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Preface

Common engineering materials reach in many demanding applications such as
automotive or aerospace their limits and new developments are required to fulfill
increasing demands on performance and characteristics. The properties of mate-
rials can be increased for example by combining different materials to achieve
better properties than a single constituent or by shaping the material or con-
stituents in a specific structure. Many of these new materials reveal a much more
complex behavior than traditional engineering materials due to their advanced struc-
ture or composition. Furthermore, the classical applications of many engineering
materials are extended to new ranges of applications and to more demanding envi-
ronmental conditions such as elevated temperatures. All these tendencies require
in addition to the synthesis of new materials, proper methods for their man-
ufacturing and extensive programs for their characterization. In many fields of
application, the development of new methods and processes must be accom-
plished by accurate and reliable modeling and simulation techniques. Only the
interaction between these new developments with regards to manufacturing, mod-
eling, characterization, further processing and monitoring of materials will allow
to meet all demands and to introduce these developments in safety-relevant
applications.

The 3rd International Conference on Advanced Computational Engineering and
Experimenting, ACE-X 2009, was held in Rome, Italy, from 22 to 23 June 2009
with a strong focus on the above mentioned developments. This conference served
as an excellent platform for the engineering community to meet with each other and
to exchange the latest ideas. This volume contains 23 revised and extended research
articles written by experienced researchers participating in the conference. The book
will offer the state-of-the-art of tremendous advances in engineering technologies of
materials with complex behavior and also serve as an excellent reference volume for
researchers and graduate students working with advanced materials. The covered
topics are related to Material and Properties Part I, Modeling and Simulation of
Non-classical Materials and Structures Part II, and New Technologies Part III.

The organizers and editors wish to thank all the authors for their participation
and cooperation which made this volume possible. Finally, we would like to thank
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vi Preface

the team of Springer-Verlag, especially Dr. Christoph Baumann, for the excellent
cooperation during the preparation of this volume.

Skudai, Malaysia Andreas Öchsner
Porto, Portugal Lucas F.M. da Silva
Halle, Germany Holm Altenbach
January 2010
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A Statistical Study on Stress-Strain Relation
of AISI 304 Stainless Steel Under Elevated
Temperatures

Modelling, Simulation, Testing, and Applications

S.H. Park, J.K. Kim, and J.H. Kim

1 Introduction

Stainless steel members have been increasingly used in the construction industry,
especially in architectural and structural applications because of high corrosion
resistance and aesthetic appearance as well as ease of maintenance and ease of
construction [1]. Currently available specifications for the design of stainless steel
structural members are mainly for structures at room temperature. However, the
material properties of stainless steel should be known at elevated temperatures for
the fire resistant design of stainless steel structures [2–4]. A conventional design
approach, which is based on somewhat arbitrary multipliers such as safety factors
and safety margins, gives little indication of the failure probability of the compo-
nent. The nature of mechanical behavior of materials and failure is probabilistic.
The strength of materials has variations from size effect, surface finish, notch effect,
etc. and the stress varies because of stress concentration, temperature factor, stress
combinations, etc. So, the conventional design approach is not adequate from a reli-
ability standpoint [5]. The statistical characteristics of tensile strength and yield
strength should be known to use a reliable design approach at elevated temper-
atures. The material chosen for the present investigation was AISI 304 stainless
steel (austenitic). The purpose of this study is to investigate the material’s tensile
properties at high temperatures, the distribution of the material’s strength at high
temperature and the use of normal statistical plot for a stress-strength interference
model.

J.H. Kim (B)
Department of Mechanical Design Engineering, Chungnam National University,
Daejeon, 305-764, Korea
e-mail: kimjhoon@cnu.ac.kr

3A. Öchsner et al. (eds.), Materials with Complex Behaviour, Advanced Structured
Materials 6, DOI 10.1007/978-3-642-12667-3_1, C© Springer-Verlag Berlin Heidelberg 2010



4 S.H. Park et al.

2 Theory

2.1 Statistical Distribution of Strength

The allowable stress should be less than the material’s strength to prevent failure.
The material’s strength is determined by standard test methods and specimens. But
it has a statistical distribution from the deviation of manufacture, microstructure,
test environment, etc. Moreover, there is variation of loads acting on the structural
materials from load and environmental conditions. So, the test result of the mate-
rial’s strength is non-deterministic but statistical. It is important to investigate the
distribution of the material’s strength to analyze its characteristics statistically.

The statistical plot is a simple and easy way to determine the statistical distribu-
tion. If the data on the statistical plot are linearly pointed, the statistical plot matches
the data. The correlation coefficient on some statistical plot shows the goodness of
fit. On the statistical plot, to calculate the cumulative probability, the data should
be arranged in ascending order. The mean rank is used to calculate the cumula-
tive probability for ordered data. Generally, the tensile and yield strength comply
with the normal distribution [6]. Therefore, the data were plotted on the normal
probability plot and its correlation coefficient was checked for yield strength and
tensile strength at each temperature to verify the linearity. Various characteristics
of the normal distribution function can be used. The center of normal distribution
curve corresponds to the average value. In the normal statistical plot, the probabil-
ity of 50% corresponds to the average (μ̄) and 84.135% to the standard deviation
added average (μ̄ + σ̄ ). Therefore, the standard deviation is a difference between
two probabilities.

In U.S. Military Handbook [7], they determine the allowable stress from A-Basis
or B-Basis for military planes and light alloy materials. The A-Basis means that
99% of the population has at least 95% reliability. The B-Basis means that 90% of
the population has at least 95% reliability. A-Basis strength and B-Basis strength
correspond to 1 and 10% probability respectively. A-Basis and B-Basis tensile and
yield strengths can be read from normal statistical plot. Test data were plotted on
the normal statistical plot by using a commercial data analysis program, OriginPro
ver. 7.5. A linear regression curve was drawn on the normal statistical plot. A-Basis
strength was chosen from the crossing point of 1% probability (y axis) and regres-
sion line. B-Basis strength was chosen from the crossing point of 10% probability
(y axis) and regression line.

2.2 Stress-Strength Interference Model

The stress-strength interference model is used in the reliability design approach.
In this model, the shaded portion in Fig. 1 shows the interference area, which is
indicative of the probability of failure. In the conventional design approach, a safety
factor is generally used. The safety factor (n) may be expressed as n = δ̄/s̄. Here,
δ̄ is a structural strength which is a material property and s̄ is an allowable working
stress. Generally, the ultimate strength is chosen to δ̄ and s̄ is constrained by safety
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Fig. 1 Stress-strength interference model

factor which is determined by application. Though the strength of material and the
stress acting on structure have statistical distribution, the design concept of safety
factor cannot consider the variation of stress and strength. If the stress acts in the
unexpected interference area the material may have failed as shown in Fig. 1.

Let the density function for the stress be denoted by fs(s) and that for strength by
fδ(δ). Then, by definition the reliability is

R = P(δ > s) = P(δ − s > 0) (1)

R =
∫ ∞

−∞
fδ(δ)

[∫ δ

−∞
fs(s)ds

]
dδ =

∫ ∞

−∞
fδ(δ) [Fs(δ)] dδ (2)

The probability of failure (unreliability) is defined as

R̄ = 1 − R = P(δ ≤ s) =
∫ ∞

−∞
[1 − Fs(δ)]fδ(δ)dδ (3)

If the strength of the material and the stress acting on the material are normally
distributed, the probability density function is given by

fs(s) = 1

σs
√

2π
exp

[
−1

2

(
s − μs

σs

)2
]

, −∞ < s <∞ (4)

fδ(δ) = 1

σδ
√

2π
exp

[
−1

2

(
δ − μδ
σδ

)2
]

, −∞ < δ <∞ (5)

Here, μ denotes the mean value and σ denotes the standard deviation.
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If the random variable y is defined as y = δ − s, y is normally distributed with a

mean of μy = μδ − μs and a standard deviation of σy =
√
σ 2
δ + σ 2

s . The reliability
R can be expressed in terms of y as

R = P(y > 0) =
∫ ∞

0

1

σy
√

2π
exp

[
−1

2

(
y − μy

σy

)2
]

dy (6)

If we let z be defined by z = (y − μy)/σy, the reliability is as follows and the
random variable z is the standard normal variable.

R = 1√
2π

∫ ∞

− μδ−μs√
σ2
δ
+σ2

s

e−z2/2dz (7)

Equation (7) may be rewritten as

R = 1 − F

⎛
⎝− μδ − μs√

σ 2
δ + σ 2

s

⎞
⎠ (8)

Although abnormally large stress acts on the component, the material should
endure this allowable stress Sa. Then the probability of failure is

Pf = F

(
Sa − μ
σ

)
(9)

We should determine Sa such the probability of failure (Pf ) should be lower that
the limit of some value of P. So, the allowable stress Sa is as

Sa = μ− F−1(1 − P)σ = μ− μpσ (10)

Here, μp = F−1(1 − P) is the upper tail probability of the standard normal dis-
tribution. As an example, for the confidence level of 99% (P = 0.01), the upper tail
probability is 2.326 and the allowable stress is Sa = μ−2.326σ . For the confidence
level of 90% (P = 0.10), the upper tail probability is 1.282 and the allowable stress
is Sa = μ− 1.282σ .

3 Experimental Procedure

3.1 Material

The material used in this study is AISI type 304 stainless steel. Table 1 summarizes
the chemical composition.
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Table 1 Chemical composition for AISI type 304

Element C Si Mn P S Ni Cr

Composition (max, %) 0.08 1.0 2.0 0.045 0.03 8∼10.5 18∼20

3.2 Tensile Tests

The tensile tests were conducted in accordance with ASTM E8 [8] and E21 [9]
using an MTS 810 servo-hydraulic test machine as shown in Fig. 2. Figure 3 is the
geometry of the test specimen. The thermocouples (K type) were attached at the
center of it. The test was run in strain control mode at a strain rate of 2 mm/min.
10 specimens were tested at each temperatures of 21, 100, 200, 350, 500, 650 and
800◦C. The heating speed was 1.9–2.0◦C/s and the temperature was maintained for
30 min. An extensometer with a total gauge length of 25 mm was used.

Fig. 2 Experimental setup for uniaxial tension tests under various temperatures

Fig. 3 Test specimen geometry (dimensions in mm)
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4 Results and Discussion

4.1 Tensile Characteristics

Load-displacement curves and stress-strain curves at room and elevated tempera-
tures are plotted in Figs. 4 and 5 respectively. The mechanical properties of AISI
304 stainless steel like ultimate tensile strength, yield strength, Young’s modulus
and elongation were obtained from the tensile test. Table 2 shows their average
(μ̄) and standard deviation (c̄), and the A-Basis and B-Basis strength calculated by
Eq. (10) (A-Basis at P = 0.01, B-Basis at P = 0.10).

The tensile strength, yield strength and elastic modulus decrease as the tempera-
ture increases. Figure 6 shows the tensile strength as a function of temperature. As
shown in Fig. 7, the elongation decreases as the temperature increases to 650◦C,

Fig. 4 Load-displacement
curves at various
temperatures

Fig. 5 Stress-strain curves at various temperatures
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Table 2 Tensile characteristics for AISI 304 stainless steel at various temperatures

Ultimate tensile
strength (MPa) Yield strength (MPa)

Young’s
modulus
(GPa)

Elongation
(%)

Temp. (◦C) μ̄ σ̄ A-basis B-basis μ̄ σ̄ A-basis B-basis μ̄ σ̄ μ̄ σ̄

21 691.6 7.97 673.1 681.4 322.7 7.49 305.3 313.1 199.0 8.98 78.4 0.84
100 562.2 3.52 554.0 557.7 268.9 3.45 260.9 264.5 187.7 7.02 52.0 0.49
200 502.0 3.17 494.6 497.9 233.0 4.91 221.6 226.7 183.2 3.84 44.5 1.12
350 492.9 10.81 467.8 479.0 202.4 3.16 195.0 198.4 173.1 7.83 42.9 0.93
500 448.2 3.70 439.6 443.5 182.0 3.56 173.7 177.4 167.4 3.72 36.1 0.27
650 327.4 10.92 302.0 313.4 156.4 4.91 145.0 150.1 151.9 5.79 31.5 0.55
800 170.0 7.04 153.6 161.0 113.0 5.57 100.0 105.9 111.4 5.16 43.1 1.80

Fig. 6 Tensile strength
at various temperatures

Fig. 7 Elongation at various temperatures
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but increases at 650–800◦C. Rhines and Wray [10] have pointed out that the
minimum ductility occurs in an intermediate temperature range for all ductile met-
als and alloys. At low temperatures, fracture occurs by the usual transgranular crack
propagation mechanism and ductility is high. At temperatures near minimum, defor-
mation occurs by grain boundary sliding, causing the formation of intergranular
cavities at triple junctions. At high temperatures, recrystallization occurs simul-
taneously with intergranular cavity formation as a result of which intergranular
crack propagation is retarded. The ductility therefore increases at high tempera-
tures. Sikka et al. [11] have reported elevated temperature tensile ductility minima
in AISI 304 and 316 stainless steels and their metallographic findings were found
to be consistent with the model proposed by Rhines and Wray. That is, the ductility
minimum was associated with the temperature, the strain rate and the metallurgical
condition under which intergranular crack propagation was not inhibited [12]. The
variation of ductility from different fracture mechanism is the cause of variation of
the elongation with temperature.

After the tensile test, the fractured specimens were analyzed by EDX (Energy
Dispersive X-ray) microanalysis. The wt% of carbon and chrome is plotted as a
function of temperature in Figs. 8 and 9 respectively. The AISI 304 stainless steel
is an austenitic type. An austenitic stainless steel has the characteristic of being
harder and more brittle at the temperature between 500 and 800◦C. This is due to
the precipitation of α phase chrome carbide (Cr23C6) in this temperature range. The
density of chrome in the material decreases as a result of the precipitation. From the
EDX analysis, it can be seen in Figs. 8 and 9 that the wt% of carbon and chrome
decrease above 500◦C.

SEM (Scanning Electron Microscope) images are shown in Figs. 10, 11, 12,
and 13. There are dimples associated with transgranular ductile fracture. As the
temperature increases, the size of the dimples increases. Up to 800◦C, evidence of
any intergranular failure was not found from the SEM images. The tensile ductility
of AISI 316 stainless steel is influenced by temperature as well as grain size. The
temperature corresponding to the ductility minimum increases with an increase in
grain size which is not considered in this study.

Fig. 8 Carbon wt% at various temperatures
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Fig. 9 Chrome wt% at various temperatures

Fig. 10 SEM image after
test at 21◦C

Fig. 11 SEM image after
test at 200◦C
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Fig. 12 SEM image after
test at 500◦C

Fig. 13 SEM image after
test at 800◦C

4.2 Statistical Test Results at Elevated Temperatures

The probability of yield strength and tensile strength at each temperature was plotted
on the normal statistical plot, as shown in Figs. 14, 15, 16, 17, 18, 19, and 20. At
each temperature, the normal statistical plot shows that the data are linearly plotted
and the r-values (correlation coefficients) are nearly 1.0. This means that the normal
distribution describes the variation of data in a good manner. The normal distribution
describes well the tensile strength and the yield strength at room temperature as well
as at elevated temperature. The A-Basis and B-Basis tensile and yield strength are
included in the normal statistical plot.
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Fig. 14 Normal statistical plot at 21◦C

Fig. 15 Normal statistical plot at 100◦C
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Fig. 16 Normal statistical plot at 200◦C

Fig. 17 Normal statistical plot at 350◦C
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Fig. 18 Normal statistical plot at 500◦C

Fig. 19 Normal statistical plot at 650◦C
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Fig. 20 Normal statistical plot at 800◦C

4.3 Use of Statistical Plot for Design

Figure 21 is a normal statistical plot and can explain the use of a stress-strength
model for statistical design. The mean and standard deviation can be read from the
normal statistical plot. The inclination of the points in normal statistical plot is the
variation of data. When the inclination increases, the standard deviation decreases.
If the stress acts as the dotted line, the material may be expected to fail. Though
the mean value of stress is less than the material’s tensile strength, the acting stress
has maximum 10% probability failure in Fig. 21. It corresponds to the interference
area of stress-strength model in Fig. 1. If we consider the A-Basis strength as the
minimum required level, the safe stress area is the shaded area. So, it is important
to know the distribution of strength in the lab test as well as the expected stress
distribution. Tables 3 and 4 shows that the difference between the value calculated
by Eq. (10) and the value picked on the normal statistical plot is almost the same.
The statistical plot is a very useful tool to guess the allowable strength.

5 Conclusions

This paper aimed to statistically analyze the strength data of AISI 304 stainless
steel at room and elevated temperatures. From tensile tests, material constants
such as ultimate tensile strength, yield strength, Young’s modulus and elongation
are acquired. The material characteristics at room and elevated temperatures were
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Fig. 21 Use of normal statistical plot for statistical design

Table 3 Comparison of A-basis and B-basis tensile strength

A-basis B-basis

Temp. (◦C) μ� σ� Plot Eq. (10) Plot Eq. (10)

21 691.6 7.97 674.5 673.1 682.2 681.4
100 562.2 3.52 554.0 554.0 557.6 557.7
200 502.0 3.17 494.7 494.6 497.9 497.9
350 492.9 10.81 470.2 467.8 480.1 479.0
500 448.2 3.70 439.6 439.6 443.5 443.5
650 327.4 10.92 302.0 302.0 313.4 313.4
800 170.0 7.04 153.6 153.6 160.9 161.0

Table 4 Comparison of A-basis and B-basis yield strength

A-basis B-basis

Temp. (◦C) μ� σ� Plot Eq. (10) Plot Eq. (10)

21 322.7 7.49 305.3 305.3 313.1 313.1
100 268.9 3.45 260.9 260.9 264.5 264.5
200 233.0 4.91 221.6 221.6 226.7 226.7
350 202.4 3.16 195.0 195.0 198.4 198.4
500 182.0 3.56 173.7 173.7 177.4 177.4
650 156.4 4.91 145.0 145.0 150.2 150.1
800 113.0 5.57 100.0 100.0 105.9 105.9

analyzed by using EDX analysis and the distribution of strength data was inves-
tigated by plotting on the normal statistical plot. The use of normal statistical
plot to express a stress-strength inference model graphically was investigated. The
following conclusions were obtained.
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(1) The tensile strength, yield strength and elastic modulus decrease as the tem-
perature increases. But the elongation decreases as the temperature increases
below 650◦C, but increases at 650–800◦C. The EDX analysis showed that the
precipitation of α phase chrome carbide (Cr23C6) at this temperature range was
the cause of hardening and embrittlement of this material. As the temperature
increases, the size of dimples increases.

(2) The tensile strength and the yield strength at elevated temperatures vary accord-
ing to a normal distribution. It can be confirmed on the normal statistical plot.
The normal statistical plot can be usefully utilized for statistical design just by
picking points. It gives various information such as the average, the standard
deviation, the safe design area, the allowable stress for the material, etc.
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Interaction Between Concrete Cylinders
and Shape-Memory Wires in the Achievement
of Active Confinement

Jean-François Destrebecq and Xavier Balandraud

Abbreviations

A austenite phase
M martensite phase
Mi martensite i-variant
As austenite start transformation temperature
Af austenite finish transformation temperature
Ms martensite start transformation temperature
Mf martensite finish transformation temperature
SMA(s) shape memory alloy(s)
Ni-Ti nickel-titanium

1 Introduction

The mechanical behaviour of structural concrete is governed by a process of damage
which results from the progress of macro or microcracks in the loaded material [1].
The damaging process can be delayed by applying a uni- or multiaxial compression
in order to counterbalance local tensile stresses in the material. This can be achieved
by means of passive or active reinforcement, external or internal to the concrete
component.

Shape memory alloys (SMAs) are known as smart materials due to their peculiar
thermomechanical properties, like the pseudoelasticity and the memory effect [2].
These properties take their origin from an austenite-to-martensite phase transition
occurring when stress or temperature changes. In particular, SMAs have the ability
to “freeze” the deformation in the martensitic state, then to recover their initial shape
in the austenitic state.
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Several reported experiments confirmed the feasibility of creating stresses in con-
crete components using SMA wires as external or embedded active reinforcement
[3–5]. Also, recovery forces resulting from the activation of shape memory effect
in SMA rods were used to reduce crack opening in a damaged structure [6]. In all
cases, the prestressing was achieved by thermal activation of the shape memory
effect in the SMAs. Difficulties of achieving permanent prestressing in the concrete
specimens were reported, due to unwanted stress loss upon cooling down of the
SMA wires [3]. According to Motavalli et al. [7], the loss is most likely caused by
improper choice of the SMA transformation temperatures. Another potential reason
is the stress induced austenite-to-martensite phase transition of the SMA [8].

Recently reported experiments showed that SMAs could be used to create con-
finement stresses in concrete cylinders in order to improve their performances in
uniaxial compression. Choi et al. [9] used austenitic and martensitic SMA wires
as external active reinforcement. The existence of a confinement effect was esti-
mated indirectly by looking at the concrete behaviour during crush tests. Cylinders
wrapped with prestrained martensitic wires showed an increase in their ductility and
ultimate compressive strength. On the contrary, cylinders wrapped with austenitic
wires at ambient temperature showed a ductility increase without increase in the
ultimate strength. The authors concluded in the existence of confinement stresses
due to the shape memory effect in the martensitic wires. This conclusion agreed
with experimental results previously reported by Krstulovic-Opara and Thiedeman
[10] who observed a substantial increase in the ultimate compressive strength of
plain concrete cylinders wrapped with SMA wires.

Attempts were done of estimating the progressive stressing of small-scale
SMA/concrete specimens caused by the shape recovery process in the SMA
[11, 12]. When the shape memory effect was activated by the heating of the
specimen, the prestressing effects were usually estimated by comparing strain mea-
surements in the SMA/concrete specimen with strain measurements in a plain
concrete companion specimen. By means of this method, compressive prestress-
ing up to 6 MPa has been estimated in mortar samples reinforced with SMA short
fibres [12].

The aim of the present work is to investigate the process of confinement of
concrete cylinders combined with wrapped SMA wires used as external active rein-
forcement. The objective is to get a precise description of the mechanisms involved
in the development of the confinement stresses due to the thermal activation of the
shape memory effect in the SMA. For this purpose, preliminary tests are carried out
in order to precisely determine thermomechanical properties of the SMA wire used
in the study. The experimental procedure consists in wrapping SMA wires in dif-
ferent martensitic states around a series of concrete cylinders. The circumferential
strains in the cylinders are monitored during the thermal activation of the memory
effect in the SMA in order to estimate the confinement stress state induced in the
concrete by the martensite-to-austenite transformation of the SMA. The transfor-
mation temperatures have been chosen in order to highlight the interaction between
temperature and recovery stress in the SMA during the transformation process,
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leading in some cases to partial stress loss due to austenite-to-martensite phase
transition of the SMA. The value of the prestrain of the martensitic wire is a key
point in the resulting amplitude of the shape memory effect. Having in mind that the
wrapping of the wire on the cylinder induces additional strains and stresses in the
wire, valuable information is expected from the tests about the influence of the wire
curvature on the effective confinement effect.

2 Creating Forces with SMA

Depending on the thermomechanical loading, a given SMA can exhibit different
mechanical behaviours. The present section briefly describes the physical phenom-
ena which explain how a SMA component may be used to create large forces taking
advantage of the shape memory effect.

The macroscopic properties of SMAs take their origin from a solid-solid phase
transition mechanism occurring when stress or temperature changes [2]. The parent
phase is called austenite (referred to as A below). It has a bold-centered-cubic struc-
ture in all known SMAs. The product phase is called martensite (referred to as M
below). It exhibits different types of structures which mainly depend on the compo-
sition. Due to the symmetry breaking involved in the transformation, the martensite
phase exhibits multiple variants (referred to as Mi below), which correspond to the
same crystal with different orientations in space with respect to the parent phase.
The atom displacements involved in a transformation A→Mi lead to a so-called
transformation strain. When the different variants of martensite exist in equal pro-
portion, the macroscopic strain is nearly equal to zero, and the martensite is said to
be “self-accommodated” [13].

Figure 1a, b present the phase diagram indicating the material state as a func-
tion of temperature and stress. The material can be either purely austenite, or purely
martensite (with various proportions of martensite variants), or a mixture of austen-
ite and martensite. Let us describe the evolution of the material state as a function
of the thermomechanical loading.

Starting from austenite, the martensite phase can be obtained by decreasing
the temperature or by increasing the stress. Figure 1a shows the two lines in the
temperature-stress plane which correspond to the beginning and the end of the
transformation A→M:

– The temperature at which the transformation A→M starts by cooling is named
Ms. The Mf value is the temperature at which the transformation A→ M finishes.
At zero stress, a self-accommodated martensite is obtained, leading to no change
in the specimen shape between the austenite state and the martensite state.

– Martensite appears also when stress increases at a given temperature. In this case,
the martensite obtained is not self-accommodated. As a result, large strains are
obtained.
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Fig. 1 (a) and (b) Phase diagrams in the temperature-stress plane. (c) and (d) Thermomechanical
loading steps to create forces in a SMA specimen

Starting now from the martensite phase, changes in the material state can be
obtained by increasing the temperature or by stretching the specimen (see Fig. 1b):

– A martensitic specimen returns to austenite state by increasing the temperature.
At zero stress, the temperature at which the transformation M→ A starts is named
As. The Af value is the temperature at which the transformation M→A finishes.

– The stretching of a purely martensitic specimen at a given temperature leads to
a change in its proportions of the martensite variants. The martensite is said to
be “reoriented” and the deformation is preserved upon unloading. As a result,
different shapes of a given martensitic specimen can be obtained at zero stress.

For Ni-Ti (nickel-titanium) SMAs, it is possible to have Ms < As as shown in
Fig. 1 [2]. Let us describe now the capability of creating forces with a Ni-Ti speci-
men in the case of an ambient temperature between Ms and As. Fig. 1c, d illustrate
the thermomechanical loading.

First stage: the objective is to stretch a purely martensitic specimen in order to
create a residual strain (prestrain). The following procedure enables to precisely
define the level of martensite reorientation (see Fig. 1c):

– step 1: increase the temperature to a value higher than Af in order to obtain a
purely austenite specimen.

– step 2: decrease the temperature to a value lower than Mf in order to obtain a
purely self-accommodated martensite specimen.



Interaction Between Concrete Cylinders and Shape-Memory Wires 23

– step 3: return to ambient temperature. The specimen keeps its self-accommodated
martensite state (since the ambient temperature is lower than As). No change has
occurred in the specimen shape since step 1.

– step 4: apply a mechanical load. The martensite is then reoriented. The shape of
the specimen is modified during this loading.

– step 5: return to zero stress. The martensite keeps its reorientation level reached
at the end of the previous step. The actual shape of the specimen is different from
the initial shape, due to the prestrain caused by the martensite reorientation.

Second stage: the objective is to create active forces at ambient temperature.
Starting from step 5, the following procedure is applied (see Fig. 1d):

– step 6: increase the temperature in order to return an austenite state while the
strain is fixed. The return to austenite leads to stresses, as the specimen would
like to recover its initial shape [14]. Indeed, the free-stress state of the austenite
corresponds to a strain equal to zero. As the strain is kept constant to a non-
zero value, stresses are created in the specimen. Note that the higher the imposed
prestrain obtained by reorientation, the higher the stress obtained.

– step 7: return to ambient temperature. Two cases must be distinguished:

• Case 1: during the temperature decrease, no martensite is created. The corre-
sponding final point in the temperature-stress plane is on the right-hand side of
the transformation starting line A→M (line including the Ms point). As a con-
sequence, the stress obtained at the end of step 6 is retained at the end of the
procedure.

• Case 2: during the temperature decrease, the corresponding point in the
temperature-stress plane crosses the transformation starting line A→M, which
means that martensite is created. As a consequence, a decrease in stress is
expected because the material optimizes the proportions of martensite variants
to relax the stresses in the specimen.

It can be noted that the classic effect of thermal expansion has not been included
in this presentation for the sake of simplicity. The next section describes the exper-
imental set-up to perform such a phenomenon with SMA wires wrapped around
concrete cylinders.

3 Experimental Set-Up

3.1 Materials

A nickel-titanium (Ni50.8-Ti49.2, at.%) wire 1 mm in diameter was used in the
present study. The choice was motivated by the performance of this type of SMA
regarding memory effects. The transformation temperatures were chosen in order
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to have the austenite-start temperature at about 23◦C. The effective transformation
temperatures were found as follows:

– martensite to austenite : As = 23◦C and Af = 28◦C,
– austenite to martensite: Ms = –10◦C and Mf = –25◦C.

It can be noted that Ms < 20◦C < As. This constraint is specially required for
the present application involving an ambient temperature at about 20◦C. This was
achieved by the supplier thanks to a specific thermal treatment.

A series of concrete cylinders were prepared for the tests, 74.4 mm in diameter
and 180 mm in height. The moulds were precisely cut from a polyvinyl chloride
(PVC) plastic pipe, such that their inside surface was smooth and they were all
very similar in geometry. The concrete mix was designed, aiming at a compressive
strength about 25 MPa at 28 days. The proportions used for the concrete preparation
were as follows (in kg/m3): gravel 1039.2, sand 782.7, cement 324.5, and water
176.1. Owing to the size of the samples, the maximum size of the coarse aggregate
(gravel) was limited to 12.5 mm.

For every cylinder, two pairs of metallic thread inserts were fixed inside the
mould before cast, in such a way to have them embedded in the concrete after
hardening (see Fig. 2). For each pair, the two inserts were positioned diametrically
opposite to each other at a distance of 20 mm from the nearest cylinder end (top
and bottom). The inserts were aimed at fixing the SMA wire ends on the cylinder
without damaging the concrete.

After cast, the cylinders were kept in the moulds and sealed with plastic foils
in order to avoid moisture loss. Foils and moulds were removed after 28 days of
hardening. Then the cylinders were kept in ambient in-door atmosphere until testing.

Fig. 2 Concrete cylinder types used in the study: (a) cylinder prepared for Young’s modulus and
Poisson’s ratio determination (b) cylinder prepared for confinement strain measurements (c) same
cylinder wrapped with a SMA wire with a 2 mm pitch
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3.2 Specimen Preparation

Four cylinders were prepared from the same batch:

– One of them was aimed at measuring the mechanical properties of the concrete
(Fig. 2a). It was equipped with two pairs of strain gauges. They were bonded
onto the concrete surface at mid-height of the cylinder: two gauges were bonded
opposite to each other parallel to its longitudinal axis; the other two were bonded
opposite to each other along its mid-height circumference.

– The other three were prepared for the active confinement tests (Fig. 2b). Each
cylinder was equipped with two strain gauges bonded opposite to each other along
its mid-height circumference. The gauges were aimed at measuring the circum-
ferential strain at the concrete surface of the cylinder in order to estimate the
confinement stress induced in the concrete by the SMA wire during the test.

All gauges were 30 mm in length. According to the supplier specifications, the
operational temperature is 80◦C for the gauges and the connecting leads, 120◦C for
the adhesive.

In order to get a close to uniform confinement stress over the cylinder lateral
surface, it was felt necessary to wrap the wire around the cylinder with a small con-
stant pitch. Preliminary calculations showed that the choice of a 1 mm diameter wire
with a constant 2 mm pitch would be a satisfying compromise. Owing to the cylin-
der dimensions, the total wire length required for wrapping one cylinder between
the two thread inserts was about 19.9 m.

The preparation of each specimen consisted in a sequence of operations in
order to prepare the SMA wire and to wrap it around the concrete cylinder under
controlled temperature conditions:

– transforming the SMA wire in the self-accommodated martensite state – this was
done by heating the wire up at a temperature over Af, then cooling it down at a
temperature under Mf (Fig. 1c, steps 1 and 2);

– stretching the SMA wire at ambient temperature (under As) to obtain a specified
prestrain in the reoriented martensite state (Fig. 1c, steps 4 and 5)

– wrapping the SMA wire around the concrete cylinder at ambient temperature
(under As) with a constant pitch equal to 2 mm.

Practically, each SMA wire was coiled round a 350 mm diameter drum and kept
in an oven at a temperature of 60◦C for 30 min. Then, it was cooled down and kept
in a freezer at a temperature of –30◦C. After that, the wire was ready for stretching
at ambient temperature. Despite its length (19.9 m), it was decided to stretch each
wire as a whole in order to ensure a uniform prestrain. This was done by setting the
wire horizontally and pulling its other end with a jack to a prescribed value. The
vertical sag of the wire was taken into account for this operation. After stretching,
the wire was wrapped around the concrete cylinder using a device specially designed
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to ensure a constant 2 mm pitch (Fig. 2c). All the operations were done at an ambient
temperature between 18 and 21◦C.

3.3 Thermal Loading and Strain Measurement

Thermal activation of the shape memory effect in the SMA wire was achieved
by heating the wrapped cylinders at a temperature above Af (i.e. the M→A final
transformation temperature).

For this purpose, the specimens were placed in an oven. The temperature was
increased at a constant rate of 1.6◦C/min up to 60◦C, and then decreased to 23◦C
at a rate about –1.2◦C/min. The total test duration was about 75 min. Values given
by the circumferential strain gauges were monitored and recorded during the whole
test for each cylinder.

The experiments were organized in two stages. In the former stage, the plain
cylinders (i.e. without SMA wires) were tested under the conditions described above
in order to record the influence of the thermal loading on the gauges and the con-
crete strains. In the later stage, the wrapped cylinders were tested under the same
thermal conditions. For each specimen, the difference between the strain measure-
ments obtained for the wrapped and the plain cylinder was assumed to reflect the
net deformation of the concrete caused by the activation of the shape memory effect
in the SMA, i.e. the net strains in the wrapped cylinder freed from the influence of
temperature on the concrete and the gauge measurements.

4 Preliminary Tests

4.1 Determination of Concrete Characteristics

The mechanical characteristics required for the concrete in the present study are
its Young’s modulus Ec and its Poisson’s ratio ν. For this purpose, compression
tests were carried out 105 days after cast on the cylinder equipped with four strain
gauges (Fig. 2a). The compressive stress was applied to the concrete in the range
0–2.5 MPa, which corresponds to the stress range expected in the wrapped cylin-
ders during the confinement tests. Average values of the Young’s modulus and
the Poisson’s ratio are calculated from the measured strains. The average values
obtained are as follows: Ec = 25.2 GPa and ν = 0.193.

4.2 Determination of SMA Wire Characteristics

The different steps described in Sect. 2 to create forces in SMAs were experimen-
tally performed on a Ni-Ti wire coupon 150 mm in length. The aim was to determine
the relationship between the tensile prestrain in the SMA wire in the martensite



Interaction Between Concrete Cylinders and Shape-Memory Wires 27

state and the tensile stress obtained in the wire after thermal activation of the shape
recovery. Some points are here detailed:

– The ambient temperature was the same for all tests: 19 ± 1.5◦C.
– The loading and unloading (steps 4 and 5) were applied with a MTS uniaxial

testing machine. Tests differ in the stretching amplitude imposed to the wire at the
end of step 4.

Figure 3 presents a typical strain-stress curve, corresponding here to the case 2
illustrated in Fig. 1d. Three quantities are defined:

– εmar is the strain obtained at the end of step 5, which is kept constant during the
final thermal loading (steps 6 and 7),

– σaus is the maximum stress obtained in the austenite state (end of step 6),
– σrec is the residual stress so-called “recovery stress” at the end of the procedure.

Figure 4 presents the values obtained for σaus and σrec as a function of εmar. As
predicted from Fig. 1d, the higher εmar, the higher σaus. It is also confirmed that
high values of εmar lead to recovery stress values σrec lower than σaus (see case 2 in
Fig. 1d). Indeed, σrec shows a constant value (205.3 MPa) for εmar ≥ 5.79 · 10−3.

Finally, the Young’s modulus of the austenite phase needs to be determined. To
be sure that the tested wire coupon would be in the austenite state, it was first heated
to a temperature higher than Af to obtain a purely austenite state. The return to room
temperature did not produce martensite because the room temperature was higher
than Ms. Then, the austenitic wire coupon was tensioned at ambient temperature.
Finally, the Young’s modulus of the SMA wire in the austenite state was determined
by comparing the applied tensile stress with the longitudinal strain measured during
the test. It was found to be equal to 62.9 GPa.

Fig. 3 Preliminary tests on Ni-Ti wires: typical strain-stress curve corresponding to the case 2 of
Fig. 1d
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Fig. 4 Preliminary tests on
Ni-Ti wires: results obtained
as a function of εmar (see
Fig. 3 for the meaning of
εmar, σaus and σrec)

5 Testing of Wrapped Cylinders

5.1 Characteristics of Tested Specimens

Two series of three specimens were prepared according to the procedure described
in Sect. 3.2. The specimens are called C1 to C6, by order of increasing prestrain in
the SMA wire. Data concerning the prestrain εmar and the corresponding recovery
stresses σaus and σrec are listed in Table 1 for the six specimens. The letter (a) or (b)
printed after every specimen name indicates which series the specimen belongs to.

Table 1 Effective prestrains (εmar) and recovery stresses (σaus at high temperature, σrec at ambient
temperature) in the SMA wires for the tested specimens

C1 (b) C2 (a) C3 (a) C4 (b) C5 (a) C6 (b)

εmar (10–3) 2.08 3.76 4.95 6.22 8.84 10.71
σaus (N/mm2) 78.8 139.1 178.9 218.9 292.4 338.2
σrec (N/mm2) 78.8 139.1 178.9 205.3 205.3 205.3

5.2 Test Results

The cylinders were tested after ageing between 100 and 105 days after cast. All three
specimens of the same series were placed together in the oven in order to achieve
the prestressing by thermal activation of the memory shape effect in the SMA. As
explained in Sect. 3.3, the net circumferential strains were obtained for each cylinder
by correcting the values given by the gauges by the corresponding values previously
recorded for the same cylinder previously tested without SMA wire (plain cylinder).
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Fig. 5 Development of
circumferential strains in
cylinders C2, C3 and C5
(series a) during the thermal
cycle

As an example, the net circumferential strains obtained for specimens C2, C3 and
C5 (series a) are shown in Fig. 5. The competition between the shape recovery of the
SMA wire due to the memory effect (transformation to austenite), and the thermal
expansion in the wire and concrete materials results in small circumferential strains
during the heating phase of the test, i.e. during the first 30 min of the thermal cycle.
A change is observed when the temperature begins to decrease. The progressive
development of a negative circumferential strain in the concrete observed in Fig. 5
shows the existence of a confinement effect caused by the developing recovery stress
in the SMA wire. The strain evolution is pretty similar for the three samples, until
the temperature reaches 50◦C (i.e. 40 min after test beginning). Under 50◦C, the
circumferential concrete strains evolve separately in the three specimens. Finally,
they stabilize when the temperature reaches about 23◦C.

It can be observed that the final values of the circumferential strains are similar
for specimens C2 and C3. A smaller strain value is obtained for specimen C5. This
trend is in contradiction with the values expected for the recovery stress σrec in
the three specimens (see Table 1): according to the respective prestrain εmar in the
wire, the largest circumferential strain would be expected in specimen C5 and the
smallest in specimen C2, with an intermediate value in specimen C3. The same trend
is observed in series b (not presented here). This point will be discussed in Sect. 6.

5.3 Post-processing of Strain Gauge Measurements

Based on the hypothesis of isotropic plane state of stresses, the circumferential strain
εc0 caused by a uniform confinement stress σcc applied to a plain cylinder can be
expressed as follows:

εc0 = (1 − ν)
σcc

Ec
. (1)
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There is no SMA wire wrapped within the zone where the circumferential gauges
are bonded to the concrete at the mid-height of the cylinder (see Fig. 2c). As a con-
sequence, no confinement force is applied to the concrete, leading to lower concrete
strains in this zone. Thus, the circumferential strain εcc to be expected at mid-height
of a wrapped cylinder can be expressed as follows:

εcc = εc0

ξ
, (2)

where ξ is a correction coefficient (ξ > 1). A finite element analysis was carried out
under the hypothesis of axi-symmetry in order to determine the appropriate value
for ξ . Precise values were considered for the geometry and the mechanical charac-
teristics of the wrapped cylinder. A value of 1.464 was obtained for the correction
coefficient ξ .

From Eqs. (1) and (2), the confinement stress σcc corresponding to the circum-
ferential concrete strain εcc measured at mid-height of a wrapped cylinder can be
expressed as follows:

σcc = ξ
Ecεcc

(1 − ν)
. (3)

Based on local static equilibrium in the wrapped zone of the cylinder, the expres-
sion of the tensile force F in the SMA wire corresponding to the confinement stress
can be easily derived:

F = pD

2
σcc, (4)

where p is the pitch and D is the diameter of the concrete cylinder.
The effective tensile stress σSMA in the SMA wire is obtained by dividing the

force F by the cross-section area AW of the SMA wire with account of Eq. (3),
hence:

σSMA = ξpD

2(1 − ν)AW
Ecεcc. (5)

Finally, the expected confinement stress σcc,exp induced by the recovery stress
σrec given in Table 1 for every tested specimen, is easily derived taking F = AWσrec
in Eq. (4):

σcc,exp = 2AW

pD
σrec. (6)

Equations (3), (5) and (6) will allow us to derive the effective confinement stress
σcc in the concrete and the effective tensile stress σSMA in the SMA wire from the
values of the circumferential strain εcc measured during the thermal cycle, and to



Interaction Between Concrete Cylinders and Shape-Memory Wires 31

estimate the expected confinement stress σcc,exp in terms of the expected recovery
stress for each tested specimen.

5.4 Effective Confinement Stress

The values obtained for the net circumferential concrete strains εcc after thermal
activation of the SMA memory effect and cooling down to 23◦C are listed in Table 2
for the six tested specimens. The corresponding values of the confinement stresses
σcc in the concrete are processed from the measured circumferential strain values
εcc by means of Eq. (3). The expected values of the confinement stresses σcc,exp
are derived from Eq. (6) for the expected values of the recovery stress σrec given
in Table 1. In order to compare the expected values with the effective values of the
confinement stress derived from tests, the σcc/σcc,exp ratio was calculated and is
plotted in Fig. 6 in terms of the initial prestrain εmar in the SMA wire.

Surprisingly, the confinement effect is much higher than expected (σcc/σcc,exp>1)
when the initial prestrain is low. On the contrary, the confinement effect is much
lower than expected (σcc/σcc,exp<1) when the prestrain in the SMA wire is high.
In between, the σcc/σcc,exp ratio sharply decreases when the SMA prestrain is

Table 2 Results for the tested specimens

C1 (b) C2 (a) C3 (a) C4 (b) C5 (a) C6 (b)

εcc (10–6) –39.4 –39.8 –39.0 –41.7 –28.6 –24.9
σcc (N/mm2) –1.80 –1.82 –1.78 –1.91 –1.31 –1.14
σcc,exp (N/mm2) –0.83 –1.47 –1.89 –2.17 –2.17 –2.17
σSMA (N/mm2) 170.6 172.4 168.9 180.6 123.9 107.8
σcc/σcc,exp (–) 2.16 1.24 0.94 0.88 0.60 0.53

Fig. 6 Effective to expected
confinement stresses ratio in
terms of the wire prestrain
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increased. The balance (σcc/σcc,exp = 1) is obtained for prestrain in the wire of
about 5·10–3. This result highlights the complex interaction between cylinder and
wire responses. It can be concluded that the confinement effect in the cylinder is not
resulting only from the recovery of the tensile prestrain in the wire. An additional
phenomenon should be considered involving a more complex interaction between
the SMA wire and the concrete cylinder. In the next section, the hypothesis of an
influence of the curvature caused by the wrapping of the wire around the cylinder is
investigated.

6 Effect of the Curvature on the Recovery Stress

It is obvious that the effective tensile stresses σSMA obtained in the wrapped SMA
wires (see Table 2) are in no agreement with the recovery stresses σrec expected from
the prestrains εmar produced by stretching of the martensitic wires before wrapping
(Table 1). The two sets of values are plotted in Fig. 7 in terms of εmar. On the left
hand side of the figure (‘low’ εmar values), the effective tensile stress σSMA has a
constant value, whereas the expected values σrec increase with increasing values of
εmar. On the right hand side of the figure (‘high’ εmar values), the effective tensile
stress σSMA decreases, with a maximum ‘loss’ about 37%.

Based on these observations, the issue of an additional interaction phenomenon,
due to the effect of the wrapping of the wire on the cylinder can be addressed. As a
matter of fact, the wrapping induces an additional deformation of the wire in order
to fit the geometry of the cylinder. Indeed, the additional deformation corresponds

Fig. 7 Comparison between the expected recovery stress and the effective residual stress in the
wire in terms of the wire prestrain
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to a bending curvature with a fixed value. Taking the cylinder and the wire radii into
account, the curvature is found equal to 26.5 m–1. The corresponding maximum
strain in the martensitic wire is equal to the curvature multiplied by the wire radius.
It is found equal to 13.3 10–3, which is higher than the highest value of the prestrain
εmar in the martensitic wire (see Table 1). For low εmar values, the resulting strains in
the martensitic wire are dominated by the curvature effect, leading to about constant
effective stresses in the austenitic wire after the thermal cycle. For high εmar values,
the strains and stresses induced by the curvature combine with the tensile prestrains,
leading to decreasing effective stresses in the SMA wire. The fact that the effective
values of the wire stresses are lower than the maximum value (205.3 MPa) obtained
for the recovery stress can be a result of the gradient in the additional strain through
the wire diameter.

Finally, in order to confirm the influence of the wire curvature on the confine-
ment effect, one additional test was carried out with a cylinder wrapped with a
non-stretched martensitic wire, i.e. εmar = 0 and σrec = 0. The final effective con-
finement stress obtained in the concrete was found equal to 1.77 MPa, which is
pretty close to the values obtained for specimens C1 to C3 (see Table 2). The effec-
tive stress in the SMA wire was found equal to 167.6 MPa. This value is plotted
in Fig. 7 (cylinder C0). It can be concluded that the confinement effect is signifi-
cantly modified by the curvature strains due to the wrapping of the SMA wire on
the cylinder.

7 Conclusion

The confinement of concrete cylinders wrapped with Ni-Ti SMA wires was
investigated. The main results are as follows:

1. An active confinement at ambient temperature is possible using a SMA wire with
suitable transformation temperatures. The martensite start (Ms) and the austenite
start (As) temperatures must be chosen to be lower and higher respectively than
the ambient temperature. So it is possible to stretch the wires in their martensitic
state before wrapping around the cylinders. The recovery forces are developed
by heating and they are retained when returning to ambient temperature.

2. The influence of the initial stretch of the wires on the final confinement is
evidenced. Surprisingly, it is observed that the confinement level is constant
for low-stretched wires and decrease for higher values of wire stretch. This
behaviour is not predictable from results obtained with straight wire coupons
tested under uniaxial tension.

3. A complex interaction between cylinder and wire responses may explain this
result. An additional test with a non-previously stretched wire shows that an
active confinement is also obtained. This result illustrates that the curvature due
to the wrapping around the cylinders has an effect on the confinement.
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Mathematic Modeling of the Osprey Process

M. Bodea, R. Muresan, and C.V. Prica

1 Introduction

Spray forming is a flexible process which can be used to manufacture a wide range
of materials that are difficult to be produced by other methods such as: metal matrix
composites (MMCs), Al–Si alloys or high speed steels with a relatively fine-scale
microstructure in large cross-sections [1].

The process benefits arise from the single-step operation of converting molten
alloy directly into a semifinished product. The high solidification rate in spray form-
ing promotes the microstructural refinement and allows to obtain a wide range
of alloys free of macrosegregation. The range of products currently being manu-
factured covers a broad spectrum of shapes, alloys and markets, including round
billets, tubes, rings, and clad rolls, for automotive, military, electronic and aerospace
applications [1, 2].

Spray deposition involves atomization of a molten material by high velocity gas
jets into a spray of micron-sized droplets which are subsequently propelled and
deposited onto a substrate to produce preforms of desired shapes [3–5]. The main
process variables which influence the thermal state of the spray during flight and
the deposition stage are: the nozzle assembly, the atomization gas pressure, melt
superheat and the nozzle to substrate distance [3, 4, 6].

In the past, many attempts have been made for modeling the various steps
involved in spray forming [5–7] that have evolved today in complex studies trying to
combine all aspects involved in the process. Some of them have tried to simplify the
mathematic model [8] preserving however good correlations between the outcome
and the experimental observations.

Meanwhile new technologies were developed using new materials and widening
the range products. An example is the spray rolling which is a relatively new strip-
casting technology, being developed, that combines elements of spray forming and
twin-roll casting [4, 5].
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This work tries to contribute to overall knowledge in the field taking in account
the phenomena involved in the spray forming, starting with the melt flow study
from the crucible through the nozzle. Then, the gas flow, droplets velocity and the
heat transfer mechanisms are modeled using numerical methods implemented in
integrated software developed by the authors, called MetLAB [9].

2 Model Formulation

2.1 Modeling of the Melt Flow Rate

The melt flow rate represents a key variable that has a direct influence on the atom-
ized droplets and on the deposition process. The head loss was calculated using
the Colebrook implicit equation [10] that was solved by Ridder’s numerical method
[11]. A software program called MetLAB [9] was realized for this study, and the
iterations were performed tacking in consideration the variation of the metal head
or liquid delivery nozzle diameter.

The exit liquid velocity through the delivery nozzle was calculated using the
Bernoulli equation [12, 13], Eq. (1), for the system shown in Fig. 1:

z1 + u2
m1

2α1 · g
+ p1

γm
= z2 + u2

m2

2α2 · g
+ p2

γm
+
∑

hL (1)

Fig. 1 Variables used in the
melt flow rate mathematical
model



Mathematic Modeling of the Osprey Process 37

where z1,2 (m) represents the height of the liquid head from the exit section of the
liquid delivery nozzle measured from a reference plane; um1,2 (m/s) represents the
melt flow velocity related to the z1,2 liquid head sections; α1,2 is the velocity distri-
bution coefficient which is approximately 1 for turbulence flow and 0.5 for laminar
flow [10]; p1,2 (Pa) is the medium pressure related to z1,2 liquid head sections and
ΣhL(m) represents the total losses due to friction and section variations.

The energetic loss hf (m) due to friction in the delivery nozzle is expressed by
the Darcy–Weisbach formula [1, 13], Eq. (2), where Hn (m) stands for liquid nozzle
height and dn (m) for liquid nozzle diameter:

hf = f · Hn · u2
m2

dn · 2 g
(2)

The friction factor f from Darcy–Weisbach formula, Eq. (2) could be determined
using an empirical formula proposed by Colebrook [13] expresed in Eq. (3), where
ε represents the rugosity factor of the delivery nozzle surface and Re is the Reynolds
number.

1√
f

= −2 · log

(
ε

dn · 3.7
+ 2.51

Re · √f

)
(3)

Because the Colebrook formula is an implicit equation, the solution could be
found using a numerical method. In this paper we have used the Ridder’s method
[11] which was implemented in MetLAB program [9] to solve the Colebrook
implicit equation.

The energetic loss he (m) due to the geometric changes at the entrance of deliv-
ery nozzle depends mainly on the nozzle entrance angle (Fig. 1), quantified by the
entrance loss coefficient ke as expressed in Eq. (4):

he = ke
u2

m2

2 g
(4)

The metal flow expression Qm (m3·s–1) given in Eq. (5) is obtained from
Eq. (1) after replacing the expressions: (z1–z2)=Hm+Hn and the melt stream veloc-
ity um1=um2·S2/S1 and neglecting the fraction (1/S1)2 because the crucible section
S1 is much larger than the exit section S2 of the delivery nozzle.

Qm = S2 ·

√√√√√2 g
(

Hm + Hn − �p
γm

)
(

f Hn
dn

+ ke + 1
) (5)

In Fig. 2 is shown the experimental and predicted values of the melt flow rates
for different alloys and nozzle sizes. The height of metal head in crucible was main-
tained aproximately to 300 mm and the melt was overheated about 100◦C above
liquidus temperature.
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Fig. 2 Experimental and
modeling of the melt flow for
different alloys (a) Cu80Ni20
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It can be observed a resonable correlation between modeled and experimental
results for the melt flow rate, especially for the smaller liquid delivery nozzle diam-
eters. The deviation from the predicted values that occurs in case of large melt flow
rates can be interpreted as a result of crucible metal head variation and also due to
the incorrect assessment of the entrance loss coefficient, or relative roughness ε of
the delivery nozzle.

2.2 Modeling of Gas Flow

The dynamics of the gas flow has direct influence on the first stage of the spray
forming. The momentum and the heat transfer of the molten droplets will determine
the microstructure and the preform properties. For that reason, the modeling of the
gas flow represents also one of the key processes for optimization purposes.

The gas velocity is maximum at the exit section of the atomizer nozzle and is
decreasing with the increasing distance Z (m) from the head atomizer, as expressed
in Eq. (6), [6, 8].
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ug (Z)

u0
=

[
1 +

(
Z

λ

)20
]−0.05

(6)

λ = 7.414
√

Sn (7)

where ug(Z) is the axial gas velocity (m·s–1), uo (m·s–1) the initial gas velocity from
the atomizer nozzle, Z (m) the axial distance from the atomizer, λ the exponential
gas velocity decay, Sn (m2) the exit area of the atomizer nozzle and r (m) the radial
distance from the axe of the atomizer nozzle. The gas velocity in a point described
by the coordinates (Z,r) is given by Eq. (8) [7]:

ug(Z, r) = ug(Z, 0) · r
0.004
0.268 + Z

(8)

The software program realized by the authors called MetLAB [9], was developed
in Borland C++ Builder, could represent the 2D distribution of the gas velocity
according to initial conditions: the gas properties, atomiser head geometry and the
gas pressure, Fig. 3.

Fig. 3 Two-dimensional map of gas velocity definition in the MetLAB program

2.3 Modeling of the Droplets Velocity

The molten droplets and the ligaments after the secondary disintegration are
assumed to have a spherical shape. These droplets are accelerated or decelerated
during their motion into atomization chamber, accordingly to the 2nd Newton’s law
that has the form expressed in Eq. (9), [7, 6].

4

3
πr3

pρm
d(up)

dτ
= 4

3
πr3

p(ρm − ρg) − CDπr2
p

2
ρg

(
up − ug

) ∣∣up − ug
∣∣ (9)

where rp(m) is the droplet radius, ρm, ρg (kg·m–3) are the melt and the gas density,
respectively up, ug (m·s–1) are the droplet and the gas velocity.
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Equation (9) takes in consideration the inertial force, gravitational force and the
droplet drag force that depends on the relative speed between the droplets and the
surrounding gas, where the drag coefficient CD is related to the Reynolds number
by Eq. (10), which is defined in Eq. (11).

CD = 0.28 + 6
√

Re + 21

Re
(10)

Re = ρg · ∣∣up − ug
∣∣ · dp

ηg
(11)

Because Eq. (9) is an implicit ordinary differential equation that has not an ana-
lytical solution, a numerical integration is required. In order to solve this set of
equations the fourth-order Runge–Kutta method [11] has used and implemented in
the MetLAB program.

Studying the data presented in Fig. 4, we observe that the finer droplets are sub-
jected to higher accelerations and decelerations relative to the coarse particles. This
behavior is a consequence of the inertial forces that are related to the droplets mass.
The Reynolds number becomes zero when the relative speed between the droplets
and the gas is also zero. After this point, the droplets suffer a deceleration influence
from the gas stream.

Fig. 4 Droplets and gas velocity vs. flight distance calculated with the MetLAB program

2.4 Modeling of the Droplets Heat Transfer

The heat extraction from the droplet is realised by convective and radiation mecha-
nisms transfer. The heat conduction within the droplet is neglected considering that
the temperature of the droplet is uniform. Assuming a spherical shapes for particles,
we have Eq. (12) for the heat balance, [7, 6], where ε is the emissivity of the particle
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surface, kSB is the Stefan-Boltzmann constant and hc the heat transfer coefficient for
a particle given by Eq. (13):

− ρp
4πrp

3

3
CpL

dTp

dτ
= hc

(
Tp − Tg

)
4πr2

p + εkSB

(
T4

p − T4
g

)
4πr2

p (12)

hc = kg

dp

(
2 + 0.6 · Re0.5 · Pr0.33

)
(13)

Pr = ηg
CpG

kg
(14)

The Prandtl number is expressed in Eq. (14), where kgis the gas thermal conduc-
tivity, ηg the dynamic gas viscosity and Cpg the gas specific heat. The solidification
process occurs in distinctive stages: in the 1st stage we have cooling in the liquid
phase, in the 2nd stage the recalescence of particle is produced, in the 3rd stage we
have segregated solidification followed by possible reactions at constant tempera-
ture (i.e. peritectic or eutectic reaction, corresponding to the 4th stage) and finally
in the 5th stage we have cooling in the solid state. Each stage of the solidification
process is described by a balance heat equation. The first stage is completed when
the droplet temperature reach the nucleation temperature TN, the degree of droplet
undercooling being calculated using Eq. (15):

�Tactual undercooling = �Thomogeneous · exp(−2.2 · 1012 · Vp) (15)

In the 2nd stage the particle recalescence is produced, which is a rapid heating
of an undercooled droplet due to the nucleation of the solid phase. The recales-
cence process is considered complete when the rate of heat release is equal to the
rate of heat extraction from the droplet. The recalescence is completed in less than
10–6 s.

TR =

⎧⎪⎨
⎪⎩

TL if
Hf
CpS

+ TN > TL

Hf
Cps

+ TN if
Hf
C pS + TN ≤ TL

(16)

The solidified fraction is calculated based on the thermal energy balance between
the latent heat released and the thermal energy which is needed to accommodate the
temperature rise in the droplet, Eq. (17).

Hf · fr = (TR − TN)
[
CpL (1 − fr)+ CpS · fr

]
(17)

fr = CpL · (TR − TN)

Hf + (
CpL − CpS

)
(TR − TN)

(18)
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In the next stage, the segregated solidification, the completion of the recalescence
process is described by the Scheil equation [6–8]:

(cL − cS) df = (1 − f ) dcL (19)

which after integration becomes:

f = 1 − (1 − fr)

(
cL − cref

c0 − cref

)1/(ke−1)

(20)

In terms of temperature variables, we get the final equation that express the
fraction solidified in this stage, Eq. (21):

df

dT
= (1 − fr)

(ke − 1)
(
Tref − TL

)
(

Tref − Tp

Tref − TL

)(2−ke)/(ke−1)

(21)

For the final stage (cooling in the solid state), we use the Eq. (12) where CpL was
substituted by CpS.

The finer droplets are cooled at higher rates and also the undercooling degree is
greater for the smaller particles, Fig. 5. The solidification process occurs, however,
in a shorter time relative to the coarse ones. The solidified fraction shows us the evo-
lution of the solidification process vs. the droplet flight distance in order to establish
the optimum distance of the preform relative to the atomization head. That distance
is affected also by the atomization gas, as can be seen in Fig. 6, where the same
droplet has a different thermal history and the solidification occurs more rapidly in
the nitrogen atomization case.

Fig. 5 Droplets temperature history and solidified fraction vs. flight distance calculated with the
MetLAB program
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Fig. 6 Temperature history
and solidified fraction vs.
flight distance for a 80 μm
droplet’s size in a N2 and Ar
gas atomization

3 Conclusions

1. The atomising gas mass flow rate to molten metal mass flow rate ratio is a key
parameter in controlling the droplet diameter and hence the cooling rate, billet
temperature and resulting solid particle nucleant density.

2. The droplet diameters, are in the range 40–400 μm diameter with a mean diam-
eter of ~160 μm. The droplet diameter governs the dynamic behaviour of the
droplet in flight which in turn determines the time available for in-flight cooling
which is critical in controlling the resulting billet microstructure.

3. The droplet velocities are in the range of 30–40 (ms–1) for droplets diameters
in the range 80–125 μm and at distance of up to 300 mm from the atomization
head the droplets are accelerated by the gas.

4. The heat extraction from the droplet is realised mainly by convective and radia-
tion mechanisms transfers. The smaler droplets can experience undercoolings of
up to 250◦C prior to nucleation.

5. Not all droplets that impact the billet surface are incorporated. Some solid
droplets will splash-off the billet top surface or will be directed out of the
deposition region by turbulent gas movement in the atomization chamber.

List of Symbols

CpL specific heat of the liquid droplets J·kg–1·K–1

Cps specific heat of the solidified droplets J·kg–1·K–1

Cpg specific heat of the gas J·kg–1·K–1

CD drag coefficient –
dn liquid nozzle diameter m
f Colebrook friction factor –
fr solidified fraction of the droplet –
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Hf enthalpy of fusion J·kg–1

Hm liquid metal head m
Hn liquid nozzle height m
kg thermal conductivity of the gas W·m–1·K–1

kSB is the Stefan-Boltzmann constant W·m–2·K–4

M atomic weight of alloy kg mol–1

Qm melt flow rate m3·s–1

p1,2 medium pressure related to z1,2 liquid Pa
head sections

Pr Prandtl number –
Re Reynolds criteria –
R universal gas constant J·mol–1·K–1

rp droplet radius m
T melt temperature K
TL alloy liquidus temperature K
TN nucleation temperature K
TR recalescence temperature K
um1,2 represents the melt flow velocity related to z1,2 m·s–1

liquid head sections
up droplet velocity m·s–1

ug gas velocity m·s–1

Z distance from the atomizer m
Z1 liquid head height m
Z2 exit section height of liquid delivery nozzle m
Vp droplet volume m3

ΣhL total losses due to friction and section variations m
α1,2 velocity distribution coefficient –
μm melt viscosity Pa·s
ηg dynamic gas viscosity kg·m–1·s–1

σm surface tension of melt N·m–1

ρm melt density kg·m–3

ρg gas density kg·m–3
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Cyclic-Bend-Over-Sheave Fatigue Testing
of an Umbilical for Oil Production
in Ultra-Deep Waters

Paula Ferreira Lépore and Miguel Angel Buelta Martinez

1 Introduction

During the last two decades, technological qualification for oil production and gas
fields located up to 1,000 m water dephts developed, consolidating the existing oper-
ational experience. However, a series of challenges and difficulties will have to be
faced and overcome to increase the oil production for fields located in ultradeep
waters (beyond 2,000 m). A much more compreensive analysis of this case scenario
discloses different technological demands. Among those, there is the development
of a brand new technology regarding the submarine umbilicals used for control and
base connections. That aproach shall consider all the structure life span: design,
manufacure, prototype testing, installation and in loco operation.

