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1
Introduction

the philosophy of research methods is an area of knowl-
edge that receives limited attention in behavioral research method-
ology and science education. The majority of students and research 
practitioners in the behavioral sciences obtain the bulk of their 
knowledge of research methods from textbooks. However, a casual 
examination of these texts shows that they tend to pay little, if any, 
serious regard to the philosophy of science and its bearing on the 
research process. As Thomas Kuhn pointed out more than 50 years 
ago (Kuhn, 1962/ 1996), textbooks play a major role in dogmati-
cally initiating students into the routine practices of normal science. 
Serious attention to the philosophy of research methods would go a 
considerable way toward overcoming this uncritical practice.

This book is concerned with the philosophical foundations 
of research methods. In particular, it undertakes a philosophical 
examination of a number of different quantitative research meth-
ods that are prominent in, or relevant for, the conduct of research 
in the behavioral sciences. The methods submitted to critical 
examination are exploratory data analysis, statistical significance 
testing, Bayesian confirmation theory and statistics, meta- analysis, 
and exploratory factor analysis. I  introduce these methods, and 
explain their selection, in the overview section that follows.
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The Philosophy of Quantitative Methods

Historically, philosophers of science have given research methods 
in science limited attention, concentrating mostly on the nature 
and purpose of theory in the physical sciences. More recently, 
however, they have shown an increased willingness to deal with 
methodological issues in sciences other than physics, particularly 
biology, but also psychology and related behavioral and social sci-
ences to some extent. In short, there is a developing literature in 
contemporary philosophy of science that can aid both our under-
standing, and use, of a variety of research methods and strategies 
in psychology. Increasingly, the philosophy of science contributes 
important methodological insights that are impossible to ignore 
when coming to grips with research methods. Increasingly, the 
philosophy of science is becoming a philosophy for science. At the 
same time, a miscellany of theoretically oriented psychologists, and 
behavioral and social scientists more generally, has produced work 
on the conceptual foundations of research methods that helps illu-
minate those methods. The work of both professional philosophers 
of science and theoretical scientists deserves to be included in a 
philosophical examination of behavioral research methods.

The three major philosophies of science that bear on psychol-
ogy are empiricism, social constructionism, and scientific realism 
(Greenwood, 1992; Manicas & Secord, 1983). Nineteenth- century 
British empiricism had a major influence on the development of 
British statistics in the first half of the twentieth century (Mulaik, 
1985). The statistical methods developed in that intellectual milieu 
remain an important part of psychology’s statistical research prac-
tice. For example, Karl Pearson’s product moment correlation coef-
ficient was taken by its founder to be the quantitative expression 
of a causal relation viewed in empiricist terms. Similarly, Fisher’s 
endorsement of inductive methods as the proper view of scien-
tific method stemmed from a commitment to the empiricism of 
his day. Even in the current postpositivist philosophical climate, 
authors of research methods textbooks sometimes portray quan-
titative research as essentially positivist in its empiricist commit-
ments (Yu, 2006). Among other things, positivism restricts its 
attention to what can be observed and regards theories as instru-
ments that organize claims about observables but do not explain 
them by appeal to hidden causes.
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Qualitative methodologists also often bolster their preferred 
conception of qualitative research by comparing it with an unflat-
tering positivist picture of quantitative research. They tend to 
adopt the philosophy of social constructionism, which is opposed 
to the traditional notions of truth, objectivity, and reason, main-
taining that our understanding of the world is determined by 
social negotiation. In one or other of its various forms, it is the 
philosophy of choice for many qualitative researchers, and it tends 
to be employed by those who are opposed, or indifferent, to quan-
titative methods.

Scientific Realism and Its Methodology

The book adopts a scientific realist perspective on research meth-
ods, although its emphasis is not always evident. Scientific real-
ism, like all philosophies of science, is the subject of considerable 
debate, and it is opposed by many antirealist positions (princi-
pally, the philosophies of empiricism and social constructivism). 
Nonetheless, with justification, it remains the dominant philoso-
phy of science to this day (Psillos, 1999). It is also the tacit philoso-
phy of most working scientists. This fact, combined with its current 
emphasis on the nature of scientific practice, makes scientific real-
ism the philosophy of choice for science.

Scientific realism comes in many forms. Most versions of sci-
entific realism display a commitment to at least two doctrines: (1) 
that there is a real world of which we are part and (2) that both the 
observable and unobservable features of that world can be known 
by the proper use of scientific methods. Some versions of scien-
tific realism incorporate additional theses (e.g., the claims that 
truth is the primary aim of science, and that successive theories 
more closely approximate the truth), and some will also nominate 
optional doctrines that may, but need not, be used by scientific 
realists (e.g., the claim that causal relations are relations of natural 
necessity; see Hooker, 1987). Others who opt for an “industrial 
strength” version of scientific realism for the physical sciences are 
more cautious about its successful reach in the behavioral sciences. 
In philosophy, J. D. Trout (1998), for example, subscribes to a mod-
est realism in psychology, based on his skepticism about the disci-
pline’s ability to produce deeply informative theories like those of 
the physical sciences. In psychology, James Grice (2011) presents a 
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philosophy of moderate realism to underwrite his novel methodol-
ogy of “observation oriented modeling.” This philosophy maintains 
that things have essences, that their natures are knowable, and that 
a strategy of modeling can be used to integrate knowledge about 
the systems under study. Grice shows in a general way how philos-
ophy of science can make an important contribution to scientific 
methodology.

Scientific realism boasts a rich conception of methodology, 
which is of considerable help in understanding and guiding 
research. The resourcefulness of realist methodology is suggested 
in the following description of its major characteristics (cf. Haig, 
2014; Hooker, 1987; Nickles, 1987): First, realist methodology has 
three major tasks: to describe how methods function; to evaluate 
methods critically against their rivals; and to recommend how to 
use particular methods to pursue chosen research goals. I hope 
that my concern with these tasks is evident in the treatment of the 
methods in the following chapters.

Second, realist methodology is critically aim oriented. At a 
broad level, it recommends the pursuit of valuable truth, explan-
atory understanding, and effective control as primary research 
goals; it is also concerned with the mutual adjustment of meth-
ods and research goals. At a more specific level, my discussion 
of methods attempts to give due recognition to their appropriate 
research goals.

Third, realist methodology is naturalistic; that is to say, it is a 
substantive domain that uses the methods of the various sciences 
to study methods themselves. The error- statistical perspective pre-
sented in Chapter 3 is a philosophy of statistics that sits squarely 
within the naturalistic tradition in modern philosophy. Proctor 
and Capaldi (2001) advocate a naturalistic approach to methodol-
ogy in psychology in which the empirical justification of method-
ological ideas is emphasized.

A fourth feature of realist methodology is that it is both gen-
erative and consequentialist. Generative methodology involves 
reasoning to, and accepting, knowledge claims in question from 
warranted premises. Exploratory factor analysis is a prominent 
example of a method in psychology that involves a generative jus-
tification of the factorial hypotheses to which it gives rise. By con-
trast, consequentialist methodology focuses on reasoning from 
knowledge claims in question to their testable consequences. The 
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widely used hypothetico- deductive method, with its emphasis on 
predictive accuracy, clearly exhibits a consequentialist approach to 
justifying knowledge claims.

Fifth, realist methodology acknowledges the need for two quite 
different approaches to justifying knowledge claims. In philoso-
phy, these are commonly known as reliabilism and coherentism. 
With reliabilism, a belief is justified to the extent that it is acquired 
by reliable processes. In general, the innumerable methods that 
contribute to the detection of empirical phenomena are concerned 
with reliabilist justification. With coherentism, a belief is justi-
fied in virtue of its coherence with other beliefs. Thagard’s (1992) 
theory of explanatory coherence (which is not considered in this 
book) is used for the comparative evaluation of scientific theories 
and embodies an illuminating coherentist perspective on knowl-
edge justification. These two forms of justification are different, 
complementary, and of equal importance.

As a sixth feature, realist methodology regards science as a 
problem- oriented endeavor in which problems are conceptual-
ized as constraints on their effective solution (Haig, 1987; Nickles, 
1981). On this formulation, the constraints are actually constitu-
tive of the problem itself; they characterize the problem and give it 
structure. Further, by including all the constraints in the problem’s 
articulation, the problem enables the researcher to direct inquiry 
effectively by pointing the way to its own solution. In a real sense, 
stating the problem is half the solution! This focus on research 
problems holds more promise for research inquiry than the cus-
tomary talk about research questions.

Finally, realist methodology takes the researcher’s makeup as a 
“knowing subject” seriously. Among other things, the researcher 
is regarded as a satisficer who makes heavy use of heuristics to 
guide inquiries. McGuire (1997), for example, discusses many use-
ful heuristics that can be employed to facilitate the generation of 
hypotheses in psychological research.

Scientific realist methodology undergirds a wide variety of 
methods, strategies, and heuristics that have been successfully 
used to produce worthwhile knowledge about both empirical 
phenomena and explanatory theories. If quantitative researchers 
in psychology fully engage this literature, they will find resources 
for enhancing their understanding of research methods and the 
proper uses to which they can be put.
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Theories of Scientific Method

Modern science is a multifaceted endeavor. A full appreciation of 
its nature needs to consider the aims it pursues, the theories it pro-
duces, the methods it employs, and the institutions in which it is 
embedded. Although all of these features are integral to science, 
science is most illuminatingly characterized as method. Method is 
central to science because much of what we have learned from sci-
ence has been acquired through use of its methods. Our scientific 
methods have been acquired in the course of learning about the 
world; as we learn, we use methods and theorize about them with 
increased understanding and success. Applied to science, method 
suggests the efficient, systematic ordering of inquiry. Scientific 
method, then, describes a sequence of actions that constitute a 
strategy to achieve one or more research goals. Relatedly, scien-
tific methodology denotes the general study of scientific methods 
and forms the basis for a proper understanding of those methods. 
Modern scientific methodology has given considerable attention 
to a number of general theories of scientific method. Here, I sketch 
three theories that figure in the chapters that follow: inductive 
method, hypothetico- deductive method, and abductive method. 
These theories of method provide different orientations to the 
more specific research methods considered in Chapters 2– 6.

The idea that scientific method involves inductive reasoning 
goes back at least to Aristotle and was given heavy emphasis by 
Francis Bacon and John Stuart Mill. Inductive reasoning takes dif-
ferent forms. For example, it is to be found in the fashioning of sta-
tistical generalizations, in the Bayesian assignment of probabilities 
to hypotheses, and even in the reasoning involved in moving from 
data to hypotheses in the hypothetico- deductive method. In psy-
chology, the radical behaviorism of B. F. Skinner is a prominent 
example of a research tradition that makes use of an inductive con-
ception of scientific method.

The most popular account of method in science is the 
hypothetico- deductive method. It has come to assume hegemonic 
status in the behavioral sciences and places a heavy emphasis on 
testing hypotheses in terms of their predictive success. Relatedly, 
the use of traditional statistical significance test procedures in 
psychology is often embedded in a hypothetico- deductive struc-
ture. With the hypothetico- deductive method, the scientist takes 
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a hypothesis or a theory and tests it indirectly by deriving from it 
one or more observational predictions that are amenable to direct 
empirical test. If the predictions are borne out by the data, then 
that result is taken as a confirming instance of the theory in ques-
tion. If the predictions fail to square with the data, then that fact 
counts as a disconfirming instance of the theory.

According to the abductive theory of method (Haig, 2014), sci-
entific inquiry is a problem- solving endeavor in which sets of data 
are analyzed to detect robust empirical regularities, or phenom-
ena. Once detected, these phenomena are explained by abduc-
tively inferring the existence of underlying causal mechanisms. 
On positive judgments of the initial plausibility of these explana-
tory theories, attempts are made to elaborate on the nature of the 
causal mechanisms in question. This is done by constructing plau-
sible models of those mechanisms by analogy with relevant ideas 
in domains that are well understood. When the theories are well 
developed, they are assessed against their rivals in respect of their 
explanatory goodness. This assessment involves making judg-
ments of the best of competing explanations. This abductive theory 
of method can serve as a useful framework for locating a number 
of more specific research methods within its fold.

Book Overview and Chapter Summary

This book undertakes a critical, in- depth examination of a selec-
tion of well- known, or otherwise important, quantitative research 
methods that are, or can be, used in behavioral science research. 
The book is interdisciplinary in nature and draws from varied 
literatures in research methodology, including the philosophy of 
science and statistical theory. As such, it is intended to serve as a 
useful complement to other books in the Understanding Statistics 
series. For example, the conceptual treatment of the method of 
exploratory factor analysis offered in Chapter 6 of the present book 
fits well with Fabrigar and Wegener’s (2012) book in the series, 
Exploratory Factor Analysis.

In writing this book, my primary goal is to examine the concep-
tual foundations of a range of behavioral research methods. Some 
of them are well known. Others are seldom considered by behav-
ioral science methodologists and researchers. A conceptual under-
standing of those methods is facilitated by presenting them in 
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relation to prominent accounts of scientific method where appro-
priate. The critical nature of the book is a natural consequence of 
dealing squarely with a conception of research methodology that 
is sponsored by the philosophy of scientific realism.

Chapter  1:  This introductory chapter provides key ideas that 
should help make sense of the treatment of the five methods dealt 
with in the book. It begins by highlighting the importance and 
relevance of philosophy of science for understanding quantitative 
methods. It then gives a brief overview of the prominent philoso-
phy of scientific realism, with particular emphasis on the nature of 
scientific methodology. After that, three major theories of scien-
tific method are sketched because they figure in some of the ensu-
ing chapters. Finally, an overview of the book’s contents is provided 
before providing a note to the reader.

Chapter 2 focuses mainly on the nature, role, and importance 
of exploratory data analysis in behavioral research, although 
some attention is also given to the companion movement of 
computer- intensive statistics and its use of a reliabilist approach 
to justifying the knowledge claims it produces. Four perspectives 
on exploratory data analysis are presented, as they are shaped by 
different accounts of scientific method. One of these, the abduc-
tive theory of scientific method, locates exploratory data analy-
sis in a multistage model of data analysis. Finally, John Tukey’s 
outline of a philosophy for teaching data analysis is presented as 
an important part of an overall philosophy of exploratory data 
analysis.

Regarding Chapter 3, although widely used in behavioral science 
research, tests of statistical significance are poorly understood. In 
this critical examination of tests of significance, I discuss the ques-
tionable use of a popular hybridized form of significance testing in 
psychological research before outlining two plausible views of tests 
of significance: the neo- Fisherian and error statistical perspectives. 
These are judged to be superior to the hybrid version, especially 
that sponsored by the error- statistical account, which is a coherent 
philosophy of statistics. It is suggested that tests of significance can 
play a useful, if limited, role in research.

The subject of Chapter 4 is Bayesianism, which comprises both 
a philosophical theory of scientific confirmation and an influ-
ential perspective on statistics. I describe the nature of Bayesian 
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confirmation theory and assess its difficulties. I  then compare it 
to two rivals: the hypothetico- deductive method and inference to 
the best explanation. In addition, I present, and evaluate, a neo- 
Popperian philosophy of Bayesian statistics, which is offered as an 
alternative to standard Bayesian modeling practice.

The primary concern of Chapter 5 is with the conceptual foun-
dations of meta- analysis. The examination centers on large- scale 
issues having to do with meta- analysis and the nature of science. 
I give considerable space to presenting the conception of inquiry 
embodied in the underlying rationale of Gene Glass’s approach to 
meta- analysis. I then examine David Sohn’s provocative argument 
that meta- analysis is not a proper vehicle of scientific discovery. 
After that, I consider the role of meta- analysis in relation to the 
different processes of phenomena detection and scientific explana-
tion. In doing so, I examine the extent to which meta- analysis can 
properly be said to contribute to scientific progress.

Chapter 6 examines the logic and purpose of exploratory factor 
analysis. It is argued that the common factors of exploratory factor 
analysis are not fictions, but latent variables best understood as 
genuine theoretical entities. This realist interpretation of factors is 
supported by showing that exploratory factor analysis is an abduc-
tive generator of elementary theories that exploits an important 
heuristic of scientific methodology known as the principle of the 
common cause. The importance of exploratory factor analysis is 
affirmed, and it is argued that it can be usefully combined with 
confirmatory factor analysis.

The concluding Chapter 7 assembles a number of important les-
sons learned from the preceding chapters before emphasizing the 
need for further work in the philosophy of research methods.

A Note for the Reader

The books in the Understanding Statistics series are fairly short in 
length. Thus, because I wanted to examine each method in this 
book in some conceptual detail, a limited number of methods were 
selected for consideration. Briefly, the reasons for my selection 
were as follows: Exploratory data analysis has a major role in pat-
tern detection, and despite being advocated by the eminent statis-
tician John Tukey for more than 50 years, it has not found a regular 
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place in the behavioral research method curriculum. The same can 
be said for computer- intensive resampling methods, which only 
arrived on the scene with the advent of high computing power. The 
reasons for the selection of tests of statistical significance should 
be obvious. They are overused in behavioral research and yet are 
poorly understood. It is high time that these failings were put right. 
The Bayesian approach to quantitative thinking earns its place in 
the book because it stands as the best- known theory of scientific 
confirmation, as well as the major rival school of thought to fre-
quentist tests of statistical significance. Although the advocacy of 
Bayesian methods is on the rise, they also fail to figure regularly in 
the methods curriculum. Meta- analysis is a comparatively recent 
development in scientific methodology, but it has quickly become 
the dominant approach to reviewing primary empirical studies in 
the behavioral sciences. However, its conceptual foundations are 
only occasionally addressed. Finally, the long- standing method 
of exploratory factor analysis has been widely used in psychol-
ogy, and many other sciences, for more than 70 years. Yet, its deep 
structure is seldom considered by those who describe it. It stands 
as our best example of a method that is well suited to the genera-
tion of explanatory hypotheses and theories.

The amount of space given to a description of each method 
varies considerably. Well- known methods, such as tests of sta-
tistical significance and exploratory factor analysis, receive little 
exposition. Less well- known methods, such as exploratory data 
analysis and resampling methods, receive more. Partly for this 
reason, and partly because of the paucity of a philosophical lit-
erature on these methods, their treatment in this book will seem 
less philosophical.

Finally, none of the methods considered in the book receives 
a full examination of its conceptual foundations. Relatedly, the 
reader should not expect from this book a series of definitive 
assessments about how one should understand and use the differ-
ent methods. The book was written primarily as a stimulus for the 
reader to develop personal thinking about the methods considered 
in a manner that goes beyond what is contained in usual book pre-
sentations. The “Further Reading” section provided for each chap-
ter should help the reader to extend thinking well beyond what the 
chapters themselves contain.
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Exploratory Data 
Analysis

Exploratory data analysis is an attitude, a flexibility, and a 
reliance on display, NOT a bundle of techniques, and should 
be so taught.

— J. W. Tukey, 1980

[T] he time is ripe for a broad conceptualization of data 
 analysis that includes the principles and procedures of EDA.

— J. T. Behrens, 1997

Introduction

During the last 80 years, data analysis in statistics has placed its 
major emphasis on classical statistical inference, where the pri-
mary goal is to find out whether a set of data exhibits a designated 
feature of interest, associated with a probabilistic model. Such an 
approach to data analysis favors confirmatory research in which 
hypotheses are tested using methods such as tests of statistical sig-
nificance (the topic of Chapter 3). Unfortunately, the dominance 
of this data analytic practice has had the effect of discouraging 
the genuine exploratory examination of data sets in terms of their 
quality and structure. Detailed explorations of data are essential 
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for detecting patterns, and it makes good sense to undertake such 
explorations instead of, or before, a probabilistic model is formu-
lated and adopted.

However, since the early 1960s, a new empirical approach to data 
analysis in statistics has emerged. One important part of this devel-
opment is exploratory data analysis (EDA), a process in which data 
are examined to reveal potential patterns of interest (e.g., Tukey, 
1977, 1980). Another important part of this empirical data analytic 
movement is the advent of computer- intensive resampling methods, 
which, through repeated sampling of observed data, are used to 
produce a reference distribution (Efron & Tibshirani, 1993). These 
modern confirmatory resampling methods, rather than traditional 
confirmatory methods, can be employed as suitable complements 
to exploratory methods.

In 1968, the prominent statistician and scientist John Tukey 
gave an invited talk to the annual convention of the American 
Psychological Association; the talk was published in the associa-
tion’s flagship journal, the American Psychologist, the following year 
(Tukey, 1969). In his article, “Analyzing Data:  Sanctification or 
Detective Work?” Tukey argued for the need to practice EDA, in the 
manner of a detective, as well as the confirmatory, or judicial, mode.

Unfortunately, psychology has, for the most part, ignored Tukey’s 
advice, preferring instead to continue its focus on classical confirm-
atory methods. A comprehensive survey of all psychology PhD pro-
grams in the United States and Canada in 1986 revealed that only 
20 percent of introductory statistics courses gave in- depth coverage 
to the topic of EDA (Aiken, West, Sechrest, & Reno, 1990). A rep-
lication and extension of that survey in the late 1990s contained no 
explicit information on this topic, though it did include coverage of 
“modern graphical displays” at 10 percent. An informal inspection 
of current standard textbooks on statistical methods in psychology 
shows that they give little attention to the topic of EDA. Occasional 
prominent calls in psychology recommending greater use of explor-
atory data analytic methods (e.g., Behrens, 1997; Wilkinson & the 
Task Force on Statistical Inference, 1999) seem to have made little 
difference. Clearly, the use of traditional confirmatory methods in 
data analysis remains the dominant practice.

This chapter is concerned with modern data analysis. It focuses 
primarily on the nature, role, and importance of EDA, although it 
gives some attention to the companion topic of computer- intensive 
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confirmatory methods. Because exploratory data analytic and 
computer- intensive resampling methods are less well known to 
behavioral scientists than the methods considered in other chap-
ters, they receive more expository attention here than do key meth-
ods from other chapters. Considerable attention is also given to 
somewhat different perspectives on data analysis as they are shaped 
by four different accounts of scientific method. Before concluding, 
the chapter offers a brief presentation and discussion of Tukey’s val-
uable, but underappreciated, philosophy of teaching data analysis.

It should be pointed out that the present chapter focuses on 
EDA in the manner of Tukey, given that such a view of EDA has 
not yet found its way into the modern behavioral science methods 
curriculum. The chapter does not consider the more recent explor-
atory data analytic developments, such as the practice of statistical 
modeling, the employment of data- mining techniques, and more 
flexible resampling methods (see, e.g., Yu, 2010).

What Is Exploratory Data Analysis?

In his landmark article, “The Future of Data Analysis” (Tukey, 
1962), Tukey introduced the term data analysis to distinguish 
applied statistical work from the then- dominant formal infer-
ential statistics. He characterized data analysis broadly in the 
following words:

Data analysis . . . I take to include, among other things: pro-
cedures for analyzing data, techniques for interpreting the 
results of such procedures, ways of planning the gathering of 
data to make its analysis easier, more precise, more accurate, 
and all the machinery and results of (mathematical) statistics 
which apply to analyzing data.

Large parts of data analysis are inferential in the sample- 
to- population sense, but these are only parts, not the whole. 
Large parts of data analysis are incisive, laying bare indica-
tions which we could not perceive by simple and direct exam-
ination of the raw data, but these too are parts, not the whole. 
Some parts of data analysis . . . are allocation, in the sense that 
they guide us in the distribution of effort.  .  .  . data analysis 
is a larger and more varied field than inference, or incisive 
procedures, or allocation. (Tukey, 1962, p. 2)
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For Tukey, data analysis is both an empirical science and an 
art; it is not mathematical statistics (Tukey, in fact, advised serious 
students of data analysis that it was better that they aspire to be 
first- rate scientists rather than second- rate mathematicians); data 
analysis places a heavy emphasis on judgment, and it accepts satis-
factory, not optimal, solutions to problems. Adopting an appropri-
ate set of attitudes is an important part of Tukey’s approach to data 
analysis. These attitudes include investigating realistic problems, 
making liberal use of ad hoc informal procedures in exploratory 
work, accepting the approximate nature of results, employing pro-
cedures iteratively, and including both exploratory and confirma-
tory approaches in the same analyses.

As the intellectual progenitor of modern EDA, Tukey developed 
a distinctive perspective on the subject that has helped to highlight 
its importance to research. It deserves to be considered as a philos-
ophy of EDA in its own right and, more broadly, as a philosophy of 
data analysis (Dempster, 2003). Therefore, this brief examination of 
the philosophy of EDA pays particular attention to Tukey’s thinking 
on the topic. As will be seen, Tukey took EDA to include more than 
descriptive statistics. Although both EDA and descriptive statistics 
are concerned with the visual display of data, EDA is also concerned 
with recognizing patterns in the data, tentatively forming hypoth-
eses, and adopting the attitude of a detective when analyzing data.

According to Tukey (1980), data analysis should be treated as a 
two- stage, compound process in which the patterns in the data are 
first suggested by EDA and then critically checked through the use 
of confirmatory data analytic procedures. As already noted, EDA 
involves descriptive, and frequently quantitative, detective work 
designed to reveal structure or pattern in the data sets under scru-
tiny. The data analyst is encouraged to undertake an open- eyed 
investigation of the data and perform multiple analyses using a 
variety of intuitively appealing and easily used techniques.

The compendium of methods for the exploration of data, 
many of which were developed by Tukey (1977), sometimes in 
association with colleagues, is designed to facilitate both discov-
ery and communication of information. These methods are con-
cerned with the effective organization of data, the construction 
of graphical and semigraphical displays, and the examination 
of distributional assumptions and functional dependencies. As 
noted further in this chapter, two additional attractive features 
of Tukey’s methods are their resistance to changes in underlying 
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distributions and their resistance to outliers in sets of data. 
Exploratory methods with these two features are particularly 
suited to data analysis in psychology and the behavioral sci-
ences, where researchers are frequently confronted with ad hoc 
sets of data on amenable variables, which have been acquired in 
convenient circumstances.

In the next section, I  briefly describe the two best known 
methods of EDA— stem- and- leaf displays and box- and- whisker 
plots— and then provide an overview of the four focal themes of 
EDA: resistance, residuals, re- expression, and revelation.

Two Methods of Exploratory Data Analysis

The Stem- and- Leaf Display

The stem- and- leaf display is a clever, useful, and easily understood 
device that can provide helpful first impressions of a set of data. 
The stem- and- leaf display economically organizes values from a 
set of data in numerical order, while visually displaying the shape, 
spread, and distributional characteristics in the manner of a histo-
gram. Unlike a histogram, however, the stem- and- leaf- display can 
be readily constructed by hand, and unlike most displays, it has the 
virtue of retaining information on individual data values. A stem- 
and- leaf display will decompose each value into a stem value and 
a leaf value. For example, for an ordered set of data values, each 
tens digit would comprise the vertical stem column, while the units 
digit would be arrayed horizontally as the leaf values. Stem- and- 
leaf displays can also be placed back to back to compare similar 
batches of data for detailed differences.

The Box- and- Whisker Plot

The box- and- whisker plot, sometimes simply called the box plot, 
is also helpful in the presentation of data. The box plot is a graph 
comprising rectangular boxes and lines that display the distribu-
tional shape, central tendency, and variability of a set of obser-
vations. It is particularly helpful for indicating skewness and the 
presence of outliers in a distribution. From a box plot we can 
obtain the “five- number summary” of a set of data. This summary 
comprises the minimum and maximum values within a set, along 
with the median and the lower and upper quartiles. In effect, the 
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box plot provides an effective graphical display of the five- number 
summary. Because of this, the box plot is particularly useful for 
comparing two or more sets of data.

Of course, there are many more methods suitable for EDA, but 
the two just noted should give a sense of how semigraphical meth-
ods, which combine both graphical and tabular information, help 
meet the primary goals of exploring data.

The Four Rs of Exploratory Data Analysis

Tukey and his collaborators (Hoaglin, Mosteller, & Tukey, 
1983) argued that the tools of EDA can be organized according to 
four central themes: resistance, residuals, re- expression, and reve-
lation. These themes usefully help to distinguish EDA from classi-
cal inferential statistics.

1. Resistance. An analysis, or summary, of the data is resistant 
if it is not sensitive to misbehaving or unusual data. This 
requirement of EDA is not met when unexpected data 
values mislead the summary of the bulk of the data, 
as happens when data misbehave, are unusual, or are 
otherwise misleading. These situations occur often enough 
to make resistance an important consideration in EDA. 
For example, in EDA, the median is the most commonly 
used measure of central tendency because it is not affected 
by outliers as much as the mean; it is a more resistant, or 
robust, statistic.

2. Residuals. The careful examination of residuals is important 
in EDA. They are the deviations of observations from 
the value predicted by a tentative model. In EDA (and in 
confirmatory data analysis), residuals are summarized to 
obtain a sense of overall fit. Stated differently, EDA uses the 
framework

data = fit + residual

Hence, data residuals are what remain of the data after 
a summary or the fitted model has been subtracted, 
according to the equation

residual = data fit−
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As leftover parts of the data, residuals still need attention, 
which may involve a reanalysis and refit.

3. Re- expression. Re- expression is the term used in EDA 
for rescaling or transforming data. Re- expression is 
common in EDA because data are often collected in 
a manner based on convenience, or habit, rather than 
careful attention to scaling. EDA looks to find more easily 
interpreted scales through re- expression. Re- expressions 
that lead to symmetric distributions are preferred for 
they promote the interpretation of general linear models, 
improve comparisons across groups, and reflect the 
structure of the sampling distributions. In psychology, 
logarithmic, arcsine, and reciprocal transformations are 
often used.

4. Revelation (Display). Displays are often graphical (and 
semigraphical) in nature. They allow the data analyst to 
see the behavior of the data and, as the analysis proceeds, 
also the behavior of the residuals and various diagnostic 
measures. EDA emphasizes the frequent use of displays 
to ensure that unexpected features of the data are not 
overlooked. Traditional EDA emphasizes a number of 
relatively simple numerical and graphical techniques for 
displaying data. For example, box- and- whisker plots are 
often used to represent univariate data. However, significant 
advances in graphics and data visualization in more recent 
times have enabled data analysts to construct all manner 
of revealing displays of complex phenomena (e.g., Chen, 
Härdle, & Unwin, 2008).

Psychology’s attitudes toward each of the four Rs deserve 
comment. Checking for resistance, or robustness, of meth-
ods to violation of their assumptions with sets of data is done 
much less frequently than should be the case. The framework,  
residual = data –  fit, is widely employed in psychology, but almost 
entirely in the context of confirmatory data analysis (I comment 
further on Tukey’s reluctance to accord models a role in EDA). 
Re- expression of data through transformation is frequently done 
in psychology, although typically with limited knowledge of preva-
lence of different types of distribution in its varied subject domain 
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(Micceri, 1989). Finally, the importance of revelation, or data dis-
play, in EDA affirms the adage that a picture is worth a thousand 
words, an insight that is founded on the fact that humans (and 
other vertebrates) are primarily visual creatures (Gould, 1994). 
Recently, psychology has given more attention to the value of good 
data displays (e.g., Lane & Sándor, 2009), although the major focus 
is seldom on EDA.

I turn now to an examination of the philosophical foundations 
of EDA by considering the role it plays in four different accounts 
of scientific method.

Exploratory Data Analysis and Scientific Method

In his writings on data analysis, Tukey emphasizes the related ideas 
that psychology is without an agreed- upon model of data analysis, 
and that we need to think more broadly about scientific inquiry. 
In his address to the American Psychological Association men-
tioned previously, Tukey (1969) presented the following anony-
mous excerpt from a prominent psychologist for his audience to 
ponder. I quote in part:

I have the feeling that psychology is currently without a dom-
inant viewpoint concerning a model for data analysis. In the 
forties and early fifties, a hypothetico- deductive framework was 
popular, and our mentors were keen on urging the design of “cru-
cial” experiments for the refutation of specific predictions made 
from one or another theory. Inductive empiricism was said to be 
disorderly and inefficient. You and I knew then, as we know now, 
that no one approach is uniformly most powerful. (p. 90)

It is not surprising that mention is made of hypothetico- deductive 
and inductive inquiry in the quotation for these two outlooks are 
generally acknowledged as the two most influential conceptions of 
scientific method in the history of science (Laudan, 1981). In what 
follows, I consider EDA in relation to the hypothetico- deductive 
and inductive methods of science. I then discuss Tukey’s proposed 
framework of inquiry, which he believes properly accommodates 
EDA, before considering EDA in relation to an abductive theory of 
scientific method. My treatment should be understood as endors-
ing the assertion in the quotation that there is no one account of 
scientific method that is best for all occasions.
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Exploratory Data Analysis and 
the Hypothetico- Deductive Method

According to the standard conception of the hypothetico- deductive 
method, a scientist takes a hypothesis or a theory and tests it by 
deriving from it one or more observational predictions, which are 
amenable to a direct empirical test. If the predictions are borne out 
by the data, then that result is taken as a confirming instance of the 
theory. If the predictions fail to square with the data, then that fact 
counts as a disconfirming instance of the theory.

