful
only when the context has many levels (categories);
otherwise estimation of the elements of the variance
matrix � is an ill-conditioned problem.

Finally, the deviations of the contexts and ele-
ments within contexts, after an appropriate regression
adjustment, need not be additive. The random devia-
tions are multiplicative in the model

yij = f (x; β) δj εij , (8)

where δj and εij are random samples from nonnega-
tive distributions with unit means. This model reduces
to additive deviations (and variance components) by
the log-transformation. Although nontrivial nonaddi-
tive models are easy to specify, they are applied in
practice infrequently, because additive random terms
are much more tractable and correspond to addition
of their variances. Moreover, when the deviations are
normally distributed, so are their linear combinations,
including totals.

Generalized linear models provide a vehicle for
substantial extension of variance component models
within the realm of linearity and normality of the
deviations. Thus a model

g{E(yij )} = xijβ, (9)

with a suitable link function g and a distributional
assumption for y (say, logit function g and binary y)
is extended to

g{E(yij | δj )} = xijβ + δj , (10)

with the obvious further extensions to varying within-
setting regressions (see Generalized Linear Mixed
Models).

A related way of defining more general variance
component models is by assuming that an ordinal
or dichotomous observed variable y is the manifest
version of a normally distributed latent variable
y∗ that satisfies an additive variance component
model. A generic approach to fitting such models is
by the EM algorithm (see History of Intelligence
Measurement) [2], regarding the latent outcomes as
the missing information. See [5].

A suitable process for the conversion of latent
values to their manifest versions has to be defined.
As many key variables in behavioral research are
ordinal categorical, a coarsening process [3] can be
posited in many settings. It specifies that there is a
small number of cut-points −∞ = c0 < c1 < · · · <

cK−1 < cK = +∞ and all latent values that fall into
the interval (ck−1, ck) convert to manifest value k.
Note that the decomposition of the variance to its
context-related components is meaningful only for
the latent outcomes. The pattern of dependence or
the covariance structure among the values of the
observed outcome y is usually not related in any
straightforward way to the covariance structure on the
latent scale. The connection can usually be explored
only by simulations.
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Walsh Averages

Let (x1, x2, . . . , xn) be a random sample from a
symmetric distribution with unknown median θ . The
set of Walsh averages [4] is the collection of n(n +
1)/2 pairwise averages, each of the form (xi + xj )/2
and computed for all i = 1, 2, . . . , n and for all j =
1, 2, . . . , n.

The sample (2, 5, 7, 11), for example, gives rise
to the 10 Walsh averages shown in Table 1.

The median of the set of Walsh averages is the
one-sample Hodges-Lehmann estimator, an effi-
cient point estimator of the median of the sampled
distribution. For our example, with 10 Walsh aver-
ages, the median estimate is the average of the fifth
and sixth smallest Walsh averages, (6 + 6.5)/2 =
6.25.

Walsh averages also can be used to find a con-
fidence interval (CI) for the median. This usage
follows the logic of the Wilcoxon signed-rank test;
that is, the resulting (1 − α)100% CI includes those
values of θ that would not be rejected at the α level
by the Wilcoxon signed-rank test.

One approach to the median CI is described in [1].
We illustrate here the mechanics, using our n = 4
example. Let Lα/2 be a signed-rank sum such that,
for a sample of size n, the probability is α/2 of a
signed-rank sum that size or smaller under the null

hypothesis. Such values are tabulated and widely
available. Large-sample approximations have been
developed as well, for example, [1] and [2].

The lower and upper limits to the (1 − α)100%
CI are given by the Lα/2th smallest and the Lα/2th
largest Walsh average, respectively.

For n = 4, the tabled [3] probability is 0.125 that
the signed-rank sum will be 1 or smaller. Thus, a
75% CI for the median is bounded by the smallest
and largest Walsh averages. For our example, this
yields a 75% CI bounded below by 2 and above by
11. We have 75% confidence that the interval from
2 to 11 contains the population median, θ . A slightly
different algorithm for the CI is given in [2], where
it is referred to as a Tukey CI.
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Table 1 Computation of Walsh averages

2 5 7 11

2 (2 + 2)/2 = 2 (2 + 5)/2 = 3.5 (2 + 7)/2 = 4.5 (2 + 11)/2 = 6.5
5 (5 + 5)/2 = 5 (5 + 7)/2 = 6 (5 + 11)/2 = 8
7 (7 + 7)/2 = 7 (7 + 11)/2 = 9
11 (11 + 11)/2 = 11
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Wiener, Norbert

Born: November 26, 1894, in Columbia, USA.
Died: March 18, 1964, in Stockholm, Sweden.

The son of Russian émigré, Leo Wiener, Norbert
Wiener was a child prodigy who entered Tufts
College at the age of 11, graduating three years later.
He then entered Harvard to begin graduate studies
at the age of 14. Beginning with zoology, Wiener
soon changed to mathematical philosophy, receiving
his Ph.D. from Harvard at the age of 18, with a
dissertation on mathematical logic. From Harvard,
the 18-year-old Wiener travelled first to Cambridge,
England, to study under Russell and Hardy, and then
on to Gottingen to work on differential equations
under Hilbert. At the end of World War I, Wiener took
up a mathematics post at the Massachusetts Institute
of Technology (MIT), where he was eventually to
become professor in 1932, a post he held until 1960.

Wiener’s mathematical work included functions of
a real variable, mathematical logic, relativity, quan-
tum theory, Brownian motion, and the Fourier inte-
gral and many of its applications. During World War
II, he worked on guided missiles. It was during this

period that Wiener studied the handling of informa-
tion by electronic devices, based on the feedback
principle, phenomena that were later compared with
human mental processes in his most famous book,
Cybernetics, first published in 1947 [1]. Cybernet-
ics was generally defined as ‘the science of control
and communication in the animal and the machine’,
with ‘animal’ very definitely including human beings.
Essentially, Wiener was making an analogy between
man as a self-regulating system, receiving sensory
data and pursuing certain objectives, and mechanical
or electrical servomechanisms.

