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Ecole d’Eté de Probabilités
de Saint-Flour XXXII - 2002

Editor: Jean Picard

1 3



Authors

Boris Tsirelson
School of Mathematics
Tel Aviv University
Tel Aviv 69978
Israel

e-mail: tsirel@tau.ac.il

Wendelin Werner
Laboratoire de Mathématiques
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Preface

Three series of lectures were given at the 32nd Probability Summer School in
Saint-Flour (July 7–24, 2002), by Professors Pitman, Tsirelson and Werner.
In order to keep the size of the volume not too large, we have decided to
split the publication of these courses into two parts. This volume contains the
courses of Professors Tsirelson and Werner. The course of Professor Pitman,
entitled “Combinatorial stochastic processes”, is not yet ready. We thank the
authors warmly for their important contribution.

76 participants have attended this school. 33 of them have given a short
lecture. The lists of participants and of short lectures are enclosed at the end
of the volume.

Finally, we give the numbers of volumes of Springer Lecture Notes where
previous schools were published.

Lecture Notes in Mathematics

1971: vol 307 1973: vol 390 1974: vol 480 1975: vol 539
1976: vol 598 1977: vol 678 1978: vol 774 1979: vol 876
1980: vol 929 1981: vol 976 1982: vol 1097 1983: vol 1117
1984: vol 1180 1985/86/87: vol 1362 1988: vol 1427 1989: vol 1464
1990: vol 1527 1991: vol 1541 1992: vol 1581 1993: vol 1608
1994: vol 1648 1995: vol 1690 1996: vol 1665 1997: vol 1717
1998: vol 1738 1999: vol 1781 2000: vol 1816 2001: vol 1837

Lecture Notes in Statistics

1986: vol 50 2001: vol 179
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Summary. Linear functions of many independent random variables lead to classical
noises (white, Poisson, and their combinations) in the scaling limit. Some singular
stochastic flows and some models of oriented percolation involve very nonlinear
functions and lead to nonclassical noises. Two examples are examined, Warren’s
‘noise made by a Poisson snake’ and the author’s ‘Brownian web as a black noise’.
Classical noises are stable, nonclassical are not. A new framework for the scaling
limit is proposed. Old and new results are presented about noises, stability, and
spectral measures.
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Introduction

Functions of n independent random variables and limiting procedures for n→
∞ are a tenor of probability theory.

Classical limit theorems investigate linear functions, such as f(ξ1, . . . , ξn) =
(ξ1 + · · ·+ ξn)/

√
n. The well-known limiting procedure (a classical example of

scaling limit) leads to the Brownian motion. Its derivative, the white noise, is
not a continuum of independent random variables, but rather an infinitely di-
visible ‘reservoir of independence’, a classical example of a continuous product
of probability spaces.

Percolation theory investigates some very special nonlinear functions of
independent two-valued random variables, either in the limit of an infinite
discrete lattice, or in the scaling limit. The latter is now making spectacular
progress. The corresponding ‘reservoir of independence’ is already constructed
for oriented percolation (which is much simpler). That is a modern, nonclas-
sical example of a continuous product of probability spaces.

An essential distinction between classical and nonclassical continuous
products of probability spaces is revealed by the concept of stability/sensitiv-
ity, framed for the discrete case by computer scientists and (in parallel) for
the continuous case by probabilists. Everything is stable if and only if the
setup is classical.

Some readers prefer discrete models, and treat continuous models as a
mean of describing asymptotic behavior. Such readers may skip Sects. 6.2,
6.3, 8.2, 8.3, 8.4. Other readers are interested only in continuous models.
They may restrict themselves to Sects. 3.4, 3.5, 4.9, 5.2, 6, 7, 8.

Scaling limit. A new framework for the scaling limit is proposed in Sects.
1.2, 2, 3.1–3.3.

Noise. The idea of a continuous product of probability spaces is formalized
by the notions of ‘continuous factorization’ (Sect. 3.4) and ‘noise’ (Sect. 3.5).
(Some other types of continuous product are considered in [18], [19].) For two
nonclassical examples of noise see Sects. 4, 7.

Stability. Stability (and sensitivity) is studied in Sects. 5, 6.1, 6.4. For an
interplay between discrete and continuous forms of stability/sensitivity, see
especially Sects. 5.3, 6.4.

The spectral theory of noises, presented in Sects. 3.3, 3.4 and used in Sects.
5, 6, generalizes both the Fourier transform on the discrete group Zn2 (the
Fourier-Walsh transform) and the Itô decomposition into multiple stochastic
integrals. For the scaling limit of spectral measures, see Sect. 3.3.

Throughout, either by assumption or by construction, all probability
spaces will be Lebesgue-Rokhlin spaces; that is, isomorphic mod 0 to an inter-
val with Lebesgue measure, or a discrete (finite or countable) measure space,
or a combination of both.
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1 A First Look

1.1 Two Toy Models

The most interesting thing is a scaling limit as a transition from a lattice
model to a continuous model. A transition from a finite sequence to an infinite
sequence is much simpler, but still nontrivial, as we’ll see on simple toy models.

Classical theorems about independent increments are exhaustive, but a
small twist may surprise us. I demonstrate the twist on two models, ‘discrete’
and ‘continuous’. The ‘continuous’ model is a Brownian motion on the circle.
The ‘discrete’ model takes on two values ±1 only, and increments are treated
multiplicatively: X(t)/X(s) instead of the usual X(t)−X(s). Or equivalently,
the ‘discrete’ process takes on its values in the two-element group Z2; using
additive notation we have Z2 = {0, 1}, 1+1 = 0, increments beingX(t)−X(s).
In any case, the twist stipulates values in a compact group (the circle, Z2,
etc.), in contrast to the classical theory, where values are in R (or another
linear space). Also, the classical theory assumes continuity (in probability),
while our twist does not. The ‘continuous’ process (in spite of its name) is
discontinuous at a single instant t = 0. The ‘discrete’ process is discontinuous
at t = 1

n , n = 1, 2, . . . , and also at t = 0; it is constant on [ 1
n+1 ,

1
n ) for every

n.

Example 1.1. Introduce an infinite sequence of random signs τ1, τ2, . . . ; that
is,

P
(
τk = −1

)
= P

(
τk = +1

)
=

1
2

for each k,

τ1, τ2, . . . are independent.

For each n we define a stochastic processXn(·), driven by τ1, . . . , τn, as follows:

Xn(t) =
∏

k:1/n≤1/k≤t
τk .

�

�

� � � �

�

�

�

�

�

�

�

� ������ ���� �	 ��


���� �� � �� � �� � �� �� � ��

For n → ∞, finite-dimensional distributions of Xn converge to those of a
process X(·). Namely, X consists of countably many random signs, situated
on intervals [ 1

k+1 ,
1
k ). Almost surely, X has no limit at 0+. We have

X(t)
X(s)

=
∏

k:s<1/k≤t
τk (1.1)

whenever 0 < s < t < ∞. However, (1.1) does not hold when s < 0 < t.
Here, the product contains infinitely many factors and diverges almost surely;
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nevertheless, the increment X(t)/X(s) is well-defined. Each Xn satisfies
(1.1) for all s, t (including s < 0 < t; of course, k ≤ n), but X does
not. Still, X is an independent increment process (multiplicatively); that is,
X(t2)/X(t1), . . . , X(tn)/X(tn−1) are independent whenever −∞ < t1 < · · · <
tn <∞. However, we cannot describe the wholeX by a countable collection of
its independent increments. The infinite sequence of τk = X( 1

k+)/X( 1
k−) does

not suffice since, say, X(1) is independent of (τ1, τ2, . . . ). Indeed, the global
sign change x(·) �→ −x(·) is a measure-preserving transformation that leaves
all τk invariant. The conditional distribution ofX(·) given τ1, τ2, . . . is concen-
trated at two functions of opposite global sign. It may seem that we should add
to (τ1, τ2, . . . ) one more random sign τ∞ independent of (τ1, τ2, . . . ) such that
X( 1

k ) is a measurable function of τk, τk+1, . . . and τ∞. However, it is impossi-
ble. Indeed, X(1) = τ1 . . . τkX( 1

k ). Assuming X( 1
k ) = fk(τk, τk+1, . . . ; τ∞) we

get f1(τ1, τ2, . . . ; τ∞) = τ1 . . . τk−1fk(τk, τk+1, . . . ; τ∞) for all k. It follows that
f1(τ1, τ2, . . . ; τ∞) is orthogonal to all functions of the form g(τ1, . . . , τn)h(τ∞)
for all n, and thus, to a dense (in L2) set of functions of τ1, τ2, . . . ; τ∞; a
contradiction.

So, for each n the process Xn is driven by (τk), but the limiting process
X is not.

Example 1.2. (See also [3].) We turn to the other, the ‘continuous’ model. For
any ε ∈ (0, 1) we introduce a (complex-valued) stochastic process

Yε(t) =

{
exp

(
iB(ln t)− iB(ln ε)

)
for t ≥ ε,

1 otherwise,

where B(·) is the usual Brownian motion; or rather,
(
B(t)

)
t∈[0,∞) and(

B(−t)
)
t∈[0,∞) are two independent copies of the usual Brownian motion.

Multiplicative increments Yε(t2)/Yε(t1), . . . , Yε(tn)/Yε(tn−1) are independent
whenever −∞ < t1 < · · · < tn <∞, and the distribution of Yε(t)/Yε(s) does
not depend on ε as far as ε < s < t (in fact, the distribution depends on t/s
only). The distribution of Yε(1) converges for ε → 0 to the uniform distri-
bution on the circle |z| = 1. The same for each Yε(t). It follows easily that,
when ε → 0, finite dimensional distributions of Yε converge to those of some
process Y . For every t > 0, Y (t) is distributed uniformly on the circle; Y is
an independent increment process (multiplicatively), and Y (t) = 1 for t ≤ 0.
Almost surely, Y (·) is continuous on (0,∞), but has no limit at 0+. We may
define B(·) by

Y (t) = Y (1) exp
(
iB(ln t)

)
for t ∈ R ,

B(·) is continuous on R .

Then B is the usual Brownian motion, and

Y (t)
Y (s)

=
exp(iB(ln t))
exp(iB(ln s))

for 0 < s < t <∞ .
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However, Y (1) is independent of B(·). Indeed, the global phase change y(·) �→
eiαy(·) is a measure preserving transformation that leaves B(·) invariant. The
conditional distribution of Y (·) given B(·) is concentrated on a continuum of
functions that differ by a global phase (distributed uniformly on the circle).
Similarly to the ‘discrete’ example, we cannot introduce a random variable
B(−∞) independent of B(·), such that Y (t) is a function of B(−∞) and
increments of B(r) for −∞ < r < ln t.

So, for each ε, the process Yε is driven by the Brownian motion, but the
limiting process Y is not.

Both toy models are singular at a given instant t = 0. Interestingly, contin-
uous stationary processes can demonstrate such strange behavior, distributed
in time! (See Sects. 4, 7).

1.2 Our Limiting Procedures

Imagine a sequence of elementary probabilistic models such that the n-th
model is driven by a finite sequence (τ1, . . . , τn) of random signs (independent,
as before). A limiting procedure may lead to a model driven by an infinite
sequence (τ1, τ2, . . . ) of random signs. However, it may also lead to something
else, as shown in Sect. 1.1. This is an opportunity to ask ourselves: what do
we mean by a limiting procedure?

The n-th model is naturally described by the finite probability space Ωn =
{−1,+1}n with the uniform measure. A prerequisite to any limiting procedure
is some structure able to join these Ωn somehow. It may be a sequence of
‘observables’, that is, functions on the disjoint union,

fk : (Ω1 � Ω2 � . . . ) → R .

Example 1.3. Let fk(τ1, . . . , τn) = τk for n ≥ k. Though fk is defined only on
Ωk �Ωk+1 � . . . , it is enough. For every k, the joint distribution of f1, . . . , fk
on Ωn has a limit for n → ∞ (moreover, the distribution does not depend
on n, as far as n ≥ k). The limiting procedure should extend each fk to a
new probability space Ω such that the joint distribution of f1, . . . , fk on Ωn
converges for n → ∞ to their joint distribution on Ω. Clearly, we may take
the space of infinite sequences Ω = {−1,+1}∞ with the product measure, and
let fk be the k-th coordinate function.

Example 1.4. Still fk(τ1, . . . , τn) = τk (for n ≥ k ≥ 1), but in addition, the
product f0(τ1, . . . , τn) = τ1 . . . τn is included. For every k, the joint distribu-
tion of f0, f1, . . . , fk on Ωn has a limit for n → ∞; in fact, the distribution
does not depend on n, as far as n > k (this time, not just n ≥ k). Thus,
in the limit, f0, f1, f2, . . . become independent random signs. The functional
dependence f0 = f1f2 . . . holds for each n, but disappears in the limit. We
still may take Ω = {−1,+1}∞, however, f0 becomes a new coordinate.

This is instructive; the limiting model depends on the class of ‘observables’.
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Example 1.5. Let fk(τ1, . . . , τn) = τk . . . τn for n ≥ k ≥ 1. In the limit, fk
become independent random signs. We may define τk in the limiting model
by τk = fk/fk+1; however, we cannot express fk in terms of τk. Clearly, it is
the same as the ‘discrete’ toy model of Sect. 1.1.

The second and third examples are isomorphic. Indeed, renaming fk of the
third example as gk (and retaining fk of the second example) we have

gk =
f0

f1 . . . fk−1
; fk =

gk
gk+1

for k > 0 , and f0 = g1 ;

these relations hold for every n (provided that the same Ωn = {−1,+1}n is
used for both examples) and naturally, give us an isomorphism between the
two limiting models.

That is also instructive; some changes of the class of ‘observables’ are
essential, some are not.

It means that the sequence (fk) is not really the structure responsible for
the limiting procedure. Rather, fk are generators of the relevant structure.
The second and third examples differ only by the choice of generators for the
same structure. In contrast, the first example uses a different structure. So,
what is the mysterious structure?

I can describe the structure in two equivalent ways. Here is the first de-
scription. In the commutative Banach algebra l∞(Ω1�Ω2�. . . ) of all bounded
functions on the disjoint union, we select a subset C (its elements will be called
observables) such that

C is a separable closed subalgebra of l∞(Ω1 � Ω2 � . . . ) containing the unit.
(1.2)

In other words,

C contains a sequence dense in the uniform topology;
fn ∈ C, fn → f uniformly =⇒ f ∈ C ;
f, g ∈ C, a, b ∈ R =⇒ af + bg ∈ C ;

1 ∈ C ;
f, g ∈ C =⇒ fg ∈ C

(1.3)

(here 1 stands for the unity, 1(ω) = 1 for all ω). Or equivalently,

C contains a sequence dense in the uniform topology;
fn ∈ C, fn → f uniformly =⇒ f ∈ C ;

f, g ∈ C, ϕ : R2 → R continuous =⇒ ϕ(f, g) ∈ C .
(1.4)

Indeed, on one hand, both af + bg and fg (and 1) are special cases of ϕ(f, g).
On the other hand, every continuous function on a bounded subset of R2 can
be uniformly approximated by polynomials. The same holds for ϕ(f1, . . . , fn)
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where f1, . . . , fn ∈ C, and ϕ : Rn → R is a continuous function. Another
equivalent set of conditions is also well-known:

C contains a sequence dense in the uniform topology;
fn ∈ C, fn → f uniformly =⇒ f ∈ C ;
f, g ∈ C, a, b ∈ R =⇒ af + bg ∈ C ;

1 ∈ C ;
f ∈ C =⇒ |f | ∈ C ;

(1.5)

here |f | is the pointwise absolute value, |f |(ω) = |f(ω)|.
The smallest set C satisfying these (equivalent) conditions (1.2)–(1.5) and

containing all given functions fk is, by definition, generated by these fk.
Recall that C consists of functions defined on the disjoint union of finite

probability spaces Ωn; a probability measure Pn is given on each Ωn. The
following condition is relevant:

lim
n→∞

∫

Ωn

f dPn exists for every f ∈ C . (1.6)

Assume that C is generated by given functions fk. Then the property (1.6)
of C is equivalent to such a property of functions fk:

For each k, the joint distribution of f1, . . . , fk on Ωn weakly con-
verges, when n→∞. (1.7)

Proof: (1.7) means convergence of
∫
ϕ(f1, . . . , fk) dPn for every continuous

function ϕ : Rk → R. However, functions of the form f = ϕ(f1, . . . , fk) (for
all k, ϕ) belong to C and are dense in C.

We see that (1.7) does not depend on the choice of generators fk of a given
C.

The second (equivalent) description of our structure is the ‘joint compact-
ification’ of Ω1,Ω2, . . . I mean a pair (K,α) such that

K is a metrizable compact topological space,
α : (Ω1 � Ω2 � . . . ) → K is a map,

the image α(Ω1 � Ω2 � . . . ) is dense in K.
(1.8)

Every joint compactification (K,α) determines a set C satisfying (1.2).
Namely,

C = α−1
(
C(K)

)
;

that is, observables f ∈ C are, by definition, functions of the form

f = g ◦ α, that is, f(ω) = g(α(ω)), g ∈ C(K) .

The Banach algebra C is basically the same as the Banach algebra C(K) of
all continuous functions on K.
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Every C satisfying (1.2) corresponds to some joint compactification. Proof:
C is generated by some fk such that |fk(ω)| ≤ 1 for all k, ω. We introduce

α(ω) =
(
f1(ω), f2(ω), . . .

)
∈ [−1, 1]∞ ,

K is the closure of α(Ω1 � Ω2 � . . . ) in [−1, 1]∞ ;

clearly, (K,α) is a joint compactification. Coordinate functions on K generate
C(K), therefore fk generate α−1

(
C(K)

)
, hence α−1

(
C(K)

)
= C.

Finiteness of each Ωn is not essential. The same holds for arbitrary prob-
ability spaces (Ωn,Fn, Pn). Of course, instead of l∞(Ω1 � Ω2 � . . . ) we use
L∞(Ω1�Ω2� . . . ), and the map α : (Ω1�Ω2� . . . ) → K must be measurable.
It sends the given measure Pn on Ωn into a measure α(Pn) (denoted also by
Pn◦α−1) on K. If measures α(Pn) weakly converge, we get the limiting model
(Ω, P ) by taking Ω = K and P = limn→∞ α(Pn).

1.3 Examples of High Symmetry

Example 1.6. Let Ωn be the set of all permutations ω : {1, . . . , n} → {1, . . . , n},
each permutation having the same probability (1/n!);

f : (Ω1 � Ω2 � . . . ) → R is defined by
f(ω) = |{k : ω(k) = k}| ;

that is, the number of fixed points of a random permutation. Though f is
not bounded, which happens quite often, in order to embed it into the frame-
work of Sect. 1.2, we make it bounded by some homeomorphism from R to
a bounded interval (say, ω �→ arctan f(ω)). The distribution of f(·) on Ωn
converges (for n → ∞) to the Poisson distribution P (1). Thus, the limiting
model exists; however, it is scanty: just P (1).

We may enrich the model by introducing

fu(ω) = |{k < un : ω(k) = k}| ;

for instance, f0.5(·) is the number of fixed points among the first half of
{1, . . . , n}. The parameter u could run over [0, 1], but we need a countable
set of functions; thus we restrict u to, say, rational points of [0, 1]. Now the
limiting model is the Poisson process.

Each finite model here is invariant under permutations. Functions fu seem
to break the invariance, but the latter survives in their increments, and turns
in the limit into invariance of the Poisson process (or rather, its derivative,
the point process) under all measure preserving transformations of [0, 1].

Note also that independent increments in the limit emerge from dependent
increments in finite models.

We feel that all these fu(·) catch only a small part of the information
contained in the permutation. You may think about more information, say,
cycles of length 1, 2, . . . (and what about length n/2 ?)
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Example 1.7. Let Ωn be the set of all graphs over {1, . . . , n}. That is, each ω ∈
Ωn is a subset of the set

({1,...,n}
2

)
of all unordered pairs (treated as edges, while

1, . . . , n are vertices); the probability of ω is p|ω|n (1 − pn)n(n−1)/2−|ω|, where
|ω| is the number of edges. That is, every edge is present with probability pn,
independently of others. Define f(ω) as the number of isolated vertices. The
limiting model exists if (and only if) there exists a limit limn n(1− pn)n−1 =
λ ∈ [0,∞);1 the Poisson distribution P (λ) exhausts the limiting model.

A Poisson process may be obtained in the same way as before.
You may also count small connected components which are more compli-

cated than single points.
Note that the finite model contains a lot of independence (namely, n(n−

1)/2 independent random variables); the limiting model (Poisson process) also
contains a lot of independence (namely, independent increments). However,
we feel that independence is not inherited; rather, the independence of finite
models is lost in the limiting procedure, and a new independence emerges.

Example 1.8. Let Ωn = {−1,+1}n with uniform measure, and fn : (Ω1 �Ω2 �
. . . ) → R be defined by

fu(ω) =
1√
n

∑

k<un

τk(ω) ;

as before, τ1, . . . , τn are the coordinates, that is, ω =
(
τ1(ω), . . . , τn(ω)

)
and u

runs over rational points of [0, 1]. The limiting model is the Brownian motion,
of course.

Similarly to Example 1.6, each finite model is invariant under permuta-
tions. The invariance survives in increments of functions fk, and in the limit,
the white noise (the derivative of the Brownian motion) is invariant under all
measure preserving transformations of [0, 1].

A general argument of Sect. 6.3 will show that a high symmetry model
cannot lead to a nonclassical scaling limit.

1.4 Example of Low Symmetry

Example 1.8 may be rewritten via the composition of random maps

α−, α+ : Z → Z ,

α−(k) = k − 1 , α+(k) = k + 1 ;
αω = ατn(ω) ◦ . . . ατ1(ω) ;

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

1 Formally, the limiting model exists also for λ = ∞, since the range of f is com-
pactified.
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thus, αω(k) = k + τ1(ω) + · · · + τn(ω), and we may define f1(ω) = 1√
n
αω(0),

which conforms to Example 1.8. Similarly, fu(ω) = 1√
n
αω,u(0), where αω,u

is the composition of ατk(ω) for k ≤ un. The order does not matter, since
α−, α+ commute, that is, α− ◦α+ = α+ ◦α−. It is interesting to try a pair of
noncommuting maps.

Example 1.9. (See Warren [22].) Define

α−, α+ : Z +
1
2
→ Z +

1
2
,

α−(x) = x− 1 ,
α+(x) = x+ 1

for x ∈
(
Z + 1

2

)
∩ (0,∞) ,

α−(−x) = −α−(x) , α+(−x) = −α+(x) .

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

����

����

���

���

These are not invertible functions; α− is not injective, α+ is not surjective.
Well, we do not need to invert them, but need their compositions:

αω = ατn(ω) ◦ · · · ◦ ατ1(ω) .
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

Æ����������� ��Æ�����������

� �

All compositions belong to a two-parameter set of functions ha,b,

αω(x) = ha,b(x) =






x+ a for x ≥ b,

x− a for x ≤ −b,
(−1)b−x(a+ b) for −b ≤ x ≤ b;

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

� � � �����

b, a+ b ∈
(
Z + 1

2

)
∩ (0,∞) = { 1

2 ,
3
2 ,

5
2 , . . . } .

Indeed, α− = h−1,1.5, α+ = h1,0.5, and ha2,b2 ◦ha1,b1 = ha,b where a = a1+a2,
b = max(b1, b2 − a1). Thus, αω = hα(ω),b(ω), and we define

f1 : (Ω1 � Ω2 � . . . ) → R2 × {−1,+1} ,

f1(ω) =
(
a(ω)√
n
,
b(ω)√
n
, (−1)b(ω)−0.5

)
.

However, the function is neither bounded nor real-valued; in order to fit into
the framework of Sect. 1.2 we take, say, arctan

(
a(ω)/

√
n
)
, arctan

(
b(ω)/

√
n
)
,

and (−1)b(ω)−0.5. The latter is essential if, say, 1√
n
αω(0.5) is treated as an

‘observable’; indeed, 1√
n
αω(0.5) = (−1)b(ω)−0.5 1√

n
(a(ω) + b(ω)). The limiting

model exists, and is quite interesting. (See also Sect. 8.3.) As before, a random
process appears by considering the composition over k < un.
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Here, finite models are not invariant under permutations of their indepen-
dent random variables (since the maps do not commute), and the limiting
model appears not to be invariant under measure preserving transformations
of [0, 1].

Independence present in finite models survives in the limit, provided that
the limit is described by a two-parameter random process; we’ll return to this
point in Sect. 4.3.

1.5 Trees, Not Cubes

Example 1.10. A particle moves on the sphere S2. Initially it is at a given
point x0 ∈ S2. Then it jumps by ε in a random direction. That is, X0 = x0,
while the next random variable X1 is distributed uniformly on the circle {x ∈
S2 : |x0−x| = ε}. Then it jumps again to X2 such that |X1−X2| = ε, and so
on. We have a Markov chain (Xk) in discrete time (and continuous space). Let
Ωε be the corresponding probability space; it may be the space of sequences
(x0, x1, x2, . . . ) satisfying |xk − xk+1| = ε, or something else, but in any case
Xk : Ωε → S2. We choose εn → 0 (say, εn = 1/n), take Ωn = Ωεn and define
fu : (Ω1 � Ω2 � . . . ) → S2 by

fu(ω) = Xk(ω) for ε2nk ≤ u < ε2n(k + 1) , ω ∈ Ωn .

Of course, the limiting model is the Brownian motion on the sphere S2.
In contrast to previous examples, here Ωn is not a product; the n-th model

does not consist of independent random variables. But, though we can pa-
rameterize these Markov transitions by independent random variables, there
is a lot of freedom in doing so; none of the parameterizations may be called
canonical. The same holds for the limiting model. The Brownian motion on
S2 can be driven by the Brownian motion on R2 according to some stochastic
differential equation, but the latter involves a lot of freedom.

Example 1.11. (See [12].) Consider the random walk on such an oriented
graph:

� �� ��

�

��

��

�

��

��

�

�

A particle starts at 0 and chooses at random (with probabilities 1/2, 1/2) one
of the two outgoing edges, and so on (you see, exactly two edges go out of
any vertex). Such (Z0, Z1, . . . ) is known as the simplest spider walk. It is a
complex-valued martingale. The set Ωn of all n-step trajectories contains 2n

elements and carries its natural structure of a binary tree. (It can be mapped to
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the binary cube {−1,+1}n in many ways.) We define fu : (Ω1�Ω2� . . . ) → C

by

fu(ω) =
1√
n
Zk(ω) for k ≤ nu < k + 1 , ω ∈ Ωn .

The limiting model is a continuous complex-valued martingale whose values
belong to the union of three rays.

�

�

The process is known as Walsh’s Brownian motion, a special case of the so-
called spider martingale.

1.6 Sub-σ-fields

Every example considered till now follows the pattern of Sect. 1.2; a joint
compactification of probability spaces Ωn, and the limiting Ω. Moreover, Ωn
is usually related to a set Tn (a parameter space, interpreted as time or space),
and Ω to a joint compactification T of these Tn.

Example Tn T

1.1 {1, 1
2 , . . . ,

1
n} {1, 1

2 ,
1
3 , . . . } ∪ {0}

1.2 [εn, 1] [0, 1]
1.6, 1.7, 1.8, 1.9, 1.10, 1.11 { 1

n ,
2
n , . . . , 1} [0, 1]

Examples 1.1, 1.2, 1.8 deal (for a finite n) with independent increment pro-
cesses, taking on their values in a group, namely, 1.8: R (additive); 1.1:
{−1,+1} (multiplicative), 1.2: the circle {z ∈ C : |z| = 1} (multiplica-
tive). Every t ∈ Tn splits the process into two parts, the past and the fu-
ture; in order to keep them independent, we define them via increments,
not values.2 In terms of random signs τk (for 1.1, 1.8) it means simply
{−1,+1}n = {−1,+1}k × {−1,+1}n−k; here k depends on t. The same idea
(of independent parts) is formalized by sub-σ-fields F0,t (the past) and Ft,1
(the future) on our probability space (Ωm or Ω). Say, for the Brownian motion
1.8, F0,t is generated by Brownian increments on [0, t], while Ft,1 — on [t, 1].
Similarly we may define Fs,t for s < t, and we have

Fr,s ⊗Fs,t = Fr,t whenever r < s < t .

It means two things: first, independence,
2 In fact, the process of Example 1.1 has also independent values (not only incre-

ments); but that is irrelevant.
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P
(
A ∩B

)
= P

(
A
)
P
(
B
)

whenever A ∈ Fr,s, B ∈ Fs,t ;

and second, Fr,t is generated by Fr,s and Fs,t (that is, Fr,t is the least sub-
σ-field containing both Fr,s and Fs,t). Such a two-parameter family (Fs,t) of
sub-σ-fields is called a factorization (of the given probability space). Some ad-
ditional precautions are needed when dealing with semigroups (like Example
1.9), and also, with discrete time.

Sub-σ-fields FA can be defined for some subsets A ⊂ T more general than
intervals, getting

FA ⊗FB = FC whenever A �B = C .

Models of high symmetry admit arbitrary measurable sets A; models of low
symmetry do not. For some examples (such as 1.6, 1.7), a factorization emerges
after the limiting procedure.3

No factorization at all is given for 1.10, 1.11. Still, the past F0,t = Ft is
defined naturally. However, the future is not defined, since possible continua-
tions depend on the past. Here we deal with a one-parameter family (Ft) of
sub-σ-fields, satisfying only a monotonicity condition

Fs ⊂ Ft whenever s < t ;

such (Ft) is called a filtration.

3 For Example 1.7, some factorization is naturally defined for Ωn, but is lost in the
limiting procedure, and a new factorization emerges.
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2 Abstract Nonsense of the Scaling Limit

2.1 More on Our Limiting Procedures

The joint compactification K of Ω1 � Ω2 � . . . , used in Sect. 1.2, is not quite
satisfactory. Return to Example 1.8:

fu(ω) =
1√
n

∑

k<un

τk(ω) for u ∈ [0, 1] ∩ Q (2.1)

(Q being the set of rational numbers). The limiting model is the Brownian
motion, restricted to [0, 1]∩Q. What about an irrational point, v ∈ [0, 1]\Q ?
The random variable fv may be defined on Ω as the limit (say, in L2) of
fu for u → v, u ∈ [0, 1] ∩ Q. On the other hand, fv is naturally defined on
Ω1 � Ω2 � . . . (by the same formula (2.1)). However, fv is not a continuous
function on the compact space K.4 Thus, the weak convergence Pi → P is
relevant to fu but not fv. Something is wrong!

What is wrong is the uniform topology used in (1.2)–(1.5). A right topology
should take measures Pi into account. We have two ways, ‘moderate’ and
‘radical’.

Here is the ‘moderate’ way. We choose some appropriate subsets Bm ⊂
(Ω1 � Ω2 � . . . ), B1 ⊂ B2 ⊂ . . . , such that

inf
i
Pi(Bm ∩ Ωi) ↑ 1 for m→∞

and in (1.3)–(1.5) replace the assumption “fn ∈ C, fn → f uniformly =⇒
f ∈ C” with

fn ∈ C, fn → f uniformly on each Bm =⇒ f ∈ C . (2.2)

Example 2.1. Continuing (2.1) we define Bm by

Bm ∩Ωi =





ω ∈ Ωi : sup

0≤k<l≤i

∣
∣
∣ 1√

i

∑l
j=k τj(ω)

∣
∣
∣

(
l−k
i

)1/3 ≤ m





;

then5

|fu(ω)− fv(ω)| ≤ m|u− v|1/3 for ω ∈ Bm ∩Ωi
if i is large enough (namely, 2/i < |u − v|). The set C (satisfying (2.2))
generated by fu for all rational u, also contains fv for all irrational v.
4 There exist ωn ∈ Ωn such that limn fu(ωn) exists for all u ∈ [0, 1] ∩ Q, but

limn fv(ωn) does not exist.

� � �

�

�

��

�

�
�

� �
��
�

� �
��
�

5 Of course, |u − v|α for any α ∈ (0, 1/2) may be used, not only |u − v|1/3.
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Similarly to Sect. 1.2, we may translate (2.2) into the topological language.
For each m, the restriction of C to Bm corresponds to a joint compactification
(Km, αm) of Bm∩Ωi. Clearly,Km1 ⊂ Km2 for m1 < m2, and αm1 = αm2 |Km1

.
Thus, we get a joint σ-compactification

α : (Ω1 � Ω2 � . . . ) → K∞ = K1 ∪K2 ∪ . . .

We do not need a topology on the union K∞ of metrizable compact spaces
K1 ⊂ K2 ⊂ . . . 6 We just define C(K∞) as the set of all functions g : K∞ → R

such that g|Km is continuous (on Km) for each m. We have

C = α−1
(
C(K∞)

)
,

that is, observables f ∈ C are functions of the form

f = g ◦ α , that is, f(ω) = g(α(ω)), g ∈ C(K∞) .

If measures α(Pi) weakly converge (w.r.t. bounded functions of C(K∞), recall
(1.6), (1.7)), we get the limiting model (Ω, P ) by taking Ω = K∞ and P =
limi→∞ α(Pi).

Example 2.2. Continuing Example 2.1 we see that the limiting measure P
exists, and the joint distribution of all fu (extended to K∞ by continuity)
w.r.t. P is the Wiener measure. The ‘uniform’ metric on K∞,

dist(x, y) = sup
0≤u≤1

|fu(x) − fu(y)| ,

is continuous on each Km. Therefore, every function continuous in the ‘uni-
form’ metric belongs to C(K∞). Our joint σ-compactification is another form
of the usual weak convergence of random walks to the Brownian motion.

That was the ‘moderate way’. It requires special subsets Bm ⊂ (Ω1 �Ω2 �
. . . ), in contrast to the ‘radical way’; basically, the latter allows the sequence
of sets Bm to depend on a sequence of functions fn, see (2.2). In other words,
instead of uniform (or ‘locally uniform’) convergence, we introduce a weaker
topology by the metric7

dist(f, g) = sup
i

∫ |f(ω)− g(ω)|
1 + |f(ω) − g(ω)| dPi(ω) . (2.3)

6 But if you want, K∞ may be equipped with the inductive limit topology; that is,
U ⊂ K∞ is open if and only if for every m, U ∩ Km is open (in Km). However,
the topology usually is not metrizable.

7 Alternatively, we may restrict ourselves to bounded functions Ω1 � Ω2 � · · · →
[−1, +1] (applying a transformation like arctan) and use, say,

dist(f, g) = sup
i

∫
|f(ω) − g(ω)|dPi(ω) .
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If fn ∈ C(K) and dist(fn, f) → 0 then fn converge in probability w.r.t. P ;
thus, f is naturally defined P -almost everywhere.8

Let C be the closure of C(K) in the metric (2.3). Then
∫
ϕ(f1, . . . , fd) dPi −−−→

i→∞

∫
ϕ(f1, . . . , fd) dP

for every d, every bounded continuous function ϕ : Rd → R, and every
f1, . . . , fd ∈ C. The joint distribution of f1, . . . , fd w.r.t. Pi converges (weakly)
to that w.r.t. P . So, the weak convergence Pi → P is relevant for the whole
C (not only C(K)). That is the idea of the ‘radical way’, presented system-
atically in Sects. 2.2, 2.3.

Returning again to Example 1.8 we see that fv (for v ∈ [0, 1]) is the limit
of fu (for u ∈ [0, 1] ∩ Q) in the metric (2.3); thus, fv ∈ C for all v ∈ [0, 1].

However, much more can be said. Not only

Limi→∞

(
1√
i

∑

ai<k<bi

τk(ω)
)

=
∫ b

a

dB(t) ,

where ‘Lim’ means the scaling limit (as explained above), but also

Limi→∞

(
i−d/2

∑

ai<k1<···<kd<bi

τk1(ω) . . . τkd
(ω)
)

=
∫

· · ·
∫

a<t1<···<td<b

dB(t1) . . . dB(td) =
1
d!
Hd

(
B(b) −B(a), b− a

)

where Hd is the Hermite polynomial (see for instance [11, IV.3.8]). Taking
finite linear combinations and their closure in the metric (2.3) we get

Limi→∞

( ∞∑

d=0

i−d/2
∑

0<k1<···<kd<i

ψd
(
k1
i , . . . ,

kd

i

)
τk1(ω) . . . τkd

(ω)
)

=
∞∑

d=0

∫
· · ·
∫

0<t1<···<td<1

ψd(t1, . . . , td) dB(t1) . . .dB(td) (2.4)

provided that functions ψd are Riemann integrable, and vanish for d large
enough. The right-hand side is well-defined for all ψd ∈ L2 such that∑

d ‖ψd‖2
2 < ∞; the scaling limit may be kept by replacing ψd

(
k1
i , . . . ,

kd

i

)

with the mean value of ψd on the 1/i-cube centered at
(
k1
i , . . . ,

kd

i

)
. Now, (0, 1)

8 In fact, every (equivalence class of) P -measurable function can be obtained in
that way provided that, for each i, supports of Pi and P do not intersect. It
means that every random variable on the limiting probability space is the scaling
limit of some function on Ω1 � Ω2 � . . . (see also Remark 2.15).



20 Boris Tsirelson

may be replaced with the whole R; ψd is defined on ∆d = {(x1, . . . , xd) ∈ Rd :
x1 < · · · < xd}. The right-hand side of (2.4) gives us an isometric linear corre-
spondence between L2(∆0 �∆1 �∆2 � . . . ) and L2(Ω,F , P ), where (Ω,F , P )
is the probability space describing the Brownian motion (on the whole R).

2.2 Coarse Probability Space: Definition and Simple Example

Definition 2.3. A coarse probability space
(
(Ω[i],F [i], P [i])∞i=1,A

)
consists

of a sequence of probability spaces (Ω[i],F [i], P [i]) and a set A of subsets of the
disjoint union Ω[all] = Ω(1) �Ω(2) � . . . , satisfying the following conditions:

(a) ∀A ∈ A ∀i (A ∩ Ω[i]) ∈ F [i];
(b) ∀A,B ∈ A

(
A ∩B ∈ A, A ∪B ∈ A, Ω[all] \A ∈ A

)
;

(c) A contains every A ⊂ Ω[all] such that ∀i (A∩Ω[i]) ∈ F [i] and P [i]
(
A∩

Ω[i]
)
→ 0 for i→∞;

(d)
(
∪∞
k=1Ak

)
∈ A for every pairwise disjoint A1, A2, · · · ∈ A such that∑

k supi P [i]
(
Ak ∩ Ω[i]

)
<∞;

(e) limi P [i]
(
A ∩ Ω[i]

)
exists for every A ∈ A;

(f) there exists a finite or countable subset A1 ⊂ A that generates A in
the sense that the least subset of A satisfying (b)–(d) and containing A1

is the whole A.
A set A satisfying (a)–(f) will be called a coarse σ-field9 (on the coarse

sample space (Ω[i],F [i], P [i])∞i=1). Each set A belonging to the coarse σ-field
A will be called coarsely measurable (w.r.t. A), or a coarse event.

Remark 2.4. Condition 2.3(c) is equivalent to
(c1) ∀i F [i] ⊂ A. That is, if a set A ⊂ Ω[all] is contained in some Ω[i], and
is F [i]-measurable, then A ∈ A.
Also, Condition 2.3(d) is equivalent to each of the following conditions

(d1)–(d4). There, we assume that A ⊂ Ω[all], ∀i
(
A∩Ω[i]

)
∈ F [i], and ∀k Ak ∈

A.
(d1) If Ak ↑ A (that is, A1 ⊂ A2 ⊂ . . . and A = ∪kAk) and supi P [i]

(
(A \

Ak) ∩ Ω[i]
)
→ 0 for k →∞, then A ∈ A.

(d2) If supi P [i]
(
(A � Ak) ∩ Ω[i]

)
→ 0 for k → ∞, then A ∈ A. (Here

A�Ak = (A \Ak) ∪ (Ak \A).)
(d3) If Ak ↑ A and lim supi P [i]

(
(A \ Ak) ∩ Ω[i]

)
→ 0 for k → ∞, then

A ∈ A.
(d4) If lim supi P [i]

(
(A�Ak) ∩ Ω[i]

)
→ 0 for k →∞, then A ∈ A.

So, we have 10 equivalent combinations: (c)&(d), (c1)&(d), (c)&(d1),
(c1)&(d1), (c)&(d2), . . . , (c1)&(d4). (I omit the proof.)

However, “supi” in (d) cannot be replaced with “lim supi”.
9 It is not a σ-field, unless A contains all sets satisfying 2.3(a).
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Lemma 2.5. Let A1 be a finite or countable set satisfying 2.3(a,e) and
(b1) ∀A,B ∈ A1

(
A ∩B ∈ A1

)
.

Then the least set A containing A1 and satisfying 2.3(b,c,d) is a coarse
σ-field.

Proof. The algebra generated by A1 satisfies (e), since P [i]
(
(A∪B)∩Ω[i]

)
=

P [i](A ∩Ω[i]) + P [i](B ∩Ω[i])− P [i]
(
(A ∩B) ∩Ω[i]

)
. We enlarge the algebra

according to (c), which preserves (e), as well as (a), (b). Finally, we enlarge it
according to (d), which preserves (a), (b), (e); (c) and (f) hold trivially. ��

In such a case we say that the coarse σ-field A is generated by the set A1.

Example 2.6. Let Ω[i] = {0, 1
i , . . . ,

i−1
i }, and P [i] be the uniform distribution

on Ω[i]. Every interval (s, t) ⊂ (0, 1) gives us a set As,t ⊂ Ω[all],

As,t ∩ Ω[i] = (s, t) ∩ Ω[i] .
� �

� �� �

� �
� � �

� � � �

� � � � �

� � � � � �

We take a dense countable set of pairs (s, t) (say, rational s, t) and consider
the set A1 of the corresponding As,t. The set A1 satisfies the conditions of
Lemma 2.5, therefore it generates a coarse σ-field A. In fact, A consists of
all A = A[1] � A[2] � . . . such that sets A[i] + (0, 1/i) ⊂ (0, 1) converge in
probability to some A[∞] ⊂ (0, 1); that is, mes

(
A[∞]� (A[i] + (0, 1/i))

)
→ 0

for i→∞.

� �

� �� �

� �
� � �

� � � �

� � � � �

� � � � � �

If A = As,t then, of course, A[∞] = (s, t).

Example 2.7. Continuing Example 1.3, we take Ω[i] = {−1,+1}i with the
uniform distribution P [i]. Given n and a = (a1, . . . , an) ∈ {−1,+1}n, we
consider Aa ⊂ Ω[all],

Aa ∩Ω[i] = {(τ1, . . . , τi) : τ1 = a1, . . . , τn = an} for i ≥ n .

Such sets Aa (for all a and n) are a countable collection A1 satisfying the
conditions of Lemma 2.5, therefore it generates a coarse σ-field A. In fact, A
consists of all A = A[1] � A[2] � . . . such that sets β−1

i (A) ⊂ (0, 1) converge
in probability to some A[∞] ⊂ (0, 1); here βi : (0, 1) → Ω[i] is such a measure
preserving map:

βi(x) =
(
(−1)c1 , . . . , (−1)ci

)
when x−

(c1
2

+ · · ·+ ci
2i
)
∈
(
0,

1
2i
)
,

for any c1, . . . , ci ∈ {0, 1}.
You may guess that some limiting procedure produces a (‘true’, not coarse)

probability space out of any given coarse probability space. Indeed, such a
procedure, called ‘refinement’, is described in Sect. 2.3.
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2.3 Good Use of Joint Compactification

Having a coarse probability space
(
(Ω[i],F [i], P [i])∞i=1,A

)
and its refine-

ment (Ω,F , P ) (to be defined later), we may hope that the Hilbert space
L2[∞] = L2(Ω,F , P ) is in some sense the limit of Hilbert spaces L2[i] =
L2

(
Ω[i],F [i], P [i]

)
. That is indeed the case in the framework of joint com-

pactification, as we’ll see. A bad use of the framework, tried in Sect. 1.2, is
a joint compactification of given probability spaces. A good use, considered
here, is a joint compactification of metric (Hilbert, . . . ) spaces built over the
given probability spaces.

Definition 2.8. A coarse Polish space is
(
(S[i], ρ[i])∞i=1, c

)
, where each (S[i],

ρ[i]) is a Polish space (that is, a complete separable metric space10), and c ⊂
S[1]×S[2]×. . . is a set of sequences x =

(
x[1], x[2], . . .

)
satisfying the following

conditions:
(a) if x1, x2 ∈ S[1] × S[2] × . . . are such that ρ[i]

(
x1[i], x2[i]

)
→ 0 (for

i→∞), then (x1 ∈ c) ⇐⇒ (x2 ∈ c);
(b) if x, x1, x2, · · · ∈ S[1]×S[2]× . . . are such that supi ρ[i]

(
xk[i], x[i]

)
→ 0

(for k →∞), then
(
∀k xk ∈ c

)
=⇒

(
x ∈ c

)
;

(c) limi ρ[i]
(
x1[i], x2[i]

)
exists for every x1, x2 ∈ c;

(d) there exists a finite or countable subset c1 ⊂ c that generates c in the
sense that the least subset of c satisfying (a), (b) and containing c1 is the
whole c.

Remark 2.9. Condition 2.8(d) does not change if ‘satisfying (a), (b)’ is replaced
with ‘satisfying (b)’. That is, 2.8(d) is just separability of c in the metric
x1, x2 �→ supi ρ[i]

(
x1[i], x2[i]

)
.

The refinement of a coarse Polish space
(
(S[i], ρ[i])∞i=1, c

)
is basically the

metric space
(
c, ρ̃
)
, where

ρ̃(x1, x2) = lim
i
ρ[i]
(
x1[i], x2[i]

)
.

However, ρ̃ is a pseudometric (semimetric); it may vanish for some x1 �= x2.
The equivalence class, denoted by x[∞], of a sequence x ∈ c consists of all
x1 ∈ c such that ρ[i]

(
x1[i], x[i]

)
→ 0. On the set S[∞] of all equivalence classes

we introduce a metric ρ[∞],

ρ[∞]
(
x1[∞], x2[∞]

)
= lim
i→∞

ρ[i]
(
x1[i], x2[i]

)
;

thus,
(
S[∞], ρ[∞]

)
is a metric space. We write
(
S[∞], ρ[∞]

)
= Limi→∞,c

(
S[i], ρ[i]

)

10 Many authors define a Polish space as a metrizable topological space admitting
a complete separable metric. However, I assume that a metric is given.
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and call
(
S[∞], ρ[∞]

)
the refinement of the coarse Polish space

(
(S[i], ρ[i])∞i=1,

c
)
. Also, for every x = (x[1], x[2], . . . ) ∈ c we denote its equivalence class

x[∞] ∈ S[∞] by
x[∞] = Limi→∞,c x[i] ,

and call it the refinement of x.

Lemma 2.10. For every coarse Polish space, its refinement (S, ρ) is a Polish
space.

Proof. Separability follows from 2.8(d); completeness is to be proven. Let
x1, x2, . . . be a Cauchy sequence in (S, ρ); we have to find x ∈ S such that
ρ(xk, x) → 0. We may assume that

∑
k ρ(xk, xk+1) < ∞. Each xk is an

equivalence class; using (a) we choose for each k = 1, 2, 3, . . . a representative
sk ∈ S[1] × S[2] × . . . of xk such that supi ρ[i]

(
sk[i], sk+1[i]

)
≤ 2ρ(xk, xk+1).

Completeness of
(
S[i], ρ[i]

)
ensures existence of s∞[i] = limk sk[i]. Condition

(b) ensures s∞ ∈ c. The equivalence class x ∈ S of s∞ satisfies ρ(xk, x) ≤
supi ρ[i]

(
sk[i], s∞[i]

)
→ 0 for k →∞. ��

Let (S[i], ρ[i])∞i=1, c
)

be a coarse Polish space, and (S, ρ) its refinement. On
the disjoint union

(
S[1]� S[2]� . . .

)
�S we introduce a topology, namely, the

weakest topology making continuous the following functions fs :
(
S[1]�S[2]�

. . .
)
� S → [0,∞) for s ∈ c,

fs(x) = ρ[i]
(
x, s[i]

)
for x ∈ S[i] ,

fs(x) = ρ(x, s[∞]) for x ∈ S ,

and an additional function f0 :
(
S[1] � S[2] � . . .

)
� S → [0,∞), f0(x) = 1/i

for x ∈ S[i], f0(x) = 0 for x ∈ S. On every S[i] separately (and also on S),
the new topology coincides with the old topology, given by ρ[i] (or ρ).

We may choose a sequence (sk) dense in c; the topology is generated by
functions fsk

(and f0), therefore it is a metrizable topology. Moreover, the
sequence of functions

( fsk
(·)

1+fsk
(·)
)∞
k=1 (and f0) maps the disjoint union into the

metrizable compact space [0, 1]∞, and is a homeomorphic embedding. Thus,
we have a joint compactification of all S[i] and S; and so, we treat them as
subsets of a compact metrizable space K;

S[i] ⊂ K , S ⊂ K .

Lemma 2.11. Let s∞ ∈ S, s1 ∈ S[1], s2 ∈ S[2], . . . Then si → s∞ in K if
and only if s = (s1, s2, . . . ) ∈ c and Limi→∞,c si = s∞.

Proof. The ‘if ’ part. The needed relation, fk(si) → fk(s∞) for i → ∞, is
ensured by 2.8(c).

The ‘only if ’ part. We choose x ∈ c such that x[∞] = s∞; then
ρ[i]
(
si, x[i]

)
→ ρ

(
s∞, x[∞]

)
= 0, thus s ∈ c by 2.8(a). ��
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The assumption ‘s∞ ∈ S’ is essential. Other limiting points (not belonging
to S) may exist; corresponding sequences converge in K but do not belong
to c. And, of course, sets S, S[1], S[2], . . . are not closed in K, unless they are
compact.

Lemma 2.12. A set c1 ⊂ c generates c if and only if the set of refinements
{x[∞] : x ∈ c1} is dense in S[∞].

Proof. The ‘only if ’ part follows from a simple argument: if S′ is a closed
subset of S then the set c′ of all x ∈ c such that x[∞] ∈ S′ satisfies 2.8(a,b).

The ‘if ’ part. Let {x[∞] : x ∈ c1} be dense in S[∞] and s ∈ c. We choose
xk ∈ c1 such that xk[∞] → s. Similarly to the proof of Lemma 2.10, we
construct yk ∈ c1 such that ρ[i]

(
sk[i], yk[i]

)
→ 0 when i → ∞ for each k,

and supi ρ[i]
(
yk[i], s[i]

)
→ 0 when k → ∞. The subset of c generated by c1

contains all yk by 2.8(a). Thus, it contains s by 2.8(b). ��

Given continuous functions f [i] : S[i] → R, f [∞] : S[∞] → R, we
write f [∞] = Limi→∞,c f [i] if f [i](x[i]) → f [∞](x[∞]) whenever x[∞] =
Limi→∞,c x[i]. If functions f [i] are equicontinuous (say, |f [i](x) − f [i](y)| ≤
ρ[i](x, y) for all i and x, y ∈ S[i]), then it is enough to check that f [i](xk[i]) →
f [∞](xk[∞]) for some sequence (xk)∞k=1, xk ∈ c, such that the sequence
(xk[∞])∞k=1 is dense in S[∞].

Given continuous maps f [i] : S[i] → S[i], f [∞] : S → S, we write
f [∞] = Limi→∞,c f [i] if Limi→∞,c f [i](x[i]) = f [∞](x[∞]) whenever x[∞] =
Limi→∞,c x[i]. That is, Lim

(
f [i](x[i])

)
=
(
Lim f [i]

)(
Limx[i]

)
. If maps f [i]

are equicontinuous then, again, convergence may be checked on xk such that
xk[∞] are dense.

Given continuous maps f [i] : S[∞] → S[i], we may ask whether
Limi→∞,c f [i](x) = x for all x ∈ S[∞], or not. If maps f [i] are equicontinuous
then, still, convergence may be checked for a dense subset of S[∞].

