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Preface

Common engineering materials reach in many demanding applications such as
automotive or aerospace their limits and new developments are required to fulfill
increasing demands on performance and characteristics. The properties of mate-
rials can be increased for example by combining different materials to achieve
better properties than a single constituent or by shaping the material or constituents
in a specific structure. Many of these new materials reveal a much more complex
behavior than traditional engineering materials due to their advanced structure or
composition. Furthermore, the classical applications of many engineering
materials are extended to new ranges of applications and to more demanding
environmental conditions such as elevated temperatures. All these tendencies
require in addition to the synthesis of new materials, proper methods for their
manufacturing and extensive programs for their characterization. In many fields of
application, the development of new methods and processes must be accomplished
by accurate and reliable modeling and simulation techniques. Only the interaction
between these new developments with regard to manufacturing, modeling, char-
acterization, further processing and monitoring of materials will allow to meet all
demands and to introduce these developments in safety-relevant applications.

The 4th International Conference on Advanced Computational Engineering and
Experimenting, ACE-X 2010, was held in Paris, France, from 05 to 07 July 2010
with a strong focus on the above-mentioned developments. This conference served
as an excellent platform for the engineering community to meet with each other
and to exchange the latest ideas. This volume contains 45 revised and extended
research articles written by experienced researchers participating in the confer-
ence. The book will offer the state-of-the-art of tremendous advances in engi-
neering technologies of materials with complex behavior and also serve as an
excellent reference volume for researchers and graduate students working with
advanced materials. The covered topics are related to Materials and Properties,
Non-classical Materials and Structures and New Technologies.
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A Finite Element Simulation
of Longitudinal Impact Waves
in Elastic Rods

Hesham A. Elkaranshawy and Nasser S. Bajaba

Abstract In this chapter, wave propagation in a thin rod struck by a rigid mass is
considered and a finite element simulation of the system is developed. Both cases
of free–free and fixed-free rods are considered. Though impact generates a prop-
agating stress wave in both cases, the free–free rod is going to have a rigid-body
motion. The analytical equations of motion are presented and the corresponding
finite element equations are derived. A numerical scheme is constructed and
solutions are obtained using Newmark implicit integration method and Newton–
Raphson iterative technique. Solutions include time histories of displacement,
velocity, stress, and contact force. The contact force is calculated, according to St.
Venant’s impact model. Numerical results of the simulation are compared to
traditional analytical results. A simulated visualization of the propagation of the
stress wave in the rod is presented, which enhances the understanding of this
complicated physical phenomenon. The achieved results are accurate enough to
have confidence in using this model for practical applications in wave propagation
simulation and analysis.

Keywords Longitudinal impact � Stress and strain analysis �Wave propagation �
Finite element simulation
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Abbreviations
A Cross-sectional area (m2)
c Wave propagation velocity (m/s)
E Young’s modulus (N/m2)
F Contact force (N)
ffg Global force vector (N)
ffgel Force vector for element in contact with the rigid mass (N)
K½ � Global stiffness matrix (N/m)

l Length (m)
L Lagrangean (J)
m Mass of the rod (kg)
m0 Mass of the rigid mass (kg)
M½ � Global mass matrix (kg)
N½ � Finite element shape functions (m/m)

q Displacement of the rigid mass (m)
_q Velocity of the rigid mass (m/s)
t Time (s)
tc Contact period (s)
T Kinetic energy (J)
u Displacement of the rod at position x(m)
fUg Nodal displacement vector (m)
f _Ug Velocity vector (m/s)

fU
::
g Acceleration vector (m/s2)

Uf gel Nodal displacement vector element in contact with the rigid mass (m)
Us Strain energy (J)
t0 Initial velocity of the rigid mass (m/s)
W Work done (J)
x Position in the rod (m)
e Strain in the rod (m/m)
P Potential energy (J)
q Density (kg/m3)
r Stress in the rod (N/m2)
s Time for the wave to travel across the rod from one end to the other end (s)
ðÞN Value at the previous time step (N = 0,1,2,…)
ðÞNþ1 Value at the current time step (N = 0,1,2,…)

1 Introduction

Investigation of wave propagation in a rod due to impact has a long history.
Bernolli, Navier, Poisson, and St. Venant are among the great researchers who
investigated this problem. Good reviews of the treatments of longitudinal waves in
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rods produced by impact are offered in [1, 2]. Recently, due to the presence of
powerful computers, new computational methods are applied to solve this classical
problem. An analytical simulation, symbolic solution, and a solution using time
delay method have been developed [3–5]. Both theoretical and experimental
researches were conducted [6–8] and a review of the experimental studies is
offered in [9].

One practical device which utilizes longitudinal wave propagation in rods is the
Hopkinson (or Davies) bar. The device is used to calibrate shock accelerometers
under high acceleration levels and a wide frequency bandwidth. The bar is a long,
thin, and elastic rod, in which a stress wave is generated at one end by a projectile
impact. The projectile is a rigid mass or a striker bar. At the other end of the bar
the generated wave can be used in many applications. The propagation of the
shock wave in a Hopkinson bar is modeled [10, 11]. Insertion of a deformable disk
between the projectile and the bar can decrease the wave dispersion, hence, a
commercial finite element code was utilized to investigate dispersion in the bar
and to find the optimum characteristics of the inserted deformable disk [12].

Wave propagation can be used in the determination of mechanical properties of
materials. Some dynamic strength material constants were obtained using the split
Hopkinson pressure bar [13]. The split tensile Hopkinson bar tests are interrupted
to evaluate the damage in the materials at high strain rate [14]. The evaluation of
the coefficient of restitution, through numerical simulation of impact of a rigid
mass and a slender elastic rod, was investigated [15, 16]. Furthermore, there is an
increasing interest in using wave propagation in crack detection, for example,
wave propagations in cracked beams and plates were examined [17, 18].

Some machine elements are rod-like bodies that are subjected to impact loading
during their functional operations. Examples are encountered in piling, percussive
drilling and hydraulic hammering. Due to the elasticity of these axial elements,
waves propagate through them while they are in translational motion. At the same
time, it is obvious that wave propagation is gaining more potential in non-
destructive testing methods. Therefore, reliable finite element models are needed
to be used in the simulation of the propagation of waves. In this chapter, a finite
element model is constructed to represent impact of a rigid mass on a flexible rod.
The model overcomes the limitations in the previously reviewed works where the
impact forces were assumed, see [17, 18], or calculated using methods that are
highly time consuming, see [15, 16]. Hence, the contact force is calculated using
an efficient approach utilizing the St.Venant’s classical impact model. The two
cases of free–free and free-fixed elastic rods are investigated. A numerical scheme
is formulated depending upon Newmark implicit time stepping method and
Newton–Raphson iterative method. The contact force is calculated and the wave
propagation in the rod is simulated. To enhance the understanding of the com-
plicated physical phenomenon, a simulated visualization of the propagation of the
impact wave through the bar is monitored.

A Finite Element Simulation of Longitudinal Impact Waves in Elastic Rods 5



2 Mathematical Modeling

It is assumed that the rod has mass m, Young’s modulus E, density q, cross-
sectional area A and length l. The rod is initially at rest and is struck on the right
end x ¼ l at the initial time t ¼ 0 by a moving rigid mass m0 with initial velocity
t0. The displacement of the rigid mass at time t is donated by qðtÞ and the
displacement of the rod at position x and time t is given by uðx; tÞ, as in Fig. 1.

The governing equation for the longitudinal wave in the rod is

o2uðx; tÞ
ot2

¼ c2 o2uðx; tÞ
ox2

ð1Þ

where c is the wave propagation velocity

c ¼
ffiffiffiffi

E

q

s

ð2Þ

The strain eðx; tÞ in the rod is given by

eðx; tÞ ¼ ouðx; tÞ
ox

ð3Þ

For an elastic rod, the stress is proportional to strain, or

rðx; tÞ ¼ E
ouðx; tÞ

ox
ð4Þ

As contact is established between the mass and the rod, both the mass and the
contact end of the rod x ¼ lð Þ are assumed to have the same velocity t0. Therefore,
a compression wave is created in the rod. The wave travels along the rod and is
reflected at the other end ðx ¼ 0Þ. During the contact period, displacement qðtÞ and
velocity _qðtÞ of the mass are the same as those of the contact end of the rod ðx ¼ lÞ.

qðtÞ ¼ uðl; tÞ and _qðtÞ ¼ ou

ot
ðl; tÞ; 0\t\tc ð5Þ

where tc is the contact period.
The contact persists as long as the contact force between the mass and contact

end of the rod does not vanish. The contact force equals the stress at the contact
end times the rod’s cross-sectional area, i.e.

FðtÞ ¼ EA
ouðl; tÞ

ox
ð6Þ

The motion of the rigid mass is governed by

m
d _q

dt
¼ FðtÞ ð7Þ

6 H. A. Elkaranshawy and N. S. Bajaba



Equations (1), (6), and (7) are the equations of motion of the rod and the rigid
mass during the impact period. After the cease of impact the motion of the rod is
controlled by Eq. (1). In the same time, since FðtÞvanishes, Eq. (7) declares that
the rigid mass moves with a constant velocity.

3 Finite Element Solutions

The pre-mentioned differential formulation of the equations of motion is equiva-
lent to integral formulation, which requires the application of Lagrange’s equation
of motion. First, one defines Lagrangean ‘L’ by

L ¼ T � p ð8Þ

where ‘T’ is the kinetic energy and ‘p’ is the potential energy defined by

p ¼ Us �W ð9Þ

Us and W are the strain energy and the work done, respectively, that are given by

Us ¼
X

e

1
2

Z

e

EA
ou

ox

� �2

dx ð10Þ

T ¼
X

e

1
2

Z

e

qA
ou

ot

� �2

dxþ 1
2

m0
ou

ot
ðx ¼ lÞ

� �2

ð11Þ

W ¼ FðtÞuðl; tÞ ð12Þ

The finite element shape functions NðxÞ½ � link the displacement ‘u’ to the nodal
displacement vector fUg through

uðx; tÞ ¼ N½ �fUg ð13Þ

x dx

u

dx

u+du

l

Fig. 1 Displacement of the rod at a general position x

A Finite Element Simulation of Longitudinal Impact Waves in Elastic Rods 7



Consequently;

L ¼ 1
2
f _UgT M½ �f _Ug � 1

2
fUgT K½ �fUg þ ff ðtÞgTfUg ð14Þ

M½ � and K½ � are the global mass and stiffness matrices and ff ðtÞg is the global
force vector. ff ðtÞg contains only the nodal forces of the last element, ff ðtÞgel, due
to the contact force. The rest of the global force vector is full of zeros. ff ðtÞgel is
given by

ff ðtÞgel ¼ FðtÞ Nðx ¼ lÞ½ �T ð15Þ

The Lagrange’s equation of motion is given by

d

dt

oL

of _Ug

� �

� oL

ofUg ¼ 0 ð16Þ

this leads to

M½ �f€Ug þ K½ �fUg ¼ ff ðtÞg ð17Þ

Equations (6) and (13) give

FðtÞ ¼ EA
oN

ox
ðx ¼ lÞ

� �

Uf gel ð18Þ

v 0x

Rigid Mass

l

Free End

v 0x

Rigid Mass

l

Fixed End

Elastic Rod

Elastic Rod Free End

Free End

Fig. 2 Longitudinal impact of a mass on a rod (free-fixed and free–free)
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where Uf gelis the nodal displacement vector for the last element, which is the
element in contact with the rigid mass.

Equations (17) and (18) are the finite element equations of motion during
impact. These equations are applied for both cases of free- free rod and free-fixed
rod, see Fig. 2. In the case of free-fixed bar both M½ � and K½ � are positive definite
matrices. For the free–free bar, though M½ �is positive definite matrix, K½ � is
positive semi-definite matrix due to the existence of rigid body modes.

Newmark implicit time stepping method (Bathe [19]) is used to express the

current velocity f _UgNþ1 and accelerationfU
::
gNþ1 in terms of the current displace-

ment Uf gNþ1 and previously determined values of displacement Uf gN , velocity

f _UgN , and accelerationfU
::
gN . Combining these equations with the equations of

motion (17) and (18) yields a system of algebraic equations in terms of Uf gNþ1 and
FðtÞNþ1. The Newton–Raphson iterative method (Bathe [19]) is used to solve the
resulting equations to find the current displacement and contact force. The dis-
placement and other variables’ distributions in the rod at the end of impact serve as
the initial conditions for the subsequent free vibrations of the bar, which are governed
by the solution of Eq. (17) while Eq. (18) is no longer relevant.

4 Numerical Simulation

Numerical simulations, for a rigid mass collides with a free–free elastic rod and
with a free-fixed elastic rod, are presented in this section, see Fig. 2. The rod in
both cases is an aluminum rod with a 3 mm 9 25 mm cross section, 200 mm
length, 70 GN/m2 Young’s modulus, and 2,710 kg/m3 mass density. The rigid
mass has the same mass as the rod. The mass is moving towards the rod with a
velocity of 1 m/s. Fifty elements are used to model the rod in the finite element
model. The elements are two-nodes and one-dimensional linear elastic elements.
The velocity of the created wave is c ¼ 5082:35 m/s and the time for the wave to
travel across the rod from one end to the other end is s ¼ l

c ¼ 3:935� 10�5 s:
According to St. Venant’s principle, as contact starts the velocity of the contact

end becomes immediately equals to the rigid mass velocity and right away a
compression wave is created at the contact end and travels across the rod with
velocity ‘c’. The initial compression stress at the contact end is r0 ¼ v0

ffiffiffiffiffiffi

Eq
p

and
the stress at that end starts to decrease with time until the reflected wave reaches
that end.

For the bar with the other end free, the stress at the free end is always zero,
therefore, the traveling compression stress wave is reflected at the free end as a
tension wave and whenever that tension wave reaches the contact end at time s, it
cancels out the stress at that end and contact is terminated. Following the cease of
contact, the wave is reflected from the contact end as compression wave and
periodic cycles start with a period equals to s.
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The finite element solutions successfully predict this phenomenon as can be
seen in Figs. 3, 4, 5, 6, 7.

Figures 4, 5, 6, 7 show the dimensionless displacement c
v0l u, velocity v

v0
, stress

�c
v0E r, and contact force 1

v0A
ffiffiffiffi

Eq
p F, respectively, with respect to dimensionless time

c
l t. Slight numerical damping is introduced to reduce the oscillations in solutions.
Dimensionless analytical solutions are given in [4]. Very good agreement is found
between the solutions of the proposed finite element model and the analytical
solutions [1, 2]. Figure 3 shows the distribution of the dimensionless stress over
the dimensionless length x

l, at equal dimensionless time steps of 0.125. Therefore,
the wave propagation can be visualized in that figure. Figures 3 and 7 show that
the arrival of the reflected tension wave into the contact end nullifies the contact

Dimensionless length
l

x =0
l

x =1

D
im

en
si

on
le

ss
 st
re

ss

Fig. 3 Stress wave propagation in the free–free bar; waves of dimensionless stress �c
v0E r verses

dimensionless length x
l are shown at times 0.125 c

l t apart
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force. Therefore, it marks the end of impact. Most of the time, a portion of the rod
is in tension while the other portion is in compression, as can be seen in Fig. 3.
Therefore, the mid-point stress alternate between compression and tension marked
by the arrival of the wave at that point, see Figs. 3 and 6. Though the displace-
ments of the bar ends are continuous, see Fig. 4, the slope of each displacement
history suffers discontinuity corresponding to the arrival of the wave at that end,
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Fig. 4 Dimensionless displacements of free end, contact end and striking mass (free–free bar)
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Fig. 5 Dimensionless velocities of free end, contact end and striking mass (free–free bar); ( v
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is the dimensionless velocity and (c
l t) is the dimensionless time
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which is reflected in the discontinuity of the velocities, Fig. 5. The time history of
velocity in Fig. 5 indicates that after the end of impact, the striking mass does not
change its original moving direction and the bar starts a continued free vibration.
The bar has an average rigid body motion velocity and for each end, the velocity is
varying between two limits. The arrival of the wave at each bar end increases the
velocity of that end impulsively to its maximum value. The analytical solutions
given by Goldsmith [1] predict that the final dimensionless velocity of the rigid
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Fig. 6 Dimensionless stresses at mid point and contact end (free–free bar); �c
v0E r

is the dimensionless stress and c
l t is the dimensionless time
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mass to be 0.1353 and the present simulation predicts 0.1469, see Fig. 5. At the
arrival of the reflected wave to the contact end, the analytical dimensionless stress
is 0.1353 and in Fig. 6 the finite element calculates 0.1325.

1
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= Dimensionless Length
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Fig. 8 Stress wave propagation in the fixed-free bar; waves of dimensionless stress �c
v0E r verses

dimensionless length x
l are shown at times 0.125 c

l t apart
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Using the present finite element simulation, a visualization of the wave motion
is illustrated in Fig. 8 for the bar with one fixed end. The figure illustrates the
distribution of the dimensionless stress over the dimensionless length x

l, at equal
dimensionless time steps of 0.125. It shows that the traveling compression stress
wave is reflected at the fixed end as a compression wave, as expected. Since the
contact is not terminated yet, the contact end operates as a fixed end and the
compression wave is reflected from that end as a compression wave again. Once
more, the wave is reflected as a compression wave at the fixed end, but shortly
after that the contact is terminated. For that reason, during the contact period, the
whole rod is under compression all the time, see Fig. 8. Without presenting a
similar figure, analytical solutions given in [1, 2] predict the same phenomena.
After the end of impact, the subsequent free vibration of the bar has periodic cycles
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Fig. 9 Dimensionless displacements of contact end and striking mass (fixed-free bar); c
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is the dimensionless displacement and c
l t is the dimensionless time
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with a period equals to 2s, as can be seen in Figs. 8, 9, 10, and 11. As anticipated,
the free end reflects the wave with opposite polarity. Therefore, during these
periods, most of the time a part of the rod is in compression while the other part is
in tension, see Fig. 8. The time histories of the bar displacement, velocity, stress,
and contact force in dimensionless forms are shown in Figs. 9, 10, 11, and 12. The
figures illustrate that the displacement is continuous while velocity, stress, and
contact force suffer discontinuities. At any location in the bar, the discontinuities
occur at intervals corresponding to the arrival of the waves to that location; see
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is the dimensionless stress and c
l t is the dimensionless time
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Figs. 8, 9, 10, 11, and 12. Figures 8, 11 and 12 confirm that the arrival of the
reflected compression wave to the contact end raises the stress at the contact end,
and accordingly the contact force, to its maximum value. Next, contact force starts
to decrease and impact is terminated when the stress at the contact end vanishes.
The analytical solutions given in [1, 2] predict the dimensionless duration time,
displacement of contact end at separation and its maximum value after separation,
and maximum contact force. Both the analytical results and the corresponding
results of the current finite element simulation are given in Table 1.

It has to be noticed that slight numerical damping is introduced to reduce the
oscillations in the numerical solutions.

5 Conclusion

A finite element simulation for the impact of a rigid mass on an elastic rod has
been presented in this chapter. The impact model utilizes St.Venant’s classical
impact model, and the two cases of free–free and free-fixed elastic rod have been
investigated. As contact established, a wave is initiated at the contact end and
starts to propagate through the rod. The wave propagation and the contact force
differential equations have been obtained and the finite element discretization of
the equations of motion has been developed. A numerical solution procedure has
been proposed along the lines of Newmark implicit integration method and
Newton–Raphson iterative technique. The current simulation calculates the con-
tact force accurately and efficiently which is a significant advantage over other
simulations, which just assume the contact force or calculate it inefficiently.

Results show the variation of contact force, displacements, velocities, and
stresses with respect to time for both cases of free and fixed far end of the bar. Very
good agreement has been found between numerical results and the well-known
analytical results. A simulated visualization of the propagation of the stress wave
through the bar has been developed. This visualization enhances the understanding
of the physical phenomena of impact and wave propagation including the reflec-
tion of the wave at free and fixed ends as well as at the contact end. The results
demonstrate that the proposed finite element simulation is accurate enough for
further investigation in wave analysis and simulation.

Table 1 Comparison between the analytical and the finite element results (free-fixed rod)

Dimensionless values Analytical
results [1, 2]

Proposed finite
element results

Duration time 3.068 3.075
Displacement of contact end at separation 0.375 0.371
Maximum value of displacement of contact end after separations 0.576 0.576
Maximum contact force 2.135 2.045

16 H. A. Elkaranshawy and N. S. Bajaba



References

1. Goldsmith, W.: Impact: The Theory and Physical Behaviour of Colliding Solids. Edward
Arnold, Ltd, London (1960)

2. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw Hill, New York (1970)
3. Shi, P.: Simulation of impact involving an elastic rod. Comput. Met. Appl. Mech. Eng. 151,

497–499 (1997)
4. Hu, B., Eberhard, P.: Symbolic computation of longitudinal impact waves. Comput. Met.

Appl. Mech. Eng. 190, 4805–4815 (2001)
5. Hu, B., Eberhard, P.: Simulation of longitudinal impact waves using time delayed systems.

J. Dyn. Syst., Meas. Control (Special Issue) 126(3), 644–649 (2004)
6. Keskinen, E., Kuokkala, V.-T., Vuoristo, T., Martikainen, M.: ‘‘Multi-body wave analysis of

axially elastic rod systems,’’ Proc. Instn. Mech. Engrs, Part K. J. Multi-body Dyn. 221,
417–428 (2007)

7. Maekawa, I., Tanabe, Y., Suzuki, M.: Impact stress in a finite rod. JSME Int. J. Ser. I 31,
554–560 (1988)

8. Hu, B., Schiehlen, W., Eberhard, P.: Comparison of analytical and experimental results for
longitudinal impacts elastic rods. J. Vib. Control 9, 157–174 (2003)

9. Al-Mousawi, M.M.: On experimental studies of longitudinal and flexural wave propagations:
an annotated bibliography. Appl. Mech. Rev 39, 853–864 (1986)

10. Ueda, K., Umeda, A.: Characterization of shock accelerometers using Davies bar and strain-
gages. Exp. Mech. 33(3), 228–233 (1993)

11. Rusovici, R.: ‘‘Modeling of shock wave propagation and attenuation in viscoelastic
structure,’’ Ph.D. Dissertation, Virginia polytechnic institute and state university (1999)

12. Ramirez, H., Rubio-Gonzalez, C.: Finite-element simulation of wave propagation and
dispersion in Hopkinson bar test. Mater. Des. 27, 36–44 (2006)

13. Allen, D.J., Rule, W.K., Jones, S.E.: Optimizing material strength constants numerically
extracted from Taylor impact data. Exp. Mech. 37(3), 333–338 (1997)

14. El-Saeid Essa, Y., Lopez-Puente, J., Perez-Castellanos, J.L.: Numerical simulation and
experimental study of a mechanism for Hopkinson bar test interruption. J. Strain Anal. Eng.
Des. 42(3), 163–172 (2007)

15. Seifried, R., Schiehlen, W., Eberhard, P.: Numerical and experimental evaluation of the
coefficient of restitution for repeated impacts. Int. J. Impact Eng. 32(1–4), 508–534 (2005)

16. Seifried, R., Eberhard, P.: Comparison of numerical and experimental results for impacts.
ENOC-2005, pp. 399–408. Eindhoven, Netherlands, (2005) 7–12 August

17. Krawczuk, M.: Application of spectral beam finite element with crack and iterative search
technique for damage detection. Finite Elements Anal. Des. 38(6), 537–548 (2002)

18. Krawczuk, M., Palacz, M., Ostachowicz, W.: Wave propagation in plate structures for crack
detection. Finite Elements Anal. Des. 40(9–10), 991–1004 (2004)

19. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

A Finite Element Simulation of Longitudinal Impact Waves in Elastic Rods 17





Hamiltonian Formalisms Applied
to Continuum Mechanics: Potential
Use for Fracture Mechanics

N. Recho

Abstract The first part of this chapter deals with several Hamiltonian formalisms in
elasticity. The formalisms of Zhong ((1995) Dalian Science & Technology
University Press, Liaoning, China) and Bui ((1993) Introduction aux problèmes
inverses en mécaniques des matériaux, Editions Eyrolles, Paris), which resolve
respectively the two-end problem and the Cauchy problem in elasticity, are presented
briefly. Then we propose a new Hamiltonian formalism, which resolves simulta-
neously the two problems mentioned above and shows the link between the two
formalisms. The potential use for fracture mechanics purposes is then mentioned. In
fact, when traditional theories in fracture mechanics are used, asymptotic analyses
are often carried out by using high-order differential equations governing the stress
field near the crack tip. The solution of the high-order differential equations becomes
difficult when one deals with anisotropic or multilayer media etc. The key of our idea
was to introduce the Hamiltonian system, usually studied in rational mechanics, into
continuum mechanics. By this way, one can obtain a system offirst-order differential
equations, instead of the high-order differential equation. This method is very
efficient and quite simple to obtain a solution of the governing equations of this class
of problems. It allows dealing with a large range of problems, which may be difficult
to resolve by using traditional methods. Also, recently we developed another new
way to resolve fracture mechanics problems with the use of ordinary differential
equations (ODEs) with respect to the circumferential coordinate h around the crack
(or notch) tip. This method presents the opportunity to be coupled with finite element
analysis and then allows resolving more complicated geometries.
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1 Introduction

Recently, an important effort has been made in the reform of the classical theory of
continuum mechanics in the frame of the Hamiltonian system. In these new
approaches, the principle of Hamilton is applied in a special manner, i.e., by
considering a dimensional parameter as ‘‘time’’. In this topic, we can distinguish
two formalisms: the formalism of Bui [1] and the formalism of Zhong [2]. By
seeking the variations of the couple (displacements, traction forces) on an arbitrary
front in a solid when this front virtually moves from an initial position to a
neighbor one, a first-order differential equation system governing the mechanical
fields was explicitly established. That is the Cauchy problem in elasticity resolved
by Bui. On the other hand, the formalism of Zhong looks more classical. In simple
words, he established an analogy between quantities in rational mechanics and
those in continuum mechanics. For example, a dimensional coordinate in con-
tinuum mechanics is considered as time in rational mechanics; the displacement
vector as the generalized coordinates; the strain energy density as the Lagrange
function and so on. This analogy leads to the canonical equations of Hamilton
governing the mechanical fields in elastic bodies. The main advantage of these
approaches is that the fundamental equations can directly be resolved. The
traditional semi-inverse method is then replaced by a direct, systematic and more
structural resolution method.

2 Zhong’s Formalism: The Two-End Problem

Let us consider a solid V described by a coordinate system Z in which z is one
chosen coordinate. Let us consider now q the displacements in the Z system

associated to neighbor displacements, q ? dq. One notes _q ¼ oq
oz. If we suppose

that the displacements are imposed at z = z0 and z = z1, named the two end
points, then we have:

dq z ¼ z0ð Þ ¼ dq z ¼ z1ð Þ ¼ 0 ð1Þ

Let us write the total potential energy P of the solid:

P ¼
R

z1

z0

R

S
U0 �Wð ÞdSdz ¼

R

z1

z0

Ldz avec L ¼
R

S
U0 �Wð ÞdS ð2Þ

where U0 is the strain energy density and W is the work density of the external
forces. We define the Lagrange function as the integral over S. If S is constant
along z and we neglect the body forces and we just consider a volume element
inside the solid, we can write L = U0 -W. In general, L is a function of q and _q.
Following the principle of the minimum of total potential energy, dP ¼ 0 with
respect to dq and using the conditions (1), one obtains the Euler equation in L:
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oL

oq
� o

oz

oL

o _q
¼ 0 ð3Þ

In rational mechanics, L is named Lagrange’s function, and (3) Lagrange’s
equation. Then we construct the Hamilton function H (p, q) through the Legendre’s
transformation:

p ¼ oLðq; _qÞ
o _q

Hðp; qÞ ¼ pT _q� Lðq; _qÞ
ð4Þ

From (3) and (4), one deduces immediately the canonical equations of Hamilton:

oH

oq
¼ � oL

oq
¼ � _p

oH

op
¼ _q ð5Þ

q and p are dual conjugate variables. Differently from rational mechanics, these
two variables represent respectively the displacement vector and the normalized
stress vector.

3 Bui’s Formalism: Cauchy’s Problem in Elasticity

Bui [1] has solved the Cauchy problem in elasticity by seeking the variations of the
mechanical quantities (q as a displacement vector, p as a traction vector) at an
arbitrary front in the solid when it moves from an initial position Ct to a neighbour
position Ct+dt, where t defines the movement of the front in the solid. This
approach leads to an explicit system of first-order differential equations.

Let us consider a domain divided into two parts X and Xt by a contour Ct.

Suppose that mechanical fields are known at the interior of the contour; conse-
quently q and p are known at the contour Ct. Suppose q0 a virtual compatible
displacement. The virtual work principle leads to:

Z

Xt

rq:K:rq0dX ¼
Z

Ct

q � q0dC ð6Þ

K is the elastic tensor. Let us consider now an evolution of Ct to X t, i.e. at
t ? dt, the contour Ct reaches Ct+dt. It’s suitable to consider that Ct+dt is deduced
from Ct following the normal to Ct with a quantity wndt where n is a unit vector
normal to the contour and w is a positive scalar field describing the velocity of the
contour evolution. The derivation of (6) with respect to dt gives:

d

dt

Z

Xt

rq:K:rq0dX ¼ d

dt

Z

Ct

p � q0dC ð7Þ
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If introducing the following notations of tangential operators:

gradCð�Þ :¼ rð�Þ � n o
on ð�Þ divCð�Þ :¼ divð�Þ � n � o

on ð�Þ ð8Þ

equation (7) leads to:
Z

Ct

rq:K:rq0wdC�
Z

Ct

dp

dt
þ divC wnð Þp

� �

� q0dC�
Z

Ct

wp � oq0

on
dC ¼ 0 ð9Þ

After rearrangement and integration by parts, one can deduce the following
differential equations:

dq

dt
¼ Bqðq; p;wÞ

dp

dt
¼ Bpðq; p;wÞ

ð10Þ

Bq and Bp are expressed as function of quantities defined on the contour Ct. Their
explicit expressions are given in the [1].

4 Unified Description of the Two Formalisms

Here we describe a formalism unifying the two precedents within the frame of
minimization of the total potential energy of the structure [3].

4.1 Hamilton Principle Written as Variation
of Total Potential Energy

Following (2) and (4), the total potential energy is written as:

P ¼
Z

z2

z1

Ldz ¼
Z

z2

z1

p � _q� Hð Þ dz ð11Þ

u is a parameter describing the solid’s evolution. The description of a solid
between an event a and an event b could be done under parametrical form of six
functions in 2D media: two displacements q(u), three normalised stresses p(u) and
one coordinate z(u). Consider u1 and u2 as values of u corresponding to events
a and b. For z1 = u1 and z2 = u2, the total potential energy is re-written as:

PðuÞ ¼
Z

u2

u1

p � oq

ou
� H

oz

ou

� �

du ð12Þ
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And its variation becomes:

dP ¼ oP
ou

du ¼

Z

u2

u1

op

ou
� oq

ou
� op

ou
� oq

ou
� oH

ou
� oz

ou
þ oH

ou

oz

ou

� �

du

þ p � oq

ou
� H

oz

ou

� �u2

u1

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

du ð13Þ

One notes:
oq

ou
du ¼ dq;

op

ou
du ¼ dp;

oH

ou
du ¼ dH;

oz

ou
du ¼ dz ð14Þ

When u represents the coordinate z, (13) is written as follow:

dP ¼
Z

z2

z1

_q:dp� _p:dq� dH þ _Hdz
� 	

dzþ p � dq� Hdz½ �z2
z1

ð15Þ

So we have dP divided into two parts, the first one is an integral; the second one is
in the square bracket.

4.2 Application to the Two-End Problem

Consider now the variation of q and z are zero at z1 and z2, d q ¼ 0 and d z ¼ 0 .
This means we have fixed boundaries and fixed displacement boundary conditions
at the two-ends, so we have got the so-called two end point problem. In this case,
the quantities in the square bracket of equation (15) vanish. According to the
principle of minimum total potential energy, we directly obtain the canonical
equations of Hamilton. This is the problem resolved by the formalism of Zhong.

dP ¼
Z

z2

z1

_q:dp� _p:dq� dH þ _Hdz
� 	

dz ¼ 0 ð16Þ

dH being:dH ¼ oH
oq dqþ oH

op dpþ oH
oz dz, one obtains:

dP ¼
Z

z2

z1

_q:dp� _p:dq� oH

oq
dq� oH

op
dp� oH

oz
dzþ _Hdz

� �

dz ¼ 0 ð17Þ

This equation is available for arbitrary dq, dp and dz. Consequently, we deduce
the Hamilton canonical equations:

oH

oz
¼ _H;

o}

op
¼ _q;

oH

oq
¼ � _p ð18Þ

Hamiltonian Formalisms Applied to Continuum Mechanics 23



4.3 Application to Cauchy’s Problem

Now consider a natural evolution of the structure, this means that the Hamilton
canonical equations are satisfied everywhere in the structure, but with possible
variations of (q, z) at z = z1 and z = z2. In this case, we have no fixed boundaries
neither fixed boundary conditions at the two ends but we have natural evolution
everywhere, this is the so called Cauchy problem. In this case, the integral in
equation (15) vanishes i.e.:

dP ¼ p2 � dq2 � H2 � dz2 � p1 � dq1 þ H1 � dz1 ð19Þ

For a small displacement of events a and b, the variation of the total potential
energy is:

dP ¼ dq1 �
oP
oq1
þ dz1

oP
oz2
þ dq2 �

oP
oq2
þ dz2

oP
oz2

ð20Þ

The variables q1, z1, q2, z2 are independent. By identification between (19) and
(20), we have got the Hamilton–Jacobi equations:

oP
oq2
¼ p2

oP
oz2
¼ �H2

oP
oq1
¼ �p1

oP
oz1
¼ H1 ð21Þ

This is the problem resolved by Bui. We know that the Hamilton canonical
equations and the Hamilton–Jacobi equations are equivalent. So we can say the
formalism of Zhong and that of Bui are equivalent in the differential point of view,
even they look quite different. Now, dealing with Bui’s formalism, it’s obvious
that the virtual work principle (6) could be written as a total potential energy by
replacing q0 by virtual displacements dq.: (Note that dX = dCdt)

d
Z

t

1
2

Z

Ct

rq:K:rqdCdt�
Z

Ct

p � qdC

2

6

4

3

7

5

¼ dP ¼ 0 ð22Þ

If we define:

L ¼ 1
2

Z

Ct

rq:K:rqdC� d

dt

Z

Ct

p � qdC

equation (22) becomes:

d
Z

t

Ldt ¼ 0 ð23Þ

The partial derivation of (6) with respect to t, which represents the variation of
virtual works due to virtual displacements during the evolution of the contour is
equivalent to equation (23) if we consider a natural evolution.
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5 Hamiltonian Formalism Applied to Fracture Mechanics

We can actually write the equations governing the crack tip fields under the form
of (5). The main idea [4, 5], is to consider one coordinate in the polar system as
‘‘time’’ and take the total potential energy as the Lagrange function. For example,
we can consider the radial coordinate r or the angular coordinate h as time and take
the variational principles established in continuum mechanics as the Hamilton
variational principle. Then all the procedures currently used in rational mechanics
can be translated into continuum mechanics. In the following, the angular coor-
dinate h will be substituted to time.

5.1 Governing Equations of the Problem

Consider a notch formed from several elastic materials. We establish a cylindrical
coordinate system with their origins at the notch tip and the z-axis representing the
notch front. Material 1 occupies domain [h0,h1], named zone 1; Material 2
occupies zone 2, bounded by [h1,h2], and so on. Under remote loading, the stress
concentration at the notch tip will take a mixed mode nature due to the anisotropy
of the materials.

First, we write the stress components in the polar coordinate system
as:r ¼ rr rh srhf gT . The corresponding strain components are
e ¼ er eh crhf gT . The linear elastic stress–strain relationship is:

r ¼ C e: ð24Þ

C is the stiffness matrix of the material. All its components are constant.
We write now the fundamental equations of linear elasticity in the polar system:

(a) Equilibrium equations:

orr

or
þ 1

r

osrh

oh
þ rr � rh

r
¼ 0

osrh

or
þ 1

r

orh

oh
þ 2srh

r
¼ 0 ð25Þ

We perform the following variable changes:

n ¼ ln r r ¼ expðnÞ; ð26Þ

and

Sr ¼ rrr rr ¼ Sr=r; Sh ¼ rrh rh ¼ Sh=r;

Srh ¼ rsrh srh ¼ Srh=r; . . .etc
ð27Þ
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Then, by using the notation ð�Þ ¼ o

oh
, the equilibrium equations (25) can be

rewritten as:

_Srh ¼ Sh �
oSr

on
_Sh ¼ �

oSrh

on
� Srh ð28Þ

We define the following variable vectors:

p ¼ Sh Srhf gT ð29Þ

Hence, the equilibrium equations (28) can be rewritten as:

_p ¼ E1pþ E2
op

on
ð30Þ

where

E1 ¼
0 �1
1 0

2

4

3

5E2 ¼
0 �1
0 0

2

4

3

5

(b) Displacement-stress relationship:

er ¼
our

or
eh ¼

1
r

ur þ
ouh

oh

� �

crh ¼
1
r

our

oh
þ ouh

or
� uh

r

ð31Þ

By substituting (31) into (24) and by using the variable changes (26) and (27),
one obtains:

Sr

Sh

Srh

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

¼

c12 c14

c22 c24

c42 c44

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ouh
oh
our
oh

8

>

<

>

:

9

>

=

>

;

þ

�c14 c12

�c24 c22

�c44 c42

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

uh

ur

8

>

<

>

:

9

>

=

>

;

þ

c14 c11

c24 c21

c44 c41

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ouh
on

our
on

8

>

<

>

:

9

>

=

>

;

ð32Þ

Similarly, we define a displacement vector

qf g ¼ uh urf gT ð33Þ

By using the definitions (29) and (33), the relationship (32) can be rewritten as:
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p ¼ Cd _qþ Ceqþ Cf
oq

on
ð34Þ

or

_q ¼ C�1
d p� Ceq� Cf

oq

on

� �

ð35Þ

with:

Cd ¼
c22 c24

c42 c44

2

4

3

5 Ce ¼
�c24 c22

�c44 c42

2

4

3

5 Cf ¼
c24 c21

c44 c41

2

4

3

5 ð36Þ

The strain energy in solids is always positive, consequently, Cd is a positively
definite matrix. Therefore, the inversion of the matrix Cd is permitted

(c) Governing equations: By substituting Eq. (34) into the equilibrium equation
(30), the variable vector pt is eliminated. Then, we obtain, from (30) and (35),
the following dual equations that govern the problem:

_q ¼ H11qþ H12p _p ¼ H21qþH22p ð37Þ

with:

H11 ¼ E1 � C�1
d Cf

o
on H12 ¼ C�1

d

H21 ¼ E3 C�1
d Cf


 �

o2

on2 H22 ¼ E1 þ E2 þ E3C�1
d


 �

o
on

ð38Þ

with:

E1 ¼
0 �1
1 0

2

4

3

5E2 ¼
0 �1
0 0

2

4

3

5E3 ¼
0 0
�1 0

2

4

3

5

In fact, it is more convenient to define a total vector v as variables in the state
space:

v ¼ qT p
T

n oT
ð39Þ

such that the governing equations (37) become:

_v ¼ Hv ð40Þ

with:

H ¼ H11 H12

H21 H22

�

�

�

�

�

�

�

�

ð41Þ
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(d) Boundary conditions and continuity conditions: Referring to Fig. 1, we adopt
the superscript (i) to indicate the quantities in zone i. For example, v(i), H(i), etc.

The boundary conditions at the two free surfaces of the notch are:

pð1Þðh ¼ h0Þ ¼ 0 pðnÞðh ¼ hnÞ ¼ 0 ð42Þ

The continuity conditions across the interfaces are:

vð1Þðh ¼ h1Þ ¼ vð2Þðh ¼ h1Þ � � � � � � vðn�1Þðh ¼ hn�1Þ ¼ vðnÞðh ¼ hn�1Þ ð43Þ

These relations show the advantage of the choice of the dual variables in the
present study: the multi-material problem can be dealt with as a single material
problem since the variable vector v is continuous across all the interfaces. This
makes much easier the resolution of governing equation (40).

By adapting this new stiffness matrix, all formulations deduced for generalized
plane strain can directly be used for plane stress problems.

5.2 Resolution Method

By examining governing equation (40), it is self-evident to try to solve it by using
the variable separation method. We suppose that the variable vector v(n, h) can be
written under separable form:

vðn; hÞ ¼ expðknÞwðhÞ ð44Þ

where k is an undetermined eigenvalue and w(h) is a variable vector depending
exclusively on h. Then, equation (40) becomes:

_wðhÞ ¼ HðhÞwðhÞ ð45Þ

In (45), H is function of h only,

H hð Þ ¼ E1 � C�1
d Cf k C�1

d

E3 C�1
d Cf


 �

k2 E1 þ E2 þ E3C�1
d


 �

k

�

�

�

�

�

�

�

�

ð46Þ

The continuity conditions across the interfaces become:

wð1Þðh ¼ h1Þ ¼ wð2Þðh ¼ h1Þ � � � wðn�1Þðh ¼ hn�1Þ ¼ wðnÞðh ¼ hn�1Þ ð47Þ

Any numerical method providing a good accuracy can be used for solving this
problem and the eigenvectors w can straightforwardly be given with all stress and
displacement components.
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6 Future Extensions

In this paragraph, a new way [6] is proposed in order to determine the orders of
singularity for two dimensional V-notch problems. Firstly, on the basis of an
asymptotic stress field in terms of radial coordinates at the V-notch tip, the gov-
erning equations of the elastic theory are transformed into an eigenvalue problem
of ordinary differential equations (ODEs) with respect to the circumferential
coordinate h around the notch tip. Then, the singularity orders of the V-notch
problem are determined through solving the corresponding ODEs by means of the
interpolating matrix method. Meanwhile, the associated eigenvectors of the dis-
placement and stress fields near the V-notches are also obtained. This method is
also available to deal with the plane V-notch problems in bonded orthotropic
multi-material.

Firstly, let us consider a V-notch of isotropic material with opening angle
2p� h1 � h2 as shown in Fig. 2.

A polar coordinate system ðq; hÞ is defined taking the notch tip as origin. In the
linear elastic analysis, it has been verified that the displacement field in the notch
tip region can be expressed as a series expansion with respect to the radial

(x, y)

Zone 1

Material 1

Zone 2

Material 2

Zone

Material

Crack 

(or V-notch)

Fig. 1 V-Notch with various
materials
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coordinate q originating from the notch tip [7]. One typical term of the series can
be written in the following form:

uqðq; hÞ ¼ qkþ1~uqðhÞ ð48aÞ

uhðq; hÞ ¼ qkþ1~uhðhÞ ð48bÞ

where k, ~uqðhÞand ~uhðhÞare eigenpairs. Introducing Eqs. (3) into the strain–dis-
placement relations of linear elastic theory yields the strain components as:

eqq ¼ ð1þ kÞqk~uqðhÞ ð49aÞ

ehh ¼ qk~uqðhÞ þ qk~u0hðhÞ ð49bÞ

cqh ¼ qk~u0qðhÞ þ kqk~uhðhÞ ð49cÞ

where ð� � �Þ0 ¼ dð� � �Þ=dh. From linear elastic behavior law (Hooke’s law) of plane
stress problems, the plane stresses are expressed as:

rqq ¼
E

1� m2
qk½ð1þ kÞ~uq þ m ~uq þ m ~u0h� ð50aÞ

rhh ¼
E

1� m2
qk½ð1þ kÞm ~uq þ ~uq þ ~u0h� ð50bÞ

rqh ¼
E

2 1þ mð Þ q
k k ~uh þ ~u0q

 �

ð50cÞ

where E is the Young’s modulus and m the Poisson’s ratio. Neglecting the body
forces, the equilibrium equations are:

orqq

oq
þ 1

q
orqh

oh
þ rqq � rhh

q
¼ 0 ð51aÞ

α

ρ

θ Γ

Γ

o

2

2

11

ρ

θ

θ

(a) (b)

Fig. 2 : Geometry and local field a A V-notch with opening angle a b Geometry near a V-notch
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1
q

orhh

oh
þ orqh

oq
þ 2rqh

q
¼ 0 ð51bÞ

Substituting Eqs. (50a, 50b, 50c) into Eqs. (51a, 51b) gives:

~u00q þ ð
1þ m
1� m

k� 2Þ~u0h þ
2

1� m
kðkþ 2Þ~uq ¼ 0 ;

h 2 ðh1; h2Þ
ð52aÞ

~u00h þ 2þ 1
2
ð1þ mÞk

� �

~u0q þ
1
2
ð1� mÞkðkþ 2Þ~uh ¼ 0;

h 2 ðh1; h2Þ
ð52bÞ

Assume that all the tractions on the two edges, C1and C2, near the notch tip are
zero. That is:

rhh

rqh

� �

h¼h1

¼ rhh

rqh

� �

h¼h2

¼ 0
0

� �

ð53Þ

Hence, substitution of Eqs. (50a, 50b, 50c) into Eq. (53) yields:

~u0h þ ð1þ mþ mkÞ~uq ¼ 0 ; h ¼ h1 and h2 ð54aÞ

~u0q þ k ~uh ¼ 0 ; h ¼ h1 and h2 ð54bÞ

Considering that the appearance of k2 in Eqs. (52a, 52b) leads to nonlinear
eigenanalysis if Eqs. (52a, 52b) are directly solved, an alternative approach is
adopted in this paper to transfer the equation into a linear eigenvalue problem. To
this end, two new field variables are introduced as follows:

gqðhÞ ¼ k ~uqðhÞ ; h 2 ðh1; h2Þ ð55aÞ

ghðhÞ ¼ k ~uhðhÞ ; h 2 ðh1; h2Þ ð55bÞ

Thus, Eqs. (55a, 55b), Eqs. (52a, 52b) can been rewritten as:

~u00q þ
1þ m
1� m

k� 2

� �

~u0h þ
2

1� m
ðkþ 2Þgq ¼ 0 ;

h 2 ðh1; h2Þ
ð56aÞ

~u00h þ 2þ 1
2
ð1þ mÞk

� �

~u0q þ
1
2
ð1� mÞðkþ 2Þgh ¼ 0 ;

h 2 ðh1; h2Þ
ð56bÞ

By following the above procedure, the evaluation of the singularity orders near
a V-notch tip is transformed to solving a linear eigenvalue problem of the ODEs
governed by Eqs. (55a, 55b), (56a, 56b) subjected to the boundary condition of
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Eqs. (54a, 54b). In the solutions, the associated eigenfunctions ~uq and ~uh can also
be obtained and can be used to determine the stresses in the vicinity of the notch
tip.

In Fig. 3 we show an example of solution using this method applied in the case
of bounded dissimilar linear elastic materials containing a V-notch tip.

Table 1 shows the comparison between the singularity degrees obtained by this
method for various mesh levels of the used interpolating matrix method (IMMEI)
and those of the literature. Reference [8] gives only one singularity degree k1 (one
term in Eq. 48). Reference [9] gives two singularity degrees k1 and k2 as the
present method noted (IMMEI) in the table. The value of n in the table indicates
the discritization level considered in the IMMEI.

7 Concluding Remarks

In this chapter, we give a new Hamiltonian formalism resolving simultaneously
the two-end problem and the problem of Cauchy and as a consequence, showing
the relationship between the formalisms of Bui and Zhong which look so different.
The key idea is to write the total potential energy of a solid as an integral along a
special axis z, then over a section S normal to it. Using integration by part, the
variation of the total potential energy can be written as two parts [see Eq. (15)].
The first part is an integral along z, and the second one is an integrated quantity
depending on the two ends z1 and z2. For the two end problem, the displacements
are imposed at the two ends; so their variations vanish. According to the minimum
principle of the total potential energy, the canonical equations of Hamilton are
immediately obtained, [see Eqs. (16)–(18)]. On the other hand, for a natural
evolution of the structure (i.e., the canonical equations of Hamilton are satisfied
everywhere in the solid), but with possible variations of the two ends, the first part
in the variation of the total potential energy vanishes [see Eq. (19)]. This corre-
sponds to the Cauchy problem in elasticity. In this case, the equations of Hamil-
ton–Jacobi can be deduced [see Eq. (21)]. Since the canonical equations of

o

2
2

2

1

11

3

3

interface
Fig. 3 A V-notch of bonded
bi-material
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Hamilton and the equations of Hamilton–Jacobi are fundamentally equivalent, we
can see that the formalisms of Bui and Zhong are equivalent too.

Zhong’s formalism has been successfully applied to Fracture Mechanics in
order to determine the asymptotic mechanical fields near the crack tip [4]. This
work has shown that the Hamiltonian approach provides a systematic method in
asymptotic analysis near the crack tip. It leads to a first order differential equation
system, which is easy to deal with. We insist on the fact that this approach is not
only a new formalism other than the traditional methods, but it can be used as a
powerful tool in asymptotic analysis of fracture mechanics.

By using this approach, we have resolved various problems. Some of them have
been solved previously and some not yet. For example, we can calculate the stress
singularities for an interfacial crack between two elastic and isotropic materials.
The results are completely identical as those obtained by using the well-known
theoretical formula. Similar example is a crack tip normally touching an interface
has been resolved see Ref. [4]. For a crack in a generally anisotropic material, we
obtained a near tip field identical to theoretical results [5].The comparison shows
no difference between these two stress distributions. Another example consists in
finding stress singularities near a notch tip formed from two generally anisotropic
materials and stress singularities near an inclined crack tip touching an interface
between two generally anisotropic materials [5]. From this work, we see that the
present method is particularly efficient for resolving multi-material problems. This
is because the selected dual variables are continuous across all the interfaces. So
the multi-material problem can be resolved as a single material problem through
the construction of the transfer matrix.

We believe that a large domain can be found in applying this new approach into
fracture mechanics.