Wiener spent his last years working on the appli-
cations of cybernetics to human thinking and pointing
out its social dangers and the need to reconstruct soci-
ety to allow for social evolution. Wiener’s cybernetics
was the forerunner of Artificial Intelligence. Norbert
Wiener was one of twentieth century’s true poly-
maths, and the breadth of his work remains apparent
throughout mathematics and probability.
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Wilcoxon, Frank

Born: September 2, 1892, in County Cork, Ireland.
Died: November 18, 1965, in Tallahassee, Florida.

Frank Wilcoxon was born to a wealthy family in 1892
and grew up in the Hudson River Valley. He received
his early education at home, and a BS degree from
Pennsylvania Military College in 1917. He received
his MS degree in chemistry from Rutgers in 1921 and
a PhD degree in inorganic chemistry from Cornell
in 1924.

Most of Wilcoxon’s professional life was spent in
industry, first with the Boyce Thompson Institute for
Plant Research, and then with American Cyanamid.
The major focus of his chemical research dealt with
insecticides and fungicides, though later he headed
up the statistics group at the Lederle Division of
American Cyanamid.

Wilcoxon’s interest in statistics began with a study
group, of which W. J. Youden was also a part. The
group studied Fisher’s (1925) Statistical Methods for
Research Workers. It was 20 years before Wilcoxon
published anything in statistics, but he was always
interested in the applications of statistical methods to
chemical research.

Wilcoxon’s most important paper [10] appeared in
the first volume of what is now Biometrics in 1945,
and concerned the application of ranking methods
for testing differences in location. Both his matched-
pairs signed-ranks test and his rank-sum test (see
Wilcoxon–Mann–Whitney Test) were presented in
that paper. This paper was important because it led to
a growing interest in rank methods (see Rank Based
Inference), and the development of similar methods
for other designs.

Wilcoxon’s approach relies on two statistical
methods, the use of ranks and the use of permutation
procedures. Ranked data had been used for a very
long time, at least back to Galton. However, accord-
ing to Kruskal and Wallis [7], the earliest treatment of
them as a nonparametric statistical tool would appear
to be a paper on rank correlation by Hotelling and
Pabst [5] in 1936. Wilcoxon cited a paper by Fried-
man [4] on the use of ranks to avoid assumptions
of normality but, interestingly, his own paper says
very little about that issue, even though it is one of
the major strengths of his approach. Permutation as

a test procedure was considerably more recent and
was first used by Fisher [3] and by Pitman [9] in
the 1930s. The permutation tests (see Permutation
Based Inference) produced by Fisher and Pitman
(see Pitman Test) were unwieldy, requiring lengthy
calculations on all possible (or all extreme) permu-
tations. Wilcoxon, however, hit upon the idea of
replacing observations with ranks and permuting the
ranks. The first thing this did was to simplify the cal-
culations, which his paper seems to emphasize as the
goal. Since, for a given sample size, ranks are con-
stant from one experiment to another, it was possible
for Wilcoxon to establish tables of extreme results,
thereby standardizing the process. More importantly,
using rank substitution allowed statistics to move
away from normality assumptions that had underlain
nonpermutation tests to that time. Initially, Wilcoxon
said very little about what assumptions remained.

Interestingly, Leon Festinger [2] independently
developed the same test, retaining the possibility of
unequal sample sizes, and published in Psychome-
trika the next year. Mann and Whitney [8] published
a very similar idea the next year, and the two-
sample test is now frequently referred to as the
Wilcoxon-Mann-Whitney test. Over the next several
years, Wilcoxon, later in conjunction with Roberta
Wilcox, published extensive table for his tests [11].

Wilcoxon’s tests went on to form the core of a
whole set of rank-permutation tests and remain some
of the most powerful nonparametric tests. Kruskal [6]
provides historical notes on the development of the
two-sample test prior to Wilcoxon’s time. Bradley [1]
provides a summary of his life.

Wilcoxon retired in 1957 but joined the faculty of
Florida State University in 1960, where he remained
until his death. His later work dealt with sequential
ranking methods.
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Wilcoxon–Mann–Whitney
Test

The Wilcoxon-Mann-Whitney test, also known as the
Mann-Whitney U -test or the Wilcoxon rank sum test,
is used to test the null hypothesis that two popu-
lations have identical distribution functions against
the alternative hypothesis that the two distribution
functions differ only with respect to location (the
median). The alternative may be either directional
or nondirectional. For example, in one study [9] the
investigators wished to determine whether men and
women supported traditional gender roles in differ-
ing amounts. After evaluating each person’s level of
support, the scores were grouped together and ranked
from smallest to largest. The sum of the ranks for
each gender were then compared. If the two rank
sums differed significantly, then the conclusion would
be that there is a significant gender difference.

One common approach to testing this hypothesis
is by means of a parametric analysis, which assumes
normality; typically a two-sample Student’s t Test
(see Catalogue of Parametric Tests). A problem
with this approach is that the normality assumption
is rarely warranted, and when it is not, the normal-
based P value will differ from the exact P value
by an amount that cannot be determined without
actually computing each one, and then comparing
them [1, 2]. But if one were to go through the effort to
compute the exact P value, then why would one use
it to validate the approximation rather than as the P

value to be reported? How can an approximation be
preferred to the quantity it is trying to approximate,
if that gold standard quantity is already in hand? The
alternative nonparametric approach does not assume
normality and hence offers more robust results.

There are three primary assumptions of the non-
parametric Wilcoxon-Mann-Whitney test:

1. Each sample is randomly selected from the
specific population and the observations within
each sample are independent and identically
distributed.

2. The two samples are independent of each
other (otherwise, consider the Wilcoxon signed
rank test).

3. The populations may differ in their location
(mean or median), but not in their distributional

shape or spread (if this assumption is question-
able, then consider the Smirnov test [11]).