If every S[i] is not only a metric space but also a Hilbert (or Banach) space,
and c is linear (that is, closed under linear operations), then the refinement S
is also a Hilbert (or Banach) space, and linear operations are continuous on(
S[1] ∪ S[2] ∪ . . .

)
∪ S ⊂ K in the sense that

Limi→∞,c(as1[i] + bs2[i]) = aLimi→∞,c s1[i] + bLimi→∞,c s2[i]

for all s1, s2 ∈ c.
Consider the case of Hilbert spaces S[i] = H [i], S = H . Given linear11

operators R[i] : H [i] → H [i], we may ask about LimR[i]. If it exists, we get

Lim
(
R[i]x[i]

)
=
(
LimR[i]

)(
Limx[i]

)
.

If supi ‖R[i]‖ < ∞, then R[i] are equicontinuous, and convergence may be
checked on a sequence xk such that vectors xk[∞] span H (that is, their

11 Continuous, of course.
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linear combinations are dense in H). For example, one-dimensional orthogonal
projections; if x[∞] = Limx[i] then Projx[∞] = Lim Projx[i].

Given linear operators R[i] : H → H [i], we may ask whether LimR[i](x) =
x for all x ∈ H , or not. If supi ‖R[i]‖ <∞ then convergence may be checked
on a sequence that spans H . Such R[i] always exist; moreover, ‖R[i]‖ ≤ 1 may
be ensured. Proof: we take xk such that xk[∞] are an orthonormal basis of H .
After some correction, xk[i] become orthogonal (for each i), and ‖xk(i)‖ ≤ 1.12

Now we let R[i]xk[∞] = xk[i].
We return to coarse probability spaces.
Let

(
(Ω[i],F [i], P [i])∞i=1,A

)
be a coarse probability space. For each i

the pseudometric A,B �→ P [i](A � B) on F [i] gives us the metric space
MALG[i] = MALG

(
Ω[i],F [i], P [i]

)
of all equivalence classes of measurable

sets. It is not only a metric space but also a Boolean algebra, and moreover,
a separable measure algebra (as defined in [7, 17.44]). Treating every coarse
event A ∈ A as a sequence of A[1] ∈ MALG[1], A[2] ∈ MALG[2], . . . we
get a coarse Polish space

(
(MALG[i])∞i=1,A

)
. Its refinement is a metric space

MALG[∞]. The set A is closed under Boolean operations (union, intersec-
tion, complement). Therefore MALG[∞] is not only a metric space but also
a Boolean algebra. Using Lemma 2.10 it is easy to check that MALG[∞] is a
separable measure algebra. Therefore [7, 17.44] it is (up to isomorphism) of
the form

MALG[∞] = MALG(Ω,F , P )

for some probability space (Ω,F , P ). In the nonatomic case we may take
(Ω,F , P ) = (0, 1) with Lebesgue measure; in general, we may take a shorter
(maybe, empty) interval plus a finite (maybe, empty) or countable set of
atoms. Such a probability space (Ω.F , P ) (unique up to isomorphism) will be
called the refinement of the coarse probability space

(
(Ω[i],F [i], P [i])∞i=1,A

)
,

and we write
(Ω,F , P ) = Limi→∞,A

(
Ω[i],F [i], P [i]

)

(in practice, sometimes I omit “i→∞” or “A” or both under the “Lim”).
Every sequence A = (A[1], A[2], . . . ) ∈ A has its refinement

Limi→∞,AA[i] = A[∞] ∈ MALG(Ω,F , P ) .

Lemma 2.13. A subset A1 of a coarse σ-field A generates A if and only if the
refinement F of A is generated (mod 0) by refinements A[∞] of all A ∈ A1.

Proof. We apply Lemma 2.12 to the algebra generated by A1. ��

In order to define L2(A) as a set of functions on Ω[all], we start with indi-
cators 1A for A ∈ A, form their linear combinations, and take their completion
in the metric
12 Of course, ‖xk[i]‖ → 1 for i → ∞, but in general we cannot ensure ‖xk[i]‖ = 1.

It may happen that dim H [i] < ∞ but dimH = ∞.
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‖f‖L2(A) = sup
i
‖f [i]‖L2[i] ,

where L2[i] = L2

(
Ω[i],F [i], P [i]

)
; the completion is a Banach (not Hilbert)

space L2(A). Each element f of the completion is evidently identified with a
sequence of f [i] ∈ L2[i], or a function on Ω[all]. We have a coarse Polish space(
(L2[i])∞i=1, L2(A)

)
. It has its refinement, L2[∞].

Lemma 2.14. The refinement L2[∞] of
(
(L2[i])∞i=1, L2(A)

)
is (canonically

isomorphic to) L2(Ω,F , P ), where (Ω,F , P ) is the refinement of
(
(Ω[i],F [i],

P [i])∞i=1,A
)
.

Proof. We define the canonical map L2(A) → L2(Ω,F , P ) first on indicators
by 1A �→ 1A[∞], and extend it by linearity and continuity to the whole L2(A).
We note that the image of f ∈ L2(A) in L2(Ω,F , P ) depends only on the
refinement f [∞] ∈ L2[∞] of f , and their norms are equal (both are equal
to limi ‖f [i]‖). We have a linear isometric embedding L2[∞] → L2(Ω,F , P ).
Its image is closed (since L2[∞] is complete by Lemma 2.10), and contains
indicators 1B for all B ∈ MALG(Ω,F , P ); therefore the image is the whole
L2(Ω,F , P ). ��

Remark 2.15. The same holds for Lp for each p ∈ (0,∞), and for the space
L0 of all random variables (equipped with the topology of convergence in
probability). Elements of L0(A) will be called coarsely measurable (w.r.t. A)
functions (on Ω[all]), or coarse random variables; elements of L2(A) — square
integrable coarse random variables.

Let f be a coarse random variable. Then (usual) random variables f [i] :
Ω[i] → R converge in distribution (for i→ ∞) to the refinement f [∞] : Ω →
R. The distribution of f [∞] will be called the limiting distribution of f .

It may happen that f ∈ L2(A) but (sgnf) /∈ L2(A). An example: f(ω) =
(−1)i

i for all ω ∈ Ω[i]. Here, the limiting distribution is an atom at 0, and the
function ‘sgn’ is discontinuous at 0.

Lemma 2.16. (a) Let f : Ω[all] → R be a coarse random variable, and ϕ :
R → R a continuous function. Then ϕ ◦ f : Ω[all] → R is a coarse random
variable.

(b) The same as (a) but ϕ may be discontinuous at points of a set Z ⊂ R,
negligible w.r.t. the limiting distribution of f .

Proof. If f is a linear combination of indicators, then ϕ ◦ f is another linear
combination of the same indicators. A straightforward approximation gives (a)
for uniformly continuous ϕ. In general, for every ε there exists a compact set
K ⊂ R\Z of probability ≥ 1−ε w.r.t. the limiting distribution, and also w.r.t.
the distribution of f [i] for all i (since all these distributions are a compact set
of distributions). The restriction of f to K is uniformly continuous. The limit
for ε→ 0 is uniform in i. ��
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For a given Polish space S we may define a coarse S-valued random variable
as a map f : Ω[all] → S such that (usual) random variables f [i] : Ω[i] → S
converge in distribution (for i→ ∞), and f−1(B) ∈ A for every B ⊂ S such
that the boundary of B is negligible w.r.t. the limiting distribution of f .

For S = R the new definition conforms with the old one.
A coarse σ-field generated by a given sequence of sets (coarse events) was

defined after Lemma 2.5. Often it is convenient to generate a coarse σ-field by
a sequence of functions (coarse random variables). A function f : Ω[all] → R

is coarsely A-measurable if and only if A contains sets f−1
(
(−∞, x)

)
for

all x ∈ R except for atoms (if any) of the limiting distribution of f . A dense
countable subset of these x is enough. So, a coarse σ-field generated by a finite
or countable set of functions f is nothing but the coarse σ-field generated by
a countable set of sets of the form f−1

(
(−∞, x)

)
. More generally, S-valued

(coarse) random variables may be used; they are reduced to the real-valued
case by composing with appropriate continuous functions S → R.

Lemma 2.17. A sequence of functions fk : Ω[all] → R generates a
coarse σ-field if and only if for every n, n-dimensional random variables(
f1[i], . . . , fn[i]

)
: Ω[i] → Rn converge in distribution (for i→∞).

Proof. The ‘only if ’ part. Let f1, . . . , fn be coarsely measurable (w.r.t. some
coarse σ-field), then they have a limiting joint distribution.

The ‘if ’ part. For each n we choose a dense countable set Qn ⊂ R negligible
w.r.t. the limiting distribution of fn. We apply Lemma 2.5 to the set A1 of
coarse events of the form {f1(·) ≤ q1, . . . , fn(·) ≤ qn} where q1 ∈ Q1, . . . , qn ∈
Qn, n = 1, 2, . . . ��

Remark 2.18. The same holds for an arbitrary Polish space instead of R.

Remark 2.19. Comparing Lemma 2.17 and (1.7) we see that every joint com-
pactification of Ω1 � Ω2 � . . . (in the sense of Sect. 1.2, assuming (1.6)) may
be downgraded to a coarse probability space. Namely, we take a sequence of
functions fk that generates C and consider the coarse σ-field A generated by
(fk). Every f ∈ C is a coarse random variable, since L0(A) is closed under
all operations used in (1.3), (1.4), or (1.5).13 Therefore A does not depend on
the choice of (fk).

13 Of course, L0(A) usually contains no sequence dense in the uniform topology.
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3 Scaling Limit and Independence

3.1 Product of Coarse Probability Spaces

Having two coarse probability spaces
(
(Ω1[i],F1[i], P1[i])∞i=1,A1

)
and

(
(Ω2[i],

F2[i], P2[i])∞i=1,A2

)
, we define their product as the coarse probability space(

(Ω[i],F [i], P [i])∞i=1,A
)

where for each i,

(Ω[i],F [i], P [i]) = (Ω1[i],F1[i], P1[i])× (Ω2[i],F2[i], P2[i])

is the usual product of probability spaces, and A is the smallest coarse σ-field
that contains {A1×A2 : A1 ∈ A1, A2 ∈ A2}, where A1×A2 ⊂ Ω[all] is defined
by ∀i (A1 ×A2)[i] = A1[i]×A2[i]. Existence of such A is ensured by Lemma
2.5. We write A = A1 ⊗A2.

Lemma 3.1. The refinement of the product of two coarse probability spaces
is (canonically isomorphic to) the product of their refinements.

Proof. Denote these refinements by (Ω1,F1, P1), (Ω2,F2, P2) and (Ω,F , P ).
Both MALG(Ω1,F1, P1) and MALG(Ω2,F2, P2) are naturally embedded into
MALG(Ω,F , P ) as independent subalgebras. They generate MALG(Ω,F , P )
due to Lemma 2.13. ��

Given an arbitrary coarse σ-field A on the product coarse sample space(
(Ω1[i],F1[i], P1[i])×(Ω2[i],F2[i], P2[i])

)∞
i=1, we may ask whether A is a prod-

uct, that is, A = A1⊗A2 for some A1,A2, or not. No need to check all A1,A2.
Rather, we have to check

A1 = {A1 : A1 × Ω2 ∈ A} , A2 = {A2 : Ω1 ×A2 ∈ A} ;

of course, A1 × Ω2 ⊂ Ω[all] is defined by ∀i (A1 × Ω2)[i] = A1[i] × Ω2[i]. If
{A1 × A2 : A1 ∈ A1, A2 ∈ A2} generates A, then A is a product; otherwise,
it is not.

The refinement F of A contains two sub-σ-fields F1 = {(A1 × Ω2)[∞] :
A1 ∈ A1}, F2 = {(Ω1 ×A2)[∞] : A2 ∈ A2}. They are independent:

P (A ∩B) = P (A)P (B) for A ∈ F1, B ∈ F2 .

Lemma 3.2. A is a product if and only if F1,F2 generate F .

Proof. We apply Lemma 2.13 to {A1 ×A2 : A1 ∈ A1, A2 ∈ A2}. ��

Remark 3.3. It is well-known that a generating pair of independent sub-
σ-fields means that (Ω,F , P ) is (isomorphic to) the product of two probability
spaces. So, a coarse probability space is a product if and only if its refinement
is a product. (Assuming, of course, that the coarse sample space is a product.)
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Let A = A1 ⊗A2. Consider Hilbert spaces H1[i] = L2(Ω1[i],F1[i], P1[i]),
H2[i] = L2(Ω2[i],F2[i], P2[i]), H [i] = L2(Ω[i],F [i], P [i]). For each i, the
space H [i] is (canonically isomorphic to) H1[i]⊗H2[i]. Indeed, for x1 ∈ H1[i],
x2 ∈ H2[i] we define x1 ⊗ x2 ∈ H [i] by (x1 ⊗ x2)(ω1, ω2) = x1(ω1)x2(ω2);
then 〈x1⊗x2, y1⊗ y2〉 = 〈x1, y1〉〈x2, y2〉, and factorizable vectors (of the form
x1 ⊗x2) span the space H [i]. We know (see Lemma 2.14) that the refinement
H [∞] of

(
(H [i])∞i=1, L2(A)

)
is L2(Ω,F , P ). Also, H1[∞] = L2(Ω1,F1, P1) and

H2[∞] = L2(Ω2,F2, P2). Using Lemma 3.1 we get H [∞] = H1[∞] ⊗H2[∞].
In that sense,

Lim
(
H1[i]⊗H2[i]

)
=
(
LimH1[i]

)
⊗
(
LimH2[i]

)
.

If x ∈ L2(A1), y ∈ L2(A2), we define x⊗ y by (x⊗ y)[i] = x[i]⊗ y[i] for all i.
We get x⊗ y ∈ L2(A) and (x⊗ y)[∞] = x[∞] ⊗ y[∞], that is,

Lim
(
x[i] ⊗ y[i]

)
=
(
Limx[i]

)
⊗
(
Lim y[i]

)
, (3.1)

since it holds for (linear combinations of) indicators of coarse events. Note
also that linear combinations of factorizable vectors are dense in L2(A).

Assume that R1[i] : H1[i] → H1[i], R2[i] : H2[i] → H2[i] are linear op-
erators, possessing limits R1[∞] = LimR1[i], R2[∞] = LimR2[i]. Consider
linear operators R1[i] ⊗ R2[i] = R[i] : H [i] → H [i]. (It means that R[i]x[i] =
R1[i]x1[i] ⊗ R2[i]x2[i] whenever x[i] = x1[i] ⊗ x2[i].) If supi ‖R1[i]‖ < ∞,
supi ‖R2[i]‖ <∞, then LimR[i] = R1[∞] ⊗R2[∞], that is,

Lim
(
R1[i]⊗R2[i]

)
=
(
LimR1[i]

)
⊗
(
LimR2[i]

)
. (3.2)

Proof: We have to check that

Lim
(
R1[i]⊗R2[i]

)
x[i] =

(
LimR1[i]⊗ LimR2[i]

)(
Limx[i]

)

for all x ∈ L2(A). We may assume that x is factorizable, x = x1 ⊗ x2; then

Lim
(
R1[i] ⊗R2[i]

)(
x1[i] ⊗ x2[i]

)
=

= Lim
(
R1[i]x1[i]⊗R2[i]x2[i]

)
=

=
(
LimR1[i]x1[i]

)
⊗
(
LimR2[i]x2[i]

)
=

=
(
LimR1[i]

)(
Limx1[i]

)
⊗
(
LimR2[i]

)(
Limx2[i]

)
=

=
(
LimR1[i]⊗ LimR2[i]

)(
Limx1[i]⊗ Limx2[i]

)
.

Especially, let R2[i] be the orthogonal projection to the one-dimensional
subspace of constants (basically, the expectation), and R1[i] be the unit
(identity) operator. Then

(
R1[i] ⊗ R2[i]

)(
x[i]
)

= E
(
x[i]

∣
∣F1[i]

)
, since it

holds for factorizable vectors. Further, R2[∞] = LimR2[i] is the expecta-
tion on (Ω2,F2, P2), since convergence of vectors implies convergence of one-
dimensional projections, and constant functions on Ω2[all] belong to L2(A).
So,
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Lim E
(
x[i]

∣
∣F1[i]

)
= E

(
Limx[i]

∣
∣F1

)
(3.3)

for all x ∈ L2(A).
All the same holds for the product of any finite number of spaces (not just

two).

3.2 Dyadic Case

Let (Ω[i],F [i], P [i]) be the space of all maps 1
iZ → {−1,+1} with the usual

product measure. That is, we have independent random signs τk/i for all inte-
gers k;14 each random sign takes on two values±1 with probabilities 50%, 50%.
The coarse sample space (Ω[i],F [i], P [i])∞i=1 will be called the dyadic coarse
sample space.15 Let A be a coarse σ-field on the dyadic coarse sample space.
What about decomposing it, say, into the past and the future w.r.t. a given
instant?

Let us define a coarse instant as a sequence t =
(
t[i])∞i=1 such that t[i] ∈ 1

iZ

(that is, it[i] ∈ Z) for all i, and there exists t[∞] ∈ R (call it the refinement of
the coarse instant) such that t[i] → t[∞] for i→∞. A coarse time interval is
a pair (s, t) of coarse instants s, t such that s ≤ t in the sense that s[i] ≤ t[i]
for all i.

For every coarse time interval (s, t) we define the coarse probability
space

(
(Ωs,t[i],Fs,t[i], Ps,t[i])∞i=1,As,t

)
as follows. First, Ωs,t[i] is the space

of all maps
(

1
iZ ∩ [s[i], t[i])

)
→ {−1,+1}.16 Second, Fs,t[i] and Ps,t[i]

are defined naturally, and we have the canonical measure preserving map
(Ω[i],F [i], P [i]) → (Ωs,t[i],Fs,t[i], Ps,t[i]). Third, each A ⊂ Ωs,t[all] has its in-
verse image in Ω[all]; if the inverse image of A belongs to A then (and only
then) A belongs to As,t, which is the definition of As,t. It is easy to see that
As,t is a coarse σ-field.

Given coarse time intervals (r, s) and (s, t), we have
(
Ωr,t[i],Fr,t[i], Pr,t[i]

)
=
(
Ωr,s[i],Fr,s[i], Pr,s[i]

)
×
(
Ωs,t[i],Fs,t[i], Ps,t[i]

)
,

and we may ask whether Ar,t is a product, that is, Ar,t = Ar,s⊗As,t, or not.

Definition 3.4. A dyadic coarse factorization is a coarse probability space(
(Ω[i],F [i], P [i])∞i=1,A

)
such that (Ω[i],F [i], P [i])∞i=1 is the dyadic coarse sam-

ple space;
Ar,t = Ar,s ⊗As,t

whenever r, s, t are coarse instants such that r[i] ≤ s[i] ≤ t[i] for all i; and

14 Rigorously, I should denote it by τk[i], but τk/i is more expressive. Though τ2/6

is not the same as τ1/3, hopefully, it does not harm.
15 Sometimes a subsequence is used; say, i ∈ {2, 4, 8, 16, . . . } only; or equivalently,

Ω[i] is the space of maps 2−iZ → {−1, +1}; see Examples 3.9, 3.10.
16 It may happen that s[i] = t[i], then Ωs,t[i] contains a single point.
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A is generated by
⋃

(s,t)

As,t ,

where the union is taken over all coarse time intervals (s, t).

Example 3.5. A single function f : Ω[all] → R, defined by f(ω) = τ0/i(ω)
for ω ∈ Ω[i], generates a coarse σ-field A. However, the coarse probability
space

(
(Ω[i],F [i], P [i])∞i=1,A

)
is not a dyadic coarse factorization. The equal-

ity Ar,t = Ar,s⊗As,t is violated when s[i] converges to 0 from both sides; say,
s[i] = (−1)i/i. It means that a single point of the time continuum should not
carry a random sign. See also Lemmas 3.11–3.13.

Every family (As,t)s≤t of coarse σ-fields As,t on coarse sample spaces(
Ωs,t[i],Fs,t[i], Ps,t[i]

)∞
i=1, indexed by all coarse time intervals (s, t) and satis-

fying Ar,t = Ar,s ⊗As,t whenever r ≤ s ≤ t, corresponds to a dyadic coarse
factorization.

Example 3.6. Given a coarse time interval (s, t), we consider fs,t : Ω[all] → R,

fs,t(ω) =
1√
i

∑

k:s[i]≤k/i<t[i]
τk/i(ω) for ω ∈ Ω[i] .

Only s[∞], t[∞] matter, in the sense that

∫

Ω[i]

|f̃ [i]− f [i]|
1 + |f̃ [i]− f [i]|

dP [i] −−−→
i→∞

0 (3.4)

if f = fs,t, and f̃ = fs̃,t̃ is such a function built for a different coarse time inter-
val (s̃, t̃) satisfying s̃[∞] = s[∞], t̃[∞] = t[∞]. Moreover, ‖f̃ [i]− f [i]‖L2[i] → 0
for i → ∞. We choose a sequence of coarse time intervals, (sn, tn)∞n=1, such
that the sequence of their refinements, (sn[∞], tn[∞]) is dense among all
(usual, not coarse) intervals. The sequence

(
fsn,tn

)∞
n=1 satisfies the condi-

tion of Lemma 2.17 and therefore it generates a coarse σ-field A. It is easy to
see that A does not depend on the choice of (sn, tn). Clearly, the refinement
of fs,t is the increment B(t[∞])−B(s[∞]) of the usual Brownian motion B(·).

Given three coarse instants r ≤ s ≤ t, we have

fr,t = fr,s + fs,t .

It shows that fr,t is coarsely measurable w.r.t. the product of two coarse
σ-fields Ar,s ⊗ As,t, which implies Ar,t = Ar,s ⊗ As,t. So, we have a dyadic
coarse factorization. We may call it the Brownian coarse factorization.

Example 3.7. Let fs,t(ω) be the same as in Example 3.6 and in addition,

gs,t(ω) =
1√
i

∑

k:s[i]≤k/i<t[i]
(−1)kτk/i(ω) for ω ∈ Ω[i] .
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In the scaling limit we get two independent Brownian motions B1, B2; the
refinement of fs,t is B1(t[∞])−B1(s[∞]), the refinement of gs,t is B2(t[∞])−
B2(s[∞]). By the way, (−1)k cannot be replaced with (−1)k−s[i]; it would
violate the condition of Lemma 2.17.

We may also consider

f
(n)
s,t (ω) =

1√
i

∑

k:s[i]≤k/i<t[i]
exp

(
2πi

k

n

)
τk/i(ω) for ω ∈ Ω[i]

for n = 1, 2, 3, . . . (here i =
√
−1, while i is an integer). In the scaling limit we

get two real-valued Brownian motions B1, B2 and infinitely many complex-
valued Brownian motion B3, B4, . . . All Bn are independent.

Another construction of that kind:

f
(λ)
s,t (ω) =

1√
i

∑

k:s[i]≤k/i<t[i]
exp

(
2πiλ

k√
i

)
τk/i(ω) for ω ∈ Ω[i] .

In the scaling limit, each λ ∈ (0,∞) gives a complex-valued Brownian motion
Bλ. Any finite or countable set of numbers λ may be used, and leads to inde-
pendent Brownian motions. Note that we cannot use more than a countable
set of λ, since separability is stipulated by the definition of a coarse probability
space.

Example 3.8. For n = 1, 2, . . . we introduce

f
(n)
s,t (ω) =

1√
i

∑

k:s[i]≤k/i≤(k+n)/i<t[i]

n∏

m=1

τ(k+m)/i(ω) for ω ∈ Ω[i] .

In the scaling limit we get independent Brownian motions Bn.
Another construction of that kind:

f
(λ)
s,t (ω) =

1√
i

∑

k:s[i]≤k/i≤(k+λ
√
i)/i<t[i]

entier(λ
√
i)∏

m=1

τ(k+m)/i(ω) for ω ∈ Ω[i] ;

any finite or countable set of numbers λ ∈ (0,∞) may be used, and leads to
independent Brownian motions Bλ.

Note that we cannot take the product over m = 1, . . . , entier(λi); that
would destroy factorizability.

Example 3.9. Here we restrict ourselves to i ∈ {2, 4, 8, 16, . . .}, thus violating
a little of our framework. We let for ω ∈ Ω[i], i = 2n,

gs,t(ω) =
∑

k:s[i]≤k/i<(k+n−1)/i<t[i]

1 + τk/i(ω)
2

n−1∏

m=1

1 − τ(k+m)/i(ω)
2

.

That is, gs,t : Ω[all] → {0, 1, 2, . . .} counts combinations ‘+ − . . .−’ of one
plus sign and (n−1) minus signs in succession. In the scaling limit we get the
Poisson process.
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Example 3.10. Let fs,t be as in Example 3.6 (Brownian), while gs,t is as in
Example 3.9 (Poisson). Taken together, they generate a coarse σ-field. The
corresponding scaling limit consists of two independent processes, Brownian
and Poisson.

Let
(
(Ω[i],F [i], P [i])∞i=1,A

)
be a dyadic coarse factorization. Being a

coarse probability space, it has a refinement (Ω,F , P ). For every coarse time
interval (s, t) we have a coarse sub-σ-field As,t ⊂ A and its refinement, a
sub-σ-field Fs,t[∞] ⊂ F . By Lemma 3.1,

Fr,t[∞] = Fr,s[∞] ⊗Fs,t[∞] whenever r ≤ s ≤ t .

Lemma 3.11. If s[∞] = t[∞] then Fs,t[∞] is degenerate (that is, contains
sets of probability 0 or 1 only).

Proof. Consider the coarse instant r,

r[i] =

{
s[i] for i even,
t[i] for i odd.

For every A ∈ As,r,

P (A[∞]) = lim
i→∞

P [i]
(
A[i]

)
= lim

i→∞
P [2i]

(
A[2i]

)
∈ {0, 1} ,

since As,r[2i] is degenerate. So, Fs,r[∞] is degenerate. Similarly, Fr,t[∞] is
degenerate. However, Fs,t[∞] = Fs,r[∞] ⊗Fr,t[∞]. ��

Lemma 3.12. Fs,t[∞] depends only on s[∞], t[∞].

Proof. Let (u, v) be another coarse time interval such that u[∞] = s[∞] and
v[∞] = t[∞]; we have to prove that Fs,t[∞] = Fu,v[∞]. Assume that s[∞] <
t[∞] (otherwise both Fs,t[∞] and Fu,v[∞] are degenerate). Assume also that
s[i] ≤ v[i] and u[i] ≤ t[i] for all i (otherwise we correct them on a finite set of
indices i).

Further, we may assume that s ≤ u ≤ v ≤ t; otherwise we turn to s∧ u ≤
s ∨ u ≤ t ∧ v ≤ t ∨ v, where (s ∧ u)[i] = s[i] ∧ u[i] = min

(
s[i], u[i]

)
, etc. Both

Fs,t[∞] and Fu,v[∞] are sandwiched between Fs∧u,t∨v[∞] and Fs∨u,t∧v[∞].
Finally, Fs,t[∞] = Fs,u[∞] ⊗Fu,v[∞] ⊗Fv,t[∞] = Fu,v[∞], since Fs,u[∞]

and Fv,t[∞] are degenerate by Lemma 3.11. ��

So, a sub-σ-field Fs,t ⊂ F is well-defined for every interval (s, t) ⊂ R

(rather than a coarse time interval), and

Fr,t = Fr,s ⊗Fs,t whenever −∞ < r ≤ s ≤ t < +∞ .

Lemma 3.13. The union of sub-σ-fields Fs+ε,t−ε over ε > 0 generates Fs,t.
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Proof. Consider Fε,1. We have to prove that E
(
x
∣
∣Fε,1

)
converges to x (in

L2(Ω), for ε → 0+) for every x ∈ L2(F0,1), or for x[∞] where x ∈ L2(A0,1).
Assume the contrary. Then

‖E
(
x[∞]

∣∣Fε,1
)
‖ < c < ‖x[∞]‖

for all ε small enough, and some constant c. We know that

E
(
x[∞]

∣
∣Fε,1

)
= Lim E

(
x[i]

∣
∣Fε,1[i]

)

for each ε.17 Therefore

‖E
(
x[i]

∣
∣Fε,1[i]

)
‖ −−−→
i→∞

‖E
(
x[∞]

∣
∣Fε,1

)
‖ < c .

We choose a sequence ε[i] −−−→
i→∞

0 such that ‖E
(
x[i]

∣
∣Fε[i],1[i]

)
‖ < c for

all i large enough. However, Lim E
(
x[i]

∣
∣Fε[i],1[i]

)
= E

(
x[∞]

∣
∣Fε[∞],1

)
=

E
(
x[∞]

∣∣F0,1

)
= x[∞]; a contradiction. ��

3.3 Scaling Limit of Fourier-Walsh Coefficients

We still consider a dyadic coarse factorization. The Hilbert space L2[i] =
L2

(
Ω[i],F [i], P [i]

)
consists of all functions of random signs τm, m ∈ 1

iZ. The
well-known Fourier-Walsh orthonormal basis of L2[i] consists of products

τM =
∏

m∈M
τm , M ∈ C[i] , C[i] = {M ⊂ 1

iZ : M is finite} .

Every f ∈ L2[i] is of the form

f =
∑

M

f̂MτM = f̂∅ +
∑

m∈ 1
i Z

f̂{m}τm +
∑

m1,m2∈ 1
i Z,m1<m2

f̂{m1,m2}τm1τm2 + . . . ;

coefficients f̂M are called Fourier-Walsh coefficients of f . We define the spectral
measure µf on the countable set C[i] by

µf (M) =
∑

M∈M
|f̂M |2 for M⊂ C[i] ;

it is a finite positive measure,

µf (C[i]) = ‖f‖2 ; µf ({∅}) = (E f)2 ; µf (C[i] \ {∅}) = Var(f) .

Let (s, t) be a coarse time interval. We have

17 Or rather, an appropriate coarse instant is meant in Fε,1[i].
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E
(
τM
∣
∣Fs,t[i]

)
=

{
τM if M ⊂ [s[i], t[i]),
0 otherwise;

‖E
(
f
∣
∣Fs,t[i]

)
‖2 = µf

(
{M ∈ C[i] : M ⊂ [s[i], t[i])}

)
.

We apply it to f = x[i] for an arbitrary x ∈ L2(A) and arbitrary i; µf becomes
µx[i] or µx[i]; by (3.3),

µx[i]
(
{M ∈ C[i] : M ⊂ [s[i], t[i])}

)
= ‖E

(
x[i]

∣
∣Fs,t[i]

)
‖2

−−−→
i→∞

‖E
(
x[∞]

∣
∣Fs,t[∞]

)
‖2 .

For every ε > 0 we can choose s, t so that ‖x[∞]‖2−‖E
(
x[∞]

∣
∣Fs,t[∞]

)
‖2 ≤ ε,

and moreover,

µx[i]
(
{M ∈ C[i] : M ⊂ [s[i], t[i])}

)
≤ ε for all i . (3.5)

We consider each µx[i] as a measure on the space C[∞] of all compact subsets
of R, equipped with the Hausdorff metric; the metric is

dist(M1,M2) = sup
x∈R

∣
∣
∣ min
y∈M1

|x− y| − min
y∈M2

|x− y|
∣
∣
∣ (3.6)

for nonempty M1,M2, and dist(∅,M) = 1 for M �= ∅. Clearly, C[i] ⊂ C[∞]
for each i; thus, a measure on C[i] is also a measure on C[∞].18 The set
{M ∈ C[∞] : M ⊂ [u, v]} is well-known to be compact, for every [u, v] ⊂ R.
Thus, (3.5) shows that the sequence of measures µx[i] on C[∞] is tight.

Let (s1, t1) and (s2, t2) be two coarse time intervals, s1 ≤ t1 ≤ s2 ≤ t2.
Sub-σ-fields Fs1,t1 [i] and Fs2,t2 [i] are independent; they generate a sub-σ-field
that may be denoted by

F(s1,t1)∪(s2,t2)[i] = Fs1,t1 [i]⊗Fs2,t2 [i] .

We have

E
(
τM
∣
∣F(s1,t1)∪(s2,t2)[i]

)
=

{
τM if M ⊂ [s1[i], t1[i]) ∪ [s2[i], t2[i]),
0 otherwise;

‖E
(
f
∣
∣F(s1,t1)∪(s2,t2)[i]

)
‖2

= µf
(
{M ∈ C[i] : M ⊂ [s1[i], t1[i]) ∪ [s2[i], t2[i])}

)
;

µx[i]
(
{M ∈ C[i] : M ⊂ [s1[i], t1[i]) ∪ [s2[i], t2[i])}

)

= ‖E
(
x[i]

∣
∣F(s1,t1)∪(s2,t2)[i]

)
‖2 −−−→

i→∞
‖E
(
x[∞]

∣
∣F(s1,t1)∪(s2,t2)[∞]

)
‖2 ,

18 One may turn (C[i])∞i=1 into a coarse Polish space, and identify its refinement
with C[∞]. It leads to a joint compactification of all C[i] and C[∞], which is a
suitable framework for weak convergence of measures on C[i] to a measure on
C[∞]. However, it is simpler to use natural embeddings, C[i] ⊂ C[∞].
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where F(s1,t1)∪(s2,t2)[∞] = Fs1,t1 [∞]⊗Fs2,t2 [∞] = Fs1[∞],t1[∞] ⊗Fs2[∞],t2[∞].
A generalization of (3.3) to the product of more than two spaces was used
here.

The same holds for more than two coarse time intervals:

µx[i]
(
{M ∈ C[i] : M ⊂ [s1[i], t1[i]) ∪ . . . ∪ [sn[i], tn[i])}

)

−−−→
i→∞

‖E
(
x[∞]

∣∣F(s1,t1)∪...∪(sn,tn)[∞]
)
‖2 . (3.7)

We have convergence of spectral measures on a special class of subsets of
C[∞]. Note that the intersection of two such subsets is again such a subset.
Therefore, the convergence holds on the algebra of subsets generated by the
class. A generic element of the algebra is the union of a finite number of ‘cells’
of the form

{M ∈ C[∞] : M ⊂ ∪nk=1[sk, tk) and M ∩ [sk, tk) �= ∅ for k = 1, . . . , n} ; (3.8)

here [sk, tk) ⊂ R are usual (rather than coarse) time intervals. (Endpoints may
be neglected, as we will see soon.) The diameter of the cell (3.8) (w.r.t. the
metric (3.6)) does not exceed maxk(tk − sk). Thus, we get weak convergence
of measures, which proves the following result.

Theorem 3.14. For every dyadic coarse factorization
(
(Ω[i],F [i], P [i])∞i=1,A

)

and every x ∈ L2(A), the sequence
(
µx[i]

)∞
i=1 of spectral measures converges

weakly to a (finite, positive) measure µx[∞] on the Polish space C[∞].

Convergence of measures µx[i] on a ‘cell’ of the form (3.7) (or (3.8)) does
not ensure that the limit is µx[∞] on the ‘cell’.19 Rather, the limit lies between
µx[∞]-measures of the interior and the closure of the cell,

µx[∞]
(
{M ∈ C[∞] : M ⊂ (s1, t1) ∪ . . . ∪ (sn, tn)}

)

≤ ‖E
(
x[∞]

∣
∣F(s1,t1)∪...∪(sn,tn)

)
‖2

≤ µx[∞]
(
{M ∈ C[∞] : M ⊂ [s1, t1] ∪ . . . ∪ [sn, tn]}

)
. (3.9)

Lemma 3.15. For every t ∈ R,

µx[∞]
(
{M ∈ C[∞] : M � t}

)
= 0 .

Proof. Lemma 3.13 gives us

‖E
(
x[∞]

∣
∣F(−∞,−ε)∪(ε,+∞)

)
‖2 −−−→

ε→0
‖x[∞]‖2 ;

therefore

µx[∞]
(
{M ∈ C[∞] : M ⊂ (−∞, ε] ∪ [ε,+∞)}

)
−−−→
ε→0

µx[∞]
(
C[∞]

)
.

��
19 Think for example about an atom at the point 1

n
of R, and ‘cells’ of the form

(x, y].
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Applying Fubini’s theorem we see that µx[∞] is concentrated on (the set
of all) compact sets M of Lebesgue measure 0 (therefore, nowhere dense).

Due to Lemma 3.15 we see that the boundary of a ‘cell’ is negligible (of
measure 0); inequalities (3.9) are, in fact, equalities. So,

µx[∞]
(
{M ∈ C[∞] : M ⊂ E}

)
= ‖E

(
x[∞]

∣∣FE
)
‖2 , (3.10)

where E ⊂ R is an arbitrary elementary set, that is, a finite union of intervals
(treated modulo finite sets), E = (s1, t1) ∪ . . . ∪ (sn, tn), and FE = Fs1,t1 ⊗
· · · ⊗ Fsn,tn .

For a finite i, the Fourier-Walsh basis decomposes L2[i] into one-dimen-
sional subspaces indexed by M ∈ C[i], and each subset M ⊂ C[i] leads to a
subspace HM of L2[i] spanned by τM , M ∈ M. In particular, for a subset of
the form ME = {M ∈ C[i] : M ⊂ E} we have HME = L2(Ω[i],FE[i], P [i]).

Similarly, for the limiting object, the subspace HME = L2(Ω,FE , P ) of
L2[∞] corresponds to the set ME = {M ∈ C[∞] : M ⊂ E}. In Sect. 3.4 a
subspace HM ⊂ L2[∞] will be defined for every Borel set M⊂ C[∞].

3.4 The Limiting Object

Definition 3.16. A continuous factorization (of probability spaces, over R)
consists of a probability space (Ω,F , P ) and a two-parameter family (Fs,t)s≤t
of sub-σ-fields Fs,t ⊂ F such that20

(a) Fr,t = Fr,s ⊗Fs,t whenever r ≤ s ≤ t

(that is, Fr,s and Fs,t are independent, and together generate Fr,t),

(b)
⋃

ε>0

Fs+ε,t−ε generates Fs,t whenever s < t,

and

(c)
∞⋃

n=1

F−n,n generates F .

The refinement of any dyadic coarse factorization is a continuous factor-
ization (as was shown in Sect. 3.2).

Definition 3.17. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, and

x ∈ L2(Ω,F , P ). The spectral measure µx of x is the (finite, positive) measure
on the space C = C[∞] of compact subsets of R such that

µx
(
{M ∈ C : M ⊂ E}

)
= ‖E

(
x
∣∣FE

)
‖2

for all elementary sets E ⊂ R.
20 Here r, s, t are real numbers; coarse instants are not used in Sects. 3.4, 3.5.
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Uniqueness of µx is checked easily. Existence of µx is proven in Sect. 3.3
by discrete approximation, assuming that the continuous factorization is the
refinement of a dyadic coarse factorization. Another proof, without approxi-
mation, will be given by Lemma 3.23.

The spectral measure is concentrated on (the set of all) nowhere dense
compact sets, and

µx
(
{M ∈ C : M � t}

)
= 0 for each t ∈ R , (3.11)

which follows from Lemma 3.20 for s = t, since Ft,t = Ft,t⊗Ft,t is degenerate.

Example 3.18. The refinement of the Brownian coarse factorization (see Ex-
ample 3.6) is the Brownian continuous factorization,

Fs,t is generated by {B(v) −B(u) : s ≤ u ≤ v ≤ t} ,

where B(·) is the usual Brownian motion. Every x ∈ L2 admits Itô’s decom-
position into multiple stochastic integrals,

x = x̂(∅) +
∫
x̂({t1}) dB(t1) +

∫∫

t1<t2

x̂({t1, t2}) dB(t1)dB(t2) + . . .

=
∞∑

n=0

∫
· · ·
∫

t1<···<tn

x̂({t1, . . . , tn}) dB(t1) . . . dB(tn) ,

where x̂ ∈ L2(Cfinite), Cfinite being the space of all finite subsets of R, equipped
with the natural (Lebesgue) measure, making the transform x ↔ x̂ unitary,
according to the formula

E |x|2 = |x̂(∅)|2 +
∫

|x̂({t1})|2 dt1 +
∫∫

t1<t2

|x̂({t1, t2})|2 dt1dt2 + . . .

=
∞∑

n=0

∫
· · ·
∫

t1<···<tn

|x̂({t1, . . . , tn})|2 dt1 . . .dtn .

The spectral measure µx of x is

µx(A) =
∞∑

n=0

∫
· · ·
∫

t1<···<tn,{t1,...,tn}∈A

|x̂({t1, . . . , tn})|2 dt1 . . .dtn .

This is an important property of the Brownian continuous factorization: the
spectral measure (of any random variable) is concentrated on the subset
Cfinite ⊂ C, and absolutely continuous w.r.t. the Lebesgue measure on Cfinite.

In particular, for x = exp
(
i
√
λB(t)

)
the measure µx is just the distribution

of the Poisson process of rate λ on (0, t). Indeed,
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exp
(
i
√
λB(t)

)
= e−λt/2

∞∑

n=0

λn/2
∫

· · ·
∫

0<t1<···<tn<t
dB(t1) . . . dB(tn) .

Example 3.19. Recall the process Yε of Example 1.2;

Yε(t) = exp
(
iB(ln t) − iB(ln ε)

)
.

We define Fs,t as the σ-field generated by ‘multiplicative increments’
Yε(v)/Yε(u) for all (u, v) ⊂ (s, t), that is, by (usual) Brownian increments
on (ln s, ln t). The spectral measure µYε(t) is the distribution of a non-
homogeneous Poisson process on (ε, t), the image of the usual Poisson process
(of rate 1) on (ln ε, ln t) under the time change u �→ eu. The rate of the non-
homogeneous Poisson process is λ(s) = 1/s.

The limiting process Y was discussed in Example 1.2. It may be treated
as the refinement of Yε for ε → 0 (I leave the details to the reader). The
spectral measure µY (t) should be the distribution of a non-homogeneous Pois-
son process on (0, t), at the rate λ(s) = 1/s. Random points accumulate
to 0; we add 0 to the random set, making it compact. However, the equality
µ({M : M � 0}) = 1 does not conform to Lemma 3.15! It happens because the
limiting object is not a continuous factorization. Denote by F0+,1 the σ-field
generated by ∪ε>0Fε,1. Every Y (1)/Y (t) for t > 0 is F0+,1-measurable, but
Y (1) is not. The global phase is missing. Of course, for every t > 0, there exists
an independent complement of F0+,t in F−∞,t (for example, the σ-field gener-
ated by Y (t)). However, we cannot choose a single complement (to be denoted
by F−∞,0+) for all t > 0, since the tail σ-field ∩t>0F−∞,t is degenerate.

Lemma 3.20. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
and

every s ≤ t,
Fs,t =

⋂

ε>0

Fs−ε,t+ε .

Proof. The σ-field ∩ε>0F0,ε is degenerate by Kolmogorov’s zero-one law ap-
plied to F1,∞,F1/2,1,F1/3,1/2, . . . Further, F−∞,ε = F−∞,0 ⊗ F0,ε −−−→

ε→0

F−∞,0. Though the equality lim(A ∨ Bn) = A ∨ (limBn) does not hold in
general, it does hold for independent A and B1 (B1 ⊃ B2 ⊃ . . . ), which is a
rather trivial part of Weizsäcker’s criteria [27]. The rest of the proof is left to
the reader. ��

The theory of direct integrals of Hilbert spaces may be used on the way
to Theorem 3.26. In fact, I did so in [15, Th. 2.3]. Here, however, I choose a
self-contained presentation. First, a general result of measure theory, useful
for proving the existence of µx (without dyadic approximation).

Lemma 3.21. Let X be a compact topological space, A an algebra of subsets of
X, and µ : A → [0,∞) an additive function satisfying the following regularity
condition:
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For every A ∈ A and ε > 0 there exists B ∈ A such that B ⊂ A (here B
is the closure of B) and µ(B) ≥ µ(A) − ε.

Then µ has a unique extension to a measure on the σ-field generated by
A.

Proof. Due to a well-known theorem, it is enough to prove that µ is σ-additive
on A. Let A1 ⊃ A2 ⊃ . . . , A1, A2, · · · ∈ A, ∩Ak = ∅; we have to prove that
µ(Ak) → 0. Given ε > 0, we can choose Bk ∈ A such that Bk ⊂ Ak and
µ(Bk) ≥ µ(Ak) − 2−kε. Due to compactness, the relation ∩Bk ⊂ ∩Ak = ∅
implies B1 ∩ · · · ∩ Bn = ∅ for some n. Thus, µ(An) = µ(A1 ∩ · · · ∩ An) ≤
µ(B1 ∩ · · · ∩Bn) + µ(A1 \B1) + · · ·+ µ(An \Bn) < ε. ��

Remark 3.22. All A ∈ A such that A and X \ A both satisfy the regularity
condition, are a subalgebra of A. (The proof is left to the reader.) Therefore
it is enough to check the condition for A and X \A where A runs over a set
that generates the algebra A.

Lemma 3.23. The spectral measure µx exists for every x ∈ L2(Ω,F , P ) and
every continuous factorization (Fs,t)s≤t.

Proof. First, compactness. We have ‖E
(
x
∣∣F−m,m

)
‖2 → ‖x‖2 for m→∞ by

3.16(c); thus we may restrict ourselves to x measurable w.r.t. F−m,m for some
m. The corresponding part Cm = {M ∈ C : M ⊂ [−m,m]} of C is compact.

Second, additivity on an algebra. We have an algebra A of subsets of
Cm, generated by ‘cells’ of the form (3.8). Such a cell leads to a subspace of
L2(Ω,F−m,m, P ) spanned by products f1 . . . fn where each fk is measurable
w.r.t. Fsk,tk , square integrable, and E fk = 0. A partition of the interval
[−m,m] into n subintervals leads to a partition of Cm into 2n parts, and
a decomposition of L2(Ω,F−m,m, P ) into 2n orthogonal subspaces. Thus, x
decomposes into 2n orthogonal vectors; their squared norms give us µx on a
finite subalgebra (of cardinality 22n

) of A. We see that µx is additive on such
subalgebras. Their union (over all partitions of [−m,m]) is the whole A, and
any two of them are contained in some third; therefore, µx is additive on A.

Third, regularity (required by Lemma 3.21). Due to Remark 3.22, regu-
larity may be checked only for sets AE = {M ∈ Cm : M ⊂ E} and Cm \ AE .
It follows easily from 3.16(b) and Lemma 3.20. ��

Remark 3.24. In the proof of Lemma 3.23, an orthogonal decomposition of the
Hilbert space H = L2(Ω,F , P ) over the algebra A is constructed; that is,
a family (HA)A∈A of (closed linear) subspaces HA ⊂ H such that HA∪B =
HA⊕HB (it means that HA and HB are orthogonal, and their sum is HA∪B)
whenever A ∩B = ∅, and HC = H . The decomposition satisfies

HME = L2(Ω,FE , P ) ,

where ME = {M ∈ C : M ⊂ E}, and is uniquely determined by this property.
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The following general result will help us construct HM for all Borel sets
M ⊂ C.

Lemma 3.25. Let X be a set, A an algebra of subsets of X, H a Hilbert space,
and (HA)A∈A an orthogonal decomposition of H over A. Assume that for ev-
ery x ∈ H the additive function21 A �→ ‖ProjHA

x‖2 on A can be extended to
a measure on the σ-field σ(A) generated by A. Then the orthogonal decompo-
sition can be extended to an orthogonal decomposition (HB)B∈σ(A), σ-additive
in the sense that22 HB1∪B2∪... = HB1⊕HB2⊕ . . . whenever B1, B2, · · · ∈ σ(A)
are pairwise disjoint.

Proof. The extension of the additive function µx : A → [0,∞), µx(A) =
‖ProjHA

x‖2, to a measure on σ(A) is unique; denote it by µx again. Consider
the set of all B ∈ σ(A) such that there exists a subspace HB ⊂ H satisfying
‖ProjHB

x‖2 = µx(B) for all x ∈ H . The set contains A, and is a monotone
class (that is, closed under the limit of monotone sequences), which is easy to
check. Therefore the set is the whole σ(A). ��

Combining Lemmas 3.23 and 3.25 we conclude.

Theorem 3.26. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)

there exists one and only one σ-additive orthogonal decomposition (HM) of
the Hilbert space L2(Ω,F , P ) over the Borel σ-field of the space C (of compact
subsets of R) such that HME = L2(Ω,FE, P ) for every elementary set E ⊂ R

(that is, a finite union of intervals); here ME = {M ∈ C : M ⊂ E}. The
orthogonal decomposition is related to spectral measures by

‖ProjHM f‖2 = µf (M) (3.12)

for all f ∈ L2(Ω,F , P ) and all Borel sets M ⊂ C.

3.5 Time Shift; Noise

Let
(
(Ω[i],F [i], P [i])∞i=1,A

)
be a dyadic coarse factorization. For each i the

lattice 1
iZ acts on Ω[i] by measure preserving transformations αt : Ω[i] → Ω[i]

(time shift),

αt(ω)(s) = ω(s− t) for all s ∈ 1
i
Z .

For each coarse instant t = (t[i])∞i=1 we have a map αt : Ω[all] → Ω[all],

αt(ω)[i](s) = ω[i](s− t[i]) for all s ∈ 1
i
Z .

Such αt is an automorphism of the dyadic coarse sample space, but the coarse
σ-field A need not be invariant under αt. We consider such a condition:
21 Here ProjHA

is the orthogonal projection H → HA.
22 That is, HB1∪B2∪... is the closure of the algebraic sum of HBk .
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A is invariant under αt for every coarse instant t. (3.13)

Dyadic coarse factorizations of Examples 3.6, 3.8, 3.9, 3.10 satisfy (3.13), but
that of Example 3.7 does not.

If (3.13) is satisfied, then the refinement αt[∞] = Limi→∞,A αt[i] is an au-
tomorphism of the refinement (Ω,F , P ) of the dyadic coarse factorization. Ex-
istence of the limit for every converging sequence t = (t[i]) implies that αt[∞]
depends on t[∞] only (see Lemma 3.29 below), and we get a one-parameter
group (αt)t∈R of automorphisms (that is, invertible measure preserving trans-
formations mod0) of (Ω,F , P ). The group is continuous in the sense that
P
(
A� αt(A)

)
−−−→
t→0

0 for all A ∈ F , which is ensured by (3.13) (see Lemma

3.29 again).

Definition 3.27. A noise
(
(Ω,F , P ), (Fs,t)s≤t, (αt)t∈R

)
consists of a contin-

uous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
and a one-parameter group of auto-

morphisms αt of (Ω,F , P ) such that

α−1
t (Fr,s) = Fr−t,s−t for all r, s, t ∈ R, r ≤ s ,

P
(
A� α−1

t (A)
)
−−−→
t→0

0 for all A ∈ F .

Unfortunately, the latter assumption (continuity of the group action) is
missing in my former publications, which opens the door for pathologies.23

Remark 3.28. Continuity of the factorization follows from other assumptions,
see [15, Lemma 2.1]. For arbitrary factorizations, continuity is restrictive (re-
call Example 3.19); waiving it, we get discontinuity points t ∈ R which are a
finite or countable set. For a noise, however, the set is invariant under time
shifts, and therefore, empty.

Lemma 3.29. For every dyadic coarse factorization satisfying (3.13), its re-
finement is a noise.

Proof. Our first argument parallels the proof of Lemma 3.11. Namely, let s, t
be two coarse instants such that s[∞] = t[∞]. We introduce a coarse event r:

r[i] =

{
s[i] for i even,
t[i] for i odd.

We have
Limαs[i] = Limαs[2i] = Limαr[2i] = Limαr[i] .

23 Most results of these former publications do not depend on the (missing) con-
tinuity condition. But anyway, a discontinuous group action is a pathology, no
doubt. (In particular, it cannot be Borel measurable.) The proof of Lemma 2.9
of [15], based on Weyl’s relation, depends on the continuity condition.
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Similarly, Limαt[i] = Limαr[i]. Thus, Limαs[i] = Limαt[i], and we may
define a one-parameter group of automorphisms (αt)t∈R on (Ω,F , P ) by
αt[∞] = Limαt[i].