Most psychological researchers continue to undertake their 
research within the confines of this conception of hypothetico- 
deductive method. Witness their heavy preoccupation with the-
ory testing, where confirmatory data analyses are conducted on 
limited sets of data gathered in accord with the dictates of the test 
predictions of theories. In this regard, psychologists frequently 
employ tests of statistical significance to obtain binary decisions 
about the credibility of the null hypothesis and its statistical or sub-
stantive alternative (see Chapter 3). However, the heavy use of tests 
of statistical significance in this way strongly discourages research-
ers from looking for more interesting patterns in the data of poten-
tial interest. Indeed, the continued neglect of EDA in psychological 
research occurs in good part because there is no acknowledged 
place for such work in the hypothetico- deductive conception 
of inquiry (Wilkinson & the Task Force on Statistical Inference, 
1999). It is important to understand that the hypothetico- deduc-
tive method itself is not at fault here for it is a confirmatory pro-
cedure, not an exploratory procedure. Rather, it is the dominating 
use of the hypothetico- deductive method by researchers that 
clouds their ability to appreciate EDA as an important element of 
scientific research.

Exploratory Data Analysis and the Inductive Method

The most popular characterization of inductive scientific method 
maintains that inquiry begins by securing observed facts, which 
are collected in a theory- free manner. These facts provide a 
firm base from which the scientist reasons “upward” to hypoth-
eses, laws, or theories. The reasoning involved takes the form of 
enumerative induction and proceeds in accordance with some 
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governing principle of inductive reasoning. This rather simple 
view of inductive method can be defended in a moderate form. In 
psychology, the radical behaviorism of B. F. Skinner (1984) makes 
use of a nonstatistical inductive conception of scientific method. 
The major goals of Skinner’s conception of inductive method are, 
first, to detect empirical generalizations about the subject matter 
of interest and then to systematize those empirical generalizations 
by assembling them into nonexplanatory theories.

I think the worth of the inductive method as a model for data 
analysis is dismissed too quickly in the previous quotation from 
Tukey (1969). The major limitation of the inductive account of 
scientific method lies not so much with its perspective on data 
analysis but with the prohibition of the formulation of explan-
atory theories by many of its proponents. It will be seen shortly 
that a conception of inductive method is embedded in the broader 
abductive account of scientific method.

Exploratory Data Analysis and Tukey’s Model of Inquiry

Tukey (1980) believes that statisticians and data analysts have given 
too little attention to broad concerns about inquiry. He maintains 
that much data analysis proceeds according to the following linear 
conception of confirmatory research:

Question Design Collection Analysis Answer→ → → →

Tukey argues that this model of inquiry is incomplete and that it 
neglects the following set of questions and answers, all of which 
have to do with data exploration. He writes:

1. How are questions generated? (Mainly by quasi- theoretical 
insights and the exploration of past data.)

2. How are designs guided? (Usually by the best qualitative 
and semiquantitative information available, obtained by 
exploration of past data.)

3. How is data collection monitored? (By exploring the data, 
often as they come in, for unexpected behavior.)

4. How is analysis overseen; how do we avoid analysis that the 
data before us indicate should be avoided? (By exploring the 
data— before, during, and after analysis— for hints, ideas, 
and sometimes, a few conclusions- at- 5 percent/ k.). (p. 23)
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Tukey argues that, to pose and answer these questions, and 
indeed to implement properly confirmatory research, we need to 
reorganize the model of inquiry along the following lines:

Ides Question Design Collection Analysis Answer→ →← → → →

This is to say, we “begin” not with a properly formulated question, 
but an idea of a question that cannot be given an answer until it 
is specified in terms of appropriate constraints. And, to do this 
requires exploration, which if we are successful, will lead to a cir-
cumscribed question that warrants attempted confirmation. For 
this reason, Tukey (1980) maintains that “finding the question is 
often more important than finding the answer” (p. 23).

Clearly, if science is to derive maximum benefit from data anal-
ysis, it needs to take seriously both its exploratory and its confirm-
atory modes. It has already been noted that Tukey regards data 
analysis as a two- stage compound process: exploratory followed 
by confirmatory. However, in his more precise moments, Tukey 
speaks of data analysis as a three- stage process, where the stages 
lie on a continuum of data analysis (Tukey, 1972): The first stage is 
that of EDA, where the investigator seeks to learn what is going on 
in the data. The second stage Tukey calls rough confirmatory data 
analysis. Here hypotheses are refined and rough tests are carried 
out, often using estimation techniques such as confidence inter-
vals. In the third stage, known as strict confirmatory data analy-
sis, the investigator tests well- specified hypotheses using modern 
robust statistical methods. Thus, it should be clear that, for Tukey, 
confirmatory data analysis is just as important as EDA. The heavy 
focus in his writings on EDA is more a function of their compara-
tive neglect than their greater importance.

Exploratory Data Analysis and the Abductive Method

As stated earlier, in the abductive theory of method (Haig, 2005, 
2014), scientific inquiry proceeds as follows: Guided by evolving 
research problems, sets of data are analyzed to detect robust empir-
ical regularities, or phenomena. Once detected, these phenomena 
are explained by abductively inferring the existence of underlying 
causes that are thought to give rise to the phenomena. Here, abduc-
tive inference involves reasoning from claims about phenomena,  
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understood as presumed effects, to their theoretical explanation 
in terms of underlying causes. Upon positive judgments of the ini-
tial plausibility of these explanatory theories, attempts are made to 
elaborate on the nature of the causal mechanisms in question. This 
is done by constructing plausible models of those mechanisms by 
analogy to relevant ideas in domains that are well understood. When 
the theories are well developed, they are assessed against their rivals 
with respect to their explanatory goodness. This assessment involves 
employing criteria specifically to do with explanatory worth.

It should be apparent, even from this brief sketch, that the abduc-
tive theory is considerably broader than both the hypothetico- 
deductive and inductive alternatives (and all three accounts go 
beyond Tukey’s near- exclusive concern with data analysis). The 
breadth of the abductive theory enables it to operate as a frame-
work theory within which an extensive array of data analytic and 
theory construction methods and strategies can be usefully located.

Exploratory Data Analysis in a Multistage  
Model of Data Analysis

The important place of EDA in the abductive theory of method can 
be appreciated by describing its role in the process of phenomena 
detection. Phenomena are relatively stable recurrent general fea-
tures of the world that we seek to explain (Haig, 2014; Woodward, 
1989), and their detection frequently involves an inductive process 
of empirical generalization. This inductive process of phenomena 
detection reserves an important place for the exploratory analysis 
of data. In detecting phenomena, one is concerned to extract a sig-
nal from the noise of data, and for this, the intensive search of large 
amounts of data is frequently required. This is precisely because 
securing a heavy information yield from our data is likely to pro-
vide potentially interesting data patterns that might turn out to be 
genuine phenomena. In this context, data mining is encouraged, 
and the capabilities of exploratory techniques in this regard often 
make them the appropriate methods of choice.

A more fine- grained appreciation of the role of EDA in the discov-
ery of empirical phenomena can be gained by outlining a multistage 
model of data analysis with EDA as one of its stages. This model, 
which is featured in the abductive theory of method, describes one 
of a number of ways in which empirical phenomena can be detected. 
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The model comprises the four sequenced stages of initial data analy-
sis, EDA, close replication, and constructive replication.

Initial Data Analysis. The initial examination of data (Chatfield, 
1985) refers to the first informal scrutiny and description of data 
that is undertaken before EDA proper begins. It involves screen-
ing the data for their quality. Initial data analysis variously involves 
checking for the accuracy of data entries, identifying and dealing 
with missing and outlying data, and examining the data for their fit 
to the assumptions of the data analytic methods used. Data screen-
ing thus enables one to assess the suitability of the data for the type 
of analyses intended. The initial analysis of data has much in com-
mon with Tukey’s approach to EDA. However, these two related 
data analytic endeavors serve different primary functions (data 
screening and pattern detection, respectively), and I restrict initial 
data analysis to the preliminary scrutiny of data before exploratory 
EDA (in Tukey’s sense) begins.

Exploratory Data Analysis. Given that EDA is the major focus 
of this chapter, it suffices to say here that it plays an indispensable 
role in the detection of patterns in data that are the springboard 
to the eventual discovery of phenomena, or robust empirical 
regularities.

Close Replication. Successfully conducted exploratory analyses 
will suggest potentially interesting data patterns. However, it will 
normally be necessary to check on the stability of the emergent 
data patterns though use of appropriate confirmatory data analysis 
procedures. Computer- intensive resampling methods such as the 
bootstrap, the jackknife, and cross validation (Efron & Tibshirani, 
1993) constitute an important set of confirmatory procedures that 
are well suited to this role. They are briefly discussed in material 
that follows.

Constructive Replication. In establishing the existence of phe-
nomena, it is often necessary to undertake both close and con-
structive replications. The statistical resampling methods just 
mentioned are concerned with the consistency of sample results 
that help researchers achieve close replications. By contrast, con-
structive replications are undertaken to demonstrate the extent to 
which results hold across different methods, treatments, and occa-
sions. In other words, constructive replication is a triangulation 
strategy designed to ascertain the generalizability of the results 
identified by successful close replication (Lindsay & Ehrenberg, 
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1993). Constructive replication, in which researchers vary the 
salient study conditions, is a time- honored strategy for justifying 
claims about phenomena.

The four- stage model of data analysis just outlined assists in the 
detection of phenomena by attending in turn to the different, but 
related, tasks of data quality, pattern suggestion, pattern confirma-
tion, and generalization. To repeat, the role of EDA in this process 
is that of pattern detection.

Exploratory Data Analysis and Abductive Inference

Having commented on the role of EDA in the process of phe-
nomena detection from the vantage point of the abductive theory 
of scientific method, an important question remains: What is the 
nature of the relations between EDA and abduction? In psychol-
ogy, I (Haig, 2013) and Behrens, Dicerbo, Yel, and Levy (2013) 
(see also Behrens & Yu, 2003) have commented on philosophical 
aspects of EDA. We hold contrasting views about the relevance 
of abductive reasoning as a core component of the philosophy of 
EDA. Behrens and his coauthors think abduction provides the 
“core logic” of EDA. I disagree. In this section, I say why I think 
their position is mistaken, and that their charge that mine is “a 
particularly disturbing” view of EDA (Behrens et al., 2013, p. 39) 
is unfounded.

Abduction as a form of inference is not well known in academic 
circles. Broadly speaking, abduction is concerned with the gener-
ation and evaluation of explanatory hypotheses. In this sense, it 
contrasts with the more familiar ideas of inductive and deductive 
inference. Behrens et al. (2013) begin by taking their cue from the 
philosopher- scientist Charles Peirce and state that abduction is the 
form of inference involved in generating new ideas or hypotheses. 
However, surprisingly, Behrens et al. do not stay with Peirce on 
this matter. Instead, they closely follow Josephson and Josephson 
(1994) and characterize abductive inference according to the fol-
lowing pattern of reasoning (p. 39):

D is a collection of data (facts, observations, givens).
Hypothesis H explains D (would if true, explain D).
No other hypothesis explains D as well as H does.
Therefore, H is probably correct.
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Patently, this argument schema does not describe the abduc-
tive process of hypothesis generation. Instead, it characterizes 
the abductive form of reasoning known as inference to the best 
explanation. Inference to the best explanation is used in science 
to appraise competing theories in terms of their explanatory 
goodness (Thagard, 1992). For the schema to capture abductive 
hypothesis generation, the third premise, which refers to com-
peting hypotheses, would have to be deleted, and the conclusion 
would be amended to say that the hypothesis in question was ini-
tially plausible, not probably correct.

Despite the fact that philosophers of science sometimes speak 
of abduction and inference to the best explanation as though they 
were the same thing, it is important to differentiate between the 
abductive generation of hypotheses and their comparative appraisal 
in terms of inference to the best explanation. They are discernibly 
different phases of theory construction. In short, Behrens et  al. 
(2013) adopt a conception of abduction that is ill- suited to expli-
cating the process of idea generation, whether it be pattern identifi-
cation through EDA or some other generative process. As a result, 
they fail to make an instructive connection between their chosen 
characterization of abduction and the reasoning involved in EDA.

However, my major worry is not that Behrens et  al. (2013) 
choose the wrong form of abduction to explicate the inferential 
nature of EDA, but that they try to understand it by appealing to 
abduction at all. The fundamental difference between our opposed 
views can be brought out by drawing, and adhering to, the impor-
tant three- fold methodological distinction between data, phe-
nomena, and explanatory theory. Briefly, data are idiosyncratic to 
particular investigative contexts, and they provide the evidence 
for phenomena, which are recurrent general features of the world 
that we seek to explain. In turn, phenomena are the appropriate 
source of evidence for the explanatory theories that we construct 
to understand empirical phenomena. I  have just described one 
way of detecting phenomena by outlining a multistage model of 
data analysis. These stages of data analysis are concerned in turn 
with assessing data quality, detecting data patterns, confirming 
those patterns through use of computer resampling methods (a 
prominent feature of Tukey’s conception of data analysis), and 
establishing the reach of the confirmed relationships in the form 
of inductive generalizations. Viewed in this context, EDA is an 
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empirical, descriptive, pattern detection process. It is one compo-
nent in a sequence of activities that, if undertaken successfully, can 
lead to the detection of new empirical phenomena.

Once claims about empirical phenomena are established, there 
is a natural press to understand them by constructing one or more 
explanatory theories. It is here, and not with the process of phe-
nomena detection, that abduction does its work. In other work 
(Haig, 2005, 2014), I argue how by different abductive means, one 
can generate explanatory theories, develop them through ana-
logical modeling, and evaluate them in relation to their rivals in 
terms of inference to the best explanation. Importantly, the means 
I choose for showing this are, in turn, the abductive methods of 
exploratory factor analysis, analogical abduction, and the theory 
of explanatory coherence (Thagard, 1992). As methods, they pro-
vide rich abductive resources that enable researchers to produce 
explanatory knowledge. They well exceed the rudimentary account 
of abduction provided by the previous argument schema for infer-
ence to the best explanation.

Behrens et al. (2013) speak of generating hypotheses in the con-
text of EDA. In this regard, they pose questions about things such 
as skewness and partialling out. Of course, these sorts of questions 
can be framed as hypotheses, but they are descriptive hypotheses, 
not explanatory hypotheses. They are hypotheses about data ana-
lytic matters; they are not explanations of the data patterns that 
result from exploratory data analytic work.

The Collected Works of  John W.  Tukey (Vols. 3 and 4; Jones, 
1986) provide valuable information about Tukey’s wide- ranging 
philosophy of data analysis, including EDA. I advocate an essen-
tially Tukeyan philosophy of data analysis (Haig, 2013). This may 
surprise Behrens et al. (2013), who see my philosophy as opposed 
to Tukey’s. However, I see no tension, let alone a contradiction, in 
subscribing to large parts of Tukey’s perspective on data analysis 
on the one hand and advocating a thoroughgoing abductive per-
spective on theory construction on the other. This is made possible 
by taking the compendium of exploratory data analytic methods as 
true to their name (they are data analytic methods) and abductive 
methods as true to their name (they are methods concerned with 
the construction of explanatory hypotheses and theories).

If researchers were to follow Behrens et  al. (2013) and char-
acterize EDA as fundamentally abductive in nature, they would 
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risk construing descriptive hypotheses as explanatory hypotheses, 
when they had done no explanatory work at all. For this reason, 
I think it would be better to put abduction to one side and follow 
Tukey’s philosophy of EDA.

Exploratory Data Analysis After Tukey

We have seen that in ushering in the empirical approach to data 
analysis, Tukey argued for the importance of EDA, developed 
many of its tools, and formulated a systematic perspective on 
the subject. However, Tukey’s pioneering 1962 article underesti-
mated the impact of the computer in modern data analysis and 
did not sufficiently acknowledge the relevance of modeling to 
the endeavor (Huber, 2011). Both of these matters deserve some 
comment.

Among other things, EDA for Tukey was a pencil- and- paper 
activity in which one uses graph paper and transparencies. 
Tukey himself had no need for the computer as an aid to calcu-
lation because he was highly adept at computation by just using 
his brain. However, everyone today necessarily practices EDA 
as a computer- assisted endeavor, both for constructing graph-
ical displays and for computation. This is especially so because 
very large data sets are now being subjected to exploratory 
investigation.

Classical inferential statistics makes essential use of math-
ematical models of the data. By contrast, EDA, as understood 
by Tukey, does not. Tukey warns against the dangers of using 
models in the exploratory phase of data analysis. He maintains 
that the early use of models forces data into a procrustean bed 
and lessens the chances of detecting potentially interesting pat-
terns. In addition, he thinks that premature modeling makes it 
more difficult to detect, and make sound judgments about, when 
outliers in the data can be ignored. For Tukey, the use of math-
ematical models is guided by EDA and comes into play in the 
subsequent confirmatory phase. In short, Tukey is not opposed 
to the use of mathematical models, only their use in the early 
exploratory phase. Interestingly, Lenhard (2006) suggests that 
EDA does in fact adopt a nonmathematical, and more instru-
mental, conception of models, but I shall not pursue that line of 
thought here.
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Finally, I comment on the relation between EDA and Bayesian 
statistics, bearing in mind that it is commonly thought that EDA 
and Bayesian inference are unrelated statistical endeavors. For 
his part, Tukey expresses reservations about Bayesian data analy-
sis. Although he thinks it would be a mistake to discard Bayesian 
analyses altogether (he acknowledges that in restricted contexts 
Bayesian analyses might be of some use in bringing in informa-
tion not contained in the data), he is opposed to its widespread 
use as a highly formalized and unified, “seemingly scientific,” 
process.

However, the Bayesian philosopher and statistician I. J. Good 
(1983) has sketched a philosophy of EDA that endorses many of 
the aims of EDA, as spelled out by Tukey. However, unlike Tukey, 
Good is willing to appeal to subjective prior probabilities to help 
judge whether patterns in the data are potentially explicable in the 
particular context within which they arise. Good recognizes the 
very sketchy nature of his philosophy of EDA and views his effort 
as groping toward what is needed. The question of whether one 
should make subjective estimates of prior probabilities is discussed 
in Chapter 4.

Finally, in this section, I  note that Andrew Gelman (2004), 
whose distinctive philosophy of Bayesian inference is discussed 
in Chapter  4, endeavors to bring EDA and Bayesian inference 
together by showing how the former can be embedded into the 
probability- modeling outlook of the latter. Essentially, his view 
is that EDA and Bayesian inference complement each other. He 
says that “(a) exploratory and graphical methods can be especially 
effective when used in conjunction with models, and (b) model- 
based inference can be especially effective when checked graphi-
cally. Our key step is to formulate essentially all graphical displays 
as model checks, so that new models and new graphical methods 
go hand- in- hand” (Gelman, 2004, p. 757).

Resampling Methods

The Computer- Intensive Philosophy

The classical statistical methods developed by Fisher, Neyman and 
Pearson, and others of their time were tailored to the limited calcu-
lational abilities of the human mind and the mechanical calculator 
and had to be augmented by appropriate mathematical analysis. 
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However, since the 1980s, statisticians have been able to exploit 
the massive computational power of the modern computer and 
develop a number of computer- intensive resampling methods, 
such as the jackknife, the bootstrap, and cross validation (Efron & 
Tibshirani, 1993). These methods constitute one important set of 
confirmatory procedures that are well suited to the task of check-
ing on the data patterns evoked by EDA. By exploiting the com-
puter’s computational power, these resampling methods free us 
from the restrictive assumptions of modern statistical theory, such 
as the belief that the data are normally distributed, and permit us 
to gauge the reliability of chosen statistics by making thousands, 
even millions, of calculations on many data points.

In the second half of this chapter, I briefly describe three prom-
inent resampling methods and briefly address some issues that 
arise from consideration of their conceptual foundations. Some 
of these are helpfully discussed in Yu (2003, 2008) and Sprenger 
(2011). Resampling methods comprise a broad family, and there 
are a number of variants of each of these procedures.

The Jackknife

Perhaps the best known computer- intensive resampling method 
is the jackknife, a method that was introduced by Quenouille 
(1949) and developed early by Tukey and his associates (e.g., 
Mosteller, 1971; Tukey, 1958), who showed that it could improve 
the variance as well as the bias of an estimate. In everyday con-
texts, the jackknife is a scout’s single- bladed knife that can be 
used tolerably well for a variety of purposes. By analogy, the 
term jackknife was adopted by Tukey to suggest a single con-
firmatory statistical tool that could be applied in a wide vari-
ety of situations when specialized tools were not available. In 
fact, Tukey recommends using the jackknife as an all- purpose 
method when seeking the confirmation of data patterns initially 
suggested by exploratory methods. The jackknife is an important 
attempt to establish the accuracy of a computed estimate of some 
quantity of interest, such as a mean, a standard deviation, or a 
correlation. It proceeds by removing one observation at a time 
from the original data set and recalculating the statistic of inter-
est for each of the data sets. The variability of the statistic across 
all of the truncated data sets can then be described by giving us 
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an empirically obtained measure of the reliability or stability of 
the original estimate. The jackknife is not massively computa-
tionally intensive in that the computational work it requires can 
often be done with a calculator. Although the jackknife is still 
used, it is used less often than the bootstrap, although the two 
methods can be used in tandem in particular contexts.

The Bootstrap

A method closely related to the jackknife is the bootstrap. This 
more recent method holds considerable promise as a powerful and 
flexible, data- based method for statistical inference. Numerical 
answers are obtained by employing computer algorithms rather 
than tractable mathematical theory, though mathematical statistics 
now lies behind bootstrap thinking.

The bootstrap has been primarily developed by Bradley Efron 
and his colleagues (Diaconis & Efron, 1983; Efron, 1979; Efron 
& Tibshirani, 1993). Efron gave the method its name by likening 
it to the familiar idea of making progress by lifting oneself by the 
bootstraps. The bootstrap in statistics embodies a self- help algo-
rithm that enables the researcher to create many samples from 
the data available in one given sample. Early development of the 
bootstrap was a straightforward extension of the jackknife, but 
the bootstrap now stands as a general- purpose method that can 
be used to tackle a wide variety of statistical estimation prob-
lems. Computationally speaking, the bootstrap sampling dis-
tribution is usually constructed via Monte Carlo simulation, in 
which a number of samples, say 100 or 1,000, are drawn from 
the observed data of the available sample rather than from some 
hypothetical distribution, as is the case with classical statistics. 
Repeated samples of the same size as the observed sample with 
replacement from the data are drawn, the chosen statistic of each 
bootstrap sample is computed, and the variance of this set of 
means is calculated.

Three major benefits of the bootstrap are that it involves no 
distributional assumptions, it has a wide variety of applica-
tions, and it can be used with small as well as large samples. 
Additionally, despite claims that the bootstrap is a nonparamet-
ric procedure, it can in fact be applied both parametrically and 
nonparametrically.
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Cross Validation

The basic idea of cross validation has long been considered impor-
tant to science and is familiar to many psychologists. It is often used 
to assess the adequacy of a statistical model. At a minimum, this 
time- honored strategy typically involves randomly splitting the 
data into two subgroups of approximately equal size. The results of 
interest are calculated from the data of one subgroup, after which 
their confirmation is sought by comparing them with the results 
of the other subgroup. This long- standing idea has been taken up 
in a computationally intensive way, with curves fitted to one half 
of the data and then validated by testing successively for the best 
fit to the second half. The data do not have to be split in half and at 
random; they can be split many times and in many different ways. 
Alternatively, cross validation can be used in the manner of the 
jackknife by leaving out a single observation at a time, or a data set 
can be split into a number of subsets, with each subset being left 
out in turn as the validation set.

Resampling and Counterfactual Reasoning

One criticism sometimes leveled at the bootstrap is that its name 
suggests the idea of a procedure with which researchers try to obtain 
something for nothing, which cannot be achieved— in this case, an 
empirical sample obtained by an appropriate sampling procedure. 
The corresponding image is of “statisticians idly resampling from 
their samples, presumably having about as much success as they 
would if they tried to pull themselves up by their bootstraps” (Hall, 
1992, p. 2). However, this image is misleading because the boot-
strap metaphor contains a nonlinear logic that is often used in sci-
ence to good effect. Realistically, the boot pushes against the hand, 
while its straps offer the researcher lift- off assistance. In the case of 
statistical bootstrapping, the original sample pushes upward, while 
the resampling strategy helps lift the investigation to the obtained 
empirical sample. Moreover, simulation studies indicate that sound 
conclusions can often be reached through use of bootstrap proce-
dures, but being entirely conditioned by the sample data, they do 
not guarantee success (Hall, 1992).

It is relevant to note here that scientists often make explicit 
use of “what if ” counterfactual thinking to better understand the 
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actual world. Counterfactuals are contrary- to- fact conditional 
statements, which take the form, “If p hadn’t happened, then q 
wouldn’t have happened,” or “If p has happened, then q would have 
happened.” Philosophers also make frequent use of counterfactual 
thinking to analyze important metascientific concepts such as cau-
sation, laws, and dispositions.

As a statistician and scientist, Fisher made deliberate use of 
counterfactual thinking. For example, his appeal to theoretical dis-
tributions, a long- run frequentist conception of probability, and 
the construction, and use of, the randomization or permutation 
test all involve counterfactual reasoning in the sense that they con-
tain elements that do not map onto the real world. It is relevant to 
note that Fisher specifically appreciated the worth of empirically 
generated sampling distributions, as seen with his development of 
the randomization test, which was a forerunner to the resampling 
methods described previously. In fact, he went to great lengths to 
construct an empirical sampling distribution, despite the rudi-
mentary computational resources at his disposal. It seems likely 
that with sufficient computing resources, Fisher would have made 
considerable use of empirically generated sampling distributions, 
rather than relying on theoretical sampling distributions, such as 
the F and t distributions (Rodgers, 1999).

Reliabilist Justification

It is important to appreciate that the resampling methods just 
mentioned make use of an approach to justification known as 
reliabilism (Goldman, 1986). Here, the reliability checks on 
emergent data patterns are provided by the consistency of test 
outcomes, which is a time- honored validating strategy. Our will-
ingness to accept the results of such checks is in accord with what 
Paul Thagard (1992) calls the principle of data priority. This prin-
ciple asserts that statements about observational data, including 
empirical generalizations, have a degree of acceptability on their 
own without being bolstered by a theory that explains them. 
Such claims are not indubitable, but they do stand by themselves 
better than claims justified solely in terms of what they explain. 
What justifies the provisional acceptance of data statements is 
that they have been achieved by reliable methods. Specifically, 
what strengthens our provisional belief in the patterns elicited 
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by EDA is their confirmation through use of computer- based 
resampling methods.

Further, it is important to appreciate that the acceptability of 
claims provided by the reliabilist justification of computer- intensive 
resampling methods can be enhanced by making appropriate use 
of what is called a coherentist approach to justification. One impor-
tant form of coherence is explanatory coherence, and one method 
that delivers judgments of explanatory coherence is the theory of 
explanatory coherence (Thagard, 1992). According to this theory, 
data claims, including empirical generalizations, receive an addi-
tional justification if and when they enter into, and cohere with, the 
explanatory relations of the theory that explains them.

Computer- intensive resampling methods have been slow to 
catch on in applied statistics, and their presence on the contempo-
rary psychological landscape is characterized by little more than 
the occasional demonstration paper, with applications and tutori-
als (e.g., Lunneborg, 1985; Thompson, 1991; Yu, 2008). However, 
with the increasing availability of suitable software for the imple-
mentation of these methods, it is to be hoped that their introduc-
tion to statistics education will soon see them become part of the 
behavioral scientist’s standard toolkit. Now that psychology seems 
finally poised to officially embrace EDA, we can hope for a corre-
sponding increase in the use of modern confirmatory statistical 
methods that will enable us to ascertain the validity of the data 
patterns initially suggested by use of exploratory methods.

A Philosophy for Teaching Data Analysis

An underappreciated, but important, feature of Tukey’s writings on 
EDA is the illuminating remarks on the teaching of data analysis that 
they contain. These remarks can be assembled into a sketch of an 
instructive philosophy for teaching data analysis, which can prop-
erly be regarded as part of an overall philosophy of EDA. Tukey’s 
philosophy of teaching advises us to think about and teach data 
analysis in a way that is quite different from the prevailing custom.

Provocatively, Tukey (1980) maintains that the proper role of 
statistics teachers is to teach that which is most difficult and leave 
that which is more manageable to good textbooks and computers. 
He recommends teaching data analysis the way he understands 
biochemistry was taught— concentrating on what the discipline of 
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statistics has learned, perhaps with a discussion of how such things 
were learned. The detail of methods should be assigned to labora-
tory work, and the practice of learning data analytic techniques 
should be assigned to a different course in which problems arose. 
Tukey foresaw that such a redirection in teaching data analysis 
would have to be introduced in phases. In Tukey’s (1962) words, 
“the proposal is really to go in the opposite direction from cook-
bookery; to teach not ‘what to do,’ nor ‘how we learned what to do,’ 
but rather, ‘what we have learned’ ” (p. 63). This advice is broadly 
consistent with the idea raised in the book’s introduction, that we 
should teach research methods in terms of their accompanying 
methodology.

Another prominent feature of Tukey’s philosophy of teach-
ing data analysis is his recommendations that we should teach 
both exploratory and confirmatory data analysis and that we have 
an obligation to do so. Tukey’s strong promotion of the value of 
EDA was intended as a counter to the dominance of confirmatory 
data analysis in statistical practice. However, as already noted, for 
Tukey, EDA was not to be understood as more important than 
confirmatory data analysis because both are essential to good 
data analysis.

Tukey also suggests that EDA should probably be taught 
before confirmatory data analysis. There are several reasons 
why this recommendation makes good sense. Properly taught, 
EDA is probably easier to learn, and it promotes a healthy atti-
tude to data analysis (encouraging one to be a dataphile with-
out becoming a data junkie). It requires the investigator to get 
close to the data, analyze the data in various ways, and seek to 
extract as much potentially important information from them 
as possible. This is done to detect indicative patterns in the data 
before establishing through confirmatory data analysis that they 
are genuine patterns.

Tukey emphasizes that learning EDA centrally involves acquir-
ing an appropriate attitude toward the data, which includes the 
following elements:  EDA is sufficiently important to be given a 
great deal of time; EDA should be carried out flexibly with mul-
tiple analyses being performed (there is no one best analysis of 
the data); and EDA should employ a multiplicity of methods that 
enhance visual display.
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Conclusion

Although data analysis has become an important part of profes-
sional statistics, both exploratory and computer- intensive resam-
pling methods remain a minority practice in psychology. Given 
the importance of both to the field of data analysis, psychological 
research would benefit by placing as much emphasis on them as 
they do classical confirmatory methods. Tukey’s insistence that 
EDA should precede confirmatory data analysis, and that confirm-
atory data analysis should feature resampling methods, is sound 
advice. This chapter has given considerable attention to the place of 
data analysis in different conceptions of scientific method, in par-
ticular the abductive theory of method. Specifically, the location 
of EDA in its four- stage model of data analysis shows one way in 
which it can contribute to the important scientific process of phe-
nomena detection. Finally, Tukey’s unheralded philosophy of data 
analysis, including his philosophy of EDA, offers the best articu-
lation of the conceptual foundations of data analysis that has been 
expressed by one voice. The field of data analysis would be con-
ceptually enriched by heeding Tukey’s philosophical contributions 
to the topic and working through their implications for thinking 
about, and practicing, data analysis.

Further Reading
John Tukey’s groundbreaking book, Exploratory Data Analysis (Boston, 

MA: Addison- Wesley, 1977), is the major text on EDA. It stimulated much 
further work in the field of data analysis.

Volumes 3 and 4 of The Collected Works of John W.  Tukey (Pacific Grove, 
CA: Wadsworth & Brooks/ Cole, 1986) bear the name Philosophy and Principles 
of Data Analysis. The 30 articles contained in the two volumes contain valuable 
information about Tukey’s wide- ranging philosophy of data analysis.

A. P. Dempster (“John W. Tukey as ‘philosopher.’ ” The Annals of Statistics, 2002, 
30, 1619– 1228) provides an accessible discussion of Tukey’s contributions to 
the foundations of EDA and related statistical matters.

An insightful treatment of a broad range of issues spanning half a century in the 
field of data analysis, by a prominent statistical theorist and data analyst, is 
Peter Huber’s Data Analysis: What Can Be Learned From the Past 50 Years 
(Hoboken, NJ: Wiley, 2011).

John Behrens and Chong Ho Yu provide an informative overview of EDA as it 
applies to psychology (see their “Exploratory Data Analysis” in J. A. Schinka 
& W. F. Velicer, (Eds., Handbook of Psychology, Vol. 2, pp. 33– 64. New York, 
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NY: Wiley, 2003). Their chapter deals with some philosophical aspects of the 
approach.

Two articles that consider EDA from a Bayesian perspective are I. J. Good, “The 
Philosophy of Exploratory Data Analysis” (Philosophy of Science, 50, 283– 295, 
1983), and Andrew Gelman, “A Bayesian Formulation of Exploratory Data 
Analysis and Goodness- of- Fit Testing” (International Statistical Review, 2, 
369– 382, 2003).

A highly accessible account of the bootstrap is provided by Julian Simon and Peter 
Bruce in their “Resampling: A Tool for Everyday Statistical Work” (Chance, 4, 
22– 32, 1991). Simon’s book on the same topic, Resampling: The New Statistics 
(Arlington, VA:  Resampling Stats, 1997), employs a computer language, 
RESAMPLING STATS, to simulate the resampling trials.