Let x1,...,xm be a sample from population X and
y1,...,yn be a sample from population Y . Let FX(t)

and GY (t) be the cumulative distribution functions
for the two populations. The location shift model
is that GY (t) = FX(t + �), for all values of t . The
null hypothesis, that the X and Y variables have the
same probability distribution, can then be stated as:
H0: � = 0. This makes sense only if the distributions
are continuous, but the Wilcoxon-Mann-Whitney test
can be applied even to ordered categorical data.

Let N = m + n. To compute the Wilcoxon test
statistic, W , first order the combined sample of N

values from least to greatest and assign ranks, 1
through N , to the observations (average ranks can
be used in case of ties). Next, let S1, S2, . . . , Sn

denote the ranks assigned to y1, . . . , yn, the sample
from population Y . Then W is the sum of the ranks
assigned to the Y sample [14],

W =
n∑

j=1

Sj . (1)

Interpretation of the Wilcoxon test statistic
depends on the substantive hypothesis about the two
population medians; hence the alternative hypothesis
for the location shift parameter � may be either one-
sided or two-sided:

a. [Mdn(Y ) > Mdn(X)] and Ha: � > 0. H0 is
rejected at the α level of significance if W ≥ Wα,

where Wα is chosen to make the type I error
probability equal to (or no greater than) α.

b. [Mdn(Y ) < Mdn(X)] and Ha: � < 0. H0 is
rejected at the α level of significance if W ≤
n(m + n + 1) − Wα, where Wα is chosen to make
the type I error probability equal to (or no greater
than) α.

c. [Mdn(Y ) �= Mdn(X)] and Ha: � �= 0. H0 is
rejected at the α level of significance if W ≥
Wα/2 or W ≤ n(m + n + 1) − Wα/2, where Wα/2

is chosen to make the overall type I error
probability equal to (or no greater than) α.

The Wilcoxon test is a permutation test (see Per-
mutation Based Inference); that is, under the null
hypothesis, the set of ranks may be permuted, any
m of them being assigned to the X population, with
the remaining n being assigned to the Y population
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regardless of true group membership. Thus, the null
distribution for W consists of the set of Wilcoxon
statistics for all [N !/(m! × n!)] permutations of the
ranks. Wα is the (1 − α)100% quantile of this ref-
erence distribution. Because ranks, rather than raw
data, are used in the computation of W , it is not nec-
essary to carry out the permutation test for each new
data set. For sample sizes, n or m, up to 10, the crit-
ical value of Wα may be obtained from tables such
as in [7]. It should be noted that the tabled values
are exact only if there are no ties among the (m + n)
observations.

For larger sample sizes, an approximation based
on the asymptotic normality of W is often used [7].
For this purpose, W is standardized:

W ∗ = W − {n(m + n + 1)/2}√
mn(m + n + 1)/12

. (2)

The null hypothesis is rejected in favor of Ha: � >

0 if W ∗ ≥ −zα where zα is the (α × 100)% quantile
of the standard normal distribution, for example,
−1.96 is the 5% quantile. Where the alternative
hypothesis is that � > 0, reject H0 if W ∗ ≤ zα and
where the alternative hypothesis is nondirectional,
reject the null hypothesis if |W ∗| ≥ −zα/2.

Both the exact permutation test and approximate
calculations are available from a variety of commer-
cial statistical packages (see Software for Statistical
Analyses).

Correction for Ties

The use of this normal approximation may be unre-
liable when the sampled distributions are sparse,
skewed, or heavily tied. In fact, when ties are present
in the sample, the test statistic given above may be
too conservative. The following revision decreases
the denominator slightly, rendering the outcome less
conservative and yielding smaller P values.

W ∗ = W − {n(m + n + 1)/2}√√√√√√√√√√
mn

12


m+n+1−

g∑
j=1

(tj − 1)tj (tj + 1)

(m + n)(m + n − 1)




,

(3)

where g is the number of tied groups and tj is the
size of the j th tied group.

Continuity Correction

When the large sample approximation is used, a con-
tinuity correction may be desirable to allow for the
fact that the test statistic W has a discrete distribu-
tion, whereas the normal distribution is continuous.
This correction decreases the numerator and renders
the outcome more conservative [12].

The U-test Formulation

The Mann–Whitney U -test has a completely dif-
ferent derivation, and is based on the set of pair-
wise comparisons of x values to y values. There
are n × m such pair-wise comparisons. For each
comparison, the Mann–Whitney U statistic is incre-
mented by 0 if xi > yj , by 1/2 if xi = yj , and by
1 if xi < yj . The resulting sum is related to the
Wilcoxon W ,

W = U + (
1
2

)
[n(n + 1)], (4)

with the result that tests based on U are equivalent to
tests based on W [10]. The U-test formulation allows
a more natural handling of data that are only partially
ordered [4].

Computation

Except where the sample sizes are small, the
Wilcoxon-Mann-Whitney test usually is evaluated
within a statistical computing package. Compar-
isons of the Wilcoxon-Mann-Whitney test in 11
commercial statistical packages is presented in [5].
Many packages offer corrections for ties and conti-
nuity as well as exact computation, although only
SAS was found to have all three options in this
study.

The Wilcoxon Test as a Linear Rank Test

The Wilcoxon test is a linear rank test. That is, the
W statistic is a weighted sum of ranks. The regu-
lar spacing of the ranks, as integers, contributes to
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tied values in the permutation distribution of the W

statistic. So too does the use of a small number of
mid ranks (averages of tied ranks) when calculat-
ing the statistic from ordered categorical data. This
discreteness in the null distribution results in a con-
servative and less powerful test [8]. Eliminating or
reducing the number of tied outcomes could result in
a more powerful test [13]. Several approaches have
been proposed for assigning different values to some
permutations that would, otherwise, have equal W

statistics [3, 8, 11]. One of these assures that even
the exact permutation version of the test becomes
uniformly more powerful [3].