Nevertheless, the connection between the local obtained solution of the stress
field and the far field is still a tremendous problem. That is why we investigate a
new way transforming the fracture mechanics problem into an eigenvalue prob-
lem. That allows us to compute more terms in the stress expansion and then to
connect the local field easily to the far field. The far field could be the finite
element solution. This way will allow more efficiency to deal with various
structural geometries and boundary conditions.
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Abstract In this study, stress wave propagation in an infinite nonlinear visco-
elastic plate is investigated by the Finite Element method. In addition, explicit
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Gaussian stresses. For viscoelasticity modeling, Kelvin’s model with a nonlinear
dashpot is considered. The resulted relations for deflections and deflection angles
are derived during a specified period of time. Result show that second order shear
deformation theory predicts higher speed for bending wave than the first order
shear deformation theory. But both theories predict the same speed for shear
waves.
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1 Introduction

The problem of wave propagation in a solid medium that exhibits the attenuation
of a propagating wave is a wide and significant branch of continuum mechanics.
In the field of structural engineering, wave propagation phenomena has found
increasing applications especially in the area of structural health monitoring and
active control of vibrations and noise. Dynamic analysis in structural engineering
falls into two different classes: the first one involves low frequency loading and the
other one involves high frequency loading. Low frequency problems are catego-
rized as structural dynamics problems whereas those involving high frequency
loading fall into the category of wave propagation problems. In structural
dynamics problems, the frequency content of the dynamic load is in the order of a
few hundred Hertz (Hz) and the designer will be mostly interested in the long-term
(or steady-state) effects of the dynamic load on the structures. Most of the dynamic
problems in structures will fall into this category. On the other hand, in wave
propagation problems, the frequency content of the input loading is very high
(in the order of kilo-Hertz (kHz) or higher) and hence, short-term effects (transient
response) will become very critical. Furthermore, many higher order modes will
participate in amplifying the dynamic response. Impact and blast-type of loading is
in this category.

The state of stress in viscoelastic materials is influenced by many factors, yet
only strain and strain rate are usually taken into account. The behavior of visco-
elastic materials is more often described by relaxation functions. For the begin-
ning, strain and stress tensors are decomposed into the deviatoric and volumetric
terms. The first one is connected with changes in shape and the other one repre-
sents volumetric relaxation. However, most of viscoelastic materials display
negligible bulk modulus changes with respect to the changes of shear modulus so
that, a constant bulk modulus and a relaxation function for shear modulus are often
assumed.

The study of wave propagation has been initiated with Pochhammer [1] with
wave propagation in an elastic rod. Afterward it was followed by Chree [2] and
Bancraft [3] in case of elastic rods. Kolsky [4] started wave propagation analysis in
viscoelastic rods and proceeded his own work in 1968 [5]. Lundberg and Blanc [6]
and Blanc [7] continued estate of viscoelastic rods. Rizzi and Doyle [8] used
spectral analysis and Fourier transform to investigate wave propagation in plates
with boundaries. Nkemzi and Green [9] studied wave propagation in linear vis-
coelastic sandwich plates. The plane wave propagation in inhomogeneous non-
linear viscoelastic plates with the finite element method (FEM) was done by Jiang
and Haddow [10]. Yang and Yuan [11] published a comprehensive analytical
solution for wave propagation in elastic plates using Second order Shear Defor-
mation Theory (SSDT) and 3D Elasticity. In the same year, Adamek et al. [12]
utilized the same procedure as that in Yang et al.’s work, however the material was
linear viscoelastic and First order Shear Deformation Theory (FSDT) was applied.
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Stress wave propagation in structures is usually studied in three ways: by 3D
elasticity, structural analysis and numerical methods. Because of the complexity in
3D analysis, structural and numerical methods are utilized to solve this problem.

2 Solution of the Problem

After defining the problem’s geometry and external load, finite element equations
are obtained from constitutive equations using virtual power method.

2.1 Problem Definition and Initial Assumptions

The problem’s geometry consists of an infinite plate with constant thickness, h,
loaded by transverse pressure. The loading has been applied on the upper face of
the plate (see Fig. 1). As depicted in Fig. 2, the uniformly distributed load has
a harmonic amplitude in time only in the circular area with finite radius, R. The
geometry of the plate is assumed infinite and with respect to the axial symmetry of
the loading applied, the problem is solved as an axisymmetric problem in cylin-
drical coordinates. The positive orientation of axis is depicted in Fig. 1.

2.2 Constitutive Equations

Using constitutive equation, stress tensor is decomposed into volumetric and
deviatoric tensors:

rij ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

2

4

3

5 ¼
rv 0 0
0 rv 0
0 0 rv

2

4

3

5þ
s11 s12 s13

s21 s22 s23

s31 s32 s33

2

4

3

5 ð1Þ

Fig. 1 Geometry definition

A Finite Element Solution for Transient Wave Propagation 39



where rv is the volumetric stress and sij is the deviatoric stress tensor. Strain, eij;

and strain rate, dij; pursue the same way as stress:

eij ¼
e11 e12 e13

e21 e22 e23

e31 e32 e33

2

4

3

5 ¼
ev 0 0
0 ev 0
0 0 ev

2

4

3

5þ
ediv

11 ediv
12 ediv

13
ediv

21 ediv
22 ediv

23
ediv

31 ediv
32 ediv

33

2

4

3

5 ð2Þ

dij ¼
d11 d12 d13

d21 d22 d23

d31 d32 d33

2

4

3

5 ¼
dv 0 0
0 dv 0
0 0 dv

2

4

3

5þ
ddiv

11 ddiv
12 ddiv

13
ddiv

21 ddiv
22 ddiv

23
ddiv

31 ddiv
32 ddiv

33

2

4

3

5 ð3Þ

As it was mentioned before, volumetric strain rates regarding the mentioned
viscoelastic model are used in order to obtain the volumetric stress.

rv ¼ Kev ð4Þ

rtþ1
v ¼ rt

v þ K dt dt
v ð5Þ

Stress within each time step is calculated by a forward difference method:

Stþ1
ij ¼ St

ij þ G dt ddivt

ij þ F ddivt

ij

� �

ð6Þ

This is the general form for a viscoelastic material. Where, F is represented by
Eyring model.

F ddivt

ij

� �

¼ L sinh�1 C ddivt

ij

� �

ð7Þ

C and L are parameters defined with respect to the material properties.

Fig. 2 Harmonic external load applied at plate center
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2.3 Finite Element Form of Governing Equations

In stress wave propagation problems, the strains are usually small but strain rates
are large. This is the main reason of utilizing Lagrangian a mesh (see Fig. 3).
In this case, the material does not pass the mesh borders and also external loads
and boundary conditions are on the mesh borders and nodes.

To initiate the finite element formulation, linear momentum conservation
equation is first used.

orij

oxj
þ qbi ¼ q _vi in X ð8Þ

nj rij ¼ �ti on Cti ð9Þ

where X is the volume and Cti is its border. The momentum equation is multiplied
by a test function and is integrated on its domain, in order to obtain the weak form
of the governing equation:

Z

X

dvi
orij

oxj
þ qbi � q _vi

� �

dX ¼ 0 ð10Þ

After simplifying the integral in Eq. 10, the weak form can be expressed as:

Z

X

oðdviÞ
oxj

� �

rjidX�
Z

X

dviqbidX�
X

nSD

i¼1

Z

Cti

dvi�tidCþ
Z

X

dviq _vidX ¼ 0 ð11Þ

This is known as the virtual power equation. The definition for each of these
terms is specified by the first integral as shown below:

Fig. 3 Lagrangian
description
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oðdviÞ
oxj

� �

rij ¼ dLijrij ¼ dDij þ dWij

� �

rij ¼ dDijrij ¼ dD : r ð12Þ

This term is nominated as the internal virtual power per unit volume. So we
have

dpint ¼
Z

X

dDijrijdX ¼
Z

X

dðdviÞ
dxj

� �

rijdX ¼
Z

X

dLijrijdX ¼
Z

X

dD : s dX ð13Þ

And the second and third term in (11) can be designated as the external virtual
power.

dpext ¼
Z

X

dviqbidXþ
X

nSD

i¼1

Z

Cti

dvi�tdC¼
Z

X

dv:qb dXþ
X

nSD

j¼1

Z

Cti

ddvjej ��tdC ð14Þ

And the last term in (11) is rewritten as the virtual kinetic power:

dpkin ¼
Z

X

dviq _vidX ð15Þ

Substituting (13),(14),(15) in (12), the virtual power equation is defined as

dp ¼ dpint � dpext þ dpkin ¼ 0 8dvi 2 U0 ð16Þ

In order to transfer the character from the element domain to element nodes,
linear shape functions are used.

xiðx; tÞ ¼ NIðXÞxiIðtÞ or xðX; tÞ ¼ NIðXÞxIðtÞ ð17Þ

Velocities and accelerations are defined similar to displacements. To differen-
tiate dissimilar terms, differentiating shape functions are employed whilst nodal
displacements are considered as constant terms.

Lij ¼ vi;j ¼ viI
oNI

oxj

� �

¼ viINI;j or L ¼ vIrNI ¼ vINI;x ð18Þ

Therefore, the strain is described as a function of shape functions:

Dij ¼
1
2

� �

Lij þ Lji

� �

¼ 1
2

viINI;j þ vjINI;i

� �

ð19Þ

Rewriting Eq. 16, the virtual power comes to:

Z

X

oNI

dxj

� �

rijdX�
Z

X

NIqbidX�
X

nSD

j¼1

Z

Cti

NI�tidCþ
Z

X

NIq _vidX ¼ 0 8ðI; iÞ 62 Cvi

ð20Þ
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The velocity increments are factored out from integrals as constants.

dviIðf int
iI � f ext

iI þMijIJ _vjJÞ ¼ 0 8dviI 62 Cvi ð21Þ

The algorithm for solving this equation is illustrated in Fig. 4.
The nodal forces are obtained from the strain definition. The axisymmetric

linear strains in cylindrical coordinate are expressed as:

err ¼ ovr
or ; ehh ¼ vr

r ; ezz ¼ ovz

oz

erh ¼ 0; ezh ¼ 0; erz ¼ 1
2

our
oz þ

ouz

or

� � ð22Þ

And strain rate is described as:

drr ¼ ovr
or ; dhh ¼ vr

r ; dzz ¼ ovz

oz

drh ¼ 0; dzh ¼ 0; drz ¼ 1
2

our
oz þ

ouz

or

� � ð23Þ

Velocity in FSDT is defined as:

vr r; h; z; tð Þ ¼ vr0 r; h; tð Þ þ z _ur r; h; tð Þ
vh r; h; z; tð Þ ¼ vh0 r; h; tð Þ þ z _uh r; h; tð Þ
vz r; h; z; tð Þ ¼ vz0 r; h; tð Þ

ð24Þ

Fig. 4 Problem algorithm
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While velocity in SSDT is defined as:

vr r; h; z; tð Þ ¼ vr0 r; h; tð Þ þ z _w1 r; h; tð Þ þ z2 _u1 r; h; tð Þ
vh r; h; z; tð Þ ¼ vh0 r; h; tð Þ þ z _w2 r; h; tð Þ þ z2 _u2 r; h; tð Þ
vz r; h; z; tð Þ ¼ vz0 r; h; tð Þ þ z _w3 r; h; tð Þ

ð25Þ

Strains rates are as given below for FSDT;

drr ¼
ovr0
or þ z o _ur

or

� �

dhh ¼
vr0
r þ z _ur

r

� �

drz ¼ 1
2 _urð Þ þ ðovz0Þ

or

� �

dhz ¼ 0

drh ¼ 0

ð26Þ

The internal virtual power using strain rate is rewritten as:

dpint ¼
Z

ve

dd0tr0 þ k:dd00tr00ð Þdv ð27Þ

dpint ¼
Z

ve

ddrrr þ ddhrh þ 2ddrhrrh þ 2kddrzrrz þ 2kddhzrhzð Þdv ð28Þ

where the shear correction factor is k = 0.88629, corresponding to the parabolic
distribution of srz over the plate’s cross-section.

Before substituting strain rates, parameters of deformation theories are defined
with shape functions;

vr0 ¼ NI r; hð Þvr0I
;

_ur ¼ NI r; hð Þ _urI
;

vh0 ¼ NI r; hð Þvh0I
;

_uh ¼ NI r; hð Þ _uhI

vz0 ¼ NI r; hð Þvz0I ð29Þ

The differentiation of shape functions are;

B1I ¼
ðoNIÞ

or ; B2I ¼
ðoNIÞ
oh

30 ð30Þ

By substituting in internal virtual power for FSDT, internal virtual power is
obtained as;

dpint ¼
Z

ve

B1I dvr0I
þ zd _urI

� �

rr þ krrz NId _urI
þ B1I dvzI

� �

h i

dv ð31Þ

dpint ¼ dvr0I

Z

R2

R1

Z

2p

0

Z

h=2

�h=2

B1I rrð Þr dr dh dzþ dvzI

Z

R2

R1

Z

2p

0

Z

h=2

�h=2

kB1I rrzð Þr dr dh dz

þ d _urI

Z

R2

R1

Z

2p

0

Z

h=2

�h=2

B1I zrr þ kNIrrzð Þr dr dh dz ð32Þ
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dpint ¼ dvr0I

Z

R2

R1

Z

2p

0

B1I frð Þr dr dhþ dvzI

Z

R2

R1

Z

2p

0

kB1I frzð Þr dr dh

þ d _urI
Z

R2

R1

Z

2p

0

B1I mr þ kNIfrzð Þr dr dh ð33Þ

In which

fr ¼
Z

h=2

�h=2

rrdz; frz ¼
Z

h=2

�h=2

rrzdz; mr ¼
Z

h=2

�h=2

zrrdz ð34Þ

After simplifying internal virtual power, we have

dpint ¼ dvr0I
FrI þ dvzI FzI þ d _urI

MrI ð35Þ

where

FrI ¼
Z

1

�1

2
ðR2 � R1ÞB1I fr

� �

p f R2 � R1ð Þ þ R1 þ R2ð Þð Þdf ð36Þ

FzI ¼
Z

1

�1

k2
ðR2 � R1ÞB1I frz

� �

p f R2 � R1ð Þ þ R1 þ R2ð Þð Þdf ð37Þ

MrI ¼
Z

1

�1

2
ðR2 � R1ÞB1I mr þ kNIfrz

� �

p f R2 � R1ð Þ þ R1 þ R2ð Þð Þdf ð38Þ

The trail is the same for SSDT so it is exorbitant to be brought here. We start
from kinetic virtual power for mass matrix.

dpkin ¼
Z

X

dviq _vidX ð39aÞ

dpkin ¼ dviI

Z

Ve

NIqNI _viI dV ð39bÞ

dpkin ¼ dvrI

Z

R2

R1

Z

2p

0

Z

h=2

�h=2

NIqNI _vrI r dr dh dzþ dvzI

Z

R2

R1

Z

2p

0

Z

h=2

�h=2

NIqNI _vzI r dr dh dz ð39cÞ

For a linear order shape function like;

NI ¼
1
2

1� f
1þ f

� 	

ð40Þ
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f ¼ 2r � ðR1 þ R2Þð Þ
ðR2 � R1Þ

ð41Þ

where r is the radius, and R2, R1 are the inner and outer radius of the element,
respectively. Here r is a variable and R2, R1 are constants. After integration,
internal power is in the following form:

dpkin ¼ qh dvr0I _vr0I þ dvzI _vzIð Þ½ � þ ððqh3Þ=12Þ d _urI €urIð Þ

 �� 

2p

ð16=105Þ R2�R1ð Þ R1þR2ð Þ � ð1=15Þ R2�R1ð Þ2 ð41=420Þ R2�R1ð Þ R1þR2ð Þ
ð41=420Þ R2�R1ð Þ R1þR2ð Þ ð16=105Þ R2�R1ð Þ R1þR2ð Þ � ð1=15Þ R2 �R1ð Þ2

� 	

ð42Þ

So, in this case the mass matrix of an element is defined as:

Me ¼ 2p

qhi 0 0
0 qhi 0
0 0 ðqh3=12Þi

qhj 0 0
0 qhj 0
0 0 ðqh3=12Þj

qhj 0 0
0 qhj 0
0 0 ðqh3=12Þj

qhi 0 0
0 qhi 0
0 0 ðqh3=12Þi

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð43Þ

where

i ¼ 1
6

� �

R2 � R1ð Þ R1 þ R2ð Þ � 1
12

� �

R2 � R1ð Þ2

j ¼ 1
12

� �

R2 � R1ð Þ R1 þ R2ð Þ

Mass matrix is obtained for SSDT by the same procedure. To verify the
assumed method, the finite element method is changed to be consistent with the
approach in Ref. [12]. In this case, a step load is used in a circular form at
the middle of plate. The deflection results are plotted 2 mm from the plate’s
center during the first 4.5 lm. For this problem: h = 0.4 mm, r0 = 50 Mpa,
R = 0.3 mm

The constitutive equations for the linear viscoelastic material are in a nonlinear
integral form as stated below:

rr ¼
E1

ð1� l2
1Þ

� �

er þ l1ehð Þ þ E2

ð1� l2
2Þ

� �

er þ l2ehð Þ

� E2
2

k 1� l2
2

� �

 !

Z

t

0

er þ l2ehð Þexp
�E2

k t � sð Þ

� �

ds ð44Þ
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rh ¼
E1

ð1� l2
1Þ

� �

eh þ l1erð Þ þ E2

ð1� l2
2Þ

� �

eh þ l2erð Þ

� E2
2

k 1� l2
2

� �

 !

Z

t

0

eh þ l2erð Þexp
�E2

k t � sð Þ

� �

ds ð45Þ

srz ¼ G1 þ G2ð Þcrz �
G2

2

g

� �

Z

t

0

crzexp
�G2

g t � sð Þ ds ð46Þ

Finally, the analytical solution is compared with the present method, consid-
ering 2, 4, 6 and 8 slave node elements in Fig. 5.

Figure 5 shows that with more slave nodes for integration, response compare
better with the analytical solution which uses an exact integration through thickness.

3 Case Study and Results Analysis

After verifying the finite element method, response of the plates with two
structural theories is investigated. The problem is programmed and solved by
MATLAB 64 bit (2009). For this reason, the nonlinear viscoelastic properties of
an Acrylonitrile Butadiene Styrene (ABS) copolymer are considered.

q ¼ 700 kg
m3 h ¼ 4 mm E ¼ 100 GPa m ¼ 0:33

L ¼ 100 kPa C ¼ 0:01 s

Fig. 5 Plate deflection at a specified point, 2 mm far from center
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A semi sinusoidal load, as depicted in Fig. 2, with a maximum of 100 kPa is
exerted in two microseconds. The loaded area is a 2 cm diameter circle.

Vertical displacements of the plate using both FSDT and SSDT are shown in
Fig. 6 at a point 75 cm far from the plate’s center. This point is selected since the
shear and moment waves are separated and the effects can be analyzed discretely.

In Fig. 6, the wave is divided in tow waves which are nominated shear and
bending wave. In case of pure elastic material, the bending wave’s speed is

ffiffiffi

2
p

times larger than the shear wave’s. SSDT predicts a higher speed than FSDT, but
the same deflection amplitude. In both theories, shear and bending waves have an
overlap in the middle of considered time period. In other words, the considered

Fig. 6 Plate deflection comparison of FSDT and SSDT

Fig. 7 Plate rotation comparison of FSDT and SSDT
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point is not far enough from the center so that the waves become completely
separated.

Figure 7 depicts plate’s response and wave’s behavior showing midplane’s
rotation in both theories. The location is again a point 75 cm far from the plate’s
center and the investigation time period is selected in order to cover both bending
and shear waves.

Again, SSDT predicts higher speed and larger rotations in the case of the
bending wave, while for the shear wave, the maximum amplitude, however the
time when it takes place is the same for both theories.

Figure 8 illustrates the comparison of the bending moment obtained by the two
theories. Both theories show bending wave effects on the bending moment, like
high amplitude and fluctuation in bending moment.

Finally, the transverse shear force waves are illustrated in Fig. 9. Figure 9
shows that the bending wave does not have a significant effect on the shear forces.

Fig. 8 Bending moment comparison of FSDT and SSDT

Fig. 9 Shear Force comparison of FSDT and SSDT
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But for the case of shear waves, the shape of graphs changes radically due to
changes in shear stresses.

4 Conclusion

Since structural theories are selected to solve this problem, the waves will deplete
into two main types of waves. These types are known as bending and shear waves
which propagate in different speeds. Due to nonlinearity in such problems, wave
speeds cannot be defined exactly. However, in any case, bending wave speeds are
more than shear’s. The comparison between these two structural theories (SFSDT
and SSDT) shows that SSDT predicts higher speed and larger amplitude than
FSDT for bending wave, while they are equal in the case of shear wave. In all
cases of both displacements and stress resultants, FSDT is more sensitive and
shows more fluctuations encountering waves.
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Analytical, Numerical and Experimental
Study of the Effects of Braking on Single
Disc Motorcycle Forks

Dario Croccolo, M. De Agostinis and N. Vincenzi

Abstract This work deals with the development of an analytical model which
allows to describe the tensile state arising in single-disc motorcycle forks, during
the brake. Stress and strain trends are computed as functions of some key
parameters of the motorcycle (mass and centre of gravity location) and of the fork
(lengths and diameters). The fork geometry is represented by a portal frame loaded
out of its plane, whose axisymmetric elements represent the legs (pillars) and the
wheel pin (transverse beam). Each of the three elements has material and inertia
parameters variable along their axis, allowing for the actual mechanical properties
of the component. Finally, the stress state of several fork models has been
investigated either via Finite Element Analysis and with field tests, in order to
support the validity of the proposed model.

Keywords Motorcycle � Fork � Stress � FEA � Analytical � Experimental

1 Introduction

Although it may look as a simple component, the front fork has a critical role in
the overall dynamic behaviour of motorcycles. It must provide appropriate stiff-
ness characteristics, damping capabilities and the lowest sliding friction values in
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order to guarantee as much performance, safety and comfort as possible. From a
structural mechanics standpoint, the main frame of front suspensions consists of
two legs, two steering plates and a steering pin, put together by means of shaft-hub
couplings [1–5]. Each leg realises a cylindrical joint, providing a way for its inner
and outer tube to translate and rotate freely with respect to each other. The whole
front suspension is assembled to the motorcycle frame by means of the steering
pin. Whether the inner or outer tubes are coupled with the steering plates, the fork
architecture is referred to as ‘standard’, see Fig. 1a or as ‘up-side down’, see
Fig. 1b.

Inside the tubes are a number of hydraulic and elastic elements whose com-
bined action defines the damping characteristic of the fork. Figure 2 reports a
section view of a ‘standard’ fork, showing the arrangement of hydraulic and elastic
components. Motorbike forks can be subdivided further into single-disc and twin-
discs architectures. Despite single disc forks were the preferred choice for most of
motorbikes in the past, nowadays such solution may be easily found on low cost
and ‘Offroad’ motorbikes only, because the increase in performances and weight
of either ‘Supersports’ and ‘Tourism’ motorbikes determined the spread of twin
discs architectures.

Fig. 1 Standard (a-left) and
Up-Side Down (b-right) forks
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2 Structural Design of Forks

The design of a motorbike fork is a challenging task which shall take into
account both the dynamic response and the structural strength of the suspension.
While a good dynamic response can be improved afterwards by a fine-tuning of
several manually adjustable parameters (whose choice is quite often based on the
rider’s feeling on the bike), only a correct design can ensure an adequate
structural strength. Moreover, the design phase of a new product shall provide a
quick fulfilment of the structural requirements because of the shortening of
vehicles lifecycle (about 2:3 years). A deep knowledge of the product lifecycle is
the key for a correct design: for that reason, suspensions producers must carry
out a number of road/bench testing activities in order to collect all the relevant
data. Several road tests carried out by our research group in cooperation with
Paioli Meccanica, led to defining the most severe load conditions in terms of
mechanical stress on the structural elements of the fork. A hard braking
manoeuvre in which the rear tyre looses contact with the ground, and the whole
motorcycle weight is transferred to the front wheel, determines the highest
flexural stress values on the fork legs. In order to build an analytical model
useful for the structural design of forks, such loading condition must be,
therefore, deeply understood and described.

Fig. 2 Inner components of a fork
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2.1 Basics of Tire Dynamics

Tires are flexible elements which provide shock absorption while keeping the
wheel in close contact with the ground. Tires grip characteristics play a critical
role in the overall traction, brake and cornering performances a motorbike can
deliver. Traction and brake forces arise during the ride involving shear forces
along the contact area between the tire and the ground. Such forces make the
rubber fibres belonging to the tire circumference compress along the tangential
direction during the traction phase and extend during the brake. Figure 3 shows a
tire travelling with a velocity V0 = xr0, subject to a braking torque Tb which
determines a braking force Fb at the interface between the tire and the ground. A
vertical load N acts on the tire.

Due to the longitudinal braking force Fb, the rubber fibres on the running
circumference elongate when passing through the tire-ground contact segment AB
(Fig. 4).

Hence, the circumferential velocity of a point fixed to the aforementioned fibres
decreases as it travels from point A to point B: the circumferential velocity V of
such point is therefore lower than the travelling velocity V0.

Now, define the longitudinal slip, k:

k ¼ V � V0

V0
ð1Þ

The longitudinal slip takes positive values for traction and negative values for
braking. Over the years, tire manufacturers defined a variety of semi-empirical
relationships expressing the longitudinal force F (and then the longitudinal friction

Fig. 3 Tire subject to a
brake
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coefficient l0) as a function of vertical load N and longitudinal slip values k. The
best-known relationship of such kind is the ‘Magic Formula’ by Prof. H. B.
Pacejka [6], a transcendental function generally expressed in the form:

F kð Þ ¼ D � sin C � arctan B � k � E B � k � arctan B � kð Þð Þ½ �f g ð2Þ

l0 ¼ F

N
ð3Þ

With F being the longitudinal force and k the longitudinal slip, B, C, D, and
E being input coefficients which depend on several ‘static’ parameters (tied to the
geometrical and chemical characteristics of the tire) and on two ‘dynamic’
parameters, namely the longitudinal slip k and the vertical load N. The ‘Magic
Formula’ owes its name to the fact that there is no particular physical basis behind
the structure of the equation chosen, but it fits a wide variety of tire constructions
and operating conditions. The equation can be plotted as shown in Fig. 5, where l0

is reported as a function of k.
Looking at Fig. 5 it could also be noticed that the curve l0(k) is characterized by

a peak, which is typically around k = ± 0.15.

2.2 Equilibrium During a Brake

When a braking manoeuvre is performed, a load transfer from the rear wheel to the
front wheel of the motorbike takes place. The amount of the load transfer depends on
the center of mass position, on the motorbike wheelbase and on the deceleration value.

Fig. 4 Slip velocity during a
brake
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Referring to Fig. 6, define:

• m: bike ? rider mass [kg];
• p: bike wheelbase [mm];
• b: bike ? rider centre of mass to rear wheel axis distance [mm];
• h: bike ? rider centre of mass to ground distance [mm];
• h0: centre of the aerodynamic pressure [mm];
• Fw: aerodynamic force [N];
• Fbf, Fbr: front wheel and rear wheel braking forces [N];
• Nf, Nr: weight on the front and on the rear axle [N].

When the motorbike has its wheels on a flat surface, the vertical load acting on
the rear wheel is:

Fig. 5 Longitudinal friction
coefficient l0 as a function of
longitudinal slip k

Fig. 6 Rigid body equilibrium during the brake
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Nr ¼ m � g � p� bð Þ
p

ð4Þ

Now define the load transfer value due to the brake:

DN ¼ m � d � h
p

ð5Þ

During a brake, vertical loads on the wheels take the values:

N0r ¼ Nr � m � d � h
p

ð6Þ

N0f ¼ m � g� N 0r ð7Þ

The in-plane equilibrium governing relationships during the brake are:

Fw þ Fbf þ Fbr ¼ m � d
m � d � h ¼ m � g � ðp� bÞ þ Fw � h0

(

ð8Þ

Where:

Fbf ¼ l0 � N 0f
Fbr ¼ l0 � N 0r

(

ð9Þ

Here l0 is the longitudinal friction coefficient, as defined into (3). A braking
manoeuvre in which the rear tyre looses contact with the ground, and the whole
motorcycle weight is transferred to the front wheel is, therefore, characterized by

N0r = 0 [7, 8]. Provided that N0r = 0, (8) transforms as follows:

Fbf ¼ m � d � Fw

m � d � h ¼ m � g � ðp� bÞ þ Fw � h0

(

ð10Þ

Then, recalling (7) and (9), (10) gives:

Fbf ¼ l0 � m � g

Fbf ¼ m � g � ðp� bÞ
h
þ Fw �

h0 � hð Þ
h

8

<

:

ð11Þ

Which expresses that the maximum applicable braking force during a hard
braking manoeuvre is:

Fbf MAX ¼ min l0 � m � g; m � g � ðp� bÞ
h
þ Fw �

h0 � hð Þ
h

� �

ð12Þ

On a dry, clean asphalt surface, it is commonly assumed that motorcycle
standard sport touring tires can deliver a maximum longitudinal friction coefficient
l0 & 1.5 [9]. During a hard brake, motorcycles with a long wheelbase and a low
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center of mass (like Cruisers) would probably reach the skidding condition before
capsizing, while Hypersport motorcycles would probably behave the opposite way.
The maximum applicable braking force is a key parameter for fork manufacturers,
since it is strictly tied to the maximum bending load that the legs must withstand
during the product lifecycle.

2.3 Loads Analysis

The tensile state of single disc forks subject to braking loads is worthy of particular
interest, because such an asymmetric architecture leads to an unequal distribution
of bending stresses between the two legs. Define a Cartesian coordinate system
with its origin into the wheel pin centre, x-axis coincident with the wheel pin axis
and z-axis oriented upwards along the leg axis. Referring to Fig. 7, rd is the mean
disc radius and a the angle between z-axis and the brake pads centre (brake caliper
angle). c is the caster angle and c is the offset between the wheel pin and the leg
axis.

When a hard brake is performed and the external forces shown in Fig. 6 act on
the rolling circumference of the front tire, the internal forces shown in Fig. 8 arise.
The total vertical load N = Nf (Nr = 0) is transmitted to the wheel pin, along with
the braking force Fb. Define the braking torque on the disc:

Fig. 7 Coordinate system
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Tb ¼ Fb � rw ð13Þ
In order to deliver a braking torque Tb the braking pads must provide a braking

force on the disc:

Fd ¼
Tb

rd
¼ Fb �

rw

rd
ð14Þ

In order to satisfy the internal equilibrium of the caliper–disc system, the same
Fd force shall act either on the disc and on the caliper (Fig. 8 (b)):

Such force is, therefore, transmitted by the brake caliper to the relevant leg
(Fig. 8 (c)) and by the disc to the wheel pin (Fig. 9). From now on, Fd will be
referred to as ‘disc force’.

It must be noticed that any force applied either to the disc or to the wheel is
transmitted to the wheel pin through the front wheel hub bearings. Forces
belonging to the wheel-ground contact (i.e. N and Fb) act on the fork vertical
mid-plane, hence they are equally divided between the two bearings, therefore
between the two legs. Since the brake disc cannot be aligned with the leg axis, an
offset between z-axis and the disc mid-plane (X) always exists, such that Fd

actually acts on X, as shown in Fig. 9. For that reason, the disc force transmitted
by the disc to the wheel pin is unevenly distributed between the two bearings.

2.4 Structural Scheme

In order to retrieve an analytical model able to describe the stress state of the fork
under the aforementioned loading conditions, a line body scheme will now be
defined. A portal frame made up of three axisymmetric elements, the two pillars
representing the legs and the transverse beam representing the wheel pin (Fig. 10),
was chosen as a line body scheme [10]. The relevant Cartesian coordinate system
is taken as shown in Fig. 10, conforming to what was stated in Sect. 2.2.

Fig. 8 a, b, c Internal forces during the brake
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The offset along y-axis c between the wheel axle and the leg axis is reported in
Fig. 10 as well. The pillars are constrained in C and D by means of two hinges,
which allow the sole rotation around z-axis.

The beam and the pillars have material and inertia parameters variable along
their axes, in order to achieve a reliable approximation of the mechanical prop-
erties of the actual components. Each leg has been subdivided into three segments,
Ei and Ii being the Young’s moduli and the x-axis moments of inertia of the leg
segments respectively. In order to clarify what was above stated, variable thickness
lines represent the different properties of the portal frame elements in Fig. 2.8.

This complication is due to the fact that the leg is made up of two elements, the
inner and the outer tube, having variable materials and sections along their axes
(Fig. 11)

Looking at Fig. 12, it can be appreciated how the leg intermediate section (L2)
is actually composed of two elements (the inner and the outer tube). These ele-
ments work together like mechanical springs in parallel, therefore, the overall
Young’s modulus and the x-axis moment of inertia of the leg intermediate section
shall be computed consequently.

Wheel pins usually have their diameter variable along the symmetry axis. In
order to provide for that, the portal beam has to be subdivided into four sections
with different moments of inertia (Ipj, Jpj) but with the same material (Ep, Gp, mp).
As Figs. 10 and 11 report, the overall free length of the legs (L = L1 ? L2 ? L3)

Fig. 9 Brake disc
offset along x-axis (d)
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is the distance, along z-axis, from the wheel axle to the lower edge of the lower
steering plate. Once the line body scheme has been defined, loads can be applied.
Figure 13 (a) represents the portal frame loaded out of its plane with the forces N,
Fb and Fd, shown in their actual positions.

Figure 13 (b) represents an equivalent system in which all the forces have been
separated into the relevant components along the coordinate system axes. Fd (leg)
components have been transferred to the braking leg axis: three concentrated

Fig. 10 Line body scheme

Fig. 11 Leg section
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moments Td_x, Td_y and Td_z have been introduced to enforce equilibrium condi-
tions. Referring to Figs. 13 and 14:

Fd y ¼ Fd � cosa

Fd z ¼ Fd � sina

(

ð15Þ

Fig. 12 Leg section enlargement–bearings

Fig. 13 a Forces on the portal frame, b Force components on the portal frame
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Td_x is due to the y-axis distance between the leg axis and the brake pads centre,
as shown into the side view of the braking leg reported in Fig. 14.

Td x ¼ Fd z � rd � sin a� cð Þ ð16Þ

Td_y can be written as:

Td y ¼ Fd z � d ð17Þ

And will be neglected because it yields any contribution neither to the legs
deflection on yz-plane, nor to the maximum stress of the legs. Finally Td_z is given
by:

Td z ¼ Fd y � d ð18Þ

Referring to Fig. 14, the distance, measured along z-axis, between the Fd

projection on y-axis, Fd_y, and the constraint C, is L0 = L01 ? L2 ? L3, where:

L01 ¼ L1 � rd cosðaÞð Þ ð19Þ

Fig. 14 Force components
on the portal frame–side view
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2.5 Analytical Solution

External force reactions are represented by upper case letter R, while external
moment reactions by upper case letter M. The number of equations of statics is six:

X

Rx;y;z ¼
X

Fx;y;z
X

Mx;y;z ¼
X

Tx;y;z

(

ð20Þ

And the unknown force and moment reactions in C and D are ten, being:

MC z ¼ MD z ¼ 0 ð21Þ

because the inner and outer tubes are free to rotate with respect to each other.
RC_z and RD_z are neglected because they are transmitted by the fork springs to

the steering plates, without affecting the flexural stress state of the inner and outer
tubes. Moreover, the following external reaction components are null due to the
loading condition:

RC x ¼ RD x ¼ 0

MC y ¼ MD y ¼ 0

(

ð22Þ

However, the structure remains statically indeterminate and shall be, therefore,
solved by applying the method of consistent deformations: the reaction moments
values along x-axis (MC_x and MD_x) are computed. Such reaction moments would
have equal values in twin discs forks, while in single disc forks, their difference
expresses the uneven stress distribution between the two legs introduced by the
structure asymmetry. The rotation angles around x-axis of points A and B, are
defined by uA and uB respectively. The structure is uncoupled at points A and B
and the consistent deformations [11] equation is introduced:

/A ¼ /B þ /0 ð23Þ

Where u0 is the wheel pin torsion angle between A and B ends. As formerly
specified, a number of effects combine to bring about the overall MC_x and MD_x

reaction moments: for instance Fb and N determine equal external reaction
moments around x-axis while Fd does not. Notwithstanding such effects are sub-
divided and discussed separately on the following paragraphs, they are eventually
superimposed (relying on the fact that the analysis is carried out in the elastic field)
in order to compute the overall MC_x and MD_x values.

2.5.1 First Effect: Fd_y and Td_x Contribution

The first effect is due to the combined action of the disc force component Fd_y and of
the concentrated moment Td_x, both applied to the braking leg axis at z = L1 - L01.

64 D. Croccolo et al.



Such effect could be split further into two contributions: the primary one is tied to the
bending of the legs under the direct action of Fd_y, Td_x.

Referring to Figs. 14 and 15, and recalling (19), it is convenient to define T1 and
T2 in order to enforce the method of consistent deformations:

T1 ¼ Fd y � L01 þ L2
� �

T2 ¼ Fd y � L01
ð24Þ

Define also:

E2I2 ¼ E1I1 þ E3I3 ð25Þ

Then, the reaction moments due to the primary contribution of the first effect in
D and C are:

MD x11 ¼
Fd y�L2

3
2�E3I3

þ T1�L3
E3I3
þ Fd y �L2

2
2�E2I2

þ T2�L2
E2I2
þ T2�L01

2E1I1
� Td x�L3

E3I3
� M�L2

E2I2
� M�L01

E1I1

h i

2�L3
E3I3
þ 2�L2

E2I2
þ 2�L1

E1I1
þ Lp

GpJp

� � ð26Þ

MC x11 ¼ Fdcosa � ðL01 þ L2 þ L3Þ � Fd � rd � sin2aþ Fd � c � sina�MD x11

ð27Þ

Fig. 15 Force components
on the portal frame–first
effect
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Looking at (26) and (27), it can be appreciated how the ends of the two legs (A
and B points) undergo different rotations along x-axis due to bending. Provided
that the offset c is not null, such different rotations determine different displace-
ments of A and B points, making the wheel pin bending into xz-plane. Ends A and
B of the wheel pin react, therefore, with two forces along z-axis: RA_z12 and
RB_z12. These forces produce a secondary contribution to x-axis moment reactions
in C and D equal to:

MC x12 ¼ �RA z 12 � c
MD x12 ¼ �RB z 12 � c

(

ð28Þ

The superposition principle yields the moment reactions due to the first effect
as:

MC x1 ¼ MC x11 þMC x12

MD x1 ¼ MD x11 þMD x12

(

ð29Þ

2.5.2 Second Effect: Fd Loads Applied to the Wheel Pin

For internal equilibrium reasons, Fd acts on the disc as well. Then it is transmitted by
the hub to the wheel pin and, therefore, to the legs in A and B points. The legs react on
the wheel pin with two forces whose intensity depends on the distance between X and
the leg axis d and on the length of the wheel pin Lp (Figs. 16 and 17).

Just like the first, the second effect brings about two contributions to the sup-
ports moment reactions. The first contribution yields:

MD x21 ¼ RB y21 � L1 þ L2 þ L3ð Þ � RB y21 � RA y21
� �

� S1

2 � S2 þ S3

MC x21 ¼ RA y21 � L1 þ L2 þ L3ð Þ þ RB y21 � RA y21
� �

� S1

2 � S2 þ S3

8

>

>

<

>

>

:

ð30Þ

Where:

S1 ¼
L2

3

2 � E3I3
þ L1 þ L2ð Þ � L3

E3I3
þ L2

2

2 � E2I2
þ L1 � L2

E2I2
þ L1ð Þ2

2 � E1I1

S2 ¼
L3

E3I3
þ L2

E2I2
þ L1

E1I1

S3 ¼
Lp

Gp � Jp

ð31Þ

As above reported for the first effect, since the offset c is not null, the different
rotations and displacements determined by RA_y21 and RB_y21 at A and B points,
force the wheel pin to bend into xz-plane. Ends A and B of the wheel pin react,
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therefore, with two forces along z-axis: RA_z22 and RB_z22. These forces, summed
up with the components along z-axis due to the first effect, produce a secondary
contribution to x-axis moment reactions in C and D equal to:

MD x22 ¼ RB z21 þ RB z22ð Þ � c
MC x22 ¼ RA z21 þ RA z22ð Þ � c

(

ð32Þ

The moment reactions due to the second effect can be, therefore, written as:

MC x2 ¼ MC x21 þMC x22

MD x2 ¼ MD x21 þMD x22

(

ð33Þ

2.5.3 Third Effect: Td_z Contribution

Now, the third effect is computed as a superposition of two contributions.
Recalling Fig. 13 and (15), Td_z concentrated torque brings about the last

Fig. 16 Wheel pin equilibrium along z-axis–second effect
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contribution to the overall x-axis moment reactions in C and D due to the braking
force. Since the legs are allowed to rotate along z-axis (Figs. 11, 12), they behave
as simple supports for the wheel pin on xy-plane. The concentrated torque
(Fig. 18) can be transported to the wheel pin centre: the wheel pin can, therefore,
be treated as a simply supported beam, loaded by Td_z (Fig. 19).

The two supports react with two forces having the same intensity and directed
along y-axis, RA_y3 and RB_y3:

RA y3 ¼ RB y3 ¼
Td z

Lp
ð34Þ

Such forces determine the third effect, first contribution, moment reactions in C
and D:

MC x31 ¼ RA y3 � L1 þ L2 þ L3ð Þ þ RB y3 � RA y3
� �

� S1

2 � S2 þ S3

MD x31 ¼ RB y3 � L1 þ L2 þ L3ð Þ � RB y3 � RA y3
� �

� S1

2 � S2 þ S3

8

>

>

<

>

>

:

ð35Þ

Fig. 17 Force components
on the portal frame–second
effect
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Where S1, S2, S3 are defined into (31).
The second contribution of the third effect can be derived as an analog of the

second contributions of first and second effect.

MC x32 ¼ RA z32 � c
MD x32 ¼ RB z32 � c

(

ð36Þ

The moment reactions belonging to the third effect are:

Fig. 18 Force components
on the portal frame–third
effect

Fig. 19 Wheel pin loaded by
Td_z on xy-plane
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MC x3 ¼ MC x31 þMC x32

MD x3 ¼ MD x31 þMD x32

(

ð37Þ

2.5.4 Fourth Effect, Symmetric Contributions Fb and N

Since the effects, which concur in determining the load unevenness between the
legs have been examined, focus now on Fb and N forces. Their effects are equally
subdivided between the legs. Referring to Fig. 14 notation, the moment reactions
in C and D due to the vertical load N is defined as:

MC x41 ¼ MD x41 ¼
N

2
� L1 þ L2 þ L3ð Þ � sincþ c � cosc½ � ð38Þ

While the moment reactions belonging to Fb can be written as:

MC x42 ¼ MD x42 ¼
Fb

2
� L1 þ L2 þ L3ð Þ � cosc� c � sinc½ � ð39Þ

Then:

MC x4 ¼ MC x41 þMC x42

MD x4 ¼ MD x41 þMD x42

(

ð40Þ

2.5.5 Overall Moment Reactions Estimation

Recalling (29), (33), (37) and (40), the overall moment reactions in C and D can be
obtained by adding up the four aforementioned effects:

MC x ¼ MC x1 þMC x2 þMC x3 þMC x4

MD x ¼ MD x1 þMD x2 þMD x3 þMD x4

(

ð41Þ

Where the major contribution to the overall moment reactions is given by the
fourth effect (MC_x4, MD_x4).

2.6 Comparison between Analytical and Finite Element
Analysis Results

Once relationships (41) are known, the stress values along the fork legs, or the
moment reactions of the constraints C and D can be back calculated. In order to
understand the validity of the presented model, a comparison with a Finite
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Elements Analysis (FEA) of a production fork is reported. The motorbike chosen
for the comparison is a 125 cc. Enduro model, equipped with a 41 mm upside-
down fork. In conforming with Sect. 2.2 notation, the bike parameters are reported
below.

Table 2 shows instead the fork parameters, used as inputs for the analytical
model.

Given Table 1 and 2 values, Eq. (41) provide the overall moment reaction
values in C and D:

MC x ¼ MC x1 þMC x2 þMC x3 þMC x4 ffi �955; 600 Nmm

MD x ¼ MD x1 þMD x2 þMD x3 þMD x4 ffi �527; 400 Nmm

(

ð42Þ

In the vicinity of C and D constraints, also the normal stress along z-axis on the
external tube can be calculated as follows [12]:

Table 1 Bike parameters

Bike parameter Value Unit

m 195 kg
p 1.475 mm
b 650 mm
h 650 mm
rw 300 mm
rd 117,5 mm
Fb 2.428 N

Table 2 Fork parameters

Fork parameter Value Unit

c 26 deg
a 85 deg
c 34 mm
d 37 mm
L1 397 mm
L2 211 mm
L3 24 mm
Lp 190 mm
I1 56.261 mm4

I2 378.861 mm4

I3 322.600 mm4

Jp 19.769 mm4

E1,Ep 206.000 MPa
E3 71.000 MPa
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rC z ¼
MC x

I3
� De3

2
ffi 83MPa

rD z ¼
MD x

I3
� De3

2
ffi 46MPa

8

>

>

<

>

>

:

ð43Þ

The FEA has been carried out with the ANSYS Workbench R.12 code on the
same geometry. The model has been meshed with tetrahedrons and hexahedrons
imposing an element size of 1 mm, which resulted into approximately 4,400,000
nodes and allowed to have more than one element across the tube thickness
(Fig. 20).

Fd, N and Fb forces have been applied to the structure conveniently, as shown in
Fig. 21.

Two cylindrical supports, allowing the tubes to rotate around z-axis, have been
applied in C and D. Fd, the force acting on the wheel pin, has been subdivided into
two components Fe and Ff. Then, such components have been applied each to a
restricted surface of the wheel pin, which corresponds to the contact area between
the wheel pin and the wheel bearing internal ring. Results have been obtained for
moment reactions in C and D and for normal stress values along z-axis. Table 3
reports a comparison between Analytical and FEA results.

Fig. 20 FEA model and Mesh
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It can be observed that a good convergence between the two methods exists,
since errors are always lower than 5%.

Figure 22 shows the normal stress distribution along z-axis: two flags indicate
the stress values near the lower steering plate.

2.7 Experimental Results

An experimental campaign has been carried out as a means for assessing the
validity of the analytical and numerical models. Results obtained for the same
motorbike-fork mentioned into Sect. 2.5 are presented. The fork has been

Fig. 21 Loads and constraints

Table 3 Analytical vs. Fea: moment reactions, normal stress (z-axis) and percentage error

Analytical FEA Error (%)

MC_x [N mm] -955.600 -926.000 3
MD_x [N mm] -527.400 -538.000 2
rC_z [MPa] 83 80 4
rD_z [MPa] 46 47 2
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instrumented with four strain gauges placed close to the lower steering plate joint.
The strain gauges have been glued to the external surface of the outer tubes, with
the main grid axis aligned with the tube axis (Fig. 23).

Each couple of strain gauges, half bridge configured [13], has been connected to
a National Instruments 9237 module, plugged into a NI C-Rio portable controller.

Fig. 22 Z-axis normal stress

Fig. 23 Strain gauges
installation
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A Labview software has been used to manage all the data acquisition parameters:
the data sampling frequency has been set at 100 Hz. Then, a series of hard brakes
has been performed by a professional rider on an even asphalt mat (Fig. 24), and
the relevant stress values have been recorded for both the legs. It is well known
how the asphalt mat conditions deeply influence the longitudinal friction coeffi-
cient value l0. Tire characteristics, as mentioned into Sect. 2.1, play a critical role
towards longitudinal friction as well. Another element which impacts on maxi-
mum bending stress values is the fork stroke during the brake: as N and Fb forces
increase during the brake, taking peak values at the end of the brake, conversely
the fork L1 length decreases to become minimum at the same moment. Such
behavior determines a significant decrease in flexural stresses on the outer tubes
that cannot be taken into account by a static (analytical or FEA) model. At the
same time, front suspensions outer tubes should be designed at the fully extended
position since the sliding between the inner and outer tubes can be locked due to
springs or hydraulic failures.

Therefore, the stress values sampled during field-testing can be significantly
lower than those calculated either by FEA or Analytical models. Experimental
peak stress values in C and D are reported in Table 4.

Figure 25 reports the stress tracks, for both the legs, recorded during a series of
ten brakes at the capsizing limit.

3 Discussion

Forks legs have identical sections, and all the methods described above allow
defining the ratio between the maximum stress values read on the two legs. This
parameter conveys the amount of load unbalance between the legs. Therefore,

Fig. 24 Brake at the
capsizing limit
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unbalance ratios given by each method can be compared, in order to prove the
effectiveness of the analytical model in forecasting the stress unbalance in a new
fork, given a limited set of design parameters.

Unless the peak stress values returned by experimental analyses are lower than
those given by FEA and Analytical models, Table 5 proves the analytical model
reliability in predicting the load unevenness between the two legs.

It is important to underline that the global equilibrium is always satisfied so that
the sum of Mc_x and Md_x is equal to the total bending moment Mtot_x produced by
external forces applied to the tire (Fb and N). Mtot_x can be easily calculated by
means of the following equation:

Mtot x ¼ Fb � rw þ L1 þ L2 þ L3ð Þ � cosc� c � sinc½ � � N
� L1 þ L2 þ L3ð Þ � sincþ c � cosc½ � ð44Þ

Table 4 Experimental values: normal stress (z-axis)

Experimental

rC_z [MPa] 53
rD_z [MPa] 26

Fig. 25 Series of ten brakes at the capsizing limit

Table 5 Analytical, numerical and experimental values for normal stress (z-axis) and total load
percentages on each leg

Analytical FEA Experimental

rC_z [MPa] 83 64% 80 63% 53 67%
rD_z [MPa] 46 36% 47 37% 26 33%
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As a matter of fact, for the studied fork, Mtot_x results equal to 1.483.000
[Nmm]: in short, the braking leg bears about 2/3 of the total bending moment
(MC_x = -955.600 [Nmm]), whereas the non-braking leg about 1/3 (MD_x = -

527.400 [Nmm]).
Tests made on different geometries returned similar results, with differences

between Analytical, FEA and Experimental stress distribution ratios within a few
percentage points. Moreover, the newly developed analytical method allows fork
designers to estimate the impact on the fork stress state of any design change
upfront. For example, the overall moment reactions in C and D (2.41) can be
plotted as functions of the brake caliper angle a, in order to evaluate the influence
of a different placement of the brake caliper along the disc circumference. Fig-
ures 26 and 27 report such trends either for a fork equipped with a flexible wheel
pin (Jp = 19.769 mm4) and for the same fork equipped with a stiffer one
(Jp = 101.806 mm4). It can be appreciated how for the flexible wheel pin an even
load distribution between the legs could never be reached, whatever the angular
position of the brake caliper is.

Conversely, if the wheel pin is rigid enough, values of a allowing an equal load
distribution between the legs exist, for example around a = 45� in Fig. 27. Similar
graphs, displaying for example the overall moment reactions as functions of the
wheel pin offset c can be plotted. Moreover, the analytical model allows calcu-
lating the bending moment at each section of the legs: it is noticeable that, into the
intermediate section L2 of each leg, two elements (inner and outer tube) work in
parallel.