Chong Ho Yu (“Resampling: A Conceptual and Procedural Introduction,” in J. W. 
Osborne, Ed., Best Practices in Quantitative Methods, pp. 283– 298. Thousand 
Oaks, CA: Sage, 2008) provides a useful overview of resampling methodology 
with an emphasis on its conceptual nature.

The philosopher Jan Sprenger notes in his “Science Without Parametric 
Models: The Case of Bootstrap Resampling” (Synthese, 180, 65– 76, 2011) that 
bootstrap resampling techniques have been ignored by philosophers. He con-
trasts bootstrap resampling with standard parametric statistical modeling and 
suggests that the possibilities for fruitfully combining them should be explored.

References
Aiken, L. S., West, S. G., Sechrest, L. B., & Reno, R. R. (1990). Graduate training 

in statistics, methodology, and measurement in psychology: An international 
survey. American Psychologist, 45, 721– 734.

Behrens, J. T. (1997). Principles and procedures of exploratory data analysis. 
Psychological Methods, 2, 131– 160.

Behrens, J. T., Dicerbo, K. E., Yel, N., & Levy, R. (2013). Exploratory data analysis. 
In J. A. Schinka, W. F. Velicer, and I. B. Weiner (Eds.), Handbook of psychology 
(2nd ed., Vol. 2, pp. 34– 70). Hoboken, NJ: Wiley.

Behrens, J. T., & Yu, C- H. (2003). Exploratory data analysis. In J. A. Schinka & W. F. 
Velicer (Eds.), Handbook of psychology (Vol. 1, pp. 33– 64). New York, NY: Wiley.

Chatfield, C. (1985). The initial examination of data. Journal of the Royal Statistical 
Society, Series A, 148, 214– 254 (with discussion).

Chen, C., Härdle, W., & Unwin, A. (2008). Handbook of data visualization. Berlin, 
Germany: Springer- Verlag.

Dempster, A. P. (2003). John W. Tukey as “philosopher.” The Annals of Statistics, 
30, 1619– 1628.

Diaconis, P., & Efron, B. (1983). Computer- intensive methods in statistics. 
Scientific American, 248, 116– 131.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of 
Statistics, 7, 1– 26.

Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York, 
NY: Chapman & Hall.

 



exPloratory data analysis : 39

39

Gelman, A. (2004). Exploratory data analysis for complex models. Journal of 
Computational and Graphical Statistics, 13, 755– 779.

Goldman, A. I. (1986). Epistemology and cognition. Cambridge, MA:  Harvard 
University Press.

Good, I. J. (1983). The philosophy of exploratory data analysis. Philosophy of 
Science, 50, 283– 295.

Gould, S. J. (1994). The evolution of life on earth. Scientific American, 271, 85– 191.
Haig, B. D (2005). An abductive theory of scientific method. Psychological 

Methods, 10, 371– 388.
Haig, B. D. (2013). Detecting psychological phenomena:  Taking bottom- up 

research seriously. American Journal of Psychology, 126, 135– 153.
Haig, B. D. (2014). Investigating the psychological world: Scientific method in the 

behavioral sciences. Cambridge, MA: MIT Press.
Hall, P. (1992). The bootstrap and Edgeworth expansion. New  York, 

NY: Springer- Verlag.
Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1983). Understanding robust and 

exploratory data analysis. New York, NY: Wiley.
Huber, P. (2011). Data analysis:  What can be learned from the last 50  years. 

Hoboken, NJ: Wiley.
Jones, L. V. (Ed.). (1986). The collected works of John W. Tukey, Vols. 3 & 4: Philosophy 

and principles of data analysis. Monterey, CA: Wadsworth & Brooks/ Cole.
Josephson J. R., & Josephson, S. G. (1994). Abductive inference: Computation, phi-

losophy, technology. New York, NY: Cambridge University Press.
Lane, D. M., & Sándor, A. (2009). Designing better graphs by including distribu-

tional information and integrating words, numbers, and images. Psychological 
Methods, 14, 239– 257.

Laudan, L. (1981). Science and hypothesis: Historical essays on scientific methodol-
ogy. Dordrecht, the Netherlands: Reidel.

Lenhard, J. (2006). Models and statistical inference:  The controversy between 
Fisher and Neyman- Pearson. British Journal for the Philosophy of Science, 
57, 69– 91.

Lindsay, R. M., & Ehrenberg, A. S. C. (1993). The design of replicated studies. 
American Statistician, 47, 217– 228.

Lunneborg, C. E. (1985). Estimating the correlation coefficient: The bootstrap 
approach. Psychological Bulletin, 98, 209– 215.

Micceri, T. (1989). The unicorn, the normal curve, and other improbable crea-
tures. Psychological Bulletin, 105, 156– 166.

Mosteller, F. (1971). The jackknife. Review of the International Statistical Institute, 
39, 363– 368.

Quenouille, M. H. (1949). Problems in plane sampling. Annals of Mathematical 
Statistics, 20, 355– 375.

Rodgers, J. L. (1999). The bootstrap, the jackknife, and the randomization test: A 
sampling taxonomy. Multivariate Behavioral Research, 34, 441– 456.

Skinner, B. F. (1984). Methods and theories in the experimental analysis of behav-
ior. Behavioral and Brain Sciences, 7, 511– 546.

Sprenger, J. (2011). Science without (parametric) models: The case of bootstrap 
resampling. Synthese, 180, 65– 76.



40 : the PhilosoPhy of Quantitative Methods

40

Thagard, P. (1992). Conceptual revolutions. Princeton, NJ:  Princeton 
University Press.

Thompson, P. A. (1991). Resampling approaches to complex psychological exper-
iments. Multivariate Behavioral Research, 26, 737– 763.

Tukey, J. W. (1958). Bias and confidence in not quite large samples. Annals of 
Mathematical Statistics, 29, 614– 623.

Tukey, J. W. (1962). The future of data analysis. The Annals of Mathematical 
Statistics, 33, 1– 67.

Tukey, J. W. (1969). Analyzing data: Sanctification or detective work? American 
Psychologist, 24, 83– 91.

Tukey, J. W. (1972). Data analysis, computation, and mathematics. Quarterly 
Journal of Applied Mathematics, 30, 51– 65.

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison Wesley.
Tukey, J. W. (1980). We need both exploratory and confirmatory. American 

Statistician, 34, 23– 25.
Wilkinson, L., & the Task Force on Statistical Inference. (1999). Statistical methods 

in psychology journals: Guidelines and explanations. American Psychologist, 
54, 594– 604.

Woodward, J. (1989). Data and phenomena. Synthese, 79, 393– 472.
Yu, C. H. (2003). Resampling methods: Concepts, applications, and justification. 

Practical Assessment, Research and Evaluation, 8, 19 pp.
Yu, C. H. (2008). Resampling: A conceptual and procedural introduction. In J. 

W. Osborne (Ed.), Best practices in quantitative methods (pp. 283– 298). Los 
Angeles, CA: Sage.

Yu, C. H. (2010). Exploratory data analysis in the context of data mining and 
resampling. International Journal of Psychological Research, 3, 9– 22.



41

3
Tests of Statistical 
Significance

Although mixing aspects from [Neyman- Pearsonian] and 
Fisherian tests is often charged as being guilty of an inconsistent 
hybrid . . . , the error statistical umbrella, linked by the notion 
of severity, allows for a coherent blending of elements from both 
approaches.

— D. G. Mayo and A. Spanos, 2011

P- values should be retained for a limited role as part of the 
machinery of error- statistical approaches. Even within that sys-
tem, they need to be supplemented by other devices.

— S. Senn, 2016

Introduction

It is well known that tests of statistical significance (ToSS) are the 
most widely used means for evaluating hypotheses and theories in 
psychology. ToSS have been highly popular in psychology for more 
than 50 years and in the field of statistics for nearly 80 years. Since 
the 1960s, a massive critical literature has developed in psychology, 
and the behavioral sciences more generally, regarding the worth 
of ToSS (e.g., Harlow, Mulaik, & Steiger, 1997; Hubbard, 2016; 
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Morrison & Henkel, 1970; Nickerson, 2000). Despite the plethora 
of critiques of ToSS, most psychologists understand them poorly, 
frequently use them inappropriately, and pay little attention to the 
controversy they have generated.

The significance testing controversy shows no signs of abating. 
Calls for replacing ToSS with alternative statistical methods have 
been prominent in recent debates. For example, an increasing num-
ber of methodologists have expressed a strong preference for the 
use of Bayesian statistics in place of the most popular form of ToSS, 
commonly known as null hypothesis significance testing (NHST) 
(e.g., Dienes, 2011; Kruscke, 2015; Wagenmakers, 2007). Also, the 
so- called new statistics of effect sizes, confidence intervals, and 
meta- analysis has been assiduously promoted as a worthy package 
to replace NHST (Cumming, 2014). Some journal editors also have 
played their part by endorsing alternatives to NHST. For instance, 
a recent editor of Psychological Science endorsed the use of the new 
statistics wherever appropriate (Eich, 2014), and the current editors 
of Basic and Applied Social Psychology have banned the use of NHST 
in articles published in their journal (Trafimow & Marks, 2015).

A noteworthy and surprising feature of these calls to do away 
with NHST is their failure to consider the sensible option of replac-
ing it with defensible accounts of ToSS. The opponents of NHST 
seem to believe that arguments criticizing the worth of ToSS in its 
most indefensible form suffice to cast doubt on ToSS in its entirety. 
However, this is a clear case of faulty reasoning, known as the fal-
lacy of the false dichotomy: reject NHST in favor of an alternative 
that does not involve ToSS, even though there are viable accounts 
of ToSS available for use.

A major objective of this chapter is to bring two credible per-
spectives on ToSS to the attention of psychologists. I suggest that 
these alternative renditions of ToSS can play a legitimate, if lim-
ited, role in the prosecution of psychological research. In what fol-
lows, I provide a brief overview of NHST and point out its primary 
defects. I then provide an outline of the neo- Fisherian account of 
ToSS, which breaks from Neyman and Pearson’s formulation and 
presents an update on Fisher’s original position. The second option 
for a better understanding of ToSS is contained in the contempo-
rary philosophy of statistics known as the error- statistical philoso-
phy. The chapter ends with a list of important lessons learned from 
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the ongoing debates about ToSS that I believe we should carry for-
ward in our thinking on the topic.

Null Hypothesis Significance Testing:  
Psychology’s Textbook Hybrid

Psychologists tend to assume that there is a single unified theory of 
ToSS. This assumption is primarily based on treatments of the topic 
furnished by the writers of statistics textbooks in psychology, who 
pay little, if any, attention to the work of the founding fathers on 
the topic. By contrast, it is well known in professional statistical cir-
cles that there are two major historical theories of ToSS: Fisherian 
and Neyman- Pearsonian (e.g., Fisher, 1925; Neyman & Pearson, 
1933). The relation between the two is a matter of some dispute. 
It is often said that Neyman and Pearson initially sought to build 
and improve on Fisher’s theory, but that they subsequently devel-
oped their own theory as an alternative to that of Fisher. However, 
historians and theorists in statistics differ on how this relationship 
should be understood.

A popular view in statistical circles is that there are a number of 
fundamental points of difference between the two theories, which 
can be glossed as follows: Both theories adopt fundamentally dif-
ferent outlooks on the nature of scientific method and statistical 
inference. Fisher argues that an experiment is performed solely 
to give the data an opportunity to disprove the null hypothesis; 
no alternative hypothesis is specified, and the null hypothesis is 
the hypothesis to be nullified. Because one cannot accept the null 
hypothesis, no provision is made for a statistical concept of power. 
Fisher (1955) subscribes to an inductive conception of scientific 
method and maintains that significance tests were vehicles of 
inductive reasoning. For their part, Neyman and Pearson added 
the requirement of the specification of an alternative hypothesis 
and replaced Fisher’s evidential p value with the Type I error rate. 
Type II error was admitted, and explicit provision was made for a 
formal statistical concept of power. Most fundamentally, Neyman 
and Pearson maintain that significance tests are rules of inductive 
behavior, not vehicles for inductive reasoning. This gloss on the 
two schools of thought should serve as a background to the follow-
ing discussion of their hybridization.
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In the behavioral sciences, the best- known account of the hybrid-
ized form of ToSS, NHST, is that of Gigerenzer (1993). Elaborating 
on a metaphor first suggested by Acree (1978), Gigerenzer employs 
Freudian language to identify the psychological tensions of those 
who use NHST. As he sees it, features of the Neyman- Pearsonian 
approach to hypothesis testing combine to form the superego of 
the hybrid logic and prescribe what should be done. The ego of the 
hybrid logic, which enables ToSS to be carried out, is that of Fisher. 
For Gigerenzer, there is a third component of the hybrid, which 
comes from neither Fisher nor Neyman and Pearson, but from the 
Bayesian desire to assign probabilities to hypotheses on the basis 
of the data. Gigerenzer likens this to the Freudian id because it is 
censored by the Neyman- Pearson superego and the Fisherian ego.

The nature of the psychologists’ amalgam and its tensions can, 
on this received view, be redescribed thus: To the bare bones of 
Fisherian logic, the hybrid adds the notion of Type II error (opposed 
by Fisher) and the associated notion of statistical power (Fisher 
prefers the related notion of experimental sensitivity), but only at 
the level of rhetoric (thereby ignoring Neyman and Pearson), while 
giving a behavioral interpretation of both Type I and Type II error 
(vigorously opposed by Fisher).

There is, however, a further difference attributed to Fisher and 
Neyman and Pearson, the conflation of which serves to further 
characterize the amalgam. The inconsistency involves the equa-
tion of Fisher’s p values with Neyman and Pearson’s Type I error 
rate, in the ubiquitous expression “p = α.” However, these are said 
to be fundamentally different things (e.g., Hubbard, 2004). The  
p values are measures of evidence, closely tied to the data they 
summarize, whereas α values are rates of error that apply to the 
tests being used. Fisher, it is said, thought that error rates had no 
place in his account of significance testing. For their part, Neyman 
and Pearson are portrayed as thinking that p values had no place 
in their conception of hypothesis testing. However, the claim 
that the amalgam brings together two ideas that their originators 
thought were irreconcilable is challenged by the error- statistical 
perspective, as I note further in the chapter.

As just seen, Gigerenzer employs the psychodynamic metaphor 
as a device for organizing some of the sources of confusion that 
he thinks comprise the hybrid in the minds of many psychological 
researchers, journal editors, and textbook writers. However, like all 
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metaphors, it has its limitations. For one thing, it provides a psy-
chological construal of methodological ideas and their relations 
that might be more illuminatingly cast in more direct methodo-
logical terms. For another, it provides a set of hypotheses about the 
mindset (the “psychic structure”) of researchers who employ NHST 
that lacks proper empirical confirmation. Evidence from protocol 
analyses of verbal reports of researchers would be required for such 
confirmation. In addition, this psychological characterization of 
psychologists’ understanding of the hybrid does not take account 
of the fact that the confusions contained in the amalgam are exac-
erbated by a tendency of psychologists to misrepresent further the 
key features of ToSS in a number of ways. For example, levels of sta-
tistical significance are taken as measures of confidence in research 
hypotheses, information about likelihoods is taken as a gauge of 
the credibility of the hypotheses under test, and reported levels of 
significance are taken as measures of the replicability of the find-
ings (e.g., Hubbard, 2016). Additional misunderstandings such as 
these make a psychological characterization of the hybrid beyond 
the resources of the Freudian metaphor to provide.

It should be said further that there is not a single agreed- upon 
characterization of the hybrid NHST, as seems to be supposed in 
treatments of the topic. Halpin and Stam (2006) examined the for-
mulation of the hybrid in six statistics textbooks in psychology pub-
lished in the period 1940– 1960 and found that it received different 
characterizations. For example, the textbooks differed in the extent to 
which they made use of ideas from Neyman and Pearson. Relatedly, 
the authors discovered that the textbooks took ideas from both Fisher 
and Neyman and Pearson, but that the journal literature that they 
reviewed made virtually no use of Neyman and Pearson’s ideas.

As just intimated, the view that NHST is an inchoate amal-
gam of Fisher’s and Neyman and Pearson’s schools of thought is 
based on the commonly held belief that the two schools are fun-
damentally different and irreconcilable. However, this belief is 
not held universally among professional statisticians. For exam-
ple, Lehmann (1993), a former student of Neyman, maintains 
that although there are some important philosophical differ-
ences between the two schools, the strongly voiced differences of 
opinion between their founders give the misleading impression 
that the schools are incompatible. Lehmann contends that, at a 
practical level, the two approaches are complementary, and that 
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“p values, fixed- level significance statements, conditioning, and 
power considerations can be combined into a unified approach” 
(p. 1248). Spanos also adopts the view that the two approaches 
are complementary. In his well- known textbook (Spanos, 1999), 
he concludes that the Neyman- Pearsonian approach is suited for 
testing within the boundaries of a postulated model, whereas 
the Fisherian approach is suited for testing outside the bound-
aries of the model. As will be seen, the error- statistical philoso-
phy demonstrates that a number of elements of both of schools 
of thought can be incorporated in a wide- ranging, coherent 
position. However, before presenting and discussing the main 
features of that philosophy, I consider the more circumscribed 
neo- Fisherian outlook on ToSS.

The Neo- Fisherian Perspective

As its name implies, the neo- Fisherian perspective on ToSS is a 
reformulation of Fisher’s original position. Advocates of this per-
spective include Cox (2006), Hurlbert and Lombardi (2009), Pace 
and Salvan (1997), and, to some extent in his later years, Fisher him-
self. In an extensive recent critical review, Hurlbert and Lombardi 
(2009) comprehensively surveyed the literature on ToSS and rec-
ommend a shift in focus from the original “paleo- Fisherian” and 
Neyman- Pearsonian classical frameworks to what they maintain 
is a more defensible neo- Fisherian alternative. For ease of exposi-
tion, and convenient reference for the reader, I largely follow the 
authors’ characterization of the neo- Fisherian position. I briefly 
identify its major elements and indicate how the authors depart 
from, and see themselves rejecting, the psychologists’ hybrid, while 
improving on problematic elements of Fisher’s original position, 
and rejecting the Neyman- Pearsonian outlook. That said, Hurlbert 
and Lombardi in fact retain some elements of the latter position, 
namely alternative hypotheses, power, and confidence intervals.

1. Type I error rate is not specified. In a clear departure from 
standard practice, critical α’s, or probabilities of Type I error, are 
not specified. Instead, exact p values are reported. The publica-
tion of Fisher’s statistical tables with fixed p values was a matter 
of pragmatic convenience and should not be taken to imply that 
ToSS requires fixed p values to be chosen. Moreover, the refusal to 
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accept the null hypothesis when an obtained p value barely exceeds 
the adopted value is both rigid and unsound. An α value of .051 has 
the same evidential import as one of .049.

2. The p values are not misleadingly described as “significant” or 
“nonsignificant.” There is no requirement that the dichotomous “sig-
nificant”/ “nonsignificant” language and thinking be used. Indeed, 
it is recommended that talk of statistically significant and statisti-
cally nonsignificant results be dropped. Undoubtedly, Fisher’s pub-
lication of critical values of test statistics played a major role in the 
widespread adoption of this misleading language.

3. Judgment is suspended about accepting the null hypothesis on the 
basis of high p values. It is not uncommon for textbook authors, and 
researchers especially, to think that when a p value is greater than 
a specified level of significance, one should accept the null hypoth-
esis as true. However, the neo- Fisherian perspective regards it as 
neither necessary nor sufficient to accept the null hypothesis on the 
basis of high p values. Factors, such as the strength of experimental 
conditions, the magnitude of an effect, and power considerations, 
will have a bearing on whether this belief is sound.

4. The “three- valued logic” that gives information about the direc-
tion of  the effect being tested is adopted. The logical structure of 
standard ToSS is a “two- valued logic” by which one chooses 
between two mutually exclusive hypotheses about the direction of 
an effect. However, Kaiser (1960), Harris, (1997), and others rea-
son that the researcher who adopts the traditional two- tailed test 
cannot reach a conclusion about the direction of the effect being 
tested, and one who employs a one- tailed test cannot conclude that 
the predicted sign of the effect is wrong. Their proposed solution is 
to adopt a more nuanced “three- valued logic,” where a test for just 
two hypotheses is replaced by a test of three hypotheses that allows 
for conclusions about effects with either sign, or an expression of 
doubt and reserved judgment.

5. Adjunct information about effect sizes and confidence intervals 
is provided, if appropriate. It is a common criticism of traditional 
ToSS to decry the overemphasis on p values by researchers and their 
associated neglect of effect sizes and confidence intervals. As noted 
previously, some methodologists recommend the abandonment of 
p- value statistics in favor of statistics such as these. However, the 
neo- Fisherian position retains the emphasis on p values in signifi-
cance assessments and regards effect sizes and confidence intervals 
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as complements to such tests, rather than as alternatives to them. 
It is important to remember that effect sizes and confidence inter-
vals are faced with their own challenges. For example, the common 
practice of reporting effect sizes as “small,” “medium,” and “large” 
without interpreting them substantively is of limited value. Also, 
confidence intervals are vulnerable to some of the same charges that 
are leveled against p values, such as the large n problem. This prob-
lem arises from the fact that discrepancies from any (simple) null 
hypothesis, however small, can be detected by a (frequentist) ToSS 
with a large enough sample size (Spanos, 2014).

6. A clear distinction is made between statistical and substantive 
significance. A source of much confusion in the use and inter-
pretation of ToSS is the conflation of statistical and substantive 
hypotheses (e.g., Bolles, 1962; Cox, 1958). In the domain of statis-
tical concepts that draws selectively from Fisher and Neyman and 
Pearson, both the null and the alternative hypotheses are statistical 
hypotheses. Researchers and textbook writers correctly assume that 
rejection of the null implies acceptance of the alternative hypothe-
sis, but they also often err in treating the alternative hypothesis as a 
research, or scientific, hypothesis rather than as a statistical hypoth-
esis. Substantive knowledge of the domain in question is required to 
formulate a scientific hypothesis that corresponds to the alternative 
hypothesis. The neo- Fisherian perspective is directly concerned 
with testing statistical hypotheses as distinct from scientific hypoth-
eses, and it forbids concluding that statistical significance implies 
substantive significance. At the same time, it urges researchers to 
explicitly specify the link between the two, warning that sometimes 
the former may have a small role in establishing the latter.

The neo- Fisherian paradigm contains a package of pragmatic 
reforms that overcomes some of the problems of NHST, and 
it improves on aspects of Fisher’s original perspective in some 
respects. Importantly, it represents a reasoned case for retain-
ing p- valued significance testing without the focus on hybrid 
NHST. Although the neo- Fisherian position shares with the error- 
statistical approach a distrust of the Bayesian outlook on statistics, it 
differs from the error- statistical approach in rejecting the Neyman- 
Pearsonian perspective. However, Hurlbert and Lombardi’s (2009) 
claim that the neo- Fisherian position signals the “final collapse” of 
the Neyman- Pearsonian framework is questionable, for two rea-
sons:  First, as noted previously, some elements of Neyman and  
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Pearson’s outlook are retained by the authors. Second, the founder 
of the error- statistical approach, Deborah Mayo, maintains that 
the neo- Fisherian approach does not go far enough (reported in 
Hurlbert & Lombardi, 2009, p. 326), presumably because of its ina-
bility to draw key insights from Neyman and Pearson’s outlook, 
such as the notion of error probabilities. In any case, it will become 
clear that the error- statistical approach provides a more compre-
hensive outlook on statistical inference than the neo- Fisherian 
position does.

The Error- Statistical Perspective

An important part of scientific research involves processes of 
detecting, correcting, and controlling for error, and mathematical 
statistics is one branch of methodology that helps scientists do this. 
In recognition of this fact, the philosopher of statistics and science, 
Deborah Mayo (e.g., Mayo, 1996), in collaboration with the econo-
metrician Aris Spanos (e.g., Mayo & Spanos, 2010, 2011), has sys-
tematically developed, and argued in favor of, an error- statistical 
philosophy for understanding experimental reasoning in science. 
Importantly, this philosophy permits, indeed encourages, the local 
use of ToSS, among other methods, to manage error.

In the error- statistical philosophy, the idea of an experiment is 
understood broadly to include controlled experiments, observa-
tional studies, and even thought experiments. What matters in all of 
these types of inquiry is that a planned study permits one to mount 
reliable arguments from error. By using statistics, the researcher is 
able to model “what it would be like to control, manipulate, and 
change in situations where we cannot literally” do so (Mayo, 1996, 
p. 459). Further, although the error- statistical approach has broad 
application within science, it is not concerned with all of science, 
or with error generally. Instead, it focuses on scientific experimen-
tation and error probabilities, which ground knowledge obtained 
from the use of statistical methods.

Development of the Error- Statistical Philosophy

In her initial formulation of the error- statistical philosophy, Mayo 
(1996) modified, and built upon, the classical Neyman- Pearsonian 
approach to ToSS. However, in later publications with Spanos (e.g., 
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Mayo & Spanos, 2011), and in writings with David Cox (Cox & 
Mayo, 2010; Mayo & Cox, 2010), her error- statistical approach 
has come to represent a coherent blend of many elements, includ-
ing both Neyman- Pearsonian and Fisherian thinking. For Fisher, 
reasoning about p values is based on post- data, or after- trial, con-
sideration of probabilities, whereas Neyman and Pearson’s Type 
I and Type II errors are based on pre- data, or before- trial, error 
probabilities. The error- statistical approach assigns each a proper 
role that serves as an important complement to the other (Mayo & 
Spanos, 2011; Spanos, 2010). Thus, the error- statistical approach 
partially resurrects and combines, in a coherent way, elements of 
two perspectives that have been widely considered to be incom-
patible. In the post- data element of this union, reasoning takes the 
form of severe testing, a notion to which I now turn.

The Severity Principle

Central to the error- statistical approach is the notion of a severe 
test, which is a means of gaining knowledge of experimental effects. 
An adequate test of an experimental claim must be a severe test in 
the sense that relevant data must be good evidence for a hypothe-
sis. Thus, according to the error- statistical perspective, a sufficiently 
severe test should conform to the severity principle, which has two 
variants: a weak severity principle and a full severity principle. The 
weak severity principle acknowledges situations where we should 
deny that data are evidence for a hypothesis. Adhering to this prin-
ciple discharges the investigator’s responsibility to identify and 
eliminate situations where an agreement between data and hypoth-
esis occurs when the hypothesis is false. Mayo and Spanos state the 
principle as follows:

Data x0 (produced by process G) do not provide good evi-
dence for hypothesis H if x0 results from a test procedure with 
a very low probability or capacity of having uncovered the fal-
sity of H, even if H is incorrect. (Mayo & Spanos, 2011, p. 162)

However, this negative conception of evidence, although impor-
tant, is not sufficient; it needs to be conjoined with the positive 
conception of evidence to be found in the full severity principle. 
Mayo and Spanos formulate the principle thus:
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Data x0 (produced by process G) provide good evidence 
for hypothesis H (just) to the extent that test T has severely 
passed H with x0. (Mayo & Spanos, 2011, p. 162)

With a severely tested hypothesis, the probability is low that the test 
procedure would pass muster if the hypothesis was false. Further, 
the probability that the data agree with the alternative hypothesis 
must be very low. The full severity principle is the key to the error- 
statistical account of evidence and provides the core of the ration-
ale for the use of error- statistical methods. The error probabilities 
afforded by these methods provide a measure of how frequently 
the methods can discriminate between alternative hypotheses and 
how reliably they can detect errors.

Error- Statistical Methods

The error- statistical approach constitutes an inductive approach 
to scientific inquiry. However, unlike favored inductive methods 
that emphasize the broad logical nature of inductive reasoning 
(notably, the standard hypothetico- deductive method and the 
Bayesian approach to scientific inference), the error- statistical 
approach furnishes context- dependent, local accounts of sta-
tistical reasoning. It seeks to rectify the troubled foundations 
of Fisher’s account of inductive inference, makes selective use 
of Neyman and Pearson’s behaviorist conception of inductive 
behavior, and endorses Charles Peirce’s (1931– 1958) view that 
inductive inference is justified pragmatically in terms of self- 
correcting inductive methods.

The error- statistical approach employs a wide variety of error- 
statistical methods to link experimental data to theoretical 
hypotheses. These include the panoply of standard frequentist 
statistics that use error probabilities assigned on the basis of the 
relative frequencies of errors in repeated sampling, such as ToSS 
and confidence interval estimation, which are used to collect, 
model, and interpret data. They also include computer- intensive 
resampling methods, such as the bootstrap, Monte Carlo simu-
lations, nonparametric methods, and “noninferential” methods 
for exploratory data analysis. In all of this, ToSS have a minor, 
though useful, role.

 



52 : the PhilosoPhy of Quantitative Methods

52

A Hierarchy of Models

In the early 1960s, Patrick Suppes (1962) suggested that science 
employs a hierarchy of models that ranges from experimental 
experience to theory. He claimed that theoretical models, which 
are high on the hierarchy, are not compared directly with empiri-
cal data, which are low on the hierarchy. Rather, they are compared 
with models of the data, which are higher than data on the hier-
archy. The error- statistical approach similarly adopts a framework 
in which three different types of models are interconnected and 
serve to structure error- statistical inquiry: primary models, exper-
imental models, and data models. Primary models break down a 
research question into a set of local hypotheses that can be inves-
tigated using reliable methods. Experimental models structure the 
particular models at hand and serve to link primary models to data 
models. And, data models generate and model raw data, as well as 
check whether the data satisfy the assumptions of the experimental 
models. The error- statistical approach (Mayo & Spanos, 2010) has 
also been extended to primary models and theories of a more global 
nature. The hierarchy of models employed in the error- statistical 
perspective exhibits a structure similar to the important three- fold 
distinction between data, phenomena, and theory (Woodward, 
1989; see also Haig, 2014). These similar three- fold distinctions 
accord better with scientific practice than the ubiquitous coarse- 
grained data- theory/ model distinction.

Error- Statistical Philosophy and Falsificationism

The error- statistical approach shares a number of features with 
Karl Popper’s (1959) falsificationist theory of science. Both stress 
the importance of identifying and correcting errors for the growth 
of scientific knowledge; both focus on the importance of hypothe-
sis testing in science; and both emphasize the importance of strong 
tests of hypotheses. However, the error- statistical approach differs 
from Popper’s theory in a number of respects: It focuses on statis-
tical error and its role in experimentation, neither of which were 
considered by Popper. It employs a range of statistical methods to 
test for error. And, in contrast with Popper, who deemed deduc-
tive inference to be the only legitimate form of inference, it stresses 
the importance of inductive reasoning in its conception of science. 
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This error- statistical stance regarding Popper can be construed as 
a constructive interpretation of Fisher’s oft- cited remark that the 
null hypothesis is never proved, only possibly disproved.

Error- Statistical Philosophy and Bayesianism

The error- statistical philosophy is arguably the major alternative to 
the reigning Bayesian philosophy of statistical inference. Indeed, in 
her first major presentation of the error- statistical outlook, Mayo 
often used Bayesian ideas as a foil in its explication (Mayo, 1996). For 
one thing, the error- statistical approach rejects the Bayesian insist-
ence on characterizing the evidential relation between hypothesis 
and evidence in a universal and logical manner in terms of Bayes’s 
theorem via conditional probabilities. It chooses instead to formu-
late the relation in terms of the substantive and specific nature of the 
hypothesis and the evidence with regard to their origin, modeling, 
and analysis. This is a consequence of a commitment to a contex-
tual approach to testing using the most appropriate methods avail-
able. Further, the error- statistical philosophy rejects the classical 
Bayesian commitment to the subjective nature of fathoming prior 
probabilities in favor of the more objective process of establishing 
error probabilities understood in frequentist terms. It also finds the 
turn to “objective” Bayesianism unsatisfactory, but it is not my pur-
pose in this chapter to rehearse those arguments against that form 
of Bayesianism. Finally, the error- statistical outlook employs prob-
abilities to measure how effectively methods facilitate the detection 
of error and how those methods enable us to choose between alter-
native hypotheses. Bayesians are not concerned with error prob-
abilities at all. Instead, they use probabilities to measure belief in 
hypotheses or degrees of confirmation. This is a major point of dif-
ference between the two philosophies.

Virtues of the Error- Statistical Approach

The error- statistical approach has a number of strengths, which 
I  enumerate at this point without justification:  (a) It boasts a 
philosophy of statistical inference, which provides guidance for 
thinking about, and constructively using, common statistical 
methods, including ToSS, for the conduct of scientific experi-
mentation. Statistical methods are often employed with a shallow 
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understanding that comes from ignoring their accompanying the-
ory and philosophy. (b) It has the conceptual and methodological 
resources to enable one to avoid the common misunderstandings 
of ToSS, which afflict so much empirical research in the behav-
ioral sciences. (c) It provides a challenging critique of, and alterna-
tive to, the Bayesian way of thinking in both statistics and current 
philosophy of science; moreover, it is arguably the major modern 
alternative to the Bayesian philosophy of statistics. (d)  Finally, 
the error- statistical approach is not just a philosophy of statistics 
concerned with the growth of experimental knowledge. It is also 
regarded by Mayo and Spanos as a general philosophy of science. 
As such, its authors employ error- statistical thinking to cast light 
on vexed philosophical problems to do with scientific inference, 
modeling, theory testing, explanation, and the like. A critical eval-
uation by prominent philosophers of science of the early exten-
sion of the error- statistical philosophy to the philosophy of science 
more generally can be found in Mayo and Spanos (2010).