Basically, the structural basic conception of an umbilical consists in overlapping
plastic and metalllic layers that supply internal and external tightness, and structural
strenght, keeping its functional core intact. The different characteristics of those
materials, their mechanical properties, as well as their behavior under different kinds
of loads, make it rather difficult for any type of simplified modeling approach.

It is proven that this kind of numerical and mathematical modeling might become
very laborious due to the umbilcal constructive conception, with different materi-
als and built-in layers. The assembly of the transversal section of an umbilical is
based on the principle of a core with functional components that must be protected
from external loads by a series of concentric layers (Fig. 1). The components are
normally the following: electrical and/or optic cables; hydraulic hoses; chemical
injection hoses. The umbilical major characteristic is that it is flexible so that the
line can be easily spooled over transport reels to smooth the progress of the instal-
lation operation. Also, the flexibility of the line is an important factor as it shall not
restrict the movements of the floating unit which the umbilical is attached to during
the operation process.
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Fig. 1 Typical umbilical section

As a basic step for the design of an umbilical line, its utilization and ultimate
strength limits and inner stresses and strains have to be well defined. Those limits,
when exceeded, may cause comprehensive damages to the functional elements core.

The evaluation of the strength limit of an umbilical line, during the design
phase of a specific production system consists basically of a general analysis of
the interaction among the different material layers.

That task must be optimized in order to establish the correct dimensions and
materials, considering critical operational and installation loads. The traditional
methods applied to describe an umbilical structure are bi-dimensional models, con-
sidering only the axi-symmetrical loads, such as tensile and pressure loads [1].
Those cannot adequately describe the three-dimensional ‘Stress x Strain’ state of
this multi-layered structure.

So as to improve those deficiencies, a three-dimensional numerical model for a
reduced longitudinal portion of an umbilical cross-section was developed. In order
to create a comprehensive basis of experimental data, a series of umbilical samples
were submitted to different load conditions, simulating its operation and installation
conditions. The functional core and the strength elements were monitored in order
to feed the numerical model. For this purpose, two test rigs were assembled.

With the data of both the physical and numerical experimental analysis at hand,
a comparative study was performed, aiming at presenting an optimized tool for
designing an umbilical cross section.

One of the main purposes of this work was to add detailed information and
to define some aspects that would provide a more practical tool for the thecni-
cal qualification requirements presented to umbilical manufacturers, during the
bid phase. A specific technical regulation for great depths umbilicals that does
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not exist: usually, the manufacturer would inform the utilization factor of the struc-
ture (life span, minimum bend radius for operation and installation, maximum pull
in straight line, etc).

Therefore, considering the growing need to optimize the structure design, the
simulation through experimental tests of the structure behavior of a representative
type of umbilical during its phase of installation and operation was proposed.

The specifications [2, 3] provide details on design tools, manufacturing, as well
as the homologation of those phases for multi-function umbilicals, for both static
and dynamic applications.

Each type of experimental test proposed at this phase had its specific objectives,
such as fatigue analysis simulating the installation and operations conditions.

2 Fatigue Tests

This test (Fig. 2) simulates the installation operation of an umbilical line (critical
load condition), during which a combination of tensile and bending loads occurs.

Three samples of a typical cross-section umbilical were submitted to a combi-
nation of f bending cycles under tension (Table 1). This test program is meant to
simulate the interruption of the installation process during a certain period, and the
flexible line will be exposed to the inherent movements of the vessel.

Fig. 2 Fatigue test ig

Table 1 Test program

Sample Tension (tf) Cycles “f” (cycles/min) “T” (s)

CP1 60 30,000 10 6.0
CP2 30 30,000 8 7.5
CP3 30 100,000 10 6.0
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Those values were supplied by the manufacturer and represent the percentages of
the tension during the installation phase. In this case, the highest value adopted was
the maximum installation load obtained trough a global dynamic analysis performed
by the manufacturer for the electrical-optical cable umbilical: 3 × 240 mm2 + 12CE
(RONCADOR Field) (Fig. 3).

Two positions of the umbilical were monitored with strain gauge transducers
(Fig. 4).

At one of those positions, the tensile stress was predominant (section “T”), and
at the other, the bending combined with tensile (section “F”). Position “F” is at a
region in which the umbilical was always in contact with the wheel. Because of
that, it was submitted to constant bending combined to tensile stress.

Fig. 3 Electro-hydraulic umbilical: 3 × 240 mm2 12/20 kV + 12 single mode optical fibers

Fig. 4 Strain gauges positioning
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The “T” position is at a region not in contact with the wheel and only submitted
to tensile stresses.

At both positions, strain gauges were positioned over the external steel armor.

3 Numerical Analysis

In general, the usual numerical analysis methods for flexible lines consider only
two-dimensional models and axi-symmetric loads, not being able to simulate the
particularities of some of the critical conditions of the umbilical life operation.
Using the premises of the FEM (Finite Element Method), an optimization analy-
sis of the interaction among the varius types of layers of an umbilical under critical
load conditions was performed. A pre-processor GERFLEX [1] was used for the
preparation of the entry data, such as geometry and material caracteristics,. That
tool was important in order to smooth the progress of the activities of modeling and
adjusting the umbilical typical cross-section. The phase of mathematically process-
ing was performed by ANSYS which, associated with the pre-processor GERFLEX,
supplied the data for the results complete analysis.

3.1 Calculus Hypothesis

3.1.1 Plastic Layers

The external plastic layer (high density polyethylene – HDPE), is normally extruded
over the external tensile armor, providing waterproof and a protective element for
the internal core against corrosion, abrasion and impact. It also helps to keep the
wires of the tensile armor in their correct position.

The internal plastic layer manufactured of low density polyethylene (LDPE), is
extruded over the filler (elastomer) acting as an isolating and protection element

Fig. 5 Material properties
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for the copper conductors and the optic fiber. It is also capable of transmitting the
contact loads between the metallic layer and the adjacent rubber filler.

For the modeling of those two plastic layers, the inherent material non-linearities
and the viscoelastic properties of the polyethylene material were considered (Fig. 5).
Therefore, a solid isoparametric type element was chosen: 8-point brick type, with
capacity up to 20 intermediate points and with 3 degrees of freedom for each
point.

3.1.2 Steel Armors

The tensile armor is composed by two internal layers of steel wires conformed
around the core with a helical shape. Those two complementary layers are posi-
tioned with opposing angles between them (the layers are placed so as to directly
resist the axial loads applied to the line, converting this tension into a contact pres-
sure among the internal layers [4]. The geometry non-linearities (system with large
deformations) were taken into account by adopting elements joined continuously in
several helical springs, representing groups of neighboring wires.

3.1.3 Electric-Optic Nucleus

The electro-optic crore is composed of electric and optic cables, extruded over
an elastomer of propilene-ethylene. To model this set of elements, the average
properties of the electrical core were evaluated with the data supplied by the man-
ufacturer. The representative element type of the functional core was chosen taking
into account the fact that the largest percentage of its composition (more than 80%)
consists of extruded rubber (EPR). The same type of element used for the plastic
layers was adopted for this case.

3.1.4 Contact

The steel-plastic contact is represented by an axi-symmetric surface contact (the
contact elements are contained into a surface while the target elements are posi-
tioned at the other one). The plastic layers were defined as the contact surface, while
the metallic layers were assigned as a target surface. After the definition of the ele-
ment type, the correct set of attributes were selected (the same for the contact surface
and for the target surface). Thus, the ANSYS program uses the material properties
at the surfaces to calculate an equivalent stiffness. Moreover, the program also auto-
matically defines a value for the tangent contact stiffeness, proportional to the value
of the axial stiffness.

The steel-steel interaction was simulated as a contact surface between flexible
elements using small elements (beam type) with small torsional stiffness, set radially
between the wires of the armor.
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3.1.5 Friction

The friction between the plastic and metallic layers was taken into account, because
during the slide between those materials, many times, a mechanism known as ‘film
deposition’ can occur. The tribologic properties of HDPE (material component of
the external layer) in contact with the galvanized steel (material component of the
helical wires) were studied and the data obtained through experimental tests [5],
determined the wear rate and the friction coefficient between the plastic and metallic
layers. Those values were adopted to describe the friction between external and
internal layers. The steel-steel contact was not modeled (presence of anti-friction
layers between the wires).

3.1.6 Model Geometry

Figure 6 show the installation process of a umbilical. The experimental tests and
numerical models proposes a simulation of this installation and reproduce the
umbilical contact with the reel (also the floating buoys during its operation).

3.1.7 Model Mesh

The perimeter of the umbilical was divided circumferentially in N parts forming a
polygon of identical sides (Fig. 7). In the longitudinal direction, each fraction of its
length corresponds to one the steel armors layers (also divided into N parts). This
process guarantees the generation of a regular mesh (by GERFLEX).

Fig. 6 Loading conditions

Fig. 7 Model mesh
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3.1.8 Model Loading Conditions

Regarding the model symmetry, the umbilical was pinned to one of its ends where
it was in direct contact with the wheel. The structure that simulates the wheel was
fixed in its central point with freedom to rotate. Tension and bending loads were
applied to the umbilical in order to reproduce the experimental fatigue tests.

The two models generated are : MOD1-A (60 tons tension + bending) and
MOD1-B (30 tons tension + bending).

4 Results

Only the stresses results are presented. The comparative studies proved that the
numerical model was able to represent the geometry of the layers under some of
the critical conditions faced by an umbilical during the installation and operation
processes. A good approximation was verified between the numerical and experi-
mental results for strains and stresses values (external steel armor). Figure 8 presents
the stress distribuition over several different layers of the umbilical. Tables 2, 3,
4, and 5 presents the numeric results in detail.

Good correlation was found between the experimental and the numerical results.

Steel Plastic

Fig. 8 Von mises stress: external steel and plastic layers.

Table 2 Maximum stress values (model1-A)

Layer
Tension load
(ton)

Maximum
stress1 (MPa)

Nominal
stress (MPa) Safety factor

Internal steel armor 199.04 1040 5.23
External steel armor 60 231.44 1040 4.49
Internal plastic layer 11.57 18 1.56
External plastic layer 25.46 32 1.26

1Maximum stress evaluated trough numerical model
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Table 3 Maximum stress values (model1-B)

Layer
Tension load
(ton)

Maximum
stress1 (MPa)

Nominalstress
(MPa) Safety factor

Internal steel armor 117.76 1040 8.45
External steel armor 30 130.33 1040 7.98
Internal plastic layer 3.84 18 4.68
External plastic layer 10.24 32 3.12

1Maximum stress evaluated trough numerical model

Table 4 Comparison between experimental x numerical model (CP1)– external steel armor

MOD1-A – 60 ton Comparative stress data: experimental x numerical

Positioning Experimental (MPa) Numerical (MPa) Error (%)

Fs – bending+tensile 247 231.44 6.3
Fi – bending+tensile 206 194.05 5.8
Ts – tensile 186 182.09 2.1
Ti – tensile 167 160.65 3.8

Table 5 Comparison between experimental x numerical (CP2) – external steel armor

MOD-1B – 30 ton Comparative stress data: experimental x numerical

Positioning Experimental (MPa) Numerical (MPa) Error (%)

Fs – bending+tensile 93 94.07 1.15
Fi – bending+tensile 88 83.60 5.0
Ts – tensile 125 128.00 2.4
Ti – tensile 123 120.29 2.2

5 Conclusions

The level of stresses and strain is a critical point for a flexible line design under
critical load conditions. The data generated from this study can be used as a com-
plementary fatigue study which may become a more realistic forecast about the
structure service life.

Therefore, this computational analysis model viewed to supply a validation pro-
cess for design procedures of a brand new umbilical line. This numerical model
gives the most critical points of the flexible line. That local analysis will determine
in advance if the structure global analysis is correct and evaluate the capacity of a
specific type of umbilical to hold different load combinations.

The hypotesis adopted, as well as some of the analysis proposals for the different
types of operational conditions, were presented aiming to perform a comparative
study of the adopted experimental prerogatives. The results were very good, with a
positive confluence between the experimental and numerical values.



56 P.F. Lépore and M.A. Buelta Martinez

References

1. F.T. Lopes, Análise estrutural de linhas flexíveis. Máster Thesis, Escola Politécnica da USP,
São Paulo, 1996

2. American Petroleum Institute, Specification for Sub Sea Production Control Umbilicals – API
Specification 17-E, Sept 1998

3. American Petroleum Institute, Specification for Unbonded Flexible Pipe – API Specification
17–J, Mar 1997

4. M.H. Patel, J.A. Witz, Z. Tan, A Flexible Riser Design Manual, 2nd edn. (London, Betham
Press, 1994)

5. C.H. Silva, C.P Pesce, D.K. Tanaka, A. Sinatora, Desgaste de Polietileno de Alta Densidade
empregados na fabricação de tubos para extração de petróleo. COBEM, 15th Brazilian
Congress of Mechanical Engineering, Águas de Lindóia, São Paulo, 22–26 Nov 1999.



Dynamic Crack Propagation in Composite
Structures

D. Bruno, F. Greco, and P. Lonetti

1 Introduction

Composite materials in the form of laminated structures are affected by interface
damage mechanisms, known in the literature as delamination phenomena, which
typically produce high stiffness and strength reductions with catastrophic failure
modes [1]. From an experimental point of view, many observations have shown
that the evolution of such interface damage mechanisms is strongly influenced by
dynamic effects related to the loading rates, the inertial forces and the wave propa-
gation phenomena [2–4]. The full characterization of the dynamic crack propagation
requires specialized techniques to predict the physical quantities, which govern the
crack growth. Computational analyses are frequently conceived to explain the main
features of the dynamic crack growth phenomena, which are really complex if inves-
tigated from an experimental point of view. As a matter of this fact, the progress
toward a complete understanding of dynamic fracture behavior has been limited by
the intrinsic complexities of the growth phenomena, such as time dependence, high
speeds in the crack propagation with multiple cracks and branching mechanisms [5].

A brief literature review denotes that the interface cracking mechanisms are fre-
quently analyzed by means of simplified models developed in the context of static
analysis or of a steady state advance of the crack. In the former formulation, the
time dependent behavior is practically annihilated and thus the solution is based
on a quasi-static evolution of the crack, neglecting a priori the inertial effects in
the crack growth [6]. The latter modeling describes the crack growth enforcing the
crack tip to evolve at constant speed. In this context, typically, a moving reference
system fixed crack tip is utilized to describe the time dependence of the solution
in terms of spatial variables only, leading to crack propagation equations involving
only ordinary instead of partial differential equations [7, 8].
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In the framework of the dynamic crack propagation, extended analyses are devel-
oped to predict the behavior of propagating cracks for monolithic structures, in
which limiting crack speeds and crack arrest phenomena are evaluated for different
kind of materials [9, 10]. The literature on the dynamic fracture mechanics dealing
with composite structures is relatively limited. Most research efforts were confined
to analyze static or low velocity crack propagation conditions [1], whereas the
dynamic delamination phenomena are not completely investigated. Typically, the
composite structures are formed by weak interfaces, in which the interfacial cracks
are constrained to propagate along preferred paths, suppressing any tendency to
branch or kink out from the weak planes. Therefore, the evolution of the interfacial
cracks is characterized by high speeds and thus, in order to describe accurately the
dynamic crack behavior, it is necessary to take into account for the time dependence
effects in the definition of the energy release rate and the crack growth behavior
[5, 11].

From a computational point of view, the analysis of delamination phenomena
requires a detailed description of the growth area since, typically, the interfacial
cracks propagate very rapidly, i.e. at such speeds close to those of the material
waves. Numerical methods are frequently preferred to analyze dynamic propagation
phenomena, since analytical solutions of the growth phenomena are very difficult to
be extracted, unless for simple loading and geometric conditions [7]. In order to
predict the crack growth conditions, several approaches have been proposed in the
literature. The node release technique [12, 13] is based on the assumption that the
crack growth is described by uncoupling nodes at the crack faces, whose acting
tractions are reduced as far as the crack opens. In this approach, the evolution of
the crack is strictly dependent from the size of the element mesh around the crack
tip, since it governs the amount of the crack advance. Moreover, the advancing pro-
cess is not really continuous since a proper iteration scheme is necessary to evaluate
accurately the dynamic crack growth during the time integration [14]. Models based
on the virtual crack closure method (VCCM) calculate the energy release rate as the
work performed by the internal traction forces at the crack faces during a virtual
crack advance of the tip. In dynamic fracture mechanics, the VCCM is applied by
using the modified form, in which the ERR, during the time integration, is evalu-
ated by the product between the reaction forces and the relative displacements at the
crack tip and at the nodes closer to the crack tip front, respectively [15]. The pre-
diction of the energy release rate is strictly dependent from the mesh discretization
of the crack tip. Analogously to the node release technique, the crack growth is not
continuous, since the crack is able to advance only of a length equal to that adopted
in the definition of the mesh element size at the crack tip. Moreover, in order to
evaluate correctly the crack evolution during the time integration, an accurate dis-
cretization of the crack tip is needed and thus the computational cost of the analysis
may increase notably.

Crack growth phenomena can be predicted also by means of damage formulation
making the use of interface cohesive elements. In this framework, strain softening
interface elements with a damaged constitutive relationship are introduced between
crack faces. In order to predict the crack growth phenomena, accurately, a detailed
finite element mesh at the crack tip front is often required [16, 17].
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Crack growth phenomena should be analyzed by means of the moving mesh
methodology, which is able to simulate the motion of an initial defect by changing
the position of the mesh elements by means of prescribed displacements or veloci-
ties. Typically, moving mesh techniques are utilized in the field of fluid mechanics,
since large displacements are involved in the deformed configuration. However,
some applications can be recovered in solid mechanics also in the context of crack
propagation. In particular, moving element procedures for non-singular finite ele-
ment methods can be recovered in [18], in which the entire mesh is moved with the
crack tip. Contrarily, local mesh update procedures based on the motion of a small
portion of the crack tip are developed by Nishoka and Atluri [19] and by Nishioka
[20], in which the singular fields are reproduced as far as the finite elements move
with the crack. Moving mesh strategy can be developed also in the framework of
Arbitrary Lagrangian-Eulerian (ALE) methods. The mesh elements configuration is
decoupled by the material motion introducing a fictitious reference coordinate sys-
tem, in which the position of the mesh points does not introduce any mesh distortion
during the geometry variation [21].

In the present paper, dynamic effects related to crack propagation phenomena
in composite structures are analyzed. The proposed modeling is developed accord-
ing to a moving mesh strategy based on Arbitrary Lagrangian-Eulerian formulation.
This choice is motivated by the fact that in composite laminated structures, the crack
path is constrained to advance at the interface planes and thus the moving mesh tech-
nique becomes a suitable tool to modify the geometry of the model and to account
for the evolution of preexisting interfacial cracks. In order to ensure an accurate
prediction of the crack growth, the dynamic energy release rate mode components
are calculated by means of the decomposition methodology of the J-integral [8, 22],
which is proposed in the framework of an unsteady crack growth. It is worth not-
ing the integration path utilized to calculate the J-integral and its mode components
moves with the crack tip, ensuring a high discretization of the mesh only on a small
region around the crack tip. However, as far as distorted mesh is achieved due to
mesh motion of the tip, a remeshing algorithm is utilized to ensure accuracy in the
finite element results. The crack tip motion is based on an explicit dynamic crite-
rion, in which the relation between ERR mode components and velocity of the crack
tip is assumed to be a material property of the composite laminate. Comparisons
with experimental results are reported to validate the proposed modeling. Moreover,
a parametric study is developed to show some characteristic phenomena of the
dynamic crack growth.

2 Formulation of the Damage Model

The proposed modeling is based on the combination of Fracture Mechanics and
moving mesh methodology. The former predicts the crack growth, by the use of the
ERR concept and a proper crack advance criterion, whereas the latter is introduced
to account for the changes of the geometry during the crack evolution. The general
formulation of the structural model is consistent to a 2D plane stress approach, in
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which the behavior of each lamina is homogeneous, linear and elastic. The inter-
facial defects are assumed to propagate along the interfaces between the laminas,
which are basically weak planes in which the delamination defects are able to
growth, producing high stiffness and strength reductions [1]. This assumption can
be motivated from a physical point of view, since many experimental observations
have shown that the evolution of such interfacial defects proceeds along a prescribed
path almost fixed in the interface zones, leading to measured crack speeds ranging
also in the framework of intersonic crack propagation [10]. From an engineering
point of view, it is reasonable to assume that the crack position along the thickness
direction for any interfacial cracks is fixed. This assumption leads to high simplifi-
cations in the crack growth prediction, since crack branching or kinking phenomena
are excluded from the simulation.

The crack growth is predicted by the use of the moving mesh methodology based
on an arbitrary Lagrangian-Eulerian formulation. This technique despite the conven-
tional Lagragian or Eulerian approaches provides a better way to take into account
mesh movements. As a matter of this fact, Lagrangian moving mesh strategy pro-
vides good accuracy in the prediction of the motion of free surfaces and interfaces
between different materials. However, during the mesh movements, the mesh geom-
etry is affected by large distortions and the recourse of remeshing operations is
strongly required. Eulerian moving mesh algorithms predict easily large distortions
of the continuum, but, typically, numerical difficulties arise in the simulation of
material interfaces or, in the solving procedure, due to the unsymmetrical character
of the convection operator. The ALE technique combines the best features of the
two methods, since the mesh motion is disconnected by the material points and thus
it can be arbitrary chosen.

3 ALE Formulations: Description of the Motion and Notation

In this section, the main features on ALE formulation are summarized, whereas
more details on this topic can be recovered in Donea et al. [1]. In solid mechanics,
the description of the body motion can be developed by means of a Lagrangian
approach, introducing a family of mappings ϕ, which associates at each point X~
of the material or Lagrangian configuration BL the position of the particle x~ in the
current configuration, BE at a generic t, as:

ϕ : BL → BE x~ = ϕ

(
X~, t

)
(1)

In the framework of the ALE formulation, the finite element mesh movement is
described introducing a fictitious reference system, known as “referential coordi-
nates”, whose motion is typically arbitrary and it does not coincide neither with that
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of the material points neither with current configuration. In the referential coordi-
nate, the motion of the continuum is described by means of a family of mapping
χ : BR → BL between the material and referential configurations:

X~ = χ

(
r~, t

)
(2)

where r~ is the referential coordinate introduced to identify the grid points (Fig. 1). It
is assumed that χ is a homeomorphism and is differentiable everywhere. In view of
Eqs. (1) and (2), the material (u~) and referential displacements (ψ

~
) are defined as:

u~ = x~ − X~ = ϕ

(
X~, t

)
− X~, ψ

~
= X~ − r~ = χ

(
r~, t

)
− r~ (3)

Therefore, the corresponding differentiation with respect to the vector X~ and r~
are:

∇~ X~
u~ = du~

dX~
, ∇~r~

ψ
~

=
dψ

~

dr~
(4)

where ∇~X~
and ∇r~

are the notations for the gradient operators in the material and

referential configurations, respectively. Taking into account of Eqs. (1) and (2), the

BR

BL
t

Xta,tat

at,at.

a

X = χ(r,t)

.

r

xt

x=ϕ(X,t)

BE
t

x = ψ(r,t)

Fig. 1 Lagrangian, Eulerian and referential viewpoints
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gradient operators are related to each other by introducing the Jacobian (J~) of the
transformation between the material and the referential configurations as:

∇~X~
u~ = ∇~ r~

u~ J~
−1, J~ = dX~

dr~
. (5)

In order to be consistent the transformation between material and reference coor-
dinates systems, a one-to-one relationship must be enforced during the motion, i.e.
det J~ �= 0. Since the proposed modeling is developed in dynamic framework, the
governing equations require the computation of the time derivatives. Consistently to
ALE formulation, the material and referential derivatives are defined as the rate of
change of the function with X~ and r~ fixed:

ḟ = d

dt
f

(
X~, t

)∣∣∣∣
X~

, f ′ = d

dt
f

(
r~, t

)∣∣∣∣
r~

(6)

where the dot and the prime are used here and in the following to represent material
and referential time rates, respectively. Material and the grid point velocities in the
Lagrangian and referential configurations, i.e. v~ and X′

~ respectively, in view of Eqs.
(1) and (2), are defined as:

v~ = d

dt
ϕ

(
X~, t

)∣∣∣∣
X~

, X~
′ = d

dt
χ

(
r~, t

)∣∣∣∣
r~

(7)

According to ALE formulation, the time derivatives of a generic physical field, in
referential and material configurations can be related by the following relationship
[21]:

ḟ = f ′ − X′
~

d

dX~
f

(
X~, t

)
(8)

where X~
′ represents the relative velocity of the grid points in the material reference

system.

4 Governing Equations for Laminated Structures

The governing equations are presented for a 2D continuum model based on plane
stress formulation in small deformations. In order to account for the behavior of
a laminated structure, a multilayer formulation is adopted. In particular, the com-
posite structure is modeled as an assembly of orthotropic elastic layers, which are
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Fig. 2 (a) Schematic illustration of the delaminated model subjected to general loading conditions,
(b) compatibility conditions at the interfaces

connected each other by perfect and imperfect interfaces, reproducing the conti-
nuity between each lamina or the presence of initial interfacial defects (Fig. 2a).
Therefore, assuming that the laminate is formed by n laminas, the constitutive
equations for the generic i-th lamina present the following form:

σ i
11 = ci

11
∂u1

∂X1
+ ci

12
∂u2

∂X2
,

σ i
22 = ci

12
∂u1

∂X1
+ ci

22
∂u2

∂X2
, i = 1 . . . n

σ i
66 = ci

66

[
∂u1

∂X2
+ ∂u2

∂X1

]
,

(9)

where ci
11, ci

12, ci
22 and ci

66 are the standard elastic moduli of the material. According
to the Lagrangian multiplier method, compatibility conditions between each lamina
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are introduced to simulate the perfect adhesion or contact phenomena at the
undelaminated or the delaminated interfaces, respectively (Fig. 2b):

�ui = ui+1 − ui = 0, �vi = vi+1 − vi = 0, (undelaminated interfaces)
�vi = vi+1 − vi ≥ 0, (delaminated interfaces)

(10)

The governing equations in the material configuration can be written by means
of the principle of d’Alembert, taking into account, for each lamina, virtual works
of inertial, external and internal forces:

n∑
i=1

∫

Vi

σ~δ∇~ u~dV +
n∑

i=1

∫

Vi

ρü~δu~dV =
n∑

i=1

∫

�i

t~δu~dA +
n∑

i=1

∫

Vi

f
~
δu~dV (11)

where σ~ is the Cauchy stress tensor, t~ is the traction forces vector on the free sur-
faces, f

~
is the volume forces vector, dV and dA are the volume and the loaded area in

the material configuration. Consistently to ALE formulation, the motion of the body
is described in the referential configuration and thus Eq. (11) should be reformulated
in such a way to take into account for the transformation rule between Lagrangian
and referential coordinate systems (Fig. 3). In particular, the first terms at LHS can
be expressed by using Eq. (5):

n∑
i=1

∫

Vi

σ~δ∇u~dV =
n∑

i=1

∫

Vri

C~

(
∇~ r~

u~J~
−1

)
δ

(
∇~ r~

u~J~
−1

)
det (J) dVr (12)
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Fig. 3 ALE representation for fracture mechanics problem
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where Vr is the volume in the referential configuration and C~ is the elastic moduli
matrix collecting stiffness coefficients of Eq. (9) for the i-th lamina. The second term
at LHS requires the computation of the time second derivative of the displacement
vector, which is evaluated by using Eq. (8) as:

ü~ = u~
′′ − 2∇xu~

′ · X~
′ − ∇xu~X~

′′ + ∇x

(
∇xu~

)
X~

′ X~
′ + ∇xu~∇xX~

′ X~
′ (13)

Introducing the transformation rule provided by Eq. (5), Eq. (13) can be written
in the referential configuration as:

ü~ = u~
′′ − 2∇r~

u~
′J~

−1 · X~
′ −

(
∇r~

u~ J~
−1
)

· X~
′′

+ ∇r~

(
∇r~

u~ J~
−1
)

J~
−1X~

′ X~
′ + ∇r~

u~ J~
−1 ·

(
∇r~

X~
′J~

−1
)

X~
′

(14)

Therefore, the second term at LHS of Eq. (11), representing the work performed
by the inertial forces in view of Eq. (14) is:

n∑
i=1

∫

Vi

ρü~δu~dV =
n∑

i=1

∫

Vri

ρ

[
u~
′′ − 2∇~ r~

u~
′ J~

−1 · X~
′ −

(
∇~ r~

u~ J~
−1

)
· X~

′′

+ ∇~ r~

(
∇~ r~

u~ J~
−1

)
J~
−1X~

′ X~
′ + ∇~ r~

u~ J~
−1 ·

(
∇~ r~

X~
′J~

−1

)
X~

′
]
δu~ det (J) dVr

(15)

The RHS of Eq. (11) , in the referential configuration assumes the following
expression:

n∑
i=1

∫

�i

t~δu~dA+
n∑

i=1

∫

Vi

f
~
δu~dV =

n∑
i=1

∫

�r i

t~δu~ det(J)d�r +
n∑

i=1

∫

Vri

f
~
δu~ det(J)dVr (16)

where det(J) is the determinant of a scalar metric representing the ratio of dif-
ferential areas and �r is the loaded area in the referential configuration. Finally
substituting Eqs. (12), (15), and (16) into Eq. (11) the following equation is
obtained:
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n∑
i=1

∫

Vri

C~

(
∇~ r~

u~J~
−1

)
δ

(
∇~ r~

u~J~
−1

)
det (J) dVr +

n∑
i=1

∫

Vri

ρ

[
u~
′′ − 2∇~ r~

u~
′ J~

−1X~
′

−
(
∇~ r~

u~ J~
−1

)
· X~

′′ + ∇~ r~

(
∇~ r~

u~ J~
−1

)
J~
−1X~

′ X~
′

+ ∇~ r~
u~ J~

−1 ·
(
∇~ r~

X~
′J~

−1

)
X~

′
]
δu~ det (J) dV ==

n∑
i=1

∫

�r i

t~δu~ det(J)d�r

+
n∑

i=1

∫

Vri

f
~
δu~ det(J)dVr

(17)

5 Dynamic Energy Release Rate and Crack Growth Criterion

The dynamic ERR is evaluated by using the J-integral concept [23]. In the literature
several expressions exist to evaluate dynamic energy release rate based on J-integral
formulation. In particular, the ERR is defined as the rate of mechanical energy flow
out of the body and into the crack tip per unit crack advance [4] and it should be
recovered by the limit of the following balance equation:

J = lim
ε→0

∮

�

⎡
⎣(W + K) n1 − t~

∂u~
∂X~

⎤
⎦ ds (18)

where n1 is the component with respect to X1 of the normal along integration
contour, u~ is the displacement, t~ the traction vector, f

~
is the body force, ρ is the

volume density, W is the strain energy density and K is the kinetic energy (Fig. 4).
However, since the analysis is developed in dynamic framework, the integral func-
tion in Eq. (18) loses its path independent property. Moreover, the evaluation of the
limit procedure reported in Eq. (18), involves numerical complexities in the integral

X2

X1

n

a,tat.
ε

Ω

P

P'Fig. 4 Synoptic
representation of the
J-integral evaluation
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calculation due to the high gradients of the crack tip fields. To overcome such dif-
ficulties, an alternative expression of the J-integral, which is path independent is
utilized [23]:

J =
∮

∂�

⎡
⎣(W + K) n1 − t~

∂u~
∂X~

⎤
⎦ ds +

∫

�

[
ρ

(
ü~ − f

~

)
∇~ u~ − ρu̇~∇~ u̇~

]
dA (19)

In those cases where mixed mode loading conditions are involved, the total value
of the ERR and the corresponding modal components are evaluated by the use of the
decomposition methodology of the J-integral expression [8, 22]. In particular, the
J-integral is decoupled into an additive form, involving a direct decomposition of
the ERR. It is worth noting that, the former formulation was proposed by Rigby and
Aliabady [22] for static analysis and then it was generalized for a steady state crack
growth by Greco and Lonetti [8]. In this framework, in order to take into account for
the inertial contributions, new terms are introduced in the main equations, leading
to similar expressions to those introduced in the previous formulations, but formally
generalized to an unsteady crack growth, as:

JI, II = GI, II =
∮
∂�

[(
WS, AS + KS, AS

)
n1 − σ S, AS

ij nj
∂uS, AS

∂x

]
ds

+
∫

�

[
ρ

(
ü~

S, AS − f
~

S, AS

)
∇u~

S, AS − ρu̇~
S, AS∇u̇~

S, AS

]
dA

(20)

with J = JI + JII , (GI , GII) are the mode I and mode II ERR components, Ω is a
closed path surrounding the crack tip front. It is worth noting that the superscripts (S)
and (AS) in Eq. (20), represent the symmetric and antisymmetric components with
respect to a plane containing the crack tip. For the sake of brevity, the proof of Eq.
(20) is not reported, because it is very similar to that involved in Rigby and Aliabadi
[22] for the static case, except for the kinetic energy functionals and integral function
over the crack tip region, which can be easily decoupled, according to the main
methodology, as the sum of symmetrical and antisymmetrical fields, corresponding
exactly to mode I and mode II contributions, respectively. However, expressions
reported in Eq. (20) are validated numerically through comparisons arising from FE
results based on VCCM.

In order to evaluate the crack growth phenomenon, a fracture criterion based
on the crack tip variables should be introduced. Typically, dynamic crack criteria
are commonly expressed by means of relationships involving stress intensity factor
or ERR and crack tip speed. In the literature, a detailed discussion on the main
problems regarding possible ways to analyze the crack tip behavior can be recovered
in [3]. From an experimental point of view, several observations have shown that
the crack growth is strictly dependent from the instantaneous crack tip speed [8,
24]. However, the literature dealing with the definition of a proper crack growth
criterion is very limited. In the proposed modeling, the crack criterion is based on
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an asymptotic three parameters evolution law. In particular, it depends for low range
of the crack tip speed on an initial value of the ERR, which is, typically, close to
the initial crack toughness of the material. Moreover, as far as the ERR grows the
crack tip speed reaches asymptotically the Rayleigh wave speed of the material,
namely VR. Therefore, the facture toughness criterion of the material is assumed to
be governed by the following expression:

GD = G0

1 −
(

ct
VR

)m (21)

where m is a material parameter predicting the evolution on the speed range, G0 is
the initial fracture toughness and ct is the speed of the crack tip. It is worth noting
that Eq. (21) should be useful from an engineering point of view, since it is based
on well-known available data easily recoverable from the literature on the base of
the material typology. However, other phenomena such as diffraction, scattering,
attenuation, dispersion and local dynamic stress concentration are considered in this
context to produce local negligible effects in comparison to those associated with
larger scale displacements.

In the case of a mixed mode loading condition, the crack growth, typically,
depends from the mixed mode ratio [3]. Therefore, a generalization of Eq. (21) is
thus necessary to accurately reproduce the relationship between crack tip speed and
ERR. In the proposed modeling it is assumed that, the dynamic fracture toughness
of the ERR mode components follows a similar expression to Eq. (21):

GID (ct) = G0I

1 −
(

ct
VR

)m , GIID (ct) = G0II

1 −
(

ct
VR

)m (22)

in which (G0I , G0II) correspond to the initial toughnesses of the ERR mode com-
ponents. Therefore, the toughness criterion under mixed mode loading conditions is
based on the following additive expression, which predicts the crack growth as far
as it becomes positive:

gf = GI

GID (ct)
+ GII

GIID (ct)
− 1 ≤ 0 (23)

where GI , GII are the actual mode components at a generic time.

6 Governing Equations for ALE Formulation

In the framework of ALE formulation the computational mesh may moves arbi-
trary with respect to the material body. In particular, the mesh movements should be
addressed to reduce distortions of the mesh elements and to handle for changes of
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the geometry produced by the crack growth. It is worth noting that the equilibrium
equations given by Eq. (17) depend on the position of the mesh points. Therefore,
in order to account mesh movements of the domain, a rezoning mesh method is
required. The aim of the mesh regularization technique is to provide an easy way
to move the position of the crack tip front, keeping the computational mesh undis-
torted during the whole calculation. In the proposed modeling, crack tip motion is
consistent to the crack growth criterion based on Eq. (23). Once the movement of
the geometry is predicted by the crack criterion, a prescribed speed at the crack tip
front is applied and thus the motion of the crack tip is activated. The mesh motion in
the domain and in the boundary lines affected by the mesh motion should be regular
to avoid distorted mesh and irregular elements, which strongly limit the accuracy of
the main parameters predicting the advancing behavior.

In the proposed formulation, a smoothing variational method based on Winslow
approach is utilized, in which the horizontal and vertical mesh displacements,
namely �X1 = X1 − r1 and �X2 = X2 − r2, are evaluated by solving the following
expressions [21]:

∇2
X~
�X1 = 0, ∇2

X~
�X2 = 0. (24)

Internal and external boundary conditions need to be introduced to reproduce the
crack growth. Without loss of generality and for clearness of exposition, a single
delamination model based on a double cantilever beam (DCB) scheme is consid-
ered. In particular, with reference to the geometric model reported in Fig. 5, the
external boundary conditions must be written to reproduce a mesh motion, which
is fixed in the vertical direction for all the contour lines and for the horizontal
lines, the evolution of the mesh points should avoid any displacements along the
longitudinal direction. Moreover, in order to simulate crack tip advance, mixed
mode criterion given by Eq. (23) should be checked. Once the crack growth is
predicted, the crack speed is determined by solving Eq. (23) and internal bound-
ary conditions on the crack speed must be taken into account. Furthermore, in
order to avoid high distortions of the mesh elements where the integration is per-
formed to evaluate the ERR mode components, it is assumed that the mesh geometry
in the region surrounding the crack tip is moved rigidly. Therefore, the mesh
elements during the motion remain practically in the undistorted configuration,
avoiding irregularities in the mesh description and inaccuracies in the integration
procedure.

h1

h2

Ω

Ω2

Ω1 Ω3

Ω4

Fig. 5 Schematic representation of the ALE boundary conditions



70 D. Bruno et al.

With reference to model reported in Fig. 5 and assuming initial conditions to be
homogeneous, the boundary conditions are defined by the following relationships:

(�X1 = 0,�X2 = 0) on �1 ∪�2,
�X2 = 0 on �3 ∪�4
�X′

1 = 0 ⇔ if gf < 0 on �,
�X′

1 = ct ⇔ if gf ≥ 0 on �,
�X′

2 = 0 on �
�X1 (0) = 0,�X2 (0) =0,�Ẋ1 (0) = 0,�Ẋ2 (0) = 0

(25)

where gf is the fracture criterion given by Eq. (21) or (23), GD representing the
dynamic fracture toughness and ct is extracted by solving Eq. (21) or (23).

Weak forms of smoothing differential equations are derived, by multiplying
Eq. (24) by a weight functions w1 (X1, X2) , w2 (X1, X2) and then integrating by part.
Moreover, the boundary conditions regarding the prescribed crack tip speed, i.e.
Eq. (25), is taken into account for by means of non-ideal weak constraint based on
the Lagrangian multiplier method [25]. Therefore, the resulting equations regarding
the ALE formulation are:

∫

V

∇~X~
�X1∇~X~

w1dA +
∮

�

[
δλ

(
X′

1 − ct
)+ λδẊ1

]
ds = 0,

∫

V

∇~X~
�X2∇~X~

w2dA = 0,
(26)

where λ is the Lagrangian multiplier. Finally, introducing the vector �X~
T =

[�X1,�X2], Eq. (26) is written in the referential coordinate system by using
transformation rules given by Eqs. (5) leading to the following relationship:

∫

Vr

(
∇r~
�X~J~

−1
)

·
(
∇r~

w~J~
−1
)

det (J) dVr+
∮

�r

[
δλ

(
X~

′ − c~t

)
i~ + λδẊ~ i~

](
J
)

ds = 0,

(27)
with w~

T = [w~1
, w~ 2

] the weight function vector and i~
T = [1, 0] the propagation

direction vector of the interfacial crack and c~
T
t

= [ct, 0] is the crack tip speed vector.

7 Finite Element Approximation

Governing equations given by Eqs. (17) and (27) introduce a non linear set of equa-
tions, which have been solved numerically, using a user customized finite element
program, i.e. COMSOL Multiphysics TM version 3.5 [25]. Finite element expres-
sions are written for 2D plane stress modeling, utilizing Lagrangian interpolation
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shape functions. The governing equations regarding the plane stress and ALE for-
mulations are solved by using a finite element approach. In particular, isoparametric
shape functions are used to represent plane stress and ALE variables:

u~ (r, t) =
nd∑

i=1

ζi

(
r~

)
u~i
(t), u̇~ (r, t) =

nd∑
i=1

ζi

(
r~

)
u̇~i
(t), ü~ (r, t) =

nd∑
i=1

ζi

(
r~

)
ü~i
(t),

X~ (r, t) =
nd∑

i=1

ζi (r)Xi, Ẋ~ (r, t) =
nd∑

i=1

ζi (r) Ẋi, Ẍ~ (r, t) =
nd∑

i=1

ζi (r) Ẍi

λ~ (s) =
nd∑

i=1

ζi (r)�i

(28)
where nd represents the number of nodes of the master finite element. Substituting
Eq. (28) in the governing equations, given by Eqs. (17) and (27), the following
discrete equilibrium equations are obtained:

n∑
i=1

M~ i
U~

′′
i

+
n∑

i=1

C~i
U′
~ i

+
n∑

i=1

(
K~i

+ K~0i
+ K~1i

+ K
�2i

)
U~i

+
n∑

i=1

T~i
+

n∑
i=1

P~i
= 0

W~ ·�X~ + Q
~

·�X~
′ + L~ = 0,

(29)
where M~ i

is the consistent mass matrix, K~i
is the stiffness matrix and[

C~i
, K~0i

, K~1i
, K~2i

]
are the damping and stiffness matrix associated to the ALE for-

mulation,

(
T~i

, P~i

)
are the external load vectors, W~ is the ALE discretization matrix,

Q
~

and L~ are the damping matrix and Lagrange multiplier vector concerning the ALE

formulation. The algebraic equations are solved by using an implicit time integra-
tion scheme based on variable step-size backward differentiation formula (BDF).
The equations are solved by means of a coupled approach in which no splitting
operators are invoked. In particular, at a generic time step, the unknown variables
are both the displacements vector and the position of the mesh points. It is worth
noting that the coupled procedure with respect to the operator splitting technique
offers a more detailed description of the advancing phenomena [21]. However, from
a computational point of view, the operator splitting methods provide an easy way
to implement and to compute the actual solution [26].

The integration procedure is able to evaluate the presence of non-symmetric con-
vective terms given by the relative motion between material and referential systems.
At a generic time, the non-linear equations are solved by using a Newton-Raphson
iteration scheme and a linearization process of the above equations systems is
performed in the step-by step solving procedure.
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During the time integration, due to the fast speeds involved in the crack advance,
a small time step size is utilized. In order to compute accurately the ERR with the aid
of J-integral formula, a fine discretization mesh and a standard numerical integration
method (quadrature) is adopted on the contour line and on the area surrounding the
crack tip. At this aim, sensitivity analysis on the mesh size element is developed to
chose a proper mesh discretization.

The time integration procedure at each iteration step checks the crack advance
criterion; in the case it is satisfied, a prescribed crack speed is applied to the crack
tip area by solving the toughness criterion given by Eq. (23) and thus moving bound-
ary conditions are enforced to produce the crack tip motion. It is worth noting that
during the crack tip motion, the discretization mesh is affected by high distortions in
the crack region, leading to an inaccurate evaluation of the crack tip fields. However,
in order to avoid such problems, a remeshing algorithm is applied. The remeshing
procedure is performed by using COMSOL finite element program, by checking
that the minimum value of the mesh quality parameter regarding the geometry of
the element in the undistorted configuration should be grater then a fixed tolerance.

Apply the boundary and load
conditions

Compute ERRs and check if the
growth criterion is satisfied

Compute the crack speed from
the crack criterion and apply it

on the crack tip region

Yes

No

Solve the ALE and PS
equations
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Fig. 6 Flow chart of the
FEM integration algorithm
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Once, this condition is not satisfied, the remeshing technique is performed on the
basis of the deformed geometry in the actual reference system and a restart with
an updating procedure from the previous converged time step is developed. More
details on the remeshing algorithm can be recovered in Comsol [25]. A synoptic
representation of the integration procedure is reported in Fig. 6.

8 Results

Comparisons with experimental results are performed to validate the proposed mod-
eling for mode I, mode II loading conditions. Moreover, a sensitivity analysis is
developed to investigate the dynamic behavior of interfacial cracks under mixed
mode loading conditions.

A DCB specimen, under mode I loading condition is analyzed [27]. The material
reported in the experimental tests is AS 3501-6 Graphite/Epoxy, whose properties
are summarized in Table 1. The laminate is formed by unidirectional laminas and
the specimen is 260 mm long, 20 mm wide and 3.7 mm thick. The loading scheme
is based on a displacement controlled condition, in which the end points of the DCB
model are opened at a loading rate equal to 0.1 mm/s. However, the crack propaga-
tion is produced introducing a strip of adhesive film at the crack tip, which enforces
the crack to grow at high speeds. In order to reproduce correctly the experimental
results, at first the laminate ends are displaced statically to an initial value of the
ERR, leaving the crack tip fixed in the initial position. During this stage, the speci-
men stores strain energy, which is released once the crack tip is allowed to grow. It
is worth noting that since the relationship between crack tip speed and ERR tough-
ness is not provided in the experimental results, the material parameters (m, G0),
involved in the definition of the crack criterion, are taken as adjustable variables.

In Fig. 7 comparisons with experimental results, in terms of time history of the
crack tip displacements are reported. The agreement between proposed and exper-
imental results is noted. In Fig. 8, the evolution the strains and kinetic energies are
also reported. The analysis shows that during the crack growth, the strain energy is
transformed into kinetic energy. Moreover, the crack tip speed reaches its maximum
value especially during the initiation phase with value comparable to the ones of
the material wave characteristic. Once, the model is validated through comparisons
with experimental data, sensitivity results are developed. In particular, the influ-
ence of the loading rate on the crack growth is analyzed, in Fig. 9, in which the
time history of the crack tip speed for different loading rates is reported. Moreover,
in Fig. 10 the relationships between the crack speed, the crack displacement and

Table 1 Mechanical properties of unidirectional fiber-reinforced AS4 graphite epoxy

Material E1(MPa) E2 = E3(MPa) G12 = G23(MPa) ρ (Kg/m3) ν12 = ν13

AS4 graphite/epoxy 142E3 10.3E3 7.2E3 1,580 0.3
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Fig. 7 Mode I dynamic crack growth in a DCB scheme. Comparison between experimental data
[27] and proposed results: time history of the crack tip displacement �X(a)

Fig. 8 Mode I dynamic crack growth in a DCB scheme. Time history of the strain energy (Ed),
kinetic energy (Ec) and crack tip speed (ct)

loading rates are reported. The analysis shows that, in the initiation phase, the rate
effects produce the major amplifications of the crack tip fields. As a matter of this
fact, the crack tip speed grows very rapidly reaching his maximum value during this
stage. Subsequently the evolution of the crack tip speed tends to be regularized and
a stable crack growth is observed.



Dynamic Crack Propagation in Composite Structures 75

Fig. 9 Mode I dynamic crack growth in a DCB scheme. Time history of the crack tip speed (ct)
for different rates of the external loading

Fig. 10 Mode I dynamic crack growth in a DCB scheme. Relationship between crack tip speed
(ct), opening end displacement(ΔX(a)) and rate of the external loading (α)

Comparisons with experimental results available from the literature (Tsai et al.
2001) on a glass/epoxy S2/8553 unidirectional composite are proposed. The struc-
tural scheme refers to a modified end-notched flexural (ENF) scheme. The material
properties are reported in Table 2. The specimen is 278 mm long, 12.7 mm wide
and 11.6 mm thick, whereas the loading rate at the left end points is 0.025 mm/s.
The experimental methodology utilized to analyze the structural behavior is similar
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Table 2 Mechanical properties of unidirectional fiber-reinforced S2 glass epoxy

Material E1(MPa) E2 = E3(MPa) G12 = G23 (MPa) ρ (Kg/m3) ν12 = ν13

S2/8553 glass/epoxy 43E3 12.7E3 4.46E3 2,100 0.3

to that reported for the previous case involving mode I loading condition. Moreover,
since the experimental tests do not provide any data on the relationship between
fracture toughness and crack speed, the material parameters (m, G0) , involved in
the definition of the crack criterion, are taken as adjustable variables. In Fig. 11,
comparisons between proposed and experimental results in terms of crack tip dis-
placements are reported. Moreover, the time histories of the crack speed and the
dynamic amplification factors of the ERR are reported in Figs. 12 and 13, respec-
tively. It is worth noting that the trend of the crack tip evolution predicted by the
proposed model is in agreement with the experimental data. However, during the
first part corresponding to the initiation phase of the growth phenomenon, the pre-
diction of the crack motion is not fully accurate. This behavior can be justified by
the experimental methodology, since especially in the initiation phase, in order to
produce high speeds during the crack advance, a thin adhesive layer is utilized.
Moreover, the experimental data show that, during the initial phase, non standard
complex phenomena affect the crack growth (contact, scattering dissipation ), which
are not taken into account from the utilized toughness criterion.

Fig. 11 Mode II dynamic crack growth in a ENF scheme. Comparison between experimental data
[2] and proposed results: time history of the crack tip displacement ΔX(a) normalized on the total
length of the laminate (L)
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Fig. 12 Mode II dynamic crack growth in a ENF scheme. Time history of the crack tip speed (ct)
normalized on the shear wave speed of the material (csh)

Fig. 13 Mode II dynamic crack growth in a ENF scheme. Time history of the ERR (G) normalized
on the static value (Gst)
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Fig. 14 Mode II dynamic crack growth in a ENF scheme. Time history of the dynamic amplifica-
tion factors (G/Gst) for different rates of the external loading, with Gst representing the static value
of the ERR

Results concerning dynamic amplification effect produced by different loading
rates are reported in Fig. 14. In particular, the time history of the dynamic amplifica-
tion factor of the ERR is evaluated in terms of the loading rate of the applied loads.
The results show that when the loading rate is much greater than the first period
of vibration, (T1), the solution coincides with the static one, whereas as far as the
loading rate grows the amplification effects are increased leading to high value of
the DAFs.

Finally, an analysis on a loading case involving mixed mode is developed. In
particular, the laminate structure refers to a DCB scheme with the same material
and adjustable parameters previously reported for the case involving pure mode I
loading condition. The laminate geometry presents the following data:

L = 268 mm, B = 14 mm, H = 6.8 mm, with a/L = 0.1, h1/h2 = 0.66

where H is the total thickness of the laminate, h1 and h2 are the thicknesses of
the lower and upper sublaminates. The main aim of the proposed investigation is to
evaluate on a typical laminated composite structure, the effects of the loading rate on
the ERR computation and the crack growth. In particular, the analysis is performed
on a laminate subjected to opening end displacements. The time evolution is based
on a linear-constant function, whereas the amplitude of the maximum applied forces
is chosen in such a way to produce crack growth at different intensities and loading
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Fig. 15 Mixed mode dynamic crack growth in a DCB scheme. (a) Schematic representation of
the loading curves. (b) Time history of the crack tip speed for different loading curves

rates (Fig. 15a). In Fig. 15b, the time history of the crack tip speed normalized
on the first fundamental period of the laminate (T1) is reported for different load
curves. In Fig. 16, time history of the tip displacement relationship as a function of
the loading rate is proposed. The results show that for larger values of the loading
rate, both displacements and speeds at the crack tip tend to increase. In particular,
during the initiation phase, i.e. when the crack growth is enforced by the loading
curve, the displacements and the crack tip speeds grow very rapidly. In this phase,
the kinetic energy of the system is increased, producing high speeds in the crack
growth. Subsequently, as far as the constant value in the loading curve is reached, the
speed of the crack is reduced and then arrest phenomena of the crack are observed.
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Fig. 16 Mixed mode dynamic crack growth in a DCB scheme. Time history of the of the crack tip
displacement for different loading curves

9 Conclusion

A FE model to predict dynamic crack growth in composite structure is proposed.
The moving mesh strategy combined with a Fracture Mechanics approach is able
to predict properly the time dependent behavior of delamination phenomena. The
proposed modeling is based on a generalized mixed mode dynamic fracture tough-
ness, which depends on a limited number of adjustable variables. Comparisons with
experimental results for loading conditions involving pure mode I and mode II cases
at high speeds of the crack tip show the reliability of the proposed formulation. The
parametric study shows the influences of the loading rates effects on the dynamic
ERR, which determine high amplifications of the fracture variables characterizing
the crack tip evolution.
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Computational Analysis of Loading–Unloading
and Non-homogeneity Effects in Metallic Hollow
Sphere Structures

Branca F. Oliveira, Luiz A.B. da Cunda, Andreas Öchsner,
and Guillermo J. Creus

1 Introduction

Metallic hollow sphere structures (MHSS) differ from traditional open or closed-cell
metal foams [1], which are produced by expansion of gases among other methods.
MHSS are characterised by more consistent geometrical and mechanical properties
[2, 3].

Fiedler and Öchsner [3] and Fiedler [4] address the mechanical properties of
bonded MHSS to determine Young’s modulus and initial yield stress dependence
on loading direction and geometrical arrangement, and include experimental load-
displacement results under compressive load, both for partially glued (Fig. 1) and
syntactic foams.

A significant issue is the way in which the behaviour of the metal foam is related
to the behaviour of a single cell [5]. For the case of MHSS a very interesting analysis
of the elasto-plastic behaviour is given in Lim et al. [6], considering single and mul-
tiple spheres and comparing numerical and experimental results. This work indicates
dispersion of the experimental results, as well as significant differences between
experimental and numerical data. Some of these differences may be attributed to
the presence of neighbouring spheres, an effect analysed in a previous paper [7].
The influence of defects on dispersion of results has been numerically studied also
by Kepets et al. [8] and may depend on several factors. At any rate, the statistical
dispersion of experimental results on foams (elastic and plastic properties) is much
larger than for the parent metal. For example, Ramamurty and Paul [9] found that
to obtain a variability of the order of 4%, at least seven tests with foams have to
be performed, while for the parent material, a variability of 2% is obtained with 3
tests. As it is well known [10] that the statistical deviation of results on damage and
fracture is much larger than those related to plastic behaviour.
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Fig. 1 Partially glued
metallic hollow sphere
structure [4]

The present work focuses on the computational analysis of two particular forms
of MHSS [3]. Results are compared with the experimental results of Fiedler [4].
The behaviour of single isolated spheres is also numerically analysed, focusing on
loading-unloading behaviour.

The content of the chapter is as follows. Section 2 gives a short account of
the Gurson damage formulation to be used in the analyses. Section 3 studies the
behaviour of a single sphere, considering loading-unloading situations. Section 4
presents a numerical study for a MHSS material, comparing the results obtained
with the experimental results of Fiedler [4].

2 Gurson Damage Model

The Gurson damage model was developed to describe the mechanical effect of high
plastic deformations in ductile metals. The loss of resistance is governed by the
porosity level. The (isotropic) damage variable employed is the volumetric void
fraction, represented by f and defined by f = Vv/V, where Vv is the volume of voids
in a representative small volume V, corrected for effects such as stress concen-
tration; f is defined at each point of the continuum. The presence of voids alters
the elasto-plastic constitutive relations. The equations usually employed in compu-
tational damage analyses, the Gurson–Tvergaard model [11–13], consider a yield
surface defined by

� =
√

3

2
sijsij − ω̄σy = 0, (1)

where

ω̄ =
[

1 − 2α1 f cosh

(
−α23p

2σy

)
+ α3f 2

]1/2

, (2)
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sij = σij + pδij, (3)

where σ ij are the Cauchy stresses and σ y is the yield stress in simple tension. The
so called hydrostatic pressure p, or simply pressure, is defined as p = – 1/3 σii.
The adopted values [14, 15] to the yield surface material parameters in Eq. (2) are
α1 = 1/ fU = 1.5, α2 = 1.0 and α3 = (α1)2. The parameter fU = 1/α1 is the maxi-
mum volumetric void fraction admissible before rupture in the absence of pressure.
Another possible interpretation for the α1and α2 parameters is that they work as
multipliers acting on porosity f and pressure p, respectively.

In Fig. 2, yield surfaces for different levels of void content are shown, in a plot
of normalised deviatoric stress versus normalised pressure.

It can be seen that the elastic domain depends on the hydrostatic pressure p.
When the volumetric void fraction f decreases, the influence of pressure decreases,
leading to a larger elastic domain. For f = 0, the model reduces to the von Mises
model, which is independent of hydrostatic pressure. It should be noted here that in
the absence of hydrostatic pressure, the coefficient ω̄ reduces to

ω̄ = 1 − α1 f = 1 − f

fU
. (4)

The plastic strain rate tensor is given by

D p
ij = λ̇

∂�

∂σij
, (5)
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Fig. 2 Gurson yield surface
for different values of
volumetric void fraction
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where λ̇ is the plastic multiplier. The equivalent plastic strain rate is defined by

ε̇p =
√

2/3D p
ij D p

ij (6)

The basic mechanisms of damage evolution are nucleation, growth and coales-
cence of voids. Nucleation occurs mainly due to material defects, in the presence of
tension. Growth occurs when the voids (pre-existent or nucleated) change their size
according to the volume change in the continuum. Coalescence is related to the fast
rupture process that occurs after that the volumetric void fraction reaches a limit,
indicated by fC. Coalescence consists in the union of neighbour voids due to the
rupture of a ligament.

The equations that govern damage evolution are modelled in a simplified form
as follows. First, it is assumed that the total void rate is given by

ḟ =
{

ḟn + ḟg f ≤ fC
ḟc f > fC

, (7)

where ḟn is the void nucleation rate, ḟg is the void growth rate and ḟc is the void
coalescence rate. Thus, as long as f is smaller than a characteristic value fC, only
nucleation and growth develop. Above fC, only coalescence takes place.

The nucleation rate is proportional to the rate of equivalent plastic strain

ḟn = A(εp)ε̇p. (8)

For A(εp), Chu and Needleman (1980) propose the statistical distribution

A(εp) = fN

sN
√

2π
exp

[
−1

2

(
εp − εN

sN

)2
]

, (9)

where fN is the nucleation void volumetric fraction, εN is the plastic strain value
for nucleation and sN is the standard deviation for the distribution. Sometimes it
is assumed that nucleation takes place only with negative pressure (i.e. tension)
[17, 18], which implies that A(εp) = 0 if pressure is positive.

Voids increase or decrease their volume according to the volume variation in the
continuum. The growth rate of voids is controlled by mass conservation through the
expression

ḟg = (1 − f )Dp
ii. (10)

Coalescence is usually described [19] by the relation

ḟc = fU − fC
�ε

ε̇p, (11)

where Δε is a material parameter.
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An alternative way of taking coalescence into account [14, 17] is to change the
volumetric void fraction f in the Gurson yield surface, Eqs. (1) and (2), by a cor-
rected volumetric void fraction f ∗ given by the Eq. (12), with the material parameter
fF representing the volumetric void fraction that leads to rupture. In this case, only
nucleation and growth are considered in Eq. (7). This is the formulation adopted in
the present analysis.

f ∗ =
{

f f < fC
fC + (1.0−fC)

(fF−fC) (f − fC) f > fC
. (12)

3 Loading–Unloading Analysis of a Single Sphere

In this section the effect of reversal loading on the behaviour of a single sphere
is studied (Fig. 3). A similar sphere, compressed between two parallel planes, was
studied experimentally and numerically by Lim et al. [6] considering elastoplastic
behaviour, without damage considerations. Oliveira et al. [7] studied a sphere with
damage and simplified neighbouring cells considerations. The difference between
the spheres studied by Lim et al. [6] and Oliveira et al. [7] is the hardening adopted,
kinematic in the first study and isotropic in the second.

In the present study, employing isotropic hardening, a single sphere is first com-
pressed in vertical direction to a final height of 10% of its initial radius. In a second
stage, after the vertical compression is removed, the sphere is compressed in the hor-
izontal radial direction by a cylindrical surrounding surface until an external radius
of 0.62 mm is reached. The first stage develops from time 0 to 0.9 and the second
stage develops from 0.9 to 1.5. Figure 3 shows the mesh and boundary conditions
employed. The sphere is modeled as an axisymmetric body with 375 linear quadri-
lateral elements. Because of symmetry considerations, only a quarter of the sphere

Fig. 3 Mesh and boundary conditions employed in the sphere compression
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is modeled. The plate of the test machine is modeled as a rigid plane with pre-
scribed displacements and the contact algorithm is activated. The sphere analysed
had an external radius of 1.0 mm and wall thickness of 0.1 mm. The material con-
stants used [6] were: elastic modulus E = 200 GPa, initial yield stress 200 MPa and
Poisson’s ratio ν = 0.3. The Gurson model with isotropic hardening was employed,
with a hardening modulus of 250 MPa.