Each element will bear an amount of the total load applied to the leg propor-
tional to its stiffness, according to a relationship of the kind (here written for
moments):

Fig. 26 Overall moment reactions vs. brake caliper angle (flexible wheel pin)
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MOT x ¼
MLEG x � I3E3

I1E1 þ I3E3

MIT x ¼ MLEG x �MOT x

8

<

:

ð45Þ

Where MOT_x and MIT_x stand for bending moment at a certain section of the leg
on outer tube and inner tube namely. MLEG_x is the overall leg bending moment at
the same section.

4 Conclusions

The stress field in single disc motorcycle forks, under the effects of a severe brake,
has been studied throughout this work. An analytical approach, useful to determine
the stress distribution unbalance between the legs, has been proposed and validated
either by FEA and Experimental Analyses (Errors always within 5%). The ana-
lytical model will support fork designers during the concept design phase, as it
allows understanding the effects of a structural change on the stress state of a new
fork without performing FEA.
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Computational Simulation in Centrifugal
Casted Aluminum–Silicon Engine
Cylinder Liner

Valter Barragan Neto, Antonio Augusto Couto and Jan Vatavuk

Abstract Automotive cylinder liners are mechanical components with the
function of internal coating of the cylinder automotive engines. The replacement
of parts made of steel/cast iron by aluminum alloys has been made with advan-
tages not only in reducing weight as well as fuel consumption and emission of
pollutants. This study was aided by the finite element software Hyperworks, where
the mesh was generated and the simulation was performed in Abaqus. The mesh
for the engine block was defined with elements of four nodes of tetrahedrons. The
liners were designed with hexahedron elements of six nodes. Due to the manu-
facturing process of the cylinder liners (centrifugal casting), the finite elements
model was created in layers to meet the variation in the amount of silicon along the
wall thickness. The variation in the amount of silicon affects the physical prop-
erties of the liners along the wall thickness. With this model, it was possible to
show the viability of application of aluminum liners in engine blocks made of cast
iron. The modal analysis showed that the model does not contain its first natural
frequency within the range of work of the engine, approving its application with
this concept.
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1 Introduction

Automotive cylinder liners are mechanical components assembled to the engine
block holes in internal combustion engines. Piston and piston rings run in the
internal diameter of the cylinder liners to produce mechanical power due to the
combustion action, producing high pressures, heat release, combustion products,
friction, promoting wear in the internal engine parts like piston rings, cylinder
liners, pistons, with a direct influence on the engine durability. Nowadays, the
internal combustion engines cylinder liners are based in gray cast iron, mainly with
a perlite matrix. However, the technological evolution in order to reduce vehicle
mass enhances lower density materials application. The substitution of steel and
cast iron parts by lower density materials promotes lower emissions due to the
lower fuel consumption. Besides the lower density materials with good thermal
and mechanical properties, the automotive industry has been improving the sub-
stitution of heavier materials by aluminum and aluminum based alloys. Steel and
gray cast iron density lies between 7.4 and 7.8 g/cm3 almost three times the
aluminum density 2.7 g/cm3. Like steel and gray cast iron, aluminum is totally
recyclable without property losses.

Among the aluminum alloys, the Al–Si system can be classified as the most
important cast alloys mainly due to its high fluidity, low thermal contraction, high
corrosion resistance, good welding and brazing properties, as well as low thermal
expansion coefficient. Aluminum alloys with 5–20% Si (weight percent) are the
most used in the industry. The microstructure is based on a aluminum or b silicon
primary phase and an aluminum silicon eutectic. Normally, the eutectic b phase
has an acicular shape, and the primary silicon based phase consists of big
faceted plates.

The main material requirement in the internal combustion engines cylinder
liners is the wear resistance, due to the heavy tribological working conditions
between the working surfaces piston/piston rings over the inner diameter of the
cylinder liners during engine running. Among the aluminum alloys, the Al–Si
hypereutectoid system (above 12.6% Si) has been preferred due to silicon effect
enhancing wear resistance. The addition of silicon in the aluminum promotes a
dispersion of hard silicon particles (proxy. 1,000 HV), that can impair machin-
ability and mechanical properties when added in high proportions.

Between the different foundry casting methods, the centrifugal casting
technique is related to a tubular die with a high rotational speed during pouring
(1,000 to 1,500 rpm). The dynamic effect of the high rotational speed, promotes a
high centrifugal acceleration in the order of 100 g, reducing porosity and pro-
moting some density segregation effect that cannot be noticed in the static foundry
processes. The centrifugal casting process applied to the Al–Si alloys for cylinder
liners can induce some reduction in the silicon content, working with low
hypereutectic compositions (above 14%) as related to the materials used in static
processes, around 17%. The high centrifugal acceleration prompts silicon to run
mainly in the inner diameter direction, due its lower density as related to
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aluminum alloy, even in the liquid state. In this way, it becomes easier to guar-
antee the wear resistance in the cylinder/piston and rings working surface, as well
as the mechanical properties requirements, due to the low silicon content in the
outer side diameter.

Nowadays, the substitution of heavier materials by lighter ones, obey a vali-
dation step, based on wear and mechanical tests, temperature resistance, as well as
vibration and noise characteristics. The cost associated with component material
change can represent a high validation tests investment. Computational techniques
have been developed in order to avoid as much as possible prototypes fabrication
associated with a reduction of tests. The industrial strategy departments promote
project expertise improving reliability in structural and systems analysis.

The reliability of a project is directly related to the model development
according to the product real working conditions. Very accurate hypotheses and
consideration must be taken in account in order to develop consistent models. In
terms of physical phenomena, as well as constructive aspects, like materials and
geometry parts [1]. A high power computational system as well as more than one
processing nucleus is required to run representative and reliable modeling systems.

The finite elements method (FEM) was introduced in 1960 by Raymond William
Clough, and is still an important science and engineering instrument. All technical
procedures can be run in a computational virtual environment. The component must
be divided in small and simple geometric elements (line, triangle, square, tetrahe-
dron, pentahedron, and hexahedron). These parts must be interconnected by their
nodes. A small part division is necessary to fit the linear equations only applicable to
finite elements, based exclusively on linear trajectories.

The main objective of this work is to test the applicability of Al–Si internal
combustion engines cylinder liners produced through the centrifugal casting
technology. The first step of this project were the manufacturing of a slightly
hypereutectoid Al–Si cylinder liner by centrifugal casting. The microstructure and
hardness were analyzed through the cylinder liner thickness. A structural finite
element numerical system was run by computational Computer Aided Design
(CAD) and Computer Aided Engineering (CAE) tools. In order to fit closely the
microstructure gradient of the centrifugal casted Al–Si alloy, the procedure was
based on the cylinder thickness division in seven slices each one with its own
characteristics, to take in account the microstructure gradient produced by the
centrifugal casting method in the Al–Si alloys.

2 Manufacturing of Al–Si Cylinder Liners
by Centrifugal Casting

This work deals with horizontal centrifugal casting foundry process, represented in
Fig. 1. The as cast products were tubes based on Al–Si alloy with 14.7% silicon
weight percent. The melting process was carried out in an induction furnace, and
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the pouring temperature between 720 and 770�C. The cylindrical iron mold was
pre heated and the rotational speed maintained at 1,500 rpm until solidification
processes took place. The hardness tests were carried out by the Vickers indenter
technique through a 5 kg load. The sample preparation for optical metallographic
observations was carried out by conventional techniques, and the microstructure
observed in an Olympus system. The silicon (b phase) area fraction and the
medium b primary phase particle size through the wall thickness were determined
by an Image Pro-Plus program. The silicon fraction area and the hardness deter-
minations were carried out from the external to the internal wall in 1 mm intervals.

Figure 2 shows tee centrifuged tubes. Figure 3 is related to a cross section for
metallographic observations of the tube, 100 mm away from one of its sides. The
mean silicon particles size (b phase) were around 25 lm ranging from 12 to
52 lm. The same alloy produced by sand casting promotes silicon particles at list
twice larger than the centrifugal casting method. The size of the hard particles
must be controlled to optimize cylinder liner tribological working conditions.
Large silicon particles typical in sand casted Al–Si hypereutectic alloys can reduce
engine performance due to particles detachment while running engine in severe
conditions. In this situation, depth scratches on the cylinder liner piston rings
working surface can promote an increase in oil consumption as well as combustion
gases blow by. The silicon particle size requirement to satisfy the engine working
conditions are fulfilled by the centrifugal casting, mainly due to its high efficiency
in terms of heat extraction method associated with the high heat extraction.

Fig. 1 Scheme of the
horizontal centrifugal casting
process with cooling die
system

Fig. 2 Centrifugal casted
Al–Si alloy tube
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The micro hardness values for the a (Al) and b (Si) phases were 85 and 1,018 HV.
The higher silicon particles hardness can be compared to the Fe3C iron carbide
hardness. Aluminum corresponds to the softer continuous phase responsible for
toughness and ductility.

Figure 4 is related to the tube microstructure range through the wall thickness,
starting the observations from the external to the internal diameter. A thin layer
rich in b phase is observed close to the external tube diameter (Fig. 4a). The high
cooling rate due to the molten aluminum contact with the iron mold promotes a
solidification front speed higher than the primary b silicon migration in the inner
diameter direction. Going forward in the internal diameter direction, the tube
presents an eutectic structure. The observations realized close to the internal
diameter shows again b silicon primary phase, with an increasing volume (Fig. 4c
and d) fraction, reaching values much higher than that typical for a 14.7% silicon
alloy.

Figure 5 presents the total silicon volume fraction evolution (eutectic ? pri-
mary) through the wall thickness from the external to the internal cylinder liner
surface in 1 mm intervals. The analyzed tube in Fig. 5 was manufactured with
14.7% Si aluminum alloy. The chemical profile shown in Fig. 5 is in accordance
with Fig. 4 observations, a thin layer with a higher silicon content coming from the
outside diameter followed by an eutectic composition (lower silicon contend)
going forward (inward) the tube wall, in the internal wall direction, and an increase
in the silicon content in the internal diameter related to the piston and piston rings
working surface. The hardness increases in the higher b silicon content regions.

Fig. 3 Cross section area
100 mm away from the Al–Si
tube rear
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Finite element modal analyses related to the vibration pattern and loading
tension related to the engine working conditions discussed above, were carried out
taking in account an Al–Si slightly hyper eutectic alloy. A cylinder liner with a

Fig. 4 Al–14.7%Si alloy microstructures from a external wall, b 3 mm from the external wall,
c 4 mm from the external wall, and d close to the internal wall
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6.5 mm wall, were divided in six slices of 1 mm and one of 0.5 mm. To guarantee
the better silicon distribution as well as to reduce the wall thickness of the as cast
tube (10 mm) to 6.5, 1.5 and 2 mm material was removed from the internal and
external wall [2].

3 Modal Analysis

The best boundary conditions enable the physical model to fit closely the real
working conditions. The modal analysis is defined by frequency functions or
movement equations from the frequency response functions (FRF). The vibration
pattern takes in account a free of constraint components joints. In accordance to
Beer and Johnston [3], degree of freedom (DOF) represents the number of inde-
pendent rigid body possible movements.

Figure 6 is related to the six DOF possibilities, three translations represented by
Fx, Fy and Fz in the three X, Y and Z axis, associated to three rotational axis Mx,
My and Mz. The block geometry was developed using CAD technique associated
to ProEngineer, in accordance to a gray cast iron 1,000 cm3 commercial block.

Figure 7 shows a conventional engine block. This geometry is closely related to
reality, with a 33.340 kg approximately mass. The substitution of the internal
holes of the block by Ai–Si tubes enables a total mass reduction of 2 kg. The
model analysis was carried out by a 6 mm radial mass remotion from the block
holes. This procedure was taken in account to allow the (FEM) modeling represent
the materials properties change due to the silicon variation in the cylinder wall.

The virtual procedure of cutting of the gray cast iron cylinder liner from the
block is represented by the red lines Fig. 8. At left the new block holes taking in
account the machined material to introduce the Al–Si cylinder liners. This
methodology promotes the direct contact between the new cylinder liners with
the liquid cooling system (wet cylinder liner). The direct contact between Al–Si

Fig. 6 Degrees of freedom
of a solid element [3]

Computational Simulation in Centrifugal Casted Aluminum–Silicon Engine Cylinder Liner 87



cylinder liner and the cooling fluid improves efficiency in terms of engine heat
dissipation, due to the higher thermal conductivity coefficient of aluminum as
related to iron (Al = 205 W/mK; Fe = 79.5 W/mK) [4]. After defining the new
block geometry taking in account the new sleeves inserts, the mathematical model
construction with the geometric information took place with the HyperMesh (HM)
software.

The boundary conditions are responsible for the restrictions imposed in the
studied system. Some care must be taken during the choice of the contour con-
ditions to establish a good fitting for the free–free condition representative of some
natural vibration characteristics; the rigid body frequency pattern must be verified.
In theory, these frequencies must be null or sufficiently low as related to flexural
modes, i.e., around 10–20% [5]. A practical solution to deal with this question is a
low rigidity suspension. On the other hand, for the set in loading condition, the
practical conditions are based on small displacements and inclinations values, that
are not taken in account. Most experiments are carried out in the free–free
condition, due to the easier contour condition as related to the fixed structure.

Fig. 7 Computer Aided
Design (CAD) block model

Fig. 8 Machined cylinder
liner (red lines) and the
resultant block holes
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The condition free–free was adopted on the modal analysis model, which means
the definition of the block vibration frequencies defining the directions and
displacement amplitude, the auto vectors and auto values, respectively.

The modal analysis objective lies on the exclusion of the block vibration mode
into the working rotational engine speed. The rotational speed adopted in the
present work goes from 800 rpm (idle speed) until 7,200 rpm (ignition limited
rotation), to avoid collision between the piston and the engine valves. Taking in
account that in the four strokes four cylinder engines there are two combustions
per rotation cycle, the components excitations per cycle can be determined by the
next expression:

Fexcitation ¼
RPM � ncyl

Crev � 60
ð1Þ

where:
Fexcitation = Excitation frequency related to the engine rotation
ncyl = Engine cylinder number
Crev = Engine combustion frequency per cycle

According to Kelly [6], the resonance is responsible for the higher vibration
amplitudes, due to the excitation in the natural body frequency. This concept
means that the first frequency of the engine parts must be out of the rotational
engine range. Some engine parts do not fit this criterion, due to low working load
condition, or physical conditions. Considering the engine speed of 7,200 rpm, a
speed limit of 7,500 rpm that prevents the collision between the valves and the
piston was used in the calculations, giving 300 rpm as safety margin. The next
mathematical expression was used for the determination of the minimum engine
frequency to avoid its natural vibration frequency:

Fexcitation ¼
7; 500 � 4

2 � 60
¼ 250 Hz ð2Þ

The frequency values calculated from Eq. 2 shows that the first vibrational
mode (natural frequency) must occur above 250 Hz, the maximum rotation engine
speed. On the other hand, Eq. 1 must be used as the lower engine rotation to
establish the frequency range to be avoided by the engine components.

Fexcitation ¼
800 � 4
2 � 60

¼ 26:67 Hz ð3Þ

Adopting this criterion, the range frequency during engine running must be
between 26.67 Hz and 250 Hz. Taking this concept in account, the modal analysis
is the first to be discussed adopting boundary conditions based in the free–free
model, without any DOF restrictions, which means that the parts vibration occurs
without restrictions. Physically, the parts vibration reduces as the DOF restriction
values increase.

Computational Simulation in Centrifugal Casted Aluminum–Silicon Engine Cylinder Liner 89



4 Vibration Modes: Auto Vector and Auto Value

To establish a modeling comparison in the modal analysis, two simulations were
run, one with a fully gray cast iron block, and another assembled with the Al–Si
alloy cylinder liners. This criterion prompts the system rigidity reduction, the first
vibration mode occurred at 692 Hz, and the torsion between block front and rear
are represented by the auto vectors, see vectors on orange color in Fig. 9. This
figure shows in colors scale from blue to red the auto vectors, being red for the
highest displacement. The black lines represent the unloaded block to visualize the
block displacement. The natural vibration deformation displacement was amplified
ten times to be sensible for human eye. The highest auto value for this vibration
mode (fully red), reach an amplitude of 1.26 mm. Only the first frequency is
shown regarding the maximum engine frequency, 250 Hz. The second frequency
value is 890 Hz and the third 1,087 Hz. Figure 10 shows the result for the block
assembled with the Al–Si cylinder liners. As previously expected, the auto vectors
and auto values are still unchanged, but the block rigidity diminishes, and first
natural frequency reduced to 544 Hz, almost 21% lower than the normal block
(only gray cast iron), and the displacement amplitude 1.178 mm.

Figure 11 presents a block top view showing the left first cylinder in the first
modeled mode vibration. The vibration promotes a loss in circularity in the 544 Hz
excitation frequency. Although out of the engine natural frequency, in these
circumstances a 0.7 mm displacement out from the circularity would be produced,
with an excessive cylinder liner piston and rings wear, as can be seen in Fig. 11.
The second frequency was 766 Hz and its vibration mode affect more directly the
block/transmission interface, with little effect in the cylinder liners. An auto vector
displacement of 1.025 mm is represented in Fig. 12. The third frequency
was 944 Hz.

A block with Al–Si liners promotes similar auto vectors and auto values as a
system based on a block with gray cast iron cylinder liners. The block with gray
cast iron cylinder liner rigidity (stiffness) is a little bit higher than that assembled

Fig. 9 First vibration mode
at 692 Hz related to a normal
block (gray cast iron block
and cylinder liner)
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with Al–Si cylinder liner. This result can be attributed to the lower elasticity
modulus of the Al–Si alloys as related to gray cast iron. This behavior was
expected, due to the block weakening effect of changing from block casted
cylinder to assembled Al–Si cylinder liner in machined block holes.

5 Finite Elements Modeling Method

The Al–Si cylinder liners gray cast iron block interaction was assumed as a slight
sliding with a 0.2 friction coefficient. The boundary conditions were maintained
for the cylinder liners block combustion pressure interaction. According to the
sliding, at least one degree of freedom must be fixed. In this study, was adopted the
interface between carter block as being clamped to avoid rotation and translation

Fig. 10 First vibration mode
at 544 Hz related to a normal
block (gray cast iron block
with Al–Si cylinder liner)

Fig. 11 First vibration mode
at 544 Hz. Top view
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in the three Cartesian axes, as can be seen in Fig. 13. Figure 13 shows the Abaqus
graphical user interface (GUI) and the bottom of the engine block with the
constrained nodes. The constraints are represented by blue and orange arrows,
translational and rotational respectively. This figure also shows the mesh density
as it grows from the cylinder liner.

The Abaqus-CAE 6.9.1. software was used to prepare the modeling, taking in
account the loading and restriction conditions. Refined hexahedral elements,
proxy. 1 mm3, were applied for the liners taking in account slices, to represent the
through thickness properties gradient due to the centrifugal casting method effect

Fig. 12 Second vibration
mode at 766 Hz. Top view

Fig. 13 Engine block
constraint
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in the Al–Si alloy. Figure 14 shows a finite element cylinder liner block section,
with a seven fold division for the cylinder liner (six with 1 mm and one with
0.5 mm), every one taking in account the silicon stiffness effect. The tetrahedral
block elements are larger than the cylinder liner elements, but they are in perfect fit
at the interface. This methodology was adopted to adjust the interface results,
without the necessity to node fitting in the Abaqus solution, due to the components
contact surfaces development. This methodology was adopted in order to improve
results at the interface, although not necessary the knots matching to solve the
Abaqus, since they created the contact surface between the components
under study.

As mentioned before, due to the centrifugal casting process the silicon particles
volume fraction varies along the cylinder liner thickness. This was the reason to
define a different material in every cylinder liner considered layer. Between these
layers, there is an interaction surface, assembled without sliding, producing a
heavier and complex model. Figure 15 shows the squares embedded on one
hexahedral face, a graphic representation of cylinder liner contact elements. These
elements are related to the contact surfaces. They were generated for both surfaces
that are in contact, once the mesh was generated in a refined matched manner and
nodes of the cylinder liner mesh match perfectly with the engine block.

In terms of the cylinder liner block interaction, even adopting refined elements,
a perfect fit cannot be realized, due to the different elements geometry, hexahedral
for cylinder liners and tetrahedral for the block, reducing the matching conditions,
as shown in Fig. 16. Figure 16 shows the cylinder line surface elements, blue
squared, and the engine block surface, green triangles. The surface elements
are used to define the interaction between the bodies. This figure shows that the
blue squares pertain to the cylinder liner, and the green triangular surface elements
are related to the block along the face elements.

The better fitting associated to a refined mesh improves the model resolution
reducing simulation interpretation. Nowadays, the contact modeling interpretation
is the major problem, and in many circumstances the simulation stops by a fatal
error, without a converging solution.

Cylinder linersBlockFig. 14 Cylinder liners
represented by slices and its
block interation
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Initially, many simulation errors occurred during the mathematical modeling,
due to the contact tolerances used to run Abaqus. A contact tolerance review was
necessary to improve its interaction. To solve this model, a nodes overlapping
technique for the closer nodes was adopted, excluding any interpenetration
between them. With this model procedure and the modal absence of loading or set
in, the model analysis took place. In the pressure working conditions study, some
modification in the block took place in order to realize the analysis criteria.

The cylinders pressures were obtained as can be seen in the Fig. 17. The
pressure peak occurs some degrees after the top death center (TDC), pointed
graphically in Fig. 17 through 90� fazed points. Cylinder 3 pressure was the
highest as related to the other cylinders (about 7,500 kPa), and was used in the
simulation program as the highest combustion pressure for all cylinders.
The pressures at every step of the engine cycle are presented in Table 1.

Contact surfaceFig. 15 Contact surface
elements between cylinder
layers

Fig. 16 Surface contact
between the cylinder liner
block elements, blue squared,
and the engine block surface,
green triangles

94 V. Barragan Neto et al.



The engine cooling fluid medium pressure is about 100 kPa [7]. Due to the
flex furl technology in the Brazilian automotive industry, a 160 kPa pressure
was adopted for safety, due to the higher running temperature when using ethyl
alcohol fuel. Figure 18 shows the elements, in red, where the cooling fluid
pressure is applied. The pressure is represented by the orange vectors and is
applied in all elements that would be in contact with the cooling fluid. The
triangle elements represent the engine block and the squared elements the
cylinder liner.

A pressure steps map was developed from Table 1, and can be seen in Table 2
where the engine running step has its pressures mapped. In the piston assembly
positioning in order to balance the engine, the pressures were adopted according to
Table 2 step one, been applied in the areas pointed in Fig. 19, following Table 1
pressures. The left side of the illustration is related to cylinder 1.

Fig. 17 Cylinder pressures. Complete cycle

Table 1 Cylinder pressures for each engine cycle

Pressure (kPa) Pressure (kPa) Pressure (kPa) Pressure (kPa)

204 83 7,500 92
Exhaust Intake Ignition Compression
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Fig. 18 Cooling system
pressure vectors and loaded
elements

Table 2 Engine cycle map

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4

Step 1 Ignition Exhaust Compression Intake
Step 2 Exhaust Intake Ignition Compression
Step 3 Intake Compression Exhaust Ignition
Step 4 Compression Ignition Intake Exhaust

Fig. 19 Cylinder pressure areas for the cylinder 1 during ignition
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After modeling, the loaded and modal conditions were calculated in High
Performance Computer (HPC) with 98 processing nucleus, running with eight
processors. The modal analysis model runs perfectly, converging to the expected
node values.

The loading analysis model showed some contact problems, and the analysis
was incomplete even after 3 h simulation. A model adjustment was necessary to
run a new calculation. The data convergence was reached after seven modeling
procedures. The running time for this analysis was about 13,755 s (229 min or
approximately 4 h). Some problems occurred due to the nodes interpenetration
during loading. Despite being careful during the contact elements generation, some
nodes penetrate elements, impairing the model solution.

The analysis sequences are related to the previously described conditions and
assume an information character, with values that do not fit perfectly the real working
conditions, due to the virtual modeling. The engine cycle working pressures affect the
stresses, as can be seen graphically in Fig. 20. The maximum cylinder liner stress was
approximately 20 MPa. This value is lower than the Al–Si alloy yield strength, pro-
ducing only elastic deformation, in accordance to a perfect engine running condition.

6 Conclusions

The finite elements numerical simulation method applied in Otto Cycle internal
combustion engine Al–Si cylinder liners, showed that the modal analysis was fit
perfectly, having as consequence the expected converging values for the nodes.

Fig. 20 Maximum principal tensions—Cylinders 1, 3, 4 and 2 during ignition
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The assembled parts modal analysis showed that the natural first frequency was out
of the engine working range. The auto vectors and auto values were unchanged,
but the system stiffness is reduced after assembling the Al–Si cylinder liner. The
computational simulation showed that the centrifugally casted Al–Si cylinder
liners are applicable taking in account the engine loading and vibration working
conditions. A prototype is in construction to study the wear behavior of the Al–Si
cylinder liner in the piston and piston rings working surface, as well as to validate
the simulation technique.
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Numerical Study of Heavy Oil Flow
on Horizontal Pipe Lubricated by Water
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Kelen Cristina Oliveira Crivelaro,
Severino Rodrigues de Farias Neto
and Antonio Gilson Barbosa de Lima

Abstract This chapter reports information related to multiphase flow with
emphasis to core-annular flow. Industrial application has been given to transient
water-heavy ultraviscous oil two-phase flow in horizontal pipe. The high viscosity
heavy oil transportation is one of the main technological challenges for the oil
industry. This fact is related with the high pressure drop due to the viscous effects
during the flow. Different techniques for the heavy oil transportation have been
cited in the literature, core-flow is one. In this technique, water is injected in the
pipe and flows as an annular film near the wall while oil moves in the core region.
This way, a smallest amount of energy is required for heavy oil pumping.
Mathematical formulation to describe transient and isothermal two-phase flow
(water-heavy oil) is presented. Results of the velocity, pressure and volume
fraction distributions of the phases were obtained and analyzed. A large reduction
of pressure drop by comparison with single phase heavy oil flow (around 59 times)
was verified and shows the efficiency of the technique applied to production and
transportation of heavy oils.
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Notation
Aab density of interfacial area

per unit volume (m-1)
CD drag coefficient (–)
C1C2 empirical constant (–)
cl empirical costant (–)
ca empirical constant (–)
Dab drag force per unit volume (N.m-3)
dab scale length coefficient of the mixture (m)
f volume fraction (–)
Ga generation of turbulent kinetic energy (kg.m-1.s-3)
ka turbulent kinetic energy (m2.s-2)
La spatial length scale (–)
Ma interfacial forces (N.m-3)
Np number of phases involved (–)
P pressure (Pa)
qa scale of velocity (m4.s-4)
SMSa mass sources (kg.s-1.m-3)
SMa momentum sources (N.m-3)
t time (s)
U velocity vector (m.s-1)

Greek letters
a; b phases (–)
e turbulent dissipation rate (m2.s-3)
Cab mass flow rate per unit volume (–)
l viscosity (Pa.s)
lta turbulent viscosity (Pa.s)
q density (kg.m-3)

1 Fundamentals of Multiphase Flow

Multiphase flow consists of one or more fluids (continuous phase) and one or more
particulate phase (disperse phase) of coexisting matter in motion. The continuous
phase can be liquid or gas and the disperse phase can be solid particles, gas bubbles
or liquid drops. A more usual definition considers a multiphase system as that in
which fluids components are immiscible and separated by interfaces. The use of
multiphase flow in pipelines is common in practice in today’s petroleum industry.
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The occurrence of multiphase flow in the petroleum industry is very common in
the transport, production and processing facilities of hydrocarbon of an oil field.
Multiphase flow occurs in the transport facilities when the produced fluids are
transferred for other areas through pipelines. In the production systems, the
multiphase flow happens when the fluids inside the reservoirs move until the
surfaces through wells, pipelines and risers (platforms offshore), for example.

Gas–liquid two-phase flow in a pipe can exhibit a variety of spatial distribution,
depending on the flow rates and physical properties of the fluids, and also on the
geometry and inclination of the pipe [8]. These spatial distributions of the two
phases are termed flow patterns. The upward gas–liquid flow in a vertical pipe can
exhibit five basic flow patterns: bubbly, slug or plug, churn, annular and dispersed
bubble flows. In horizontal pipes, the following regimes can be cited: smooth
stratified, wavy stratified, intermittent (slug and bubbles), annular with dispersed
liquid and dispersed bubble. For liquid–liquid two-phase flow (oil–water), we can
cite the following flow patterns: disperse flow, separated flow (core-annular flow
and stratified flow) and intermittent flow [21, 24].

Two-phase flows always involve some relative motion of one phase with
respect to the other; therefore, a two-phase flow problem is formulated in terms of
two velocity fields. In despite of this comment, the flow pipe is influenced by the
velocity, density and volume fraction of each phase, surface tension and shear rate
between the phases.

2 Heavy Oil

2.1 General Aspects

In the world, some areas met exceptional features of nature that allowed the
emergence of oil. The oil that is extracted from reservoirs on land or at sea is
transported for example by pipelines to onshore or offshore platforms. From this
place, oil is transported to refineries, where it will be processed to produce gas-
oline, diesel, gas, fuel oil, lubricants, asphalt etc. Among the different types of
produced oil, there is heavy ultraviscous oil. The heavy oil has low degree API
(American Petroleum Institute) (between 10 and 208), high viscosity (between 100
and 10,000 cP) and density close to water. Besides these features, heavy oil have a
high ratio carbon/hydrogen, large amounts of carbon residue, asphaltenes, sulfur,
nitrogen, heavy metals, aromatic and/or paraffins [15]. However, interests in the
production of heavy ultraviscous oils have increased in recent years because of the
large amount of reserves available. The estimate of world reserves is difficult, but
the order of magnitude of the total volume of heavy oil is the same as conventional
oil [7]. However, Rodriguez and Bannwart [24] report heavy oil reserves esti-
mation of 4.6 trillion barrels throughout the world.
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2.2 Heavy Viscous Oil Transportation

The research and development to increase heavy oil production is very important
to world economy. However, the production of heavy oil imposes a series of
technological challenges, especially in transportation due to high viscosity. The
difficulty is still more dramatic in deep water production where low sea water
temperature is found. So, due to difference between flowing fluids (oil and water)
and sea water temperatures, heat transfer across pipe wall occurs. This fact
increases oil viscosity and provokes paraffin deposition into the pipe, and a
higher pressure drop is verified. According to Bensakhria et al. [7], one solution
to ensure the transport of heavy oil is to reduce effects of viscosity, through the
addition of heat, dilution of the heavy oil with lighter oil and formation of
emulsions. The heating process is very expensive while addition of light oil
requires storage in the same production area. An alternative to transport the
heavy ultraviscous oils is based in the behavior of annular flow, so called core-
flow technique. In this flow pattern, one fluid is placed at the core and another
fluid in the annulus. The higher viscosity fluid tends to become encapsulated by
the lower viscosity fluid [12].

In the heavy oil–water flow, water is at the pipe surface and lubricates the oil
core. This method was created by ‘‘Isaacs and Speed’’ in 1904, described in Patent
No 759374 in the United States, citing the ability to transport viscous products by
water lubrication. However, only in 1970 a large industrial pipeline was built to
transport heavy oil by the company ‘‘Shell’’ around Bakersfield in California with
38 km long and a diameter of 15 cm. For over ten years, a viscous crude oil was
transported at a flow rate of 24,000 barrels per day (bbl/d) in a system lubricated
with water [7].

This technique has brought attractive results with respect to energy consump-
tion. This fact is due to pressure drop during the oil–water flow to be comparable
to pumping water alone at the same throughput, independent of the heavy oil
viscosity. So, to keep the core annular flow pattern, it is necessary the lowest
pumping power [13].

3 Core-Annular Oil–Water Flow

3.1 Background

For establishing core-annular flow, we have setting flow conditions related
mainly for water flow rate to create a continuous water film around the oil,
reducing the shear stress on the pipe wall. The water annular film can be very
thin and thus requires a small mass flow rate. Besides, the contact surface area
and mass transfer between the phases is minimal [17]. Besides, the transport of
very viscous oil is possible with pressure close to that obtained when pure water
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flows alone. Due this fact, petroleum industry has large interest in the technique
of water-lubricated transport of heavy oil. Therefore, many theoretical and
experimental studies of this topic have been published in recent years such as
Arney et al. [1], Bai and Joseph [4], Bannwart [5, 6], Bensakhria et al. [7],
Huang et al. [9], Joseph et al. [10], Ko et al. [11], Li and Renardy [12],
Oliemans et al. [14], Ooms et al. [17], Prada and Bannwart [19], Renardy and
Li [21] Rodriguez and Bannwart [22, 23, 24]. These works include information
about model developments, pressure drop, friction factor and stability.

From the literature it is well known which core-annular flow pattern is very
stable under established flow conditions. In this sense, two theories have been
given: the hydrodynamic stability theory and the levitation theory (based on the
classical lubrication theory). Discussions about this topic can be found in the cited
works.

Bannwart [6] proposed a theory for the stabilization of the annular pattern when
two liquids of different densities and viscosities flow into a horizontal pipe. The
theory is based on the analysis of the linear momentum equation in a cross section
of the pipeline taking into account the effect of interfacial tension.

Ooms and Poesio [16] analyzed the annular flow in stationary regime in a
horizontal pipe and proposed a theoretical model based on the hydrodynamic
lubrication theory. According to this model, there was a harmonic motion in
annular flow, i.e., the more viscous fluid (oil) moved of the wavy shape in the
center of the horizontal pipe; such behavior is well known as wavy core-annular
flow (WCAF).

Bannwart [5] investigated the behavior of the annular flow in the horizontal
pipe modifying the inner surface of the pipe. This author proposed two mathe-
matical correlations to calculate the pressure gradient by considering a horizontal
pipe: (a) with an inner surface oleophobic and (b) with an inner surface oleophilic.
The difference between oleophobic and oleophilic surfaces is related to the contact
angle between the oil and the inner surface of the pipe. Therefore, it is said that a
surface is oleophobic when the contact angle decreases with decreasing inner
surface roughness of the pipe, thus facilitating the slip of the oil along the pipe and
reduces adhesion problems [25].

Bai et al. [2] presented experimental results of oil flow in vertical pipes
lubricated by water flows upward and downward. According to these authors, in
the upflow, oil tends to stay afloat in a concentric axis of the tube due to the
center of gravity. In upward flow, the pressure gradient and buoyancy have the
same direction, waves develop and the force of lubrication with the buoyant
force tends to extend the waves. In a horizontal annular flow with density
difference between fluids, the core of oil tends to occupy a position eccentric to
the axis of the pipe and the presence of waves at the interface between oil and
water induces a secondary movement perpendicular to axis of the tube. Ooms
and Poesio [16] reports that this motion is not considered secondary in a
concentric annular flow.

Ooms et al. [18] investigated theoretically the hydrodynamic counterbalances a
buoyant force of the nucleus of oil seeping into the pipe, taking into account the
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difference in density between the two fluids. During the study, it was assumed that
the fluid that forms the core consists of a solid surrounded by a layer of low
viscosity fluid. The hydrodynamic lubrication theory used takes into account the
flow of an annular layer of a low viscosity liquid and in the center a liquid layer of
high viscosity. With this, the development of interfacial waves between the fluids
was calculated.

In the literature, it is possible find theoretical and experimental studies that
show the behavior of sub-patterns of core-annular flow, known as perfect core-
annular flow (PCAF) and wave core-annular flow (WCAF).

The ideal flow or PCAF corresponds to an exact solution of the governing
equation applied to concentric fluid flow with different density and viscosity in a
pipe of circular cross section. PCAF is a rectilinear flow with a velocity com-
ponent that varies only with the radial coordinate. The two fluids are organized
asymmetrically, with a fluid in the center or core and an adjacent the wall of the
tube forming a ring. The core of oil has a perfect cylindrical interface of uniform
radius. However, the effect of gravity tends to disorder the flow in horizontal
tubes and in this case the PCAF cannot happen unless the gravity is canceled.
In vertical tubes this is not true, because gravity is concentric to the two fluids
[2]. The PCAF of two fluids with approximated densities flowing in horizontal
and vertical pipes is possible, but are rarely stable [2, 20]. According to
Bensakhria et al. [7], the ideal or perfect annular flow seems to be very rare and
can only exist for the flow of two fluids of equal densities. Bai et al. [2] made
several experimental observations showing that waves are formed at the interface
between water and oil, leading to a wavy behavior. Bensakhria et al. [7] reported
that, for a fixed volume ratio between water and oil, the annular flow is not
stable at low velocity. The capillary instability due to interfacial tension becomes
visible, causing a disturbance in the core of the oil. However, with increasing
velocity, stability is achieved and the flow pattern can then be observed. These
authors also mention that for even higher speeds, the PCAF again becomes
unstable due to interfacial tension, and then ripples appear in the flow, leading to
a wavy annular flow.

According to Bai et al. [2], two types of the oil/water interface are considered.
The Rayleigh–Taylor and Kelvin–Helmholtz type instabilities. Rayleigh–Taylor
instability is due to the combined effect of interfacial tension and/or unfavorable
density gradients in fluids and Kelvin–Helmholtz type instability is related to the
imbalance of interfacial velocities of the fluid that manifest by a ripple at the
interface of fluids. One factor that has great influence on the stability of annular
flow is the interfacial tension. To model the curvature of the oil–water interface
helps understand the configuration of the Core-Annular Flow pattern. Bannwart
[5] reports that in the field hydrostatic with fully developed flow, an equilibrium
condition can be established between surface tension and buoyancy. The lubri-
cation model proposes that the wavy motion of the core of oil with respect to the
pipe wall generates a pressure gradient in the annular region exerting forces in
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the vertical direction, counteracting the forces of buoyancy on the core due to
density difference. Thus, the presence of waves is of fundamental importance in
the lubrication of the core. If the amplitude of these waves is null, the core
reaches the top of the pipe, i.e. the wall of the pipe [17]. The lubrication theory
is valid when inertia is neglected (Reynolds Lubrication Theory) and, when the
wave amplitude is small and the radial velocity is neglected [3].

3.2 Mathematical Modeling

The modeling procedure consists in the mathematical description of the physical
problem to be analyzed. When it is possible to put the variables of the problem in
the form of one or more precise quantitative relations, we obtain a well known
mathematical models. In the case of fluid flow, the mathematical model is com-
posed by conservation equations (mass, energy and momentum), initial and
boundary conditions and mechanical constitutive equations that establish rela-
tionship between stress field and velocity field in the flow. However, this model
corresponds to a set of data and abstract ideas that allow engineers and researchers
to propose an explanation for the phenomenon.

The conservations equations can be written as follows.

(a) Continuity equation

o

ot
faqað Þ þ r � faqaUað Þ ¼ SMSa þ

X

NP

b¼1

Cab ð1Þ

(b) Momentum equation

o

ot
faqaUað Þ þ r � fa qaUa � Uað Þ½ � ¼ �farPa þr � fala rUa þ rUað ÞT

h in o

þ

þ
X

NP

b¼1

CþabUb � CþbaUa

� �

+ SMa + Ma

ð2Þ

where a and b represent the phases involved (water or oil), f is the volume fraction,
q is density, U is the velocity vector, Np is the number of phases involved, P is the
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pressure, l is viscosity. The term SMSa describes user specified mass sources, Cab

is the mass flow rate per unit volume from phase b to phase a, SMa describes
momentum sources due to external body forces (buoyancy force and rotational
force), Ma describes the interfacial forces acting on phase a due to the presence of
other phases (drag force, lift force, wall lubrication force, virtual mass force and
interphase turbulent dispersion force) and, the term CþabUb � CþbaUa represents

momentum transfer induced by interphase mass transfer.
When we use mixture model, only the total drag force exerted by the phase b in

the phase a per unit volume is considered, Dab given by:

Dab = CDqabAab Ub - Ua

�

�

�

� Ub - Ua
� �

ð3Þ

where CD is the drag coefficient and qab corresponds to the mixture density given
by:

qab ¼ faqa þ fbqb ð4Þ

The density of interfacial area per unit volume, Aab, is given below:

Aab ¼
fafb
dab

ð5Þ

where dab ¼ 1 mm is the scale length coefficient of the mixture. The effects of
gravity were not taken into account because the closeness of the involved phases
densities.

(c) k-e Turbulence Model

The k-e turbulence model is a model of turbulent viscosity which assumes that
Reynolds stress tensors are proportional the mean velocity gradient, with the
constant of proportionality characterized by turbulent viscosity (well known like
hypothesis of Boussinesq).

The characteristic of these types of models is that two transport equations
modeled separately are solved for the turbulent length and time scale or for any
two independent linear combinations of them. The transport equations for turbu-
lent kinetic energy, k and turbulent dissipation rate, e, are given by:

o qafakað Þ
ot

þr � fa qaUaka � lþ lta

rk

� �

rka

	 
� �

¼ fa Ga � qaeað Þ ð6Þ

o qafaeað Þ
ot

þr � faqaUaea � lþ lta

re

� �

rea

� �

¼ fa
ea

ka
C1Ga � C2qaeað Þ ð7Þ

where Ga is the generation of turbulent kinetic energy inside of the phase a, C1 and
C2 are empirical constant. In this equation, ea is the rate of dissipation of the
turbulent kinetic energy of the phase a, defined by:
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ea ¼
clq3

a

La
ð8Þ

and ka is the turbulent kinetic energy to phase a given by:

ka ¼
q2

a

2
ð9Þ

where La represents spatial length scale, qa is the scale of velocity, cl is a
empirical constant calculated by:

cl ¼ 4c2
a ð10Þ

where ca is a empirical constant.
In Eqs. 6 and 7, lta corresponds to turbulent viscosity, defined by:

lta ¼ clqa
k2
a

ea
ð11Þ

In the previous equations: C1= 1.44; C2 = 1.92; cl = 0.09; rk= 1.0 and re = 1.3.

3.3 Applications to Heavy Ultraviscous Oil Transport

3.3.1 Mesh Generation

The geometrical representation of the pipe used to study two-phase flow of water/
heavy ultraviscous oil is illustrated in Fig. 1.

Due to the angular symmetry observed in flow in tubes of circular cross section,
a study domain in a two-dimensional space on the plane rz was considered, as
illustrated in Figs. 2 and 3.

The unstructured mesh was made in the three-dimensional domain in cylin-
drical coordinates (Fig. 4) and, after different mesh refinement and time (seeking
non-dependence of the numerical results with the time and space), resulted in a
mesh consisting of 127,210 controls volumes (84,178 tetrahedral, 42,974 prismatic
and 58 pyramidal). The grid was obtained by using the CFX� 5.6 Commercial
code.

3.3.2 Hydrodynamics Results

The heavy ultraviscous oil and water flow in pipe, using water as a lubricating
fluid, is governed by the general laws of conservation. To model core-annular flow
in horizontal pipe, the following assumptions were adopted: (a) no mass source
and interfacial mass transfer between the phases occurs, (b) gravity effects were
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Fig. 2 Detailed illustration of two-dimensional domain rz

Fig. 3 Zoom of the water
inlet of the pipe

Fig. 1 Geometrical representation of the pipe
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neglected, (c) chemical reaction effect were neglected, and (d) incompressible and
isothermal flow. The effects of gravity were not taken into account because the
closeness of the involved phases densities.

The software CFX� 10 was used to obtain numerical solutions of the physical
problem. Table 1 summarizes the thermo-physical properties of fluid phases and
inlet velocity used on the simulations. For initial and boundary conditions, it was
considered that the pipe was initially filled with water and null velocity vector
in the pipe wall (no slip condition). In the outlet, a prescribed static pressure
(P = 98.1 kPa) was used. The transient numerical results were obtained using
a Dt = 0.5 s for an elapsed time t = 150 s and drag coefficient CD = 0.44.

Fig. 4 Grid used in the simulations. a zoom pipe inlet and b zoom pipe outlet
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Figure 5 illustrates the volume fraction field of the heavy oil. By analyzing this
figure, we can see clearly the presence of water flux near the wall of the pipe. The
volume fraction gradient can be interpreted like mixture of water/heavy oil or
formed emulsion. We can note wave motion of the oil core, mainly at the input
region. This phenomenon might be related to the form of water injection, however,
does not resemble the ‘‘bamboo waves‘‘ like reported by Bensakhria et al. [7],
Ooms et al. [17, 18], Oliemans et al. [14], Bai [3], Joseph et al. [10], Bai and
Joseph [4], Ko et al. [11], Ooms and Poesio [16], Rodriguez and Bannwart [22,
23], among others. According to these authors the presence of waves is very nature
for the real cases of heavy oil transportation, and contributes positively in the
heavy oil flow by using core-annular flow technique.

A search through the ratio between the velocity of input water/oil adequate, so
that the efficiency of lubrication of the wall be maximum (minimum pressure
drop), i.e., transport of oil by core-flow technique be optimized, leads that to
change water velocity and keeping fixed the oil velocity. Figure 6 depicts the
results of pressure drop in the pipe as a function of the ratio between water and oil
volumetric flow rates, Qw/QO. This result shows a decrease in pressure drop along
the pipe for increased water velocity. This fact can be explained by the reduction

Table 1 The thermal–physical properties of the water and oil used in all simulations

Water Oil

Density (kg/m3) 997.00 905.00
Viscosity (Pa.s) 88.99 9 10-5 12.00
Velocity (m/s) 0.80 0.40
Surface tension (N/m) 72 9 10-3

Wall roughness (m) 5.00 9 10-5

Fig. 5 Volume fraction field of heavy oil along the pipe
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of friction in consequence of the presence of water film, thereby forming a oil core
that practically does not touch with the wall of the pipe. It was found that from the
ratio Qw/Qo= 0.12 there is no practically pressure drop change (DP = 388 Pa). This
observation suggests that the water flow rate has a maximum value (optimum
value) that becomes the process of heavy ultraviscous oil transportation to be
optimized in an economic and mechanical perspective.

When water velocity is progressively increased, we have an increase of the
pressure drop due to a significant effect of the water turbulent flow regime. Huang
et al. [9], Ooms and Poesio [16], Bensakhria et al. [7], Ooms et al. [18] and
Vanaparthy and Meiburg [26] by studying the core-flow technique, they reports
that due to density difference between phases, the oil tends to rise to the top of the
pipe (if it is in horizontal).

However, the lubrication forces tend to repel the oil core to the center of the
pipe. A competition between these two effects gives a variation in the position of
the oil core inside the pipe, which depends strongly on the ratio between the
velocities of water and heavy oil.

Figure 7 illustrates superficial velocity field of heavy oil in the axial direction
and details about the inlet and outlet of the pipe. This figure clearly shows the
presence of a water stream near the pipe wall (lubricating film of water).

Figure 8 illustrates the evolution of the radial distribution of axial velocity
components of heavy oil for different process time placed to 1 m from the pipe input.
It can be observed that for an elapsed time of more than four seconds, the velocity
profiles are coincident and present a behavior of plug flow in the section of oil core
flow. Moreover, it can be said that due to the formation of water ring around the core

Fig. 6 Pressure drop as a
function of water/oil
volumetric flow rate
relationships for elapsed
time t = 150 s
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oil, there is a significant reduction in the pressure drop. In this case, the oil presents
almost the same velocity of water in heavy oil–water interface.

It is desirable to transport as much heavy ultraviscous crude oil as possible at
fixed pressure drop. Then, to evaluate the efficiency of the core-flow technique, we
compare the pressure drop in the water–oil two-phase flow with water and oil
single-phase flows. In core-annular flow, water always touch the pipe wall, so,

Fig. 7 Velocity field of heavy oil on the rz plane. a inlet and b outlet

Fig. 8 Radial velocity
profiles of oil as a function of
radial position at z = 1 m
from the inlet of pipe

112 T. H. F. de Andrade et al.



pressure drop should be close to the pressure drop in the water flowing alone at the
mass flow rate of the mixture, in accordance with the cited literature.

Figure 9 shows the behavior of pressure drop versus time along the pipe. We
can see an increase in pressure drop until 40 s, due to the increased heavy oil–
water mixture viscosity. From this moment, reduction in pressure occurs until a
stable condition is reached in the elapsed time 80 s. This fact is associated with the
lubrication of the pipe wall by the formed water film. By analyzing the Fig. 9 we
can see a large reduction of the pressure drop (approximately 59 times). If water
flow is stopped, the pressure drop will be increased continuously until it reaches
stable conditions of the single-phase oil flow.

These observations can be better understood by observing Fig. 10 where the
evolution of the oil as advanced inside the pipe initially full with water is illus-
trated. The results correspond to the volume fraction of oil on the rz plane for
different times. It is very clear that when oil moves through the pipe there is a
reduction in heavy oil–water mixture that favors the formation of a oil core in the
center of the pipe until a proper lubrication of the tube wall is reached minimizing
the pressure drop along the pipe. The stability in the lubrication can be observed in
detail in Fig. 10, after an elapsed time of 150 s.

According to Fig. 10, around 28 s, a considerable concentration of oil was
observed (average volume fraction of heavy oil equal to 0.662) in this same
position (z = 10 m). For an elapsed time more than 28 s, it is observed that oil
velocity profile reaches the plug flow behavior.

Figures 11 and 12 illustrate velocity and volume fraction of the oil as a function
of the radial position, respectively, in one section located 10 m from inlet of the
pipe. We can see that, in the elapsed times of 4 and 12 s, the velocity and volume
fraction of the oil are null, i.e., complete absence of oil in the pipe section.

Fig. 9 Comparison of the
pressure drop between the
single-phase water and oil
flows and core annular flow
as a function of time
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Fig. 10 Oil volume fraction distribution on the rz plane for different elapsed time

Fig. 11 Radial velocity
profile of oil as a function of
radial position at z = 10 m
from the inlet of the pipe
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Joseph et al. [10] recommend lubricating oil core with lower water flow rate as
much as possible to minimize the problem of dewatering. On the other side, the
probability to oil fouls the wall is large when small water flow rate is used. Here,
we can use a 3 mm water thickness layer. Moreover, when oil fouls the wall
continuously, pressure drop increases very much, so, it is necessary to stop the
flow. The cleaning of the pipe and restart of the flow will be easier if the oil does
not strongly stick the pipe wall. Additional discussions about this topic will be
found in Arney et al. [1] and, due to importance of this theme, the authors rec-
ommend new researches.

Figures 13 and 14 illustrate pressure profiles along the radius at the positions
taken z = 2 and 10 m, respectively, from pipe inlet. The results presented here
highlight four different situations (it should be noted that the pipe was initially
filled with water):

(a) At time t = 4 s at z = 2 m, the heavy oil volume fraction is still very small
inside the tube (Fig. 10), keeping a pressure of 98,400 Pa approximately
(Fig. 13).

(b) In t = 12 s the oil volume fraction has already achieved the position z = 2 m
(Fig. 10), so pressure increases to 98,800 Pa approximately in this position
(Fig. 13).

(c) At time t = 36 s, the oil volume fraction reached position z = 10 m (Fig. 10).
In this section, the pressure increases immediately to 99,400 Pa (Fig. 14).