As just noted, the error- statistical perspective addresses a 
wide range of misunderstandings of ToSS and criticisms of 
error- statistical methods more generally. Mayo and Spanos 
(2011) address a baker’s dozen of these challenges and show 
how their error- statistical outlook on statistics corrects the 
misunderstandings, and counters the criticisms, of ToSS. These 
include the allegation that error- statistical methods preclude the 
use of background knowledge, the contention that the fallacies 
of rejection and acceptance are perpetuated by ToSS, the claim 
that confidence interval estimation should replace ToSS, and 
the charge that testing model assumptions amounts to unwar-
ranted data mining. Mayo and Spanos’s (2011) reply to these 
challenges constitutes an important part of the justification of 
the error- statistical perspective. Because of space limitations, 
I  briefly consider the claims about the fallacies of acceptance 
and rejection only.

Fallacies of rejection involve the misinterpretation of statisti-
cally significant differences. The best known example of such a 
fallacy is the conflation of statistical and substantive significance, 
which was discussed previously. This conflation is frequently made 
by psychological researchers when they employ ToSS. The misin-
terpretation involves accepting the correctness of a substantive 
hypothesis solely on the basis of confirming a statistical hypothesis. 
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This is more likely to happen with a Fisherian use of statistical tests 
because it carries with it no rival statistical hypothesis to compare 
with the null hypothesis. Of course, the provision of a statistical 
alternative to the null, in the manner of Neyman and Pearson, 
might help to put a brake on those who would otherwise com-
mit the fallacy. The error- statistical perspective incorporates this 
feature of Neyman and Pearson’s approach, explicitly stresses the 
importance of the distinction between statistical and substantive 
hypotheses, and urges that it be respected when reasoning back 
and forth between the data, experimental, and primary models 
described previously.

Fallacies of acceptance involve taking statistically insignifi-
cant differences as grounds for believing that the null hypothe-
sis is true. The basic mistake here is to think that an absence of 
evidence against the null hypothesis can be taken as evidence 
for the null hypothesis, as for example when the test used has 
insufficient power to detect the existing discrepancies. Crucially, 
the error- statistical approach appeals to the strategy of severe 
testing to guard against the fallacies of acceptance and rejection. 
It does this by using post- data assessments of evidence based on 
the reasoning involved in severe testing. The severity involved 
formalizes the intuition that p values have different evidential 
import, depending on the size of the sample, or, more generally, 
the power of the test under consideration (see Mayo & Spanos, 
2006, 2011 for details).

What Should We Think About Tests of Significance?

Before concluding this chapter, I enumerate some of the impor-
tant lessons that I believe can be taken from the extensive debates 
about the nature and merits of ToSS. Some of these draw from the 
statistics literature, others from scientific methodology, more gen-
erally. These are necessarily presented in brief form. Not all of the 
material relevant to these lessons has been canvassed in the body 
of the chapter, but I  summon up the chutzpah to present them 
nonetheless.

1. NHST should not be employed in research. NHST, understood 
as the variable, inchoate amalgam of elements of Fisherian and 
Neyman- Pearsonian thinking, should be abandoned because of its 
incoherence. Its presence in textbooks and research publications 
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has done, and continues to do, untold damage to psychology. The 
reasoning in research articles that appeals to the illogic of NHST 
is either impossible to fathom or the conclusions it gives rise to are 
unjustified. Psychology’s defective statistics education has provided 
a shallow understanding of ToSS that has resulted in its research-
ers mechanically employing the hybrid NHST without sufficient 
awareness of its origins and problems. Moreover, psychology has 
remained blind to the possibilities of combining elements of dif-
ferent schools of statistical thought in defensible hybrid packages.

2. Defensible forms of ToSS should be employed, where appro-
priate. It is a mistake to believe that we should give up, or ban, 
ToSS because of the unsatisfactory nature of its most popular 
form, NHST. Psychologists are almost entirely unaware that there 
are credible forms of ToSS, primary among which are the neo- 
Fisherian and the error- statistical perspectives. Unfortunately, 
psychology has yet to show an awareness of the fact that these are 
viable replacements for NHST that can do useful work in data anal-
ysis and scientific inference. Methodologists in psychology have a 
duty to inform themselves about these alternatives to NHST and 
make considered recommendations about them for researchers 
in the field. Relatedly, advocates of alternatives to NHST, includ-
ing some Bayesians (e.g., Wagenmakers, 2007) and the new stat-
isticians (e.g., Cumming, 2014), have had an easy time of it by 
pointing out the flaws in NHST and showing how their preferred 
approach does better. However, I think it is incumbent on them to 
consider plausible versions of ToSS, such as the neo- Fisherian and 
error- statistical approaches, when arguing for the superiority of 
their own positions.

3. There are a number of legitimate research goals for ToSS. More 
specifically, ToSS can do useful local work in different research 
contexts that involves separating signal from noise. These include 
pattern detection in exploratory contexts (recommended by 
Fisher), assistance in judgments about the presence of experi-
mental effects (again, recommended by Fisher [though frequently 
misused by scientists]), and strong probes designed to detect error 
in hypotheses under test (a key feature of the error- statistical per-
spective). Seldom will it be appropriate to rely on p values exclu-
sively (Senn, 2001). Rather, it will mostly be appropriate to employ 
effect sizes and confidence intervals as complements to ToSS, but 
that also will depend on context. Generally speaking, I maintain 
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that these supplements should not be used as replacements for 
ToSS. Finally, the claim made by some opponents of ToSS that such 
tests are seldom used in the physical sciences (e.g., McCloskey & 
Ziliak, 1996) is false (Hoover & Siegler, 2008). ToSS have been, and 
continue to be, used to good purpose by many researchers in the 
physical sciences. An instructive example of their informed and 
rigorous use in physics is the recent discovery of a Higgs boson 
(van Dyk, 2014).

4. Maintaining the distinction between statistical and substantive 
hypotheses is of paramount importance. As noted previously, both 
the neo- Fisherian and the error- statistical perspectives stress the 
importance of distinguishing between statistical and substantive 
hypotheses. Despite the fact that ToSS assess statistical hypotheses 
only, psychologists frequently take them to have direct implica-
tions for substantive hypotheses. Moreover, statistical hypotheses 
play a subservient role to substantive hypotheses and theories, 
which are the major focus of scientific attention. This is one of a 
number of reasons why ToSS should have a lesser role to play in the 
assessment of scientific hypotheses and theories than psychology 
has generally accorded them.

5. An attitude of  strong methodological pluralism should be 
adopted. The totalizing tendency to be found among some Bayesian 
statisticians (e.g., Lindley, 2000)  and advocates of the Bayesian 
way in psychology, who argue for the uptake of Bayesian ration-
ality across the board (e.g., Dienes, 2011), should be resisted. The 
local use of statistics that are fit for purpose is much to be preferred. 
Similarly, the suggestion of the new statisticians that data analysts 
should, wherever possible, seek parameter estimates for effect sizes 
and confidence intervals underappreciates the need for a strong 
methodological pluralism in which a host of quite different research 
goals are pursued by employing different statistical methods. 
Psychology stands to benefit from greater use of additional statisti-
cal methods, such as exploratory data analysis, computer- intensive 
resampling methods, and robust statistics, to mention only a few.

6. Statistical pragmatism is a viable stance. Arguably, an attitude 
of statistical pragmatism should be encouraged in our use of statis-
tics. Thus, a blending of insights from seemingly opposed schools 
of statistical thought, which has been built on different philosoph-
ical outlooks, is both possible, and sometimes desirable, at the 
level of practice. For example, thoughtful Bayesian/ frequentist 
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compromises that exploit the insights of both statistical tradi-
tions are common in contemporary statistics and some sciences, 
though they are absent from psychology. Andrew Gelman’s heter-
odox view of Bayesian statistics (e.g., Gelman & Shalizi, 2013) is 
a good example of the statistical pragmatism I have in mind:  It 
involves the contextual use of Bayesian statistics without buying 
into the usual inductive Bayesian philosophy of science. Instead, it 
involves something like a Popperian hypothetico- deductive testing 
of models, which, moreover, Gelman thinks is consistent with the 
error- statistical philosophy. This is an example of a “principled” 
form of pragmatism, in the sense that it comprises an explicitly 
thought- out philosophy of statistics.

7. Adopting a broad perspective on statistics is important.  A broad 
perspective on statistics is needed to counter the widespread ten-
dency among both scientists and methodologists to view statistics 
through a narrow lens. Arguably, the error- statistical and Bayesian 
outlooks are the two most prominent approaches in this regard. 
The error- statistical approach adopts a broad perspective on the 
use of statistics in science, as its overview in this chapter makes 
clear. It has a well- developed philosophy, is concerned with much 
more than data analysis (e.g., the design of experiments and the 
validation of model assumptions), and encourages the use of a 
wide range of statistical methods. The Bayesian outlook on statis-
tics can also be viewed in broad compass, especially if it is joined 
with a Bayesian philosophy of science and its attendant theory 
of confirmation— something that most Bayesian statisticians are 
reluctant do. Further work on the comparative evaluation of the 
error- statistical and Bayesian perspectives is to be encouraged.

8. There is a need to go beyond standard hypothetico- deductivism 
in science. The dominant “significant difference” paradigm, with its 
use of hybridized forms of NHST embedded in an impoverished 
view of the hypothetico- deductive method, is of questionable value. 
This paradigm contrasts with the error- statistical perspective and 
its conception of hypothetico- deductive testing, augmented by a 
statistical- inductive approach with strong tests. Moreover, hypothesis 
and theory testing in science is far from all important. Taken together, 
the tasks of theory construction, including theory generation, the-
ory development, and multicriterial theory appraisal are much more 
important than just testing for predictive success. One viable replace-
ment for NHST is the significance sameness paradigm developed by 
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Hubbard and Lindsay (e.g., Hubbard, 2016). This paradigm seeks 
to establish empirical generalizations using effect sizes, confidence 
intervals, and replication practices, where appropriate, before seeking 
to understand them through the abductive construction of explana-
tory theories. Related outlooks on the construction of explanatory 
theories are to be found in Grice (2011) and Haig (2014).

9. There is a need for  different sorts of  statistics textbooks. 
Psychology needs better statistics textbooks, written by special-
ists who have a good appreciation of modern statistical theory, as 
well as an understanding of how statistics operate in the prose-
cution of successful science. To date, statistics textbooks in psy-
chology have been written mainly by nonspecialists, who have 
made limited use of statistical theory, who have presented NHST 
as though it were a justified whole, and who have shown a reluc-
tance to replace it with better alternatives. Spanos’s Probability 
Theory and Statistical Inference (1999), mentioned previously, is a 
good example of a textbook that exhibits the desirable features just 
mentioned. Moreover, his book provides an instructive account of 
the historical development of ToSS and shows how the Fisherian 
and Neyman- Pearsonian outlooks can be regarded as complemen-
tary. One might expect that its next edition will embrace the fuller- 
bodied error- statistical outlook.

10. Statistical methods should be taught through  methodology. 
Finally, and importantly, I strongly believe that our understand-
ing of ToSS, and other statistical methods, should be enhanced by 
greater familiarity with the full range of interdisciplinary contribu-
tions to methodology, in addition to our knowledge of statistical 
practice. Important among these are statistical theory, the philos-
ophy and history of statistics, and statistical cognition. To take just 
one of these, the value of the philosophy of statistics as an aid to 
our understanding of ToSS has been considerably underrated by 
researchers and methodologists in psychology. The error- statistical 
perspective presented in this chapter is in fact a full- blown phi-
losophy of statistics. As such, it brings with it a deep understand-
ing of the role of ToSS and associated methods, which is made 
possible by extensive knowledge of the nature of science and its 
statistical practices, the history and conceptual foundations of sta-
tistics, and the philosophy of science more generally (Mayo, 2011, 
2012). Philosophy these days is said to be naturalized— that is to 
say, it is regarded as continuous with science, arguably a part of 
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science, and is concerned with foundational issues in science. So 
located, the philosophy of statistics is well positioned to contribute 
in important ways to our understanding of statistical theory and 
practice. Because of this, it deserves to be part of any curriculum 
that aspires to provide a genuine education in statistics.

Conclusion

Although this chapter is broad- brush in nature, I hope that it will 
stimulate both psychological researchers and their institutions 
to think further and deeper about the nature of ToSS and their 
proper place in research. In more than 50 years of preoccupation 
with these tests, psychology has concentrated its gaze on teaching, 
using, and criticizing NHST in its muddled hybrid form. It is high 
time for the discipline to bring itself up to date with best thinking 
on the topic and employ sound versions of ToSS in its research.

Further Reading
Jacob Cohen provides a short, but influential, review of the significance testing 

controversy. See his ‘The Earth Is Round (p <.05)” (American Psychologist, 49, 
997– 1003, 1994).

Raymond Nickerson provides an excellent extensive review of the ongoing con-
troversy surrounding null hypothesis significance testing in his “Null hypoth-
esis Significance Testing: A Review of an Old and Continuing Controversy” 
(Psychological Methods, 5, 241– 301, 2000).

Peter Halpin and Henderikus Stam offer an informative account of the hybridi-
zation of Fisher’s and Neyman and Pearson’s approaches to significance test-
ing in psychology over the period 1940– 1960. See their “Inductive Inference 
or Inductive Behavior: Fisher and Neyman- Pearson Approaches to Statistical 
Testing in Psychological Research (1940– 1960)” (American Journal of 
Psychology, 119, 625– 653, 2006).

In his book, Statistical Inference:  A Commentary for the Social and Behavioral 
Sciences (New York, NY: Wiley, 1986), Michael Oakes undertakes a critical 
examination of the different schools of statistical thought and the misuse of 
null hypothesis significance testing in the social and behavioral sciences.

An accessible philosophical examination of both scientific and statistical infer-
ence in science, with particular reference to psychology, is provided by Zoltán 
Dienes in his book, Understanding Psychology as a Science: An Introduction 
to Scientific and Statistical Inference (Basingstoke, England: Palgrave, 2008).

Denton Morrison and Raymon Henkel’s The Significance Test Controversy:  A 
Reader (Piscataway, NJ: Aldine, 1970) is a collection of major articles on the 
significance testing controversy published in sociology and psychology prior 
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to 1970. In an essay review of this volume, Ronald Giere provides a useful 
philosophical discussion of the controversy. See his “The Significance Test 
Controversy” (British Journal for the Philosophy of Science, 23, 170– 181, 1971).

An important collection of more recent assessments of the worth of statistical sig-
nificance tests can be found in the reader, What If There Were No Significance 
Tests? (L. L. Harlow, S. A. Mulaik, and J. H. Steiger, Erlbaum, Mahwah, NJ, 1997).

An excellent informative assessment of ToSS and their place in behavioral sci-
ence research is provided by Raymond Hubbard in his book Corrupt Research 
(Thousand Oaks, CA:  Sage, 2016). Hubbard recommends the adoption of 
the significance sameness paradigm, in which the researcher seeks to establish 
empirical generalizations using effect sizes, confidence intervals, and replica-
tion practices, where appropriate, before seeking to understand them through 
the abductive construction of explanatory theories.

A defensible approach to Fisherian statistical inference, modified in the face of 
criticisms of Fisher’s classical approach, is provided by Stuart Hurlbert and 
Celia Lombardi in their article, “Final Collapse of the Neyman- Pearson 
Decision- Theoretic Framework and Rise of the NeoFisherian” (Annales 
Zooologici Fennici, 46, 311– 349, 2009).

The following two books chart the development of the error statistics research 
program: Deborah Mayo, Error and the Growth of Experimental Knowledge 
(Chicago, IL:  University of Chicago Press, 1996); Deborah Mayo and Aris 
Spanos (Eds.), Error and Inference:  Recent Exchanges on Experimental 
Reasoning, Reliability, and the Objectivity and Rationality of Science 
(Cambridge, England: Cambridge University Press, 2010). A shorter, more 
accessible, account of the error statistics approach is Deborah Mayo and Aris 
Spanos, “Error Statistics,” in Prasanta Bandyopadhyay and Malcolm Forster 
(Eds.), Handbook of the Philosophy of Science, Vol. 7: Philosophy of Statistics 
(pp. 153– 198) (Amsterdam, the Netherlands: Elsevier, 2011).

David Grayson provides an instructive examination of different competing con-
ceptions of probability presupposed in statistical inference and their problems 
for understanding, and use of, statistical inference. See his “The Frequentist 
Façade and the Flight From Evidential Inference” (British Journal of Psychology, 
89, 325– 345, 1998).
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4
Bayesianism

[S] cientific reasoning is reasoning in accordance with the cal-
culus of probabilities.

— C. Howson and P. Urbach, 2006, p. 10
[It] is hard to see what motivates the Bayesian who wants to 
replace the fabric of science . . . with a vastly more complicated 
representation in which each statement of science is accompa-
nied by its probability, for each of us.

— H. Kyburg, 1992, p. 149

Introduction

Bayesianism is a formal theory of reasoning based on probability 
theory. It deals with a number of important, and related, general 
ideas, such as rationality, confirmation, and inductive inference, 
including statistical inference. Bayesianism takes its name from 
the fact that it makes central use of a theorem derived from the 
probability calculus known as Bayes’s theorem, a theorem that 
is regarded as a major constraint on how one should ration-
ally modify one’s opinions or beliefs in the light of incoming 
evidence.
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Bayesianism boasts a number of different, but related, move-
ments. Within philosophy, these include the overlapping spheres 
of Bayesian epistemology, philosophy of science, and confirma-
tion theory. Outside philosophy, they include statistics and learn-
ing theory. This chapter largely focuses on Bayesian confirmation 
theory, although some attention is given to the philosophy of 
Bayesian statistics. Even with this circumscribed focus, my exam-
ination of Bayesianism is highly selective. I use the general term 
Bayesianism to refer to these two different strands of Bayesian 
thinking:  Bayesian confirmation theory and Bayesian statistics. 
Although they have some things in common, they have developed 
largely independently of each other, for Bayesian confirmation the-
ory has focused on probability rather than statistics. Given their 
appreciable differences, I  discuss them more or less separately, 
even though their separation is artificial. Howson and Urbach’s 
(2006) popular book on Bayesian reasoning is a rare attempt to 
provide a unified account of scientific methods that incorporates 
both aspects of Bayesianism.

The existence of these two major strands of Bayesianism should 
caution us from thinking that Bayesianism is, or could be, a 
unique, or even unified, position. In fact, the Bayesian philoso-
pher and statistician I. J. Good (1971) calculated that there are at 
least 46,656 varieties of Bayesians and noted that there are more 
distinctive positions to fill than there are Bayesians to fill them. 
Not only does Bayesianism take many forms, but also it is multi-
faceted in nature, as the introductory remarks might imply. This 
diversity underscores just how selective my treatment of Bayesian 
thinking is. In addition, the treatment is largely conceptual and 
informal and leaves aside many of the technical aspects of Bayesian 
thinking.

In what follows, I  briefly record psychology’s attitudes to 
Bayesianism. I then trace some of the broad contours of Bayesian 
confirmation theory. In turn, these involve a consideration of 
Bayes’s theorem, the Bayes factor, the ability of Bayesian confir-
mation theory to improve on the hypothetico- deductive method, 
and the question of whether Bayesianism provides an illuminat-
ing account of the approach to theory evaluation known as infer-
ence to the best explanation. Thereafter, I present an evaluation 
of the important philosophy of Bayesian statistical practice devel-
oped by Gelman and Shalizi (2012), which combines elements of 
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philosophy of science and Bayesian statistics in a creative manner 
that has relevance for researchers in psychology. The chapter con-
cludes by bringing together the main points in the form of a sum-
mary and offers a few broad recommendations for practice.

Bayesianism in Psychology

There are two striking facts about the presence of Bayesian think-
ing in psychology. One is that there is virtually no reference in the 
methodological literature to Bayesian confirmation theory, reflect-
ing, I think, a general lack of appreciation for the value of contem-
porary philosophy of science for understanding both statistics and 
science. The other notable fact is that Bayesian statistics has taken 
an age to assert itself in psychology and related sciences.

Although Bayesian statistical thinking pre- dated the advent of 
classical statistics, the latter has dominated thinking in the field 
of statistics since the 1930s. However, Bayesian statistical theory 
and practice have been steadily developing and increasing their 
influence in the fields of both statistics and science. The situation 
is different in psychology. When Edwards, Lindman, and Savage 
(1963) brought the Bayesian outlook in statistics to psychology 
over 50 years ago, they acknowledged that it was a new perspec-
tive lacking full coherence. In addition, there existed at that time 
no textbook that made the arsenal of Bayesian methods availa-
ble to psychological researchers. Matters have steadily improved 
since then. Major advances have been made in Bayesian statis-
tical theory and practice, a number of accessible textbooks have 
been written for behavioral and social scientists, position papers 
and tutorials advocating and expositing Bayesian statistical ideas 
have been published, and computer programs for implementing 
a variety of Bayesian methods have been developed. Currently, a 
cadre of methodologists has advocated the uptake of Bayesian sta-
tistical methods in psychology (e.g., Dienes, 2011; Kruscke, 2015; 
Wagenmakers, 2007), but the enthusiasm of these methodologists 
has not been matched by the discipline’s research fraternity. In all 
of these developments, neither the philosophy of Bayesian statis-
tics nor Bayesian confirmation theory has been visible.

Similarly, prominent institutional efforts to reform psychology’s 
use of statistical methods essentially ignore the Bayesian alterna-
tive. Instead, they continue for the most part to employ classical 
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statistical methods. For example, the American Psychological 
Association’s Task Force on Statistical Inference (Wilkinson & 
the Task Force on Statistical Inference, 1999)  was charged with 
considering alternatives to tests of statistical significance but said 
nothing about the place of Bayesian statistical methods in psycho-
logical research. More recently, the Association for Psychological 
Science’s promotion of the “new statistics” (Cumming, 2014; Eich, 
2014)  urged replacement of null hypothesis significance test-
ing with frequentist confidence intervals, effect sizes, and meta- 
analysis. Barely a mention was made of Bayesian methods.

Bayesian Confirmation Theory

What is it for empirical evidence to provide confirmation or dis-
confirmation of a scientific hypothesis or theory? Methodologists 
of science have worked long and hard to answer this important and 
challenging question by developing theories of scientific confirma-
tion. Despite the considerable fruits of their labors, there is wide-
spread disagreement about which theory of confirmation we should 
accept. Over time, a large number of philosophers of science have 
contributed to Bayesian confirmation theory (e.g., Earman, 1992; 
Horwich, 1982; Howson & Urbach, 2006; Rosenkrantz, 1977). 
Many philosophical methodologists now believe that Bayesianism 
confirmation theory holds the best hope for building a compre-
hensive and unified theory of scientific inference.

Bayes’s Theorem

As noted at the outset, the Bayesian approach to scientific infer-
ence is so called because it makes central use of a theorem of the 
mathematical calculus of probability known as Bayes’s theorem. The 
theorem is widely thought to have originated with the nineteenth- 
century mathematician and clergyman Reverend Thomas Bayes. 
However, there are two interesting points of historical accuracy that 
are worth mentioning in this regard. First, there is a small irony in 
the fact that, in his original essay, Bayes (1764) does not explicitly 
state Bayes’s theorem to solve the problem he addresses (providing 
a justification for the uniform prior distribution) (Earman, 1992). 
Second, Bayes himself was likely not the originator of Bayes’s theo-
rem. The historian of statistics, Stephen Stigler (1983), estimated a 
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posterior probability of 3 to 1 that the evidence uncovered thus far 
favors the Cambridge mathematician Nicholas Saunderson as the 
discoverer of the theorem.

Bayes’s theorem can be expressed in different forms that are 
used for different purposes. For expository convenience, I present 
it here in its simplest form, which deals with one hypothesis. The 
use of Bayes’s theorem for testing two hypotheses is discussed fur-
ther in the chapter. In this simple form, it is written as follows:

Pr H/D = 
Pr H Pr D/H

Pr D
( ) ( ) ( )

( )
×

With the proviso that Pr(D) and Pr(H) cannot be zero or one 
(because each would determine by itself the same value for the 
resulting posterior probability), the theorem says that the posterior 
probability of the hypothesis H is obtained by multiplying the prior 
probability of the hypothesis Pr(H) by the probability of the data, 
given the hypothesis Pr(D/ H) (the likelihood), and dividing the 
product by the prior probability of the data Pr(D). I note in passing 
that in this chapter T (theory) is sometimes substituted for H, and 
E (evidence) is sometimes substituted for D.

It is through use of this and other versions of Bayes’s theorem 
that Bayesians are able to implement their view of scientific infer-
ence, which is the orderly revision of opinion on the basis of new 
information. To achieve this goal, Bayesians employ Bayes’s the-
orem iteratively. Having obtained a posterior probability assign-
ment for their hypothesis via Bayes’s theorem, they can then go on 
and use that posterior probability as the new prior probability in 
a further use of Bayes’s theorem designed to yield a revised poste-
rior probability and so on. In this way, the Bayesian inquirer learns 
from experience.

For Bayesians, a couple of attractive features of this gloss on 
Bayesian scientific inference are often emphasized. Most important, 
the Bayesian approach is said to square with the stated purpose of 
scientific inquiry noted previously, namely, securing the probabil-
ity of a hypothesis in the light of the relevant evidence. By contrast, 
the informational output of classical statistical inference in science 
is the probability of the data, given the truth of the null hypothesis, 
but it is just one input in the Bayesian scheme of things. A second 
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stated desirable feature of the Bayesian view is its willingness to 
make use of relevant information about the hypothesis before the 
empirical investigation is conducted and new data are obtained, 
explicitly in the form of a prior probability estimate of the hypoth-
esis. Traditional statistical inference assumes that inferences should 
be based solely on present data, without any regard for what might 
be brought to a study in the way of belief or knowledge about the 
hypothesis to be tested— a position that Bayesians contend is hardly 
designed to maximize the chances of learning from experience.

There is, in fact, a third positive feature claimed to be associated 
with Bayes’s theorem: From the common situation where different 
prior probabilities are assigned to a given hypothesis, the accumu-
lated evidence obtained through repeated use of Bayes’s theorem 
will see those discrepant hypotheses converge. Moreover, it is a 
feature of Bayesian confirmation theory that the higher the pos-
terior probabilities of hypotheses are, the stronger the hypothesis 
is said to be confirmed, and the more rational it is to accept it or 
believe in its truth.

Statistical Hypothesis Testing: The Bayes Factor

An important goal of science is to test hypotheses or theories. One 
recommended Bayesian way of reaching this goal is to calculate 
so- called Bayes factors. The Bayes factor, sometimes called the pos-
terior odds ratio, can be understood in a general way to apply to 
multiple hypotheses. For convenience, I focus here on the simplest 
case of two hypotheses. In this context, the Bayes factor can be 
represented in the following simple equation (as with Bayes’s the-
orem, D can be taken as empirical evidence more generally; H can 
be construed as a theory; and the theory can be understood as a 
statistical model):

BF
Pr D/H
Pr D/H

( )
( )12

1

2

=

In words, the Bayes factor for two hypotheses, H1 and H2, grades 
the impact of the evidence D on the two hypotheses by compar-
ing the probability of the observed data, given the truth of H1,  
with the probability of the observed data, given the truth of H2. The 
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Bayes factor is a ratio represented by a number, which quantifies 
the strength of evidence in favor of one hypothesis over its rival.

Orthodox Bayesians claim three principal advantages for the 
Bayes factor (e.g., Andraszewicz et al., 2015): The first claimed 
advantage is that it quantifies the evidence in a precise way. Jeffreys 
(1961, Appendix B) provides an interpretive guide for differ-
ent Bayes factors, which, with minor modifications, is generally 
accepted today. A Bayes factor of less than 1 is taken as negative 
evidence, 1– 3 as anecdotal evidence, 3– 10 as moderate evidence, 
10– 30 as strong evidence, 30– 100 as very strong evidence, and 
more than 100 as extreme evidence. A second claimed advantage 
for the Bayes factor is that it requires tests to be carried out in a 
comparative manner because it explicitly weighs the evidence for 
one hypothesis in relation to another. The strategy of comparative 
hypothesis evaluation is widely endorsed by scientific methodolo-
gists. The third claimed advantage of the Bayes factor is that it is 
coherent and is not beset with the incoherencies that attach to tra-
ditional p- value hypothesis testing.

At the same time, orthodox Bayesians acknowledge that there 
are a number of challenges for their approach to hypothesis test-
ing. The objection most relevant to our present purpose is the 
claim that hypothesis testing should be replaced by estimation. In 
reply, Andraszewicz et al. (2015) contend that “hypothesis testing 
is a legitimate scientific endeavor that requires a proper statisti-
cal implementation” (p. 527). They maintain that there are legiti-
mate scientific questions that cannot be addressed by an estimation 
framework (e.g., Can people anticipate the future? Is there a gene 
for Alzheimer disease? Does the Higgs boson exist?), but acknowl-
edge that once an effect has been detected, its size can be gauged 
by means of estimation.

Further in the chapter, I present Gelman and Shalizi’s (2012) 
neo- Popperian philosophy of Bayesian statistics, which regards the 
Bayes factor (and other Bayesian statistical methods) in a different 
light from orthodox Bayesians. The gist of their view is that the 
Bayes factor can be a useful tool for predicting and understand-
ing structure in the data. However, they caution against thinking 
of models tested by the Bayes factor as true or taking the poste-
rior probabilities of models too seriously. The presentation of their 
philosophy, which motivates these attitudes, should help to clarify 
these points about truth and posterior probabilities.
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Bayesianism and the Hypothetico- Deductive Method

One of the clear achievements of Bayesianism is its ability to 
improve on the unsatisfactory approach to hypothesis and theory 
appraisal taken by the standard hypothetico- deductive method. 
The hypothetico- deductive method has long been the method of 
choice for the evaluation of scientific theories (Laudan, 1981), and 
it continues to have a dominant place in psychology. Despite its 
popularity, it is usually characterized in an austere manner: The 
researcher takes a hypothesis or theory of interest and tests it indi-
rectly by deriving from it one or more observational predictions 
that are themselves directly tested. Predictions borne out by the 
data are taken to confirm the theory to some degree; those pre-
dictions that do not square with the data count as disconfirming 
instances of the theory. Normally, the theory is not compared with 
rival theories in respect of the data, only with the data themselves.

The hypothetico- deductive method, in something like this 
form, has been strongly criticized by methodologists on a num-
ber of counts (e.g., Glymour, 1980; Rozeboom, 1997). One major 
criticism of the method is that it is confirmationally lax. This lax-
ity arises from the fact that any positive confirming instance of a 
hypothesis submitted to empirical test can confirm any hypoth-
esis that is conjoined with the test hypothesis, regardless of how 
plausible it might be. This state of affairs is known as the fallacy of 
irrelevant conjunction, or the tacking problem, because confirma-
tion of a test hypothesis also confirms any conjunct that is attached 
to the test hypothesis. The fallacy of irrelevant conjunction arises 
with the hypothetico- deductive method because predictions are 
deduced from hypotheses only by making use of auxiliary hypoth-
eses drawn from background knowledge, and some of the back-
ground knowledge drawn on may not be pertinent to the matter 
at hand.

Clearly, this is an unacceptable state of affairs. Bayesians have 
challenged the assumption that the occurrence of the consequences 
of a theory confirm the theory and its conjuncts holistically. They 
argue that the Bayesian approach enables the differential support 
of the elements of a theory, specifying conditions showing that evi-
dence never increases the probability of a theory conjoined with 
any additional hypothesis by more than it increases the probability 
of that theory.
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Another major criticism of the hypothetico- deductive method 
is that it tests a single hypothesis or theory of interest against the 
empirical evidence; it does not test a hypothesis or theory in rela-
tion to rivals in respect of the evidence. This is held to be a major 
flaw because it is widely agreed that theory evaluation is a com-
parative affair involving simultaneous evaluation of two or more 
hypotheses or theories.

The comparative nature of theory evaluation is straightfor-
wardly handled by the Bayesian position by rewriting the simple 
form of Bayes’s theorem given previously to deal with two or more 
hypotheses. Here, Bayes’s theorem is presented for the case of two 
hypotheses, where the theorem can be written for each hypothesis 
in turn. For the first hypothesis,

Pr H /D  =
Pr H Pr D/H

Pr H   Pr D/H  + Pr H  1
1 1

2 2 1

( ) ( ) ( )
( ) ( ) ( )

×
× ××  Pr D/H1( )

This says that the posterior probability of the first hypothesis is 
obtained by multiplying its prior probability by the probability of 
the data, given that hypothesis (the likelihood), and dividing the 
product by the value that results from adding the prior probabil-
ity of the second hypothesis, multiplied by the likelihood for that 
hypothesis, to the prior probability of the first hypothesis, multi-
plied by its likelihood. Bayes’s theorem for the second hypothesis 
is written in a similar way.