To define porosity, one approach must be adopted: strain governed nucleation
of voids or an initial fraction of voids. Both approaches were considered in this
work. When strain governed nucleation, Eqs. (8) and (9), was adopted, the material
constants employed were fN = 5%, εN = 0.3 and sN = 0.1. When an initial fraction
of voids was considered, f0 = 5% was employed. Figures 4 and 5 show subsequent
stages of vertical and lateral compression respectively.

Figures 6, 7 and 8 present the evolution of pressure, equivalent plastic strain and
porosity at points 3 and 4 indicated in Fig. 3, considering strain governed nucleation
model. In Fig. 9, the evolution of porosity using the initial porosity formulation is
presented.

Looking at the results for point 3, it can be noticed that, if the strain governed
nucleation model is employed, although this is the point with the highest equivalent
plastic strain, it develops no damage during the deformation cycle (Fig. 8), because
the equivalent plastic strain nucleation εN is reached in compression. It is a char-
acteristic of the strain governed nucleation approach in the Gurson model that as

Fig. 4 Deformed meshes at different levels of vertical compression – first stage of compression:
(a) 33%; (b) 66% and (c) 100%

Fig. 5 Deformed meshes at different levels of lateral compression – second stage of compression:
(a) 33%; (b) 66% and (c) 100%
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Fig. 6 Evolution of pressure in points 3 and 4 (Fig. 3), considering strain governed nucleation
model
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Fig. 7 Evolution of equivalent plastic strain in points 3 and 4 (Fig. 3), considering strain governed
nucleation model

the material reaches the mean nucleation plastic strain in compression, no nucle-
ation occurs under a subsequent tension. As this behaviour does not agree with
experimental observations, alternative strain governed nucleation models have been
proposed [18]. This problem does not arise when the initial porosity approach is
employed.



90 B.F. Oliveira et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Time

0.00

0.05

0.10

0.15

V
ol

um
et

ric
 v

oi
d 

fr
ac

tio
n

Point 3
Point 4

Fig. 8 Evolution of volumetric void fraction in points 3 and 4 (Fig. 3), considering strain governed
nucleation model
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Fig. 9 Evolution of volumetric void fraction in points 3 and 4 (Fig. 3), initial porosity approach
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4 MHSS Analysis

In this section the finite element results for cellular materials are presented in
comparison with the experimental results of Fiedler [4]. Figure 10 shows the
experimental set-up and the foam specimen before and after the test.

In the numerical simulation of the MHSS behaviour, two geometries (Fig. 11)
were considered. The first one, known as partial geometry, in which the spheres are
glued at their contact point and the second one, known as syntactic geometry, in
which the spheres are totally embedded in the resin matrix. The models used in the
analyses were made to fit global densities for the sets resin-metal of 1.2 g/cm3 (syn-
tactic) and 0.6 g/cm3 (partial). The metal spheres had an external radius of 1.5 mm
and the resin thickness between spheres was 0.36 mm, according the observation of
the specimen of MHSS shown in Fig. 1.

Fig. 10 (a) Experimental setup; (b) specimen before test; (c) specimen after test [4]

Fig. 11 Finite element meshes and boundary conditions for: a) partial and b) syntactic material
representative volume elements (RVE’s)
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Material constants used were elastic modulus E = 110 GPa, ν = 0.30, initial
yield stress σ y

0 = 300 MPa and ρ = 6.95 g/cm3 for the metal of the sphere [3] and
E = 2.46 GPa, ν = 0.34, compression yield stress σ y

0,c = 113 MPa and ρ =
1.13 g/cm3 for the resin. Both metal sphere and matrix were modeled as elastoplas-
tic. Damage was considered only for the metallic spheres. The boundary conditions
employed in the vertical faces reproduce symmetry conditions on the left face and
periodic boundary condition on the right face, maintaining the right face plane and
vertical, but allowing horizontal displacements.

4.1 Partial Geometry: Single and Multi-cell Models

In this section some results obtained studying the behaviour of the partial geometry
are presented. The models employed for the partial case are the corresponding RVE
(representative volume element) model (Fig. 11a) and a model composed by one
layer with five cells (RVE’s) in each direction, as shown in Fig. 12.

Figure 13 shows experimental [4] and numerical macroscopic stress versus nor-
malised displacement plots for the case of the partial geometry. Numerical results
were obtained considering a RVE as shown in Fig. 11a (confined RVE), the same
RVE without restrictions on the lateral right face (free RVE) and the 5×5 cells model
shown in Fig. 12. It can be observed in Fig. 13 that the boundary conditions in the
RVE model have little influence on the results. This is because in the partial geom-
etry the spheres are quite free except at the small region in which they are glued.

Three significant changes in the stiffness of the numerical results can be identified
in Fig. 13, indicated by points 1, 2 and 3. This localised change in the stiffness
corresponds to new contact surfaces activated between RVE and the contact matrices
[7]. In the experimental results, this stiffness change is not so localised due to the
non-uniformity of the geometry.

Fig. 12 Mesh for the 5×5 cells model in the undeformed configuration
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Fig. 13 Macroscopic stress versus normalised displacement plots considering a confined RVE, a
free RVE and the 5×5 cells model (partial geometry)

4.2 Spheres with Non-homogeneous Properties

Some numerical analyses were performed to determine the influence of non-
homogeneity on the load-displacement results. To consider this effect, one layer
model, (5×5×1 model) as shown in Fig. 12, in which random variation of the yield
stress (± 10%) of the individual spheres were considered. Besides, models with
five layers (5×5×5) as shown in Fig. 14, were also studied. However, the analyses
could not be completed because of strong instabilities in the numerical results. As
far as consistent results were obtained, no major influence of non-homogeneity was

Fig. 14 Mesh employed for the 5×5×5 model: (a) undeformed and (b) deformed configuration
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Fig. 15 Macroscopic stress for homogeneous and non-homogeneous models with 5×5×1 cells
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Fig. 16 Macroscopic stress for homogeneous and non-homogeneous models with 5×5×5 cells;
results with non-homogeneous cells were limited to smaller loads due to numerical instability

detected, as shown in Fig. 15 for the one layer model and in the Fig. 16 for the
five layers model. It can observed that employing a greater number of layers the
changes in stiffness (points 1, 2 and 3 in Fig. 13) are smoothed up and the numerical
results become closer to the experimental ones. The study of these situations has to
be pursued.
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4.3 Syntactic Material: Use of Drucker–Prager Model for the Resin

Considering the analysis of the syntactic RVE (Fig. 11b), it was observed that the
resin is subjected not only to compressive but also, for larger strains, to tensile
stresses. Fiedler and Öchsner [3] report the resin properties with two yield stresses,
one value in tension (61.5 MPa) and another value in compression (113 MPa). Thus,
use of the Drucker-Prager model, which considers different yield stresses in ten-
sion and compression seems appropriate. Three situations were studied: von Mises
with yield stress 61.5 MPa, von Mises with yield stress 113 MPa and Drucker-
Prager with tension yield stress 61.5 MPa and compression yield stress 113 MPa.
Figure 17 shows macroscopic stress versus normalised displacement plots for the
studied cases.

In the experimental results, an accentuated initial peak can be observed, that is
not present in the numerical results. This effect is probably related to resin char-
acteristics not properly represented in the numerical simulation, such as debonding
between resin and steel or cracks and failure of the resin.

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalised displacement

0

40

80

120

160

M
ac

ro
sc

op
ic

 s
tr

es
s 

(M
P

a)

experimental
Drucker-Prager

von Mises σ y = 115 MPa

von Mises σ y = 61.5 MPa

Fig. 17 Macroscopic stresses for the syntactic foam: comparison of experimental data with
numerical results that use von Mises and Drucker–Prager constitutive models

5 Conclusions and Final Remarks

The analysis of a single sphere indicates that damage has important local effects
but smaller influence on the global load-displacement plot [7], which depends on
boundary conditions. However, the local state of damage is important because it can
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give rise to local rupture and eventually originate the final collapse of the structure.
In Sect. 3, it is shown that loading-unloading can affect damage local state.

In the case of partial foams, analytical and experimental curves are reasonably
close. The jumps in the numerical curve are not observed in the experiments, proba-
bly due to the presence of physical and geometrical random properties that smoothes
up such details. Tests with non-homogeneous models have shown some trends but
presented numerical problems, and will be pursued.

In the case of syntactic foams, a large difference is observed in the load for a
given displacement after first buckling. This is probably due to the consideration of
the matrix as a ductile elastoplastic material, which is not adequate to represent the
resin behaviour. The use of the Drucker-Prager model for the matrix seems to offer
a better representation of the maximum load but still not fully adequate.

The application of the Gurson model needs the choice of seven or more param-
eters (as compared to one or two in the case of von Mises plasticity) in addition to
the election of nucleation mechanism and thus requires strong interaction between
experimental and numerical research.
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Dielectric Spectra Analysis: Reliable Parameter
Estimation Using Interval Analysis

Adrien Brochier, Maëlenn Aufray, and Wulff Possart

1 Introduction

Dielectric spectroscopy (DES) is widely applied to polymers, monomers and other
insulating materials because it is an extremely effective method for characteriz-
ing the molecular dynamics over many orders of magnitude of time or frequency,
respectively. In the measurement, the complex dielectric function

ε∗(ω) = ε′(ω) − iε′′(ω) (1)

with the angular frequency ω, is measured at constant temperature. This function
is called the dielectric spectrum. Commonly, dielectric spectra are modelled by a
sum of relaxation processes, but the choice of a reasonable physical model for the
relaxator is critical. Most of the usual models, reviewed briefly in the introductory
section, result from phenomenological considerations providing limited physical
foundation. Moreover, the fitting algorithm turns out to be crucial in terms of relia-
bility and unambiguity of the dielectric model function determined. As discussed
in Sect. 2, common softwares use least square approximation fitting algorithms
which need initial values for the fit parameters. This could imply some predesti-
nation of the fit results. In this work, a parameter estimation algorithm which is free
of these limitations will be developed (See Sect. 3). The new algorithm S.A.D.E. not
only provides the chosen dielectric model function by a confidence interval for each
model parameter like the frequency position and the intensity of all relaxations: it
also indicates the number of relaxations that are necessary to model the measured
spectrum.
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1.1 The Dielectric Spectroscopy and Its Models

1.1.1 Relaxations

The Debye relaxators [1] describe the dielectric relaxation response of an ideal, non-
interacting population of freely rotating dipoles to an alternating external electric
field

ε∗ = ε∞ + εS − ε∞
1 + iωτ0

= ε∞ + �ε

1 + iωτ0
(2)

Where εS is the static permittivity (εS = limω→0 ε
′(ω)), ε∞ is the optical dielec-

tric constant (ε∞ = limω→∞ ε′(ω)) and τ0 is the characteristic relaxation time of
the medium. Let us note that the Debye model refers to a well-defined physical situ-
ation. All other relaxator models reported in the literature imply phenomenological
modifications of the Debye relaxator without well–defined physical background.
For example, the Havriliak–Negami (HN [2]) equation

ε∗ = ε∞ + εS − ε∞
(1 + (iωτ0)α)β

(3)

is a mixture of the Cole–Cole [3,4] and the Cole–Davidson [5] equations, accounting
for the asymmetry and broadness of the measured dielectric dispersion curve by
the additional phenomenological parameters α and β. Developed to describe the
dielectric relaxation of some polymers, the HN function is now one of the most
popular models for dielectric relaxation although no exact physical meaning can
still be given to the coefficients α and β.

Then, for dielectric spectra containing several relaxations, it is possible to sum a
number of relaxation processes, according to Eq. (2) or (3), i.e. irrespective of the
model used. Here is the example, for n relaxations represented by the Debye model,

ε∗ = ε∞ +
n∑

j=0

�εj

1 + iωτj
(4)

and the Havriliak–Negami model.

ε∗ = ε∞ +
n∑

j=0

�εj

(1 + (iωτ0)αj )βj
(5)

1.1.2 DC-Conductivity

At high temperatures and ω→0, a contribution of a DC-conductivity (σDC) can be
observed in the dielectric spectra of real polymer samples. It contributes only to
the imaginary part of the measured complex dielectric permittivity, as long as the
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imaginary part of the generalized complex conductivity can be neglected in the low
frequency region (i.e. σ ′′ � ε′). With this presumption, the following equation links
the measured quantities ε̃′, ε̃′′ to the true dielectric material quantities ε′, ε′′ and the
DC electric conductivity (σDC):

ε̃′(ω) = ε′(ω) and ε̃′′(ω) = ε′′(ω) + σDC

ωε0
(6)

At high frequencies, the contribution from the DC-conductivity becomes negli-
gible and hence

lim
ω→∞ ε̃

′′(ω) = ε′′ (7)

At low frequencies, the ε′′ term is negligible compared to σDC, leading to the
equation

lim
ω→0

log10(ε̃′′(ω)) = log10

(
σDC

ε0

)
− log10(ω) (8)

And hence, as a first approximation, the equation

ε̃′′(ω) · ω · ε0 = σDC (9)

gives a good fit of the DC-conductivity [6–9]. However, some relaxations can
take place even at these low frequencies. They are very difficult to fit using clas-
sical approaches (i.e. common algorithms) because they can be masked by the
DC-conductivity.

As a consequence, the fitting process has to lead to a set of parameters which
makes the model to fit both the real and the imaginary part, and has to detect hidden
relaxations.

1.1.3 Polarization at Electrodes and Phase Boundaries

Electrode polarization is a parasitic effect in dielectric experiments which can mask
the pure dielectric response of the sample material [10]. Moreover, as described by
Maxwell, Wagner and Sillars (MWS polarization), phases in heterogeneous media
are to be treated as macroscopic volume elements with different ε∗ and conductiv-
ities σ ∗ [11–13]. The most basic geometrical situation was considered by Maxwell
[11]. This consists of a plate capacitor filled with n dielectric sheets of non-complex
dielectric properties and DC conductivities ε1, σ1, ε2, σ2, . . . εn, σn. This resulted
in differential equations relating the field across the dielectric as a function of the
current though the strata. Maxwell showed his model to be capable of explaining the
observed data for dielectric relaxation in such systems. By considering small spheres
with material properties ε2, σ2 dispersed so as to preclude electrostatic interaction
with one another through a medium with properties ε1, σ1 Wagner [12] was able
to develop Maxwell’s analysis further. This analysis was developed by Sillars [13]
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for a disperse 2-phase system by assuming that the matrix material behaved as a
perfect dielectric (i.e. σ1 = 0). The inclusions are spheroids with axis a in the field
direction, and with b and c equal to one another. The geometry is wholly described
by two variables, q, the volume fraction of dielectric 2, and the axial ratio a/b. The
conducting inclusions behave as point dipoles in the dielectric matrix, and a full
analysis yields relations similar to the Debye equations:

ε′ = ε∞ + ε1

1 + ω2τ 2
(10)

ε′′ = ε1ωτ

1 + ω2τ 2
(11)

Where λ is a particular function of a/b, and ε∞, N and τ are given by:

τ = ε1(λ− 1) + ε2

σ2
· ε0 (12)

N = λ2

ε1(λ− 1) + ε2
(13)

ε∞ = ε1

(
1 + q · λ(ε2 − ε1)

ε1(λ− 1) + ε2

)
(14)

Sillars includes the dimensionless quantity, q, which is a function of the ratio a/b.
The non-linear variation of this quantity implies that little can be deduced about the
dielectric properties of a heterogeneous material unless the shapes of the inclusions
are known. Now, applying an electric voltage to the heterogeneous material, the
mobile charges in phase 2 can be blocked and piled up at the phase boundaries.
This picture also applies to the electrodes on the dielectric sample in the similar
case of polarization at a blocking electrode. The experimental example presented
in the last part of this work reveals that the MWS polarization causes a strong rise
both in the real part (where electrode polarization is more visible) and in the imag-
inary part of the permittivity (where the electrode polarization superimposes to the
DC-conductivity) with decreasing frequency. In this work, the electrode polarization
will be modeled by one strong Debye relaxator (recall that the MWS equation is very
similar to the Debye equation). The only way to separate all the phenomena (elec-
trode polarization, DC-conductivity, and maybe low-frequency dielectric material
relaxations) is a simultaneous fit of the real and imaginary part of the permittivity
using a formula taking all these phenomena into account.

1.2 Modeling Problems: Simultaneous Fit and Choice of the Model

The main problem is that different physical processes can occur at the same fre-
quency and temperature: the example of some small relaxations hidden by the
DC-conductivity is very clear. Therefore, the only way to separate the phenomena
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is a simultaneous fit of the real and imaginary part of the permittivity. So the sim-
ple fit of the imaginary part of the permittivity (used by most of researchers, except
Axelrod et al. [8]) does not give a good solution as relaxations or other phenomena
can be missed. The fit of the complex function of the permittivity will be done by
our algorithm S.A.D.E. presented in the next paragraphs: the relaxations and the
electrode polarization are fitted by the Debye model and the DC-conductivity by
its specific function. Of course, we cannot determine ex ante the number of Debye
relaxations needed to fit our curves, but the program S.A.D.E. will try to fit the curve
using from 0 to n relaxations and one term due to DC-conductivity.

ε∗ = ε∞ +
n∑

j=0

�εj

1 + iωτj
− i
σDC

ωε0
(15)

The goal of the data fitting is to find the parameter values of the applied physi-
cal model that match the data most closely. The models to which the data are fitted
depend on adjustable parameters. Therefore, the fitting process requires both the
choice of a physical model and the choice of a suitable computing algorithm. Most
of the scientific softwares fit experimental data by using some variants of the least
squares approximation method but the success of the fit is not guaranteed. The next
section will summarize the least squares approximation method and its disadvan-
tages. A different algorithm will be presented which makes the fit by the Debye
model of experimental data with several relaxations possible in an efficient way,
even if some of them are hidden.

2 Data Fit Methods: From Least Square Approximation
to the Interval Analysis

2.1 Introduction

Let (xi, yi)1≤i≤n be a set of experimental data, and f(x, p) be a physical model
depending on a vector of parameters p = (p1, . . . , pk). If the measurement accu-
racy is known, it is natural to assume that a given vector of parameters p∗ leads to
a “good” fit if it makes the model consistent with the measurement error ei on each
data point, that is:

∀1 ≤ i ≤ n, yi − ei ≤ f (xi, p∗) ≤ yi + ei

A graphical visualization of this criterion is shown in Fig. 1.
Interval analysis makes possible the computation with intervals rather than with

real numbers, and thus it leads to a very similar criterion for checking whether a
“vector of intervals” contains good parameters. Thus, by cutting the multidimen-
sional space in which good parameters are searched into finitely many small pieces
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Fig. 1 Fit and confidence intervals
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Fig. 2 Modelization of artificial data using a model depending on two parameters A and B. At
every step of the algorithm, the set of feasible parameters is guaranteed to be contained is the area
covered by gray squares. White squares doesn’t contain any feasible parameters. Thus, at each step
the approximation of the set of feasible parameters becomes more accurate

in a suitable way, it is possible to compute the best approximation of the set of good
parameters. As shown in Fig. 2, this algorithm is global, as at each step the area
covered by gray squares is guaranteed to contain the true set of good parameters.
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2.2 The Least Square Approximation

The main goal of data fitting is to find the parameters that make the model
best describing the data. The commonly used method, namely the Least Square
Approximation, tries to minimize the distance between the measured and the
calculated points, i.e. to find:

min
p∈Rk

(
n∑

i=0

(f (xi, p) − yi)
2

)
(16)

If the model is linear this can be done analytically but if not, some classical min-
imization methods (generally based on gradient descent algorithms) are used. Such
an algorithm takes a set of some initial parameter values as input and generates a
sequence of model parameter vectors which are supposed to converge to one partic-
ular parameter vector producing the minimum according to Eq. (16). This method
has some disadvantages however:

• The choice of initial values: The key for success of this algorithm is the proper
choice of initial values but there is no general method to do that. In some cases,
each single fit needs a patient observation of the data and a large amount of unsuc-
cessful testings before finding good initial values. Moreover, when using HN or
Debye models, the number of relaxations has to be known in advance. If the num-
ber of relaxations is higher than 1 and the relaxations are superimposed, it is very
often impossible to find correct initial values for each relaxation.

• The convergence speed: As the algorithm works as an iterative process, it “jumps”
at each iteration step from one value to another which is closer to a solution. One
critical choice is the size of such a jump. Although this choice is partially done by
the algorithm using the gradient and often some additional methods, for example
the Levenberg–Marquardt algorithm [14,15], the step must be adjusted according
to the nature and the order of magnitude of the parameters.

• The local minimum problem: The algorithm starts from a given vector of param-
eters and tries to “follow the slope” to find a minimum of the function. Thus,
the solution provided by the algorithm could correspond to a local minimum
which seems to be a good fit, whereas only the global minimum is physically
meaningful.

• The complexity of the model: The model has to be well conditioned in order
to make the algorithm work well. If the model is unstable (i.e. if a small vari-
ation of the parameters leads to a big variation of the corresponding computed
value) or if the number of parameters is too large, convergence is not guaran-
teed. In particular, if there are some symmetries (i.e. if some permutation of the
parameters does not change the value of the function) the algorithm could “hesi-
tate” between different correct possibilities and not converge at all. This problem
appears in all cases where we describe the measured dielectric function by a sum
of individual physical model functions of the same mathematical type. There are
two possibilities to solve this problem:
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1. assuming a condition on the parameters which breaks the symmetry, for
example that

τ1 < τ2 < . . . < τr (17)

but this is not possible using the least squares approximation, or
2. choose some perfect initial values which clearly distinguish the differ-

ent relaxations, which, as it was already noticed, is often a complicated
problem.

• The measurement accuracy: Although it is possible to attribute a weight factor to
each measured data point according to the accuracy, the quality of the fit result
is not directly linked to the measurement accuracy and there is no guarantee that
the result will be consistent with it. In particular, a result is always provided, even
if no parameter set is consistent with the measurement accuracy (for example if
the chosen number of relaxations is too small to describe the data correctly).
Moreover, the method supposes that the errors are randomly distributed, which is
not always true.

• The bound on the parameters: In general, there is no way to impose some specific
constraints for the parameters (for example that they must not be negative).

2.3 The Interval Analysis

Interval analysis was first introduced in order to have a true representation of real
numbers for numerical computing: for example, assuming that π = 3.1415 gen-
erates some numerical error which propagates or amplifies during the computing
process decreasing the quality of the result. By using an interval instead of a float
precision number and assuming that π = [3.1415; 3.1416] leads to an interval as
the result of the calculation and this interval is guaranteed to contain the true result.
Therefore, intervals could also be used in order to manipulate a large range of real
numbers simultaneously, and thus to make an approximation of a complex set which
is easily handled in computing.

Let R be the set of real numbers. An interval denoted with [x] is a closed con-
nected subset of R. The lower and upper bound of [x] are denoted by x− and x+,
respectively. Let IR be the set of all real intervals, then elementary real operations
are extended to intervals according to the following formula:

[x] ◦ [y] = {x ◦ y | x ∈ [x], y ∈ [y]} for ◦ ∈ {+, −, ∗, /} (18)

leading to, for example:

[1; 3] + [2; 4] = [3; 7] (19)

A vector of intervals is called a box, and IR
n denotes the set of all n–dimensional

boxes. Arithmetic operations with boxes are defined componentwise. The size of an
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interval [x] = [x−; x+] is defined by:

Size([x]) = x+ − x− (20)

The size of a box is the size of its greatest component. A bisection procedure
will also be used, which cuts a box into two parts and returns the two parts. For a
given box [p] = ([p1], [p2], . . . , [pk]), the procedure finds the index i of the greatest
component, and returns 2 boxes:

([p1], [p2], . . . , [p−
i ; p−

i + (p+
i − p−

i )/2], . . . , [pk]) (21)

and

([p1], [p2], . . . , [p−
i + (p+

i − p−
i )/2; p+

i ], . . . , [pk]) (22)

Let us keep in mind that we do not always get an interval when we calculate the
image of an interval by a real function. For example,

√
[4; 9] = [−3; −2] ∪ [2; 3] (23)

provides not one but two intervals. Thus, for more complicated operations, some
approximations have to be applied in order to keep a consistent representation for
computing. In this case for example, the only possible choice is to take the “interval
square root” of [4, 9] to be [−3, 3].

More generally, let

f : R −→ R (24)

be a real function. A so-called “inclusion function” for f is an interval function

[f ] : IR −→ IR (25)

which verifies

∀[x] ∈ IR, f ([x]) ⊂ [f ]([x]) (26)

In other word, the image of an interval (or a box) [x] by an inclusion function for
f is always still an interval (or a box) which contains the true image of [x]. Of course,
there are infinitely many inclusion functions for a given real function. One of them is
minimal but could be difficult to find. Then, the so-called natural inclusion function
will be used. The natural inclusion function is simply obtained by replacing each
operator in the associated real function by its interval equivalent, and each usual
function (sin, cos, exp,

√
) by a suitable interval counterpart. It is important to note

that the natural inclusion function depends on how the real function is written and
especially on the repetition of the same variable. For example, the two real functions

f1(x) = x and f2(x) = x + x − x (27)
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are obviously equal, but their associated natural inclusion function are not. Indeed:

{
[f1]([1; 2]) = [1; 2]

[f2]([1; 2]) = [1; 2] + [1; 2] − [1; 2] = [0; 3]
(28)

To be sure that the inclusion function is an acceptable approximation of the real
one, the inclusion function has to meet two conditions: It has to respect the inclusion

∀[x], [y] ∈ IR, [x] ⊂ [y] ⇒ [f ]([x]) ⊂ [f ]([y]) (29)

and, given a sequence of intervals (or boxes) with a size converging to 0, the size of
the image of this sequence by the inclusion function has to converge to 0 too.

∀([xn])n∈N ∈ IR
N, (Size([xn]) → 0) ⇒ (Size([f ]([xn])) → 0) (30)

2.4 Data Fit and Set Inversion

As outlined in the introducting Sect. 2.1, modelization problems can be reformu-
lated in the language of interval analysis. With (xi, yi)1≤i≤n being a set of measured
data, (ei)1≤i≤n being the corresponding measurement accuracy and f(x,p) being a
model depending on several parameters p = (p1, p2, . . . , pk), each measured value
is associated with an interval according to the measurement accuracy:

[yi] = [yi − ei, yi + ei] (31)

Thus, a vector of parameters p is called feasible if

∀ 1 ≤ i ≤ n, f (xi, p) ∈ [yi] (32)

and is called unfeasible otherwise. This definition has to be extended to the intervals.
Obviously, a box of parameters [p] is feasible if and only if it contains only feasible
parameters, and is unfeasible if it contains only unfeasible parameters. But there is
one more possibility: a box can contain both feasible and unfeasible parameters (see
Fig. 3). Such a box is called indeterminate. More formally, a box [p] is called

• feasible if

∀1 ≤ i ≤ n, [f ](xi, [p]) ⊂ [yi] (33)

• unfeasible if

∃i, [f ](xi, [p]) ∩ [yi] = ∅ (34)

• indeterminate otherwise
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Fig. 3 Feasible, unfeasible and indeterminate boxes; P denotes the complete set of feasible
parameters

Thus, the set P of all feasible parameters can be defined as the inverse image of
the [yi] by a specific function. Thus, let

F : R
k → R

n (35)

p →

⎛
⎜⎜⎜⎝

f (x1, p)
f (x2, p)

...
f (xn, p)

⎞
⎟⎟⎟⎠ (36)

be the function taking a vector of parameter P and returning all the corresponding
calculated values and

[y] =

⎛
⎜⎜⎜⎝

[y1]
[y2]

...
[yn]

⎞
⎟⎟⎟⎠ (37)

the boxes of all measured intervals as defined in Eq. (31). So the set P of all feasible
parameters is exactly:

P = {p | F(p) ∈ [y]} = F−1([y]) =
n⋂

i=1

f −1
i ([yi]) (38)
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where fi(p) = f (xi, p). Thus, the set of feasible parameters can also be considered as
the set of parameters which satisfies a system of constraints.

Theoretically, it is very easy to test if a box of parameters [p] is feasible or not
but in practice it requires the ability to calculate f (xi, [p]) which is not always an
interval or easy to calculate. That is why the (natural) inclusion function [f] will be
used instead.

3 From S.I.V.I.A. to S.A.D.E.

S.I.V.I.A. (Set Inversion Via Interval Analysis) is a set inversion algorithm intro-
duced by Jaulin [16, 17]. The algorithm is able to solve a large range of various
problems by finding a list of boxes approximating the inverse image of a given
set of real numbers or vectors (i.e. a subset of R

k) by a given function. S.I.V.I.A.
is a “branch and bound” algorithm: it first tests if a given box is feasible or
unfeasible. If the box is indeterminate, the box is cut into 2 parts and each
part is tested recursively. As S.I.V.I.A. has exponential complexity, a subrou-
tine called contractor, which increases the speed of the main algorithm, is first
presented.

3.1 Contractor

Given a box [p], a contractor (C) is a subroutine which decreases the size of [p] by
removing some unfeasible parameters (as illustrated in the Fig. 4). So a function C
is a contractor if and only if:

∀[p] ∈ IR
k, C([p]) ⊆ [p] and C([p]) ∩ P = [p] ∩ P (39)

Fig. 4 Action of a contractor: it reduces the size of the current box without removing any feasible
parameter. Thus, the resulting box fits the set P of feasible parameters more accurately
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There are several ways to implement a contractor. One of them uses a
“forward-backward propagation”. Let [p0] be a box of parameters and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (x1, p) ∈ [y1]

f (x2, p) ∈ [y2]
...

f (xn, p) ∈ [yn]

(40)

be the system of constraints corresponding to a fit problem. For each single con-
straint, the value of f (xi, [p0]) is calculated (forward propagation) and compared to
the interval [yi]. Then, the difference is propagated back to the parameter box [p0].
Finally, the found box is contracted using the following constraint, and so on. This
process is repeated as long as the contraction has a significant effect. For example,
let

[p1] × [p2] = [2; 3] × [0; 1] (41)

be a box of parameters,

[y] = [6; 10] (42)

be an interval,

f (p1, p2) = p1 × exp(p2) (43)

be a real function and

f (p1, p2) ∈ [y] (44)

be a single constraint. The aim of the contractor is to remove some values from [p1]
and [p2] which do not satisfy the constraint:

• Forward propagation: The expression is simply calculated but in order to make
the backward propagation possible, each partial calculation is stored as some
variable.

{
[z] = exp([p2]) = [exp(0); exp(1)] = [1; 2.7183]

[yp] = [p1] × [z] = [2; 3] × [1; 2.7183] = [2; 8.1549]
(45)

• the values from [yp] which do not satisfy the constraint are removed

[y∗] = [yp] ∩ [y] = [2; 8.1549] ∩ [6; 10] = [6; 8.1549] (46)
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• backward propagation: the result is propagated back to remove any inconsistent
value from the initial parameters:

⎧⎪⎨
⎪⎩

[p∗
1] = ([y∗]/[z]) ∩ [p1] = [2.2072; 3]

[z∗] = ([y∗]/[p∗
1]) ∩ [z] = [2; 2.7183]

[p∗
2] = (log([z∗])) ∩ [p2] = [0.6931; 1]

(47)

Thus, this process returns a new box [2.2072; 3] × [0.6931; 1] which is smaller
than the initial one, but contains exactly the same feasible parameters.

3.2 Set Inversion Via Interval Analysis (SIVIA)

It is now possible to describe the S.I.V.I.A. algorithm. An initial box [P0] which
represents the initial search space is taken as input: The initial box is chosen large
enough to be sure that the expected solution set P of parameters satisifes the con-
dition P ⊂ [P0]. The second input value is a small positive real number η which
determines the precision of the algorithm. If a box is indeterminate but smaller than
η, this box is still accepted. This guarantees that the algorithm terminates. The fact
that the inclusion function satisfies the conditions (29) and (30) guarantees also the
correctness of the algorithm, i.e. that by choosing the value of η small enough, it is
possible to make the approximation of P as precise as desired. The original version
of S.I.V.I.A. returns an inner and an outer approximation of the set P of all feasi-
ble parameters, but for the sake of simplicity, the algorithm presented in this article
only returns an outer approximation. Some basic structures used in the algorithm
are defined here:

• A List is a structure which can store a list of elements. An element is added to
the list with the function Push (List, element).

• A Stack is a LIFO (Last In, First Out) structure. The function Push (Stack, ele-
ment) adds an element to the top of the Stack, and the function Pop (Stack) returns
the element which is on the top of the stack and removes it from the stack.

The precise description of the algorithm is given Fig. 5. S.I.V.I.A. (Set Inversion
Via Interval Analysis) has some advantages compared to LSA (Least Squares
Approximation):

• This is a global algorithm. If there are some parameters which satisfy the
constraints, they will all be found.

• Conversely, if there is no parameter which satisfies the constraints, an empty set
will be returned. Therefore, S.I.V.I.A. also gives a strong criterion to estimate the
number of relaxations for a given dielectric spectrum.

• All the returned parameters belong to the initial search space. So there is no risk
to find non-sense parameters, such as negative values.
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• It is possible to add some arbitrary constraints that the parameters have to sat-
isfy. It is also possible to use in only one step, several systems of constraints
coming from different sources (for example to fit simultaneously the real and
imaginary part of a set of data) or to use several sets of data coming from repeated
measurements (data accumulation) in order to increase the quality of the result.

• The returned list of boxes can be reinterpreted to find an interval for each param-
eter, which is guaranteed to contain the true parameter value, and which size is
directly linked to the measurement accuracy.

List  L
Stack  S
Push (S, [P0])
While  Not ( is Empty (S) )

[pc]  ←  Pop (S)
Contract ( [pc] )
If  [pc] is feasible

Push ( L, [pc] )
End If
If  [pc]  is indeterminate

If  Size ( [pc] ) ≤ η
Push ( L, [pc] )

Else
{ [p1], [p2]} = Bisection ( [pc] )
Push ( S, [p1] )
Push ( S, [p2] )

End If
End If

End While
Return L

Fig. 5 S.I.V.I.A. (Set
Inversion Via Interval
Analysis)

Figure 6 shows a symbolic set of parameters approximated by a list of boxes
which entirely cover the parameter set with an accuracy determined by the cho-
sen value for the algorithm parameter η (the maximal size of indeterminate boxes
which are still accepted). The list of boxes has to be post-processed in order to

Fig. 6 The complicated set
P is approximated by many
boxes which are easier to
handle
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obtain an interval for each parameter of the applied physical model. Thus, S.I.V.I.A.
is really efficient for a broad range of hard problems, such as robots localization,
parameter estimation or stability analysis, and especially for very badly conditioned
problems. For such problems, S.I.V.I.A. provides a detailed description of the part
of the parameter space which solves the problem. However, in the specific case
of experimental data fitting using a physical model with a lot of parameters, this
feature of S.I.V.I.A. results in some redundancy of the parameters. This is caused
by the symmetry of the model, i.e. the set P is not a connected set but it contains
several connected components that correspond to all possible permutations of the
parameters which let the model invariant. Then, the post-processing of the list could
be time-consuming. So it is necessary to find a way to select a single connected
component.

3.3 How to Modify S.I.V.I.A. for Dielectric Spectroscopy

In dielectric spectroscopy, the dielectric function ε∗ measured as a function of fre-
quency provides the experimental data set which consists of the two sub-sets for
the real and the imaginary parts ε′ and ε′′, respectively. For dielectric data fit, the
results given by S.I.V.I.A. are too precise: the list S.I.V.I.A. returns is not easy to
process and a perfect approximation of P is not necessary as only an interval for
each parameter is needed. Thus, it is possible to modify this algorithm to make it
applicable to most complex cases.

3.3.1 Returned Values

As only an interval is needed for each parameter, the first idea is to approximate the
bounding box of P, instead of P itself. The bounding box of P is simply the smallest
box [P] containing P. Each time the algorithm finds a feasible box of parameters, it
will store the convex union of the current result and the newly found box instead of
pushing this new box into a List. The convex union of 2 intervals is defined by:

[
[x] ∪ [y]

] = [Min(x−, y−); Max(x+, y+)] (48)

The convex union of 2 boxes is defined componentwise. In other words, the con-
vex union of 2 boxes is the bounding box of the classical union of the 2 boxes. Thus,
the returned value is not a List anymore, but a single box. The occupied memory
space depends only on the size of the Stack, which is generally negligible.

Another positive consequence is, as the convex union of 2 boxes is bigger (in the
sense of inclusion) than the standard union, that some parameters can already belong
to the currently found box without having been processed before. This situation
appears very frequently, so before contracting and testing a box, the algorithm will
first check if the box which will be tested, already belongs to the currently found
box. If yes, then the algorithm has nothing to do and can move along to the following
box in the Stack saving a lot of computing time (see Fig. 7).
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Fig. 7 A and B are feasible
boxes. C is accepted without
having been processed as it
already belongs to the convex
union of A and B

The computing time decreases a lot by using this simple technique. However,
this technique is not justified if P is a non-connected parameter set. Indeed, the
bounding box of a non-connected set includes all the connected components of the
set which are generally far from each other. Thus, having a method to select one
single connected component is now not only a question of saving computing time,
but also a question of relevance of the result (as illustrated by Fig. 8).

3.3.2 Dealing with Symmetry

It is now necessary to find a way to select one single connected component from
the set of feasible parameters. The easiest way is to assume that, for example (in the
case of r relaxation times τi associated with r dielectric relaxations),

∀i ∈ {1 . . . r − 1}, τi < τi+1 (49)

Fig. 8 Bounding box of a
non-connected set. Because
of the symmetries, the set of
feasible parameters is divided
into two components which
are far one from the other.
Thus, the bounding box of the
whole set is not relevant at
all, whereas the bounding box
of one of the components is
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But, as the algorithm deals with intervals, this constraint cannot be applied
directly. However, it is obvious that this relation implies that the upper bound of [τi]
cannot be greater than the upper bound of [τi+1], and conversely the lower bound of
[τi+1] cannot be smaller than the lower bound of [τi]. So the algorithm will remove
some (and potentially all) values from [τi] by using:

For i = 1 To r − 1, [τi] ← [
τ−

i ; min(τ+
i , τ+

i+1)
]

(50)

and

For i = 1 To r − 1, [τi+1] ← [
max(τ−

i , τ−
i+1); τ+

i+1

]
(51)

Again, there is a positive consequence of that. The size of [τi] could decrease by
this process, or [τi] could become empty. Obviously, there are much more param-
eters which do not satisfy this constraint than parameters which do, so a lot of
boxes will be simply removed during this process (namely, when τ+

i+1 < τ−
i , or

when τ−
i > τ+

i+1 for some i) even if they are mathematically feasible, decreasing
considerably the computing time. Moreover, the proportion of boxes which do not
satisfy this constraint increases when the number of parameters increases. Then,
the increase of computing time due to the increase of the number of parameters is
partially compensated by the decrease of computing time due to this process.

3.3.3 Bisection

As the parameter τi (relaxation times) and the corresponding interval [τi] could
cover many orders of magnitude it makes no sense to cut this interval in the mid-
dle. Their size will often be greater than the size of the measured parameter [�εi]
[see Eq. (15)]. Thus, plenty of computing time would be wasted by making a lot of
useless bisections. Instead, it will be useful to define a specific size and a specific
bisection for τi. So, by rewriting

[τi] = [10T−
i ; 10T+

i ] (52)

the size of τi is defined by:

Size([τi]) = T+
i − T−

i (53)

and the bisection by:

Bisection([τi]) = [10T−
i ; 10T−

i +(T+
i −T−

i )/2], [10T−
i +(T+

i −T−
i )/2; 10T+

i ] (54)

So, exactly for the same reason that it is reasonable to use a logarithmic axis for the
frequency to plot a function, the algorithm will use a “logarithmic bisection” for [τi].
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3.4 S.A.D.E. Algorithm

By using these modifications, it is possible to give a new algorithm, S.A.D.E. (as
S.I.V.I.A. Applied to DiElectric spectroscopy) which will also find the optimum
number of relaxations. This algorithm is described in Fig. 9. The algorithm will
loop until it finds the minimum number of relaxations which make the result being
non-empty. Note that if it is possible to fit the data with r relaxations, trying to
fit it with more than r relaxations will give too many degrees of freedom and will
lead to a very bad result. In fact, if there are more than r relaxations, the additional
relaxations are masked by the measurement errors. Then, the numbers of relaxations
provided by S.A.D.E. should be considered as optimum.

4 S.A.D.E. Examples

4.1 A First Test by Using Home-Made Data

First, the widely used Havriliak-Negami function was tested. Using fixed parameters
for only one relaxation (ε∞ = 4, �ε = 2, τ = 1s, α = 0.5 and β = 0.5), a perfect
data set was created using the Havriliak–Negami model [according to Eq. (3)]. Of
course, as it was a “home-made” data set, the experimental error on data points
would be zero. Hence, this data set was tested as a real measured data set by adding

Box [P] ← ø
Integer relaxation Number  ← 1
Stack S
While [P] = ø

Push ( S, [P0] )
While Not ( is Empty (S) )

[ pc]  ← Pop (S)
If  Not ( [ pc] ⊂ [P] )

Break Symetries ( [ pc] )
Contract ( [ pc] )
If   [ pc]   is feasible,

[P] ← [[P]∪ [ pc]]
End If
If  [ ] is indeterminate

If  Size ( [pc] ) ≤ η
[P] ← [[P] ∪ [ pc]]

Else
{[p1 ], [p2 ]}= Bisection ([pc])
Push (S, [p1 ] )
Push (S, [p2] )

End If
End If

End If
End While
relaxation Number ← relaxation Number + 1

End While
Return [P]

pc

Fig. 9 S.A.D.E. (as Set
inversion via interval analysis
Applied to DiElectric
spectroscopy)
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Table 1 Calculated
parameters, from a “home
made” Havriliak–Negami
relaxation

Parameter Interval

ε∞ 3.96 4.04
�ε 1.9853 2.0538
τ 0.983181 s 1.013406 s
α 0.4847 0.5112
β 0.4836 0.5059

an accuracy of 1%. Then, with a 0.01 box size (η, described in Sect. 3.2) and within
less than 1 second computing time on a common desktop computer, the resulting
parameter intervals were obtained by S.A.D.E. and presented in Table 1.

This result is very promising since the boundaries of the intervals deviate by
less than 4% from the exact parameter values and hence it validates the program
S.A.D.E..

Secondly, the Debye function was tested. This function is the only one having
a physical meaning and will be used for our experiments in the next part. Using
fixed parameters for only one relaxation (ε∞ = 2, �ε = 3, τ = 10−6s), a perfect
data set for the Debye model (see equation (2)) was created. Of course, as it was a
“home-made” data set, the experimental error on data points would be zero. Again,
this data set was tested as a real measured data set by adding an arbitrary error of
1%. With a 0.1 box size and with less than 1 second computing time on a common
desktop computer, the resulting parameter intervals were calculated and presented
in Table 2.

As for the previous example, this result is very promising since the boundaries
of the intervals deviate by less than 2% from the exact parameter values. Moreover,
as this model was simpler than the HN model (less parameters), S.A.D.E. was able
to calculate the parameters with a smaller error although the box size was ten times
bigger.

Table 2 Calculated
parameters, from a “home
made” Debye relaxation

Parameter Interval

ε∞ 1.97963 2.02038
�ε 2.93991 3.05322
τ 9.89954 × 10−7 s 1.01024 × 10−6 s

4.2 Test with Real Experimental Curves

4.2.1 Experimental Details

The pure diglycidylether of bisphenol A (DGEBA) DER 332 from DOW Chemical
was studied by dielectric broadband measurements in a frequency range of 0.1 Hz
to 106 Hz using a Novocontrol High Resolution Dielectric Alpha Analyser with
automatic temperature control by a Quatro cryosystem. For the examples presented
here, 200 data points were measured in the frequency range at −90 and 60◦C.
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The viscous DGEBA was placed between stainless steel electrodes, with a teflon
spacer in order to have a well-defined geometry.

As the number of relaxations is higher for real data points than for Home-made
curves, the common desktop computer was changed to a Dual Opteron machine
containing two 2.4 GHz/64 Bits CPUs and at least 4 GB of RAM. The operating
system was Suse Linux 10.0. A parallelized version of the algorithm was imple-
mented (in the C++ programming language) in order to take advantage of the two
CPUs.

4.2.2 Application of S.A.D.E. to Multiple Relaxations Data

Figures 10 and 11 show ε′ and ε′′ as measured at −90◦C for pure DGEBA. By eye,
only two relaxation processes would be recognized for the curves. However, the
shape of the spectra is complex. We choose a sum of Debye relaxators to describe it
[see Eq. (15)]. Then, S.A.D.E. identifies the five relaxations represented in Figs. 10
and 11. The five relaxation curves were drawn using the middle point of each com-
puted interval (in the logarithmic sense for the parameters τ i). With a 0.1 box size
and with 382 s computing time on the cluster, the resulting parameter intervals were
calculated and presented in Table 3.

This result is very promising since the boundaries of each of the intervals are not
far apart. Of course, the width of the intervals can be reduced further as they depend
on the error of the experimental data points and on the given box. But the smaller
the box η is made, the higher the calculation time will be. Let us note that S.A.D.E.
tries first to fit these data points by only one Debye relaxator. As the fit failed, it tries
with two to five relaxations (using five Debye relaxators lead to the determination
of eleven parameter intervals!). If we try to fit the data points with more than 5

4.6

4.8

5.0

5.2

ε’

Frequency [Hz]
10–1 100 101 102 103 104 105 106

Experimental points with error bars
Debye relaxations calculated by S.A.D.E

Fig. 10 Dielectric spectroscopy real permittivity of the DGEBA DER 332 prepolymer at −90◦C
and the corresponding five Debye relaxations as calculated by S.A.D.E.
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Experimental points with error bars
Debye relaxations calculated by S.A.D.E

Frequency [Hz]
10–1 100 101 102 103 104 105 106 107

Fig. 11 Dielectric spectroscopy imaginary permittivity of the DGEBA DER 332 prepolymer at
−90◦C and the corresponding five Debye relaxations as calculated by S.A.D.E.

Table 3 Calculated
parameters, using the
equation (4), from
experimental data set
at −90◦C presented in the
Figs. 10 and 11

Parameter Interval

ε∞ 4.50144 4.60168
�ε1 0.176763 0.270755
τ1 7.23 × 10−8 s 1.24 × 10−7 s
�ε2 0.164731 0.269318
τ2 1.54 × 10−6 s 2.21 × 10−6 s
�ε3 0.0771269 0.133832
τ3 2.74 × 10−5 s 4.70 × 10−5 s
�ε4 0.0239589 0.0437055
τ4 1.19709 × 10−3 s 2.05353 × 10−3 s
�ε5 0.0321849 0.0524569
τ5 3.69994 × 10−2 s 6.26434 × 10−2 s

relaxations, the additional relaxations will be masked by the measurement errors.
Then, the numbers of relaxations provided by S.A.D.E. is considered as optimum.
It is worth noting that these parameters were not found by classical least square
approximation fitting routines.

4.2.3 Application of S.A.D.E. to the Global Problem: Data with Relaxations,
Conductivity and Electrode Polarization

Figures 12 and 13 show ε′ and ε′′ measured at 60◦C for the pure DGEBA DER
332. At first glance, only conductivity, electrode polarization and the beginning of a
relaxation process (at high frequencies) can be identified for that measured dielectric
spectrum. But two relaxations are found by S.A.D.E., and the DC-conductivity is
well defined. As for the previous figures, the relaxation curves were drawn using the
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Fig. 12 Dielectric spectroscopy real permittivity of the DGEBA DER 332 prepolymer at 60◦C
and the corresponding two Debye relaxations as calculated by S.A.D.E.
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Fig. 13 Dielectric spectroscopy imaginary permittivity of the DGEBA DER 332 prepolymer at
60◦C and the corresponding two Debye relaxations as calculated by S.A.D.E.

middle point of each computed interval (in the logarithmic sense for the parameters
τ i). With a 0.1 box size and with 4336 s computing time on the cluster, the resulting
parameter intervals were calculated and presented in Table 4.

The first relaxation (at high frequencies, with the smaller relaxation time τ1)
corresponds to a dipole relaxation of the material. By just looking at the curve, it
is not possible to say if some relaxators take place as only conductivity and elec-
trode polarization could be identified, but S.A.D.E. clearly identified this material
relaxation. In addition, the second relaxation (at low frequencies, with the higher
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Table 4 Calculated
parameters, using the Eq.
(15), from experimental data
set at 60◦C presented in the
Figs. 12 and 13

Parameter Interval

ε∞ 10.169 10.2691
�ε1 0.0308334 0.123296
τ1 1.56023 × 10−8 s 6.97831 × 10−8 s
�ε2 0.222722 0.671
τ2 1.00487 × 10−3 s 4.17685 × 10−3 s
σDC 3.95878 × 10−8S × m−1 4.9343 × 10−8S × m−1

relaxation time τ2) corresponds to the electrode polarization. As mentioned in the
paragraph “Polarization at electrode and phase boundaries” (see Sect. 1.1.3), the
electrode polarization is well modeled as a strong Debye relaxator. In fact, close
to the electrodes the mobile charges can be blocked and piled up at the phase
boundaries, as described by Maxwell, Wagner, and Sillars [11–13], whose relation is
similar to the Debye equation (see Eqs. (2) and (10)). Electrode polarization is rea-
sonable since the DGEBA contains traces of ions from synthesis. Let us note that
these relaxations were not visible in the data plot (Figs. 12 and 13) and not possible
to fit by classical ways. Finally, the DC-conductivity was calculated simultaneously
with the Debye relaxations: it perfectly fits the rise observed in the imaginary part
of the material permittivity (Fig. 13).

In conclusion, as S.A.D.E. found some Debye-like relaxations we can be sure
that a Debye relaxator also describes electrode polarization reasonably well.

5 Conclusion

Dielectric spectroscopy is an extremely versatile method for characterizing the
molecular dynamics over a large range of time scales. Unfortunately, the extraction
of model parameters by data fitting is still a crucial problem which is now solved by
our program S.A.D.E.

S.A.D.E. is based on the algorithm S.I.V.I.A. which was proposed and imple-
mented by Jaulin [16,17] in order to solve constraint satisfaction problems. The
problem of dielectric data analysis is reduced to a problem of choosing the appro-
priate physical model. In this article, Debye relaxations were used and validated to
fit the relaxations of a DGEBA prepolymer and the polarization of the spectrometer
electrodes. The conductivity was evaluated too.
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public license.



Dielectric Spectra Analysis 123

References

1. P. Debye, Polar Molecules (Chemical Catalog, Reprinted by Dover Publications, New York,
1929)

2. Havriliak, S. Negami, Polymer 8, 161 (1967), http://www.sciencedirect.com/science/article/
B6TXW-48FBVVM-4T/2/ffb6daa2b39f773a1666f9d2cb8d4ed8

3. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)
4. K.S. Cole, R.H. Cole, J. Chem. Phys. 10, 98 (1942)
5. D. Davidson, R.H. Cole, J. Chem. Phys. 18, 1417 (1950)
6. M. Mangion, M. Wang, G. Johari, J. Polym. Sci. B Polym. Phys. 30(5), 433 (1992), http://

www3.interscience.wiley.com/cgi-bin/fulltext/104051384/PDFSTART
7. Corezzi, S. Capaccioli, G. Gallone, A. Livi, P. Rolla, J. Phys. Condens. Matter 9, 6199 (1997),

http://www.fisica.unipg.it/~corezzi/
8. N. Axelrod, E. Axelrod, A. Gutina, A. Puzenko, P. Ben Ishai, Y. Feldman, Meas. Sci. Technol.

15, 1 (2004)
9. F. Stickel, E. Fischer, R. Richert, J. Chem. Phys. 104(5), 2043 (1996)

10. R.M. Fuoss, J.G. Kirkwood, J. Am. Chem. Soc. 63(2), 385 (1941)
11. J. Maxwell, A Treatise on Electricity and Magnetism, vol 1. (Dover Publications, New York,

1954)
12. K.W. Wagner, Archiv für Elektrotechnik 2(9), 371 (1914). URL http://www.springerlink.com/

content/xr0617448810/?p=a72f93d829804c93afa018301302e470&pi=624
13. R. Sillars, Proc. Inst. Electr. Eng. 80, 378 (1937)
14. D.W. Marquardt, J. Soc. Ind. Appl. Math. 11(2), 431 (1963)
15. K. Levenberg, Q. J. Appl. Math. 2, 164 (1944)
16. Jaulin, E. Walter, Automatica 29(4), 1053 (1993), http://www.sciencedirect.com/science/

article/B6V21-47WVRTR-5T/2/35ab6e2405d16f0886be1fcfc21d687c
17. Jaulin, E. Walter, Math. Comput. Simul. 35(2), 123 (1993), http://www.sciencedirect.com/

science/article/B6V0T-45DHW9D-2/2/f8024c6b00508f6f3ce7087b39f78f59



Numerical Modeling of Complex Structures:
Shells and Biological Cells

J.N. Reddy, R.A. Arciniega, G.U. Unnikrishnan, and V.U. Unnikrishnan

1 A Refined Shell Finite Element

1.1 Introduction

In solid and structural mechanics the development of efficient computational mod-
els for the nonlinear analysis of shells has been one of the most important research
activities. This is partially motivated by the need to analyze new materials such
as composites and functionally graded shells. Shells made of laminated compos-
ites continue to be of great interest in many engineering applications [1]. In some
applications these structures can experience large elastic deformations and finite
rotations. Consequently, geometric nonlinearity plays an essential role in the behav-
ior of the shell. Therefore, the choice of an appropriate mathematical model together
with a consistent and robust computational procedure that can accurately represent
nonlinear deformations and stresses in shell structures are of vital importance.

The most commons finite elements used for the analysis of shell structures are
the continuum-based shell element (or degenerated solid element) and a 2D element
based on a shell theory [2]. Finite elements based on shell theories describe, in a
natural way, the behavior of the shell since they are written in terms of curvilinear
coordinates. For this case, two different approaches can be identified depending
whether or not there is an approximation of the geometry of the mid-surface (i.e.,
finite element domain in the parametric space of the mid-surface). Formulations
in which the mid-surface is represented by a chart and interpolate the covariant
components of the field variables are called tensor-based finite element models. It is
often argued that this kind of interpolation automatically causes difficulties with the
rigid body modes of curved structures because they cannot be properly represented
[3]. We do not share this view point. It is demonstrated in this paper (from a heuristic
perspective) that with a suitable formulation of the shell kinematics and choice of
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interpolation of the field variables over the finite element, these problems can be
avoided.

The dominant trend to overcome locking in shells over the last decades has been
the use of low-order finite elements with mixed formulations. A mixed finite element
model is based on Hu-Washizu type mixed variational principle [4, 5]. Alternatively,
high-order elements have been proposed for the analysis of shells. The claim of
this approach is to use finite elements of sufficiently high degree to recover the
convergence property in an optimal order. This is called p-version finite element
technology (where p is the degree of the interpolation polynomial). In this case,
there is no need to use mixed formulations, and displacement-based finite element
formulations can be applied. Finite elements with high-order approximations have
been utilized by Pitkäranta [6, 7] for linear analysis of shells (also, see [8]). The use
of tensor-based finite element formulations together with high-order elements for
the analysis of shell structures leads to an efficient computational approach which
is straightforward to implement. Such model can be applied to linear and nonlinear
analyses of shells made of isotropic, laminated composite and functionally graded
materials (FGMs). To the knowledge of the authors, no applications of high-order
elements to nonlinear shell analysis are found in the literature until the authors work.

The objective of this study is to develop a refined shell element using a tensor-
based formulation. The approach is based on a first-order shell theory with seven
independent parameters [9, 10] under the Lagrangian framework. This theory cir-
cumvents the use of a rotation tensor and preserves the additive structure of the
configuration update of the shell. The element is capable of simulating finite
displacements and rotations with no presence of membrane or shear locking.

The mathematical shell model is consistently derived using absolute tensor nota-
tion and the finite element model is developed in a straightforward way. Moreover,
the simplicity of this approach makes it attractive for applications to contact
mechanics and damage propagation. Previous works for linear analysis of laminated
shells using tensor-based finite elements can be found in Arciniega and Reddy [11]
and Reddy and Arciniega [12].

1.2 Theoretical Formulation

Let {θ i} be a set of convected curvilinear coordinates, and i = 1, 2, 3. The mid-
surface of the shell is defined by the coordinates {θα}. The displacement vector is
assumed to be of the form

V(θ i) = u(θα) + θ3ϕ(θα) + (θ3)2ψ(θα) (1)

where u denotes displacement vector of a point on the mid-surface, ϕ the rota-
tion tensor, and ψ is the thickness stretch tensor with only component along the
transverse normal
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u
(
θα
) = uiai, ϕ

(
θα
) = ϕiai, ψ

(
θα
) = ψ3a3 (2)

Equation (1) contains 7 independent variables. The quadratic term ψ is included
to avoid the Poisson or thickness locking; therefore, no enhanced methods are
needed. Since the drilling degree of freedom is included in the model, full 3D consti-
tutive equations are utilized. The use of a rotation tensor is avoided and the additive
structure of the configuration update is preserved. For the given displacement field,
we obtain the following Green strain tensor

Ê = ε0 + (θ3) ε1 + HOT (3)

where Ê is the pull-back of the covariant Green strain tensor E, and (ε0,ε1) are
the tensors associated with membrane and bending strains. We denote with Mn the
stress resultant tensor, which is symmetric because of the symmetry of the second
Piola-Kirchhoff stress tensor S (see [13]):

Mn =
∫ h/2

−h/2
(θ3) nŜμ d θ3 (4)

where Ŝ is a pull-back operator of a contravariant of the second Piola-Kirchhoff
stress tensor S, n = 1,2 and μ is the determinant of the shifter tensor μ. The
weak form can be easily constructed from the principle of virtual work (see
[1, 2]). The configuration of the shell is defined by the triplet (or seven parameters)

� ≡
(

u, ϕ, ψ
)

= (ui,ϕi,ψ3). We have

J (�, δ�) = Gint (�, δ�)+ Gext (�, δ�) = 0

=
∫

MR

(
M0 · δε0 + M1 · δε1

)
d�+ Gext (�, δ�)

(5)

where δ� :=
(
δu, δϕ, δψ

)
∈ V and V is the space of admissible variations.

Let A be the domain of the midsurface parametrization. Notice that the loca-
tion of the midsurface is given by the mapping r(·) : A ⊂ R

2 → MR ⊂ R
3. The

finite element domain is given in the parametric space A. In that case the parame-
ters of the midsurface are computed exactly at each Gauss point. The finite element
equations are obtained by discretizing the covariant components of the displace-
ments and rotations of the midsurface written in terms of the surface base vectors
(tensor-based formulation). Namely
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uhp(θ) =
⎛
⎝ m∑

j=1

u(j)
k N(j) (ξ , η)

⎞
⎠ ak

ϕhp(θ) =
⎛
⎝ m∑

j=1

ϕ
(j)
β N(j) (ξ , η)

⎞
⎠ aβ

ψhp(θ) =
⎛
⎝ m∑

j=1

ψ
(j)
3 N(j) (ξ , η)

⎞
⎠ a3

(6)

where θ (ξ , η) : �̂e ∈R
2 →Ae ⊂ A. The elements are interpolated by using higher-

order Lagrange polynomials which, in contrast to low-order finite element formula-
tion, do not exhibit any locking problems. Finally, the linearization of the discrete
form of Eq. (5) is carried out, leading to a symmetric system of equations. The
resulting set of nonlinear algebraic equations is solved by the incremental procedure
based on the Newton–Raphson method and the cylindrical arc-length method.

1.3 Numerical Results

In this section, numerical results obtained using the shell element described herein
are presented for several bench mark problems. Regular meshes of Q25, Q49 and
Q81 high-order elements with seven degrees of freedom per node are utilized in the
finite element analysis. These elements are based on p = 4, 6, and 8, respectively.
By increasing the p level or refining the finite element mesh, we mitigate locking
problems. Full Gauss integration rule is employed in all examples.

We consider the nonlinear behavior of functionally graded shells. The first exam-
ple consists of a shallow FGM shell panel made of ceramic and metal and subjected
to a point load (Fig. 1). The geometric parameters used are a = 508 mm, R =
2540 mm, h = 25.4, 12.7, 6.35 mm,α = 0.1rad. The material properties of the con-
stituents are Ec = 151 GPa, νc = 0.3, Em = 70 GPa, νm = 0.3. A typical material
property (with the exception of Poisson’s ratio, which is kept constant at 0.3) is
assumed to vary continuously through the thickness of the shell as

P
(
θ3
)

= Pcfc + Pmfm, fc =
(
θ3

h
+ 1

2

)n

, fm = 1 − fc

where the subscript c refers to ceramic and m refers to metal. The FGM shell is still
isotropic with constant material properties in each surface. Figure 1 contains central
deflection versus point load curves of the present approach for different volume
fractions n (from fully metal to ceramic). The results show standard limit points and
complex equilibrium curves with snap-through and snap-back behavior.