(d) For t = 100 s at z = 10 m the annular flow pattern is reached, and the
pressure decreases drastically to 98,200 Pa approximately (Fig. 14).

Fig. 12 Oil volume fraction
profile as a function of the
radial position at z = 10 m
from the inlet of the pipe
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When annular flow is reached, the pressure measured in a section 10 meters
from the input (Fig. 14) has a value very close to the situation where water flows
alone through this section (single-phase flow water). This fact confirms the results
presented and discussed in Figs. 9 and 10. In this case, we conclude that core
annular flow technique has a big importance in the transport of heavy oils in
horizontal and vertical pipes.

Fig. 13 Pressure distribution
as a function of the radial
position at z = 2 m from the
inlet of the pipe

Fig. 14 Pressure profile as a
function of the radial position
at z = 10 m from the inlet of
the pipe
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4 Conclusions and Remarks

This chapter provides a discussion about the core-annular flow and its importance
to petroleum industry. Information about pressure drop and saving energy
pumping are given too. Application is directed to heavy ultraviscous oil flowing in
horizontal pipes lubricated by water (20.32 cm internal diameter). From the
numerical results of the heavy ultraviscous oil transportation we can conclude that:

(a) There is presence of water stream near the pipe wall forming a film of water
that surrounds the oil core flowing into the central region of the pipe, char-
acterizing the annular flow or ‘‘core-flow’’.

(b) A reduction in pressure drop was observed approximately 59 times when
compared with single heavy oil flow by using inlet oil and water velocities of
0.4 and 0.8 m/s, respectively.

(c) Core-annular flow pattern is obtained 40 s after water is injected into the tube,
and remains stable during the time rest period keeping a relatively low pres-
sure drop by friction, 388 Pa.

(d) For a water/oil volumetric flow rate relationships of 0.12, the core-annular
flow was established and, oil does not touch the wall (fouling). Sometimes,
when the fouling builds up, progressively, we have a big increase of the
pressure drop which leads to block the flow.

Despite the stability of the core-annular flow we notice that pump power,
roughness and geometry of the pipe and phase flow conditions must be compatible.
For example, at low water velocity, this flow pattern is not stable. Besides, when
using pipes with large diameters, the effects of roughness of the pipe wall can be
diminished depending on the flow conditions.
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Bending Experiments on Thin
Cylindrical Shells

Tohid Ghanbari Ghazijahani and Hossein Showkati

Abstract Cylindrical shell structures are highly susceptible to buckling phe-
nomena when they experience compressive stress. In fact, there are few experi-
mental researches that give the real behavior of a cylindrical shell submitted to
pure bending, especially thin shells. This is due to the difficulty of pure bending
applying to such thin shells and that such structures behavior under bending is
frequently considered rather similar to pure compression. This chapter describes an
experimental investigation of a procedure including a system for applying
pure bending to cylindrical shells with radius to thickness ratio equals 155.
The instrumentation consists of a new loading system in which the pure bending is
applied using concentrated loads at the ends of the test model. Ultimately, the
critical values for moments as well as buckling modes were compared with finite
element (FE) results.

Keywords Cylindrical shells � Experimental technique � Pure bending � Buckling
load � Failure mode

1 Introduction

Thin-walled cylindrical shells form numerous parts of many deep-seated industrial
structures. Therefore, accurate assessments of the maximum load carrying capacity
of such structures are of paramount concern to the engineers. Above all, stability
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behavior of such shell structures exposed to pure bending has been reported mostly
related to finite element analyses carried out on the subject and there are few
experimental studies on this field.

Generally, for thin-walled metal cylinders with clamped edges, failure mostly
occurs similar to those obtained under pure axial compression. The mode of such
instability is in diamond-shaped buckling waves at the compression half of the
experimental models. In such tubes, which have moderate length, this instability is
due to the fact that the boundary conditions prevent the sectional ovalization which
is in general not visible prior to failure. A bifurcation type of instability was
analyzed in [1] for the first time. Bifurcation stress equal to 1.3 rCL was also
obtained, where rCL is the buckling stress of a cylindrical shell under axial
compression which independently was identified by Timoshenko [2], Lorenz [3]
and Southwell [4]. According to a statistical analysis, the experimental buckling
stress is from 20 to 60% higher in bending, depending on the radius to thickness
ratio [5, 6].

In 1927, for long cylindrical shells, another collapse mechanism was reported
by Brazier [7] and in 1933 by Chwalla [8] in which the flattening of cross-section
occurs due to the produced curvature developed by bending moment. It should be
noted that, this phenomenon can diminish the bending resistance of pipes pro-
gressively because for producing a certain curvature, the required bending moment
for an oval section is smaller than for a round one. This nonlinear effect leads to
limit load-type instability, whereas the snap buckling into diamond-shaped waves
is bifurcation instability [9]. Brazier also theoretically calculated the flexural limit
moment of cylindrical shells considering section flattening (ovalization). It is
worth bearing in mind that as obtained in [5, 10], for long tubes without consid-
ering pre-buckling cross-sectional state, a high value of critical bending buckling
moment is reached.

Seide and Weingarten [11] studied bifurcation of cylindrical shells subjected to
bending, assuming a linear pre-buckling state, and a Ritz-type bifurcation solution.
They numerically obtained that for finite length simply supported cylindrical
shells, the buckling stress of the shells under bending can be considered similar to
the shells under pure compression. Reddy [12] studied steel and aluminum spec-
imens and observed the presence of wave-like ripples on the compression half of
the tubes under bending, before collapse occurred in the tests. Instability of an
aluminum cylindrical shell subjected to pure bending with a diameter to thickness
ratio of 19.5–60.5 and a length to diameter ratio of 18.1–30.1 was studied by
Kyriakides and Ju [13] and Ju and Kyriakides [14]; they also observed the pres-
ence of wave-like ripples on the compression side of the bent tubes before col-
lapse. The interaction between Brazier’s flattening effect and bifurcation instability
has been investigated by Libai and Bert [15], Tatting et al. [16], Stephens and
Starnes [17] and Fabian [18]. Stephens and Starnes [17] observations indicate that
for short cylinders (L/R \ 3, where L = length and R = radius of the shells)
Brazier effect can be excluded.

Generally, the flexural capacity of steel cylindrical shells is a function of the
following parameters, which are listed in arbitrary sequences:
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• Stress–strain behavior of used material,
• the ratio of D/t (where D is diameter and t is thickness of the shells),
• initial out-of-circularity of the cross sections and other cases of imperfections,
• stress concentrations near the critical points, e.g. the zone of stiffness variation,
• welding (longitudinal as well as circumferential).

Some of the above parameters were investigated to assess the behavior of thin
shells subjected to bending. Nonetheless, there are quite few experiments studying
the real behavior of plain thin shells (without reinforcement) and also strengthened
thin shells under pure bending, so that it has remained almost untouched. The
present study investigates the buckling behavior and the load carrying capacity of
plain/reinforced cylindrical shells under pure pending. To this end, three cylin-
drical steel shells were tested to evaluate the buckling capacity and the failure
mode of such thin structures. Note that, the efficiency of local end thickening of
the cylindrical shells on the strengthening of such shells was detected. Ultimately,
acceptable concord was obtained, comparing the experimental results and the
numerical outcomes.

2 Experimental Means

2.1 Test Setup

An overall view of the empirical set-up is shown in Fig. 1. The same general
procedure was followed for all three tests. A vertical hydraulic jack was used to
apply flexural stress to the specimens labeled as CSP1, CSP2 and CSP3 which the
two later mentioned specimens were thickened at both ends. The hydraulic jack
was mounted on a bearing frame anchored to rigid floor. The bending moment was
applied through an IPE 160 section beam which was mounted under the hydraulic
jack. The beam was laterally braced to prevent potential torsional instabilities.
Two loading arms with sectorial shell segments were connected to the bottom
flange of the beam to a proper load application. A digital load cell was placed and
fixed between the top flange of the beam and the hydraulic jack, to record the loads
applied on the specimens. Linear variable differential transformer (LVDTs) were
fixed on the sections of the specimens to determine the relative motion. All data
were recorded and processed by means of a digital scanner and data logger.

The test model includes a simply supported system. Two UCP bearing and a
connected shaft, as can be seen in Fig. 1b, used as a model of a hinged support and
two ball bearings with a proper shaft was used to model the roller support in this
set-up. The shafts were fitted and fixed into the internal rings surfaces of the ball
bearings. These supports allow the specimen to have free axial displacement and
corresponding rotation to which the pure bending is being closely applied.

The pipes (cylindrical models) in these tests consist of two parts: (1) rigid part
at both ends, (2) main specimen with thickness of 0.5 mm and corresponding end
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thickening, as shown in Fig. 2. The rigid part of the models was designed to apply
the net bending moment to the cylindrical specimens. These pipes were braced and
stiffened with some cross-shaped reinforcements increasing the stiffness of such
pipes and were connected to the specimens by means of eight bolts on each side
and friction which connect the two aforementioned parts (the rigid pipe and the
main specimen).

The three models, with diameter of 155 mm and length of 900 mm, were
carefully assembled by cord-oriented spot welding over the rolled sheet fragment
edges. It is worth to mention that CSP1 (plain specimen) was directly connected to
the rigid pipe without any end thickening, whereas CSP2 and CSP3 were thickened
with stepped wall thickness at both ends, as the length of the thickened zone and

Fig. 1 a Overall view of test
setup; b hinged support
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the thickness variation of the specimens was different from one to another
(see Fig. 2).

Tensile coupon tests machined from the experimental models waste material
revealed the stress–strain curve of Fig. 3.

2.2 Fabrication Techniques

The fabrication of high quality specimens is a major important issue in shell
buckling experiments because their buckling behavior is more sensitive to the
details, in particular initial geometrical imperfections, the choice of material and
fabrication method. Babcok [19] pointed out that the most considerable point in
shell fabrication is that the shell must be made with a method in which the
difference between buckling loads and behavior of one nominally identical spec-
imen to another must be less than a parameter in the experiment under
investigation.

Fabrication methods have been developed extensively in [19, 20], among which
is electroforming which was introduced by Thompson from University College,
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London, in 1960 [21]. This method has been developed making duplicates by
electroplating metal onto a mold of an object, then removing the mold in which
the intricate surface details are precisely reproduced by this process. Another
fabrication method is the Mylar shell specimen method which is most proper to
develop the surfaces such as cylindrical shells. Thermal vacuum forming is
another widely-used method of plastic models of shells and cold-worked and
machined metal shells methods (spinning, explosive forming, or hydroforming),
are another realistic fabrication shells methods. The methods are mostly special-
ized laboratory techniques for making geometrically perfect models. Where the
present experiments were aimed at duplicating full-scale steel shell construction as
closely as possible, the method of rolling thin steel sheets followed by spot
welding has been commonly used [22].

2.2.1 Specimen Fabrication

Sheet cutting was performed using manually controlled shears for a precise shell
specimen fabrication. It should be noted that parts were obtained with an accuracy
within ±0.1 mm. After cutting the sheets, the plates were cold-rolled into the
desired shape. Then, meridional seam connection was performed by means of a
proper electrical spot welding machine. Such a connecting process is widely used
in industrial shell structures. It should be emphasized that before the main tests, we
tested such a connecting method and obtained a good strength at the zone of
welding with minor imperfections in the different cases of shell deformations.
Therefore, such promising connection was used in pure bending stability tests.
Other advantages of such welding in small scale stability tests are as follows:

1. Deformability of the zone of seam welding and proportionality of the stiffness
of the welding zone to its adjacent shell body.

2. Minimum residual stresses in comparison to other longitudinal welding
techniques.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

Strain × 0.01

S
tr

es
s 

×
10

 (
M

P
a)

Fig. 3 Stress–strain curve of
tensile coupon test

124 T. Ghanbari Ghazijahani and H. Showkati



3. Having a symmetric model in comparison with other welding methods.
4. Minimum geometrical imperfections along the aforementioned connected zone.
5. Prevention of stress concentration development in comparison to the other

welding methods near the zone of stiffness differing.

It is of interest to note that when the seam welding process were completed, all
the specimens were placed on the rolling machine and rolled again to minimize the
geometrical fabrication imperfections. It should be noted that using the described
method, nearly geometrically perfect shells could be obtained.

2.3 Measurement of Geometric Imperfections

Generally speaking, instability of thin-walled shells is known to be highly sensitive
to the different modes of imperfections. In fact, if one wants to get a good agreement
between experimental results and theoretical or numerical upshots, then one must
take the effects of unavoidable imperfections into account. In addition, all the
deviations from the shells perfect shape, so-called geometric imperfections, load
eccentricities, supporting system imperfections, used material non-similarities and
residual stresses in welded assemblies are all examples of initial imperfections [9].
Thanks to the importance of the measurement of such geometric irregularities, many
measuring techniques have been developed [23]. Contacting and non-contacting
probes are used for measuring the geometric imperfections. Indeed, non-contacting
probes are preferably used for very thin shells (particularly isotropic ones)
which have relatively weaker transverse strength, preventing the distortion of the
measurements and consequently providing accurate imperfection measurement.
In this research, contacting probes were used to a full survey of the imperfections.
The details of such measuring technique are available in two previous experimental
studies [22, 24]. Topographical layout of initial geometric imperfections of outer
surface of CSP2 and CSP3 is shown in Figs. 4 and 5.

2.4 Shell Thickness Variation

As we already mentioned, the nominal wall thickness of the steel sheets used for
these experiments is 0.5 mm. However, to obtain exact results and conduct reliable
analysis, wall thickness variation was also detected and investigated in the spec-
imens. This was done through measuring 18 points in the circumferential direction
at both ends of the specimens. A proper micrometer was employed to this purpose.
It can be seen from Fig. 6 that thickness variation differs from -8.8 to 8.4% which
can be most likely thanks to the manufacturing process, particularly rolling.
However, the tolerances are small and we can consider the nominal wall thickness
in numerical simulations.
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3 Exhaustive Implementation of the Experiments

Firstly, the instrumental apparatus was installed and calibrated. After full instal-
lation of the whole system, all the imperfections of the geometry were gauged
through the technique as before mentioned. Then, the bending moment was
increasingly applied up to 15% of the numerically anticipated critical load to
ensure that the empirical system and the gauging probes are behaving satisfactory.
After making certain the system behaviors well, the bending moment was grad-
ually increased up to the first indication of initial buckling. Subsequently load
applying was continued to reach the full buckling mode and failure. Finally, a full
survey of shell buckling deformations was conducted to evaluate the structural
behavior of such thin shells.
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4 Experimental Observations

In all specimens, as the load reached the critical value, the first evidence of initial
buckling appeared at the compression half of the cross section, closely adjacent to
the longitudinally thickness variation of the shells. By increasing the bending
moment, the buckling propagates circumferentially up to development on the
whole of the compression side. Then, one can observe one-tier, sharp-edged dia-
mond pattern buckling mode. Figure 7 shows plainly the global buckling mode of
the specimens.

In this pattern of instability, the onset of buckling forms a local unstable pattern.
This local deformation, after propagating circumferentially, transforms into a
rounded pattern of diamonds of about twice the size of the initial rounded buckles.
Initial local buckling is of infinitesimal amplitude and hence cannot be observed
by the naked eye. As the buckles grow and deepen, they can be detected by
naked eye.

It is of interest to note that along with such rounded diamond shapes to be
grown and deepen, shriveling of the outward buckles to narrow ridges simulta-
neously happens. It should be underlined that such buckling mode is accompanied
by a circumferentially bulging state near the intersection of the thickened zone and
the thinnest part of the specimens. In contrast, in such mode, inward deformations
are larger than the outward ones as obvious in Fig. 8. Moreover, the ratio of the
outward deformations to the inward deformations is mostly less than 1:3 in
different sections.

It should be pointed out that deformational diamonds are arranged regularly and
symmetrically. One may note that the regular and symmetric form of the defor-
mations can indicate the fact that the loading was applied quite vertically and the
loading beam properly braced laterally. The remarkable point to be emphasized is
that in all the tests, the buckling occurred near the location of the roller support.
Therefore, one can consider that the present structures buckle near the side in
which axial freedom is applied (near the roller support).
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Fig. 8 Buckling mode features

Fig. 9 Finite element model
of CSP3 specimen

Fig. 7 General buckling mode of the specimens
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5 Finite Element Modeling

The FEA presented in this chapter was obtained using the general-purpose finite
element program ABAQUS designed specifically for advanced structural analysis.
The program has been shown to give accurate predictions and has been extensively
applied to study buckling behavior of shells of revolution. The derived results are
referred to as linear and nonlinear buckling loads respectively in this chapter.
Finite element model of CSP3 specimen is shown in Fig. 9.

Generally speaking, buckling stability studies of shell structures require two
types of analysis. First, eigenvalue analysis is used to obtain estimates of the
buckling loads and modes. Such studies also provide guidance in mesh design
because mesh convergence studies are required to ensure that the eigenvalue
estimates of the buckling load have converged. This requires that the mesh be
adequate to model the buckling modes, which are usually more complex than
the pre-buckling deformation mode. The second phase of the study is the
performance of load-displacement analyses, usually using the Riks method to handle
possible instabilities. These analyses would typically study imperfection sensitivity
by perturbing the perfect geometry with different magnitudes of imperfection to
assess the effect of such geometric perturbation on the response [25].

The numerical models which have been studied herein are intended for the
non-linear elasto-plastic analysis of shells of revolution. Comprehensive modeling
of structures requires determination of the entire equilibrium path until collapse
occurs. For the instability analysis of these structures, material and geometrical
nonlinear analysis should be undertaken. The imperfect geometry of each
specimen has been used in finite element analyses. In the present study, the
‘Arc-Length-Type Method’ has been used which is the most efficient method for
this purpose and is now predominantly used in structural nonlinear analysis
programs. Use of this technique in structural analysis was originally proposed by
Riks [26], in which a constraint equation controls the load increment in order to
force the iteration path to follow either a plane normal to the tangent at the starting
point of the iteration, or a sphere with its center at the starting point.

The element of S4R has been commonly used for modeling such shell elements.
Element S4R has four nodes including five independent degrees of freedom. Note
that, these are the three orthogonal translations and the dimensions changing of
two independent components of a unit vector normal to the surface of the shell,
which is considered as the rotations. It is to be said that the normal vector third
component is derived from the condition in which the normal vector length
is assumed to be equal to unity. The independent degrees of freedom are all
interpolated linearly. Externally, three rotational and three translational degrees of
freedom per node are available to the user. This element is well suited for
modeling shell structures. Large deflection, stress stiffening and nonlinear analysis
are from its capabilities.

The geometric non-linear analysis feature has been taken into account, which is
reliable for the large displacements, large rotation, and finite membrane strain

Bending Experiments on Thin Cylindrical Shells 129



analysis. Two concentrated forces have been modeled at both ends of the models,
as follower forces. Boundary conditions are simply supported. It is worth recalling
that the model has a degree of freedom in the axial direction. The stress–strain
input of the model matched the properties in Fig. 3.

Without doubt, in shell structures, by varying the location and the value of
geometrical irregularities, we obtain big differences in the critical buckling load.
Therefore, to get realistic results, the imperfections were modeled directly and
closely as a table of node numbers and perturbations.

6 Results and Discussion

Table 1 gives a comparison between experimental and numerical values of the
initial buckling loads of specimens CSP1, CSP2 and CSP3. Good agreement was
obtained which shows that the FEA was able to predict the buckling load of the
specimens. Bearing in mind that the test values are in lower range in comparison to
the numerical ones owing to the presence of initial imperfections of the geometry,
shortcomings of the apparatus and other human and instrument-related parameters.
Figures 10 and 11 illustrate the deformed mode for specimens, CSP1 and CSP3
and corresponding deformations derived from the nonlinear finite element
analysis.

In Figs. 12, 13, 14, 15, 16 and 17 a comparison is carried out between initial
and ultimate geometry of specimen CSP1, CSP2 and CSP3 in which the maximum
deformation is located roughly at a distance 2 cm from the end of the thickening
region. In Figs. 13, 15 and 17 parts ‘‘a’’ are related to the experimental mea-
surements of the specimens, and parts ‘‘b’’ are related to corresponding deformed
sections derived from FEA simulations. As is shown in these figures, three
buckling waves were formed and a good agreement between careful experiments
and numerical predictions was achieved.

The following points can be concluded, considering both the aforementioned
experimental and FEA outcomes:

Table 1 Comparison of buckling moment and mode derived by experiments and FEA

Specimen
label

Initial
buckling
moment
(experimental
study) (N.m)

Initial
buckling
moment
(FEA)
(N.m)

Initial
buckling
difference
between
experiments
and FEA
(%)

Number of
rounded
diamonds
(experiments)
(half-section)

Number
of
rounded
diamonds
(FEA)
(half-
section)

Difference
between
diamonds
number
(experiments
and FEA)

CSP1 2,788.7 3,187.5 14.3 3 4 1
CSP2 3,049.6 3,413 11.9 4 5 1
CSP3 3,918.4 4,219.8 7.7 4 5 1
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Fig. 10 Final deformed mode of CSP1 specimen and corresponding FE model

Fig. 11 Final deformed mode of CSP3 specimen and corresponding FE model
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In shell structures under pure bending, the junctions and generally the points
of discontinuities are a structural weakness. Thanks to this fact, in various types of
industrial applications, out of roundness due to point loads is to be checked. For
example, critical point loads may arise at free-span shoulders, artificial supports
and support settlement [27]. In this experimental study, the parameter of the local
thickening was performed to overcome negative local effects. This local thick-
ening and its length and the steps of thickness variation, has a dominant influence
on the buckling load of the experimental and numerical models. However, we can
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define the parameter h as a factor in which the local thickening length (li), the
thickness of thickened area (ti) and local thickening step numbers n are effective in
this parameter:

h ¼
Pn

i¼1 li:ti
Pn

i¼1 li
ð1Þ

Note that, li and ti are for each thickening step of half-length of the whole shell,
respectively. As is shown in Fig. 18, the considerable point of this issue is that the
critical buckling moment varies linearly with the parameter h.

It can be concluded from the experimental and numerical results that, the
buckling capacity increases with stepped increasing length of thickening. The
reason of this behavior can be due to the negative effect of boundaries, an abrupt
changing in the stiffness in the zone of rigid pipe connection to the main specimen
(stress concentration). It can also be due to the decrease in the length of the thin
specimen which leads to the corresponding decrease in the value of sectional
ovalization and, therefore, approaching to the bifurcation type of instability which
contain a smaller value of bending buckling load, in comparison to the limit point
flattening type of instability. It is noteworthy that the interaction between Brazier’s
flattening effect and bifurcation buckling has been studied in [17, 18]. The results
of [17] show that for short cylinders of (L/R \ 3), Brazier ovalization effect can be
excluded (specimen CSP3).

In the models of this research, as local thickening length and the number of
stiffness variation steps from the rigid pipe to the thinnest part increases gradually
and step by step, the buckling load increasingly changes. Therefore, for similar
cases, with stiffness difference of the parts along the longitudinal direction,
gradually thickness variation is recommended as an approach to increase the
bending capacity of such structures.
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Generally, a good agreement is observed between the numerical models and
experimental results in terms of initial buckling load, buckling waves, and the
region of buckling incidence. The numerical and experimental results show that
the diamond mode of buckling has been formed in the thinner part of the cylinders
and near the intersection of the thinnest part and adjacent local thickened region
(Fig. 19). The development of such mode also caused a clear break angle between
the two parts of the models. This result correlates with the point which has been
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pointed out in [28] that thin-walled shells with large radius to thickness
ratio possess a low strength for the pure bending condition. However, in some
cases, bending conditions cannot be neglected. It turns out that strong severe
bending conditions are localized only in a small domain near some disconti-
nuities in loading and geometrical conditions, as well as near supports, etc.
As we move away from such a disturbance zone, the bending stresses will
decrease rapidly.

All the samples buckled in a diamond pattern in the compression half of the
specimens. On the one hand, the local thickening of such models has not a sig-
nificant effect on the circumferentially wave number of the buckled section.
Moreover, it is obvious that the length of buckling development of the waves
toward the mid-span of the specimens is rather affected by the steps of thickening.
As the local end thickening of the shells become longer, the development of the
deformations in the longitudinal direction become shorter, thereby the CSP3
specimen deformation is less developed along the length of the specimen,
comparing the two other specimens.

The yield lines were formed in a semicircular pleated shape in the hoop
direction of the buckled region. As the shell thickening steps increase, the radius of
these semicircles in the longitudinal direction decrease.

In terms of imperfection sensitivity, we can remark that shells under pure
bending are less imperfection sensitive than under pure compression, though in
both cases, shells must withstand compression stresses. The reason for lower
imperfection sensitivity of such structures under pure bending is primarily that in
pure bending condition, buckling initiated in a narrow zone of greatest compres-
sive stress, while under pure axial compression any imperfect point on the shell
surface can trigger buckling. In this study, the aforementioned narrow region is
limited to the joint area of local stiffened section (local thickening in specimens
CSP2, CSP3 and rigid pipe in specimen CSP1) and the shell with the lowest
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thickness. Thus, this region is of major importance which extreme care should be
taken to have high quality geometry due to the sensitivity of this area. In our sense,
we can emphasize that imperfection sensitivity of such models is less than the
other cases of structures under compressive stresses owing to the relatively small
target area size of the discontinuity region.
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7 Concluding Remarks

The structural buckling behavior of thin-walled cylindrical shells of radius to
thickness ratio equal to 155 exposed to pure bending has been investigated with an
experimental approach. It has been shown that the general buckling mode of such
models can be assimilated to that of pure axial compression. The salient conclusive
points to be drawn from the experimental program described herein are as follows:

• In the above specimens, buckling mode formed locally in a diamond pattern
circumferentially in the compression half of pipe sections. The diamond mode
of buckling formed in the thinner part of the shells and near the intersection of
the thinnest part and adjacent local thickened area.

• In all the tests, buckling occurred near the location of the roller support.
Consequently, we can consider that the structure buckles near the side in which
axial freedom is applied.
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• A reasonable agreement is observed between the numerical models and
experimental results in terms of initial buckling load, buckling mode, and the
region of buckling incidence. However, experimental values are lower in
comparison to the FEA results owing to the presence of initial imperfections of
the geometry, shortcomings of the apparatus and other human and instrument-
related parameters.

• The buckling capacity of the specimens increase as the length and the step
number of local thickening increase.

• Under pure bending, some discontinuity zones created by loading and
geometrical conditions, supports, etc. are most susceptible to the buckling
phenomenon. Thus, these critical regions must be considered in designing
such cases.

• In these tests, the yield lines were developed in a semicircular pleated shape in
the hoop direction of the bucked region. As the shell thickening steps increase,
the radius of these semicircles in the longitudinal direction decrease.

• In all the specimens, imperfection sensitivity is mostly related to the region of
joint areas and the points of geometrical discontinuity. Therefore, in these
models, imperfection sensitivity is less than the other cases of structures under
compressive stresses owing to the relatively small target area of the disconti-
nuity region.
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Numerical Simulation of Cross Wedge
Rolling: Influence of Die Geometry,
Process Conditions and Inclusion Content
of Two Steels on the Formation of Internal
Defects

Mário Luiz Nunes da Silva and Sérgio Tonini Button

Abstract Cross wedge rolling (CWR) is a metal forming process used in the
manufacturing of stepped rotational parts. In this process, a cylindrical billet is
heated and plastically deformed into an axisymmetric product by the action of
wedge-shaped dies moving tangentially relative to one another. Since internal
defects in CWR can weaken the integrity of the final product and can ultimately
lead to catastrophic failures, it is necessary to investigate the mechanisms of their
generation and growth. This defect has its origin in the center of the rolled pieces
and its causes are not fully identified yet. Based on the finite element method,
numerical simulations of CWR in three dimensions were studied with a com-
mercial software. Numerical simulations can provide useful information helping
decision making about die geometry and process conditions and, therefore, is a
valuable tool to define ideal process parameters. Aided by this tool, researchers try
to understand the role of process variables and die geometric features on the
internal defects formation. The purpose of this study was aimed at the variables:
rolling speed, relative reduction and forming and stretching angles. Stress, effec-
tive plastic strain and damage values at the rolled parts cross section were chosen
as analysis criteria in several situations according to a given set of process vari-
ables. Earlier practical tests performed by the author showed the significant
influence of these variables, and also proved the random behavior of that influence.
Due this randomness, further studies were done with two different steels (AISI
1045 and 38MnSiVS5) taking into account their chemical composition and the
possibility of the inclusion content has any influence on the crack generation which
causes the internal defects.
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1 Introduction

In cross wedge rolling (CWR), a forged part or a cylindrical billet is formed by
wedge-shaped dies which are fixed in rolling mills or plates. Until this moment, the
plastic forming mechanisms of CWR are not totally clear due the complexity of
the metal forming and thus experimental research is still dominant. The lack of
precise theories lead to experiments with many repetitions in which products
defects are hardly controlled, as well as porosity, voids and cracks initiation, and
therefore these defects limit the use of the process in large scale [1].

The first objective of this work was to improve the knowledge about the for-
mation of central cavities which are the main defect found in CWR products.
Several researches have been dedicated to better know the role of the process
variables in the generation of such defects. Equations that correlate geometric
variables and try to establish safe process conditions have been defined. Tests
performed by the author in a laboratory equipment showed that even in stable
conditions, internal defects can occur pointing that other influent mechanisms and
variables should be present.

The second objective was to establish the influence of the inclusions present in
two commercial steels on the crack generation that origin the internal defects.

2 The CWR Process

CWR is a rotational forming process. As a result of tools movement, a cylindrical
workpiece is rolled, obtaining shafts with tapers, steps, shoulders and free elon-
gation in the axial direction. Figure 1 shows the typical design of a CWR tool with
its four forming zones: knifing, guiding, stretching and sizing [2].

Due to modification of the billet geometry along the process, plastic forming
mechanisms are meaningly different in each of these zones. In the knifing zone, the
tool presents a wedge with height starting at zero and that increases to the total
reduction of the workpiece diameter. In the guiding zone, tool cross section does
not change to obtain a uniform V-shaped groove around the workpiece surface.
The stretching zone is the most critical tool section because in it happens the most
meaningful plastic deformation of the process. In this zone, the material is stret-
ched and forced to flow to the edge of the workpiece, and therefore the shaft steps
can be formed.

In the sizing zone, a small plastic deformation occurs in order to adjust the
tolerance and the surface quality of the workpiece [3].
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The key parameters of the process related to tool geometry are the forming
angle a on the wedge side, the stretching angle b of the wedge, and the relative
reduction d, or the ratio between the initial diameter of the billet and the smaller
diameter of the rolled product.

These parameters determine the plastic forming level experimented by the
workpiece and they have a relevant role in the probability of internal defects
occurrence [4]. The forming angle a, for example, controls the contact area
between tools and rolled part. Smaller angles mean less sharp tools and a larger
contact area with the part.

The stretching angle b determines the total axial deformation, so bigger
stretching angles mean higher plastic deformation and elongation.

The relative reduction d is a measure of the radial reduction of the rolled part.
The bigger the relative reduction, the bigger the radial compression suffered by the
part [5].

Besides these geometric variables, the rolling speed (v) was also considered in
this research.

3 Numerical Simulation

In the numeric simulations of the CWR process, the commercial software Deform
3D, version 6.1 based on the finite element (FE) method was used. With the
purpose of minimize the processing time, the tools were considered as rigid and
the friction factor as constant. Figure 2 presents a picture captured from the
software showing the tools and its zones and the rolled workpiece. The tools were
designed with only three zones, eliminating the guiding zone. The material used in

Fig. 1 CWR tool zones
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the numerical models was the steel AISI 1045, available in the FE program library.
The pre-heating temperature was 1,100�C for the material and the tools were
considered at room temperature, 25�C. The friction factor was assumed as
m = 1.0.

Workpieces were discretized with 45,000 elements on average. Billet diameters
varied between 24 and 34 mm, according to the relative reduction chosen for each
simulation. Billet length was assumed as 80 mm.

Considering the process variables, the following conditions were analyzed:

1. forming angle a = 20� with relative reductions d = 1.44; 1.57 and 1.70;
2. forming angle a = 25� with relative reductions d = 1.41; 1.51 and 1.61;
3. forming angles a = 10 and 30� with relative reduction d = 1.57;
4. rolling speed (v): 100; 150 and 200 mm/s to the conditions (1) and (2), and

200 mm/s to the condition (3).

Stretching angle b was kept constant in all simulations and equal to 7�. The pre-
heating temperature was also kept constant considering preliminary studies which
showed that small variations around 1,100�C did not caused meaningful influence
on the material plastic behavior.

3.1 Damage

Damage is usually associated with the fracture in a component. Particularly, the
damage model developed by Cockcroft–Latham, which is one of the damage
models available in the simulation software, has been shown to be a good indicator
of ductile fracture under tensile stress in cold forming. Although this research is
related to hot rolling, damage results can be used as a reliable option of damage
evaluation [6].

Fig. 2 Workpiece positioned
on the lower tool
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The numerical analysis was initiated by studying the cross sections of the rolled
parts to know the damage distribution along those sections. A typical example of
such sections can be seen in Fig. 3, which shows the part right after passing the
knifing zone. Preliminary studies done by the author and confirmed by other
researchers point the center of the rolled parts as the place where the internal
cavities initiate. The damage distribution showed in Fig. 3 confirms that
conclusion.

Afterwards, the analysis was chosen by tracking points in some regions of the
rolled parts, which means that the values of each variable were studied during the
whole rolling process for each chosen point.

The chosen points for the analysis damage variable and the effective stress of
the rolled part are shown in Fig. 4. Two points were chosen in the central cross
section: P1, in the center of the part and P2, right under the surface and at the same
vertical line of P1.

3.1.1 Damage Versus Rolling Speed

Three rolling speeds were chosen: 100; 150 and 200 mm/s. In general, simulation
results presented the same trend: the damage levels increase as the rolling speed
decreases, as shown in the damage charts with the variables: a = 20� and
d = 1.44 (Fig. 5).

At the points P1 and P2, damage presented a significant increase from the
knifing zone to the initial region of the stretching zone, and then the damage
becomes stable. Short baselines in the P2 curve show the time when that region
loses contact with the tools during the revolutions of the part.

Fig. 3 Damage distribution
on the cross section of the
rolled part
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3.1.2 Damage Versus Forming Angle

To analyze the influence of this variable, the process speed and the relative
reduction were kept constant. Then, two situations are presented: (a) a = 10�;
d = 1.53; v = 200 mm/s and (b) a = 30�; d = 1.53; v = 200 mm/s, and the
results are shown in Fig. 6.

These results prove the important influence of the forming angle on the pos-
sibility of failure in the rolled part. With smaller angles, damage levels are much
higher if compared to the levels of bigger forming angles for the two considered
points. With a = 10�, damage levels are higher in the center of the part than under
the surface during all the process. The damage increases until practically the end of
the stretching zone, stabilizing only in the sizing zone. With a = 30�, damage
levels under the surface are bigger than in the center of the part. For both regions,
damage increases in the knifing zone stabilizing along the process.

3.2 Stress

The simulation software adopted the von Mises flow yield criterion and denomi-
nates the effective stress as the flow stress r0 given by:

r0 ¼
1
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 � r2ð Þ2þ r2 � r3ð Þ2þ r3 � r1ð Þ2
q

ð1Þ

where r1, r2 and r3 are the principal stresses. According to the von Mises crite-
rion, metal flow does not depend on a particular normal stress or shear stress,
although depends on a function of the three main shear stresses values. Due to the

Fig. 4 Position of selected
points for tracking
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Fig. 5 Damage versus rolling speed (a = 20� and d = 1.44): a 200 mm/s, b 150 mm/s,
c 100 mm/s
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involving quadratic terms, von Mises criterion presents a result that does not
depend on the signals of each stress [7].

3.2.1 Effective Stress Versus Relative Reduction

The charts in Fig. 7 show the results of the simulations with a = 20�; v =

200 mm/s and d = 1.41; 1.51 and 1.61. As the relative reduction increases, the

Fig. 6 Damage versus forming angle: a a = 10�, b a = 30�
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stress in the center of the part, point P1, increases until the beginning of the
stretching zone. Till the end of the process, the stress behavior is unstable, how-
ever, the trend of higher level stresses with increasing values of reduction is
maintained.

The analysis described above can also be done to the region near the surface of
the part, point P2, taking in account that in the first stages, the stress values present
more pronounced peaks and valleys.

Considering the effective stress, it can be observed that the probability for
occurrence of internal defects increases with higher relative reductions.

3.2.2 Effective Stress Versus Forming Angle

The influence of the forming angle is shown in the charts of Fig. 8. With a = 10�
and in the center of the part, the effective stress was practically constant on the first
two zones of the tools, with values between 80 and 74 MPa. In the region under
the surface, there was a significant variation with peaks of up to 135 MPa.

With a = 30� the effective stress was stable in the center of the part on the
knifing zone and at the beginning of the stretching zone. In the remainder of
the stretching zone, there was a marked decrease to stresses around 40 MPa.
On the region under the surface, there were peaks of 150 MPa in the knifing zone
with a decrease up to 40 MPa in the stretching zone.

Smaller forming angles cause higher effective stress during all the forming
process, both in the center and near the surface of the part.

3.3 Stress Component

Whereas in the CWR process, material flows mainly in the axial direction of the
workpiece, the normal stress component on that direction was also studied.
According to the coordinate system presented in Fig. 3, it is the component in ‘‘x’’
direction (from now denominated ‘‘x’’ stress).

3.3.1 Analysis of ‘‘x’’ Stress Versus Rolling Speed

With decreasing rolling speeds, an increase in the ‘‘x’’ stress was noted. The results
can be exemplified with a = 20� and d = 1.44 (Fig. 9). Except for the initial
instants of the process when alternating peaks of tensile and compressive stresses
can be observed in the center of the part, the stress is tensile, up to about half the
stretching zone causing the longitudinal flow of the material. From this point,
tensile and compressive stresses alternate again, predominating the compressive
stress caused by the tools.
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Fig. 7 Effective stress versus relative reduction (a = 20� and v = 200 mm/s): a d = 1.41,
b d = 1.51, c d = 1.61
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Near the surface of the part, the whole process presents alternating tensile and
compressive stresses when that region is in contact or not with the tools. That
particular behavior among the regions of the rolled part explains the difficulty of
knowing with detail the forming and failure mechanisms of the CWR process.

3.3.2 Analysis of ‘‘x’’ Stress Versus Relative Reduction

The analysis of ‘‘x’’ stress also indicates that increasing relative reductions can be
harmful to the CWR process. In the center of the part, stress remains tensile and

Fig. 8 Effective stress versus forming angle: a a = 10�; d = 1.53; v = 200 mm/s, b a = 30�;
d = 1.53; v = 200 mm/s
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Fig. 9 ‘‘X’’ stress versus rolling speed (a = 20� and d = 1.44): a 200 mm/s, b 150 mm/s,
c 100 mm/s
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increases as the reduction increases until the beginning of the stretching zone.
Under the surface of the part, tensile and compressive stresses alternated practi-
cally during the whole process. Those results can be found in the charts of Fig. 10.

3.3.3 Analysis of ‘‘x’’ Stress Versus Forming Angle

Figure 11 shows ‘‘x’’ stress charts for two conditions: a = 10 and 30�. In the
center of the part, with a = 108, tensile stress is present practically during the
whole rolling process, except for the initial instants. With a = 30�, stress behavior
is more alternated, varying between tensile and compressive stresses, with tensile
stresses lower than with a = 10�. Therefore, it can be concluded that a = 10� is
certainly more favorable for the generation of voids and cracks and subsequent
propagation.

However, under the surface, the ‘‘x’’ stress behavior follows the pattern of
previous analysis with interchange between tensile and compressive stresses
during the entire process.

It can be stated that with conditions favorable to the generation of defects,
mainly in those near to the limits of safe conditions, i.e. close to points of overall
process failure, an option to consider is to increase the rolling speed. Speed
increase is related to lower damage and tensile stress in the axial direction, which
contributes to avoid crack generation or minimize the propagation of generated
cracks.

An increase of relative reductions is harmful to the process and favors the
occurrence of internal defects, since they lead to higher effective stress and axial
tensile stress in the center of rolled parts.

Tool designs with small forming angle must be avoided. The smaller the
forming angles, the higher are the damage levels, effective stresses and axial
tensile stresses in the center of the part.

4 Experimental Tests With AISI 1045 Steel

Several tests were performed with workpieces made with commercial steel AISI
1045 bars. That steel has the typical chemical analysis described in Table 1.

All workpieces were 80 mm in length and with diameters equal to 25.0; 27.5
and 29.5 mm. Other process and geometric variables of the tests are shown in
Table 2.

The workpieces were cut from the steel bars withdrawing small slices before
and after each workpiece for micrographic analysis of the inclusions (Fig. 12).

This analysis showed the variability of the quantity and size of inclusions along
the bars and even though it was difficult to prevent the presence of those inclusions
in the center of the workpieces, it was possible to observe the regions of higher and
lower concentration of inclusions.

Numerical Simulation of Cross Wedge Rolling 153



Fig. 10 ‘‘X’’ stress versus relative reduction (a = 25� and v = 200 mm/s): a d = 1.41,
b d = 1.51, c d = 1.61
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After the tests under the conditions shown in Table 2, the rolled parts were
sectioned transversally in relation to the main axis in the central region for analysis
of present defects.

Fig. 11 ‘‘X’’ stress versus forming angle: a a = 10�; d = 1.53; v = 200 mm/s, b a = 30�;
d = 1.53; v = 200 mm/s

Table 1 Chemical analysis of steel AISI 1045 (% in weight)

C Mn P (max) S (max)

0.43/0.50 0.60/0.90 0.030 0.050
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4.1 Analysis of Inclusions

4.1.1 Criterion for Quantifying Inclusion Distribution

In order to analyze the amount of inclusions, the criterion described as follow was
established. The magnification chosen to visualize the inclusions at the optical
microscope was 509, which corresponds to a visual field in the workpiece equal to
7.4 mm2. Within that field and in the central region of each slice, the amount of
conclusions was then determined. A color code was also established, as can be
seen in Fig. 13.

4.1.2 Analysis of Inclusions Distribution

The micrographic analysis of inclusions was performed with light optical
microscopy and scanning electronic microscopy (SEM). A typical micrograph of a
slice which had more than 100 inclusions can be seen in Fig. 14. The distribution
of inclusions is homogeneous and their size varies.

Figures 15 and 16 present the micrographs obtained by SEM, as well as the
chosen points for chemical analysis by energy dispersive spectrometer (EDS). The
chemical composition of each point is presented in Table 3.

Table 2 Process and geometric variables

a (�) b (�) d T (�C) v (mm/s)

20 7 1.61 1,100 100
20 7 1.61 1,100 150
20 7 1.61 1,100 200
20 7 1.57 1,100 100
20 7 1.57 1,100 150
20 7 1.57 1,100 200
25 7 1.51 1,100 100
25 7 1.51 1,100 150
25 7 1.51 1,100 200

Fig. 12 Workpieces and
slices
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The chemical analysis of inclusions indicates high sulfur and manganese con-
tents, which means they are manganese sulfides that are quite common for that
commercial steel.

0 
1 to 50
51 to100
more than100

Fig. 13 Color code for the
amount of inclusions

Fig. 14 Inclusions in steel
AISI 1045

Fig. 15 Inclusions in steel
AISI 1045 (SEM)
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4.2 Internal Defects

4.2.1 Classification

Internal defects found within rolled parts were classified according to their size.
Those defects visible with the naked eye, with no magnification, were classified as
‘‘big’’ and those which needed a minimum magnification of 409 to be identified
were classified as ‘‘small’’. A color code was established for the defects, similarly
to the inclusions, as shown in Fig. 17.

Experimental results with the different conditions are shown in Fig. 18. At least
two tests were performed for each condition. The largest rectangles represent the
rolled parts and the smallest ones represent their respective slices. The conditions
were grouped into columns (1, 2 and 3) representing the same forming angle and
the same relative reduction and columns (A, B and C) representing the same
rolling speed.

The analysis of these results leads to the following conclusions:

• The inclusion distribution along the bars was totally random. A correlation
between inclusion content and internal defects generation could not be estab-
lished. There were slices with high inclusion content adjacent to rolled parts
with no defects as well as slices with no adjacent defects to rolled parts with big
and small defects.

Fig. 16 Chosen points for
chemical analysis of
inclusions in steel AISI 1045

Table 3 Chemical composition of inclusions in steel AISI 1045

Point % in weight

Si S Mn Fe

1 0.38 13.71 19.43 66.48
2 0.17 9.32 14.86 75.66
3 0.21 8.89 15.54 75.36
4 0.17 14.27 27.41 58.15

158 M. L. N. da Silva and S. T. Button



• For that steel, with that inclusion distribution, the effect of process and geo-
metric variables is predominant over the effect of inclusions. The conditions
with smaller forming angle and bigger relative reductions were more favorable
for defect generation. This conclusion confirms results previously obtained by
the author and by Idoyaga et al. [8].

5 Experimental Tests With Microalloyed Steel 38MnSiVS5

The microalloyed steel 38MnSiVS5, whose chemical composition is shown in
Table 4, was used for another set of tests. The choice of that steel was due to the
fact that microalloyed steels are increasingly used in the automotive industry,
because they represent a great saving of time and energy since they do not require
subsequent heat treatment reaching good mechanical properties when cooled from
hot working temperatures.

A second reason that determined the use of that steel was the idea that it is a
nobler material, produced in smaller scale with higher unit cost per kilo and thus,
the inclusion control would be more effective, despite the results presented below

no defects

small defects

large defects

Fig. 17 Color code for the
defect size classification

Fig. 18 Results of rolled
parts with their respective
slices
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show exactly the opposite. The analysis of inclusions made similarly to Steel AISI
1045 is presented next. The tests conditions were exactly the same as the Steel
AISI 1045 ones.

5.1 Analysis of Inclusions

The same criterion for classification of the steel AISI 1045 was adopted. Micro-
graphic analysis with light optical microscopy showed that all slices presented

Fig. 19 Inclusions in
microalloyed steel
38MnSiVS5

Fig. 20 Inclusions in
39MnSiVS5 steel (SEM)

Table 4 Chemical analysis of microalloyed steel 38MnSiVS5 (% in weight)

C Mn Si P S Cr Ni Mo V Cu Al N

0.37 1.41 0.60 0.014 0.055 0.11 0.10 0.02 0.09 0.04 0.011 0.0157
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high inclusion content, significantly higher than steel AISI 1045 slices. A typical
example of those micrographs is shown in Fig. 19.

Analyses of those steel inclusions are presented in Figs. 20 and 21. The high
percentage of the elements shown in Table 5 indicates that these inclusions are
manganese sulfides, similar to the steel AISI 1045 ones.

5.2 Internal Defects

All the rolled parts were sectioned and absolutely all had large internal defects. For
this steel and with this inclusions content, the inclusion influence on the defects
generation prevailed over the process and geometric variables influence.

6 Conclusion

Considering the several tests performed, results were not always as expected.
Some tests produced parts without defects, while others under the same conditions
produced parts with big and small defects.

Fig. 21 Chosen points for
chemical analysis of
inclusions in 39MnSiVS5

Table 5 Chemical composition of the inclusions in 39MnSiVS5 steel

Point % in weight

Al Ti Si S Mn Fe

1 1.39 0.45 0.63 7.22 33.45 56.86
2 – – – 24.85 48.95 26.20
3 – – – 18.38 33.36 48.26
4 – – 0.23 18.61 36.02 45.14
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That may be related to process limiting conditions or to the presence of
inclusions in both steels which favors the crack formation and consequently the
internal defects. Up to a certain inclusion content in the workpieces, as observed in
steel AISI 1045, the geometric and process variables have a predominant influence
on internal defects generation.

For materials like the microalloyed steel studied in this work, which contains
high inclusion content, those inclusions are the most important factor to the
internal crack formation.

Acknowledgments The authors wish to thank the financial support given by FAPESP (Foun-
dation for Researchers of São Paulo State).

References

1. Wang, M., Li, X., Du, F.: Analysis of metal forming in two-roll cross wedge rolling process
using finite element method. Int. J. Iron Steel Res. 16(1), 38–43 (2009)

2. Silva, M.L.N., Regone, W., Button, S.T.: Microstructure and mechanical properties of
microalloyed steel forgings manufactured from cross-wedge-rolled preforms. Scripta Mate-
rialia 54(2), 213–217 (2006)

3. Dong, Y., Tagavi, K., Lovell, M.: Analysis of interfacial slip in cross-wedge rolling: a
numerical and phenomenological investigation. J. Mater. Process. Technol. 97, 44–53 (2000)

4. Qiang, L., Michael, R.L., William, S.: Experimental investigation of internal defects in the
cross wedge rolling process. J. Mater. Process. Technol. 125–126, 248–257 (2002)

5. Pater, Z.: Finite element analysis of cross wedge rolling. J. Mater. Process. Technol. 173(2),
201–208 (2006)

6. Deform 3D version 3.1: Users’ manual. Edited by Scientific Forming Technologies
Corporation (2007)

7. Dieter, G.E.: Mechanical metallurgy. Guanabara, Rio de Janeiro (1981)
8. Idoyaga, Z., et al: Influence of tramp elements (P, Cu, S, Sn) on the mannesmann effect in the

transversal hot rolling of engineering steels (Mannestramp). European Commission (2008)

162 M. L. N. da Silva and S. T. Button



Nonlinear Creep Model for Concrete
in Analysis of Plates and Shells

Jure Radnić, Domagoj Matešan and Marija Smilović

Abstract A numerical model for analysis of reinforced and prestressed concrete
plates and shells including creep, shrinkage and aging of concrete, already
developed by the authors, has been updated with a nonlinear creep model for
concrete. The model can be applied for all levels of concrete stresses, while its use
for ultimate stress levels is still not fully tested. The presented nonlinear concrete
creep model is simple, based on the well known linear model of concrete creep,
and intended for simulation of practical concrete structures. For the verification of
the presented model, an experimentally tested square concrete plate and cylindrical
prestressed concrete shell were analysed numerically. The results of experimental
tests at high stress levels and numerical results show good agreement.

Keywords Plate � Shell � Nonlinear concrete creep � Numerical model

1 Indroduction

As verified by experimental tests, a linear functional relationship between the
creep strain of concrete in time and instantaneous elastic strain of concrete is valid
only for low levels of concrete stresses. According to Bazant et al. [1–3], when the
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e-mail: marija.smilovic@gradst.hr

A. Öchsner et al. (eds.), Materials with Complex Behaviour II,
Advanced Structured Materials 16, DOI: 10.1007/978-3-642-22700-4_9,
� Springer-Verlag Berlin Heidelberg 2012

163



ratio between concrete stresses under a long-term static load and the average
compressive strength of concrete is greater than 0.4, the aforementioned linear
relationship between the instantaneous and time-dependent strains is no longer
valid and there is a progressive non-linear increase of concrete creep strain
(Fig. 1). When concrete stresses due to a long-term static load exceeds 80% of the
average compressive strength of concrete, creep will cause failure of the concrete.
There were numerous attempts to analytically describe the actual creep of con-
crete. Some nonlinear creep models for concrete, based on different rheological
models and/or models of uniaxial experimental tests, can be found in [4–10].