Our second argument resembles the proof of Lemma 3.13. Namely, assume
existence of A∞ ∈ F , ε > 0 and tn → 0 such that P

(
A∞ � α−1

tn (A∞)
)
≥ ε

for all n. We choose a coarse event A ∈ A such that A[∞] = A∞, and
coarse instants sn such that sn[∞] = tn for all n. Taking into account that
P [i]

(
A[i]�α−1

sn
[i]A[i]

)
→ P

(
A∞�α−1

tn (A∞)
)
≥ ε and sn[i] → tn when i→∞,

we choose integers i1 < i2 < . . . such that P [i]
(
A[i] � α−1

sn
[i]A[i]

)
≥ ε/2 and

|sn[i]| ≤ |tn| + 1/n whenever i ≥ in. We define a coarse instant r by r[i] =
sn[i] whenever in ≤ i < in+1. Clearly, r[∞] = 0; therefore Limα−1

r [i]A[i] =
α−1

0 A[∞] = A[∞], and P [i]
(
A[i]�α−1

r [i]A[i]
)
→ 0, which is impossible: these

probabilities exceed ε/2. The contradiction proves continuity of the group
(αt)t∈R. ��

Question 3.30. Is every noise the refinement of some dyadic coarse factoriza-
tion satisfying (3.13)? I do not know; I guess that the answer is negative. It
would be interesting to find some special features of such refinements among
all noises. It is also unclear what happens to the class of such refinements, if
subsequences are permitted (like in Example 3.9).
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4 Example: The Noise Made by a Poisson Snake

This section is based on a paper by J. Warren entitled “The noise made by a
Poisson snake” [23].

4.1 Three Discrete Semigroups: Algebraic Definition

A discrete semigroup (with unit; non-commutative, in general) may be defined
by generators and relations.

Two generators f+, f− with two relations f+f− = 1, f−f+ = 1 generate
a semigroup Gdiscrete

1 that is in fact a group, just the cyclic group Z. Indeed,
every word reduces to some fk+ or fk− (or 1).

Two generators f+, f− with a single relation f+f− = 1 generate a semi-
group Gdiscrete

2 . Every word reduces to some fk−f
l
+. The composition is

(fk1− f l1+ )(fk2− f l2+ ) = fk−f
l
+ ,

k = k1 + max(0, k2 − l1) ,
l = l2 + max(0, l1 − k2) .

(4.1)

The canonical homomorphism Gdiscrete
2 → Gdiscrete

1 maps f+ to f+, f− to f−,
and fk−f

l
+ into fk−l− (if k > l), f l−k+ (if k < l), or 1 (if k = l). Accordingly, the

composition law (4.1) satisfies

l − k = (l1 − k1) + (l2 − k2) .

There is a more convenient pair of parameters, a = l − k, b = k; that is,24

fa,b = f b−f
a+b
+ for a, b ∈ Z, b ≥ 0, a+ b ≥ 0 ;

fa1,b1fa2,b2 = fa,b ,
a = a1 + a2 ,

b = max(b1, b2 − a1) .

(4.2)

The canonical homomorphism Gdiscrete
2 → Gdiscrete

1 maps fa,b to fa, where
fa ∈ Gdiscrete

1 is fa+ for a > 0, f |a|
− for a < 0, and 1 for a = 0.

Three generators f−, f+, f∗ with three relations

f+f− = 1 , f∗f− = 1 , f∗f+ = f∗f∗ (4.3)

generate a semigroup Gdiscrete
3 . Every word reduces to some fk−f l+fm∗ . The

following homomorphism Gdiscrete
3 → Gdiscrete

2 will be called canonical: f− �→
f−, f+ �→ f+, f∗ �→ f+. We have fk−f

l
+f

m
∗ �→ fk−f

l+m
+ , which suggests such a

triple of parameters for Gdiscrete
3 : a = l +m− k, b = k, c = m; that is,

fa,b,c = f b−f
a+b−c
+ f c∗ for a, b, c ∈ Z, b ≥ 0, 0 ≤ c ≤ a+ b ;

fa1,b1,c1fa2,b2,c2 = fa,b,c ,
a = a1 + a2 ,

b = max(b1, b2 − a1) ,
c =

{
a2 + c1 if c1 > b2,

c2 otherwise.
(4.4)

The canonical homomorphism Gdiscrete
3 → Gdiscrete

2 is just fa,b,c �→ fa,b.
Note that Gdiscrete

1 is commutative, but Gdiscrete
2 and Gdiscrete

3 are not.
24 Parameters a, b of (4.2) and a, b, c of (4.4) are suggested by S. Watanabe.
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4.2 The Three Discrete Semigroups: Representation

By a representation of a semigroup G on a set S we mean a map G × S �
(g, s) �→ g(s) ∈ S such that

(g1g2)(s) = g2
(
g1(s)

)
and 1(s) = s

for all g1, g2 ∈ G, s ∈ S. The representation is called faithful, if

g1 �= g2 =⇒ ∃s ∈ S
(
g1(s) �= g2(s)

)
.

Every G has a faithful representation on itself, S = G, namely, the regular
representation, g(g0) = g0g. Fortunately, Gdiscrete

2 and Gdiscrete
3 have more

economical faithful representations on the set Z+ = {0, 1, 2, . . .}. Namely, for
Gdiscrete

2 ,

�

�

�

�

�

�

� �

�
�

��

f+(x) = x+ 1 , f−(x) = max(0, x− 1) ,
fa,b(x) = a+ max(x, b) ,

� � � �

�

�

�

���
����

(4.5)
x ∈ Z+. For Gdiscrete

3 ,

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

f∗(x) = x+ 1 , f−(x) = max(0, x− 1) ,

f+(x) =

{
x+ 1 for x > 0,
0 for x = 0;

fa,b,c(x) =

{
c for 0 ≤ x ≤ b,

x+ a for x > b.

� � � �

�

�

�

���

�

������

(4.6)

4.3 Random Walks and Stochastic Flows in Discrete Semigroups

Example 4.1. The standard random walk on Z may be described by Gdiscrete
1 -

valued random variables

ξs,t = ξs,s+1ξs+1,s+2 . . . ξt−1,t for s, t ∈ Z, s ≤ t ;
ξt,t+1 are independent random variables (t ∈ Z) ;

P
(
ξt,t+1 = f−

)
=

1
2

= P
(
ξt,t+1 = f+

)
for each t ∈ Z .

(4.7)

Note that ξr,sξs,t = ξr,t whenever r ≤ s ≤ t. Everyone knows that

P
(
ξ0,t = fa

)
=

1
2t

(
t
t+a
2

)
(4.8)
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for a = −t,−t+ 2,−t+ 4, . . . , t.
In fact, ‘the standard random walk’ is the random process t �→ ξ0,t. Taking

into account that Gdiscrete
1 is a group, ξs,t may be thought of as an increment,

ξs,t = ξ−1
0,sξs,t.

Example 4.2. Formulas (4.7) work equally well on Gdiscrete
2 . Still, ξr,sξs,t = ξr,t.

However, Gdiscrete
2 is not a group, and ξs,t is not an increment; moreover, it is

not a function of ξ0,s and ξ0,t. Indeed, knowing a1, b1 and a1+a2, max(b1, b2−
a1) (recall (4.2)) we can find a2 but not b2. Thus, the two-parameter family
(ξs,t)s≤t of random variables is more than just a random walk. Let us call
such a family an abstract stochastic flow. Why ‘abstract’? Since Gdiscrete

2 is an
abstract semigroup rather than a semigroup of transformations (of some set).
So, we have the standard abstract flow in Gdiscrete

2 . In order to get a (usual,
not abstract) stochastic flow, we have to choose a representation of Gdiscrete

2 .
Of course, the regular representation could be used, but the representation
(4.5) is more useful. Introducing integer-valued random variables a(s, t), b(s, t)
by

ξs,t = fa(s,t),b(s,t)

we express the stochastic flow as

ξs,t(x) = a(s, t) + max(x, b(s, t)) .

Fixing s and x we get a random process called a single-point motion of the
flow. Namely, it is a reflecting random walk. Especially, for s = 0 and x = 0,
the process

t �→ ξ0,t(0) = a(0, t) + b(0, t)

is a reflecting random walk. It is easy to see that two processes

t �→ ξ0,t(0) = a(0, t) + b(0, t) ,

t �→
∣
∣
∣a(0, t) +

1
2

∣
∣
∣− 1

2

�

�

� �

�

�

are identically distributed. Also,

b(0, t) = − min
s=0,1,...,t

a(0, s) ,

a(0, t) + b(0, t) = max
s=0,1,...,t

a(s, t) ,
� �

������
�������������

������

(4.9)
and a(·, ·) is the standard random walk on Gdiscrete

1 = Z. That is, the canonical
homomorphism Gdiscrete

2 → Gdiscrete
1 transforms the standard flow on Gdiscrete

2

into the standard flow (or random walk) on Gdiscrete
1 . Using the reflection

principle, one gets
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P
(
ξ0,t = fa,b

)
=
a+ 2b+ 1

2t
t!

(
t+a
2 + b+ 1

)
!
(
t−a
2 − b

)
!
. (4.10)

Note that a, b occur only in the combination a+ 2b.

Example 4.3. On Gdiscrete
3 , we have no ‘standard’ random walk or flow; rather,

we introduce a one-parameter family of abstract stochastic flows,

ξs,t = ξs,s+1ξs+1,s+2 . . . ξt−1,t for s, t ∈ Z, s ≤ t ;
ξt,t+1 are independent random variables (t ∈ Z) ;

P
(
ξt,t+1 = f−

)
=

1
2
, P

(
ξt,t+1 = f+

)
=

1 − p

2
, P

(
ξt,t+1 = f∗

)
=
p

2
;

(4.11)
p ∈ (0, 1) is the parameter. The canonical homomorphismGdiscrete

3 → Gdiscrete
2

glues together f+ and f∗, thus eliminating the parameter p and giving the
standard abstract flow on Gdiscrete

2 . Defining a(·, ·), b(·, ·), c(·, ·) by

ξs,t = fa(s,t),b(s,t),c(s,t)

we see that the joint distribution of a(·, ·) and b(·, ·) is the same as before.
Representation (4.6) of Gdiscrete

3 turns the abstract flow into a stochastic
flow on Z+. Its single-point motion is a sticky random walk,

t �→ ξ0,t(0) = c(0, t) .

In order to find the conditional distribution of c(·, ·) given a(·, ·) and b(·, ·)
we observe that

a(0, t)− c(0, t) = min
(
a(0, t),min{x : ξσ(x),σ(x)+1 = f∗}

)
(4.12)

where σ(x) = max{s = 0, . . . , t : a(0, s) = x} , −b(0, t) ≤ x < a(0, t).

� � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � �

� � � � � � �

� � � � �

� � ������

�������������

��
�

�

�
�

�

� �

��

�

Therefore the conditional distribution of c(0, t) is basically the truncated ge-
ometric distribution. More exactly, it is the (conditional) distribution of

max
(
0, a(0, t) + b(0, t)−G+ 1

)
, G ∼ Geom(p) ; (4.13)

here G is a random variable, independent of a(·, ·), b(·, ·), such that P
(
G =

g
)

= p(1 − p)g−1 for g = 1, 2, . . . This is the discrete counterpart of a well-
known result of J. Warren [21]. So,
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P
(
ξ0,t = fa,b,c

)
=
a+ 2b+ 1

2t
t!

(
t+a
2 + b+ 1

)
!
(
t−a
2 − b

)
!
· p(1 − p)a+b−c

(4.14)
for c > 0; for c = 0 the factor p(1− p)a+b−c turns into (1− p)a+b, rather than
p(1 − p)a+b, because of truncation.

4.4 Three Continuous Semigroups

The continuous counterpart of the discrete semigroup Gdiscrete
1 = Z is the

semigroup G1 = R = {fa : a ∈ R}, fa1fa2 = fa1+a2 .
The continuous counterpart of the discrete semigroup Gdiscrete

2 = {fa,b :
a, b ∈ Z, b ≥ 0, a+ b ≥ 0} is the semigroup

G2 = {fa,b : a, b ∈ R, b ≥ 0, a+ b ≥ 0} ,

fa1,b1fa2,b2 = fa,b ,
a = a1 + a2 ,

b = max(b1, b2 − a1)

(4.15)

(recall (4.2)). The canonical homomorphism G2 → G1 maps fa,b to fa.
The continuous counterpart of the discrete semigroup Gdiscrete

3 = {fa,b,c :
a, b, c ∈ Z, b ≥ 0, 0 ≤ c ≤ a+ b} is the semigroup

G3 = {fa,b,c : a, b, c ∈ R, b ≥ 0, 0 ≤ c ≤ a+ b} ,

fa1,b1,c1fa2,b2,c2 = fa,b,c ,
a = a1 + a2 ,

b = max(b1, b2 − a1) ,
c =

{
a2 + c1 if c1 > b2,

c2 otherwise
(4.16)

(recall (4.4)). The canonical homomorphism G3 → G2 maps fa,b,c to fa,b.
Note that G1 is commutative but G2, G3 are not. Also, G1 and G2 are

topological semigroups, but G3 is not (since the composition is discontinuous
at c1 = b2).

There are two one-parameter semigroups in G2, {fa,0 : a ∈ [0,∞)} and
{f−b,b : b ∈ [0,∞)}. They generate G2 according to the relation fb,0f−b,b = 1;
namely, fa,b = f−b,bfa+b,0.

There are three one-parameter semigroups in G3, {fa,0,0 : a ∈ [0,∞)},
{f−b,b,0 : b ∈ [0,∞)} and {fc,0,c : c ∈ [0,∞)}. They generate G3 according
to relations fb,0,0f−b,b,0 = 1, fb,0,bf−b,b,0 = 1, and fc,0,cfa,0,0 = fc,0,cfa,0,a for
c > 0; namely, fa,b,c = f−b,b,0fa+b−c,0,0fc,0,c.

Here is a faithful representation of G2 on [0,∞) (recall (4.5)):

fa,b(x) = a+ max(x, b) ,

�

���
����

(4.17)

x ∈ [0,∞).
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Here is a faithful representation of G3 on [0,∞) (recall (4.6)):

fa,b,c(x) =

{
c for 0 ≤ x ≤ b,

x+ a for x > b.
�

�

���

�

������

(4.18)

All functions are increasing, but fa,b are continuous, while fa,b,c are not.

4.5 Convolution Semigroups in These Continuous Semigroups

Example 4.4. Everyone knows that the binomial distribution (4.8) is asymp-
totically normal. That is, the distribution of

√
εa(0, t/ε) converges weakly (for

ε → 0) to the normal distribution µ
(1)
t = N(0, t). These form a convolution

semigroup, µ(1)
s ∗ µ(1)

t = µ
(1)
s+t.

Note however, that a(s, t) and ξs,t are defined (see (4.7)) only for integers
s, t. We may extend them, in one way or another, to real s, t. Or alternatively,
we may use coarse instants t =

(
t[i]
)∞
i=1, t[i] ∈ 1

iZ, t[i] → t[∞], introduced
in Sect. 3.2. For every coarse instant t, the distribution of i−1/2a(0, it[i]) con-
verges weakly (for i→∞) to µ(1)

t[∞] = N(0, t[∞]).

Example 4.5. The two-dimensional distribution (4.10) on Gdiscrete
2 has its

asymptotics. Namely, the joint distribution of i−1/2a(0, it[i]) and i−1/2b(0, it[i])
converges weakly (for i→∞) to the measure µ(2)

t[∞] with density (on the rele-
vant domain b > 0, a+ b > 0; t means t[∞]):

µ
(2)
t (dadb)
dadb

=
2(a+ 2b)√

2π t3/2
exp

(
− (a+ 2b)2

2t

)
. (4.19)

Treating µ
(2)
t (for t ∈ [0,∞)) as a measure on G2, we get a convolution

semigroup: µ(2)
s ∗ µ(2)

t = µ
(2)
s+t. Of course, the convolution is taken according

to the composition (4.15).

Example 4.6. What about the three-dimensional distribution (4.14) onGdiscrete
3 ?

It has a parameter p. In order to get a non-degenerate asymptotics, we let p
depend on i, namely,

p =
1√
i
→ 0 .

Then the distribution of i−1/2G, whereG ∼ Geom(p) (recall (4.13)), converges
weakly to the exponential distribution Exp(1), and the joint distribution of
i−1/2a(0, it[i]), i−1/2b(0, it[i]) and i−1/2c(0, it[i]) converges weakly to a mea-
sure µ(3)

t[∞]. The measure has an absolutely continuous part and a singular part
(at c = 0), and may be described (somewhat indirectly) as the joint distribu-
tion of three random variables a, b and (a + b − η)+, where the pair (a, b) is
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distributed µ(2)
t (see (4.19)), η is independent of (a, b), and η ∼ Exp(1). Treat-

ing µ(3)
t (for t ∈ [0,∞)) as a measure on G3, we get a convolution semigroup:

µ
(3)
s ∗ µ(3)

t = µ
(3)
s+t, the convolution being taken according to the composition

(4.16). No need to check the relation ‘by hand’; it follows from its discrete
counterpart. The latter follows from the construction of Sect. 4.3 (since ran-
dom variables ξ0,1, ξ1,2, . . . , ξs+t−1,s+t are independent). It may seem that the
limiting procedure does not work, since G3 is not a topological semigroup;
the composition (4.16) is discontinuous at c1 = b2. However, that is not an
obstacle, since the equality c1 = b2 is of zero probability, as far as triples
(a1, b1, c1) and (a2, b2, c2) are independent and distributed µ

(3)
s , µ(3)

t , respec-
tively (s, t > 0). The atom of c1 at 0 does not matter, since b2 is nonatomic.
The composition is continuous almost everywhere!

4.6 Getting Dyadic

Our flows in Gdiscrete
1 and Gdiscrete

2 are dyadic (two equiprobable possibilities
in each step), which cannot be said about Gdiscrete

3 ; here, in each step, we have
three possibilities f−, f+, f∗ of probabilities 1/2, (1− p)/2, p/2. Can a dyadic
model produce the same asymptotic behavior? Yes, it can, at the expense
of using i ∈ {1, 4, 16, 64, . . .} only (recall Example 3.9); and, of course, the
dyadic model is more complicated.25 Instead of the trap at 0, we design a trap
near 0 as follows:

���� � � �

g+ = f∗ = f1,0,1 ; g− = fm− f
m−1
+ = f−1,m,0 ;

P
(
ξt,t+1 = g−

)
=

1
2

= P
(
ξt,t+1 = g+

)
.

The old (small) parameter p disappears, and a new (large) parameter m ap-
pears. We’ll see that the two models are asymptotically equivalent, when
p = 2−m.

As before, we may denote

ξs,t = fa(s,t),b(s,t),c(s,t) .

Note, however, that only a(s, t) is the same as before; b(s, t), c(s, t) and ξs,t
are modified. Formula (4.9) for b(0, t) fails, but still,

b(0, t) = − min
s=0,1,...,t

a(0, s) +O(m) , (4.20)

which is asymptotically the same. Formula (4.12) for c(0, t) also fails. Instead,

25 Maybe, a still more complicated construction can use all i; I do not know.
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a(0, t)− c(0, t) = min{x : σ(x+m− 1)− σ(x) = m− 1} , (4.21)

if such x exists in the set Z∩[min[0,t] a(0, ·), a(0, t)−m+1]; otherwise, c(0, t) =
O(m). (Here σ is the same as in (4.12).)

The conditional distribution of c(0, t), given the path a(0, ·), is not at all
geometric (unlike (4.13)), since now c(0, t) is uniquely determined by a(0, ·).
However, according to (4.21), a(0, t)−c(0, t) is determined by small increments
of the process σ(·). On the other hand, the large-scale structure of the path
a(0, ·) is correlated mostly with large increments of σ(·); small increments are
numerous, but contribute little to the sum. Using this argument, one can show
that c(0, t) is asymptotically independent of a(0, t) (and b(0, t), due to (4.20)).

The unconditional distribution of c(0, t) can be found from (4.21), tak-
ing into account that increments σ(x + 1) − σ(x) are independent, and
each increment is equal to 1 with probability 1/2. We have Bernoulli tri-
als, and we wait for the first block of m − 1 ‘successes’. For large m,
the waiting time is approximately exponential, with the mean 2m.26 Thus,
2−m

(
a(0, t)− c(0, t)−min[0,t] a(0, ·)

)
is asymptotically Exp(1), truncated (at

c = 0) as in Sect. 4.5.
Taking the limit i = 22m → ∞, we get for i−1/2a(0, it[i]), i−1/2b(0, it[i]),

i−1/2c(0, it[i]) the limiting distribution µ(3)
t[∞], the same as in Sect. 4.5.

4.7 Scaling Limit

For any coarse instants s, t such that s ≤ t, the distribution µ
(n)
s,t [i] of

i−1/2ξ
(n)
is[i],it[i] converges weakly (for i → ∞) to the measure µ

(n)
s,t [∞] =

µ
(n)
t[∞]−s[∞] on Gn, for our three models, n = 1, 2, 3. Of course, multiplica-

tion of ξ by i−1/2 is understood as multiplication of a(·, ·), b(·, ·), c(·, ·) by
i−1/2, which is a homomorphic embedding of Gdiscrete

n into Gn.
Let r, s, t be coarse instants, r ≤ s ≤ t. Due to independence, the joint dis-

tribution µ(n)
r,s [i]⊗ µ

(n)
s,t [i] of random variables i−1/2ξ

(n)
ir[i],is[i] and i−1/2ξ

(n)
is[i],it[i]

converges weakly to µ(n)
r,s [∞]⊗µ(n)

s,t [∞]. However, we need the joint distribution
of three random variables,

i−1/2ξ
(n)
ir[i],is[i] , i−1/2ξ

(n)
is[i],it[i] , i−1/2ξ

(n)
ir[i],it[i] ,

26 Such a block appears, in the mean, after 2m−1 shorter blocks, of mean length ≈ 2
each.
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the third being the product of the first and the second in the semigroup
Gn. For n = 1, 2 weak convergence for the triple follows immediately from
weak convergence for the pair, since the composition is continuous. For n = 3,
discontinuity of the composition in G3 does not invalidate the argument, since
the composition is continuous almost everywhere w.r.t. the relevant measure
(recall Sect. 4.5).

Similarly, for every k and all coarse instants t1 ≤ · · · ≤ tk, the joint
distribution of k(k − 1)/2 random variables i−1/2ξ

(n)
itl[i],itm[i], 1 ≤ l < m ≤ k,

converges weakly (for i→∞). We choose a sequence (tk)∞k=1 of coarse instants
such that the sequence of numbers (tk[∞])∞k=1 is dense in R, and use Lemma
2.17, getting a coarse probability space.

The Hölder condition, the same as in Example 2.1, holds for all three
models. I mean Hölder continuity of a(·, ·), b(·, ·), c(·, ·). Indeed, a(·, ·) is the
same as in Example 2.1; b(·, ·) is related to a(·, ·) via (4.9) or (4.20), and c(·, ·)
satisfies (on any interval)

max
|s−t|≤x

|c(0, s)− c(0, t)| ≤ max
|s−t|≤x

|a(0, s)− a(0, t)| ,

though, for the model of Sect. 4.6, O(m) must be added.
Thus, a joint σ-compactification is constructed for all three models (the

third model — in two versions, Example (4.3) and Sect. 4.6).

4.8 Noises

Example 4.7. The standard flow in Gdiscrete
1 , rescaled by i−1/2, gives us a

coarse probability space, identical to that of Example 3.6. It is a dyadic
coarse factorization. Its refinement is the Brownian continuous factorization.
Equipped with the natural time shift, it is a noise.

Example 4.8. The standard flow inGdiscrete
2 , rescaled by i−1/2, gives us another

coarse probability space. It is also a dyadic coarse factorization (the proof is
similar to the previous case). Its ‘two-dimensional nature’ is a delusion; the
dyadic coarse factorization is identical to that of Example 4.7. The second
dimension b(·, ·) reduces to the first dimension, a(·, ·), by (4.9).

Example 4.9. The flow in G3, introduced in Example 4.3, rescaled by i−1/2

with p = i−1/2 (recall Example 4.6), gives us a coarse probability space. It is
not a dyadic coarse factorization, since it is not dyadic. However, it satisfies a
natural generalization of Definition 3.4 to the non-dyadic case (the proof is as
before). Its refinement is a continuous factorization, and (with natural time
shift), a noise; it may be called the noise of stickiness.

Once again, the second dimension, b(·, ·), reduces to the first dimension,
a(·, ·). Indeed, the joint distribution of a(·, ·) and b(·, ·) is the same as in
Example 4.8. What about the third dimension, c(·, ·) ?

The conditional distribution of c(s, t), given a(s, t) and b(s, t), is basically
truncated exponential. Namely, it is the distribution of

(
a(s, t)+ b(s, t)− η

)
+
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where η ∼ Exp(1); see Example 4.6. Moreover, for any r < s < t, the condi-
tional distribution of c(r, t) given a(r, s), b(r, s) and a(s, t), b(s, t), is still the
distribution of

(
a(r, t) + b(r, t) − η

)
+. In other words, c(r, t) is conditionally

independent of a(r, s), b(r, s), a(s, t), b(s, t), given a(r, t), b(r, t). That is a prop-
erty of the composition (4.16); if c1 ∼

(
a1 +b1−η1

)
+ and c2 ∼

(
a2 +b2−η2

)
+

then c ∼
(
a+ b− η

)
+.
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It follows by induction that the conditional distribution of c(t1, tn), given all
a(ti, tj) and b(ti, tj), is given by the same formula

(
a(t1, tn) + b(t1, tn)− η

)
+,

η ∼ Exp(1), for every n and t1 < · · · < tn. Therefore, the same holds for the
conditional distribution of c(s, t) given all a(u, v) and b(u, v) for u, v such that
s ≤ u ≤ v ≤ t (a well-known result of J. Warren [21]). We see that c(·, ·) is
not a function of a(·, ·) (and b(·, ·)).

Example 4.10. Another flow in Gdiscrete
3 , introduced in Sect. 4.6, being rescaled

by i−1/2 with i = 22m, gives us a dyadic coarse factorization. Its refinement
is the same continuous factorization (and noise) as in Example 4.9.

4.9 The Poisson Snake

Formula (4.12) suggests a description of the sticky flow in Gdiscrete
3 by a com-

bination of a simple random walk a(·, ·) and a random subset of the set of its
‘chords’. A chord may be defined as an interval [s, t], s, t ∈ Z, s < t, such that
a(s, t) = 0 and a(s, u) > 0 for all u ∈ (s, t) ∩ Z. Or equivalently, a chord is a
horizontal straight segment on the plane that connects points

(
s, a(0, s)

)
and(

t, a(0, t)
)

and goes below the graph of a(0, ·). The random subset of chords
is very simple: every chord belongs to the subset with probability p, inde-
pendently of others. Note that p = i−1/2 is equal to the vertical pitch (after
rescaling a(·, ·) by i−1/2). The scaling limit suggests itself: a Poisson random
subset of the set of all chords of the Brownian sample path.

Definition 4.11. A finite chord of a continuous function f : R → R is a set
of the form [s, t] × {x} ⊂ R2 where s < t, x = f(s) and t = inf{u ∈ (s,∞) :
f(u) ≤ x}. An infinite chord of f is a set of the form [s,∞)×{x} ⊂ R2 where
x = f(s) and f(t) > x for all t ∈ (s,∞). A chord of f is either a finite chord
of f , or an infinite chord of f .
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If f decreases, it has no chords. Otherwise it has a continuum of chords.
The set of chords is, naturally, a standard Borel space,27 due to the one-one
correspondence between a chord and its initial point (s, x) ∈ R2.

Lemma 4.12. For every continuous function f : R → R there exists one and
only one σ-finite positive Borel measure28 on the space of all chords of f , such
that the set of chords that intersect a vertical segment {t}× [x, y] is of measure
y − x, whenever t, x, y are such that infs∈(−∞,t) f(s) ≤ x < y ≤ f(t).

�

�

�

The proof is left to the reader. Hint: for every ε > 0, the set of chords longer
than ε is elementary; on this set, the measure is locally finite.

The map [s, t] × {x} �→ s (also [s,∞) × {x} �→ s, of course) sends the
measure on the set of chords (described in Lemma 4.12) into a measure on
R. If f is of locally finite variation, then the measure on R is just (df)+, the
positive part of the Lebesgue-Stieltjes measure. However, we need the opposite
case: f is of infinite variation on every interval, and the measure is also infinite
on every interval. Nevertheless, it is σ-finite (but not locally finite). We denote
it (df)+ anyway.

The measure (df)+ is concentrated on the set of points of ‘local minimum
from the right’. If f is a Brownian sample path then such points are a set of
Lebesgue measure 0.

So, the set of all chords is a measure space; it carries a natural σ-finite
(sometimes, finite) measure. The latter is the intensity measure of a unique
Poisson random measure.29 This way, (the distribution of) a random set of
chords is well-defined.

Or equivalently, we may consider a Poisson random subset of R, whose
intensity measure is (df)+.

However, it is not so easy to substitute a Brownian sample path B(·) for
f(·). In order to get a (Poisson) random variable, we may ask how many
random points belong to a given Borel set A ⊂ R such that (dB)+(A) <
∞. Note that for any interval A, (dB)+(A) = ∞ a.s. We cannot choose an
appropriate A without knowing the path B(·). The set of all countable dense
subsets of R does not carry a natural (non-pathological) Borel structure.

27 For a definition, see [7, Sect. 12.B].
28 For a definition, see [7, Sect. 17.A].
29 See for instance [11, XII.1.18].
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In this aspect, chords are better than points. Chords are parameterized
by three (or two) numbers, and thus, carry a natural Borel structure, irre-
spective of B(·). The random countable set of chords is not dense; rather, it
accumulates toward short chords.

A point (t, x) belongs to a random chord of B(·) if and only if

x ∈ σ−1
t (Π) , that is, σt(x) ∈ Π ,

where σt(x) = sup{s ∈ (−∞, t] : B(s) ≤ x} for x ∈ (−∞, B(t))

(recall (4.12)), and Π is the Poisson random subset of R, whose intensity
measure is (dB)+. Do not confuse the inverse image σ−1

t (Π) with the image
B(Π). True, B(σt(x)) = x, but σt(B(s)) �= s. Sets Π and B(Π) are dense, but
the set σ−1

t (Π) is locally finite. Moreover, σ−1
t (Π) is a Poisson random subset

of (−∞, B(t)], its intensity being just 1.
The random countable dense set Π itself is bad; we have no measurable

functions of it. However, the pair
(
B(·),Π

)
of the Brownian path and the set

is good; we have measurable functions of the pair. In particular, we may use
measurable functions of the locally finite set σ−1

t (Π). Especially,

a(0, t)− c(0, t) = min
(
a(0, t),min{x : σt(x) ∈ Π ∩ (0,∞)}

)
.

Lemma 4.13. The σ-field Fs,t of the noise of stickiness (see Example 4.9)
is generated by Brownian increments B(u) − B(s) for u ∈ (s, t) and random
sets σ−1

u

(
Π ∩ (s, t)

)
for u ∈ (s, t) (treated as random variables whose values

are finite subsets of R).

The proof is left to the reader.
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5 Stability

5.1 Discrete Case

Fourier-Walsh coefficients, introduced in Sect. 3.3 for an arbitrary dyadic
coarse factorization,

f =
∑

M∈C[i]

f̂MτM = f̂∅+
∑

m∈ 1
i Z

f̂{m}τm+
∑

m1,m2∈ 1
i Z,m1<m2

f̂{m1,m2}τm1τm2 + . . .

help us to examine the stability of a function f , as explained below. Imagine
another array of random signs (τ ′m)m∈ 1

i Z
(also independent equiprobable ±1)

correlated with the array (τm)m∈ 1
i Z

,

E τmτ
′
m = ρ for each m ∈ 1

i
Z ;

ρ ∈ [−1,+1] is a parameter. Other correlations vanish. That is, the joint
distribution of all τm and τ ′m is the product (over m ∈ 1

iZ) of (copies of) such
a four-atom distribution:

τm
−1 +1

−1 1+ρ
4

1−ρ
4τ ′m

+1 1−ρ
4

1+ρ
4

Denoting by Ω̃[i] the product of these four-point probability spaces, we have
a natural measure preserving map α : Ω̃[i] → Ω[i]; as before, Ω[i] is the
product of two-point probability spaces. In addition, we have another measure
preserving map α′ : Ω̃[i] → Ω[i],

τm ◦ α = τm , τm ◦ α′ = τ ′m ;

we use the same ‘τm’ for denoting a coordinate function on Ω[i] and Ω̃[i].
For products

τM =
∏

m∈M
τm , M ∈ C[i] , C[i] = {M ⊂ 1

iZ : |M | <∞}

we have
E τMτ

′
M = ρ|M| , τM ◦ α = τM , τM ◦ α′ = τ ′M ,

where |M | is the number of elements of M . Therefore

E (f ◦ α)(g ◦ α′) =
∑

M

ρ|M|f̂M ĝM = 〈g, ρN[i]f〉 ,

ρN[i] : L2[i] → L2[i] , ρN[i]τM = ρ|M|τM , ρN[i]f =
∑

M

ρ|M|f̂MτM .
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The Hermite operator ρN[i] is a function of a self-adjoint operator N[i] defined
by N[i]τM = |M |τM for M ∈ C[i].

Every bounded function ϕ : C[i] → R acts on L2[i] by the operator
f �→

∑
M∈C[i] ϕ(M)f̂MτM . A commutative operator algebra is isomorphic

to the algebra of functions. The operator ρN[i] corresponds to the function
M �→ ρ|M|. (In some sense, the unbounded operator N corresponds to the
unbounded function M �→ |M |.)

A function ϕ : C[i] → {0, 1}, the indicator of a subset of C[i], corresponds
to a projection operator. Say, for the (indicator of) the set {∅}, the oper-
ator projects to the one-dimensional space of constants (the expectation).
For the set {M : M ⊂ (0,∞)}, the operator is the conditional expectation,
E
(
·
∣
∣F0,∞[i]

)
.

The function M �→ |M | is the sum (over m ∈ 1
iZ) of localized functions

M �→ |M ∩ {m}|. The latter is the indicator of the set {M : M � m},
corresponding to the projection operator 1− E

(
·
∣
∣F 1

i Z\{m}
)
. Thus,

Nf =
∑

m

(
f − E

(
f
∣
∣F 1

i Z\{m}
)
.

The operator ρN[i] may be interpreted as the conditional expectation w.r.t.
the sub-σ-field α−1(F) generated by τm ◦ α, m ∈ 1

iZ:

E
(
f ◦ α′ ∣∣α−1(F)

)
= (ρN[i]f) ◦ α for f ∈ L2[i] .

We may imagine that our data τm are an unreliable copy of the true data τ ′m;
each sign τm is either correct (with probability (1 + ρ)/2) or inverted (with
probability (1−ρ)/2). If ρ is close to 1, our knowledge of τ ′M is satisfactory for
moderate |M | (when ρ|M| ≈ 1) but very bad for large |M | (when ρ|M| ≈ 0).
The position of a given function f between the two extremes is indicated by
the number ‖f − ρNf‖.

Example 5.1. In the Brownian coarse factorization (recall Example 3.6),

sup
i
‖f [i]− ρN[i]f [i]‖ → 0 for ρ→ 1

for all f ∈ L2(A). This follows easily from convergence of operators (recall
Sect. 2.3 and Example 3.18):

Limi→∞ ρN[i] = ρN[∞] ,

ρN[∞]f =
∞∑

n=0

ρn
∫

· · ·
∫

t1<···<tn

f̂({t1, . . . , tn}) dB(t1) . . . dB(tn) .

Convergence of operators follows from (2.4). The same holds for Example 3.7.
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Example 5.2. A very different situation appears in Example 3.8. The second
Brownian motion B2 (or rather, its discrete approximation) is not linear but
quadratic in random signs τm, m ∈ 1

iZ. It is two times less stable:

N[i]f (2)
s,t [i] = 2f (2)

s,t [i] ; Limi→∞ ρN[i] = ρ2N[∞] ,

if N[∞] is defined in the same way as in Example 5.1. For B3 it is ρ3N[∞],
and so on. Still, supi ‖f [i] − ρN[i]f [i]‖ → 0 for ρ → 1. For Bλ, however, the
change is dramatic. Namely,

N[i]f (λ)
s,t [i] = entier(λ

√
i)f (λ)

s,t [i] ; Limi→∞ ρN[i] = 0N[∞]

for all ρ ∈ (−1,+1); here 0N[∞] = limρ→0 ρ
N[∞] is the orthogonal projection

to the one-dimensional subspace of constants (just the expectation). The same
holds for Example 3.9.

Notions of stability and sensitivity are introduced in [2, Sects. 1.1, 1.4]
for a sequence of two-valued functions of 1, 2, 3, . . . two-valued variables. For
arbitrary (not just two-valued) functions, a number of equivalent definitions
can be found in [12, Sect. 1]. They may be adapted to our framework as
follows. We consider a function f : Ω[all] → R such that 0 < lim inf i ‖f [i]‖ ≤
lim supi ‖f [i]‖ <∞. We say that f is stable, if supi ‖f [i]−ρN[i]f [i]‖ → 0 when
ρ → 1. We say that f is sensitive, if ‖ρN[i]f [i] − 0N[i]f [i]‖ → 0 when i → ∞,
for some (therefore, every) ρ ∈ (0, 1). These definitions conform to [12] when
f [i] depends only on i signs τ1/i, . . . , τi/i. In terms of the two ρ-correlated
arrays (τm), (τ ′m), stability means that E

(
(f [i] ◦ α′)(f [i] ◦ α)

)
→ ‖f [i]‖2 for

ρ → 1, uniformly in i. Or, equivalently, E
(
Var

(
f [i] ◦ α′ ∣∣α−1(F)

))
→ 0

when ρ→ 1, uniformly in i. Sensitivity means that E
(
(f [i] ◦ α′)(f [i] ◦ α)

)
→(

E f [i]
)
2 when n→∞, for some (therefore, every) ρ ∈ (0, 1). Or, equivalently,

E
∣
∣E
(
f [i] ◦ α′ ∣∣α−1(F)

)
− E f [i]

∣
∣2 → 0 when n → ∞, for some (therefore,

every) ρ ∈ (0, 1).
In particular, those definitions can be applied to any f ∈ L2(A) such that

‖f [∞]‖ �= 0.
Example 5.1 shows that everything is stable in the Brownian coarse fac-

torization. In contrast, everything is sensitive in the coarse factorization gen-
erated by Bλ in Example 5.2. In Sect. 5.3 we will find a reason to rename this
‘stability’ and ‘sensitivity’ as ‘micro-stability’ and ‘micro-sensitivity’.

A sufficient condition for sensitivity is found by Benjamini, Kalai and
Schramm in terms of the influence of a (two-valued) variable on a function,
see [2, Sect. 1.2]. In our framework, the influence of the variable τm on a
function f [i] : Ω[i] → R may be defined as the expectation of the square root
of the conditional variance,

E

√
Var

(
f [i]

∣
∣F 1

i Z\{m}
)
;
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here F 1
i Z\{m} is the sub-σ-field of F [i] generated by all random signs except

for τm. The root of the conditional variance is simply one half of the difference
between two values of the function f [i], one value for τm = +1, the other for
τm = −1. Thus, our formula gives two times less than [2, (1.3)], but the
coefficient does not matter. Similarly, for any set M ⊂ 1

iZ, the influence of
M (that is, of all variables τm, m ∈M) on f [i] may be defined as

E

√
Var

(
f [i]

∣
∣F 1

i Z\M
)
.

By the way, for a linear function, the squared influence is additive (in M);
indeed, if f [i] =

∑
m cmτm, then Var

(
f [i]

∣
∣F 1

i Z\M
)

= E
(∑

m∈M cmτm
)
2 =

∑
m∈M c2m. The sum of squared influences appears in the following remarkable

result (adapted to our framework).

Theorem 5.3 (Benjamini, Kalai, Schramm). Let a function f : Ω[all] →
{0, 1} be such that each f [i] depends on i variables τ1/i, . . . , τi/i only. If

i∑

k=1

(
E

√
Var

(
f [i]

∣
∣F 1

i Z\{k/i}
) )2

−−−→
i→∞

0 ,

then f is sensitive.

See [2, Th. 1.3]. We will return to the point in Sect. 6.4.

5.2 Continuous Case

We start with the Brownian continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
.

Using the Wiener-Itô decomposition of L2(Ω,F , P ),

f =
∞∑

n=0

∫
· · ·
∫

t1<···<tn

f̂({t1, . . . , tn}) dB(t1) . . . dB(tn)

︸ ︷︷ ︸
belongs to n-th Wiener chaos

, f̂ ∈ L2(Cfinite) ,

we can define a self-adjoint operator N : L2 → L2 such that for each n,
Nf = nf for all f of n-th Wiener chaos. Accordingly, ρNf = ρnf for these f .
Informally, N(dB(t1) . . . dB(tn)) = ndB(t1) . . . dB(tn).

Every bounded Borel function ϕ on Cfinite acts on L2(Ω,F , P ) by the
operator Rϕ,

Rϕf =
∞∑

n=0

∫
· · ·
∫

t1<···<tn

ϕ
(
{t1, . . . , tn}

)
f̂
(
{t1, . . . , tn}

)
dB(t1) . . .dB(tn) . (5.1)

The operator ρN corresponds to the function M �→ ρ|M|. (In some sense, the
unbounded operator N corresponds to the unbounded function M �→ |M |.)
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The decomposition |M | = |M ∩ (−∞, t)|+ |M ∩ (t,∞) (it holds for µf -almost
all M) leads to the operator decomposition N = N−∞,t + Nt,∞. Informally,
N−∞,t

(
dB(t1) . . .dB(tn)

)
= kdB(t1) . . . dB(tn) and Nt,∞

(
dB(t1) . . . dB(tn)

)

= (n − k)dB(t1) . . . dB(tn) whenever t1 < · · · < tk < t < tk+1 < · · · < tn.
Accordingly, ρN = ρN−∞,t ⊗ ρNt,∞ .

A function ϕ : Cfinite → {0, 1}, the indicator of a Borel subset M of Cfinite,
corresponds to the orthogonal projection operator onto the corresponding
(recall Theorem 3.26) subspace HM. Say, for the (indicator of the) set {∅},
the operator projects onto the one-dimensional space of constants (the ex-
pectation). For the set {M : M ⊂ (0,∞)} the operator is the conditional
expectation, E

(
·
∣
∣F0,∞

)
.

The function

ϕs,t(M) =

{
1 if M ∩ (s, t) �= ∅,
0 if M ∩ (s, t) = ∅

acts by the operator 1− E
(
·
∣∣F(−∞,s)∪(t,∞)

)
.

For a finite set L = {s1, . . . , sn} ⊂ R, s1 < · · · < sn, the function ϕL(M) =
ϕs1,s2(M) + · · · + ϕsn−1,sn(M) counts intervals (sj , sj+1) that intersect M .
Clearly, ϕL(M) ≤ |M |, and

ϕLn(M) ↑ |M | for µf -almost all M

if L1 ⊂ L2 ⊂ . . . are chosen so that their union is dense in R. Accordingly,

NLn ↑ N ,

N{s1,...,sn} =
n−1∑

j=1

(
1− E

(
·
∣
∣F(−∞,sj)∪(sj+1,∞)

))
. (5.2)

The operator N is thus expressed in terms of the factorization only, irrespec-
tive of the Wiener-Itö decomposition, which gives us a bridge to arbitrary
continuous factorizations. Operators Rϕ described in the next lemma gener-
alize (5.1).

Lemma 5.4. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
there

exists one and only one map ϕ �→ Rϕ from the set of all bounded Borel func-
tions ϕ : C → R to the set of (bounded linear) operators on L2(Ω,F , P ) such
that

(a) the map is a homomorphism of algebras; that is, Raϕ = aRϕ, Rϕ+ψ =
Rϕ +Rψ, Rϕψ = RϕRψ;

(b) ‖Rϕ‖ ≤ supM∈C |ϕ(M)|;
(c) R1M = ProjHM for every Borel set M ⊂ C; here 1M is the indicator

of M, and (HM) is the orthogonal decomposition provided by Theorem 3.26.
The map also satisfies the condition
(d) let ϕ, ϕ1, ϕ2, · · · : C → [0, 1] be Borel functions such that ϕk → ϕ

pointwise (that is, ϕk(M) −−−−→
k→∞

ϕ(M) for each M ∈ C); then Rϕk
→ Rϕ

strongly (that is, ‖Rϕk
x−Rϕx‖ −−−−→

k→∞
0 for every x ∈ L2(Ω,F , P )).
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Proof. Uniqueness and existence are easy: Condition (c) and linearity deter-
mine the map on the algebra of Borel functions ϕ : C → R having finite sets
of values; it remains to extend the map by continuity.

For proving Condition (d) we note the equality

〈Rϕx, x〉 =
∫
ϕdµx ,

where µx is the spectral measure of x; it holds for ϕ having finite sets of
values, and therefore, for all ϕ. The bounded convergence theorem gives us not
only 〈Rϕk

x, x〉 → 〈Rϕx, x〉, but also 〈R(ϕk−ϕ)2x, x〉 → 0. However, ‖Rϕk
x −

Rϕx‖2 = 〈Rϕk−ϕx,Rϕk−ϕx〉 = 〈R(ϕk−ϕ)2x, x〉. ��

Lemma 5.5. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
, all fi-

nite sets L1 ⊂ L2 ⊂ . . . whose union is dense in R, and every λ ∈ [0,∞), the
limit

Uλ = lim
n

exp(−λNLn) ,

where NL is defined by (5.2), exists in the strong operator topology, and does
not depend on the choice of L1, L2, . . . Also,

UλUµ = Uλ+µ for all λ, µ ∈ [0,∞) .

Proof. We have ϕL =
∑
ϕsk,sk+1 and Rϕs,t = 1− E

(
·
∣
∣F(−∞,s)∪(t,∞)

)
; thus

RϕL = NL. It follows that Rexp(−λϕL) = exp(−λNL). However, exp(−λϕLn)
→ ϕλ, where ϕλ(M) = exp(−λ|M |) (and e−∞ = 0, of course). By 5.4(d),
exp(−λNLn) → Rϕλ

= Uλ. The semigroup relation UλUµ = Uλ+µ for opera-
tors follows from the corresponding relation ϕλϕµ = ϕλ+µ for functions. ��

In the Brownian factorization we know that Uλ = exp(−λN), N =
limnNLn . In general, however, the semigroup (Uλ)λ≥0 is discontinuous at
λ = 0 (and N is ill-defined).

Definition 5.6. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, and

f ∈ L2(Ω,F , P ).
(a) f is called stable, if ‖f − Uλf‖ → 0 for λ → 0, or equivalently, if µf

is concentrated on Cfinite = {M ∈ C : |M | <∞}.
(b) f is called sensitive, if Uλf = 0 for all λ > 0, or equivalently, if µf is

concentrated on C \ Cfinite = {M ∈ C : |M | = ∞}.

Of course, U0f = f anyway. For proving equivalence, apply Lemma 5.4(d)
to Uλ = Rϕλ

, ϕλ(M) = e−λ|M|.
The space L2(Ω,F , P ) decomposes into the direct sum of two subspaces,

stable and sensitive, according to the decomposition of C into the union of
two disjoint subsets, Cfinite and C \ Cfinite.

A continuous factorization is called classical (or stable), if the stable sub-
space is the whole L2(Ω,F , P ).
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A noise is called classical, if its continuous factorization is classical.
In order to understand probabilistic meaning of Uλ, consider first ρNL ,

L = {s1, . . . , sn}, s1 < · · · < sn. We have

Ω = Ω−∞,s1 × Ωs1,s2 × · · · × Ωsn−1,sn × Ωsn,∞

or rather, (Ω,F , P ) = (Ω−∞,s1 ,F−∞,s1 , P−∞,s1) × . . . , but let me use the
shorter notation. Each ω ∈ Ω may be thought of as a sequence (ω−∞,s1 , ωs1,s2 ,
. . . ωsn−1,sn , ωsn,∞) of local portions of data. Imagine another portion of data
ω′
s1,s2 ∈ Ωs1,s2 , either equal to ωs1,s2 (with probability ρ), or independent

of it (with probability 1 − ρ). The joint distribution of ωs1,s2 and ω′
s1,s2 is a

convex combination of two probability measures on Ω̃s1,s2 = Ωs1,s2 × Ωs1,s2 .
One measure is concentrated on the diagonal and is the image of Ps1,s2 under
the map Ωs1,s2 � ωs1,s2 �→ (ωs1,s2 , ωs1,s2) ∈ Ω̃s1,s2 ; this measure occurs with
the coefficient ρ. The other measure is the product measure Ps1,s2 ⊗Ps1,s2 ; it
occurs with the coefficient 1 − ρ.

Similarly we introduce Ω̃s2,s3 , . . . , Ω̃sn−1,sn and construct Ω̃ = Ω−∞,s1 ×
Ω̃s1,s2×· · ·×Ω̃sn−1,sn ×Ωsn,∞ (the factors being equipped with corresponding
measures). It is the same idea as in Sect. 5.1. Again, we have two measure
preserving maps α, α′ : Ω̃ → Ω. It appears that

E
(
f ◦ α′ ∣∣α−1(F)

)
= (ρNLf) ◦ α for f ∈ L2(Ω,F , P ) .

This is the probabilistic interpretation of ρNL ; each portion of data is either
correct (with probability ρ), or wrong (with probability 1−ρ).30 However, the
portions are not small yet. The limit n → ∞ makes them infinitesimal, and
turns ρNL into Uλ, where ρ and λ are related by ρ = e−λ.

The interpretation above motivates the terms ‘stable’ and ‘sensitive’.
Constant functions on Ω are stable; sensitive functions are of zero mean.

This is a terminological deviation from the discrete case; according to Sect.
5.1, constant functions are both stable and sensitive.

Two limiting cases of Uλ are projections. Namely, U∞ = limλ→∞ Uλ is the
expectation, and U0+ = limλ→0+ Uλ is the projection onto the stable subspace.
Restricting the ‘perturbation of local data’ to a given interval (s, t) we get
operators U (s,t)

λ . These correspond to functions C �M �→ exp(−λ|M ∩ (s, t)|)
and satisfy
30 This time, ρ ∈ [0, 1] rather than [−1, 1]. The relation to the approach of Sect. 5.1

is expressed by the equality

1 + ρ

2

(
1/2 0
0 1/2

)
+

1 − ρ

2

(
0 1/2

1/2 0

)
=

(
(1 + ρ)/4 (1 − ρ)/4
(1 − ρ)/4 (1 + ρ)/4

)

= ρ

(
1/2 0
0 1/2

)
+ (1 − ρ)

(
1/4 1/4
1/4 1/4

)
.
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U
(s,t)
λ U (s,t)

µ = U
(s,t)
λ+µ ; U

(r,s)
λ U

(s,t)
λ = U

(r,t)
λ ;

U (s,t)
∞ = E

(
·
∣
∣F−∞,s ⊗Ft,∞

)
;

U
(s,t)
0+ = E

(
·
∣∣F−∞,s ⊗F stable

s,t ⊗Ft,∞
)
.

(5.3)

Note that (5.2) may be written as

N{s1,...,sn} =
(
1− U (s1,s2)∞

)
+ · · ·+

(
1− U (sn−1,sn)

∞
)
. (5.4)

Lemma 5.7. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, f ∈

L2(Ω,F , P ), and g = η ◦ f where η : R → R satisfies |η(x) − η(y)| ≤ |x − y|
for all x, y ∈ R. Then

µg(C \ME) ≤ µf (C \ME)

for all elementary sets E ⊂ R; here ME = {M ∈ C : M ⊂ E}.