Asymptotic Properties

The asymptotic relative efficiency of the Wilcoxon-
Mann-Whitney test, against the t Test, makes it a
strong candidate for testing for differences in loca-
tion. Where the distributions sampled are, in fact,
normal, the Wilcoxon-Mann-Whitney test has an
asymptotic relative efficiency of 0.955. In no case
is the asymptotic relative efficiency of the Wilcoxon
test lower than 0.864 [6]. And, the Wilcoxon test
can offer much greater efficiency than the t Test for
some types of distributions. The worst-case poten-
tial loss of efficiency of 13% – 0.136 = (1.000 −
0.864) – might be regarded as a relatively small
insurance premium to be paid in case one of these
distributions arises, and renders the t Test ineffi-
cient.

Example The following excerpt from [9] (see
Table 1) shows the ranks of mens’ and womens’
scores after being tested regarding the strength of
their endorsement of traditional sex ascriptions.

To test the null hypothesis that there is no dif-
ference in endorsement between genders against the
alternative hypothesis that a difference exists, we
compute the sums of the ranks for each gender.

To compute the large-sample approximation we
note that

The sampling mean is 17∗(17 + 17 + 1)/2 = 297.5.
The sampling variance is 17∗17∗(17 + 17 + 1)/12, or

a standard error of 29.033.
These result in a standardized test statistic of W ∗ =

(378 − 297.5)/29.033 = 2.77.

We reject the null hypothesis at α = 0.05 as W ∗ ≥
zα/2 = 1.96, and we see that a significant difference
exists between the two groups. The P value of the
normal approximation can be calculated as 0.0056.
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Winsorized Robust
Measures

Consider any n observations and let g be 0.1n,
rounded down to the nearest integer. Then, 10%
trimming refers to removing the g smallest, as well
as the g largest values (see Trimmed Means).
Winsorizing the values means that the g smallest
values are reset to the smallest value not trimmed, and
the g largest are set to the largest value not trimmed.
As an illustration, consider the eleven values 6, 2,
10, 14, 9, 8, 22, 15, 13, 82, and 11. Then g = 1 and
Winsorizing these values by 10% refers to replacing
the smallest value, 2, with the next smallest, 6.
Simultaneously, the largest value, 82, is replaced by
the next largest, 22. So the 10% Winsorized values
are 6, 6, 10, 14, 9, 8, 22, 15, 13, 22, and 11. The
20% Winsorized values are obtained in a similar
fashion; only, now g is 0.2n, rounded down to the
nearest integer. The average of the Winsorized values
is called a Winsorized mean, and the variance of the
Winsorized values is called a Winsorized variance.

Winsorized means can be used to compare groups;
under nonnormality, a Winsorized mean can have
a substantially lower standard error than the usual
sample mean, which can result in higher power.
But, usually other robust estimators are used. Instead,

Winsorization is typically used to obtain a theoret-
ically correct estimate of the standard error of a
trimmed mean, which has certain practical advantages
over comparing groups with a Winsorized mean. For
details, see [1–5]. Winsorization also plays a role
when searching for robust alternatives to Pearson’s
correlation (see Pearson Product Moment Corre-
lation) [4, 5]. The so-called Winsorized correlation
guards against outliers among the marginal distribu-
tions, which can help detect associations that would
be missed when using Pearson’s correlation. A criti-
cism, however, is that the Winsorized correlation does
not take into account the overall structure of the data
when dealing with outliers. For example, only two
unusual values can mask an association that would
be detected by other correlation coefficients [5].
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Within Case Designs:
Distribution Free Methods

In a within-case or repeated measures (RM) design
(see Repeated Measures Analysis of Variance),
subjects provide data at K successive points in time
or for each of K experimental conditions. Data col-
lected from different subjects are assumed to be
independent, while data from the same subject are
correlated. Tests of within-case main or interaction
effects may be conducted using univariate or multi-
variate parametric or nonparametric procedures; the
valid use of any one of these approaches depends
on the data conforming to its underlying derivational
assumptions.

The analysis of variance (ANOVA) F test, the
usual parametric test for RM designs, rests on the
assumption of sphericity,

C�C′ = σ 2I, (1)

where C, of dimension (K − 1) × K , defines a set
of orthonormalized contrasts on the repeated mea-
surements, � is the covariance matrix, and I is an
identity matrix of dimension (K − 1). The multi-
variate parametric approach makes no assumptions
about the structure of the covariance matrix of the
repeated measurements. Both univariate and multi-
variate parametric procedures assume a K-variate
normal distribution.

Type I error rates of parametric procedures for
testing within-case effects are relatively robust (i.e.,
insensitive) to departures from normality, although
skewed distributions may be associated with inflated
error rates [12]. However, nonnormality can result
in a substantial loss of statistical power to detect
the presence of within-case effects [20]. When the
data are highly skewed or have heavy tails due to
the presence of outliers, nonparametric procedures,
which make no assumptions regarding the distribu-
tion of the data, may result in more powerful tests of
within-case effects. In this section, we select a num-
ber of different nonparametric procedures that may be
applied to RM data, and illustrate their application.

Procedures Based on Rank Scores

Rank tests for within-case designs include procedures
that are applied to inter-case ranks, where all NK

scores are ranked without regard to subject member-
ship. They also include procedures that are applied to
intra-case ranks, where the scores for each of the N

subjects are arranged in increasing order of magni-
tude, and then ranked from 1 to K . (see Rank Based
Inference.)

For the simplest within-case design that contains
a single group of subjects and a single within-
case factor, let yik represent the score for the ith
subject (i = 1, . . . , N ) for the kth treatment or time
period (k = 1, . . . , K), and let rik represent the intra-
case rank of yik . Midranks are assigned for ties.
Friedman’s test [7], a well-known procedure that
has been used to test within-case effects with intra-
case ranks, is defined as

FR = K(K + 1)

12N

K∑
k=1

(
r̄.k − K + 1

2

)2

, (2)

where r̄.k is the kth treatment mean rank. FR is
asymptotically distributed as χ2[α; K − 1] (see [10]
for approximations to the distribution of FR).