Next, we consider two examples of plates: the bending of a clamped plate under
distributed moment and an annular plate subjected to a shear force. These are
classical benchmark problems for large deformation analysis and they have been
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Fig. 1 Deflection at the center of the cylindrical panel under point load (h = 6.35 mm)

considered by many authors. In fact, these problems are good to test the capability
of the finite element model to simulate finite rotations on shells. Figure 2 shows the
deformed configurations of the strip (E = 2.0 × 1011, ν = 0.3, L = 0.5, b =
0.075, h = 0.0045) and annular plate (E = 21.0 × 106, ν = 0.0, Ri = 6,
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Fig. 2 Roll-up of a clamped plate and annular plate under end shear loading
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Re = 10, h = 0.03 ) for various load stages. The last deformed configurations
demonstrate the ability of the present approach to handle extreme rotations of the
plate (up to 720◦) without any singularities.

Another well-known benchmark problem for finite deformation is the semi-
cylindrical shell (L = 304.8, R = 101.6, h = 3.0). under point load. Figure 3
shows the deflection at point A versus the point load for composite shells (E1 =
2068.5, E2 = E3 = 517.125, G12 = G13 = 795.6, G23 = 198.89ν23 = 0.3,
ν12 = v13 = 0.3). To validate the our results, the present results are compared
with those of Sze et al. [14], who used Abaqus program to generate the results.

Finally, we just show the deformed configurations of a full hemispherical
shell and a hyperboloid shell under two inward and two outward point loads.
These challenging problems demonstrate the robustness of the present finite

X
Y

Z

X Y

Z

Fig. 4 Pinched hemispherical shell (0◦/90◦/0◦). Pinched hyperboloid shell (90◦/0◦/90◦)
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element model and its applicability to arbitrary shell geometries with very strong
geometric nonlinearity. The analysis is carried out for cross-ply composite lami-
nates (90◦/0◦/90◦) and (0◦/90◦/0◦). For the hemispherical shell we utilized a mesh
of 2×2 Q81 elements (in a quarter of the shell) while for the hyperboloid shell
we used 5×5 Q81 elements (in an octant of the shell). The final configurations of
both shells are shown in Fig. 4. For the details of geometry and material properties
(see [15]).

2 Constitutive Modeling of Biological Cell

2.1 Introduction

Cell is the fundamental unit of every living organism. Various computational models
of cells have been developed in literature to analyze its behavior, and can be broadly
defined as the discrete cell models and continuum cell models. Most of the earlier
works based on continuum hypothesis homogenize the entire cell and do not explic-
itly consider the effect of inhomogeneity of the cell, with some exceptions [16–18].
These models, even though they reduce the number of mechanical parameters, fail
to capture the properties caused by the structural inhomogeneity of cytoplasm, like
actin network layer, stress fibers etc (see Fig. 5). This becomes a crucial factor in
the study of mechanical behavior of cells in-vivo as well as in the determination of
mechanical parameters using experimental techniques like atomic force microscopy
and micropipette suction.

Scanned images and experimental procedures have shown that there exist regions
in cytoplasm having distinct physical properties. The contribution of the cytoskeletal
filaments, especially the actin stress fibers, in influencing the mechanical proper-
ties of cells is well established in the literature [18, 19]. A precise representation
of the anisotropic, nonlinear behavior of the cytoskeletal architecture is required
for any computational analysis of a living cell. The homogenous material defini-
tion of the cell is far from being accurate, especially for an adherent cell in which
stress fiber introduces significant inhomogeneity. In this work, a mechanical model

Fig. 5 A schematic
representation of a
generalized cell
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of an adherent cell based on continuum micromechanics considering the structural
inhomogeneity of the cytoplasm is developed. The homogenized cytoplasm is con-
sidered to be a matrix reinforced with stress fibers; the periplasm or the actin cortex
as a layer of semi-flexible polymer networks and finally the nucleus.

2.2 Homogenization of Cell Structure

In the cortical region, actin filaments behaving as biopolymers forms a complex
filamentous network whose properties are dependent on the individual filament char-
acteristics. To capture the behavior of the cortical region, suitable material models
are derived based on the actin filament and network characteristics. Cytoplasm is
composed of a highly organized network of cytoskeletal filaments of actin, inter-
mediate filaments (IF), and microtubules (MT). The distribution of the cytoskeletal
filaments differs according to the type and environment of the cell, thus changing
their material properties. In a tissue, the material inhomogeneity is introduced in the
cytoplasm through the formation of actin fibers, and their directions are influenced
by the external collagen alignment. The actin fibers, having a few microns in diame-
ter, are formed from the bundling of actin filaments in the presence of actin binding
proteins. A constitutive model incorporating the effect of actin bundles are devel-
oped in this study, by assuming the cytoplasm to be a “fiber-reinforced composite”
satisfying the continuum hypothesis [20].

Using such an idealization, the effective property of the cytoplasm reinforced
with stress fibers could be obtained by borrowing ideas from the widely accepted
homogenization theories in composite material. The property of this homogeneous
continuum is based on a statistically homogeneous volume element, called the rep-
resentative volume element (RVE). The RVE is a representation of the material at
the microscale, and is small in comparison to the macrostructure (e.g. whole cell,
tissue), has negligible influence on macroscopic property, but large in comparison to
the microstructure (e.g. protein molecules) for a meaningful sampling. Actin cortex
can be considered as a semi-dilute polymer solution of actin filaments, crosslinked
with actin binding proteins. The nonlinear stress-strain behavior of the actin net-
work is captured by introducing a neo-Hookean material model using the calculated
shear modulus with the cortex treated as an incompressible material, whose strain
energy density is taken as

W(I1) = μ0

2
(I1 − 3) (7)

where μ0 is the initial shear modulus, and I1 is the first strain invariant. The cyto-
plasm, as observed in various experimental studies, has randomly distributed stress
fibers in a matrix of microtubules and intermediate filaments. The matrix is assumed
to be a hyperelastic material and nearly incompressible with a small strain shear
modulus of 100 Pa. The linear effective modulus of the composite having a random
distribution of fiber in a uniform matrix is given as



Numerical Modeling of Complex Structures 135

Ke = K1 + v0

{
1

K0 − K1
+ 3v1

3K1 + 3μ0 + μ1

}−1

μe = μ1 + v0

{
1

μ0 − μ1
+ 2v1

5

[
1

μ0 + μ1
+ 3 − 4υ0

μ0 + μ1(3 − 4υ0)
+ 1

2 (3K1 + 3μ0 + μ1)

]}−1
(8)

where, μe is the shear modulus, Ke is the bulk modulus, υ Poisson’s ratio, v0 is the
volume fraction of the matrix. The subscript number indicates 0 = matrix, 1 = fiber,
e = effective matrix.

The nonlinear behavior of the composite system is modeled in this work by
a simplified incremental approach. The stress-strain curve for the material after
homogenization for different volume fractions of the fiber is shown in Fig. 6 and it
can be seen that as the volume fraction of the fiber increases the cell becomes stiffer.
The same effect is observed in many experimental procedures, which reported a
decrease in the measured elastic modulus of cell, acted upon by actin disrupting
chemicals. For sufficiently large stress fiber volume fractions, the Poisson’s ratio
decreases to the fiber Poisson’s ratio, as shown in Fig. 6 (0.35 for a stress fiber
volume fraction of 2.5%). This is a significant relationship as it partly explains the
wide differences in the Poisson’s ratio values reported from experimental studies,
and ranging from a nearly incompressible value to the range of 0.25 + 0.05.

The effectiveness of the developed model in accurately interpreting the experi-
mental results is illustrated through the numerical simulation of the Atomic Force
Microscopy (AFM) indentation. In general, the properties derived from the interpre-
tation of data from the AFM experiments are based on certain assumptions. These
assumptions become invalid in the case of biological cell due to: large deforma-
tion compared to the cell size; inherent inhomogeneity of the cytoplasm, and so on.
Thus, in the interpretation of the results obtained from the atomic force microscopy,
a more detailed numerical approach like the finite element method is required.
The implementation of the developed constitutive model of the cytoplasm in the
numerical study of AFM is described below.

Fig. 6 (a) Stress-Strain curve of the effective composite (b) variation of Poisson’s ratio with
volume fraction of stress fiber
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Finite element analysis [2] of an AFM indentation using spherical indenter of
diameter 0.4 microns acting on the cell surface above the nucleus is carried out.
The cell geometry considered is of 3.5 microns in half width, 3.0 microns in height,
with a nucleus of 0.9 microns diameter at a height of 0.75 microns from the base,
and the cortical region is assumed to be 0.2 microns thick. The cell is assumed to
be axisymmetric with a rigid spherical indenter acting on the cell surface above
the nucleus. Displacement boundary conditions are applied on the indenter and also
at the base of the cell, while symmetric boundary conditions are taken along the
axis of symmetry. The indenter is given a vertical displacement and the cell base
is constrained in all directions to assume a perfect contact with the substrate. The
symmetric half cell model is discretized using an axisymmetric finite element with
a finer mesh towards the top of the cell and the finite element analysis is performed
using commercial software, ABAQUS [21]. The strain distribution of the cell with
stress fiber volume fraction of 0.1% subjected to an indentation of 0.5 microns is
shown in Fig. 7. The actin cortical layer, which is in direct contact with the indenter,
sustains the maximum deformation. The inner cytoplasm near the region of inden-
tation also experiences very high strains and the intensity decreases away from the
center.

Fig. 7 (a) Half cell axisymmetric finite element model of the cell (b) strain distribution obtained
from the finite element analysis of cell

3 Conclusions

In the first part of the paper, a refined higher-order finite element for the nonlin-
ear analysis of shells is discussed. A first-order shell theory with seven parameters
including a thickness-stretch and accounting for full 3D constitutive equations is
used. The family of high-order Lagrangian approximations are utilized to elimi-
nate membrane and shear locking. I number of benchmark problems are analyzed
using the element developed herein. Numerical examples for plates and cylin-
drical shells illustrate the validity of the present approach and accuracy of the
developed shell element. In the second part of the paper, a parametric study
of the material properties of actin, cytoplasm and nucleus, to determine the
material properties of normal biological cells is carried out. This study was able
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to correlate the concentration of actin filament with the cellular material prop-
erty, and ultimately to the experimentally determined force-deflection curves from
AFM studies.
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Free Vibration Characteristics of Thermally
Loaded Cylindrical Shell

Byung-Hee Jeon, Hui-Won Kang, and Young-Shin Lee

1 Introduction

The effect of temperature on the mechanics of solid bodies has highly increased
because of rapid developments in space technology, high speed atmospheric flights
and nuclear energy applications. Thermally induced vibration of plates and shells
are of great interest in aircraft and machine designs and also in chemical, nuclear and
astronautical engineering. The reason for this is that during the heating-up period
of structures exposed to high intensity heat fluxes, the material properties undergo
significant changes; consequently, the thermal effect on the modulus of elasticity of
the material can affect the vibratory characteristics.

Many researchers have studied thermally induced vibration during the past
several decades. Boley [1] and Boley and Barber [2] studied the first analytical
investigation of thermally induced response of beam including inertia forces. They
pointed out that this is a coupling problem of transient heat conduction and dynamic
process of structures. Recently Avsec and Oblak [3] shows how the temperature field
in beam has impact on vibrations of beams. There have developed the mathemat-
ical model where fundamental thermomechanical properties of state are functions
of temperature. Mead [4] presented the modes and frequencies of a free rectangular
Kirchoff plate subjected to in-plane stresses generated by prescribed non-uniform
surface temperature distributions which are doubly symmetrical about the plate
central axes. Pradeep and Ganesan [5] deal with the thermal buckling and vibra-
tion behavior of multi-layer rectangular viscoelastic sandwich plates. A decoupled
thermo-mechanical analysis is made by using finite element method. Ganesan and
Pradeep [6] analyzed the buckling and vibration behavior using a semi analytical
finite element method on a 316L stainless-steel cylinder filled with hot liquid.

The documented experimental demonstration of thermally induced vibration was
performed by Beam [7] at NASA Ames. Michael and Vician [8] investigated exper-
imental modal data which show the effect of heat on the modal characteristics of
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2,024 aluminum, A110-AT titanium and fiberglass plate and analytical vibration
results which show the effect of modeling the structural material property changes
and the thermal stresses on the accuracy of the results for non-uniform and transient
heating profiles. Blandino and Thornton [9] worked on experiments and analyses for
the first detailed study of thermally induced vibrations of internally heated beams
which belong to the class of vibrations called self-sustaining oscillations. Huber
and Bowman [10] investigated on the effect of longitudinal vibration on the capil-
lary limit of a copper/water heat pipe with a tightly wrapped screen wick. Lee et al.
[11] are investigated by finite element analysis the thermal stress and vibration char-
acteristics of ATJ graphite disk under high temperature condition. The experiment
of thermal heat is conducted using a CO2 laser. Murphy et al. [12] show combined
theoretical and experimental results for rectangular plates which was fully clamped
(out-of-plane) and uniformly heated. Amabili and Carra [13] studied on the nonlin-
ear forced vibrations and post buckling of isotropic rectangular plates subjected to
thermal variations. Laboratory experiments have been performed on two plates of
different thickness. In the other papers, thermally induced vibration characteristics
of beams and plates which was conducted by analysis and laboratory experiment
was showed.

This paper describes the first study of thermally induced vibration characteristics
of a cylindrical shell made by different materials. The dimensions of the cylindrical
shell were 5 m length, 0.4 m. diameter, 0.002 m thickness and its material was
combined by stainless-steel 304 and aluminum 6,061. This configuration was used
for the thermally induced vibration experiment in order to evaluate the thermally
effect on the vibration characteristics. Finite element simulations were conducted
and compared with experiments.

2 Experimental Procedure

2.1 Test Specimen

The specimen used in the experiment was a cylindrical shell consisting of skins and
plates used to connect each skin. Materials of skins and plate were stainless-steel
304 and aluminum 6,061 materials, respectively. The cylindrical shell has a 0.4 m
diameter (D), a 0.002 m thickness and a total length of 5 m. Figure 1 is the test
specimen shape. The cylindrical shell was comprised of five ions. First and fifth

Fig. 1 Test specimen shape
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section was mode of aluminum 6,061 and the others were mode of stainless-steel
304. Plates connected each shell by using 24 screws in circumference direction. The
test specimen weight was approximately 240 kg.

2.2 Test Configuration

Test configuration for this experiment consisted of three major subsystem as shown
Fig. 2. These included the heating system, the data acquisition system and the
vibration control system. This work was performed to investgate the vibration
characteristic of the specimen under thermal circumstance. The heating zone was
restricted to the central section. The free–free boundary condition was selected to
minimize the complexity of the test setup. This type of boundary condition alle-
viated the uncertainties associated with effects of heat conduction and thermally
induced stress at the mounting frame interface. Figure 3 shows the heating zone and
the instrumentation locations of the cylindrical shell.

Fig. 2 Test configuration of experiment

Fig. 3 Test specimen heating zone and instrumentation locations
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2.2.1 Heating System

The heating system in this experiment was a radiation-heating type using quartz
lamps. It consisted of quartz lamps, power controller, temperature controller and a
cooling device, as shown in Table 1. This system provided closed-loop temperature
control of the cylindrical shell.

Table 1 Specification of heating system

Unit Specification

Quartz lamp – Power: 600 W
– Light length: 0.248 m
– Voltage: 480 V
– Total length: 0.303 m

Power controller – Input: 480 V (45–65 Hz)
– Control: input signal control
– Cooling: Air cooling

Temperature controller – Input: 18 ch. analog
– Output: 12 ch. analog, 4 ch. digital

Cooling unit – Water cooling system

2.2.2 Data Acquisition System

For temperature measurements, there were thermocouples, RTD (Resistance
Temperature Detector) and non-contact type thermometer etc. We chose a K-type
thermocouple that is used generally. To measure temperature gradients, a ther-
mocouple was attached every 90 degrees in circumference direction, every 0.1 m
longitudinal in direction as shown in Fig. 2, and another thermocouple attached
in the non-heating sections to measure the temperature. The data sample rate was
1 Hz in the whole test and measured by the System 5,000 made by Measurement
Group.

2.2.3 The Vibration Control System

Using a LDS 455 excitor, random vibration was conducted to the cylindrical shell
and PCB 333A31 accelerometers were used for data acquisition. In the heating zone,
PCB 357B31 high temperature accelerometers were used. The maximum operat-
ing temperatures of the accelerometers were 485◦C. The vibration control system
used for the experiment operation, measurement and modal analysis was the SDRC
I-DEAS TDAS (Test Data Analysis System) software [14].
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3 Modal Test

The cylindrical shell was uniformly heated at 100, 200 and 400◦C in the middle of
the cylindrical shell. The thermocouple readings were monitored to ensure that the
cylindrical shell was uniformly heated. Figure 4 shows a photo of the experimental
setup.

Fig. 4 Photo of experimental vibration test of thermally loaded cylindrical shell

Once vibration data acquisition was completed for a given heating temperature,
frequency values for the first three modes were estimated. These modes were the
first bending mode, second bending mode and third bending mode. The frequency
response function at the reference point (exciting point) was selected because it con-
tained the best response of the first third bending modes. Only the first three modes
were selected because the number of accelerometers was insufficient to determine
mode shapes above this number. The modal parameter estimates were obtained by
fitting a second-order polynomial to each frequency peak in the selected frequency
response function.

Mode shapes were generated using a single-degree-of-freedom technique. This
technique extracted amplitude and phase information from each frequency response
function at specified modal frequency. The information was then used for viewing
animated mode shapes and static deformation plots.

4 Vibration Analysis

Vibration analysis was obtained by using ABAQUS [15]. The boundary condition
was the same as that of the actual test, which was uniformly heated at 100, 200 and
400◦C in the middle of cylindrical shell. Analysis had two sequences, first is the heat
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Table 2 Thermal properties of the cylindrical shell [16]

Young’s modulus
(GPa)

Material Temp. (◦C) E

thermal
conductivity
(W/m ◦C)

Specific heat
(J/kg ◦C)

Density
(kg/m3)

Poisson’s
ratio Remark

AL6061–T6 25.0 68.9 2,163.4 1,256.0 2,712.5 0.33 Skin
93.3 211.6

148.8 205.1
204.44 192.3
260.0 173.1
315.5 149.6

STS304 25.0 199.9 195.2 502.4 8,027.1 0.27 Skin
93.3 209.4

204.4 200.9
315.5 192.3
426.6 183.8
537.7 175.2
648.8 166.7

transfer analysis and the second is the modal analysis. 8-node, 3-D solid elements
were used for the analysis and approximately 100,000 element were used.

In addition to find out the difference between partially thermal loading condi-
tion and totally thermal loading condition, totally thermal loading conditions were
applied to analysis at 100, 200, 300 and 400◦C. Table 2 shows the mechanical
properties of the cylindrical shell for the analysis with ABAQUS.

5 Results and Discussion

The verification and the validity of finite element analysis is conducted through the
comparison with the experimental results. Figure 5 shows the mode shape of the
first, second and third natural frequency comparison between experiment and finite
element analysis at room temperature condition. Figure 6 shows thermocouple data
of the cylindrical shell in the various thermal loading conditions. TC1 and TC10
shows half temperature of desired temperature. Because TC1 and TC10 were at
the end of the thermal loading section, they were rapidly cooled rather than other
thermocouples. Except TC1 and TC10, they well met the desired temperature.

Figure 7 shows a comparison of analytical and experimental frequencies for
the cylindrical shell heated at uniform temperature to 100, 200, 300 and 400◦C.
The trend shown by the data was that the frequency decreased as the temperature
increased. The tendency values between two method’s results show good similarity
within 4% error. Figure 8 shows the decrease from room temperature of the natural
frequencies of experiment in the various thermal conditions. At 400◦C, the first nat-
ural frequency had 5% decreased, the second natural frequency had 2% decreased
and the third natural frequency had 3% decreases. The first natural frequency has
the largest percent decrease.
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Fig. 5 Comparison of experimental and analytical mode shape for a room temperature condition

Fig. 6 Temperature distribution of the cylindrical shell
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Fig. 7 Comparison of
experimental and analytical
frequencies for the cylindrical
shell

Fig. 8 Comparison of
experimental frequencies
changes

Fig. 9 Comparison of
analytical frequencies on
partial and total heating
conditions
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Figure 9 shows natural frequencies comparison of partially thermal loading con-
dition and totally thermal loading condition. The first natural frequency has little
decrease during temperature increase, but second and third natural frequencies have
more than 10% decrease from room temperature condition over 300◦C.

6 Conclusions

This paper presents the modal experiment of a 5 m long, 0.4 m diameter, 0.002 m
thick cylindrical shell under thermal loading conditions at the center section at 100,
200 and 400◦C, and finite element analysis was conducted using ABAQUS.

Comparisons between experiment and analysis showed excellent agreement on
the variety of conditions.

In all conditions, the natural frequencies were decreased during temperature
increase. In the experiment of the partially thermal loading condition, the first natu-
ral frequency has 5% decreased from room temperature condition. In the analysis of
the totally thermal loading condition, the second and third natural frequencies have
10% decreased from room temperature condition.
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Model of Large Displacements in Static
Analysis of Shell

Domagoj Matešan, Jure Radnić, and Alen Harapin

1 Introduction

Geometric non-linearity of a structure is a consequence of:

(i) the change in its geometry (displacements of a structure), and
(ii) non-linearity of the deformation-displacement relationship.

A model of geometric linearity does not take into account the impact of a change
in the structure’s geometry. Namely, in that model the equilibrium equations are sat-
isfied on the initial non-deformed system. That approach is acceptable for structures
with small displacements. When displacements are large, equilibrium equations
shall be satisfied on a deformed system because application of a model of geometric
linearity gives wrong results. An example of the impact of selected geometric model
on cantilever internal forces is shown in Fig. 1. Application of a small displacements
model in calculations of slender constructions can result in wrong conclusions in
terms of their bearing capacity and safety. Sometimes those models are on the lesser
safety side (if longitudinal compressive forces prevail), and sometimes they are on
the greater safety side (if longitudinal tensile forces prevail).

A linear relationship between deformations and displacements is acceptable
for small deformations problems. For large deformations problems, a non-linear
deformation-displacement relationship shall be used. In the analysis of concrete and
steel structures, where exploitation deformations and deformations at failure are
small, a linear deformation-displacement relationship is satisfactory.

There are numerous papers dealing with the problem of numerical analyses of
structures, which include the effects of large displacements. Some of them can be
found in [1–10].

A model of geometric non-linearity in static analysis of concrete shells, which
includes the effects of large displacements and small deformations, is presented.
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N

N = axial force

V = shear force

M = bending moment
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L
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(a) (b)

Fig. 1 An example of the geometric model impact on cantilever internal forces. (a) Small
displacements model. (b) Large displacements model

A simultaneous use of the material and geometric non-linearity models is possi-
ble. Namely, a model of geometric non-linearity in the framework of previously
developed model [11–13] for material non-linearity analysis of concrete shells is
presented. The model was verified on the results of three experimentally tested very
slender steel cantilevers, with elastic behaviour of material for all applied loads.

2 Large Displacements Model

The problem was solved using the updated Lagrange procedure, according to
Nagtegaal [14] and implemented to the shell analysis, based on the following
postulates:

(i) External load is applied in increments. An iterative solution procedure is car-
ried out for each load increment until a vector of residual forces becomes
arbitrary small. When a convergence criterion is satisfied, a vector of resid-
ual forces is added to the next external load increment and iteration procedure
continues.

(ii) A conventional Lagrange procedure is used in each step: states of variables are
defined in reference to their states at the beginning of the respective iteration
step.

(iii) At the end of the each iteration step, states of variables are updated (redefined)
in comparison to their states at the end of the previous iteration step.
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Xi

Θα

Fig. 2 Spatial (Xi) and
material (�α) coordinate
systems

State at the beginning of the observed iteration step, is analyzed first. According
to Lagrange procedure, spatial position of a body in the Cartesian coordinate system
Xi is defined as:

Xi = Xi
(
�α

)
(1)

where a material point of a body is uniquely defined in a curvilinear coordinate
system �α (Fig. 2).

Equilibrium of a body is expressed by the virtual work equation, with its
components given in the Cartesian coordinate system:

∫

V

σijδεijdV =
∫

S

qiδuidS (2a)

or alternatively with its components in a respective curvilinear coordinate system:

∫

V

σαβδεαβdV =
∫

S

qiδuidS (2b)

In the previously given equations, σij and σαβ are the Cauchy stresses, δεij and
δεαβ are the small increases of deformations, V is a volume of a body and S is a
body surface area. For purposes of short logs, only a surface load qi is taken into
account.

Since in expression (2b) integration is carried out in terms of the current state
of a body, contra-variant components of the Cauchy stress σαβ are equal to the
contra-variant components of the second Piola-Kirchhoff stress Sαβ . Co-variant
components of deformation increase δεαβ are related to the Cartesian components
of the displacement increase δu as:

δεαβ = 1

2

(
Xk,αδuk,β − Xk,βδuk,α

)
(3)
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Using the symmetry σαβ , the virtual works equation can be written in the
following form:

∫

V

SαβXk,αδuk,βdV =
∫

S

qiδuidS (4)

At the end of the observed iteration step, spatial position of a body xi is
described as:

xi = xi
(
�α

) = xi
(
�α

)+�ui(�
α) (5)

where, as already mentioned, xi is a spatial position of a body point at the beginning
of the observed iteration step, while �ui is a displacement increment.

At the end of the observed iteration step, the virtual work equation has the
following form:

∫

V

(
Sαβ +�Sαβ

)
δEαβdV =

∫

S

(
qi +�qi

)
δuidS (6)

where δEαβ is an increase in Green (Lagrange) deformation, which can be calcu-
lated from a displacement increase using the following formula:

δEαβ = 1

2

[(
Xk,α +�uk,α

)
δuk,β + (

Xk,β +�uk,β
)
δuk,α

]
(7)

Note that integration in expression (6) is carried out in reference to the state of a
body at the beginning of an iteration step and �Sαβ is the increment of the second
Piola-Kirchhoff stress.

Using the symmetry Sαβ and �Sαβ , equilibrium equation in the function of a
displacement has the following form:

∫

V

(
Sαβ +�Sαβ

) (
Xk,α +�uk,α

)
δuk,βdV =

∫

S

(
qi +�qi

)
δuidS (8)

Integration in (4) and (8) is carried out in reference to the same state of the body.
By reduction of the Eq. (8), the equation of incremental virtual work is obtained,

which is also marked as an equation of a continuous equilibrium:

∫

V

(
�SαβXk,α + Sαβ�uk,α +�Sαβ�uk,α

)
δuk,βdV =

∫

S

�qiδuidS (9)

The current constitutive material model can be written in the following form:

�Sαβ = Cαβγ δ�Eγ δ (10)
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where Cαβγ δ is the current functional relationship between the stress increase�Sαβ

and deformation increase �Eγ δ . The increment of Green deformations can be
calculated from the displacements decrease as:

�Eγ δ = 1

2

(
Xk,γ�uk,δ + Xk,δ�uk,γ +�uk,γ�uk,δ

)
(11)

Since Cαβγ δ is symmetrical in reference to the last two indexes, combination of
(10) and (11) gives the expression for calculation of stress increment in the function
of displacement increment:

�Sαβ = Cαβγ δ
(

Xk,γ�uk,δ + 1

2
�uk,γ�uk,δ

)
(12)

Expressions (9) and (12) are the basic equations of the observed iteration step. If
the coordinate system is the Cartesian one, (9) and (12) are simplified:

∫

V

(
�Sijδki + Sij�uk,i +�Sij�uk,i

)
δuk,jdV =

∫

S

�qiδuidS (13)

�Sij = Cijkl

(
�uk,l + 1

2
�um,k�um,l

)
(14)

where δki is the Kronecher symbol. States of the variables shall be updated at the
end of the current iteration step.

For the curvilinear system, contra-variant components of the second stress Piola-
Kirchhoff shall be corrected by a change in the volume in order to become contra-
variant components of the Cauchy stress; namely:

σαβ = (
Sαβ +�Sαβ

)/
J (15)

where J is the Jacobian of the deformation increment. If a material is almost
incompressible, transformation becomes unnecessary.

In the initial Cartesian approach, the second Pioala-Kirchhoff stress shall be
transformed into a real (Cauchy) stress in the Cartesian coordinate system:

σij = (
δik +�ui,k

)
(Skl +�Skl)

(
δjl +�uj,l

)/
J (16)

Again, the Jacobian shall be equal to zero if a material is almost uncompressible.
The model for static analysis of a shell [12, 13] includes the geometric non-

linearity model with the large displacements and small deformations. As already
mentioned, impact of large displacements was included by transformation of com-
ponents of displacements and forces (stresses) between the global and local coordi-
nate systems. Namely, assuming the small displacement increase in each iteration
step, the existence of a linear relationship between deformations and displace-
ments can be adopted. This significantly simplifies and shortens the calculations.
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Application of a local coordinate system to define the constitutive material law also
simplifies the analysis in case of anisotropic material properties.

Namely, the following system shall be solved in each iteration step:

Kn−1�un = Rn − Fn−1 (17)

where n is the observed iteration step; K is the current stiffness matrix of a con-
struction that can include the material non-linearity (with different material models)
and geometric non-linearity (large displacements, small deformations); �u is the
current displacement increment; R is the current vector of external nodal forces and
F is the current vector of internal nodal forces due to material stresses. An iterative
solution procedure is repeated until a vector of residual forces

(
Rn − Fn−1) becomes

arbitrary small. Then, a vector of residual forces is added to the new external load
increment and iteration procedure is repeated.

3 Spatial Model and Finite Elements

A problem of geometric non-linearity of shells, simulated by 8 and 9 node curved
degenerated finite elements (Fig. 3), was analyzed. The elements were free of shear
and membrane locking. Each node has five unknowns: three displacements and two
rotations perpendicular to the central shell plane. More detail description of adopted
shell elements can be found in [11, 12].

η
ζ

ξ

z
y

x

middle surface

V3

V2

V1

ϕ2

ϕ1

Fig. 3 Adopted degenerated
shell element [11]

4 Material Model

Apart from a geometric non-linearity (large displacements), material non-linearity
can also be included in the shell analysis. A conventional elastic, elasto-plastic or
elasto-brittle material models can be used as well as a special model for concrete
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shells. A layered model along the shell thickness is used. Detailed description of
some adopted material models can be found in [12, 13].

5 Some Calculation Aspects

The Newton-Raphson method is used for non-linear problem solving. A computer
program provides the following possibilities for the stiffness matrix updating:

– at the beginning of the calculation only,
– at the beginning of each load increment,
– at the beginning of each iteration step of each load increment, and
– in defined load increments and defined iteration steps.

This method was proven efficient in solving of problems analyzed in Sect. 6.
However, it is also possible that this method will not provide a solution for a problem
with great change in geometry.

As already mentioned, the external load is given in increments. Regardless
whether those are problems with pure geometric non-linearity or simultaneous geo-
metric and material non-linearity, load increment size impacts the obtained results.
The impact is more significant when the non-linearity level is greater. Figure 4
shows a scheme of a typical iteration procedure of problem solving for a particular
load increment, in a 3D space. One shall note that in a real structure, solution occurs

displacement

load increase

real behaviour

equilibrium
iterations

A

B

1 2
3

loadload
incrementincrement

load
increment

Fig. 4 Qualitative presentation of the incremental-iterative procedure for non-linear problem
solving
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in multi-dimensions space that corresponds to a number of degrees of freedom of a
discretized system.

Note the difference between the numerical solution path A – 1 – 2 – 3 . . . B
and the real solution path A – B. Keep in mind that an accurate solution path is
unknown; namely, solution in the last iteration step does not correspond exactly to
the point B (there are always some errors depending on the selected convergence cri-
terion). “Bypassing” of the actual path could cause inexistent material non-linearity
or inexistent geometric non-linearity. Thus, sufficiently small load increments shall
be used, depending on the analyzed problem. In general, smaller load increments
should provide more accurate results. However, too small load increments some-
times can, not only unnecessarily extend the analyses, but also decrease accuracy
of a solution due to a large scope of numerical calculations. The impact of the
load increment length on the obtained results in each analyzed example shall be
studied.

As already mentioned, the adopted convergence criterion directly impacts the
obtained results. Thus, one shall be very cautious when selecting the convergence
criterion. For purposes of procedure convergence control, a displacements increase
norm in the observed iteration step was monitored in respect to the total current
displacements. Too large allowable tolerance, that came handy in order to shorten
duration of the analysis, can often produce a numerical state completely different
than the actual behaviour of the structure. In general, smaller allowable toler-
ance, with the consequence of longer analysis, should give more accurate results.
However, too small allowable tolerance can cause significant numerical errors and
large scale deviations of numerical results from the actual results. Thus, several
calculations shall be carried out using the different allowable tolerance values.

6 Verification of a Presented Numerical Model

The presented large displacements numerical model in static analysis of shells was
verified on the results of three experimentally tested very slender steel cantilevers,
with elastic behaviour of material for all applied loads. Cantilevers were made of
high-quality steel with initial yield stress fs = 620 MPa, with the elastic behaviour
till just before the failure and modulus of elasticity Es = 205 GPa.

In Example 1 (Sect. 6.1) the cantilever was placed horizontally and loaded by
bending. In Example 2 (Sect. 6.2) the cantilever was placed vertically and loaded by
longitudinal compressive force. In Example 3 (Sect. 6.3) the cantilever was placed
horizontally and loaded by bending and torsion.

Cantilever displacements were measured for each increment of the applied exter-
nal load F at the cantilever end. The force was a gravity one and retained its
initial direction during the cantilever deformation. The force magnitude was lim-
ited in order to ensure complete elastic behaviour of the construction. Following
the removal of the force F, there were no irreversible deformations left for all
cantilevers.



Model of Large Displacements in Static Analysis of Shell 157

6.1 Example 1

The basic data on experimentally tested cantilever are given in Fig. 5a. The adopted
discretization for a numerical model is shown in Fig. 5b, while comparison between
the experimentally and numerical displacements of a cantilever are given in Fig. 6.

F

260 mm

z

x

1

1

Cross-section  1–1 

11.9 mm

0.6 mm

Es = 205 GPa 

(a)

260 mm
11.9 mm

y

x
0.6 mm

Plan Discretization per cross-section 
thickness 

(b)

Fig. 5 Basic data on experimentally tested cantilever and adopted discretization model in
Example 1. (a) Basic data on experimentally tested cantilever. (b) Discretization model
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Fig. 6 Deflection of a horizontal cantilever described in Example 1
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Fig. 7 Impact of the force increment size on calculated deflections of a cantilever described in
Example 1 for F = 3.298 N

Note that cantilever deflections are large even due just to the dead weight. Namely,
deflection of the cantilever end is several times larger than a height of the can-
tilever cross-section. Also, note that the cantilever stiffens gradually increase with
an increase in force F. Namely, for the same force increase, cantilever displace-
ments are decreasing. It is a consequence of larger membrane (tensile) bearing of
a deformed construction. The load was applied in 0.1 F increments. The method of
initial stiffness was used for the solution of a non-linear problem, with the allowed
tolerance of 0.001. There is a very good correspondence between the experimentally
determined and calculated displacements of a cantilever. Impact of the size of force
increments on numerical results was analyzed for F = 3.298 N (Fig. 7). Its visual
appearance under a load F = 1.104 N is shown in Fig. 8.

6.2 Example 2

The cantilever from Example 1 was placed vertically, with a 8 mm horizontal dis-
placement of its top in reference to the its clamped bottom (Fig. 9). It was loaded
by different values of force F at the top, as in Example 1 (Fig. 9). The cantilever
displacements (Fig. 10) were relatively small for small values of force F. Exceeding
of a “critical” load, leads to a sudden increase in displacements and change in the
cantilever geometry. By the occurrence of membrane (tensile) bearing, the structure
stiffens gradually. Note that displacements of a vertical cantilever beam for greater
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Fig. 8 Cantilever subjected
to a load F = 1.104 N
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Fig. 9 Basic data on experimentally tested cantilever and adopted discretization model in
Example 2. (a) Basic data on experimentally tested cantilever. (b) Model discretization
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Fig. 10 Deflection of a vertical cantilever described in Example 2
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Fig. 11 Basic data on experimentally tested cantilever and adopted discretization model in
Example 3. (a) Basic data on experimentally tested cantilever. (b) Model discretization
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intensity of force F are greater than displacements of a horizontal cantilever in
Example 2 for the same values of force F. The same discretization model was
used (Fig. 9b) as in Example 1. There was a good correspondence between the
experimental and calculated displacements.

6.3 Example 3

A horizontal cantilever, similar to that in Example 1, was analyzed. The difference
from Example 1 was that this cantilever was very rigid to bending in its (vertical)
plane and very slander to bending in perpendicular (horizontal) plane (Fig. 11a). The
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Fig. 12 Displacements of a high cantilever chords in Example 3. (a) Displacements of a cantilever
top edge in a horizontal plane. (b) Displacements of a cantilever bottom edge in a horizontal plane
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Fig. 13 Displacements of a high cantilever front in Example 3 in vertical plane

front cantilever plane deviates by about 1◦ from the vertical i.e. cantilever top chord
is displaced from its bottom chord by 2 mm. In this example there is an impact of
torsion as well as buckling of the bottom compression chord and buckling of a web.

The discretization model of cantilever is shown in Fig. 11b. An analogous numer-
ical model as in the previous examples was used. Numerical results are shown
in Figs. 12 and 13, where also good correspondence between experimental and
calculated cantilever displacements can be observed.

7 Conclusion

The impact of geometric changes must be included in calculations of very slender
structures because, in those cases, geometric linearity model provides either wrong
or useless results. It is believed that the presented numerical model can be useful in
the analyses of all slender structures that can be described well enough by shell ele-
ments and adopted material models. It is also believed that the presented numerical
model is one of the most actual numerical models for static, dynamic and time-
dependent analysis of reinforced and prestressed concrete shells with both material
and geometric non linearity.
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Nonlinear Time-Dependent Analysis
of Prestressed Concrete Shells

Domagoj Matešan and Jure Radnić

1 Introduction

The paper briefly presents a model for material and geometric nonlinear analysis of
prestressed concrete plates and shells under short term and long-term static load.
The dominant nonlinear effects of concrete (cracking, yielding, crushing, creep,
shrinkage, aging), as well as the dominant nonlinear effects related to the rein-
forcing steel (yielding, failure) and prestressing steel (yielding, failure, losses of
the prestressing), are simulated. Detailed description of the model can be found in
[1]. The model was verified on the results of performed experimental test of pre-
stressed concrete shell under short-term and long-term static load [2]. The model is
not intended for long-term load with unload.

2 Description of the Tendon Geometry

The tendon geometry is given by the following equation, namely, coordinates of
tendon axis points (Fig. 1)

xp (s) =
m∑

k=1

Lk (s)xp,k (1)

where xp (s) is a vector describing the tendon geometry, Lk are the Lagrangian inter-
polation functions, and xp,k is a vector containing global coordinates from 1 to m
points that define the tendon. The prestressed tendon embedded in a shell element
is shown in Fig. 1.
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Fig. 1 Prestressed tendon embedded in a shell element

The coordinates of cable and shell element intersecting points in a natural
coordinate system (ξ , η, ζ )p,i can be calculated using the following system of
nonlinear equations

x (ξ , η, ζ ) = xp (s) (2)

where x (ξ , η, ζ ) defines the geometry of intersected finite elements. For curved
isoparametric shell elements, the shell geometry is explicitly described by the
following equation

x (ξ , η, ζ ) =
n∑

i=1

Ni (ξ , η) xsrednje
i +

n∑
i=1

Ni (ξ , η)
hi

2
ζv3,i (3)

where n is a number of nodes in an element, Ni (ξ , η) are the shape functions for
ξ = const., xi are the coordinates of the central plane, hi is a shell thickness for
node i, and v3,i is the unit vector defining a direction of normal in node i.

The natural coordinates of the middle node of 1-D tendon element ξ , η, ζ (node
2 in Fig. 1) can be calculated using the following system of equations

x(ξ , η, ζ ) = xp(s2) (4)

where s2 = (s1 − s3)/2 is a length of the tendon between corresponding points.
After the natural coordinates (ξ , η, ζ )p, i are calculated for all nodes of tendon

element, then the global coordinates xp, j can be calculated by expression (3).
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The geometry of a tendon segment embedded in a shell element (Fig. 1) can be
described by the equation

xp (τ ) =
3∑

j=1

N′
j (τ ) xp, j (5)

where N′
j (τ ) are the shape functions adopted for a one-dimensional parabolic

element, and τ is a respective curvilinear coordinate.

3 Transfer of the Prestressing from the Tendon to the Concrete

A layered model along the shell thickness, with separate layers for concrete and
reinforcing steel, is applied. The adopted model of prestressing is similar to the one
by Figueras and Povoas [3].

In pre-tensioned structures, the bond between the prestressing steel and surround-
ing concrete exists due adequate adhesion. In post-tensioned structures, a bond
between the tendon and concrete exists only after the grouting of tendon (the so-
called bonded tendons). If tendons are not grouted, there is no bond between the
tendon and surrounding concrete (the so-called unbonded tendons).

Modelling of mechanical effects due the prestressing and tendon-concrete bond
requires the following steps: (i) inclusion of the contribution of prestressing to the
global structure stiffness, (ii) calculation of strain increases as a result of prestressing
effects acting as external load on the structure, and (iii) calculation of the actual
force in the tendon and calculation of internal forces due to prestressing.

For pre-tensioned structures, there is a continue concrete-tendon bond; thus, steps
(i)–(iii) are carried out in each load increment. Strain increase is calculated for each
nodal force due to prestressing. Therefore, losses due to elastic shortening of the
concrete are being included automatically.

Modelling of post-tensioned structures is carried out in two phases:

(a) A bond between prestressing steel and concrete is not taken into account in all
prestressing phases. Strain increase in prestressed steel does not occur before
tensioning of the tendon.

(b) In later phases, an “incomplete” bond between concrete and prestressing steel
is considered; thus, steps (i)–(iii) are carried out successively.

Bonded tendons are contributing to the stiffness of shell elements that they are
embedded into. The displacement field of bonded tendons coincides with the respec-
tive displacements of the surrounding concrete. Note that tendon elements have
longitudinal strain only.
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An explicit definition of the strain and stiffness matrix of un-bonded tendons is
far more complex than the one for bonded tendons. Anchoring and friction effects
of un-bonded tendons contribute little to the stiffness of a structure. That impact
is far smaller than for bonded tendons. On the other hand, an exact calculation
of a tangent stiffness matrix in incremental-iterative procedures is not necessary.
Using an approximate stiffness matrix can be far more efficient in those problems.
Compatibility between the displacement field of a concrete and a displacement field
of un-bonded tendons only exist in the anchoring zone.

4 Numerical Modelling the Losses of the Prestressing Force

The instantaneous losses of the prestressing force are caused by friction, slid-
ing of the anchorage and instantaneous concrete strain. The subsequent losses
of the prestressing force are caused by prestressing steel relaxation, and the
shrinkage and creep of concrete. A detailed calculation of the losses of the pre-
stressing force for both pre-tensioned and post-tensioned structures (with bonded
and un-bonded tendons) can be found in [1], and will be described in short
hereinafter.

4.1 Losses of the Prestressing Force Caused by Friction

By tendon prestressing on anchor A (Fig. 2), tendon force P (s) at distance s from
the anchoring point is adopted as

P (s) = α (s)P′
A (6)

where

α (s) = e
−μ

S∫
SA

χds

(7)

The tendon curvature χ can also include arbitrary angle deviation k.
If the tendon is prestressed on both anchors A and B, the relative displacements

between the concrete and tendon will change the algebraic sign in a middle point C
(Fig. 2) as follows

PA (s) = P′
Ae

−μ
s∫

sA

χds

(8)

and

PB (s) = P′
Be

−μ
sB∫
s
χds

(9)
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Fig. 2 Changes in prestressing force along the tendon caused by friction

Function α (s) is adopted either according to Eq. (8) or (9), depending on the fact
which one gives the larger prestressing force.

α (s) = e
−μ

s∫
sA

χds

for sA ≤ s ≤ sC (10a)

α (s) = e
−μ

sB∫
s
χds

for sC ≤ s ≤ sB (10b)

4.2 Losses of the Prestressing Force Caused by Sliding
of the Anchorage

Due to the impact of friction, the effects of the sliding of the anchorage are lim-
ited only to the distance la from the active anchor (Fig. 2). For the given tendon
shortening �u during sliding of the anchorage

�u =
la∫

0

�εp (s) ds (11)

or

�u = 1

EpAp

la∫

0

�P (s) ds (12)

where�εp is a change in tendon deformation due to sliding of the anchorage,�P (s)
is a change in prestressing force due to sliding of the anchorage, Ep is the modulus
of elasticity of prestressing steel and Ap is the tendon cross-section area.
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According to Fig. 2 and if sA = 0, then

PD (s) = P′
Ae

−μ
la∫
0

χds
(13)

and

PA (s) = PDe
−μ

la∫
0
χds

(14)

Then

PA (s) = P′
Ae

−2μ
la∫
0
χds

(15)

Tendon shortening �u at the distance la due to sliding of the anchorage is
defined by equation (12), where �P (s) is obtained as the difference between the
prestressing force calculated from P′

A and PA (Fig. 2), namely, as

�u = P′
A

EpAp

la∫
0

⎡
⎢⎣e

−μ
la∫
0
χds

− e
−2μ

la∫
0
χds

e
μ

la∫
0
χds

⎤
⎥⎦ds (16)

The unknown la is calculated by an iterative procedure while integrals are
calculated by numerical integration.

Force PA at prestressing on one side only is given by Eq. (15). Losses caused by
sliding of the anchorage at the distance la shall also be included in Eq. (7) or (10)
for function α (s), which defines the tendon force due to losses caused by friction.
According to that

α (s) = e
−2μ

la∫
0
χds

e
μ

la∫
0
χds

; sA ≤ s ≤ sD (17)

If the length la in Eq. (16) is equal or greater then tendon length, Eq. (17) shall be
extended to the distance from anchor A to anchor B.

4.3 Losses of the Prestressing Force Caused by Instantaneous
Concrete Strain

Losses of the prestressing force in post-tensioned tendons caused by the concrete
strain are calculated automatically using the numerical models for prestressing force
transfer [1].
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4.4 Losses of the Prestressing Force Caused by Prestressing
Steel Relaxation

The model uses the following formula derived by Magura et al. [4]

σp

σpi
= 1 − log10t

10

[
σp

σpi
− 0.55

]
for

σp

σpi
≥ 0.55 (18)

where σp is a forecasted final stress for the initial σpi after t days. This formula is
used only for steel subjected to constant deformations. Other cases require more
complex model. Figure 3 shows the Magura model that was also used here. Let the
fpi0 be the initial stress. After the period t1, stress will be reduced to fR1 due to steel
relaxation. For a modified stress fp1 due to instantaneous external load in time t1, a
fictional initial stress fpi1 is obtained and associated to a curve containing the point(
t1, fpi1

)
. That curve is used as a model for subsequent relaxation. The procedure is

repeated for each load increment. The total steel relaxation till the time tn is obtained
as a sum of all separate stress decreases due to relaxation (fRk, 1, 2, . . . , n).

Losses due to steel relaxation shall be included via residual forces for the
respective tendon segment

�Ru
rlx = −

∫
�

Bp�σ
∗
p ds (19)

which simulates the decrease in prestressing impact on the steel structure. �σ ∗
p

refers to a stress change due to prestressing steel relaxation in the observed time
increment.

t0 t1 t2 t3 t

fs

fsi0

fsi1

fsi2

Δ fr1

fs1

fs2

fs3

Δ fr2

Δ fr3

Fig. 3 Calculation of the initial tendon stress losses at multiple loading due to prestressing steel
relaxation
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4.5 Losses of the Prestressing Force Caused by Shrinkage
and Creep of Concrete

Shrinkage and creep of concrete are included according to [5]. Shrinkage strain
increment dεs

tn+1
in time tn+1 is calculated according to

dεs
tn+1

= εs0
(
βs

tn+1
− βs

tn

)
(20)

where εs0 is value of basic shrinkage and βs
tn+1

, βs
tn are coefficients that describe the

shrinkage in time tn+1 and tn.
Creep strain increment dεc

tn+1
in time tn+1 is calculated according to

dεc
tn+1

= εm
tn+1

(
Φtn+1,t0 −Φtn,t0

)
(21)

where εm
tn+1

is mechanical concrete strain in time tn+1 and Φtn+1,t0 , Φtn,t0 are creep
coefficients for time tn+1 and tn.

Losses due to shrinkage and creep of concrete are calculated automatically via
constitutive equations that are used for the description of time-dependent analysis,
as described in detail in [1].

5 Numerical Procedure for Analysis of the Prestressing
Structures

A detailed description of a general procedure for numerical modelling of concrete
shells under long-term load, including rheologic effects of concrete, can be found in
[1]. The solution for prestressing, which is similar to that described in [3], will be
given hereinafter.

The basic steps of an iterative procedure are the following:

(i) Prestressing is modelled by introduction of the initial deformation εp0 in the
tendon, which corresponds to the tendon prestressing force. Taking into account
prestressing losses caused by friction, εp0 is calculated using the prestressing
force P0 before the losses

εp0, j = P0, j

EpAp
(22)

while P0, j is calculated as

P0, j = αjP
′
0 (23)
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where αj is a coefficient of losses in nodes due to friction, and P′
0 is the maximum

prestressing force prior to force transfer to the concrete.
The equivalent nodal loads due to prestressing are given by

σp0 (τ ) = Ep

3∑
j=1

N ′
j (τ )εp0, j (24)

The calculated equivalent nodal loads are added to the existing nodal forces.

(ii) For the calculated displacement field �d, mechanical strain and stress are
calculated in the observed tendon nodes.

(iii) The equivalent prestressing force P̄′
0, acting on the first tendon “node”

(anchor), is obtained using the integral at the distance lp, l of the first tendon
element

P̄′
0 =

∫

lp, l

B′
p,1σp (τ )Apdl (25)

where B′
p,1 is the 1-D deformation matrix, which relates the longitudinal tendon

strain εp with the tangent displacement u′
1 in the first node (Fig. 1). Furthermore,

B′
p,1 is calculated from the expression which relates the tendon longitudinal strain
εp with nodal displacements up, j of a 1-D element in the global coordinate system
(Fig. 1)

εp = du′

ds
= [

a b c
] 3∑

j=1

dN′
j

ds

⎡
⎣ up, j

vp, j
wp, j

⎤
⎦ (26)

The equivalent nodal forces for the first node can be expressed as

⎡
⎣X1

Y1
Z1

⎤
⎦ =

∫

lp,1

[
a b c

]T dN′
1

ds
σp Ap dl (27)

where

dN′
1

ds
= dN′

1

dτ

dτ

ds
= dN′

1

dτ

1

ν
(28)

and

P̄′
0 = [

a1 b1 c1
]
⎡
⎣X1

Y1
Z1

⎤
⎦ (29)
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where sub-matrix
[

a1 b1 c1
]

contains the components of the unit vector a, which is
a tangent to the tendon axis at node 1 of the global coordinate system.

The equivalent prestressing force at node 1 is

P̄′
0 =

∫

lp,1

(a1a + b1b + c1c)
dN ′

1

dτ

1

ν
σpApdl (30)

As derived from (30)

B′
p,1 = (a1a + b1b + c1c)

dN′
1

dτ

1

ν
(31)

(iv) A convergence, i.e. the equilibrium between the initial P′
0 and calculated

prestressing force P
′
0, is calculated using the condition

P′
0 − P

′
0

P′
0

≤ TOLER (32)

where TOLER is the adopted tolerance. If the condition(32) is not satisfied, the
initial tendon strain is increased by

�εp0, j = εp0, j

(
P′

0

P
′
0

− 1

)
(33)

Steps (i) to (iv) shall be repeated until convergence condition(32) is satisfied,
as well as the convergence condition related to nonlinear solution of the entire
system [1].

(v) Following the achieved convergence, losses caused by steel relaxation are being
taken into account by stress change along the tendon length la

�σp (τ ) =
3∑

j=1

N′
j (τ )�αjσp (τ ) (34)

where

�αj = �α
(
sj
) = e

−μ
sj∫

sA

χds

− e
−2μ

la∫
0
χds

e
μ

sj∫
sA

χds

(35)

The Newton–Raphson method is used for the solution of the nonlinear problem.
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6 Example

The presented numerical model was verified on the results of experimental testing
of prestressed concrete shell under short-term and long-term load (until unloading),
described in [2]. Only one fourth of the shell was modelled due to problem
symmetry. The shell geometry and its discretization by finite elements are shown
in Fig. 4. Friction between the tendon and concrete is neglected.

The influence of a rigid horizontal steel tie is modelled with no lateral displace-
ment in y-direction at shell supports. The numerical analysis has been divided in
three phases (as in the experiment): prestressing, short-term load and long-term
load.

Figure 5 shows the comparison between the experimental and numerical results
of shell deflection at the centre of the shell. Comparison of the experiment and
calculated strains of reinforcement in measuring point S-1 and S-2 are presented
on Fig. 6. Figure 7 shows the comparison between the experimental and numerical
results of the tendon strains. As can be observed, the obtained numerical results
show good correspondence with the obtained experimental values of each phase.

(iii) 3-D Spatial Discretization:

Reinforcing Steel Layer: 
Asx = 2.77 cm2

Asy = 1.39 cm2

Asx = 2.77 cm2

Concrete Layer: 

(iv) Discretization through Shell Thickness: 
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prestressing) – x direction. (b) Long-term load (until unloading) – x direction

7 Conclusion

The verification of presented numerical model on the results of per-
formed experiments test shows good correspondence between the experimen-
tal and numerical values. Subsequent verification of the presented numerical
model on several experimental tests is needed. It is believed that the pre-
sented model will be of practical use in the analysis of prestressed con-
crete plates and shells under short-term and long-term static load, without
unload.
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DBEM and FEM Analysis of an Extrusion
Press Fatigue Failure

R. Citarella, G. Cricrì, M. Lepore, and M. Perrella

1 Introduction

This paper illustrates an application of the Dual Boundary Element Method
(DBEM) [1, 2], as implemented in a commercial code [3], to the simulation of a
fatigue crack propagation phenomenon affecting the main cylinder of an extrusion
press for aluminum sections (Figs. 1, 2, 3 and 4). Such methodology is particu-
larly effective for simulation of three-dimensional single/multiple crack propagation
under the hypothesis of isotropic and linear elastic material properties [4–8, 9].

The aforementioned crack propagates through the thickness, causing a leakage
of the pressurized oil and consequent production stop after 1,310,400 cycles (the
extrusion press had been working for 11 years, 240 working days per year, 5 days
per week, 24 h per day, with basic cycles lasting 3 min each).

The fatigue load is induced by the pressure variation inside the cylinder from 0
to 300 bar for each cycle, as needed to push each section through the extrusion hole.

The main aim of the simulation is to assess the most probable initial crack
dimensions that, after the recorded in service fatigue cycles, lead to the final crack
scenario. Once assessed the initial crack scenario it is possible to understand if there
was any possibility to detect such crack before the assembly phase, by using non
destructive detection techniques, and if there was a rogue flaw introduced by the
manufacturing process.

2 Problem Description and DBEM Analysis

The cylinder (Figs. 1, 2, 3 and 4) is made of cast iron and the related fatigue
properties (Table 1), consistent with the NASGRO 3 crack propagation formula
(Eq. 1), are provided in the NASGRO database where the material is indicated as
[A1AC50AB1]. The cylinder is constrained along the cylinder axial direction by the
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(a) (b)

Fig. 1 (a) Extrusion press scheme. (b) Damaged cylinder scheme

axial forces applied on the rib end by the 4 columns and is clamped on the pavement
by screw bolts (Figs. 1 and 2).

da

dN
=

C ·�Kn ·
(

1 − �Kth
�K

)p

(
1 − �K

(1−R)·Kc

)q (1)

The in service failure is caused by a through the thickness crack that, initiated in
a highly stressed area at the inner surface of the cylinder (Fig. 4), break through on
the external surface.
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Fig. 2 Extrusion press cylinder (front view)

Fig. 3 Extrusion press cylinder: rear view (left) and internal view (right)

Fig. 4 Internal view of damaged cylinder (left) during welding repair operations and close-up of
the crack under repair (right)
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Table 1 Fatigue and mechanical properties of cast iron

Ultimate tensile strength (UTS) 5.51E+08 [N/m2]
Yield stress (Ys) 4.00E+08 [N/m2]
Part through fracture toughness (K1e) 0.493E+08 [Nm–3/2]
Plane strain fracture toughness (K1c) 0.351E+08 [Nm–3/2]
Ak coefficient 0.75
Bk coefficient 0.5
Crack growth rate coefficient (C) 6.04E–29 [m5/2/N]
n coefficient 2.9
p coefficient 0.5
q coefficient 0.5
Threshold SIF at R = 0 (�K0) 8.76E+6 [Nm–3/2]
C threshold positive value (Cpth) 2.0
C threshold negative value (Cnth) 0.1
Cut off stress ratio (RCL) 0.7
Plane stress strain constraint factor (α) 2.5
SR ratio 0.3
Young’s modulus 2.1E+11 [N/m2]
Poisson’s ratio 0.3

The main driving forces for the crack propagation are provided by the tangen-
tial stresses due to the cylinder internal pressure and by the pressure on the crack
faces due to the pressurized oil flowing within the crack. In order to automatically
apply such pressure on the crack faces during the numerical crack propagation, an in
house made routine has been developed and interfaced with the main DBEM code
(BEASY).

The axial stresses produced by the pressure on the hemispheric cylinder bottom
are directly balanced by the bolt reaction applied on the rib end, whereas the initial
bolt pre-stress is neglected in the numerical model.

In the simulation, the crack propagation direction is based on the minimum strain
energy density criterion by Sih [10].

For the numerical simulation an initial edge half-circular crack is introduced at
half cylinder length, oriented in such a way to lie in an axial plane and propagated
up to instability (Figs. 5 and 6), occurring when the effective SIF (Keff), in at least
one point of the crack front, becomes equal to the fracture toughness (Kc).

The initial crack radius (r = 1.2 cm) is chosen in such a way that the numer-
ical fatigue life reproduces the experimental fatigue life, namely, with such initial
crack dimension the fracture toughness is reached by the Keff along the crack front,
after 1,343,000 simulated cycles consistently with the experimental outcome of
1,310,400 cycles. At this stage the simulated crack becomes semielliptical with semi
axes A = 12.7 cm (depth at crack front midpoint) and B = 13.3 cm (as measured
at break through points). In Fig. 7 the semi axes variation during the propagation
is shown.

The Stress Intensity Factors (SIFs) along the crack front are calculated with the
Crack Opening Displacement (COD) and J-integral methods. In Fig. 8 they are
shown at the final stage of crack propagation in which a pure mode I condition
is present.
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Fig. 5 DBEM cracked model in the final configuration (at crack instability), with highlight of
von Mises stresses (N/m2) and close-up of the final crack with highlight of oil pressure applied on
crack faces

After propagating for 1,343,000 cycles, the crack becomes unstable as the frac-
ture toughness is overcome and consequently the crack immediately break through
the external surface, causing the pressurized oil leakage and failure of the extrusion
press.

The adopted mesh is based on an initial number of 1,795 elements (before crack
propagation) and a final number of 2,287 elements (end of propagation). A mixed
mesh with quadratic elements (9 nodes quadrilateral) on the crack faces and reduced
quadratic elements (8 nodes quadrilateral) elsewhere is adopted.
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Fig. 6 DBEM cracked model
in the final configuration
(at crack instability), with
highlight of von Mises
stresses (N/m2), and close-up
of the final crack
internal view
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Fig. 8 SIF’s values (Nm–3/2) along the crack front, at the final stage of crack propagation (crack
instability)

The availability of discontinuous elements allows to easily migrate from the very
refined mesh around the cracked area to the rough mesh elsewhere where lower
stress gradients are expected (Fig. 5).

3 FEM Results

The FEM simulations are performed using the ANSYS commercial code. The cylin-
der is modeled with about 595,000 quadratic elements (SOLID186); the details of
the crack mesh are shown in Fig. 9.

Figures 10 and 11 show the von Mises stress field on the cracked cylinder, con-
sidering the initial crack (only such configuration is analyzed by FEM) and the
boundary conditions previously illustrated.

SIFs are calculated by the COD method [11] as follows:

KI = �u(�a) · E

4 (1 − βν) ·
√( π

2�a

)/(
1 − �a

2r

)
(2)

where Δa is the distance from the crack front, Δu is the corresponding crack open-
ing, r is the crack radius (the initial crack is half circular) and β is equal to 0 or ν in
case of plane strain, or plane stress respectively.

As well stated in the literature, in case of 3D cracks the plane strain hypothesis is
assumed, then we set β = ν. The distance Δa is a crucial parameter for the correct
evaluation of SIFs: it should be as small as possible for the validity of Eq. (2); on the
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Fig. 9 Mesh details in the cracked zone for the initial cracked configuration

Fig. 10 FEM cracked model in the initial configuration, with highlight of von Mises stresses
(N/m2) – rear view
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Fig. 11 FEM cracked model in the initial configuration, with highlight of von Mises stresses
(N/m2) – front view

other hand, a correct COD evaluation by FEM requires a minimum distance from
the crack front, in order to avoid the mesh dependence problem. A ratioΔa/r = 1/8
coupled with an element size nearby the crack front S = Δa/2 is considered to
provide sufficiently accurate evaluations.

4 Comparison of FEM and DBEM Results

In Fig. 12 comparison of FEM and DBEM von Mises stresses in the cracked zone,
is provided, getting a satisfactory correlation.

The FEM and DBEM SIFs calculated along the initial crack front are shown in
Fig. 13. The difference between this FEM and DBEM result ranges from –2% at the
central point of the crack front and +10% at break through points.