Proof. We have (up to isomorphism) Ω = ΩE ×ΩR\E (the product of proba-
bility spaces is meant). We introduce Ω̃ = Ω×Ω = (ΩE×ΩE)×(ΩR\E×ΩR\E)
and equip the second factor ΩR\E × ΩR\E with the product measure, while
the first factor ΩE × ΩE is equipped with the measure concentrated on the
diagonal, such that (equipping Ω̃ with the product of these two measures),
the measure preserving ‘coordinate’ maps α, α′ : Ω̃ → Ω satisfy

f ◦ α = f ◦ α′ for all FE-measurable f,
f ◦ α and g ◦ α′ are independent, for all FR\E-measurable f, g.

Then

E
(
f ◦ α′ ∣∣α−1(F)

)
= E

(
f
∣
∣FE

)
◦ α for all f ∈ L2(Ω,F , P ) .

Therefore (recall Theorem 3.26),

E
(
(f ◦ α′)(g ◦ α)

)
= E

(
gE
(
f
∣
∣FE

))
;

E
(
(f ◦ α′)(f ◦ α)

)
= 〈ProjHME

f, f〉 = µf (ME) ;

1
2

E (f ◦ α′ − f ◦ α)2 = µf (C)− µf (ME) = µf (C \ME) .

The same holds for g. It remains to note that |g ◦ α′ − g ◦ α| = |η ◦ f ◦ α′ −
η ◦ f ◦ α| ≤ |f ◦ α′ − f ◦ α| everywhere on Ω̃. ��

We introduce a special set S of Borel functions ϕ : C → [0, 1] in three
steps. First, we take all functions of the form 1ME ,

1ME (M) =

{
1 if M ⊂ E,

0 otherwise,
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where E ⊂ R runs over all elementary sets. Second, we consider all (finite)
convex combinations of these 1ME . Third, we consider the least set S contain-
ing these convex combinations and closed under pointwise convergence (that
is, if ϕk ∈ S and ϕk(M) → ϕ(M) for each M ∈ C then ϕ ∈ S).

The set S is convex (since the third step preserves convexity). It is also
closed under multiplication: ϕψ ∈ S for all ϕ, ψ ∈ S. Indeed, multiplicativity
holds in the first step, and is preserved in the second and third steps.

Lemma 5.8. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, f ∈

L2(Ω,F , P ), and g = η ◦ f where η : R → R satisfies |η(x) − η(y)| ≤ |x − y|
for all x, y ∈ R. Then

∫
(1 − ϕ) dµg ≤

∫
(1 − ϕ) dµf

for all ϕ ∈ S.

Proof. In the first step, for ϕ = 1ME , the inequality is stated by Lemma
5.7. The second step evidently preserves the inequality. And the third step
preserves it due to the bounded convergence theorem. ��

Lemma 5.9. Let a Borel set M ⊂ C be such that its indicator function
1M belongs to the set S. Then for every continuous factorization

(
(Ω,F , P ),

(Fs,t)s≤t
)
, the subspace HM = {f : µf (C \M) = 0} of L2(Ω,F , P ) is of the

form
HM = L2(Ω,FM, P )

where FM is a sub-σ-field of F .

Proof. The subspace satisfies

f ∈ HM implies |f | ∈ HM

(here |f |(M) = |f(M)| for M ∈ C). Indeed,
∫

(1 − 1M) dµ|f | ≤
∫

(1 − 1M) dµf

by Lemma 5.8; that is, µ|f |(C \M) ≤ µf (C \M). A subspace satisfying such
a condition is necessarily of the form L2(Ω,FM, P ). ��

Recall the decomposition of L2(Ω,F , P ) into the sum of two orthogonal
subspaces, stable and sensitive, according to the decomposition of C into the
union of two disjoint subsets, Cfinite and C \ Cfinite.

Theorem 5.10. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
,

there exists a sub-σ-field Fstable of F such that for all f ∈ L2(Ω,F , P )

f is stable if and only if f is Fstable-measurable;

f is sensitive if and only if E
(
f
∣
∣Fstable

)
= 0 .
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Proof. The second statement (about sensitive functions) follows from the first
(about stable functions). By Lemma 5.9 it is enough to prove that the indicator
of Cfinite belongs to S.

For every λ ∈ (0,∞) the function ϕλ : C → [0, 1] defined by ϕλ(M) =
exp(−λ|M |) belongs to S due to the limiting procedure ϕλ = lim exp(−λϕLn)
used in the proof of Lemma 5.5. For each n the function exp(−λϕLn) =∏

exp(−λϕsk,sk+1) belongs to S, since each exp(−λϕs,t) is a convex combi-
nation of two indicators, of M(−∞,s)∪(t,∞) and of the whole M.

It remains to note that ϕλ converges for λ→ 0 to the indicator of Cfinite.
��

So, a continuous factorization (or a noise) is classical if and only if Fstable =
F .

5.3 Back to Discrete: Two Kinds of Stability

The operator equality Lim ρN[i] = ρN[∞] holds for some dyadic coarse factor-
izations (recall Example 5.1) but fails for some others (recall Example 5.2).
Nothing like that happens for spectral measures; µf [i] → µf [∞] always (see
Theorem 3.14 and Sect. 3.4). However, the operator ρN[i] corresponds to the
function C[i] � M �→ ρ|M| treated as an element of L∞(µf [i]), and the op-
erator ρN[∞] corresponds to the function C[∞] � M �→ ρ|M| treated as an
element of L∞(µf [∞]). How is it possible? Where is the origin of the clash
between discrete and continuous?

The origin is discontinuity of functions M �→ ρ|M| and M �→ |M | w.r.t.
the Hausdorff topology on C.

Example 5.11. Return to the equality N[i]f (2)
s,t [i] = 2f (2)

s,t [i] for f
(2)
s,t [i] =

i−1/2
∑
τmτm+(1/i) (see Examples 5.2 and 3.8). The spectral measure of f (2)

s,t [i]
is concentrated on two-point sets M ⊂ 1

iZ, namely, on pairs of two adjacent
points {m,m + (1/i)}. However, f (2)

s,t [∞] is just a Brownian increment; its
spectral measure is concentrated on single-point sets. Now we see what hap-
pens; two close points merge in the limit! Multiplicity of spectral points eludes
the continuous model.

The effect becomes dramatic for f (λ)
s,t [i]; everything is stable in the contin-

uous model (i = ∞), while everything is sensitive (for i→ ∞) in the discrete
model. A finite spectral set on the continuum hides the infinite multiplicity
of each point.

Conformity between discrete and continuous can be restored by modify-
ing the idea of stability introduced in Sect. 5.1. Instead of inverting each τm
(with probability (1 − ρ)/2) independently of others, we may invert blocks
τs[i], τs[i]+(1/i), . . . , τt[i] where coarse instants s, t satisfy t[∞]−s[∞] = ε. Each
block is inverted with probability (1−ρ)/2, independently of other blocks. Ul-
timately we let ε→ 0, but the order of limits is crucial: limε→0 limi→∞(. . . ).
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This way, we can define (in discrete time setup) block stability and block sen-
sitivity, equivalent to stability and sensitivity (resp.) of the refinement. In
contrast, the approach of Sect. 5.1 leads to what may be called micro-stability
and micro-sensitivity (for discrete time only).

The function C �M �→ ρ|M| is not continuous, but it is upper semicontin-
uous. Therefore, every micro-stable function is block stable, and every block
sensitive function is micro-sensitive.

Example 5.12. The function gs,t of Example 3.9 is micro-sensitive but block
stable. The same holds for all coarse random variables in that dyadic coarse
factorization. It holds also for the second construction of Example 3.8 (I mean
f

(λ)
s,t ).
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6 Generalizing Wiener Chaos

6.1 First Chaos, Decomposable Processes, Stability

We consider an arbitrary continuous factorization. As was shown in Theorem
3.26 and Lemma 5.4, Borel functions ϕ : C → R act on L2(Ω,F , P ) by linear
operators Rϕ, and (indicators of) Borel subsets M ⊂ C act by orthogonal
projections to subspaces HM.

In particular, for the Brownian factorization, only Cfinite is relevant. The
set {M ∈ Cfinite : |M | = n} corresponds to the subspace called n-th Wiener
chaos.

In general, we may define n-th chaos as the subspace of L2(Ω,F , P ) that
corresponds to {M ∈ C : |M | = n}. These subspaces are orthogonal, and span
the stable subspace — not the whole L2(Ω,F , P ), unless the noise is classical.

For each t ∈ R the set Mt = {M : M � t} is negligible in the sense that
HMt = {0} (recall Lemma 3.15 and (3.11)). Neglecting Mt we may treat C
as the product,31

C = C−∞,t × Ct,∞ , (6.1)

where Ca,b is the space of all compact subsets of (a, b); namely, we treat a set
M ∈ C as the pair of sets M ∩ (−∞, t) and M ∩ (t,∞), assuming t /∈M .

On the other hand, the Hilbert space H = HC = L2(Ω,F , P ) may be
treated as the tensor product,

H = H−∞,t ⊗Ht,∞ ,

of two Hilbert spaces H−∞,t = HC−∞,t = L2(Ω,F−∞,t, P ) and Ht,∞ =
HCt,∞ = L2(Ω,Ft,∞, P ). Namely, f⊗g is just the usual product fg of random
variables f ∈ L2(Ω,F−∞,t, P ) and g ∈ L2(Ω,Ft,∞, P ); note that f and g are
necessarily independent, therefore E |fg|2 =

(
E |f |2

)(
E |g|2

)
.

Subspaces HM ⊂ H−∞,t for Borel subsets M ⊂ C−∞,t are a σ-additive
orthogonal decomposition of H−∞,t. The same holds for (t,∞).

Lemma 6.1. HM1×M2 = HM1 ⊗ HM2 for all Borel sets M1 ⊂ C−∞,t and
M2 ⊂ Ct,∞.

Proof. The equality holds for the special case M1 = {M : M ⊂ E1}, M2 =
{M : M ⊂ E2} where E1 ⊂ (−∞, t) and E2 ⊂ (t,∞) are elementary sets;
indeed, L2(Ω,FE1 , P ) ⊗ L2(Ω,FE2 , P ) = L2(Ω,FE1∪E2 , P ) since FE1∪E2 =
FE1 ⊗FE2 . The general case follows by the monotone class theorem. ��

Theorem 6.2. The sub-σ-field generated by the first chaos is equal to Fstable.
31 Sorry, the formula ‘C = C−∞,t × Ct,∞’ may be confusing since, on the other

hand, C−∞,t ⊂ C and Ct,∞ ⊂ C. The same can be said about the next formula,
H = H−∞,t ⊗ Ht,∞.
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Proof. The σ-field is evidently included in Fstable. Given a finite set L =
{s1, . . . , sn} ⊂ R, s1 < · · · < sn, we consider the set ML of allM ∈ C such that
M ⊂ (s1, sn) and each [sk, sk+1] contains at most one point of M . The set ML

being the product (over k), Lemma 6.1 shows that HML is the tensor product
(over k) of subspaces of L2(Ω,Fsk,sk+1 , P ); each factor is the first chaos on
(sk, sk+1) plus constants. Therefore each function ofHML is measurable w.r.t.
the σ-field generated by the first chaos. We choose L1 ⊂ L2 ⊂ . . . whose union
is dense in R; then MLn ↑ Cfinite, and corresponding subspaces span the stable
subspace. ��

A random variable X ∈ L2(Ω,F , P ) belongs to the first chaos if and only
if

X = E
(
X
∣
∣F−∞,t

)
+ E

(
X
∣
∣Ft,∞

)
for all t ∈ R .

For such X , letting Xs,t = E
(
X
∣∣Fs,t

)
we get a decomposable process, that is,

a family (Xs,t)s≤t of random variables such that Xs,t is Fs,t-measurable and
Xr,s + Xs,t = Xr,t whenever r ≤ s ≤ t. This way we get decomposable pro-
cesses satisfying E |Xs,t|2 <∞ and EXs,t = 0. Waiving these additional con-
ditions we get a larger set of processes, but the sub-σ-field generated by these
processes is still Fstable. We may also consider complex-valued multiplicative
decomposable processes; it means that Xs,t : Ω → C is Fs,t-measurable and
Xr,sXs,t = Xr,t. The generated sub-σ-field is Fstable, again. The same holds
under the restriction |Xs,t| = 1 a.s. See [20, Th. 1.7].

Dealing with a noise (rather than factorization) we may restrict ourselves
to stationary Brownian and Poisson decomposable processes. ‘Stationary’
means Xr,s ◦ αt = Xr−t,s−t. ‘Brownian’ means Xs,t ∼ N(0, t − s). ‘Poisson’
means Xs,t ∼ Poisson(λ(t − s)) for some λ ∈ (0,∞). The generated sub-
σ-field is still Fstable. See [15, Lemma 2.9]. (It was written for the Brownian
component, but works also for the Poisson component.)

For a finite set L = {s1, . . . , sn} ⊂ R, s1 < · · · < sn, we introduce an
operator QL on the space L0

2 = {X ∈ L2(Ω,F , P ) : EX = 0} by

QL = E
(
·
∣
∣F−∞,s1

)
+ E

(
·
∣
∣Fs1,s2

)
+ · · ·+ E

(
·
∣
∣Fsn−1,sn

)
+ E

(
·
∣
∣Fsn,∞

)
.

Theorem 6.3. If finite sets L1 ⊂ L2 ⊂ . . . are such that their union is
dense in R, then operators QLn converge in the strong operator topology to
the orthogonal projection from L0

2 onto the first chaos.

Proof. QL is the projection onto HML , where ML is the set of all nonempty
M ∈ C contained in one of the n+ 1 intervals. The intersection of subspaces
corresponds to the intersection of subsets. ��

Stochastic analysis gives us another useful tool for calculating the first
chaos, pioneered by Jon Warren [23, Th. 12]. Let (Bs,t)s≤t be a decomposable
Brownian motion, that is, a decomposable process such that Bs,t ∼ N(0, t−s).
One says that B has the representation property, if every X ∈ L2(Ω,F , P )
such that EX = 0 is equal to a stochastic integral,
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X =
∫ +∞

−∞
H(t) dB0,t ,

where H is a predictable process w.r.t. the filtration (F−∞,t)t∈R.

Lemma 6.4. If B has the representation property then the first chaos is equal
to the set of all linear stochastic integrals

∫ +∞

−∞
ϕ(t) dB0,t , ϕ ∈ L2(R) .

Proof. Linear stochastic integrals evidently belong to the first chaos. Let
X belong to the first chaos. Consider martingales B(t) = B0,t, X(t) =
E
(
X
∣
∣F−∞,t

)
=

∫ t
−∞H(s) dB(s) and their bracket process 〈X,B〉t =

∫ t
−∞H(s) ds. The two-dimensional process (B(·), X(·)) has independent in-

crements; therefore the bracket process has independent increments as well.
On the other hand, the bracket process is a continuous process of finite vari-
ation. Therefore it is degenerate (non-random), and H(·) is also non-random.

��

It follows that Fstable is generated by B.

Example 6.5. For the noise of stickiness (see Sect. 4), the process
(
a(s, t)

)
s≤t is

a decomposable Brownian motion having the representation property. There-
fore it generates Fstable. On the other hand we know (recall Example 4.9) that
a(·, ·) does not generate the whole σ-field. So, the sticky noise is not classical
(Warren [23]).

The approach of Theorem 6.3 is also applicable. Let ϕ : G3 → [−1,+1]
be a Borel function, and 0 < t − ε < t < 1. We consider ϕ(ξ0,1) =
ϕ(ξ0,t−εξt−ε,tξt,1) (you know, ξt−ε,t = fa(t−ε,t),b(t−ε,t),c(t−ε,t)), and compare
it with ϕ(ξ0,t−εξ̃t−ε,tξt,1), where ξ̃t−ε,t = fa(t−ε,t),b(t−ε,t),0.

��

��

�����

��
��

�����

��

��

�����

� � �

It appears that

‖ϕ(ξ0,t−εξt−ε,tξt,1)− ϕ(ξ0,t−ε ξ̃t−ε,tξt,1)‖L2 = O(ε3/4) = o(
√
ε) ,

provided that t is bounded away from 1 (otherwise we get O(ε3/4(1− t)−1/2)
with an absolute constant). Taking into account that ξ̃t−ε,t is measurable w.r.t.
the σ-field generated by a(·, ·) we conclude that the projection of ϕ(ξ0,1) onto
the first chaos is measurable w.r.t. the σ-field generated by a(·, ·). See Sect. 7.2
for the rest.
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6.2 Higher Levels of Chaos

We still consider an arbitrary continuous factorization. Any Borel subset M ⊂
C determines a subspace HM ⊂ L2(Ω,F , P ). However, the subset Cfinite ⊂ C
is special; the corresponding subspace, being equal to L2(Fstable) by Theorem
5.10, is of the form L2(F1) for a sub-σ-field F1 ⊂ F .

Another interesting subset is Ccountable, the set of all at most countable
compact subsets of R. It is not a Borel subset of C [7, Th. 27.5] but still,
it is universally measurable [7, Th. 21.10] (that is, measurable w.r.t. every
Borel measure), since its complement is analytic [7, Th. 27.5]. The Cantor-
Bendixson derivative M ′ of M ∈ C is, by definition, the set of all limit points
of M . Clearly, M ′ ∈ C, M ′ ⊂ M , and M ′ = ∅ if and only if M is finite. The
iterated Cantor-Bendixson derivative M (α) is defined for every ordinal α by
transfinite recursion: M (0) = M ; M (α+1) = (M (α))′; and M (α) = ∩β<αM (β)

if α is a limit ordinal; see [7, Sect. 6.C]. If M /∈ Ccountable then M (α) �= ∅ for
all α. If M ∈ Ccountable then M (α) = ∅ for some finite or countable ordinal
α; the least α such that M (α) = ∅ is called the Cantor-Bendixson rank of
M ∈ Ccountable. It is always of the form β + 1, and M (β) is a finite set.

Recall the proof of Theorem 5.10: the indicator of Cfinite belongs to the set
S introduced in Sect. 5.2. Here is a more general fact.

Lemma 6.6. Let α be an at most countable ordinal, and Mα the set of all
M ∈ C such that M (α) = ∅. Then the indicator function of Mα belongs to the
set S.

Proof. Transfinite induction in α. For α = 0 the claim is trivial. Let α be a
limit ordinal. We take αk ↑ α, αk < α, and note that Mα = Mα1 ∪Mα2 ∪ . . .
(indeed, M (αk) ↓ M (α), and M (αk) are compact). Thus, indicators of Mαk

converge to the indicator of Mα.
The transition from α to α+1 needs the following property of S: for every

ϕ ∈ S and a closed elementary set E, the function M �→ ϕ(M ∩E) belongs to
S. Proof: In the first step of constructing S, ϕ is the indicator of some {M :
M ⊂ E1}; thus M �→ ϕ(M ∩ E) is the indicator of {M : M ⊂ E1 ∪ (R \ E)}.
The second and third steps preserve the property.

Assume that the indicator function of Mα belongs to S; we have to prove
the same for α + 1. The indicator of Mα+1 is M �→ ϕ(M (α)), where ϕ is the
indicator of Cfinite. Taking into account that ϕ ∈ S (see the proof of Theorem
5.10), we will prove a more general fact: the functionM �→ ϕ(M (α)) belongs to
S for every ϕ ∈ S (not just the indicator of Cfinite). The property is evidently
preserved by the second and third steps of constructing S; it remains to prove
it in the first step. Here ϕ is the indicator of {M : M ⊂ E} for an elementary
E. We have to express the set {M : M (α) ⊂ E} as a limit of sets of the form
{M : (M ∩E1)(α) = ∅} where E1 is a closed elementary set. The indicator of
{M : (M ∩E1)(α) = ∅} belongs to S, since it is 1Mα(M ∩E1). We note that,
for ε→ 0,
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{M : (M ∩ (−∞, ε])(α) = ∅} ↑ {M : M (α) ⊂ (0,∞)} ,
{M : (M ∩ (−∞,−ε])(α) = ∅} ↓ {M : M (α) ⊂ [0,∞)} ,

which does the job for two special cases, E = (0,∞) and E = [0,∞), and
shows how to deal with a boundary point, belonging to E or not. The general
case is left to the reader. ��

Theorem 6.7. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization.

(a) There exists a sub-σ-field E of F such that for all f ∈ L2(Ω,F , P ), f
is E-measurable if and only if µf is concentrated on Ccountable.

(b) For every at most countable ordinal α there exists a sub-σ-field Eα of
F such that for all f ∈ L2(Ω,F , P ), f is Eα-measurable if and only if µf is
concentrated on the set of M ∈ C such that M (α) = ∅ (that is, of Cantor-
Bendixson rank less than or equal to α).

Proof. Item (a) follows from (b), since Eα = Eα+1 for countable α large enough
(see [7, Th. 6.9]), and µf (Ccountable) = supα µf{M : M (α) = ∅} (see [7], the
proof of Th. 21.10, and Th. 35.23).

Item (b) follows from Lemmas 6.6, 5.9. ��

Let us concentrate on Item (b) for α = 0, 1, 2. The case α = 0 is trivial:
only the empty set M , and only constant functions f . The case α = 1 was
discussed before: finite sets M and stable functions f . The case α = 2 means
that M ′ is finite.

We define the n-th superchaos as the subspace HM ⊂ L2(Ω,F , P ) cor-
responding to {M ∈ C : |M ′| = n}. These subspaces are orthogonal. The
0-th superchaos is the stable subspace, while for n = 1, 2, . . . the n-th su-
perchaos consists of (some) sensitive functions. By Theorem 6.7(b), the sub-
space spanned by n-th superchaos spaces for all n = 0, 1, 2, . . . is of the form
L2(Ω, E2, P ) where E2 is a sub-σ-field of F . Similarly to Theorem 6.2, the
sub-σ-field generated by the first superchaos and Fstable is equal to E2.

Similarly to (5.2) and (5.4) we may ‘count’ points of M ′ by the operator

N′
{s1,...,sn} =

n−1∑

j=1

(
1− E

(
·
∣∣F−∞,sj ⊗F stable

sj ,sj+1
⊗Fsj+1,∞

))

=
(
1− U

(s1,s2)
0+

)
+ · · · +

(
1− U

(sn−1,sn)
0+

)
,

or rather its limit N′ = limnN′
Ln

. Further, similarly to Lemma 5.5, we may
define

Vλ = lim
n

exp(−λN′
Ln

) .

This way, an ordinal hierarchy of operators may be constructed. It corresponds
to the Cantor-Bendixson hierarchy of countable compact sets.
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Introducing

Q′
{s1,...,sn}X = E

(
X
∣
∣F−∞,s1⊗F stable

s1,∞
)
+E

(
X
∣
∣F stable

−∞,s1⊗Fs1,s2⊗F stable
s2,∞

)

+ · · ·+ E
(
X
∣
∣F stable

−∞,sn−1
⊗Fsn−1,sn

⊗F stable
sn,∞

)
+ E

(
X
∣
∣F stable

−∞,sn
⊗Fsn,∞

)

for X ∈ L2(Ω,F , P ) such that E
(
X
∣
∣Fstable

)
= 0, we get such a counterpart

of Theorem 6.3.

Theorem 6.8. If finite sets L1 ⊂ L2 ⊂ . . . are such that their union is
dense in R, then operators Q′

Ln
converge in the strong operator topology to

the orthogonal projection from the sensitive subspace onto the first superchaos.

Proof. Q′
L is the projection onto HML , where ML is the set of all nonempty

M ∈ C such that M ′ is contained in one of the n+1 intervals. The intersection
of subspaces corresponds to the intersection of subsets. ��

Example 6.9. For the sticky noise, consider such a random variable X : the
number of random chords [s, t] × {x} such that s > 0 and t > 1. In other
words (see Sect. 4.9),

X = |{x : σ1(x) ∈ Π ∩ (0,∞)}| .
The conditional distribution of X given the Brownian path B(·) = a(0, ·) is
Poisson(λ) with λ = a(0, 1) + b(0, 1) = B(1) − min[0,1]B(·), which is easy
to guess from the discrete counterpart (see (4.13)). That is a generalization
of a claim from Example 4.9. In fact, the conditional distribution of the set
{x : σ1(x) ∈ Π∩(0,∞)}, given the Brownian path, is the Poisson point process
of intensity 1 on [−b(0, 1), a(0, 1)], which is a result of Warren [23]. Taking into
account that the σ-field generated by B(·) is Fstable (recall Lemma 6.5), we
get E

(
X
∣∣Fstable

)
= a(0, 1) + b(0, 1). The random variable

Y = X − E
(
X
∣∣Fstable

)
= X − a(0, 1)− b(0, 1)

is sensitive, that is, E
(
Y
∣
∣Fstable

)
= 0. I claim that Y belongs to the first

superchaos.
The proof is based on Theorem 6.8. Given 0 < s1 < · · · < sn < 1, we

have to check that Y can be decomposed into a sum Y0 + · · · + Yn such that
each Yj is measurable w.r.t. F stable

0,sj
⊗ Fsj ,sj+1 ⊗ F stable

sj+1,1. Here is the needed
decomposition:

Xj = |{x : σ1(x) ∈ Π ∩ (sj , sj+1)}| ,
Yj = Xj − E

(
Xj

∣
∣Fstable

)
.

We apply a small perturbation on (0, sj) and (sj+1, 1) but not on (sj , sj+1).
The set Π∩(sj , sj+1) remains unperturbed. The function σ1 is perturbed, but
only a little; being a function of B(·), it is stable.

So, Y belongs to the first superchaos, and X belongs to the first super-
chaos plus L2(Fstable). It means that µX is concentrated on sets M such that
|M ′| ≤ 1.
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The same holds for random variables Xu = |{x : x ≤ u, σ1(x) ∈ Π ∩
(0,∞)}|, for any u. They all are measurable w.r.t. the σ-field generated by
the first superchaos and Fstable. The random variable c(0, 1) is a (nonlinear!)
function of these Xu (recall Sect. 4.9). We see that the first superchaos and
Fstable generate the whole σ-field F . Every spectral set (of every random
variable) has only a finite number of limit points.

Example 6.10. Another nonclassical noise, discovered and investigated by
Warren [22], see also Watanabe [25], may be called the noise of splitting.
It is the scaling limit of the model of Example 1.9; see also Sect. 8.3. Spectral
measures of the most interesting random variables are described explicitly! A
spectral set contains a single limit point, and two sequences converging to the
point from the left and from the right.

Again, every spectral set (of every random variable) has only a finite num-
ber of limit points.

Question 6.11. We have no example of a noise whose spectral sets M are at
most countable, and M ′ is not always finite. Can it happen at all? Can it
happen for the refinement of a dyadic coarse factorization satisfying (3.13)?

Beyond Ccountable it is natural to use the Hausdorff dimension, dimM , of
compact sets M ∈ C. The set S used in Theorems 5.10 and 6.7 helps again.
First, a general lemma.

Lemma 6.12. For every probability measure µ on C the function ϕ : C → [0, 1]
defined by ϕ(M) = µ{M1 ∈ C : M ∩M1 = ∅}, belongs to the set S.

Proof. We may restrict ourselves to compact subsets of a bounded interval;
let it be just [0, 1]. For any such set M let M (n) denote the union of intervals
[ kn ,

k+1
n ] (k = 0, . . . , n − 1) that intersect M . The sequence (M (n))∞n=1 de-

creases and converges toM (in the Hausdorff metric). For every n, the function
ϕn(M) = µ{M1 : M ∩M (n)

1 = ∅} belongs to S, since it is the convex combina-
tion of indicators of {M : M ⊂ E} with coefficients µ{M1 : M (n)

1 = [0, 1]\E},
where E runs over 2n elementary sets. It remains to note that ϕn(M) ↑ ϕ(M),
since M ∩M1 = ∅ if and only if M ∩M (n)

1 = ∅ for some n. ��

Lemma 6.13. For every α ∈ (0, 1) there exists a function ϕ ∈ S such that
ϕ(M) = 1 for all M satisfying dimM < α, and ϕ(M) = 0 for all M satisfying
dimM > α.

Proof. We may restrict ourselves to the space C0,1 of all compact subsets of
(0, 1). There exists a probability measure µ on C0,1 such that the function
ϕ(M) = µ{M1 : M1 ∩M = ∅} satisfies two conditions: ϕ(M) = 1 for all M
such that dimM < α, and ϕ(M) < 1 for all M such that dimM > α. That is
a result of J. Hawkes, see [6, Th. 6], [10, Lemma 5.1]. By Lemma 6.12, ϕ ∈ S.
By multiplicativity (of S), also ϕn ∈ S for all n. The function limn ϕ

n satisfies
the required conditions. ��
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As a by-product we see that the Hausdorff dimension is a Borel function
C → R. (To this end we use an additional limiting procedure, as in the proof
of Theorem 6.14.)

Theorem 6.14. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, and

α ∈ (0, 1) a number. Then there exist sub-σ-fields Eα−, Eα+ of F such that for
all f ∈ L2(Ω,F , P ),

(a) f is measurable w.r.t. Eα− if and only if µf is concentrated on the set
of M ∈ C such that dimM < α;

(b) f is measurable w.r.t. Eα+ if and only if µf is concentrated on the set
of M ∈ C such that dimM ≤ α.

Proof. We choose αk → α, apply Lemma 6.13 for each k, consider the limit
ϕ of corresponding functions ϕk, and use Lemma 5.9. The case αk < α leads
to (a), the case αk > α leads to (b). ��

A more general notion behind Theorems 5.10, 6.7 and 6.14 is an ideal.
Recall that a subset I of C is called an ideal, if

M1 ⊂M2, M2 ∈ I =⇒ M1 ∈ I ,
M1,M2 ∈ I =⇒ (M1 ∪M2) ∈ I .

In particular, Cfinite and Ccountable are ideals. For every finite or countable
ordinal α, all M ∈ C such that M (α) = ∅ are an ideal. For every α ∈ (0, 1), all
M ∈ C such that dimM < α are an ideal. The same holds for ‘dimM ≤ α’.
All these ideals are shift-invariant:

M ∈ I =⇒ (M + t) ∈ I for all t ,
M + t = {m+ t : m ∈M} ,

but in general, an ideal need not be shift-invariant. Also, all ideals mentioned
above are Borel subsets of C, except for Ccountable; the latter is universally
measurable, but not Borel. The following theorem is formulated for Borel
ideals, but holds also for universally measurable ideals. Conditions 6.15 (a,b,c)
parallel 3.16 (a,b,c), which means that sub-σ-fields Es,t form a continuous
factorization of the quotient probability space (Ω,F , P )/E .

Theorem 6.15. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, I ⊂

C a Borel ideal, E ⊂ F a sub-σ-field, and for every f ∈ L2(Ω,F , P ), f be
E-measurable if and only if µf is concentrated on I. Then sub-σ-fields Es,t =
E ∩ Fs,t satisfy the conditions

Er,t = Er,s ⊗ Es,t whenever r ≤ s ≤ t , (a)
⋃

ε>0

Es+ε,t−ε generates Es,t whenever s < t, (b)

∞⋃

n=1

E−n,n generates E . (c)
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Proof. (a) We introduce Borel subsets Is,t = {M ∈ I : M ⊂ (s, t)} of C
and the corresponding subspaces Hs,t = HIs,t of L2(Ω,F , P ). The equality
Ir,t = Ir,s × Is,t (treated according to (6.1)) follows easily from the fact that
I is an ideal. Lemma 6.1 (or rather, its evident generalization) states that
Hr,t = Hr,s ⊗Hs,t. On the other hand,

L2(Es,t) = L2(E ∩ Fs,t) = L2(E) ∩ L2(Fs,t) = HI ∩HCs,t = HI∩Cs,t = Hs,t .

So, L2(Er,t) = L2(Er,s) ⊗ L2(Es,t), therefore Er,t = Er,s ⊗ Es,t.
(c) ∪nI−n,n = I, therefore ∪nHI−n,n is dense in HI ; that is, ∪nL2(E−n,n)

is dense in L2(E), therefore ∪nE−n,n generates E .
(b): similarly to (c). ��

Remark 6.16. If the ideal I is shift-invariant and the given object is a noise
(not only a factorization), then the sub-factorization (Es,t) becomes a sub-
noise. In particular, every nonclassical noise has its classical (in other words,
stable) sub-noise.

Question 6.17. Does every Borel ideal correspond to a sub-σ-field? (For an
arbitrary continuous factorization, I mean. Though, the question is also open
for noises and shift-invariant ideals.)

6.3 An Old Question of Jacob Feldman

Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization. Sub-σ-fields FE cor-

respond to elementary sets E ⊂ R (recall Sect. 3.4) and satisfy

FE1∪E2 = FE1 ⊗FE2 whenever E1 ∩ E2 = ∅ . (6.2)

It is natural to ask whether or not the map E �→ FE can be extended to all
Borel sets E ⊂ R in such a way that (6.2) is still satisfied and in addition,

FEn ↑ FE whenever En ↑ E . (6.3)

The answer is positive if and only if the given continuous factorization is clas-
sical (Theorem 6.21 below, see also [18]), which solves a question of Feldman
[4].

Note that (6.3) implies

FEn ↓ FE whenever En ↓ E . (6.4)

Proof: Let En ↓ E, then FR\En
↑ FR\E by (6.3), and so FR\E is independent

of ∩FEn . If FE is strictly less than ∩FEn , then FE⊗FR\E is strictly less than
(∩FEn) ⊗FR\E, which cannot happen, since FE ⊗FR\E = F by (6.2).

An extension satisfying (6.3), (6.4) is unique (if it exists) by the monotone
class theorem. Therefore an extension (of (FE) to the Borel σ-field) satisfying
(6.2), (6.3) is unique (if it exists).
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Lemma 6.18. If the factorization is classical then an extension satisfying
(6.2), (6.3) exists.

Proof. By (slightly generalized) Theorem 6.2, for every elementary E, the
σ-field FE = F stable

E is generated by the corresponding portion H
(1)
E =

L2(FE) ∩ H(1) of the first chaos H(1). The space H(1)
E corresponds (in the

sense of Theorem 3.26) to the subset M(1)
E ⊂ C of all single-point subsets of

E.
Given an arbitrary Borel set E ⊂ R, we define the subset M(1)

E ⊂ C
as above (that is, all single-point subsets of E), consider the corresponding
subspace H(1)

E ⊂ H(1), and introduce the sub-σ-field FE ⊂ F generated by
H

(1)
E .

Given f ∈ H(1), we denote by fE the orthogonal projection of f to H(1)
E ;

here E is an arbitrary Borel set. If En ↑ E (or En ↓ E) then fEn → f in L2.
If E is elementary then

E eif =
(
E eifE

)(
E eifR\E

)

due to independence. The monotone class theorem extends the equality to
all Borel sets E. We conclude that fE and fR\E are independent. Therefore
σ-fields FE and FR\E are independent for every Borel set E. Taking into
account that H(1)

E1∪E2
= H

(1)
E1

⊕H
(1)
E2

whenever E1 ∩ E2 = ∅ we get (6.2).

If En ↑ E then H
(1)
En

↑ H(1)
E , which ensures (6.3). ��

Condition (a) of the next lemma is evidently necessary for the extension to
exist. In more topological language, for every open set G ⊂ R the correspond-
ing σ-field FG is naturally defined by approximation (of G by elementary sets)
from within, while a closed set is approximated from the outside. The nec-
essary condition, FG ⊗ FR\G = F , appears to be equivalent to the following
(see 6.19(b)): the set M ∩G is compact, for almost all M ∈ C.

Lemma 6.19. For all elementary sets E1 ⊂ E2 ⊂ . . . the following two con-
ditions are equivalent:

(a)
(∨

n

FEn

)
⊗
(∧

n

FR\En

)
= F ;

(b) the set {M ∈ C : ∀n M ∩
(
(∪Ek) \ En

)
�= ∅} is negligible w.r.t. the

spectral measure µf for every f ∈ L2(Ω,F , P ).

Proof. Denote Fn = R \ En, En = FEn , Fn = FR\En
, E∞ = ∨nEn, F∞ =

∧nFn. Clearly, E∞ and F∞ are independent, and (a) becomes E∞ ∨F∞ = F .
Denote also Mn = {M ∈ C : M ⊂ En}, Nn = {M ∈ C : M ⊂ Fn}, M∞ =
∪nMn = {M ∈ C : ∃nM ⊂ En}, N∞ = ∩nNn = {M ∈ C : M ⊂ ∩Fn}; then
HMn = L2(En), HNn = L2(Fn). We have Mn ↑ M∞ and Nn ↓ N∞; therefore
L2(En) = HMn ↑ HM∞ and L2(Fn) = HNn ↓ HN∞ . On the other hand,
En ↑ E∞ and Fn ↓ F∞; therefore L2(En) ↑ L2(E∞) and L2(Fn) ↓ L2(F∞). So,
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HM∞ = L2(E∞) , HN∞ = L2(F∞) .

Denote M∞ ∨ N∞ = {M1 ∪ M2 : M1 ∈ M∞,M2 ∈ N∞}; the same for
M1 ∨ N∞ etc. We have HM1∨Nn = HM1 ⊗HNn and M1 ∨ Nn ↓ M1 ∨ N∞;
thus HM1∨N∞ = HM1 ⊗ HN∞ (note a relation to Lemma 6.1). Similarly,
HMn∨N∞ = HMn ⊗ HN∞ . However, Mn ∨ N∞ ↑ M∞ ∨ N∞, and we get
HM∞∨N∞ = HM∞ ⊗HN∞ , that is,

HM∞∨N∞ = L2(E∞)⊗ L2(F∞) .

Now (a) becomes HM∞∨N∞ = H , which means negligibility of the set C \
(M∞ ∨ N∞) = {M : ∀nM ∩

(
(∪Ek) \ En

)
�= ∅}, that is, (b). ��

Every classical factorization satisfies 6.19(b), since a finite set M cannot
intersect (∪Ek) \ En for all n.

Lemma 6.20. If Condition 6.19(b) is satisfied for every (En) then the fac-
torization is classical.

Proof. Let the factorization be not classical. Then we can choose a sensitive
f ∈ L2(Ω,F , P ), ‖f‖ = 1. Assume for convenience that f ∈ L2(F0,1), and
consider the spectral measure µf ; µf -almost allM are infinite subsets of (0, 1).
We choose p1, p2, · · · ∈ (0, 1) such that

∑
pk ≤ 1/3 (say, pk = 2−k/3). Integer

parameters n1 < n2 < . . . will be chosen later. We introduce independent
random elementary sets B1, B2, · · · ⊂ [0, 1] as follows:

P

{
Bk =

( l1 − 1
nk

,
l1
nk

)
∪ · · · ∪

( lm − 1
nk

,
lm
nk

)}
= pmk (1 − pk)nk−m

whenever 1 ≤ l1 < · · · < lm ≤ nk, m ∈ {0, . . . , nk}. That is, we have
a two-parameter family of independent events,

(
l−1
nk
, l
nk

)
⊂ Bk, where l ∈

{1, . . . , nk}, k ∈ {1, 2, . . .}. The probability of such an event is equal to pk.
We define Ek = B1 ∪ · · · ∪ Bk; thus E1 ⊂ E2 ⊂ . . . is a (random) increasing
sequence of elementary subsets of [0, 1].

We treat M as a random compact subset of (0, 1), distributed µf and
independent of B1, B2, . . . Let P̃ be the corresponding probability measure (in
fact, product measure) on the space Ω̃ of sequences (of sets) (M,B1, B2, . . . ).
For each k = 0, 1, 2, . . . we define an event Ak, that is, a measurable subset
of Ω̃, by the following condition on (M,B1, B2, . . . ):

M \ Ek is infinite and does not intersect Bk+1 ;

of course, E0 = ∅.
We can choose n1, n2, . . . such that

∑
k P̃ (Ak) ≤ 1/3. Proof: P̃ (Ak) is

a function of n1, . . . , nk, nk+1 that converges to 0 when nk+1 → ∞ (while
n1, . . . , nk are fixed).
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The probability of the event

M \ Ek is infinite for all k

is no less than 1−
∑
pk ≥ 2/3. Proof: Each M has a limit point (at least one),

and the point is covered by (the closure of) B1 ∪ B2 ∪ . . . with probability
≤
∑
pk.

So, there is a positive probability (≥ 1/3) to such an event:

for each k, the set M \ Ek is infinite and intersects Bk+1 .

However, the conditional probability, given B1, B2, . . . (but not M) of the
event

for each k, the set M \ Ek intersects Bk+1

must vanish according to Condition 6.19(b). ��

Theorem 6.21. A continuous factorization is classical if and only if the map
E �→ FE can be extended from the algebra of elementary sets to the Borel
σ-field, satisfying (6.2) and (6.3).

Proof. If the factorization is classical then the extension exists by Lemma
6.18. Let the extension exist; then 6.19(a) is satisfied for all (Ek), therefore
6.19(b) is also satisfied, and the factorization is classical by Lemma 6.20. ��

6.4 Black Noise

Definition 6.22. A noise is black, if its stable σ-field Fstable is degenerate.
In other words: its first chaos contains only 0.

Why ‘black’? Well, the white noise is called ‘white’ since its spectral den-
sity is constant. It excites harmonic oscillators of all frequencies to the same
extent. For a black noise, however, the response of any linear sensor is zero!

What could be a physically reasonable nonlinear sensor able to sense a
black noise? Maybe a fluid could do it, which is hinted at by the following
words of Shnirelman [13, p. 1263] about the paradoxical motion of an ideal
incompressible fluid: ‘. . . very strong external forces are present, but they are
infinitely fast oscillating in space and therefore are indistinguishable from zero
in the sense of distributions. The smooth test functions are not “sensitive”
enough to “feel” these forces.’

The very idea of black noises, nonclassical factorizations, etc. was sug-
gested to me by Anatoly Vershik in 1994.

Lemma 6.23. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization, a < b,

M a Borel subset of Ca,b = {M ∈ C : M ⊂ (a, b)}, and M̃ = {M ∈ C :
M ∩ (a, b) ∈ M}. If µf (M) = 0 for all f ∈ L2(Ω,F , P ) then µf (M̃) = 0 for
all f ∈ L2(Ω,F , P ).
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Proof. I prove it for (a, b) = (0,∞), leaving the general case to the reader.
We have C = C−∞,0 × C0,∞, M ⊂ C0,∞ and M̃ = C−∞,0 ×M (in the sense
of (6.1)). By Lemma 6.1, HM̃ = HC−∞,0×M = HC−∞,0 ⊗HM. By (3.12), the
space HM is trivial (that is, {0}). Therefore HM̃ is also trivial; it remains to
use (3.12) again. ��

Recall that a compact set M is called perfect, if it has no isolated points.
(The empty set is also perfect.) The set Cperfect of all perfect compact subsets
of R is a Borel set in C, see [7, proof of Th. 27.5].

Theorem 6.24. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)
the

following two conditions are equivalent:
(a) the first chaos space is trivial (contains only 0);
(b) for every f ∈ L2(Ω,F , P ) the spectral measure µf is concentrated on

Cperfect.

Proof. (b) implies (a) evidently (a single-point set cannot be perfect). Assume
(a). Applying Lemma 6.23 to the set M of all single-point subsets of (a, b) we
see that µf -almost all M ∈ C are such that M ∩ (a, b) is not a single-point
set, for all rational a < b. It means that M is perfect. ��

So, a noise is black if and only if spectral measures are concentrated on
(the set of all) perfect sets.

Existence of black noises was proven first by Tsirelson and Vershik [20,
Sect. 5]. A simpler and more natural example is described in the next section.
Another example is found by Watanabe [26].

If all spectral sets are finite or countable (as in Examples 6.9, 6.10), such
a noise cannot contain a black sub-noise.

Question 6.25. If a noise contains no black sub-noise, does it follow that all
spectral sets are at most countable?

Perfect sets may be classified, say, by Hausdorff dimension. For any
α ∈ (0, 1), sets M ∈ C of Hausdorff dimension ≤ α are a shift invariant
ideal, corresponding to a sub-noise. Also, all M ∈ C of Hausdorff dimension α
correspond to a ‘chaos subspace number α’. A continuum of such chaos sub-
spaces (not in a single noise, of course) could occur, describing different ‘levels
of sensitivity’. For now, however, I know of perfect spectral sets of Hausdorff
dimension 1/2 only.

Question 6.26. Can a noise have perfect spectral sets of Hausdorff dimension
other than 1/2 ? (See also the end of Sect. 8.3.)

Question 6.27. Can a black noise emerge as the refinement of a dyadic coarse
factorization satisfying (3.13)?



80 Boris Tsirelson

The following results (especially Corollary 6.35) may be treated as conti-
nuous-time counterparts of Theorem 5.3 (of Benjamini, Kalai and Schramm).
Given a continuous factorization

(
(Ω,F , P ), (Fs,t)s≤t

)
and a function f ∈

L2(Ω,F , P ), we define

H(f) = lim sup
{t1,...,tn}↑

n+1∑

k=1

(
E

√
Var

(
f
∣
∣FR\(tk−1,tk)

) )2

;

here t0 = −∞, tn+1 = +∞, and the ‘lim sup’ is taken over all finite sets
L = {t1, . . . , tn} ⊂ R, t1 < · · · < tn, ordered by inclusion. That is, ‘for every
ε there exists Lε such that for all L ⊃ Lε . . . ’ and so on. We also introduce

H1(f) = lim
{t1,...,tn}↑

n+1∑

k=1

Var
(
E
(
f
∣
∣Ftk−1,tk

))
.

This time we may write ‘lim’ (or ‘inf’) instead of ‘lim sup’ due to monotonicity
(w.r.t. inclusion); the more L = {t1, . . . , tn} the less the sum.

Lemma 6.28.
√

Var
(
E
(
f
∣∣Fs,t

))
≤ E

√
Var

(
f
∣∣FR\(s,t)

)
for all f ∈

L2(Ω,F , P ) and s < t.

Proof. The space L2(Ω,F , P ) = L2(F) = L2(Fs,t ⊗ FR\(s,t)) = L2(Fs,t) ⊗
L2(FR\(s,t)) may also be thought of as the space L2

(
FR\(s,t), L2(Fs,t)

)
con-

sisting of FR\(s,t)-measurable square integrable vector-functions, taking on
values in L2(Fs,t). We consider the element f̃ ∈ L2

(
FR\(s,t), L2(Fs,t)

)
corre-

sponding to f ∈ L2(F) (according to the canonical isomorphism of these two
spaces). The mean value of the vector-function is E f̃ = E

(
f
∣
∣Fs,t

)
(these two

‘E ’ act on different spaces). Convexity of the seminorm
√

Var(·) on L2(Fs,t)
gives

√
Var(E f̃) ≤ E

√
Var(f̃), where Var(f̃) means the pointwise variance

(each value of f̃ is a random variable; the latter has its variance), basically
the same as Var

(
f
∣
∣FR\(s,t)

)
. ��

Corollary 6.29. H1(f) ≤ H(f).

Lemma 6.30. H1(f) = ‖Q1f‖ for all f ∈ L2(Ω,F , P ); here Q1 is the or-
thogonal projection onto the first chaos.

Proof. Follows immediately from Theorem 6.3. ��

Corollary 6.31. Every f ∈ L2(Ω,F , P ) such that H(f) = 0 is orthogonal to
the first chaos.

Corollary 6.32. If a noise is such that H(f) = 0 for all f ∈ L2(Ω,F , P ),
then the noise is black.
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Lemma 6.33. Let g ∈ L2(F), h ∈ L∞(F0,∞), and f = E
(
gh
∣
∣F−∞,0

)
. Then

H(f) ≤ ‖h‖2∞H(g).

Proof. It is sufficient to prove the inequality for the influ-

ence, E

√
Var

(
f
∣
∣FR\(s,t)

)
≤ ‖h‖∞E

√
Var

(
g
∣
∣FR\(s,t)

)
for any

(s, t) ⊂ (−∞, 0). Similarly to the proof of Lemma 6.28, we consider
g̃ ∈ L2

(
F0,∞, L2(F−∞,0)

)
corresponding to g ∈ L2(F−∞,0 ⊗ F0,∞). We

have g̃h ∈ L2

(
F0,∞, L2(F−∞,0

)
, E (g̃h) = f . Convexity of the seminorm

E

√
Var

(
·
∣∣F(−∞,0)\(s,t)

)
on L2(F−∞,0) gives E

√
Var

(
f
∣∣F(−∞,0)\(s,t)

)
≤

E E

√
Var

(
g̃h
∣
∣F(−∞,0)\(s,t)

)
, where ‘Var’ and the internal ‘E ’ act on

L2(F−∞,0), while the outer ‘E ’ acts on L2(F0,∞). The right-hand

side is equal to E

(
|h|E

√
Var

(
g̃
∣
∣F(−∞,0)\(s,t)

))
and so, cannot exceed

‖h‖∞E E

√
Var

(
g̃
∣
∣F(−∞,0)\(s,t)

)
= ‖h‖∞E

√
Var

(
g
∣
∣FR\(s,t)

)
. ��

Lemma 6.34. If f ∈ L2(Ω,F , P ) is such that H(f) = 0, then µf is concen-
trated on Cperfect.

Proof. Similarly to the proof of Theorem 6.24, it is sufficient to prove, for every
(a, b) ⊂ R, that µf -almost all M ∈ C are such that M ∩ (a, b) is not a single-
point set. Lemma 6.1 shows that the subspace corresponding to {M ∈ C : |M∩
(a, b)| = 1} is H−∞,a ⊗H

(1)
a,b ⊗Hb,∞, where H(1)

a,b is the first chaos intersected

with Ha,b. We have to prove that f is orthogonal to H−∞,a ⊗H
(1)
a,b ⊗Hb,∞,

that is, to gh for every g ∈ H
(1)
a,b , h ∈ H−∞,a ⊗Hb,∞ = L2(FR\(a,b)), and we

may assume that h ∈ L∞(FR\(a,b)).
We have E (fgh) = E

(
gE
(
fh
∣
∣Fa,b

))
. Lemma 6.33 (slightly generalized)

shows that H
(
E
(
fh
∣
∣Fa,b

))
≤ ‖h‖2∞H(f). Thus, H

(
E
(
fh
∣
∣Fa,b

))
= 0; by

Corollary 6.31, E
(
gE
(
fh
∣
∣Fa,b

))
= 0. ��

Corollary 6.35. Let
(
(Ω,F , P ), (Fs,t)s≤t

)
be a continuous factorization. If

f ∈ L2(Ω,F , P ) satisfies H(f) = 0 and E f = 0, then f is sensitive.

Here are counterparts of Lemma 5.7 and Theorem 5.10 inspired by the
work [9] of Le Jan and Raimond.

Lemma 6.36. Let f ∈ L2(Ω,F , P ), and g = η ◦ f where η : R → R satisfies
|η(x) − η(y)| ≤ |x− y| for all x, y ∈ R. Then

H(g) ≤ H(f) .

Proof. It is sufficient to prove the inequality for the influence,

E

√
Var

(
g
∣
∣FR\(s,t)

)
≤ E

√
Var

(
f
∣
∣FR\(s,t)

)
,
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or a stronger inequality Var
(
g
∣
∣FE

)
≤ Var

(
f
∣
∣FE

)
a.s., for an arbitrary

elementary set E. It is a conditional counterpart of the inequality Var(η◦X) ≤
Var(X) for any random variable X . A proof of the latter: Var(η ◦ X) =
1
2E (η◦X1−η◦X2)2 ≤ 1

2E (X1−X2)2 = Var(X), whereX1, X2 are independent
copies of X . ��

Theorem 6.37. For every continuous factorization
(
(Ω,F , P ), (Fs,t)s≤t

)

there exists a sub-σ-field Fjetblack of F such that L2(Ω,Fjetblack, P ) is the
closure (in L2(Ω,F , P )) of {f ∈ L2(Ω,F , P ) : H(f) = 0}.

Proof. The set {f : H(f) = 0} is closed under linear operations, and also
under the nonlinear operation f �→ |f |, therefore its closure is of the form
L2(Fjetblack). ��

Corollary 6.38. L2(Fjetblack) ⊂ HCperfect .