Friedman’s procedure [7] tests the exchange-
ability hypothesis, Gi(y) = G(y1 . . . yK) for yi =
[yi1 . . . yiK ] and any permutation of [1 . . . K], where
Gi(y) denotes the distribution function of yi . In other
words, under the null hypothesis, the joint distribu-
tion of the observations is assumed to be invariant for
any permutation of the intra-subject ranks. Accord-
ingly, Friedman’s test assumes a common correlation
between pairs of observations [1]. Thus, while Fried-
man’s procedure may be insensitive to the shape of
the underlying distribution, it is known to be sensitive
to departures from sphericity.

For designs that contain both within-case and
between-case (i.e., grouping) factors, procedures
based on intra-case ranks include extensions of
Friedman’s test [4], Hollander and Sethuraman’s [8]
two-group test, and extensions of Hollander and
Sethuraman’s test to multi-group designs [4, 17].
These procedures are used to test within-case
interactions, which can be expressed as tests of
discordance or inconsistency of intra-case ranks
across independent groups of subjects.

Procedures based on inter-case ranks include rank
transform tests, in which standard parametric tests,
such as the analysis of variance (ANOVA) F test
or a multivariate test, are applied to ranked data.
The ANOVA F , which tests the exchangeability
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hypothesis, is given by

FRT = MSK

MSS×K

=

K∑
k=1

(r̄ ∗
.k − r̄ ∗

.. )
2

K∑
k=1

N∑
i=1

(r∗
ik − r̄ ∗

i. − r̄ ∗
.k + r̄ ∗

.. )
2

, (3)

where r∗
ik, r̄ ∗

i. , r̄ ∗
.k , and r̄ ∗

.. respectively represent the
rank for the ith subject at the kth level of the
within-case factor, the mean rank for the ith sub-
ject, the mean rank for the kth within-case factor
level, and the grand mean rank. FRT is approxi-
mately distributed as F [α; K − 1, (N − 1)(K − 1)].
For one-group within-case designs, the multivari-
ate rank transform test is Hotelling’s T 2 [9], TRT =
N(CR̄)′(CSrC)−1(CR̄), where C defines a set of
(K − 1) contrasts for the repeated measurements,
R̄ = [r̄∗

.1 . . . r̄∗
.K ]′, and Sr is the covariance matrix

of the ranks. The statistic FT = [(N/(K − 1)]TRT/

(N − 1) is approximately distributed as F [α; K −
1, N − K + 1] [1]. Hotelling’s T 2 for rank transform
data is used to test the hypothesis of equality of the
marginal distributions of the repeated measurements,
that is, G1(y) = G2(y) = · · · = GK(y).

Rank transform tests are appealing to researchers
because they can be easily applied with standard
statistical software package. One limitation is that
they cannot be applied to tests of within-case inter-
actions. The ranks are not a linear function of the
original observations, therefore, ranking the data may
introduce additional effects into the statistical model.
Moreover, ranking may alter the pattern of the corre-
lations among repeated measurements. Accordingly,
rank transform tests, while insensitive to departures
from normality, must be used with caution in multi-
factor designs [1, 2, 3, 6, 18].

Nonparametric Procedures Based on
Resampling

When the assumption of multivariate normality
is in doubt (see Multivariate Normality Tests),
within-case effects may be tested using statisti-
cal procedures based on the resampling technique
of bootstrapping (see Bootstrap Inference; Per-
mutation Based Inference) [13, 19]. Under this

approach, the usual univariate or multivariate para-
metric test statistic is computed on the origi-
nal data, but statistical significance of within-case
effects is assessed using the empirical distribu-
tion of the test statistic rather than the theoretical
distribution.

To illustrate, let F denote the conventional
ANOVA F statistic for testing the within-case
effect in a single group design. An iterative pro-
cess is used to obtain the empirical distribution of
the test statistic as follows: A bootstrap data set
is generated by randomly sampling with replace-
ment the K-variate vectors of repeated measure-
ments. Let y∗

i represent the ith resampled vec-
tor. Each y∗

i is centered on the sample mean
vector, ȳ = [ȳ.1 . . . ȳ.K ]T , where ȳ.k = ∑n

i=1 yik , so
that y∗C

i = y∗
i − ȳ. The test statistic, F ∗, is com-

puted on the centered bootstrapped data set. This
process is repeated B times. Let F ∗

(1) ≤ F ∗
(2) ≤

· · · ≤ F ∗
(B) denote the B bootstrapped test statis-

tics arranged in ascending order, and let m = (1 −
α)B. Then, F is referred to the critical value F∗

(m).
The bootstrapped ANOVA F Test will control the
rate of Type I errors to α under departures from
both normality and sphericity [5]. The bootstrapped
Hotelling’s T 2 also performs well under departures
from normality.

A Numeric Example

To illustrate these various nonparametric tests based
on ranks and the bootstrap, we selected a data
set ([14], p. 571) for an experiment in which the
length of gaze (in seconds) at a stimuli was obtained
for each of 14 infants (see Table 1). Four differ-
ent stimuli were considered: face, concentric cir-
cles, newspaper, and unpatterned white circle. We
modified the original data by adding a constant to
each of the measurements for the first two sub-
jects in order to produce a skewed distribution. The
inter-case ranks for the modified data set are in
Table 2. Table 3 contains S and Sr, the covariance
matrix of the raw scores and the ranks, respec-
tively. Both covariance matrices reveal the presence
of increasing heterogeneity in the data across the
four stimuli. Friedman’s test gives FR = 6.8 with
a P value of pFR = .08. Applying the rank trans-
form Hotelling’s T 2 to the data gives TRT = 17.0
with pRT < .0001. The bootstrap P value for these
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Table 1 Raw scores for one-group within-case design

Stimuli

Infant Face Circle Newspaper White

1 6.1 6.4 6.7 6.8
2 6.3 6.6 6.7 6.5
3 2.1 1.7 1.2 0.7
4 1.5 0.9 0.6 0.4
5 0.9 0.6 0.9 0.8
6 1.6 1.8 0.6 0.8
7 1.8 1.4 0.8 0.6
8 1.4 1.2 0.7 0.5
9 2.7 2.3 1.2 1.1