5 Conclusions

The realized DBEM simulation shows that the initial semicircular crack, consistent
with final crack scenario and with the recorded number of fatigue cycles to failure,
has a radius of nearly 1.2 cm. Such relevant manufacturing defect (rogue flaw) could
be detected by the manufacturer by NDE (non destructive evaluation) technique.
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Fig. 12 Comparison of FEM and DBEM von Mises stresses (N/m2) with reference to the initial
crack configuration
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Fig. 13 KI along the crack front at the initial stage of crack propagation by FEM (Ansys) and
DBEM (Beasy)

The numerical validation, by comparison between FEM and DBEM outcomes,
gave satisfactory results.

Moreover, there are some inherent advantages using DBEM for this type of
analysis, including: simplified modeling of the cracked area, automatic crack intro-
duction and propagation, reduced run times (at least for subassemblies) and accurate
crack growth simulation (it is straightforward to model multiple crack propagation,
load spectra effects, etc.).
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Damage Detections in Nonlinear Vibrating
Thermally Loaded Plates

E. Manoach and I. Trendafilova

1 Introduction

The main objective of structural health monitoring (SHM) is to ascertain whether
damage is present or not in a structure. Most vibration-based structural health mon-
itoring methods (VSHM) are based on the fact that damage will alter the stiffness,
mass or energy dissipation properties of a structure which in turn will alter its
measured vibration response.

These methods are widely used for structural health monitoring and damage
assessment purposes. Their application is somewhat limited by the need of a pre-
cise enough model of the structural vibration response. If some nonlinearities or
environmental conditions (like the elevated temperature, for example) are not taken
into account in the model, then a model-based VSHM method could give a false
alarm due to a discrepancy between the measured and the modelled response.
Temperature changes can and do affect substantially the vibration response of a
structure. Thermal loads introduce stresses due to thermal expansion, which lead to
changes in the modal properties. Thermal loads can also cause buckling and in some
cases even lead to chaotic behaviour [1–5].

Thus, on a lot of occasions the presence of a temperature field can either mask
the effect of damage or increase it, which will render a VSHM method ineffective –
it might give no alarm when a fault is present or give a false alarm. This is why
it is vital to be able to take into account the temperature changes when developing
VSHM procedures.

Most of the previous efforts of researchers in the area of VSHM were directed
towards methods based on linear modal analysis [6–10]. One of the main prob-
lems with these methods comes from the fact that in general damage starts as a
local phenomenon and does not necessarily affect significantly the modal charac-
teristics of the structure. In many cases the lower order resonance frequencies and
mode shapes are not very sensitive to damage, except in cases of very large damage
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[6, 11]. Thus in reality it may be difficult to distinguish if damage is indeed the
reason behind, e.g., a decrease in frequency or it is caused by environmental or
operational conditions changes.

Many VSHM methods are inherently limited to linear systems – they use, for
example, the superposition principle in the analysis – and cannot account for the
effects of non-linearities. Another problem with a number of VSHM methods is
that they rely on a linear model of the structure. As the theoretical model itself can
only approximate the actual behaviour of the vibrating structure, it will introduce
computational errors [6]. These errors will be greater if the non-linearities of the
system are substantial. Since they are not taken into account in the model such
methods might give false alarms due to a discrepancy between the measured and the
modelled/expected response.

To address some of the above mentioned problems, new concepts in vibration-
based monitoring have been emerging recently. These employ measured time series
of the structural vibration response, or, often concomitantly, non-linear systems the-
ory. Most of the studies in this field are devoted to the extraction of features from
the structural vibration response, which can indicate the presence of damage and
its location. In [12] the authors use the beating phenomenon for damage detection
purposes. In [13] and [14] new attractor-based metrics are introduced as damage
sensitive features. The results are promising. In [15] a panel forced by aerodynamic
loads and undergoing limit-cycle oscillations and chaos is investigated. The von
Kármán strain displacement relation is employed and a model of the system consti-
tuted by ordinary differential equations of motion is achieved by employing finite
differences. The upstream endpoint of the panel has been considered supported by a
spring of variable stiffness. Changes in the stiffness of a spring have been detected
by exploring the chaotic dynamics of the panel.

In [16] a possibility for representing, interpreting and visualising the vibration
response of vibrating panels using time domain measurements is investigated. The
panels are thin orthotropic plates and are modelled by finite elements. It was found
that the first ten resonant frequencies show low sensitivity to damage. Then the sim-
ulated vibration response of the panel is transformed and expanded in a new phase
space. Preliminary results suggest that it should be possible to use the distribution
of points on the attractor to extract damage sensitive features.

In our previous works [11] and [17] a numerical approach to study the geo-
metrically non-linear vibrations of rectangular plates with and without damage is
developed. A damage index and a method for damage detection and location, based
on the Poincaré map of the response, have been proposed. The suggested damage
assessment method shows good capability to detect and localize damage in plates.

Although the approach seems to hold a lot of potential, there is limited research
addressing VSHM methods based on time series analysis and non-linear dynamics.

The main objectives of this study are twofold: (i) to study the influence of defects,
elevated temperatures and their combination on the dynamic characteristics of the
plate and on its geometrically nonlinear dynamic response; (ii) to test the criteria for
identification of irregularities (defects) in structures proposed in [11, 17] taking into
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account the elevated temperature by analyzing the Poincaré map of the structural
vibration response.

The application of the proposed approach is demonstrated on rectangular plates
with defects at elevated temperatures. The temperature is assumed uniformly dis-
tributed over the plate surface and thickness. The plates are subjected to a harmonic
loading which leads to large amplitude vibrations. The influence of damage on the
time-history diagrams of the plate, as well as on the geometry of its phase-space
is studied. A VSHM method is developed which applies a criterion based on fea-
tures sensitive to temperature changes and damage in the same time. These features
use the Poincaré maps of the structural vibration response. Taking into account the
temperature influence on the extracted features allows the detection of damage and
shows its location for structures subjected to temperature changes. The proposed
study demonstrates the importance of taking into account the correct/exploitation
temperature in a damage detection process. It is shown that in some cases of elevated
temperature the Poincaré maps based criterion may be unsuitable.

2 Theoretical Model

The object of the investigation is a rectangular plate with sides a and b and thickness
h, subjected to temperature changes and a dynamic loading p(x,y,t) perpendicular
to the plate (Fig. 1a). The geometrically nonlinear version of the Mindlin plate
theory is used to model the plate behaviour, so that the shear deformation and
rotatory inertia are taken into account. At each point of the middle surface of the
plate, the displacements in the x, y, z directions are denoted by u, v, w, respectively,
ψx (x, y, t) and ψy (x, y, t) are the angles of the rotation of the normal of the cross
section to the plate mid-plane (see Fig. 1b).

a

b

h x

y

p(x, y, t)

O(x, y, z)

z,w

a

b

x,u 

 y,v

w

ψx
ψy

x

y

Fig. 1 Plate geometry and coordinate system. (a) Plate dimensions and loading. (b) Mid-plane of
the plate and the components of the generalized displacement vector
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The presence of a defect can be modelled as a reduction of the plate thickness or
a stiffness reduction and therefore a variation of the flexural rigidity in the governing
equations is used. The basic equations of the plate motion are described below.

2.1 Geometrical Relationships

The strain and curvature-displacements relationships associated with the mid-plane
of the plate for large displacements and shear can be expressed as:

ε0
x = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

, ε0
y = ∂v

∂y
+ 1

2

(
∂w

∂y

)2

, ε0
xy = ∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y
, (1a–h)

ε0
xz = ψx + ∂w

∂x
, ε0

yz = ψy + ∂w

∂y
,

k0
x = ∂ψx

∂x
, k0

y = ∂ψy

∂y
, k0

xy = ∂ψx

∂y
+ ∂ψy

∂x

and the strain vector is given by:

ε =
{
ε0

x + zk0
x , ε0

y + zk0
y , ε0

xy + zk0
xy, f (z)ε0

xz, f (z)ε0
yz

}T
(2)

where f (z) is a function describing the distribution of the shear strain along the plate
thickness.

2.2 Constitutive Equations

Assuming that the material of the plate is linear elastic and isotropic the relations
for the stress and strain components are given by:

σx = E(x, y)
1 − ν2

[
εx + νεy

]− E(x, y)
1 − ν αT�T,

σy = E(x, y)
1 − ν2

[
εy + νεx

]− E(x, y)
1 − ν αT�T,

(3a–d)

σxz = n2Gεxz, σyz = n2Gεyz

In terms of generalized stresses the above equations take the form:

Nx = A(ε0
x + νε0

y ) − AαTγ
T , Ny = A(ε0

y + νε0
x ) − AαTγ

T , Nxy = 1 − v

2
Aε0

xy
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y + νκ0

x)− AαTκT , Mxy = 1

2
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xy,
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2
(1− ν)n2Aε0

xz, Qy = 1

2
(1− ν)n2Aε0

yz.

(4a–h)
where

γ T (x, y) =
h/2∫

−h/2

�T(x, y, z)dz, κT (x, y) =
h/2∫

−h/2

�T(x, y, z)zdz,

A(x, y) = E(x, y)h(x, y)

1− v2 , D(x, y) = A(x, y)h(x, y)2

12

(5a–d)

In Eqs. (3), (4) and (5) E is the Young modulus, ν is the Poison ratio, Nx, Ny

and Nxy are the stress resultants in the mid-plane of the plate, Mx, My and Mxy are
the stress couples and Qx and Qy are the transverse shear stress resultants, αT is the
coefficient of thermal expansion and �T (Kelvin) is the temperature variation (in
general it can be assumed non-uniform along the plate length and thickness) with
respect to a reference temperature. n2 is a shear correction factor which is assumed
equal to 5/6 throughout the paper.

2.3 Equations of Motion

The equilibrium equations may be deducted by considering the conditions for trans-
lational equilibrium in the x, y and z directions and for rotational equilibrium about
x and y. They are as follows:

∂Nx

∂x
+ ∂Nxy

∂y
+ ρhüx = 0

∂Ny

∂y
+ ∂Nxy

∂x
+ ρhüy = 0

∂Mx

∂x
+ ∂Mxy

∂y
− Qx + c2

∂ψx

∂ t
+ ρh3

12
ψ̈x = 0

∂My

∂y
+ ∂Mxy

∂x
− Qy + c2

∂ψy

∂ t
+ ρh3

12
ψ̈y = 0

(6a–e)

∂Qx

∂x
+ ∂Qy

∂y
+ Nx

∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y
+ c1

∂w

∂ t
+ ρhẅ = −p

Here and throughout the paper dots over variables represents derivation with
respect to time, c1 and c2 denote the damping coefficients, and ρ is the density
of the plate material.
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2.4 Boundary and Initial Conditions

In the present work fully clamped plates, i.e. plates for which all their four edges are
clamped and in-plane fixed, are considered. This means that all displacements u, v
and w and angular rotations ψx andψy are zero along the boundaries. The influence
of the temperature variation is more essential for such plates due to the thermal
expansion.

The initial conditions are accepted in the following general form:

w (x, y, 0) = w0(x, y), ẇ (x, y, 0) = ẇ0(x, y),

ψx (x, y, 0) =ψ0
x (x, y), ψ̇y (x, y, 0) = ψ̇0

y (x, y), x ∈ [0, a] , y ∈ [0, b]
(7a–d)

3 Solution of the Problem

3.1 Reorganizing the Equations of the Plate Motion

The equation of motions (6) can be rewritten in the following form:

∂

∂x

[
A

(
∂u

∂x
+ ν ∂v

∂y

)]
+ ∂

∂y

[
(1 − ν)A

2

(
∂u

∂y
+ ∂v

∂x

)]
+ ρhü = Gu + GT

u

∂

∂y

[
A

(
∂v

∂y
+ ν ∂u

∂x

)]
+ ∂

∂x

[
A (1 − v)

2

(
∂v

∂x
+ ∂u

∂y

)]
+ ρhv̈ = Gv + GT

v (8a–e)

∂

∂x

(
D

[
∂ψx

∂x
+ ν ∂ψy

∂y

])
+ (1 − ν)

2

∂

∂y

(
D

[
∂ψx

∂y
+ ν ∂ψy

∂x

])

− (1 − ν2)n2A

2

(
ψx + ∂w

∂x

)
+ c2ψ̇x + ρh3

12
ψ̈x = GT

1

∂

∂y

(
D

[
∂ψy

∂y
+ ν ∂ψx

∂x

])
+ (1 − ν)

2

∂

∂x

(
D

[
∂ψy

∂x
+ ν ∂ψx

∂y

])

− (1 − ν2)n2A

2

(
ψy + ∂w

∂y

)
+ c2ψ̇y + ρh3

12
ψ̈y = GT

2

(1 − v)n2

2

{
∂

∂x

(
A

[
ψx + ∂w

∂x

])
+ ∂

∂y

(
A

[
ψy + ∂w

∂y

])}
+ c1ẇ + ρhẅ

= −p + GL + GT
3

where

Gu = −0.5
∂

∂x

{
A

[(
∂w

∂x

)2

+
(
∂w

∂y

)2
]}

− 0.5
∂

∂y

{
A(1 − ν)

(
∂w

∂x

∂w

∂y

)}
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Gv = −0.5
∂

∂y

{
A

[(
∂w

∂x

)2

+
(
∂w

∂y

)2
]}

− 0.5
∂

∂x

{
A(1 − ν)

(
∂w

∂x

∂w

∂y

)}

(9a–d)

GT
1 = A(1 + ν)αT

∂κT

∂x
, GT

2 = A(1 + ν)αT
∂κT

∂y
, GT

3 = AαTγT

(
∂2w

∂x2
+ ∂2w

∂y2

)

GL (x, y, t) = −
(

Nx
∂2w

∂x2 + Ny
∂2w

∂x2 + 2Nxy
∂2w

∂x∂y

)

In this work, only a uniformly distributed temperature field along the plate length
and thickness will be considered. Also, it is assumed that the plate gets the elevated
temperature instantly. This assumptions leads to settings GT

1 = 0, GT
2 = 0.

3.2 Numerical Approach

The pseudo-load mode superposition method (PLMS) [2, 11, 18–21] is applied to
solve the problem for nonlinear vibration of plates. It will be only briefly presented
here.

The widely accepted assumption for transversally loaded clamped plates that
mid-plane inertia effects are negligible is assumed, i.e. ρhüx = ρhüy = 0. The finite
element method is used to discretize the plate equations with respect to the space
variables and by using the PLMS they are transformed in the frequency domain.
Then an iterative procedure with respect to time is applied for the solution of the
obtained system of ordinary differential equations. It is out of the scope of this
paper to concentrate on the details of the solution method and the reader is referred
to the above mentioned papers [2, 18–21] where the method is applied for undam-
aged plates and in [11] – for damaged ones. Thus the solution procedure will be
presented only in brief:

Assuming Gu and Gv are known functions, Eq. (8a–b) form a linear system of
PDEs which can be solved numerically. The left hand sides of Eq. (8c–e) contain
only linear terms and therefore the mode superposition method can be used for their
solution. Thus, the generalized displacements vector U = {

βψx,βψy, w
}T

(β =
h2/12) is expanded as a sum of the product of the vectors of the pseudo-normal
modes Un and the time dependent functions qn(t) as follows:

U =
Nf∑

n=1

Un(x, y)qn(t). (10)

Substituting Eq. (10) into Eq. (8c–e), multiplying by Um(x, y), integrating the
product over the plate surface, invoking the orthogonallity condition, and assuming
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“proportional damping” in the sense
∫∫ (

c2

(
ψ2

xn + ψ2
yn

)
+ c1w2

n

)
dxdy = 2ξnωn,

the equations for qn(t) will be “uncoupled” in the form:

q̈n(t) + 2ξnωnq̇n + ω2
nqn(t) = Fn(t), (11)

where ωn are the natural frequencies of the linear elastic (undamped) Mindlin plate,
ξn are the modal damping parameters and

Fn(t) =
∫∫

UT
n [P(x, y, t) + GL(x, y, t) + GT (x, y, t)]dxdy, (12a–b)

P(x, y, t) = (0, 0, −p)T , GL(x, y, t) = (0, 0, GL
3)T , GT (x, y, t) = (0, 0, GT

3 )T .

The initial conditions defined by Eq. (7) are transformed also in terms of qn(0)
and q̇n(0):

qn(0) = q0
n, q̇n(0) = q̇0

n, (13a–d)

q0
n =

∫∫ (
w0wn + βψ0

xψxn + βψ0
yψyn

)
dxdy,

q̇0
n =

∫∫ (
ẇ0ẇn + βψ̇0

x ψ̇xn + βψ̇0
y ψ̇yn

)
dxdy

Using the methodology developed by Kukreti and Issa [18] the pseudo-load
vector {P+G} is interpolated by a quadratic time dependent polynomial, i.e.

P(x, y, τ ) + G(x, y, τ ) = A(x, y) + B(x, y)τ + C(x, y)τ 2, 0 ≤ τ ≤ Lt (14)

Where Lt = ti+1 − ti represents the time increment, and τ which is defined as
τ = t − ti, identifies a new time origin for each time increment.

Denoting

P0(x, y) = P(x, y, 0), P1(x, y) = P(x, y, mLt), P2(x, y) = P(x, y, Lt),

G0(x, y) = G(x, y, 0), G1(x, y) = G(x, y, mLt), G2(x, y) = G(x, y, Lt),
0 < m < 1, 0 < x < a, 0 < y < b

(15)

the expressions for the constant vectors A, B and C are derived in terms of Pi and
Gi (i = 1 to 3). The general solution of Eq. (11) is given by:

qn(τ ) = E1nq0
n + E2nq̇0

n + F1nan + F2nbn + F3ncn (16)

where E1n, E2n, F1n, F2n, F3n denote complicated mathematical expressions
containing ωn, ξn and τ (see [19]) and

an =
∫∫

UT
n Andxdy , bn =

∫∫
UT

n Bndxdy, cn =
∫∫

UT
n Cndxdy (17)
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The iteration procedure applied to solve the above Eq. (11) is identical to the
ones for circular plates and beams given in [21].

4 Damage Identification Technique

There are a lot of techniques to treat the nonlinear structural vibration response in
the time domain. The state (phase)-space representation of the structural vibration
response is a suitable and powerful tool for studying the dynamic behaviour of a
structure. A standard technique for dealing with phase space (w, ẇ, t) of periodi-
cally driven oscillators is to study the projection of (w, ẇ) at moments in time t,
where t is a multiple of the period T = 2π /ω. Here ω can be the frequency of the
excitation of the mechanical system, an eigen frequency of the structure, or its mul-
tiple, and T is a period of the forcing function, an eigen period of the system, or its
multiple. The result of inspecting the phase projection (w, ẇ) only at specific times
t = kT is a sequence of dots, representing the so-called Poincaré map. The steady-
state converging trajectories, which represent the attractor, are usually formed in the
phase space and in many cases of nonlinear systems they are very sensitive to any
changes in the system.

In papers [11, 17] the following damage index based on the analysis of the
Poincaré map was introduced:

Id
i = Su

i − Sd
i

Su
i

, (18)

where

Su
i =

Np−1∑
j=1

√(
wu

i, j+1 − wu
i, j

)2 +
(

ẇu
i, j+1 − ẇu

i, j

)2

Sd
i =

Np−1∑
j=1

√(
wd

i, j+1 − wd
i, j

)2 +
(

ẇd
i, j+1 − ẇd

i, j

)2

(19a,b)

In these equations I = 1,2. . .Nnodes, Nnode is the number of nodes, Np is the

number of points in the Poincaré map and
(

wu
ij, ẇu

ij

)
and

(
wd

ij, ẇd
ij

)
denote the jth

point on the Poincaré maps of the undamaged and the damaged states, respectively.
A small (close to 0) damage index will indicate no damage, while a big damage

index will indicate the presence of a fault at the corresponding location. The above
damage index depends on the location of the point on the plate, and consequently it
is a function of the plate coordinates x and y. One can expect that the maxima of the
surface Id(xd, yd) (18a) will represent the locations of the damage, i.e. Id

max(xd, yd) =
max

i

{
Id
i

}
.
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The damage criterion based on this index presumes setting a threshold value Td

for the damage index and if

Id(x, y) > Td (20)

then one can conclude that the plate is damaged and the areas of points (x,y) for
which Eq. (20) is fulfilled, form the damaged area (areas).

In the present work we shall use the same damage index and damage criterion but
taking into account the temperature changes as well, Id = Id(x, y,�T). This sug-
gestion presumes that the damage index defined by Eqs. (18) and (19) is calculated
for equal values of �T for the healthy and damaged plate.

5 Results and Discussions

Numerical calculation of the vibrational displacements of the healthy and the
damaged rectangular plates subjected to mechanical and thermal loading were
performed.

The damage was modelled as a reduction (up to 50%) of the plate thickness in
small parts of the plate.

First example considers the same plate as the one in [1]. The plate has the follow-
ing dimensions and material properties: a = 0.25 m, b = 0.24 m, h = 0.00027 m, E
= 198.109 Pa, ρ = 7,850 kg/m3, ν = 0.3 and αT = 17.3×10–6K–1. This very thin
plate is subjected to harmonic loading with frequency of excitation ωh = 172 rad/s
(0.7ω1,1) and amplitude p = 0.3 N The time domain response of the plate center is
shown in Fig. 2. The amplitudes of oscillations are very close to the ones shown in
Fig. 9 in [1], so the verification of the present results is satisfactory.

0.0 1.5
t, sec.

–0.00043

0.00000

0.00043

w
,m

Fig. 2 Vibration response at the plate centre (ωh = 172 rad/s, p =0.3 N)
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Damage

Fig. 3 Finite element discretization and damaged area (white colour) of the plate

Then the same plate but with increased thickness h = 0.0005 m (case B from
[1]) was subjected to thermal and dynamic loading. For this plate two cases were
considered: (1) undamaged plate and (2) plate with reduced thickness in a small part
of the plate – the white area from the plate shown in Fig. 3.

It was shown in [1] that the buckling temperature for this plate is�T = 0.9 K . It
is clear that the attempt to inspect such a plate for damage without considering the
temperature changes is condemned to fail.

In Fig. 4 the time-history diagrams of the healthy and the damaged plate sub-
jected to a harmonic loading p = 0.9 N applied in the plate centre with frequency of
excitation ωh = 319 rad/s. (ω1,1 = 455.6 rad/s) are shown. Inspecting the time his-
tory it is visible that at the beginning the introduced small defect doesn’t influence
essentially the response of the plate but small changes in the eigen frequencies and
modes lead to phase shift and the differences between the two responses increase
with time. The phase shift can be clearly seen on the small figure in Fig. 4 where
a short interval from the response is shown. The Poincaré maps of the responses
of the healthy and the damaged plate in the plate centre (Fig. 5a) and in the cen-
tre of the defect are shown in (Fig. 5b), respectively. The Poincaré plots shown
are obtained as a projection of (w, ẇ) at moments t, where t is a multiple of the
period T = 2π /ωh . The damage doesn’t change essentially the form of the Poincaré
plot. As can be expected the difference between the two responses is larger at the
points with reduced thickness. A contour plot of the damage index obtained by using
Eq. (18) is plotted in Fig. 6 where a threshold value Td = 0.06 is used. The contour
plot is a graphical technique for representing a 3-dimensional surface by plotting
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Fig. 4 Time history diagram of the plate centre response. ωh = 319 rad/s, p = 0.9 N. Undamaged
plate (gray line); damaged plate (gray line)
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Fig. 5 (a) Poincaré map at the plate centre. Undamaged plate (black dots); damaged plate (gray
dots). (b) Poincaré map at the centre of the defect. Undamaged plate (black dots); damaged plate
(gray dots)

constant z slices, called contours, on a 2-dimensional plane. That is, for a given
value of z, lines are drawn that connect the (x,y) coordinates which correspond to
this particular value of z. The contour plot is compared to the FE model of the plate
where the damaged area is coloured in white. As can be seen the damage criterion in
this case works quite well and predicts rather precisely the damage location despite
of the fact that the damage indexes have low values.
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Fig. 6 Contour map of the damage index (unheated plate) and comparison with the damage
location

Then the same plates were considered at elevated temperature namely �T =
0.7 K. This temperature leads to increased amplitudes of vibrations of the plates
(see Fig. 7). Again, the differences in the plate history diagrams are visible but they
are not very large in the beginning of the time histories. However the Poincaré plots
for the damaged and the undamaged plate have very different shapes, as can be seen
from Fig. 8. This phenomenon may indicate that for these loading parameters the
dynamic system changes its position in the basin of attractions moving from one
region to another. This observation agrees with the fact that the plate buckles at
�T = 0.9 K [1]. The shapes of the Poincaré plots at the damaged nodes are similar.
Obviously, in such case the damage criterion (20) is not appropriate and doesn’t give
satisfactory results for the damage location (not shown here). As can be expected
neglecting the temperature influence is impossible for the damage detection purpose
and leads to wrong results.
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Fig. 7 Time history of the thermally loaded plate. Undamaged plate (black line); damaged plate
(gray line). �T = 0.7 K
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Fig. 8 Poincaré map of the response of the plate centre of heated undamaged (black dots) and
damaged (gray dots) plates. �T = 0.7 K

The second numerical example concerns a thicker rectangular plate with the
following geometrical and material properties: a = 10 m, b = 2.5 m, h = 0.05 m,
Young modulus E = 7.1010 N/m2, Poison ratio ν = 0.34, density ρ = 2,778 kg/m3.
The damping coefficient c1 = c2

12
h2 in Eq. (8) was chosen to be 0.00075 N s

m3 . The
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Fig. 9 Finite element mesh of the plate with defect
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Fig. 10 Time history diagram of the plate centre, p = 500 N, ωh = 260 rad/s, black line –
undamaged plate, gray line – damaged plate

finite element discretization and the damage area are shown in Fig. 9. Again, the
damaged area has a thickness hdamaged = h/2. The plate is fully clamped and the
applied harmonic load p = 500 N is uniformly distributed over the whole plate
surface. The time history diagrams of the plate centre of the plate with a defect
and without defect are shown in Fig. 10. The same time history diagrams but in
the case of elevated temperatures of the plates are shown in Fig. 11. The excita-
tion frequency is 260 rad/s, which is only 7% less than the first eigen frequency
of the healthy plate. A strong beating can be observed in the responses of the
healthy and damaged plates. The phase of the response of the damaged plate shifts
and the difference between the responses increases with the time. The same con-
clusion applies in the case of the rectangular plate at elevated temperature. The
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Fig. 11 Time history
diagram of the plate center of
heated plate, p = 500 N,
ωh = 260 rad/s, �T = 50 K,
black line – undamaged plate,
gray line – damaged plate
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Fig. 12 Poincaré map at the centre of the defect for: (a) unheated plate, (b) heated plate �T. =
50 K, (c) heated plate −�T = 100K. Undamaged plate (black dots); damaged plate (gray dots)
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Fig. 13 Contour maps of the damage index for unheated and heated rectangular plate with damage

elevated temperature leads to larger values of the vibration amplitude. Again, the
differences between the Poincaré plots of the heated and unheated plates are largest
for the points from the damaged areas (see Fig. 12a–c). Accordingly, the damage
indexes corresponding to the damaged area have the biggest values, which gives
the possibility to locate the damage. The contour plots of Id

i corresponding to three
different temperatures are shown in Fig. 13. It can be seen that the damage loca-
tion is predicted very precisely in the case of the unheated plate as well as in the
cases of the heated plate with two different temperatures ΔT = 50 K and �T =
100 K. The threshold value Td is set to 0.28 for all cases and the maximal value
of Id is almost the same (Id = 0.4 for ΔT = 0, �T = 50 K and Id = 0.42 for
ΔT = 100 K).

If, however one calculates, for example the damage index of the healthy
unheated plate and the one for the damaged but heated plate then the damage
location cannot be predicted precisely. This is due to the temperature change
which is not taken into account for the healthy plate. The vibration responses
of the healthy and the damaged plates should be compared for the same
temperatures.
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6 Conclusions

In this paper the computed time domain vibration responses are used to analyse the
dynamic behaviour of plates in the intact condition and in the case when defects are
present taking into account the temperature changes. A damage assessment method
is suggested which is based on the phase space representation of the time domain
nonlinear vibration response of the plate and uses the analysis of its Poincaré map.
It has been demonstrated that damage as well as elevated temperatures can influ-
ence substantially the time domain response of the plate and its Poincaré maps.
It can be concluded that: 1) The influence of the temperature changes is essential
and can change substantially the nonlinear dynamic response of the plate and this
is why temperature changes should be taken into account when developing a dam-
age assessment procedure; 2) Temperature loadings which lead to either buckling
or chaotic behaviour of the plate, might render the damage criterion suggested by
Eqs. (18), (19) and (20) inappropriate. This is because even small damage, resulting
in stiffness reduction of the plate, could lead to dramatic changes in the Poincaré
maps of the response and consequently to unreliable results.

The potential, the sensitivity and the applicability of the developed method still
have to be tested for real measurements and for more structures, defects and loading
conditions.
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Macroscopic Stability Analysis in Periodic
Composite Solids

Fabrizio Greco, Paolo Lonetti, Paolo Nevone Blasi,
and Girolamo Sgambitterra

1 Introduction

Solids with heterogeneous microstructures, such as cellular solids, particle and
fiber-reinforced materials, layered materials and honeycombs, are increasingly
adopted in many engineering applications since their microstructure can be designed
to optimize their macroscopic properties according to the specific application.
Consequently, it is extremely important to accurately predict the macroscopic
material properties of such materials in terms of the microscopic behavior of its
constituents. However the analysis of the macroscopic response of heterogeneous
materials taking into account a precise description of its microstructure, may involve
an enormous increase of computational cost, since constitutive properties of the
material change within a micro-length scale which is several orders of magnitude
smaller than the characteristic dimensions of the structure.

A common approach is to replace the heterogeneous material by an equivalent
“homogeneous” material. The methodologies used to calculate these macroscopic
properties are usually termed “homogenization” techniques.

For linear elastic solids, after some pioneering contributions [1, 2] rigorous
mathematical approaches have been developed on the basis of the mathemat-
ical procedure of multi-scale perturbation assuming a periodic model for the
microstructure [3, 4].

In the case of non-linear heterogeneous solids additional complications arise
since nonlinear effects related to the microgeometry and the local constitutive law
must be incorporated in the mathematical model. As a matter of fact the macroscopic
behavior of micro-heterogeneous material at finite strains, obtained by means of a
classical homogenization procedure, may be often not representative of the micro-
scopic behavior of its constituents due possible instability phenomena occurring at
the micro scale. From the mathematical point of view the main difficulty arising in
the homogenization of nonlinear elastic composites is related to the non-convexity
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of the microscopic strain energy density function. In the case of convex micro-
scopic strain energy functions the homogenization problem can be successfully
solved by minimizing the averaged strain energy density with respect to fluctua-
tion field periodic over a unit cell [5], leading to define the representative volume of
the microstructure as one periodic cell. Unfortunately actual materials do not have
convex energy functions and convexity is a too strong requirement from the physical
point of view [6, 7]). For non-convex microscopic strain energy functions, by virtue
of the notion of Γ -convergence [8, 9] has given an abstract formula of the homog-
enized strain energy density function for heterogeneous periodic microstructures
which corresponds to the minimization of the averaged strain energy density with
respect to admissible fluctuation fields that are periodic over an a-priori unknown
ensemble of periodic cells (possibly infinite).

On the other hand, the stability analysis plays a fundamental role in the study of
solids with heterogeneous microstructure, since microscopic failure mechanisms in
these materials are often induced by instability phenomena and in view of the fact
that the stability analysis of the microstructured solid establishes the region of valid-
ity of the standard homogenization procedure based on unit cell calculations. In fact,
the limit of validity for the homogenized models of the heterogeneous solid, can be
determined only by means of comparisons between the onset of the primary insta-
bility in the real microstructured solid and the corresponding instability estimated
by using the homogenized model of the solid.

For solids with generic microstructures, such as composite materials, the analy-
sis must consider both classical buckling type instability modes dominated by the
geometric microstructural configuration when the stress state is prevalently nega-
tive, and constitutive-dominated instabilities occurring when tangent moduli of the
material reduce greatly taking eventually negative values and in presence of a posi-
tive stress state (for additional details about the above kind of instabilities see [10]).
Instabilities of the former kind arise frequently in laminated microstructures loaded
primarily in compression due to fiber micro-buckling [11, 12], whereas cellular and
particle-reinforced microstructures may exhibit the latter kind of instability when
loaded prevalently in tension [13].

In the sake of computational efficiency, the stability analysis of elastic compos-
ite solids with periodic microstructure is carried out in terms of their macroscopic
properties. However, a stability analysis based on the homogenized constitutive
properties may be not able to provide an accurate prediction of microscopic insta-
bility mechanisms and often a direct analysis of the heterogeneous solid, including
all microstructural details and thus involving a greater computational cost, must be
carried out in order to determine the exact microstructural instability mechanism.
Consequently, an appropriate analysis of the interrelations between instabilities on
the macro and micro scales plays an essential role to validate a stability investigation
based on the homogenized composite properties.

By using the results of [9, 14] proved the connection between microscopic
bifurcation and loss of macroscopic strict rank-one convexity in the framework
of functional analysis, for arbitrary solids with periodic microstructures. In this
work paper it also was proven that if the wavelength of the bifurcation primary
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eigenmode is much larger compared to the unit cell size, the onset of the corre-
sponding instability of the periodic principal solution can be detected as a loss
of ellipticity of the corresponding one-cell homogenized tangent moduli of the
solid.

From the computational point of view, accurate numerical determinations of
the region of microscopic stability and of the region of macroscopic stability,
intended as the region where the strong ellipticity condition for the homogenized
moduli tensor still holds, for a microstructural model have been carried out in
[13, 15].

From the above literature survey it emerges that a fundamental measure of macro-
scopic stability, based on homogenized constitutive properties, for an heterogeneous
solid with periodic microstructure is that based on the strong ellipticity condition of
the homogenized moduli tensor. The strong ellipticity condition is able to exactly
predict the onset of microscopic instability of the periodic principal solution along
a monotonic loading process when the microscopic instability mode is global in
nature, i.e. its wavelength is much larger in comparison with the unit cell size (this
circumstance occurs frequently, for instance, in fiber reinforced composite materials
loaded prevalently in compression). On the other hand, an unconservative estima-
tion of the primary microscopic instability load is obtained by the above mentioned
macroscopic stability measure in the more general case when the instability mode
is local in nature, namely its wavelength is comparable to the unit cell size, since
the homogenized moduli tensor remains strongly elliptic at the onset of the primary
microscopic instability. The latter kind of instabilities may occur, for instance, in
cellular solids or in particle reinforced matrix materials.

In order to investigate alternative macroscopic conditions able to obtain accu-
rate prediction of the microscopic instability mechanisms in composite solids with
periodic microstructure, a stability analysis on the micro and macro scales is here
carried out, both from a theoretical and numerical point of views. Firstly, theoretical
details about the homogenization problem and the stability conditions for an hetero-
geneous solid with periodic microstructure undergoing deformations at finite strains
are provided. Then alternative macroscopic stability measures are defined. After the
description of the numerical implementation of the proposed method, numerical
applications, devoted to cellular and particle-reinforced composite microstructures
with specific hyperelastic constituents, are provided.

2 Theoretical Analysis

In order to study the stability problem of heterogeneous solids with periodic
microstructure subjected to finite-strains loading conditions, the basic concepts of
the homogenization procedure will be firstly introduced in this section and the
macroscopic properties of a periodic microstructure will be discussed. Then the
concept of macroscopic stability measures will be introduced. The microscopic sta-
bility problem is introduced which requires the examination of all perturbations of
the equilibrium fluctuation field periodic over a unit cell.
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2.1 Basic Equations of Homogenization: Microscopic
and Macroscopic Variables

Let us consider an heterogeneous solid with a periodic microstructure defined by
a unit cell occupying the domain Vi in the stress-free undeformed configuration
(see Fig. 1). According to a classical assumption of the homogenization approach,
the scale at which the microstructure is defined (microscopic scale, lmicro) is small
enough for the heterogeneities to be identified. On the other hand, the homogenized
continuum is defined at a macroscopic scale, lmacro, large enough compared to its
microscopic counterpart for the heterogeneities to be ‘smeared-out’. The initial and
current position vectors of a material point of the microstructure are denoted by X
and x. The nonlinear deformation of the micro-structure is defined by x (X): V(i)→V,
mapping points X of the initial configuration V(i) onto points x of the actual config-
uration V of the micro-structure. The displacement field at X is denoted by u(X),
where u = x(X)–X, and the deformation gradient at X is denoted as F(X), where
F = ∂x(X)/∂X.

The material model that governs the response at a microscopic point x, is
assumed to be rate independent and is specified by the following incrementally
linear constitutive law:

ṪR = CR (F, X) [Ḟ] (1)

where ṪR is the rate of the first Piola-Kirchhoff stress tensor, Ḟ is the deformation
gradient rate and CR is the corresponding fourth-order tensor of nominal moduli, a
V(i)-periodic function of X. Since only quasistatic loading conditions will be con-
sidered here, the rate of a field quantity correspond to its derivative with respect to a
time-like parameter which increases monotonically with the evolution of the loading
process. It is further assumed that the nominal moduli tensor possesses major sym-
metry condition, i.e. CR

0ijkl = CR
0klij. When the microscopic constitutive behavior is

hyperelastic, the nominal moduli tensor and the nominal stress tensor can be defined

Fig. 1 Periodic unit cell attached to a generic material point X̄ of the corresponding homogenized
continuum, occupying the region V̄(i) in its undeformed configuration
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as CR(X, F) = ∂2 W(X, F)
∂F∂F , TR = ∂W(X, F)

∂F , where W is the strain energy density func-
tion that is a non-convex function of the deformation gradient F, ∂2 W(X, F)/∂F∂F
denotes a second order tensor whose components are CR

ijkl = ∂2 W(X, F)/∂Fij∂Fhk

and ∂W(X, F)/∂F a first order tensor whose components are TR
ij = ∂W(X, F)/∂Fij.

The macroscopic first Piola-Kirchoff stress and the macroscopic deformation
gradient tensors are defined in terms of boundary data of the traction field tR and
the deformation field x(X) according to [16], respectively as:

T̄R = 1∣∣V(i)
∣∣
∫

∂V(i)

tR(X) ⊗ Xds(i), F̄ = 1∣∣V(i)
∣∣
∫

∂V(i)

x(X) ⊗ n(i)ds(i), (2)

where ⊗ is the tensor product and n(i) denotes the outward normal at X ∈ ∂V(i).
The microscopic deformation can be assumed to be a function of the macro-

deformation gradient F̄ and can be expressed as the sum of a linear part, representing
a homogeneous deformation, and of a correction part w(x) associated to a non-
homogeneous deformation. As a consequence the microscopic deformation field
and its gradient assume the following expressions

x(X) = F̄X + w(X) , F(X) = F̄ + ∇w(X) (3)

where w(X) is usually referred to as the fluctuation field.
Application of Eq. (2)1 implies that the fluctuation field must comply with the

following constraint:

∫

∂V(i)

w ⊗ n(i)ds(i) = 0, (4)

which can satisfied for periodic fluctuation fields on the unit cell boundary (see Fig. 2):

w
(
X+) = w

(
X−) on ∂V(i). (5)

By periodicity of the field w(X) it is understood that all components of w(X)
take identical values at points on opposite sides of the boundary ∂V(i), ∂V(i)

+ and

–

–

+

+– +n
V

∂V

n
(i)

(i)(i)

(i)

w(X+) = w(X–) on ∂V(i)

Fig. 2 Periodic boundary
constraints for the fluctuation
field
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∂V(i)
–, with outwards normals n(i)

+ = –n(i)
– at two associated points X+ ∈ ∂V(i)

+

and X– ∈ ∂V(i)
–, which are deduced by translation parallel to the directions of the

periodicity vectors spanning V(i). Due to the assumed V(i)–periodic distribution of
material and geometrical properties of the heterogeneous solid with respect to a
unit cell, the local boundary conditions Eq. (2) allows to completely determine its
mechanical response and ensure a periodic distribution of the stress and strain field
quantities. As will be detailed in the following section, the mechanical response of
the heterogeneous solid at a given macro-deformation gradient, can be determined
by means of computations performed over one unit cell if the equilibrium solution of
the microstructure is stable, otherwise an assembly of unit cells must be considered.

The abbreviated notation # appended to a region will be used to denote the peri-
odic properties of a field on the boundary of the region. Similarly, the antiperiodicity
of a field quantity, implying that the field quantity takes opposite values at points on
opposite sides of the boundary ∂V(i) of the unit cell, will be denoted by –#.

2.2 Incremental Macroscopic Response

In order to obtain the incremental homogenized response of the solid, suppose
that the microstructure at a generic stage of a quasi-static loading path F̄(β) (with
the load parameter β ≥ 0 increasing monotonically with increasing macroscopic
load) beginning from the initial configuration associated to the region V(i) (i.e.
with F̄(β) = 1 when β= 0) occupies the region V defined by the deformation
x (X) = F̄ (β)X + wF̄(β) (X) driven by the macroscopic load F̄(β). The deformed
configuration is assumed to correspond to a known equilibrium solution, defined in
term of the fluctuation solution wF̄ (X) at the given macro-deformation gradient, of
the unit-cell deformation problem:

∫

V(i)

TR
(
F̄ + ∇wF̄, X

) ·∇δwdV(i) = 0 ∀δw ∈ H1,p(V(i)#), (6)

where H1,p(V(i)#) denotes the usual Sobolev space of vector valued functions peri-
odic over the unit cell V(i)=[0,1]N. The corresponding Euler-Lagrange equations of
the above variational equation subjected to periodic constraints are:

⎧⎪⎨
⎪⎩

DivTR = 0 in V(i)(
TRn(i)

)+ = (
TRn(i)

)−
on ∂V(i),

TRn(i) = 0 on ∂H(i)

(7)

where ()+ and ()–, respectively, denote variables evaluated at two associated points
X+ ∈ ∂V+ and X– ∈ ∂V–, and ∂H(i) denotes the boundary of the eventual hole part of
the unit cell. When the equilibrium solution for the unit-cell deformation problem is
unique along the macroscopic loading path, it is referred to as the “principal solution
path”. It is worth noting that the equilibrium solution is determined by Eq. (7) up
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to a possible rigid body motions which must be excluded by imposing artificial
constraints.

Let us consider the incremental equilibrium problem induced at the microscopic

scale by an incremental change in the macroscopic deformation gradient ˙̄F(β).
Once the microscopic distribution of the nominal moduli tensor CR (F̄ + ∇wF̄, X

)
is known, the local problem defined by the following variational expression:

∫

V(i)

CR (F̄, X
)

[ ˙̄F + ∇ẇ ˙̄F]·∇δẇdV(i) = 0 ∀δẇ ∈ H1,p(V(i)#), (8)

can be solved, where ẇ ˙̄F is the incremental fluctuation field induced by ˙̄F(β)
determining the microstructure incremental equilibrium solution with antiperiodic
incremental tractions ṫR ∈ V(i)–#, i.e. ṫR

(
X+) = −ṫR

(
X−) on ∂V(i), vanishing trac-

tions ṫR (X) = 0 on the boundary ∂H(i)of eventual hole parts, and periodic boundary
constraints, ẇ (X) ∈ V(i)#. Incremental rigid body displacements of the unit cell must
be avoided by introducing artificial constraints.

When the local incremental problem solution is known, the macroscopic consti-
tutive response can be determined as

˙̄TR = C̄
R (

F̄
)

[ ˙̄F], (9)

where C̄
R (

F̄
)

is by definition the homogenized tangent moduli tensor. Considering
that the increment of the macroscopic stress tensor is equal to the macroscopic incre-

mental stress tensor, i.e. ˙̄TR = ¯̇TR and by virtue of Eq. (9), we obtain that the
homogenized tangent modulus tensor of the solid can be determined through the
following relation:

C̄
R (

F̄
)

[ ˙̄F] = 1∣∣V(i)
∣∣
∫

V(i)

CR (F̄, X
)

[ ˙̄F + ∇ẇ ˙̄F]dV(i). (10)

From Eq. (10) the components of the homogenized moduli tensor can be
determined as

C̄
R
ijhk

(
F̄
) = 1∣∣V(i)

∣∣
∫

V(i)

CR
ijmn

(
F̄, X

)
[Ihk

mn + ∇ẇhk]dV(i), (11)

in terms of the incremental fluctuation field induced by unit value for each compo-
nent of the macroscopic deformation increment, namely ẇhk is the solution of the

incremental boundary value problem for ˙̄F = Ihk, where Ihk
mn = δmhδnk.

It is worth noting that the above definition of the homogenized moduli tensor
based on computations over one unit cell is strictly valid only when the equilibrium
configuration of the microstructure is incrementally stable, otherwise the one cell
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homogenization is no longer useful since a larger assembly of unit cells (possibly
infinite) must be considered.

2.3 Variational Formulation for Hyperelastic Materials

For hyperelastic microscopic constituents, an homogenized strain energy function
can be introduced by means of the following expression [9]:

W̄
(
F̄
) = inf

k∈

⎧⎪⎨
⎪⎩ min

w∈H1, p(kN Vi#)

⎧⎪⎨
⎪⎩

1

kN
∣∣V(i)

∣∣
∫

kN V(i)

W
(
X, F̄ + ∇w

)
dV(i)

⎫⎪⎬
⎪⎭

⎫⎪⎬
⎪⎭ , (12)

where the homogenized strain energy function W̄
(
F̄
)

is determined as the min-
imum volume average of the microscopic strain energy function with respect to
admissible fluctuation fields, belonging to the Sobolev space of vector valued func-
tions periodic over all possible ensemble of kN = [0,k]N unit cells (N = 2 or N =
3 for two- or three-dimensional problems, respectively) with k an arbitrary inte-
ger, namely w(X) ∈ H1,p(kNV(i)#). The strain energy function W is assumed to be
objective, i.e. W(QF) = W(F) for all proper orthogonal Q and arbitrary deformation
gradients F. This implies that the homogenized strain energy function, as its micro-
scopic counterpart, is unaffected by a superposed macroscopic rigid body motion
after deformation.

A formal calculation of the first and second derivatives of the homogenized strain
energy function based on Eq. (12), which makes use of Eq. (6), shows that Eq.
(12) defines a macro-stress potential and the macro-stress and homogenized moduli
tensor are defined in terms of the first and second derivatives of the macro-stress
potential with respect to the macro-deformation gradient:

T̄R = ∂W̄

∂F̄
, C̄

R = ∂2W̄

∂F̄∂F̄
. (13)

When the microscopic strain energy function W(F) is a convex function of F, the
computation of the macroscopic energy function can be reduced to a computation
on a unit cell, and the one-cell homogenized strain energy function can be defined
by the following minimization problem:

W̄1 (F̄) = min
w∈H1,p(Vi#)

⎧⎪⎨
⎪⎩

1∣∣V(i)
∣∣
∫

V(i)

W
(
X, F̄ + ∇w

)
dV(i)

⎫⎪⎬
⎪⎭ , (14)

namely W̄
(
F̄
) = W̄1

(
F̄
)
.

The minimization principles Eqs. (12) and (14) defines the equilibrium state
of the hyperelastic microstructure according to Eq. (7) except rigid body motions
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which must be opportunely excluded. As a matter of fact, the minimum princi-
ples Eqs. (12) and (14) imply the variational Eq. (6) written with reference to an
assembly of unit cells or to a unit cell region, respectively.

Practical materials are not characterized by convex strain energy functions since
convexity is a too strong and physically unacceptable restriction [6, 7]. On the con-
trary non convex micro-energy functions do not preclude nonuniqueness phenomena
such as buckling on the micro-scale. Due to these phenomena it is possible that
lower values for the homogenized strain energy function can be obtained by mini-
mization over domains containing several unit cells. In this circumstance, Eq. (12)
determines the current fluctuation field and defines the size of the representative
volume of the microstructure, which is a priori unknown, which captures the min-
imizing micro-buckling mode. Moreover it results that W̄

(
F̄
) ≤ W̄1

(
F̄
)

and the
equality holds only when the minimizing fluctuation field based on one unit cell
computation is also the minimizing fluctuation field for any possible unit cells
assembly. Equation (12) is accompained by a notable difficulty associated to the
infinity of the required domain and requires a full space investigation on the micro-
scale. Therefore, it should be preferable to perform the homogenization on the basis
of Eq. (14) since it involves a much simpler calculation, which gives the correct
results in terms of macroscopic stress and homogenized moduli through Eq. (13)
only in the region of the macroscopic strain space where W̄

(
F̄
) = W̄1

(
F̄
)
, namely

the region of validity of the one-cell homogenization. As will be shown in the fol-
lowing the region of validity of the one-cell homogenization can be determined by
means of a microscopic stability analysis.

2.4 Stability Analysis of the Microstructure

The response of the microstructure to infinitesimal deformations from the cur-
rent equilibrium configuration kNV, taken as reference and assumed known, at the
macroscopic strain F̄ and the corresponding fluctuation solution wF̄, is analyzed. To
this end an additional microscopic displacement field u(x,τ ) is considered as super-
imposed on the reference configuration and compatible with the essential boundary
conditions on the boundary of kNV (thus corresponding to a periodic field on kNV).
This demands respectively u(x,τ = 0) = 0 on ∂ kNV and u(x+,τ ) = u(x–,τ ) on ∂kNV,
where τ is a time-like parameter with τ ≥ 0. As shown in Fig. 3, the microscopic dis-
placement field u deforms the microstructure from the reference configuration kNV
to the generic configuration kNV(τ ). The gradient of the microscopic deformation
field relative to the reference configuration V, is denoted by F(0)(x,τ ).

For sufficiently small values of the time-like parameter τ , the additional displace-
ment field represents an infinitesimal deformation (also called incremental) from the
current configuration B and the displacement field and the gradient of the additional
deformation can be expressed as

u(x, τ ) = u̇0(x)τ + o(τ ), F(0)(x, τ ) = I + L(x)τ + O(τ ). (15)
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Fig. 3 Incremental
deformations superimposed
on the current equilibrium
configuration of the
microstructure

The displacement rate field u̇0(x) can be considered as the “quasi-static” velocity
field, whereas its gradient L(x) the velocity gradient. The microscopic deforma-
tion defined in terms of the additional displacement field u(x,4) is coupled with the
macroscopic deformation gradient at a typical point X̄ of the macro-continuum by
virtue of Eq. (3)1. Hence, the following relationship holds:

u(x, τ ) = u̇0(x)τ + o (τ ) =
( ˙̄F(0)x + ẇ(x)

)
τ + o (τ ) = ẇ(x)τ + o (τ ) , (16)

where ˙̄F(0) is the rate of the macroscopic deformation gradient relative to configura-
tion kNV, evaluated in the current configuration, which vanishes due to the assumed
periodicity of the additional displacement field, and ẇ(x) is the fluctuation field
velocity. It follows that L = ∇ẇ(x) = ∂ẇ(x)/∂x.

The incremental version of the classical criterion of stability of the current
equilibrium configuration kNV [17], is here used according to the incremental con-
stitutive law adopted for the material and the current configuration is taken as
the reference one. The second order approximation of the difference between the
internal deformation work D

D =
t∫

0

∫

kNV

[
TR(0)(x, τ )·Ḟ(0)(τ )

]
dVdτ =

⎧⎪⎨
⎪⎩
∫

kN V

[
TR(0)(x, τ )·Ḟ(0)(τ )

]
τ=0dV

⎫⎪⎬
⎪⎭ t+

⎧⎪⎨
⎪⎩
∫

kN V

[
TR(0)(x, τ )·Ḟ(0)(τ )

]
τ=0dV

⎫⎪⎬
⎪⎭

t2

2
+ o

(
t2
)

and the work done by the antiperiodic tractions tR(0) acting in the examined
equilibrium configuration

L =
t∫

0

⎡
⎢⎣

∫

∂kN V

tR(0)·u̇ds

⎤
⎥⎦dτ =

∫

∂kN V

T0n·
(

v t + ü0
t2

2

)
ds + o

(
t2
)
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during the additional deformation from kNV to kNV (τ) can be expressed as:

D − L =
⎛
⎜⎝
∫

kNV

ṪR(0)·LdV

⎞
⎟⎠ t2

2
+ o

(
t2
)

, (17)

where TR(0) is the first Piola-Kirchhoff stress tensor tensor based on the configura-
tion kNV(τ= 0) and T0 is the Cauchy stress tensor in the reference configuration
kNV which corresponds to TR(0)(x,τ = 0). The first-order terms vanish due to equi-
librium in the examined configuration kNV and dead loading is assumed on ∂ kNV,
namely tR(0) is independent on τ. In the above equations dV and ds indicate the
reference volume and area elements, respectively. On the other hand, due to the
assumed periodicity for displacement field and antiperiodicity of surface tractions,
L is identically zero.

The structural stability condition of the microstructure at the macroscopic defor-
mation F̄ is based on the positive definiteness of the functional shown in Eq. (17),
quadratic in the fluctuation rate field, referred to as the stability functional, for every
incremental deformations satisfying the essential periodicity boundary constraints.
When the incremental constitutive law written with the reference configuration
coincides with the current one:

ṪR(0) = CR
0 (F) [L] , (18)

where C0
R is the fourth-order tensor of nominal instantaneous moduli, the stability

functional becomes

∫

kNV

CR
0 (x, F) [∇ẇ(x)] ·∇ẇ(x)dV . (19)

Therefore, a deformed state of the microstructure characterized by the fluctuation
field w(x) induced by the macroscopic load F̄, is stable if the minimum eigenvalue
of the stability functional is positive when the minimum is taken over all admissible
incremental fluctuations periodic on the kNV ensemble of unit cells:

�
(
F̄
) = inf

k∈

⎧⎪⎨
⎪⎩ min

ẇ∈H1,p(kNV#)

⎧⎪⎨
⎪⎩

∫
kNV

CR
0

(
x, F̄ + ∇wF̄

)
[∇ẇ] ·∇ẇdV

∫
kN V

∇ẇ·∇ẇdV

⎫⎪⎬
⎪⎭

⎫⎪⎬
⎪⎭ > 0. (20)

The assumed major symmetry of the microscopic moduli tensor ensures that
all eigenvalues and corresponding eigenmodes of the quadratic functional are real.
The Euler Lagrange equations and surface conditions corresponding to the above
eigenvalue problem are:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div
{
CR

0

(
x, F̄ + ∇wF̄

)
[∇ẇ] −� (

F̄
)∇ẇ

} = 0 in kNV({
CR

0

(
x, F̄ + ∇wF̄

)
[∇ẇ] −� (

F̄
)∇ẇ

}
n
)+ =

− ({
CR

0

(
x, F̄ + ∇wF̄

)
[∇ẇ] −� (

F̄
)∇ẇ

}
n
)−

on ∂kNV{
CR

0

(
x, F̄ + ∇wF̄

)
[∇ẇ] −� (

F̄
)∇ẇ

}
n = 0 on ∂H

. (21)

where n is the outward normal to the boundary of the unit cell assembly in the
current configuration kNV. The second and third equations in (21) respectively rep-
resents the antiperiodicity condition and the free surface conditions on the hole
boundary for the equivalent traction

{
CR

0

(
x, F̄ + ∇wF̄

)
[∇ẇ] −� (

F̄
)∇ẇ

}
n.

It is worth noting that the stability functional Eq. (19) can be written in an
equivalent form with reference to the initial configuration as

∫

kNV (i)

CR (X, F)
[∇(i)ẇ(X)

] ·∇(i)ẇ(X)dV(i),

where ∇(i)ẇ(X) = ∂ẇ(X)/∂X, due to the relations between the instantaneous and
fixed-reference moduli and between the deformation gradient rate and velocity
gradient rate:

CR
0 ijkl = 1

det F
FjmFlnCR

imkn, Ḟ = LF. (22)

It follows that the stability condition (20) can be also formulated as

�
(
F̄
)= inf

k∈

⎧⎪⎪⎨
⎪⎪⎩

min
ẇ∈H1,p(kNV(i)#)

⎧⎪⎪⎨
⎪⎪⎩

∫
kNV(i)

CR (x, F̄ + ∇wF̄

) [∇(i)ẇ(X)
] ·∇(i)ẇ(X)dV(i)

∫
kNV(i)

∇(i)ẇ(X)·∇(i)ẇ(X)dV(i)

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎬
⎪⎪⎭
>0.

(23)
Along a deformation path F̄ (β) β ≥ 0 β = 0 for F̄ = I starting where the

stability functional is positive definite, namely �
(
F̄ (0)

)
> 0, usually λ decreases

and at some load level βc (termed microscopic critical load parameter) the stabil-
ity functional becomes positive semi-definite. At this load necessarily, the initially
unique and stable principal solution ceases to be unique since an eigenmode (incre-
mental periodic solution to the homogeneous problem) exists and the loss of
microscopic structural stability occurs:

�(βc) = 0, �(β) > 0 for 0 ≤ β < βc.

Therefore the primary instability is detected when the minimum eigenvalue first
vanishes. The microscopic stability region β|� (

F̄ (β)
)
> 0, inside which the funda-

mental periodic solution, for which all cells deform identically, is unique, establishes
also the region where the one-cell standard homogenized energy is the correct one,
namely �

(
F̄ (β)

)
> 0 implies W̄

(
F̄
) = W̄1

(
F̄
)
.
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2.5 Macroscopic Stability Analysis

A microscopic stability analysis along a macroscopic loading path F̄(β), in turn
leading to determine the microscopic stability region, requires a notable compu-
tational effort since it involves the examination of perturbations of the equilbrium
fluctuation solution defined in a infinite domain. As a consequence, it should be
preferable to carry out the stability analysis of the heterogeneous solid in terms of
its macroscopic properties determined by means of calculations performed on a unit
cell.

A basic macroscopic measure of the stability of the periodic solid at the load
parameter β can defined as the strong ellipticity condition of the homogenized
moduli tensor:

�̄
(
F̄ (β)

) = min‖m̄‖=‖n̄‖=1

{
C̄

R
0

(
F̄, X̄

)
(m̄ ⊗ n̄) ·m̄ ⊗ n̄

}
> 0 (24)

in which the minimum is taken over all unit vectors m̄ and n̄.
As a matter of fact the strong ellipticity of the homogenized solid moduli ensures

stability under Dirichlet boundary conditions when the macroscopic incremental
moduli tensor is spatially constant. Moreover, when extended to arbitrary rank ten-
sors corresponds to the the positive definiteness of the homogenized nominal moduli
tensor:

�̄(R) (F̄ (β)) = min‖L̄‖=1

{
C̄

R
0

(
F̄
) [

L̄
] ·L̄} > 0, (25)

too restrictive and physically unrealistic since it would imply uniqueness in cor-
responding boundary value problems for the homogenized solid, an unacceptable
situation for nonlinear deformations. Obviously (25) implies (24).

A macroscopic primary instability load associated to the stability condition Eq.
(24) can be defined as

�̄ (βcM) = 0, �̄ (β) > 0 for 0 ≤ β < βcM ,

where βcM is the macroscopic critical paramenter and, consequently, the macro-
scopic stability region β|�̄ (β) > 0 can be determined. The critical load parameter
β

(R)
cM associated to Eq. (25) can be defined analogously.

As proved in [14] the microscopic stability condition Eq. (20) implies the macro-
scopic stability condition Eq. (24), provided the microscopic material is strongly
elliptic:

min‖m‖=‖n‖=1

{
CR

0 (F, X) (m ⊗ n) ·m ⊗ n
}
> 0 ⇒ �

(
F̄ (β)

) ≤ �̄ (
F̄ (β)

)
.

Moreover, [14] have shown that the primary microscopic instability along a
monotonic macroscopic loading process can be detected as a loss of macroscopic
stability Eq. (24) provided that the wavelength of the first instability is much larger
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than the unit cell size (global instability mode). On the contrary, when the primary
microscopic instability encountered in the loading process has a wavelength compa-
rable to the unit cell size (local instability), the macroscopic stability condition Eq.
(24) still holds and the one-cell homogenized moduli remains strongly elliptic:

�
(
F̄ (βc)

) = 0 ⇒
{

local instability �̄
(
F̄ (βc)

)
> 0

global instability �̄
(
F̄ (βc)

) = 0
.

It follows that the macroscopic stability condition based on the strong ellipticity
of the homogenized moduli tensor is able to exactly predict the onset of microscopic
instability of the periodic principal solution along a monotonic loading process
when the microscopic instability mode is global in nature. On the other hand, an
unconservative estimation of the primary microscopic instability load is obtained in
the more general case when the instability mode is local in nature, since the homoge-
nized moduli tensor remains strongly elliptic at the onset of the primary microscopic
instability.

Therefore alternative macroscopic stability measures are here introduced and
their ability to obtain conservative prediction of the primary instability load of the
microstructure will be investigated.

2.6 Conjugated Macroscopic Stability Measures

As an alternative to Eq. (18) the incremental material response at a point x of the
microstructure can be expressed as:

Ṫf (0) = Cf
0 (F, X) [D] , (26)

where Ṫf (0) and D are, respectively, the stress rate and the strain rate when the
reference configuration coincides with the current one, corresponding to the work
conjugate stress-strain measure pair (Tf, F(U)) based on strain measures coaxial
with U, the right stretch tensor associated to F, and having principal values f(λi),
with f a monotonic increasing function of the principal values λi of U such that
f(1) = 0 and df/dλi(1) = 1 [18]. The rate of strain D equals the symmetric part of
the velocity gradient L = ∂v/∂x also called the Eulerian strain rate. By using the
following expression relating the rate of the first Piola-Kirchhoff stress tensor TR to
Ṫf (0) (Ogden, 1984) evaluated when the reference configuration coincides with the
current one

ṪR(0) = Ṫf (0) + 1

2

[
f ′′ (1)− 1

]
(T0D + DT0)+ LT0, (27)

the fourth-order tensor of instantaneous moduli Cf
0can be easily related to the

fourth-order tensor of nominal instantaneous moduli C0
R.