Question 6.39. Whether Fjetblack is nontrivial for every black noise, or not?
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7 Example: The Brownian Web as a Black Noise

7.1 Convolution Semigroup of the Brownian Web

A one-dimensional array of random signs can produce some classical and non-
classical noises in the scaling limit, but I still do not know whether it can
produce a black noise, or not (see Question 6.27).

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) (b) (c)

This is why I turn to a two-dimensional array of random signs (a). It pro-
duces a system of coalescing random walks (b) that converges to the so-called
Brownian web (c), consisting of infinitely many coalescing Brownian motions
(independent before coalescence).

The Brownian web was investigated by Arratia, Toth, Werner, Soucaliuc,
and recently by Fontes, Isopi, Newman and Ravishankar [5] (other references
may be found therein). The scaling limit may be interpreted in several ways,
depending on the choice of ‘observables’, and may involve delicate points, be-
cause of complicated topological properties of the Brownian web as a random
geometric configuration on the plane. However, we avoid these delicate points
by treating the Brownian web as a stochastic flow in the sense of Sect. 4, that
is, a two-parameter family of random variables in a semigroup.

In order to keep finite everything that can be kept finite, we consider
Brownian motions in the circle T = R/Z rather than the line R.

It is well-known that a countable dense set of coalescing ‘particles’, given
at the initial instant, becomes finite, due to coalescence, after any positive
time. Moreover, the finite number is of finite expectation. Thus, for any given
t > 0, the Brownian web on the time interval (0, t) gives us a random map
T → T of the following elementary form (a step function):

�

��

��

���
��

�

��

��

���

��
fy1,...,yn
x1,...,xn

: T → T ,

x1 < · · · < xn < x1, y1 < · · · < yn < y1 (cyclically),
fy1,...,yn
x1,...,xn

(x) = yk+1 for x ∈ (xk, xk+1] .

Of course, n is random, as well as x1, . . . , xn and y1, . . . , yn. The value at xk
does not matter; we let it be yk for convenience, but it could equally well be
yk+1, or remain undefined. Points x1, . . . , xn will be called left critical points
of the map, while y1, . . . , yn are right critical points.
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We introduce the set G∞ consisting of all step functions T → T and, in
addition, the identity function. If f, g ∈ G∞ then their composition fg belongs
to G∞; thus G∞ is a semigroup. It consists of pieces of dimensions 2, 4, 6, . . .
and the identity. Similarly to G3 (recall (4.16)), G∞ is not a topological semi-
group, since the composition is discontinuous.

The distribution of the random map is a probability measure µt on G∞.
These maps form a convolution semigroup, µs ∗ µt = µs+t. Similarly to
Sect. 4.5, discontinuity of composition does not harm, since the composition
is continuous almost everywhere (w.r.t. µs⊗µt). Left and right critical points
do not meet.32

Having the convolution semigroup, we can construct the stochastic flow,
that is, a family of G∞-valued random variables (ξs,t)s≤t such that

ξs,t ∼ µt−s ,
ξr,sξs,t = ξr,t a.s.

whenever −∞ < r < s < t <∞, and

ξt1,t2 , . . . , ξtn−1,tn are independent

whenever −∞ < t1 < · · · < tn <∞.
Indeed, for each i, we can take independent ξk/i,(k+1)/i : Ω[i] →

G∞ for k ∈ Z according to the discrete model, and define ξk/i,l/i =
ξk/i,(k+1)/i . . . ξ(l−1)/i,l/i. For any two coarse instants s ≤ t, the distribution
of ξs[i],t[i] converges weakly (for i → ∞) to µt[∞]−s[∞]. The refinement gives
us

ξs,t : Ω → G∞ , ξs,t = f
y1(s,t),...,yn(s,t)(s,t)

x1(s,t),...,xn(s,t)(s,t)
;

xk(·, ·) and yk(·, ·) are continuous a.s. Also,

En(s, t) <∞ . (7.1)

We consider the sub-σ-field Fs,t generated by all ξu,v for (u, v) ⊂ (s, t) and
get a continuous factorization. Time shifts are evidently introduced, and so,
we get a noise — the noise of coalescence.

7.2 Some General Arguments

Probably we could use H and Theorem 6.37 in order to prove that the noise
of coalescence is black (see also [9]). However, I choose another way (via H1

rather than H).
Random variables of the form ϕ(ξs,t) for arbitrary s < t and arbitrary

bounded Borel function ϕ : G∞ → R generate the whole σ-field F . Products
32 They meet with probability 0, as long as s and t are fixed. Otherwise, delicate

points are involved. . .
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of the form ϕ1(ξt0,t1) . . . ϕn(ξtn−1,tn) for t0 < · · · < tn span L2 (as a closed
subspace); however, we cannot expect that linear combinations of such ϕ(ξs,t)
are dense in L2.

Denote byQ1 the orthogonal projection of L2(Ω,F , P ) onto the first chaos.

Lemma 7.1. Linear combinations of all Q1ϕ(ξs,t) are dense in the first chaos.

Proof: Follows easily from the next (quite general) result, or rather, its
evident generalization to n factors.

Lemma 7.2. Let r ≤ s ≤ t, X ∈ L2(Fr,s), Y ∈ L2(Fs,t). Then Q1(XY ) =
Q1(X)E (Y ) + E (X)Q1(Y ).

Proof. In terms of operators Rϕ given by Lemma 5.4 we have Q1(XY ) =
Rϕr,t(XY ), where ϕr,t : Cr,t → R is the indicator of {M ∈ C : |M ∩ (r, t)| =
1}. Similarly, Q1(X) = Rϕr,s(X), and E (X) = Rψr,s(X), where ψr,s is the
indicator of {M ∈ C : |M ∩ (r, s)| = 0}. However, ϕr,t = ϕr,sψs,t + ψr,sϕs,t
almost everywhere on Cr,t (w.r.t. every spectral measure). ��

In order to prove that the noise (of coalescence) is black, it suffices to prove
that Qϕ(ξs,t) = 0 for all s, t, ϕ. We’ll prove that Qϕ(ξ0,1) = 0; the general case
is similar. According to Lemma 6.30 we have to prove that H1(ϕ(ξ0,1)) = 0.
Assuming that Eϕ(ξ0,1) = 0 we will check the sufficient condition:

‖E
(
ϕ(ξ0,1)

∣
∣Ft−ε,t

)
‖ = o(

√
ε) for ε→ 0 ,

uniformly in t. When doing so, we may assume that t is bounded away from
0 and 1. Indeed, ‖E

(
ϕ(ξ0,1)

∣∣Ft,1
)
‖ → 0 for t→ 1−, due to continuity of the

factorization (recall Def. 3.16(b)).

Lemma 7.3. E
(
ϕ(ξ0,1)

∣
∣Ft−ε,t

)
= E

(
ϕ(ξ0,1)

∣
∣ ξt−ε,t

)
.

The proof is left to the reader; a hint:

E
(
ϕ(ξt1,t5)

∣
∣ ξt2,t3 , ξt3,t4

)
=
∫∫

ϕ(ξ12ξ23ξ34ξ45) dµt2−t1(ξ12)dµt5−t4(ξ45)

= E
(
ϕ(ξt1,t5)

∣
∣ ξt2,t4

)
.

7.3 The Key Argument

Similarly to Example 6.5, we consider X = ϕ(ξ0,1) = ϕ(ξ0,t−εξt−ε,tξt,1),
EX = 0, |X | ≤ 1 a.s. We have to prove that ‖E

(
X
∣
∣ ξt−ε,t

)
‖ = o(

√
ε) for

ε→ 0, uniformly in t, when t is bounded away from 0 and 1. Clearly,

E
(
X
∣
∣ ξt−ε,t

)
=
∫∫

ϕ(fgh) dµt−ε(f)dµ1−t(h) ,

where g = ξt−ε,t.
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� � �

� � �

We choose γ ∈
(

1
3 ,

1
2

)
and divide the strip (t − ε, t) × T into ∼ ε−γ ‘cells’

(t− ε, t)× (zk, zk+1) of height zk+1 − zk ∼ εγ .

�

�
�

We want to think of g as consisting of independent cells. Probably it can be
done in continuous time, but we have no such technique for now. Instead,
we retreat to the discrete-time model. The needed inequality for continuous
time results in the scaling limit i → ∞ provided that in discrete time our
estimations are uniform in i (for i large enough).

So, random signs that produce g are divided into cells. Cells are indepen-
dent and, taken together, they determine g uniquely.

However, a path may cross many cells. This is rather improbable, since
γ < 1/2, but it may happen. We enforce locality by a forgery! Namely, if the
path starting at the middle of a cell reaches the bottom or the top edge of
the cell, we replace the whole cell with some other cell (it may be chosen once
and for all) where it does not happen.

�

�

�→
� �

Now cells are ‘local’; a path cannot cross more than two cells, but of course,
the stochastic flow is changed. Namely, g is changed with an exponentially
small (for ε → 0) probability, which changes E

(
X
∣
∣ ξt−ε,t

)
by o(

√
ε) (much

less, in fact). Still, cells are independent.
Does a cell (of g) influence the composition, fgh ? It depends on f and h.

If the left edge {t− ε} × [zk, zk+1] of the cell contains no right critical point
of f , the cell can influence, since a path starting in an adjacent cell can cross
the boundary between cells. However, if the enlarged left edge {t− ε}× [zk −
εγ , zk+1 + εγ ] contains no right critical point of f (in which case we say ‘the
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cell is blocked by f ’), then the cell cannot influence, because of the enforced
locality. Similarly, if the enlarged right edge {t}× [zk− εγ , zk+1 + εγ ] contains
no left critical point of h (in which case we say ‘the cell is blocked by h’), the
cell cannot influence.

The probability of being not blocked by f is the same for all cells, since
the distribution of f is invariant under rotations of T (discretized as needed).
The sum of these probabilities does not exceed 3En(0, t − ε) (recall (7.1)),
which is O(1) when ε → 0. (Here we need t to be bounded away from 0.)
Thus,

P
(
a given cell is not blocked by f

)
= O(εγ) ;

P
(
a given cell is not blocked by h

)
= O(εγ) ;

P
(
a given cell is not blocked

)
= O(ε2γ) ;

P
(
at least one cell is not blocked

)
= O(εγ) .

In the latter case we may say that g is not blocked (by f, h).
Denote by A the event “g is not blocked by f, h” (it is determined by f

and h, not g); P
(
A
)

= O(εγ). Taking into account that

X = X − EX =
(
X · 1A − E (X · 1A)

)
+
(
X · (1− 1A) − E (X · (1− 1A))

)
,

E
(
X · (1− 1A)

∣
∣ g
)

= E (X · (1− 1A)) ,

E
(
X
∣
∣ g
)

= E
(
X · 1A

∣
∣ g
)
− E (X · 1A) ,

we have to prove that ‖E
(
X ·1A

∣
∣ g
)
−E (X ·1A)‖ = o(

√
ε). Note that it does

not result from the trivial estimation ‖X ·1A‖ ≤ ‖1A‖ =
√

P
(
A
)

= O(εγ/2),

γ ∈
(

1
3 ,

1
2

)
. Note also that, when g influences X , its influence is usually not

small (irrespective of ε) because of the stepwise nature of f and h.
We express the norm in terms of covariance,

‖E
(
X · 1A

∣
∣ g
)
− E (X · 1A)‖ = sup

ψ
Cov

(
X · 1A, ψ(g)

)
,

where the supremum is taken over all Borel functions ψ : G∞ → R such that
Var

(
ψ(g)

)
≤ 1. In terms of the correlation coefficient

Corr
(
X · 1A, ψ(g)

)
=

Cov
(
X · 1A, ψ(g)

)

√
Var(X · 1A)

√
Var(ψ(g))

,

it is enough to prove that

Corr
(
X · 1A, ψ(g)

)
= o(ε(1−γ)/2) ,

since it implies Cov(. . . ) = o(ε(1−γ)/2) · ‖X · 1A‖ = o(ε(1−γ)/2εγ/2) = o(
√
ε).

Instead of o(ε(1−γ)/2) we will get O(εγ), which is also enough since γ > 1/3.
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It remains to apply the quite general lemma given below, interpreting its
Yk as the whole k-th cell (of g), Xk as the indicator of the event “the k-th
cell is not blocked” (k = 1, . . . , n), X0 as the pair (f, h), and ϕ(. . . ) as X ·1A.
The lemma is formulated for real-valued random variables Yk, but this does
not matter; the same clearly holds for arbitrary spaces, and in fact, we need
only finite spaces. The product XkYk is a trick for ‘blocking’ Yk when Xk = 0.
Note that dependence between X0, X1, . . . , Xn is allowed.

Lemma 7.4. Let (X0, X1, . . . , Xn) and (Y1, . . . , Yn) be two independent ran-
dom vectors, Yk : Ω → R, Xk : Ω → {0, 1} for k = 1, . . . , n, X0 : Ω → R, and
random variables Y1, . . . , Yn be independent. Then

Corr
(
ϕ(X0, X1Y1, . . . , XnYn), ψ(Y1, . . . , Yn)

)
≤
√

max
k=1,...,n

P
(
Xk = 1

)

for all Borel functions ϕ : Rn+1 → R, ψ : Rn → R such that the correlation
is well-defined (that is, 0 < Varϕ(. . . ) <∞, 0 < Varψ(. . . ) <∞).

Proof. We may assume that X1, . . . , Xn are functions of X0. Con-
sider the orthogonal (in L2(Ω)) projection Q from the space of
all random variables of the form ψ(Y1, . . . , Yn) to the space of
all random variables of the form ϕ(X0, X1Y1, . . . , XnYn), that is,
Qψ(Y1, . . . , Yn) = E

(
ψ(Y1, . . . , Yn)

∣
∣X0, X1Y1, . . . , XnYn

)
. We have to prove

that ‖Qψ(Y1, . . . , Yn)‖2 ≤
(
maxk P

(
Xk = 1

))
‖ψ(Y1, . . . , Yn)‖2 whenever

Eψ(Y1, . . . , Yn) = 0. The space of all ψ(Y1, . . . , Yn) is spanned by factoriz-
able random variables ψ(Y1, . . . , Yn) = ψ1(Y1) . . . ψn(Yn). For such a ψ we
have

Qψ(Y1, . . . , Yn) = E
(
ψ1(Y1) . . . ψn(Yn)

∣
∣X0, X1Y1, . . . , XnYn

)

=
( ∏

k:Xk=0

Eψk(Yk)
)( ∏

k:Xk=1

ψk(Yk)
)

;

‖Qψ(Y1, . . . , Yn)‖2 = E

(
E
(
|Qψ(Y1, . . . , Yn)|2

∣
∣X0

))

= E

(( ∏

k:Xk=0

|Eψk(Yk)|2
)( ∏

k:Xk=1

E |ψk(Yk)|2
))

.

If, in addition, Eψ1(Y1) = 0 then ‖Qψ(Y1, . . . , Yn)‖2 ≤
P
(
X1 = 1

)
‖ψ(Y1, . . . , Yn)‖2. Similarly,

‖Qψ(Y1, . . . , Yn)‖2 ≤
(

max
k

P
(
Xk = 1

))
‖ψ(Y1, . . . , Yn)‖2

if Eψ(Y1, . . . , Yn) = 0 and, of course, ψ is factorizable, that is, ψ(Y1, . . . , Yn) =
ψ1(Y1) . . . ψn(Yn). The latter assumption cannot be eliminated just by saying
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that factorizable random variables of zero mean span all random variables of
zero mean. Instead, we use two facts.

The first fact. The space of all random variables ψ(. . . ) has an orthogonal
basis consisting of factorizable random variables satisfying an additional con-
dition: each factor ψk(Yk) is either of zero mean, or equal to 1. (For a proof,
start with an orthogonal basis for functions of Y1 only, the first basis function
being constant; do the same for Y2; take all products; and so on.)

The second fact. The operator Q maps orthogonal factorizable ran-
dom variables, satisfying the additional condition, into orthogonal random
variables. Indeed, let ψ(Y1, . . . , Yn) = ψ1(Y1) . . . ψn(Yn), ψ′(Y1, . . . , Yn) =
ψ′

1(Y1) . . . ψ′
n(Yn), and each ψk(Yk) be either of zero mean, or equal to

1; the same for each ψ′
k(Yk). If E

(
ψ(Y1, . . . , Yn)ψ′(Y1, . . . , Yn)

)
= 0 then

E
(
ψk(Yk)ψ′

k(Yk)
)

= 0 for at least one k; let it happen for k = 1. We have not
only E

(
ψ1(Y1)ψ′

1(Y1)
)

= 0 but also
(
Eψ1(Y1)

)(
Eψ′

1(Y1)
)

= 0, since ψ1 and
ψ′

1 cannot both be equal to 1. Therefore

E
(
Qψ(Y1, . . . , Yn)

)(
Qψ′(Y1, . . . , Yn)

)
=

= E

(( ∏

k:Xk=0

(
Eψk(Yk)

)(
Eψ′

k(Yk)
)
)( ∏

k:Xk=1

ψk(Yk)ψ′
k(Yk)

))

= 0 ,

since the first term vanishes whenever X1 = 0, and the second term vanishes
whenever X1 = 1. ��

Combining all together, we get the conclusion.

Theorem 7.5. The noise of coalescence is black.

7.4 Remarks

Another proof of Theorem 7.5 should be possible, by showing that all (zero
mean) random variables are sensitive. To this end, we divide the time axis R

into intervals of small length ε, and choose a random subset of intervals such
that each interval is chosen with a small probability 1 − ρ = 1 − e−λ ∼ λ,
independently of others. On each chosen interval we replace local random data
with fresh (independent) data.

Consider the path X(·) of the Brownian web, starting at the origin,
X(t) = ξ0,t(0) for t ∈ [0,∞); it behaves like a Brownian motion. After the
replacement we get another path Y (·). Their difference,

(
X(t) − Y (t)

)
/
√

2,
behaves like another Brownian motion when outside 0, but is somewhat sticky
at 0. Namely, during each chosen (to the random set) time interval, the point
0 has nothing special; however, outside these time intervals, the point 0 is
absorbing. In this sense, chosen time intervals act like factors f∗ in the ran-
dom product of factors f−, f+, f∗ studied in Sect. 4. There, f∗ occurs with a
small probability 1/(2

√
i) → 0 (recall Example 4.6), which produces a non-

degenerate stickiness in the scaling limit. Here, in contrast, a time interval is
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chosen with probability 1 − ρ ∼ λ that does not tend to 0 when the interval
length ε tends to 0. Naturally, stickiness disappears in the limit ε→ 0 (a proof
uses the idea of (4.12)). That is, interaction between X(·) and Y (·) disappears
in the limit ε→ 0. They become independent, no matter how small 1− ρ is.

Probably, the same argument works for any finite number of pathsXk(t) =
ξ0,t(xk); they should be asymptotically independent of Yk(·) for ε→ 0, but I
did not prove it.

The spectral measure µX of the random variable X = ξ0,1(0) is written
down explicitly in [16]. Or rather, its discrete counterpart is found; the scaling
limit follows by (a generalization of) Theorem 3.14 (see also [17]). The measure
µX is a probability measure (since ‖X‖ = 1), it may be thought of as the
distribution of a random perfect subset of (0, 1). Note that the random subset
is not at all a function on the probability space (Ω,F , P ) that carries the
Brownian web. There is no sense in speaking about ‘the joint distribution
of the random set and the Brownian web’. In fact, they may be treated as
incompatible (non-commuting) measurements in the framework of quantum
probability, see [15].

A wonder: µX is the distribution of (θ − M) ∩ (0, 1), where M is the
set of zeros of the usual Brownian motion, and θ is independent of M and
distributed uniformly on (0, 1).

Moreover, the corresponding equality holds exactly (not only asymptoti-
cally) in the discrete-time model. Strangely enough, the Brownian motion (or
rather, random walk) does not appear in the calculation of the spectral mea-
sure. The relation to Brownian motion is observed at the end, as a surprise!

Question 7.6. Can µX (for X = ξ0,1(0)) be found via some natural construc-
tion of a Brownian motion whose zeros form the spectral set (after the trans-
formation x �→ θ − x)? (See [16, Problem 1.5].)

We see that µX (for X = ξ0,1(0)) is concentrated on sets of Hausdorff
dimension 1/2.

Question 7.7. Is µX concentrated on sets of Hausdorff dimension 1/2 for an
arbitrary random variable X such that EX = 0 (over the noise of coales-
cence)?

An affirmative answer would probably give us another proof that the noise
is black. A stronger conjecture may be made.

Question 7.8. Is µX for an arbitrary F0,1-measurable X (over the noise of
coalescence), satisfying EX = 0, absolutely continuous w.r.t. µξ0,1(0) ?

7.5 A Combinatorial By-product

Consider a Markov chain X = (Xk)∞k=0 (a half-difference of two independent
simple random walks, or a double-speed simple random walk divided by two):
X0 = 0 and
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P
(
Xk+1 = Xk + ∆x

∣
∣Xk

)
=






1/4 for ∆x = −1,
1/2 for ∆x = 0,
1/4 for ∆x = +1

for each k = 0, 1, 2, . . .
Let Z be the (random) set of zeros of X , that is,

Z = {k = 0, 1, . . . : Xk = 0} .

Given a set S ⊂ {0, 1, 2, . . .} and a number k = 0, 1, 2, . . . , we consider the
event Z ∩ [0, k] ⊂ k − S, that is, ∀l = 0, . . . , k

(
l ∈ Z =⇒ k − l ∈ S

)
, and its

probability. We define

pn,S =
1
n

n−1∑

k=0

P
(
Z ∩ [0, k] ⊂ k − S

)
;

of course, only k ∈ S can contribute (since 0 ∈ Z).
On the other hand, we may trap X at 0 on S; that is, given a set S ⊂

{0, 1, 2, . . .}, we introduce another Markov chain X(S) =
(
X

(S)
k

)∞
k=0 such that

X
(S)
0 = 0 and for each k = 0, 1, 2, . . .

P
(
X

(S)
k+1 = x+ ∆x

∣∣X(S)
k = x

)
=






1/4 for ∆x = −1,
1/2 for ∆x = 0,
1/4 for ∆x = +1

except for the case k ∈ S, x = 0,

P
(
X

(S)
k+1 = 0

∣
∣X(S)

k = 0
)

= 1 if k ∈ S .

Theorem 7.9. pn,S = 1
n

∑
k∈S P

(
X

(S)
k = 0

)
for every n = 1, 2, . . . and

S ⊂ {0, 1, . . . , n− 1}.

Example 7.10. Before proving the theorem, consider a special case; namely,
let S consist of just a single number s. Then P

(
Z ∩ [0, k] ⊂ k− S

)
= P

(
Z ∩

[0, k] ⊂ {k − s}
)

vanishes for k �= s. For k = s it becomes P
(
Z ∩ [0, s] =

{0}
)

= 2−(2s−1)
((

2s−2
s−1

)
+
(
2s−2
s

))
. Therefore pn,{s} = 1

n2−(2s−1)
((

2s−2
s−1

)
+

(
2s−2
s

))
, assuming s ≥ 2; also, pn,{0} = 1

n and pn,{1} = 1
2n . On the other

hand, 1
n

∑
k∈S P

(
X

(S)
k = 0

)
= 1

nP
(
Xs = 0

)
= 1

n · 2−2s
(
2s
s

)
. The equality

becomes
(
2s−2
s−1

)
+
(
2s−2
s

)
= 1

2

(
2s
s

)
(for s ≥ 2).

Proof (sketch). We use the discrete-time counterpart of the Brownian web (see
Sect. 7.1 and [16, Sect. 1]) and consider ξ0,n(0), the value at time n of the path
starting at the origin. At every instant k /∈ S we replace the corresponding
random signs with fresh (independent) copies, which leads to another random
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variable ξ′0,n(0). We calculate the covariance E
(
ξ0,n(0)ξ′0,n(0)

)
in two ways,

and compare the results.
The first way. The difference process ξ0,·(0)− ξ′0,·(0) is distributed like the

process 2X(S) (similarly to Sect. 7.4). Thus

4E
(
X(S)
n

)
2 = E

(
ξ0,n(0)− ξ′0,n(0)

)
2 = 2n− 2E

(
ξ0,n(0)ξ′0,n(0)

)
.

On the other hand, 1
2 − E

(
X

(S)
k+1

)
2 + E

(
X

(S)
k

)
2 = 1

2P
(
X

(S)
k = 0

)
if k ∈ S,

otherwise 0. Therefore n− 2E
(
X

(S)
n

)
2 =

∑
k∈S P

(
X

(S)
k = 0

)
. So,

E
(
ξ0,n(0)ξ′0,n(0)

)
=
∑

k∈S
P
(
X

(S)
k = 0

)
.

The second way. In terms of the spectral measure µ of the random variable
ξ0,n(0) we have E

(
ξ0,n(0)ξ′0,n(0)

)
= µ{M : M ⊂ S}. However, the probability

measure 1
nµ is equal to the distribution of (θ − Z) ∩ [0,∞); here Z is (as

before) the set of zeros of X , and θ is a random variable independent of Z
and distributed uniformly on {0, 1, . . . , n − 1}. (See [16, Prop. 1.3], see also
[24].) Therefore 1

nµ{M : M ⊂ S} = P
(
(θ−Z)∩ [0,∞) ⊂ S

)
= P

(
Z∩ [0, θ] ⊂

θ − S
)

= pn,S . So,
E
(
ξ0,n(0)ξ′0,n(0)

)
= npn,S .

��

Question 7.11. Is there a simpler proof of Theorem 7.9? Namely, can we avoid
the spectral measure and its relation to the set of zeros?

A continuous-time counterpart of Theorem 7.9 is left to the reader.
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8 Miscellany

8.1 Beyond the One-Dimensional Time

Scaling limits of models driven by two-dimensional arrays of random signs are
evidently important. The best examples appear in percolation theory. Also the
Brownian web is an example and, after all, it may be treated as an oriented
percolation.

In such cases, independent sub-σ-fields should correspond to disjoint re-
gions of R2, not only of the form (s, t)×R. In fact, a rudimentary use of these
can be found in Sect. 7 (recall ‘cells’ in Sect. 7.3). In general it is unclear what
kind of regions can be used; probably, regions with piecewise smooth bound-
aries always fit, while arbitrary open sets do not fit unless the two-dimensional
noise is classical (recall Sect. 6.3).

In spite of the great and spectacular progress of the percolation theory
(see for instance [14] and references therein), ‘the noise of percolation’ is still
a dream.

Question 8.1. For the critical site percolation on the triangular lattice, invent
an appropriate coarse σ-field, and check two-dimensional counterparts of the
two conditions of Definition 3.4 for an appropriate class of two-dimensional
domains. Is it possible?

Remark 8.2. Hopefully, the answer is affirmative, that is, the two-dimensional
noise of percolation will be defined. Then it should appear to be a (two-
dimensional) black noise, due to (appropriately adapted) Corollary 6.32,
Lemma 7.1 and (most important) the critical exponent for a small cell of size
ε× ε being pivotal [14, Sect. 5, Item 2]. The probability is O(ε5/4), therefore
o(ε). The sum for H(f) contains O(1/ε2) terms, o(ε2) each.33

Sensitivity of percolation events, disclosed in [2], is micro-sensitivity (recall
Sect. 5.3). Existence of the black noise of percolation would mean a stronger
property: block sensitivity. (See also [2, Problem 5.4].)

It would be the most important example of a black noise!

For the general theory of stability, spectral measures, decomposable pro-
cesses etc., the dimension of the underlying space is of little importance. Ba-
sically, regions must form a Boolean algebra. Such a general approach is used
in [20], [18].

Nonclassical factorizations appear already in zero-dimensional ‘time’, be it
a Cantor set, or even a convergent sequence with limit point. For Cantor sets,
see [20, Sect. 4]; some interesting models of combinatorial nature, with large
symmetry groups (instead of ‘time shifts’ of a noise) are examined there. For
a convergent sequence with limit point, see Chapter 1 here (namely, Example
1.1), and [18, Appendix].
33 Different arguments (especially, Lemma 7.4) are used in Sect. 7, since an infinite

two-dimensional spectral set could have a finite one-dimensional projection.
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8.2 The ‘Wave Noise’ Approach

A completely different way of constructing noises is sketched here.
Consider the linear wave equation in dimension 1 + 1,

(
∂2

∂t2
− ∂2

∂x2

)
u(x, t) = 0 , (8.1)

with initial conditions u(x, 0) = 0, ut(x, 0) = f(x). Its solution is well-known:

u(x, t) =
1
2

∫ x+t

x−t
f(y) dy =

1
2
F (x + t)− 1

2
F (x− t) ,

where F is defined by F ′(x) = f(x). The formula holds in a generalized
sense for nonsmooth F , which covers the following case: F (x) = B(x) =
Brownian motion (combined out of two independent branches, on [0,+∞) and
on (−∞, 0]); f(x) = B′(x) is the white noise. The random field on (−∞,∞)×
[0,∞),

u(x, t) =
1
2
B(x+ t) − 1

2
B(x− t) , B = Brownian motion,

is continuous, stationary in x, scaling invariant (for any c the random field
u(cx, ct)/

√
c has the same distribution as u(x, t)), satisfies the wave equation

(8.1) and the following independence condition:

u
∣
∣
L

and u
∣
∣
R

are independent,

where L = {(x, t) : x < −t < 0}, R = {(x, t) : x > t > 0}.
�

�

� �

(8.2)
The independence is a manifestation of: (1) the independence inherent to the
white noise (its integrals over disjoint segments are independent), and (2) the
hyperbolicity of the wave equation (propagation speed does not exceed 1).

A solution with such properties is essentially unique. That is, if u(x, t) is a
continuous random field on (−∞,∞)× (0,∞), stationary in x, satisfying the
wave equation (8.1) and the independence condition (8.2), then necessarily
u(x, t) = µ0 +µ1t+ σ

(
B(x+ t)−B(x− t)

)
for a Brownian motion B. Scaling

invariance forces µ0 = µ1 = 0.
It is instructive that a wave equation may be used in a non-traditional way.

Traditionally, a solution is determined by its initial values. In contrast, the in-
dependence condition (8.2), combined with some more conditions, determines
a random solution with no help of initial conditions! Not an individual sample
function is determined, of course, but its distribution (a probability measure
on the space of solutions of the wave equation).

Somebody with no preexisting idea of white noise or Brownian motion can,
in principle, use the above approach. Observing that u(x, 0) = 0 but ut(x, 0)
does not exist (in the classical sense), he may investigate u(x, t)/t for t → 0
as a way toward the white noise.
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Question 8.3. Can we construct a nonclassical (especially, black) noise, using
a nonlinear hyperbolic equation?

I once tried the nonlinear wave equation
(
∂2

∂t2
− ∂2

∂x2

)
u(x, t) = εt−(3−ε)/2 sin

(
t−(1+ε)/2u(x, t)

)
, (8.3)

ε being a small positive parameter. The equation is scaling-invariant: if u(x, t)
is a solution, then u(cx, ct)/c(1+ε)/2 is also a solution. We search for a random
field u(t, x), continuous, stationary in x, scaling invariant, satisfying (8.3) and
the independence condition (8.2). Its behavior for t→ 0 should give us a new
noise. Does such a random field exist? Is it unique (in distribution)? If the
answers are affirmative, then we get a noise,

Fx,y is the σ-field generated by {u(z, t) : x+t < z < y−t} ,
� �

�

and maybe it is black. However, I did not succeed with it.
A modified ‘waive noise’ approach was used successfully in [20, Sect. 5],

proving, for the first time, the existence of a black noise. The modification is
to keep the auxiliary dimension, but make it discrete rather than continuous:

More specifically, consider a sequence of stationary random processes uk(·) on
R such that
• uk is 2εk-dependent (for some εk → 0); it means that uk

∣∣
(−∞,−εk]

and

uk
∣
∣
[εk,+∞)

are independent;

• uk−1(x) is uniquely determined by uk
∣
∣
[x−(εk−1−εk), x+(εk−1−εk)]

.

Such a sequence (uk) determines a noise; namely, Fx,y is generated by all
uk(z) such that x+ εk ≤ z ≤ y− εk. White noise can be obtained by a linear
system of Gaussian processes:

uk−1(x) =
∫ x+(εk−1−εk)

x−(εk−1−εk)

Vk(y − x)uk(y) dy ,

where kernels Vk, concentrated on [−(εk−1 − εk), (εk−1 − εk)], are chosen
appropriately. A nonlinear system (of quite non-Gaussian processes) of the
form

uk−1(x) = ϕ

(
const

εk−1 − εk

∫ x+(εk−1−εk)

x−(εk−1−εk)

uk(y) dy
)
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was used for constructing a black noise. But, it is not really a construction of
a specific noise. Existence of (uk) is proven, but uniqueness (in distribution)
is not. True, every such (uk) determines a black noise. However, none of them
is singled out.

8.3 Groups, Semigroups, Kernels

A Brownian motion X in a topological group G is defined as a continuous
G-valued random process with stationary independent increments, starting
from the unit of G. For example, if G is the additive group of reals, then the
general form of a Brownian motion in G is X(t) = σB(t) + vt, where B(·) is
the standard Brownian motion, σ ∈ [0,∞) and v ∈ R are parameters. If G is a
Lie group, then Brownian motions X in G correspond to Brownian motions Y
in the tangent space of G (at the unit) via the stochastic differential equation
(dX) ·X−1 = dY (in the sense of Stratonovich).

A noise corresponds to every Brownian motion in a topological group, just
as the white noise corresponds to B(·). If the noise is classical, it is the white
noise of some dimension (0, 1, 2, . . . or ∞). If this is the case for all Brownian
motions in G, we call G a white group. Thus, R is white, and every Lie group
is white. Every commutative topological group is white (see [15, Th. 1.8]).
The group of all unitary operators in l2 (equipped with the strong operator
topology) is white (see [15, Th. 1.6]). Many other groups are white since they
are embeddable into a group known to be white; for example, the group of
diffeomorphisms is white (an old result of Baxendale).

Question 8.4. Is the group of all homeomorphisms of (say) [0, 1] white?

In a topological group, Brownian motions X and continuous abstract
stochastic flows ξ are basically the same:

X(t) = ξ0,t ; ξs,t = X−1(s)X(t) .

In a semigroup, however, a noise corresponds to a flow, not to a Brownian
motion (see also Example 4.2).

A nonclassical noise (of stickiness) was constructed in Sect. 4 out of an ab-
stract flow in a 3-dimensional semigroup G3; however, G3 is not a topological
semigroup, since composition is discontinuous.

Question 8.5. Can a nonclassical noise arise from an abstract stochastic flow
in a finite-dimensional topological semigroup?

The continuous (but not topological) semigroup G3 emerged in Sect. 4
from the discrete semigroup Gdiscrete

3 via the scaling limit. Or rather, a flow in
G3 emerged from a flow in Gdiscrete

3 via the scaling limit. A similar approach to
the discrete model of Example 1.9 gives something unexpected. The continu-
ous semigroup that emerges is G2, the two-dimensional topological semigroup
described in (4.15). However, its representation is not single-valued:
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Namely, ha,b(x) for x ∈ (−b, b) is ±(a+b), that is, either a+b or −(a+b) with
probabilities 0.5, 0.5. Such h is not a function, of course. Rather, it is a kernel,
that is, a measurable map from R into the space of probability measures on R.
Composition of kernels is well-defined, thus, a representation (of a semigroup)
by kernels (rather than functions) is also well-defined.

The stochastic flow in G2, resulting from Example 1.9 via the scaling
limit, is identical to the flow (ξ(2)s,t ) of Sect. 4.7. Its noise is the usual (one-
dimensional) white noise. The representation of G2 by kernels turns the ab-
stract flow into a stochastic flow of kernels as defined by Le Jan and Raimond
[8, Def. 1.1.3]. However, a kernel (unlike a function) introduces an additional
level of randomness. When the kernel says that ha,b(x) = ±(a+ b), someone
has to choose at random one of the two possibilities. Who makes the decision?

One may treat a point as a macroscopically small collection of many
microscopic atoms, and ω ∈ Ω as a macroscopic flow (on the whole space-
time); given ω, atoms are (conditionally) independent, “which means that
two points34 thrown initially at the same place separate” [8, p. 4]. No need
to deal explicitly with a continuum of independent choices. “Turbulent evo-
lutions [are represented] by flows of probability kernels obtained by dividing
infinitely the initial point” [8, p. 4].

Alternatively, one can postulate that if two atoms meet at a (macro-
scopic!) point, they must coalesce. In one-dimensional space (and sometimes
in higher dimensions) such a postulate itself prevents a continuum of indepen-
dent choices and leads to a flow of maps (the Brownian web is an example).
A countable dense set of atoms makes decisions; others must obey. A flow
of maps is a (degenerate) special case of a flow of kernels. However, coales-
cence can produce a flow of maps out of a non-degenerate flow of kernels, as
explained in [8, Sect. 2.3].

Conversely, a coalescent flow can produce a non-degenerate flow of kernels
via “filtering by a sub-noise” [8, Sect. 2.3]. In the simplest case (filtering
by a trivial sub-noise), we just retain the one-particle motion of the given
coalescent flow, forget the rest of the flow, and let atoms perform the motion
independently.

A large class of flows on Rn (and other homogeneous spaces) is investigated
in [8]. Some of these flows are shown to be coalescent and to generate nonclas-
sical noises (neither white nor black). Flows are homogeneous in space (and
isotropic). Thus, we have a hierarchy of nonclassical models. First, toy models

34 Or rather, atoms.
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(recall Examples 1.1, 1.2) having a singular time point. Second, ‘simple’ mod-
els (Sects. 1.4, 4.9) homogeneous in time but having a singular spatial point.
Third, ‘serious’ models (the Brownian web, and Le Jan-Raimond’s isotropic
Brownian flows), homogeneous in space and time.

Noises generated by one-dimensional flows (also homogeneous in space and
time) are investigated by Warren and Watanabe [24]. Spectral sets of Haus-
dorff dimension other than 0 and 1/2 are found! Roughly, it answers Question
6.26; however, these spectral sets are not perfect — they have isolated points.

8.4 Abstract Nonsense of Le Jan-Raimond’s Theory

A new semigroup, introduced recently by Le Jan and Raimond [8], is quite
interesting for the theory of stochastic flows and noises. Its definition involves
some technicalities considered here.

A kernel is defined in [8] as a measurable mapping from a compact metric
space M to the (also compact) space P(M) of all probability measures on
M. The space E of all kernels is equipped with the σ-field E generated by
evaluations, E � K �→ K(x) ∈ P(M), at points x ∈ M. Note that every
E-measurable function uses the values of K(x) only for a countable set of
points x, which is scanty, since K(x) is just measurable (rather than continu-
ous) in x. Thus, (E, E) is not a standard Borel space,35 and the composition
of kernels is not a measurable operation, which obscures the technique and
makes proofs more difficult (as noted on page 11 of [8]).

Fortunately, the theory can be reformulated equivalently in terms of Borel
operations on standard Borel spaces, as outlined below. Additional simplifi-
cation comes from disentangling space and time (entangled in Theorem 1.1.4
of [8]) and explicit use of the de Finetti theorem.

The hassle about measurability is another manifestation of the well-known
clash between finite-dimensional distributions and modifications of a random
process. Say, for the usual Poisson process on [0,∞), its finite-dimensional
distributions do not tell us whether sample paths are continuous from the
left (right), or not. A process X = X(t, ω) has a lot of modifications Y (t, ω);
these satisfy ∀t P

(
{ω : X(t, ω) = Y (t, ω)}

)
= 1, which does not imply

P
(
{ω : ∀t X(t, ω) = Y (t, ω)}

)
= 1. If a process admits continuous sample

paths (like the Brownian motion), the continuous modification is preferable.
If a process is just continuous in probability (like the Poisson process, but
also, say, some stationary Gaussian processes, unbounded on every interval),
we are unable to prefer one modification to others, in general.

In order to describe the class of all modifications of a random process,
we have two well-known tools: first, a compatible family of finite-dimensional
distributions, and second, a probability measure on the (non-standard!) Borel
space of all (or only measurable; but definitely, not only continuous) sample
paths, whose σ-field is generated by evaluations. Assuming the process to be
35 For a definition, see [7, Sect. 12.B] or [1, Def. 7.1].
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continuous in probability, we find the first tool much better; joint distributions
depend on points continuously, and everything is standard.

The same for kernels. These may be thought of as sample paths of a random
process whose ‘time’ runs over M, and ‘values’ belong to P(M). However,
the process will appear (implicitly) only in Theorem 8.8; its finite-dimensional
distributions are νn(x1, . . . , xn) there.

Definition 8.6. A multikernel from a compact metric space M1 to a compact
metric space M2 is a sequence (Pn)∞n=1 of continuous maps Pn : Mn

1 →
P(Mn

2 ), compatible in the sense that36

∫

Mn
2

g dPn(x1, . . . , xn) =
∫

Mm
2

f dPm(xi1 , . . . , xim)

for all n and x1, . . . , xn ∈ M1, whenever i1, . . . im are pairwise distinct ele-
ments of {1, . . . , n}, f : Mm

2 → R is a continuous function, and g : Mn
2 → R

is defined by g(y1, . . . , yn) = f(yi1 , . . . , yim) for y1, . . . , yn ∈ M2.

We do not assume i1 < · · · < im. For example:

g(y1, y2) = f(y1) =⇒
∫
g dP2(x1, x2) =

∫
f dP1(x1) ;

g(y1, y2) = f(y2) =⇒
∫
g dP2(x1, x2) =

∫
f dP1(x2) ;

g(y1, y2) = f(y2, y1) =⇒
∫
g dP2(x1, x2) =

∫
f dP2(x2, x1) .

Note also that x1, x2, . . . need not be distinct.

Definition 8.7. A multikernel (Pn)∞n=1 is single-valued, if
∫

M2
2

g dP2(x, x) =
∫

M2

f dP1(x) for all x ∈M1 ,

whenever g : M2
2 → R is a continuous function, and f : M2 → R is defined

by f(y) = g(y, y) for y ∈ M2.

An equivalent definition: (Pn)∞n=1 is single-valued, if
∫

M2
2

ρ dP2(x, x) = 0 for all x ∈M1 ,

where ρ : M2
2 → R is the metric, ρ(y1, y2) = dist(y1, y2).

Another equivalent definition:
36 Here

∫
g dPn(x1, . . . , xn) is not an integral in x1, . . . , xn. Rather, x1, . . . , xn are

parameters. The integral is taken in other variables (say, y1, . . . , yn), suppressed
in the notation and running over M2.
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sup
ρ(x1,x2)≤ε

∫

M2
2

ρ dP2(x1, x2) → 0 for ε→ 0 .

(Compare it with continuity in probability.)
My ‘multikernel’ is a time-free counterpart of a ‘compatible family of

Feller semigroups’ of [8]. My ‘single-valued’ corresponds to their (1.7). What
could correspond to their ‘stochastic convolution semigroup’? It is a single-
valued multikernel from M1 to P(M2). Yes, I mean it: maps from Mn

1 to
P
(
(P(M2))n

)
. It may look frightening, but think what happens if M1 con-

tains only one point, and M2 — only two points, say, 0 and 1. Then a multi-
kernel from M1 to M2 is a law of an exchangeable sequence of events. A
single-valued multikernel from M1 to M2 would mean that all events coincide,
but we need rather a single-valued multikernel from M1 to P(M2) = [0, 1];
nothing but a probability measure on [0, 1]. The De Finetti theorem (see [1],
for instance) tells us that every exchangeable sequence of events arises from
a probability measure on [0, 1]. Here is a more general result.

Theorem 8.8. For every multikernel (Pn)∞n=1 from M1 to M2 there exists a
single-valued multikernel (νn)∞n=1 from M1 to P(M2) such that

∫

Mn
2

f dPn(x1, . . . , xn) =
∫

(P(M2))n

F dνn(x1, . . . , xn)

for all n and x1, . . . , xn ∈ M1, whenever f : Mn
2 → R is a continuous

function, and F : (P(M2))n → R is defined by F (µ1, . . . , µn) =
∫
f d(µ1 ⊗

· · · ⊗ µn) for µ1, . . . , µn ∈ P(M2).

Proof. We choose a discrete probability measure µ0 on M1 whose support is
the whole M1. That is, we choose a countable (or finite) dense set A ⊂ M1,
and give a positive probability to each point of A. For every n we consider
the following measure Qn on (M1 ×M2)n:

∫
f1 ⊗ g1 ⊗ · · · ⊗ fn ⊗ gn dQn

=
∫ (∫

g1⊗· · ·⊗gn dPn(x1, . . . , xn)
)
f1(x1) . . . fn(xn) dµ0(x1) . . . dµ0(xn) .

In other words, if Qn is the distribution of (X1, Y1; . . . ;Xn, Yn), then
X1, . . . , Xn are i.i.d. distributed µ0 each, and the conditional distribution of
(Y1, . . . , Yn) given (X1, . . . , Xn) is Pn(X1, . . . , Xn). The measure Qn is invari-
ant under the group of n! permutations of n pairs, due to compatibility of the
multikernel (Pn)∞n=1. For the same reason, Qn is the marginal of Qn+1. Thus,
(Qn)∞n=1 is the distribution of an exchangeable infinite sequence of M1×M2-
valued random variables (Xn, Yn).

The De Finetti theorem [1, Th. 3.1 and Prop. 7.4] states that the joint
distribution of all (Xn, Yn) is a mixture of products, in the sense that there
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exists a probability measure ν on P(M1 × M2) such that for every n, the
joint distribution of n pairs (X1, Y1), . . . , (Xn, Yn) is the mixture of products
Q⊗n = Q ⊗ · · · ⊗ Q, where Q ∈ P(M1 × M2) is distributed ν. The first
marginal of Q is equal to µ0 (for ν-almost every Q), since Xn are i.i.d. (µ0).

Let x1, . . . , xn ∈ A. The event X1 = x1, . . . , Xn = xn is of positive
probability. Given the event, the conditional distribution Pn(x1, . . . , xn) of
Y1, . . . , Yn is the mixture of products Qx1 ⊗ · · · ⊗Qxn , where Qx is the con-
ditional measure on M2, that corresponds to Q, and Q ∈ P(M1 ×M2) is
distributed ν; indeed, ν-almost all Q ascribe the same probability to the event
X1 = x1, . . . , Xn = xn.

We define νn(x1, . . . , xn) for x1, . . . , xn ∈ A as the joint distribution of
P(M2)-valued random variables Qx1 , . . . , Qxn , where Q is distributed ν; then

∫

(P(M2))n

F dνn(x1, . . . , xn)

=
∫

P(M1×M2)

(∫

Mn
2

f d(Qx1 ⊗ · · · ⊗Qxn)
)

dν(Q)

=
∫

Mn
2

f dPn(x1, . . . , xn) (8.4)

whenever f : Mn
2 → R is a continuous function, and F : (P(M2))n → R is

defined by F (µ1, . . . , µn) =
∫
f d(µ1 ⊗ · · · ⊗ µn) for µ1, . . . , µn ∈ P(M2).

Till now, νn(x1, . . . , xn) is defined for x1, . . . , xn ∈ A (rather than M1). We
want to check that

∫
ρ̃2 dν2(x1, x2) → 0 for ρ1(x1, x2) → 0; here ρ1 is a metric

on M1 conforming to its topology, and ρ̃2 is a metric on P(M2) conforming
to its weak topology. Due to compactness of P(M2), it is enough to check that∫
h2 dν2(x1, x2) → 0 for ρ1(x1, x2) → 0 whenever h : P(M2) × P(M2) → R

is of the form h(Q1, Q2) =
∫
f dQ1 −

∫
f dQ2 for a continuous function f :

M2 → R. Consider f̃ : P(M2) → R, f̃(Q) =
∫
f dQ for Q ∈ P(M2). We

have ∫

(P(M2))2
f̃ ⊗ f̃ dν2(x1, x2) =

∫

M2
2

f ⊗ f dP2(x1, x2) ,

which is a special case of (8.4). It may also be written as

E f̃(Qx1)f̃(Qx2) = E
(
f(Y1)f(Y2)

∣
∣X1 = x1, X2 = x2

)
;

here Qx1 and Qx2 are treated as random variables on the probability space(
P(M1 ×M2), ν

)
(thus, the two expectations are taken on different proba-

bility spaces). The right-hand side is a continuous function of x1, x2; denote
it ϕ(x1, x2). We have

∫
h2 dν2(x1, x2) = E

(
f̃(Qx1)− f̃(Qx2)

)
2

= ϕ(x1, x1) − ϕ(x1, x2) − ϕ(x2, x1) + ϕ(x2, x2) ,
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which tends to 0 for ρ1(x1, x2) → 0. So,
∫

(P(M2))2
ρ̃2 dν2(x1, x2) → 0 for ρ1(x1, x2) → 0 .

It follows easily that each νn is uniformly continuous on An and, extending it
by continuity to Mn

1 , we get a single-valued multikernel. ��

Definition 8.6 may be reformulated as follows.

Definition 8.9. A multikernel from a compact metric space M1 to a com-
pact metric space M2 is a continuous map P∞ : M∞

1 → P(M∞
2 ), satisfying

conditions (1) and (2) below. Here M∞ = M×M× . . . is the product of an
infinite sequence of copies of M (still a metrizable compact space).

(1) P∞ intertwines the natural actions of the permutation group of the
index set {1, 2, 3, . . .} on M∞

1 and P(M∞
2 ) (via M∞

2 ).
(2) For every n, the projection of the measure P∞(m) to the product Mn

1

of the first n factors depends only on the first n coordinates m1, . . . ,mn of the
point (m1,m2, . . . ) = m ∈M∞

1 .

Proof of equivalence between definitions 8.6 and 8.9 is left to the reader.
It is well-known that a continuous map M1 → P(M2) is basically the

same as a linear operator C(M2) → C(M1), positive and preserving the
unit. Thus, a multikernel from M1 to M2 may be thought of as a positive
unit-preserving linear operator C(M∞

2 ) → C(M∞
1 ) satisfying two conditions

parallel to 8.9(1,2).
Given three compact metric spaces M1,M2,M3, a multikernel from M1

to M2 and a multikernel from M2 to M3, we may define their composition,
a multikernel from M1 to M3. In terms of operators it is just the product of
two operators, C(M∞

3 ) → C(M∞
2 ) → C(M∞

1 ).
The set of all multikernels fromM1 to M2, treated as operatorsC(M∞

2 ) →
C(M∞

1 ), is a closed (and bounded, but not compact) subset of the operator
space equipped with the strong operator topology. Thus, the set of multiker-
nels becomes a Polish space (that is, a topological space underlying a complete
separable metric space).

Composition of multikernels, C(M∞
3 ) → C(M∞

2 ) → C(M∞
1 ), is a

(jointly) continuous operation. (Indeed, the product of operators is contin-
uous in the strong operator topology, as far as all operators are of norm ≤ 1.)

So, multikernels from M to M are a Polish semigroup (that is, a topolog-
ical semigroup whose topological space is Polish).
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Foreword and Summary

The goal of these lectures is to review some of the mathematical results that
have been derived in the last years on conformal invariance, scaling limits
and properties of some two-dimensional random curves. The (distinguished)
audience of the Saint-Flour summer school consists mainly of probabilists and
I therefore assume knowledge in stochastic calculus (Itô’s formula etc.), but
no special background in basic complex analysis.

These lecture notes are neither a book nor a compilation of research papers.
While preparing them, I realized that it was hopeless to present all the recent
results on this subject, or even to give the complete detailed proofs of a selected
portion of them. Maybe this will disappoint part of the audience but the main
goal of these lectures will be to try to transmit some ideas and heuristics. As
a reader/part of an audience, I often think that omitting details is dangerous,
and that ideas are sometimes better understood when the complete proofs
are given, but in the present case, partly because the technicalities often use
complex analysis tools that the audience might not be so familiar with, partly
also because of the limited number of lectures, I chose to focus on some selected
results and on the main ideas of their proofs, sometimes omitting technical
details, and giving references for those interested in full proofs or more results.
In the final chapter, I will briefly review what I omitted in these lectures, as
well as work in progress or open questions.