Here, a nonlinear concrete creep model is presented. An empirical expression
for nonlinear concrete creep is proposed that was used for numerical modelling of
plates and shells under long-term load by finite element analysis. The model was
verified in the numerical simulation of carried out experimental tests of concrete
plates and prestressed concrete shells.

2 Linear Concrete Creep Model

A developed linear concrete creep model included in the numerical model for the
analysis of concrete plates and shells under a long-term load [11, 12] will be
described in short below.

The uniaxial creep strain has been calculated using the Glanville and Dischinger
method [13], based on the assumption that the rate of creep is a function of the current
uniaxial concrete stress and the time t elapsed after the loading, namely
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Fig. 1 Effect of concrete stress levels on accuracy of a linear concrete creep model
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dec
t

dt
¼ f r; tð Þ: ð1Þ

If time is divided into discrete time intervals Dt, when tn ¼ t and tnþ1 ¼ t þ Dt,
an incremental version of Eq. (1) is

Dec
tnþ1
¼ em

tnþ1
DUtn;tnþ1 ¼ em

tnþ1
Utnþ1 � Utn

� �

ð2Þ

where Dec
tnþ1

is the increase in creep strain between times tn and tnþ1, em
nþ1 is an

instantaneous mechanical strain of concrete at tnþ1(it can be a nonlinear function of
stress r), DUtn;tnþ1 is the increase of creep coefficient between tn and tnþ1, Utnþ1 is the
creep coefficient at tnþ1 and Utn is the creep coefficient at tn. The increment of the
creep strain Dec

tnþ1
is calculated based on the conditions at the beginning of the next

time increment tnþ1. This method, in general, is very simple and describes the strain
history very well even for sudden and irregular stress changes. Since the increment of
the creep strain is based only on the current instantaneous strain (or stress) and time-
dependent value, this method is very attractive in terms of calculations.

Creep coefficients values given in EUROCODE 2 [14] were used. Thus, Eq. (2)
can be written in the following form

Dec
tnþ1
¼ em

tnþ1
Utnþ1;t0 � Utn;t0

� �

ð3Þ

where

Utnþ1;t0 ¼ U0b
c
tnþ1;t0

ð4Þ

Utn;t0 ¼ U0b
c
tn ;t0
: ð5Þ

If Eqs. 4 and 5 are inserted in (3), then

Dec
tnþ1
¼ em

tnþ1
U0 bc

tnþ1;t0
� bc

tn;t0

h i

: ð6Þ

In the above equations, U0 denotes the basic creep of concrete, while bc
tnþ1;t0

and
bc

tn;t0
are the coefficients describing the creep development in time under loading.

Basic creep of concrete U0 can be determined as

U0 ¼ URH bfcm
bt0

ð7Þ

where URH denotes the coefficient of relative humidity effect, bfcm is the coefficient
of concrete strength effect and bt0

is the coefficient of concrete age effect on the
basic creep at the beginning of loading. Then:

URH ¼ 1 þ 1� RH=100ð Þ
.

0:1 h1=3
0

� �

ð8Þ

bfcm
¼ 16:8=f 0:5

cm ð9Þ
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bt0
¼ 1
�

0:1þ t0:2
0

� �

ð10Þ

h0 ¼ 2AC=u ð11Þ

In the above given equations RH is the relative humidity (%), h0 is the nominal
size of the cross-section (mm), fcm is the mean compressive strength of concrete at
the age of 28 days (N/mm2), t0 is the age of concrete at the time of first loading
(days), Ac is the cross-sectional area (mm2) and u is the perimeter of the part which
is exposed to drying (mm).

Coefficients that describe the creep development in time can be calculated as

bc
tnþ1;t0

¼ tnþ1 � t0ð Þ= bH þ tnþ1 � t0ð Þ½ �0:3 ð12Þ

bc
tn;t0
¼ tn � t0ð Þ= bH þ tn � t0ð Þ½ �0:3: ð13Þ

In the above given equations tn and tnþ1 are the time limits of the observed time
increment (days), while bH is the coefficient of the effect of the relative humidity
RH (%) and the nominal size of the cross-section h0(mm), given by

bH ¼ 1:5 1þ 0:012RHð Þ18
h i

h0 þ 250� 1500 ð14Þ

The effect of cement type on concrete creep can be taken into account if the
concrete age at the time of first loading t0 is adjusted as

t0 ¼ t0;T 9= 2þ t0;T
� �1:2

h i

þ 1
n oa

� 0:5 ð15Þ

where t0;T is the adjusted age of concrete (days) at the moment of loading, also
taking into account temperature effect, while a is the exponent dependant on the
cement type:

a ¼ �1 slowly hardening cement

a ¼ 0 normally hardening and rapidly hardening cement

a ¼ 1 rapidly hardening high strength cement

ð16Þ

The effect of the temperature variation between 0 and 80�C on concrete
hardening level can be taken into account by concrete age adjustment as follows

tT ¼
X

n

i¼1

exp � 4; 000= 273þ TDtið Þ½ � � 13:65f gDti ð17Þ

where tT is the age of concrete (days) adjusted according to the temperature effect, TDti

is the temperature (�C) in time interval Dti (number of days with the temperature T).
Since the analyzed spatial discretization refers to shell problems [11, 12], with

strains ex; ey; cxy; cxz; cyz, the same creep coefficients were used for all strain
components. Creep coefficients, namely, creep increments for different compo-
nents of strain, were determined as for one-dimensional problem [11, 12].
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3 Nonlinear Concrete Creep Models

Two empirical models of non-linear creep of concrete are briefly described
hereinafter. Also, an original model for simulation of nonlinear concrete creep is
presented. The model was verified in the numerical simulation of carried out
experimental tests of concrete plate and concrete shell [15, 16] under relatively a
high long-term static load.

3.1 Nonlinear Concrete Creep Model According
to EUROCODE 2

According to the model given in Eurocode 2 [14], a nonlinear concrete creep at t0

can be described accurately enough for average levels of the ratio between the
concrete stresses due to long-term static load rc and the mean compressive
strength of concrete fcm in the range 0:4fcm t0ð Þ\ rcj j � 0:6fcm t0ð Þ. The coefficient
of nonlinear concrete creep Uk is calculated as the coefficient of linear concrete
creep U0 multiplied by the creep factorF rcð Þ, namely,

Uk ¼ U0 F rcð Þ: ð18Þ

A nonlinear creep factor F rcð Þ is defined as a simple functional dependence
between the instantaneous concrete stress due to static load rc and the mean
compressive strength of concrete fcm as

F rcð Þ ¼ e
1:5 rcj j

fcm t0ð Þ
�0:4

� �

ð19Þ

The model is simple and provides satisfying results in practice. Its main dis-
advantage is a narrow stress level range that it covers (Fig. 2). Namely, it neglects
the strong nonlinear concrete creep when the ratio between concrete stresses under
a long-term static load and the average compressive strength of concrete is greater
than 0.6.

3.2 Nonlinear Concrete Creep Model According
to Bažant–Prasnnan and Bažant–Kim

An important researcher in the field of concrete creep modelling research is
Bažant, who developed different concrete creep models (namely [1–8]). Two of
those models [1–3] are presented hereinafter, which comprise high and very high
concrete stress level ranges due to long-term static load.
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According to [2, 3], a nonlinear creep factor F rcð Þ can be defined as an
empirical expression for functional dependence between the instantaneous con-
crete stress due to static load rc and the compressive strength of concrete fc as

F rcð Þ ¼
1þ s2

1� X
ð20Þ

where s ¼ rc=fc, and X ¼ s10(Fig. 3). X is a measure of the effect of concrete
damage at high stresses, namely, when micro fractures develop. The expression
remains valid in a wider range than expression (19), namely, at high stress levels.
However, for concrete stresses exceeding 0.7fc, expression (20) can be only used
as provisional estimates.
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Fig. 3 Nonlinear concrete creep function according to Bažant–Prasannan [2, 3]
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Fig. 2 Nonlinear concrete creep function according to EUROCODE 2 [14]
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For concrete stresses exceeding 0.7fc, when the ratio rcj j=fcð Þ ! 1, namely,
when F rcð Þ ! 1, the following expression according to [1], is proposed (Fig. 4):

F rcð Þ ¼
1þ 3s5

1� X
: ð21Þ

3.3 Proposed Nonlinear Concrete Creep Model

Similarly as for the previously described models, an empirical expression for
nonlinear concrete creep is proposed that was used for numerical modelling of
experimentally tested concrete plate and prestressed concrete shell under long-
term load [15, 16]. Considering the need for a simple practical model for nonlinear
creep of concrete, a simple function was adopted for a nonlinear creep factor F rcð Þ
as a function of the instantaneous concrete stress due to static load rc and the
compressive strength of concrete fc according to the expression

F rcð Þ ¼
1

1� rcj j
fc

� �3 : ð22Þ

This function covers all stress levels from 0\ rcj j � fcm t0ð Þ (Fig. 5). It is con-
tinuous and simple for numerical applications. However, the proposed model is not
completely valid for stress levels rcj j[ 0:8fcm t0ð Þ.

A proposed nonlinear concrete creep model is based on small-scale performed
experimental tests, which are planned to be extended and intensified. Then, a more
reliable nonlinear concrete creep model for all stress levels will be defined precisely.

Figure 6 shows the comparison of nonlinear concrete creep models according to
Eqs. 19–22.

0

1

2

3

4

5

σ

σ

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c /f cm

F
(

) 

Fig. 4 Nonlinear concrete creep function according to Bažant–Kim [1]
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4 Application of the Proposed Nonlinear Concrete
Creep Model

A proposed model of nonlinear concrete creep according to Eq. (22) has been
included in the numerical model for static analysis of prestressed concrete plates
and shells under long-term load [11, 12]. The model was verified on the results of
an experimentally tested reinforced concrete plate [15] and prestressed concrete
shell [16] under relatively high levels of long-term static load. A detailed
description of the performed experiments and developed numerical model can be
found in previously listed references and will not be repeated here. Only a com-
parison between some experimentally determined and numerically obtained results
will be given in short.

4.1 Numerical Analysis of the Concrete Plate Under
Long-Term Load

First, a square reinforced concrete plate, supported at the edges and loaded by a
uniform long-term load was experimentally tested [15]. Then, the behaviour of the
same plate was analyzed by a previously developed numerical model [11, 12] with
a linear creep model presented in Sect. 2 and the nonlinear creep model according
to Eq. (22). The plate deflection as a function of time at mid-span is shown in
Fig. 7.

As can be observed, there is a good correspondence between the results of
experimental and numerical results, in particular those with the nonlinear concrete
creep model.
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Fig. 5 Proposed nonlinear concrete creep function
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4.2 Numerical Analysis of the Prestressed Concrete
Shell Under Long-Term Load

Following the experimental test of the prestressed cylindrical concrete shell sup-
ported at the edges and loaded with uniform long-term load at its vertex [16], the
shell was analyzed by a numerical model [11, 12]. A comparison between
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Fig. 7 Comparison between experimentally determined deflection at mid-span of reinforced
concrete plate under long-term load and numerical results

0

1

2

3

4

5

6

σ

σ

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c/f cm

F
(

)

Bažant [1], Eq. (21)

Authors, Eq. (22)

Bažant [2,3], Eq.(20) 

EC2 [14], Eq. (19)

(21)

(22)

(20)

(19)

Fig. 6 Comparison of the described nonlinear concrete creep functions

Nonlinear Creep Model for Concrete in Analysis 171



experimentally determined deflections at shell midpoint and the numerical results
using the linear concrete creep model and nonlinear creep model according to
Eq. 22 is shown in Fig. 8.

A good correspondence between the experimental and numerical results of shell
deflections, in particular for a nonlinear concrete creep model can also be observed.

5 Conclusion

A simple numerical model for nonlinear creep of concrete at high stress levels,
intended for use in practice, is presented. Numerical results of the proposed model
show good agreement with the experimental test results for reinforced concrete
plate and prestressed concrete shell. The model shall be further improved for
application for very high stress levels and verified by experimental tests.
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12. Radnić, J., Matešan, D.: Nonlinear time-dependent analysis of prestressed concrete shells.
In: Öchsner, A., et al. (eds.) Materials with complex behaviour, pp. 165–179. Springer,
Berlin (2010)

13. Glanville, W.H.: Studies in reinforced concrete—creep or flow of concrete under load.
Department of Scientific and Industrial Research, Building research technical paper, 12,
p 111, London (1930)

14. EN 1992-1.: Eurocode 2: Design of concrete structures—Part 1: general rules and rules for
buildings, European Standard, Brussels (2001)
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Numerical Model for Fluid–Structure
Coupled Problems Under Seismic Load

Danijela Brzović, Goran Šunjić, Jure Radnić and Alen Harapin

Abstract This chapter briefly describes the numerical models for the simulation
of fluid–structure coupled problems. The applied models are primarily intended to
simulate the fluid–structure dynamic interaction in seismic conditions. The parti-
tion scheme of coupled (multi-field) problems is briefly described as the most
common approach for the fluid–structure dynamic analysis. Models can simulate
the most important effects of plane and spatial structures that are in direct contact
with the fluid. Some of models’ possibilities are illustrated in numerical analyses
of the seismic behavior for four practical examples.

1 Introduction

Structures which are in direct contact with fluid, for example: dams, water tanks
(reservoirs), off shore structures, pipelines and water towers etc., can often be
encountered in engineering practice. Numerical models for real simulations of
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these structures have to include the simulation of the fluid–structure interaction to
ascertain the real behavior of such a complex system. This problem is particularly
emphasized under dynamic/seismic conditions and it is commonly referred to as a
coupled (multi-field) problem.

A coupled multi-field problem involves two or more interacting fields, for
example gravity dam with accumulation, water tower full of water etc. Such a
problem is time dependent and the state of one field is continuously linked to the
state of other fields and neither field can be solved independently from the other.
Here, the coupling normally occurs through the differential equations representing
the physical phenomena.

The most natural treatment for coupled problems is, as previously mentioned,
partitioned analysis. In this approach the overall system is partitioned into zones or
fields. Then the individual fields are solved independently by considering the
interaction information transfer between them at every stage of the solution
process.

The various advantages are: (i) the resulting model is very modular, (ii) it is
easy to make any modifications, (iii) every modification in one field improves the
whole model, (iv) the programmer/improver can have knowledge in (only) a single
field.

This chapter briefly describes the partition approach in numerical modeling of
the dynamic interaction of water-structure systems. The described model is suit-
able for problems with limited fluid motions, such as the response of offshore
structures and dams to waves or earthquake.

2 Short Description of the Numerical Model’s Basic
Characteristics for the Simulation of the Dynamic
Water-Structure System Interaction

In articles [1–3] the basic algorithms for fluid–structure interaction problems are
given. Furthermore, articles [4, 5] present the development of non-linear numerical
models for dynamic interactions of the fluid-soil-structure system for plane and
spatial problems. Articles [6–11] present some recent works in this field.

All solutions shown here are based on the partitioned scheme where individual
fields are solved independently by considering the interaction information transfer
between them at every stage of the solution process. This approach allows the
usage of ordinary approaches and appropriate mathematical/physical models for
separate fields (structure and fluid) that include minor modifications for the
influence of interactions.

Developed models and software are based on finite elements method for the
spatial discretization and finite differences method for the time discretization of the
system. For structure and soil the displacement formulation is used, and for fluid
the displacement potential formulation is used. For spatial structure discretization
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8 and 9 node elements can be used for plane problems, 20 and 27 node (‘‘brick’’)
elements can be used for 3D problems and for shell like structures 8 and 9 node
shell elements can be used.

Very similar elements can be used for fluid: 8 and 9 node elements for plane
problems and 20 and 27 node (‘‘brick’’) elements for 3D problems.

Developed models include the most important non-linear effects of each field,
such as:

• Material nonlinearity of the structure with the reinforced concrete model that
can simulate:

– Concrete yielding in compression,
– Cracks occurrence and propagation in tension (opening and closing of cracks),
– Tensile and shear stiffness of cracked concrete,
– Yielding of steel or reinforcement in compression and tension,
– Influence of strain rate effects on mechanical characteristic of concrete and

reinforcing steel [12]
– Influence of hydrostatic and hydrodynamic water pressures in structure cracks

• Material nonlinearity of water:

– Cavitation,
– Influence of suspensions in water;

• Geometrical nonlinearity of structure (large displacements).

2.1 Equation for Coupled Fields Motions and Spatial
Discretization

Behaviors of the fluid–structure system (structure includes the structure itself as
well as the surrounding soil) in dynamic load conditions, can be expressed with
two second order differential equations [1–5]. If we use the displacement formu-
lation for the structure and the displacement potential formulation for the fluid,
dynamic equilibrium equations can be expressed in the following form:

Ms€uþ Cs _uþKsu ¼ fs �Ms
€dþ fcs

Mf
€Wþ Cf

_WþKfW ¼ ff þ fcf

ð1Þ

where

fcs ¼ QW

fcf ¼ �qf QT uþ dð Þ
ð2Þ

In the above equations Ms, Cs and Ks represent mass, damping and stiffness
matrices for structure, and Mf, Cf and Kf represent mass, damping and stiffness
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matrices for fluid. Vectors u; _u; €u represent structure’s displacements and dis-
placement’s derivations (velocities and accelerations) and W; _W; €W are the dis-
placement potential and associated derivations. Q is the interaction matrix between
structure and fluid.

Interaction between structure and base soil is modeled indirectly by contact
elements in the connection surface. In fact, by applying the appropriate material
model for contact elements, various effects in the contact surface can be simulated,
such as: separating, embedment and sliding.

Fluid–structure interaction surface with fluid and structure elements is shown in
Fig. 1. Interaction matrix Q includes only the surface integration and is defined as:

Qð Þij¼
Z

Ci

NT
ui~n Npj dCi ð3Þ

2.2 Solution Concept for the Dynamic Fluid–Structure
Interaction Problem

Direct solution of the equation system (1) requires large computer capacity. So, the
previously described partitioned scheme is ideal for this kind of problems. In that
approach for every increment of the imposed load and every non-linear problem
iteration step, each field is solved separately by including interaction forces on the
contact surface between fluid and structure. Presentation of the solution scheme is
given in Fig. 2.

In the presented approach, structure is solved first and fluid second. This
approach allows the developed independent models to be used for each field, with
additional calculations of the interaction forces only. Thus, in the fluid–structure
interaction model, all non-linear effects of material and geometry, that are present
in a particular field, can also be simulated in the coupled problem.

Fluid (f) Structure (s)

fcf fcs

Fig. 1 Fluid–structure interaction surface and unit norm
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2.3 Solution Algorithm

Solution algorithm for the fluid–structure coupled problem with non-linear fluid
model (cavitation) is schematically presented in Fig. 3. For time integration,
explicit-implicit algorithm developed by Hughes [13] is used.

Predicted values u; _u; €u and W; _W; €W at the beginning of every time step are
corrected at the end of the same time step. For convergence control of the iterative
procedure, the increase of the structure’s displacements in comparison with current
total displacements and the increase of the fluid’s displacements potential in
comparison with the current total displacements potential are simultaneously
monitored. Various options of the Newton–Raphson method are used to solve the
non-linear equations.

2.4 Finite Elements

For plane (2D) problems, 8-node and 9-node isoparametric elements are used for
fluid and structure. For spatial (3D) problems, 20-node and 27-node (‘‘brick’’)
elements are used for fluid and structure. For thin curved structures, 8-node or 9-
node degenerated shell elements can be used for structure and 20 or 27-node
spatial element for fluid. Those shell elements are free of membrane and shear
locking, according to [14].

For the simulation of connections between the foundation soil and the structure,
6-node contact elements can be used for plane and 16 or 18 nodes for spatial
problems.

Time 
step

Iteration
step

Structure analisys

Fluid analisys

Calculation of fluid forces
on structure

Calculation of structure forces
on fluid

Fig. 2 Solution scheme for
the fluid–structure coupled
problem
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Fig. 3 Flow chart for the
solution of the fluid–structure
coupled problem
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2.5 Material Model

For fluid simulations, two formulations are generally included: (i) pressure for-
mulation, which presumes unlimited negative pressures in fluid and (ii) dis-
placement potential formulation which can simulate cavitation effects in fluid.

In the fluid–structure interaction, nonlinearities are generally confined to the
structural behavior where the fluid is considered linear. Pressure formulation,
which presumes unlimited negative pressures in fluid, is very suitable for this
approach.

The fluid can take some tension which depends upon the concentration and size
of micro bubbles present in the fluid. However, if the absolute pressure in a
subregion of fluid drops to a value close to vapor pressure of the fluid, bubbles are
formed and this physical phenomenon is known as cavitation. Physically, cavi-
tation occurs when the total absolute pressure is less then the vapor pressure of the
fluid. Cavitation can cause significant damaging effects on solid surfaces.

Cavitation occurs when the total absolute pressure is less then the vapour
pressure of the fluid i.e.:

pabs ¼ pþ ph þ pa� pv ð4Þ

where pabs is the total absolute pressure, p is hydrodynamic pressure, ph is
hydrostatic pressure, pa is atmospheric pressure and pv is vapour pressure.
This implies that cavitation occurs when the hydrodynamic pressure drops below
(pv - ps). The vapour pressure of water, for all practical purposes, can be taken
from 0.02 to 0.03 MPa.

The changes which the fluid may undergo under hydrodynamic excitation are a
direct function of the mass dilatation s, defined as:

s ¼ rT qfufð Þ ¼ Div qfufð Þ ð5Þ

where uf is displacement of the fluid relative to the initial static state. As long as
pabs is greater then the vapour pressure pv, a linear relation between s and p is
assumed:

p ¼ �as; a ¼ c2 ð6Þ

where c is the acoustic velocity of the fluid.
If Eq. 4 is true, cavitation occurs and the stage of linear fluid is no longer valid.

A simple fluid model can be represented by the bilinear pressure-mass dilatation
relation shown in Fig. 4. Cavitation, therefore, commences when the following
condition is reached:

s� ph þ pa � pvð Þ
�

c2 ð7Þ

If cavitation occurs, the iteration procedure, shown in Fig. 4, has to be per-
formed to obtain the value of the coefficient a.
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For the structure, the classic elastic, elasto-plastic and elasto-visco-plastic
material model can be used.

A special material model was developed for the simulation of reinforced
concrete structures [12, 15–20]. It includes the most important nonlinear effects of
reinforced concrete behavior: yielding in compression and opening and propaga-
tion of cracks in tension, with tensile and shear stiffness of cracked concrete, as
well as nonlinear behavior of reinforced steel. In every integration point of every
element, simulation of cracks opening and closing is possible, according to Fig. 5.

These models will not be discussed here, but they can easily be found in quoted
references.

2.6 Additional Model Characteristics

Solution of eigen value problem is also based on the partition solution
scheme, with the Wilson–Yuan–Dickens (so-called WYD) method [21–24] as the
solution procedure. In dynamic problems, as well as in the structures’ response

Hydrodynamic 
pressure (p)

Mass 
dilatation (s)

(p  + p  - p )/c
h a v

2

(p  - p  - p )
v h a

Mass 
dilatation (s)

α c= 2 α2
α3

αi αi+1

α1

Fig. 4 Relation between
mass dilatation and
hydrodynamic pressure

Fig. 5 Possible crack states
at every integration point.
a 2D plane problems. b 3D
spatial problems
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calculations, eigen values and eigen vectors are needed to know the vibration
characteristics (determination of time step length).

Radiation damping can be simulated on artificially formed fluid boundaries, as
well as radiation and multi-axis structure damping for structure [3, 4, 13].

Simulation of fluid pressure in open cracks of a structure is included by addi-
tional nodal forces in finite elements that have cracks that fluid can get into.

As external dynamic forces, various time-dependant dynamic loads can be
applied. Also, seismic base excitations can be applied to the model.

3 Examples

What follows are four complex practical examples which illustrate some possi-
bilities of the developed models and the applied software.

3.1 Example 1: Koyna Dam

Koyna dam, built in 1963, is one of the largest dams in India (Fig. 6). It is an
atypical gravitational dam, with a crest length of 853.44 m. It consists of 56
dilatation blocks of 17.07 m in thickness. Spillway length is 91.44 m. During
construction, two accelerographs were embedded in the dam, and in one of them,
in 1967, an earthquake that caused several significant damages was registered.
Dominant damages of the dam manifested as horizontal cracks on the up-stream
and down-stream sides on many blocks, especially on lines where the total
thickness of the dam changes.

Figure 7 presents the main geometric data of the Koyna dam. Detailed infor-
mation of the dam geometry, construction materials, damages (cracks) and
earthquake characteristics can be found in [26, 27].

Fig. 6 Koyna dam, photograph [25] and comparison with typical gravity dam [26]

Numerical Model for Fluid–Structure Coupled Problems 183



Spatial discretization of the system is presented in Fig. 8, and the used material
characteristics are presented in Table 1. The behavior of the water-dam-soil sys-
tem was analyzed for the previously mentioned registered earthquake. The system
was analyzed separately for the linear and for the non-linear (cavitation) fluid
model, with the following structure models: a) non-linear model without including
the fluid pressure in open structure cracks (no FPC), b) non-linear model which
includes the fluid pressure in open structure cracks (FPC).

Some numerical results are presented in Figs. 9 and 10. Other results can be
found in [26, 27]. Dam damages calculated through numerical models match the
real crack pattern very well.

Fig. 7 Koyna dam—some geometrical data (all dimensions are in meters) [26]: a cross-section
through dam body; b cross-section through spillway

←

↑
free surface

border
radiation Structure (s)

Ground (g)

fluid (f)
10 m

Fig. 8 Spatial discretization of Koyna dam
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3.2 Example 2: Grančarevo Dam

The Grančarevo Arch Dam in Bosnia and Herzegovina (Figs. 11, 12) is a double-
curvature concrete dam with a perimetral joint. The dam was constructed in 1968.
The height of the dam is 123 m and the crest length is 439 m. Its bottom thickness

Table 1 Material characteristics of the Koyna dam system

Fluid (water) Structure (concrete dam) Ground

qf ¼ 1019:0 kg=m3

c ¼ 1439:0 m=s
pa ¼ 0:10MPa
pv ¼ 0

Es ¼ 31640:0MPa
ms ¼ 0:2
qs ¼ 2690:0kg

�

m3

f0c
� �

s
¼ 24:6MPa

f0t
� �

s
¼ 2:46MPa

ecuð Þs¼ 0:003
maxetð Þs¼ maxeshð Þs¼ 0:0012

Eg ¼ 18000:0MPa
mg ¼ 0:2
qg ¼ 1830:0kg

�

m3

f0c
� �

g
¼ 20:0MPa;

f0t
� �

g
¼ 2:0MPa

ecuð Þg¼ 0:003;

maxetð Þg¼ maxeshð Þg¼ 0:0017

Fig. 9 Horizontal displacement of the Koyna dam crest for non-linear fluid model

Fig. 10 Hydrodynamic pressure at the bottom of the Koyna dam
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is 27 m and its top thickness 4.6 m. The dam’s foundation dig was 230.000 m3 and
the volume of poured concrete was 376.000 m3. The head of the dam is 100 m.
The dam created the Bileća reservoir with a maximum water depth of 51 m and an
available storage capacity of 1,100 million cubic meters. The Bileća reservoir is
the largest storage lake in Balkan. Its dimensions are: total storage volume:
1,280 hm3 and surface of the reservoir on normal top water level: 2,764 ha.
Geometrical data tables (on Fig. 13) show basic geometrical characteristics for
individual arches some of which are shown in Fig. 13. Other detailed information
about dam can be found in [28–31].

Fig. 11 Grančarevo arch dam

Fig. 12 Plan of the dam’s body with land topology (left) and cross section through central
cantilever (right) [30]
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The Institute of Earthquake Engineering and Engineering Seismology
(IZIIS-Skopje, Macedonia) monitored the dam and performed several numerical
simulations on different models, which were compared with results in situ [30]. All
applied models included only the dam (structure), and water was treated as an
additional mass on structure.

The complex model of the water-dam-foundation rock system is presented in
Fig. 14. The behavior of this complex system was analyzed for the registered
earthquake from 1986, [30, 31]. Material characteristics are given in Table 2.

The registered accelerations on the bottom of the dam (accelerograph 688,
Fig. 15) were taken as imposed accelerations of the foundation’s rock (excitation)
along the canyon (perpendicular to the dam axis). The maximal registered imposed
acceleration was 47.8 cm/s2. The maximal registered acceleration on the dam was
amax,r = 145.1 cm/s2 (accelerograph 681, Fig. 15), and the maximal acceleration
obtained through the numerical model was amax,n = 149.3 cm/s2 ˙(Fig. 16).
Applied excitations cause hydrodynamic pressures that are always less than the
hydrostatic pressure, so cavitation did not occur.

Fig. 13 Geometry of some arch elements of the Grančarevo dam [30]
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Some calculation results are presented in Figs. 16, 17 and 18. Figure 16
presents accelerations of the Grančarevo dam crest in time, Fig. 17 presents dis-
placement of the Grančarevo dam crest in time and Fig. 18 presents hydrodynamic
pressures on the bottom of the Grančarevo dam in time. Other results can be found
in [30–32].

3.3 Example 3: Underwater Tank ‘‘Khazzan’’

Khazzan (meaning: ‘‘To Store’’ in Arabic) was the name given to the tanks
designed and built in late 1960s to store Dubai’s Oil by Chicago Bridge and Iron
Company. Dubai’s Khazzans are unique in that they store Dubai’s Oil under
the Sea. Khazzan is a 500.000 barrel (80.000 m3) oil storage tank (Fig. 19).

Fig. 14 Finite element mesh of the Grančarevo dam–water–foundation rock interaction
system—axonometric view

Table 2 Material characteristics of Grančarevo dam system

Fluid (water) Structure (concrete dam) Foundation rock

qf ¼ 981kg
�

m3

c ¼ 1440:0m=s
Ec ¼ 33000:0MPa
mc ¼ 0:15
qc ¼ 2400:0kg

�

m3

fck ¼ 25MPa; fct ¼ 2:5MPa
et ¼ 0:083; et;max ¼ es;max ¼ 1:7

Er ¼ 80GN/m2

mr ¼ 0:2
qr ¼ 2620:0kg

�

m3

frk ¼ 12:0MPa; frt ¼ 1:2MPa
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The 15.000 ton structure is 80 m in diameter on bottom and 8 m diameter on top,
and about 82.0 m in height. Sea depth is about 70 m, so tank crest is 12 m under
sea level. It has no bottom and operates on the water displacement principle. It is
filled by placing oil in the tank above water where the additional weight of the oil
on the water creates an imbalance in pressure. This force pressures the water out of
the tank through the openings in the wall at the bottom.

Fig. 15 Positions of accelerographs in the Grančarevo dam body [30]

Fig. 16 Accelerations of the Grančarevo dam crest
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Fig. 17 Displacement of the Grančarevo dam crest

Fig. 18 Hydrodynamic pressures on the bottom of the Grančarevo dam

Fig. 19 Oil-storage tank ‘‘Khazzan’’ [33, 34]. a Construction on shallow dewatered basin on
shore. b Towing to the site
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Initial construction was in a shallow, dewatered basin. When the tank was
sufficiently complete so that it could float as a single unit, using compressed air,
the basin was flooded, and the tank, a bottomless hemisphere, was moved laterally
into a deeper basin and seated on its floor by releasing the internal air pressure. The
structure was then fully completed. Floated once again by filling the tank with
compressed air, it was towed to the site and positioned by mooring lines, and the
air was gradually released. It was allowed to slowly sink further and settle on the
seafloor [33].

The geometrical characteristic of the model were taken from [33–35]. Figure 20
shows the vertical section of the oil tank with the adjacent part of the surrounding
sea.

The sea-oil-tank system was modelled with the spatial 3D model, shown in
Figs. 20 and 21. Spatial discretization of the liquid was done with 27-node 3D
brick elements, and the structure with 9-node shell elements.

Fig. 20 Spatial discretization of the Kazzan tank, the oil in the tank and the surrounding sea
water—longitudinal section of the finite element mesh (all dimensions in meters)

(a) − 3D view of finite element mesh
(b) 3D view of oil-storage tank 

finite element mesh

Fig. 21 Spatial discretization of the Kazzan tank, the oil in the tank and the surrounding see
water—axonometric view. a 3D view of finite element mesh. b 3D view of oil-storage tank finite
element mesh
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The harmonic ground acceleration with the period of 0.207 s (which is in
accordance with the first period of the sea-oil-tank system), and amplitudes of
0.3 g for the horizontal and 0.2 g for the vertical acceleration component is
accepted. The material characteristics are shown in Table 3. Implicit time inte-
gration (Dt = 0.002 s) and diagonal mass matrix were used.

Some results are shown in Figs. 22, 23, 24 and 25, and a detailed description of
the model and results can be found in [35].

Figure 22 shows the hydrodynamic water pressure for the horizontal seismic
action in the specified points on the tank surface and Fig. 23 shows the horizontal
displacements of the specified points of the tank for the horizontal seismic action.
Figure 24 show the maximal displacements of the Kazzan oil-storage tank for the
horizontal and the vertical seismic action.

3.4 Example 4: Underwater Tunnel ‘‘Høgsfjord’’

The seismic behavior of the planned underwater tunnel ‘‘Høgsfjord’’ in Norway
was analyzed. The tunnel is about 1,400 m long and 20 m immersed in the sea. It
is connected to the sea-bed with cables of 200 m (axial distance) (Fig. 26).

Table 3 Material characteristics of the Khazzan store tank

Fluid–sea water Fluid–oil Structure–steel (tank)

qf ¼ 1000:0kg
�

m3

c ¼ 1430:0m=s
qn ¼ 900:0kg

�

m3

c ¼ 1300:0m=s
E ¼ 210GN/m2

mt ¼ 0:3
qa ¼ 78:5kN

�

m3
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Fig. 22 Hydrodynamic water pressure in the specified points on the surface of the Kazzan oil-
storage tank for the horizontal seismic action
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The tunnel has a circular cross-section with a 8.6 m inner diameter and
50–80 cm thick walls (Fig. 26). Intended construction material for the tunnel is
prestressed concrete. Some other information about the planned structure can be
found in [35, 36] (Fig. 27).

The seismic response to the vertical earthquake component was analyzed.
A plane (2D) model was adopted with the discretization shown in Fig. 28.
Some results are shown in Figs. 29, 30 and 31, and a detailed description of the
model and results can be found in [35]. Displacements and stresses in the tunnel
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Fig. 23 Horizontal displacements of the specified points of the Kazzan oil-storage tank for the
horizontal seismic action

(a) horizontal seismic action (b) vertical seismic action

Fig. 24 The Kazzan oil-storage tank maximal displacements. a horizontal seismic action.
b vertical seismic action
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Fig. 25 Maximum stresses of the Kazzan oil-storage tank in t = 0.73 s, for the horizontal
seismic action. a horizontal (rxx) stresses. b vertical (ryy)

Fig. 26 Underwater tunnel ‘‘Høgsfjord’’, Photo: Statens Vegvesen Rogaland [36]. a cross-
section of tunnel. b visualization of tunnel

Fig. 27 Longitudinal section of ‘‘Høgsfjord’’ tunnel [35]
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Fig. 28 Spatial discretization of ‘‘Høgsfjord’’ tunnel

Fig. 29 Displacements of ‘‘Høgsfjord’’ tunnel, segments 4–5. a Displacement of the point ‘‘A’’
of the tunnel in time. b The maximal tunnel defelctions

Fig. 30 Stresses of ‘‘Høgsfjord’’ tunnel, segments 4–5. a Maximal horizontal stresses (rxx).
b Maximal vertical stresses (ryy)
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from applied vertical excitations are relatively small, and the tunnel has significant
seismic resistance. On these types of structures, wave and sea current actions have
more influence.

4 Conclusion

The presented models for the dynamic (seismic) analysis of various types of
structures that are in contact with fluid can simulate some of the most important
non-linear effects. The models are simple, reliable and can be used in a wide range
of practical problems. Shown examples illustrate some of the possibilities of the
models and the developed computer programs (software) for various types of
engineering structures.
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7. Lofti, V.: Seismic analysis of concrete gravity dams by decoupled modal approach in time
domain. Electron. J. Struct. Eng. 3 (2003) http://www.ejse.org/Archives/Fulltext/200301/06/
20030106.pdf
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Numerical Model for the Determination
of the Soil Retention Curve from Global
Characteristics Obtained via a Centrifuge

B. Malengier, J. Kačur and P. Kišoň

Abstract A novel centrifuge set-up for the study of unsaturated flow character-
istics in porous media is examined. In this set-up, simple boundary conditions can
be used, but a free moving boundary between unsaturated-saturated flow arises.
A precise and numerically efficient approximation is presented for the mathe-
matical model based on Richards’ nonlinear and degenerate equation expressed in
terms of effective saturation using the Van Genuchten–Mualem approach for the
soil parameters in the unsaturated zone. Sensitivity of the measurable quantities
(rotational moment, center of gravity and time period to achieve quasi steady state)
on the soil parameters is investigated in several numerical experiments. They show
that the set-up is suitable for the determination of the soil parameters via the
solution of an inverse problem in an iterative way.
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1 Introduction

To predict the flow and solute transport in soils, one needs the soil hydraulic
properties in terms of soil parameters. Once determined, these parameters can be
used as input data in the governing mathematical model. For unsaturated flow, this
model is given in terms of the saturation and the pressure head in Richards’
equation (see below), which is a nonlinear and degenerate parabolic equation.
Furthermore, when part of the sample is saturated, free boundaries between the
saturated zone and the partially saturated zone arise, as well as between the dry
and the partially saturated zone. This is a major problem for many modeling
approaches, leading to experimental set-ups that avoid the formation of these
boundaries.

The soil retention and hydraulic permeability functions linking the saturation
and pressure head for unsaturated flow are expressed using the Van Genuchten–
Mualem ansatz by means of soil parameters. Measuring these soil parameters is
usually time consuming and tedious, especially for low conductive porous media.
Several set-ups based on centrifugation have been proposed to obtain a large
acceleration of the processes involved, see [2–6] and citations therein. These
techniques have several disadvantages. Aiming for a steady-state flow regime
inside the centrifuge [2, 5] requires expensive and/or complex apparatus, and
obtains only a few water content versus conductivity measurements per run. Also,
transient set-ups based on keeping a top boundary at a fixed prescribed setting [3]
are expensive. The quasi-steady centrifuge (QSC) method [1] is a simpler tech-
nique (a slowly emptying reservoir at the top that is refilled when needed), but
requires that the criterion for steadiness of flow through the sample is relaxed,
leading to higher uncertainty in the obtained results.

The alternatives for determining conductivity with a steady-state flow, combine
transient flow with parameter estimation techniques, see e.g. [3, 6]. In this way, the
conductivity and retention curve can be determined inversely over a large satu-
ration domain. These methods require experiments of some state variables which
relate to the conductivity. One-step or multi-step outflow methods are common in
column experiments. The measurements are then used to estimate the hydraulic
parameters. This technique is transferred to the centrifuge device in [6]. Good
results are obtained, but there remain some disadvantages to this technique: there
are few measurements close to saturation, leading to a high error in the prediction
of the conductivity close to saturation, the sample needs to be disturbed to
introduce electrodes, and there is a very long waiting time in order to achieve
equilibrium when the equilibrium analysis approach is used.

The main goal of this manuscript is to develop a precise numerical method
enabling to determine the soil parameters (via solution of inverse problem) in a
very simple way requiring very cheap measurements.

In this chapter we focus on a partially saturated sample which is sealed at the
right boundary (from the center of centrifuge) and has no inflow at the left
boundary. The only measurements required are the rotational momentum and the
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center of gravity of the sample at several time values, preferably also at the
equilibria corresponding to predetermined rotational speeds. These measurements
are sufficient due to the fact that the saturation profile at the equilibria do not
depend on the initial distribution of water in the specimen, but only on its amount,
which, when the right boundary of the sample is sealed, is identical in all
equilibria.

To use this procedure, we have to face serious difficulties in the numerical
modeling. The main one is that if the right side of the sample reaches effective
saturation, an interface between partially saturated zone and saturated zone
appears. This boundary is very difficult to control numerically, causing problems
with the mass balance conservation which is very important in this set-up.

To reach the equilibrium is an infinite asymptotic process, but after some time
(e.g. 1–3 days for low conductive material) the change of the rotational momentum
and of the center of gravity can no longer be measured. At that moment, the
rotational speed is increased, and the system moves towards a new corresponding
equilibrium. Note that even when equilibrium was not reached and a small error is
present in the measurements of the rotational momentum and the center of gravity,
this will not influence the error at the higher equilibrium level. This error depends
only on the running time of centrifugation at the actual rotational speed. The
differences between applied rotational speeds are chosen in such a way that that
the differences in outputs (rotational momentum and center of gravity) are tech-
nically well distinguishable.

Next, the soil parameters and eventually the amount of originally infiltrated water,
can be determined by minimizing a cost functional expressing the distance between
the measured and the computed output, e.g., with the Levenberg–Marquard method.
The advantage of this approach is that the full range of saturation values are present in
the setup, while preventing outflow means equilibrium can be obtained faster.
However, due to the set-up, it is clear that the water flows from the unsaturated zone
to the saturated zone, with no flow occurring in the saturated zone. Indeed, we notice
that the rotational momentum and center of gravity are not sufficiently sensitive on
the ‘‘saturated hydraulic conductivity’’. This parameter is hence better determined
from saturated flow experiments, see e.g. [4].

In the numerical method, we reduce the mathematical model to a system of
ordinary differential equations (ODE) using the method of lines (MOL), which has
already been successfully applied to Richards’ equation in e.g. [7]. As a variation,
a reduction to a system of ODE and algebraic equations (DAE) is considered. Our
main contribution is in correctly handling the moving free boundary. The obtained
system can be solved with ODE/DAE solvers for stiff systems. The numerical
method can be successfully applied in other centrifugation settings (concerning
control of the inflow, or control of the outflow) as, e.g., in [3, 6].

In Sect. 2, we present the mathematical model, giving specific attention to the
movement of the free boundary. In Sect. 3 the numerical method based on the MOL
approach is given, while in Sect. 4 the approach to determine the saturated hydraulic
conductivity is explained. We finish in Sect. 5 with several numerical experiments
showing the sensitivity of the output parameters on the soil parameters.
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2 Mathematical Model

We consider a one dimensional model for a partially saturated sample in the form
of a tube. The tube starts (top or left boundary) at the distance r ¼ r0 from the
center of the centrifuge and ends at the distance r ¼ r0 þ L: The right boundary of
the specimen is isolated. Flow in porous media under centrifugation is modeled by
Darcy’s equation in the saturated region and by Richards’ equation in the
unsaturated region (see, e.g., [3, 6]). So

or Ks orh�
x2

g
r

� �� �

¼ 0; ð1Þ

in the saturated region, and

oth ¼ or kðhÞ orh�
x2

g
r

� �� �

; ð2Þ

in the unsaturated region. Here, h is the piesometric head, h the saturation of the
porous medium, x the angular speed of rotation (in radians per second), Ks

the hydraulic conductivity in the saturated region, g the gravitational constant and
the function kðhÞ describes the hydraulic conductivity in the unsaturated region.
Denote by u ¼ h�hr

hs�hr
the effective saturation, where hs is the volumetric water

content at saturation and hr is the residual volumetric water content. We have
u 2 ð0; 1Þ; since h 2 ðhs; hrÞ: The soil hydraulic properties are represented by
empirical expressions (see [8]),

u ¼ 1
ð1þ ðchÞnÞm; h 2 ð�1; 0Þ; kðuÞ ¼ Ksu

1=2½1� ð1� u1=mÞm�2; ð3Þ

where m ¼ 1� 1=n; n > 1 and c are empirical soil parameters. Determining c; n and
Ks from the experiments means the soil retention curve has been determined. Note
that we do not take hysteresis of the retention curve in consideration with this model.

It is possible to rewrite the flow in unsaturated form as

otu ¼ or DðuÞoru�
x2

g
kðuÞr

� �

; ð4Þ

where

DðuÞ ¼ � Ks

ðn� 1Þcðhs � hrÞ
u1=2�1=mð1� u1=mÞ�m � ½1� ð1� u1=mÞm�2: ð5Þ

Equation 4 is strongly nonlinear and degenerate. We note that D(0) = 0, Dð1Þ ¼
1: Equilibria at the high rotational speed can be expected to have a fully saturated
zone (supposing the initial amount of infiltrated water is sufficiently large), which
appears at the right boundary and of which the front evolves to the left of the
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specimen (under non-decreasing rotational speed). We denote the position of this
interface by s(t). This saturated zone is governed by Darcy’s equation, but s(t) is
unknown and time dependent. The time evolution of s(t) is difficult to compute. The
dynamics of this region is linked with the (finite) interface flux qi

qi ¼ � DðuÞoru�
x2

g
kðuÞr

� �
�

�

�

�

r¼sðtÞ
;

and based on a mass balance argument we can expect _sðtÞ ¼ �qi: Unfortunately,
we cannot use this model for the determination of the time evolution of s(t), since
at r ¼ sðtÞ it holds u = 1 and Dð1Þ ¼ 1: Consequently, orujr¼sðtÞ ¼ 0:

If we transform Richards’ equation in terms of the piesometric head using (3),
we obtain

dsðhÞoth ¼ k0or
�kðhÞorh�

x2

g
�kðhÞr

� �

; ð6Þ

with k0 ¼ Ks
hs�hr

; where k0
�kðhÞ is the hydraulic conductivity function,

�kðhÞ ¼ 1

ð1þ ðchÞnÞm=2
1� ðchÞn�1

ð1þ ðchÞnÞm

 !2

;

and the specific moisture capacity function dsðhÞ ¼ du=dh is given by

dsðhÞ ¼ �cðn� 1Þ ðchÞn�1

ð1þ ðchÞnÞ1þm:

We can see that �kðhÞ ! 1 for h! 0: In Fig. 1 we present the graph of the
functions �kðhÞ and 100dsðhÞ for h 2 ð�200; 0Þ; and parameter values Ks ¼
2:4� 10�5; n = 2.81, c ¼ �0:0189: As we can see, Eq. 6 also degenerates at
h = 0. This has to be taken into account when saturation becomes 1 at the right
boundary of specimen. After this moment, t ¼ t1; the mathematical model must be
changed to reflect the physical phenomenon. At the right hand side of the (isolated)
specimen appears a saturated zone with an interface s(t) moving from the right
boundary to the left. The flux at the interface s(t) is equal to �_sðtÞ; but also in this
pressure-head form of Richards’ equation it is difficult to approximate correctly
othjx¼sðtÞ; which leads to a significant error in the mass balance.

Therefore, to determine the interface s(t), we will consider the algebraic
equation

Z

r0þL

r0

u hðx; tÞð Þdt þ L� sðtÞ ¼ Mw; sð0Þ ¼ L; ð7Þ
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where Mw is the amount of infiltrated water (which remains constant during the
centrifugation). This condition reflects the global mass balance in the specimen
and does not suffer from a flux approximation at r ¼ r0 þ sðtÞ:

Then, mathematical model (6) only needs to be solved over the interval r 2
ðr0; r0 þ sðtÞÞ with right boundary condition hðr0 þ sðtÞÞ ¼ 0 for all t. We
approximate this mathematical model in the next section.

3 Numerical Method

For the output parameters that will be measured (gravity center and rotational
momentum), there is no need to model the head in the saturated zone, as we
consider the compressibility of water to be negligible. The numerical approxi-
mation of (6–7) results in a coupled system of a partial differential equation (PDE)
and an algebraic equation. Moreover, the solution domain is a moving region, with
unknown interface s(t), which has to be determined.

We shift (6) to the domain r 2 ð0; sðtÞÞ and use the fixed domain transformation
y ¼ r

sðtÞ: This gives

dsðhÞ dthðy; tÞ � y
_sðtÞ
sðtÞoyh

� �

¼ k0
1

sðtÞ2
oy

�kðhÞoyh� �kðhÞx
2s

g
r0 þ ysðtÞð Þ

� �

: ð8Þ

Fig. 1 �kðhÞ and 100� dsðhÞ for n = 2.81, c ¼ �0:0189
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Consider the space discretization 0 ¼ y0 and a0 ¼ 0; ai :¼ yi � yi�1; i ¼ 1; . . .;N
and integrate (8) over Ii :¼ ðyi�1=2; yiþ1=2Þ for i ¼ 1; . . .;N � 1 where
yi�1=2 :¼ ðyi þ yi�1Þ=2; yiþ1=2 :¼ ðyi þ yiþ1Þ=2:

We denote by hiðtÞ � hðyi; tÞ; 8i ¼ 1; . . .;N � 1; and approximate dthðy; tÞ �
_hiðtÞ in the interval Ii: We approximate

oyhjy¼yiþ1=2
� hiþ1ðtÞ � hiðtÞ

aiþ1
¼: oþhi

and similarly we approximate oyhjy¼yi�1=2
and denote it by : o�hi: Let Lðz; yiÞ be

the second order Lagrange polynomial crossing the points ðyi�1; hi�1Þ; ðyi; hiÞ and
ðyiþ1; hiþ1Þ: We use the abbreviation kiþ1=2 :¼ �kðhyiþ1=2

Þ: Then, the approximation
of (8) (based on finite volume type approximation) at the point y ¼ yi reads as
follows

dsðhiÞ _hi�
_syi

s

dLðz;yiÞ
dz

�

�

�

�

z¼yi

 !

¼k0
2

aiþaiþ1

1
s2

h

kiþ1=2o
þhi�ki�1=2o

�hi

�x2s

g
kiþ1=2ðr0þsyiþ1=2Þ�ki�1=2ðr0þsyi�1=2Þ
� �

�

ð9Þ

for i ¼ 1; . . .;N � 1: We add the corresponding equation at point y0 taking into
account that the flux is zero there. In a similar way as in (9) (following the finite
volume type of approximation) we obtain

dsðh0Þ _h0 ¼ k0
2

að1Þ
1
s2
� k1=2o

þh1 �
x2s

g
k1=2ðr0 þ sy1=2Þ
� �

� �

: ð10Þ

At the point yN ¼ 1 we have hNðtÞ ¼ 0; so no additional equation is considered.
We approximate the amount of water Mw using the trapezoidal rule for the inte-
gration. Define

QðtÞ � u0a1=2þ aN=2þ
X

N�1

1

ai þ aiþ1

2
ui;

where ui ¼ 1
ð1þðchiÞnÞm: Then, system (9–10) will be completed by the algebraic

equation

0 ¼ L� sðtÞ½1� QðtÞ� �Mw: ð11Þ

This algebraic equation is used instead of an ODE equation that models _sðtÞ:
System (9–11) is degenerate and is of the form

Mðt; zÞ_zðtÞ ¼ f ðt; zÞ ð12Þ
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where z ¼ ðh0; h1; . . .; hN�1; sÞ: The last equation of this system is just (11).
This system can be readily solved, e.g., by the solver ‘‘ode15s’’ in MATLABr or
the ‘‘ida’’ solver of the Sundials package.