10 1.5 1.2 0.7 0.6
11 1.4 0.9 1.0 0.5
12 1.6 1.5 0.9 1.0
13 1.3 1.5 1.4 1.6
14 1.3 0.9 1.2 1.4

Table 2 Inter-case ranks for one-group within-case design

Stimuli

Infant Face Circle Newspaper White

1 49 51 54.5 56
2 50 53 54.5 52
3 46 43 26 10
4 37.5 17.5 6 1
5 17.5 6 17.5 13
6 41 44.5 6 13
7 44.5 33 13 6
8 33 26 10 2.5
9 48 47 26 23

10 37.5 26 10 6
11 33 17.5 21.5 2.5
12 41 37.5 17.5 21.5
13 29.5 37.5 33 41
14 29.5 17.5 26 33

Table 3 Variance-covariance matrix for raw
scores and inter-case ranks

Raw scores
2.98 3.30 3.52 3.53

3.72 3.96 4.01
4.44 4.49

4.58
Inter-case ranks
84.8 113.7 56.6 51.4

210.7 128.0 155.7
245.4 262.9

346.5

data, pB, which was based on 1000 replications
(see [19]), is also <.0001. Applying the ANOVA F

test to the original observations gives F = 8.0 with
p = .0003. The bootstrap P value for this test is also
<.0001.

Concluding Remarks

Behavioral scientists may be reluctant to bypass
conventional parametric approaches for the analy-
sis of within-case effects in favor of nonparametric
tests based on ranking or resampling methods. This
reluctance may stem, in part, from the belief that
parametric procedures are robust to departures from
normality. While Type I error rates of parametric pro-
cedures may be relatively robust to the presence of
nonnormal distributions, power rates can be substan-
tially affected, particularly when the data are skewed.
Researchers may also be reluctant to adopt non-
parametric procedures because they are unfamiliar
with test for multi-factor and multivariate designs,
or with methods for testing linear contrasts on the
within-case effects. Recent research has focused on
the development of nonparametric tests for a vari-
ety of univariate and multivariate repeated measures
designs [15, 16]. Procedures based on the bootstrap
can be readily applied to a variety of complex uni-
variate and multivariate designs to test hypotheses on
omnibus effects as well as linear contrasts of within-
case effects [19].

Finally, we note that alternative parametric pro-
cedures have been proposed for testing within-case
effects when the data are nonnormal. For designs that
contain both within-case and between-case factors,
Keselman, Kowalchuk, Algina, Lix, and Wilcox [11]
examined approximate degrees of freedom proce-
dures that assume neither equality (i.e., homogeneity)
of group covariances nor sphericity of the common
covariance of the repeated measurements. These pro-
cedures were extended to the case of nonnormality
by substituting the usual (i.e., least-squares) esti-
mators with robust estimators based on trimmed
means. Trimmed means are obtained by remov-
ing the most extreme observations from the tails of
the data distribution prior to computing the aver-
age score. These approximate degrees of freedom
tests based on trimmed estimators were shown to
be insensitive to the presence of both skewed and
heavy-tailed distributions. The tests were also exam-
ined when critical values were generated via the
bootstrap. As expected, the bootstrapped tests were
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also robust to nonnormality, although the Type I
error rates of the two approaches were not appre-
ciably different.
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Yates’ Correction

Yates’ correction [15] is used as an approximation in
the analysis of 2 × 1 and 2 × 2 contingency tables.
A 2 × 2 contingency table shows the frequencies of
occurrence of all combinations of the levels of two
dichotomous variables, in a sample of size N . A
schematic form of such a table is shown in Table 1.

A research question of interest is often whether
the variables summarized in a contingency table are
independent of each other. The test to determine if
this is so depends on which, if any, of the margins
are fixed, either by design or for the purposes of
the analysis. For example, in a randomized trial in
which the number of subjects to be randomized to
each treatment group has been specified, the row
margins would be fixed but the column margins
would not (it is customary to use rows for treatments
and columns for outcomes). In a matched study,
however, in which one might sample 100 cases
(smokers, say) and 1000 controls (non–smokers),
and then test each of these 1100 subjects for the
presence or absence of some exposure that may have
predicted their own smoking status (perhaps a parent
who smoked), it would be the column margins that
are fixed. In a random and unstratified sample, in
which each subject sampled is then cross–classified
by two attributes (say smoking status and gender),
neither margin would be fixed. Finally, in Fisher’s
famous tea–tasting experiment [13], in which a lady
was to guess whether the milk or the tea infusion was
first added to the cup by dividing eight cups into two
sets of four, both the row and the column margins
would be fixed by the design. Yet, in the first case
mentioned, that of a randomized trial with fixed row
margins but not fixed column margins, the column
margins may be treated as fixed for the purposes of
the analysis, so as to ensure exactness [2].

When the row and column margins are fixed,
either by design or for the analysis, independence

Table 1 A 2 × 2 contingency table

Column variable

Row variable 1 2 Totals

1 A B A + B

2 C D C + D

Totals A + C B + D N

can be tested using Fisher’s exact test [4] (see Exact
Methods for Categorical Data). This test is based
on the hypergeometric distribution (see Catalogue of
Probability Density Functions), and it is computa-
tionally intensive, especially in large samples. There-
fore, Fisher advocated the use of Pearson’s statistic,

X2 = N(AD − BC)2

(A + B)(C + D)(A + C)(B + D)
, (1)

which, under the null hypothesis, has a χ2 distribution
with one degree of freedom. Yates [15] argued that
the χ2

1 distribution gives only approximate estimates
of the discrete probabilities associated with frequency
data, and, thus, the P values based on Pearson’s X2

statistic will generally underestimate the true P val-
ues. In general, when a statistic takes discrete values
a < b < c, the P value corresponding to b is esti-
mated by the tail of the continuous function defined
by the point (a + b)/2. Therefore, the tail of the con-
tinuous function computed at b will underestimate
the P value. In this context, Yates suggested that X2

should be corrected for continuity and proposed the
corrected test statistic

N
(|AD − BC| − 1

2N
)2

(A + B)(C + D)(A + C)(B + D)
.