A well-known sub-class (T(m), E(m)) of stress-strain measure pairs can be
obtained by choosing f(λi) = (λi

m–1)/m, where m is an integer (Ogden, 1984). The
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stress-strain pairs associated to the logarithmic (E(0)= lnU), the Green-Lagrange
(E(2)= U2–1) the Biot strain (E(1) = U–1) measures, can be determined by tak-
ing m→ 0, m = 2 and m = 1, respectively. The corresponding moduli tensor are
respectively denoted as C0

(0), C0
(2) and C0

(1). The strain measure E(–2) is usually
attributed to Almansi.

According to the above representation of the microscopic constitutive response,
the following family of macroscopic stability measures is introduced:

�̄f (F̄ (β)) = min∥∥D̄
∥∥=1

{
C̄

f
0

(
F̄
) [

D̄
] ·D̄} > 0, (28)

where D̄ is a symmetric tensor and C̄
f
0 is the macroscopic tensor of instanta-

neous homogenized moduli which relates the macro-strain rate D̄ to the rate of

the macro-stress tensor ˙̄Tf (0) and is associated to the macroscopic strain measures
F̄(Ū) defined by the usual continuum relations in terms of macroscopic quantities,

where Ū is the macroscopic right stretch tensor in the polar decomposition of the
macroscopic deformation gradient F̄ = R̄Ū, R̄ denoting the macroscopic rotation
tensor.

The positive definiteness inequalities Eq. (28), can be linked to the infinitesimal
stability condition of a homogeneously deformed homogenized material element
subjected to deformation dependent surface tractions which do not work on mate-
rial rotations (namely, with the problem of so-called “material” or “constitutive”
stability), thus providing a physical understanding of the restrictions imposed on the
homogenized material behavior. This mechanical interpretation has been introduced
in [10] for a material element of a homogeneous body.

It is worth noting that if the macroscopic stability analysis is carried out by
using Eq. (28), which restrict the analysis to symmetric incremental deformation
gradients, rigid rotations, irrelevant from the physical point of view can be avoided.

A specific macroscopic strain measure must be adopted in Eq. (28) in order to
define a unique stability measure. If the macroscopic Biot strain tensor is used,
Eq. (28) specializes to the following positiveness condition

�̄(1) (F̄ (β)) = min∥∥D̄
∥∥=1

{
C̄

(1)
0

(
F̄
) [

D̄
] ·D̄} > 0. (29)

On the other hand, the use of the macroscopic logarithmic strain measure
leads to :

�̄(0) (F̄ (β)) = min∥∥D̄
∥∥=1

{
C̄

(0)
0

(
F̄
) [

D̄
] ·D̄} > 0. (30)

Moreover, the choice of the macroscopic Green-Lagrange strain measure
leads to:

�̄(2) (F̄ (β)) = min∥∥D̄
∥∥=1

{
C̄

(2)
0

(
F̄
) [

D̄
] ·D̄} > 0. (31)
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Finally when the Almansi strain measure is adopted we obtain:

�̄(−2) (F̄ (β)) = min∥∥D̄
∥∥=1

{
C̄

(−2)
0

(
F̄
) [

D̄
] ·D̄} > 0

A macroscopic primary instability load associated to the conjugated stability
measures can be defined as

�̄f
(
β

f
cM

)
= 0, �̄(β) > 0 for 0 ≤ β < β f

cM ,

where βf
cM is the macroscopic critical parameter and, consequently, the macroscopic

stability region β|�̄f (β) > 0 can be determined.
Since the overall stress and strain measures are based on the nominal stress ten-

sor and deformation gradient [19], the components of the macroscopic constitutive

tensor C̄
f
0 can be obtained in terms of the components of the macroscopic moduli

tensor by using Eq. (18) and the following usual continuum relations as:

C̄f
0 ijkl= C̄

R
0 ijkl −

f ′′(1)−1

4

(
T̄ikδjl + T̄ilδkj + T̄ljδki + T̄kjδli

)−T̄ ljδik,

where L̄ is the macro-deformation velocity gradient L̄ = ˙̄FF̄
−1

, D̄ its symmetric

part and T̄(0) = J̄
−1

T̄RF̄
T

is the macroscopic Cauchy stress tensor. It turns out that
the macroscopic stability measure Eq. (28) are expressed in terms of macroscopic
properties determined by means of calculations performed on a unit cell, in line with
Eq. (24).

It is worth noting, incidentally, that also the macroscopic stability condition Eq.
(24) can be considered as a constitutive stability condition for an homogeneous
material both in the context of wave propagation and strain localization [20].

3 Numerical Results

The general theory formulated in the previous section is hereby applied to specific
materials and specific microstructural models. In the first subsection the com-
putational implementation of the stability analysis is discussed. Then a specific
hyperelastic constitutive law is introduced. Then critical load parameters associ-
ated to microscopic and macroscopic onset of instability are presented for different
loading paths and microgeometries.

3.1 Computational Implementation

The stability problem of a periodic microstructure stated in Sect. 2 was discretized
by means of a displacement-type finite element (FE) approximation using plane
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strain Lagrange quadratic elements. The FE model has been developed by using the
commercial software COMSOL MULTIPHISYCSTM [21].

A one-way coupled FE model is employed to compute sequentially respectively
the principal solution path for the unit cell, the incremental solutions needed to
determine the homogenized tangent moduli and the minimum eigenvalue of the
microscopic structural stability functional. At first the finitely deformed configu-
rations of a unit cell are determined by discretization of the variational problem Eq.
(6) along the principal equilibrium path for a given macroscopic loading process
F̄(β), assuming that the loading process produces a unique response. A parametric
non-linear solver based on a continuation approach, is adopted to find the solution
to the sequence of nonlinear stationary PDE problems (6) arising when the load
parameter β varies. A step size equal to �β = 10−3 is adopted to discretize the
loading path.

Secondly, the incremental equilibrium problems of the unit cell for each unit

incremental macroscopic deformation mode, ˙̄F = Ihk h,k = 1,2,3, are solved super-
imposed on the given finite deformation along the loading path by the discretization
of the following variational equation:

∫

V(i)

CR (β, X) [Ihk + ∇ẇIhk ]·∇δẇdV = 0 ∀δẇ ∈ H1,p(V(i)#).

The homogenized moduli can be thus obtained by Eq. (11).
Then the load parameter associated to the lowest zero eigenvalue of the micro-

scopic structural stability functional Eq. (20) must be computed over all possible
ensemble of unit cells. From the computational point of view the linearized eigen-
value problem with a varying domain of definition is solved in the following simple
way. For a fixed ensemble of unit cells the lowest value of β for which the minimum
eigenvalue of the stability functional is zero is determined, namely βc, together with
the associated eigenmode by the discretization of the minimization problem Eq.
(20). Then we successively enlarge the ensemble by increasing the number k. The
minimum value of βc for all currently possible instability modes then determines
the optimal ensemble of unit cells. This value corresponds to the loss of microscopic
stability.

Finally the macroscopic stability analysis is performed by monitoring the low-

est eigenvalue of the acoustic tensor Q̄0ih (n̄) = C̄
R
0ijhkn̄jn̄k for every direction of

propagation n̄:

�̄(F̄(β)) = min
i

[
min‖n̄‖=1

λ
Q̄(n̄)
i (β)

]
with λQ̄(n̄)

i |(Q̄0 (n̄)− λQ̄(n̄)I
i )Φ̂ι = 0.

The first macroscopic instability is detected when the lowest eigenvalue becomes
zero.

Similarly, the onset of macroscopic instability according to the conjugated
stability measures is determined by monitoring the lowest eigenvalue of Eq. (28)
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�̄f (F̄(β)) = min

[
λ

C̄
f
0

i (β)

]
with λ

C̄
f
0

i |(C̄f
0 − λC̄

f
0

i I)Φ̂ i = 0,

where C̄
f
0 denotes a second order tensor defining the following eigenvalue problem

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

C̄f
0 1111 C̄f

0 1122 2C̄f
0 1112

C̄f
0 1122 C̄f

0 2222 2C̄f
0 2212

2C̄f
0 1112 2C̄f

0 2212 2C̄f
0 1212

⎤
⎥⎥⎥⎦− λC̄f

0
i diag {1,1,1}

⎞
⎟⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

Φ̃
(ι)
11

Φ̃
(ι)
22

Φ̃
(ι)
12

⎫⎪⎪⎬
⎪⎪⎭

=
⎧⎨
⎩

0
0
0

⎫⎬
⎭ .

The onset of macroscopic instability is determined by computing the lowest load
parameter for which the lowest eigenvalue of Eq. (28) becomes zero.

Similar considerations apply to the macroscopic condition Eq. (25) for which the
corresponding eigenvalue problem is:

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

C̄R
1111 C̄R

1122 C̄R
1112 C̄R

1121

C̄R
2211 C̄R

2222 C̄R
2212 C̄R

2221

C̄R
1211 C̄R

1222 C̄R
1212 C̄R

1221

C̄R
2111 C̄R

2122 C̄R
2112 C̄R

2121

⎤
⎥⎥⎥⎥⎦− λC̄R

i diag {1,1,1,1}

⎞
⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φ
(ι)
11

Φ
(ι)
22

Φ
(ι)
12

Φ
(ι)
21

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

.

Periodic boundary conditions were implemented in the finite and incremental
homogenization procedure by means of the extrusion coupling variable methodol-
ogy, according to which the displacement field or its increment is made available
on the opposite boundary faces of the unit cell. Once the displacement field or its
increment is extruded from the source domain (the negative unit cell assembly faces
∂ kNV(i)

–) to the destination one (the positive unit cell faces ∂kNV(i)
+), periodic

boundary constraints are imposed as point constraints on the destination boundaries
of the unit cell. In order to exclude rigid body motions, the fluctuation field can be
assumed to be zero at the corner points of the unit cell, implying that the displace-
ment field at the corner points is driven by the macroscopic deformation gradient,

i.e. u(X) = (
F̄ − 1

)
X, u̇ (X) = ˙̄FX.

The evolution of the minimum eigenvalues of the microscopic and macroscopic
stability conditions is managed by developing a computer code written in the
COMSOLSCRIPTTM programming language, which is interfaced with COMSOL
MULTIPHISICSTM [21].

3.2 Constitutive and Microgeometry Models

The theoretical formulation of this work is valid for materials characterized by an
incrementally linear constitutive law. In the sake of simplicity, numerical examples
are developed by adopting the experimentally based compressible [22] constitutive
law for each microstructural components, with the following strain energy density:
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W = −μ
2

[
Jm ln

(
1 − ‖F‖2 − 3

Jm

)
+ 2 ln J

]
+
(

k − μ
2

− μ

Jm

)
(J − 1)2

where μ and κ are, respectively, the shear and bulk moduli of the solid at zero
strain and Jm is a constant which calibrates the solid’s strain saturation. By assuming
μ > 0, κ > [( Jm+2)/ Jm] μ, Jm>0 the Gent solid becomes polyconvex [6] and ensures
that the strong ellipticity condition is satisfied for the microscopic material. For the
numerical calculations the values of Jm= 50 and κ/μ = 10 are adopted.

Two different types of macroscopic loading path are considered, namely a
uniaxial and a equibiaxial loading along the reference coordinate axes:

F̄(β) =
⎡
⎣ 1 + β 0 0

0 1 0
0 0 1

⎤
⎦ , F̄ (β) =

⎡
⎣1 + β 0 0

0 1 + β 0
0 0 1

⎤
⎦ .

In the first application, a cellular microstructure with an initial square distribution
of circular voids is analyzed under plane strain conditions in the X1–X2 plane. In
the second one a particle reinforced composite microstructure is considered with
a square distribution of inclusions, which can be considered as representative of a
cross section of a fiber-reinforced solid with cylindrical fibers aligned in the X3 axis
direction.

In both cases the unit cell dimensions are L1= L2= L and the radius of the voids
and the inclusions is R = 0.25 L. Hence the initial porosity equal to the volume
fraction of the inclusions is π/16. In the numerical calculations the shear modulus
at zero strain of the matrix material has been assumed equal to μ = 807 N/mm2.

Typical meshes used to discretize a unit cell of the above mentioned microstruc-
tural models are shown in Fig. 4. These meshes have been used to determine
the one-cell homogenized moduli and, consequently, the macroscopic stability
analyses. For the cellular microgeometry the mesh involves 15,616 degrees of

Fig. 4 Typical meshes adopted to discretize the unit cells of the examined microgeometry models
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freedom and 3,810 quadratic Lagrangian triangular elements. In the case of the rein-
forced microgeometry 31,194 degrees of freedom and 7,598 quadratic Lagrangian
triangular elements.

The microscopic stability analysis involves an increasing assembly of unit cells.
In the numerical calculations the largest assembly examined corresponds to an array
of 20 × 20 unit cells. This assembly is assumed to be a reasonable approximation of
the possibly infinite domain of microscopic stability analysis and provided values
of the critical load parameter in the case of a global instability mode sufficiently
close to those obtained by using the macroscopic stability measure Eq. (24). In
particular, the instability mode has been classified as global, when by considering
increasing unit cell assemblies the lowest value of the load parameter for which the
minimum eigenvalue of stability functional first vanishes decreases and approaches
from above the load parameter corresponding to the macroscopic loss of ellipticity
within a relative percentage error (βcM – βc)/ βcM×100 equal to 0.1.

3.3 Microscopic and Macroscopic Primary Instabilities

3.3.1 Homogeneous Microstructure

In order to show the main characteristics of the microscopic constitutive response
and to analyze the influence of the stiffness contrast between the inclusion and
the matrix at first the response of a homogeneous unit cell is determined. In this
case the microscopic and macroscopic properties coincide. Firstly the biaxial and
uniaxial plane strain response of the unit cell is calculated. More specifically the
dimensionless First Piola Kirchhoff stress (force per unit width applied on the
block) versus the load parameter under tension and compression is plotted in
Fig. 5. Note that the equibiaxial has the stiffest response under tension, while the
response of the uniaxial case is the stiffest in compression, except for low levels of
compression.

The stability analysis carried out for the homogeneous microstructure shows that
the macroscopic stability condition Eq. (24) is always satisfied. It turns out from the
modified Van Hove theorem, valid for a constant strongly elliptic nominal moduli
tensor and a rectangular domain [23], that the microscopic stability condition is also
satisfied:

constant CR
0 ⇒ ∫

V
CR

0 [∇ẇ(x)] ·∇ẇ (x) dV > 0 ∀ẇ(x) ∈ V#, ∇ẇ (x) �= 0

⇒ �
(
F̄
)
> 0

.

The stability analysis has been carried out also with reference to some repre-
sentative conjugated macroscopic stability conditions. For both the uniaxial and
equibiaxial cases, all the examined conjugated macroscopic stability measures are
violated, except the �̄(2)and �̄(1)conditions in compression and the �̄(−2) and �̄(−1)
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Fig. 6 Stability analysis of a homogeneous microstructure under equibiaxial loading

conditions in tension (Figs. 6 and 7). As expected the macroscopic stability measure
is violated at 0– in compression due to rotational instabilities, and before the
macroscopic condition Eq. (24) in tension.

3.3.2 Cellular Microstructure

The homogenized plane strain response of the cellular microstructure, shown in
Fig. 8, is determined by two factors: the non-linear effect of the constitutive law
exhibiting a stiffening response with increasing strains and the effect related to
the varying porosity, softening in tension. The constitutive stiffening dominates the
response and as a result, the stress–strain responses in uniaxial loading is softer than
in the corresponding plane strain equibiaxial case. Moreover, strain saturation in
uniaxial case occurs at a higher level of strain.
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The stability analysis, illustrated in Figs. 9 and 10, shows that in compression
the onset of microscopic instability (occurring at βc

–= –0.07595 in the biaxial case
and at βc

–= –0.1435 in the uniaxial one) always precedes the macroscopic loss of
strong ellipticity (i.e. the macroscopic loss of stability according to Eq. (24) and the
local microscopic instability mode is periodic on a 2 × 2 cell assembly. The corre-
sponding instability modes in compression for the 2 × 2 cell assembly are shown
in Fig. 11, where it can be noted that the bifurcated mode involves an alternation of
void ovalization. In the tension case the first instability mode is global in nature as
shown in Fig. 12 and, consequently, the macroscopic loss of stability according to
Eq. (24) coincides with the microscopic one and occurs at βc

+= 1.695 in the biaxial
case and at βc

+= 3.515 in the uniaxial case.
As far as the macroscopic conjugated stability measures are concerned, numer-

ical calculations have shown that in tension the conditions �̄(2) and �̄(1) are first
violated before the macroscopic loss of strong ellipticity in the equibiaxial case,
whereas in the uniaxial case the �̄(1)is violated after the macroscopic loss of
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Fig. 9 Stability analysis of a cellular microstructure under biaxial loading
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a)  b) 

Fig. 11 Primary instability modes energy in the equibiaxial compression (a) and uniaxial
compression (b) case

ellipticity. On the contrary the loss of macroscopic conditions �̄(−1) and �̄(−2)occur
after the macroscopic loss of strong ellipticity in the equibiaxial case, in the uniax-
ial case being always satisfied. In the compressive case, the situation is reversed
since the loss of conditions �̄(−1) and �̄(−2) occur before the macroscopic loss of
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a)     b) 

Fig. 12 Instability modes in
the equibiaxial tension (a)
and uniaxial tension (b) case

ellipticity, whereas the conditions �̄(2) and �̄(1) are first violated after the macro-
scopic loss of ellipticity. In the equibiaxial case the loss of stability relative to the
�̄(0) condition coincides with the macroscopic loss of strong ellipticity, both in ten-
sion and in compression. In the uniaxial case the �̄(0) condition is not violated in
the examined macrostrain range, although it seems approaching zero for larger level
of compression. In the examined range of macrostrain, the conditions �̄(2) and �̄(1)

are not violated in compression, although show a decreasing behavior and tend to
have a root for larger levels of strains.

The sequences of the onset of macroscopic instabilities according to the conju-
gated stability measures are:

in the equibiaxial case : β(2)+
cM < β

(1)+
cM < β

(0)+
cM = β+

c = β+
cM < β

(−1)+
cM < β

(−2)+
cM ,

β
(0)−
cM = β−

cM < β
−
c < β

(−1)−
cM < β

(−2)−
cM ,

in the uniaxial case: β(2)+
cM < β+

c = β+
cM < β

(1)+
cM ,

β−
cM < β

−
c < β

(−1)−
cM < β

(−2)−
cM ,

showing that the �̄(2) condition provides conservative microscopic instability
estimates in tension whereas the conditions �̄(−1) and �̄(−2) provide con-
servative predictions in compression. Moreover, the �̄(1) condition is able
to provide conservative predictions only in the equibiaxial case. The critical
value of the load parameter for the examined stability measures are shown in
Table 1.

In the equibiaxial case the �̄(0) condition gives an exact prediction of the
microscopic instability, within numerical errors related to the FE discretization.
On the other hand in the uniaxial case the �̄(0) condition gives an unconservative
microscopic instability load prediction.

Among the proposed conjugated stability measures, the �̄(1) and the �̄(−1) condi-
tions give the less conservative prediction of the microscopic critical load parameter
in equibiaxial tension and compression, respectively. In the uniaxial case the less
conservative predictions are provided by the �̄(2) and the �̄(−1) conditions in tension
and compression, respectively.
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Table 1 Cellular microstructure: critical load parameter values for the microscopic and macro-
scopic stability measures

Tension β
(2)+
cM β

(1)+
cM β

(0)+
cM β+

c β+
cM β

(−1)+
cM β

(−2)+
cM β

(R)+
cM

Equibiaxial 0.345 1.255 1.695 1.695 1.695 1.875 1.965 1.255
Uniaxial 0.785 4.605 – 3.525 3.525 – – 3.155
Compression β

(2)−
cM β

(1)−
cM β

(0)−
cM β−

c β−
cM β

(−1)−
cM β

(−2)−
cM β

(R)−
cM

Equibiaxial – – –0.0894 –0.075 –0.0894 –0.0703 –0.0550 0
Uniaxial – – – –0.143 –0.1615 –0.1385 –0.1085 0

As expected the macroscopic stability measure (28) is violated at 0– in compres-
sion due to rotational instabilities, and before the macroscopic condition Eq. (24) in
tension. In particular, we have:

β
(2)+
cM < β

(R)+
cM ≤ β(1)+

cM < β
(0)+
cM < β

(−1)+
cM < β

(−2)+
cM , β(R)−

cM = 0.

It follows that in tension the macroscopic stability measure (28) gives conserva-
tive estimate of the microscopic critical load parameter. This situation always occurs
when the instability mode is global in nature since condition (28) always implies
(27). In addition, it can be noted that in the equibiaxial case the loss of macroscopic
stability according to the condition (28) occurs with a symmetric incremental defor-
mation gradient (L = D) and, consequently, it coincides with the loss of macroscopic
�̄(1) condition.

Finally, the effect of porosity has a destabilizing influence both for the micro-
scopic and the macroscopic stability analysis, with respect to the homogeneous
microstructure. As a matter of fact, the macroscopic strong ellipticity condition
can be violated at sufficiently high levels of strain for the cellular microstructure,
whereas in the homogeneous case the material is always strongly elliptic. The situa-
tion in the case of the conjugated macroscopic stability measures is more variegated,
with effects which can change from stabilizing and destabilizing according the
adopted measure.

3.3.3 Particle Reinforced Microstructure

The homogenized response shows the strong effect of the constitutive law providing
stiffening both in tension and compression with strain saturation at a sufficiently
large level of strain (see Fig. 13). In the case of the particle reinforced matrix with
a stiff inclusion (μf/μm= 50) the main difference in the stability analysis from the
porous solid is that in the compression case the first microscopic instability mode is
always of global type and coincides with the macroscopic instability related to the
strong ellipticity condition. On the contrary, in tension the microstructure is always
structurally stable for the examined range of deformations.

The stability analysis, illustrated in Figs. 14 and 15, shows that in compres-
sion the onset of microscopic instability occurs at βc

–= –0.475 in the biaxial
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Fig. 13 Homogenized
response of the reinforced
microstructure under uniaxial
and equibiaxial loading along
the principal solution path
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Fig. 14 Stability analysis of a particle reinforced microstructure under equibiaxial loading
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Fig. 15 Stability analysis of a cellular microstructure under uniaxial loading
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Fig. 16 Instability modes in
the equibiaxial tension (a)
and uniaxial tension (b) case

case and at βc
–= –0.415 in the uniaxial one. Figure 16 shows one of the four

simultaneous modes occurring in the equibiaxial compression case (a) and one of
the two simultaneous modes occurring in the uniaxial compression case (b).

The sequence of eventual instabilities related to the conjugated stability measures
remains the same of the cellular case in compression where the loss of conditions
�̄(−1) and �̄(−2) occur before the macroscopic loss of ellipticity. As for the cellu-
lar microstructure in the equibiaxial compression case the loss of stability relative
to the �̄(0) condition coincides with the macroscopic loss of strong ellipticity. On
the contrary, in the uniaxial case the �̄(0) condition is eventually violated after the
macroscopic loss of ellipticity both in tension and in compression.

The relationships between the onset of macroscopic instabilities according to the
conjugated stability measures are:

in the equibiaxial case: β (2)+
cM < β

(1)+
cM ,

β
(1)−
cM < β

(0)−
cM = β−

cM = β−
c < β

(−1)−
cM < β

(−2)−
cM ,

in the uniaxial case: β(2)+
cM < β

(1)+
cM ,

β
(0)−
cM < β−

cM = β−
c < β

(−1)−
cM < β

(−2)−
cM ,

showing that the �̄(2) and �̄(1) conditions provide conservative microscopic insta-
bility estimates in tension whereas the conditions �̄(−1) and �̄(−2) provide conser-
vative predictions in compression. It is worth noting that in the examined range of
strains, for equibiaxial tension the conditions �̄(−1), �̄(−2)and �̄(0) always predict
stability whereas for equibiaxial compression the �̄(2) condition is always satisfied.
Moreover, in the uniaxial case, contrary to the equibiaxial one, �̄ show a decreasing
behavior in tension, a symptom of possible instability at very high level of strain.

Among the proposed conjugated stability measures, the �̄(1) and the �̄(−1) condi-
tions give the less conservative prediction of the microscopic critical load parameter
in tension and compression, respectively. The critical value of the load parameter
for the examined stability measures are shown in Table 2.

The macroscopic stability measure Eq. (25) shows the same behavior of the
cellular case.
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Table 2 Reinforced microstructure: critical load parameter values for the microscopic and
macroscopic stability measures

Tension β
(2)+
cM β

(1)+
cM β

(0)+
cM β+

c β+
cM β

(−1)+
cM β

(−2)+
cM β

(R)+
cM

Equibiaxial 0.055 0.105 – – – – – 0.105
Uniaxial 0.105 0.225 – – – – – 0.225
Compression β

(2)−
cM β

(1)−
cM β

(0)−
cM β−

c β−
cM β

(−1)−
cM β

(−2)−
cM β

(R)−
cM

Equibiaxial – – –0.475 –0.475 –0.475 –0.105 –0.055 0
Uniaxial – – –0.535 –0.415 –0.415 –0.205 –0.105 0

Finally, it can be noted that the although the microscopic material is always
strongly elliptic for the composite microstructure the macroscopic strong elliptic-
ity condition can be violated in compression at sufficiently high levels of strain. The
effect of a quasi-rigid inclusion, as expected, provides a stabilizing influence with
respect to the cellular case

4 Conclusions and Discussion

The present work deals with the problem of prediction of failure mechanisms
induced by microstructural instability phenomena in finitely strained composite
materials with heterogeneous periodic microstructure, by examining a macroscopic
model of the composite as obtained through an appropriate homogenization method.

This aspect is of considerable relevance since an accurate direct stability analysis
of the composite solid taking into account a precise description of its microstructure,
may involve severe complications due to the complexity of microstructural config-
uration and finite changes in constitutive and geometric microstructural properties
occurring under finite strains.

Existing criteria based on the homogenized constitutive properties may be not
able to provide a conservative prediction of microscopic instability mechanisms.
The fundamental macroscopic condition introduced in the literature, corresponding
to the strong ellipticity of the homogenized tangent moduli tensor, is able to provide
an exact estimate of the microscopic instability critical load only when the instability
mode has a global character. On the other hand, an unconservative estimation is
obtained in the more general case when the instability mode is local in nature.

To this end a stability analysis on the micro and macro scales is here carried out
for incrementally linear materials. Alternative macroscopic stability measures are
defined corresponding with the positive definiteness of homogenized moduli tensor
associated with a class of work conjugate stress-strain measures, and their ability to
obtain conservative prediction of the primary instability load of the microstructure
is then investigated.

A nonlinear finite element procedure is developed in order to solve sequentially
the unit cell principal equilibrium problem, the incremental equilibrium problems
giving the homogenized tangent moduli and the stability eigenvalue problem along a
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prescribed monotonic macrostrain path. The methodology developed is then applied
to representative microstructures with hyperelastic constituents adopting a com-
pressible Gent strain energy function, namely a composite with circular inclusions
and a cellular material.

Numerical applications point out that the sequence of primary instabilities
depends both on the tensile or compressive nature of the loading path and the kind of
microstructure. Consequently, a conservative prediction of the microstructural insta-
bility load may be obtained by using an appropriate macroscopic stability criterion.
Results show that in the tensile case a conservative predictions of the microscopic
stability region can be obtained by using the positiveness condition for the homog-
enized moduli tensor related to the Lagrange strain measure. The same conclusion
can be done with reference to the Biot strain measure, with the only exception of the
cellular material under uniaxial tension. On the hand, a conservative prediction in
compression in general requires the use of stability measures based on homogenized
moduli tensor whose corresponding strain measures are characterized by a negative
curvature of the Hill’s scale function [18] smaller to that of the logarithmic strain
measure (the Almansi strain measure for instance).
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Finite Element Vibration Analysis of MHSS
Based on 3D Tomography Image Processing

R. Winkler, J. Schulz, M. Merkel, and A. Öchsner

1 Introduction

Cellular solids are materials based on distinct cells and from the macroscopic view
they show a high porosity. The boundaries of these cells are usually made of
solid ceramic, polymer or metal, while the internal regions are air cavities. The
notion of porous and cellular metals first appeared in the beginning of the 1970s
[1–3]. The basic idea seeks to imitate the cellular structure of high performance
lightweight structures in the nature such as the human osseous structure and can
therefore be related to the field of bionic research. Nowadays especially foams made
of polymeric materials are widely used in all fields of technology. For example,
Styrofoam R© and hard polyurethane foams are widely used as packaging materials.
Other typical application areas of polymeric foams are the field of heat and sound
absorption. During the last few years, techniques for the manufacturing of novel
cellular and porous metals have been developed [4, 5]. These materials exhibit a
high potential for future oriented applications due to their specific properties. Well-
known advantages of cellular metals are their high ability for energy absorption [6,
7], good damping behaviour [8–10], sound absorption [11], excellent heat insulation
[12, 13] and a high specific stiffness [14, 15]. The combination of these properties
opens a wide field of potential applications, e.g. in automotive, aviation or space-
industry [16]. Essential limiting factors for the utilisation are unevenly distributed
material parameters [7] and relatively high production costs. Less variation in the
physical properties can be achieved with lattice block materials [17]. Metallic hol-
low sphere structures (MHSS) form a new group of advanced composite materials
characterised by high geometry reproduction leading to stable mechanical and phys-
ical properties. The MHSS combine the well-known advantages of cellular metals
without major scattering of their material parameters. Various joining technologies
such as sintering, soldering and adhering can be used to assemble single metallic
hollow spheres to interdependent structures and allow to adjust different macro-
scopic properties [18–20]. In this study, the dynamic response of MHSS plates is
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experimentally investigated by a laser scanning vibrometer and the eigenmodes are
analysed. A finite element approach is proposed to predict the dynamic behaviour
of MHSS. Numerical results are compared with experimental findings.

2 Vibration Analysis

The analysis of structural vibration is necessary to determine the natural frequencies
of a structure and the response to excitation. Vibration analysis is the study of the
dynamic properties of structures under vibrational excitation. The experimental
vibration analysis measures and investigates the dynamic response of structures
under defined excitation as input. One of the interesting results are the modes.
A mode is characterized by a mode shape and corresponding eigenfrequency.
A mode shape describes the displacement of a surface vibrating at a particular
eigenfrequency. A mode shape shows points or locations where the displacement
is always zero, they are called nodes or node line. In the current work adhesively
bonded MHSS plates are investigated. Figure 1 shows the MHSS sample with
dimensions of 300 mm × 100 mm × 30 mm. The diameter of the hollow sphere is
about 2 mm and the weigth of a complete specimen is in average 442 g.

Fig. 1 MHSS sample with adhesively bonded joint between the the spheres

3 Finite Element Modeling

The governing differential equation for vibration analysis without damping can be
written as:

mẍ + kx = 0. (1)
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This system of equation can be reduced to a standard eigenvalue problem as:

kx = ω2mx, (2)

where ω is the eigenfrequency of the system, k is the stiffness matrix, m is the mass
matrix and x is the displacement matrix. There are a lot of techniques to efficiently
extract the eigenvalues, forward and inverse iteration method, simultaneous iteration
method and block lanczos method. In the current work, the block lanczos method
was used to extract the eigenvalues. Advantages of this method are the memory
efficiency and that only a few iterations are required for a good approximation.
In general, the quality of a FE analysis strongly depends on the details taken into
account. A good approximation is to be expected when sufficient details are reflected
in the FE model.

3.1 Detailed Modeling

In Fig. 2 the basic unit of the FE model is presented. Up to now, this FE mesh has
only been used for static analysis of structures with few spheres. The FE-model for
the vibration analysis is built up with thousands of single spheres including joints.
It is expected that this model would exceed available computer resources due to
the fine mesh. A simplification of this detailed model helps to reduce computing
time.

Fig. 2 Detailed FE model of an (a) adhesively and (b) sintered single hollow sphere
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3.2 Homogenization and Unit Cell Method

Homogenization is a widely spread method to simplify a problem. From the point
of view of micro mechanical modeling, cellular materials fall into 3 groups: hon-
eycombs which can be studied by two-dimensional (2D) models, open cell foams,
a solid scallfold which is dominated by beam-like elements and closed cell foams,
in which membrane- or shell-like cell walls are present. Homogenization relations
usually take the form of volume averages, so that the homogenized value 〈f 〉 of a
variable f(x) can be written as:

〈f 〉 ≡ 1

Ω

∫
Ω

f (x) dΩ , (3)

where x is the position vector and Ω represents the integration volume. A detailed
discussion on homogenization and micro-mechanics can be found in Böhm et al.
[21]. The Unit Cell method and Representative Volume Element (RVE) are respec-
tively modeling techniques for the prediction of mechanical behavior of infinite
periodic structures on both the micro-scale and macro-scale. The method assumes
that the behavior of an infinite periodic structure can be represented by a model of
finite size constituting a periodically repeating building block of the geometry in
combination with appropriate boundary conditions, which ensure the periodicity of
the structure.

3.3 Proper Model

A coarse approach is to replace the hollow sphere by a mass point and joints between
spheres by beams. This idea stems from classical mass-spring-damper models used
to idealise vibrating systems. The approximation has the following variables: mass,
stiffness (bending and torsional) and moment of inertia (geometrical and mass).
The objective is to assign proper values to those microscopic variables, so that the

Fig. 3 FE model of a single
sphere in a simple cubic
structure based on mass point
and beams
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macroscopic vibration behaviour can be described accurately. Figure 3 shows the
approximated model for a single sphere as basic unit of the FE Model. In order to
simplify the model, i.e. to clearly separate different effects, all mass is put to the
mass point and the beams are defined without mass.

4 Modeling Based on Image Processing

4.1 Computed Tomography

Nowadays X-ray tomography is an established non-destructive material testing
method in different technical areas. The three dimensional X-ray tomography (3D
X-ray) gives the three dimensional design of the outer contour and inner structure.
The 3D X-ray tomography is based on a X-ray source and a detector method. The
sample is fixed on a rotation stage between the X-ray source and the detector that
acquires the transmitted X-ray images. The X-Ray system in use is a RayScan
200 from Wälischmiller. The X-ray source is a microfocus X-ray tube operated
between 10 and 225 kV and the X-Ray detector is an amorphous silicon flat panel
with the resolution of 1024 × 1024 pixels. The present study has the focus on
the macro architecture of MHSS. As a result of 3D X-ray scanning one gets a
three-dimensional (3D) image with 16 Bit grayscale.

4.2 Gradient Based Method for Detecting Spheres

In the following, a new method is presented to localize the exact position of the
spheres in the 3D X-ray images and at the same time determine each sphere radius.
This sphere detection method applies the Haar-integration framework used for
generic object detection and classification in 2D and 3D images. It has been intro-
duced in [22] and extended e.g. in [23]. In this work, the fact that a sphere is defined
by the set of points that have a distance r from the sphere centre, where r is the
sphere radius is exploited. The probability that an arbitrary point is the centre of a
sphere of radius r is estimated and those points with highest probability are selected.
The probability map for all points in the 3D image gives a range of possible radii
can be computed in time O(N) with N being the number of voxels in the image. If
the spheres all have approximately the same radius, only one run through the 3D
image is needed. Besides being fast, the algorithm is extremely robust against dis-
turbances in the sphere structure like not fully closed spheres or deformed spheres.
Additionally, the method is only relying on relative gray value changes and is thus
robust against variations in the gray values of the spheres and background. The
mathematical background of this method is shortly introduced here. The Haar-
integration framework can be applied to describe whole images or arbitrary parts
of a n-D image independent of a given transformation group. A common example
is to characterize objects in an image independent of their position and orientation
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in the 3D space. This invariance of an image X under a transformation group G is
achieved by integrating a kernel function f over all group operations g applied to the
image:

If (X) =
∫

G
f (gX) dg. (4)

The resulting If(X) is identical for the image X and all its transformations under
the transformation group G. Thus it serves as a transformation invariant descriptor
of the image. In the special case of the detection of spherical structures in a 3D
space, the rotation invariant descriptor I is computed as follows:

I (X, r, x0) =
∫

O3

R−1 (∇x) (R · r − x0)

|(∇x) (R · r − x0)|
r

|r|dR. (5)

Hereby the value I (X, r, x0) is a direct measure for the probability that the point
x0 is the centre of a sphere with radius r. The transformation group O3 is the group
of rotations, R can be any rotation in 3D space, ∇x denotes the gradient image of X.
This rotation invariant descriptor for characterizing spherical structures has been
introduced in [24]. Therein the complete mathematical derivation can be found. The
integration over all rotation matrices R ∈ O3 is very time-consuming. Fortunately
a fast approximation of the above rotation invariant features has been introduced in
[24] and can be applied for the 3D sphere detection. It is based on a voting scheme
similar to the one used in the Hough transform [25]. Every voxel x0 in the 3D
image votes for the point xc that lies in direction of the gradient of x0 in distance r.
This originates from the fact that for any point x0 on a sphere, the centre of the
sphere is xc. The resulting accumulator is a four-dimensional array with dimen-
sions x, y, z and r. The subsequent application of a four-dimensional Gaussian filter

Fig. 4 X-ray image with
accummulater map
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Fig. 5 X-ray image with
extracted spheres

Fig. 6 Localized spheres

provides further robustness against disturbances in the spherical structure. Local
maxima in the accumulator correspond to sphere centers in the original 3D image
domain. The sphere and radius detection of an example slice of the 3D image is
depicted in Figs. 4, 5 and 6. In Fig. 4 the superimposition of the image slice with
the accumulator map is shown. The local maxima in the sphere centers are clearly
visible. The spheres extracted from these local maxima are shown in Fig. 5 as an
overlay with the original image. In Fig. 6 the resulting spheres are shown. These
results underline that the proposed algorithm is well suited to localize the spheres
reliably and estimate their radii correctly. In our example 3D images, an average
99% of the spheres have been localized correctly with 0.5% false positives.
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4.3 FE Model Based on Real Structure

Depending on the sample-size the FE model based on the real structure – proper
model resolution was chosen to 0.17 mm/voxel. The 3D image of the whole MHSS
plate is 255 × 709 × 1818 voxels. Because the diameter of the spheres varries one
voxel plus or minus, the resolution to detect the locations of the hollow spheres is
sufficient. The architecture of the MHSS plate was reconstructed by the above men-
tioned sphere detection method based on the X-ray 3D image. Figure 7 shows the
reconstructed CAD volume model of the MHSS plate with over 40,000 detected
hollow spheres. In the next step, the mass point – beam model was prepared based
on the center coordinates of each hollow sphere. The stiffnesses of sphere and adhe-
sively joint were substituted by a Timoshenko beam with a quadratic cross section.
In our calculation we assumed an averaged (homogenized) Young’s modulus of
about 60,000 MPa for sphere and joint. The rebuilt process from real sample to
the FE model can be seen in Fig. 8. All simulations were carried out with the
software system ANSYS R© (Ansys Inc., Canonsburg, USA). The computation time
for a single run took a few minutes on a standard office machine (DualCore AMD
OpteronTM, 2 × 2 CPU 2.4 GHz, RAM 8 GB). Beams are represented as BEAM4
elements, mass points as MASS21 elements. MASS21 is a point element having up
to six degrees of freedom: translations in the local x, y, and z directions and rotations
about the local x, y and z axes. A different mass and rotary inertia may be assigned
to each coordinate direction. The mass element is defined by a single node. BEAM4
is an uniaxial element with tension, compression, torsion, and bending capabilities.
The element is defined by two or three nodes, the cross-sectional area, two area
moments of inertia (IZZ and IYY), two thicknesses (TKY and TKZ), an angle of

Fig. 7 Reconstructed CAD
model of the MHSS plate
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Fig. 8 Computed aided rebuilt process (a) real MHSS (b) scan data (c) FE model

Fig. 9 (a) 1st, (b) 2nd, (c) 3rd, (d) 4th and (e) 5th mode shape calculated by FE proper model

orientation (Φ) about the element x-axis, the torsional moment of inertia (IXX),
and the material properties. The element has six degrees of freedom at each node.
In Figs. 9a–e the simulated mode shapes are plotted.

5 Experimental Vibration Analysis

There are different methods to measure the vibration of plates, e.g. with shaker
and accelerometers. In our investigations for free vibrating plates, we used a laser
scanning vibrometer with impulse hammer as excitation. The vibration behaviour
of adhesively bonded hollow sphere plates was experimentally analysed. The pat-
tern of the structure is not unique. It is neither regular, nor body or face centred
nor hexagonal closest-packing. The specimens lay on a weak ground made of a
foamed plastic to approximate the free–free (F–F) condition of vibration analysis.
The vibrations are introduced by impulse hammer. The transverse displacement of
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Fig. 10 (a) 1st, (b) 2nd, (c) 3rd and (d) 5th measured mode shape of adhesively bonded specimens

the specimen is measured by a laser scanning vibrometer. The post processing of
the measurements is done with the Me’ScopeVES R© (Vibrant Technology, Scotts
Valley, United States) software. Figures 10a–d show the mode shapes of adhesively
bonded MHSS specimen. In the first and fifth mode shape we see a bending mode,
the second and third mode shape are torsional modes. The fourth mode cannot be
detected by this test bench, because the displacements are in plane. Higher mode
shapes than the fifth eigenmode cannot be activated because the required energy is
too high and spheres will be deformed.

6 Validation

The validation process has to consider the mode shapes as well as the frequencies.
The FE model of a proper model with mass points and beams shows equivalent
mode shapes. The mode shapes from the FE simulations (Figs. 9a–e) correspond
exactly to those gained by experiment and already presented in Figs. 10a–d. In
Fig. 11 the eigenfrequencies calculated by the different FE models are plotted. The
homogenised FE model are modeled as homogenised mass with constant density,
which was defined by experiment. The FE model consists of 3D solid elements
[26]. The Young’s modulus of this model was assigned 1.100 Pa and Poisson’s ratio
as 0.15. The FE proper model represents the beam-mass point model with different
architecture structure, simple cubic and rebuilt by sphere detection based on X-ray
scans. The quadratic beam cross section of the simple cubic model is 0.852 mm2, the
cross section for the rebuilt model is 0.62 mm2. So it can been seen by the dimension
of the beam cross section that the rebuilt structure shows a stiffer behaviour than the
simple cubic structure.Regarding the eigenfrequencies, the results of numerical and
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Fig. 11 Measured and simulated eigenfrequencies of an adhesively bonded MHSS plate

experimental analyses fit well. The beam mass point model with the reconstruction
structure shows a very good correlation with the measured eigenfrequencies from
the experiment.

7 Modeling Improvements

Despite the fact that a simple FE model with constant stiffness along the beam
axis delivers quite good results, the need for a more detailed model is obvious
when additional components will be added to the hollow sphere structure. These are
expected to influence the vibration behaviour. Therefore, we will define an extended
FE model, where the bending stiffness as well as the geometrical moment of inertia
is formulated as variables along the principal beam axis. In Fig. 12a, the basic con-
figuration is depicted. Two halves of spheres are connected by a joining element.
In Fig. 12b, the resulting bending and torsional moment of inertia is plotted along
the beam axis. The exact geometrical specifications of hollow sphere structures are
described in detail in Öchsner et al. [27]. This non-constant curve for the moment in
combination with different Young’s moduli results in a non-constant bending stiff-
ness. The FE model has to reflect this by several subsections. Another idea is to
split the beam between the mass points into shorter sub-beams or use tapered beams
(Fig. 13). Also, the quadratic cross section of the beams can be replaced by other
geometries, e.g. circle or ellipse. Additionally, we will investigate different kind of
structures with other packing density for the FE model, e.g. body center cubic (bcc),
face center cubic (fcc) or hexagonal closest packing (hcp) (Fig. 14).
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Fig. 12 Extended simulation model. (a) Spheres with joint (b) geometrical moment of inertia
along the beam axis

Fig. 13 Extended model with (a) sub-beams and (b) tapered beams
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Fig. 14 (a) Bcc, (b) Fcc and (c) Hcp lattice model

8 Conclusion

In this study, we investigated the vibration behavior of adhesively bonded MHSS
plates. Eigenfrequencies and mode shapes were determined experimentally by a
vibro laser scanning bench. For numerical analysis there are different modeling
methods, multi-scale respectively homogenization method, detailed micro-scale
modeling or the presented beam-mass point model. A beam-mass point model
approximates a real structure properly, because this model accounts for non-
homogenized effects such as structure defects and non regular structures. The
computer tomography technology enables to model on basis of real architecture
structures. A new method was presented to localize the exact position of the hollow
spheres in the 3D X-ray images. The computed results confirm the good quality of
the proposed models and computational time is reasonable low.
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Computational Modelling and Experimental
Characterisation of Heterogeneous Materials

A.J. Beveridge, M.A. Wheel, and D.H. Nash

1 Introduction

A loaded material can be classed as either homogeneous; material behaviour is
length scale independent, or heterogeneous; local variations in structure produce
length scale dependence. This work describes the deformation of materials where
the heterogeneous nature becomes significant. Classical elasticity is a continuum
model for describing the deformation of homogeneous materials but it is insufficient
when the scale of the local structure becomes significant. Therefore an approach
differing from classical elasticity is required.

1.1 Generalized Elastic Continuum Theories

One approach is to use a model for a generalized elastic continuum, which is one
that takes into account the detail of the underlying structure but is still a continuum
model similar to classical elasticity. A number of these theories exist but one of
the simplest is that of micropolar elasticity [1]. It is applicable to heterogeneous
materials with a matrix that is stiffer than the inclusions [2].

Size effects have been observed experimentally. Structural polyurethane foam
beams have displayed, in bending tests, an increase in stiffness as the beam depth
tends to zero [3]. Work presented in [4] describes an experimental investigation
of the bulk material response of a polymer MEMS cantilever beam. The results
show a marked difference between the beam stiffness predicted by classical Euler–
Bernoulli beam theory and the observed response. A good correlation was found to a
micropolar theory based upon previous work on micropolar plates [5]. The observed
beam response was one of increasing flexural stiffness with decreasing thickness.
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In order to capture these size effects numerically using micropolar elasticity,
additional constitutive properties need to be determined. These are in addition to
the classical elastic constants, Young’s modulus and Poisson’s ratio. Unfortunately
identifying these addition constitutive properties is more involved.

1.2 Experimental Determination of Constitutive Properties

The first experimental work carried out on micropolar materials, to determine their
constitutive properties, proved to be inconclusive [5]. Indeed the difficulty arose
from the inability to find a material that exhibited micropolar material behaviour to
a sufficient extent, but the methods outlined in [6] were the first treatment of the
micropolar theory to separate and determine the additional constitutive properties.

A more recent review of experimental methods in generalised elastic continua is
presented in [7]. The experimental determination of the constitutive properties can
be divided into three methods; size effect methods, field methods and wave methods.

The size effects method, used in [8], makes use of the dependency of stiffness
upon size of sample. A method that is capable of determining all six micropolar
constitutive properties by use of electromagnetic torque generation and interfer-
ometric determination of angular displacements is presented in [7]. The stiffness
of circular rod specimens of decreasing size were tested in bending and torsion,
and these results were compared against analytical solutions to extract the elastic
constants. The electromagnetic torque generator was used so as to minimize local
loading errors that can obscure size effects in smaller samples.

Field methods can be used to determine the continuum theory that the material
is exhibiting. In [9] an analysis of the strain field on the surface of a rectangular
section under torsion is presented. It was found that at the edge of the rectangular
section the shear strain was none zero, which is not predicted in classical elasticity.
A screening method was presented in [10] that used a holographic image to detect
the motion of a small corner crack. This motion would be present in a micropolar
material but not in a classical continuum material.

Wave methods use the propagation of stress waves to determine the constitutive
properties. Micropolar materials exhibit dispersion of plane waves, although this
can present difficulties as this dispersion can also be attributed to a viscoelastic
response [7]. The advantage of the wave method is that they can be used for large
scale materials, e.g. rock formations, which cannot be treated practically using the
size effects method.

1.3 Numerical Determination of Constitutive Properties

The use of finite element modelling of the discrete micro structure to determine
the micropolar in plane shear and rotational moduli of unidirectional fiber com-
posites with fiber-matrix interfacial de-bonding is suggested in [11]. Subsequently
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in [12] a finite element homogenisation method to determine micropolar constitu-
tive properties is presented in the context of composite laminates with high stress
gradients.

1.4 Numerical Modelling

Computer methods, in particular the finite element method (FEM) have shown lim-
ited success in modelling micropolar elasticity. An alternative, the control volume
finite element method (CVFEM), has been developed which has shown increased
accuracy over the FEM [13]. This is assumed to be due to a condition of local equi-
librium being imposed rather than just the global equilibrium that is enforced in
the FEM.

1.5 Objective

The objective of this work is to predict an experimentally observed size effect, in a
beam of a model micropolar material under a bending load, using numerical models
incorporating micropolar behaviour. In order to achieve this an additional material
constant is needed over and above the classical engineering constants. This material
constant is gained in two ways. The first is experimentally using the size effects
method [3] then secondly using a fully detailed finite element model, in ANSYS,
once again using the size effect method.

2 Micropolar Elasticity

Micropolar elasticity is capable of describing size effects due to the introduction of
a length scale dependent coupled stress, m, and an additional degree of freedom, a
micro-rotation, φ. For a linear elastic isotropic micropolar material the force stress
tensor and couple stress tensor respectively are,

τkl = λεmmδkl + (2μ+ κ)εkl + κeklm(θm − φm) (1)

mkl = αφm,mδkl + βφk,l + γφl,k (2)

where τ is the force stress tensor, m is the couple stress tensor, ε is the strain tensor,
θ is the macro rotation. The macro rotation is usually kinematically distinct from
the microrotation but in this formulation a special case where they are equal will be
used to derive a simple bending equation for a slender micropolar beam [14]. This
special case is usually referred to as coupled stress theory in the literature.
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From the moment curvature relationship, see Appendix, the maximum displace-
ment, vmax for a micropolar beam under 3 point bending is,

vmax = WL3

48(EmI + γA)
(3)

where W (N) is the central applied load, L (m) is the length of the beam, Em (Nm−2)
is the micropolar Young’s Modulus, I (m4) is the second moment of area, γ (N) is
a length scale dependent micropolar constant and A (m2) is the crossectional area.
This can be rearranged to express the stiffness, K (Nm−1) in terms of the beam
depth d.

For a rectangular cross section the substitutions for the second moment of area, I,
and area, A, are,

I = bd3

12
(4)

A = bd (5)

where b is the breadth and d is the depth, see Fig. 1. The stiffness K is,

K = 4Emb

(
d

L

)3
(

1 +
[

lr
d

]2
)

(6)

where lr (m) is the characteristic length in bending for a rectangular cross section,

lr =
√

12γ

Em
(7)

For a classically elastic beam the equation for determining the maximum
deflection of a beam under three point bending load is

P

L

d

b

Fig. 1 Heterogeneous beam in 3 point bending. Applied load P, length L, breadth, b and depth d
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vmax = WL3

48EmI
(8)

therefore the stiffness is

K = 4Emb

(
d

L

)3

(9)

from this it can be seen that in Eq. (6) the expression outside the bracket is that
of the classical beam equation and inside is the term associated with the micropolar
stiffening. It can also be seen that as the depth of the beam increases the significance
of the characteristic length reduces and the solution converges to the equation for a
classically elastic beam.

3 Micropolar Beam Element

A four degree of freedom straight micropolar 1D beam element was developed to
capture the size effect numerically. The four degrees of freedom describe a cubic
lateral displacement field (wn, θn) (n = 1,2 cycling for the number of nodes). The
derivation follows that of a standard classical beam element [15] but the constitu-
tive relationship has been altered to take account of the micropolar elasticity. The
stiffness matrix, K, is

K = (EmI) + (γA)

l3

⎡
⎢⎢⎣

12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

⎤
⎥⎥⎦ (10)

where the symbols have the meaning already stated and l is the element length.

4 Experimental and Numerical Results

A model material was manufactured from aluminium bar, E = 70.0 MNm−2,
ν = 0.3, with a regular pattern of holes, where the holes pass through the axis
of bending (Fig. 1). The bar was tested in 3 point bending for various beam depths,
d, while maintaining a constant ratio of length, L, to depth (Fig. 2). If the material
were classical, the stiffness would remain constant, as the L/d ratio is constant, see
Eq. (9).

The hole pattern is arranged in a hexagonal lattice (Fig. 3) with horizontal pitch
P1 = 0.016 m and vertical pitch P2 = 0.0127 m. Four test samples were made,
varying from one hole to depth to four holes to depth (See Table 1). Once the load
deflection data had been gained the stiffness of each sample can be determined.
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Fig. 2 Model heterogeneous
beam test samples,
constant L/d

Fig. 3 Hexagonal hole
pattern of model
heterogeneous material with
horizontal pitch, P1 and
vertical pitch P2

Experimental results are shown in Fig. 4 where stiffness is plotted as a function
of the reciprocal of beam depth squared. In addition an FEA analysis of the beam,
modelling all the discrete detail was carried out for the model heterogeneous beams.
These FEA results are superimposed on Fig. 4. There is a distinct size effect present
in both the physical test and the FEA results. Fitting a straight line to the data to
gain Em and γ for both experiment and FEA analysis give rise to the results shown
in Table 2. Although Eq. (6) implies that the variation in stiffness should be linear,
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Table 1 Size effect test sample. Dimensions and stiffness, K, results

Beam Depth (mm) Length (mm) L/d KEXP (N/m) KANSYS (N/m)

1 12.7 128 10.08 2.832e6 2.903e6
2 25.4 256 10.08 2.147e6 2.195e6
3 38.1 384 10.08 2.038e6 2.043e6
4 50.8 512 10.08 1.964e6 1.982e6
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Fig. 4 Stiffness data for experimental and detailed ANSYS results for the model material

Table 2 Constitutive properties from size effect experiments. Physical test, EXP and detailed
ANSYS model, ANSYS

Em (N/m2) γ (N) lr (m)

EXP 3.871e10 2.469e5 0.00875
ANSYS 3.900e10 2.629e5 0.00899

both sets of data actually exhibit a slight deviation from linearity. This suggests
that the model material is exhibiting truly micropolar material behaviour rather than
couple stress behaviour. However, this deviation is difficult to quantify because the
shear deformation in the relatively slender beam samples is small in comparison to
the bending deformation.

Now that the constitutive properties have been found experimentally and by
FEA they can be used in both the numerical models. Figures 5 and 6 show the
results from a micropolar beam element while Figs. 7 and 8 depict the results
for the micropolar plane stress CVFEM element. The difference between the
numerical and experimental results is due to approximations in the trend line fit.
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Fig. 5 Stiffness result from Micropolar Beam element (EXPBeamE) using constitutive properties
from experimental 3 point bending test of model micropolar material, for a given load (100 N).
Plotted against stiffness from the experimental procedure (EXP)
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Fig. 6 Stiffness result from Micropolar Beam element (ANSYSBeamE) using constitutive prop-
erties from detailed ANSYS model material in 3 point bending, for a given load (100 N). Plotted
against displacements gained from the ANSYS procedure (ANSYS)
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Fig. 7 Stiffness results from micropolar plane stress CVFEM element (plane), for various cou-
pling numbers N, using constitutive properties from detailed ANSYS model material in 3 point
bending, for a given load (100 N). Plotted against stiffness gained from the ANSYS procedure
(ANSYS)
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Fig. 8 Stiffness results from micropolar plane stress CVFEM element (plane), for various
coupling numbers N, using constitutive properties from experimental 3 point bending test of
model micropolar material, for a given load (100 N). Plotted against stiffness gained from the
experimental procedure (EXP)
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There is good agreement between the experimental data, the detailed FEA and the
numerical procedures. Clearly the size effect has been captured in the numerical
procedures incorporating micropolar continuum model. Both provide stiffness pre-
dictions close to the detailed ANSYS FEA model albeit at a significantly reduced
computational cost.

5 Discussion

As already noted the experimental and detailed FEA data show some deviation from
linearity suggesting the presence of some shear deformation in the otherwise rela-
tively slender sample. In full micropolar elasticity shear deformation is governed by
an additional parameter, the coupling number, which the beam analysis given in the
appendix ignores. However micropolar plane element results, Figs. 7 and 8, indicate
that predicted deformation is relatively insensitive to coupling number, 0 ≤ N ≤ 1
(although the deviation is noted for N = 0.25), therefore the role of shear deforma-
tion is secondary for the L/d ratio considered. However, while at present experiments
to determine constitutive properties are limited to procedures where analytical solu-
tions exist, the coupling number, usually found from torsion tests, could be extracted
using the micropolar plane stress CVFEM element by introducing shear into the
same beam sample used in this work. Shear can be introduced by decreasing the L/d
ratio. From these results the plane stress CVFEM element could then be used in an
inverse procedure to determine the coupling number. This has the distinct advantage
over previous methods that only one sample geometry is required.

The voids in the matrix material are a sizeable fraction of the beam depth to
reduce the influence of the systematic error and emphasis the size effect. Problems
have been identified in past work indicating that the micropolar behaviour is often
masked by the error in the experimental procedure [3]. If the void size were suffi-
ciently small the increase in bending stiffness could be within the systematic error
of the test procedure. However, the disadvantage of large voids is that they increase
the local loading effects. It is therefore suggested that there is a region in which the
number of voids is large enough to average out any local loading variation but not
so great that the size effect is masked by the testing procedure itself.

If a fully 3D problem were to be addressed then a further two constitutive prop-
erties require to be determine; the characteristic length of torsion, dictating torsional
size effects and the polar ratio, similar to Poisson’s ratio but applicable to the micro-
rotation. A 3D analysis is an unrealised challenged. Limited work has been done to
determine all the required constitutive properties and an accurate 3D finite element
procedures remain unrealised [14].

It is hoped that the presentation of this simple case of beam bending can show
the potential for the use of micropolar elasticity in the computational modelling
and experimental characterisation of heterogeneous materials. Work is on going to
develop further techniques to determine all constitutive properties and to expand the
types of elements available.
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6 Conclusion

It has been shown that a size effect can be identified in a model heterogeneous
material which can be described by micropolar elasticity. The size effect can also
be identified in an FE model of the discrete detail of the material which opens
the possibility of determining the correct constitutive relationships without lengthy
physical testing. Furthermore analytical solutions and numerical methods for solv-
ing the micropolar beam problem have been developed that are able to correctly
determine the stiffness of the micropolar beam with the size effect present.

7 Appendix: Micropolar Beam Derivation

Once the microrotation is no longer kinematically distinct this simplifies the for-
mulation and the curvature, R of a beam under pure bending, being bent through a
small angle is,

1

R
= dθ

dx
= dφ

dx
= −d2v

dx2
(11)

Considering only the out of plane couple stress, mz and direct stress σx

mz = γ
dφ

dx
(12)

σx = Emy

R
(13)

Taking the internal resisting moment equal to any externally applied moment, M,

M =
∫

A

(yσx + mz)dA (14)

Substituting for mz = γ
R and σx = Emy

R ,

M = 1

R

∫

A

(y2Em + γ )dA (15)

Completing the integration where the second moment of area, I is,

I =
∫

A

y2dA (16)
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and area, A is

A =
∫

A

dA (17)

And substituting for 1
R = − d2v

dx2 the curvature relationship is,

d2v

dx2
= − M

EmI + γA
(18)
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Model Experiment and Numerical Modelling
of Dynamic Soil-Structure Interaction

Noriko Kodama and Kazuhito Komiya

1 Introduction

Earth force or earth pressure during earthquake have been causing numerous ill
effects on many buildings and utility infrastructures. In order to overcome the earth
force, many seismic design methods have been developed in engineering since early
time, for example Mononobe–Okabe earth pressure theoryMononobe-Okabe earth
pressure theory [1]. In modern time, seismic technologies like seismic isolation
systems have been developed in the building and civil engineering.

Because of the complex boundary conditions of a seismic problem, the use of
the Finite Element Method is one of the popular methods to investigate the seismic
response of structures. In general, the Finite Element analysis results are closely
linked to the dynamic interaction between the soil and the structure.

In a soil-structure dynamic interaction problem, earth pressure applied to the
structure and displacement of the structure and soil are the main concerns. The soil-
structure interaction is often modelled by soil-springs to apply external forces, as
shown in Fig. 1 [2], to introduce traction and to force displacements at the bound-
aries. However, when the soil deforms largely or fractures, its behaviour depends
on soil properties and the stress history. Therefore, in order to understand the soil-
structure interaction mechanism, the pressure-displacement behaviour caused by the
motion needs to be investigated associated with soil properties.

In this study, the behaviour of an underground structure under seismic load-
ing is simulated numerically. Generated earth pressure and displacement of an
underground structure due to earthquake calculated by Finite Element analysis is
compared to those of laboratory model shaking experiments. Features of different
constitutive models in numerical simulation are discussed.
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kV
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δ(t)

Fig. 1 Typical example of numerical model for dynamic seismic verification

2 Model Shaking Test

Laboratory shaking tests were carried out to investigate a dynamic interaction
between soil and a structure. A schematic diagram of the laboratory shaking test
apparatus is shown in Fig. 2 [3–5]. The shaking of the tank was allowed in only one
horizontal direction as shown in Fig. 2.