As is usual with these solvers, some regularization in (11) is needed as well as a
tuning of the space discretization. Most important is to have a ‘‘good’’ starting
point.

If the equilibria have the property hN\0; then no interface appears. It is then
needed to set s(t): = L in the previous mathematical model and replace algebraic
equation (11) by an ODE equation for _hN which will be similar to (10). Succes-
sively increasing the rotational speed of the centrifuge increases the head at the
right boundary. The model remains in the state where s(t): = L up to the point
when h(N) = 0, at which point the computation is automatically halted. The full
model (9–11) is used onwards to compute the equilibrium states.

In numerical equilibrium experiments it is observed, as expected, that the
values of the rotational moment Mr and the center of gravity Gc are not very
sensitive to the Ks parameter. Also, the transient experiments where the time
sections between different equilibria are measured, are not very sensitive. The
saturated conductivity Ks can only be determined from measurements of Mr; Gc

that are accurate up to three digits. Therefore, another method must be used for the
determination of Ks:

4 Alternative Experiments

4.1 Saturated Flow

For the determination of the saturated conductivity, we propose to use the method
put forward in [4], a water reservoir put to the left of a saturated sample and
collection of the water in an outflow reservoir, with the addition of allowing for
transient measurements. We specifically use the ability to measure when a res-
ervoir has completely drained out, combined with the measurements of the rota-
tional moment.

This leads to the following equation for the dropping water level ‘ðtÞ in the
reservoir,

_‘ðtÞ ¼ �Ks
x2

2gL
L2 � ‘ðtÞ2 þ 2r0ðLþ ‘ðtÞÞ
h i

� �qFðtÞ; ð13Þ

with ‘ð0Þ ¼ l0 and ‘ðTeÞ ¼ 0: Solving this ODE, we obtain the relation between Te

and Ks; whereas ‘ðtÞ fully determines the change of the rotational moment MrðtÞ
over time.
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4.2 Water Reservoir and Outflow Reservoir

The mathematical and numerical model presented can be extended also to allow
for a water reservoir to the left of an unsaturated sample, and an outflow reservoir
to the right. This allows several different centrifugation experiments to be per-
formed, and allows to change the set-up during an experiment. For example, the
following scenario is possible: 1. Start from a saturated sample and a water res-
ervoir to the left. This makes it possible to determine Ks: 2. Continue with outflow
of the water content, making the sample unsaturated. 3. Isolate the right boundary
(that is, close it), which means we have the problem as described in the previous
two sections. 4. Continue step 2 and 3 of above so as to change the global
water content.

The advantage of the above centrifugation scenario is that all parameters can be
determined with one ground sample, and that more saturation levels are sampled
during the entire experiment. The main point to arrive at an accurate solution of
the model doesn’t change: an algebraic equation for mass balance determines the
difficulty to control unknowns. With a closed right boundary, this is the moving
interface, with an open boundary, this will be the outflow flux.

5 Numerical Experiments

For the first experiments we use as data r0 ¼ 10; L = 10, x ¼ 30; Ks ¼ 2:4�
10�5; hr ¼ 0:02; hs ¼ 0:4; c ¼ �0:0189; n ¼ 2:81; except where sequences are
compared to investigate the sensitivity of the set-up on the parameters. A uni-
formly distributed space discretization with N = 40 grid points is used.

The formulas for Mr; Gc and Mw at time t are:

Mr ¼
sðtÞ
2

Z

1

0

ðr0 þ sðtÞzÞ2uðt; zÞdzþ 1
6
ðL3 � sðtÞ3Þ;

Mw ¼ sðtÞ
Z

1

0

uðt; zÞdzþ 1
2
ðL2 � sðtÞ2Þ; Gc ¼ sðtÞ

Z

1

0

yuðt; zÞdz=Mw;

and are all evaluated numerically using the trapezoidal rule. Note that if uðt; 1Þ
then s(t) = L. The sensitivity of the measured quantities on the changing water
content is very good. The following experiments allow to determine the contri-
bution a change in the different soil parameters has on the measurements.
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5.1 Reaching Equilibrium

To investigate the head profiles we start this experiment from the equilibrium
corresponding to x ¼ 40 and a rotational speed x ¼ 50: The centrifuge normally
operates up to Te ¼ 1:540:000 seconds. At that time, equilibrium for x ¼ 50 is
almost reached. We compare 13 values, the starting value, nine increasing time
steps (with Dtj ¼ tjþ1 � tj ¼ 2000� 2j; j ¼ 1; . . .; 9Þ; the sensible end time step
Te ¼ 770� 2:000s; and two extra time steps to investigate the very long time
behavior. The measured values for the rotational momentum, gravity center, and
water amount, are given in Table 1. The small change between the last two values
in Table 1 demonstrates that equilibrium is eventually reached.

We can conclude that reaching equilibrium is a very slow process. The reason
for this is that the hydraulic permeability at low head is negligibly small, so it takes
a very long time to reach the equilibrium. If the centrifugation is continued, also
the section with low head obtains the required parabolic shape associated with the
equilibrium. Note however, that the other part of the head profile (for higher head
values) is changing insignificantly. Therefore, we arrive at the conclusion that it
makes sense to increase the rotational speed and not wait for these lower head
values to stabilize.

5.2 Dependence on n

In this experiment, we demonstrate the sensitivity of Mr and Gc to the model
parameter n. We start with a constant saturation u = 0.4 and apply the rotational
speed x ¼ 20: The centrifuge is operated for 800:000s: In Fig. 2 the obtained

Table 1 Rotational
momentum, center of gravity,
water amount for Exp. 5.1

time
2000 s Mr;e � 10�6 Gc Mw

0 1.5201 7.2512 4.0141
1 1.5248 7.2813 4.0128
3 1.5299 7.3119 4.0131
7 1.5345 7.3413 4.0133
15 1.5389 7.3697 4.0134
31 1.5430 7.3972 4.0134
63 1.5469 7.4234 4.0135
127 1.5505 7.4478 4.0135
255 1.5537 7.4699 4.0136
511 1.5565 7.4893 4.0136
770 1.5588 7.5056 4.0136
1800 1.5645 7.5462 4.0133
2300 1.5649 7.5494 4.0133
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equilibrium profiles are depicted for successively n = 1.51; 1.81; 2.11; 2.41; 2.71;
2.81; 3.01 and 3.31.

The resulting values for Mr; Gc and Mw are given in Table 2, and indicate a
good sensitivity.

5.3 Dependence on c

We now investigate the sensitivity of Mr and Gc to the c soil retention curve
parameter. We again use a rotational speed of x ¼ 50; starting from the equilib-
rium position at x ¼ 35: As values for c we consider c ¼ �c0 � 102 with c0 2
ð1:59; 2:19Þ where increments of size 0.1 are used. The values of Mr and Gc are
listed in Tables 3 and 4, respectively. The corresponding saturation and head
profiles at time section t ¼ 105 are given in Fig. 3. In Tables 3 and 4 the water
amount is 4.05. The sensitivity on c is less than that of n, but is sufficient.
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Fig. 2 Equilibrium profiles at x ¼ 20 for n = 1.51; 1.81; 2.11; 2.41; 2.71; 2.81; 3.01 and 3.31. a
Saturation profiles, b head profiles

Table 2 Rotational
momentum, center of gravity
and water amount for Exp.
5.2

n Mre� 10�6 Gc Mw

1.51 0.1887 5.0736 4.0043
1.81 0.1927 5.2391 4.0052
2.11 0.2020 5.6188 4.0043
2.41 0.2068 5.8096 4.0062
2.71 0.2083 5.8701 4.0054
2.81 0.2112 5.9870 4.052
3.01 0.2153 6.1524 4.0060
3.31 1.5505 7.4478 4.0135
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Nevertheless, taking transient information into account, as given in the rows of
Tables 3 and 4, will benefit the determination of c via this experimental set-up.

5.4 Inverse Determination of c; n and Ks

In this numerical experiment, we use r0 ¼ 30 L ¼ 10;x ¼ 20; Ks ¼ 2:4�
10�5; hr ¼ 0:02; hs ¼ 0:4; c ¼ �0:0189 and n ¼ 2:81: The space discretization
for T 2 ð0; T1Þ is not equidistant. Here T1 is the time needed to empty the left
water reservoir. We shall consider N = 40 grid points with geometrical distribu-
tion as follows. The first space interval is d1 ¼ 1=20 and then diþ1 ¼ qdi with q
Once the water reservoir is empty, a uniform space discretization with N = 40 is
used.

In this experiment, we restore the soil parameters applying the following
centrifugation scenario. First, we centrifugate the fully saturated sample along the
time 104 and collect data1 ¼ fM1;G1;Mw;1g: Then, we isolate the right boundary
of the sample and centrifugate it tor t = 5000 s with rotational speed x ¼ 15:
Then, we obtain data2 ¼ fM2;G2;Mw;2g (where Mw;2 ¼ Mw;1; since we have zero
output). After this, we repeat these two steps with the same sample at the same
running time t = 5000 s and x ¼ 20: Successively we obtain data3 ¼
fM3;G3;Mw;3g; data4 ¼ fM4;G4;Mw;4g where ðMw;4 ¼ Mw;3Þ and continue up to
data7: Then, the total measurement data is represented by the vector data ¼
fdata1; data2; . . .; data7g: To imitate a realistic situation, we perturb every

Table 3 Rotational momentum Mr � 10�6 for Exp. 5.3

timenc0 1.59 1.69 1.79 1.89 1.99 2.09 2.19

1000 1.5189 1.5093 1.5013 1.4949 1.4896 1.4854 1.4819
3000 1.5352 1.5213 1.5097 1.5000 1.4919 1.4852 1.4797
5000 1.5438 1.5278 1.5144 1.5030 1.4935 1.4855 1.4788

104 1.5565 1.5376 1.5216 1.5079 1.4963 1.4864 1.4780

5� 104 1.5901 1.5645 1.5423 1.5231 1.5063 1.4917 1.4791

105 1.6058 1.5777 1.5530 1.5313 1.5124 1.4958 1.4812

Table 4 Center of gravity for Exp. 5.3

timenc0 1.59 1.69 1.79 1.89 1.99 2.09 2.19

1000 7.1117 7.1031 7.0948 7.0872 7.0805 7.0744 7.0693
3000 7.1487 7.1379 7.1271 7.1170 7.1076 7.0990 7.0912
5000 7.1697 7.1581 7.1464 7.1351 7.1245 7.1146 7.1056
104 7.2026 7.1903 7.1775 7.1649 7.1527 7.1411 7.1303

5� 104 7.3012 7.2898 7.2763 7.2617 7.2466 7.2314 7.2167

105 7.3512 7.3429 7.3309 7.3167 7.3012 7.2851 7.2689
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component of data by 0:01 � ðrand� 0:5Þ; where rand is a generator of random
numbers from (0,1). This corresponds to 0.5% noise. Next, we apply the
Levenberg–Marquardt method to restore the soil parameters, starting from initial
parameters c ¼ �0:01; n ¼ 2;Ks ¼ 1:6� 10�5: The corresponding iterations of
the LM method are presented in Table 5.

6 Conclusion

In this chapter, it is shown that global characteristics measured with a centrifuge
can be used to determine the soil retention curve of ground samples. In order for
this to work, transient data must be used, different centrifugation scenario’s must
be coupled to obtain sufficient information, and a very precise numerical model
must be used. Specifically, this model must be able to accurately track the moving
interface. We further draw attention that in the alternative scenario using outflow,
no outflow boundary condition is imposed. This gives more freedom to the
experimentator. Instead, for all simulations, an algebraic equation based on mass
balance is used to obtain a solution.
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Fig. 3 Saturation profiles at equilibrium for x ¼ 50; c0 ¼ 1:59; 1:69; 1:79; 1:89; 1:99; 2:09; 2:19:
a Saturation profiles, b head profiles

Table 5 LM-iterations for
determination of c; n;Ks

Iteration �100� c n Ks � 105 RMS

0 1 2 1.6 3:3977
1 1.7643 3.4612 1.6149 5:057� 10�2

3 1.8555 2.8423 2.2320 2:878� 10�4

5 1.8469 2.8519 2.2185 1:506� 10�4
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Numerical Investigation of Chatter
in Cold Rolling Mills

S. K. Dwivedy, S. S. Dhutekar and P. Eberhard

Abstract In this work, considering a four high cold rolling mill and using a
dynamic friction model, expressions for the variation of pressure in the roll bite
have been developed. The effects of parameters used in the dynamic friction model
on the variation of pressure and shear stress are investigated. The numerically
obtained horizontal and vertical work roll deflections using the dynamic friction
model have been compared with those obtained by the conventionally used con-
stant friction model. The effects of rolling parameters like strip thickness; periodic
back tension and strip velocity on the work roll deflections have been studied. This
work will find applications in predicting the critical system parameters in cold
rolling to avoid chatter.

Keywords Chatter � Cold rolling mill � Dynamic friction model � Constant
friction model � Roll bite

Nomenclature
M Mass per unit length of the work roll (kg/m)
y Vertical displacement of the work roll (m)
f s Reaction force from metal sheet (N/m)
Dw Diameter of work roll (m)
Db Diameter of backup roll (m)
E Young’s modulus of the material (GPa)
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l Poisson’s ratio of the material
f s
s Steady sheet force (N/m)

f s
d Dynamic sheet force (N/m)

ys Work roll displacement due to the steady sheet force (m)
yd Work roll displacement due to the dynamic part of sheet force (m)
_yd Rate of change of dynamic roll gap displacement (m/s)
hc Gap between two work rolls (m)
hc0 Gap between two work rolls at t = 0 (m)
_hc Rate of change of roll gap (m/s)
xn Natural frequency of the system not considering f s

d (Hz)
h1 Strip thickness at entry (m)
h2 Strip thickness at exit (m)
R Radius of work roll (m)
u1 Strip velocity at entry (m/s)
sy Strip shear yield strength (MPa)
rXX Normal stress in X-direction (MPa)
rXY Normal stress in Y-direction (MPa)
sXY Shear stress (MPa)
m Contact friction coefficient between the work roll and the strip
ss Shear stress at the surface of strip (MPa)
x1 Distance measured from strip entry to the centerline of rolls (m)
x2 Strip exit position (m)
xn Distance of neutral plane from the centerline of rolls (m)
m1 Friction factor between xn and x1 (considered positive)
m2 Friction factor between xn and x2 (considered negative)
p Roll pressure (MPa)

1 Introduction

Chatter in rolling mills is the undesirable mechanical vibration observed in most
of the rolling mills operating at high speed and rolling thin strips. It results in
unacceptable gauge variations in the rolled strip, affects the surface quality,
damages mill components and produces undesirable noise. Hence, it may lead to
loss in productivity if sufficient care hasn’t been taken to prevent it. Chatter is a
type of self excited vibration which is believed to arise in rolling operations as a
consequence of the interaction between structural dynamics of the rolling mill
stand and the dynamics of the rolling operation itself. Generally three types, i.e.,
torsional, third octave and fifth octave chatters are observed in rolling mills.
Torsional chatter is related to torsional vibrations and is generally observed in
5–15 Hz range. The other two types are related to vertical vibrations of the roll
system. While third octave chatter falls in the range of 125–240 Hz, fifth octave
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chatter falls in the range of 550–650 Hz. These are characterized by the frequency
range of musical octaves. It has been observed that third octave chatter is
responsible for gauge variations and fifth octave chatter causes damage to the
backup roll and in turn parallel strip marks are found in the rolling sheet. Over the
years there has been lot of research on chatter in rolling mills. A brief review of
the dynamics and chatter model developed by different researchers is given below.

Roberts [1] considered the rolling mill as a single spring-mass system and
analytically predicted the natural frequency to show the origin of fifth octave
chatter. Chefneux et al. [2] developed a numerical model to show that chatter
tends to occur when there is a sudden change in rolling force which may be due to
a weld line or sudden change in lubrication. Johnson and Qi [3] and Johnson [4]
studied the effect of friction and inelastic deformation on chatter in sheet rolling
and developed analytical expressions for rolling force and corresponding spring
and damping coefficients. They have shown that inter stand tension plays a great
role in the chatter of rolling mill. They modeled the mill as two degrees and four
degrees of freedom systems and explained fifth octave chatter. Yun et al. [5]
reviewed different chatter models and in a series of papers [6–8] developed cor-
relation between different rolling parameters such as strip speed, tension at entry
and exit, rolling force and rolling torque. Performing experiments, they tried to
understand the conditions which lead to the dynamic instability and proposed that
negative damping, mode coupling and regeneration are the basic mechanisms
which lead to chatter in rolling. To carry out the investigation of chatter due to
negative damping, a unimodal structural model (the structure is allowed to
oscillate only in one direction perpendicular to the flow of strip) was formulated.
There they coupled a dynamic rolling model with an unimodal chatter model and
simulated the results to show roll force, roll gap, back tension variations leads or
lags in phase to produce negative damping. In mode coupling, they took roll
vibrations in more than one direction and attempted to show this as one of the
causes of chatter [8].

Hu and Ehmann [9] proposed a dynamic rolling model considering homoge-
nous material and the movement of the roll in both directions has been considered.
Using a linearised model they validated their results with experiments. They also
developed a dynamic rolling model considering non-homogenous material [10]. It
may be noted that in these works, chatter studies have not been carried out.
A constant friction model has been considered in these works.

Kimura et al. [11] studied the chatter problem in a five stand continuous rolling
mill and showed the influence of rolling speed and friction coefficient on vibration
in rolling mill. They deduced an optimal range of friction coefficients and proposed
a stability index to damp the vibration and make the mill stable against any
disturbance. Meehan [12] also developed a comprehensive stability criterion for
the third octave rolling chatter and suggested a critical rolling speed below which
chatter does not occur. He used a spring-mass-damper model and with the help of
simplified block diagrams illustrated the roll stack vibrations and inter stand
tension interaction. Lin et al. [13] presented a nonlinear dynamic model to describe
the dynamic interaction between work rolls and metal sheets and obtained critical
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speed for initiation of fifth octave chatter. They coupled a work roll sub model with
a roll bite sub model to produce simulation results and concluded that even though
the governing dynamics is highly nonlinear, the rolling chatter instability is
nothing else than mode excitation or beating and thus linear. Their results corre-
spond well with a physical rolling mill and the frequency predicted for a 4-H
rolling mill falls within 550–650 Hz (fifth octave chatter range). Niziol and
Swiatoniowski [14] and Hu et al. in a series of paper [15, 16] extended their
previous work [9, 10] to study third octave chatter in a single stand [15] and a
multi-stand mill [16]. Their model combined a homogeneous process model with
suitable mill structure models to obtain a linear characteristic equation which was
investigated to study the stability of the system.

In all of the mentioned cases, either constant friction or Coulomb friction
models have been used to obtain the expression for roll force and the system
stiffness and damping properties of the roll. However, these models do not cor-
rectly predict distribution of contact stresses in flat rolling, particularly in the
neutral plane. Tan et al. [17] proposed a dynamic friction model considering both
friction and viscosity effects in flat rolling. They have validated their model using
the published experimental data.

In the present work, an attempt has been made to investigate the chatter phe-
nomena by combining the roll-bite sub-model of Hu et al. [9] and the dynamic
friction model of Tan et al. [17] for a four-high cold rolling mill. It may be noted
that unlike constant friction or Coulomb friction models where only the coefficient
of friction (l) is required to obtain the shear stress during rolling, in the case of a
dynamic friction model one requires four parameters ðbp; kp; bf ; kf Þ for doing the
computation. Initially, numerical investigations have been carried out to study the
effect of these parameters on the variation of pressure and shear stress in the roll
bite. Then, a comparative study has been made between the deflection obtained
using dynamic friction model and the constant friction model for different strip
velocity, strip thickness and back tension.

2 Mathematical Model

Figure 1a shows the schematic diagram of a four high stand rolling mill with the
metal strip passing through the work rolls which are supported by backup rolls. It
is assumed that the physical contact between work roll and backup roll can be
modeled as springs, as shown in Fig. 1b. The damping between them is assumed to
be negligible. Further, it is assumed that the work roll and backup roll are always
in contact during rolling process.

Considering both upper and lower work rolls, a chatter model of work rolls has
four degrees of freedom. These are vertical and horizontal displacements of both
the work rolls. Considering the symmetry of rolling process, the degrees of free-
dom can be reduced to the horizontal and vertical displacement of any of the two
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work rolls. Now, considering the vibration of the upper roll only, see Fig. 1b, and
applying Newton’s second law, one can write the governing differential equation
of motion for a spring mass system in vertical and horizontal directions as follows.

M
d2y

dt2
þ K1y ¼ f s

y ;
d2x

dt2
þ K2x ¼ f s

x ð1Þ

Here M is the mass per unit length of work roll, K1 is the spring constant which
represents the contact between the work roll and the backup roll, see Fig. 1, K2

represents the stiffness of the equivalent spring in the horizontal direction, x and
y are the deflections of the work roll in horizontal and vertical direction, respec-
tively. Also, f s

x and f s
y , respectively, represent force per unit width on work rolls in

horizontal and vertical directions while rolling. The expression for these forces can
be obtained by using different friction models such as a constant friction model,
Coulomb’s friction model or a dynamic friction model. While the expression for
forces for a constant friction model has been obtained by Hu and Ehmann [9], here
these expressions for a dynamic friction model are derived.

Following the procedure of Lin et al. [13], the total sheet force and total
displacement can be divided into steady and dynamic parts. Hence, they can be
written as

f s ¼ f s
s þ f s

d and y ¼ ys þ yd ð2Þ

Considering homogeneous deformation of the sheet, the different quantities
used in the roll-bite are shown in Fig. 2a. The roll gap in vertical direction hc and
in the horizontal direction xc and their rate of change of roll gap _hc and _xcin
respective directions are given by

Fig. 1 a Schematic representation of a four-high rolling mill, b representation of rolling mill by
a spring-mass system
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hc ¼ hc0 þ 2yd; _hc ¼ 2 _yd and xc ¼ xco þ xd ; _xc ¼ _xd ð3Þ

The quantities hc0 and xc0 are the initial roll gap in vertical and horizontal
direction i.e., when time t is equal to 0. From Fig. 2a, the expression for strip
thickness h varying in the roll bite in terms of the vertical roll gap hc, horizontal
roll gap xc, radius of work roll R is given by

h ¼ hc þ x� xcð Þ2
.

R ð4Þ

The half varying thickness is y ¼ h=2. It is defined so as to properly apply the
boundary conditions. Applying material volume preservation, one can obtain

uh ¼ u1h1 � x1 � xð Þ _hc þ h1 � hð Þ _xc ð5Þ

where u is the strip velocity, u1 and h1are the strip velocity and thickness,
respectively, at the inlet. Differentiating u with respect to y we get

du

dy
¼ � _xc þ uð Þ

y
ð6Þ

The contact length at inlet x1 is given as,

x1 ¼ xc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R h1 � hcð Þ
p

ð7Þ

The position of the strip at the exit of roll bite x2 is given as

x2 ¼ xc þ
Rhc

_hc

2 u1h1 � x1 � xð Þ _hc þ h1 _xc

� � ð8Þ

The location of the neutral point xn can be determined by equating the strip
velocity with the roll velocity. Then xn can be given by

Fig. 2 a Roll bite model, b Half slice of the roll bite
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xn ¼
2xc vr þ _xcð Þ þ _hcRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xc vr þ _xcð Þ þ _hcR
� �2�4 vr þ _xcð Þx2

c vr þ _xcð Þ
q

2 vr þ _xcð Þ ð9Þ

The exit strip velocity u2 can be determined from Eq. 5 as

u2 ¼
u1h1 � x1 � x2ð Þ _hc þ h1 � h2ð Þ _xc

h2
: ð10Þ

From Fig. 2b, the equilibrium equation can be determined from the slice of roll
bite.

�rxyþ rx þ drxð Þ yþ dyð Þ þ p tan /dx� ssdx ¼ 0: ð11Þ

The shear stress ss with a dynamic friction model can be given according to Tan
et al. [17] as

ss ¼ b
du

dy
p: ð12Þ

Here b is the dynamic coefficient of friction, du/dy is the strip velocity across the
rolling direction and p is the rolling pressure. Then, applying the von-Misses
criterion for the plane strain condition using rx and sy as the horizontal tensile
stress and yield strength in shear for the strip material, one obtains

rx þ p ¼ 2sy: ð13Þ

Differentiating Eq. 13 with respect to x, one gets

drx

dx
¼ � dp

dx
: ð14Þ

Inserting Eq. 14 in Eq. 11 and considering only positive sign of b, one obtains after
rearranging

2sy
dy

dx
� y

dp

dx
þ b

du

dy
p ¼ 0;

or;
du

dy
¼ �2sy

bp

dy

dx
þ y

bp

dp

dx
: ð15Þ

Integrating Eq. 15 with respect to y gives

u ¼ �2syy

bp

x� xc

R
þ y2

2bp

dp

dx
þ c1 ð16Þ

Applying the boundary conditions at the exit of the strip from the roll bite yields
the constant c1,

y ¼ 0; x ¼ xc; u ¼ u2; c1 ¼ u2: ð17Þ
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Then, the differential equation in p follows

dp

dx
� 2b

y2
u� u2ð Þp ¼ 4sy x� xcð Þ

Ry
: ð18Þ

Taking A xð Þ¼ 2b
�

y2
� �

u2 � uð Þ and B xð Þ ¼ 4k x� xcð Þ=Ry, Eq. 20 can be
rewritten as

dp

dx
� A xð Þp ¼ B xð Þ: ð19Þ

Solving Eq. 19 gives the expression for the variation of pressure in the roll bite as

p xð Þ ¼
2sy � r1
� �

1� 2b A1 þ B1 þ C1ð Þ þ 2sy ln h
h1

� �� �

1� 2b D1 þ E1 þ F1ð Þ ; ð20Þ

where the abbreviations are,

A1 ¼
R

4ðhch2
1Þ

xc � x1ð Þ u1h1 � _hcx1 þ _xch1 þ _hcxc

� �� �

� 	

B1 ¼ 3
�

8h2
ch1

� �� �

xc � x1ð Þ u1h1 � _hcx1 þ _xch1 þ _hcxc

� �� �

C1 ¼ 3R tan�1 x1 � xcð Þ
.

ffiffiffiffiffiffiffiffi

Rhc

p

� �.

8h2
c

ffiffiffiffiffiffiffiffi

Rhc

p

Þ
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Then, the roll force can be computed as

f s
x ¼

Z

x2

x1

p tan /dxþ
Z

x2

x1

�ð Þssdx; f s
y ¼

Z

x2

x1

pdxþ
Z

x2

x1

�ð Þss tan /dx: ð21Þ

These forces are used in Eq. 1 to numerically compute the vertical and hori-
zontal work roll deflections. As proposed by Tan et al. [17], while computing
pressure p in the roll bite, b should be replaced by bp and the strip velocity term
should be multiplied by a term kp. Similarly, in the shear stress expression b
should be replaced by bf and the strip velocity term should be multiplied by a term
kf . In their work, they obtained these parameters by comparing their result with
those obtained from experiments. In the following section, the effect of kp and bp

on the variation of pressure and shear stress in the roll bite has been investigated.
Also, incorporating the expression for forces as given in Eq. 21, the time responses
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for horizontal and vertical work roll displacements are determined by numerically
solving Eq. 1.

3 Results and Discussions

In this section, initially the effects of the parameters used in the dynamic friction
model on the variation of pressure and shear stress in the roll bite are considered.
The parameters used in this analysis are given in Tables 1 and 2.

Figure 3 shows the flow chart used for computation of the work roll deflection
and velocity in both horizontal and vertical direction. Considering the system
parameters such as mass, stiffness in horizontal and vertical direction, thickness
and velocity at the entry and the roll radius as the input parameters, in the first step,
the strip velocity, pressure and shear stresses are calculated in the roll bite. Using
the calculated values of exit thickness and velocity and the position of the neutral
plane and thickness at the neutral plane, the horizontal and vertical components of
the roll forces are computed. These forces are used in the dynamic equation of
motion to compute the work roll deflection in horizontal and vertical direction.

Figure 4 shows the variation of pressure and shear stress considering different
values of the coefficient of the dynamic friction model. It may be observed that for
constant kf and bf , and for all values of bp, the zero shear stress occurs at a
distance from the exit point. Though Tan et al. [17] claimed that the dynamic
friction model is better than thother two friction models, its applicability highly
depends on the correct prediction of these four constants. It is shown that the
pressure variation is very sensitive to the change in the parameter bp. While a

Table 1 System parameters used in numerical analysis

M Mass per unit length of work roll 2299.98 kg/m
Dw Diameter of work roll 0.61 m
Db Diameter of backup roll 1.52 m
E Young’s modulus of steel 207 GPa
l Poisson’s ratio 0.3
f s
s Steady sheet force 2.6 MN/m
sy Strip shear yield strength (for 3004 Al alloy) 110 MPa

Table 2 Input of roll bite sub-model

r1 Horizontal tensile stress at entry (\170 MPa: 3004 Aluminum tensile yield strength)
r2 Horizontal tensile stress at exit (\170 MPa: 3004 Aluminum tensile yield strength)
u1 Strip velocity at entry (typical value 0–25.4 m/s)
h1 Strip thickness at entry (typical value 2.54–0.001 mm)
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lower value of bp predicts more accurately the pressure distribution in the forward
slip zone, it fails to predict the pressure distribution in the backward slip zone.
Also, as pointed out in [17], the pressure hill does not coincide with the neutral
plane. Hence, if one calculates the pressure distribution for both the forward slip
zone and for the backward slip zone, a jump in the pressure can be observed at the
neutral point, as shown in Fig. 5. This jump is most probably the driving factor for
chatter at higher speed while rolling a thin strip.

Figure 6 shows the horizontal and vertical work roll deflections obtained by
using both dynamic friction model and constant friction model. Here the rolling
speed is taken as 20 m/s. With an increase in rolling speed, the dynamic friction
model clearly predicts unstable response in vertical direction, while the constant

Fig. 3 Flow chart showing
the calculation of the
horizontal and vertical work
roll deflection
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friction model predicts constant amplitude (82 lm) of vertical deflection. Both of
these methods predict stable horizontal work roll deflection. The dynamic friction
model gives a higher value of deflection than the constant friction model. It should
be noted that in this investigation no front or back tension was considered.

To study the effect of inter stand tension, which is a very important parameter in
tandem rolling mills, in the present case a time varying back tension with

Fig. 4 Variation of pressure and shear stress in the roll bite with bp and kp. System parameters as
in Tan et al. [17]

Fig. 5 a pressure variation in roll bite, b shear stress variation in roll bite for 3.17 mm strip
thickness at entry, with reduction of 27.44%, strip shear yield strength 110 MPa and roll velocity
40 mm/s
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Fig. 6 Work roll deflection obtained using dynamic friction model a, b and constant friction
model c, d. a, c horizontal direction, b, d vertical direction for 1 mm strip thickness

Fig. 7 Effect of variation of tension using dynamic friction model a, c and constant friction
model b, d on work roll deflection a, b horizontal direction, c, d vertical direction. Work roll
vibrations at 10 m/s, 1 mm strip thickness and back tension varying with sine function at 150 Hz
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frequency 150 Hz has been introduced. This causes large variations in the hori-
zontal component of the roll force. Figure 7 shows the work roll deflections
obtained using dynamic friction model and constant friction model. Here, while
both methods show a clear increase in vibration, constant friction model predicts a
higher value of horizontal roll deflection. This back tension also affects the
deflection in the vertical direction. This may be due to the coupling between the
forces in the horizontal and vertical direction. This observation is similar to
those observed in linear parametrically excited systems where a time varying force
applied in horizontal direction causes a deflection in the vertical direction. Here,
while constant friction model predicts periodic stable solutions, dynamic friction
model clearly shows the vibration of the system growing with time.

Figure 8 shows the time response obtained for the system when the strip
thickness is increased from 1 mm to 2.5 mm. While clearly the horizontal and
vertical components of the work roll deflections obtained by dynamic friction
model are increasing with time showing an unstable system, the constant friction
model shows stable steady state vibration.

Fig. 8 Deflection of work roll for strip thickness of 2.5 mm and at 20 m/s using dynamic friction
model a, c and constant friction model b, d; a, b horizontal direction, c, d vertical direction
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4 Conclusion

In this work, the expression for the roll forces in both horizontal and vertical
directions of a four high mill has been developed incorporating the dynamic
friction model with the homogeneous rolling model. It has been shown that
improper choice of the dynamic parameters used for the pressure calculation using
a dynamic friction model may lead to wrong prediction of pressure and shear stress
in the roll bite. This point has its significance as it is impossible to conduct
experiment each time to obtain optimum values of these parameters which match
the experimentally obtained pressure curve. This study gives an idea about the
variation of pressure and shear stress with change in these parameters. The results
for the horizontal and vertical work roll deflections obtained using this method for
different strip velocity, strip thickness and back tension has been compared with
those obtained using the constant friction model.
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Heavy Oils Transportation in Catenary
Pipeline Riser: Modeling and Simulation

Severino Rodrigues de Farias Neto, Jobsan Sueny de Souza Santos,
Kelen Cristina de Oliveira Crivelaro, Fabiana Pimentel Macêdo Farias
and Antonio Gilson Barbosa de Lima

Abstract This chapter presents information about multiphase flows such as
definition, flow pattern and modeling. Application to petroleum industry has been
given to water-heavy oil flow in catenary riser. In offshore platforms a catenary
riser is often used to carry heavy ultraviscous oils. However, the high viscosity of
these oils provides an elevated pressure drop in the flow. Several studies report
the use of the core-flow technique in vertical and horizontal pipes to reduce the
pressure drop in the transport of heavy oils. Nevertheless, so far no record of
studies using catenary riser was found. Results of velocity, pressure, temperature
and volumetric fraction distribution were presented and analyzed. The pressure
drop in the catenary riser decreased 3.28 times compared with the single-phase oil
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flow. This low value compared with the available literature was attributed to the
presence of regions of adhesion along the surface of the overhead line and the high
viscosity of the produced water.

Keywords Core-flow � Riser � Catenary � Heavy oil � Numerical simulation

Nomenclature
Aab Interfacial area density (1/m)
CD Drag coefficient (-)
Dab Drag force (N)
dab Mixture length scale (m)
db Mean diameter (m)
Eo Eötvös number (-)
fa Volume fraction (-)
g Gravitational acceleration (m/s2)
ha Specific enthalphy (J/kg)
hab Heat transfer coefficient W/m2 K
k Turbulent kinetic energy (m2/s2)
LBab Lubrication force (N)
Lab Lift force (N)
Ma Total force on phase a (N)
Mab Interphase momentum transfer (N)
Nu Nusselt number (-)
Pr Prandtl number (-)
Qm Heavy oil and water volumetric flow (m3/s)
Qa Interphase heat transfer (W/m2)
Re Reynolds number (-)
SMa Mass source (kg/m3s)
Sqa External heat source (kg/m s3)
Sa Momentum sources (kg//m2 s2)
t Time (s)
TDab Turbulent dispersion force (N)
Ua Velocity vector (m/s)
VMab Virtual mass force (N)
Cab Mass flow rate per unit volume (kg/m3 s)
e Turbulence dissipation rate (m2/s3)
ka Thermal conductivity (W/m K)
kab Misture conductivity scale (m)
lt Turbulent viscosity (kg/m s)
la Dynamic viscosity (kg/m s)
qa Density (kg/m3)
qab Mixture density (kg/m3)
r Surface tension coefficien t (N/m2)
rq, re, rj, Empirical constants to k-e turbulence model (-)
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1 General Features of Multiphase Flow

The incidence of multiphase flows is involved in many industrial processes.
Examples are fluidized beds, fluid catalytic cracking reactors, bubble column
reactors, combustion, treatment of environmental pollution, and many others
operations. Multiphase flows refer to situations in which two or more fluids are
present and each of the fluids are immiscible or when there are different ther-
modynamic phases (gas–liquid, liquid–liquid, gas–liquid–solid and so on). One of
the most challenging aspects of dealing with multiphase flow is the fact that it can
take many different forms (flow patterns). Therefore, it can be classified broadly
into dispersed flow (continuous–dispersed flows) and stratified flow (continuous–
continuous flow). A dispersed flow pattern occurs when one or more phases are
dispersed (bubbles, droplets or solid particles) within another continuous phase,
while in a stratified flow pattern the two phases are separated by a continuous
interface. In most of the reported studies, the identification and classification of the
flow pattern is based on visual observations.

In the petroleum industry, a complex mixture of hydrocarbon can exist as a
single-phase (liquid or gas) or as a two-phase mixture or multiphase mixture,
depending on temperature, pressure, and the composition of mixture. The pro-
duction and transportation of this mixture leads to a stream with different multi-
phase variations (oil–gas, oil–water, oil–water–gas, and so on). For many energy
plants, annular two-phase flow is the most common flow pattern in boiling heat
transfer systems, such as boiler, heat exchanger and in pipes, often used for the
production and transport of gas.

In the specific case of two-phase immiscible flow (liquid–liquid flow) the
annular flow pattern depend on the flow rates of the phases, geometry and
roughness of pipe, the flow properties of the phases, and interfacial tension
between the phases. The knowledge about the hydrodynamic properties asso-
ciated with these flows is extremely important to ensure safe design and effi-
cient operation of an offshore transportation pipeline. The annular flow pattern
stands out among the other flow regimes, for their important application in the
transport of heavy ultra-viscous oil. Its very interesting feature is that the
frictional pressure loss is comparable to that of single-phase flow of a thinner
fluid in the same pipe at mixture flow rate. To obtain this flow pattern, water
is injected in the oil such that it flows as an annular film along the pipe
wall while oil flows in the core region. Many oil companies have shown an
interest in this flow pattern, i.e., in the technology of water-lubricated transport
of heavy oils. These oils frequently are very viscous and somewhat lighter
than water. Typical oils might have a viscosity of 100 Pa.s and a density of
990 kg/m3 at 25�C.

Most flow models have been published to predict the flow characteristics of the
core-annular flow in horizontal and vertical pipelines to heavy oil transportation
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and artificial lifting in heavy oil wells. These models require theoretical and
experimental information about the pressure-gradient and flow patterns, where a
thin fluid surrounds a viscous one [4, 5, 7, 11, 13–15, 19, 20, 22, 23]. Application
of a computational fluid dynamics (CFD) based approach is being increasingly
adopted to predict the detailed thermo fluid mechanics of core-annular flow [1, 8,
9, 17, 26].

Core-annular flow of highly viscous oil and water in a horizontal pipe was
analyzed by Ooms et al. [15]. They assumed that the oil viscosity is so high that
the oil–water interface can be treated as a solid–liquid interface and, the buoyancy
forces generated due to the density difference of oil and water are counterbalanced
by the lubrication forces acting on the core. They showed that the theoretical
predictions agreed with their experimental data.

Bai et al. [4] identified a new flow type namely bamboo waves in upflow and
corkscrew waves in downflow. They observed that the single oil pressure drop was
about 200 times larger than in case of water lubricated flow for the same oil
superficial velocity.

Different strategies for preventing oil from fouling the walls of core-annular
flow pipelines and also for restart from an unexpected pipeline shut-down was
present by Arney et al. [3]. Experiments in a pilot scale cement-lined core-annular
flow pipeline showed that cement-lined pipes can resist fouling by oil and facilitate
the restart of transport operation.

Rovinsky et al. [25] in another annular flow study concluded that the velocity
profiles, pressure drop reduction factor and power saving factor depend on the
viscosity ratio of two phases. They also report that the power saving factor does
increase with increase of viscosity ratio.

Frictional pressure drop measurements for upward vertical core-flow in a 1 in.
pipe, using a 17.6 Pa.s, 963 kg/m3 oil and water at room temperature was mea-
sured by Prada and Bannwart [18]. The authors reported a decrease by more than
1,000 times with respect to single phase oil flow, being comparable to the flow of
water alone in the pipe at mixture flow rate. Similar results were obtained by
Rodriguez et al. [24] using this technique to heavy ultraviscous oil transport.

The aforesaid survey brings out the importance of core flow to heavy oil
transportation, and the different aspects of this phenomenon were reviewed by
Ghosh et al. [28], like nozzle design, wettability characteristics, restart procedure,
etc., and allow us to say which dynamics of core-annular flow is yet not com-
pletely understood. It should be emphasized that, the two-phase annular flow
patterns with heat transfer are customary in many industrial processes. The reliable
prediction of pressure drop and heat transfer rates associated with these processes
are essential to developing more reliability to heavy oil transportation, reducing or
eliminating problems and cost. Even less information is available on non-iso-
thermal two-phase core-annular flow in the catenary riser. Some studies have been
initiated by the present authors in this direction that was conducted at the
Departments of Chemical Engineering and Mechanical Engineering at Federal
University of Campina Grande (UFCG), Brazil.
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2 Multiphase Transport Modeling

For the studies of multiphase flows models are needed that are able to predict the
detailed hydrodynamic behavior of those flows. Two different ways present
highlights: experimental and theoretical. In this last case, the power of modern
computers can be employed to address the complexity of the flow. However, the
predictive capability must rely on complex theoretical and computational models
for each phases or components. According to Ranade [21] there are three main
approaches for modeling multiphase flows:

• Volume of fluid (VOF) approach (Eulerian framework for both the phases with
reformulation of interface forces on volumetric basis).

• Eulerian framework for the continuous phase and Lagrangian framework for all
the dispersed phases.

• Eulerian framework for all phases (without explicitly accounting for the inter-
face between phases).

If Eulerian framework is assumed, two distinct models can be distinguished:
homogeneous and inhomogeneous models. Inhomogeneous multiphase flow
occurs when separate velocity fields and other fields (temperature, turbulence, etc.)
exist for each phase. The pressure field is shared by all fluids. The fluids interact
via interphase transfer terms; while in the homogeneous multiphase flow has the
same velocity and pressure fields, and other relevant fields.

In the inhomogeneous multiphase model there are different sub-models how
differ in the way which these models are compared. The differences are related
mainly to interfacial area density and the interphase transfer terms. These are:

• The particle model—this model is applied when one of the phases is continuous
and the other is dispersed (solid particles, liquid droplets or gas bubble).

• The mixture model—this model treats both phases symmetrically and requires
both phases to be continuous.

• Free surface model—this model is applicable to free surface flows.

The set of governing equations that describe the three-dimensional two-phase
flow, transient and non-isothermal in a catenary riser shall consist of conservation
laws of mass, momentum and energy as described in the following.

2.1 Continuity Equation

A continuity equation corresponds to a partial differential equation that describes
the transport of some type of conserved quantity. For a multiphase flow this
equation is defined by:

o

ot
faqað Þ þ r � faqaUað Þ ¼ SMa þ

X

NP

b¼1

Cab ð1Þ
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where the subscript a represent the phases involved (water and heavy oil); f is the
volume fraction; q is density and U is the velocity vector; SMa describes user
specified mass sources, and Cab is the mass flow rate per unit volume from phase a
to phase b. This term only occurs if interphase mass transfer takes place. For
details see ANSYS [2].

2.2 Momentum Equation

The linear momentum equation can be developed by Newton’s Second Law and
relates that the sum of all forces applied on the control volume is equal to the sum
of the rate of change of momentum inside the control volume and the net flux of
momentum through the control surface. In the case of multiphase flow this
equation is given by:

o

ot
faqaUað Þ þ r � fa qaUa � Uað Þ½ � ¼ �farpa þr � fala rUa þ rUað ÞT

� �� �

þ
X

NP

b¼1

CabUb � CbaUa

� �

þ Sa þMa

ð2Þ

where l is dynamic viscosity; Sa describes momentum sources due to external
body (buoyancy force and rotational force); the term CabUb - CbaUa represents
momentum transfer induced by interphase mass transfer and occurs when mass is
carried from one phase into another. Cab is a positive mass flow rate per unit
volume from phase b to phase a. Ma describes the total force on phase a due to
interaction with other phases, such as drag force, lift force, virtual mass force, etc.,
and is given by:

Ma ¼
X

b 6¼a

Mab ð3Þ

Here, Mab is the interphase momentum transfer, which occurs due to interfacial
forces acting on each phase a, due to interaction with another phase b.

The total interfacial force acting between two phases may arise from several
independent physical effects:

Ma ¼ Dab þ Lab þ LBab þ VMab þ TDab ð4Þ

The lift force (Lab) acts perpendicular to the main relative velocity and thus
contributes to the lateral void distribution. The wall lubrication force (LBab)
occurs when the dispersed phase is observed to concentrate in a region close to the
wall, but not immediately adjacent to the wall. The virtual mass force (VMab)
accounts for transient behavior in the flow field. It represents the force required to
accelerate the apparent mass of the surrounding continuous phase, when the
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relative velocity changes. The interphase turbulent dispersion force (TDab) cor-
responds to an additional dispersion of the phases of a region of high volume
fraction to another of low volume fraction due to turbulent fluctuations. This is
caused by the combined action of eddies and interfacial drag [12].

Drag forces (Dab) act in the direction opposing the relative flow between the
phases, which is defined by the following equations:

• For the particle model

Dab ¼
CD

8
qaAab Ub � Ua

�

�

�

� Ub � Ua
	 


ð5Þ

Here, a represents the continuous phase and b the dispersed phase and Aab

corresponds to the interfacial area density, which is characterized by the
interfacial area per unit volume between phase a and phase b given by:

Aab ¼
6fb
db

ð6Þ

where db is the mean diameter of the spherical particles and fb is the volume
fraction of the dispersed phase.

• For the mixture model

Dab ¼ CDqabAab Ub � Ua

�

�

�

� Ub � Ua
	 


ð7Þ

Here, qab is the mixture density and the interfacial area density, Aab, defined
respectively by:

qab ¼ faqa þ fbqb ð8Þ

Aab ¼
fafb
dab

ð9Þ

where dab is a mixture length scale.
• For the free surface model.

In this model the interphase drag is calculated in the same way as for the mixture
model, except that the interfacial area density is given by:

Aab ¼ rfaj j ð10Þ

When more than two phases are present, these parameters can be written as
follows:

Aab ¼
2 rfaj j rfb

�

�

�

�

rfaj j þ rfb
�

�

�

�

ð11Þ

The drag coefficient (CD) is the obtained by empirical or theoretical correla-
tion. As an example, we can write:
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• Schiller-Neumann Drag Model—this model is only used for solid spherical
particles, or for fluid particles that are sufficiently small and considered like
spherical. This parameter depends on the particle Reynolds number (Re) as
follows:

CD ¼
24
Re

1þ 0:15Re0:687
	 


ð12Þ

with 0.2 \ Re \ 500. The particle Reynolds number is given by:

Re ¼
qadb Ua � Ub

	 


la
ð13Þ

where (Ua-Ub) is the relative velocity.
• Ishii-Zuber Drag Model—this model is applied to distorted particle regime. In

this case the drag coefficient is independent of the Reynolds number, but
dependent on the particle shape through the dimensionless group known as the
Eötvös number, Eo. For an elliptical particle we can use the following equation:

CD ¼
2
3

Eo1=2 ð14Þ

where the Eötvös number (Eo) represents the ratio between gravitational and
surface tension forces, defined by:

Eo ¼
gDqd2

b

r
ð15Þ

where, Dq is the density difference between the phases, g is the gravitational
acceleration, and r is the surface tension coefficient.

2.3 Turbulence Model

Turbulence occurs when the inertia forces in the fluid becomes significant com-
parable to viscous forces. This one consists basically of fluctuations in the flow in
time and space. To enable the effects of turbulence without recourse to a pro-
hibitively fine mesh it is necessary to use a turbulence model that offers a good
compromise between numerical effort and computational accuracy. Several tur-
bulence models are reported in the literature, the k–e two-equation model is
one these models. This one uses the gradient diffusion hypothesis to relate the
Reynolds stress to the mean velocity gradients and turbulent viscosity. In this
model, the turbulence kinetic energy (k) is defined as the variance of the fluctu-
ations in velocity and turbulence eddy dissipation (e) corresponds to the dissipation
rate of the velocity fluctuations.
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In multiphase flow, the values of k and e come directly from the differential
transport equations for the turbulent kinetic energy and the turbulence dissipation
rate as follows:

o

ot
qafakað Þ þ r � fa qaUaka � lþ lta

rk

� �

rka

 �� �

¼ fa Ga � qaeað Þ ð16Þ

o

ot
qafaeað Þ þ r � faqaUaea � lþ lta

re

� �

rea

� �

¼ fa
ea

ka
C1Ga � C2qaeað Þ

ð17Þ

where the empirical constants C1 = 1.44; C2 = 1.92; re = 1.2 and rk = 1.0. Ga is
the turbulence production due to viscous and buoyancy forces, which is modeled
as follows:

Ga ¼ ltarUa � rUa þrUT
a

	 


� lta

qrq
g � rq ð18Þ

where rq = 1; lt correspond to the turbulent viscosity defined by:

lta ¼ clqa
k2
a

ea

� �

ð19Þ

where cl is a constant equal 0.99.

2.4 Thermal Energy Equation

The thermal energy equation for the multiphase flow is given by:

o

ot
faqhað Þ þ r � fa qaUaha � karTað Þ½ � ¼ Qa þ Sqa ð20Þ

where ha, Ta, ka denote the static enthalpy, the temperature, and the thermal
conductivity of phase a; Sqa describes external heat sources; Qa denotes interphase
heat transfer across interfaces with other phases, and is given by:

Qa ¼
X

b 6¼a

habAab Tb � Ta
	 


ð21Þ

here, hab is the heat transfer coefficient, which is the amount of heat energy
crossing a unit area per unit time per unit temperature difference between the
phases.

The Nusselt number (Nuab) is the ratio of convective to conductive heat transfer
across (normal to) the boundary, and is given as follows:
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• For the particle model

hab ¼
kaNuab

db
ð22Þ

where db is the diameter of dispersed phase. The Nusselt number can be
obtained by empirical correlation, for example, the Ranz–Marshall correlation
for spherical particles:

Nuab ¼ 2þ 0:6Re0:5Pr0:3 ð23Þ

with 0 \ Re \ 200 and 0 \ Pr \ 250. Here, Pr is the Prandtl number given
by:

Pr ¼ laCpa

ka
ð24Þ

where Cpa represents the specific heat of the phase a.
• For the mixture model

hab ¼
kabNuab

dab
ð25Þ

where dab is the mixture length scale and kab is a mixture conductivity scale,
given by:

kab ¼ faka þ fbkb ð26Þ

It is noticed that Eq. 26 corresponds to the weighted equations that account the
effect of the volumetric fraction of the phases.