Although Yates’ correction is best known for its
use in the analysis of 2 × 2 contingency tables, it is
also applicable to the analysis of 2 × 1 contingency
tables. A 2 × 1 contingency table displays the fre-
quencies of occurrence of two categories in a random
sample of size N , drawn from a population in which
the proportions of cases within the two categories
are p and 1 − p. The research question is usually
whether the observed numbers of cases x and N − x

in the two categories have been sampled from a pop-
ulation with some prespecified value of p. This can
be tested using Pearson’s statistic,

X2 = (x − Np)2

Np(1 − p)
, (2)

which asymptotically has a χ2
1 distribution under the

null hypothesis. Yates showed that, in this case as
well, the use of Pearson’s X2 results in P values that
systematically underestimate the true P values based
on the binomial distribution. Therefore, he suggested
the corrected statistic(|x − Np| − 1

2

)2

Np(1 − p)
. (3)
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Kendall and Stuart [7] remarked that Yates’ pro-
cedure is a special case of a general concept of a
continuity correction, while Pearson [10] noted that
Yates’ correction derives naturally from the Euler-
Maclaurin theorem used to approximate binomial
and hypergeometric distributions. Subsequently, the
use of Yates’ correction to Pearson’s X2 has been
widely emphasized for the analysis of contingency
tables [14]. There are, however, several issues related
to Yates’ correction, and we shall discuss some of
these in turn.

Firstly, in the analysis of 2 × 1 contingency tables,
the P values associated with the corrected statistic
(3) tend to overestimate the true P values in the tails
of the distribution and to underestimate them towards
the center. This is illustrated in Table 2, which dis-
plays the two-tailed P values in a contingency table
with N = 10 and p = 0.5, obtained with Pearson’s
X2 statistic and Yates’ correction. The table reports
as well the true binomial P values, which are the
gold standard. It should also be noted [15] that the
P values obtained with the continuity correction are
much less accurate when the binomial probability p

is substantially different from 0.5.
Secondly, Yates’ correction is appropriate only

for one-sided tests, as it is based on a comparison
between the observed contingency and the next
strongest contingency in the same direction ([6,
8]). For two-sided tests, the statistic involves an
overcorrection. Along the same lines, it can be proven
analytically that Yates’ correction is systematically
conservative when carrying out two-sided tests [9].

Thirdly, a more important issue related to Yates’
correction is its applicability to the analysis of contin-
gency tables arising from different research designs.
Many researchers have argued that Yates’s correc-
tion is based upon comparisons among contingency

Table 2 Binomial distribution for N = 10 and p = 0.5,
and two-tailed P values. (Adapted from [12])

P values

x p(x) Pearson Yates Binomial

0, 10 0.0010 0.0016 0.0044 0.0020
1, 9 0.0098 0.0114 0.0268 0.0215
2, 8 0.0439 0.0580 0.1138 0.1094
3, 7 0.1172 0.2060 0.3428 0.3437
4, 6 0.2051 0.5270 0.7518 0.7539
5, 5 0.2461 1.0000 1.0000 1.0000

tables with fixed row and column marginal totals,
particularly since Yates is specifically concerned with
approximating the hypergeometric distribution from
Fisher’s exact test. However, Yates’ method has also
been recommended for the analysis of 2 × 2 contin-
gency tables arising from sampling schemes, where
one or both sets of marginal totals are free to vary,
and are, thus, subject to sampling errors. It should
be noted that such sampling schemes are the ones
most frequently found in actual research context.
While Yates [16] argues along the lines of Fisher’s
reasoning that the analysis of 2 × 2 contingency
tables should always be performed conditional on the
observed marginal totals, this approach is still subject
to debate [12]. On the other hand, when the marginal
totals are not fixed, Yates’ procedure involves an
additional overcorrection, and the test statistic is con-
servative. This has been investigated through Monte
Carlo simulations ([5, 11]), and confirmed analyt-
ically ([3, 6]). In particular, Grizzle [5] notes that
for contingency tables with nonfixed marginal totals,
Yates’s procedure ‘produces a test that is so conser-
vative as to be almost useless’.

Finally, Yates’s correction originated as a device
of eliminating the discrepancies that arose when
approximating the hypergeometric distribution in
Fisher’s exact test. The approximation using Pear-
son’s X2 was necessary ‘for the comparative sim-
plicity of the calculations’ ([4], p. 99), because the
exact analysis of 2 × 2 contingency tables with the
limited computing power available at the time was
prohibitive in many cases. This is no longer the case
today. Indeed, Agresti [1] notes that Yates’ correc-
tion is not necessary anymore since current software
makes Fisher’s exact test computationally feasible
even when the sample sizes are large.
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Yates, Frank

Born: 12 May, 1902 in Manchester, England.
Died: 17 June, 1994 in Harpenden, England.

Born in Manchester, Yates read mathematics at St.
John’s College, Cambridge and received a first-class
honors degree in 1924. After a period working in the
Gold Coast (now Ghana) on a geodetic survey as a
mathematical advisor, he obtained a post as assistant
statistician at Rothamsted Experimental Station in
1931, where he worked under R.A. Fisher. Two years
later when Fisher left to take up a chair at University
College, London, Yates became Head of Statistics
at Rothamsted, a post he held until his retirement
in 1968.

Yates continued the work on design of experi-
ment, replication, randomization and blocking (see
Block Random Assignment) (to reduce error), top-
ics introduced to Rothamsted by Fisher (see [2] for a
selection of work in this area). All these ideas were
originally applied to agriculture but spread rapidly to
many other disciplines. Yates extended and clarified
the ideas of orthogonality, confounding, and balance,
and suggested the use of split-plot designs. During
World War II, Yates studied food supplies and appli-
cations of fertilizers to improve crops, and applied
experimental design techniques to a wide range of
problems such as control of pests. But despite all his
important contributions to designing studies, Yates is
most widely remembered for his continuity correction
in contingency tables (Yates’ correction); ironically

this correction has been made almost obsolete by the
development of software for applying exact meth-
ods [1].