For the tests, rectangular parallelepiped model soil grounds of 400 mm width,
300 mm depth and 450 mm height were made at both ends in the shaking tank as
shown in Fig. 3. Before the soil grounds were made, a hollow rectangular structure
model made of steel with 50 kg mass, 400 mm width, 300 mm depth and 800 mm
height was placed at the centre of the tank. On the interface between the base of the
structure model and the tank, ball bearings were installed as shown in the side view
of Fig. 3, and lateral force transmitted through the interface was cut off by them. The
soil grounds were then filled like bridging a gap between the structure model and
the tank. When the tank was shaking, therefore, only the lateral forces coming from
the soil grounds acted upon the structure model except for bearing vertical support
forces.

The earth force applying to the structure model was measured by two pressure
transducers located on the structure model as shown in Fig. 3. The relative displace-
ment between the structure model and the tank was measured by a laser distance
sensor attached to the tank. The shaking waveform was 6 Hz sinusoidal wave with
amplitude 6.0 mm.

Soil ground used in the test was made of Toyoura Sand. The water content of the
sand was approximately 9.4%. The soil ground was made by tamping the sand. The
mass density of the ground was measured to be 1.10 g/cm3.
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direction

Shaking table

Soil Soil

Fig. 2 Laboratory shaking test apparatus

3 Numerical Simulation

3.1 Finite Element Modelling

Two-dimensional Finite Element analyses were carried out to simulate the model
shaking test described in the previous section. The finite element model used in
the calculation is shown in Fig. 4. The soil and the structure are modelled by
two-dimensional plane-strain elements. Sinusoidal acceleration boundary condi-
tion was applied to the leftmost and the rightmost nodes of the soil elements. For
comparison, the elements for soil were modelled by elasto-viscoplastic materials
with five different yield criteria: elastic, von Mises, Tresca, Drucker-Prager and
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Fig. 4 Finite element model of the shaking tank
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Mohr-Coulomb. The latter two criterias (Drucker-Prager and Mohr-Coulomb) can
consider the internal friction, which is often observed in soil materials. The structure
elements were modelled by elastic material behaviour. Viscoplastic strain velocity
ε̇vp is described as Eq. (1) [6].

ε̇vp = γ
F − F0

F0

∂F
∂σ

(1)

where γ is the fluidity parameter, F is the equivalent stress, F0 = σY or c cos φ′ is
the uniaxial yield stress, F is the yield surface function and σ is the stress vector.
Material parameters are shown in Table 1. Equation of motion was solved by an
explicit direct time integration with a time step 1.0E–6 s and a damping coefficient
4.0 Ns/m.

Table 1 Material parameters in finite element analysis

Soil Structure

Parameter Elastic von Mises Tresca
Drucker-
Prager

Mohr-
Coulomb (Elastic)

Elastic modulus E (kPa) 2,000 2,000 2,000 2,000 2,000 2.1E+08
Poisson’s ratio ν 0.35 0.35 0.35 0.35 0.35 0.30
Mass density ρ (kg/m3) 1,100 1,100 1,100 1,100 1,100 925.9a

Cohesion c (kPa) – – – 1.0E–04 1.0E–04 –
Uniaxial yield stress
σY (kPa)

– 0.1 0.1 – – –

Friction angle φ′ (deg) – – – 35.0 35.0 –
Fluidity parameter γ – 0.005 0.005 0.005 0.005 –

a Equals to (structure mass)/(structure elements volume).

3.2 Simulated Earth Pressure and Displacement of Underground
Structure

The experimental and the numerically simulated earth pressure and displacement
of the structure model are compared in Fig. 5. The calculated hysteresis curve of
the Mohr-Coulomb soil model was found to be in good agreement with the exper-
imental results (Fig. 5e). The hysteresis curves of the elastic, the von Mises and
the Tresca soil models differed form the experimental results and they gave exces-
sively small values of earth pressure and displacement (Fig. 5a–c). Time histories
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Fig. 5 Earth pressure-displacement relations of the structure model calculated with different
constitutive laws for soil elements

of the earth pressure and the displacement obtained experimentally and numeri-
cally are shown in Fig. 6. The difference between the time histories seems to be a
result of inadequate constitutive modelling during a soil element undergoes tensile
deformation.
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Fig. 6 Experimental and numerically simulated time histories of earth pressure and displacement
of the structure model

4 Conclusions

Earth pressure and displacement of a structure model in sand were measured in
laboratory shaking tests, and compared to numerically simulated results of two-
dimensional Finite Element analysis.

It is concluded that the elasto-viscoplastic model with the Mohr-Coulomb yield
criteria is adequate for simulations of soil behaviours under seismic loading. To
obtain more precise prediction of earth pressure and displacement time histories,
some modification of constitutive model for soil is still needed. Elastic material
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is used conventionally for modelling of soil in seismic designs, but it may predict
excessively low earth pressure which acts on an underground structure.
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The Laser Butt Welding Simulation
of the Thin Sheet Metal

Takeji Arai

1 Introduction

Basically laser welding is a thermal processing, but there are few papers and
documents available on distortion caused by laser welding [1–4]. If any, most of the
distortion described is entirely-focused on qualitative explanation and few papers
provide concrete values of distortion and strain. Furthermore, they deal with bead-
on-plate with a continuously-moving heat source on a thin metal plate, which does
not accurately reflect an actual welding. However, thermal distortion of the material
is extremely important in the joining technology and it cannot be ignored, especially
for thin plate welding and precision welding where accuracy is required. Unlike
bead-on-plate, there is always a gap between two materials in an actual welding
such as butt welding. Therefore, it is necessary to clarify the distortion caused by
laser welding performed under the condition where a gap exists.

In this research, an experiment with a butt welding was performed. The shape
of the melting zone and the effect of the gap on the distortion were studied. In butt
welding with a gap, the relative position between the focal point of laser beam and
the material, as well as the rate of laser energy that affects each part of the material
are the important factors. Based on this analysis, simulations of the butt welding
were performed and the basic distortion of a plate was analyzed.

As a result, it was proved that the overall distortion is smaller in butt welding
with a gap compared with bead-on-plate, and the wider the gap is, the smaller the
thermal distortion becomes. The distortion behaviors such as thermal expansion and
constriction at the molten cross section were studied for small gaps and large gaps
that were large enough compared to the plate thickness.
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2 Simulation of Bead on Plate

2.1 Calculation Method

This section describes the calculation model for laser welding. First of all, Fig. 1
shows the experimental set-up of the welding with an actual high power laser.

To clarify the distortion mechanisms of the thin plate and the thermal stress
caused in the materials, the finite element method was used and 3-D nonstationary
elastoplasticity analysis was performed in which the laser heat source was emitted
moving at a constant rate. In this calculation, radiation and convection were taken
into account for contact heat transfer at the nodal points of the element [5].

Figure 2 illustrates the flow chart of the simulation calculation. This simulation is
basically a thermal analysis simulation using the finite element method but it obtains
the temperature field by using a heat transfer equation which takes eradiation, con-
vection and contact heat transfer into account. Then elastic-plastic stress distortion
analysis was carried out by giving the thermal strain obtained from the temperature.
In this simulation, the laser heat source is replaced with a heat flux which was con-
verted to heat quantity, and the temperature was calculated considering the ratio of
beam absorption and the thermal property of the material.

Moreover, stress, thermal strain, transforming strains, plastic strain and elastic
strain were determined by using the elastic constants of the materials such as the
Young’s modulus and the Poisson’s ratio. Finally the distortion amount of the entire
plate was calculated. Also, temperature dependence was taken into account for the
physical properties of the materials and the latent heat was considered as well in the
molten state.

In the temperature field, nonstationary heat conduction equation, temperature
dependence physical properties, contact heat transmission, joule generation of heat

Fig. 1 Experiment set-up
of the laser welding
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Fig. 2 Flow chart
of the calculation

and cooling condition were used as the main equation in the temperature place.
At the same time, the equilibrium equation, the temperature dependence physical
properties, elastoplasticity, and the thermal stress were used to the calculation in
the displacement field. In the calculation, the radiation and convection were also
considered.

On the other hand, the equation of continuity, the equation of energy, the motion
equation, and the turbulent flow motion equation were used in the calculation of the
behavior of the molten metal. In the calculation, gravity, the viscosity, and the sur-
face tension are considered. The calculation concerning the behavior of the molten
metal was done by the thermo-fluid analysis.

2.2 Calculation Model of Bead on Plate

For the calculation model, stainless steel (SUS304) of 1 mm thickness was adopted
and for the bead-on-plate experiment, a 100 × 100 mm2 plate was used. To adjust
to the actual power level of the laser, the power was set to 3.4 kW at the material
surface with a spot diameter of ϕ=0.6 mm. To fit into the actual experiment, both
sides of the plate were assumed to be held with a jig from the upper side and to be
released in a specific time (10 s) after laser irradiation in the calculation model.

Figure 3 shows the analysis model of bead-on-plate which was used for calcula-
tion. In this calculation process, the volume expansion and the mass increase caused
by oxidization are calculated, which occur in the melting process caused by irradi-
ation of the laser heat source. This clarifies the total distortion in time-series and
then the remaining stress and the distortion are obtained as a final state. In bead-on-
plate simulation, the calculation result becomes symmetric across the heat source,
so that half side was calculated after excluding the angular distortion in the model
and then synthesized the whole. Under these conditions, the amount of distortion of
the plate, which is supposed to vary depending on the welding speed, was simulated
and analyzed.
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Fig. 3 Calculation model of bead-on-plate

2.3 Calculation and Experimental Results of Bead on Plate

The shape of the heat input was adjusted to the shape of the molten metal cross
section created in an actual processing, and the convergent laser beam moved on
the material surface at a constant speed. In the calculation, several different focus
spot diameters were used. The result with a focus spot diameter ϕ=0.6 mm is shown
as an example. The beam mode of the laser which is transferred through fiber was
assumed to be a leveling top hat type.

As a calculation result, Fig. 4 shows the stress distribution in the direction of
the welding line and in the direction of perpendicular to the welding line after the
heat source passed. It is recognized that the stress distribution differs between the
start and the middle point of the material. The start and end points are subjected to
compressive stresses, and the middle part is subjected to tensile stresses.

Fig. 4 Distribution of the residual stress in the case of bead-on-plate
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Fig. 5 Moving picture simulation of the distortion in the case of bead-on-plate

The moving picture simulation of bead-on-plate is shown in Fig. 5 This ani-
mation was based on the simulation, and showed the excerpted main screen from
animation here. Figure 5a shows the welding material fixed from the upper side by
clamping. Figure 5b shows that the material is a rebound and is greatly deformed
when fixation from the upper side is removed. And Fig. 5c shows the material
shrinks after cooling and is saturated to a constant deformation value. The amount
of deformation depends at time of clamping by jig of the material.

To confirm the accuracy of the simulation, the actual amount of distortion was
obtained through an experiment. In the experiment, the distortion amount was mea-
sured by a laser displacement gauge. A CCD laser displacement gauge (Keyence
LK-G) was used. After welding, the sample was left to stand for sufficient time and
was put on the measuring stand in a distorted condition. 50 lines were set every 2 mm
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Fig. 6 Measurement result of distortion in the case of bead-on-plate

along the welding line in an orthogonal direction. Each line was divided by 0.1 mm
distance and 1,000 points in total were measured. Figure 6 shows one example of the
result of a measurement that uses this measuring instrument. The simulation result
of the distortion was examined, in which the plate was assumed to be cooled down
sufficiently after the heat source passed over.

Figure 7 shows the distortion close to the welding line calculated for bead-on-
plate. In this calculation, a plate with 1 mm thickness was processed with the same
power level as the above, setting the welding speed in the range of 3–5 m/min. In
laser welding, the slower the welding speed gets, the larger the swelling becomes
near the center upward (z direction in Fig. 3).

Furthermore, the amount of distortion differs between penetration welding and
non-penetration welding. The result shows that the slower the welding speed gets,
the larger the distortion amount becomes. In addition, the simulation and the actual
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Fig. 7 Result of deformation
in bead-on-plate

Fig. 8 Angular vs. welding
speed

experiment compare reasonably well. The solid line corresponds to the simulation,
and the points refer to the measurement result in the experiment (in Fig. 7).

The angular distortion corresponding to welding speed was computed based on
the calculation model. The angular distortion in penetration welding is smaller if
the welding speed is fast, and the angular distortion in non-penetration welding is
bigger if the welding speed is fast, as shows in Fig. 8.

When the laser heat source passes over and the welding process is completed,
and after the plate fixed by a jig is released, the following distortion behavior is
seen (in Fig. 9). After the laser heat source moves and the welding process ends,
the fixation by jig is released and the plate was deformed greatly. When the heat
source passes over, the welding portion starts to release the heat, and the distortion
amount goes down to a certain amount. As for the duration of the fixation in the
jig, the shorter the duration is, the greater the initial rebound and the final distortion
amount are. On the contrary, if the fixation duration is long, the initial rebound and
the distortion amount are small. By taking enough time to hold the material, no
rebound is observed and the distortion amount converges to a certain small amount.
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Fig. 9 Clamping time vs. Thermal deformation in the case of bead-on-plate

3 Simulation of Butt Welding

3.1 Calculation Model of Butt Welding

Stainless steel of 1 mm thickness with 100 × 50 mm2 size was used. Calculations for
butt welding were made with changing the gap by 0.05 mm from 0.05 to 0.25 mm.
The calculation model is shown in Fig. 10. The testing piece for butt welding was
precisely pre-processed by electro-discharge to get 5 μm roughness at the welding
surface. As a result, the material was stuck tight enough so that any gap at the
welding surface with visual observation was not recognizable.

Fig. 10 Actual butt welding model
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Through optical measurement, a 5 μm clearance was observed so that the
minimum gap at welding was assumed to be 0.005 mm.

3.2 Calculation and Experimental Results of Butt Welding

In the same manor, a laser beam with a focus spot diameter ϕ=0.6 mm was applied
to butt welding with gap. When the beam was concentrated with a lens, there was
some aberration near the focal point. Therefore, in the calculation for butt welding
with gap, ray tracing method was used at first to calculate the point where in the
target material the concentrated beam makes thermal effects [6]. For calculation
of ray tracing, 200 lines in the diameter direction were used. Although the place
of the heat effect that the concentrating beam gives is different according to the
relative position between focuses of a material surface and the beam, Fig. 11 shows
an example with “just on focus (focal position is just on the material surface)” where
the focal point is right on the material surface. In butt welding, the laser beam is
dispersed being. A part of it goes to the material surface or welding surface and
some energy passes through without involved in welding. Figure 12 shows how the
gap size affects the energy distribution in butt welding. Based on this study, the
distortion in butt welding with gap was calculated.

Fig. 11 Optical system of
fiber transmission in the case
of butt welding
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Fig. 12 Laser energy distributions on material and joining gap (butt welding)

The difference of the temperature distribution by the simulation was confirmed
by three patterns as shown in Fig. 13. Figure 13a corresponds to bead-on-plate. This
is a phenomenon of only the thermal conduction’s happening when the laser light
beam is irradiated to the surface. Figure 13b is an example of the weld in a butt joint.
In this case, the laser beam is given only to the surface of the material. The laser
beam goes along a gap and goes through it. And the heat spreads slightly below by
the effect of the surface heat transfer of happening in the upper part of the gap of the
material. However, the fact is not expressible only by this. All of real phenomena
of laser butt welding are not explained. The real cross section by experiment of
welding shows deeper penetration depth. A correct calculation of an actual butt
welding is obtained by considering that the laser beam irradiates to the joint surface
in the gap. Figure 13c shows the calculation example of the temperature distribution
considering all laser energy allocations. Therefore, the allocation of laser energy in
butt welding must be considered by the computer calculation.

In butt welding, not only the simple thermal stress but also the thermal expan-
sion and oxidization as well as the constriction due to cooling of molten metal
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Fig. 13 Temperature distribution by difference of computing model comes from difference of
irradiation place of laser beam

Fig. 14 Cross sections in butt welding

are deeply involved in the distortion, especially at the molten layer where weld-
ing characteristics are largely linked with the distortion. Those factors were taken
into consideration in the calculation. The distortion in the molten part changes as the
laser beam moves. The greatest expansion is observed right after the beam center
passes the target. When the beam has passed over, cooling down starts and constric-
tion occurs. Figure 14 shows the cross section of a) with small gap (g=0.05 mm)
and b) with big gap (g=0.15 mm).

Expansion of material is seen when the material heated up after laser beam
reaches the welding part. However, when the gap is large, the volume of the molten
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metal is insufficient to fill the entire gap. The shape of the molten metal changes
into the state of “under-fill (dented state)” by insufficient amount of molten metal to
bury the entire gap. Gravity and the surface tension act on there.

The model specially designed was used to calculate the butt welding to fit into
the actual experiment, In this computing model, after the laser heat source passes
the welding point, the gap of two plates on the welding surface is buried with the
molten metal. Figure 15 shows a new simulation model.

When half the part of the heat source passes the welding point, the same shape
of cross section of molten metal buried in a blank ditch where the gap was assumed
is set in the computing model of the butt joint. In this case, the ditch is buried
with molten metal in melting temperature (temperature is 1,400). Afterwards, the
thermal expansion of the molten metal is caused by laser irradiation. The molten
metal cooling starts though it reaches the maximum temperature due to the heat
source’s passing. And molten metal gradually returns to its former volume. Both
plates are deformed by this expanding and cooling. With this model, the distortion
amount and the angular distortions were obtained for various gaps by setting the
welding speed as a parameter.

A moving picture simulation (Fig. 16) shows the time-series distortion in the butt
welding. If the gap is small, expansion is observed as swelling at the top and bottom
but if the gap is large, the molten part has dent which is called under fill.

In butt welding, if the gap is small, the butt wall surface expands more and when
the molten metal join at the center, it is pushed out both upward and downward and
it forms a large swelling (Fig. 17).

However, when the beam passes over and cooling starts, the swelling slightly
shrinks. If the gap between materials is large (Fig. 18), the molten metal expands at
the butt end face and rises slightly both upward and downward but the volume of the
molten metal is insufficient to fill the gap when the expanded molten metal comes
to the center of the joint so that under fill is seen on the upper and lower sides of the
butt surface.

Figure 19 includes the result obtained from bead-on-plate as a reference. The
wider the gap, the smaller the distortion becomes as a whole (Fig. 19). In addition,

Fig. 15 Calculation model
of butt welding
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Fig. 16 Moving picture
simulation of butt welding
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Fig. 17 Simulation model
in the case of a narrow gap
in butt welding

the angular distortion corresponding to gap variation was computed based on the
calculation model (Fig. 20). The angular distortion is a bending angle caused by
the heat source passing over the welding line. Both the right and the left sides of
the plate bend upwards, symmetric about the welding line. The angular distortion
is smaller if the gap is bigger. Moreover, in butt welding, the greater the gap is, the
smaller the distortion amount along the welding line is. This is because the amount
of laser beam that passes through the gap without involving increases. If the amount
of laser beam increases, the angular distortion gets smaller.
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Fig. 18 Simulation model in
the case of wide gap in butt
welding
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Fig. 19 Amount of deformation function of gap

Fig. 20 Angular distortion as function of gap

4 Discussion of the Results

The distortion obtained through a simulation which targets the material sufficiently
cooled down, is almost identical to the result from the actual measurement. In the
laser welding simulation for bead-on-plate that assumes the ideal state where no gap
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exists, swelling distortion was observed along with the welding line when the heat
source moves at a constant rate in the middle of the sheet metal plate. The same
trend was found at both edges of the plate with a larger swelling compared with the
middle of the plate.

This distortion shape almost corresponds to the thermal stress distribution
(cf. Fig. 4). The distortion amount represented by swelling along the welding
line is inversely proportional to the welding speed. The higher the welding speed,
the smaller the distortion amount is. If the speed gets slower, more distortion is
observed. This means that the distortion amount is proportional to the amount of
heat energy input.

In the penetration welding where a molten layer is generated on the lower surface
of a thin plate, the tension stress on the upper and lower surfaces get balanced out
so that the angular distortion which shows the bending amount is smaller compared
with the non-penetration welding.

To decide energy distribution in case of the butt welding with the gap, it was
assumed that the laser beam passed through a lens obeyed the ray tracing method.
This method shows that the amount of the laser energy on the butt surface is
changing as the focal position shifts.

5 Conclusions

From the set of calculations, the followings can be concluded. In bead-on-plate,
penetration welding is performed by generating a keyhole but in butt welding where
gap exists, keyhole is not generated. However, as for the butt welding, welding per-
formance (welding depth etc.) can be obtained similar to penetration welding due
to the surface heat transfer along the welding surface of the gap and due to the laser
beam emitted inside the gap wall.

It is necessary for the swelling volume to exceed the gap volume to fill up the
gap at the butt surface. However, if the swelling volume falls below the gap volume,
an under fill state is observed. This means that the melting and swelling metal does
not completely fill up the gap while welding.

Since laser welding is basically thermal processing, the distortion due to ther-
mal stresses is inevitable. According to the simulation results, the distortion amount
varies depending on the plate thickness, size and power of laser. With regard to the
welding speed, the faster the speed gets the smaller the distortion. The reason is that
the exposure time that influences the material decides the amount of the distortion
of the welding thin plate.

In the welding process, the material expands and exceeds the center of the weld-
ing point, so that it is presumed that the gap is filled at that time. Therefore, the
following calculation can be drawn. If there is sufficient swelling volume of molten
metal to exceed the center of the welding point when heated, it forms swelling on
the upper and lower sides of the butt surface. On the other hand, if the gap is too
large to get sufficient swelling volume of molten metal to exceed the center of the
welding point, an under fill state is observed or joining cannot be done.
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Laser Drilling Simulation Considering Multiple
Reflection of Laser, Evaporation and Melt Flow

Etsuji Ohmura and Satoru Noguchi

1 Introduction

A keyhole is formed in the melting region of the base metal during laser drilling with
high energy density. When a keyhole is formed, drilling of a hole with a large aspect
ratio becomes possible. On the other hand, the formation of a keyhole becomes
the cause of defects such as porosities. Therefore, it is important that the keyhole
behavior in laser drilling is understood. There are some studies [1, 2] in which the
keyhole behavior and the molten metal flow were observed by X-rays. However,
generally the observation of the keyhole is difficult, because the keyhole occurs
inside the material. Computer simulation is effective as a means to understand the
keyhole behavior and predict hole shape.

In conventional simulations of laser welding, heat conduction calculations [3, 4]
where a keyhole wall surface was fixed were performed. Thermohydrodynamic cal-
culations [5] where a cylindrical keyhole was assumed were also conducted. When a
keyhole is formed, many events occur such as the multiple reflection of laser, evap-
oration, a surface shape variation by the evaporation recoil pressure and flow of the
molten metal. There is a welding simulation described in [6] in which the multiple
reflection of laser at the free surface was considered, but the calculation method
of the multiple reflection was not described. The purpose of the present study is
the unsteady thermohydrodynamic analysis of the melting / evaporation of metal in
laser drilling considering the multiple reflection of laser, evaporation of the material
and evaporation recoil pressure.

The multiple reflection calculation of the laser is essential in the laser drilling
simulation. The present authors [7] have already proposed methods to calculate the
multiple reflection of laser by the ray tracing technique and calculate the power dis-
tribution in the wall surface of the hole shape expressed by the Volume of Fluid
(hereafter VOF) method. In this paper, an analytical model is constructed for laser

E. Ohmura (B)
Department of Management of Industry and Technology, Graduate School of Engineering,
Osaka University, Osaka 565-0871, Japan
e-mail: ohmura@mit.eng.osaka-u.ac.jp

297A. Öchsner et al. (eds.), Materials with Complex Behaviour, Advanced Structured
Materials 6, DOI 10.1007/978-3-642-12667-3_19, C© Springer-Verlag Berlin Heidelberg 2010



298 E. Ohmura and S. Noguchi

drilling of metal and the governing equations are described. The multiple reflection
of the laser, evaporation recoil pressure, mass loss by the evaporation and the varia-
tion of the free surface are considered. A thermohydrodynamic analysis is conducted
on the basis of the constructed model. The variation of the laser power distribution
absorbed at the wall surface of the keyhole, the variation of the velocity distribution
of the molten metal and the difference of the hole shape dependent on the material
are investigated.

2 Analysis Method

2.1 Governing Equations of the Thermohydrodynamics [7]

The molten metal is supposed to be an incompressible Newtonian fluid. The
governing equations are the equation of continuity

∇ · v = 0. (1)

The Navier-Stokes equation

ρ

[
∂v
∂t

+ (v · ∇)v
]

= −∇p + μ∇2 v + F, (2)

and the equation of energy

ρ

[
∂H

∂t
+ (v · ∇)H

]
= ∇ ·

(
K

Cp
∇H

)
+ w, (3)

where v is the flow velocity vector, p the pressure, F the body force vector, ρ the
density, μ the coefficient of viscosity, K the thermal conductivity, Cp the specific
heat at constant pressure, H the enthalpy and w the internal heat generation. The
internal heat generation is obtained by the multiple reflection calculation of the laser
by the ray tracing, which is reported in Ref. [8].

2.2 Calculation of Free Surface

2.2.1 VOF Method and Advection Calculation

In this study, the VOF method [9] was adopted as the expression method of the
surface shape. In the VOF method, when the domain is divided into elements, the
shape of the free surface is expressed by the fluid volume proportion F for the ele-
ment region V.F takes a value of 0 ≤ F ≤ 1 by definition. A position of F = 0.5
was considered here to be the interface of the liquid and vapor phases.

It is supposed that the physical properties in each element can be expressed by
the next equation with F:
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φ = φlF + φg(1 − F), (4)

where φl and φg are the physical properties of the fluid and the gas, respectively. In
this simulation, the gas is assumed to be air.

The advection equation of the fluid volume proportion F, which represents the
free surface flow, can be expressed by the next equation:

∂F

∂t
+ ∇ · (Fv) = 0. (5)

The MARS (Multi-interfaces Advection and Reconstruction Solver) method [10]
was used for calculation of the advection quantity.

2.2.2 Treatment of Surface Tension

Consideration of surface tension is necessary for the treatment of a fluid having
a free surface. In the conventional method where the free surface is the boundary
of the calculation region, the treatment of the boundary condition is complicated.
Therefore, the CSF (Continuum Surface Force) method [11] was used in this study,
where the surface tension, that is a surface force, is converted into a body force,
and then introduced into the Navier-Stokes equation. The interfacial normal vector
v(x) and the body force vector FSV(x) are expressed in the following equations,
respectively:

n(x) = ∇ρ(x)

[ρ]
, (6)

FSV(x) = σκ(x) n(x)
ρ(x)

〈ρ〉 , (7)

where σ is the surface tension coefficient, κ the interfacial curvature, [ρ] = ρl − ρg

and 〈ρ〉 = (ρl + ρg)/2.

2.3 Vaporization Model and Evaporation Recoil Pressure

The laser energy absorbed at the surface region S by multiple reflection is dif-
fused into the material and is also used for evaporation after evaporation start. The
evaporation mass mv of the material during the time interval �t is evaluated by

mv =
∫ t+�t

t Q dt + ∫ t+�t
t

∫
Sin

K
Cp

∂H
∂n

∣∣∣
Sin

dS dt

Lv
, (8)

where Q is the laser power absorbed at the surface area S calculated by the multiple
reflection, LV the evaporative latent heat, and Sin is the inside boundary surface of
the material region whose temperature reached the boiling point. The evaporation
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recoil pressure pr can be expressed by the product of the gaseous flow velocity vT
at the Knudsen layer termination and the evaporated mass per unit time and per unit
area ṁv:

pr = ṁvvT = mv

S�t
vT , (9)

vT = 1

4

√
8kTs

πma
, (10)

where k is the Boltzmann constant, Ts the temperature at the material surface and
ma the mass of a single atom [12].

The evaporation recoil pressure is also converted into a body force by the above
CSF method, and it is introduced into the Navier-Stokes equation. The body force
vector FPV(x) is expressed in the next equation.

FPV(x) = pr n(x)
ρ(x)

〈ρ〉 (11)

2.4 Computational Algorithm

The SMAC (Simplified Marker and Cell) method [13] is a velocity correction
method that is used as a computational algorithm for the flow velocity and the
pressure. The discrete equation of the Navier-Stokes Eq. (2) is as follows:

vn+1 − vn

�t
+ (vn · ∇) vn = − 1

ρ
∇pn+1 + μ

ρ
∇2vn + 1

ρ
Fn, (12)

where n is the time step and �t the time division. Because the unknown pn+1 is
included in the right-hand side of Eq. (12), the predicted value of the flow velocity
at the next time ṽ is calculated by

ṽ = vn −
[

(vn · ∇) vn − μ

ρ
∇2 vn − 1

ρ
Fn

]
�t. (13).

The true flow velocity vn+1 is expressed by the sum of the predicted value of
the flow velocity ṽ and the corrected quantity of the velocity δv, as shown in the
following equation.

vn+1 = ṽ + δv (14)

On the other hand, Eq. (15) is obtained from Eq. (12) and Eq. (13).

δv
�t

= − 1

ρ
∇pn+1 (15)
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By taking the divergence of both sides of Eq. (15) and considering Eq. (1),
Poisson’s Eq. (16) about pressure pn+1 is obtained as follows:

∇ ·
(

1

ρ
∇pn+1

)
= 1

�t
∇ · ṽ. (16)

The pressure pn+1 can be calculated by solving Eq. (16). The flow velocity can
be revised by Eq. (17), introduced from Eq. (14) and Eq. (15).

vn+1 = ṽ − �t

ρ
∇pn+1 (17)

The flow chart of this simulation is shown in Fig. 1. First of all, the surface
normal vector is calculated from Eq. (6). The surface tension and the evaporation
recoil pressure are converted into body forces FSV and FPV with the obtained normal
vector, and they are substituted into the Navier-Stokes equation. Then, the velocity
field vn+1 and the pressure field pn+1 are calculated by the SMAC method. With the
obtained velocity field, a new F value of each element is calculated by the advection
Eq. (5).

Afterwards, the multiple reflection of the laser beam is calculated by ray trac-
ing at the new surface, and the absorbed laser power distribution in the surface

Yes

No
End

Start

Flow vector  vn+1

Pressure  pn+1

Medium flow vector v~

Normal vector  n

F value  Fn+1

Enthalpy  Hn+1

Evaporation mass  

Evaporation recoil 

Output

End?

Multiple reflection 

Initial data

Body force  FSV, FPV

CSF

SMAC

t ← t + Δt

MARS

Fig. 1 Flowchart of the
laser drilling simulation
considering multiple
reflection
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is calculated. Using the obtained laser power distribution, the energy equation is
solved, and the enthalpy of the material H is calculated. When there is an element
whose temperature is beyond the boiling point, the evaporation mass is calculated
by Eq. (8), and the evaporation recoil pressure pr is calculated by Eq. (9).

When a calculation step is performed, the normal vector at the surface is
calculated again.

3 Analysis Results

3.1 Analysis Condition

The finite element method was used for the numerical calculation. The analysis area
was 141 μm×141 μm×135 μm (see Fig. 2). The region of 105 μm high was taken
in the negative side and the region of 30 μm high was taken in the positive side,
when the initial surface is z = 0. The central axis of the laser beam was taken along
the z axis. The analysis area was divided into 33×33×40 with a hexahedron linear
element. The analysis area divided by elements is shown in Fig. 2. The material in
the negative side is pure iron, whose physical properties are shown in Table 1. The
boundary condition was heat insulation and the flow velocity at the surroundings of
the analysis area was zero. The flow velocity of the nodes whose temperature was
lower than the melting point and F was not less than 0.5 was set also to zero.

Fig. 2 Analysis area divided by elements
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Table 1 Thermal and Physical properties of pure iron

Property Value

Melting point [K] 1,809
Boiling point [K] 3,160
Density [kg/m3] 7,870
Specific heat [J/kg] 460
Thermal conductivity [W/m K] 83.5 − 4.57 × 10−2T (293 ≤ T ≤ 1273)

29.7 (1273 < T)
Latent heat of melting [J/kg] 2.47 × 105

Latent heat of evaporation [J/kg] 6.29 × 106

Viscosity [N s/m2] 3.7 × 10−3 exp(4.14 × 104 / 8.3144T)
Surface tension coefficient [N/m] 1.872 − 4.9 × 10−2(T − 1536)

A laser whose wavelength is about 1 μm such as a Nd:YAG laser and fiber laser
was assumed. The influence of the plasma can be ignored for such wavelengths
[7]. The laser intensity was a Gaussian distribution, and a collimated beam was
irradiated perpendicularly to the initial surface. The beam radius was 20 μm and
the laser power was 250 W. A reflectivity of 0.65 was used, which is the reflectivity
of iron for a wavelength of 1 μm. The inside of a circle with a radius of 26.5 μm
of the present laser beam includes 97% of the whole power. Therefore, the part of
beam which was included in a square of 26.5 μm × 26.5 μm was divided in a bunch
of 210 × 210 rays, and power was given to each ray by considering a Gaussian
distribution. The power of the rays outside the circle with a radius of 26.5 μm was
set to zero, because it is small enough compared with the paracentral power. The
irradiation time was assumed to be 25 μs.

3.2 Hole Formation Process

The time variation of the surface shape during laser irradiation is shown in Fig. 3.
Formation of a hollow begins after about 1 μs from the start of laser irradiation.
A large hollow is formed at time of 5 μs, as shown in Fig. 3b. The hole depth
increases at 10 μs and 15 μs, and the hollow grows as a hole (Fig. 3c, d).

At 20 μs, the central part of the hole begins to fall down conspicuously, and the
formation of the keyhole begins (Fig. 3e). The keyhole grows up increasingly after
that, and the keyhole depth becomes about 60 μm at 25 μs, as shown in shown in
Fig. 3f.

3.3 Time Variation of Laser Power Distribution Absorbed
at Wall Surface

Figure 4 shows a part of the 44,100 rays displayed and the laser power distribution
absorbed at the wall surface in the x−z cross section of the hole are shown in Fig. 4.
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(f) t = 25 µs(e) t = 20 µs

(d) t = 15 µs(c) t = 10 µs

(b) t = 5 µs(a) t = 0 µs

Fig. 3 Surface variation in laser drilling (laser power: 250 W, 1/ e2 radius: 20 μm)

As shown in the left-hand side of Fig. 4b, the laser is reflected only once at 5 μs
because the hole depth is extremely shallow. Therefore, the maximal value of the
absorbed laser power in Fig. 4b is the same as in Fig. 4a.

At 10 μs, the laser is reflected twice. However, the maximal value of the absorbed
laser power does not change (left-hand side of Fig. 4c). Because the hole is shallow,
rays are reflected at the hole wall of the opposite side after the first reflection and go
out of the hole.

However, the maximal value of the laser power absorbed at the hole bottom
increases at 15 μs, as shown in Fig. 4d, because the gradient of the hole wall
becomes steep and the rays reach the hole bottom by multiple reflection.
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Fig. 4 Relationship between hole shape and laser power distribution

At 20 μs, the increase of the power at the hole bottom by the multiple reflection
is remarkable (Fig. 4e). The hole becomes deeper at 25 μs, as shown in Fig. 4f, and
the number of reflections till the rays reach the hole bottom increases. Therefore, the
maximal value of absorbed laser power decreases compared with Fig. 4e, however,
it is about 4.4 times compared with Fig. 4a.

The relationship between the laser irradiation time and the hole depth in this
simulation is shown in Fig. 5. The drilling velocity is about 1.3 m/s until 15 μs,
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but it is accelerated to about 3.8 m/s when over 15 μs. 15 μs is the time when the
laser power absorbed at the hole bottom begins to increase by multiple reflection, as
mentioned above.

It is understood from Fig. 4 that the power at the hole bottom increases by multi-
ple reflection even if the depth of the hole is comparatively shallow. This is a factor
to grow a shallow hole to a keyhole. On the other hand, multiple reflection becomes
too remarkable when a hole becomes much deeper. As a result, it is estimated that
the laser power at the hole bottom decreases and the growth rate of keyhole falls.

3.4 Relationship between Hole Depth and Absorptance

The time variation of the hole depth and the absorptance of laser energy in laser
drilling was investigated. Here, the absorptance ε was defined as

ε = Absorbed laser power by material

Incident laser power
. (18)

The relationship of the hole depth and the absorptance ε is shown in Fig. 6.
Absorptance begins to increase when the hole depth exceeds about 10 μm, and
abruptly increases after that. It is understood that the multiple reflection is effec-
tive from the stage when the hole depth is comparatively shallow. The increase of
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the absorptance slows down when the hole depth exceeds 20 μm. The hole depth
reaches about 58 μm at 25 μs when the laser irradiation is finished, and the absorp-
tance rises to about 0.75. This indicates that multiple reflection becomes remarkable
and the absorption efficiency of the laser power becomes sufficiently high when the
keyhole becomes much deeper.

3.5 Time Variation of Velocity Distribution in the Process
of Hole Formation

The surface shape and flow velocity vectors in the x− z cross section at 5 μs, 15 μs,
20 μs and 25 μs are shown in Fig. 7a, b, c, d, respectively.

Figure 7 was taken from a depression angle of about 6 degrees. At 5 μs, little
time passes since the surface begins to be pushed down by evaporation recoil pres-
sure. Therefore, flow pushing down the surface at the hole central part is generated,
but the flow velocity is about 0.04 m/s, which is not so large (Fig. 7a). Compared
with Fig. 7a, at 15 μs, the flow pushing down the surface at the hole central part is
accelerated to about 0.33 m/s by evaporation recoil pressure, as shown in Fig. 7b.

At 20 μs, the eddy which moves from the surface toward the inside at the upper
part of the molten pool is generated, as shown in Fig. 7c. The flow toward the surface
of the molten metal is changed to the flow moving toward the inside of the molten
pool by surface tension. As a result, an eddy is formed.

10 µm

(a) t = 5 μs (b) t = 15 μs

(c) t = 20 μs (d) t = 25 μs
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Fig. 7 Velocity vectors and hole shape during laser irradiation (material: iron, laser power: 250 W,
1/ e2 radius: 20 μm)
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At 25 μs, the eddy becomes more remarkable (Fig. 7d). It is estimated that the
shape of the molten pool becomes a nail head type by this eddy.

3.6 Effect of Material on Hole Shape

The effect of material on the hole shape was examined using aluminum. As well
as in the case of the simulation for iron, a 1 μm laser was assumed. Reflectance of
aluminum for a wave length of 1 μm is about 0.93 [14, 15]. The laser power used in
the drilling of aluminum was set to 1.25 kW so that the laser power absorbed at the
initial surface corresponds to the case of iron. The reason is that the purpose of the
present simulation has the purpose to investigate the effect of the physical properties
of the material on the hole shape. The irradiation time was 25 μs which is the same
as that of iron.

The surface shape and flow velocity vector in the x − z cross section at 25 μs are
shown in Fig. 8. This figure is also taken from depression angle of about 6 degrees.
Compared with Fig. 7d, the hole shape of the aluminum is narrower than that of iron.
Furthermore, it is understood that compared with iron, the flow velocity vectors in
the inside of aluminum are distributed more widely. This means that the melting
layer of aluminum is larger compared with that of iron. The thermal diffusivity of
aluminum is larger than that of iron. Therefore, the energy lost by thermal diffusivity
increases, and the energy used for evaporation decreases. On the other hand, in
comparison with the melting point of iron which is 1,809 K, the melting point of
aluminum is 933 K, which is lower. Therefore, the hole of aluminum is narrower,
and its molten pool becomes wider.
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Fig. 8 Velocity vectors and
hole shape at t = 25 μs
(material: aluminum, laser
power 1.25 kW, 1/ e2 radius
20 μm, reflectivity 0.93)

4 Conclusion

A thermohydrodynamic analysis method for laser drilling of metal was proposed by
considering the multiple reflection of laser, evaporation of the material, and evap-
oration recoil pressure. Time variations of laser power distribution absorbed at the
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hole wall and the velocity distribution of the molten metal in the keyhole formation
process and the effect of material on the hole shape were investigated. The following
conclusions can be drawn:

(1) At the stage where the depth of the hole is comparatively shallow, the power
at the bottom of the hole increases by the effect of multiple reflection. This
becomes a factor in the growth of the shallow hole into a keyhole.

(2) When the hole becomes deep, the effect of multiple reflection becomes remark-
able and the absorptance increases. On the other hand, the laser power absorbed
at the hole bottom decreases. In this simulation, the absorptance increases to a
value of about 0.75.

(3) When the hole becomes deep, the flow field shows circulation of molten metal
that rises near the walls of the keyhole and by surface tension, moves away from
the keyhole at the surface, forming an eddy.

(4) Because the thermal diffusivity of aluminum is larger than that of iron, the
energy lost by thermal diffusivity increases, and the energy used for evapo-
ration decreases. On the other hand, in comparison with the melting point of
iron which is 1,809 K, that of aluminum is 933 K, which is lower. Therefore, in
case of aluminum, the molten pool broadens and the hole becomes narrow.

This paper shows a simulation of laser drilling by considering the multiple reflec-
tion of laser and evaporation of material. The usefulness of this simulation method
will be investigated in future by comparing it with a laser drilling experiment.
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Effect of Flight Spectrum Loads on the Damage
Tolerance Evaluation of a Helicopter Frame

Marco Giglio and Andrea Manes

1 Introduction

The structural safety of helicopters is guaranteed with a deeply fatigue analysis
in the design phase [1–3] and a clear schedule of inspection during service life.
However, the design and maintenance of helicopters are particularly important and
complex with respect to aircrafts. The peculiarity lays in two ways: the load spec-
trum that is composed by a high number of low-amplitude cycles, which result from
the mechanical rotation of the rotor blades (severe vibratory loads), and the low
velocity impact damage. These types of loads can lead to high fatigue damage
accrued in short time or rapid crack propagation from accidental flaws or dam-
ages. Due to this, the condition based maintenance for fatigue is not the most
typical approach for helicopter fatigue, since short inspection intervals are fre-
quently required. The FAR (Federal Aviation Regulations) and also the new CS
(Certification Specification) standards, promoted by the European Aviation Safety
Agency for the global aviation scenario, indeed points out how the determination
of the real operative usage is a fundamental issue. It should be for the design of
every aircraft, but even more critical in the case of helicopters. Actually, adoption of
redundancy and low stress level is recommended but cannot be always implemented.
Furthermore, failures need to be monitored also due to not directly predicted damage
like accidental damage, environmental damage, life extension [4].

Considering these issues, the development of Health and Usage Monitoring
Systems (HUMS) has received considerable attention from the helicopter commu-
nity in recent years [5, 6] with the declared aim to increase flight safety, increase
mission reliability, extend duration of life limited components and, of course, reduce
maintenance costs [7].

Structural Health Monitoring (SHM) seems capable to help in reducing the main-
tenance cost, which is about 25% of the direct operating cost of the helicopter [5]
and plays an important role especially in the case of the ageing helicopters.
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With the aim to reduce the direct maintenance costs of the airframe without com-
promising any safety or reliability issues, in the last years some vibration monitoring
systems were integrated into the gears and rotating shafts of the helicopter trans-
mission, and now the HUMS is an integral part of the new generation helicopters.
However, it is important to underline that HUMS is actually mainly based on
monitoring vibrations generated in components critical for the flight performance.
Data are continuously recorded using accelerometers, processed and compared to a
threshold value and models that describes the allowable and accumulated damage.
HUMS is installed on various helicopters such as the Sikorsky SH-60B Black Hawk,
S-61, and S-76, the AgustaWestland EH-101 and AW139, the Boeing CH-47D and
MH-47E Chinook, WAH-64 and AH-64D Apache and UH-60A Black Hawk, but
are based only on the principle of usage monitoring acquiring loads and vibra-
tion without any direct indication of incipient failure. An exception is the on-board
diagnostic systems like the structural life monitoring of the Bell-Boeing V22.

Thus regarding the structural helicopter fuselages, only partial attempt to apply
reliable methods to monitoring directly on-line the damage nucleation, accumu-
lation and propagation during life were carried out. In this field, an integrated
and reliable system for monitoring the damage in the fuselage (diagnosis) and for
evaluating the time inspections and remaining life (prognosis) is missing.

For what concerns the aicraft scenario, both Boeing and Airbus are starting to
use HUMS, in particular, approximately 150 Comparative Vacuum Monitoring
CVM sensors were used in the qualification of GLARE on the A380 full scale
fatigue test rig [8].

According to the main aim of the sensor network (the degradation mechanism
is the main phenomena directly dedicated to the health monitoring), the candidate
sensors would identify when a fatigue crack has initiated or when an existing crack
grows, and monitor crack growth in the most stressed hotspot. Considering also
the future requirement to be embedded in real operating frames, sensor reliability
becomes important when measurements are required over a long period of time, as
long as costs, environmental resistance and weight are concerned.

Specifically, for the SHM purpose of aerospace frames, the potential sensor types
are crack gage, comparative vacuum monitoring (CVM), Acousto-Ultrasonic (AU),
Acoustic emission (AE), Lamb waves, fibre-optic strain (in particular, Fibre Bragg
Gratings (FBG)), Eddy Current, Microelectromechanical system (MEMS) etc. A
change in the material local behavior (and hence a damage) can be picked up and
localized by an array of such sensors.

The crack gage is a well known sensor for crack monitoring and consists of a
thin coupon that can be bonded to a structural member in the vicinity of a known
stress raiser. The gage utilizes the indirect potential drop method for measuring
the crack growth. Comparative Vacuum Monitoring (CVM) [8, 9] technique pro-
vides a novel and interesting method for crack initiation detection and long term
monitoring of fatigue cracks in aircraft structures. Open cracks generate leaks in a
series of galleries bonded to the structures. Pressure changes in a system of hair-fine
capillaries provide an indication of structural defects (cracks, corrosion and loss of
bonding contact), tracked with a remote monitoring device. CVM has the ability
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to monitor external surfaces of materials for crack initiation, propagation and corro-
sion. In addition, CVM sensors can also be embedded between components (e.g. lap
joints) or within material compounds such as fibre composite. Airbus and Boeing
are using CVM technology for both laboratory and structural tests. In particular,
Airbus has developed sensors for early detection of fatigue cracks within riveted
lap and butt joints. This is achieved by placing the sensor between the lap/butt joint
components. The sensors are inert and may be left in-situ (in the structure) for real
time or periodic monitoring. Furthermore, the sensors do not suffer the restriction
of wire crack gauge, which have a significant probability of failure if a bending
moment is repeatedly applied to the sensor. CVM sensors can be placed in fatigue
critical hotspots and are sensitive enough to pick up cracks as they initiate Tests with
CVM on helicopter have been executed for Sea King helicopters being operated by
the British Royal Navy and Royal Air Force.

AE/AU technology can detect structural defects long before possible catastrophic
failures [8]. This is possible because discontinuities will produce detectable emis-
sions, long before structural integrity is compromised and structural failure occurs.
Acoustic Emission (AE) is based on elastic radiation generated by the rapid release
of energy from sources within a material (impacts, crack initiation, crack growth,
delamination). AE sensors are passive small piezoelectric sensors mounted to a
convenient surface of the material. The sensor response and front end filters can
remove frequencies below about 100 kHz, which includes most audible noise. The
result is that acoustic emission can be used to monitor a structure for active damage
even when ambient noise levels are extremely high. Acoustic emission is sensi-
tive enough to detect newly formed cracks. AE helicopter HUMS has been used
for detecting damage in SH-60 helicopter drive trains. Acousto-Ultrasonic (AU) is
a technique that sends acoustic waves into the structure and intercepts them when
they emerge on the other side. Deviations from the expected wave pattern indicate
the presence of discontinuity like cracks. The European project AISHA (Aircraft
Integrated Structural Health Assessment) aimed to contribute in realizing an aircraft
monitoring technology by using ultrasonic Lamb waves as the basic sensing prin-
ciple [10]. The special potential of Lamb waves for damage detection arises from
their propagation capabilities. Lamb waves are guided acoustic waves propagating
in plate-like structures. In the case of damage, the propagation of an ultrasonic Lamb
wave will be disturbed resulting in a characteristic reflection and attenuation pattern.
Experiments performed within AISHA on lab-scale and on selected full-scale parts
showed the ability of Lamb waves or other guided waves to give information on
correlations between acoustic parameters and damage in structural parts.

Fibre Bragg Gratings (FBG) are fibre-optic sensors with elastic properties that
mirror those of the tested material, and can be used to monitor temperature, thermal
and mechanical stress, damage caused by collision or impact, and delaminations.
These sensors have the advantage of being light weight, having all passive con-
figurations, low power utilization, immunity to electromagnetic interference, and
bandwidth, compatibility with optical data transmission and processing, long life-
times, low cost and high sensitivity, comparing with typical electrical strain gauges,
such as resistive type, piezoelectric, semiconductor, and capacitance gauges. These
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sensors in fact generally have a small dynamic range, gauge factors of less than 5,
and are affected by environmental conditions such as moisture and temperature.

The use of Microelectromechanical systems MEMS is also an interesting option.
MEMS are miniature electromechanical sensor and actuator systems. Advances in
MEMS technologies have led to dramatic reductions in size, power consumption,
and cost for wireless communications. Their small size allows them to be used in
applications where conventional sensors and actuators would be intrusive. Because
of the economies of scale achievable from the conventional chip manufacturing pro-
cesses, they can be mass produced and copiously applied in a cost-effective manner.
These types of sensors have been used on aircraft structures due to their minimal
aerodynamic disruption [11]. MEMS sensing technologies are appropriate for local
SHM applications, such as those that identify crack initiation, propagation and cor-
rosion. However deploying a large number of MEMS devices over a large area in a
cost-effective manner is a difficult problem. Moreover reliability and measurement
accuracy are still problems that must be addressed for successful implementation of
MEMS technologies together with wireless data transmission and connection to a
power source.

Traditionally, cracks must be monitored by conducting visual and non destructive
testing on a large area of the aircraft during the operating life. Often, this can require
significant downtime to get access to such an area with a handheld testing machine.
The advantage of SHM is that once the sensors network is installed and set up,
inspection is possible not only without disassembling parts but also in continuum
using a real time strategy to detect failures (existence, location, type, extent). Thus is
possible to make a prognosis of their effect on the overall reliability of the structure.
In case of damage, the system directly identifies the location and follows-up actions
that can be taken. The application of low-power sensors will bring these benefits
with low costs in terms of overall energy consumption of the helicopter.

The data elaboration during the whole structural health monitoring process
involves selecting the quantities to be measured, the types of sensors to be used,
the locations where the sensors should be placed, the number of sensors, the sen-
sor resolution, bandwidth and the data acquisition/storage/transmittal hardware. The
data fusion process is extremely important: the integration of the data from a mul-
titude of sensors with the objective of making a more robust and confident decision
than is possible with any one sensor alone.

It is important to state that the base of this advanced prognostic program is
the availability of finite element models (FEM) of the structure with and with-
out damage. This is the key step for a complete knowledge of the structure in
the damaged and undamaged condition. Thus, the information obtained from the
FE analysis allow for the extraction of reliable information from sensor data,
i.e. the identification of the damage-sensitive properties, derived from the mea-
sured dynamic response, which allows to distinguish between the undamaged and
damaged structures.

Actually, the finite element method represents a useful tool in the analytical eval-
uation of local stress and strain. In particular, the finite element method makes it also
possible to study the fatigue and damage tolerant behaviour of complex structures
using fracture mechanics approach [12–14].
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In spite of the versatility and power of the FE method, experimental tests can-
not be completely removed from the design process. Currently, a complete fatigue
assessment approach (including damage tolerant behaviour) include of both the
experimental test phase and the numerical model development [15]. Moreover, due
to the complexity of the aerospace structure, FE submodeling technique is widely
used [16–18], in particular for the calculation of the fracture mechanics parameter
[14].

The passage of the crack through a rivet hole in a typical aerospace frame con-
struction (skin, stringers and ribs), connecting the skin with a stringer, has been
considered in [17]. An analytical model from literature and a FE model of the whole
panel specimen, with a submodel of the rivet hole passing through, have been car-
ried out to investigate the crack parameter, the Stress Intensity Factor (SIF). The
analytical and FE models give coincident results when the same test configuration
is modelled. Otherwise, the great advantage of the FE model is the capability to
describe complicated and non usual states of stress and failure conditions. Moreover,
the FE model allows to know the complete state of stress of the panel during the
propagation of the crack and thus permits a more complete fatigue and damage
tolerant assessment of the component.

In this work, a finite element model of the whole rear fuselage of an actual heli-
copter is presented. The first purpose is to obtain the curve of the stress intensity
factor KI versus crack length for a crack introduced in the most stressed zone.
Therefore, the crack propagation vs. real contingent loads (represented as a com-
bination different spectrum loads) can be calculated in order to asses a dedicated
danger and/or performance index of the components with respect to the damage
phenomena in the real usage scenario.

2 The FE Model

The structure under exam was a typical aerospace frame with panel skin, stringers
and ribs made in Al-Li 8090 T 81, Fig. 1. A FE Model was developed using MSC
Patran as preprocessor and ABAQUS/Standard as solver and post processing, Fig. 2.
The model started from the modular joint (the joint between the rear and the central
part of the fuselage) and included the rear fuselage and the tail unit. The panels
and the ribs’ cores were modelled using shell elements S4R5 with four nodes and
with the appropriate thickness. The ribs were strengthened with beam elements to
give out the plane stiffness in the same way used for the stringers. The stringers were
modelled using beam elements. Considering that the tail unit was built with a folding
system, the folding beams were modelled using rigid beams. These components are
not under examination in this assessment because they were previously analyzed in
detail [18].

With the aim to obtain a refined mesh in the areas where there were stress
concentrations, the final size was obtained through an iterative process.

The skin panels of Rear Fuselage and the stringers were made in Al-Li 8090-T81
alloy (Young modulus E = 79,000 [MPa]).
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Fig. 1 Translucent view of the finite element model of the rear fuselage. The stringers and ribs are
visible

Fig. 2 Finite element model of the rear fuselage

The model was constrained fixing all the degrees of freedom of the nodes high-
lighted in Fig. 3. Three different loads were applied to the model: Fy (tail rotor
traction), Fz (tail plane lift) and My (reaction torque from the tail rotor), Fig. 4.
The load spectrum applied to the helicopter is described next and it was build using
different combinations of these three loads.



Effect of Flight Spectrum Loads on the Damage Tolerance Evaluation 317

Fig. 3 Constraints applied to the rear fuselage finite element model. The nodes highlighted have
been fixed

Fig. 4 Forces Fy and Fz and torque My applied to the rear fuselage acting in their positive direction
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Fig. 5 Mises equivalent stresses. The most stressed zone is highlighted

According to the maximum force applied and considering that the model was lin-
ear (due to negligible amount of non linear phenomena to be modelled), an analysis
of the most stressed zone was carried on separately for the three load. The results
shown that Fy is the most stressing load and the most stressed zone of the fuselage
is illustrated in Fig. 5.

In order to calculate carefully the stress distribution, and thus the stress intensity
factor SIF versus crack length curve (in the further step), a detailed modelling of the
most stressed area was carried on as shown on Figs. 6 and 7. The SIF calculation

Fig. 6 External view of the
submodel of the window area
of the rear fuselage
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Fig. 7 Internal view of the submodel of the window area of the rear fuselage

in fact could not be carried out using the model of the whole fuselage due to the
extreme difference between the dimensions of the Rear Fuselage (8,700 mm) and the
crack (few millimetres, at least at the beginning of the propagation). The elements
used in the model were eight nodes shells. No contact interaction was imposed
between the different parts of the model. Gap elements were used instead. This
means that the model was non linear at all, however the non linearity was checked
to be negligible. Moreover, beam elements were used to simulate the rivets. The
dimension of the elements in the submodel was between 0.7 and 23 mm.

A detailed reproduction of the thickness of the panels (including the reinforce-
ment) of the rear fuselage was used for the submodel.

2.1 Experimental Validation of the Model

The FE model was validated comparing the numerical results obtained with the
experimental data available from fatigue tests on the rear fuselage.

Four fatigue tests were executed. Three tests were conducted applying only one
component of the load and in the fourth test all the components of the load were
applied at the same time. Deformation was recorded on the left side of the rear fuse-
lage using four strain gauges. The position of the strain gauges is visible in Fig. 8,
where numbers 1, 2, 5, 6 indicate the strain gauges rosettes. Also, displacement data
was collected by means of six LVDTs positioned in different zones of the fuselage.
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Fig. 8 Position of the strain
gauges

According to the experimental data, in agreement with FE analysis, it could be
stated that the worst type of load for the part of the rear fuselage analysed is the
Fy load. The influence of force Fz and torque Mz was very limited. Thus, for the
validation of the model, only the test data obtained from the Fy load was used.

Only LVDT 6, positioned in the rear zone of the fuselage, reported a significant
value of displacement for test involved only Fy. Therefore only this LVDT was used
to validate the FE model.

Comparing the experimental data and the numerical results no problem arise for
strain gauges 3 and 4 because they are located in an area in which the stress and
strain gradient was low. The FE value was calculated selecting the nodes closest to
the position of the strain gauge and evaluating the mean value of the strain at these
nodes.

On the other hand, all other strain gauges were located in areas where the stress
and strain gradient was high. In this case the value of strain predicted by the FE
model was strongly influenced by the position of the real strain gauge and by its
orientation in such a manner that a rotation of a few degrees could modify the pre-
dicted value by 100 microstrains or more. However, being the strain gauges rosette,
the maximum principal stress was used for this purpose. The influence of the posi-
tioning of the strain gauge was reduced selecting the nodes surrounding the location
of the strain gauge on a bit larger area and evaluating the mean value of the maxi-
mum principal stresses at these nodes. The results of the comparison for the stresses
obtained by the strain gauges values are reported in Table 1. The maximum princi-
pal stresses for the experimental data were calculated from the three experimental
strains measured by each strain gauge rosette. In Table 2, the comparison of the
global displacement as acquired from LVDT 6 is reported. As previous remarked,
this comparison was executed only with the Fy load applied (experimental and FE
model).
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Table 1 Comparison
between FE results and
experimental data obtained
from strain gauges (test with
only Fy applied). The
parameter used for the
comparison is the maximum
principal stress

Drawing
position

FE value
(MPa)

Experimental
value (MPa) Error (%)

1 45.8 47.5 −3.6
2 34.2 28.9 18.4
3 388.0 342.0 13.0
4 244.0 272.0 −10.0
5 141.0 82.2 71.5
6 81.6 81.5 0.2

Table 2 Comparison
between experimental data
and FE results for LVDT 6
(test with only Fy applied)

Drawing
position Direction

FE value
(mm)

Experimental
value (mm) Error (%)

6 Y (aligned
with Fy)

32.3 35.4 –8.7

With the exception of strain gauge 5, the error between FE and experiments for
the strain gauges and the LVDT was less than 20%. This is an acceptable error. Strain
gauge 5 was very close to the edge of the window in the Rear Fuselage in an area
where the stress and strain gradient is very high. However, the results obtained with
the model were conservative. Thus, it can be concluded that the results predicted by
the FEM model were reliable and the model was validated.

2.2 Analysis of the Cracked Structure

Once the model was validated, a crack was introduced in the most stressed area of
rear fuselage.

According to the previous analysis (only with Fy), most stressed area was care-
fully selected, see Figs. 9 and 10. A 1.27 mm initial crack was introduced in this
area Fig. 10 in the direction orthogonal to the maximum principal stress. Discrete
steps were used to simulate the propagation of the crack. For each step, the crack
was extended in a straight direction by a fixed length and the direction of propaga-
tion was evaluated using the maximum energy release rate criterion. For the reason
explained in the previous paragraph, only force Fy was used in the determination of
the crack propagation direction even if the three analyses, reported in Table 3, were
carried out for each step of the propagation.

The calculation of the stress intensity factor KI was done for a crack length
between 1.27 mm, Fig. 10 and 85 mm, Fig. 11. At about 60 mm, the crack reached a
stringer. In order to obtain a conservative solution, the stringer was broken near the
crack path for the remaining propagation, see Fig. 12. The results of the simulation
are reported in Table 3.
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Fig. 9 Mises equivalent stresses. The most stressed area is highlighted

Fig. 10 Initial crack introduced in the submodel (external view), crack length = 1.27 mm, Mises
equivalent stresses

Table 3 Values of KI obtained from the FE analyses for different crack lengths

Crack length (mm) KI – Fy (MPa·√mm) KI – Fz (MPa·√mm) KI – My (MPa·√mm)

1.27 199.9 0.4 0.1
1.60 264.2 2.3 0.5
3.20 392.9 3.5 0.8
6.40 473.1 4.3 1.0

12.80 521.7 5.2 1.2
25.60 568.3 6.8 1.6
41.40 573.8 8.4 1.9
85.00 476.5 4.5 1.0



Effect of Flight Spectrum Loads on the Damage Tolerance Evaluation 323

Fig. 11 Final configuration of the crack (external view), crack length = 85 mm, Mises equivalent
stresses

Fig. 12 Final configuration of the crack (internal view), crack length = 85 mm, Mises equivalent
stresses. The stringer has been broken

3 Crack Propagation Analysis in Rear Fuselage

The loads used to simulate the crack propagation were defined on the basis of the
loading spectra for the certification of the helicopter. The load history was based
on the definition of three different flight types (high, medium and low loading level)
reported in Table 4, each one corresponding to a different typical mission of the heli-
copter, and on the definition of vibratory loads (loading cycles not directly linkable
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Table 4 Number of flights foreseen in a life of 10000 flight hours (FH) for the manoeuvre loads

Flight spectrum
Occurrences in 10,000
FH (number of flights)

Cycles in each
flight

High loading
factor

4,000 11

Medium loading
factor

16,500 10

Low loading
factor

21,000 10

to specific flight manoeuvres) but generally present because of the interaction
between the rotor’s downwash and the tail structure.