3 Heat Transfer and Fluid Flow in Catenary Riser

On offshore structures are usually flexible pipes connecting the platform with the
Christmas tree at points further away, which give the riser configuration in the
form of a catenary. Often these pipes are surrounded by buoyancy modules to
reduce their weight, especially when it is used in deep water. In many circum-
stances, the mixture flowing through curved pipelines can be greatly affected by
the maldistribution of the phases. Situations more dramatic occur when the fluid
flow is accompanied by heat transfer. In this case we have paraffin deposition and
higher oil viscosity into the pipe which provokes increase of the pumping power
and until flow obstruction for severe situations.

The complexity of the phenomena associated with the maldistribution of phases
has been addressed by a particular flow pattern during the transport of produced
fluids and sediments from the well on the seabed to the production platform. In this
sense, a numerical study was developed for the annular heavy oil–water flow at a
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submerged catenary riser illustrated in Fig. 1 considering a non-isothermal flow
and unsteady state regime.

3.1 Boundary Layers and Physical Properties

A numerical solution for conservation equations was developed using ANSYS
CFX Commercial code which the following initial conditions and boundary
conditions applied to the catenary riser illustrated in Fig. 1.

(a) For the initial conditions, it was considered that the catenary riser is full with
water, and it has a null velocity vector (ux,w = uy,w = uz,w = 0).

(b) Uniform velocity and volume fraction of water and heavy oil at the inlet
surfaces are given as follows:

Fig. 1 Illustration of catenary riser and dimensions
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• Water inlet:

R2\r\R1

z ¼ 0
)

uz;w ¼ uw

fw ¼ 1

uz;o ¼ ux;o ¼ ux;w ¼ uy;o ¼ uy;w ¼ fo ¼ 0

T ¼ Tw

8

>

>

>

<

>

>

>

:

values of uw and Tw are shown in Table 1
• Heavy oil inlet:

0\r\R1

z ¼ 0
)

uz;o ¼ uo

fo ¼ 1

uz;w ¼ ux;o ¼ ux;w ¼ uy;o ¼ uy;w ¼ fo ¼ 0

T ¼ To

8

>

>

>

<

>

>

>

:

values of uo and To are shown in Table 1

(c) No slip conditions at the wall catenary riser/fluid interface:

r ¼ R2

0� z� L
)

ux;w ¼ uy;w ¼ uz;w ¼ 0
ux;o ¼ uy;o ¼ uz;o ¼ 0
T ¼ Tp

8

<

:

values of Tp are shown in Table 1
(d) Static pressure on the outlet catenary riser is equal to 98 kPa.
(e) The drag coefficient CD = 0.44.

Aiming to compare the results of the transport of heavy oils using core-annular
flow with oil and water single-phase flow the new values of inlet velocities of
water (uws) and heavy oil (uos) was determined. The values of these velocities were
determined by making the sum of heavy oil and water volumetric flow rate equal
to the mixture, Qm. Then, we can write:

uws ¼ uos ¼
4 � Qm

pD2
ð27Þ

Here D corresponds to the catenary riser diameter.

Table 1 Simulations data using core-flow

Case uo (m/s) uw (m/s) To (K) Tw (K) Tp (K)

1 1.20 1.90 323 298 283
2 1.20 1.90 373 298 283
3 1.20 1.90 423 298 283
4 1.20 1.90 473 298 283
5 1.20 1.90 523 298 283

uo, inlet heavy oil velocity; uw, inlet water velocity; To, inlet heavy oil temperature; Tw, inlet
water temperature; Tp, wall temperature
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In Table 2 we illustrate the inlet velocities to water and heavy oil used to
simulated the water and heavy oil single-phase flows.

The thermal–physical properties of water and heavy oil used in all simulations
are shown in Table 3.

3.2 Numerical Grid

All simulations were developed using the numerical grid illustrated in Fig. 2. By
using the ANSYS CFX-Build 5.5 an unstructured mesh was obtained after several
refinements contained 346,075 elements. This mesh was optimal for good pre-
dictions and reasonable computational time for simulations.

3.3 Hydrodynamics Effects

In order to illustrate the formation of core-annular flow on the catenary riser we
present the volume fraction fields in the yz plane passing through the axis in Fig. 3.

Table 3 Thermal–physical properties of the fluid phases

Produced water Heavy oil

Density (kg/m3) 997 989
Viscosity (Pa s)a lw ¼ 2185

40:12�0:0051547�Tð Þ�T�1000
lo ¼ 51:87 � e

�2:3935� T� Tmin
Tmax� Tmin

� �h i

Heat capacity (J/kg K) 4,181.7 1,800
Thermal conductivity (W/m K) 0.6069 0.147
Surface tension (N/m) 0.062
a Produced water viscosity correlation was based in the work of Babadagli and Al-Bemami [29]
with 72 \ T \ 440�F (Fahrenheit)
Parameters Tmin and Tmax of heavy oil viscosity correlation is 273 K and 573 K, respectively
(Perry [30])

Table 2 Simulations data using single-phase flow to water and heavy oil

Case uoas (m/s) uocs (m/s) Tas (K) Tcs (K) Tp (K)

14 1.33 1.33 423 298 283

Case uoas (m/s) uocs (m/s) Tas (K) Tcs (K) Tp (K)

15 1.33 1.33 423 298 283

uoas, inlet heavy oil velocity in the annular section; uwas, inlet water velocity in the annular
section; uocs, inlet heavy oil velocity on the circular section; uwcs, inlet water velocity on the
circular section; Tas, inlet temperature on the annular section; Tcs, inlet water temperature on the
cylindrical section; Tp, wall temperature
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Note that there is a formation of an annular pattern that moves along the catenary
riser. We can observe near the inlet section that the density difference between the
phases tends to lift the core in the upper part of the pipe (Fig. 4). In Fig. 3b, c, d it
can be observed the influence of pipe curvature about phases distributions. It is
verified that the heavy oil tends to collide with the wall in the lower region of the
catenary (Fig. 3b), and the lubricating forces tend to move the core to the centre. A
competition between these effects gives a variation in the position of the core
inside the catenary (Fig. 3c, d). When lubricating forces are small (small water
velocity) the core approaches of the pipe touching the wall as shown in Fig. 5. This
figure displays that oil touches the inner wall of the catenary in different positions,
which can be attributed to the imbalance between the forces acting on the annular
flow. The difference of density makes the oil-core to move closer to the upper
wall of the catenary, while the lubrication forces tend to repel the core to

Fig. 2 Numerical mesh used in all simulations
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Fig. 3 Heavy oil volume fraction fields on the yz plane at t = 60 s and To = 423 K (Case 3)
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catenary center. Similar results were obtained by Bensakria et al. [7], Huang et al.
[10], Ooms and Poesio [14], Ooms et al. [16] and Vanaparthy and Meiburg [27].
However, all these studies are related to horizontal tubes. Bannwart et al. [6]
reports that wettability phenomena play an essential role in the stabilization of
horizontal core-annular flow. In order to keep the viscous core completely sur-
rounded by water for a long time, the pipe wall must exhibit a hydrophilic-
oleophobic behavior, i.e., interfacial tension forces must overcome oil-wall
adhesion forces.

Figure 6 shows a detail referring to Fig. 3. In this figure are displayed the
superficial velocity vector field and a zoom of the area highlighted. It can be
observed that there is a sudden reduction of the water velocity close to the wall,
leading to near-zero values. This fact may be verified in Fig. 6b, c.

Figure 7 presents the variation of the pressure drop versus oil to water velocity
ratio. According to this figure, the two-phase pressure drop increases by increasing
the oil velocity for fixed water velocity, which can be associated with increased oil
concentration in the film of water that surrounds the core (Fig. 3, 4).

The absolute pressure drop as a function of the operation time in the catenary
riser was measured with or without water lubrication. Results are presented in
Fig. 9 (Case 3—Table 1). By using water lubrication, it can be observed an
increase of the absolute pressure drop, which becomes almost constant after the
first 20 s (approximately 150 kPa). Without lubrication, it can be observed an

Fig. 4 Heavy oil volume fraction fields on several cross sections at t = 60 s and To = 423 K
(Case 3)

244 Severino R. de Farias Neto et al.



Fig. 5 Heavy oil volume fraction fields on the wall of the catenary at t = 60 s and To = 423 K
(Case 3)

Fig. 6 Details referring to Fig. 3 a oil volume fraction distribution; b water superficial velocity
vector field; c zoom of the vector field highlighted
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adverse behavior and it is verified a decrease of absolute pressure drop with
the time.

Comparisons between absolute pressure drop with and without lubrication show
a large discrepancy as one can see in Fig. 9. The absolute pressure drop for heavy
oil transportation without lubrication was 3.28 times higher than with lubrication

Fig. 7 Pressure drop in the
catenary as a function of the
oil–water velocity ratio

Fig. 8 Pressure drop in the
catenary as a function of the
oil inlet temperature
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Fig. 9 Comparison of
pressure drop between the
water and oil single-phase
flow, and annular-core flow
(Case 3)

Fig. 10 Heavy oil temperature fields on the yz plane at t = 60 s and To = 423 K (Case 3)
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(156.5 kPa). However, when comparing the results of the absolute pressure drop
between the annular-core flow and the water single-phase flow, we get 1.59 core-
flow to water ratio only.

3.4 Heat Transfer Effects

The effect of the temperature on the heavy oil transportation using the core-flow
technique was also investigated. In Fig. 8 are represented the numerical results of
the pressure drop as a function of the oil temperature in the entrance. The results
show a linear decrease of the pressure difference with temperature, as expected,
with a slope of -231.58 Pa/K. According to Bensakhria et al. [7], the addition of
heat transport system provides a reduction of pressure drop in the flow of heavy
oil.

As we already pointed out, the decrease of the absolute pressure drop for the
heavy oil single-phase flow (Fig. 9) in the first 20 s, giving a difference (between 2
and 20 s) of approximately 164 kPa. Such result is due to the boundary layer
imposed in the entrance section (To = 423 K), which provides a reduction in
absolute pressure drop due to reduced heavy oil viscosity. This fact can be better
understood when observing the Fig. 10, which represents the heavy oil tempera-
ture fields in the yz plane.

4 Conclusions

In this chapter, we have presented an introduction to multiphase flow, its concepts,
definitions, flow patterns, governing equations and typical application for core-
annular flow of water and heavy oil in catenary riser. Numerical results were
obtained by using the ANSYS CFX commercial code. Discussion about the heavy
ultraviscous oil transportation is given too. We have clarified that the interest in
this type of problem is motivated by its importance to oil companies.

In agreement with the analyzed results, the following conclusions may be
derived:

• We observed the presence of a water film between the core and the catenary
riser wall, characterizing the core-annular flow;

• Confirmed the presence of regions with points of adhesion of heavy oil on the
wall of the catenary;

• The use of core-annular flow provided to reduce the absolute pressure drop by
3.28 times compared with heavy oil single-phase flow;

• The linear decrease of pressure drop as a function of temperature is due to
reduced viscosity of the fluids.
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First Principle Study on the Lead-Free
Perovskite Structure of SnTiO3

M. F. M. Taib, K. H. K. Arifin, M. K. Yaakob, A. Chandra,
A. K. Arof and M. Z. A. Yahya

Abstract The electronic band structure, density of states, dielectric function, born
effective charges, and phonon dispersion of perovskite SnTiO3 (ST) are investi-
gated from the first principles calculation using Density Functional Theory within
local density approximation. Calculated along the high symmetry direction in the
Brillouin zone, the resulting band gap of ST is 0.967 eV. The dielectric function in
this work shows the details of the absorptive transitions from the valence bands to
the conduction bands in the ST compound. In addition, an analysis of the born
effectives charges and phonon dispersion of ST shows that this compound has a
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covalent band between Ti–O and Sn–O that provides a stable tetragonal structure,
P4mm, which refers to the imaginary value of TO1(-213.222 cm-1) in phonon
calculation. All results are compared, and they showed good agreement with other
calculated values using different methods.

Keywords Bandstructure�Densityofstate�Dielectric function�Phonondispersion�
Born effective charges � Density Functional Theory � Local density approximation

1 Introduction

Numerous studies on the crystal in the perovskite family have been conducted to
meet the high demand brought about by the rapid development of ferroelectric
devices such as non-volatile memory, optical waveguides, laser frequency mod-
ulations, and piezoelectric transducers [1–3]. Lead-based ferroelectric ceramics
such as PbTiO3 and PbZrO3 are important members of the perovskite family that
have widely used in industrial applications. However, PZT (Pb(Ti,Zr)O3) materials
contain toxic Pb, which can contribute to serious environment pollution [4]. To
overcome this problem, the Pb atom in A-site perovskite ceramic must be replaced
with an alternative material such as Tin (Sn), which is expected to give good
performance. SnTiO3 (ST) is a new potential ferroelectric material because of its
high dielectric constant and polarization.

Yahong et al. [4] showed that the disproportion and oxidation of Sn2+ can be
avoided using a spark plasma sintering method. The results of their experiments
showed that perovskite oxide BaTiO3 had excellent ferroelectric properties, such
as visible light absorption ability. Suzuki et al. [5] also investigated the charac-
teristics of Sn2+ in (Ba1-x Cax)TiO3 compound and found that Sn2+ could change
or enhance the properties of the material when it was doped in the system. They
reported that the results of the tetragonality increased directly with increased Sn2+

in the (Ba1-x Cax)TiO3 compound as confirmed by X-ray diffraction profiles. In
addition, the phase transition temperature of (Ba1-x Cax)TiO3 increased from 130
to 155�C when doped with Sn2+.

Other investigations delved into the use of the first principles calculation on ST.
This study is important in predicting the properties of ST without having to
synthesize the compound. Konishi et al. [6] calculated the electronic structure of
ST using plane-wave pseudopotential (PWPP). Lebedev [7] calculated the phonon
spectra of ST using ABINIT computer code, while Uratani et al. [8] used ST in the
tetragonal structure (P4mm and P4/mm) and Matar et al. [9] reported on the
properties of ST in tetragonal structure using the VASP computer code. Matar also
reported on the moment of spontaneous polarization for an ST value of
PST = 1.1 cm-2, as large as that of PbTiO3 PST = 0.72 cm-2. These studies
indicated the excellent properties of ferroelectric oxide, which could be potentially
used in ferroelectric devices.
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However, no other detailed analysis of the electronic, optical, and structural
properties in Pm3m (cubic) structure of ST using the Cambridge Serial Total
Energy (CASTEP) computer code has been reported. In this work, the first
principles studies on the properties of ST were performed using CASTEP
computer code. The behavior and characteristics of ferroelectricity, such as energy
band gap, density of state (DOS), dielectric function, born effective charges
(BEC), and phonon dispersion are studied and are compared with other compu-
tational methods such as ABINIT and VASP.

2 Computational Method

In this study, the first principle calculations were performed using the the
Cambridge Serial Total Energy (CASTEP) computer code [10]. In all the calcu-
lations of ST compound in the cubic ABO3 perovskite structure (Pm3m space
group), the A (Sn) occupied the corner of cubic structure (0, 0, 0), B(Ti) in the
body-centered cubic at (0.5, 0.5, 0.5) and O atoms at the face-centered cubic
(0, 0.5, 0.5) and (0.5, 0, 0.5), as shown in Fig. 1. The electrons in Sn (5s, 5p),
Ti (3d 4s), and O (2s 2p) were treated as valence states. The exchange–correlation
energy functional was evaluated within the local density approximation (LDA) using
the Caperly–Alders parameterized by the Perdew–Zunger scheme (CA–PZ) [11, 12]
as electron–ion interactions as the Vanderbilt ultrasoft pseudo-potential [13].

To determine the structural parameters of ST, CASTEP was used based on the
Broyden Goldfarb Shenno (BFGS) minimization technique. This method usually
provides the fastest way to find the lowest energy structure. It is the only scheme
that supports cell optimization in CASTEP. This geometry optimization was
performed with convergence of energy change per atom of less than 5 9 10-6 eV,
residual force of less than 0.01 eV/Å, stress below 0.02 GPa, and displacement of
atoms during the geometry optimization of less than 0.0005 Å.

The structural, band structure, and DOS of ST were calculated with the kinetic
cut-off energy for the plane wave expansion taken as 380 eV and 6 9 6 9 6
k-points according to the Monkhorst–Pack scheme in the Brillouin zone integra-
tion, which was employed to obtain good convergence.

The optical properties may be acquired from the knowledge of the complex
dielectric function e(x) = e1(x) ? ie2(x). In this work, e(x) was performed using

= Tin (Sn)
= Ti
= O

Fig. 1 Cubic structure of ST
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LDA, whose advantage [14] is the largest underestimation of e2(x) peaks of
materials. The imaginary part e2(x) was calculated from the momentum matrix
elements between the occupied and unoccupied wave functions within the selec-
tion rules. The real part e1(x) of the dielectric function can be extracted from e2(x)
using the Kramers–Kroning relation. Similar to those in the band structure and
DOS calculations, phonon dispersion curves were calculated within LDA for ST.
However, for the BEC and phonon dispersion calculation, the norm-conserving
pseudo-potential was used with 550 eV cut-off energy.

3 Results and Discussions

(a) Band structure and DOS of ST

The calculation of ST was performed at parameter a = 4.01Å at cubic
structure. Figure 2a shows the calculated electronic-band structure of ST along the
various symmetry lines G, M, R, and X in the Brillouin Zone using LDA approach.
In this work, the highest valence bands (VB), which lie close to the Fermi level
(EF), are dominated by the O 2p at X point. The conduction bands (CB) have
compounds primarily from the Ti d-state and the bands occur at G point for ST.
The result for ST shows an indirect band gap with 0.967 eV. The value of energy
band gap calculated in this work is significantly less than the 1.19 eV obtained by
Rozo [15], which was obtained using DFT with the generalized gradient
approximation (GGA).

The LDA method underestimates the band gap; thus, to adjust the theoretical
band gap to the experimental result, we estimated a multiplicative correction factor
of 1.66 to the calculated band gaps [16]. We estimated the experimental value of
the band gap for ST to be 1.605 eV. The value of band gap of ST was small and
needed some modification to enhance its value and become useful for ferroelectric
application.

The total and partial DOS of ST were calculated to understand the chemical
bonding of the materials as shown in Fig. 2b. The lowest state for ST was O 2s and
was located at around -16 eV. In our calculation, the O 2s states were separated
from the Sn 5s state approximately 8.5 eV in ST. In these compounds, the upper
valence parts were dominated by O 2p states and the CB had compounds primarily
formed from the Ti d-state and Sn 5p. In addition, the CB of ST had small
contributions from Sn 5p. From ST, the lowest CB comprised Ti 3d and Sn 5p
formed at 0.97–9.5 eV. The top VB was dominated by O 2p and consisted of Sn 5s
at -7.5–0 eV. The energy gap existing in the structure was separated between Ti
3d treated as conduction state and maximum O 2p.

(b) Dielectric function of ST

The calculated optical properties for dielectric function for ST for the energy
range of up to 50 eV are presented in Fig. 3. To explain the peak observed in the
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optical spectra, it is customary to consider transitions from occupied to unoccupied
bands in the electronic energy band structure, particularly at high symmetry points
in the Brillouin zone [17]. These calculated optical properties (dielectric function)
could be helpful in understanding the electronic structure in the cubic phase of ST.
Figure 3 shows the real and imaginary parts of the dielectric function for cubic ST
compound. The imaginary part can be obtained directly from the band structure,
while whereas the real part can be derived according to the Kramers–Kronig
relations explained in the computational method.

Figure 3 illustrates the four peaks of the imaginary part, which are at 4–37 eV.
These peaks are the absorptive transitions from the VB to the CB. These peaks are
labeled A, B, C, and D and are located at 4.37, 13.6, 20.1, and 36.3 eV, respec-
tively. According to the analysis of the electronic structure of cubic ST in Fig. 2,
peak A originated from the transitions of O 2p into Ti 3d CB, peak B originated
from the transitions of O 2p into Ti 3d CB as well as O 2p into Sn 5p and Ti 4s CB,
and peak C originated from the transitions of O 2s and Sn 5s into Ti 3d CB. Peak D
had no transition because the DOS in Fig. 2 showed no peak. For the real part,
there were three peaks located at 2.8, 12.7, and 34.8 eV, respectively. Addition-
ally, the calculated static dielectric constant of Pm3m cubic ST was about 9.75.

(c) BEC and phonon dispersion of ST

Table 1 illustrates the BEC of ST in the cubic structure, which was compared
with the work of Lebedev [7]. However, the work of Lebedev was performed using

Fig. 2 Calculated a energy band structure and b total DOS of ST
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the ABINIT computer code. BEC is important to identifying the long-range part of
the interatomic force constants and making the interpolation of phonon frequency
tractable. For the case of ST, Z*Ti (6.548) and Z*O|| (-5.389) were anomalously
large with respect to the nominal ionic charges (+4 for Ti and -2 for O). This
surprising phenomenon was explained recently in connection with dynamic
charges of hybridization between O 2p with Ti 3d [18–20]. The Z*Sn is signifi-
cantly greater, indicating that the bonding Sn–O becomes more covalent in
character and the value of Z*Sn for ST is 4.605 in Table 1.

Phonon dispersion is important in determining the properties of solids,
particularly when referring to the frequencies of vibration atoms in a solid
structure. The unstable modes, which determine the nature of the transition of the
compounds, have imaginary frequency (below the zero frequency line). In this
work, the unstable modes of ST exhibited at X, M, R, and G points are illustrated
in Fig. 4. The longitudinal optical existed at 6, 12 and 15th mods with frequencies
of 73.639 (LO1), 351.475 (LO2), and 780.969 cm-1 (LO3) at G point, respec-
tively. In contrast, the first transverse optical for ST existed in the imaginary part
with a value of -213.222 cm-1 (TO1) and remained unstable along the X, R, M,
and G points, while TO2 and TO3 existed at the 10–11 and 13–14 modes with

Fig. 3 Graph of the real and
imaginary parts of the
dielectric function of ST

Table 1 Bond effective
charges of ST compounds

ABO3

ST [7]
Z*Sn 4.605 4.255
Z*Ti 6.548 7.529
Z*O\ -2.882 –2.745
Z*O|| -5.389 –6.294
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208.887 and 631.475 cm-1, respectively. The instability of ferroelectric oxide of a
transverse optic (TO1) in the phonon dispersion is an important key to explaining
structural instability and lattice dynamic.

In this work, we expected that the nature of the ferroelectric instability of the ST,
would most favorably be the tetragonal P4mm phase due to the imaginary phonon
energies associated with structural instability of the crystals represented at TO1 (G
point). The analysis emphasized the correlation of the Ti displacement and showed
that the Ti and O atomic displacements were only weakly coupled. However, this
small coupling remains important in reproducing ferroelectric instability. Hence, ST
is a good candidate to replace PbTiO3 because both compounds have similar prop-
erties especially in the transition structure. Based on the analysis of phonon
dispersion in this work, ST can change to tetragonal structure (P4mm) and can be
expected to have excellent properties for application to ferroelectric devices.

4 Conclusion

In this paper, we described the first principles band structure, DOS, dielectric
function, BEC, and phonon dispersion of cubic ST. All calculations show good
agreement with other reported calculations. The results showed that the energy
band gap of ST was 0.967 eV (indirect band gap at X–G point). In addition, the
transition electron from the VB into CB was explained by the peak occurring in the
dielectric function of ST. The BEC results proved that Ti–O and Sn–O bonds in
the ST compound have covalent characteristics. The phonon dispersion calculation
shows that the ST compound provides a stable tetragonal structure P4mm relative
to cubic. However, the single-component ferroelectric material in bulk of ST
requires some modifications to display superior functional properties, which would
be beneficial for future applications, particularly in enhancing the energy gap using
the first principle calculation.

Fig. 4 Calculated phonon
dispersion for ST
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Strength Anisotropy in Prestressing
Steel Wires

Jesús Toribio, Beatriz González and Juan-Carlos Matos

Abstract Cold-drawn prestressing steel wires exhibit strength anisotropy in the
form of fracture path deflection towards a direction approaching the wire axis, or
cold drawing line, as a consequence of the pearlitic microstructure orientation
induced by the manufacturing procedure. Such a crack path deflection is initiated
at certain nuclei (fracture origins) at which axial cracking appears in the cold
drawing direction (or wire axis) in the form of micro-cleavage units producing a
macroscopic phenomenon of pop-in in the load–displacement curve. This chapter
shows that such fracture initiators appear at a certain distance from the fatigue pre-
crack tip at which a local maximum of the cleavage stress is located.
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1 Introduction

It is well known that macroscopic fracture behaviour of materials is strongly
dependent on microstructural features controlling the specific micromechanisms
of fracture in the process zone [3, 6]. In the case of randomly oriented pearlitic
microstructures, the prior austenite grain size was shown to be the micro-
structural parameter governing the fracture process [1, 5]. However, when
pearlitic steels are heavily cold drawn to produce prestressing steel used in
prestressed concrete, such a manufacturing procedure affects the microstructural
arrangement in the form of a progressive orientation and slenderising of the
pearlitic colonies in the drawing direction [8, 9], together with an also pro-
gressive orientation of the ferrite/cementite lamellae in the drawing direction
and an increase of packing density, i.e., a drawing-induced decrease of inter-
lamellar spacing of pearlite [10, 11].

Previous research work [12] established the microstructural bases of the
anisotropic fracture behaviour of heavily drawn steel, assuming that such a
particular behaviour was due to the existence of the so called pearlitic
pseudocolonies (cf. [12]), i.e., extremely slender colonies, aligned quasi-parallel
to the wire axis or drawing direction, and with specially high local interlamellar
spacing due to the fact that the cementite plates are not oriented along the wire
axis direction and in some cases are pre-fractured by shear during the manu-
facturing process, according to the model proposed by [4]. Thus, the pearlitic
pseudocolonies are preferential fracture paths with minimum local fracture
resistance.

This chapter goes further in the analysis of anisotropic fracture behaviour of
heavily drawn steels and associates fracture path deflection in a direction close to
the wire axis with a local maximum of a cleavage stress perpendicular to the axial
crack, i.e., parallel to the initial macroscopic crack, such a stress being computed
at the fracture instant.

2 Experimental Procedure

Material was an eutectoid steel whose chemical composition is given in Table 1.
It comes from a previously hot rolled bar that was heavily cold drawn in seven
passes (plus a stress relieving procedure to eliminate or, at least reduce, residual
stresses) finally producing heavily drawn pearlitic steel in the form of prestressing
steel wires with an oriented microstructure, as seen in Fig. 1 in which the longi-
tudinal section shows an oriented arrangement, whereas the transverse section
shows a randomly-oriented microstructure.

The drawing process produces important microstructural changes in the steel
at the two basic microstructural levels of pearlitic colonies and lamellae. The
colonies become progressively enlarged and oriented in axial direction with

260 J. Toribio et al.



cold drawing [8, 9]. With regard to the lamellae, they are also axially oriented
after drawing and at the same time the pearlite interlamellar spacing decreases
with the level of cumulative plastic strain [10, 11]. Therefore, the micro-
structure becomes progressively packed and oriented with cold drawing, and
such an orientation is the cause of the anisotropic fracture behaviour of the
cold drawn steel.

Table 1 Chemical composition of the steel

% C % Mn % Si % P % Cr % V
0.789 0.698 0.226 0.011 0.271 0.078

Fig. 1 Longitudinal (top)
and transverse (bottom)
metallographic sections of the
cold drawn prestressing steel
wire. In the longitudinal cut,
the wire axis or cold drawing
direction corresponds to the
vertical side of the
micrograph, whereas the
transverse cut is oriented in
radial direction
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Mechanical properties of the material, obtained from standard tension tests
(Fig. 2) were as follows: Young’s modulus E = 205 GPa, yield strength
rY = 1.57 GPa, ultimate tensile strength (UTS) rR = 1.84 GPa and strain at UTS
eR = 0.053. This implies a significant improvement of conventional mechanical
properties in relation to plain hot-rolled pearlitic steel (not cold drawn). In par-
ticular, both yield strength and UTS clearly increase with cold drawing.

In addition, fracture test on prestressing steel wire allowed the evaluation of the
material fracture toughness in transverse direction KIC (0�) = 152.1 MPa m1/2 and
the same critical parameter in axial direction KIC (90�) = 54.2 MPa m1/2. The
cold drawing procedure generates microstructural orientation in the pearlitic
arrangement of the steel, cf. Fig. 1, thus producing two different values of the
directional fracture toughness in axial and transverse directions, the axial tough-
ness (associated with longitudinal splitting or delamination) being clearly lower
than the transverse one (linked to fracture of the strongest units), as discussed
elsewhere [2, 13, 14].

Samples for testing were cylindrical rods with a length of 300 mm and a
diameter of 7 mm taken from the commercial wires. After axial tensile fatigue
with a sinusoidal wave (at a frequency of 10 Hz and R-ratio equal to 0) under load
control and decreasing loading steps, specimens were subjected to monotonic
tensile loading under displacement control up to fracture, the crosshead speed
being 2 mm/min. An extensometer with a gage length of 25 mm was placed in
front of the crack mouth (symmetrically in relation to the crack faces), so that both
the load applied on the sample (F) and the relative displacement by the exten-
someter (u) were recorded to plot the load–displacement curve (F–u). Some tests
were interrupted before final fracture in order to perform a fracto-metallographic
analysis on the unloaded sample (evaluating both the fracture path and the
microstructure of the material). To this end, specimens were cut, mounted,
grounded, polished and attacked with 4% Nital.
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Fig. 2 Curve r–e of the
considered steel
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3 Experimental Results

Fracture surface in heavily drawn steels shows cracking path deflections, so that
the fracture path is not contained in the transverse section of the wire (Fig. 3), with
frequent secondary cracking in axial direction, a signal of anisotropic fracture
behaviour. The fracture angle, in relation to the transverse axis of the wire (i.e., the
fatigue propagation direction), is 39� in heavily drawn steels with a high level of
cumulative plastic strain (1.09) as a consequence of seven steps of cold drawing
undergone by the steel wire.

The F–u plot in the fracture tests on cold drawn steel always consisted of three
stages, as shown in Fig. 4. After an initial elastic period (linear behaviour), the
load Fe may be defined as the end of the elastic stage. Later the plot becomes
curved up to a load FY at which a pop-in appears in the form of sudden (and small)
decrease of load. Finally the increase of load continues up to final fracture at a load
Fmax.

The fracto-metallographic analysis of a test interrupted between FY and Fmax

(Fig. 5) shows vertical cracking in axial direction, i.e., parallel to the drawing axis.
The pop-in associated with the load FY is not produced by plastic yielding but by a
kind of microstructural yielding due to the appearance of the local axial cracking
(cf. Fig. 5). This is consistent with the ideas presented by [7], according to which
the pop-in in the load–displacement curve is produced by a small amount of abrupt
crack extension and could be related to the presence of heterogeneities in the
material in the form of large inclusions, carbides or, in the case of the cold-drawn
pearlitic steel under study, the afore-said pearlitic pseudocolonies or any other
microstructural pre-defect (pre-damage) created in the steel during manufacture by
heavy drawing.

During the critical phase of fracture, the initial fatigue crack tip (left hand side
of Fig. 5) exhibits an increase of crack tip opening displacement (CTOD) in
relation to the typical value associated with subcritical regime of fatigue.

Fig. 3 Fracture surface in a sample taking from a commercial prestressing steel wire; top view
(left) and front view (right)
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In addition, a cornered crack tip shape appears in the material and a small micro-
crack initially inclined 60� in relation to the fatigue crack propagation direction.
The vertical cracking (right hand side of Fig. 5) exhibits irregularities in the form
of micro-discontinuities, differences in the size of the crack opening displacement
and small portions of the cracking path oriented in transverse directions. These
vertical cracks are generated by delamination in axial (drawing) direction
accompanied by secondary delamination (also in axial direction) in their vicinity.

Figure 6 shows a metallographic section of the cracking path just before the
fracture instant and the fractographic aspect of the vertical cracking path showing
cleavage appearance (Fig. 7), i.e., unstable (brittle) fracture. This is again con-
sistent with a sudden drop (pop-in) in the load–displacement plot. It is not con-
ventional cleavage, but a sort of oriented and enlarged cleavage, its enlargement
and orientation being in the cold drawing direction (wire axis). Considering the
cleavage facet as associated with a common crystallographic orientation of ferrite

u

F

Fe

Fmax

FY

Fig. 4 Load–displacement
curve in the fracture test

Fig. 5 Metallographic
section perpendicular to the
crack front, in a fracture test
interrupted at a load level
after the pop-in, i.e., between
FY and Fmax, cf. Fig. 4,
showing vertical cracking in
axial direction, i.e., parallel to
the cold drawing axis
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[5], the enlarged cleavage facet unit could be linked with an oriented and elon-
gated colony of pearlite that undoubtedly maintains a shared crystallographic
alignment during the drawing procedure.

With regard to the appearance of axial cracking not at the crack tip, but a
certain distance ahead of it, the mechanical stress–strain field in the K-dominance
region could be responsible for the described fact, in addition to the clear
microstructural weakness in axial direction (pseudocolonies, micro-cracks, dam-
age, pre-defects, etc.) as a consequence of drawing. Next section of the chapter
provides a numerical analysis to clarify this important item.

Fig. 6 Metallographic
section of the cracking path
just before the failure instant

Fig. 7 Fractographic aspect
of the vertical cracking path
showing enlarged-oriented
cleavage
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4 Finite Element Analysis

A large-displacement elastoplastic finite element analysis was performed within
updated lagrangian formulation with additive decomposition of strain rates. The
material properties were those associated with the prestressing steel analyzed in
this chapter (cf. Fig. 2) with elastic–plastic isotropic behaviour and von Mises
yield criterion, and the analysis was performed under the control of the stress
intensity factor K in the K-dominance region, so that a standard geometry with an
edge crack could be used to reproduce the stress–strain state in the vicinity of the
crack tip for any loading level up to final fracture in the tests.

Figure 8 shows the full finite element mesh (left) and a detail of the same
(right) in the close vicinity of the crack tip where mesh refinement is more defined
to properly reproduce the stress gradient in the area. The element type is a four-
node, isoparametric, arbitrary quadrilateral specially design for axisymmetric
applications.

Considering the axial cracking (fracture path deflection) described in the pre-
vious section and associated with cleavage appearance, it is interesting to compute
the values of a cleavage stress which could act as a driving force for cracking (in
addition to the microstructural weakness in that axial direction). To this end, the
opening cleavage stress to produce fracture path deflection in axial (vertical)
direction (perpendicular to the crack plane) should be the horizontal stress in the
crack direction, i.e., the rxx component of the stress tensor, whose distributions for
different loading levels are given in Fig. 9. The loading levels represent rc/100,
rc/10, rc/2 and rc, where rc is the critical remote stress at the fracture instant,
i.e., that applied far from the crack in axial (vertical) direction.

5 Discussion

Numerical results of Fig. 9 show, firstly, that a local maximum of such a cleavage
stress appears at a certain distance form the crack tip (but not exactly at the tip)
and, secondly, that the location of such a maximum moves far from the crack tip as

Fig. 8 Full mesh (left) and
detail of the same in the
vicinity of the crack tip
(right)
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the loading process goes on, as shown in Fig. 10 by means of the cleavage stress
profiles at increasing loading levels, so that the probability of appearance of
cleavage crack deflection increases with the level of loading, the horizontal
cleavage stress being the mechanical responsible for cracking.

Fig. 9 Distributions of cleavage stress rxx (x is the crack direction) at increasing loading levels
rc/100, rc/10, rc/2 and rc, where rc is the critical remote stress at failure. Large deformations at
the crack tip shape are also shown
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Fig. 10 Evolution of the
cleavage stress profile rxx at
increasing loading levels
rc/100, rc/10, rc/2 and rc
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In addition to such a mechanical driving force for cracking, the microstructural
weakness must also be taken into account. With regard to this, local weakening
can be observed in heavily drawn steel in the form of pearlitic pseudocolonies
(Fig. 11), special microfracture units oriented in the direction of the drawing axis
where the lamellae are not properly oriented in axial direction and, as a conse-
quence of such a disorientation and of the drawing force, they have anomalous
(very high) local interlamellar spacing (quite higher than the average pearlite
interlamellar spacing). In addition, severe pre-damage appears in the form of
cracking (always in axial direction) as a consequence of the manufacturing pro-
cedure by heavy drawing, as shown in Fig. 12 in which an array of axial (vertical)
cracks is clearly detectable after a metallographic analysis of the supplied wire,
without any previous mechanical action (either fatigue or fracture) on the sample,
apart from the drawing process itself.

From the macroscopic point of view, the combination of axial pre-damage and
the increasing cleavage stress produces the pop-in in the load–displacement plot
(cf. Fig. 4). After this sudden, abrupt, axial, local extension of cracking, the
sample is able to support increasing levels of loading with the main macroscopic
crack and the secondary deflected crack separated by a certain distance. Finally
catastrophic fracture takes place after coalescence between the two cracked areas
following a really tortuous crack path (cf. Fig. 6). In this new fracture surface the
most common fractographic mode is micro-void coalescence (MVC), with the
exception of the frequent vertical walls (deflected crack paths) consistent of ori-
ented and enlarged cleavage.

As a summary, the marked microstructural orientation in pearlitic steel after
cold drawing (at the two levels of pearlitic colonies and lamellae) produces
strength anisotropy in the material. At the macroscopic level, it manifests itself
through the presence of deflections in the cracking path and pronounced initial
fracture angle in relation to the transverse direction, due to the elevated cleavage

Fig. 11 Pearlitic
pseudocolonies in the steel
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stress next to the crack tip and the microstructure weakness in axial direction
producing vertical microcracking. At the microscopic level, it manifests itself
through the existence of zones with enlarged cleavage oriented in the drawing axis
direction (over the vertical walls) and fracture regions where the predominant
fractographic mode is MVC (over the transversal and inclined surfaces).

6 Conclusions

The following conclusions may be drawn on the basis of the experimental, frac-
tographic and numerical analysis performed in this chapter on commercial pre-
stressing steel:

(I) Cold-drawn prestressing steel wires exhibit strength anisotropy in the form of
fracture path deflection towards a direction approaching the wire axis, or cold
drawing direction.

(II) Such an anisotropic behaviour is a clear macroscopic consequence of the
pearlitic microstructure orientation induced by the manufacturing procedure at
the two levels of the pearlitic colonies and lamellae.

(III) Crack path deflection is initiated at certain nuclei (fracture origins) at which
axial cracking appear in the cold drawing direction (or wire axis) in the form
of micro-cleavage units.

(IV) This cracking produces a sudden and small decrease of load in the load–
displacement curve (pop-in phenomenon) as a consequence of the slight loss
of bearing capacity of the sample.

(V) The typical fractographic mode associated with the frequent vertical walls
appearing in the fracture surface is enlarged cleavage, oriented in the drawing
direction. In other fracture areas the failure mode is MVC.

Fig. 12 Axial cracks
(aligned in the drawing
direction) produced by cold
drawing
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(VI) The cleavage stress is responsible for this locally deflected cracking
appearing at a certain distance from the crack tip, in addition to the pre-
damage (at the micro-level) after cold drawing.
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Tensile Characteristics of High-Toughness
Steel at High Temperatures

S. H. Park, Y. K. Yoon and J. H. Kim

Abstract In this study, material properties of a high toughness steel under high
temperatures were investigated through the tensile test. A-basis and B-basis
strength are taken from sampling based calculation by using noncentral t-distri-
bution. The sampling-based basis strength gives a more conservative value than
that taken by using a normal distribution. From material properties as a function of
temperature, shear-lip size and morphology of fractured surface, it is confirmed
that there is a ductility minimum temperature at 500�C.

Keywords Tensile test � Sampling-based basis strength � Temperature �
Noncentral t-distribution � Ductility minimum temperature

1 Introduction

High-strength and high-toughness steels have traditionally been used in the case of
earth-penetrating munitions or gravity-dropped weapons, which requires an
understanding of the dynamic mechanical properties at relevant strain-rates.
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A structural steel shows different mechanical and thermal properties at room and
high temperatures. So, material characteristics at high temperatures must be
considered in structural design such as aircraft parts.

Aircraft structural design still relies on the deterministic design code such as
federal aviation administration (FAA) regulations. In deterministic design,
conservative material properties such as A-basis or B-basis strength are used and
safety factors are introduced to protect against uncertainties. Generally, the
material properties are acquired from tensile tests and the samples are taken from
material’s population. Moreover, we can only acquire limited number of test data
because of the cost to get test material, the operation time of equipment, etc. So,
the true material’s properties cannot help being estimated from test samples.
Because the nature of mechanical behavior of materials and failure are probabi-
listic, the strength of materials has variations from size effect, surface finish, notch
effect, etc. and the stress varies due to stress concentration, temperature factor,
stress combinations, etc. Therefore, it is compulsory to get A-basis or B-basis
strength from sampling-based method.

Fractography is critical to failure analysis of metals and plastics. This shows us
the mode of failure. It is well known that the ductility minimum occurs in an
intermediate temperature range for all ductile metals and alloys. Fractography is a
useful tool to investigate this ductility minimum temperature.

The purpose of this study is to investigate the material’s tensile properties at
high temperatures. Some methods to calculate the A-basis and B-basis strengths
are reviewed. By detailed investigation on the fractured surface and material
property at elevated temperatures, it will be confirmed that there is a ductility
minimum temperature (DMT).

2 Theory

2.1 Basis of Strength of Material

The allowable stress should be less than the material’s strength to prevent failure.
The material’s strength is determined by standard test methods and specimens. But
it has a statistical distribution from the deviation of manufacture, microstructure,
test environment, etc. Moreover, there is variation of loads acting on the structural
materials from load and environmental conditions. So, the test result of the
material’s strength is non-deterministic but statistical. It is important to investigate
the distribution of the material’s strength to analyze its characteristics statistically.
It is well known that the strength data has a normal distribution [1].

In the statistically-based design approach, the material property of interest must
be regarded as a random variable which is a quantity that varies from specimen to
specimen according to some probability distribution. A designated value for a
material is the minimum value of a material property expected to be used in the
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fabrication of the structure. Basis values are 95% lower confidence limits on
prescribed percentiles, which are also sometimes referred to as tolerance limits.

Aircraft structural design still relies on the FAA deterministic design code. The
FAA regulations (FAR-25.613) [2] state that in deterministic design, conservative
material properties are characterized as A-basis or B-basis values. In U.S. Military
Handbooks, MIL-HDBK-5 J [3] for metallic materials and elements for aerospace
vehicle structures and MIL-HDBK-17-1F [4] for polymer matrix composites, the
detailed methods to determine the allowable stress from A-basis or B-basis for
military planes, light alloy materials and composite materials are described.

In the definition of conservative material properties by the FAA regulation
(FAR 25.613), A-basis value is defined as a 95% lower confidence bound on the
first percentile of a specified population of measurements. On the other hand,
B-basis value is defined as 95% lower confidence bound on the tenth percentile of
a specified population of measurements. In other words, A-basis value is a 95%
lower tolerance bound for the upper 99% of a specified population and B-basis
value is a 95% lower tolerance bound for the upper 90% of a specified population.
A-basis or B-basis material property values depend on the failure path in the
structure. A-basis values are used when there is a single failure path in the
structure, while B-basis values are used when there are multiple failure paths in
the structure.

2.2 Methods to Acquire Basis-Values

According to the military handbook of MIL-HDBK-17-1F, the basis values are
calculated by

Basis ¼ �X � ks ð1Þ

where �X; sample mean; s; sample standard deviation; k; tolerance coefficient.
One-sided A-basis tolerance factor, kA; for the normal distribution can be

acquired as 1=
ffiffiffi

n
p

times the 0.95th quantile of the noncentral t-distribution with
noncentrality parameter 2:326

ffiffiffi

n
p

and n� 1 degrees of freedom. An approximation
to the kA value is

kA � 2:326þ expf1:34� 0:522 lnðnÞ þ 3:87=ng ð2Þ

Similarly, one-sided B-basis tolerance factor, kB; for the normal distribution can
be calculated as 1=

ffiffiffi

n
p

times the 0.95th quantile of the noncentral t-distribution with
noncentrality parameter 2:326

ffiffiffi

n
p

and n� 1 degrees of freedom. An approximation
to the kB values is

kB � 1:282þ expf0:958� 0:520 lnðnÞ þ 3:19=ng ð3Þ
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Acar [5] suggested the equation to calculate the tolerance coefficient, k, for
normal distribution given by

k ¼
z1�p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2
1�p � ab

q

a
; a ¼ 1�

z2
1�c

2ðN � 1Þ ; b ¼ z2
1�p �

z2
1�c

N
ð4Þ

where N, sample size; z1�p; critical value of normal distribution that is exceeded
with a probability of 1-p (for A-basis value p = 0.99 while for B-basis value
p = 0.90); z1�c; critical value of normal distribution that is exceeded with a
probability of 1-c (c = 0395 for both A-basis and B-basis values).

For the B-basis value, kB ¼ z1�p ¼ z0:1 ¼ Uð0:1Þ ¼ 1:282; where U is the
cumulative distribution function (c.d.f.) of the standard normal distribution.
z0:1 ¼ Uð0:1Þ ¼ 1:282 is the critical value of normal distribution that is exceeded
with a probability of 10%. Of course, z1�c corresponds to z0:05:

One-sided A-basis and B-basis tolerance limit factors, kA and kB respectively,
for the normal distribution for sample size, n are presented in MIL-HDBK-17-1F
as Tables. For infinite number of samples, n ¼ 1; kA ¼ 2:326 and kB ¼ 1:282:

2.3 Determination of Basis Values from Interference Model

The allowable stress and the strength of a material are statistical quantities.
A component, a subsystem, or a system fails when the stress, in general, exceeds
the strength. The reliability of the system or the probability of failure may be
estimated from stress-strength interference model [6], as shown in Fig. 1. In this
model, the shaded portion is an interference area, which is indicative of the
probability of failure.

Fig. 1 Stress-strength
interference model
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Let the probability density function (p.d.f.) for the stress (s) be denoted by fs(s),
and that for the strength (d) by fd(d), as shown in Fig. 1. Then, the reliability R is

R ¼
Z

1

�1

fsðsÞ
Z

1

s

fdðdÞdd

2

4

3

5ds ð5Þ

In general, the strength of a material has a normal distribution. If the applied
stress distributes normally, the p.d.f. for the stress fs (s) and that for the strength fd
(d) are expressed as follows

fsðsÞ ¼
1
ffiffiffiffiffiffi

2p
p

rs

e�
1
2

s�ls
rsð Þ

2

; �1\s\1 ð6Þ

fdðdÞ ¼
1
ffiffiffiffiffiffi

2p
p

rd
e
�1

2
s�ld
rd

� �2

; �1\d\1 ð7Þ

Let us define y = d - s. It is well known that the random variable y is normally

distributed with a mean of ly ¼ ld � ls and a standard deviation of ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
d þ r2

s

q

:

Then, the reliability R which is the probability to overcome the applied stress can be
expressed in terms of y as

R ¼ Pðd [ sÞ ¼ Pðy [ 0Þ

¼
Z

1

0

1

ry

ffiffiffiffiffiffi

2p
p e

�1
2

y�ly
ry

� �2

dy
ð8Þ

If we let z ¼ y� ly

� �

=ry; then

R ¼ 1
ffiffiffiffiffiffi

2p
p

Z

1

� ld�ls
ffiffiffiffiffiffiffiffi

r2
d
þr2

d

p
e�

1
2z2

dz ð9Þ

Because the random variable z ¼ y� ly

� �

=ry is clearly the standard normal
variable, the reliability can be found by merely referring to the normal tables.
Equation 9 may be expressed using standard normal distribution function, F( ), as

R ¼ 1� F � ld � ls
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
d þ r2

d

q

0

B

@

1

C

A

ð10Þ

Because the allowable stress is a maximum stress that may be safely applied to
a component, Sa; the probability of failure, Pf ; is expressed as
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Pf ¼ F � ld � ls
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
d þ r2

d

q

0

B

@

1

C

A

¼ 1� F
ls � ld
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
d þ r2

d

q

0

B

@

1

C

A

ð11Þ

If we assume that the strength, S, is normally distributed with known mean and
standard deviation of population and if we let ls ¼ l; rs ¼ r; ld ¼ Sa; rd ¼ 0;
Eq. 11 is

Pf ¼ F
Sa � l

r

� �

ð12Þ

The allowable stress, Sa, must be determined as the probability of failure, Pf, is
below a certain value of P. If we let Pf = P and rearrange Eq. 9, then

F�1ðPÞ ¼ �F�1ð1� PÞ ð13Þ

Sa ¼ l� F�1ð1� PÞr ¼ l� upr ð14Þ

Here, up ¼ F�1ð1� PÞ is the upper probability of standard normal distribution. For
example, when P = 0.01, then up = 2.326 and when P = 0.05, then up = 1.282.

2.4 Determination of Sampling-Based Basis Strength

Unfortunately, in general we cannot know the mean and the standard deviation of a
population. So, we can merely estimate them from the mean and the standard
deviation of samples. If we assume that the strength, S, is normally distributed with
unknown mean and standard deviation of population and the mean and the stan-
dard deviation of n samples are l̂ and r̂ respectively then the allowable stress
l̂� kr̂ should satisfy Eq. 15, as shown Fig. 2.

P½l̂� kr̂ [ l� upr� ¼ c ð15Þ
If we manipulate and rearrange Eq. 15, Eq. 16 is obtained.