It would seem, then, that the confirmational worth of 
Bayesianism is superior to that of the standard hypothetico- 
deductive account of scientific method. However, there are now 
available more sophisticated accounts of hypothetico- deductive 
reasoning that do not suffer the defects of the standard view. 
I briefly refer to the improved outlook on hypothetico- deductive 
reasoning when I discuss Gelman and Shalizi’s (2012) philosophi-
cal framework for Bayesian model testing.

Bayesianism and Inference to the Best Explanation

Recently, some Bayesians have claimed that their perspective on 
scientific method can also provide an enhanced characteriza-
tion of the important approach to theory evaluation known as 
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inference to the best explanation. Inference to the best explana-
tion is based on the belief that much of what we know about the 
world is based on considerations of explanatory worth. In contrast 
to the Bayesian approach, received accounts of inference to the 
best explanation take theory evaluation to be a qualitative exercise 
that focuses on explanatory criteria, not a quantitative undertak-
ing in which one assigns probabilities to theories (Haig, 2009). 
For example, Paul Thagard’s (1992) account of inference to the 
best explanation, known as the theory of explanatory coherence, 
employs the three criteria of explanatory breadth, simplicity, and 
analogy, which all directly have to do with explanation.

Although inference to the best explanation has typically been 
regarded as a competitor for Bayesian theory evaluation, Lipton 
(2004) argues that the two approaches are broadly compatible, 
and that, in fact, their proponents “should be friends.” In broad 
terms, he suggests that judgments of the loveliest explanation, 
which are provided by the evaluative criteria of inference to the 
best explanation, such as unificatory power, precision, and elab-
oration of explanatory mechanisms, contribute to assessments of 
the likeliest explanation, which are provided by the probabilities 
of the Bayesian approach. Lipton maintains that the explanatory 
considerations invoked in inference to the best explanation guide 
determination of the prior probabilities (and the likelihoods) that 
are inserted in Bayes’s theorem.

However, although appeal to explanatory matters might be one 
way in which Bayesians can determine their prior probabilities, 
Lipton does not suggest how this might be done. Further, those 
who hold inference to the best explanation to be a normative 
approach to scientific theory evaluation, with its own distinctive 
character, will worry that Lipton relegates it to a descriptive role 
within a Bayesian normative framework (e.g., Psillos, 2004).

Another way of showing the compatibility of inference to the 
best explanation and Bayesianism is to translate the evaluative 
criteria employed within inference to the best explanation into 
probabilistic terms. McGrew (2003) has done this by taking the 
important theoretical virtue of consilience, or explanatory breadth, 
and showing that its Bayesian form leads to higher posterior prob-
abilities of the hypotheses being evaluated. Nevertheless, McGrew 
acknowledges that by translating consilience into its “flattened” 
probabilistic form, it no longer remains a genuine explanatory 
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virtue:  Not only is there no guarantee that consilience will be 
concerned with an explanation of the evidence, there is no way 
that probabilistic translations of the explanatory virtues can refer 
to the causal connections that are often appealed to in scientific 
explanations. Further, Weisberg (2009) argues that the explanatory 
loss incurred in such translations will occur for any distinctively 
explanatory virtue that is given such probabilistic treatment.

In short, it would seem that Bayesianism cannot capture the 
depth of the intuitively important notion of explanatory power. 
Thus, although qualitative accounts of inference to the best expla-
nation, such as the theory of explanatory coherence, can be clothed 
in probabilistic dress, they are best used on their own terms or 
appraising scientific theories (Thagard, 2000).

I turn now to consider two of the most important criticisms that 
have been leveled at Bayesian confirmation theory: the problem of 
the priors and the problem of old evidence.

Two Common Criticisms of Bayesianism

The Problem of the Priors

It is often said that the use of Bayes’s theorem, and its attendant 
appeal to prior probabilities, is the most distinctive feature of 
Bayesianism. Further, it is frequently claimed that a major advan-
tage of employing prior probabilities is that it enables the investiga-
tor to explicitly incorporate relevant information into determining 
knowledge claims in addition to the immediate evidence at hand. 
However, it is acknowledged by Bayesians and non- Bayesians alike 
that the estimation and interpretation of prior probabilities pres-
ents a number of difficulties. Here, I briefly consider two ways in 
which Bayesians deal with the interpretation of prior probabilities, 
arising from the adoption of different understandings of the nature 
of probability.

The most prominent, and historically influential, strand of 
Bayesianism takes probabilities to be subjective degrees of belief, 
and for this reason, it is often called subjectivist Bayesianism. 
Bayesians of this type, such as Leonard Savage (1964), regard prob-
abilities as personal degrees of belief held by individuals. Thus, the 
value of the prior probability of a hypothesis or theory is the actual 
degree of belief that an individual cares to assign to the hypothesis 
or theory.
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There are a number of criticisms of this interpretation that point 
to the arbitrary nature of such probability assignments and the 
unacceptably high degree of subjectivity involved, both of which 
follow from scientists using different means, and offering different 
personal reasons, for arriving at different estimates. The standard 
subjectivist reply is to point out that individuals successively mod-
ify their earlier divergent probability estimates via Bayes’s theorem 
as each set of fresh evidence comes in. Moreover, some subjectiv-
ists argue that, under certain conditions, initially discrepant priors 
eventually converge to the same posterior value (or “wash out”) as 
evidence accumulates in favor of a hypothesis or theory. Thus, sub-
jectivists claim that by reaching consensus in this way, the objectiv-
ity in subjectivist Bayesianism is made clear.

In an effort to ensure that reasonable priors are estimated, some 
subjectivists maintain that we need to add additional principles 
to Bayes’s theorem. Abner Shimony’s (1993) tempered personal-
ism is a well- known approach to supplementing pure subjective 
Bayesianism, but here I mention the account of tempered person-
alism due to Wesley Salmon (1990). In an effort to avoid the strong 
subjectivity of the subjectivist position, Salmon opts for an objec-
tive frequentist interpretation of probability (Salmon (1966, 1970, 
1990) in which plausibility assessments are considered important. 
Salmon takes a number of Kuhn’s (1970) well- known criteria for 
theory choice and uses them as constraints in estimating prior 
probabilities. He reasons as follows:  (a) Because the criterion of 
simplicity is often construed as an a priori virtue, it can figure in 
the determination of the prior probabilities of Bayes’s theorem; 
(b) consideration of the criterion of consistency demands that a 
hypothesis must have a prior probability greater than zero; (c) the 
criterion of the external consistency of a hypothesis (one that fits 
well with other accepted hypotheses) should receive a high prior 
probability; and (d) the criterion of the fruitfulness of a hypothesis 
can be understood in two ways— as prior probabilities having to do 
with unification and as the likelihoods in Bayes’s theorem, under-
stood in terms of their effectiveness in predicting new phenomena.

Salmon (1990) believes that we assign a prior probability to 
a new hypothesis to estimate the objective probability that the 
hypothesis will turn out to be true. Although the use of the criteria 
just mentioned results in exact values for prior probabilities, the 
accuracy of their values does not matter to Salmon. For he, like 
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others, maintains that, in the end, the discrepant values wash out 
in the face of accumulating evidence.

The Problem of Old Evidence

Scientists and philosophers have often noted that hypotheses and 
theories receive a boost in confirmation if they predict novel evi-
dence. Reasonably enough, Bayesians are quick to point out that, 
through the use of Bayes’s theorem, their theory of confirmation is 
readily able to account for this methodological intuition.

By contrast, taking old evidence as support for new theories is 
often seen as a major problem for Bayesian confirmation theory, 
whether it be subjectivist or objectivist in form. The problem of old 
evidence, as it is known, was introduced by Clark Glymour (1980), 
and is as follows: Scientists sometimes find support for a theory in 
the form of evidence that was known prior to the introduction of 
that theory. As one of several examples, Glymour cites the already- 
known anomalous advance of the perihelion of Mercury being 
taken as strong support for Einstein’s general theory of relativity. 
Although this sort of confirmational relation is often appealed to in 
science, Bayesians have great difficulty making sense of it. First, old 
evidence, as established fact, should be assigned a probability of 1 
(or something very close to it). Second, the probability of evidence 
under any theory or hypothesis should also be 1. Now, if we enter 
these values into Bayes’s theorem, both the posterior and the prior 
probabilities of the theory in question come out the same. Thus, 
in cases like these, the old evidence in fact bears no relation to the 
credibility of the theory and therefore cannot confirm it. It is the 
failure of Bayesian confirmation theory to deal with this type of 
relationship between theory and evidence that worries its critics. It 
should be recalled that Bayes’s theorem is coupled with the proviso 
that the prior probabilities of the data and the hypothesis cannot be 
0 or 1 in order to safeguard against cases like this.

A number of philosophers have claimed that this problem of old 
evidence is unsolvable in principle, and that, for this and perhaps 
other reasons, Bayesian confirmation theory should be rejected 
(e.g., Glymour, 1980; Leplin, 1997). However, it should be said that 
Bayesianism is a resourceful theory of confirmation, and several 
solutions to the problem of old evidence have been advanced. One 
solution has been offered by Howson and Urbach (2006). They 
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defend the use of Bayes’s theorem with old evidence by arguing that 
the background knowledge used to determine the prior probabil-
ity of the theory should be confined to existing background beliefs 
and should explicitly exclude knowledge of the old evidence. The 
authors justify this move by maintaining that the purpose of scien-
tific research is solely to gauge the impact of the existing evidence 
on the probability of the theory. One worry about this proposal 
is based on the expectation that confirmation of a theory should 
be based on the full range of relevant background beliefs. More 
generally, there is no consensus among Bayesians regarding which 
solution to the problem of old evidence is best, and criticisms of 
the various solutions have been fashioned by Bayesian and non- 
Bayesians alike. I refer the reader to Earman (1992) for a critical 
assessment of the matter.

What Should We Think About Bayesian  
Confirmation Theory?

Philosophical assessments of the worth of Bayesian confirma-
tion theory range from claims that it is without peer as a theory 
of scientific reasoning to the view that it is fundamentally wrong- 
headed. Howson and Urbach (2006) exemplify the former view, 
claiming that scientific reasoning is both inductive and probabi-
listic, and that the axioms of probability suffice to articulate such 
reasoning. Many scientists and philosophers reject this view on 
the grounds that it omits important forms of scientific inference, 
such as abductive reasoning, and, moreover, that a good deal of 
science involves both nonprobabilistic quantitative inference and 
qualitative inference as well. The latter view is held by the philoso-
pher of science, Mario Bunge (2008), who argues that Bayesianism 
is fundamentally wrong for three reasons: It assigns probabilities 
to statements rather than taking them as objective features of the 
world; it conceives of probabilities as subjective degrees of belief, 
which have no scientific standing; and it appeals to probabilities in 
the absence of the proper requirement of randomness. For these 
reasons, Bunge judges Bayesianism to be a pseudoscience. This is 
an extreme judgment and is based on a particular view of proba-
bility with which many Bayesians and non- Bayesians will disagree. 
Bunge’s view is mentioned here to illustrate just how negative some 
assessments of Bayesian confirmation theory can be. Finally, some  
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advocates of Bayesianism see it as a comprehensive theory of con-
firmation applicable to all of science, whereas others see it as hav-
ing only context- specific applications.

A strong criticism of approaches to confirmation in terms of 
probabilities that should be taken seriously is that of Kelly and 
Glymour (2004). It continues Glymour’s (1980) earlier well- known 
critique of Bayesian confirmation theory. Kelly and Glymour are 
skeptical of Bayesian confirmation theory because they believe 
that it does not square with the basic aims of scientific justifica-
tion, particularly the cardinal aim of finding true answers to one’s 
problems. They also maintain that Bayesians are not concerned 
with the proper nature of scientific justification, which they take to 
be showing the reliability and efficiency of the methods and strat-
egies that are used to arrive at the truth. Instead, Bayesians are 
concerned with the updating of scientists’ beliefs without regard 
for the reliability of their updating methods. Kelly and Glymour 
(2004) worry that “Bayesian methods assign numbers to answers 
instead of producing answers outright” (p. 112). For example, sci-
entific theories can be, and mostly are, produced straight out with-
out the accompanying posterior probabilities. Instead, they stress 
the importance of identifying problems and solving them by what-
ever means are appropriate. They acknowledge that there will be 
cases where Bayesian methods can do serviceable work.

The difficulties of deciding just what to think about Bayesianism 
are captured well by the ambivalence of the Bayesian philosopher 
of science, John Earman (1992), who thinks that it currently stands 
as our best philosophy of science. He confesses to being an enthu-
siastic Bayesian on Mondays, Wednesdays, and Fridays. But on 
Tuesdays, Thursdays, and Saturdays, he holds doubts about the 
totalizing ambitions of Bayesianism and, indeed, whether it can 
serve as a proper basis for scientific inference. Faced with such dif-
ficulties, he suggests that it is probably prudent to settle for a con-
textual application of Bayesian thinking. For example, in particular 
domains such as medical diagnosis, where the relevant probabilis-
tic information is often available, scientists sometimes appeal to 
the Bayesian corpus to justify the selective use of its methods. By 
contrast, in domains where the evaluation of explanatory hypoth-
eses and theories are of primary concern, scientists have, for good 
reason, often employed something like inference to the best expla-
nation. Like it or not, the intending Bayesian scientist will have to 
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consult the relevant philosophical literature, among other meth-
odological literatures, to furnish an informed justification for their 
Bayesian practices.

A Neo- Popperian Philosophy of Bayesian Statistics

So far in this chapter, I  have concentrated on that part of 
Bayesianism known as Bayesian confirmation theory. Although 
this philosophical theory makes little explicit contact with stand-
ard Bayesian statistical theory and practice, it nonetheless provides 
the core of the philosophy that is consistent with the traditional 
view of Bayesian statistics. In this section, I turn my attention to 
an alternative philosophy of Bayesian statistics, neo- Popperian 
philosophy, that fits well with a different set of Bayesian statistical 
practices.

An alternative philosophy of Bayesian statistics was recently 
formulated by Gelman and Shalizi (2013; see also Gelman, Meng, 
& Stern, 1996). Their work provides a systematic and principled 
philosophical justification for a distinctive approach to current 
Bayesian statistical modeling practices. As will be seen, it has 
been influenced by the prominent philosopher of science, Sir Karl 
Popper— hence the label neo- Popperian.

Gelman and Shalizi reject the received philosophy of Bayesian 
statistics because they believe it fails to square with a current 
approach to Bayesian statistical modeling practices. Indeed, they 
claim that the prevalence of that philosophy hinders the devel-
opment of Bayesian modeling. The received philosophy to which 
they object has the following primary characteristics: Bayesian 
statistical inference is regarded as a formal inductive process, 
whereby one learns about the general by reasoning from the 
particular; the researcher provides a subjective prior proba-
bility estimate that the model under examination is true; the 
researcher then smoothly updates his or her belief in the truth 
of the model through iterative use of Bayes’s theorem to arrive at 
a posterior probability estimate of the model’s truth; the model is 
then evaluated in relation to competing models, solely in terms 
of its posterior probability, which represents the Bayesian agent’s 
degree of belief in the truth of the model. The so- called Bayes 
factor described previously is one popular method for undertak-
ing comparative model evaluation.
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Gelman and Shalizi’s alternative philosophy is significantly 
shaped by Popper’s (1969) view that scientific propositions are to 
be submitted to repeated criticism in the form of strong empirical 
tests. For them, best Bayesian statistical practice involves formulat-
ing models using Bayesian statistical methods and then checking 
them through attempts to falsify and modify those models.

In rejecting the orthodox Bayesian view that statistical inference 
is inductive inference, Gelman and Shalizi maintain that Bayesian 
inference is deductive inference. For them, the important process 
of model- based data analysis involves model checking, which they 
see as a deductive process that runs from model assumptions to 
conclusions about models. In this, they follow Popper, who main-
tains that there is no such thing as inductive inference. However, 
unlike Popper, Gelman and Shalizi allow for inductive inference, 
nested within deductive inference.

In a further contrast with Bayesian orthodoxy, Gelman and 
Shalizi maintain that prior probabilities are not personal beliefs 
held by agents; instead, they are assumptions that are postulated 
as a part of the hypothesized model, and they can be rejected 
or altered, if necessary, as part of the model’s revision. In addi-
tion, models are not considered as true, or even approximately 
true. They are deemed false, as are all models. Instead, models are 
regarded as sets of assumptions that can be falsified, or modified, if 
their predictions do not square with the relevant data.

The final feature of Gelman and Shalizi’s philosophy that I men-
tion here is that it breaks with the standard Bayesian practice of 
deriving a probability estimate as the sole gauge of a model’s worth. 
Instead, one attempts to falsify the model by carrying out what 
are termed “posterior predictive checks.” These involve compar-
ing simulated data based on the correctness of the model with the 
obtained empirical evidence in a goodness- of- fit exercise. In this 
way, one compares the model of interest with the data, without 
regard for other candidate models. The comparison is often done 
visually rather than by tests of statistical significance.

Popper and the Hypothetico- Deductive Method

Gelman and Shalizi maintain that formulating, checking, and 
revising models is best understood as a sophisticated form 
of hypothetico- deductive inference. For them, sophisticated 

 



82 : the PhilosoPhy of Quantitative Methods

82

hypothetico- deductivism involves the adoption of a Popperian 
falsificationist view of the hypothetico- deductive method, with its 
emphasis on strong tests. Modeling, on this view, is a sequence 
of conjectures, refutations, and new, or modified, conjectures. It 
should be noted that Gelman and Shalizi are selective in their use 
of Popper. For example, they do not adopt his overarching the-
ory of critical rationalism, his falsifiability criterion for demar-
cating science from nonscience, or his confirmation- theoretic 
notion of corroboration. However, consistent with Popper’s view 
that there is no logic to scientific discovery, Gelman and Shalizi 
do not offer a methodological account of how models are formed, 
only how they are tested. Consistent with Popper’s conception of 
hypothetico- deductive inquiry, they limit themselves to following 
Popper’s injunction that one should engage in repeated strong test-
ing of hypotheses about models, along with a commitment to the 
view that this should be done, principally by exploiting deductive 
inference.

In choosing to adopt a Popperian view of scientific method, 
Gelman and Shalizi explicitly reject the account of confirmation 
promoted by Carl Hempel (1965). Hempel proposes the idea that, 
in scientific confirmation, hypotheses are confirmed by discov-
ering their positive instances. In his formalization of this idea, 
Hempel requires that the evidence entails the development of the 
relevant hypothesis with respect to the domain of the evidence. 
This contrasts with hypothetico- deductive inference, in which the 
evidence is deductively entailed by the hypothesis, and confirma-
tion occurs through successful predictive testing.

It is important to point out that there are a number of sophis-
ticated variants of hypothetico- deductive method available that 
overcome the limitations of the earlier simplified accounts. Gelman 
and Shalizi’s version can be considered one of them. Sprenger 
(2011) provides a useful overview, and defense, of modern think-
ing about the hypothetico- deductive method.

Further, Sprenger (2013) proposes an account of confirma-
tion that unifies Hempel’s insight that hypotheses are confirmed 
by their instances and the core hypothetico- deductive idea that 
hypotheses are confirmed by their successful predictions. This 
modern hybrid account of hypothetico- deductive confirmation 
has an important advantage over that outlined by Gelman and 
Shalizi:  It allows for an objective notion of inductive support, 
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which I  believe that Gelman and Shalizi’s model- testing strat-
egy requires. At the same time, it features strong hypothetico- 
deductive testing of a falsificationist kind, and it allows for the 
piecemeal testing of entire theories, rather than their wholesale 
rejection. Both of these are desirable features of scientific model-
ing for Gelman and Shalizi.

In addition to drawing from Popper, Gelman and Shalizi make 
brief heuristic use of some of Thomas Kuhn’s (1970) ideas about 
science. They suggest that Kuhn’s distinction between normal and 
revolutionary science is somewhat analogous to their distinction 
between learning within a Bayesian model and checking the model 
either to discard or to expand it. However, they caution about push-
ing the analogy too far, correctly pointing out that most model 
checking and reformulation is puzzle- solving work, not revolu-
tionary change, that takes place within a single paradigm. I think 
this disanalogy renders a serious appeal to Kuhn’s theory of science 
as largely inappropriate for their particular philosophy, as I believe 
it is for the social sciences more generally.

Modes of Scientific Inference

As already noted, Gelman and Shalizi follow Popper in declaring 
that deductive inference is all there is to scientific inference. For 
them, this allows for the strong testing of Bayesian models by con-
stantly checking them via their deductively derived predictions. 
However, importantly, and unlike Popper, they maintain that 
informative accounts of inductive reasoning, as they occur in sci-
ence, will be material rather than formal. That is to say, they will 
be local rather than global in nature, in that the premises and con-
clusion of inductive arguments will contain reference to context- 
specific, contingent matters of fact (Norton, 2003). Furthermore, 
Gelman and Shalizi acknowledge that inductive statistical infer-
ences to unobserved cases can be drawn on a background of 
deductive models. So, it would seem that, for them, science admits 
both deductive and inductive modes of reasoning.

I would go further than Gelman and Shalizi and claim that, 
in addition to deductive and inductive inference, science makes 
heavy use of a third type of inference known as abductive infer-
ence. Moreover, I believe that this form of inference could serve 
an important methodological role in Gelman and Shalizi’s view 
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of model generation and model revision. Briefly, abductive infer-
ence is explanatory inference, and in science it involves reasoning 
about hypotheses, models, and theories in a manner that explains 
the relevant facts (e.g., Haig, 2014; Magnani, 2001). There are 
different species of abductive reasoning, having to do with the 
generation, modification, and appraisal of hypotheses and the-
ories. For example, as will be seen in Chapter 6, the statistical 
method of exploratory factor analysis involves the abductive gen-
eration of latent factors to explain patterns in multivariate data. 
Further, inference to the best explanation, briefly mentioned by 
Gelman and Shalizi, is an abductive approach to theory appraisal, 
in which explanatory reasoning forms the basis for evaluating 
rival theories.

Although Gelman and Shalizi describe their modeling philos-
ophy as falsificationist in nature, it goes beyond the strictures of 
Popper’s view of the matter. When a model, or a component of 
a model, is confronted with negative evidence, the model, or its 
relevant parts, can be revised by means other than straight rejec-
tion or elimination. Often, this modification of a hypothesis will 
be seen to plausibly explain the anomalous data. For this reason, 
when scientists engage in such model revision, they employ abduc-
tive reasoning, whether they know it or not. Thus, it would seem 
that Gelman and Shalizi’s account of Bayesian modeling requires 
an extension to include abductive inference to account for stand-
ard practices of model revision.

One final comment on the inference forms involved in model-
ing is in order. Gelman and Shalizi regard the process of checking 
and ruling out possible misspecifications of a model as consist-
ent with the strategy of eliminative induction. However, in this 
context, they think the word induction is a misnomer, and they 
enlist the support of Kitcher (1993) in maintaining that the strat-
egy really embodies a deductive argument. However, it should be 
noted that Kitcher is concerned with the successive elimination of 
actual theories that rival the theory of interest, not with succes-
sive checks for possible inconsistencies in a single model. I think 
it is clear that both inductive and deductive eliminative strategies 
are used in science, and that because of the uncertainties in social 
science research, the aspect of model checking referred to here by 
Gelman and Shalizi is more realistically construed as an inductive 
strategy.
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The Value of Gelman and Shalizi’s Philosophy

Gelman and Shalizi have provided the statistical fraternity with a 
philosophically informed perspective on Bayesian modeling that 
does justice to the building and revision of models through strong 
tests. Their Popper- inspired emphasis on strong tests of models 
is a welcome antidote to the reluctance of traditional Bayesian 
researchers to take model checking seriously.

Although predominantly Popperian in flavor, Gelman and 
Shalizi suggest that their philosophy can be strengthened by incor-
porating insights from Kuhn and Lakatos and the suggestive work 
of more recent philosophers. Their neo- Popperian philosophy, 
then, should be understood as a philosophy- in- the- making.

A heartening attitude that comes through in Gelman and 
Shalizi’s expression of their philosophy is the firm belief that a 
philosophy of statistics is an important part of statistical thinking. 
Their work makes clear that philosophy can have a direct impact on 
statistical practice. Given that statisticians operate with an implicit 
philosophy, whether they know it or not, it is better to avail one-
self of an explicitly thought- out philosophy that serves practice in 
useful ways. In this regard, they are at one with Mayo and Spanos’s 
error- statistical philosophy, which is claimed in Chapter 3 to offer 
a strong philosophical aid to the understanding of tests of statisti-
cal significance and other frequentist statistical methods.

Gelman and Shalizi have done the statistical community consid-
erable service by showing how Bayesian data analysis and modeling 
practices can be underwritten by different philosophies of science. 
In their work, these include inductive and deductive philosophies. 
Moreover, it is important to emphasize that the actual approach 
chosen by Gelman and Shalizi is but one of several that might be 
taken. For example, I have briefly suggested that a philosophy of 
abductive inference can further advance our understanding of 
model building. Plausibly, then, the philosophy of data analysis 
cannot be restricted solely to one of the major theories of scientific 
inference. The process of data analysis could be argued to feature 
elements that are reminiscent of several theories in the philosophy 
of science, including inductive, deductive, and abductive accounts. 
However, data analysis is also guided and constrained by strongly 
pragmatic concerns, ranging from the available money and time 
to the computational resources of computers, which are alien to 
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Bayesianism, as well as to the type of hypothetico- deductive rea-
soning strategies that Gelman and Shalizi enlist.

Conclusion

As this selective discussion of Bayesian confirmation theory and 
statistics makes clear, Bayesianism is a highly contested perspec-
tive, and what I say in this chapter on the topic should, therefore, 
be taken primarily as a stimulus package for readers to develop 
their own views about it.

At a general level, Bayesianism comprises two major overlap-
ping strands: confirmation theory and statistics. However, these 
two strands are mostly presented independently of each other. 
Further progress in the foundations of Bayesian confirmation the-
ory is likely to be made if methodologists consider it in the light 
of statistics. For its part, Bayesian statistics stands to be enriched 
by a more concerted effort to incorporate insights from Bayesian 
confirmation theory into its fold.

Bayesian thinkers differ widely among themselves regarding how 
Bayesianism should be characterized and evaluated. For example, 
there is a major contrast between “subjectivist” Bayesians and “objec-
tivist” Bayesians; there are many different proposals for dealing with 
the problem of how to make good prior probability estimates; and 
there are those who think that Bayesian and frequentist statistical 
practices can be fruitfully combined. The considerable variety of 
Bayesian alternatives on offer needs to be more widely appreciated.

Deciding just how much sound scientific practice is, in fact, cap-
tured by the Bayesian apparatus is a major challenge. For exam-
ple, although scientists often talk about accepting theories, and 
the strength of evidence for and against them, they seldom talk 
about their probabilities. Additionally, some critics (e.g., Glymour, 
1980) think that Bayesian theory is too far removed from the history 
of scientific practice to be genuinely informative, though it should be 
acknowledged that, in recent years, some Bayesian analyses of epi-
sodes in the history of science have been carried out. There is also the 
major challenge of understanding the normative force for science of 
Bayesian thinking: Should we be Bayesians, and if so, when and how?

Recommendations to adopt Bayesianism across the board 
should be resisted. The folly of the near- universal adoption of tra-
ditional null hypothesis tests of statistical significance should not 
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be repeated by replacing them in a totalizing manner with Bayesian 
statistical alternatives. It seems prima facie implausible that the 
simple piece of mathematics that is Bayes’s theorem could provide 
the basis for deep insights into all of the rich variety of inferential 
practices that are to be found in successful science. Bayesian meth-
ods are likely to best serve science in local, domain- specific ways, 
much as other methods do.

In deciding whether to adopt a Bayesian position on statisti-
cal inference, it should be kept in mind that one does not have to 
embrace a general Bayesian theory of scientific confirmation rather 
than, say, a modern hypothetico- deductive alternative. One might 
be a Bayesian when dealing with problems of statistical inference, 
but remain wedded to a defensible hypothetico- deductive concep-
tion of scientific method. Or, more plausibly, one might employ 
Bayesian statistical methods when concerned with inferential prob-
lems about hypotheses for which we have the relevant probabilis-
tic information, but otherwise adopt a nonprobabilistic count of 
theory evaluation such as Thagard’s (1992) theory of explanatory 
coherence. The general point to be made here is that Bayes’s the-
orem can help us deal with some problems of scientific inference, 
but, clearly, a great deal of scientific work will be done with the use 
of other methods, some of them statistical and some of them not.

Further Reading
Peter Godfrey- Smith’s philosophy of science textbook (Theory and Reality: An 

Introduction to the Philosophy of Science. Chicago, IL: University of Chicago 
Press, 2003) contains a short, accessible overview of Bayesian confirmation 
theory and a promissory note on an alternative outlook.

Robert Nola and Howard Sankey’s Theories of Scientific Method: An Introduction 
(Montreal, Canada: McGill- Queen’s University Press, 2007) has a more advanced 
and extended treatment of Bayesianism that is sympathetic to that outlook.

Colin Howson and Peter Urbach’s Scientific Reasoning: The Bayesian Approach 
(3rd ed. La Salle, IL: Open Court, 2006) provides a lucid and thorough- going 
Bayesian analysis of scientific inference by authors who are strongly commit-
ted to the approach.

John Earman’s Bayes or Bust? A Critical Examination of Bayesian Confirmation 
Theory (Cambridge, MA: MIT Press, 1992), true to its subtitle, offers a sympa-
thetic, but critical, examination of Bayesian confirmation theory. Although he 
thinks Bayesianism is currently the best approach to the philosophy of science, 
and holds the most promise for an adequate general theory of confirmation, he 
delivers a mixed verdict regarding its successes and failures to date.
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In an extended critical review of Earman’s book, Malcolm Forster argues, against 
Earman, that Bayesianism is not the most promising comprehensive theory of 
scientific confirmation. See his, “Bayes and Bust: Simplicity as a Problem for a 
Probabilistic Approach to Confirmation” (British Journal for the Philosophy of 
Science, 46, 399– 424, 1995).

Clark Glymour offers an incisive critique of the subjective Bayesian theory of 
confirmation in his book, Theory and Evidence (Princeton, NJ:  Princeton 
University Press, 1980).

In a suggestive contribution to Bayesian methodology, Wesley Salmon (1990) 
argues that Thomas Kuhn’s five criteria for a good theory (accuracy, con-
sistency, scope, simplicity, and fruitfulness) can be incorporated within a 
Bayesian approach. See his essay, “Rationality and Objectivity in Science, or 
Tom Kuhn Meets Tom Bayes” (in C. W. Savage, Ed., Scientific theories, pp. 175– 
204. Minneapolis, MN: University of Minnesota Press, 1990).

A classic paper that brought the Bayesian outlook in statistics to psychology is Ward 
Edwards, Harold Lindman, and Leonard Savage’s “Bayesian Statistical Inference 
for Psychological Research” (Psychological Review, 70, 193– 241, 1963).

Two accessible books on Bayesian data analysis written for social and behav-
ioral scientists are David Kaplan’s Bayesian Statistics for the Social Sciences 
(New York, NY: Guilford, 2014) and John Kruschke’s Doing Bayesian Data 
Analysis: A Tutorial With R and Bugs (Boston, MA: Academic Press, 2011).

A more advanced textbook on Bayesian data analysis is Andrew Gelman at al.’s 
well- known Bayesian Data Analysis (2nd ed. London, England: Chapman and 
Hall, 2003).

Gelman is the author, with Cosma Shalizi, of the important article, “Philosophy 
and the Practice of Bayesian Statistics” (British Journal of Mathematical and 
Statistical Psychology, 66, 8– 38, 2012) discussed in this chapter.

Zoltan Dienes compares orthodox and Bayesian approaches to statistical inference 
in his article, “Bayesian Versus Orthodox Statistics: Which Side Are You On?” 
(Perspectives on Psychological Science, 6, 274– 298, 2011). He expresses a clear 
preference for the Bayesian approach and shows how to implement Bayesian 
hypothesis testing in practice, with an emphasis on calculating Bayes factors.

An important review of Bayes factors as an approach to Bayesian hypothesis test-
ing is presented in Robert Kass and Adrian Raftery’s “Bayes Factors” (Journal 
of the American Statistical Association, 90, 773– 795, 1995).

An instructive article, with a specific focus on the philosophy of Bayes factors 
as a means of quantifying statistical evidence, is Richard Morey, Jan- Willem 
Romeijn, and Jeffrey Rouder, “The Philosophy of Bayes Factors and the 
Quantification of Statistical Evidence” (Journal of Mathematical Psychology, 
72, 6– 18, 2016).
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5
Meta- Analysis

I think that meta- analysis is one of the most important meth-
odological contributions of this generation of psychologists, 
arguably the most important.

— P. E. Meehl, 1990, p. 242

In the majority of cases where [meta- analysis] is being 
used, . . . it muddies the waters, disregards the problems, and 
leads to meaningless conclusions that are likely to hamper 
proper scientific research.

— H. J. Eysenck, 1984, p. 58

Introduction

An important part of the evaluation of the state of knowledge in 
science involves reviews of the literature in its many fields. In this 
regard, it is noteworthy that in the last 40 years there has been an 
enormous increase in attention given to the nature and place of lit-
erature reviews in science, along with concerted efforts to conduct 
them in a more rigorous and systematic fashion.