The different loading cycles, both the deterministic ones from manoeuvre spectra
and the vibratory ones, were defined referring to the value of the two forces (the tail
rotor traction Fy and the tail plane negative lift Fz) and the couple (the reaction
torque from the tail rotor My) .

The vibratory loads acting on the structure were considered as constant ampli-
tude cycles. Different kinds of vibratory loads were considered in the analysis: low
frequency vibrations (0.05 and 4.10-4 Hz) and high frequency vibrations at 17.5 Hz.
Each kind of vibratory load had an estimated percentage of application evaluated for
10,000 flight hours. Thus, it was possible to calculate the number of cycles expected
for each vibratory load for 10,000 flight hours.

The different manoeuvre and vibratory loads were organized in a simple spec-
trum. The spectrum was defined to be as realistic as possible, maintaining the correct
proportion between the manoeuvring spectra and the vibratory loads. Some trial
simulations were carried out in order to study the effects of alternative solutions.

Thus, the load history was used in the simulation of the crack propagation using
NASGRO [19] equation as the propagation law. The relationship was fitted using
the data obtained from the experimental test at constant amplitude loading on the
material Al-Li 8090-T81: fatigue crack propagation tests (ASTM E647/91 standard)
with specimens of geometry M(T) with a central crack, and load ratio of R = 0.1,
0.3 and 0.7 were carried out.

Crack growth rate calculations in NASGRO use a relationship called the
NASGRO equation. Forman and Newman of NASA, Shivakumar of Lockheed
Martin, De Koning of NLR and Henriksen of ESA developed different elements
of this equation and Forman and Mettu first published it. It is given by:

da

dN
= C ·

[(
1 − f

1 − R

)
·�K

]n

·
(

1 − �Kth
�K

)p

(
1 − �Kmax

Kc

)q (1)

where N is the number of applied fatigue cycles, a is the crack length, R is the load
ratio, ΔK is the stress intensity factor range, C, n, p, and q are constants which are
empirically derived, ΔKth is the threshold stress intensity factor, Kc is the critical
stress intensity factor and f is crack opening function.
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Some material, such as Al-Li 8090-T81 alloy, show only a marginal effect in
respect to crack closure. Therefore it is assumed that f = R in Eq. (1) and NASGRO
equation becomes:

da

dN
= C�Kn ·

(
1 − �Kth

�K

)p

(
1 − �Kmax

Kc

)q (2)

To eliminate the crack closure effect in the NASGRO program, the bypass
parameter was assumed to be α = 5.845 and Smax/σ 0 = 1.

Further elaborations were executed for the calculation of the threshold stress
intensity factor range, �Kth and for critical stress intensity factor Kc. The exper-
imental data resulting from the test carried out from Department of Mechanics
were used to obtain the coefficient of Wheeler’s equations, also looking for those
coefficients that minimise the gap between the curve and the data test.

Two different simulations were carried out, one using Wheeler retardation model
[20] (to account for the delay retardation due to applied overloads) and the other one
without retardation.

The stress intensity factor KI was evaluated by superposition for each single
load. Even if the model is non-linear, according with the previous assertion of
substantial linear behaviour, the superposition of the effects can be successfully
applied. In fact an analysis was carried out applying the three loads at the same
time. The value of the stress intensity factor evaluated in the analysis was compared
to the one calculated by the superposition of the single loads, showing a negligible
difference. The resulting curves showing the crack length vs. flights hours are shown
in Figs. 13 and 14 and Table 5. The simulation of the propagation was carried out

Fig. 13 Crack length vs flight hours curve describing the crack propagation. No retardation has
been used. Initial crack length: 1.27 mm
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Fig. 14 Crack length vs flight hours curve describing the crack propagation. The Wheeler
retardation model has been used. Initial crack length: 1.27 mm

for an initial crack length of 1.27 mm and a crack length up to 85 mm, that was the
maximum length used in the finite element models. The value of the stress intensity
factor KI had never reached the critical value KIc, which is no failure was occurred.

Moreover comparing the experimental path obtained from the fatigue test with
the one obtained from the FE simulations, Fig. 15, it is possible to see the good
agreement and thus the capability of the numerical approach to describe the
degradation mechanism.

Table 5 Flight hours needed to reach three particular events (crack length)

Flight hours

Event No retardation model Wheeler retardation model

a = 7.5 mm 151 480
a = 15 mm 227 715
a = 85 mm 817.5 2,542



Effect of Flight Spectrum Loads on the Damage Tolerance Evaluation 327

Fig. 15 A comparison
between the crack path during
the experimental test and in
the FE simulations

4 Conclusions

The SHM is the next future key factor of all the cutting edge structures and in
particular for what concern helicopters and (going ahead) tiltrotors. The raw instru-
ments (sensor, algorithms and stress analysis) are ready for this task. They form
basic elements of the SHM that should be integrated into one expert system. The
sensor network together with data acquisition, processing and fusion units are key
elements to obtain information about the current status of the system. Numerical
models based on the FE analysis represent a powerful tool to develop a virtual
image of the real system, as shown in this work. They are fundamental to study var-
ious scenarios that might occur under different conditions. Moreover, the numerical
models results can be integrated with the data from the sensors and be used in situ
to identify a degradation mechanism based on the current status of the system and
its history. Thus they can be used to evaluate the impact of the degradation on the
overall structure and, accordingly, to precisely predict its future development. The
results processed by the adaptive prognostic assessment are the basis for advisory
generation regarding the maintenance.

Considering that the primary damage in aircraft metallic structures results from
fatigue cracks initiated at holes of joints and fasteners, a SHM system for aircraft,
and in particular for helicopter subjected to severe vibratory loads, can reduce the
repair and maintenance costs in two ways: first, the direct costs related to the repair
can be reduced by detection damage at a very early stage; alternatively, the repair
can be postponed until the next scheduled major overhauls to reduce indirect costs.
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The fatigue damage related to a flight task is not exactly estimable / predictable:
for similar flight tasks, the fatigue load and damage on a structure will vary due
to variability in pilot performance and external conditions; the uncertainty related
to the fatigue damage of a structure can be quantified by collecting data through
sensors and making statistical inference on fatigue damage parameters of a data
model.

Thus, a SHM integrated design can lead to a more optimized structure with
the possibility to increase payload and performance and of course yet still provide
required strength and safety level. Moreover, SHM is a powerful tool for the ground
but also air crew, monitoring the health condition in order to make a correct real
time prognosis for the achievement of the mission task. In addition, considering the
cost of a new machine and thus the possibility to perform life extension program of
existing machine, SHM can improve life of ageing airframe without reduce safety.
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Effects of Manufacturing-Induced Residual
Stresses and Strains on Hydrogen
Embrittlement of Cold Drawn Steels

J. Toribio, M. Lorenzo, D. Vergara, and V. Kharin

1 Introduction

Prestressing wires are susceptible to surface cracking, in particular of the stress
corrosion origin. Environmentally assisted fracture of prestressing steels has been
the subject of extensive studies on the importance of hydrogen embrittlement (HE)
in material damage [1]. With regard to manufacturing factors affecting the strength
and life of prestressing wires, apart of the properties of material per se, the issue of
residual stresses is essential [1]. The pioneering work described in [1] established
an important milestone by establishing a quantitative relationship between the level
of near-surface residual stresses, represented by hypothetical stress distributions,
and HE of prestressing steel wires. However, due to a lack of necessary data, the
influence of realistic residual stress profiles or the effects of plastic strain on HE
have not been elucidated yet. This paper goes further in the analysis, so the earlier
developed model in [1] is advanced to analyze the influence of the residual stress-
and-strain profiles on hydrogenation of cold drawn prestressing steel wires.

2 Background Theory of Hydrogen Induced Fracture in Metals

Hydrogen induced fracture (HIF) depends on the amount of hydrogen in prospective
microstructural fracture sites in metal so that local rupture events are associated with
a critical combination of the responsible stress-strain field characteristics and hydro-
gen concentration C over a relevant material element xc (cell, “grain”, or domain of
interest), as described elsewhere [2–4]. HIF advances by hydrogen-assisted nucle-
ation of a (micro)crack in the site of the locally worst “concentration-stress-strain”
triple which may be resolved to define, for the given stress-strain field, the distribu-
tion of critical concentration of hydrogen Ccr = Ccr(x) as a function of the material
point identified by a vector x.
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Hydrogen from corrosive environment penetrates into the metal and is accumu-
lated in prospective fracture sites until the evolution in time t of its concentration
C(x, t) attains somewhere the critical level Ccr after a certain period of time tf, and
then rupture occurs. Therefore, the criterion to determine the fracture time tf takes
the form:

C(x, t) = Ccr(x), (1)

where the fracture locus x = xc (or scale) must be specified, e.g., as suggested
elsewhere [1–5].

Hydrogen diffusion in metal is often the mode of transport which controls
fracture time. Diffusion in metals proceeds towards maximum system entropy cor-
responding to uniform distribution of a given amount of specie, represented by its
concentration C, over available occupation sites whose density may be characterised
by the solubility factor KS. This latter depends, firstly, on the metal lattice dilatation
induced by the hydrostatic stress σ = (σ 1+σ 2+σ 3)/3 where σ 1,2,3 are the principal
stresses, and secondly, on the amount of lattice imperfections (traps for hydrogen,
cf. [6]) that may be associated with the equivalent plastic strain εp. Therefore the
stress-strain affected solubility of hydrogen in metal may be expressed as follows
[2–4]:

KS = KSε(εp) exp(Ωσ ) with Ω = VH

RT
, (2)

where KSε is the strain-dependent component of solubility, VH is the partial molar
volume of hydrogen in metal, R the universal gas constant, and T the absolute
temperature. This leads to the stress-strain affected diffusion flux J [2–4]

J = −D(εp)

{
∇C − C

[
Ω∇σ + ∇KSε(εp)

KSε(εp)

]}
, (3)

where D = D(εp) is the diffusion coefficient of hydrogen in metal which depends
on plastic strain. Mass balance then gives the diffusion equation in terms of
concentration in the form:

∂C

∂t
= −divJ. (4)

Hydrogen entry into metal, i.e. the boundary condition for diffusion corre-
sponds to the equilibrium between its environmental thermodynamic activity and
concentration within metal at the entry surface �:

C(�, t) = C�, C� = C0
eqKSε

(
εp(�)

)
exp (Ωσ (�)) , (5)

where C0
eq is the equilibrium concentration of hydrogen in a virgin material (free

of stress and strain) under given environmental conditions, which stands here as a
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measure of hydrogenation capacity of the environment. Finally, the initial condition,
C(x, t = 0) = C0(x), must be defined for every particular case.

3 Residual Stresses and Plastic Strains Due to Cold Drawing

To proceed with the implementation of the presented model to describe HIF of pre-
stressing wires, the first step is to determine the residual stresses and plastic strains
in wires generated by cold drawing. To this end, some numerical simulations of
the wire drawing process have been performed recently [7]. However, focusing
on the sole residual stresses, no data have been provided about the plastic strains
behind them. To fill in this deficiency, a further simulation of drawing ought to be
undertaken.

To start with, a one-pass cold drawing process was modelled. It consisted of
passing the wire, which initial diameter was d0 = 12 mm, through the die with the
hole diameter d1 = 9.6 mm and the inlet angle α = 7.6, to get the wire with a final
diameter d2 = 9.64 mm (Fig. 1).

As a prototype wire material, the eutectoid pearlitic high-strength steel (0.74%
C, 0.70% Mn, 0.20% Si, 0.015% P, 0.023% S) was considered. In order to obtain the
experimental engineering stress— engineering strain curve (Fig. 2), several tensile
tests were carried out. According to this curve, the Young modulus E = 199 GPa
and the 0.2%-offset yield strength σY = 710 MPa were obtained. With them, to
perform finite-element simulations, the constitutive model for a wire material was
chosen to be elastoplastic solid with von Mises yield surface, associated flow rule,
and isotropic strain-hardening following the data shown in Fig. 2. The hard die was
modelled as an elastic material with a Young’s modulus of 600 GPa, corresponding
to tungsten carbide.

Obviously, the axisymmetric formulation is fairly suitable for simulations.
Correspondingly, a finite element model was created to model the drawing pro-
cess in cylindrical coordinates (r, z), as shown in Fig. 1. A suitable length of the
rod to be cold drawn was chosen to be equal to 10d0 in order to get rid of the

Fig. 1 Scheme of the cold drawing process
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end effects on the resulting stress-strain field in the wire. The boundary condition
of the prescribed axial displacement was imposed on the extreme front of the rod.
Elastoplastic large deformation – large strain calculations were performed using a
general-purpose finite element code with updated Lagrangian formulation. Several
finite element meshes formed by four-node quadrilaterals were tried till the accept-
able mesh-convergence of the result was ensured. Configurations of the modeled rod
before its entry into the die, within the die, and after the completion of cold drawing
are presented in Fig. 3.

Focusing only on the residual hydrostatic stress σR and equivalent plastic strain
εp as the only relevant variables for the analysis of the hydrogenation of cold drawn
wires, Fig. 4 displays the resulting radial distributions of σR and εp along the radial
coordinate 0 ≤ r ≤ a = d2/2 in the middle portion of the deformed rod, where the
end effects were proved be effectively vanished and the variables of interest become

Fig. 3 Finite element simulation of the drawing process: the rod before entry into the die (top-left);
the rod within the die (top-right); the cold drawn rod (bottom). Contour bands indicate the levels
of the equivalent plastic strain
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Fig. 4 Computed distributions of residual stress (a) and plastic strain (b) in cold drawn steel wire

independent on z. The obtained results are in reasonable agreement with available
data of experiments and modeling [7].

4 Hydrogen Accumulation in Cold Drawn Steel Wires

Service conditions of prestressing steel wires usually combine predominantly ten-
sile loading of round bars by uniform remotely applied tension σ app and the effects
of harsh environments. The Ammonium Thiocyanate Test (ATT) intends to repro-
duce these service conditions using a specific controllable environment. Obviously,
cylindrical coordinates are best suited for the analysis of wire hydrogenation too.
Since for long wires there are no input data depending either on the axial coordinate
or on the hoop one, a one-dimensional modeling in terms of the sole spatial variable
r becomes natural. A finite-element analysis of axisymmetric boundary-value prob-
lem of stress-strain affected diffusion (3), (4) and ( 5) was implemented basically as
described elsewhere [8]. In brief, applying the Galerkin process, the same family of
the element shape functions Ne(r) served as trial and weighting functions in usual
terms [9], and they also were used to approximate the distributions of stress σR(r)
and plastic strain εp, which are presented in Fig. 4, in the way, that

σR(r) = %σRjNj(r) and εp(r) = %εpjNj(r), (6)

where j = 1,. . ., M carries out the numbering of M nodes of the finite-element mesh.
The weak form of the weighted residual statement of the problem rendered the
system of ordinary differential equations with respect to the finite-element nodal
concentration values Cj(t) as the functions of time as follows:

[
Mij

] {dCj

dt

}
+ [

Kij
] {

Cj
} = {Fi} (i, j = 1, . . . , M), (7)
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where the components of the element matrices [. . .] and the vector-columns {. . .},
respectively, are

Mij =
∫

V

NiNjdV , (8)

Kij =
∫

D
(
εp

eq

){
∇Ni∇Nj −

[(
VH

RT
∇σ + ∇KS0

(
ε

p
eq
)

KS0
(
ε

p
eq
)
)

· ∇Ni

]
Nj

}
dV , (9)

Fi = −Js

∫

Sf

NidS, (10)

where the latter prescribes the flux of hydrogen JS on the part Sf of the surface
S = ∂V, whenever convenient. To solve these equations, the unconditionally stable
Galerkin scheme of time-domain integration was employed [9].

Simulations were performed using linear trial functions with respect to both
space and time variables. Spatial discretisation for diffusion problem was taken cor-
responding to the radial spacing of the nodes of the deformed finite element mesh
from the simulation of the drawing process.

Although it is known [9] that strong accuracy deterioration may occur applying
the Galerkin method to transport problem such as (3), (4) and ( 5), when a mesh-
related parameter called the Peclet number increases too much, this complication
has never been met in performed simulations.

The set of model parameters was assigned as follows. The temperature in the per-
formed calculations was fixed T = 323 K. The partial molar volume of hydrogen for
iron-based alloys, i.e., steels, was well determined and considered to be fairly con-
stant, VH = 2 cm3/mol [6]. Required experimental data on hydrogen diffusivity and
solubility were not available for the steel being considered, and reasonable estimates
had to be adopted. Concerning these characteristics, a wide dispersion of measure-
ments was found in this kind of materials (i.e., the same bulk composition, grade,
etc.), and all these data turn out to be very sensitive to minute alterations of alloy
composition, microstructure and accumulated plastic deformation, as it has been
pointed out in numerous publications since long ago, cf. e.g., [6, 10, 11]. Hydrogen
diffusivity in bcc-iron alloys at temperatures below 500 K may vary from 10–13 to
10–8 m2/s [10]. Moreover, a specific feature of hydrogen behaviour, which is rel-
evant in particular for the family two-phase steels, is the substantial anisotropy of
diffusivity induced by cold-working procedures, such as rolling or drawing [11]. As
a result, in heavily cold drawn pearlitic steels with highly plastically strained ferrite
having high dislocation density and lamellae cementite with extensive area of highly
strained interfaces, hydrogen diffusivity at ambient temperatures may be as low as
10–12 m2/s and less, cf. [1]. Then, taking into account this reasoning, and adopting
the simplest one from analytical forms used to fit the data about the plastic strain
effect on hydrogen diffusivity and solubility in metals [12, 13], the following may
be accepted for heavily cold drawn steel wires:
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D(εp) = D0 exp(−ηεp), (11)

KSε(εp) = 1 + βεp, (12)

where D0 = 3×10–12 m2/s is consistent with [1] for the chosen temperature, and the
fitting coefficients η = 2.9 and β = 4 are taken from Ref. [13].

To discriminate the contributions of stress and plastic strain on hydrogena-
tion of wires, the results of the computations for stress-only and for stress-strain
assisted diffusion are presented in Figs. 5 and 6 in terms of dimensionless concen-
tration C(r, t)/C∗ where the reference concentration C∗ represents the hydrogenating
capacity of environment modified by applied stress σ app, i.e., the equilibrium
hydrogen concentration in stressed virgin material, which within elasticity limits
is C∗ = C0

eqexp(Ωσ app/3). The textbook solution [14] for diffusion in a virgin mate-
rial, i.e., not taking into account the effects of residual stress-strain field on diffusion,
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diffusion (dashed line), and stress-strain unaffected diffusion (dotted line)
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Fig. 6 Calculated concentration evolution of hydrogen at indicated depths in the cold drawn steel
wire obtained with stress-strain assisted (solid line), stress-only assisted (dashed line), and stress-
strain unaffected diffusion (dotted line). Horizontal lines marked with closed and opened circles
indicate the corresponding levels of equilibrium hydrogen concentration C∞ in stress-strain and
stress-only affected cases, respectively

is also presented in Figs. 5 and 6. At long simulation times, calculated concen-
trations C(r, t→∞) manifested approaching the theoretical equilibrium solutions
C∞(r) to be attained at t→ ∞. These latter are given by the closed-form steady-state
solution of the diffusion problem [2–4], which in this case takes the form

C∞/C∗ = KS
(
σR(r), εp(r)

) = KSε
(
εp(r)

)
exp (ΩσR(r)) (13)

From the presented results, it follows that the effects of residual stress and strain
on hydrogenation consist in the wire over-saturation with hydrogen in comparison
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with the virgin material. The distinction between stress-only and stress-strain
assisted hydrogenation is that relative over-hydrogenation occurs at shorter diffu-
sion depths from the wire surface r = a and under-hydrogenation at deeper material
locations in the strain-affected case, and the division between these over- and under-
hydrogenated domains moves deeper into the wire as time goes on. In terms of the
hydrogenation of a wire skin of definite thickness, where critical events of HIF can
be expected to occur (cf. [1]), residual strain field will reduce the amount of hydro-
gen accumulated in this skin at short diffusion times, and augment this amount at
long exposure times. This is the consequence of two kinds of effects of the stress
and plastic strain fields on hydrogen diffusion. The first one is the increase of hydro-
gen solubility due to tensile stresses and accumulated plastic strain [cf. Eqs. (2) and
(12)], which results in rising hydrogen absorption by a metal. This is what enhances
the hydrogenation of cold drawn wires. On the other hand, the decrease of hydrogen
diffusivity (or its mobility) in plastically strained material [cf. Eq. (11)], slows-down
this process of enhanced hydrogen accumulation in the wires. Thus, in a given mate-
rial element, in the HIF locus xc in particular, the effect of plastic strain generated
by cold drawing allows to attain substantially higher level of concentration C, espe-
cially in the wire skin where HIF initiates, but this takes notably longer time of
diffusion if compared with that for stress-only assisted case.

Different consequences of the cold drawing plastic strains may be expected for
hydrogen accumulation in prospective HIF sites. To exemplify the matter, let’s iden-
tify the fracture nucleation site depth xc with the dimension (location) of the critical
surface (subsurface) crack, as it was suggested in the earlier model [1], and take
roughly its value of 450 μm. Then, at the critical location near the point r = a –
xc≈ 0.9a, depending on the required critical concentration Ccr, would it be it lower
or higher, the effect of plastic strain, can be preventing (Fig. 5, short-time plot)
or promoting (Fig. 5, long-time plot) the attainment of the critical concentration
Ccr. This would have evident consequences for the rupture time tf in the case of
stress-only dependent critical concentration Ccr = Ccr(σ ef), where the effective
stress σ ef is the sum of the applied and residual stresses in axial (or longitudinal)
direction.

Unfortunately, this is not the only factor since HIF is known to be strongly con-
ditioned by the alloy microstructure, and this latter in prestressing steel wires is
known to be strongly altered by cold drawing. Then the critical concentration must
depend not only on the effective stress level, but also on the steel microstructure,
i.e., on the plastic strain generated by cold drawing. Thus, elucidation of the effects
of cold drawing on HIF in prestressing steel wires still requires clarification of the
mechanism of HIF, which must take into account the microstructural consequences
of cold drawing on rupture events.

Nevertheless, the presented theory may be employed to interpret the conse-
quences of various treatments, which affect the residual stress-strain fields, on
workability of prestressing wires under the risk of HIF from the point of view of
their influence on the (residual) stress-and-strain profiles, and as a consequence,
on the stress-strain assisted diffusion of hydrogen towards prospective rupture
sites.
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It also may be useful to reveal the situations in potential HIF loci (i.e., the lev-
els of stress, strain and hydrogenation therein), which would be beneficial for the
understanding of the mechanisms of HIF in wires.

5 Conclusions

A theory to predict the lives of high strength pearlitic steel wires under conditions
of hydrogen assisted fracture in harsh environments is presented, which is based on
the consideration of stress-and-strain affected diffusion of hydrogen in metal and
on the criterion of hydrogen induced local fracture. It associates the effects of var-
ious manufacturing procedures on the serviceability of prestressing wires with the
influence of the residual stress-strain profiles on the diffusion of hydrogen towards
prospective rupture sites, apart from the role of the stress-strain field as the relevant
mechanical factor of fracture.

To carry out predictions of HIF in wires with the use of this theory, the knowledge
of the whole distributions of plastic strains and triaxial residual stresses generated
in wires by cold drawing is necessary. Numerical modelling is the feasible way to
determine them throughout the entire wire diameter. The paper presents the results
of simulations of the cold drawing process, that give the desired inhomogeneous
distributions of the triaxial residual stresses and plastic strains, whose magnitudes
and gradients are considered the influencing factors of metal hydrogenation within
the adopted theoretical framework.

Numerical modelling of the stress-strain assisted hydrogen diffusion in cold
drawn wires was performed. The evolutions of hydrogen concentration in wires
were calculated. The relevance of residual stresses and plastic strains for hydro-
gen accumulation in prospective rupture sites in wires was manifested. This way,
this paper emphasizes the roles of both residual stresses and plastic strains (gener-
ated by cold drawing) in the performance of prestressing steel wires under hydrogen
environment.

The proposed theory and modelling seem to be a promising tool for further
development of life-prediction procedures for prestressing steel wires under HIF
conditions on the basis of reduced testing, and to account for various residual stress
and strain profiles induced by surface treatments. The theory may be employed
to foresee the consequences of various manufacturing procedures and treatments,
which affect the residual stress-strain fields, on the workability of prestressing wires
under the risk of HIF from the point of view of their influence on the (resid-
ual) stress-and-strain profiles, and as a consequence, on the stress-strain assisted
diffusion of hydrogen towards prospective rupture sites.
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Hybrid Bonding of Advanced High Strength
Steels in the Lightweight Body Shell Design
for the Automobile Manufacturing

G. Weber, T. Bschorr, H. Cramer, O. Hahn, M. Rethmeier, and H. Thommes

1 Introduction

In the lightweight body shell mass production of automobiles, the application of
hybrid bonding techniques becomes more and more important in the future. One of
these hybrid bonding techniques is the combination of adhesive bonding and resis-
tance spot welding called weldbonding. This contribution is based on some special
results of a research project which was carried out by the German Welding Institute
SLV Munich and the University of Paderborn [1]. The weldbonding procedure
affords many advantages, e. g. improved crash performance, fatigue behaviour and
corrosion resistance. Therefore, this technology is state of the art in many branches
joining metal sheets. Especially for newly developed high strength multiphase
steels, also called advanced high strength steels (AHSS), this joining technique has
more advantages than other joining procedures for thin steel sheets. The application
of AHSS materials in conjunction with economically efficient and reliable joining
processes helps saving costs and conserving resources (weight reduction, energy
minimization) and provides at the same time consistent or improved safety of the
passenger cell (crash optimization). In this context, the Ultra Light Steel Auto Body
design (ULSAB) and New Steel Body (NSB) design are referred to [2, 3]. For more
information on AHSS see [4–6]. There are many contributions on the resistance spot
weldability of AHSS, the process reliability of the resistance spot welding process
and the mechanical behaviour of spot welded AHSS and some other steel grades
[7–12]. Furthermore, a lot of important publications have been written about the
weldbonding process and the properties of weldbonded joints [13–23]. But papers
on weldbonded AHSS do not exist [24]. In this contribution, statements will be given
about the process reliability of the weldbonding process and the mechanical prop-
erties of the hybrid bonded joints for different adhesives and different combinations
of a mild and some high strength steels.
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The results are based on the application of a rubber-based and two epoxy resin-
based adhesive systems. It will be shown that both the process reliability of the
hybrid bonding process and the mechanical and metallurgical behaviour of the
hybrid bonded joints are influenced by the combinations of base metals, the applied
adhesive system and the choice of the joining parameters. Especially the mechanical
behaviour of the weldbonded joints will be studied under quasi-static and impact
loads. An interpretation of the metallurgical behaviour of the weldbonded joints
will be given, too. Furthermore, a comparison of the fatigue behaviour of resis-
tance spot welded, adhesive bonded and weldbonded joints will be carried out.
The presentation of these results may be interpreted as widening of weldbonding
knowledge.

2 Conditions for the Application of the Weldbonding Process

2.1 Welding Equipment

The weldbonded joints were realized by a medium frequency direct current
(MF-DC) spot welding gun. The advantage of the medium frequency technology
with an operation frequency of 1,000 Hz consists in the possibility of a welding
current regulation which enables a very fast reaction with respect to any variation
in the weldbonding process. Figure 1 shows the principle of the weldbonding pro-
cess when welding with a MF-DC spot welding gun. The used equipment was a
stiff spot welding gun with short arms and a servo electric drive. The choice of the
welding parameters electrode force Fe and welding time tw depends on the applied
base metals. The electrode forces for the mild steel are 2.5 kN and 3.5 kN, for the
high strength steels 3.5 kN and 4.5 kN and for the Martensitic steel MS-W1200
4.5 kN and 5.5 kN. Depending on the strength of the base metals welding times
from 260 ms up to 400 ms are chosen [1].

Fig. 1 Principle of weldbonding and resistance spot welding
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2.2 Applied Adhesives

The realized weldbonding processes described in this contribution are based on three
one-component hot-curing adhesives. Especially a rubber-based adhesive (Terostat
5194), an epoxy resin-based adhesive (Betamate 1480) and an epoxy resin PUR-
based adhesive (SikaPower 498) were applied ([1]; see Table 1).

The viscous behaviour of these adhesives is different. The adhesive Terostat 5194
can be defined as an adhesive of low viscosity, the adhesives Betamate 1480 and
the SikaPower 498 can be defined as adhesives of medium viscosity. For instance,
Fig. 2 shows the shear viscosity depending on the shear stress. These results were
generated by the application of the shear stress slope to the adhesive specimen.
Both, the viscous behaviour of the adhesives and their yield point in the non-cured
condition were determined. It can be seen from Fig. 2 that the SikaPower 498 adhe-
sive, despite its higher viscosity, exhibits a lower yield point compared to Betamate
1480. Terostat 5194 has the lowest viscosity and the lowest yield point. The shear
viscosities of the two adhesives Betamate 1480 and SikaPower-498 align to one
another over all temperature ranges considered at shear stresses between 2.3 MPa
and 5.0 MPa. Any difference in their squeezability may therefore not be expected to
occur during the application of the electrode force (i.e. when the bond gap has nearly
reached its final geometry). By application of a force controlled amplitude sweep to

Table 1 Applied adhesives
Type of adhesive Base Viscosity

Terostat 5194 (A1) Rubber-based Low
Betamate 1480 (A2) Epoxy resin-based Medium
SikaPower 498 (A3) Epoxy resin PUR-based Medium

SikaPower 498 = A3

Betamate 1480 = A2

Terostat 5194   = A1

Fig. 2 Shear viscosity versus shear stress – determination of the flow limits
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the adhesive specimen the viscoelastic behaviour of the non-cured adhesives was
examined, too [1]. This was accomplished by identifying the characteristics of the
complex viscosity [1].

2.3 Advanced High Strength Steels

The newly developed so called Advanced High Strength Steels (AHSS) show supe-
rior properties in comparison with traditional high strength steels, for example
carbon steels and other conventional grades (see Fig. 3; [5, 6]). Due to the chem-
ical composition and the manufacturing process, AHSS offer an optimal solution
as regards high strength and good formability. The reason for such generally con-
tradictory behaviour is the combination of different microstructures, like ferrite,
austenite, bainite and martensite. The ULSAB (UltraLight Steel AutoBody) project
has demonstrated that the excellent properties of AHSS in combination with new
manufacturing processes and innovative design leads to a significant reduction in
the weight of body shells in automobile production and, accordingly, to a reduction
of CO2 emissions [2].

2.3.1 Grades of Advanced High Strength Steels

AHSS are normally classified into four types, i.e. dual phase steels (DP), TRIP
steels, complex phase steels (CP) and martensitic steels (MS). With the aid of a
temperature specific manufacturing process and thanks to different chemical com-
positions the amount as well as the dispersion of different microstructures (ferrite,
martensite, etc.) and the mechanical properties of AHSS can considerably be varied

TRIP steel 

complex phase steel martensitic steel 

dual phase steel 

Fig. 3 Formability versus strength for conventional and advanced high strength steels (AHSS)
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according to user requirements. The different microstructures of AHSS can be
characterized as follows [3–6]:

Dual Phase Steels (DP)

Dual phase steels have a ferritic matrix (ferrite content varying between 85 and 90%)
with inclusion of martensite islands. The mechanical properties of DP steel can be
influenced by changing the amount of martensite. Generally, increasing the marten-
site content also increases the mechanical strength. An advantage of DP steels is the
combination of high strength with high elongation when compared to conventional
high strength steels (see Fig. 3).

TRIP Steels

TRIP steels possess a complex microstructure dominated by ferrite (70–85%)
with residual austenite (up to 15%) and additions of martensite and bainite. The
strength/ductility balance is increased by strain induced austenite to martensite
transformation (TRIP effect). Steels with TRIP effect attain high uniform elongation
values at high tensile strength levels because of their very strong work hardening.

Complex Phase Steels (CP)

CP steels have a fine complex microstructure of bainite and with islands of retained
austenite and inclusions of ferrite and martensite. CP steels offer higher yield
strength in comparison with TRIP steels, however, with simultaneous decrease of
formability.

Martensitic Steels (MS)

MS steels offer a predominantly martensitic microstructure with minor quantities of
ferrite and bainite. In consequence of the martensitic microstructure, the mechanical
strength reaches up to 1,400 MPa and more, but with strongly restricted formability,
which is an essential factor to be considered in practical application in the automo-
bile industry. Table 2 shows typical mechanical properties of selected AHSS, which
are used for the following interpretations.

Press-Hardened Steels

Press-hardened steels such as UsiBor or Ultraform use boron as an alloying element.
Boron acts as hardening agent during thermomechanical treatments and provides a
material with excellent hardness and high strength. A quenching treatment leads to
precipitation of boron carbide at the grain boundaries as well as boron segregation.
The suppressing of austenite to ferrite transformation caused by this segregation
phenomenon leads to increasing hardenability. Furthermore, substitutional solid
solution elements such as Mn influence the strength after quenching.
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Table 2 Mechanical properties of the applied steel grades

Grade definition by
future standardization

Sheet
thickness
in mm Surface

Yield
strength
in MPa

Tensile
strength
In MPa

Fracture
strain
A20

DC04ZE 1.50 ZE50/50 + KSP
(Granocoat)

195 323 49

HCT780T 1.25 ZE75/75 696 879 29
HCT600XD 1.30 Z100 398 625 26
MS-W1200 1.55 – 948 1, 216 12
22MnB5 (UsiBor) 1.50 AlSi 1, 282 1, 471 11

3 Process Reliability of the Weldbonding Process

3.1 Welding Current Ranges and Process Reliability

The introduction of the weldbonding process reliability is based on the definition
of the resistance spot welding process reliability [7–12]. Thus, to ensure process
reliability during weldbonding under production conditions, the knowledge of the
welding current range (WCR) is of basic importance. Different WCR are obtained
depending on the selected welding parameters. The primary welding parameters of
resistance spot welding are the root mean square value (r.m.s.-value) of welding cur-
rent I, the stationary electrode force Fe and the welding time tw. These parameters
are the primary joining parameters of the weldbonding process, too.

In resistance spot welding, the WCR is usually defined on the basis of require-
ments imposed on the r.m.s.-value of welding current during spot welding. A
particular requirement is that the r.m.s.-value of welding current must be kept within
certain limits set by quality demands placed on the spot weld diameter dp.

The lower limit of the r.m.s.-value of welding current is determined by a mini-
mum spot weld diameter, whereas the upper limit of the welding current is given by
the physics of the spot welding process and the weldbonding process respectively.
Commonly used lower quality limits are spot weld diameters of dp = 3.5

√
t or

dp = 4
√

t, whereby t is the sheet thickness. These lower quality limits are then also
referred to as 3.5

√
t-limit or 4

√
t-limit. The situation is completely different with

the upper quality limits. The maximum admissible upper quality limit is usually
referred to as splash limit ISL. This limit constitutes a stability limit of the resistance
spot welding process and accordingly of the weldbonding process. The splash limit
is the very quality limit at which a spot weld can still be performed without the
occurrence of a splash. In order to ensure that at and below this limit no splashes
do in fact occur, it is necessary in setting this limit to take into account that it varies
within a certain scatter band. The variation of the upper quality limit depends on the
welding/joining parameters electrode force and welding time, on the material to be
joined and its coating, on the applied adhesive system, on the electrode cap types, on
the applied current form as well as on the electrical and mechanical machine prop-
erties of the spot welding unit. The spot weld diameter, and hence the upper and
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lower quality limits depend on the test procedure, and the fracture type must always
be indicated in welding range determinations. The WCR for AHSS, by definition, is
the setting range of the welding current. Particularly in the definition of the welding
range, a welding current difference according to

ΔI = IU − IL = ISL − I4
√

t (1)

is usually assumed, whereby the lower (IL) and the upper quality limits (IU) are
set by the 4

√
t – limit IL = I4

√
t and by the splash limit IU = ISL. The represen-

tation of the difference ΔI of the r.m.s.-value of welding current, according to Eq.
(1), between the upper and the lower quality limit as a function of the (stationary)
electrode force Fe and of the welding time tw

ΔI = f (Fe tw) (2)

is referred to as three-dimensional weldability lobe. From the three-dimensional
weldability lobe according to this definition, the classical two-dimensional weld-
ability lobes can be derived as special representations [7–10], i.e.

ΔI = f (Fe = const., tw) (3)

ΔI = f (Fe tw = const.). (4)

Furthermore, welding current ranges can be described by extended weldability
lobes [12]. The process reliability of the spot welding and the weldbonding process
depends on the size of the WCR. Roughly speaking, the process reliability will be
higher if the WCR becomes wider for the chosen welding parameters. The WCR is
determined by the welding parameters electrode force Fe and welding time tw and is
affected by a lot of influencing factors [7–11]. Thus, the process reliability depends
on the selection of welding parameters and on these additional influencing factors.
Important influencing factors are the shape and material of the electrode caps, the
base metal and the base metal combinations, the coating of the steel sheets and
the static and dynamic mechanical machine properties of the welding equipment.
Additionally the process reliability of the weldbonding process is influenced by the
properties of the applied adhesive system.

3.2 Welding Current Ranges of the Weldbonding Process

The size of the welding current range is a measure for the process reliability of the
weldbonding process (Fig. 4). In order to show the weldbonding process reliabil-
ity for different weldbonded AHSS, the corresponding weldability lobes were first
set up. The applied adhesives are given by Table 1. The mechanical properties of
the tested base metals are given by Table 2. For the tested base metals DC04ZE-
KSP, HCT600XD, HCT780Z + ZE50/50, MS-W1200 and 22MnB5 (UsiBor) and
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Yield strength 

180 – 240 MPa 

260 – 300 MPa 

300 – 420 MPa 

1000 MPa 

≤140 MPa 

Fig. 4 Application of steels with different yield strengths in the car body shell design

the applied adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower 498
(A3) the lower and upper quality limits IL and IU of the welding current I are given
by Table 3. The welding current differences corresponding to eq. (2) are given by
Table 4. In the following two-dimensional weldability lobes in accordance with
the special representation (4) with constant welding time (tW = const.) will be
used. Depending on the tested base metal different constant welding times (from
260 ms up to 400 ms) are used. Therefore, according to the representation (4), i.e.
ΔI = f (Fe, tw = const.) only the influence of the welding parameter electrode force
Fe on the welding current ranges ΔI for the different combinations of base metals
and for the three applied adhesives represented in Table 1 are investigated. The cor-
responding weldability lobes for these combinations are given by the Figs. 5, 6, 7,
8 and 9 It can be seen that in the case of weldbonding (RSW + A1, RSW + A2,
RSW + A3 with RSW = Resistance Spot Welding) both quality limits IL and IU

Table 3 Welding current limits for identical base metals and different adhesives

Joining technique

Weldbonding RSW

Base metal combinations and thickness
Terostat
5194

Betamate
1480

SikaPower
498 _

Welding current limits in kAWelding parameters
– Electrode force Fe
– Welding time tw

Fe in
kN IL IU IL IU IL IU IL IU

DC04ZE-KSP (1 mm)
tw = 300 ms

2.5 6.6 7.2 6.8 9.3 6.7 8.6 6.4 8.6
3.5 7.1 8.7 7.3 9.8 7.3 9.4 6.8 9.0

HCT600XD (1.3 mm)
tw = 260 ms

3.5 6.6 8.5 7.1 8.3 7.1 9.6 6.8 8.0
4.5 7.1 9.6 7.5 9.5 8.1 10.1 7.2 9.8

HCT780T (1.3 mm)
tw = 260 ms

3.5 5.4 7.3 5.3 7.0 5.5 7.3 5.2 7.0
4.5 5.6 7.5 5.8 8.1 6.2 7.8 5.7 8.2

MS-W1200 (1.5 mm)
tw = 300 ms

4.5 6.4 7.9 6.3 8.6 6.2 8.5 6.4 8.8
5.5 6.6 8.3 6.6 8.8 6.7 9.6 6.8 9.8

22MnB5 (2.0 mm)
tw = 400 ms

3.5 5.8 8.5 5.7 7.5 5.9 7.8 5.6 8.6
4.5 6.4 8.7 6.0 9.0 6.1 8.5 6.1 9.2
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Table 4 Welding current ranges for identical base metals and different adhesives

Joining technique

Weldbonding RSW

Base metal combinations and thickness
Terostat
5194

Betamate
1480

SikaPower
498 _

Welding current rangesWelding Parameters:
– Electrode Force Fe
– Welding Time tw Fe in kN ΔI in kA ΔI in kA ΔI in kA ΔI in kA

DC04ZE-KSP (1 mm)
tw = 300 ms

2.5 0.6 2.5 1.9 2.2
3.5 1.6 2.5 2.1 2.2

HCT600XD (1.3 mm)
tw = 260 ms

3.5 1.9 1.2 2.5 1.2
4.5 2.5 2.0 2.0 2.6

HCT780T (1.3 mm)
tw = 260 ms

3.5 1.9 1.7 1.8 1.8
4.5 1.9 2.3 1.6 2.5

MS-W1200 (1.5 mm)
tw = 300 ms

4.5 1.5 2.3 2.3 2.4
5.5 1.7 2.2 2.9 3.0

22MnB5 (2.0 mm)
tw = 400 ms

3.5 2.7 1.9 1.9 3.0
4.5 2.3 3.0 2.4 3.1

Fig. 5 Weldability lobes for the base metal DC04ZE-KSP (mild steel) and the different adhesives
Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3)
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Fig. 6 Weldability lobes for the base metal HCT 600 XD (dual phase steel) and the different
adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3)

increase with the increasing of electrode force Fe. Furthermore, the figures show
that for all tested base metals and each applied adhesives these quality limits shift
towards higher current values. This means that the energy input of the weldbonding
process is higher than in the case of resistance spot welding. Clearly, roughly speak-
ing the electrical energy needed for spot welding and weldbonding is proportional
to the second power I2 of the welding current. At the beginning of the weldbonding
process there is a higher energy input than for the resistance spot welding pro-
cess due to the influence of the used adhesive. The reason for this fact is the shunt
behaviour of the electrical resistance, which is strongly increased by the insulating
effect of the adhesive between the two metal sheets at the beginning of weldbonding
process [1].

An influence of the viscosity of the applied adhesives can be seen for the low
strength base metal DC04ZE-KSP and for the high strength Martensitic steel MS-
W1200. In these cases the low-viscosity adhesive Terostat 5194 (A1) produce
smaller welding current ranges than the medium-viscosity adhesives Betamate 1480
(A2) and SikaPower 498 (A3). But for the other three types of tested high strength
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Fig. 7 Weldability lobes for the base metal HCT 700 T (TRIP steel) and the different adhesives
Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3)

steel grades such an influence of the viscosity on the welding current ranges and
consequently on the process reliability cannot be observed.

In summary, one can say that the influence of the tested low- and medium-
viscosity adhesives for all weldbonded base metals of the same type on the
welding current ranges is not significant in comparison to the spot welding
process. Exemplary, the behaviour of the two base metal combinations DC04ZE-
KSP/HCT600XD and HCT600XD/22MnB5 will be discussed. The lower and upper
quality limits IL and IU for the welding current I are given by Table 5. The cor-
responding welding current ranges are given by Table 6 and Fig. 10 shows the
welding current ranges for the base metal combination DC04ZE-KSP/HCT600XD
depending on the electrode force Fe. The welding current ranges for the weld-
bonding process become significantly smaller than in the case of resistance
spot welding. Interesting in this case is the different behaviour of lower and
upper welding current limits for the low-viscosity and the two medium-viscosity
adhesives. For the low-viscosity adhesive the lower quality limits are nearly the
same and the upper limit changes towards lower welding currents. Compared with
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Fig. 8 Weldability lobes for the base metal MS-W1200 (martensitic steel) and the different
adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3)

the quite different behaviour of the quality limits for the weldbonding process
with respect to the medium-viscosity adhesives, this fact might be interpreted as
an influence of the viscosity of the applied adhesives. Interesting in this connec-
tion is the significantly lower energy input for realizing the upper quality limits
in the case of the low-viscosity adhesive Terostat 5194 (A1). A similar behaviour
of the welding current ranges cannot be stated in the case of weldbonding the
base metal combination of dual phase steel HCT600XD and press hardened steel
22MnB5 (UsiBor) (see Fig. 11). But analogously, for the first regarded base metal
combinations the behaviour of the welding current ranges for the weldbonding pro-
cess with the low-viscosity adhesive Terostat 5194 (A1) is quite different, too.
This fact may also to be interpreted as an influence of the viscosity of the used
adhesive.

Summarized it may be stated that the viscosity of the adhesives has a significant
influence, when combinations of base metals are weldbonded.
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Fig. 9 Weldability lobes for the base metal 22 MnB5 (UsiBor, press-hardened steel) and the
different adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3)

Table 5 Welding current limits for base metal combinations and different adhesives

Joining technique

Weldbonding RSW

Base metal combinations and thickness
Terostat
5194

Betamate
1480

SikaPower
498 _

Welding current limits in kAWelding parameters:
– Electrode force Fe
– Welding time tw

Fe in
kN IL IU IL IU IL IU IL IU

DC04ZE (0.8 mm)
HCT600XD (1.3 mm)
tw = 200 ms

2.5 7.2 8.7 8.3 10.1 8.3 10.0 7.4 9.7
3.5 8.0 9.5 8.9 10.5 9.0 10.8 8.0 10.5

HCT600XD (1.3 mm)
22MnB5 (2.0 mm)
tw = 300 ms

3.5 6.7 7.9 6.6 8.4 6.8 8.4 6.5 8.4
4.5 7.1 8.2 7.4 8.7 7.2 8.7 6.9 8.7
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Table 6 Welding current ranges for base metal combinations and different adhesives

Joining technique

Weldbonding RSW

Base metal combinations and thickness
Terostat
5194

Betamate
1480

SikaPower
498 _

Welding current rangesWelding parameters
– Electrode force Fe
– Welding time tw Fe in kN ΔI in kA ΔI in kA ΔI in kA ΔI in kA

DC04ZE (0.8 mm) / HCT600XD
(1.3 mm) tw = 200 ms

2.5 1.5 1.8 1.7 2.3
3.5 1.5 1.6 1.8 2.5

HCT600XD (1.3 mm) / 22MnB5
(2.0 mm) tw = 300 ms

3.5 1.2 1.8 1.6 1.9
4.5 1.1 1.3 1.5 1.8

Fig. 10 Weldability lobes for the base metal combination DCO4ZE-KSP/HCT600XD and the
different adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3)
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Fig. 11 Weldability lobe for the base metal combination HTC600XD/22MnB5 and the different
adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3)

4 Mechanical Properties of Weldbonded Sheets of AHSS

In this Section, a comparison of some selected mechanical properties of weldbonded
and spot welded sheets of AHSS and low strength reference sheets of mild steel is
carried out. For the characteristic data of the tested steel grades see Table 1. The
most important mechanical properties of weldbonded and spot welded joints are
the behaviour under mechanical static and impact loads. Furthermore, the fatigue
behaviour of weldbonded joints in comparison with spot welded joints is of main
importance.

In the following, some selected results on the tensile-shear strength under static
and impact load and on the fatigue strength under shear load for weldbonded and
spot welded joints of some different high and low strength steels will be given and
commented. Furthermore, the absorbed energy of the materials and its combinations
under static and impact load will be given, too. All results are based on the same
types of adhesives as used in Sect. 3 for weldability lobes construction showing the
process reliability of the weldbonding process.
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Fig. 12 Influence of the base metal strength on the strength of weldbonded (for Betamate 1480
(A2)) and spot welded joints for same base metals, with weld diameters (in columns)

The difference between the influence of the base metal strength on the spot
welded and the weldbonded joints for the medium-viscosity adhesive Betamate
1480 (A2) is given by the Fig. 12 and Fig. 13. On the other hand, a signifi-
cant increase of the tensile-shear force values is observed for the application of
the medium-viscosity adhesives Betamate 1480 (A2) and SikaPower 498 (A3)
(see Fig. 14). The influence of the viscosity is stronger in the case of impact load.
The absorbed energy of the spot welded and the weldbonded base metal com-
bination HCT780T/HCT800XD with the applied adhesives Terostat 5194 (A1),
Betamate 1480 (A2) and SikaPower 498 (A3) under static (a) and impact shear load

Fig. 13 Influence of the base metal strength on the strength of weldbonded (for Betamate 1480
(A2)) and spot welded joints for the base metal combinations, with weld diameters (in columns)
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a) b)

Fig. 14 Tensile-shear force of the base metal combination HCT780T/HCT600XD and the differ-
ent adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3) under static (a)
impact shear load (b)

is illustrated by the Fig. 15. Here, an analogous effect occurs. The absorbed energy
of the weldbonded joints with the medium-viscosity adhesives Betamate 1480 (A2)
and SikaPower 498 (A3) is significantly higher than for the application of the low-
viscosity adhesive Terostat 5194 (A1). This means that there exists a better crash
behaviour when the weldbonding is carried out with adhesives of higher viscosities.
Figure 12 shows the influences for the same base metals and Fig. 13 shows the influ-
ence for base metal combinations with the dual phase steel (AHSS) HCT600XD. In
all cases with the same base metals and the base metal combinations, an advan-
tage is discovered for the weldbonded joints in comparison to the spot welded
joints. This tendency becomes stronger for base metal combinations. Figure 14
shows the tensile-shear strength for weldbonded and spot welded joints of the base
metal combination HCT780T/HCT600XD for the applied adhesives Terostat 5194
(A1), Betamate 1480 (A2) and SikaPower 498 (A3) under static (a) and impact
shear load. It can be seen that both under static and impact load the tensile-shear
force values of the weldbonded joints for the application of the low-viscosity adhe-
sive Terostat 5194 (A1) are nearly identical to those of the spot welded joints. It
can be stated that the tensile-shear strength behaviour and the crash behaviour of
the weldbonded joints and static under impact shear load are influenced by the
viscosity.
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a) b)

Fig. 15 Absorbed energy of the base metal combination HCT780T/HCT600XD and the different
adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3) under static (a) impact
shear load (b)

In order to analyze the fatigue behaviour of weldbonded joints Wöhler tests
were carried out by a dynamic testing machine under a force-controlled regime
with a load ratio of R = 0.1. This was done for shear specimens using tensile-
fatigue test procedures according to EN ISO 14324. The applied test stop criterion
was the total fracture of the tested specimens. In this connection plug fail-
ures of fractures in the material were the dominating failure types. Exemplarily
the fatigue behaviour under tensile-shear load for the base metal combination
HCT600XD/22MnB5 will be discussed. A comparison of the S/N-curves for spot
welded joints with weld diameter dp = 6.7 mm and adhesives bonded joints with
the medium-viscosity adhesives Betamate 1480 (A2) and SikaPower 498 (A3) is
given by Fig. 16. It can be seen that in both cases of weldbonded joints there is
an advantage with respect to the spot welded joints. Figure 17 shows the S/N-
curves for spot welded joints with weld diameter dp = 6.7 mm and weldbonded
joints with weld diameter dp = 6.3 mm for the adhesive Betamate 1480 (A2). There
is an advantage of weldbonded joints with adhesive Betamate 1480 (A2) with
respect to the spot welded joints. The S/N-curves for spot welded joints with
weld diameter dp = 6.7 mm and weldbonded joints with weld diameter dp = 6.5 mm
for the adhesive SikaPower 498 (A3) are given by Fig. 17. Figure shows an
advantage of the weldbonded joints with respect to the spot welded joints, too.
In summary, weldbonded joints have a significant advantage over spot welded
joints (Fig. 18).
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Fig. 16 Fatigue behaviour (S/N-curves) of the base metal combination HCT600XD/22MnB5
for spot welded (dp = 6.7 mm) and adhesive bonded joints with Betamate 1480 (A2) and
SikaPower498 (A3)

Fig. 17 Fatigue behaviour (S/N-curves) of the base metal combination HCT600XD/22MnB5 for
spot welded (dp = 6.7 mm), adhesive bonded and weldbonded (dp = 6.3 mm) joints with Betamate
1480 (A2)
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Fig. 18 Fatigue behaviour (S/N-curves) of the base metal combination HCT600XD/22MnB5
for spot welded (dp = 6.7 mm), adhesive bonded and weldbonded (dp = 6.5 mm) joints with
SikaPower498 (A3)

Fig. 19 Weld nugget structures and the hardness curves of spot welded and weldbonded base
metal DC04ZE-KSP for Betamate 1480 (A2)
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5 Metallurgical and Fracture Behaviour of Weldbonded Joints

For the mild steel DC04ZE-KSP, the advanced high strength steel (AHSS) HCT
780T and the press hardened steel 22MnB5 (UsiBor) the metallurgical structures
of the weld nuggets for resistance spot welded and weldbonded joints with the
medium-viscosity adhesive Betamate 1480 (A2) are shown by the Figs. 19, 20
and 21. It can be seen that there is no difference between the spot welded and weld-
bonded nugget structures. Similar results are given for the application of other base
metals and its combinations for the adhesives A1 and A3 [1]. These results are con-
sistent with the hardness curves, also given by the Figs. 19, 20 and 21. There are
no significant differences between the hardness curves for the weldbonded steels
mentioned above and the applied adhesive Betamate 1480 (A2). Same results are
given for the application of the other adhesives Terostat 5194 (A1) and SikaPower
498 (A3) for the weldbonding of the investigated base metals and its combinations
[1]. The reason for these facts is the similarity of the electrical energy input after
the beginning phases of the weldbonding and the resistance spot welding process.
The higher total electrical resistance between the steel sheets during the beginning

Fig. 20 Weld nugget structures and the hardness curves of spot welded and weldbonded base
metal HCT780T for Betamate 1480 (A2)



364 G. Weber et al.

Fig. 21 Weld nugget structures and the hardness curves of spot welded and weldbonded base
metal 22MnB5 (UsiBor) for Betamate 1480 (A2)
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Fig. 22 Electrical resistance R between the steel sheets during the welding time tw for spot welding
and weldbonding with the adhesives Terostat 5194 (A1) and Betamate 1480 (A2) for DC04ZE-KSP
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Fig. 23 Electrical resistance R between the steel sheets during the welding time tw for spot welding
and weldbonding with the adhesives Terostat 5194 (A1) and Betamate 1480 (A2) for HCT780T

of the weldbonding process is attributed to the electrical insulating behaviour of
the applied adhesives. After the break down of the constant resistance, the cal-
culated total electrical resistance between the steel sheets achieves comparable
values for the weldbonding and spot welding process. Figures 22, 23 and 24 show
exemplary the electrical resistance between the steel sheets during the welding time
for the weldbonding and the spot welding process for the base metals DC04ZE-KSP,
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Fig. 24 Electrical resistance R between the steel sheets during the welding time tw for spot welding
and weldbonding with the adhesives Terostat 5194 (A1) and Betamate 1480 (A2) for 22MnB5
(UsiBor)
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Fe = 3.5 kN Fe = 4.5 kN 

RSW 

RSW+A1 

RSW+A2 

RSW+A3 

Fig. 25 Fracture behaviour of weldbonded and spot welded joints of the base metal HCT780T
(TRIP steel) for the adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3).
Results for the lower quality limit and different electrode forces Fe = 3.5/4.5 kN

HCT780T and 22MnB5 (UsiBor). It can be seen that the low-viscosity adhesive
Terostat 5194 (A1) leads to higher deviations from the electrical resistance for
the spot welding process than the medium-viscosity adhesive Betamate 1480 (A2)
for the above mentioned base metals during the beginning phase (process time
< 80 m sec). But after the beginning phase, the values of the electrical resistances
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Fe = 3.5 kN Fe = 4.5 kN 
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RSW+A2 

RSW+A3 

Fig. 26 Fracture behaviour of weldbonded and spot welded joints of the base metal HCT780T
(TRIP steel) for the adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3).
Results for the upper quality limit and different electrode forces Fe = 3.5/4.5 kN

between the steel sheets are independent of the applied adhesives, i.e. nearly iden-
tical in all cases. Therefore, the identical metallurgical behaviour in form of the
nugget structures and the hardness curves given above can be interpreted as a result
of the similar electrical behaviour of the weldbonding and the resistance spot weld-
ing process after the beginning phase. A comparison of the fracture behaviour of
weldbonded and spot welded joints of the base metals HCT780T (TRIP Steel) and
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Fe = 3.5 kN Fe = 4.5 kN 
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RSW+A2 

RSW+A3 

Fig. 27 Fracture behaviour of weldbonded and spot welded joints of the base metal 22MnB5
(UsiBor) for the adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3).
Results for the lower quality limit and different electrode forces Fe = 3.5/4.5 kN

22MnB5 (UsiBor) for different electrode forces (Fe = 3.5/4.5 kN) is given by the
Figs. 25, 26, 27 and 28. The applied adhesives in these cases are the low- and
medium-viscosity adhesives A1, A2 and A3 mentioned above. It can be seen that
there is no influence of the applied adhesives and, consequently, of the viscosity
on the failure type. The fracture behaviour of the press hardened steel 22MnB5
(UsiBor) is very irregular, Figs. 27 and 28. But the fracture behaviour of the
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Fe = 3.5 kN Fe = 4.5 kN 
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Fig. 28 Fracture behaviour of weldbonded and spot welded joints of the base metal 22MnB5
(UsiBor) for the adhesives Terostat 5194 (A1), Betamate 1480 (A2) and SikaPower498 (A3).
Results for the upper quality limit dpmax and different electrode forces Fe = 3.5/4.5 kN

weldbonded TRIP steel HCT780T shows compared with the spot welded joints a
tendency towards a plug failure independently of the applied adhesives, Figs. 25
and 26.

6 Summary

The well known advantages of the weldbonding process for mild steels of lower
yield strength are an obvious truth for the application of high strength steels, too.
Disadvantages due to smaller sizes of welding current ranges and consequently sig-
nificantly lower process reliabilities do not occur. Clearly, in almost all cases the



370 G. Weber et al.

welding current ranges and therefore the process reliability of the weldbonding pro-
cess become smaller in comparison with the resistance welding process. But it is
possible, by changing the welding parameters electrode force and welding time, to
alter the width of the welding current ranges. The influence of the applied adhesives
of low and medium viscosities on the welding current ranges is nearly identical for
weldbonding the same base metals. Significant differences do not occur. Only for
weldbonding base metal combinations it can be stated that there is an influence of
the viscosity on the welding current ranges. But there is a disadvantage with respect
to the welding current ranges of the weldbonding process, too. The welding cur-
rent for the lower and upper quality limits change towards higher current values.
Because of the dependence of the electrical energy to the second power of the weld-
ing current this means a higher energy needs in comparison with the resistance spot
welding process. The welding current ranges for the weldbonding process become
significantly smaller in comparison with the resistance spot welding process for the
base metal combination of a mild steel with a dual phase steel (AHSS), when the
low-viscosity adhesive is applied.

For weldbonding the combination of a mild steel with a dual phase steel (AHSS)
or with an extremely high strength press hardened steel, respectively, there occurs
a quite different behaviour of the lower and upper quality limits for the different
applied adhesives. These facts may be interpreted as an influence of the viscosity of
adhesives.

Further advantages of the weldbonding process are given by the mechanical
behaviour. For all cases of weldbonded base metals and their combinations, higher
values of the tensile-shear force under static and impact load are found for the
applied different adhesives in comparison with the spot welded joints. The absorbed
energy is higher for weldbonded than for spot welded joints. This means that the
crash behaviour of the weldbonded joints becomes better as in the case of spot
welded joints. There is a difference between the influences on the tensile-shear
strength and the crash behaviour of the weldbonded joints for adhesives of low
and medium viscosity. Furthermore, there is an advantage regarding the fatigue
behaviour of weldbonded joints. The metallurgical behaviour of weldbonded and
spot welded joints is nearly the same. There is no difference in the hardness
behaviour of weldbonded and spot welded joints. Furthermore, the metallurgical
structure of the weldbonded and spot welded joints is almost equal. The fracture
behaviour of the weldbonded and spot welded joints depends on the joined base
metals and their combinations and on the applied adhesives. It is quite different for
the tested combinations. Only in the case of the advanced high strength TRIP steel
there occurs a tendency towards the plug failure behaviour of the weldbonded joints
compared with the spot welded joints. In summary, one can say that the contribu-
tion has shown that the influence of the applied adhesives and their viscosities on
the process reliability and the energy input of the weldbonding process depends
on the weldbonded base metal and its combinations. This dependence is also true
for the static strength and fatigue strength of the weldbonded joints. Furthermore,
there exits a different fracture behaviour of the weldbonded joints influenced by the
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applied adhesives, but no influence of the adhesives on the metallurgical behaviour
was observed.

The results of this chapter are based on a research project entitled “Investigations
into the combined spot welding and adhesive bonding of higher-strength steel sheets
with new hot-curing and cold-curing adhesive systems” (No. 14476 N) of the
Research Association for Steel Application (FOSTA). The project was financed
by the German Ministry of Economic Affairs and Technology (BMWi) via the
Federation of Industrial Research Associations (AiF) in the programme for the pro-
motion of joint industrial research (IGF) and was carried out at the Laboratory of
Materials Engineering and Joining Technology of the University of Paderborn and
the German Welding Institute and expertly accompanied and supported by FOSTA
(No. P 704). We would like to express our gratitude for this. Our thanks goes to
the members of the industrial support circle for the test materials and services made
available in order to carry out this research project as well as for the support and the
constructive discussions.
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