Yates was quick to realize the possibilities for
statistics and statisticians provided by the develop-
ment of electronic computers in the 1950s. And in
1954, the first British computer equipped with effec-
tive magnetic storage, the Elliot 401, was installed
at Rothamsted. Using only machine code, Yates and
other members of the statistics department produced
programs both for the analysis of variance and to
analyze survey data. Yates helped establish the British
Computer Society, of which he was made President
in 1960–1961. In 1948, Yates was made a Fellow
of the Royal Society, and in 1960 he was awarded
the Royal Statistical Society’s Guy Medal in Gold.
In 1963, he was awarded the CBE.

Despite retiring from Rothamsted in 1968, Yates
kept a room there and never lost touch with agri-
culture. Just before his death in Harpenden in
1994, Yates completed, in 1993, 60 years of work
at Rothamsted.
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Yule, George Udny

Born: February 18, 1871, in Morham,
Scotland.

Died: June 26, 1951, in Cambridge,
England.

Scottish by birth, Yule was educated in England
and spent all his working life there. After school,
the young Yule studied engineering at University
College, London. Engineering and physics never
captured his interest though he was greatly influenced
by his Professor of Applied Mathematics, Karl
Pearson. He attended Pearson’s Gresham Lectures
in 1891 and corresponded with him. He spent a year
in Bonn studying and researching under Hertz. His
work there produced his first published papers. On
his return to England, Pearson offered him the post of
Assistant Professor. Though poorly paid, it provided
Yule with the impetus and experience that led to his
adopting the study and teaching of statistics as his
lifelong career, apart from a spell as a civil servant
during World War I.

Yule was Pearson’s workhorse and he often lec-
tured on his behalf when Pearson was indisposed.
Their personal interactions were at that time cordial.
They worked closely and took holidays together. The
exigencies of his financial situation forced Yule to
apply for other employment and in 1899 he became
Secretary to the Examining Board of the Department
of Technology of the London City and Guilds Insti-
tute. He married in the same year, a union that proved
to be unhappy and led to a separation. Yule’s tenure
of the Newmarch Lectureship in Statistics at Univer-
sity College from 1902 to 1909 produced the material
that became his famous textbook, An Introduction to
the Theory of Statistics, the earliest of the major texts,
running to 14 editions during Yule’s lifetime, the final
4 editions being written in collaboration with Mau-
rice Kendall [3].

In 1912, the University of Cambridge offered Yule
a newly established lectureship in statistics and later
he became Reader. He took up residence at St John’s
College for the rest of his life until his health forced
him into a nursing home.

Yule’s contributions to statistics consist largely
of his clarification, interpretation, and expansion

of Pearson’s work and the laying down of the
groundwork for the future contributions of others.
He demonstrated the least squares approach to the
method of correlation and regression and showed
that Pearson’s coefficient and the regression model
can be derived without assuming a bivariate nor-
mal distribution of the variables of interest. This not
only indicated that r could be used as a descriptive
statistic but gave us a readily understandable the-
oretical approach that led to the same outcome as
Pearson’s original maximum likelihood method [1].
He worked on measures of association in 2 × 2 tables
and devised mathematical procedures that reduced
the sometimes dense Pearsonian algebra of partial
correlation [2]. His approaches became accepted by
those who were interested in the theoretical bases of
the methods.

Yule was elected a Fellow of the Royal Statistical
Society in 1895 and remained so for almost 60 years.
He was its Honorary Secretary for 12 years and
the Society awarded him its highest honor, the Guy
Medal in gold. He became a Fellow of the Royal
Society in 1922.

In later life, he turned his considerable powers
to the study of literary vocabulary, showing how
statistical techniques might be used to determine
authorship and to compare authors.

Yule was a determined, cheerful, and kindly man,
articulate and well-read. He had a gift, as his cor-
respondence with his great friend Major Greenwood
shows, for irony and parody. In later years he regret-
ted the transition from what he termed ‘Karlovingian’
(Pearson) statistics to the ‘piscatorial’ approach of
Fisher and felt that he himself had little more to
offer, though he was gratified to see his own con-
tributions recognized. Even today, there are teachers
and practitioners of statistics who use his text and
benefit from it.
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z Scores

A z-score is a form of standardized score. That is, it is
a linear transformation of a raw score using the mean
and the standard deviation (SD) of the sample or, if
known, the population mean and SD. It is defined as

z = score − mean

standard deviation
. (1)

A set of scores that has been transformed to z-scores
has a mean of 0 and an SD of 1. Note that a sample
statistic, such as a mean, can also be transformed to
a z-score using the mean and SD of the sampling
distribution of the statistic.

Suppose that a sample of students had mathemat-
ics test scores with a mean of 100 and a SD of
10, then a person whose mathematics score was 120
would have a z-score of 2. Here, we would say that
this person’s score was two SDs above the mean. The
advantage of standardizing scores is that it allows
comparison across different tests. For example, if the
same sample of students had also taken a language
test with a mean of 50 and an SD of 4, and this same
person had scored 51 on the test, then the standard-
ized score would be 0.25. This tells us that, whereas

the student was two SDs above the mean in mathe-
matics, he or she was only quarter of an SD above
the mean for language.

Furthermore, when a sample comes from a normal
distribution with a known mean and SD, we can
use standard normal tables to find the percentile
point for a given score. Our hypothetical person is
in the top 2.28% for mathematics but only in the
top 40.1% for language. The z-statistic employed in
common hypothesis tests, for example, about means
from normal populations is based on the z-score
transformation.

z-scores can also be used to identify scores that
could be outliers. An often quoted value for what
might constitute an outlier is when the absolute
(unsigned) value of the z-score is greater than or
equal to 3 [1].
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