Until the 1980s, literature reviews in science were mostly narra-
tive in form, drawing conclusions about multiple studies on a topic 
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in a qualitative rather than quantitative manner. Although narra-
tive literature reviews occupy an important place in the reviewing 
process within science, they have been frequently criticized as cas-
ual, severely selective, and unable to portray cumulative knowledge 
(e.g., Borenstein, Hedges, Higgins, & Rothstein, 2009; Glass, 1976; 
Light & Smith, 1971). However, the simple quantitative option of 
vote taking from box score tallies of statistical significance test out-
comes has been faulted for its failure to acknowledge the methodo-
logical asymmetry between confirmation and refutation (refutation 
being more decisive than confirmation) and for its bias in favor of 
large- sample studies for which the significant outcomes are largely 
a function of statistical power (e.g., Meehl, 1978).

In the face of burgeoning and fragmented research literatures 
displaying conflicting results, meta- analysis has developed as a 
systematic and objective alternative to the customary integration 
methods of narrative literature reviews and vote counting of sig-
nificance test outcomes. The development and widespread use of 
meta- analytic procedures to integrate or synthesize the results of 
empirical studies in many areas within the behavioral, medical, 
and social sciences stands as one of the most striking methodologi-
cal developments of the last four decades. Its rapid uptake has been 
described graphically as “the meta- analytic big bang” (Shadish & 
Lecy, 2014).

Meta- analysis is an approach to data analysis that involves the 
quantitative, or statistical, analysis of data analyses from a num-
ber of existing primary studies in a common domain. At its sim-
plest, meta- analysis involves computing the average effect size for 
a group of studies. For the originator of modern meta- analysis, 
Gene Glass, the effect size measure is the standard score obtained 
by subtracting the mean of the control group from that of the treat-
ment group and dividing this difference by the standard deviation 
of the control group (Glass, 1976). This is done for each of the rel-
evant dependent variables in each study. The effect sizes are then 
summed and divided by the total number of effects to obtain the 
average effect size. Of course, there is much more to Glassian meta- 
analysis than this (Glass, McGaw, & Smith, 1981), but my focus in 
this chapter is on the underlying rationale for meta- analysis.

Meta- analysis comes in a variety of forms (e.g., Bangert- 
Drowns, 1986; Borensteinet al., 2009). Prominent among them are 
Glassian meta- analysis and its technical advancement by Hedges 
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and Olkin (1985); Schmidt and Hunter’s (2015) psychometric 
approach to meta- analysis; and Rosenthal’s (1978) combined prob-
ability method. These, and other approaches to meta- analysis, are 
discernibly different from one another, but their differences are not 
relevant to my treatment in this chapter.

Despite the claimed advantages of meta- analysis, and its current 
popularity as an approach to literature reviews, a number of dif-
ferent types of criticism have been leveled against it. For example, 
Slavin (1984) has argued that the use of meta- analytic procedures 
in the field of education constitutes a retrograde step in the art of 
research integration. Similarly, Ioannides (2016) recently showed 
that the plethora of meta- analyses in biomedical science is often 
“redundant, misleading, and conflicted” (p.  485). Others (e.g., 
Bruno & Ellett, 1988; Cook & Leviton, 1980; Erwin, 1984; Sohn, 
1996) have pointed out what they take to be methodological limi-
tations of the approach, while at a meta- theoretical level, the arch 
enemy of meta- analysis, Hans Eysenck (1984), has argued that the 
meta- analytic enterprise is unscientific, and constitutes “an abuse 
of research integration” (p. 41).

My primary concern in this chapter is with the conceptual foun-
dations of meta- analysis. My examination is selective and centers 
on large- scale issues having to do with meta- analysis and the 
nature of science. I give considerable space to presenting the con-
ception of inquiry embodied in the underlying rationale of Glass’s 
approach to meta- analysis. I will be concerned as much with mak-
ing his rationale known, as I will be with evaluating it. I then exam-
ine David Sohn’s provocative argument that meta- analysis is not a 
legitimate vehicle of scientific discovery. After that, I consider the 
role of meta- analysis in relation to the processes of phenomena 
detection and scientific explanation. In doing so, I  examine the 
extent to which meta- analysis can properly be said to contribute 
to scientific progress.

Glass’s Rationale for Meta- Analysis

Somewhat surprisingly, evaluations of Glass’s approach to meta- 
analysis have shown little regard for his underlying rationale 
(Glass, 1972; Glass & Kliegl, 1983). Glass rightly claims that many 
misunderstand his meta- analyses of outcome research because 
they fail to be cognizant of the rationale he provides. This failure 
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is offered by him as the main reason for the widespread misunder-
standing of Smith, Glass, and Miller’s (1980) original meta- analysis 
of psychotherapy outcome studies. Unfortunately, inattention to 
the rationale has deprived methodologists and researchers of the 
opportunity to reflect on an important contribution to the concep-
tual foundations of meta- analytic methodology— an omission that 
this chapter begins to correct.

Scientific and Evaluative Inquiry

The core of Glass’s rationale for meta- analysis involves drawing 
a distinction between scientific, or elucidatory, and evaluative 
inquiry (Glass, 1972; see also Smith et al., 1980). Glass’s position is 
that researchers as scientists are concerned to satisfy their curiosity 
by seeking truthful conclusions in the form of theories comprising 
explanatory laws. By contrast, evaluators undertake research on 
behalf of a client, which is aimed at producing useful decisions 
based on descriptive determinations of the worth of particular 
products or programs. Importantly, for Glass, the meta- analysis of 
outcome studies properly involves the integration of the empirical 
results of evaluative research only.

Glass differentiates scientific from evaluative inquiry in respect 
to a number of basic contrasts. I present four of the most important 
of them and offer some evaluative comments about their tenability. 
Generally speaking, I favor the view that evaluative inquiry can be 
seen as a form of scientific inquiry, not something fundamentally 
different from it.

Motivation of the Inquirer. According to Glass, scientific inquiry 
is undertaken largely to satisfy the curiosity of the researcher and, 
to this end, involves the construction of theories. By contrast, the 
researcher’s basic concern in conducting evaluative inquiry is 
to help solve a client’s practical problem. The findings of meta- 
analytic research constitute an important source of evidence for 
helping solve such problems, but they are not to be used as the 
empirical foundation for building explanatory theories.

Comment. It is doubtful whether the satisfaction of a researcher’s 
curiosity, the construction of theories, or any other aim (e.g., truth, 
understanding, control) should be taken as the primary concern of 
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science. This is because science, carried out by human agents and 
embedded in social institutions, attends to multiple goals that are 
pursued simultaneously. Moreover, the aims of science are genu-
inely problematic and are provisionally arrived at by debate within 
science’s critical community (Hooker, 1987). Important among 
these aims are epistemic goals that include, for example, the detec-
tion of empirical phenomena (often in the form of robust empiri-
cal generalizations) and the construction of theories to coherently 
explain those phenomena. Further, science will legitimately seek 
nonepistemic goals, such as pragmatic utility and risk assessment, 
when engaged in policy formulation and the application of scien-
tific knowledge. Later, I suggest that, in contrast to Glass, meta- 
analysis can be properly viewed as an important means by which 
we can discover empirical phenomena in science.

Laws and the Particular. Glass (1972) briefly invokes the popular 
distinction between nomothetic and idiographic research to dif-
ferentiate further scientific and evaluative inquiry. For him, scien-
tific inquiry involves the search for laws understood as statements 
of general relationship among variables or phenomena, whereas 
evaluation involves the description of the value, or values, of a 
particular thing.

Comment. This contrast between nomothetic and idiographic 
forms of inquiry is clearly based on the widely held view that 
causal laws are universal, or widely applicable, empirical regulari-
ties. However, the nature of laws is a contested matter, and it is 
just as defensible to think of causal laws as the causally neces-
sary activity of generative mechanisms rather than their condi-
tions of activation or expressions of effect (Bhaskar, 1978; Harré 
& Madden, 1975). On this view, it is a contingent matter whether 
or not the mechanisms happen to be in a closed system, like an 
experiment, in which they can produce empirical regularities. 
A law does not cease to exist in an open system just because its 
empirical manifestations are absent. It is just that manifestations 
are typically altered or checked by the work of other causal mech-
anisms in an open system.

By taking causal laws to involve the natural necessity of causal 
mechanisms rather than the scope of empirical regularities, we 
can question Glass’s particular use of the popular distinction 
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between nomothetic and idiographic inquiry for wrongly sup-
posing that causal laws and claims about the particular have to be 
to be considered as alternatives. Because laws can be construed 
as a matter of causal necessity, nomothetic inquiry can be either 
idiographic or universal in nature. A science of the particular is 
a perfectly proper project, as for example with the study of indi-
vidual lives using autobiographical methods. Indeed, there is a 
good argument that, in psychology, idiographic research should 
receive as much weight as so- called individual differences research 
(Molenaar, 2004). Moreover, to endorse a study of the particu-
lar is not to foreclose the possibility that the future comparative 
study of individual lives may well reveal deep- structural general-
izations or perhaps even universals (cf. DeWaele & Harré, 1979). 
Nomothetic and idiographic inquiry are complementary rather 
than mutually exclusive.

The Role of  Explanation. According to Glass (1972), science 
involves the continual search for subsurface explanations of empir-
ical phenomena. Evaluative inquiry, on the other hand, does not 
seek explanations:  “A fully proper and useful evaluation can be 
conducted without producing an explanation of why the product 
or program being evaluated is good or bad or how it operates to 
produce its effects. . .  . [It] is usually enough for the evaluator to 
know that something attendant upon the [product or program] is 
responsible for the valued outcomes” (pp. 5– 6). Glass’s position 
seems to be that, even though program treatments can be caus-
ally responsible for their measured outcomes, it matters little that 
knowledge of this gleaned from evaluation studies does not tell us 
how programs produce their effects because such knowledge is not 
needed for policy action.

Comment. Glass is undoubtedly correct in asserting that scien-
tists are centrally concerned with the construction of causal theo-
ries to explain empirical phenomena for this is the normal way 
in which they achieve understanding of the empirical regularities 
they discover (Haig, 2014). However, he is wrong to insist that 
proper evaluations can, or should, deliberately ignore knowledge 
of underlying causal mechanisms. The reason for this is that the 
effective implementation and alteration of social programs will 
often benefit from knowledge of the relevant causal mechanisms 
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involved (Gottfredson, 1984), and strategic intervention with these 
in mind is sometimes the most effective way to bring about social 
change. Even though the relevant causal mechanisms will typically 
be unobserved, appeal to knowledge of such mechanisms will nev-
ertheless increase our understanding of relevant matters and help 
us implement change.

Truth and Social Utility. This is probably the major contrast 
for Glass. He asserts that scientific inquiry characteristically 
attempts to assess the truth of knowledge claims, whereas evalu-
ative inquiry attempts to gauge the worth of things. Glass takes 
truth to comprise the empirical validation and logical consist-
ency of knowledge claims, while worth is understood as social 
utility. He acknowledges that truth is highly valued and worth-
while, but, this point aside, he insists that the contrast between 
truth and utility effectively helps to distinguish science from 
evaluation.

Comment. It is important to appreciate here that Glass fails to 
make an epistemic distinction that is crucial to a satisfactory 
understanding of the nature of science:  In identifying truth 
with empirical adequacy and logical coherence, Glass has con-
flated the epistemic notions of truth and justification. Truth is 
best understood as correspondence with reality, where it func-
tions as a guiding ideal for science. As such it is a highly valued, 
though unattained, goal that helps us make sense of science as an 
attempt to represent and intervene in the world. However, truth 
is only accessible indirectly by way of the various criteria we use 
to justify and accept theories. Empirical adequacy and logical 
coherence are in fact two such criteria. They do not constitute 
truth itself but instead function as surrogates for truth (Haig & 
Borsboom, 2012; Hooker, 1987).

The sketch I  have presented in response to the tenability of 
Glass’s four contrasts takes science to be an aim- oriented human 
endeavor that seeks to construct truthful causal explanatory theo-
ries of both the particular and the general. It is a view of science 
that rejects Glass’s strong distinction between scientific and eval-
uative research.

I turn now to consider Glass’s views about the nature of method-
ology, which underwrites his conception of meta- analysis.
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The Nature of Methodology

Methodology Is Empirical

An important part of the rationale for Glassian meta- analysis 
involves adopting a conception of methodology as a substantive 
empirical undertaking. According to Glass, critics have often mis-
understood his conception of meta- analysis because they have 
failed to appreciate that it embodies a methodology of this sort. 
He claims that, for any given empirical domain, a methodology 
combines with an object field, and a taxonomy, to give that domain 
its basic structure (Glass & Kliegl, 1983). For Glass, none of these 
three components is given to us a priori as a product of logic. 
Instead, they are chosen for both arbitrary and historical reasons. 
That is to say, methodologies are selected and developed partly as 
a response to the structure and pragmatic needs of society. For 
example, Fisherian (agrarian) experiments are said to embody 
principles that grow out of the demand for control made by a 
technological society. Glass follows Meehl (1978) in claiming that 
methodological assumptions are genuinely refutable conjectures. 
Indeed, it should be emphasized that one of the main functions 
of Glassian meta- analysis is to undertake the empirical investi-
gation of such assumptions as part of its own object field. Glass 
believes that the most serious criticisms of meta- analysis lose their 
force when they are examined from the standpoint of empirical 
methodology.

I believe that Glass is right to criticize the influential conception 
of methodology for its a priori status, but that he is wrong to sug-
gest that methodology is solely an empirical enterprise. Viewing 
methodology as a priori knowledge is dubious because the notion 
of a priori knowledge is itself highly questionable. The a priori cat-
egories of analytic truth, synthetic a priori truth, logical truth, and 
mathematical truth have all been subjected to serious criticism 
within philosophy (e.g., Haack, 1974; Kitcher, 1983; Quine, 1953). 
But, although one can accept Glass’s claim that methodological 
statements are genuinely refutable conjectures, it does not follow 
that methodological assertions are evaluated solely on empirical 
grounds. The reason for this is that, in science, much procedural 
knowledge, no less than substantive knowledge, has the status of 
warranted conjectural theory and that, broadly speaking, both 
kinds of knowledge are validated using the methods of science 
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(Haig, 2014; Hooker, 1987). Because substantive scientific theo-
ries are underdetermined by the relevant data, they are addition-
ally evaluated on superempirical dimensions such as explanatory 
power, systemic worth, and fruitfulness. We should not expect it 
to be any different with our methodological theories. To be sure, 
empirical evidence will have an important bearing on assessing the 
soundness of methodological claims, but these assessments will be 
inconclusive without invoking appropriate superempirical criteria. 
Additionally, I note that, where Glass admonishes researchers for 
engaging in what he thinks are a priori methodological debates, it 
may very well be the case that some of the disputes are really a pos-
teriori intertheory debates about contingent matters of fact.

Indeed, Glass and his associates (Glass et al., 1981; Smith et al., 
1980) have repeatedly emphasized that meta- analysis recommends 
itself over traditional review procedures because of its objectiv-
ity. This is said to be achieved by adopting judgment strategies in 
meta- analysis that will prevent biases from entering into the results 
it produces.

Meta- Analysis and Policy

Glass and Kliegl (1983) maintain that it is naïve to believe that 
rational policy decisions must be based on relevant knowledge 
from well- established theories. They echo Meehl’s (1978) judg-
ment that “most so- called ‘theories’ in the soft areas of psychology 
(clinical, counseling, social, personality, community, and school 
psychology) are scientifically unimpressive and technologically 
worthless” (p. 806). By reinterpreting such theories as the mod-
est products of evaluative research, and submitting them to meta- 
analysis where appropriate, Glass and Kliegl (1983) believe that 
useful knowledge can be provided for decision- makers. In this 
way, they believe they can overcome researchers’ habitual tendency 
to engage in “partisan squabbles and theoretical hot- dogging when 
attempting to inform policy makers” (p. 35).

However, meta- analysis has often failed in its attempt to establish 
clear judgments of pragmatic worth for policy makers. Different 
meta- analyses in the same subject area have often produced differ-
ent results. For example, the constructive replication of the initial 
Smith et al. (1980) meta- analysis of psychotherapy outcome stud-
ies by Prioleau, Murdock, and Brody (1983) produced discrepant 
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conclusions. Because meta- analyses are unavoidably replete with 
human judgments over which researchers will differ, it is only to 
be expected that they will be unable to provide clients with unam-
biguous messages.

Also concerning policy, it is worth noting that Glass and 
Kliegl (1983) make inappropriate use of Habermas. They claim 
that “Habermas (1971) argued convincingly that the knowledge- 
constitutive interests that determine, in part, the selection of a 
certain methodology for science can be derived from the struc-
ture and pragmatic needs of the society in which the science 
exists” (p.  35). However, Habermas’s (1971) critical- theoretic 
analysis of cognitive interests relies uncritically on an inappropri-
ate empiricist theory of science (a point Habermas himself now 
concedes). Relatedly, Habermas’s insistence that our knowledge- 
constitutive interests are somehow transcendental and a priori is 
implausible and clearly should be anathema to Glass and Kliegl.

This point aside, it is important to stress that methodologies and 
social institutions do relate to each other in mutually supporting 
ways (Unger, 1975). It can plausibly be argued that, to the extent 
that meta- analysis adopts a descriptive, atheoretical conception of 
inquiry, it helps to serve as a prop for our extant social institutions 
by providing them with conceptual resources that help maintain, 
rather than challenge, the status quo. One way in which meta- 
analysis reinforces the status quo stems from its encouragement 
of, and reliance on, narrowly focused primary studies.

Meta- analysis further reinforces the status quo by restricting its 
attention to outcome studies that focus on phenomenal appear-
ances and refrain from considering underlying causes. This will-
ingness to stop short of attempting to tell decent causal stories 
contributes to a general inability to regard educational programs 
and social institutions more generally as structurally problematic 
and results in an absence of coherent knowledge of the relevant 
causes, which would be the objects of strategic social change.

A third way in which meta- analysis reinforces the status quo 
stems from the fact that it is not critically aim oriented. By will-
ingly accepting clients’ goals, evaluation research employs meta- 
analysis as part of an instrumental rationality concerned to devise 
and follow efficient means to clients’ ends. As such, meta- analytic 
methodology affords us neither the inclination nor the ability to 
challenge the goals of clients, programs, or social institutions.
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Glass and Kliegl (1983) are undoubtedly correct in claiming that 
the sources of methodologies lie in the pragmatic interests of social 
groups and institutions, rather than in logic. However, they do not 
consider the extent to which methodologies and social conditions 
can mutually reinforce one another. They also do not appreciate 
the role of a critically aim- oriented conception of science in fur-
thering our understanding of inquiry.

In the next three sections of the chapter, I consider additional 
aspects of the relationship between meta- analysis and the nature 
of science.

Meta- Analysis and Scientific Discovery

One of the originators of modern meta- analysis, Frank Schmidt 
(1992), has championed the view that meta- analysis is of central 
importance to the advancement of scientific knowledge. He enter-
tains a revisionist model of possible (though not necessarily desir-
able) future science as

a two- tiered research enterprise. One group of researchers 
will specialize in conducting individual studies. Another 
group will apply complex and sophisticated meta- analysis 
methods to those cumulative studies and will make the sci-
entific discoveries. (p. 1180)

In a series of related articles, David Sohn (1995, 1996, 1997) strongly 
challenges the view that meta- analysis can serve as a proper means 
of scientific discovery in the manner suggested by Schmidt. There 
are two parts to his challenge:  (a) He claims that the quality of 
empirical psychological studies that are used in meta- analysis is 
unacceptably low; and (b) he believes that meta- analysis is a form 
of scientific review, but it is not a genuine form of research. The 
two claims are related, in the sense that the poor quality of primary 
studies undermines the worth of meta- analyses (whether they be 
thought of as scientific research or scientific reviews). I concen-
trate on Sohn’s argument that meta- analysis is not an important 
vehicle of scientific discovery. In doing so, I comment in passing 
on his reservations about the problems that he thinks beset main-
stream psychological research.

Sohn (1996) questions the basic idea of meta- analysis as a stand- 
alone literature review capable of discovering truths, whereas 
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traditionally scientific discoveries were contained in the empirical 
findings of the primary studies themselves. For Sohn, the idea that 
meta- analytic literature reviews can make discoveries about nature 
rests on the assumption that the primary research literature is a 
proxy for nature. It is this assumption that he roundly rejects.

Noting the tendency of meta- analysts to paint a bleak picture 
of progress in twentieth- century psychology, Sohn (1996) suggests 
that although meta- analysis has been introduced to improve mat-
ters in this regard, it is in fact symptomatic of its poor progress. In 
his judgment, this lack of good progress is a consequence of psy-
chology adopting a hypothesis- testing view of science. For Sohn, 
this view of science seeks knowledge by testing research hypoth-
eses about the relationship of descriptive variables without regard 
for causal mediating variables. Essentially, the approach amounts 
to a hypothetico- deductive testing of outcome studies through 
use of methods such as tests of statistical significance and effect 
size measures. Sohn maintains that there are in fact two delete-
rious consequences of such an approach to research; one is the 
lack of agreement about outcomes, and the other is the absence of 
knowledge of the causal mechanisms that are responsible for those 
alleged outcomes. Although Sohn judges the second defect to be 
more serious, meta- analysis is indicted by Sohn for failing to rem-
edy both defects.

However, Sohn supports his claim that meta- analysis does not 
produce demonstrable evidence for treatment effects in a curious 
way. He acknowledges that Smith et al.’s (1980) well- known meta- 
analytic treatment of the benefits of psychotherapy has been cor-
roborated by subsequent meta- analyses, yet he maintains that this 
does not constitute evidence for replicable effects. He expresses a 
distrust of research that relies on statistical methods for making 
claims about replicable effects. This distrust appears to be founded 
in part on an extension of the view attributed to Lord Rutherford 
that if an experimental study requires statistics, then the experiment 
is in need of improvement. For Sohn (1996), “If one’s science needs 
[meta- analysis], one should have done better science” (p. 243).

However, this idiosyncratic view of experimental inquiry flies in 
the face of widely accepted scientific practice. For example, detailed 
examination of both experimental and nonexperimental inquiry 
in science strongly supports the view that different parts of the 
various sciences from physics to psychology appropriately make 
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extensive use of statistical methods in the detection of empirical 
phenomena (Haig, 2009; Woodward, 1989). For their part, most 
statisticians today, influenced by John Tukey’s pioneering work in 
the field, see their discipline as a science. Statistics would not exist 
as we currently know it unless it provided a necessary armament 
for science.

In this regard, it is worth noting that Sohn acknowledges the 
claim made by Hedges and Olkin (1985) that meta- analysis in 
some form or other has a long history of use in the hard sciences. 
Interestingly, Sohn states his disagreement with this position, but 
he does not argue against it. Had he done so, he might reasonably 
have been expected to counter Hedges’s (1987) empirically based 
argument for the conclusion that exemplary practice in the soft 
science of psychology compares favorably with successful practice 
in the hard science of physics.

In Sohn’s judgment, a more serious shortcoming of meta- analysis, 
and the hypothesis- testing research on which it is based, is that it 
fails to contribute to an understanding of the mechanisms that 
might afford an explanation of the empirical effects. However, to 
indict meta- analyses of the efficacy of psychotherapy, for example, 
for not contributing to a theoretical understanding of the therapeu-
tic process, is to misconceive its basic purpose. Leaving to one side 
Glass’s view that meta- analysis is an approach to evaluative research, 
I have suggested previously that the basic purpose of meta- analysis 
is to assist in the detection of empirical phenomena. This impor-
tant part of scientific discovery is quite different in kind from the 
related kind of discovery that involves the construction of theories 
to explain the phenomena. Being different types of scientific discov-
ery, they essentially make use of quite different research methods. 
Exploratory and confirmatory data analytic methods figure promi-
nently in the process of phenomena detection. By contrast, abduc-
tive research methods are designed to help in the construction of 
explanatory theories (Haig, 2005, 2014). I have more to say about 
these two different types of discovery in the next section.

Sohn (1996) advances an extended argument that he believes 
discredits the idea that meta- analysis is a vehicle of scientific dis-
covery. He presents the argument in summary form as follows:

The literature is not a surrogate for nature, and literature study 
is not a substitute for nature study. Furthermore, the activity 
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of the empirical scientist is of a fundamentally different kind 
from that of the literature reviewer. The published literature 
of psychology, because of publication bias, is a catchment for 
Type I errors, which are of two kinds, honest and dishonest. 
Efforts to obtain information about nature from this litera-
ture are likely to fail, if for no other reason, because of Type 
I errors. When a scientific proposition is true, this fact will be 
discernable, to the scientists working in the area, in the find-
ings of empirical research. In such a case, a literature review 
will be redundant. Proposals for mitigating the effects of pub-
lication bias are difficult to assess and introduce complica-
tions not found in empirical science. None of these proposals 
has considered the problem of dishonest Type I errors, those 
due to researcher cheating. . . . In . . . the case of science [the 
process of seeking truth] is self- correcting. .  .  . The process 
of literature review, however, is not self- correcting. (p. 135)

Here Sohn challenges the assumption of meta- analysts that the 
research literature contains information about nature that can be 
mined by meta- analytic studies. This assumption, he maintains, 
takes the literature as a proxy for nature. However, Sohn reasons 
that because the primary literature in psychology contains a sig-
nificant amount of Type I  error resulting from the regular and 
improper use of tests of statistical significance, and is therefore not 
an accurate reading of nature, meta- analysis cannot take the results 
of primary studies at face value. In fact, the situation is worse than 
this, for many studies that do not reach an acceptable level of sta-
tistical significance are filed away in the drawers of researchers (the 
so- called file drawer problem; Rosenthal, 1979).

Sohn is well aware that meta- analytic methodology has resources 
designed to mitigate the effects of the publication bias just noted. 
He asserts that these are difficult to assess but he does not pursue 
the matter. However, without an attempt to consider the effective-
ness of the methods for correcting publication bias, his argument 
on this point carries little weight. Instead, Sohn expresses the 
general worry that tests for publication bias introduce a factor of 
uncertainty that does not exist for good primary research. This it 
does, but publication bias is not the only source of research bias, 
and primary studies are subject to a range of different biases, such 
as investigator bias, sample bias, confirmation bias, and reviewer 
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bias (Schmidt & Hunter, 2015). And, these biases bring with them 
their own uncertainties.

Regarding the matter of uncertainty in science more generally, it 
should be said that science is constantly concerned with identify-
ing, estimating, and controlling for ignorance and uncertainty and 
coping with the ensuing levels of doubt. This is inevitable because 
science is undertaken by fallible agents who work in imperfect 
institutions with limited, but useful, methods to help them study 
complex subject matters. Whatever their limitations, methods 
that correct for publication and other forms of bias are methods 
devised to help deal with these sources of uncertainty.

Because of space limitations, I have only traced the broad con-
tours of Sohn’s case against the worth of meta- analysis as a means 
of scientific discovery. However, I believe that Sohn’s arguments 
against meta- analysis as a means of scientific discovery are not 
convincing.

Meta- Analysis and Phenomena Detection

As noted at the beginning of the chapter, meta- analysis is an 
approach to data analysis that involves quantitative analysis of 
the data analyses of primary empirical studies. By calculating 
effect sizes across primary studies in a common domain, meta- 
analysis helps us detect “ubiquitous positive effect[s] ” (Schmidt, 
1993, p. 1164) (or more accurately, general positive effects). As 
such, it is a prominent example of a distinctive use of statisti-
cal methods by behavioral scientists to engage in the process of 
phenomena detection. By using statistical methods to detect the 
existence of robust empirical regularities (the most common type 
of phenomena), meta- analysis can in fact be usefully viewed as 
a statistical approach to constructive replication. Constructive 
replication is undertaken to establish the extent to which find-
ings hold across different methods, treatments, and occasions. 
It is a triangulation strategy employed to establish the gener-
alizability of results identified by direct replication. Although 
meta- analysis is used quite widely in evaluation research and is 
thought by some to do explanatory work, it is in the descriptive- 
cum- generalizing role just mentioned that it currently performs 
its most important work in science. Contrary to the claims made 
by some of the critics mentioned previously, meta- analysis can be  
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regarded as a legitimate, and important, means of detecting empir-
ical phenomena in the behavioral sciences (Gage, 1996). I briefly 
refer to the achievements of meta- analysis when considering the 
matter of scientific progress in psychology in the next section.

It is worth remarking at this point that, although meta- analysis 
can be considered a form of constructive replication, this should 
not be taken as sufficient grounds for thinking that there is not a 
major problem with replication in psychology. In response to the 
many expressions of concern that there is a dearth of replication 
studies in psychology, Schmidt and Oh (2016) counter that many 
primary research studies are in fact being replicated because they 
are included in meta- analyses, which are themselves replica-
tions. Instead, they think that publication bias, and questionable 
research practices, such as selectively reporting p values, are the 
real problem. I think that Schmidt and Oh are correct in claiming 
that meta- analyses do provide us with conceptual replications, 
a point that is seldom made. However, the major problem with 
their line of argument is that it discounts the importance of direct 
replications in science, which are undertaken to duplicate the 
sampling and experimental procedures of the original research 
to confirm their findings. Importantly, close replication is a desir-
able, often necessary, precursor to constructive replication (Haig, 
2014). It is the paucity of direct replications in psychology that 
forms the basis for the claim that psychology has a replication 
problem.

Meta- Analysis and Scientific Explanation

Given that the detection of empirical phenomena and the con-
struction of explanatory theories are quite different research 
undertakings, which generally employ different types of methods, 
the suggestion that meta- analysis can directly contribute to the 
construction of explanatory theory (Cook et al., 1992; Schmidt, 
1993)  is a surprising methodological claim. In approving this 
extension of meta- analysis beyond a concern with phenomena 
detection, Schmidt (1993) acknowledges that scientific explana-
tion normally involves the causal explanation of observed phe-
nomena. Nevertheless, he maintains that it is appropriate to regard 
scientific explanation to include “all research processes that can 
contribute ultimately to theory building, including the first step of 
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determining what the relationships are among important variables 
or constructs and how stable these relationships are” (p.  1164). 
Thus, the demonstration of a general effect, such as the perva-
sive influence of psychoeducational treatments on adult surgical 
patients, is deemed a meta- analysis at the “lowest level of expla-
nation.” On the other hand, the use of meta- analysis to test com-
peting theories of how patients cope with the stress of surgery is 
viewed as higher level explanatory meta- analysis.

However, this attempt to extend the role of meta- analytic meth-
ods beyond that of phenomena detection really is something of 
a sleight of hand, whose semblance of plausibility derives from 
playing fast and loose with the relationship between phenomena 
detection and scientific explanation. As we have seen in the previ-
ous section of this chapter, Schmidt’s (1993) “ubiquitous positive 
effects” are empirical phenomena, and statements about phenom-
ena are the objects, or targets, of scientific explanation; they are 
not the explanations themselves. The question What do statements 
of empirical phenomena explain? wants for a sensible reply. This 
is not surprising because the successful detection of phenomena 
is essentially a descriptive achievement that involves investigative 
practices that are, for the most part, quite different from explana-
tory endeavors. Typically, the methods used in phenomena detec-
tion are statistical in kind.

By contrast, scientific explanation is often mechanistic in 
nature (e.g., Bechtel & Abrahamsen, 2005; Salmon, 1984). That 
is to say, explanation requires the identification of the causal 
mechanisms that underlie and give rise to empirical phenomena, 
along with a detailing of the ways in which those mechanisms 
produce the phenomena we seek to understand. Determining 
predictive success is, of course, a common strategy for evaluating 
scientific theories, and it is true that testing explanatory theories 
by using meta- analytic methods can provide one with a meas-
ure of the predictive success of theories. However, in this role 
meta- analysis is not directly concerned with their explanatory 
adequacy. Meta- analysis itself is not an explanatory approach 
to theory evaluation (Chow, 1987). To employ meta- analysis to 
assist in the predictive testing of an explanatory theory does not 
thereby confer an explanatory role on meta- analysis itself; one 
does not properly assign status simply on the basis of associa-
tion. To repeat, when Schmidt (1993) calls phenomena detection 
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explanation, he conflates a methodological distinction of funda-
mental importance.

With meta- analysis in mind, a question worth asking at this point 
is, Has psychology made good progress in its quest to detect empiri-
cal phenomena? Some psychologists doubt that this is so. For exam-
ple, Gergen (1973) maintains that the behavioral sciences deal with 
facts that are often nonrepeatable, and that, at best, these sciences 
produce generalizations that hold for a limited time only because 
they are invalidated by cultural and historical factors. Partly for 
this reason, he distrusts meta- analysis as a basis for claiming that 
empirical generalizations exist (Gergen, 1994). Relatedly, Cronbach 
(1975) believes that the interactive complexity of psychology’s sub-
ject matter ensures that its generalizations have a short half- life. 
Furthermore, Lykken (1991) argues that psychology has made poor 
empirical and theoretical progress and, with respect to the former, 
contends that many of its empirical findings fail to replicate (a mat-
ter that is currently a topic of much empirical research and debate).