Of course, I would like to thank my coauthors Greg Lawler and Oded
Schramm without which I would not have been lecturing on this subject in
Saint-Flour. Collaborating with them during these last years was a great plea-
sure and privilege. Also, I would like to stress the fact that (almost) none of
the pictures in these notes are mine. Many thanks to their authors Vincent
Beffara, Tom Kennedy and Oded Schramm. I also take this opportunity to
thank Stas Smirnov, Rick Kenyon, as well as all my Orsay colleagues and
students who have directly or indirectly contributed to these lecture notes
through their work, comments and discussions.

Finally, I owe many thanks to all participants of the summer school, as
well as to all colleagues who have sent me their comments and remarks on the
first draft of these notes that was distributed during the summer school and
posted on the web at that time.

It has been a pleasure and a very rewarding experience to lecture in the
studious, relaxed and enjoyable atmosphere of the 2002 St-Flour school. I
express my gratitude to all who have contributed to it, my co-lecturers Jim
Pitman and Boris Tsirelson, the Maison des Planchettes’ staff, and last but
not least, Jean Picard, whose outstanding organization has been both efficient
and discreet.

Here is a short description of these notes: In the first introductory chap-
ter, I will briefly describe two discrete models (loop-erased random walks
and critical percolation interfaces) that have now been proved to converge in
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their scaling limit to SLE (Oded Schramm used these letters as shorthand for
“stochastic Loewner Evolution”, but I will stick to Schramm-Loewner Evo-
lution). Using these models, I will try to show why it is natural to define
this one-parameter family of random continuously growing processes based
on Loewner’s equation, and to introduce the difference between their chordal
and radial versions.

The second chapter is a review of the necessary background on determin-
istic aspects of Loewner’s equation in the upper half-plane, which is then used
in Chapter 3 to define chordal SLE. Some first properties of this process are
studied. In particular, some hitting probabilities are computed.

The fourth chapter is devoted to some special properties of SLE that hold
for some special values of the parameter κ: The locality property for SLE6,
and the restriction property for SLE8/3. These are not surprising if one thinks
of these processes as the respective scaling limits of critical percolation inter-
faces and self-avoiding walks, but somewhat surprising if one starts from the
definition of SLE itself. These properties are then used in Chapter 5, to make
the link between the geometry of SLE8/3, that of the outer boundary of a
planar Brownian motion and that of the outer boundary of SLE6.

In Chapter 6, we define radial SLE which are processes defined in a similar
way as chordal SLE except that they are growing towards an interior point of
the domain and not to a boundary point. We show in that chapter that radial
and chordal SLE are very closely related, especially in the case κ = 6.

In Chapter 7, we show how to compute critical exponents associated
to SLE that describe the asymptotic decay of certain probabilities (non-
disconnection, non-intersection). Using the relation between radial SLE6,
chordal SLE6 and planar Brownian motion, we then use these computations
in Chapter 8 to determine the values of the critical exponents that describe
the decay of disconnection or non-intersection probabilities for planar Brow-
nian motions, which is one of the main goals of these lectures. As already
mentioned, it will not be possible to describe all proofs in detail, but I hope
that all the main ideas and steps (that are spread over the first seven chapters
of these notes) are explained in sufficient detail so that the reader can get an
overview of the proof. For simplicity, I will mainly focus on derivation of the
disconnection exponent i.e. the proof of the fact that the probability that a
complex Brownian curve Z[0, t] started from Z0 = 1 disconnects the origin
from infinity decays like t−1/8 when t→∞.

In Chapters 9 and 10, another important aspect of SLE is discussed: The
proofs that some curves arising in discrete models from statistical physics
converge to SLE in their scaling limit. The case of loop-erased random walks
and uniform spanning trees is treated in Chapter 9. Chapter 10 is devoted to
critical site percolation on the triangular lattice, including a brief discussion
of Stas Smirnov’s proof of conformal invariance and of its consequences.

A concluding chapter contains a list of other results, work in progress and
open questions.
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1 Introduction

1.1 General Motivation

One of the main aims of both statistical physics and probability theory is
to study macroscopic systems consisting of many (i.e. in the limit when this
number grows to infinity) small microscopic random inputs. One may classify
the results into two categories: In the limit, the behaviour of the macroscopic
system becomes deterministic (these are “law of large number” type of re-
sults, and large deviations can to some extent been used in this framework),
or random. The archetype for continuous random objects that appear as scal-
ing limit of finite systems is Brownian motion. Note that it is the scaling limit
of a large class of simple random walks, so that one might argue that Brow-
nian motion is more universal than the discrete model (simple random walk)
because there is no need to specify a lattice or a jump-distribution: it only
captures the phenomenological properties of the walks (mean zero, stationary
increments etc.).

In two dimensions, Brownian motion has an important property which was
first observed by Paul Lévy ([102], see e.g. [100, 117] for “modern” proofs based
on Itô’s formula) and that can be heuristically related to the fact that it is the
scaling limit of simple random walks on different lattices (which implies for
instance invariance under rotations and under scaling): It is invariant under
conformal transformations. Here is one way to state this property: Take a
simply connected open planar domain D that contains the origin and is not
equal to C. Consider planar Brownian motion (Bt, t ∈ [0, τ ]) started from
B0 = 0 up to its exit time τ = τD of the domain D. Suppose that Φ is a
conformal map (that is, a one-to-one smooth map that preserves angles) from
D onto some other domain D′ with Φ(0) = 0. Then, there exists a (random)
time change A : [0, σ] → [0, τ ] so that (Φ(BA(s)), s ∈ [0, σ]) is planar Brownian
motion started from 0 and killed at its first exit time σ of D′. In other words,
if we forget about time-parametrization, the law of Φ(B) is again a Brownian
motion. As we shall see in these lectures, conformal invariance will turn out
to be instrumental in the understanding of curves arising in more complicated
setups.

Actually, there exist only few known examples of probabilistic continuous
models that are not directly related to Brownian motion. For instance, under
mild regularity conditions, continuous finite-dimensional Markov processes are
solutions of stochastic differential equations and therefore constructed using
Brownian motions. If one looks for other types of continuous processes, one
has therefore to give up the Markov property or the finite-dimensionality. In
many complex systems that we see around us and for which probability theory
seems a priori a well-suited tool (the shape of clouds, say), it is not possible
to explain the phenomena via Brownian motions, and there is still a long way
to go for probabilists to understand their macroscopic behaviour.

In the present lectures, we shall focus on random planar curves. In two
dimensions, (random) curves appear naturally as boundaries of domains, in-
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Fig. 1.1. Sample of a long simple random walk.

Fig. 1.2. The image of the previous sample under an exponential mapping.
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terfaces between two phases, level lines of random surfaces etc. In all these
cases, at least on microscopic level, the definition of the curve (say, as an inter-
face) implies that it is a self-avoiding curve (or a simple closed loop). On the
macroscopic scale, the continuous curves that we will be considering may have
double-points (in the scaling limit, simple curves may converge to curves with
multiple points), but self-crossings are forbidden. Of course, if (γt, t ∈ [0, T ])
is such a random curve, we see that in general, this condition implies a strong
correlation between γ[0, t] and γ[t, T ], so that the Markov property is lost (if
we look at these curves as living in the two-dimensional space). As we shall
see, there is a way to recover a Markov property for the random curves, using
a coding of the curve in an infinite-dimensional space of conformal maps.

1.2 Loop-Erased Random Walks

In order to guide the intuition about the family of random curves that we will
be considering, it is helpful to have some discrete models in mind, for which
one expects or can prove that they converge to this continuous object. We
therefore start these lectures with the description of one measure on discrete
random curves that turns out to converge in the scaling limit. This is actually
the model that Oded Schramm considered when he invented these random
curves that he called SLE (for Stochastic Loewner Evolution, but we will
replace this by Schramm-Loewner Evolution in these lectures).

For any x = (x0, . . . , xm), we define the loop-erasure L(x) of x inductively
as follows: L0 = x0, and for all j ≥ 0, we define inductively nj = max{n ≤
m : xn = Lj} and

Lj+1 = X1+nj

until j = σ where Lσ := xm. In other words, we have erased the loops of x in
chronological order. The number of steps σ of L is not fixed.

Suppose that (Xn, n ≥ 0) is a recurrent Markov chain on a discrete state-
space S started from X0 = x. Suppose that A ⊂ S is non-empty, and let τA
denote the hitting time of A by X . Let p(x, y) denote the transition probabili-
ties for the Markov chainX . We define the loop-erasure L = L(X [0, τA]) = LA

ofX up to its hitting time of A. We call σ the number of steps of LA. For y ∈ A
such that with positive probability LA(σ) = X(τA) = y, we call L(x, y;A) the
law of LA conditioned on the event {LA(σ) = y}. In other words, it is the law
of the loop-erasure of the Markov chain X conditioned to hit A at y.

Lemma 1.1 (Markovian property of LERW). Consider y0, . . . , yj ∈ S
so that with positive probability for L(x, y0;A),

{Lσ = y0, Lσ−1 = y1, . . . , Lσ−j = yj}.

The conditional law of L[0, σ− j] given this event is L(x, yj ;A∪{y1, . . . , yj}).

Proof. For each A and x ∈ A, we denote by G(x,A) the expected number
of visits by the Markov chain X before τA if X0 = x. Then, it is a simple
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exercise to check that for all n ≥ 1, w = (w0, . . . , wn) with w0 = x, wn ∈ A
and w1, . . . , wn−1 ∈ S \A,

P[LA = w] =
∑

x : L(x)=w

P[X [0, τA] = x]

= G(w0, A)p(w0, w1)G(w1, A ∪ {w0})p(w1, w2) · · ·
×G(wn−1, A ∪ {w0, w1, . . . , wn−2})p(wn−1, wn).

It is therefore natural to define the function

F (w0, . . . , wn−1;A) =
n−1∏

j=0

G(wj , A ∪ {w0, . . . , wj−1}).

Again, it is a simple exercise on Markov chains to check that for all A′, y and
y′,

G(y,A′)G(y′, A′ ∪ {y}) = G(y′, A′)G(y,A′ ∪ {y′}).
It follows immediately that F is in fact a symmetric function of its arguments.
Hence,

P[LA0 = w0, . . . , L
A
σ = wn|Lσ = wn, Lσ−1 = wn−1]

=
p(wn−1, wn)G(wn−1, A)

P[Lσ = wn, Lσ−1 = wn−1]

×
n−2∏

j=0

p(wj , wj+1)G(wj , (A ∪ {wn−1}) ∪ {w0, . . . , wj−1}).

This readily implies the Lemma when j = 1. Iterating this j times shows the
Lemma. ��

This Lemma shows that it is in fact fairly natural to index the loop-erased
path backwards (define γj = LAσ−j , so that γ starts on A and goes back to
γσ = x). Then, the time-reversal of loop-erased (conditioned and stopped)
Markov chains have themselves a Markovian-type property.

Let us now come back to our two-dimensional setting: Suppose that X is
a simple random walk on the grid δZ2 (we will then let the mesh δ of the
lattice go to 0) that is started from 0. Let D denote some simply connected
domain D with 0 ∈ D and D �= C, and let Dδ = δZ2 ∩D, A = Aδ = δZ2 \D.
We are interested in the behaviour when δ → 0 of the law of γδ which is
defined as before as the time-reversed loop-erasure of X [0, τA]. We now think
on a heuristic level: First, note that the law of XτA converges to the harmonic
measure on ∂D from 0, so that it is possible to study the behaviour of γδ

conditional on the value of {γδ = yδ0} where yδ0 → y ∈ ∂D as δ → 0. Second,
one might argue that on the one hand, simple random walk converges to planar
Brownian motion which is conformally invariant, and that on the other hand
the chronological loop-erasing procedure is purely geometrical to conclude
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Fig. 1.3. A sample of the loop-erased random walk.

that when δ → 0, the law of γδ should converge to a conformal invariant
curve that should be the loop-erasure of planar Brownian motion.

Unfortunately (or fortunately!), the geometry of planar Brownian curves
is very complicated: It has points of any (even infinite) multiplicity (see e.g.
[100]), loops at any scale, so that there is no “first” loop to erase, and de-
cisions about what small microscopic loops to erase first may propagate to
the decisions about what macroscopic loops one should erase. In other words,
there is no simple (even random) algorithm to loop-erase a Brownian path
in chronological order. Yet, the previous heuristic strongly suggests the law
of γδ should converge, and that the limiting law is invariant under conformal
transformations: The scaling limit of LERW in D should be (modulo time-
change) identical to the conformal image of the scaling limit of LERW in D′.
Furthermore, Lemma 1.1 should still be valid in the scaling limit. We now
show that the combinations of these two properties in fact greatly reduce the
family of possible scaling limits for LERW.

1.3 Iterations of Conformal Maps and SLE

We are therefore looking for the law of a random continuous curve (γt, t ≥ 0)
with no self-crossings in the unit disc U, with γ0 = 1, limt→∞ γt = 0 that
could be the scaling limit of (time-reversed) loop-erased random walk on a grid
approximation of U (conditioned to exit U near 1). Define for each t ≥ 0, the
conformal map ft from U\γ[0, t] onto U which is normalized by ft(0) = 0 and
ft(γt) = 1 (actually, if γ would have double-points, the domain of definition
would be the connected component of U \ γ[0, t] that contains the origin, but
let us a priori assume for convenience that γ is a simple curve).
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It is easy to check that t �→ |f ′
t(0)| is an increasing continuous function that

goes to ∞ as t→∞ (see for instance [2]). Hence, it is possible to reparametrize
γ in such a way that

|f ′
t(0)| = et. (1.1)

This is the natural parametrization in our context. Indeed, let us now study
the conditional law of γ[t,∞) given γ[0, t]. Lemma 1.1 suggests that this law
is the scaling limit of (time-reversed) LERW in the slit domain U \ γ[0, t]
conditioned to exit at γt, and conformal invariance then says that this is the
same (modulo time-reparametrization) as the image under z �→ f−1

t (z) of
an independent copy γ̃ of γ. Note that if one composes conformal maps that
preserve the origin, then the derivative at the origin multiply: This shows that
in fact, no time-change is necessary if we parametrize γ (and γ̃) by (1.1), in
order for the conditional law of (γt+s, s ≥ 0) given γ[0, t] to be identical to
that of (f−1

t (γ̃s), s ≥ 0). In other words, for all fixed t ≥ 0,

(ft+s, s ≥ 0) = (f̃s ◦ ft, s ≥ 0) in law

where (f̃s, s ≥ 0) is an independent copy of (fs, s ≥ 0). In particular, f2t =
f̃t ◦ ft in law. Repeating this procedure, we see that for all t ≥ 0 and all
integer n ≥ 1, fnt is the iteration of n independent copies of ft, and that ft
itself can be viewed as the iteration of n independent copies of ft/n. In other
words, (ft, t ≥ 0) is an “infinitely divisible” process of conformal maps, and
ft is obtained by iterating infinitely many independent conformal maps that
are infinitesimally close to the identity.

Back in the 1920’s, Loewner observed that if γ[0,∞) is a simple contin-
uous curve starting from 1 in the unit disc, then it is naturally encoded via
a continuous function ζt taking its values on the unit circle. Let us now de-
scribe briefly how it goes. Suppose, as in the previous section, that γ(0) = 1,
limt→∞ γt = 0 and that γ is parametrized in such a way that the modulus
of the derivative at 0 of the conformal map ft from Ut := U \ γ[0, t] into U

that preserves the origin is et. Define ζt = (f ′
t(0)/|f ′

t(0)|)−1. In other words,
if gt denotes the conformal map from Ut onto U such that gt(0) = 0 and
g′t(0) = et ∈ (0,∞), then

ζt = gt(γt)

and gt(z) = ζtft(z). One can note (see e.g. [2, 49]) that for all z /∈ γ[0, t],

∂tgt(z) = −gt(z)
gt(z) + ζt
gt(z)− ζt

. (1.2)

Hence, it is possible to recover γ from ζ as follows: For all z ∈ U, define gt(z)
as the unique solution to (1.2) starting from z. In case gt(z) = ζt for some
time t, then define γt = g−1

t (ζt) (we know already a priori that since γ is a
simple curve, the map g−1

t extends continuously to the boundary). Note that
if gt(z) = ζt, then gs(z) is not well-defined for s ≥ t.
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Hence, in order to define the random curve γ that should be the scaling
limit of loop-erased random walks, it suffices to define the random function
ζt = exp(iWt), where (Wt, t ≥ 0) is real-valued. Our previous considerations
suggest that the following conditions should be satisfied:

• The process W is almost surely continuous.
• The process W has stationary increments (this is because gt is obtained

by iterations of identically distributed conformal maps)
• The laws of the processes W and −W are identical (this is because the

law of L and the law of the complex conjugate L are identical).

The theory of Markov processes tells us that the only possible choices are:
Wt = βκt where β is standard Brownian motion and κ ≥ 0 a fixed constant.
In order to simplify some future notations, we will usually write

Wt =
√
κBt, t ≥ 0

where (Bt, t ≥ 0) is standard (one-dimensional) Brownian motion.
In summary, we have just seen that on a heuristic level, if the scaling

limit of loop-erased random walk exists and is conformally invariant, then the
scaling limit in the unit disk should be described as follows: For some fixed
constant κ = κLERW , define ζt = exp(i

√
κBt), t ≥ 0, solve for each z ∈ U,

the equation (1.2) with g0(z) = z. This defines a conformal map gt from the
subset Ut of the unit disk onto U. Then, one can construct γ because

Ut = U \ γ[0, t]

and
γt = g−1

t (ζt).

As we shall see later on in the lectures, this heuristic arguments can be made
rigorous, and it will turn out that κLERW = 2.

1.4 The Critical Percolation Exploration Process

In the context of LERW, the random curve joins a point in the inside of
the domain to a point on the boundary of the domain. In statistical physics
models, one is often interested in “interfaces”. Some of these interfaces appear
to be random curves from one point on the boundary to another point on the
boundary. A natural setup is to study curves from 0 to infinity in the upper
half-plane H := {x+ iy : y > 0}. Then, we look for random non-self-crossing
curves γ such that the law of γ[t,∞) given γ[0, t] has the same law than the
conformal image of an independent copy γ̃ of γ under a conformal map from
H onto H \ γ[0, t] that maps ∞ onto itself and 0 onto γt.

We now very briefly describe an important discrete model for which it
has now also been proved that it behaves in a conformally invariant way in
the scaling limit (more details on the model and its conformal covariance will
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be given in Chapter 10): Critical site percolation on the triangular lattice.
Actually, it is more convenient to describe this in terms of cell-colouring of
the honeycombe lattice. Suppose that a simply connected domain D is fixed,
as well as two distinct points a and b on ∂D. Let Dδ denote a suitably chosen
approximation of D by a simply connected union of hexagonal cells of size δ.
Let aδ (resp. bδ) denote a vertex of the honeycombe lattice on ∂Dδ that is close
to a (resp. to b). Then, the cells on ∂Dδ can be divided into two “arcs” Bδ and
Wδ in such a way that aδ, Bδ, bδ and Wδ are oriented clockwise “around” Dδ.
Decide that all hexagons in Bδ are colored in black and that all hexagons in
Wδ are colored in white. On the other hand, all other cells in Dδ are chosen to
be black or white with probability 1/2 independently of each other. Consider
now the (random) path γδ from aδ to bδ that separates the cluster of black
hexagons containing Bδ from the cluster of white hexagons containing Wδ.

Fig. 1.4. The beginning of the discrete exploration process.

For deep reasons that will be discussed later in these lectures, it will turn
out that when δ → 0, the law of γδ converges towards that of a random curve
γ from a to b in D, and that the law of that curve is conformally invariant:
The law of Φ(γ) when Φ is a conformal map from D onto Φ(D) is that of the
corresponding path (i.e. of the scaling limit of percolation cluster interfaces)
from Φ(a) to Φ(b) in Φ(D).

Again, on the discrete level, it is easy to see that γδ has the same type
of Markovian property that LERW. More precisely, conditioning on the first
steps of γ is equivalent to condition the percolation process to have black
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hexagons on the left-boundary of these steps and white hexagons on the right
side. Hence, the conditional law of the remaining steps is that of the percola-
tion interface in the new domain obtained by slitting Dδ along the first steps
of γδ. Figure 1.4 shows the beginning of the interface γδ in the case where D
is the upper half-plane.

Another equivalent way to define the interface γδ goes as follows: It is a
myopic self-avoiding walk. At each step γδ looks at its three neighbours (on
the honeycomb lattice) and chooses at random one of the sites that it has not
visited yet (there are one or two such sites since one site is anyway forbidden
because it was the previous location of the walk).

This discrete walk in the upper half-plane is a very special discrete model
that will turn out to converge to an SLE. The corresponding value of κ is
6. Here, the starting point a = 0 and the end-point b = ∞ are both on the
boundary of the domain, so that the previous definition of radial SLE is not
well-suited anymore.

Fig. 1.5. The exploration process, proved to converge to SLE6 (see Chapter 10)

1.5 Chordal versus Radial

The natural time-parametrization in the previous setup goes as follows: Let
gt denote the conformal map from H \ γ[0, t] onto H that is normalized at
infinity in the sense that when z →∞,
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gt(z) = z +
at
z

+ o(1/z).

It is easy to see that at is positive, increasing and that it is natural to
parametrize gt in such a way that at is a multiple of t (since the at terms
add up when one composes two such conformal maps). It is natural to choose
at = 2t (this is consistent with the chosen parametrization in the radial case).
Then, define wt = gt(γt), and observe that

∂tgt(z) =
2

gt(z)− wt
. (1.3)

Hence, just as in the radial case, we observe that it is possible to recover γ
using w, and that the only choice for w that is consistent with the “Marko-
vian property” is to take wt =

√
κBt, where B is ordinary one-dimensional

Brownian motion.
Hence, one is lead to the following definition: Let wt =

√
κBt, and define

for all z ∈ H, the solution gt(z) of (1.3) up to the (possibly infinite) time T (z)
at which gt(z) hits wt. Then, define

Ht = {z ∈ H : T (z) > t}

and
Kt = {z ∈ H : T (z) ≤ t}.

Then, gt is the normalized conformal map from Ht onto H. We call (Kt, t ≥ 0)
the chordal SLEκ in the upper half-plane.

It turns out that radial and chordal SLE’s are rather closely related: Con-
sider for instance, the conformal image of radial SLEκ under the map that
maps U onto H, 1 to 0 and 0 to i. Consider both this process and chordal
SLEκ up to their first hitting of the circle of radius 1/2 around zero say. Then,
the laws of these two processes are absolutely continuous with respect to each
other [87]. This justifies a posteriori the choice of time-parametrization in the
chordal case.

1.6 Conclusion

We have seen that if one considers a discrete model of random curves (or
interfaces) that combine the two important features:

• The Markovian type property in the discrete setting,
• Conformal invariance in the limit when the mesh of the lattice goes to

zero,

then the good way to construct the possible candidates for the scaling limit
of these curves is to encode them via the corresponding conformal mappings.
Then, these (random) conformal mappings are themselves obtained by iter-
ations of identically distributed random conformal maps. Loewner’s theory
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shows that such families of conformal maps are themselves encoded by a one-
dimensional function. If one knows this one-dimensional function, one can
recover the family of conformal maps, and therefore also the two-dimensional
curve. The one-dimensional random function that generates the scaling limits
of the discrete models must necessarily be a one-dimensional Brownian mo-
tion. The corresponding random two-dimensional curves are SLE processes.

Bibliographical Comments

Most of the intuition about how to define radial and chordal SLE (with LERW
as a guide) was already present in the introduction of Oded Schramm’s first
paper [123] on SLE that he released in March 1999. Our presentation of
Lemma 1.1 is borrowed from Lawler [81], but there are other proofs of it (it is
for instance closely related to Wilson’s algorithm [136] that will be discussed
in Chapter 9).
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2 Loewner Chains

This chapter does contain background material on conformal maps and on
Loewner’s equation (no really new results will be presented here). The setup
is deterministic in this Chapter. SLE will be introduced in the next Chapter.

2.1 Measuring the Size of Subsets of the Half-Plane

We study increasing “continuously growing” compact subsets (Kt, t ≥ 0) of
the upper half-plane. It will turn out to be important to choose the good
time-parametrization. We want to find the natural way to measure the size
a(K) of a compact set K and we will then choose the time-parametrization
in such a way that a(Kt) = t. We will use the following definition throughout
the paper.

Definition. We say that a compact subset K of the closed upper half-plane
H, such that H := H \K is simply connected, is a hull.

Riemann’s mapping theorem asserts that there exist conformal maps Φ
from H onto H with Φ(∞) = ∞. Actually, if Φ is such a map, the family of
maps bΦ+ b′ for real b′ and positive b is exactly the family of conformal maps
from H onto H that fix infinity.

Note that since K is compact, the mapping Ψ : z �→ 1/Φ(1/z) is well-
defined on a neighbourhood of 0 in H. It is possible to extend this map Ψ to a
whole neighbourhood of 0 in the plane by reflection along the real axis (this is
usually called Schwarz reflection) and to check that this extension is analytic.
This implies that Φ can be expanded near infinity: There exist b1, b0, b−1, . . .,
such that

Φ(z) = b1z + b0 + b−1z
−1 + · · ·+ b−nz−n + o(z−n)

when z →∞ in H. Furthermore, since Φ preserves the real axis near infinity,
all coefficients bj are real.

Hence, for each K, there exists a unique conformal map Φ = ΦK from
H = H \K onto H such that:

Φ(z) = z + 0 + o(1/z) when z → ∞.

This is sometimes called the hydrodynamical normalization. In particular,
there exists a real a = a(K) such that

Φ(z) = z +
2a
z

+ o(1/z) when z →∞.

This number a(K) is a way to measure the size of K. In a way, it tells “how
big K is in H, seen from infinity”. It may a priori not be clear that a is a
non-negative increasing function of the set K. There is a simple probabilistic
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interpretation of a(K) that immediately implies these facts: Suppose that
Z = X + iY is a complex Brownian motion started from Z0 = iy (for some
large y, so that Z0 /∈ K) and stopped at its first exit time τ of H . The
expansion Φ(z) = z + o(1) near infinity shows that %(Φ(z) − z) is a bounded
harmonic function in H . The martingale stopping theorem therefore shows
that

E[%(Φ(Zτ )) − Yτ ] = %(Φ(iy) − iy) =
2a
iy

+ o(1/y).

But Φ(Zτ ) is real because of the definition of τ . Therefore

2a = lim
y→+∞ y E[%(Yτ )].

In particular, a ≥ 0.
One can also view a as a function of the normalized conformal map ΦK

instead of K. The chain rule for Taylor expansions then immediately shows
that

a(Φ1 ◦ Φ2) = a(Φ1) + a(Φ2)

for any two normalized maps Φ1 and Φ2. In particular, this readily implies
that a(K) ≤ a(K ′) if K ⊂ K ′ (because there exists a normalized conformal
map from H \ ΦK(K ′ \K) onto H).

Let us now observe two simple facts:

• If λ > 0, then a(λK) = λ2a(K). This is simply due to the fact that

Φ(z/λ) =
z

λ
+

2a(K)λ
z

+ o(λ/z)

so that

ΦλK(z) = λΦK(z/λ) = z +
2a(K)λ2

z
+ oλ(λ/z) (2.1)

when z →∞.
• When K is the vertical slit [0, iy], then

ΦK(z) =
√
z2 + y2.

In particular, we see that a([0, iy]) = y2/4. Note that if y is very small,
the actual diameter of the vertical slit [0, iy] is much larger than a([0, iy]).

Equation (2.1) shows that for allK such that a(K) = 1, one has a(
√
λK) =

λ and

lim
λ→0

Φ√
λK(z) − Φ{0}(z)

λ
= lim

λ→0

Φ√
λK(z)− z

λ
=

2
z
. (2.2)

Actually, it is not very difficult to prove that for all given r, there exists C > 0
such that this convergence takes place uniformly over all K of radius smaller
than r and |z| > Cr. See Lemma 2.7 in [86].
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2.2 Loewner Chains

Suppose that a continuous real function wt with w0 = 0 is given. For each
z ∈ H, define the function gt(z) as the solution to the ODE

∂tgt(z) =
2

gt(z)− wt
(2.3)

with g0(z) = z. This is well-defined as long as gt(z) − wt does not hit 0, i.e.,
for all t < T (z), where

T (z) := sup{t ≥ 0 : min
s∈[0,t]

|gs(z)− ws| > 0}.

We define

Kt := {z ∈ H : T (z) ≤ t}
Ht := H \Kt.

Note for instance that if wt = 0 for all t, then

gt(z) =
√
z2 + 4t

and Kt = [0, 2i
√
t].

It is very easy to check that gt is a bijection fromHt onto H (in order to see
that it is surjective, one can just look at the ODE “backwards in time” to find
which point z is such that gt(z) = y). Moreover Kt is bounded (because w is
continuous and bounded on [0, t]) and Ht has a unique connected component
(because g−1

t is continuous). Standard arguments from the theory of ordinary
differential equations can be applied to check that gt is analytic and that one
can formally differentiate the ODE with respect to z, so that

∂tg
′
t(z) =

−2g′t(z)
(gt(z) − wt)2

.

So, gt is a conformal map from Ht onto H.
Note also that |∂tgt(z)| is uniformly bounded when z is large and t belongs

to a given finite interval [0, t0]. Hence, it follows that gt(z) = z + O(1) near
infinity and uniformly over t ∈ [0, t0]. Hence (using the ODE yet again),
∂tgt(z) = 2/z + o(1/z) uniformly over t ∈ [0, t0] so that finally, for each t,

gt(z) = z +
2t
z

+ o(1/z)

when z → ∞. In other words, a(Kt) = t. The family (Kt, t ≥ 0) is called the
Loewner chain associated to the driving function (wt, t ≥ 0).

Loewner’s original motivation was to control the behaviour of the coef-
ficients of the Taylor expansion of conformal maps and for this goal, it is
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sufficient to consider smooth slit domains (see e.g., [2, 49]). For this reason,
the following question was only addressed later (see [72]): If the continuous
function (wt, t ≥ 0) is given, what can be said about the family of compact
sets (Kt, t ≥ 0)?

In the introduction, we started with a continuous curve γ, then using γ,
we defined Ht, the conformal maps gt, the function wt and argued that one
could recover γ from wt, using the fact that we a priori knew that g−1

t extends
continuously to wt ∈ ∂H and that g−1

t (wt) was well-defined (and equal to γt)
because γ is a continuous curve. But if one starts with a general continuous
function wt, then it can in fact happen that g−1

t does not extend continuously
to wt.

Before making general considerations, let us exhibit a simple example to
show that (Kt, t ≥ 0) does not need to be a simple curve. For θ ∈ [0, π), let
η(θ) = exp(iθ)−1. Define t(θ) = a(η[0, θ]) the “size” of the arc η[0, θ]. Finally,
define the reparametrization γ of η in such a way that a(γ[0, t]) = t. γ is
defined for all t < T := limθ→π− a(η[0, θ]). It is simple to see that there exists
a continuous function (wt, t < T ) such that the normalized conformal maps gt
from H\γ[0, t] onto H satisfy the equation (2.3). Furthermore, when t→ T−,
wt converges to a finite limit wT . At time T , the curve γ[0, T ] disconnects
the inside of the semi-circle from the outside. Just before T , because gt is
normalized “from infinity”, the inside of the semi-circle is mapped onto a
small region which is very close to wt = gt(γt). When t → T−, all points
inside the semi-circle are hitting wT . In other words, KT is the whole semi-
disc, HT is the complement of the semi-disc, and gT is the normalized map
from the simply connected domain HT onto H.

Let us now give a couple of general definitions:

• We say that (Kt, t ≥ 0) is a simple curve if there exists a simple continuous
curve γ such that Kt = γ[0, t].

• We say that (Kt, t ≥ 0) is generated by a curve if there exists a continuous
curve γ with no self-crossings, such that for all t ≥ 0, Ht = H \Kt is the
unbounded connected component of H \ γ[0, t]. In other words, Kt is the
union of γ and of the inside of the loops that γ creates.

• We say that (Kt, t ≥ 0) is pathological if it is not generated by a curve.

In each of these three cases, one can find (deterministic) continuous func-
tions wt such that the family (Kt, t ≥ 0) that it constructs falls into this
category: For the first case, consider for instance wt = 0 as before, for the
second case, one can use the example with the semi-circle. For the more in-
tricate third case, let us mention the following example (due to Don Marshal
and Steffen Rohde, see [108]): Let γ denote a simple curve in H started from
γ0 = 0 that spirals clockwise around the segment [i, 2i] an infinite number of
times, and then unwinds itself. Then at the “time” at which it winds around
the segment an infinite number of times, γ is not continuous i.e. Kt \Kt− is
the whole segment. However, this Loewner chain corresponds to a continuous
function wt. Such pathologies could arise at any scale.
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We now characterize the families (Kt, t ≥ 0) of compact sets that are
Loewner chains:

Proposition 2.1 The following two conditions are equivalent:

1. (Kt, t ≥ 0) is a Loewner chain associated to a continuous driving function
(wt, t ≥ 0).

2. For all t ≥ 0, a(Kt) = t, and for all T > 0, and ε > 0, there exists δ > 0
such that for all t ≤ T , there exists a bounded connected set S ⊂ H \Kt

with diameter not larger than ε such that S disconnects Kt+δ \ Kt from
infinity in H \Kt.

Sketch of the proof. Let us now prove that 2. implies 1. (the fact that 1.
implies 2. is very easy): 2. implies that for all t ≥ 0, the diameter of the sets
gt(Kt+δ \Kt) decrease towards 0 when δ → 0. Hence, one can simply define
wt by

{wt} = lim
δ→0

gt(Kt+δ \Kt).

Then, one uses 2. to show that t �→ wt is uniformly continuous. It then only
remains to check that indeed

lim
δ→0

gt+δ(z)− gt(z)
δ

=
2

gt(z) − wt
.

This is achieved by applying the uniform version of (2.2). ��
Suppose now that Kt is the Loewner chain

Kt = [0, c
√
t]

for some c = c(θ) exp(iθ) ∈ H. Here, θ �= 0 is given, and then the positive real
c(θ) is chosen in such a way that a(K1) = 1. Scaling immediately shows that
a(Kt) = t for all t > 0, so that there exists therefore a continuous driving
function w that generates these slits. Again, scaling (because Kλt =

√
λKt)

shows that necessarily, this function w must be of the type

wt = c1
√
t

for some real constant c1 = c1(θ). Let gθt denote the corresponding family of
conformal maps.

Let us now choose a new driving function w as follows: wt = 0 when t < 1
and for t ≥ 1:

wt = c1
√
t− 1.

When t < 1, then Kt is just the straight slit. In particular, g1(z) =
√
z2 + 4.

When t > 1, then Kt is obtained by mapping the angled slit Kθ
t−1 back by

g−1
1 . In particular, we see that the curve γ generated by this function w is

not differentiable at t = 1. This is one simple hint to the fact that Hölder-1/2
regularity may be critical (note that at t = 1, w is just Hölder 1/2).
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The general relation between smoothness of the driving function and reg-
ularity of the slit has also recently been investigated (in the deterministic
setting) by Marshall-Rohde [108]. In this paper, it is shown that Hölder-1/2 is
in a sense a “critical regularity” for the driving function wt: Loosely speaking
(their results are more precise than that), if w is better than Hölder-1/2, then
it defines a “smooth” (in some appropriate sense) slit, but nasty “pathologi-
cal” phenomena can occur for Hölder-1/2 driving functions. See [108] and the
references therein.

Bibliographical Comments

For general background on complex analysis, Riemann’s mapping theo-
rem, there are plenty of good references, see for instance [1, 119]. Loewner
introduced his equation (in the radial setting) in 1923 [103]. For general infor-
mation about Loewner’s equation, and in particular how Loewner used it to
prove that |a3| ≤ 3 for univalent functions z+

∑
n≥2 anz

n on U as well as other
applications, see for instance [2, 49]. For how it is used in de Branges’ proof of
the Bieberbach conjecture, a good self-contained reference is Hayman’s book
[58]. For basics on hypergeometric functions, see e.g., [99].

Proposition 2.1 is derived in [86], see also [114]. Carleson and Makarov
[35, 36] have used Loewner’s (radial) equation in the context of Diffusion
Limited Aggregation.
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3 Chordal SLE

3.1 Definition

Chordal SLEκ is the Loewner chain (Kt, t ≥ 0) that is obtained when the
driving function

wt = Wt :=
√
κBt

is
√
κ times a standard real-valued Brownian motion (Bt, t ≥ 0) with B0 = 0.

Let us now list a couple of consequences of the simple properties of Brownian
motion:

• Brownian motion is a strong Markov process with independent increments.
This implies that for any stopping time T (with respect to the natural
filtration (Ft, t ≥ 0) of B), the process

(gT+t(KT+t \KT ) −WT , t ≥ 0)

is independent of FT and that its law is identical to that of (Kt, t ≥ 0).
Note that one has to shift by WT in order to obtain a process starting at
the origin.

• Brownian motion is scale-invariant: For each λ > 0, the process Wλ
t :=

Wλt/
√
λ, t ≥ 0 has the same law than W . But

∂t(gλt(
√
λz)) =

2λ
gt(

√
λz)−Wλt

.

In particular, if
gλt (z) := gλt(z

√
λ)/

√
λ,

then
∂tg

λ
t (z) =

2
gλt (z)−Wλ

t

and gλ0 (z) = z. In other words, (Kλt, t ≥ 0) and (
√
λKt, t ≥ 0) have the

same law: Chordal SLEκ is scale-invariant.
• Brownian motion is symmetric (W and −W have the same law). Hence,

the law of (Kt, t ≥ 0) is symmetric with respect to the imaginary axis.

It is actually possible to prove the following result:

Proposition 3.1 For all κ ≥ 0, chordal SLEκ is almost surely not patholog-
ical. When κ ≤ 4, it is a.s. a simple curve γ, when κ > 4, it is a.s. generated
by a (non-simple) curve γ.

This result is due to Rohde-Schramm [118] (see [93] for the critical case
κ = 8). It is not an easy result, especially for the values κ > 4. Actually,
while this fact is important and useful in order to understand heuristically the
behaviour and the properties of SLEκ, it turns out that one can derive many
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of them without knowing that the SLEκ is generated by a continuous curve.
We therefore omit the proof in these lectures, and we will call (Kt, t ≥ 0) the
SLE. In some cases that we will focus on (κ = 2, 8/3, 6, 8), the fact that SLEκ
is a.s. generated by a curve will actually follow from other considerations.

It is however easy to see that κ = 4 is a critical value: Consider chordal
SLEκ, and define

Xt =
gt(1) −Wt√

κ
.

Note that X hits zero if and only if the chordal SLE absorbs the boundary
point 1. But X satisfies

dXt = dBt +
2
κXt

dt. (3.1)

It is a 1+(4/κ) dimensional Bessel process, and it is well-known (see e.g. [117])
that such a process a.s. hits zero if and only if κ > 4. This can for instance be
viewed as a consequence of the fact that if X is a Bessel process of dimension
d started away from zero, then if d �= 2, X2−d is a local martingale, and when
d = 2, logX is a local martingale.

It follows that:

Proposition 3.2 • If κ ≤ 4, then almost surely ∪t≥0Kt ∩ R = {0}.
• If κ > 4, then almost surely, R ⊂ ∪t≥0Kt.

Assuming that the SLE is generated by a curve, this readily shows that
the SLE curve is simple if and only if κ ≤ 4.

If one defines, for all z ∈ H, the solution Xz
t to (3.1) started from

Xz
0 = z/

√
κ (up to the stopping time T (z)). Then, we see that SLEκ can

be interpreted in terms of the flow of a complex Bessel process: For each
t > 0, Kt is the set of starting points such that Xz

t has hit 0 before time t.

3.2 A First Computation

We now compute the probability of some simple events involving the chordal
Schramm-Loewner evolution. Suppose that a < 0 < c. Let κ > 0 be fixed.
Define the event Ea,c that the chordal SLEκ hits [c,∞) before (−∞, a]. For
the reasons that we just discussed, this makes sense only if κ > 4 (otherwise, it
never hits these intervals). The goal of this section is to compute the probabil-
ity of Ea,c. The scaling property of chordal SLE shows that this is a function
of the ration c/a only. We can therefore define F = Fκ on the interval (0, 1)
by

P[Ea,c] = F (−a/(c− a)).

Proposition 3.3 For all κ > 4 and z ∈ (0, 1),

F (z) = c(κ)
∫ z

0

du

u4/κ(1 − u)4/κ

where c(κ) = (
∫ 1

0
u−4/κ(1 − u)−4/κdu)−1 is chosen so that F (1) = 1.
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Note that this Proposition is in fact a property of the real Bessel flow: Ea,c
is the event that Xc hits 0 before Xa does.

Proof. Suppose that Ft = σ(Bs, s ≤ t) is the natural filtration associated
to the Brownian motion, and define Ta = T (a) and Tc = T (c) as before (the
times at which a and c are respectively absorbed by Kt). For t < Ta and
t < Tc respectively, define

At := gt(a) and Ct := gt(c).

Suppose that t < min(Ta, Tc), and define

Kt,s = gt(Kt+s \Kt) −Wt.

The strong Markov property shows that (Kt,s, s ≥ 0) is also chordal SLEκ,
and that it is independent from Ft. Also, if t < min(Ta, Tc), the event Ea,c
corresponds to the event that (Kt,s, s ≥ 0) hits [Ct−Wt,∞) before (−∞, At−
Wt]. Hence, if t < min(Ta, Tc),

P[Ea,c | Ft] = F

(
Wt −At
Ct − At

)
.

In particular, this shows that the right-hand side of the previous identity is a
(bounded) martingale. We know that Wt =

√
κBt, and that

∂tAt =
2

At −Wt
, ∂tCt =

2
Ct −Wt

.

Hence, if we put Zt := (Wt −At)/(Ct −At), stochastic calculus yields

dZt =
√
κdBt

Ct −At
+

2dt
(Ct −At)2

(
1
Zt

− 1
1 − Zt

)
.

One can now also introduce the natural time-change

s = s(t) :=
∫ t

0

du

(Cu −Au)2

and define Z̃ in such a way that Z̃s(t) = Zt. Then,

Z̃s =
√
κdB̃s + 2

(
1
Zs

− 1
1 − Zs

)
ds

where (B̃s, s ≥ 0) is a standard Brownian motion.
But Kt hits (−∞, a) if and only Zt hits 0, and Kt hits (c,∞) if and only

if Zt hits 1. Hence, F (z) is the probability that the diffusion Z̃ started from
Z̃0 = z hits 1 before 0. One can invoke (for instance) the general theory of
diffusions to argue that the function F is therefore smooth on (0, 1). Itô’s
formula (since F (Z̃s) is a martingale) then implies that
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κ

4
F ′′(z) +

(
1
z
− 1

1 − z

)
F ′(z) = 0. (3.2)

Furthermore, the boundary values of F are simple to work out: When κ > 4,
one can see (for instance comparing Z̃ with a Bessel process) that

lim
z→0

F (z) = 0 and lim
z→1

F (z) = 1.

Hence, F is the only solution to the ODE (3.2) with boundary values F (0) = 0
and F (1) = 1. This immediately proves the Proposition. ��

Note that when z → 0,

F (z) ∼ c(κ)
1 − 4/κ

z1−4/κ.

In particular, for κ = 6, we get the exponent 1/3.
Exactly in the same way, it is possible (for κ > 4) to compute the proba-

bility that chordal SLEκ (started from 0) hits the interval [a, c] before [c,∞)
when 0 < a < c. This is a function F̃ of the ratio a/c, satisfying a linear
second-order differential equation, with the boundary conditions

F̃ (1) = 0 and F̃ (0) = 1.

3.3 Chordal SLEκ in Other Domains

Suppose that D is some given non-empty open simply connected subset of
the complex plane with D �= C. We do not impose any regularity condition
on ∂D. Riemann’s mapping theorem shows that there exist (many) conformal
maps Φ from the upper half-plane H onto D. Even if the boundary of ∂D
is not smooth, one can define a general notion that coincides with that of
boundary points when it is smooth: For each x ∈ R, we say that (if some map
Φ is given) Φ(x) is a prime end of D (see e.g. [116] for a more precise and
correct definition).

Suppose that O and U are two distinct prime ends in D. Then, there
exists a conformal map Φ from H onto D such that Φ(0) = O and Φ(∞) = U .
Actually, this only characterizes Φ(·) up to a multiplicative factor (because
Φ(λ·) would then also do).

Suppose that (Kt, t ≥ 0) is chordal SLEκ in H as defined before. We define
SLEκ inD from O to U as the image of the process (Kt, t ≥ 0) under Φ. Recall
that Φ is defined up to a multiplicative constant. However, the scaling property
of SLEκ in H shows that the law of (Φ(Kt), t ≥ 0) is invariant (modulo linear
time-change) if we replace Φ(·) by Φ(λ·).

To illustrate this definition, consider the following setup: Suppose that
κ = 6 and that OAC is an equilateral triangle. Let Φ denote the conformal
map from H onto the triangle defined in such a way that
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Φ(a) = A,Φ(0) = O,Φ(c) = C

where a < 0 < c are given. This conformal map can be easily described
explicitly using the Schwarz-Christoffel transformations [1, 119]. Note that
U = Φ(∞) is on the interval AC. It turns out that

AU

AC
= F (z)

where z = −a/(c − a) and F = Fκ=6 is precisely the same hypergeometric
function as in Proposition 3.3. Hence, the probability that chordal SLE6 from
O to U in the equilateral triangle OAC hits AU before UC is simply the ratio
AU/AC.

Suppose now that κ ∈ (4, 8). Just as for the hypergeometric function F ,
the functions F̃ that were defined at the end of the last subsection have a
nice interpretation in terms of conformal mappings onto triangles: Consider
an isocele triangle T = OAU with OA = AU = 1 and angle π(1− 4/κ) at the
vertices O and U . The angle at the vertex A is therefore π(8/κ− 1). Consider
now a chordal SLEκ from O to U in the triangle T . Let X denote the random
point at which it first hits the segment AU .

Proposition 3.4 The law of X is the uniform distribution on AU .

This is a direct consequence of the explicit computation of F̃ and of the
explicit Schwarz-Christoffel mapping from the upper half-plane onto T : For
each C ∈ AU , one can compute the probability thatX ∈ [AC] via the function
F̃ . ��

This gives a first justification to the fact that the only possible conformally
invariant scaling limit of the critical percolation exploration process is SLE6

(see more on this in Chapter 10). Indeed, suppose that the critical percola-
tion exploration process is conformally invariant. We have argued in the first
chapter that the scaling limit is one of the SLEs. Suppose that it is SLEκ for
a given value of κ, and consider the corresponding triangle T .

Clearly in the discrete case (for a fixed small meshsize), up to the first
time at which it hits the edge AU , the critical exploration process from O to
U and the critical exploration process from O to A in T coincide. Hence, the
hitting distributions on AU for chordal SLEκ from O to U and for chordal
SLEκ from O to A coincide. In particular, the uniform distribution on AU
must be invariant under the anti-conformal map from T onto itself that maps
O onto itself and interchanges the vertices A and U . This is only true when
the triangle is symmetric (i.e. the angles at U and A are identical), in other
words when α = π/3 or κ = 6.

We shall see in the next chapter that indeed, for SLE6, the whole paths
from O to A and from O to U coincide up to their first hitting of AU . This is
the so-called locality property of SLE6.
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3.4 Transience

We conclude this chapter with the following fact (assuming the fact that the
SLE is a.s. a simple curve γt = Kt \Kt− for κ < 4). This is also to illustrate
the type of techniques that is used to derive such properties of SLE:

Proposition 3.5 For κ < 4, almost surely, limt→∞ γt = ∞.

Loosely speaking, the SLE is transient. Actually (see [118]), this result is in
fact valid for all κ, but the proof is (a little bit) more involved.

Proof. Let δ ∈ (0, 1/4), x > 1, and suppose that

tδ := inf{t > 0 : d(γt, [1, x]) ≤ δ}

is finite. Let zδ = γtδ . Clearly, gtδ(zδ) = Wtδ . Note that gtδ(1/2) − Wtδ is
(up to a multiplicative constant) the limit when y → +∞ of y times the
probability that a planar Brownian motion started from iy exits H in the
interval [Wtδ , gtδ(1/2)]. By conformal invariance, this is the same as the limit
of y times the probability that a planar Brownian motion started from iy
exits Htδ through the boundary of Htδ which is “between” zδ and 1/2. But
in order to achieve this, the planar Brownian motion has in particular to hit
the vertical segment joining zδ to the real line before exiting H. This segment
has length at most δ. Hence,

|gtδ(1/2)−Wtδ | ≤ O(δ).

On the other hand, limt→∞(gt(1/2) − Wt) = ∞ because κ < 4 (and the
corresponding Bessel process is transient). It follows that a.s.,

d(γ[0,∞], [1, x]) > 0.

By the scaling property and monotonicity, it follows that almost surely, for all
0 < x1 < x2, the distance d(γ[0,∞], [x1, x2]) is almost surely strictly positive.

Let τ denote the hitting time of the unit circle by the SLE. Since R ∩
γ[0, τ ] = {0}, it follows that 0 ∈ ∂Hτ . For all ε > 0, there exists 0 < x1 < x2

such that with probability at least 1 − ε the two images of 0 under gτ are in
[Wτ − x2,Wτ − x1] ∪ [Wτ + x1,Wτ + x2]. It follows from the strong Markov
property and from the previous result that with probability at least 1 − ε,

d(gτ (γ[τ,∞)) −Wτ , [−x2,−x1] ∪ [x1, x2]) > 0.

Hence, it follows that in fact, almost surely

d(0, γ[τ,∞)) > 0

and the Lemma readily follows (for instance using the scaling property once
again). ��
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4 Chordal SLE and Restriction

4.1 Image of SLE under Conformal Maps

Suppose now that (Kt, t ≥ 0) is chordal SLEκ in the upper half-plane H.

Definition. We say that a hull A that is at positive distance of the origin is
a Hull (with capital H). When A is such a Hull, we define ΦA the normalized
conformal map from H \A onto H as before. We also define ΨA the conformal
map from H \A onto H such that Ψ(z) ∼ z when z →∞ and Ψ(0) = 0. Note
that Ψ(z) = Φ(z) − Φ(0).

Let A ⊂ H denote a Hull. Define T = inf{t : Kt ∩ A �= ∅} and for all
t < T ,

K̃t := Φ(Kt).

Let us immediately emphasize that the time-parametrization of Kt and there-
fore also of K̃t is given in terms of the “size” of Kt = Φ−1(K̃t) in H and not
in terms of the “size” of K̃t itself in H. One of the goals of this section is to
study the evolution of K̃t and to compare it with that of Kt.

For t < T , we also define the conformal map ht from gt(Ht ∩H) onto H

(where H = H \ A). Note that h0 = Φ. Since gt(A) is at positive distance of
Wt for t < T , we can define

W̃t = ht(Wt).

Define finally also the normalized conformal map g̃t from Φ(Ht ∩H) onto H.
Note that (as long as t < T ),

ht ◦ gt = g̃t ◦ h0.

In short, all these maps are normalized, h0 = Φ removes A and g̃t removes
K̃t, while gt removes Kt and ht removes gt(A).

The family (K̃t, t < T ) is a “continuously” growing family of subsets of
H satisfying Proposition 2.1 except that a time-change is required in order to
parametrize it as a Loewner chain. We therefore define the function

a(t) := a(A ∪Kt) = a(A) + a(K̃t).

A simple time-change shows that

∂g̃t(z) =
2∂ta

g̃t(z) − W̃t

.

Hence, in order to understand the evolution of K̃t, we have to understand the
evolutions of W̃t and of a(t).