In the face of negative assessments such as these, Gage (1996) 
counters that the results of meta- analysis include an array of stable, 
and robust, first- order and interaction effects that support the con-
clusion that the behavioral sciences have detected numerous empir-
ical phenomena worthy of theoretical explanation. Furthermore, 
Hedges (1987) provides an example of one type of study that is 
needed to make informed judgments about empirical progress in 
psychology. He shows that a comparison of the empirical consist-
ency of the results of replicated exemplary experiments in physics 
and psychology, which use the same numerical methods, reveals 
a similar degree of empirical cumulation. This is a piece of knowl-
edge about empirical progress in psychology that challenges pop-
ular opinion. Importantly, Hedges distinguishes between empirical 
and theoretical cumulativeness and appropriately notes that any 
deficiency in theory in the social and behavioral sciences would 
not seem to be the result of the inability of those disciplines to rep-
licate experiments under good conditions.

As noted in Chapter 3, psychology’s heavy reliance on its own 
interpretation of null hypothesis significance testing is an inde-
fensible practice. Orlitzky (2012) constructively recommends a 
package of reforms designed to help to overcome this problem. 
One of these reforms involves placing greater emphasis on abduc-
tive research methods, which are concerned with explanatory 
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inference. Although I strongly endorse this suggestion (Haig, 2005, 
2014), I think that Orlitzky’s understanding of the role of abduc-
tion in a number of research methods is either unclear or confused. 
My primary purpose in this section of the chapter is to consider 
what role, if any, abduction has in meta- analysis. However, before 
doing so, I briefly comment on two other methods that Orlitzky 
believes directly involve abductive reasoning.

Orlitzky (2012) takes the methods of exploratory data analy-
sis and computer- intensive resampling to be basically abductive in 
nature. Regarding exploratory data analysis, the method is, as its 
name implies, data analytic in character. It performs no explana-
tory role. As noted in Chapter 2, exploratory data analysis involves 
descriptive, and frequently quantitative, detective work designed 
to reveal structure, or patterns, in the data. For this reason, I do 
not think it can be considered an abductive, or explanatory, under-
taking in any interesting sense of the term. In Chapter 2, I made 
this very point against Behrens, Dicerbo, Yel, and Levy’s (2013) 
treatment of exploratory data analysis.

Similarly, computer- intensive resampling methods serve a data 
analytic purpose, not an explanatory one. They are confirmatory 
procedures designed to check the reality of the patterns revealed 
by exploratory data analysis. As such, they enable one to adopt the 
“just checking” strategy of close replication; they do not directly 
contribute to explanatory research. In this descriptive, confirma-
tory role, they can be seen as part of the overall process of detecting 
empirical phenomena. As has been emphasized at several places 
in this book, this process is quite different from building explan-
atory theories. Such theories are often introduced to understand 
empirical phenomena, and the type of reasoning involved in their 
construction is abductive in nature.

Is meta- analysis essentially an abductive method? Orlitzky 
thinks that it can be abductive in nature, although it need not be. 
I disagree. Orlitzky makes his case by taking the argument schema 
for existential abductive inference that I laid out in my characteri-
zation of exploratory factor analysis in Chapter 3 and instantiating 
it with the following meta- analytic example:

The surprising empirical phenomenon of regulari-
ties . . . between corporate, social and financial performance 
is identified. If corporate social performance helps build 
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corporate legitimacy and reputation  .  .  .  and thus reduces 
business risk, . . . and if we can have some confidence in the 
reliability and validly of measures of corporate social perfor-
mance, . . . then the observed phenomenon would follow as 
a matter of course. Hence, there are grounds for judging the 
risk- reputation hypothesis to be initially plausible and wor-
thy of further pursuit. (Orlitzky, 2012, p. 205)

In the second premise of this schema, Orlitzky inserts informa-
tion about the causal hypothesis of risk reputation that explains the 
empirical phenomenon described in the first premise. However, 
I fail to see how the explanatory information contained in the 
risk- reputation hypothesis can be generated directly by the use 
of meta- analytic techniques. Instead, I believe that it is gained 
by abductively hypothesizing plausible causes, without directly 
employing the resources of meta- analysis to do so. Even so- called 
explanatory meta- analysis (Cook et al., 1992) contains no explicit 
abductive methodology. The fact of the matter is that meta- ana-
lytic techniques are suited for identifying empirical phenomena (a 
point Orlitzky acknowledges), whereas explanations for phenom-
ena are fashioned abductively, with or without the help of codified 
abductive methods for doing so.

Conclusion

The currently popular practice of conducting meta- analytic 
reviews of empirical studies has been examined in respect of some 
of its conceptual foundations. My examination began by presenting 
and evaluating Glass’s little- known rationale for employing meta- 
analysis to conduct evaluative, as opposed to scientific, research. 
Glass’s strong distinction between scientific and evaluative inquiry 
was found wanting, although meta- analysis was judged to be suit-
able for evaluative inquiry. The major negative consequence of 
drawing this hard- and- fast distinction was that it prevented Glass 
from appreciating that meta- analysis has a major role in help-
ing scientific researchers establish empirical phenomena. David 
Sohn’s extended argument that meta- analysis is not a vehicle for 
scientific discovery was then examined. It was found wanting for 
a number of reasons, including Sohn’s reluctance to back up key 
assertions about challenges to meta- analysis, such as correcting for 
publication bias.
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The remainder of the chapter focused primarily on the role of 
meta- analysis in detecting empirical phenomena and construct-
ing explanatory theories. The question of whether meta- analysis 
as a direct role in the construction of explanatory theories was 
answered in the negative. The importance of the distinction 
between phenomena detection and theory construction was reaf-
firmed, with each endeavor being shown to have quite different 
roles and employ different methods, in scientific inquiry. Relatedly, 
Orlitzky’s claim that meta- analysis can be a vehicle for abductive 
reasoning was judged to be implausible.

More work on the philosophical foundations of meta- analysis 
is clearly needed, although the further reading suggested next 
contains conceptual work not dealt with in this chapter. However, 
from this selective examination of its conceptual foundations, it 
can be concluded that meta- analysis receives its primary justifi-
cation in scientific research by articulating one important way in 
which researchers can fashion empirical generalization from the 
findings of primary studies. Its value in this role stems directly 
from the importance accorded the goal of phenomena detection 
in science.

Further Reading

Gene Glass is the lead author of the first book published on the methodology of 
meta- analysis (Glass, G. V., McGaw, B., & Smith, M. L., Meta- analysis for social 
science. Beverly Hills, CA: Sage, 1981).

Glass contrasts the distinction between scientific and evaluative inquiry in his 
(1972) article, “The Wisdom of Scientific Inquiry on Education” (Journal of 
Research in Science Teaching, 9, 3– 18, 1972). In his later article with Reinhold 
Kliegl, he defends the basic tenets of his approach by considering a number 
of issues in the philosophy of science. See their “An Apology for Research 
Integration in the Study of Psychotherapy” (Journal of Consulting and Clinical 
Psychology, 51, 28– 41, 1983).

The third edition of Frank Schmidt and John Hunter’s book Methods of Meta- 
analysis:  Correcting Error and Bias on Research Findings (Los Angeles, 
CA: Sage, 2015) represents an important, and somewhat different, approach 
to meta- analysis, whose initial development began at about the same time as 
Glass began his work on the topic.

Schmidt’s view of the nature of psychological science and the important role of 
meta- analysis within it is adumbrated in the following two articles:  “What 
Do Data Really Mean? Research Findings, Meta- analysis, and Cumulative 
Knowledge in Psychology” (American Psychologist, 47, 1173– 1181, 1992); and, 
with I.- S. Oh, “The Crisis of Confidence in Research Findings in Psychology: Is 
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Lack of Replication the Real Problem? Or Is It Something Else?” (Archives of 
Scientific Psychology, 4, 32– 37, 2016).

Michael Borenstein et  al.’s Introduction to Meta- analysis (Chichester, 
England: Wiley, 2009) is a comprehensive and informative treatment of meta- 
analysis that stresses a conceptual understanding of the topic written by four 
experts on meta- analysis.

Larry Hedges has been a major contributor to the development of the statistical 
foundations of meta- analysis. His book with Ingram Olkin, Statistical Methods 
for Meta- analysis (Orlando, FL: Academic Press, 1985), remains the authorita-
tive source on its statistical foundations.

An informative historical perspective on the impact and origins of meta- analysis 
in the social sciences is William Shadish and Jesse Lecy’s, “The Meta- analytic 
Big Bang” (Research Synthesis Methods, 6, 246– 264, 2014).

Hans J. Eysenck was one of the most vociferous critics of meta- analysis. See his, 
“Meta- analysis: An Abuse of Research Integration” (Special Education, 18, 41– 
59, 1984) for an extended critique of the methodology. Eysenck contends that 
meta- analysis fails to objectively determine empirical facts and that it ignores 
the overriding importance of theory in science.

The philosopher of science, Edward Erwin, examines a number of conceptual 
and epistemological issues that arise from the use of meta- analysis to evaluate 
the effectiveness of psychotherapy. See his, “Establishing Causal Connections; 
Meta- analysis and Psychotherapy” (Midwest Studies in Philosophy, 9, 421– 436, 
1984). Erwin argues that meta- analysis alone cannot solve all the problems 
that arise in integrating findings from multiple studies.

Another philosopher of science, Jacob Stegenga, criticizes meta- analysis for 
being insufficiently intersubjective in its assessments of hypotheses. Because 
of this lack of objectivity, he believes that the epistemic prominence given to 
meta- analysis is unjustified. See his, “Is Meta- analysis the Platinum Standard 
of Evidence?” (Studies in History and Philosophy of Biological and Biomedical 
Sciences Part C, 42, 497– 507, 2011).

David Sohn’s, “Meta- analysis and Science” (Theory and Psychology, 6, 229– 246, 
1995)  challenges the claim that meta- analysis can make discoveries about 
nature. This chapter evaluates Sohn’s main argument against meta- analysis.

Regan Shercliffe, William Stahl, and Megan Tuttle, in their “The Use of Meta- 
analysis in Psychology: Superior Vintage or the Casting of Old Wine in New 
Bottles?” (Theory & Psychology, 19, 413– 430, 2009), challenge the widely held 
view that meta- analysis is superior to other approaches to literature reviews, 
such as narrative reviews. They suggest that all forms of literature review have 
their strengths and limitations and argue for the importance of theory in 
deciding which topics to review and the best approach to adopt.
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6
Exploratory Factor 
Analysis

Factor analysis and component analysis are two broad classes 
of procedures that share a common goal:  to reduce a set p 
observed variables to a set of m new variables (m < p).

— W. F. Velicer and D. N. Jackson, 1990

Exploratory factor analysis is an abductive method for formu-
lating hypotheses using the common cause principle, but also 
to be used along with confirmatory factor analysis, which tests 
hypotheses.

— S. A. Mulaik, 2010

Introduction

Factor analysis is an important family of multivariate statistical 
methods that is widely used in the behavioral and social sciences. 
It is also employed to some extent in the biological and physical 
sciences. The best known model of factor analysis is common fac-
tor analysis, which has its origins in Charles Spearman’s (1904) 
pioneering work on the nature of general intelligence. With com-
mon factor analysis, each “observed” or manifest variable in a set 
of manifest variables is a linear function of one or more latent 
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common factors and one unique factor. There are two main types 
of common factor analysis:  exploratory factor analysis (EFA) 
and confirmatory factor analysis (CFA). EFA is used to investi-
gate the underlying structure of correlations among observed or 
manifest variables. The goal of EFA is to describe this structure in 
an economical manner by hypothesizing a small number of fac-
tors or latent variables that are thought to underlie and give rise 
to the patterns of correlations in new domains of manifest vari-
ables. Intellectual abilities, personality traits, and social attitudes 
are well- known classes of latent variables that are the products of 
factor analytic research. EFA is in effect a method that facilitates 
the generation of hypotheses or theories that explain patterns of 
correlations. By contrast, CFA formulates theories about the latent 
factors and how they relate to the manifest variables and then tests 
their structure. CFA has become more prominent in factor analytic 
studies than EFA, though EFA continues to be widely used.

Despite the advanced statistical state and regular use of EFA, 
debate about its basic nature and worth continues. Regarding 
its nature, many factor analytic methodologists take EFA to be a 
method for hypothesizing latent variables to explain patterns of 
correlations. However, some take it to be a method of data reduc-
tion that provides an economical description of correlational data. 
Further, with the advent of CFA and full structural equation mod-
eling, the prominence of EFA in multivariate research has declined. 
Today, methodologists and researchers often recommend and 
employ CFA as the method of choice in factor analytic studies.

The major goal of this chapter is to examine the conceptual 
foundations of EFA and argue for the view that it is properly 
construed as a method for generating rudimentary explanatory 
theories. In the first half of the chapter, I contend that EFA is an 
abductive method of theory generation that exploits an important, 
but underappreciated, principle of scientific inference known as 
the principle of the common cause. It is surprising that this charac-
terization of the inferential nature of EFA rarely figures explicitly in 
the factor analytic literature because it contributes in an important 
way to its abductive nature, and it coheres well with the generally 
accepted view of EFA as a latent variable method. In the second 
half of the chapter, I discuss a number of additional methodolog-
ical issues that arise in critical discussions of EFA. In particular, 
I argue that the principle of the common cause supports a realist, 
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not an instrumentalist, interpretation of factors; that factorial 
theories have genuine, albeit modest, explanatory merit; that the 
methodological challenge of factor indeterminacy can be satisfac-
torily met by EFA; that EFA can in fact discover causes; that EFA 
is quite different from principal components analysis (PCA); and 
that as a useful method of theory generation, EFA can be profit-
ably employed in tandem with CFA and other methods of theory 
evaluation. I conclude that, if understood and used properly, EFA 
serves as a useful generator of rudimentary explanatory theories.

Exploratory Factor Analysis and Scientific Inference

The Nature of Abductive Inference

Abduction is a form of reasoning involved in the generation and 
evaluation of explanatory hypotheses and theories. In recent 
decades, developments in the fields of philosophy of science, 
artificial intelligence, and cognitive science (e.g., Josephson & 
Josephson, 1994; Magnani, 2001; Thagard, 1988, 1992) have sig-
nificantly advanced our understanding of abductive reasoning. It 
is now known that there are a number of different ways in which 
explanatory hypotheses can be abductively obtained. For example, 
in focusing on the generation of hypotheses, Thagard (1988) help-
fully distinguishes between existential abduction, which hypoth-
esizes the existence of previously unknown objects or properties, 
and analogical abduction, which employs successful past cases of 
hypothesis generation to form new hypotheses similar to relevant 
existing ones. The next section suggests that existential abduction 
is the type of abduction involved in the factor analytic production 
of explanatory hypotheses, although analogical abduction also is 
sometimes employed in this regard.

It is common for philosophers to characterize abduction in 
terms of the logical form of an argument. This can be done as 
follows:

The surprising empirical phenomenon, P, is detected.
But if hypothesis H were approximately true, and the relevant 

auxiliary knowledge A were invoked, then P would follow as 
a matter of course.

Hence, there are grounds for judging H to be initially plausible 
and worthy of further pursuit.
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This characterization of an abductive argument accommodates 
the following important features of science: It is typically empiri-
cal phenomena, not data, that hypotheses are produced to explain, 
the role of background knowledge is needed for the derivation of 
hypotheses, a regulative role should be assigned to truth, and ini-
tial plausibility assessments feature centrally in the generation and 
development of new knowledge.

Exploratory Factor Analysis and Abductive Inference

We turn now to consider the claim that EFA is most fundamentally 
an abductive method of theory generation. As noted, existential 
abductions in science often hypothesize the existence of entities 
previously unknown to us. The innumerable examples of existen-
tial abduction in science include the initial postulation of entities 
such as atoms, phlogiston, viruses, tectonic plates, Spearman’s 
g, habit strength, and extraversion. We now know that some of 
these entities exist, that some of them do not exist, and that we are 
unsure about the existence of others. In cases like these, the initial 
abductive inferences are made to claims primarily about the exist-
ence of theoretical entities to explain empirical facts or phenom-
ena. Thus, in the first instance, the hypotheses given to us through 
the use of EFA do little more than postulate the existence of the 
latent variables in question. They say little about their nature and 
function, and it remains for further research to elaborate on the 
first rudimentary conception of these variables.

The factor analytic use of existential abduction to infer the exist-
ence of the theoretical entity g can be coarsely reconstructed in 
accord with the previous schema for abductive inference along the 
following lines:

The surprising empirical phenomenon known as the positive 
manifold is identified.

If g exists, and it is validly and reliably measured by a Wechsler 
intelligence scale (or some other objective test), then the pos-
itive manifold would follow as a matter of course.

Hence, there are grounds for judging the hypothesis of g to be 
initially plausible and worthy of further pursuit.

It was remarked previously that the factor analytic generation of 
hypotheses is sometimes a mixture of existential and analogical 
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abduction, where we simultaneously posit the existence of a latent 
variable and offer the beginnings of a characterization of that entity by 
brief analogy to something that we understand quite well. Recall that 
analogical abduction appeals to known instances of successful abduc-
tive hypothesis formation to generate new hypotheses like them.

To accommodate the presence of analogical abduction, the 
abductive argument schema just given would need an additional 
premise that indicates there is reason to believe that a hypothesis 
of the appropriate kind would explain the positive manifold. When 
Charles Spearman first posited general intelligence to explain cor-
related performance indicators, he thought of it as mental energy, 
likening it to physical energy— a process well understood by the 
physics of the time. His initial inference to claims about g, then, 
was a blend of existential and analogical abduction.

This example serves to illustrate the point that methodologists 
should take the method of EFA proper to include the factor analyst’s 
substantive interpretation of the statistical factors. In this regard, 
it is important to realize that the exploratory factor analyst has to 
resort to his or her own abductive powers when reasoning from cor-
relational data patterns to underlying common causes. This point 
can be brought out by noting that the schema for abduction, and its 
application to the factor analytic generation of Spearman’s hypothe-
sis of g, are concerned with the form of the arguments involved and 
not with the actual generation of the explanatory hypotheses. In 
each case, the explanatory hypothesis is given in the second prem-
ise of the argument. An account of the genesis of the explanatory 
hypothesis must therefore be furnished by some other means. It 
is plausible to suggest that reasoning to explanatory hypotheses 
trades on our evolved cognitive ability to abductively generate 
such hypotheses. The modern originator of abductive inference, 
Charles Peirce, maintains that the human ability to engage read-
ily in abductive reasoning was founded on a guessing instinct that 
has its origins in evolution. More suggestively, Carruthers (2002) 
claims that our ability to engage in explanatory inference is almost 
certainly largely innate, and he speculates that it may be an adapta-
tion selected for because of its crucial role in the fitness- enhancing 
activities of our ancestors, such as hunting and tracking. Whatever 
its origin, an informative methodological characterization of the 
abductive nature of factor analytic inference must appeal to the sci-
entist’s own psychological resources as well as those of logic. It is a 
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tenet of realist methodology that a full characterization of knowl-
edge production must make reference to the knowing subject.

Before leaving consideration of the general abductive nature of 
EFA, it should be briefly noted that there are a number of special 
features of EFA that play an important role in facilitating the abduc-
tive generation of hypotheses. To take one example, simplicity, or 
parsimony, is an important desideratum in fashioning scientific 
explanations, and Thurstone’s (1947) criteria for simple structure 
combine in an explicit formulation of parsimony in EFA. Stated in 
the distinctive language of factor analysis, Thurstone’s insight was 
to appreciate that rotation to the oblique simple structure solution 
provided an objective basis for acceptable terminal factor solutions 
that included reference to latent as well as manifest variables.

The Principle of the Common Cause

It is now time to consider the important methodological princi-
ple that drives and shapes the nature of the existential abductive 
inference involved in EFA. It is well known that EFA is a common 
factor analytic model in which the latent factors it postulates are 
referred to as common factors. Not surprisingly, these factors are 
often understood, and sometimes referred to, as common causes. 
Yet, seldom have factor analytic methodologists attempted to for-
mulate a principle, or maxim, of inference that guides the reason-
ing to common causes. There is, however, an important principle 
of scientific inference, known in philosophy of science as the prin-
ciple of the common cause, that can be used to good effect here. In 
what follows, I discuss the principle of the common cause and then 
spell out its central role in EFA. This principle drives and shapes 
the nature of the existential abductive inference involved in EFA.

The principle of the common cause has received some consider-
ation in the philosophical literature and occasionally appears to be 
tacitly employed in behavioral research. However, it has been widely 
ignored in general scientific methodology. In explicitly introducing 
the idea of the principle of the common cause, Hans Reichenbach 
(1956) was concerned to capture the idea that if two events, A and B, 
are correlated, then one might be the cause of the other. Alternatively, 
they might have a common cause C, where this cause always occurs 
before the correlated events. Reichenbach was the first to make this 
idea precise, and he did so by formulating it as a statistical problem. 
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He suggests that the common cause C is said to “screen off ” the 
correlation between A and B, when A and B are uncorrelated, con-
ditional upon C. A common cause screens off each effect from the 
other by rendering its correlated effects (conditionally) probabilisti-
cally independent of each other. For example, given the occurrence 
of a flash of lightning in the sky, a correlation between two people 
apparently observing that flash not only is a coincidence, but also 
is due to the flash of lightning being a common cause. Further, the 
probability of one person seeing the flash of lightning, given that it 
does occur, is not affected by whether the other person observes the 
lightning flash. Reichenbach’s principle of the common cause can 
thus be formulated succinctly as follows: “Simultaneous correlated 
events have a prior common cause that screens off the correlation.”

Later work (Arntzenius, 1993; Salmon, 1984; Sober, 1988) sug-
gests that Reichenbach’s formulation of the principle needs to be 
amended in a number of ways. First, not every improbable coin-
cidence, or significant correlation, has to be explained through a 
common cause. For this reason, the principle is sometimes taken 
to say, “If an improbable co- incidence has occurred, and there is no 
direct causal connection between the coincident variables, then one 
should infer a common cause.” However, this amendment does not 
go far enough, for there are a number of other possible alternative 
causal interpretations of correlations. For example, two correlated 
variables might be mediated by an intervening cause in a devel-
opmental sequence, or they might be the result of separate direct 
causes, and so on. Plausible inference to a common cause must rule 
out alternative causal interpretations like these. We may, therefore, 
further amend Reichenbach’s formulation of the principle as fol-
lows: “Whenever two events are improbably, or significantly, corre-
lated, we should infer a common cause unless we have good reason 
not to.” Clearly, the principle should not be taken as a hard- and- fast 
rule, for, in many cases, proper inferences about correlated events 
will not be of the common causal kind. The qualifier “unless we 
have a good reason not to” should be understood as an injunction to 
consider causal interpretations of the correlated events other than 
common causes. Also, there will be occasions when it is incorrect to 
draw any sort of causal conclusion. Some correlations are accidental 
correlations that are not brought about by causes.

The existence of different attempts to improve on Reichenbach’s 
(1956) initial formulation of the principle of the common cause 
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suggests that there might be more than one acceptable version of 
the principle. We might expect this to be the case because differ-
ent subject matters in different domains might well require dif-
ferent formulations of the principle. For example, Reichenbach, a 
philosopher of physics, took the principle to apply to correlated 
events that are spatially separated. However, social and behavioral 
scientists regularly infer common causes for events that are not 
spatially separated. This is clearly the case if the correlated vari-
ables are performance measures on tests of intelligence and per-
sonality. Further, Sober (1988) argues that in evolutionary theory, 
phylogenetic inference to common ancestry involves postulating a 
common cause, but this will be legitimate only if certain assump-
tions about the process of evolution are true. Thus, in formulating 
a principle of the common cause in a way that can be used effec-
tively in a given domain, relevant contingent knowledge about that 
domain will shape the formulation of the principle and moderate 
its use. Routine use of a fixed, general formulation of the principle 
of the common cause that reasons from correlational data alone is 
unlikely to lead consistently to appropriate conclusions.

Two related features of the principle of the common cause 
should also be acknowledged:  As Salmon (1984) has observed, 
the principle is sometimes used as a principle of explanation (we 
appeal to common causes to explain their correlated effects), and 
it is sometimes used as a principle of inference (we use the prin-
ciple to reason to common causes from their correlated effects). 
The principle of the common cause is a form of abductive infer-
ence where one reasons from correlated events to common causes 
thought to explain those correlations. Thus, we should go further 
than Salmon and claim that the principle of the common cause 
simultaneously combines these explanatory and inferential fea-
tures to yield explanatory inferences.

Exploratory Factor Analysis and the Principle  
of the Common Cause

It is sometimes said that the central idea in factor analysis is that 
the relations between a large number of observed variables are 
the direct result of a smaller number of latent variables. McArdle 
(1996) maintains that this is a theoretical principle employed in 
empirical research to identify a set of underlying factors. However, 
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although true of EFA, this principle does not constrain factor ana-
lysts to infer the common latent factors that are the appropriate 
outcome of using common factor analysis. For this to happen, the 
principle has to be linked to the principle of the common cause 
or recast in more specific methodological terms in accordance 
with that principle. The principle of the common cause not only 
directs one to infer common causes, but also it assumes that those 
inferences will be to relatively few common causes. Reichenbach’s 
(1956) original formulation of the principle, which allows infer-
ence to just one common cause, is obviously too restrictive for 
use in multiple factor analysis. However, amending the principle 
to allow for more than one common cause, combined with the 
restraint imposed by following Ockham’s razor (do not multiply 
entities beyond necessity), will enable one to infer multiple com-
mon causes without excess.

Although EFA is used to infer common causes, expositions of 
common factor analysis that explicitly acknowledge the impor-
tance of the principle of the common cause are difficult to find. 
Kim and Mueller’s (1978) basic exposition of factor analysis is a 
noteworthy exception. In discussing the conceptual foundations 
of factor analysis, these authors evince the need to rely on what 
they call the postulate of factorial causation. The postulate of fac-
torial causation is characterized by them as “the assumption that 
the observed variables are linear combinations of underlying fac-
tors, and that the covariation between observed variables is solely 
due to their common sharing of one or more of the common fac-
tors” (p.  78). The authors make clear that the common factors 
mentioned in the assumption are to be regarded as underlying 
causal variables. Taken as a methodological injunction, this pos-
tulate functions as a variant of the principle of the common cause. 
Without appeal to this principle, factor analysts could not identify 
the underlying factor pattern from the observed covariance struc-
ture. It should be noted, further, that in his examination of the 
philosophical foundations of factor analysis, Yu (2006) explicitly 
discusses the important role of the principle of the common cause 
in the method.

Two features of the principle of the common cause that make it 
suitable for EFA are that it can be applied if we do not know how 
likely it is that the correlated effects are due to a common cause (this 
feature is consistent with the views of Reichenbach [1956], Salmon 
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[1984], and Sober [1988] on common causal reasoning) and also 
in situations where we are essentially ignorant of the nature of the 
common cause. The abductive inference to common causes is a 
basic explanatory move that is nonprobabilistic, and qualitative, 
in nature. It is judgments about the soundness of the abductive 
inferences, not the assignment of probabilities, that confer initial 
plausibility on the factorial hypotheses spawned by EFA.

It is important to appreciate that the principle of the common 
cause does not function in isolation from other methodological 
constraints. Embedded in EFA, the principle helps to limit existen-
tial abductive inference to those situations where we reason back 
from correlated effects to one or more common causes. Although 
covariation is an important basic datum in science, not all effects 
are expressed as correlations, and, as noted previously, not all 
causes are of the common causal variety. It follows from this that 
researchers should not always expect common causal interpreta-
tions of multivariate data for there are numerous alternative latent 
variable models. The simplex model of latent variables is a case 
in point (e.g., Mulaik & Millsap, 2000). Further, the frequency of 
the proper use of EFA should be much less than the frequency of 
proper use of the principle of the common cause because the prin-
ciple can be employed by non– factor analytic means.

In this first half of the chapter, it was argued that an appeal to 
abductive inference, linked to the principle of the common cause, 
leads naturally to the view that EFA is an abductive method of the-
ory generation that enables researchers to theorize the existence of 
latent variables. Although this method uses the statistical ideas of 
multiple regression and partial correlation, it does so to facilitate 
inferences to the latent variables. On the view presented here, EFA 
is glossed as a set of multivariate procedures that help us reason in 
an existentially abductive manner from robust correlational data 
patterns to plausible explanatory prototheories via the principle of 
the common cause.

Fictionalism and the Principle of the Common Cause

In evaluating factor analytic arguments for general intelligence, 
Ned Block (1976) identifies, and critically examines, an assumption 
of factor analysis that he calls the correlation- entails- commonality 
principle. He states the principle informally in these terms: “Insofar 
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as two tests of abilities correlate, this correlation is totally due to 
a common ability measured by both tests” (p. 129). This principle 
is reasonably interpreted as a naïve version of the principle of the 
common cause. However, my purpose here is not to examine the 
naiveté of the principle, but to consider Block’s surprising sugges-
tion that the principle is supported by the doctrine of fictional-
ism. Fictionalism is the part of an instrumentalist view of theories 
that maintains that theoretical terms in science such as electron, 
gene, and g should not be taken as referring to unobserved enti-
ties because entities such as these do not exist. Instrumentalism is 
the antirealist doctrine that scientific theories are neither true nor 
false, but are more or less useful devices for the summary and pre-
diction of empirical relationships.

Applied to EFA, fictionalism dictates that factor constructs do 
not refer to underlying latent causes viewed as theoretical entities. 
Rather, they are summary expressions of the way manifest variables 
covary. However, if fictionalism supports the correlation- entails- 
commonality principle, as Block suggests, and a version of this 
principle is central to factor analysis, as has been argued, then fac-
tor analysis cannot be used by factor analytic researchers to make 
inferences about latent variables. Does this mean, then, that ability 
and trait theorists of realist persuasion such as Spearman, Thurstone, 
Cattell, and Costa and Macrae have misused common factor anal-
ysis in this way? I do not think so for, as a variant of the principle 
of the common cause, the correlation- entails- commonality principle 
should be understood as a scientific principle that sanctions inference 
to common causes, wherever they may lie. In psychology, most of our 
claims about common causes are the result of an explanatory strat-
egy that appeals to latent variables that are thought to reside within 
the organism. The principled empiricist might well look for manifest 
common causes in the environment, but the disadvantage of his or 
her philosophy is that it allows this empiricist to look for them only 
there. The realist, by contrast, can invoke the principle of the com-
mon cause without such ontological restriction and posit latent com-
mon causes if they are thought to reside within the organism. Not 
only does a realist’s use of the principle of the common cause enable 
factor analysts to extend their referential reach to latent variables, it 
also bestows a measure of credibility on the associated inferences.

The second half of the chapter defends the realist interpretation 
of EFA presented thus far. As noted in the chapter’s introduction, 
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this is done by attending to a number of methodological criticisms 
that have been made against the method.

Methodological Challenges to Exploratory  
Factor Analysis

The Explanatory Merit of Factorial Theories

One challenge to the interpretation of EFA as an abductive method 
of theory generation is the claim that the theories it produces are 
of little explanatory worth. In countering this criticism, I suggest 
that factorial theories spawned by EFA are essentially dispositional 
in nature, and that dispositional theories do have genuine, though 
limited, explanatory import (Rozeboom, 1984; Sober, 1982). 
Existential abduction, it will be recalled, postulates the existence 
of new entities without being able to characterize their nature. 
Thus, in exploiting this form of abduction, EFA provides us with 
an essentially dispositional characterization of the latent entities it 
postulates.

Dispositional theories provide us with oblique characterizations 
of the properties we attribute to things by way of their presumed 
effects under specified conditions (Mumford, 1998; Tuomela, 
1978). For example, the brittleness of glass is a dispositional prop-
erty causally responsible for the breaking of glass objects when they 
are struck with sufficient force. Our indirect characterization of 
this latent property, brittleness, is in terms of the relevant striking 
and breaking events. Similarly, Spearman’s original theory of g was 
basically dispositional in nature, for g was characterized obliquely 
in terms of children’s school performance under the appropriate 
test conditions.

As noted immediately in the previous material, dispositional 
theories have often been regarded as explanatorily suspect. 
Perhaps the best known, and most frequently cited, example of 
this is Molière’s scoff at explaining the soporific effects of opium 
by appeal to its dormitive power. However, as Rozeboom (1973) 
maintains, “The virtus dormitiva of opium is why people who par-
take of this particular substance become drowsy. Of course, that 
by itself leaves a great deal unknown about this power’s nature, but 
learning of its existence and how to diagnose its presence/ absence 
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in particular cases is a necessary preliminary to pursuit of that 
knowledge” (p. 67).

Similarly with EFA, the existential abductions to latent factors 
postulate the existence of these factors without being able to say 
much, if anything, about their actual nature. It is the job of EFA to 
help us formulate factorial hypotheses and theories about the exist-
ence of those factors, not to develop our understanding of their 
nature. The latter task is undertaken through the use of analogical 
modeling strategies. To expect EFA to develop theories, as well as 
generate them, is to fail to understand its proper role as a generator 
of dispositional theories.