The scaling rule a(λ·) =
√
λa(·) shows that

∂ta(t) = h′t(Wt)2.
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On the other hand,
ht = g̃t ◦ Φ ◦ g−1

t

and

∂t(g−1
t (z)) = −2

(g−1
t )′(z)
z −Wt

so that putting the pieces together, we see that

∂tht(z) =
2h′t(Wt)2

ht(z) − W̃t

− 2h′t(z)
z −Wt

. (4.1)

Recall that W̃t = ht(Wt). The previous formula is valid for all z ∈ H \ gt(A).
In fact, one can even extend it to z = Wt:

(∂tht)(Wt) = lim
z→Wt

(
2h′t(Wt)2

ht(z) − W̃t

− 2h′t(z)
z −Wt

)
= −3h′′t (Wt)

(note that ht is smooth near Wt because of Schwarz reflection). Itô’s formula
(this is not the classical formula since ht is random, but it is adapted with
respect to the filtration of Wt, it is C1 with respect to t, so that Itô’s formula
still holds, see e.g., exercise IV.3.12 in [117]) can be applied:

dW̃t = (∂tht)(Wt)dt+ h′t(Wt)dWt +
κ

2
h′′t (Wt)dt.

Hence,
dW̃t = h′t(Wt)dWt + [(κ/2)− 3]h′′t (Wt).

Clearly, the value κ = 6 will play a special role here. The next section is
devoted to this case.

4.2 Locality for SLE6

Throughout this section, we will assume that κ = 6. Then,

W̃t =
∫ t

0

h′s(Ws)dWs.

Recall also that at− a0 =
∫ t
0 h

′
s(Ws)2ds = 〈W̃ 〉t. Hence, if we define (Ŵa, a ≥

0) in such a way that
W̃t = Ŵa(t)−a(0),

then Ŵ − Ŵ0 and W have the same law. If we define ĝa in such a way that
g̃t = ĝa(t), then

∂aĝa(z) =
2

ĝa(z) − Ŵa

.

Hence, modulo time-change, the evolution of K̃t − Ŵ0 up to t = T is that of
chordal SLE6. Suppose that T̃ is the first time at which Kt hits Φ(∂A). We
have just proved SLE6’s locality property:
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Theorem 4.1. Modulo time-reparametrization, the processes (K̃t − Φ(0), t <
T ) and (Kt, t < T̃ ) have the same law.

We now discuss some consequences of this result. Suppose first that

A = Aε = {eiθ : θ ∈ [0, π − ε]}.

Recall that Φ = Φε is the normalized map from H \A onto H. Let

ψε(z) =
Φε(z)
Φ′
ε(0)

.

It is easy to see that when ε → 0, the mappings ψε converge uniformly on
any set Vδ := {z ∈ H : |z| < 1 − δ} towards the conformal map ψ from
V := {z ∈ H : |z| < 1} onto H such that ψ(0) = 0, ψ′(0) = 1 and
ψ(−1) = ∞. Theorem 4.1 shows that for each ε > 0, the law of the process
ψε(Kt) up to its hitting time of ψε(Aε) is a time-change of chordal SLE6. In
particular, letting ε→ 0 for each fixed δ > 0 shows readily that:

Corollary 4.2. Let (Kt, t ≥ 0) denote the law of chordal SLE6 from 0 to −1
in V . Let T the first time at which Kt hits the unit circle. Then, the law of
(Kt, t < T ) is identical (modulo time-change) to that of chordal SLE6 in H

(from 0 to ∞) up to its first hitting time of the unit circle.

The same reasoning can be applied to {eiθ : θ ∈ [ε, π]} instead of Aε.
It shows that the law described in the corollary is also identical to that of
chordal SLE6 from 0 to +1 in V (up to the hitting time of the unit circle).
By mapping the set V onto any other simply connected domain, we get the
following splitting property:

Corollary 4.3. Let D ⊂ H denote a simply connected subset of H such that
the boundary of ∂D is a continuous Jordan curve. Let a, b, b′ denote three
distinct points on ∂D and call ∂ the connected component of ∂D \ {b, b′} that
does not contain a. Then: up to their first hitting times of ∂ and modulo
time-change, the laws of chordal SLE6 from a to b and from a to b′ in D are
identical.

Note that these properties of chordal SLE6 are not surprising if one thinks
of SLE6 as the scaling limit of critical percolation interfaces. They generalize
the properties of hitting probabilities for SLE6 that we derived in the previous
chapter.

4.3 Restriction for SLE8/3

We now apply the same technique as in the first subsection to understand
how h′t(Wt) evolves. Recall that ht is smooth in the neighbourhood of Wt

by Schwarz reflection. Hence h′t(Wt) is a positive real (as long as t < T ).
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Differentiating Equation (4.1) with respect to z (this is licit as long as t < T )
gives

∂th
′
t(z) =

−2h′t(Wt)2h′t(z)
(ht(z) − W̃t)2

+
2h′t(z)

(z −Wt)2
− 2h′′t (z)
z −Wt

.

If we take the limit when z →Wt, we get that

(∂th′t)(Wt) =
h′′t (Wt)2

2h′t(Wt)
− 4

3
h′′′t (Wt).

Hence, Itô’s formula (in its random version as before) shows that

d[h′t(Wt)] = h′′t (Wt)dWt +
[
h′′t (Wt)2

2h′t(Wt)
+ (κ/2− 4/3)h′′′t (Wt)

]
dt.

This time, it is the value κ = 8/3 that plays a special role. Let us in this
section from now on suppose that κ = 8/3. Then, we see that

d[h′t(Wt)5/8] =
5h′′t (Wt)

8h′t(Wt)3/8
dWt.

The important feature is that the drift term disappear so that: (h′t(Wt)5/8, t <
T ) is a local martingale. This has the following important consequence:

Proposition 4.4 Consider chordal SLE8/3 in H. Then, for any Hull A,

P[∀t ≥ 0, Kt ∩A = ∅] = Φ′
A(0)5/8.

Proof. The quantity Mt := h′t(Wt)5/8 is a local martingale. Recall that ht is
a normalized map from a subset of H onto H. Hence, for all t < T , Mt ≤ 1
and M is a bounded martingale. We have to understand the behaviour of Mt

when t→ T in the two cases T <∞ and T = ∞. When T = ∞, one can use
the transience of the SLE: Define for each R, the hitting time τR of the circle
of radius R. Then, simple considerations using harmonic measure for instance
show that

lim
R→∞

h′τR
(WτR) = 1.

In the case where T <∞, one can for instance first approximate A by a Hull
with a smooth boundary, and show that in this case, limt→T h

′
t(Wt) = 0 for

any path γ in the upper half-plane that hits A away from the real line. See
[95] for details.

Finally, since Mt converges in L1 and almost surely when t → T , we get
that P[T = ∞] = E[MT ] = E[M0] = Φ′(0)5/8. ��

Let us now define the random set

K∞ = ∪t>0Kt.
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Corollary 4.5. Suppose that A0 is a Hull, then the conditional law of K∞
given K∞ ∩A0 = ∅ is identical to the law of Ψ−1

A0
(K∞).

Proof. Note that K∞ is a closed set because of the transience of (Kt, t ≥ 0).
The law of such a random set is characterized by the value of P[K∞∩A = ∅] for
all Hulls A (this set of events is a generating π-system of the σ-field on which
we define K∞). Suppose now that the Hull A0 is fixed. By Proposition 4.4,
K∞ avoids A0 with positive probability. Suppose that A is another Hull. Then

P[ΨA0(K∞) ∩A = ∅|K∞ ∩A0 = ∅]

=
P[K∞ ∩ (H \ (Ψ−1

A0
◦ Ψ−1

A (H)) = ∅]
P[K∞ ∩A0 = ∅]

=
(
Ψ ′
A0

(0)Ψ ′
A(0)

Ψ ′
A0

(0)

)5/8

= P[K∞ ∩A = ∅].

Since this is true for all Hull A, it follows that the the law of ΨA0(K∞) given
{K∞ ∩A0 = ∅} is identical to the law of K∞. ��

This striking property of SLE8/3 has many nice consequences. It will en-
able us to relate it to the Brownian frontier in the next chapter. It also shows
that it is the natural candidate for the scaling limit of planar self-avoiding
walks. More precisely, one can show that when n → ∞, the uniform mea-
sure on self-avoiding walks of length n in the upper half-plane N × Z started
from the origin converges to a law of infinite self-avoiding walks. The con-
jecture is that the scaling limit of this infinite self-avoiding walk is SLE8/3.
See [94] for more on this. Note that there exist algorithms to simulate half-
plane self-avoiding walks (see [60, 105]; Figure 4.1 is due to Tom Kennedy).
The conjecture that the half-plane SAW scaling limit is chordal SLE8/3 has
recently been comforted by simulations [61].

Let us briefly conclude this chapter by mentioning the following charac-
terization of SLE8/3 that does not use explicitly Loewner’s equation (even
though its proof does):

Theorem 4.6. Chordal SLE8/3 is the unique measure on continuous simple
curves γ from 0 to ∞ in H such that for all Hull, the law of γ conditioned to
avoid A is identical to the law of Ψ−1(γ).

The proof of this Theorem uses the complete description of all measures
on simply connected closed sets (not necessarily curves) joining 0 to ∞ in
H that satisfy this condition. These measures (called restriction measures in
[95]) are constructed using SLEκ (in fact, by adding Brownian bubbles to
the SLEκ paths) for other values of κ (in fact for κ ∈ (0, 8/3]) and it turns
out that the only measure with these properties that is supported on simple
curves is SLE8/3.
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Fig. 4.1. Sample of the beginning of a half-plane walk (conjectured to converge to
chordal SLE8/3).

Bibliographical Comments

All the material of this chapter is borrowed from [95], to which we refer for
further details. The locality property for SLE6 was first proved in [87], using
a different method. Restriction properties are closely related to conformal
field theory [17, 18, 30, 31, 32, 34], as pointed out in [52, 53]. They have also
interpretations in terms of highest-weight representations of the Lie algebra of
polynomial vector fields on the unit circle. In fact, Theorem 4.6 corresponds
to the fact that the unique such representation that is degenerate at level 2
has its highest weight equal to 5/8. See [52, 53].
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5 SLE and the Brownian Frontier

5.1 A Reflected Brownian Motion

In this section, we introduce a two-dimensional Brownian motion with a cer-
tain oblique reflection on the boundary of a domain, and we will relate its
outer boundary to that of SLE6.

Let us first define this reflected Brownian motion in the upper half-plane
H. Define for any x ∈ R, the vector u(x) = exp(iπ/3) if x ≥ 0 and u(x) =
exp(2iπ/3) if x < 0. It is the vector field with angle 2π/3 pointing “away from
the origin”. Suppose that Z∗

t = X∗
t + iY ∗

t is an ordinary planar Brownian
path started from 0. Then, there exists a unique pair (Zt, �t) of continuous
processes such that Zt takes its values in H, �t is a non-decreasing real-valued
continuous function with �0 = 0 that increases only when Zt ∈ R, and

Zt = Z∗
t +

∫ t

0

u(Zs)d�s.

The process (Zt, t ≥ 0) is called the reflected Brownian motion in H with
reflection vector field u(·). Note that the process Z in fact only depends on the
direction of u(·) and not on its modulus. For instance Z is also the reflected
Brownian motion in H with reflection vector field 2u(·) (just change � into
�/2).

An equivalent way to define this process is to first define the reflected
(one-dimensional) Brownian motion

Yt = Y ∗
t − min

s∈[0,t]
Y ∗
s .

The local time at 0 of Y is simply lt = −min[0,t] Y
∗. Then, define X in such

a way that

Xt = X∗
t +

∫ t

0

sgn(Xs)
1√
3
dls

and verify that Zt = Xt + iYt satisfy the required conditions.
Brownian motion with oblique reflection on domains have been extensively

studied, and this is not the proper place to review all results. We just men-
tion that the general theory of such processes (e.g., [130]) ensures that the
previously defined process Z∗ exists.

Reflected planar Brownian motion (even with oblique reflection) are also
invariant under conformal transformations. Suppose for instance that ϕ is a
conformal transformation from a smooth subset V (such that [−1, 1] ⊂ ∂V )
of H onto a smooth domain D. Recall that

Zt = Z∗
t +

∫ t

0

u(Zs)d�s.
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Define
σV := inf{t > 0 : ∂V \ (−1, 1)}.

Taylor-expanding each term in the sum

ϕ(Zt)− ϕ(0) =
n∑

j=1

(ϕ(Zjt/n) − ϕ(Z(j−1)t/n))

just as in the proof of Itô’s formula (letting n→∞), it follows (using the fact
that the real and imaginary parts of ϕ are harmonic) that for all t ≤ σV ,

ϕ(Zt) =
∫ t

0

ϕ′(Zs)dZ∗
s + +

∫ t

0

u(Zs)ϕ′(Zs)d�s.

Hence, if one time-changes ϕ(Z) using the clock u(t) =
∫ t
0 |ϕ′(Zs)|2ds, we

see that ϕ(Zu) is also a stopped reflected Brownian motion in D with the
reflection vector field (ϕ′(ϕ−1(·)) × u(ϕ−1(·)) on ∂D.

This has the following useful consequences: Suppose that V ⊂ H and
σV are as before. Note that σH is the first time at which Zt hits R \ (−1, 1).
There exists a unique conformal map ϕ from V onto H such that ϕ(−1) = −1,
ϕ(0) = 0 and ϕ(1) = 1.

Lemma 5.1. Modulo time-change, the laws of (ϕ(Zt), t ≤ σV ) and of (Zt, t ≤
σH) are identical.

In other words, The reflected Brownian motion Z satisfies the same locality
property as SLE6.

A slight modification of the above proof of conformal invariance for re-
flected Brownian motions shows that the image of Z under the conformal
map z �→ z1/3 from H onto the wedge

W := {reiθ : r > 0, θ ∈ (0, π/3)}

is reflected Brownian motion in that wedge, started from the origin, with
reflection vector field u(x) = eiπ/3 on R+ and u(x) = 1 on eiπ/3R+. We
use this observation to give a simple proof of the following fact on hitting
probabilities for Z:

Lemma 5.2. Suppose that Φ is the conformal transformation from H onto
an equilateral triangle OAC such that Φ(0) = O, Φ(−1) = A and Φ(1) = C.
Then, the law of Φ(Zσ

H
) is uniform on AC.

Proof. One elementary convincing proof uses discrete approximations. Here
is a brief outline of this proof: Define ω = exp(iπ/3). Consider a triangular
grid in the wedge W i.e. {m + m′ω : m,m′ ≥ 0}. Let (Sn, n ≥ 0) denote
simple random walk on this grid that is started from 0. In the inside of W , its
transition probabilities are that of simple random walk (with probability 1/6
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to jump to each of its neighbours). When S hits the (positive) real line at x,
it has the following transition probabilities: p(x, x + 1) = 1/3 and

p(x, x− 1) = p(x, x + ω) = p(x, x + ω2) = p(x, x) =
1
6
.

and the symmetric ones on ωN: p(x, x + ω) = 1/3 and

p(x, x+ 1) = p(x, x + 1/ω) = p(x, x + 1/ω2) = p(x, x) =
1
6
.

Finally, at the origin, p(0, 1) = p(0, ω) = 1/2. It is not difficult to see that in
the scaling limit, such a random walk converges to reflected Brownian motion
in W with the reflection vector field u(·) on ∂W . This is due to the fact that the
bias of the simple random walk when it hits ∂W is proportional to u. Moreover,
it is easy to check that if S0 = 0, then if one writes Sn = eiπ/6rn +ω2sn, then
the conditional law of sn given (rj , j ≤ n) is the uniform distribution among
the permitted values of s given rn. In other words, the “uniform distribution of
s is preserved, independently from r”. In particular, the hitting distribution of
the simple random walk S on the segment N+ω2[0, N ], is simply the uniform
distribution on {N,N + ω2, N + 2ω2, . . . , N + Nω2}. The Lemma follows,
letting N →∞. ��

Fig. 5.1. The reflected Brownian motion stopped at its hitting time of the unit
circle

We are now ready to state and prove the following result:

Theorem 5.3. Define the following two sets:

• Consider chordal SLE6 (Kt, t ≥ 0) in H (or in V ) up to its first hitting
time T of R \ (−1, 1). Let e denote the point at which the SLE hits R \
(−1, 1), and let E := {e} ∪ ∪t<TKt.



146 Wendelin Werner

• Consider the set of points F in H that are disconnected (in H) from R \
(−1, 1) by Z[0, σH].

Then, the laws of E and of F are identical.

Proof. Note that Lemma 5.2, Lemma 5.1, Theorem 4.1 and Proposition 3.4
show that E and F both have the following properties:

• They are random compact sets that intersect R \ (−1, 1) at just one point
x and the law of Φ(x) is uniform on AC.

• Their complement in H consists of two connected components (one un-
bounded, one bounded).

• For all V as before, the probability that E ⊂ V is identical to the proba-
bility that σV = σH (and the corresponding result for F ).

If we combine these two properties, we see that for all such V ,

P[E ⊂ V ] = P[F ⊂ V ] =
length(Φ ◦ ϕ(∂V \ R))

AC

(this is because the law of the image under Φ ◦ ϕ of the “hitting point” of
∂V \ (−1, 1) is uniform on AC. But this determines completely the laws of E
and of F and therefore implies that they are equal. ��

Fig. 5.2. The filling of RBM (or of the SLE6 curve) in a triangle

Using conformal invariance, the previous result can be adapted in any
domain. For instance, Figure 5.2 could represent both the filling of a reflected
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Brownian motion (or of a SLE6 curve), started at the bottom of the triangle
stopped at their first hitting of the top segment. Recall that the law of this
hitting point is uniformly distributed.

5.2 Brownian Excursions and SLE8/3

We now describe a probability measure on Brownian excursions from 0 to
infinity in H (which is closely related to the measures on excursions that
were considered in [97]). One can view this measure on paths as the law of
planar Brownian motion W (not to be confused with the

√
κB in the previous

chapters) started from 0 and conditioned to stay in H at all positive times.
Let X and Y denote two independent processes such that X is standard

one-dimensional Brownian motion and Y is a three-dimensional Bessel pro-
cess (see e.g., [117] for background on three-dimensional Bessel processes, its
relation to Brownian motion conditioned to stay positive and stochastic dif-
ferential equations) that are both started from 0. Let us briefly recall that a
three-dimensional Bessel process is the modulus of a three-dimensional Brow-
nian motion, and that it can be defined as the solution to the stochastic
differential equation

dYt = dwt +
1
Yt
dt

(where w is one-dimensional standard Brownian motion). It is very easy to see
that (1/Y, t ≥ t0) is a local martingale for all t0 > 0, and that if Tr denotes
the hitting time of r by Y , then the law of (YTr+t, t < TR−Tr) is identical to
that of a Brownian motion started from r and conditioned to hit R before 0
(if 0 < r < R). Loosely speaking Y is a Brownian motion started from 0 and
conditioned to stay forever positive. Note that almost surely limt→∞ Yt = ∞.

We now define W = X + iY . In other words, W has the same law as the
solution to the following stochastic differential equation:

dWt = dβt + i
1

%(Wt)
dt (5.1)

with W0 = 0, where β is a complex-valued Brownian motion. Note that W
is a strong Markov process. Let Tr denote the hitting time of the line R + ir
by this process W (i.e., the hitting time of r by X). Let S denote a random
variable with the same law as WT1 . Then, scaling and the relation between
one-dimensional Brownian motion conditioned to stay positive and the three-
dimensional Bessel process shows immediately that for all 0 < r < R, the law
of W [Tr, TR] is the law of a Brownian motion started with the same law as
rS, stopped at its first hitting of iR+R, and conditioned to stay in the upper
half-plane up to that time. Note that the probability of this event is r/R.

By mapping conformally H onto any other simply connected domain D
(D �= C), and looking at the image of the Brownian excursion in H under this
map, one gets the law of a Brownian excursion in D from the image of 0 to
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Fig. 5.3. An excursion from 0 to i in the strip R × [0, 1]

the image of ∞. As for SLE, this law is well-defined up to linear time-change.
One can also directly define this excursion in D as the solution to a stochastic
differential equation “forcing the Brownian motion to hit ∂D at the image of
infinity.”

The following result was observed by Bálint Virág [129] (see also [97, 95]):

Lemma 5.4. Suppose A is a Hull and W is a Brownian excursion in H from
0 to ∞. Then P[W [0,∞) ∩A = ∅] = Φ′

A(0).

Proof. Suppose that W is a solution to (5.1) started from z ∈ Φ−1(H). Let Z
denote a planar Brownian motion started from z. Let τR(V ) denote the hitting
time of iR+R by a process V . When %(z) →∞, %(Φ(z)) = %(z)+o(1), and it
therefore follows easily from the strong Markov property of planar Brownian
motion that when R→∞,

P[Φ(Z)[0, τR(Z)] ⊂ H] ∼ P[Φ(Z)[0, τR(Φ(Z))] ⊂ H].

But since Φ(Z) is a time-changed Brownian motion, the right-hand probability
is equal to %(Φ(z))/R, so that

P[W [0, τR(W )] ⊂ Φ−1(H)] =
P[Z[0, τR(Z)] ⊂ Φ−1(H)]

P[Z[0, τR(Z)] ⊂ H]
=

%Φ(z)
%(z)

+ o(1)

when R→∞. In the limit R→∞, we get

P[W [0,∞) ⊂ Φ−1(H) |W0 = z] =
%Φ(z)
%(z)

. (5.2)
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When z → 0, Φ(z) = zΦ′(0) +O(|z|2) so that

P[W [0,∞) ⊂ Φ−1(H)] = lim
r→0

P[W [Tr,∞) ⊂ Φ−1(H)]

= lim
r→0

E[%(Φ(rA))/%(rA)]

= Φ′(0)

(one can use dominated convergence here since %(Φ(z)) ≤ %(z) for all z). ��
We now define the filling H of W [0,∞) as the set of points in H that

are disconnected from R by W [0,∞). This set is obtained by filling in all the
bounded connected components of the complement of the curveW . Then, H is
a closed unbounded set and H\H consists of two open connected components
(with [0,∞) and (−∞, 0] on their respective boundaries). The law of such a
random set is characterized by the values of P[H∩A = ∅], where A spans all
Hulls, because this family of events turn out to generate the σ-field on which
H is defined, and to be stable under finite intersections. Hence, as in the case
of K∞ for SLE8/3, the fact that

P[H ∩A = ∅] = Φ′(0) (5.3)

characterizes the law of H and yields that H also satisfies Corollary 4.5.

Theorem 5.5. Suppose that H8 denotes the filling of the union of 8 indepen-
dent chordal SLE8/3’s. Suppose that H5 denotes the filling of the union of 5
independent Brownian excursions. Then, H5 and H8 have the same law.

Proof. This is simply due to the fact that for all Hull A

P[H5 ∩A = ∅] = P[H8 ∩A = ∅] = Φ′
A(0)5

and that this characterizes these laws. ��
This has various nice consequences (see [95]), some of which we now heuris-

tically describe: First, since the boundary of H8 consists of the union of some
parts of the SLE8/3 curves, it follows that “locally”, the outer boundary of a
Brownian excursion (and therefore also of a Brownian motion) looks like one
SLE8/3 path. In the previous section, we did see that the outer boundaries of
reflected Brownian motion and of SLE6 are the same. Hence, “locally”, the
outer frontiers of SLE6 and of planar Brownian motion look like an SLE8/3

curve. Furthermore, since SLE8/3 is symmetric, this shows that one cannot
distinguish the inside from the outside of a planar Brownian curve by only
seeing a part of its frontier. Since SLE8/3 is conjectured to be the scaling
limit of self-avoiding walks, this would also show that the Brownian frontier
looks locally like the scaling limit of long self-avoiding curves (see [94]).
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6 Radial SLE

6.1 Definitions

Motivated by the example of LERW (among others) given in the introductory
chapter, we now want to find a nice way to encode growing families of compact
subsets (Kt, t ≥ 0) of the closed unit disk that are growing from the boundary
point 1 towards 0. As in the chordal case, we are in fact going to focus on the
conformal geometry of the complement Ht of Kt in the unit disc U. One first
has to find a natural time-parametrization. It turns out to be convenient to
define the conformal map gt from Ht onto U that is normalised by

gt(0) = 0 and g′t(0) > 0.

Note that g′t(0) ≥ 1. This can be for instance derived using the fact that
log g′t(0) is the limit when ε → 0 of log(1/ε) times the probability that a
planar Brownian motion started from ε hits the circle of radius ε2 before
exiting Ht (an analyst would find this justification very strange, for sure).

Then (and this is simply because with obvious notation, (g̃s ◦ gt)(0) =
g̃s(0) ◦ g′t(0)), one measures the “size” a(Kt) of Kt via the derivative of gt at
the origin:

g′t(0) = exp(a(t)).

Hence, we will consider growing families of compact sets such that a(Kt) = t.
Suppose now that (ζt, t ≥ 0) is a continuous function on the unit circle

∂U. Define for all z ∈ U, the solution gt(z) to the ODE

∂tgt(z) = −gt(z)
gt(z) + ζt
gt(z) − ζt

(6.1)

such that g0(z) = z. This solution is well-defined up to the (possibly infinite)
time T (z) defined by

T (z) = sup{t > 0 : min
s∈[0,t)

|gs(z)− ζs| > 0}.

We then define
Kt := {z ∈ U : T (z) ≤ t}

and
Ut := U \Kt.

The family (Kt, t ≥ 0) is called the (radial) Loewner chain associated to the
driving function ζ.

The general statements that we described in the chordal case are also
valid in this radial case. One can add one feature that has no analog in the
chordal case: It is possible to estimate the Euclidean distance dt from 0 to
Kt in terms of a(t) = t. Indeed, since Ut contains the disc dt × U, it is
clear that g′t(0) ≤ 1/dt. On the other hand, a classical result of the theory of
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conformal mappings known as Koebe’s 1/4 Theorem states that (if a(Kt) = t)
1/dt ≤ 4g′t(0). This is loosely speaking due to the fact that the best Kt can
do to get as close to 0 in “time t” is to shoot straight i.e. to choose ζ = 1.
Hence, for all t ≥ 0,

e−t/4 ≤ d(0,Kt) ≤ e−t. (6.2)

This will be quite useful later on.
Radial SLEκ is then simply the random family of sets (Kt, t ≥ 0) that is

obtained when
ζt = exp(i

√
κBt)

where κ > 0 is fixed and (Bt, t ≥ 0) is standard one-dimensional Brownian
motion.

As in the chordal case, one can then define radial SLE from a ∈ ∂D to
b ∈ D in any open simply connected domain D by taking the image of radial
SLE in U under the conformal map Φ from U onto D such that Φ(1) = a and
Φ(0) = b. Note that this time, the time-parametrization is also well-defined
since there exists only one such conformal map (recall that in the chordal
case, one had to invoke the scaling property to make sure that chordal SLE
in other domains than the half-space was properly defined).

6.2 Relation between Radial and Chordal SLE

In this section, we show that chordal SLE and radial SLE are very closely
related. Let us start with the special case κ = 6.

Theorem 6.1. Suppose that x ∈ (0, 2π). Let (Kt, t ≥ 0) be a radial SLE6

process. Set
T := inf{t ≥ 0 : exp(ix) ∈ Kt}.

Let (K̃u, u ≥ 0) be a chordal SLE6 process in U starting also at 1 and growing
towards exp(ix), and let

T̃ := inf{u ≥ 0 : 0 ∈ K̃u}.

Then, up to a random time change, the process t �→ Kt restricted to [0, T ) has
the same law as the process u �→ K̃u restricted to [0, T̃ ).

Note that T (resp. T̃ ) is the first time where Kt (resp. K̃u) disconnects 0 from
1.

When κ �= 6, a weaker form of equivalence holds:

Proposition 6.2 Let (Kt, t ≥ 0), (K̃u, u ≥ 0), T and T̃ be defined just as in
Theorem 6.1, except that they are SLE with general κ > 0. There exist two
nondecreasing families of stopping times (Tn, n ≥ 1) and (T̃n, n ≥ 1) such that
almost surely, Tn → T and T̃n → T̃ when n → ∞, and such that for each
n ≥ 1, the laws of (Kt, t ∈ [0, Tn]) and (K̃u, u ∈ [0, T̃n]) are equivalent (in
the sense that they have a positive density with respect to each other) modulo
increasing time change.
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These results imply that the properties of chordal SLE such as “being
generated by a continuous curve” are also valid for radial SLE.

We prove both results simultaneously:

Proof. Let us first briefly recall how K̃u is defined. For convenience, we will
restrict ourselves to x = π (the proof in the general case is almost identical).
Define the conformal map

ψ(z) = i
1 − z

1 + z

from U onto H that satisfies ψ(−1) = ∞, ψ(1) = 0, and ψ(0) = i. Suppose
that u �→ B̃u is a real-valued Brownian motion such that B̃0 = 0. For all
z ∈ U, define the function g̃u = g̃u(z) such that g̃0(z) = ψ(z) and

∂ug̃u =
2

g̃u −
√
κB̃u

.

This function is defined up to the (possibly infinite) time T̃z where g̃u(z) hits√
κB̃u. Then, K̃u is defined by K̃u = {z ∈ U : T̃z ≤ u}, so that g̃u is

a conformal map from U \ K̃u onto the upper half-plane. This defines the
process (K̃u, u ≥ 0).

We are now going to compare it to radial SLE. Let gt : U \Kt → U be the
conformal map normalized by gt(0) = 0 and g′t(0) > 0. Recall that

∂tgt(z) = gt(z)
ζt + gt(z)
ζt − gt(z)

, (6.3)

where ζt = exp(i
√
κBt), and B is Brownian motion on R with B0 = 0. Let ψ

be the same conformal map as before, and define

et := gt(−1),
ft(z) := ψ

(
gt(z)/et

)
,

rt := ψ
(
ζt/et

)
.

These are well defined, as long as t < T . Note that ft is a conformal map
from U \Kt onto the upper half-plane, ft(1) = ∞, and rt ∈ R. From (6.3) it
follows that

∂tf = − (1 + r2)(1 + f2)
2(r − f)

.

Let
ϕt(z) = a(t)z + b(t)

where
a(0) = 1, ∂ta = −(1 + r2)a/2

and
b(0) = 0, ∂tb = −(1 + r2)ar/2.
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Set

ht := ϕt ◦ ft ,
βt := ϕt

(
r(t)

)
.

Then (and this is the reason for the choice of the functions a and b)

∂th = −(a/2)
(1 + r2)2

r − f
= − (1 + r2)2a2/2

β − h
.

ht is also a conformal map from U\Kt onto the upper half-plane with ht(1) =
∞. Note also that h0(z) = ψ(z). We introduce a new time parameter u = u(t)
by setting

∂tu = (1 + r2)2a2/4, u(0) = 0 .

Then
∂h

∂u
=

−2
β − h

.

Since this is the equation defining the chordal SLE process, it remains to show
that u �→ βt(u)/

√
κ is related to Brownian motion (stopped at some random

time). This is a direct but tedious application of Itô’s formula:

drt =
(1 + r2)

√
κ

2
dBt +

r(1 + r2)
2

(κ
2
− 1

)
dt

and

dβt =
(1 + r2)a

2

(√
κ dBt + (−3 +

κ

2
)r dt

)
.

When κ = 6, the drift term disappears and this proves Theorem 6.1. When
κ �= 6, the drift term does not disappear. However, the law of u �→ βt(u) is
absolutely continuous with respect to that of

√
κ times a Brownian motion,

as long as r and u remain bounded. More precisely: It suffices to take

Tn = min
{
n, inf{t > 0 : |ζt − et| < 1/n}

}
.

Before Tn, |r| remains bounded, a is bounded away from 0 (note also that
a ≤ 1 always), so that t/u is bounded and bounded away from 0. Hence,
u(Tn) is also bounded (since Tn ≤ n).

It now follows directly from Girsanov’s Theorem (see e.g., [117]) that the
law of

(
β(u)/

√
κ
)
u≤u(Tn)

is equivalent to that of Brownian motion up to some
(bounded) stopping time, and Proposition 6.2 follows. ��

6.3 Radial SLE6 and Reflected Brownian Motion

If one combines the radial-chordal equivalence for SLE6 with the locality
property for chordal SLE6, one gets immediately a locality property for ra-
dial SLE6, and the relation between fillings of radial SLE6 and of reflected
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Brownian motion. We do not state the locality property here (and leave it to
the interested reader), but we state the relation between fillings of radial SLE
and of reflected Brownian motions that we will use in the next chapters.

Before that, we have to say some words about how this reflected Brownian
motion is defined in the unit disc. Suppose that (Zt, t ≥ 0) is the reflected
Brownian motion in the upper half-plane with reflection angle 2π/3 away from
the origin as in the previous chapter. Let us now define

Z̃t := exp(−iZt)

so that Z̃ takes its values in the unit disk and is started from Z̃0 = 1. Clearly,
since Z̃t �= 0 for all t, one can define the continuous version of its argument
(θt, t ≥ 0). Conformal invariance of planar Brownian motion shows that Z̃t
behaves like (time-changed) Brownian motion as long as it stays away from
the unit circle, and when it hits the unit circle, then it is reflected with angle
2π/3 in the direction that “increases” |θ|. Define

σ̃(r) := inf{t > 0 : |Z̃t| = r}

which is also the first time at which the imaginary part of Z hits log(1/r).

Theorem 6.3. Suppose that r < 1. Define the two following random hulls:

• Suppose that (Kt, t ≥ 0) is radial SLE6 as before. Let τr denote the first
time at which radial Kt intersects the circle {|z| = r}. Define the event
H(x, τr) that Kτr does not disconnect 0 from exp(ix).

• On the event H̃(x, σ̃r) that Z̃[0, σ̃r] does not disconnect 0 from exp(ix),
define the connected component H of U \ Z̃ that contains 0, and the hull
K̃σr = U \H.

Then, the two random sets 1H(x,τr)Kτr and 1H̃r(x,σ̃r)K̃σ̃r have the same law.

In particular,
P[H(x, τr)] = P[H̃(x, σ̃r))].

This shows that one can compute non-disconnection probabilities for reflecting
Brownian motions using radial SLE6.

Bibliographical Comments

For basic results on Loewner’s equation, and basic complex analysis, we refer
again to [1, 2, 49, 58]. The radial-chordal equivalence for SLE6 has been
derived in [87].
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7 Some Critical Exponents for SLE

7.1 Disconnection Exponents

In this section, we fix κ > 4, and we consider radial SLEκ in the unit disc
started from 1. Our goal will be to estimate probabilities of events like

H(x, t) = {exp(ix) ∈ ∂Ht}

that Kt has not swallowed the point exp(ix) ∈ ∂U from 0 at time t. Let us
define the numbers

q0 = q0(κ) := 1− 4
κ

and
λ0 = λ0(κ) :=

κ

8
− 1

2
.

Proposition 7.1 There exists a constant c such that for all t ≥ 1 and for all
x ∈ (0, 2π),

e−λ0t(sin(x/2))q0 ≤ P[H(x, t)] ≤ ce−λ0t(sin(x/2))q0 .

Proof. We will use the notation

f(x, t) = P[H(x, t)].

Let ζt = exp(i
√
κBt) be the driving process of the radial SLEκ, with B0 = 0.

For all x ∈ (0, 2π), let Y xt be the continuous real-valued function of t which
satisfies

gt(eix) = ζt exp(iY xt )

and Y x0 = x. The function Y xt is defined on the set of pairs (x, t) such that
H(x, t) holds. Since gt satisfies Loewner’s differential equation

∂tgt(z) = gt(z)
ζt + gt(z)
ζt − gt(z)

, (7.1)

we find that
dY xt =

√
κ dBt + cot(Y xt /2) dt. (7.2)

Let
τx := inf

{
t ≥ 0 : Y xt ∈ {0, 2π}

}

denote the time at which exp(ix) is absorbed by Kt, so that

f(x, t) = P[τx > t].

We therefore want to estimate the probability that the diffusion Y x (started
from x) has not hit {0, 2π} before time t as t→∞. This is a standard problem.
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The general theory of diffusion processes can be used to argue that f(x, t) is
smooth on (0, 2π)× R+, and Itô’s formula immediately shows that

κ

2
∂2
xf + cot(x/2)∂xf = ∂tf. (7.3)

Moreover, for instance comparing Y with Bessel processes when Y is small,
one can easily see that (here we use that κ > 4) for all t > 0,

lim
x→0+

f(x, t) = lim
x→2π−

f(x, t) = 0. (7.4)

Hence, f is solution to (7.3) with boundary values (7.4) and f(x, 0) = 1. This
in fact characterizes f , and its long-time behaviour is described in terms of
the first eigenvalue of the operator κ∂2

x/2+cot(x/2)∂x. More precisely, define

F (x, t) = E[1H(x,t) sin(Y xt /2)q0 ].

Then, it is easy to see that F also solves (7.3) with boundary values (7.4) but
this time with initial data F (x, 0) = sin(x/2)q0 . One can for instance invoke
the maximum principle to construct a handcraft proof (as in [86]) of the fact
that this characterizes F . Since e−λ0t sin(x/2)q0 also satisfies these conditions,
it follows that

F (x, t) = e−λ0t sin(x/2)q0 .

Hence,

f(x, t) = P[H(x, t)] ≥ E[1H(x,t) sin(Y xt /2)q0 ] = e−λ0t sin(x/2)q0 .

To prove the other inequality, one can for instance use an argument based
on Harnack-type considerations: For instance, one can see that (uniformly in
x) a positive fraction of the paths (Y xt , t ∈ [0, 1]) such that τx > 1 satisfy
Y x1 ∈ [π/2, 3π/2]. This then implies readily (using the Markov property at
time t− 1) that for all t ≥ 1,

f(x, t) ≤ c0P[τx > t and Y xt ∈ [π/2, 3π/2]] ≤ c1F (x, t) = c1e
−λ0t sin(x/2)q0 .

��

7.2 Derivative Exponents

The previous argument can be generalized in order to derive the value of other
exponents that will be very useful later on: We will focus on the moments of
the derivative of gt at exp(ix) on the event H(x, t). Note that on a heuristic
level, |g′t(eix)| measures how “far” eix is from the origin in Ht.

More precisely, we fix b ≥ 0, and we define

f(x, t) := E
[∣
∣g′t
(
exp(ix)

)∣∣b 1H(x,t)

]
.
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We also define the numbers

q = q(κ, b) :=
κ− 4 +

√
(κ− 4)2 + 16bκ
2κ

λ = λ(κ, b) :=
8b+ κ− 4 +

√
(κ− 4)2 + 16bκ

16
.

The main result of this Section is the following generalization of Proposi-
tion 7.1:

Proposition 7.2 There is a constant c > 0 such that for all t ≥ 1, for all
x ∈ (0, 2π),

e−λt
(
sin(x/2)

)q ≤ f(x, t) ≤ ce−λt
(
sin(x/2)

)q

Proof. We can assume that b > 0 since the case b = 0 was treated in the
previous section. Let Y xt be as before and define for all t < τx

Φxt :=
∣∣g′t
(
exp(ix)

)∣∣ .

On t ≥ τx set Φxt := 0. Note that on t < τx

Φxt = ∂xY
x
t .

By differentiating (7.1) with respect to z, we find that for t < τx

∂t logΦxt = − 1
2 sin2(Y xt /2)

(7.5)

and hence (since Φx0 = 1),

(Φxt )
b = exp

(
− b

2

∫ t

0

ds

sin2(Y xs /2)

)
, (7.6)

for t < τx. So, we can rewrite

f(x, t) = E
[
1H(x,t) exp

(
− b

2

∫ t

0

ds

sin2(Y xs /2)

)]
.

Again, it is not difficult to see that the right hand side of (7.6) is 0 when
t = τx and that

lim
x→0

f(x, t) = lim
x→2π

f(x, t) = 0 (7.7)

holds for all fixed t > 0.
Let F : [0, 2π] → R be a continuous function with F (0) = F (2π) = 0,

which is smooth in (0, 2π), and set

h(x, t) = hF (x, t) := E
[
(Φxt )

b F (Y xt )
]
.

By (7.6) and the general theory of diffusion Markov processes, we know that
h is smooth in (0, 2π) × R+. From the Markov property for Y xt and (7.6),
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it follows that h(Y xt , t
′ − t)(Φxt )

b is a local martingale on t < min{τx, t′}.
Consequently, the drift term of the stochastic differential d

(
h(Y xt , t′−t)(Φxt )b

)

is zero at t = 0. By Itô’s formula, this means

∂th = Λh , (7.8)

where
Λh :=

κ

2
∂2
xh+ cot(x/2) ∂xh−

b

2 sin2(x/2)
h .

We therefore choose
F (x) :=

(
sin(x/2)

)q
,

and note that F (x)e−λt = hF because both satisfy (7.8) on (0, 2π) × [0,∞),
and have the same boundary values. Finally, one can conclude using the same
type of argument as in Proposition 7.1. ��

7.3 First Consequences

Recall that for all t ≥ 0, d(0,Kt)et ∈ [1/4, 1]. Hence, if τr denotes the hitting
time of the circle of radius r < 1 by the radial SLEκ, then reτr ∈ [1/4, 1].
Combining this with Propositions 7.1 and 7.2 then implies that for all fixed
κ > 4, all b ≥ 0, if λ, q are defined as before, there exists two positive finite
constants c1 and c2 such that for all r < r0,

c1r
λ(sin(x/2))q ≤ E

[
1H(x,τr)|g′τr

(exp(ix))|b
]
≤ c2r

λ(sin(x/2))q (7.9)

(we used also the fact that |g′t(exp(ix)| is an decreasing function of t).
When b = 1, one can note that

lt :=
∫ 2π

0

dx|g′t(eix)|1H(x,t)

is simply the length of the image under gt of the arc At := ∂Ht∩∂U on the unit
circle that have not yet been swallowed by Kt. In particular, if one starts a
planar Brownian motion from 0, it has a probability lt/2π to hit the unit circle
on the arc gt(At). By conformal invariance of planar Brownian motion, we see
that lt/2π is also the probability that a planar Brownian motion started from
0 hits the unit circle before hitting Kt. Let Z denote planar Brownian motion,
stopped at its hitting time σ of the unit circle. Integrating Proposition 7.2 for
x ∈ [0, 2π] therefore shows that there exist constants c′1 and c′2 such that (if
Kt is radial SLE6)

c′1r
5/4 ≤ P[Z[0, σ] ∩Kτr = ∅] ≤ c′2r

5/4. (7.10)

Combining these results with Theorem 6.3, we see that these estimates are
also valid for reflected Brownian motions. In particular, let us now define a
reflected Brownian motion Z̃ in the unit disc as in Theorem 6.3 (reflected on
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∂U with angle 2π/3 “away” from Z̃0 = 1). Let σ̃r denote its hitting time of
the circle r∂U. Then there exist constants c1 and c2 such that for all r < 1/2,

c1r
1/4 ≤ P[Z̃[0, σ̃r]does not disconnect 0 from − 1] ≤ c2r

1/4. (7.11)

Similarly, (7.10) holds if one replaces Kτr by Z̃[0, σ̃r].
We will see in the next chapter that this also yields the corresponding

estimates for (non-reflected) Brownian motions.

Bibliographical Comments

The material of this chapter is borrowed from [87], in which the reader
can find more detailed proofs. It is possible to compute analogous exponents
for chordal SLE. These “half-plane exponents” are determined in [86, 88].

Other important exponents are derived in [118, 92, 15]. As in this chap-
ter, the exponents appear always as leading eigenvalues of some differential
operators.
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8 Brownian Exponents

8.1 Introduction

The goal of this chapter is to relate the previous computations to the ex-
ponents associated to planar Brownian motion itself (not only to reflected
Brownian motion).

Suppose that a planar Brownian motion Z is started from 1. Let σr denote
its hitting time of the circle of radius r > 0, and let

pr := P[D(Z[0, σr])],

where D(K) denotes the event that K does not disconnect the origin from
infinity. Note that by inversion, pR = p1/R for all R > 1 (one can map the
disk {|z| < R} conformally on {|z| > 1/R} by z �→ 1/z and use conformal
invariance of planar Brownian motion).

The strong Markov property and the scaling property of planar Brownian
motion imply readily that for all R,R′ > 1,

pRR′ ≤ P[D(Z[0, σR]) and D(Z[σR, σRR′ ])] ≤ pRpR′ .

On the other hand, it is not difficult to see that

pR ≥ P[Z[0, σR] ∩ [−R, 0] = ∅] ≥ cR−1/2

for all R > 1 and some constant c. Hence, a standard subadditivity argument
implies that there exists a constant η ≤ 1/2 such that

pR ≈ R−η

whenR→∞, where this notation means that log pR ∼ −η logR. It turned out
that there seems to be no direct way to determine the value of this exponent
η.

Similarly, if Z1 and Z2 denote two independent Brownian motions started
uniformly on the unit circle, then subadditivity implies the existence of a
positive constant ξ such that

P[Z1[0, σ1
R] ∩ Z2[0, σ2

R] = ∅] ≈ R−ξ.

The exponents η and ξ are respectively called the disconnection exponent
and the intersection exponent for planar Brownian motion.

8.2 Brownian Crossings

We now make some considerations that will help us relating the results on
reflected Brownian motions derived in the previous chapter to the exponents
η and ξ. For simplicity, we first focus on the disconnection exponent η.
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Suppose that Z denotes a planar Brownian motion that is started from 1,
and define the random times:

σr := inf{t > 0 : |Zt| = r}
σ#
r := max{t < σr : |Zt| = 1}
σ∗
r = inf{t > σ#

r : |Zt| = 1/2}.

It is a fairly standard application of the decomposition of the path &(logZ)
into excursions away from the origin to see that

• The paths P 1
r := (Zt, t ∈ [0, σ#

r ]) and P 2
r := (Zt+σ#

r
/Zσ#

r
, t ∈ [0, σr − σ#

r ])
are independent.

• The law of P 3
r := (Zt+σ∗

r
/Zσ∗

r
, t ∈ [0, σr−σ∗

r ]) is identical to the conditional
law of (Zt, t ≤ σ2r) on the event Er := {Z[0,σ2r] ⊂ 2U}.

Note also that P[Er] = log 2/ log r because log |Z| is a local martingale. We
will call P 2

r a Brownian crossing of the annulus Ar := {1 > |z| > r}.
When r′ < r, one can construct a Brownian crossing of the annulus Ar′

starting from a crossing P 2
r of the annulus Ar as follows: Attach to the end-

point er := Zσr/Zσ#
r

of P 2
r a Brownian motion started from er, that is condi-

tioned to hit the circle of radius r′ before the unit circle, and stop it at that
hitting time of the circle of radius r′ (note that this event has probability
log(1/r)/ log(1/r′)).

We now define the probability p∗r that the crossing does not disconnect the
origin from infinity:

p∗r := P[D(P 2
r )].

Since a crossing is a subpath of a stopped Brownian motion, it follows from
the a priori lower bound for pr that p∗r ≥ cr1/2 for some absolute constant c.

We now define for δ > 0,

p∗r(δ) := P[D(P 2
r ∪ B(1, δ) ∪ B(er, δ))],

where B(z, r) stands for the ball of radius r around z.
The following observations will be useful:

Lemma 8.1. There exists δ > 0 and ε > 0 such that for all integer n, then
for at least 99% of the integers j ∈ {1, . . . , n}, one has

p∗rj
(δ) > εp∗rj

where rj = 2−j.

Proof. We only sketch the main ideas of the proof. First, notice that j �→ p∗rj
is

decreasing in j so that the a priori lower bound for p∗rj
implies that there exists

ε such that for all n, then for at least 99% of the values of j in {1, . . . , n− 1},
2εp∗rj

≤ p∗rj+1
(otherwise prn would be too small). On the other hand, it is

easy to see that there exists δ > 0 such that
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p∗rj+1
≤ ε(p∗rj

− p∗rj
(δ)) + p∗rj

(δ).

This is due to the fact that one can construct a sample of P 2
rj+1

by extending
the crossing P 2

rj
into a crossing of {

√
2 > |z| > r/

√
2} by attaching conditioned

Brownian motions to both ends (and then rescale this into a crossing of Arj+1).
And if δ is sufficiently small, then each of the attached parts disconnect the
ball of radius δ around their starting point with very high probability. It
therefore follows that “for 99% of the values of j”,

p∗rj
(δ) ≥ p∗rj+1

− εp∗rj
≥ εp∗rj

.

��

Lemma 8.2. For all fixed δ, for some constant c = c(δ),

P[P 1
r ⊂ B(1, δ/2)] ≥ c

log(1/r)
.

Proof. With positive probability, Z hits the circle of radius 1 − δ/4 around
0 before ∂B(1, δ/2). Then, if this is the case, with probability log(1/(1 −
δ/4))/ log(1/r) it hits the circle of radius r before going back to the unit
circle. ��

8.3 Disconnection Exponent

We now use combine these considerations with the computation of the expo-
nents for reflected Brownian motion to prove the following result:

Theorem 8.3. One has η = 1/4. Furthermore, there exist two constants c1
and c2 such that for all R > 1,

c1R
−1/4 ≤ pR ≤ c2R

−1/4.

As we shall see later, it is important to have estimates “up-to-constants”
as in this Theorem (rather than ≈) in order to make the link with Hausdorff
dimensions.

Proof. By inversion, this is equivalent to corresponding result for small r i.e.,
that for all r < 1,

c1r
1/4 ≤ pr ≤ c2r

1/4. (8.1)

In order to compare pr to p̃r (this is the non-disconnection probability for
reflected Brownian motion that was defined at the end of the previous chapter
where we proved that it is close to r1/4), we will in fact compare both to p∗r .

First, one can notice using the previous lemma that

pr ≥ P[D(P 2
r ∪ B(1, δ)) ∩ {P 1

r ⊂ B(1, δ/2)}]
≥ p∗r(δ) ×

c

log(1/r)
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for some constant c which is independent of r < 1/2. The same argument can
be adapted to the reflected Brownian motion Z̃. Hence, “for 99% of j’s”,

prj ≥
cp∗rj

j
and p̃rj ≥

cp∗rj

j

for some universal constant c.
On the other hand, let us now define inductively the stopping times: ρ0 = 0

and for all n ≥ 0,

τn := inf{t > ρn : |Zt| = 1/2}
ρn+1 := inf{t > τn : |Zt| = 1}

the successive times of downcrossings and upcrossings between the two circles
{|z| = 1} and {|z| = 1/2}. Let Nr denote the number of upcrossings before
σr. In other words,

N = N(r) := max{n ≥ 0 : ρn < σr}.

Note that the probability that a Brownian motion started on the circle {|z| =
1/2} hits {|z| = r} before the unit circle is cr := log 2/ log(1/r), because
log |Z| is a local martingale. Hence, P[Nr ≥ n] = (1 − cr)n. For each n ≥ 0,
the probability that Z[ρn, τn] disconnects 0 from the unit circle and does not
hit the circle of radius 1/4 is strictly positive (and independent from n). Note
that if Z[0, σr] does not disconnect the origin from the unit circle, then for
all n ≤ N , Z[ρn, τn] does not disconnect the origin from the unit circle, and
Z[τn, σn,r] doesn’t either, where

σn,r = inf{t > τn : |Zt| = r}.

It follows that for some absolute constant c > 0,

pr ≤
∑

n≥0

(1 − c)n(1 − cr)nP[D(Z[τn, σn,r])]

≤ p∗2r
ccr

≤ log 2
c

× p∗2r
log 1/r

A close inspection at the proof actually shows that the very same proof goes
through if one replaces the Brownian motion Z by the reflected Brownian
motion Z̃. Hence, for some absolute constant c′,

pr ≤ c′
p∗2r

log(1/r)
and p̃r ≤ c′

p∗2r
log(1/r)

.

Putting the pieces together, we see that “for 98% of j′s”,
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p̃rj ≤ c1
p∗2rj

log(1/rj)
≤ c2p2rj ≤ c3

p∗2rj

log(1/rj)
≤ c4p̃4rj .