An answer to the question of whether dispositional theories 
are of genuine explanatory worth requires us to focus on whether 
such theories have explanatory power. Two aspects of explanatory 
power that are relevant here are explanatory depth and explan-
atory breadth. For factorial theories, explanatory depth is natu-
rally understood as existential depth. Existential depth is accorded 
those explanatory theories in science that are deep-structural in 
nature. Theories of this sort postulate theoretical entities that are 
different in kind, and hidden, from the empirical regularities they 
are invoked to explain. In postulating theoretical entities, deep- 
structural theories extend our referential reach to new entities and 
thereby increase the potential scope of our knowledge. The facto-
rial theories afforded us by EFA have existential depth because the 
typical products of factor analytic abductions are new claims about 
hidden causal entities that are thought to exist distinct from their 
manifest effects. Existential depth deserves to be considered as an 
explanatory virtue of EFA’s postulational theories.

The other feature of explanatory power, explanatory breadth, is 
a long- standing criterion of a theory’s worth. Sometimes, explana-
tory breadth is understood as consilience, which is often portrayed 
as the idea that a theory explains more of the evidence (a greater 
number of facts) than its competitors. The rudimentary theories of 
EFA do not have consilience in this sense, for they typically do not 
explain a range of facts. And, they are not immediately placed in 
competition with rival theories. However, factorial theories of this 
kind are consilient in the sense that they explain the concurrences 
embodied in the relevant patterns of correlations. By appealing to 
common causes, these factorial theories unify their concurrences 
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and thereby provide us with the beginnings of an understanding 
of why they concur.

The two criteria that comprise explanatory power are not the 
only dimensions of theory appraisal that should be considered 
when submitting a factorial theory to preliminary evaluation. The 
fertility of a theory is also an important evaluative consideration. 
In general terms, this dimension focuses on the extent to which a 
theory stimulates further positive research. It should be noted here 
that although our initial dispositional descriptions of latent factors 
are low in informational content, they do not, or need not, act as a 
heuristic block to further inquiry as some commentators on factor 
analysis suggest. David Lykken (1971), for example, judges latent 
variable explanations from factor analysis to be “stillborn,” whereas 
B.  F. Skinner (1953) declares that they give us false assurances 
about the state of our knowledge. However, given that EFA trades 
in existential abductions, the dispositional ascription of latent 
factors should serve a positive heuristic function. Considered as 
a preliminary to what it is hoped will eventually be full- blooded 
explanations, dispositional ascriptions serve to define the scope of, 
and mark a point of departure for, appropriate research programs. 
Viewed in this developmental light, dispositional explanations are 
inquiry promoting, not inquiry blocking.

The Problem of Underdetermination

The methodological literature on factor analysis has given consid-
erable attention to the indeterminacy of factors in the common 
factor model. Factor indeterminacy arises from the fact that the 
common factors are not uniquely determined by their related 
manifest variables. As a consequence, a number of different com-
mon factors can be produced to fit the same pattern of correlations 
in the manifest variables.

Although typically ignored by factor analytic researchers, factor 
indeterminacy is an epistemic fact of life that continues to chal-
lenge factor analytic methodologists. Some methodologists regard 
factor indeterminacy as a serious problem for common factor 
analysis and recommend the use of alternative methods, such as 
component analysis methods, because they are considered to be 
determinate methods. Others have countered variously that com-
ponent analysis models are not causal models (and therefore are 

 



exPloratory faCtor analysis : 131

131

not proper alternatives to common factor models), that they do 
not typically remain invariant under the addition of new variables, 
and that the indeterminacy of factor scores is seldom a problem in 
interpreting common factor analytic results because factor scores 
do not have to be computed.

One constructive perspective on the issue of factor indetermi-
nacy has been offered by Mulaik and McDonald (McDonald & 
Mulaik, 1979; Mulaik, 1987; Mulaik & McDonald, 1978). Their pos-
ition is that the indeterminacy involved in interpreting the common 
factors in EFA is just a special case of the general indeterminacy of 
theory by empirical evidence widely encountered in science, and 
it should not, therefore, be seen as a debilitating feature that forces 
us to give up on common factor analysis. Essentially, I agree with 
this outlook on the factor indeterminacy issue and discuss it in this 
light. I argue that EFA helps us produce theories that are under-
determined by the relevant evidence, and that the methodological 
challenge that this presents can be met in an acceptable way.

Indeterminacy is pervasive in science. It occurs in semantic, 
metaphysical, and epistemological forms (McMullin, 1995). Factor 
indeterminacy is essentially epistemological in nature. The basic 
idea of epistemological, or more precisely, methodological, inde-
terminacy is that the truth or falsity (better, acceptance or rejec-
tion) of a hypothesis or theory is not determined by the relevant 
evidence (Duhem, 1954). In effect, methodological indeterminacy 
arises from our inability to justify accepting one theory among 
alternatives on the basis of empirical evidence alone. This prob-
lem is sometimes referred to as the underdetermination of theory 
by data and sometimes as the underdetermination of theory by 
evidence. However, because theories are often underdetermined 
by evidential statements about phenomena, rather than data, and 
because evidence in theory appraisal will often be superempirical 
as well as empirical in nature, I refer to the indeterminacy here as 
the underdetermination of theory by empirical evidence (UTEE). 
Construing factor indeterminacy as a variant of UTEE is to regard 
it as a serious problem, for UTEE is a strong form of underdeter-
mination that needs to be reckoned with in science. Indeed, as an 
unavoidable fact of scientific life, UTEE presents a major challenge 
for scientific methodology.

Mulaik (1987) sees UTEE in EFA as involving inductive general-
izations that go beyond the data. I believe that the inductive UTEE 
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should be seen as applying specifically to the task of establishing 
factorial invariance, where one seeks constructive or external rep-
lication of factor patterns. However, for EFA there is also a need 
to acknowledge and deal with the abductive UTEE involved in the 
generation of explanatory factorial theories. The sound abductive 
generation of hypotheses is essentially educated guesswork. Thus, 
drawing from background knowledge, and constrained by cor-
relational empirical evidence, the use of EFA can at best only be 
expected to yield a plurality of factorial hypotheses or theories that 
are thought to be in competition. This contrasts strongly with the 
unrealistic expectation held by many early users of EFA that the 
method would deliver them strongly justified claims about the one 
best factorial hypothesis or theory.

How, then, can EFA deal with the specter of UTEE in the con-
text of theory generation? The answer, I think, is that EFA narrows 
down the space of a potential infinity of candidate theories to a 
manageable subset by facilitating judgments of initial plausibility. 
It seems clear enough that scientists often make judgments about 
the initial plausibility of the explanatory hypotheses and theories 
that they generate. Judgments of the initial plausibility of theories 
are judgments about the soundness of the abductive arguments 
employed in generating those theories. I suspect that those who 
employ EFA as an abductive method of theory generation often 
make compressed judgments of initial plausibility. Initial plausi-
bility may be viewed as a constraint- satisfaction problem. Multiple 
constraints from background knowledge (e.g., the coherence of 
the proposed theory with relevant and reliable background knowl-
edge); methodology (centrally, the employment of EFA on appro-
priate methodological grounds; Fabrigar, Wegener, MacCallum, & 
Strahan, 1999); and explanatory demands (e.g., the ability of fac-
torial theories to explain the relevant facts in an appropriate man-
ner) combine to provide a composite judgment of a theory’s initial 
plausibility.

By conferring judgments of initial plausibility on the theo-
ries it spawns, EFA deems them worthy of further pursuit, 
whereupon it remains for the factorial theories to be further 
developed and evaluated, perhaps through the use of CFA. It 
should be emphasized that using EFA to facilitate judgments 
about the initial plausibility of hypotheses will still leave the 
domains being investigated in a state of considerable theoretical 
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underdetermination. It should also be stressed that the result-
ing plurality of competing theories is entirely to be expected 
and should not be thought of as an undesirable consequence of 
employing EFA. To the contrary, it is essential for the growth of 
scientific knowledge that we promote theoretical pluralism. The 
reason for this rests with our makeup as cognizers: We begin in 
ignorance, so to speak, and have at our disposal limited sensory 
equipment. However, we are able to develop a rich imagination 
and considerable powers of criticism.

These four features operate such that the only means available to 
us for advancing knowledge is to construct and evaluate theories 
through their constant critical interplay. In this way, the strategy 
of theoretical pluralism is forced on us (Hooker, 1987). Thus, it 
is through the simultaneous pursuit of multiple theories with the 
intent of eventually adjudicating between a reduced subset of these 
that one arrives at judgments of best theory.

It has been suggested that factor indeterminacy is a special case 
of the pervasive problem of UTEE. It has also been argued that, 
if we adopt realistic expectations about what EFA can deliver as a 
method of theory generation and also grant that the method con-
tributes to the needed strategy of theoretical pluralism, then we 
may reasonably conclude that EFA satisfactorily meets this partic-
ular challenge of indeterminacy.

Can Exploratory Factor Analysis Discover Common Causes?

An important question about the worth of EFA still remains, 
a question that may be more important than worries about the 
indeterminacies of EFA: Is EFA effective enough in unearthing the 
common causes it hypothesizes to exist behind the correlated man-
ifest variables? An answer to this question lies at the heart of my 
defense of the method. I maintain that if EFA proves to be a use-
ful method of generating hypotheses about common causes, then 
worries about the various sorts of underdetermination to be found 
in EFA are not too unsettling for the method. There are two ways 
of answering this question. One is to take research programs of 
theory construction that make heavy use of EFA and show that the 
method contributes to the theoretical progress of those programs. 
We might want to ask, for example, whether the Spearman- Jensen 
theory of general intelligence is a progressive research program, or 
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whether the five- factor personality theory of Costa and McCrae is 
currently progressive. This approach would require detailed analy-
ses of the relevant case histories, employing notions of theoretical 
progress that were, or are, appropriate to both science generally 
(a contested matter) and factor analysis more specifically. Space 
limitations preclude beginning such a task here, and I  confine 
my attention briefly to the second strategy, which is to ascertain 
whether EFA is successful at dimensional recovery as revealed 
through simulations on artificial data sets where the dimensions 
are known in advance.

The simulation studies carried out to assess the reliability of EFA 
in dimensional recovery give mixed results. Some support the util-
ity of the method, while others show poor dimensional recovery. 
Consider Scott Armstrong’s (1967) influential, and widely cited, 
study, which questions the utility of EFA as a method of theory 
generation: Armstrong analyzed a set of artificial data in a hypo-
thetical scenario where the underlying factors were known, and he 
concluded from the analysis that EFA did a poor job of recover-
ing the known factor structure. From this, he recommended that 
EFA should not be used to generate theories (subsequently, many 
authors have cited Armstrong’s article as grounds for using CFA 
rather than EFA in factor analytic research).

However, Preacher and MacCallum (2003) argue, correctly in 
my view, that Armstrong’s (1967) article represents a poor piece 
of factor analytic research that gives misleading results, and that 
it provides no real basis for casting doubt on the worth of EFA as 
a method of theory generation. Preacher and MacCallum’s study 
first replicated Armstrong’s factor analysis on an analogous set 
of data and obtained essentially the same results. They then con-
ducted a further factor analysis of that data set substituting cor-
rect factor analytic procedure for the faulty procedure used by 
Armstrong. Among other things, this involved using common 
EFA rather than PCA (strictly speaking, principal components is 
not a method of factor analysis), determining the correct number 
of factors to retain using appropriate multiple methods (the scree 
test and parallel analysis) and using oblique direct quartimin rota-
tion to simple structure rather than orthogonal varimax rotation. 
On the basis of the congruence between the obtained factor pat-
tern and the known structure, Preacher and MacCallum conclude 
that the proper use of EFA does identify the number and nature of 
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latent variables responsible for the manifest variables. Their exem-
plary use of EFA, and the well- conducted earlier simulations by 
factor analysts such as Thurstone and Cattell, provides good sup-
port for the view that EFA is quite good at dimensional recovery. 
Admittedly, these simulations dealt with simple physical systems, 
but Sokal, Rohlf, and Zang (1980) have shown that EFA can isolate, 
and help identify, meaningful biological factors that lie behind cor-
related physiology- of- exercise variables. The findings from good 
simulation studies like these, combined with the findings of a vari-
ety of empirical studies on other aspects of EFA’s functioning (see 
Fabrigar et al., 1999), suggest that EFA can be employed as a useful 
generator of elementary plausible theories about common causes.

Exploratory Factor Analysis and Other Factor  
Analytic Methods

In this penultimate section of the chapter, I round out my char-
acterization of EFA by briefly considering its worth in relation to 
the methods of PCA and CFA— two methods that are generally 
included in the family of factor analytic methods. In advocating 
the use of these last two methods, the methodological literature has 
sometimes argued that EFA is problematic, and that it should have 
a lesser role in multivariate research.

Exploratory Factor Analysis and Principal  
Components Analysis

Both EFA and PCA have been in existence for more than 100 years. 
For much of that time there have been debates about their exact 
nature and their relationship to each other. While Harold Hotelling’s 
(1933) seminal formulation of PCA has its origins in the ideas of 
EFA, it was seen by him to be appreciably different in character. In 
fact, Hotelling introduced the term components to avoid confusion 
with the term factor in factor analysis. Today, many factor ana-
lytic practitioners regard PCA as a special case of factor analysis 
and employ it in preference to EFA, even though the methodolog-
ical literature continues to debate whether one should do so. For 
example, Velicer and Jackson (1990) comprehensively reviewed 
a number of issues that are relevant when selecting between the 
two procedures and concluded that PCA should be the preferred 
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method for doing factor analysis. Some commentators on their 
article support this conclusion; others disagree with it.

The abductive view of EFA presented in this chapter endorses 
the claim that EFA and PCA should be regarded as different types 
of method (see, e.g., Fabrigar et  al., 1999; Jolliff, 2002; Mulaik, 
1987). Although the immediate goal of EFA is to seek recurrent 
data patterns through data reduction, its end goal is to identify 
latent variables that explain the data patterns. By contrast, PCA 
is a method of data reduction only. Reducing data and construct-
ing explanations are different sorts of undertakings, and the two 
methods should be judged in respect of the different goals they 
properly serve, not in terms of their comparative efficiency in 
meeting a shared research goal. Further, while both EFA and PCA 
aim to reduce the dimensionality of data sets, they express differ-
ent senses of dimensional reduction and use different techniques 
to achieve their goals. EFA is a causal model, with common causal 
structure, in which the reduced dimensions are unmeasured latent 
variables that are not determined by linear functions of the mani-
fest variables. As common causes, these latent variables are arrived 
at abductively and serve to explain the manifest variables. By con-
trast, PCA assumes no explicit model and its reduced dimensions 
are composites of manifest variables that are determined uniquely 
by linear functions of the original manifest variables. Their pur-
pose is to stand for the original manifest variables, but as such, 
they are statistical entities, not inferred causes, and it makes no 
sense to use them to try to explain the variables from which they 
are derived.

Because of these basic differences between the two methods, 
using PCA where EFA properly applies, or specifically taking the 
first unrotated component as a surrogate for the underlying latent 
variable as is sometimes suggested (e.g., Goldberg & Digman, 
1994), is a cavalier ontological attitude that has serious negative 
consequences. Principal components are manifest variables that 
are not analyzed with respect to their causes, while common fac-
tors are latent variables thought to be the causes of the manifest 
variables from which they are derived. Thus, to take principal com-
ponents as substitutes for common causes flagrantly violates the 
common causal presupposition on which the correct application 
of EFA depends. As noted in the previous section, Preacher and 
MacCallum (2003) demonstrated that although the proper use of 
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EFA can successfully identify latent variables, the use of a princi-
pal components model in its place fails to give meaningful factor 
analytic results.

Exploratory Factor Analysis and Confirmatory Factor Analysis

Having argued that EFA is a method that facilitates the abduc-
tive generation of rudimentary explanatory theories, it remains 
to consider what implications this view of EFA has for the con-
duct of EFA research, including its relation to the more frequently 
employed CFA.

The abductive view of EFA does highlight, and stress the impor-
tance of, some features of its best use, and four of these are noted. 
First, it should now be clear that an abductive interpretation of 
EFA reinforces the view that it is best regarded as a latent varia-
ble method, thus distancing it from the data reduction method of 
PCA. From this, it obviously follows that EFA should always be 
used in preference to PCA when the underlying common causal 
structure of a domain is being investigated.

Second, strictly speaking, the abductive interpretation of EFA 
also acknowledges the twin roles of the method of searching for 
inductive generalizations and their explanations. It should be 
appreciated that these research goals are different, although they 
are both important. It is because the detection of phenomena 
requires the researcher to reason inductively to empirical regulari-
ties that the abductive use of EFA insists on initially securing the 
invariance of factors across different populations. And, it is because 
the inductive regularities require explanation that one then abduc-
tively postulates factorial hypotheses about common causes.

Third, as noted previously, the abductive view of EFA places 
heavy emphasis on the importance of background knowledge in 
EFA research. In this regard, the initial variable selection process, 
so rightly emphasized by Thurstone (1947) and Cattell (1978), is 
of sufficient importance that it should be considered as part of the 
first step in carrying out an EFA study. For instance, in selecting the 
variables for his factor analytic studies of personality, Cattell was 
at pains to formulate and follow principles of representative sam-
pling from a broad formulation of the domain in question. Further, 
the importance of background knowledge in making abductive 
inferences to underlying factors should not be overlooked. In this 
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regard, the schematic depiction of abductive inference presented 
previously explicitly acknowledged some of the manifold ways in 
which such inference depends on background knowledge. It is an 
important truism that the factorial hypotheses generated through 
abductive inference are not created ex nihilo, but come from the 
extant theoretical framework and knowledge of the factor analytic 
researcher. For most of our EFA theorizing, this source is a mix of 
our common sense and scientific psychological knowledge.

Finally, and relatedly, it should be made clear that acknowledg-
ing the importance of background knowledge in abductive EFA 
does not provide good grounds for adopting a general strategy 
where one discards EFA, formulates theories a priori, and uses fac-
tor analysis only in its confirmatory mode. This holds, even though 
when using EFA one anticipates possible common factors in order 
to select sufficient indicator variables to allow one to overdeter-
mine those factors. EFA has a legitimate, indeed important, place 
in factor analytic research because it helpfully contributes to the-
ory generation in at least three ways: It contributes to detection of 
the empirical phenomena that motivate the need for generating 
factorial hypotheses; it serves to winnow out a lot of theoretically 
possible hypotheses at the hypothesis generation stage of inquiry; 
and it helps to present factorial hypotheses in a form suitable for 
subsequent testing by CFA.

This last remark, which supports the idea that there is a useful 
role for abductive EFA in factor analytic research, raises the ques-
tion of how EFA relates to CFA. In contrast to popular versions of 
the classical inductivist view of science that inductive method can 
generate secure knowledge claims, the use of EFA as an abduc-
tive method of theory generation can only furnish researchers 
with a weak logic of discovery that gives them educated guesses 
about underlying causal factors. It is for this reason that those who 
use EFA to generate theories need to supplement their generative 
assessments of the initial plausibility of those theories with addi-
tional consequentialist justification in the form of CFA testing or 
some alternative approach to theory appraisal.

In stressing the need for the additional evaluation of theories that 
are obtained through EFA, it should not be implied that researchers 
should always, or even standardly, employ classical EFA and follow 
this with CFA. CFA is just one of a number of options with which 
researchers might provide a justification of factorial hypotheses. As 
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an alternative, one might, for example, adopt Rozeboom’s nonclas-
sical form of EFA as a method to generate a number of models that 
are equivalent with respect to their simple structure by using his 
versatile Hyball program (1991a, 1991b) before going on to adjudi-
cate between these models by employing CFA. Another legitimate 
strategy might involve formulating a causal model using EFA and 
following it with a procedure like that defended by Mulaik and 
Millsap (2000), in which a nested sequence of steps designed to 
test various aspects of a structural equation model is undertaken.

A further possibility, which has not been explored in the fac-
tor analytic literature, would be to follow up on the preliminary 
acceptance of rudimentary theories spawned by EFA by devel-
oping a number of factorial theories through whatever modeling 
procedures seem appropriate and then submitting those theories 
to a non– factor analytic form of theory appraisal. For example, 
it would be quite possible for competing research programs to 
develop theories given to them through EFA and then submit 
those theories to comparative appraisal in respect of their explana-
tory coherence. Thagard’s (1992) theory of explanatory coherence, 
described in Chapter 4, is an integrated multicriterial method of 
theory appraisal that accepts as better those explanatory theories 
that have greater explanatory breadth, are simpler than their rivals, 
and are analogous to theories that have themselves been success-
ful. This strategy of using EFA to abductively generate explanatory 
theories, and employing the theory of explanatory coherence in 
subsequent appraisals of these explanatory theories, is abductive 
both fore and aft.

Conclusion

Despite the fact that EFA has been frequently employed in psycho-
logical research, the extant methodological literature on factor anal-
ysis seldom acknowledges the explanatory and ontological import 
of the method’s inferential nature. Arguably, abduction is science’s 
chief form of creative reasoning, and the principle of the common 
cause is a maxim of scientific inference with important application 
in research. By incorporating these two related elements into its 
fold, EFA is ensured an important, albeit circumscribed, role in the 
construction of explanatory theories in psychology and other sci-
ences. In this role, EFA can serve as a valuable precursor to CFA. 
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I believe that factor analytic research would benefit considerably by 
returning to its methodological origins and embracing EFA as an 
important method for generating structural models about common 
causes.

Further Reading
Stanley Mulaik’s book, Foundations of Factor Analysis (Boca Raton, FL: Chapman 

& Hall/ CRC, 2010) is an excellent advanced treatment of the methods of fac-
tor analysis. Unlike the first edition, this second edition adopts an explicitly 
abductive interpretation of exploratory factor analysis.

Mulaik’s article, “A Brief History of the Philosophical Foundations of Exploratory 
Factor Analysis” (Multivariate Behavioral Research, 22, 267– 305, 1987), offers 
an interesting account of the history of the philosophy of exploratory factor 
analysis.

In their book, Exploratory Factor Analysis (New  York, NY:  Oxford University 
Press, 2012), Leandre Fabrigar and Duane Wegner offer an informative and 
accessible guide to the nature and use of exploratory factor analysis.

In his book, Philosophical Foundations of Quantitative Research Methodology 
(Lanham, MD: University Press of America, 2006), Chong Ho Yu provides a 
philosophical discussion of a number of important methodological issues in 
factor analysis.

Brian Haig’s article, “Exploratory Factor Analysis, Theory Generation, and 
Scientific Method” (Multivariate Behavioral Research, 40, 303– 329, 2005) 
examines the conceptual foundations of exploratory factor analysis. It pro-
vides a more extended treatment of many of the ideas presented in the present 
chapter.

Ned Block presents a stimulating discussion of whether the factors of factor analysis 
should be given a realist interpretation. His view of the matter differs from that 
adopted in the present book. See his article “Fictionalism, Functionalism, and 
Factor Analysis” (Boston Studies in the Philosophy of Science, 32, 127– 141, 1976).

In an important simulation study, Kris Preacher and Robert McCallum demon-
strate that well- conducted exploratory factor analyses can reliably generate 
hypotheses about common causes from correlational data. See their article, 
“Repairing Tom Swift’s Electric Factor Analysis Machine” (Understanding 
Statistics, 2, 13– 43, 2003).
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7
Conclusion

Chief Lessons Learned

In this concluding chapter, I want to take stock of previous chap-
ters by highlighting some of the most important general ideas that 
shape the character of the book. At the end of Chapter 3, I pre-
sented some of the major lessons learned from the debates on tests 
of statistical significance. Some of these lessons hold for research 
methods more generally and should be reread as a companion 
piece to what is said in the material that follows, even though this 
conclusion restates some of the points made in chapter 3. 

1. The philosophy of quantitative methods is very important. The 
present book’s introduction began with a statement about the need 
to utilize knowledge from the philosophy of quantitative methods 
to better understand those methods. Given the book’s primary 
focus on the philosophy of these methods, it seems appropriate to 
restate this point in the conclusion. A number of disciplines, includ-
ing psychology, have passed up the opportunity to learn from, and 
be instructively guided by, the philosophy of research methods, 
sometimes with serious deleterious consequences. Nowhere is this 
more evident in psychology’s adoption of a muddled, homegrown 
account of tests of statistical significance. The incoherence of this 
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account was pointed out in Chapter 3, and two better accounts of 
significance testing were recommended. One of these is shaped by 
the error- statistical philosophy of statistics. The coherence of the 
error- statistical philosophy, and its adoption of a sound account of 
tests of significance, well illustrates the value of knowing about the 
philosophy of statistics. Further, given that Bayesian statistics is 
increasingly recommended in psychology as a replacement for tra-
ditional frequentist statistics, it is essential that informed thinking 
about this matter should be undertaken in the light of our current 
best theories of statistics. Parties in the debates between frequen-
tists and Bayesians should know both that the error- statistical phi-
losophy is arguably the best philosophy of frequentist statistics and 
that it is a major rival to the Bayesian alternative.

2. The resources of scientific realism are considerable. Scientific 
realism is prominent in the philosophy of science and is in fact 
the philosophy to which most professional philosophers subscribe. 
However, it is also controversial, occasioning debate among both 
realist and antirealist philosophers. Further, realism appears to be 
the assumed philosophy of most scientists, whether they realize 
it or not. Thus, it is a philosophy that must be reckoned with. In 
thinking about the merits of scientific realism, a number of con-
siderations should be kept in mind. First, there are many varieties 
of realism. Some are global and thought to be applicable to all sci-
ences. Some are more local and are seen as relevant to particular 
sciences, or parts of particular sciences, only. Second, by seeing 
itself as continuous with science, some variants of scientific realism 
are well positioned to study science and learn from it. As such, they 
are capable of illuminating science in its multifaceted complexity. 
Third, it is possible, and perhaps desirable, for thinking scientists 
to choose from the range of realist theses that suit their particular 
problems and interests and, by doing so, operate as piecemeal real-
ists. Finally, it should be acknowledged that an explicit commit-
ment to the philosophy of scientific realism does not always show 
through in the chapters. However, its presence is there, nonethe-
less— for example, in the use of a number of the realist methodo-
logical theses laid out in Chapter 1, in acknowledging the centrality 
of method to science, and in making provision for the study of 
hidden, or latent, entities in research.

3. Methodology is the  key to  understanding research methods. 
This is perhaps the most fundamental lesson of all. I  say this 

 

 



ConClusion : 145

145

because proper understanding of research methods cannot be 
had without an appreciation of their accompanying methodol-
ogy. It is to the domain of scientific methodology that we look to 
track the evolution and understanding of our research methods. 
Methodology is the interdisciplinary field that draws from the dis-
ciplines of statistics, philosophy of science, and cognitive science, 
as well as indigenous contributions from the various disciplines. 
And yet, the full range of literatures from these disciplines does 
not figure in the content of research methods courses, and it does 
not receive much emphasis in standard methods textbooks. It was 
noted in Chapter 1 that methodology has descriptive, critical, and 
advisory dimensions: It describes relevant methods and explains 
how they reach their goals, it critically evaluates methods against 
their rivals, and it recommends which methods we should adopt to 
pursue our chosen goals. Again, the typical methods curriculum, 
and its accompanying textbooks, do not systematically deal with 
research methods with these considerations in mind. For example, 
the deep structure of methods is not emphasized in their usual 
descriptions, and methods are not critically considered in relation 
to their appropriate research goals. It is not surprising, therefore, 
that psychologists’ understanding of research methods often leaves 
a lot to be desired. It is a point of major emphasis in this book that 
philosophical methodology has a greater instructive role to play 
within research methodology itself.

4. No single account of scientific method is best for all occasions. 
In the enormous literature on scientific method, one often encoun-
ters claims about “the” scientific method. More often than not, 
the writer goes on to describe some variant of the hypothetico- 
deductive method, such as Popper’s method of conjecture and 
refutation. This is particularly so in introductory psychology text-
books. However, the claim that there is a single account of sci-
entific method, followed by all scientists, is a myth. Instead, we 
have a number of theories of scientific method, fashioned more 
often than not to take account of the varied cognitive endeavors 
undertaken in the name of science. Thus, as noted in Chapter 1, we 
have, among other accounts, inductive method (often employed to 
fashion empirical generalizations), hypothetico- deductive method 
used to assess the predictive worth of hypotheses or theories, and 
abductive method, which is designed to facilitate the construction 
of explanatory theories. The treatment of meta- analysis offered 
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in Chapter 5 locates it within an inductive conception of inquiry; 
tests of statistical significance, the focus in Chapter 3, can be seen 
as part of an extended hypothetico- deductive chain of reasoning, 
whereas the examination of exploratory factor analysis in Chapter 6 
is placed within an abductive theory of scientific method.

5. The distinctions between data, phenomena, and theory should 
be observed. One of the most important methodological ideas 
about science is contained in the three- fold distinction between 
data, empirical phenomena, and explanatory theories. Data are 
idiosyncratic to particular investigative contexts; phenomena can 
often be characterized as robust empirical regularities; and theo-
ries are typically explanations of those regularities. With these 
distinctions in mind, we can helpfully say that data serve as evi-
dence for phenomena, and phenomena in turn serve as evidence 
for theories. This is a more realistic and helpful structure for 
understanding science than the simplistic data/ theory talk that 
abounds in science. The latter gives a misleading picture of how 
good science often proceeds, and infects some of the misunder-
standings of meta- analysis discussed in Chapter 5. It is relevant 
to recall here that one of the attractions of the error- statistics phi-
losophy noted in Chapter 2 is its use of a similar three- fold dis-
tinction between data models, experimental models, and primary 
models. This is one of a number of ways in which that philosophy 
speaks to science as it is practiced. Finally, it bears repeating that 
the methods employed in phenomena detection are generally dif-
ferent from the methods used for theory construction. For exam-
ple, exploratory data analysis, computer- intensive resampling, 
and meta- analysis, as dealt with in Chapter 5, are all methods 
that aid the detection of phenomena. By contrast, exploratory 
factor analysis is primarily concerned with the generation of new 
explanatory theories.

6. The distinction between statistical and scientific claims should 
not be conflated. The need to observe this distinction was empha-
sized in Chapter  3, where it was noted that researchers often 
mistakenly treat the statistical null and alternative hypotheses 
as scientific hypotheses. The distinction is of sufficient impor-
tance to bear repeating. I illustrate the distinction here with the 
method of factor analysis, the subject of Chapter 6. Factor analy-
sis is commonly understood as a statistical model of the relations 
between manifest and latent variables. However, it is important 
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to emphasize that a statistical model and its interpretation are 
different things. The basic equation for linear factor analysis, for 
example, is to be distinguished from the various substantive fac-
torial theories that its use has helped bring about. As stated in 
Chapter 3, it is a recognized fallacy of reasoning in statistics to 
draw a conclusion about a scientific hypothesis solely on the basis 
of what is learned about a statistical hypothesis.

7. The contrast between  quantitative and qualitative methods 
needs to be rethought. A major feature of the modern methodolog-
ical landscape has been the discussion of the distinction between 
quantitative and qualitative methods. Although perhaps necessary 
in establishing a legitimate role for the use of qualitative methods 
in research, the distinction is now the subject of critical scrutiny. 
However, the quantitative/ qualitative debate has not considered 
the possibility that most methods have both quantitative and qual-
itative dimensions. In many cases, we are likely to gain a better 
understanding of the research methods we use not by viewing 
them as either qualitative or quantitative, but by regarding them as 
having both qualitative and quantitative dimensions. Two exam-
ples are mentioned here. First, grounded theory, the most promi-
nent extant qualitative methodology, is in good part the product of 
a translation from some sociological quantitative methods of the 
1950s. Moreover, there is nothing in principle to stop researchers 
using quantitative methods within the fold of grounded theory. 
Exploratory factor analysis, for example, could be used for gen-
erating grounded theory of a particular kind. Second, although 
exploratory factor analysis itself is standardly characterized as a 
multivariate statistical method, the inferential heart of the method 
is the important scientific heuristic known as the principle of the 
common cause. Importantly, this principle, which guides the factor 
analytic inference from correlations to underlying common fac-
tors, can be effectively formulated in qualitative terms. It is rec-
ommended, then, that methodologists and researchers seriously 
entertain the prospect that individual methods are likely to have a 
mix of qualitative and quantitative features, that is, that individual 
methods are themselves mixed methods.

8. Future study in the philosophy of quantitative methods should 
be actively encouraged. A discussion of additional future directions 
in the philosophy of quantitative methods at this point is inap-
propriate. However, more research of this type is clearly needed. 
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An agenda for future study would likely include the following: fur-
ther developing a modern interdisciplinary conception of research 
methodology; giving more attention to investigative strategies in 
psychological research, rather than just focusing on research tac-
tics; taking major philosophical theories of scientific method seri-
ously; applying insights from the “new experimentalism” in the 
philosophy of science to the understanding of quantitative research 
methods; developing the philosophical foundations of theory con-
struction methods in the behavioral sciences; assessing the impli-
cations of different theories of causality for research methods; and 
examining the philosophical foundations of new research meth-
ods, such as data mining, structural equation modeling, and func-
tional neuroimaging.

A Final Word

Although this book is selective in the number of quantitative 
research methods it deals with, I hope that it will stimulate both 
psychological researchers and their institutions to think further 
and deeper about the nature of the methods considered and their 
proper place in research. As noted in Chapter 1, most behavioral 
scientists settle for a shallow understanding of the methods they 
learn about. It is high time they brought themselves up to date with 
best thinking in the philosophy of statistics, and the philosophy of 
science more generally, and employ it in deepening their under-
standing of the methods they use in their research.
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