But we know that r−1/4p̃r is bounded and bounded away from zero. It there-
fore follows that for some absolute constants c1 and c2 and at least 98% of
the j’s,

c1r
1/4
j ≤ prj ≤ c2r

1/4
j .

It then remains to get rid of the last 2% of “bad” values of j. This can be
done by pasting together “good” configurations that are “well-separated at
the end” of the annuli {1 > |z| > rj1} and {rj1 > |z| > rj1+j2}, where j1
and j2 are “good” values such that j1 + j2 = j. See for instance [91] for more
details. ��

8.4 Other Exponents

The previous proofs need to be somewhat adjusted to show the corresponding
result for the intersection exponent ξ (things are more complicated due to the
fact that there are two Brownian motions to take care of, but no really new
ideas are needed):

Theorem 8.4. One has ξ = 5/4. Furthermore, there exist two constants c1
and c2 such that for all R > 1,

c1R
−5/4 ≤ P[Z1[0, σ1

R] ∩ Z2[0, σ2
R] = ∅] ≤ c2R

−5/4.

Actually, it is possible to derive the value of many other exponents. For in-
stance, suppose that Z1, . . . , Zk, . . . are independent planar Brownian motions
started uniformly on the unit circle, and denote by σ1

R, σ
2
R, . . . their respective

hitting times of the circle R∂U, then:

Theorem 8.5. For all k ≥ 1, there exist constants c1, c2 such that for all
R > 1,

c1R
−ηk ≤ P[D(Z1[0, σ1

R] ∪ · · · ∪ Zk[0, σkR])] ≤ c2R
−ηk

and

c1R
−ξk ≤ P[The sets Z1[0, σ1

R], . . . , Zk[0, σkR] are disjoint] ≤ c2R
−ξk ,

where

ηk =
(
√

24k + 1 − 1)2 − 4
48

and

ξk =
4k2 − 1

12
.
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The proof of these results is however more involved. For other results
and generalizations, see [86, 87, 88]. For instance, one can make sense of a
continuum of exponents, or study intersection exponents for Brownian motion
in a half-plane.

Let us mention that an instrumental role is also played in the definition
and determination of the exponents in Theorem 8.5 by the critical exponents
associated to non-intersection events in a half-space. For instance, the half-
space analog of the intersection exponent ξ is:

Theorem 8.6. If Z1 and Z2 are defined as before. Define

qR := P[Z1[0, σ1
R] ∩ Z2[0, σ2

R] = ∅ and Z1[0, σ1
R] ∪ Z2[0, σ2

R] ⊂ H].

There exist two constants c1 and c2 such that for all R > 1,

c1R
−10/3 ≤ qR ≤ c2R

−10/3.

There is a close relation between all these exponents (disconnection, in the
whole space, in the half-space), see [96]. The critical exponents in the half-
space can be determined in a similar way than the the whole-space exponents:
First one computes the “derivative” exponents associated to chordal SLE.
Then, using the identification between chordal SLE6 and reflected Brownian
motion, one transfers the SLE results into Brownian motion results. For the
statements and proofs of all these “half-space exponents”, see [86, 88]. In order
to get the value of all ηk exponents, one then uses the fact that a family of
generalized exponents is analytic, see [89] for more on this.

It has also been proved (using strong approximation of simple planar ran-
dom walks by Brownian motions) that these exponents describe the prob-
abilities of the corresponding events for planar simple random walks (see
[27, 37, 84, 85]). For instance, if S1 and S2 denote two independent simple
random walks starting from neighbouring points, then

P[S1[0, n] ∩ S2[0, n] = ∅] ≈ n−ξ/2 = n−5/8

when n→∞ (up-to-constants hold as well). The exponent is here ξ/2 because
we used here the parametrization in time and not in space. It is worthwhile
stressing that it seems that to prove this result that seems of combinatorial na-
ture, one has to understand and use conformal invariance of planar Brownian
motion, its relation to SLE6 as well as the properties of SLE6.

8.5 Hausdorff Dimensions

In series of papers [76, 77, 78, 79] (before the mathematical determination of
the exponents in [86, 87, 88]), Lawler showed how to use such up-to-constants
estimates to estimate the Hausdorff dimension of various interesting random
subsets of the planar Brownian curve in terms of the corresponding exponents.

More precisely, let (Zt, t ≥ 0) denote a planar Brownian motion. Then, we
say that
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• The point z = Zt is a cut-point if Z[0, t] ∩ Z(t, 1] = ∅.
• The point z = Zt is a boundary point if D(Z[0, 1] − z) i.e. if Z[0, 1] does

not disconnect z from infinity.
• The point z = Zt is a pioneer point if D(Z[0, t]− z).

Note that, loosely speaking, near z = Zt, there are two independent Brownian
paths starting at z: The future Z1 := (Zt+s, s ∈ [0, 1 − t]) and the past
Z2 := (Zt−s, s ∈ [0, t]). Furthermore, z = Zt is a cut-point if Z1 ∩ Z2 = {z},
z is a boundary point if Z1 ∪ Z2 do not disconnect z from infinity and z is a
pioneer point if Z2 does not disconnect z from infinity. Hence, the previous
theorems enable us to estimate the probability that a given point x ∈ C is
in the ε-neighbourhood of a cut-point (resp. boundary point, pioneer point).
Independence properties of planar Brownian paths then make it also possible
to derive second moment estimates (i.e. the probability that two given points
x and x′ are both in the ε-neighbourhood of such points) and to obtain the
following result:

Theorem 8.7.

• The Hausdorff dimension of the set of cut-points is almost surely 2 − ξ.
• The Hausdorff dimension of the set of boundary points is almost surely

2 − η2.
• The Hausdorff dimension of the set of pioneer points is almost surely 2−η.

Recall that 2− ξ = 3/4, 2− η2 = 4/3, 2− η = 7/4. Similar results hold for
various other random subsets of the planar curve. We choose not to give the
proof of this theorems in these lectures since they are more using features of
planar Brownian motion rather than SLE6, but here is a brief sketch in the
case of the pioneer points.

Sketch of the proof. Let P denote the set of pioneer points on Z[0, 1].
Theorem 8.3 roughly shows that for each z, the probability that Z comes ε-
close to z without disconnecting z from infinity is comparable to ε1/4. It follows
that the expectation of the number Nε of ε-balls that are needed in order to
cover P is comparable to (i.e. up-to-constants away from) ε−2+1/4 = ε−7/4.
This in fact already shows that the Hausdorff dimension of P can a.s. not be
larger than 7/4.

On the other hand, one has good bounds on the second moment of Nε:
This is due to the fact that for two points x and x′ with |x − x′| = r to be
ε-close to pioneer points, then the following three events must occur before
time one:

• Z reaches B(x, 2r) without disconnecting x
• Z crosses the annulus {z : ε < |z − x| < r/2} without disconnecting x
• Z crosses the annulus {z : ε < |z − x′| < r/2} without disconnecting x′.
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Hence, it follows that E[N2
ε ] ≤ cst× ε−7/2 ≤ cstE[Nε]2. Standard arguments

can then be used to deduce from this that with positive probability, the di-
mension of P is not smaller than 7/4. A zero-one law can finally be used to
conclude that the dimension is a.s. equal to 7/4. See e.g. [82] for details. ��

Bibliographical Comments

The fact that one probably had to compute the value of the Brownian
exponents via an universality argument using another model (that should be
closely related to critical percolation scaling limits) first appeared in [97].
The mathematical derivation of the value of the exponents was performed in
the series of papers [86, 87, 88, 89]. The properties of SLE that were later
derived in [95] enable to shorten some parts of some proofs, but it seems that
analyticity of the family of generalized exponents derived in [89] can not be by-
passed for all exponents (for instance, it seems that it is needed to determine
the exponent describing the probability that the union of three Brownian
motions does not disconnect a given point). It can however be by-passed for
those exponents that we have to focus on i.e., η, η2, ξ.

Lemma 8.1 is a “separation Lemma” of the type that had been derived
by Lawler in the series of papers relating the Hausdorff dimensions to the
exponents [75, 76, 77, 78, 79]. The proof presented here is adapted from the
proof of the analogous but more general results for the other exponents in [91].
A good reference for the relation between Brownian exponents and Hausdorff
dimensions is Lawler’s review paper [82]. See also, Beffara [13, 14].

Determining the Hausdorff dimensions of subsets of the SLE processes is
a difficult question. Rohde-Schramm [118] have shown that the dimension of
the SLE generating curve is not larger than 1 + κ/8. It was conjectured to
be a.s. equal to that value (for κ ≤ 8). This has been proved to hold for the
special values κ = 8/3 and κ = 6, making use of the locality and restriction
properties (see [95], Beffara [14]). It now seems that Beffara [15] managed to
prove the general conjecture.

The value of most of these exponents had been predicted/conjectured be-
fore: Duplantier-Kwon [48] had predicted the values of ξk using non-rigorous
conformal field theory considerations, Duplantier [44] more recently used also
the so-called “quantum gravity” to predict the values of all exponents. The
fact that the dimension of the Brownian boundary was 4/3 was first observed
visually and conjectured by Mandelbrot [107]. Before the proof of this conjec-
ture, some rigorous bounds had been derived, for instance that the dimension
of the Brownian boundary is strictly larger than 1 and strictly smaller than
3/2 (see [24, 28, 132]).
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9 SLE, UST and LERW

9.1 Introduction, LERW

In the next two chapters, we will survey the rigorous results that show that
for some values of κ, SLEκ is indeed the scaling limit of discrete models.
There are at present only three values of κ for which this is the case: κ = 2
is the scaling limit of LERW, κ = 6 is the scaling limit of percolation cluster
interfaces, and κ = 8 is the scaling limit of the uniform spanning tree contour.

In all three cases, the convergence to SLE is derived as a consequence of
three facts:

• The “Markovian” property holds in the discrete case (this is usually a
trivial consequence of the definition of the microscopic model).

• Some macroscopic functionals of the model converge to conformally invari-
ant quantities in the scaling limit (for a wide class of domains).

• One has “a priori” bounds on the regularity of the discrete paths.

Before going into more details, let us state the convergence theorem in the
case of LERW that was presented in the introductory chapter: Consider γδ

the (time-reversal of the) loop-erasure of a simple random walk in D ∩ δZ2,
started from 0 and stopped at the first exit time of the simply connected (say,
bounded) domain D. Let γ denote a radial SLE2 in the unit disc started
uniformly on the unit circle (and aiming at 0). Let Φ denote a conformal map
from U onto D that preserves 0. We endow the set of paths with the metric
of uniform convergence modulo time-reparametrization:

d(Γ, Γ ′) = inf
ϕ

sup
t≥0

|Γ (t) − Γ ′(ϕ(t))|

where the inf is over all increasing bijections ϕ from [0,∞) into itself. Then,

Theorem 9.1. The law of γδ converges weakly when δ → 0 to the law of
Φ(γ).

Actually, one can also use the convergence result to justify the fact that
SLE2 is a simple path. Instead of giving the basic ideas of the proof of this
theorem, we will focus on a closely related problem: The uniform spanning
trees scaling limit.

9.2 Uniform Spanning Trees, Wilson’s Algorithm

Suppose that a connected finite graph G = (V,E) is given (V is the set
of vertices and E is the set of edges). We say that the subgraph T ⊂ E
is a spanning tree if it contains no loop, and if it has only one connected
component. We then define the uniform spanning tree as the uniform measure
on the set of spanning trees. For any two fixed points a and b in G, and any
spanning tree T , there exists a unique simple path in T that joins a to b (it
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exists because T has one connected component, it is unique because T has
no loops). Hence, if T is picked according to the UST measure, this defines a
random path γ from a to b. The following result had first been observed by
Pemantle [113]:

Proposition 9.2 The law of γ is that of the loop-erasure of simple random
walk on G started at a and stopped at its first hitting of b.

Fig. 9.1. A loop-erased walk as a subpath of the UST

This shows that LERW and UST are very closely related. Actually, it turns
out that an even stronger relationship hold: Suppose that an ordering of the
vertices v0, v1, . . . , vm of G is given. Define inductively the sets Am as follows:
A0 = {v0}, and for all j ≤ m, Aj = Aj−1∪γj where γj is the loop-erasure of a
random walk started from vj and stopped at its first hitting of Aj−1. Clearly,
in this way, Am is a (random) tree that contains all vertices: It is a spanning
tree.

Proposition 9.3 (Wilson’s algorithm) The law of Am is the uniform
spanning tree measure.

Note that this algorithm yields a natural extension of uniform spanning
trees (or forests) in infinite graphs (see e.g. [20] and the references therein for
more on this subject).
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Proof. One can derive this result using the explicit formulas that we derived
in the introductory chapter for loop-erased random walks: Indeed, it follows
readily from the definition and the symmetry of the function F that was de-
fined there, and the fact that (since we are considering simple random walks),
the transition probabilities p(x, y) are simply equal to 1/dx where dx is the
number of neighbours of x), that for any possible spanning tree T ,

P[Am = T ] = F (v1, v2, . . . , vm; {v0})
m∏

j=1

(1/dvj ).

This quantity is the same for all T : The law of Am is uniform. ��
Hence, if LERW has a conformally invariant scaling limit then UST also

has a conformally invariant scaling limit (in a rather weak sense though, such
as: for all k given fixed points, the “finite subtree that go through these points”
converges in the scaling limit).

There is another way to encode planar trees that goes as follows. Suppose
for instance that we are looking at a spanning tree of a bounded “simply
connected” graph G ⊂ Z

2. Then, one can associate to each tree the contour
of the tree which is a simple closed curve living on a subset G# of the lattice
(1/4 + Z/2)2. It is easy to see that (under mild assumptions on the domain),
this curve visits every point of (1/4 + Z/2)2 that is close to the vertices of
G. If the tree is chosen according to the uniform measure on spanning trees,
then the contour is chosen according to the uniform measure on space-filling
simple closed curves in this graph G#.

Hence, it is natural to study the behaviour of this space-filling curve in the
scaling limit. In order to obtain SLE (and not a closely related object that
we would have to define first) it is (slightly) more convenient to consider a
variant of the previously defined space-filling curve.

More precisely, suppose that a certain connected graph of (1/4 + Z/2)2

is given together with two distinct “boundary points” a and b. Then (for a
suitable class of “admissible” graphs), one is interested in the uniform measure
on simple space-filling curves η from a to b in the graph (i.e. paths from a
to b that visit all vertices exactly once). An example of “admissible” graphs
is given by the graph obtained from removing from G# a part of a simple
closed space-filling curve γ. This time, there is a one-to-one correspondence
between the family of simple space-filling curve η (from a to b) and the set
of spanning trees in a certain subgraph G of Z2 obtained by wiring one part
of the boundary between a and b (i.e. by conditioning the tree to contain
this part of the boundary). This is best seen on pictures, and not difficult to
understand heuristically, but it is somewhat messy to formulate precisely, so
we will omit the precise statements here (see e.g., [93] for more details).

Note that in this set-up, the Markovian type property for η is immediate:
If one conditions on the first step η(1) of η, then the law of η(1), . . . , η(n) = b
is simply the uniform measure on the space filling curves from η(1) to b in the
remaining graph.
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Fig. 9.2. The wired tree, the dual tree, the Peano curve.

9.3 Convergence to Chordal SLE8

Suppose that D is a simply connected bounded planar domain with C1 bound-
ary and let a, b denote two distinct points on ∂D. For each δ, we associate in
a “suitable approximation” of D∩δZ2, denoted by Dδ, and the two boundary
points aδ and bδ close to a and b. We define ηδ, a uniformly chosen space-filling
curve from aδ to bδ in Dδ.

Theorem 9.4. When δ → 0, the law of ηδ converges weakly to that of a
space-filling continuous path η, such that the law of (η[0, t], t ≥ 0) is (up to
time-change) that of chordal SLE8 in D from a to b.

Some rough ideas from the proof. A first step is to obtain regularity
estimates on the (discrete) random space-filling curve. This shows that the
families of probability measures defining ηδ is tight in an appropriate sense
and therefore has subsequential limits. These estimates have been derived in
[123] (see also [5, 6]) and the basic tools are Wilson’s algorithm and estimates
for simple random walks. This is not easy, and we refer to [123] for details.
Hence, one can work with a given decreasing sequence δn → 0 such that the
law of ηδn converges towards that of a random curve η, and one has to show
that η is in fact chordal SLE8.

Let us first work on the discrete level. Suppose that zδ is some discrete
lattice approximation of z ∈ D and that cδ is some discrete lattice approx-
imation of c ∈ ∂D that is on the wired part of the boundary of D. Let P δ1
denote the part of the wired boundary of Dδ which is between aδ and cδ, and



Random Planar Curves 173

Fig. 9.3. A sample of the beginning of the Peano curve.

let P δ2 denote the part of the wired boundary which is between cδ and bδ (and
P1, P2 are defined similarly in D).

We consider the event Eδ that there exists a path in the corresponding
tree that goes from zδ to P δ2 without touching P δ1 . By Wilson’s algorithm, we
see that P[Eδ(c, z)] is the probability that simple random walk on Dδ hits P δ2
before P δ1 . One first key-observation is that when δ goes to 0, the probability
of this event can be controlled in a rather uniform way: Uniformly over some
suitable choices of z, c, a, b and D, it converges towards the probability that
a Brownian motion in D that is orthogonally reflected on the ‘free’ part of
∂D, hits P2 before P1. This is a conformally invariant quantity. Mapping D
onto the upper half-plane by some given fixed mapping g in such a way that
g(b) = ∞, we see that

lim
δ→0

P[Eδ] := h(A,C,Z) = F

(
Z −A

C −A

)
,

where

F (reiθ) =
1
π

tan−1

(
1 − r

2
√
r sin θ/2

)

and A = g(a), Z = g(z), C = g(c). This function F can be computed for
instance by first using reflection so that this probability is the probability that
(non-reflected) Brownian motion in the complex plane, started from g(z) hits
[g(c),∞) before [g(a), g(z)], then to use the map x �→ (

√
x−√

z)/(
√
x+

√
z)

from C \ [g(a),+∞) onto the unit disk and to look at the length of the image
of [g(c),+∞) on the unit circle).

At each step n, define the conformal map ϕδn from a continuous approx-
imation Dδ

n of Dδ \ η[0, n] onto the upper half-plane that is characterized
by ϕδn(x) − ϕδ0(b) = o(1) when x → b. We then define tδn to be the “size”
a(ϕδ0(η

δ[0, n])) of ϕδ0(η[0, n]) and we put

Aδn = ϕδn(ηn), Cδn = ϕδn(cδ) and Zδn = ϕδn(zδ).
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Suppose now that ε > 0 is small but fixed. If one stops the uniform Peano
curve at the first step N , at which either |Aδn−Aδ0| reaches ε or tδn reaches ε2,
(if c and z are not close to a), then one does not yet know whether Eδ holds
or not. In fact the conditional probability is just equal to

P[Eδ(cδ, zδ, ηN , bδ, Dδ
N )].

Hence,
E[P[Eδ(cδ, zδ, ηN , bδ, Dδ

N)] = P[Eδ].

The right-hand side is close to h(A,C,Z) and the right-hand side is close to
E[h(AδN , C

δ
N , Z

δ
N )] (in a uniform way as δ goes to 0). In fact, one can prove

that
E[h(AδN , C

δ
N , Z

δ
N)] = E[h(A0, C0, Z0)] +O(ε3).

It turns in fact out, that the conformal map ΦδN is very close to the (properly
normalized) conformal map from D \ η[0, N ] onto H (i.e. removing the slit
or the “tube” does not make much difference when δ is small). In particular,
when ε is small (and δ very small), Loewner’s equation shows that

(ZδN − Z0) =
2tδN

Z0 −A0
+O(ε3) and (CδN − C0) =

2tδN
C0 −A0

+O(ε3).

Hence, one can Taylor-expand h in the previous estimate, so that
1
2
E[(AδN −A0)2]∂2

Ah(A0, C0, Z0) + E[AδN −A0]∂Ah(A0, C0, Z0)

+2E[tδN ]
(
∂Ch(A0, C0, Z0)

C0 −A0
+
∂Zh(A0, C0, Z0)

Z0 −A0

)
= O(ε3).

Using the explicit expression of h as well as the fact that this holds for various
values c and z yields that in fact:

E[AδN −A0] = O(ε3) and E[(AδN −A0)2] = 8E[tδN ] +O(ε3).

One can iterate this procedure using inductively defined stopping times
N2, N3, . . ., and one can then use this as a seed to show that it is possible
to find a Brownian motion B such that Aδn remains close to B8tδn

, and then,
after some additional work can be improved into the convergence theorem. ��

As the reader can see, this is only a very sketchy outline of a fairly long
and technical proof. For details, see [93].

9.4 The Loop-Erased Random Walk

The strategy of the proof of Theorem 9.1 follows roughly the same lines. One
has to identify a conformal invariant quantity that appears in the scaling limit
of LERW and that plays the role of the probability of the events E in the case
of the uniform Peano curve. The macroscopic quantities that are used are
related to the mean number of visits to a given point z by the simple random
walk started from 0 and conditioned to leave the domain at the same point
as the LERW. See [93] for details.
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Bibliographical Comments

The convergence results presented in this chapter are proved in [93], where
the reader can find more details. For an introduction to LERW and UST,
see for instance [104, 81]. Rick Kenyon [62, 64] had proved that LERW (and
UST’s) have conformally invariant features exploiting the relation between
UST and dimer models (and some explicit computations). He also managed to
determine directly (without using SLE2 or SLE8) [65, 66] the value of various
critical exponents related to LERW and UST that had been conjectured by
Majumdar and Duplantier [106, 43]. For instance, he showed that the expected
length of a LERW from 0 to the boundary of the unit disc on the lattice δZ2

is of the order δ−5/4. See also, Fomin’s paper [50] for another approach to
some of these exponents.

In the recent preprint [71], Gady Kozma gives a completely different ap-
proach and justification to the existence of a scaling limit of LERW (that does
not seem to use conformal invariance or SLE).
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10 SLE and Critical Percolation

10.1 Introduction

Consider a planar “periodic” lattice such that simple random walk on that
lattice converges to planar Brownian motion. For convenience, let us limit our
discussion to the square lattice and to the triangular lattice. Fix p ∈ [0, 1],
and for each site of the lattice, decide that with probability p, the site is open
(with probability 1− p, it is therefore closed), and do that independently for
all sites of the lattice. One is interested in the properties of the connected
components (or “clusters”) of open sites. It is now classical (see e.g., [55] for
an introduction to percolation) that there exists a critical value pc ∈ (0, 1)
such that:

• If p ≤ pc, there exists a.s. no infinite open cluster (note that in dimension
greater than 2, the non-existence of an infinite open cluster at pc is still
an open problem).

• If p < pc, there exists a positive ξ(p) such that when n → ∞, the prob-
ability that 0 is in the same connected component than (n, 0) decays ex-
ponentially fast, like ≈ exp(−n/ξ(p)) (the positive quantity ξ(p) is called
the correlation length).

• If p > pc, there exists almost surely no infinite open cluster.

The value of pc is lattice-dependent. In the case of the square lattice, it has
been shown to be larger than .556 [22] (it is not expected to be any special
number), while for the triangular lattice, it has been shown by Kesten and
Wierman to be equal to 1/2 (see e.g. [67]). This is not surprising because the
triangular lattice has a self-matching property: It is equivalent to say that the
origin is in a finite open cluster or to say that it is surrounded by a circuit (on
the same lattice, this is what makes the triangular lattice so special) of closed
sites. This property shows also that if p = 1/2 on the triangular lattice, the
probability that there exists a left-to-right crossing of open sites of a square
is exactly 1/2 (otherwise, there is a top-to-bottom crossing of closed sites).
Russo, Seymour and Welsh [120, 125] have shown (this is sometimes known
as the RSW theory) that this in fact implies that for any fixed a and b, there
exists a constant c > 0, such that the probability q(aN, bN) of a left-to-right
crossing of the aN × bN rectangle satisfies

1 − c > q(aN, bN) > c

for all largeN . This strongly suggests that whenN →∞, q(aN, bN) converges
to a limit F (b/a). A renormalizing group argument (loosely speaking, the
rectangle 2aN × 2bN can be divided into four rectangles of size aN × bN ,
which themselves can be divided into four rectangles etc.) also heuristically
suggests that not only the crossing probabilities converge but that in some
sense, the information about “macroscopic connectivity properties” should
converge. Note however that things are rather subtle. Benjamini, Kalai and



Random Planar Curves 177

Schramm [19] have for instance proved that if A[N ] denotes the event that
there is a left-to-right crossing of a N ×N square say, and if one changes the
status of a fixed proportion ε of the N2 sites and looks at the event Ã[N ] that
there exists a left-to-right crossing for the new configuration, then the events
A[N ] and Ã[N ] are asymptotically independent when N → ∞. These events
are “sensitive to noise”. When N is large, it is not easy to “see” whether the
crossing events occur or not (in the Figure 10.1, each occupied site on the
triangular lattice is represented by a white hexagon).

Fig. 10.1. Is there a left to right crossing of white hexagons?

In fact, the renormalization argument suggests that even though the value
of pc is lattice-dependent, on large scale, what one sees at the value pc be-
comes lattice-independent. In other words, in the scaling limit, the behaviour
of critical percolation should become lattice-independent (just as simple ran-
dom walk converges to Brownian motion, for all “regular” lattices). Hence,
the function F (b/a) should be a universal function describing the crossing-
probabilities of a “continuous percolation process.” In fact, this continuous
percolation should be scale-invariant (it is a scaling limit) as well as rotation-
ally invariant (which would follow from lattice-independence). This leads to
the stronger conjecture that it should be conformally invariant: The connec-
tions in a domain D and those in a domain D′ should have the same law,
modulo a conformal map from D onto D′.
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Fig. 10.2. And now?

10.2 The Cardy-Smirnov Formula

Using the conformal field theory ideas developed in [18, 30], John Cardy [31]
gave an exact prediction for the function F . Extensive numerical work (e.g.,
[73]) did comfort these predictions. Carleson noted that Cardy’s function F
is closely related with the conformal maps from rectangles onto equilateral
triangles, and that Cardy’s prediction could be rephrased as follows:

Conjecture 10.1 (Cardy’s formula). If D is conformally equivalent to the equi-
lateral triangle OAC, and if the four boundary points a, o, c, x are respectively
mapped onto A,O,C,X ∈ [CA], then (in the scaling limit when the mesh of
the lattice goes to zero), the probability that there exists a crossing in D from
the part (ao) of ∂D to (cx) is equal to CX/CA.

We have seen that the SLE approach did provide a new justification to
this formula. Indeed, if the percolation exploration path has a conformally
invariant scaling limit, it must be one of the chordal SLEs, as argued it the
first Chapter. Also, as the hitting probabilities computations in Chapter 3
show, SLE6 is the unique SLE such that for all X ∈ [CA], the two following
probabilities are identical:

• The SLE from O to A in the equilateral triangle hits AX before XC
• The SLE from O to X in the equilateral triangle hits AX before XC

This has to hold for the scaling limit of the critical exploration process. Hence,
the unique possible conformally invariant scaling limit of the critical explo-
ration process is SLE6. Another way to justify this is that this scaling limit
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has to satisfy locality and (cf. Chapter 4) that SLE6 is the unique SLE that
satisfies locality. Yet another (simpler) justification is that SLE6 is the unique
SLE for which the probability of the event corresponding to a left-right cross-
ing of a square (or a rhombus) is 1/2 (for an SLE starting from one corner
and aiming at a neighbouring corner).

We have also seen that an SLE6 from O to C in the equilateral triangle
hits XC before AX with probability CX/CA. Also, for the discrete explo-
ration process, the corresponding event is precisely the event that there exists
a crossing from AO to CX . Hence, we get a conditional result of the following
type: If the scaling limit of critical percolation exists and is conformally in-
variant, then the scaling limit of the exploration process is SLE6 and Cardy’s
formula holds.

But in order to prove conformal invariance of critical percolation, one has
to work with discrete percolation itself. In 2001, Stas Smirnov, proved that:

Theorem 10.2. Cardy’s prediction is true in the case of critical site percola-
tion on the triangular lattice.

In fact, Smirnov’s proof is a direct proof of Cardy’s formula that does not
rely at all on SLE. Then, with Smirnov’s result, one can show that indeed the
scaling limit of the percolation exploration process is SLE6.

Sketch of the proof. Suppose first for convenience that AOC is an equi-
lateral triangle and that the sides of the triangle have unit length and are
parallel to the axis of the triangular grid (as we will see, this has in fact no
other influence on the proof than simplifying the notations). For all δ = 1/n,
consider critical site percolation in AOC on the triangular grid with mesh-size
1/n. For convenience, put τ = exp(2iπ/3) and write A1 = A, Aτ = A2 = O
and Aτ2 = A3 = C. For each face z of the triangular grid (i.e. for each site of
the dual hexagonal lattice), let E1(z) denote the event that there exists a sim-
ple open (i.e. white) path from A1Aτ to A1Aτ2 that separates z from AτAτ2 .
Similarly, define the events Eτ (z) and Eτ2(z) corresponding to the existence
of simple open paths separating z from A1Aτ2 and A1Aτ respectively. Define
finally for j = 1, τ, τ2,

Hj(z) = Hδ
j (z) := P[Ej(z)].

The Russo-Seymour-Welsh theory ensures that the functionsHδ
j are uniformly

“Hölder” (actually, one first has to smooth out their discontinuities for in-
stance in a linear way keeping only the values of Hδ

j at the center of the
triangles). In particular, it shows that any for any sequence δn → 0, the
triplet of functions (Hδ

1 , H
δ
τ , H

δ
τ2) has a subsequential limit. Our goal is now

to identify the only possible such subsequential limit.
The Russo-Seymour-Welsh estimates also show that when z → AjτAjτ2 ,

the functions Hδ
j go uniformly to zero, and that when z → Aj , the functions

Hδ
j go uniformly to one. Hence, for any subsequential limit (H1, Hτ , Hτ2), one

has Hj(z) → 0 when z → AjτAjτ2 , and Hj(z) → 1 when z → Aj .
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Now comes the key-observation of combinatorial nature: Suppose that z is
the center of a triangular face. Let z1, z2, z3 denote the three (centers of the)
neighbouring faces (with the same orientation as the triangle A1A2A3) and
s1, s2, s3 the three corners of the face containing z chosen in such a way that
sj is the corner “opposite” to zj . We focus on the event E1(z1) \ E1(z). This
is the event that there exists three disjoint paths l1, l2, l3 such that

• The two paths l2 and l3 are open and join the two sites s2 and s3 to A1A3

and A1A2 respectively.
• The path l1 is closed (i.e., it consists only of closed sites), and joins s1 to

A2A3.

One way to check whether this event holds is to start an exploration process
from the corner A3, say (leaving the open sites on the side of A1 and the closed
sites on the side of A2). If the event E1(z1)\E1(z) is true, then the exploration
process has to go through the face z, arriving into z through the edge dual
to s1s2. In this way, one has “discovered” the simple paths l2 and l1 that
are “closest” to A3. Then, in the remaining (unexplored domain), there must
exist a simple open path from s3 to A1A3. But, the conditional probability of
this event is the same as that of the existence of a simple closed path from s3
to A1A3 (interchanging open and closed in the unexplored domain does not
change the probability measure). Changing all the colors once again, shows
finally that E1(z1) \ E1(z) has the same probability as the event that there
exist three disjoint paths l1, l2, l3 such that

• The paths l1 and l3 are open and join the two sites s1, s3 to A2A3 and
A1A2 respectively.

• The path l2 is closed, and joins s2 to A1A3.

This event is exactly Eτ (z2) \ Eτ (z). Hence, we get that,

P[E1(z1) \ E1(z)] = P[Eτ (z2) \ Eτ (z)] = P[Eτ2(z3) \ Eτ2(z)].

These identities can then be used to show that for any equilateral contour Γ
(inside the equilateral triangle), the contour integrals of Hδ

j for j = 1, τ, τ2

are very closely related:
∫

Γ

dzHδ
1 (z) =

∫

Γ

dzHδ
τ (z)/τ +O(δε) =

∫

Γ

dzHδ
τ2(z)/τ2 +O(δε)

when δ → 0 for some ε > 0. To see this, one has to expand the contour
integrals as the sum of all properly oriented contour integrals along all small
triangles inside Γ . Then, the previous identities ensure that almost all terms
cancel out. The remaining “boundary” terms are controlled with the help of
RSW estimates.

This result then shows that for any subsequential limit (H1, Hτ , Hτ2), the
contour integrals of H1, Hτ/τ and of Hτ2/τ2 coincide. It readily follows that
the contour integrals of the functions
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Hj +
i√
3
(Hjτ −Hjτ2)

for j = 1, τ, τ2 vanish. By Morera’s theorem (see e.g. [1]), this ensures that
these functions are analytic. In particular, H1 is harmonic. The boundary
conditions Hj = 0 on AjτAjτ2 for j = 1, τ, τ2 then ensure that H1 = 0 on
A2A3 and that the horizontal derivative of H1 on A1A3∪A2A3 vanishes. Also,
H1(A1) = 1. The only harmonic function in the equilateral triangle with these
boundary conditions is the height

H1(z) =
d(z,BC)
d(A,BC)

.

This completes the proof of the Theorem when the domain is an equilateral
triangle.

If D now any simply connected domain, and a = a1, o = aτ , c = aτ2 are
boundary points, the proof is almost identical. In its first part, the only differ-
ence is that one replaces the straight boundaries AjAjτ by approximations of
the boundary of D on the triangular lattice that is between the points ajajτ .
In exactly the same way, one obtains tightness and boundary estimates for the
discrete functions Hδ

j . Also, the argument leading to the fact that the contour
integrals on equilateral triangles of Hj+ i(Hjτ −Hjτ2)/

√
3 for any subsequen-

tial limit vanish, remains unchanged. Hence, for any subsequential limit, one
obtains a triplet of functions (H1, Hτ , Hτ2) such that for j = 1, τ, τ2:

• The function Hj + i(Hjτ −Hjτ2)/
√

3 is analytic
• The functionHj(x) tends to zero when x approaches the part of the bound-

ary between ajτ and ajτ2 .
• The function Hj(x) tends to one when x→ aj .

The important feature is that this problem is conformally invariant: If Φ
denotes a conformal map from D onto the equilateral triangle such that
Φ(aj) = Aj , and if (H1, Hτ , Hτ2) is such a triplet of functions, then the triplet
(H1 ◦ Φ−1, Hτ ◦ Φ−1, Hτ2 ◦ Φ−1) solves the same problem in the equilateral
triangle. In the latter case, we have seen that the unique solution is given by
Hj(x) = d(x,AjτAjτ2)/d(Aj , AjτAjτ2). Hence, the Theorem follows. ��

One should stress that this proves much more than just the asymptotic
behaviour of the crossing probabilities. It yields the asymptotic probability of
the events Ej(x) for x inside the domain D (and not only on its boundary).

10.3 Convergence to SLE6 and Consequences

One can use the previous result to prove that the discrete exploration process
described in the introductory chapter indeed converges to chordal SLE6.

The regularity estimates are provided by the RSW theory and the discrete
Markovian property is immediate. It remains to show that some macroscopic
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quantities converge to a conformally invariant quantity in the scaling limit, but
this is precisely what Smirnov’s theorem shows. Hence, the method described
in the previous chapter can be applied. Some adjustments are needed to take
care of domains with rough boundary, though. In particular, one can use the
a priori bounds on the probability of having 5 arms joining the vicinity of the
origin to a large circle (the exponent α5 below) derived in [69].

Exploiting this, one can therefore use the computations of critical expo-
nents for SLE6, to deduce asymptotic probabilities for discrete critical per-
colation on the triangular lattice: For instance [128, 92], let An[N ] denote
the event that there exists n disjoint open clusters joining the vicinity of the
origin to the circle of radius N . Then:

Theorem 10.3. When N →∞, one has P[An[N ]] ≈ N−αn, where α1 = 5/48
and for all n ≥ 2, αn = (4n2 − 1)/12.

Note that the exponents αn for n ≥ 2 are the same than the Brownian inter-
section exponents ξn in Chapter 8. This is not surprising because of the close
relation between SLE6 and planar Brownian motion. The exponent α1 corre-
sponds to the event that radial SLE6 winds only “in one direction” around 0
(see [92].

Actually, Harry Kesten [68] had shown that the previous result (for n = 1
and n = 2) would imply the following description of the behaviour of perco-
lation when the probability is near to the critical probability:

Theorem 10.4. If one performs site percolation on the triangular lattice with
probability p, then when p → 1/2+, the probability that the origin belongs
to the infinite cluster behaves like (p − 1/2)5/36+o(1). When p → 1/2−, the
correlation length explodes like (1/2 − p)−4/3+o(1).

See [68, 128] for more results as well as for the proofs...
Let us conclude with the following combination of results that we have

mentioned in these lectures: The following three curves are (locally) the same:

• The outer boundary of the scaling limit of a large critical percolation
cluster.

• The outer boundary of a planar Brownian motion.
• The scaling limit of long self-avoiding walks, provided this scaling limit

exists and is conformally invariant.
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Fig. 10.3. Part of a (big) critical percolation cluster on the square lattice

Fig. 10.4. A critical percolation cluster on the triangular lattice
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Bibliographical Comments

The value of critical exponents for percolation had been predicted by theoret-
ical physicists [38, 112, 109, 110, 122, 121, 54, 33, 7]. The conformal invariance
conjecture for critical percolation had been discussed by Aizenman [3, 4].

Smirnov’s complete detailed proof of Cardy’s formula is contained in [126,
127]. The actual detailed proof of the convergence of the discrete exploration
process to SLE6 (announced in [126]) should be written up [127] soon. For
the derivation of formulas and exponents for critical percolation using SLE6,
see [124, 92, 128].
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11 What Is Missing

11.1 A List of Ideas

We have listed at the end of each chapter a list of references to papers that
develop ideas that are related to those presented in the corresponding chapter.
One aspect of SLE that we could have spent more time on is the actual
computation of critical exponents. For simplicity, we have shown how to derive
the Brownian exponents using radial SLE6, but in general (for instance to
derive the Hausdorff dimension of the SLE), one might as well work with
chordal SLE. Various exponents are derived in for instance in [86, 87, 88, 92,
118, 14, 15].

Before very briefly reviewing the results related to restriction properties,
we would like to stress that the important ideas underlying Rohde-Schramm’s
[118] proof of the existence and transience of the SLE paths have not been
presented in these lectures. The arguments [118] require some non-trivial back-
ground in complex geometry. In two cases, the existence and/or transience of
the SLE path is especially difficult to establish: For κ = 4, because the do-
mains generated by the SLE curve are not Hölder (see [118]). For κ = 8, the
only proof uses the fact that it is the scaling limit of the discrete uniform
Peano curves [93] described in Chapter 9.

One can also study geometric questions such as: Does the SLE have (local)
cut points? The answer is positive if and only if κ < 8 (see [14]).

I plan to discuss the following restriction properties in forthcoming lecture
notes. The main reference is the long recent paper [95].

• The full classification of the measures satisfying the restriction properties
is one of the main goals of [95]. These measures form a one-dimensional
family indexed by a positive real-valued parameter N , that can be in-
terpreted as the number of Brownian excursions that the measure is
equivalent to. There exist two other important ways to describe this one-
dimensional family: The first one is via a variant of the SLE8/3 process
called SLE(8/3, ρ). Loosely speaking, one replaces the driving Brownian
motion by a Bessel process (see [95] for all this), and the obtained sim-
ple random curve describes the outer boundary of the set satisfying the
restriction property. The second description goes as follows: Consider an
SLEκ with κ ≤ 8/3 and add to this path a certain cloud Brownian loops
(this Poisson cloud of loops is also studied in [98]). For a well-tuned density
d(κ) of the loops, one constructs the restriction measure corresponding to
N(κ) Brownian excursions. See also [40].

• This last description makes it possible to tie a link [52, 53] with represen-
tation theory, and more precisely with highest-weight representations of
the Lie Algebra of polynomial vector fields on the unit circle (the number
N(κ) is the highest-weight). This is related to considerations from confor-
mal field theory. See also [10, 11, 12] for the relation of SLE with ideas
from conformal field theory.
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• The SLE(κ, ρ) processes shed also some light on the computation of the
(chordal) critical exponents. It turns out that they can be understood via
the absolute continuity relations between Bessel processes (following from
Girsanov’s Theorem); see [135].

11.2 A List of Open Problems

Here is a list of open problems. Some of these were already mentioned in the
previous chapters:

Conformal Invariance of Discrete Models

So far, convergence of natural discrete models towards SLE in the scaling limit
has been proved only in the two very special cases that we described in the
last two chapters (LERW-UST, and critical site percolation on the triangular
lattice). It is believed to hold for many other models:

• The interface for a critical FK-percolation (see e.g. [56] for an introduction
to this dependent percolation model introduced by Fortuin and Kasteleyn)
model for q ≤ 4 is conjectured to converge to chordal SLEκ. Recall that
the probability of a given realization is proportional to

p#open edges(1 − p)#closed edgesq#connected components.

The relation between q and κ should be

cos
4π
κ

= −
√
q

2
,

where q ∈ [0, 4] and κ ∈ [4, 8]. Here (as in the UST case and in some
sense in the percolation case), the boundary conditions have to be mixed
(free on one part of the boundary, wired on the other – this influences the
way of counting the connected components). See [118] for a more precise
statement of this conjecture. Recall that for critical FK-percolation with
parameter q on the square lattice, the self-dual point is p =

√
q/(

√
q +

1) (proving that this self-dual point is the critical point is another open
question, but it is not directly related to the SLE question; the question on
the square grid is to prove that for this value of p, the interface converges
to SLE). Here self-dual means that the law of the dual graph of an FK
percolation sample is also an FK percolation sample (in the dual lattice)
with the same parameters (see [56]).
Recall that when q > 4, the FK percolation phase transition is conjectured
to be a first-order transition (i.e. there can exist an infinite open cluster
at the critical probability). The critical value q = 4 corresponds to the
special case κ = 4. Recall also (see e.g. [56]) that the correlation functions
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of the critical q-Potts models are the same as those of the critical FK-
percolation model. Recall also that the usual percolation is the q = 1 FK
percolation model, and that the UST can be viewed as the q = 0 critical FK
percolation model (see e.g. [57]). For the critical FK percolation models,
the Markovian property is clearly valid in the discrete case. The missing
step is therefore the proof of conformal invariance.
It is interesting (and encouraging) to note that the integer values of q cor-
respond to the “nice” values of the angles α = π(1 − κ/4) of the isocele
triangles for which hitting distributions are uniform (Dubédat’s observa-
tions [39] mentioned at the end of Chapter 2): cosα =

√
q/2. For q = 1,

it is the equilateral triangle, for q = 2 (Ising), it is the isocele-rectangular
triangle, and for q = 3, α = π/6.

• Among all the critical percolation interfaces that are conjectured to con-
verge to SLE6 (this is the special case q = 1 in the previous conjectures), it
is worth stressing two cases, for which one has self-duality (and therefore
some little hope to be able to prove something): The first one is bond-
percolation on the square grid, and the second one is percolation on a
Voronoi tessellation (see e.g. [21]).

• There exists a special model for which (as for the Ising model and for
the uniform spanning tree model), the tools and arguments developed by
Kenyon seem promising: It is the so-called double-domino path, that is
conjectured to converge to the special curve SLE4 in the scaling limit.

• Note also that the Ising model itself (on the triangular lattice) has some
self-duality properties (this is due to the fact that for the Ising model, there
are exactly two possible states for each site). Hence, Ising cluster interfaces
(for appropriate boundary conditions, and on the triangular lattice) might
converge to an SLE in the scaling limit.

• For κ < 4, the relation with discrete models from statistical physics is not
so clear. One relation is via the duality conjectures that we will discuss
below. The main open question is the convergence of the self-avoiding walk
towards the SLE8/3 curve. Again, the main problem is to derive its confor-
mal invariance. See [94] for a discussion. Let us insist that basically nothing
is known rigorously on the asymptotic behaviour of the self-avoiding walk.
For instance, to our knowledge, it has not even been disproved that the
curve becomes space-filling or a straight line in the scaling limit!

• It is likely that some discrete dynamic models can be shown to converge to
SLE (but their relation to models from statistical physics is unclear). For
instance, variations on the Laplacian random walk description of LERW
that have some conformally invariant features built in the model should
in principle converge to SLEs.

Duality

Another approach to the SLE curves when κ < 4 goes as follows: It was con-
jectured (based on the computation of the dimensions) that in the scaling
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limit, the outer boundary of an SLEκ′ hull for κ′ > 4 at a given time looks
(locally) like an SLE16/κ′ curve. Hence, the SLEκ curves for κ < 4 corre-
spond to the outer boundary of the scaling limit of critical FK-percolation
clusters. The duality has been proved to hold in two cases: κ = 2 (because
of the relation between LERW and UST that respectively converge to SLE2

and SLE8) and κ = 8/3 (because of the restriction property considerations
that allow to describe the outer boundary of conditioned SLE6 processes in
terms of SLE8/3 processes (see [95]). In the general case, a weak form of du-
ality has been identified by Dubédat [40], that leads to conjecture a precise
identity in law between the outer boundary of an SLE(κ′, ρκ′) process and
the SLE(16/κ′, ρ′κ′) curve for well-chosen values of ρ and ρ′.

Proving this duality relation would be one way to settle the following open
problem (it is only proved when κ = 6 and κ = 8): Prove that the Hausdorff
dimension of the boundary of Kt is almost surely 1+ 2/κ when Kt is the hull
of an SLEκ (chordal or radial) for κ > 4. One would then combine duality
with the computation of the dimension of the SLE curves in [15]. There should
however also exist a direct proof of this fact that does not rely on duality.

Reversibility

The following conjecture follows very naturally from the fact that the SLEs
are believed to be scaling limit of the previously described lattice models:
Suppose that κ ≤ 8 is given, and consider the chordal SLEκ curve γ from
a to b in a domain D (where a and b are two boundary points). One can
time-reverse γ, and view it as a curve from b to a in D. Then, the law of
this time-reversal should be (modulo time-change) the law of an SLEκ curve
from b to a in D. Another equivalent way of phrasing this is that if γ is the
chordal SLE path in the upper half-plane, the path −1/γ has the same law
as γ (modulo time-change).

This conjecture is very natural in terms of the lattice models, but on the
other hand, it is not natural at all if one thinks of the actual definition of the
SLE in terms of the Loewner chain (this is very non-reversible!). In the special
cases κ = 6, κ = 8 and κ = 2, the result is a consequence of the convergence of
the discrete reversible models to the SLEs. So far, the reversibility of κ = 8/3
is the only one that can be proved without reference to a reversible discrete
model, and the tool here is the characterization of SLE8/3 as the unique
simple random curve that satisfies the restriction property. In all other cases,
the problem is to our knowledge open. This problem does not seem as out of
reach as some of those that we just discussed.

Note that (as shown to me by Oded Schramm), it is possible to show that
reversibility of SLEκ fails to be true when κ > 8. This can seem surprising;
more generally, the interpretation of SLEκ when κ > 8 in terms of mod-
els from statistical physics is not well-understood. Note that the asymptotic
behaviour of SLEκ when κ→∞ is studied in [16].
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Quantum Gravity and Conformal Field Theory

The arguments developed in conformal field theory under the name of quan-
tum gravity suggest that some very interesting critical phenomena also occur
for systems on certain random lattices. In particular, Duplantier [44, 46, 47]
showed that the value of the critical exponents in the plane (those exponents
that can now be understood thanks to the SLE) can be predicted using the for-
mula proposed by Knizhnik, Polyakov and Zamolodchikov in [70], that should
relate the value of the critical exponents in the plane to the corresponding
exponents on random lattices.

Recent progress has been made in the rigorous understanding of some of
these random systems on these random graphs; see e.g. [9, 8, 25, 26] and the
references therein. It seems that (as opposed to the rigid lattice case), the
behaviour of some of these systems on random lattices might be accessible by
ingenious combinatorial methods.

Note [135] that the KPZ formula seems to have a simple interpretation
in terms of the ρ in the SLE(κ, ρ) processes. Maybe the combination of the
determination of the exponents for SLE, and the results on random graphs
will provide in the end the rigorous justification to the KPZ relation.

More generally, the relation between SLE and conformal field theory (that
has started to be investigated in [10, 11, 12, 51, 52, 53]) and with the mathe-
matical concepts used in conformal field theory needs further understanding.
It is not so clear whether this will be helpful to improve the knowledge on
these critical two-dimensional systems (which was after all probably the initial
motivation for the conformal field framework). One related issue is to manage
to define SLE on general Riemann surfaces, see [51, 137, 42].
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14. V. Beffara (2002), Hausdorff dimensions for SLE6, preprint.
15. V. Beffara (2002), The dimension of the SLE curves, preprint.
16. V. Beffara, in preparation
17. A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov (1984), Infinite conformal

symmetry of critical fluctuations in two dimensions, J. Statist. Phys. 34, 763–
774.

18. A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov (1984), Infinite conformal
symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241, 333–
380.

19. I. Benjamini, G. Kalai, O. Schramm (1999), Noise sensitivity of boolean func-
tions and applications to percolation, Publ. Sci. IHES 90, 5-43.

20. I. Benjamini, R. Lyons, Y. Peres, O. Schramm (2001), Uniform spanning
forests. Ann. Probab. 29, 1-65.

21. I. Benjamini, O. Schramm (1998), Conformal invariance of Voronoi percolation,
Comm. Math. Phys. 197, 75-107.

22. J. van den Berg, A. Ermakov (1996), A new lower bound for the critical proba-
bility of site percolation on the square lattice, Random Structures Algorithms
8,199-212.

23. R. van den Berg, A. Jarai (2003), The lowest crossing in 2D critical percolation,
Ann. Probab., to appear.



Random Planar Curves 191

24. C.J. Bishop, P.W. Jones, R. Pemantle, Y. Peres (1997), The dimension of the
Brownian frontier is greater than 1, J. Funct. Anal. 143, 309–336.

25. M. Bousquet-Mélou, G. Schaeffer (2002), The degree distribution in bipartite
planar maps: applications to the Ising model, preprint.

26. J. Bouttier, B. Eynard, Ph. Di Francesco (2002), Combinatorics of Hard Par-
ticles on Planar Graphs, preprint.

27. K. Burdzy, G.F. Lawler (1990), Non-intersection exponents for random walk
and Brownian motion. I: Existence and an invariance principle, Probab. Theor.
Rel. Fields 84, 393–410.

28. K. Burdzy, G.F. Lawler (1990), Non-intersection exponents for random walk
and Brownian motion. II: Estimates and applications to a random fractal, Ann.
Prob. 18, 981-1009.

29. R. Burton, R. Pemantle (1993), Local characteristics, entropy and limit the-
orems for spanning trees and domino tilings via transfer-impedances, Ann.
Probab. 21, 1329–1371.

30. J.L. Cardy (1984), Conformal invariance and surface critical behavior, Nucl.
Phys. B 240 (FS12), 514–532.

31. J.L. Cardy (1992), Critical percolation in finite geometries, J. Phys. A, 25
L201–L206.

32. J.L. Cardy, Scaling and renormalization in statistical physics, Cambridge Lec-
ture Notes in Physics 5, Cambridge University Press, 1996.

33. J.L. Cardy (1998), The number of incipient spanning clusters in two-
dimensional percolation, J. Phys. A 31, L105.

34. J.L. Cardy (2001), Lectures on Conformal Invariance and Percolation, Lectures
delivered at Chuo University, Tokyo, preprint.

35. L. Carleson, N.G. Makarov (2001), Aggregation in the plane and Loewner’s
equation, Comm. Math. Phys. 216, 583-607.

36. L. Carleson, N.G. Makarov (2002), Laplacian path models, preprint
37. M. Cranston, T. Mountford (1991), An extension of a result by Burdzy and

Lawler, Probab. Th. Relat. Fields 89, 487–502.
38. M.P.M. Den Nijs (1979), A relation between the temperature exponents of the

eight-vertex and the q-state Potts model, J. Phys. A 12, 1857-1868.
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