P½ðl̂� lÞ þ upr[ kr̂� ¼ c

P

ffiffiffi

n
p
ðl̂� lÞ þ r

ffiffiffi

n
p

up

r̂
[

ffiffiffi

n
p

k

	 


¼ c

P
ðl̂� lÞ

ffiffiffi

n
p

=rþ
ffiffiffi

n
p

up

r̂=r
[

ffiffiffi

n
p

k

	 


¼ c

P

l̂�l
r=
ffiffi

n
p þ

ffiffiffi

n
p

up
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn�1Þ r̂2=r2

n�1

q [
ffiffiffi

n
p

k

2

6

4

3

7

5

¼ c ð16Þ
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If Z is a normally distributed random variable with unit variance and zero mean,
and V is a v2distributed random variable with v degrees of freedom that is
statistically independent of Z, then T ¼ Zþl

ffiffiffiffiffiffi

V=m
p is a noncentral t-distributed random

variable with v degrees of freedom and noncentrality parameter l. Because the v2-
distribution with k degrees of freedom is defined as the distribution of a sum of the
squares of k independent standard normal variables, ðn� 1Þ r̂2=r2 will be dis-
tributed as v2-distribution with m ¼ n� 1 degrees of freedom in Eq. 16 and
apparently ðl̂� lÞ=ðr=

ffiffiffi

n
p
Þ will be distributed as standard normal distribution,

N(0,1). So, the left side of inequality in Eq. 16 distributes as noncentral t-distri-
bution with m ¼ n� 1 degrees of freedom and noncentrality parameter l ¼

ffiffiffi

n
p

up:

So, if the upper probability of noncentral t-distribution, c, is t0cðn� 1;
ffiffiffi

n
p

upÞ;, the
value of k should satisfy Eq. 17

ffiffiffi

n
p

k ¼ tc
0ðn� 1;

ffiffiffi

n
p

upÞ ð17Þ

The risk of Sa [ l� upr can be restricted within c if we determine the
allowable stress as Sa ¼ l̂� kr̂ by selecting the appropriate value of k. In this
way, the tolerance coefficients, kn; for the number of samples are calculated and
shown as Tables in MIL-HDBK-17-1F. In Table 1, three methods to get the
tolerance coefficient are compared. The values listed in the MIL-HDBK-17-1F are
probably accurate the most but the values calculated by approximate equations
may be accurate to within 0.2% of the tabulated values for n greater than or equal
to 16. The values from Acar’s equation are also acceptable but less accurate than
approximate equations of Eqs. 2 and 3. The tolerance coefficients for the infinite
number of samples are the same as the case of which we know the mean and the
standard deviation of population as shown in Eq. 14.

A test of specimens obtained in a material can be regarded as sampling from a
population. If the number of test samples is infinite then the mean and the standard
deviation of samples and population will be the same. Unfortunately, we cannot

Fig. 2 Distribution of
l̂� kr̂
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know the mean and the standard deviation of a population and cannot increase the
number of samples infinitely. As the sample size increases the allowable stress also
increase because the certainty of estimate of l̂ increase. When we can test infinite
number of samples, the allowable stress is the same as the case of which we know
the mean and the standard deviation of population. As shown in Table 1, more
than 16 samples are necessary to estimate the population’s mean and deviation
more accurately. Considering the cost of test and the accuracy of estimation, at
least 10 samples are essential.

3 Experimental Procedure

Tensile tests were conducted in accordance with ASTM E8 [7] and E21 [8] using
an MTS 810 servo-hydraulic test machine, as shown in Fig. 3. Figure 4 is the
geometry of the test specimen. Thermocouples (K type) were attached at the center

Table 1 Tolerance coefficients, kn; for the number of samples between methods

Number of
samples (n)

Tables in MIL-HDBK-17-1F Approximate Eqs. 2 and 3 Acar’s Eq. 4

kA kB kA kB kA kB

2 37.094 20.581 20.741 10.240 -13.999 -7.375
3 10.553 6.157 10.145 5.545 13.335 7.625
5 5.741 3.408 5.901 3.418 5.750 3.382
10 3.981 2.355 4.017 2.365 3.940 2.322
16 3.464 2.034 3.470 2.035 3.437 2.013
20 3.295 1.927 3.296 1.926 3.274 1.911
30 3.064 1.778 3.062 1.777 3.050 1.768
? 2.326 1.282

Fig. 3 Experimental setup
for tensile tests under various
temperatures
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of it. The test was run in strain control mode at a constant strain rate of 2 mm/min.
The tensile tests were conducted at room temperature (R.T.), 100, 200, 300, 400,
500, 550, 600, 700, 800, 900 and 1000�C. At each temperature, for ten specimens a
steady state tensile test was conducted. The tensile load was applied to specimen
after the specimen was heated up to a specified temperature and maintained for
30 min. A tensile loading rate of 2 mm/min was used, leading to an initial strain
rate of 10-3 s-1, and the heating rate of the furnace is 1.9–2.0�C/sec. An exten-
someter with a total gauge length of 25 mm was used.

4 Results and Discussion

4.1 Tensile Characteristics at Elevated Temperatures

The mean value of Young’s modulus, elongation and reduction in area at elevated
temperatures are shown in Table 2. The mean, standard deviation, A-basis and B-
basis of ultimate tensile strength and yield strength at elevated temperatures are
shown in Tables 3 and 4 respectively.

Young’s modulus as a function of temperature is shown in Fig. 5. Young’s
modulus decreases gradually as the temperature increase. There is an abrupt

Fig. 4 Test specimen
geometry (dimensions in mm)

Table 2 Tensile characteristics at elevated temperatures

Temperature
(�C)

Young’s modulus
(GPa)

Elongation
(%)

Reduction
in area (%)

R.T. 184.0 57.8 18.6
100 170.2 60.5 15.3
200 171.1 61.3 13.9
300 160.7 58.4 12.6
400 155.9 58.7 12.3
500 132.5 45.2 10.9
550 108.7 59.7 15.9
600 92.7 76.7 30.7
700 67.1 91.5 40.6
800 56.2 97.2 42.2
900 36.4 97.8 55.4
1000 54.9 73.2 49.4
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change of decreasing rate in Young’s modulus at 500�C. The reduction in area and
elongation gradually fall or are constant till 500�C but rapidly rise to 900�C and
then fall, as shown in Fig. 6. The stress–strain curve at room and elevated tem-
peratures is shown in Fig. 7 which shows a smooth elastic–plastic transition. As
shown in Fig. 8, the ultimate tensile strength and the yield strength decrease
gradually to the temperature of 500�C but rapidly fall over at 500�C and gradually
decrease over the temperature of 800�C.

Table 3 Ultimate tensile strength at elevated temperatures

Temperature
(�C)

Mean
(MPa)

S.D.
(MPa)

Normal distribution
(kA = 2.326, kB = 1.282)

Noncentral t-distribution
(kA = 3.981, kB = 2.355)

A-Basis B-Basis A-Basis B-Basis

R.T. 2034.7 23.68 1979.6 2004.3 1940.4 1978.9
100 1935.4 31.95 1861.1 1894.4 1808.2 1860.2
200 1824.9 6.58 1809.6 1816.5 1798.7 1809.4
300 1764.5 28.36 1698.5 1728.1 1651.6 1697.7
400 1656.2 14.63 1622.2 1637.4 1598.0 1621.7
500 1407.1 37.31 1320.3 1359.3 1258.6 1319.2
550 981.3 16.38 943.2 960.3 916.1 942.7
600 619.0 3.22 611.5 614.9 606.2 611.4
700 425.4 5.21 413.3 418.7 404.7 413.1
800 178.5 3.70 169.9 173.8 163.8 169.8
900 100.1 12.27 71.6 84.4 51.3 71.2
1000 57.7 2.20 52.5 54.8 48.9 52.5

Table 4 Yield strength at elevated temperatures

Temperature
(�C)

Mean
(MPa)

S.D.
(MPa)

Normal distribution
(kA = 2.326, kB = 1.282)

Noncentral t-distribution
(kA = 3.981, kB = 2.355)

A-Basis B-Basis A-Basis B-Basis

R.T. 1764.3 24.10 1708.2 1733.4 1668.4 1707.5
100 1685.4 32.40 1610.0 1643.9 1556.4 1609.1
200 1604.2 13.60 1572.6 1586.8 1550.1 1572.2
300 1535.5 13.80 1503.4 1517.8 1480.6 1503.0
400 1425.4 13.50 1394.0 1408.1 1371.7 1393.6
500 1242.7 22.60 1190.1 1213.7 1152.7 1189.5
550 926.9 8.10 908.1 916.5 894.7 907.8
600 559.1 2.60 553.1 555.8 548.7 553.0
700 372.1 8.40 352.6 361.3 338.7 352.3
800 152.5 5.30 140.2 145.7 131.4 140.0
900 74.7 12.40 45.9 58.8 25.3 45.5
1000 41.3 4.30 31.3 35.8 24.2 31.2
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Fig. 5 Young’s modulus as a
function of temperature

Fig. 6 Reduction in area and
elongation as a function
of temperature

Fig. 7 Stress-strain curves at
elevated temperatures
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The Ramberg–Osgood (RO) equation has been used in most modern strength
analysis to describe the non linear relationship between stress and strain in near
their yield points. It is especially useful for metals that harden with plastic
deformation, showing a smooth elastic–plastic transition. The equation for strain is
expressed as Eq. 18.

e ¼ r
E
þ K

r
E

� �m
ð18Þ

where K and m are constants that depend on the material being considered and
describe the hardening behavior of the material. So, these values have been con-
sidered to be a material property. The exponent parameter of RO equation
increases as the temperature increases, as shown in Fig. 9. In Fig. 10, the exponent
parameter of RO equation decreases as Young’s modulus increase.

Fig. 8 Ultimate tensile
strength and yield strength as
a function of temperature

Fig. 9 Exponent parameter
of RO Eq. as a function
of temperatures
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4.2 Ductility Minimum Temperature and Fractured Surface

Rhines and Wray [9] have pointed out that the minimum ductility occurs at an
intermediate temperature range for all ductile metals and alloys. At low temper-
atures, fracture occurs by the usual transgranular crack propagation mechanism
and ductility is high. At temperatures near minimum, deformation occurs by grain
boundary sliding, causing the formation of intergranular cavities at triple junctions.
At high temperatures, recrystallization occurs simultaneously with intergranular
cavity formation as a result of which intergranular crack propagation is retarded.
The ductility, therefore, increases at high temperatures. Sikka et al. [10] have
reported elevated temperature tensile ductility minima in AISI 304 and 316
stainless steels and their metallographic findings were found to be consistent with
the model proposed by Rhines and Wray. That is, the ductility minimum was
associated with the temperature, the strain rate and the metallurgical condition
under which intergranular crack propagation was not inhibited [11]. Boyce et al.
[12] suggested that at slower strain rates or higher temperatures, flow is controlled
by long-range obstacles to dislocation motion and is largely strain-rate insensitive.
At lower temperature or higher strain-rate, weaker short range obstacles become
controlling due to the time-dependent diffusion-limited mechanisms such as climb
which are necessary to overcome these short range obstacles, leading to stronger
strain-rate dependence. The variation of ductility from different fracture mecha-
nism is the cause of variation of the elongation with temperature.

In the last study of the present analysis for the AISI 304 austenitic stainless steel
[13], there was also ductility minimum at the temperature of 500�C. From the
result of EDX (Energy Dispersive X-ray) microanalysis, it has been confirmed that
AISI 304 austenitic stainless steel has a characteristic of being harder and more
brittle at temperatures between 500 and 800�C and this is due to a precipitation of
a phase chrome carbide (Cr23C6) in this temperature range. The density of chrome

Fig. 10 Exponent parameter
of RO Eq. as a function
of Young’s modulus
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in the material decreases as a result of the precipitation and the weight % of carbon
and chrome decreased above 500�C from EDX analysis. In this study, Figs. 6 and
8 show that there is a ductility minimum at 500�C and this is the same as for AISI
304 stainless steel.

The fractured surfaces were inspected to observe temperature dependent
changes in fractography. In all cases, the cylindrical test specimen resulted in a
cup-and-cone fracture morphology. According to Metals Handbook [14], the
cup-and-cone morphology consists of three zones: fibrous zone, radial zone and
shear-lip zone. At the center of the tensile specimen, there is a fibrous zone
associated with early coalescence and slow, stable crack growth. In the radial zone,
fast and unstable cracks propagate away from the fibrous zone. Around the rim of
fracture, there is a shear-lip zone from planes of maximum shear ahead of the
growing crack tip.

As shown in Fig. 11, the relative size of the shear-lip diminishes as the
temperature increases and has an abrupt change after the ductility minimum
temperature of 500�C. The morphology of the fibrous zones at each temperature is
shown in Fig. 12. High-magnification images from scanning electron microscope
(SEM) show that there is a typical microvoid coalescence morphology expected in
ductile metal fracture. The dimple size grows as the temperature rises and has
abrupt change after the ductility minimum temperature of 500�C.

Fig. 11 Low-magnification images of cup-and-cone fracture morphology for the test specimen
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5 Conclusions

This chapter aimed to get sampling-based basis strength of high toughness steel at
room and elevated temperatures and investigate the ductility minimum tempera-
ture from inspecting the material property and fractured surface. The following
conclusions can be drawn.

(1) The tensile strength, yield strength and Young’s modulus decrease as the
temperature increases. But the elongation and the reduction in area decrease as
the temperature increases below 500�C which corresponds to a ductility
minimum temperature. From low and high magnification of the fractured
surface, typical evidence of ductile fracture is shown. The abrupt change in the
size of shear-lip and dimple size showed that there is a ductility minimum
temperature at 500�C.

(2) The sampling-based basis strength values were taken from mean, standard
deviation of tensile test results and tolerance coefficient from noncentral
t-distribution. The sampling-based basis strength gives us more conservative
strength values than from normal distribution.
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Part II
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Damage and Fracture Analysis of Rubber
Component

Chang-Su Woo, Wan-Doo Kim, Hyun-Sung Park and Wae-Gi Shin

Abstract Rubber components have been widely used in automotive industry as
anti-vibration components for many years. These subjected to fluctuating loads,
often fail due to the nucleation and growth of defects or cracks. To prevent such
failures, it is necessary to understand the fatigue failure mechanism for rubber
materials and evaluate the fatigue life for rubber components. Fatigue lifetime
prediction and evaluation are the key technologies to assure the safety and reli-
ability of automotive rubber components. The objective of this study is to develop
the durability analysis process for vulcanized rubber components, which is
applicable to predict fatigue lifetime at initial product design step. Fatigue lifetime
prediction methodology of vulcanized natural rubber was proposed by incorpo-
rating the finite element analysis and fatigue damage parameter of maximum
Green-Lagrange strains appearing at the critical location determined from fatigue
test. In order to develop an appropriate fatigue damage parameter of the rubber
material, a series of displacement controlled fatigue tests was conducted using
3-dimensional dumbbell specimens with different levels of mean displacement.
It was shown that the maximum Green-Lagrange strain was a proper damage
parameter, taking the mean displacement effects into account. Nonlinear finite
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element analyses of the engine mount insulator and 3-dimensional dumbbell
specimens were performed based on a hyper-elastic material model determined
from the simple tension, equi-biaxial tension and planar test. Fatigue lifetime
prediction of engine mount insulator was made by incorporating the maximum
Green-Lagrange strain values, which was evaluated from the finite element
analysis and fatigue tests, respectively. Predicted fatigue lives of the rubber
component showed a fairly good agreement with the experimental fatigue lives.
Fatigue analysis procedure employed in this study could be used approximately for
the fatigue design.

Keywords Rubber component � Strain energy function � Finite element analysis �
Fatigue test � Damage parameter � Lifetime prediction

1 Introduction

Rubber’s ability to withstand very large strains without permanent deformation or
fracture makes it ideal for many applications including tires, vibration isolators,
seals, hoses, belts, impact bumper, medical devices and structural bearing to name
a few [1, 2]. These rubber components subjected to fluctuating loads often fail due
to the nucleation and growth of defects or cracks. To prevent such failures, it is
necessary to understand the fatigue failure mechanism for rubber materials and to
evaluate the fatigue life for rubber components. For these reasons, not only the
rubber component manufacturers but also their customers like automotive makers
perform a series of strict fatigue test on the components such as component fatigue
tests and driving fatigue tests.

Currently, designers rely on their own trial-error based experiences for the
fatigue design. Thus, those designs depending on only experience may result in
disqualification from the fatigue test during final product evaluation. Those fatigue
failures of any new designs are prohibitive for automotive manufacturers. In order
to avoid this problem, many researchers [3–5] are focusing on evaluation of fatigue
life using computer added engineering techniques that could supplement draw-
backs of evaluation through tests and could significantly reduce the time for
fatigue-proof design. However, there are the following problems. First, the rubber
materials show particular mechanical properties according to compounding
ingredients and manufacturing conditions [6, 7]. Therefore, in order to evaluate the
fatigue life of designed rubber components, the material properties of the com-
ponents should be obtained. It is practically impossible to measure the material
properties for the whole component. Second, some parameters like stress, strain,
Strain Energy Density (SED) and so on are .generally used to estimate fatigue life
of rubber components [8–10] but the question remains how we should use these
parameters to estimate component life and what the limitation of the parameters is.
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The fatigue lifetime prediction on the rubber components has been increasing
according to the extension of warranty period of the automotive components.
A design of rubber components against fatigue failure is one of the critical issues
to prevent the failures during the operation. Therefore, fatigue lifetime prediction
and evaluation are the key technologies to assure the safety and reliability of
mechanical rubber components [11, 12]. Fatigue lifetime evaluation of rubber
components has hitherto relied mainly on a real load test, road simulator test or
bench fatigue test. Although the above methods have advantages in accuracy of
fatigue life, they cannot be used before the first prototype is made and the fatigue
test should be always conducted whenever material or geometry changes are made
[13]. In order to predict the fatigue life of the rubber components at the design
stage, a simple procedure of life prediction is suggested in Fig. 1.

In this chapter, engine mount insulator for automobile, which is damaged by
repeated loading during operation, is selected for a typical application of fatigue
life prediction methodology developed in the research. Uniaxial tension, equi-
biaxial tension and planar tests were conducted to determine the nonlinear material
constants of the rubber components. The maximum Green-Lagrange strain of 3
dimensional dumbbell specimens and engine mount insulator were obtained from a
nonlinear finite element analysis (FEA) using the hyper-elastic material model
determined from the material tests. We used the 3-dimensional dumbbell speci-
mens to evaluate the fatigue life of rubber materials. Fatigue tests of 3-dimensional
dumbbell specimens with various mean strains were performed, and a fatigue life
curve equation represented by the maximum Green-Lagrange strain was obtained.
Fatigue lifetime prediction of engine mount insulator was made by incorporating

Rubber Parts
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Fatigue Test of
Parts

Fatigue Life
Prediction of

Parts

3-D
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Fatigue
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Loading
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Verify

Nonlinear FEA
of Parts

FATIGUE LIFE
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Fig. 1 Procedure to fatigue life prediction system
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the maximum Green-Lagrange strain values, which was evaluated from the FEA
and fatigue tests, respectively. Predicted fatigue lives of the rubber component
showed a fairly good agreement with the experimental fatigue lives. The fatigue
analysis procedure employed in this study could be used as an approximation for
fatigue design.

2 Measurement of Material Property

2.1 Stain Energy Function

The material of the rubber component is taken to be an incompressible rubberlike
material modeled as a hyper-elastic material. The constitutive behavior of a
hyper-elastic material is defined as a total stress–total strain relationship [14, 15].
Hyper-elastic materials are described in terms of a strain energy potential, which
defines the strain energy stored in the material per unit of reference volume as a
function of the strain at that point in the material. The strain energy functions have
been represented either in terms of the strain invariants that are functions of the
stretch ratios, or directly in terms of the principal stretch. Successful modeling and
design of rubber components relies on both the selection of an appropriate strain
energy function and an accurate determination of material coefficient in the
function. Material coefficient in the strain energy functions can be determined
from the curve fitting of experimental stress–strain data. There are several different
types of experiments, including simple tension, equi-biaxial tension and pure shear
tests. In general, a combination of simple tension, equi-biaxial tension and pure
shear tests are used to determine the material coefficient. The classical Mooney-
Rivlin and Ogden model are an example of a Hyper-elastic model that is imple-
mented in FEA [16].

In order to explain the deformation of the rubber materials, it is assumed that
the material has elastic behavior and is isotropic. Then, strain energy function ðWÞ
can be written as Eq. 1, with strain invariant functions ðI1; I2; I3Þ and principal
stretch functions ðk1; k2; k3Þ.

W ¼ WðI1; I2; I3Þ; W ¼ Wðk1; k2; k3Þ ð1Þ

When the material is isotropic, I1; I2; I3 can be expressed as follows;

I1 ¼ k2
1 þ k2

2 þ k2
3

I2 ¼ k2
1k

2
2 þ k2

2k
2
3 þ k2

3k
2
1 ð2Þ

I3 ¼ k2
1k

2
2k

2
3

Most rubber materials are incompressible and its bulk modulus is much greater
than its shear modulus. Thus, it is widely accepted to presume the materials to be
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incompressible when they are under less restriction. When the materials are
incompressible in Eq. 2, k1; k2; k3= 1 and I3 ¼ 1. Since, Eq. 1 can be rewritten as
follows,

W ¼ WðI1; I2Þ ð3Þ

Strain energy function, which is widely used to analyze deformation of incom-
pressible materials, can be described with Mooney-Rivlin’s function and Ogden’s
function.

Mooney-Rivlin’s function : W ¼
X

N

n¼1

CijðI1 � 3ÞiðI2 � 3Þ j ð4Þ

Ogden’s function : W ¼
X

N

n¼1

ln

an
ðkan

1 þ kan
2 þ kan

3 � 3Þ ð5Þ

where Cij; ln; an are material constants determined experimentally from the stress–
strain relationship.

2.2 Uniaxial Tension Test

The rubber material property, which is essential in FEA, is expressed with the
coefficient values of strain energy function and these values are determined by
fitting stress–strain data obtained from the material tests under various load con-
ditions into the stress–strain curve induced from strain energy function. And it is
determined to minimize the differences between the test values and calculated
values. Therefore, we analyzed the property of the material and determined the
nonlinear material coefficient, which is necessary in finite element analysis, by
conducting uniaxial, equi-biaxial tension and pure shear tests [17].

Figure 2a shows the uniaxial tension test by using non contacting strain mea-
surement (laser extensometer). When rubber materials are deformed, their network
structure lose their stiffness due to modification and reformation, and damping
properties change. Mullins suggested this is due to the stress–strain response,
called the Mullins effect [18]. This is more prevalent in carbon black-filled rub-
bers. In other words, the stiffness of rubber depends on its history and strain range.
In addition, the stress–strain curve in initial stage is not repeated anywhere and the
curve stabilize after receiving approximately five repetitive loads within the same
strain range. The stress–strain curve exhibits yet another change when the rubber
material is subjected to a larger strain than the previous one. Lastly, the rubber
material possesses properties in which fixed permanent deformation occurs when
the material returns to the initial strain value; the strain is not equal to 0 even if the
stress is equal 0. Figure 2b shows the Mullins effect in uniaxial tension test.
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2.3 Equi-Biaxial Tension Test

In uniaxial compression test, it is very difficult to obtain the pure compressed
stress–strain relationship because of the frictions on the grip and the contact plane
of rubber test specimen. Also, there is some bubbling phenomenon in the middle
part of the test sample due to this friction. Therefore, it is hard to say that the
property values of materials obtained from uniaxial compression tests are accurate.
Thus, Woo et al. [5] suggested equi-biaxial tension tests, in which the pure strain
values can be obtained, in order to resolve such issues in uniaxial compression test.
For equi-biaxial tension tests, we prepared round shaped test specimen (Fig. 3)
with 16 grips placed on the outer edges of the test specimen in order to apply
evenly distributed loads in the direction of the circumference.

FEA of the specimen is required to determine the appropriate geometry of the
clamping point in Fig. 3a. The equi-biaxial strain state may be achieved by radial
stretching a circular disc in Fig. 3b. Once again, a non-contacting strain measuring
device must be used such that strain is measured away from the clamp edges in
Fig. 3c.

2.4 Pure Shear Test

A shear strain state is a more important mode of deformation for engineering
applications than tension. The quad lap simple shear test piece is standardized
[19]. But, the pure shear test is not yet standardized. There are two difficulties in
the simple shear test. The first difficulty is making the specimen. This may require
either bonding to rigid supports during vulcanization or molding blocks bonded
with a high modulus adhesive. Secondly, the low shear strain range is limited
because the rigid plates are bent on straining. Alternatively, the pure shear test can

Fig. 2 Uniaxial tension test and Mullins effect a Laser extensometer b Mullins effect
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be developed high strain range than simple shear test. If the material is incom-
pressible and the width of the specimen is longer than the height, a pure shear state
exists in the specimen at 45� angle to the stretching direction. Aspect ratio of the
specimen is most significant in the pure shear test because the specimen is per-
fectly constrained in the horizontal direction.

Figure 4 shows the deformed shapes obtained by FEA at 100% stretching for
aspect ratios of 5:1 and 10:1. Stress–strain curves obtained from the tests are
shown Fig. 4c, compared to those predicted by FEA. Even though there exist some
differences in the stress–strain responses between the experiment and the analysis,
fairly good correlations are observed. A better agreement can be seen for the
aspect ratio of 10:1, compared to 5:1. The differences are attributed to the spec-
imen slippage from the clamp edges, leading to the inadequate states of pure shear
strain. Therefore, it is necessary to design a gripping device to prevent specimen
slippage, in order to improve the test accuracy.

2.5 Non-Linear Material Component for Hyper-Elastic Material

Figure 5 shows the stress–strain curves obtained from the uniaxial tension, equi-
biaxial tension and pure shear tests in which we applied five repetitive loads in
each of the vertical and horizontal direction with 25, 50 and 100% of the strain
range for natural rubber. According to Fig. 5, the stress–strain curves during the
second repetition showed a greater decline than in the first repetition. The stress–
strain curve gradually decreased as the number of repetitions increased, and
ultimately stabilized to a fixed stress–strain value.

In order to predict the behavior of the rubber components using the finite
element analysis, the rubber material constants must be determined from the
stabilized cyclic stress–strain curve. The stress–strain curve varies significantly
depending on the cyclic strain levels. A 5th loading cycle was selected as the
stabilized stress–strain relationship in this study. But this stabilized relation should

Fig. 3 Specimen and grips for equi-biaxial tension test a Finite element model b Specimen
c Equi-biaxial tension test
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be shifted to pass through the origin of the curve, to satisfy the hyper-elastic nature
of rubber. Figure 6 shows the stress–strain relation of rubber material for various
physical tests. The shift of curve meant that the gage length and initial cross
sectional area were changed as shown in Eq. 6.

e ¼ e0 � ep

1þ ep
r ¼ r0ð1þ epÞ ð6Þ

We performed the curve fitting with uniaxial tension, equi-biaxial tension and
pure shear test data. Table 1 contains the values of rubber material coefficient
calculated in each case.

Fig. 4 Deformed shape of pure shear test a Aspect ratio 5:1 b Aspect ratio 10:1 c Stress–strain
curves
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3 Fatigue Lifetime Prediction and Evaluation

3.1 Fatigue Test Specimen

The fatigue test piece has the basic shape of the 3-dimensional dumbbell specimen
with a metal fitting cure bonded to each end. The geometry of the central part of the
cylinder was designed to meet the following criteria in relation to fatigue test data
for rubber components and strain distribution profile. The test piece should be
capable of compression and tensile deformation without developing slackness
under cyclic deformation. It should have a smooth strain distribution and the
position at which maximum tensile strain develops should be the same for any
deformation. The 3-dimensional dumbbell specimen has an elliptical cross-section
and parting lines are located on the minor axis of specimen to avoid undesirable
failure at the surface discontinuities [20]. The finite element model of the fatigue
test specimen is shown in Fig. 7a. Figure 7b shows the strain distribution according

Fig. 5 Stress–strain curves at various loading and strain range a Uniaxial tension b Equi-biaxial
tension c Pure shear
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to FEM analysis from 3-dimensional dumbbell specimen in compression and
tension. Maximum Green-Lagrange strain was found to develop at a constant
position in the surface at the centre of the rubber part of the test piece in both
compression and tension.

Fig. 6 Stabilized stress–strain curve and shift curve to zero a Uniaxial tension b Equi-biaxial
tension c Pure shear

Table 1 Mooney-Rivlin and Ogden function of rubber material

Strain Mooney-Rivlin 2-terms Ogden 3-terms

C10 C01 GM l1 a1 l2 a2 l3 a3 Go

25% 0.889 0 1.779 1.1e-4 2.291 0.968 3.710 4.5e-4 3.081 1.796
50% 0.772 0 1.543 2.0e-5 1.030 2.140 1.3e-6 1.182 2.602 1.532
100% 0.723 0.009 1.463 0.028 4.391 5.813 0.031 0.953 2.593 1.390
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3.2 Fatigue Damage Parameter

In order to evaluate a fatigue damage parameter of the natural rubber material and
to determine the experimental fatigue life, fatigue tests of 3-dimensional dumbbell
specimens were performed using the fatigue testing system. The material used in
this study is a carbon-filled vulcanized natural rubber, which have the hardness of
the International Rubber Hardness Degree 50, 55, 60, 65(NR50, NR55, NR60,
NR65). Compound recipes, including applied cure conditions, are summarized in
Table 2.

Fatigue tests were conducted in an ambient temperature under the stroke-
controlled condition with a sine waveform of 5 Hz and the mean displacement was
0, 3, 5, 8, 10 mm at the various displacement range. The fatigue failure was
defined as a number of cycles at which the maximum load dropped by 20%.
As increasing the fatigue cycles, the maximum load decreased little by little. When
the crack grew over the critical size, the maximum load decreased suddenly
corresponding to final failure. Figure 8 shows the fatigue testing system and
fatigue life curve. Figure 9 shows the relationship between the displacement

Fig. 7 3-dimensional fatigue test specimen a Finite element model b Displacement–strain curve
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Table 2 Compound recipes investigated of natural rubber

Ingredient (grade) NR50 NR55 NR60 NR65

Natural rubber (SMRCV 60) 100 100 100 100
Carbon black (FEF) 22 27 40 40
Carbon black (SRF) 15 18 20 32
Stearic acid 1 1 1 1
ZnO 5 5 5 5

Fig. 8 Fatigue test of 3-dimensional dumbbell specimen a Fatigue test b Crack initiation c Crack
initiation
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amplitude and the fatigue life of 3-dimensional dumbbell specimens. The fatigue
life at the same displacement amplitude decreases as the mean displacement and
hardness increase.

The fatigue process begins with the accumulation of damage at a localized
region due to alternating load and displacement, leading to crack nucleation,
growth, and final fracture [21, 22]. The crack nucleation life of the component may
be defined as the number of cycles required for the appearance of a macro-crack.
Therefore, the crack nucleation life of the component can be related to the life of a
smooth specimen that is cycled to the same stresses or strains as the material at the
critical region of the component. In this study, the fatigue damage of the natural
rubber was evaluated from smooth dumbbell specimens.

Figure 10a shows the relationship between the maximum tension displacement
and fatigue life of 3-dimensional dumbbell specimens. The fatigue life decreases
as the maximum tension displacement increase. It is possible to express the fatigue
life with the maximum tension displacement fairly good. Relationship between the

Fig. 9 Fatigue lives of 3-dimensional dumbbell specimen for natural rubber a NR50 b NR55
c NR60 d NR65
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applied displacement and corresponding Green-Lagrange strain of 3-dimensional
dumbbell specimen are obtained from the FEM analysis and shown in Fig. 7b.

The fatigue life curve of natural rubber expressed by the Green-Lagrange strain
as a damage parameter can be generated from the displacement versus Green-
Lagrange strain curve of the 3-dimensional dumbbell specimen. Figure 10b shows
the maximum Green-Lagrange strain versus cycles to failure of natural rubber.

3.3 Fatigue Lifetime Prediction

The fatigue life of the 3-dimensional dumbbell specimens represented by the
maximum Green-Lagrange strain parameter (eG-L) are shown in Fig. 10b, where
the Green-Lagrange strain for each dumbbell specimen is calculated from the
displacement versus Green-Lagrange strain curve in Fig. 7b. It can be seen from
Fig. 10b that the fatigue lives with different hardness can be effectively repre-
sented by a function using the maximum Green-Lagrange strain, thus taking into
account the mean displacement and amplitude.

By using the fatigue test and FEM analysis, the normalized maximum strain
defined as dividing by elongation at break (eEB) for the maximum Green-Lagrange
strain (eG-L) for each hardness. Figure 11 shows the relation between normalized
maximum strain and fatigue life. It was observed that the maximum Green-
Lagrange strain was a good parameter to account for the hardness, mean dis-
placement and amplitude effects. Fatigue lives of the 3-dimensional dumbbell
specimen represented by the maximum Green-Lagrange strain and elongation at
break are shown in Eq. 7. The fatigue lives are effectively represented by a single
function using the maximum Green-Lagrange strain and elongation at break for
each natural rubber materials.

Fig. 10 Fatigue life curve for natural rubber a Displacement and fatigue life b Strain and fatigue
life
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Nf ¼ 1096 � ½eG�L=eEB��2:22 ð7Þ

3.4 Fatigue Lifetime Evaluation of Rubber Component

The methodology was applied to the fatigue life estimation of a rubber engine
mount for automotive component. FEA is very important in design procedure to
assure the safety and reliability of automotive rubber components. A nonlinear
FEA was executed to evaluate the strain distribution by using a commercial finite
element code. Material constants representing the Ogden strain energy potential of
order 3 were used for defining the constitutive relation of the natural rubber.

Figure 12 shows the Green-Lagrange strain distribution of a rubber engine
mount under a tensile displacement. The maximum Green-Lagrange strain at the
critical location was used for evaluating the fatigue damage parameter of the
rubber engine mount.

Static and fatigue tests were performed using a servo-hydraulic fatigue testing
system shown in Fig. 13a. The experimental and FEA load–displacement curves
compare very well (Fig. 13b). Maximum Green-Lagrange strain occurred at the
location indicated in Fig. 14, and fatigue cracking at the critical location was
observed during the fatigue test of the rubber engine mount. Fatigue failure was
initiated at the critical location during the fatigue test of the rubber component, and
was predicted by FEA. Correlation between the fatigue test life and the predicted
life of the rubber engine mount using the normalized maximum strain is shown in
Fig. 15. The predicted fatigue lives of the rubber engine mount agreed fairly well
with the experimental fatigue lives.

Fig. 11 Fatigue lifetime prediction curve of natural rubber a G-L strain versus fatigue life
b Fatigue life prediction curve
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Fig. 12 Green-Lagrange strain distribution of the engine rubber mount a Finite element analysis
b Max. G-L strain versus displacement

Fig. 13 Load–displacement curves of experimental and finite element analysis a Static test
b Load and displacement curves

Fig. 14 Failure of the engine
rubber mount a Finite
element analysis
b Experimental
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4 Conclusion

The fatigue lifetime prediction on the rubber components has been increasing
according to the extension of warranty period of the automotive components.
A design of rubber components against fatigue failure is one of the critical issues
to prevent the failures during the operation. Therefore, the fatigue lifetime pre-
diction and evaluation are the key technologies to assure the safety and reliability
of mechanical rubber components.

In this chapter, to develop the durability analysis process for vulcanized rubber
components, a fatigue lifetime prediction methodology was proposed by incorpo-
rating FEA and a fatigue damage parameter. In order to investigate the applicability
of commonly used fatigue damage parameters, fatigue tests and corresponding FEA
were carried out and optimum fatigue damage parameter were selected.

The fatigue lifetime of the rubber component was effectively represented by the
maximum Green-Lagrange strain. Predicted fatigue lives of the rubber component
were in fairly good agreements with the experimental lives. Therefore, the fatigue

Fig. 15 Fatigue life for rubber engine mount a Max. displacement—fatigue life b Max. G-L
strain-fatigue life c Fatigue life of engine mount d Comparison between predicted and
experimental fatigue test
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life estimation procedure employed in this study could be used for the fatigue
design of rubber components at the early design stage.
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The Thermal Shock Resistance
and Mechanical Properties at Elevated
Temperature of Transparent Ceramics

Marek Boniecki, Zdzisław Librant, Tomasz Sadowski
and Władysław Wesołowski

Abstract In this work, the thermal shock resistance and mechanical properties at
elevated temperature of transparent ceramics (spinel (MgAl2O4) and yttria (Y2O3))
were studied. The thermal shocks were done by fast inserting ceramic samples
(disk shape) into a hot furnace (1000�C). Vickers indentations were made on the
polished sample surfaces. Before and after shocks, the measurements of crack
lengths were made and next a parameter Rm (an indicator of thermal stress
resistance) was obtained. Hence the maximum thermal stresses was calculated
using fracture toughness KIc. The measurements of bending strength rc and KIc as
a function of temperature were carried out. Young’s modulus and Vickers hardness
were measured at room temperature. For spinel, fracture toughness KIc reached
the maximum value at room temperature and minimum at 800�C. Above
this temperature, KIc increased up to 1400�C. Bending strength rc attained the
minimum value at 800 and 1000�C. At room temperature and at 1200�C it has
almost the same value. For yttria, KIc and rc are higher at temperature above
600�C than at room temperature and remains almost constant up to 1500�C.
In order to explain these observations, some hypotheses were proposed.
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1 Introduction

Transparent ceramics with optical qualities comparable to single crystals of similar
compositions have been developed in recent years [1]. This is a result of
improvement in fabrication technology mainly by a significant progress in pure
powder preparation and in sintering methods. These high-temperature materials
with good thermal and mechanical properties can replace traditionally used
materials as glass and quartz in some armour applications or in lamp envelopes
and infrared emitter and detector covers production. The most known and common
ceramics as alumina (a-Al2O3) are rather translucent than transparent and are
birefringent as a result of their hexagonal structure. The birefringence leads to
the light scattering in a polycrystalline material [2]. In order to avoid this disad-
vantageous phenomenon, ceramics with cubic crystal lattice should be used.
At Institute of Electronic Materials Technology in Warsaw (Poland), two cubic
transparent ceramics: spinel MgAl2O4 and yttria Y2O3 were prepared. For
potential applications of these ceramics, information about their thermal and
mechanical properties is needed. The object of this work was to determine the
thermal shock resistance and mechanical properties at elevated temperature of
these transparent ceramics.

2 Theoretical Background

A sample subjected to a thermal shock is under unsteady or transient state. In this
case, the temperature at any point changes with time. The individual parts of the
sample expand during heating and shrink during cooling in a different degree.
Because they are parts of one sample, then the whole sample extends or shrinks to
average dimensions which leads to a state, where in hotter parts of the sample
compressive stresses appear but in the cooler parts tensile stresses occur. There are
flaws in the sample which have been created during the fabrication process. These
flaws could be treated as cracks. The stress acting over the longest crack of length
c0 can cause rapid fracture if the critical stress intensity factor KIc is reached. Then,
the critical stress rc can be calculated as [3]:

rc ¼
KIc

Y
ffiffiffiffiffi

c0
p ð1Þ

where Y is a geometric factor.
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The maximum stress rT caused by a thermal shock is given by [3]:

rT ¼
EaDT

1� m
f ðbÞ ð2Þ

where E is Young’s modulus, a is the linear thermal expansion coefficient, v is
Poisson’s ratio and b is the Biot modulus, defined as

b ¼ rh

k
ð3Þ

where r is a specimen dimension, h is the heat transfer coefficient and k is the
thermal conductivity of the specimen. The function f(b) depends on the specimen
configuration.

However, the thermal stresses determination and their influence on brittle
fracture of ceramics is not easy because the heat transfer h which determines b is
not known with any significant precision as well as flaw size distribution in the
sample. Therefore, Vickers indentation technique was applied [4, 5]. It creates a
median-radial crack system which results in surface cracks (seen on the polished
surfaces). These cracks, of length c0, are in an equilibrium between a central
residual opening force and the fracture toughness of the material KIc. For a given
indentation load P, this gives [6]:

KIc ¼ vPc�1:5
0 ð4Þ

where v is a proportionality factor which is given as:

v ¼ n
ffiffiffiffiffiffiffiffiffiffi

E=H
p

ð5Þ

where n is a constant for Vickers produced radial cracks, H is hardness. In [6], the
constant n was experimentally evaluated (0.016 ± 0.004) using results of tough-
ness obtained by double cantilever beam technique for several materials.

If an external stress r is now applied, the median-radial cracks will increase
their size c under the superimposition of the decreasing residual and increasing
applied stress intensity fields. This is written as [7]:

KIc ¼ vPc�1:5 þ Yrc0:5 ð6Þ

Equation (6) indicates the possible existence of stable crack in equilibrium with
the toughness of the material. Differentiation of r with respect to the crack length
c shows that stable crack growth occurs between the initial crack length c0 and the
maximum crack length cm obtained as [7]:

cm ¼ 4vP=KIcð Þ2=3 ð7Þ

But the maximum value attained by the applied stress during stable crack
extension is:

The Thermal Shock Resistance and Mechanical Properties 309



rm ¼ 3KIc=4Yc0:5
m ð8Þ

Because c0 ¼ vP=KIcð Þ2=3 from Eq. (4), then cm/c0 = 42/3 = 2.52.
Transient thermal stresses act like other applied mechanical stresses. Thus, if an

indented sample is thermally shocked, the introduced, by an indenter, cracks will
extend. This extension is limited by the maximum value of the thermal stress.

In [5], a parameter Rm was proposed defined as:

Rm ¼
KIc

rT

� �2

ð9Þ

This parameter has the dimension of a length and is proportional to the max-
imum surface flaw size that can be withstood by the material for a given shock
condition. Rm can be calculated using expressions (4) and (6):

Rm ¼
Y2c

1� c
c0

� ��1:5
� �2 ð10Þ

Rm is the slope of the Y2c versus [1- (c/c0)-1.5]2 curve. It should be underlined
that Rm can be determined without knowledge of any material property or thermal
shock conditions. It is derived only from direct measurement of cracks lengths
before and after thermal shock. The definition of Rm could be compared to that
of the fourth thermal shock resistance parameter (defined by Hasselman in [8])
R0000 = (KIc/rc)

2(1 ? v) (where rc is the strength of the material). R0000 is thus
expected to be the lower limit of (1 ? m)Rm; it depends on the distribution of initial
flaws and it is independent of the thermal shock conditions. Parameter Rm does not
depend on the distribution of flaws in the material, but since it depends on rT, it is
affected by thermal stress conditions. Thus, it is an indicator of the severity of the
thermal shock conditions. The higher it is, the less severe these conditions are.
Having KIc and Rm, one can evaluate the maximum thermal stress rT for a given
thermal shock condition.

3 Experimental Procedure

Figure 1 presents the method of the sample preparation of spinel and yttria.
The following powders were used:

• MgAl2O4 (spinel S30CR type) from Baikalox France of impurity content about
45 ppm and crystallite size about 0.2 lm.

• Y2O3 from Metall USA, purity 99.999%, crystallite size of about 2 lm.

For the thermal shock resistance study, disks about 30 mm in diameter and
1 mm thick were made. Spinel disks were sintered at 1750�C for 6 h in vacuum
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and yttria disks were sintered at 1450�C for 2 h under a pressure of 30 MPa in
argon. After grinding to the final dimensions, both disk surfaces were polished.

For bend strength, fracture toughness and Young’s modulus measurements,
beams of 2.5 9 4 9 40 mm3, 1.5 9 4 9 40 mm3 and 1 9 4 9 40 mm3 respec-
tively were made. Spinel beams were sintered at 1550�C for 2 h under a pressure
of 30 MPa in argon, but yttria beams were sintered in the same conditions as yttria
disks. Density of the obtained samples should be close to theoretical because they
have a good transparency.

Thermal shocks were performed in air by quick inserting the disks at room
temperature into the hot furnace heated to 1000�C (Fig. 2). Disks were hold in the
furnace for several minutes in order to reach the furnace temperature and next
were cooled slowly to room temperature (in the furnace).

One of the disk surface was sheltered by 5 mm thick alumina disk, before the
shock Vickers indentations were introduced on the sheltered surfaces. The length
of surface cracks before and after thermal shocks were measured with an optical
microscope.

Strength tests were carried out at room and elevated temperature using a four-
point bending device (20–10 mm, outer–inner spans) made of steel/alumina at
room/high temperature with a loading rate of 1 mm/min. Strength rc was calcu-
lated from Eq. (11):

rc ¼
1:5FcðL� lÞ

bw2
ð11Þ

where Fc is the failure load, L and l are the outer and inner span respectively, b is
the sample width = 4 mm and w is the sample thickness = 2.5 mm.

Mechanical treatment

(cutting, grinding, polishing) 

Drying
(50o C)

Pressing

(120 MPa)

Sintering 

(without or under the pressure) 

Mixing of   yt t r ia/spinel  powder wi th 
LiF (1-1.5wt.  % )  in ethyl  a lcohol  in a 

mi l l

Fig. 1 Scheme of the sample
preparation
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The fracture toughness was determined by two methods. In the first method bars
for bending with notches of 1.1 mm deep were used (measurements were made at
room and elevated temperature). The notches were made by a two-steps. At first a
0.9 mm deep notch was made using a 0.2 mm thick diamond saw and next was
deepened for 0.2 mm using a 0.025 mm thick saw. Tests were carried out using
three-point bending device with L = 37 mm, made of steel (at room temperature)
and with L = 20 mm, made of alumina (at high temperature) with a loading rate of
1 mm/min. Fracture toughness KIc was calculated from Eq. (12):

KIc ¼ Yn
1:5FcL

bw2
c0:5

n ð12Þ

where Yn is a geometric factor for the notched beam calculated accordingly to [9],
b = 1.5 mm, w = 4 mm, cn is the notch length = 1.1 mm.

In the second method fracture toughness was determined from Vickers cracks
made on disks for thermal shock testing. Values of KIc were evaluated using
Eq. (4, 5). Measurements were made only at room temperature.

Young’s modulus was determined only at room temperature using a three-point
bending device equipped with a deflection gauge. Young’s modulus E was
calculated from Eq. (13) [9]:

E ¼ L2

bw2C

L

4w
þ 1þ mð Þw

2L

� �

ð13Þ

where L = 37 mm, b = 4 mm, w = 1 mm, C is the compliance = Dy/DF (Dy is
the increase of deflection, DF is the increase of load), m = 0.26 and 0.3 for spinel
and yttria respectively [10].

specimen

f thermocouple

Al2O3

Vickers indentation

specimen holder

furnace control 
urnace housing

thermocouple for the specimen
temperature measurement

heater

Fig. 2 Scheme of the thermal shock test apparatus
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Some of the polished spinel samples were thermally etched at 1450�C for 1 h in
air but Y2O3 samples were chemically etched in boiling water solution of HCl for
3 min in order to reveal the microstructure. Next, the microstructure seen under
the optical microscope (Zeiss) were analyzed with the computer programme for
Feret’s diameter method in order to obtain grain size distribution.

4 Results and Discussion

The microstructures of the ceramics are shown in Fig. 3.
The shown spinel microstructure concerns the disks. For the spinel beams

d = 36.1 ± 19.7 lm.
In Fig. 4, a Vickers indentation made on the polished surface of Y2O3 disk

(as an example) is presented.
The results of thermal shocks made on Vickers indented disks are shown in

Fig. 5.
Mechanical properties as a function of temperature for the studied ceramics are

presented in Fig. 6 and 7. In Fig. 6, data from [11] are also shown for comparison.
In [11], hot-pressed polycrystalline transparent spinel was studied (with a theo-
retical density of 3.58 g/cm3) with the an average grain size of about 35 lm.
Fracture testing was conducted using three-point fixture at a crosshead speed
0.01 mm/min. In [11], three test specimens were used in order to obtain KIc. The
results obtained for straight-notched specimens were chosen because similar
samples were used in this work.

From the line slopes of Fig. 5, the values of parameter Rm and hence maximum
thermal stresses rT (using KIc values) were estimated (Tables 1 and 2). For spinel
the Rm value with the smallest standard deviation sd was chosen (the case without

Fig. 3 Optical microscope pictures of the microstructures of studied ceramics. Values of average
grain size d are given above
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Fig. 4 Vickers indentation
made on polished surface of
Y2O3 disk under the load
P = 29.4 N

Spinel
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 all results

 without the result 150 N
 without the results 150 N 
and 98,1 N

120
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[
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Fig. 5 Vickers indentation crack growth in spinel and Y2O3 under the thermal shocks. On the
ordinate is a crack length c after thermal shocks; in turn on the abscissa is an expression
containing c/c0 (see Eq. (10)). Numbers next to the experimental points mean the Vickers
indenter P load in N. Position of the lines were calculated by least square method. Slopes of the
lines were used next for Rm determination

Fig. 6 Strength rc and fracture toughness KIc as a function of temperature T for spinel. For
comparison, data from [11] are shown. Mean values and standard deviations (marked as bars)
were calculated for five samples
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experimental points for P = 98.1 and 150 N). Geometric factor Y was taken as
1.29 according to [12]. The underlined numbers are the average value of Rm

M. The next numbers in Tables 1 and 2 are M-sd and M ? sd. Values of KIc at
room temperature were used here. We assumed that just after putting the sample
into the hot furnace the temperature of the sheltered surface should be close to the
room temperature. For comparison the fourth thermal shock resistance parameter
R0000 [8] was calculated.

• rT
* —was calculated from Eq. 9 in which KIc = 1.38 ± 0.18 MPam1/2 was in

turn obtained from Vickers crack using Eqs. 4 and 5, where E = 264 ± 5 GPa
(measured for five samples) and H = 14.3 ± 0.7 GPa. Ten indentations were
made for load P ranging from 29.4 to 150 N

• rT
** —was calculated from Eq. (9) in which KIc = 1.85 ± 0.28 MPam1/2 was

obtained in bending test for 5 notched beams at room temperature.
• R0000/(1 ? v) = (KIc/rc)

2 was calculated at room temperature for rc = 104 ±

29 MPa. It equals 176 and 316 lm respectively for KIc = 1.38 and
1.85 MPam1/2

0 400 800 1200 1600
0

0,5

1,0

1,5

2,0

2,5

T [OC]

K
1C

 [M
P

am
1/

2  ]

 batch 1
 batch 2
 batch 3

Fig. 7 Strength rc and fracture toughness KIc as a function of temperature T for Y2O3.
Measurements were made for three batches. These batches had almost the same microstructure
(grain sizes). Mean values and standard deviations (marked as bars) were calculated for five
samples for each batch. For the sake of clarity only the biggest standard deviations are shown

Table 1 Parameters Rm and
maximum thermal stress rT

for spinel

Rm (lm) rT
* (MPa) rT

** (MPa)

26571 8.5 11.3
17507 10.4 14.0
35635 7.3 9.8

Table 2 Parameter Rm and
maximum thermal stress rT

for Y2O3

Rm(lm) rT (MPa)

6,195 14.2
2,862 20.9
9,528 11.5
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• rT was calculated for KIc = 1.12 ± 0.06 MPam1/2 obtained in the bending test
for three batches. KIc = 1.07 ± 0.15 MPam0.5 was obtained from Vickers
cracks made on the disks (ten indentations for P ranging from 29.24 to 98.1 N)
and it is similar to that obtained in the bending test. It was calculated using
E = 172 ± 6 GPa and H = 7.2 ± 0.3 GPa. Ten indentations were made for
load P from 29.4 to 98.1 N.

R0000(1 ? v) = 316 lm was calculated at room temperature for rc = 63 ±

7 MPa and KIc = 1.12 MPam1/2.
Conclusions after analyzing the data presented in Tables 1 and 2 are following:

• Spinel is more resistant to the thermal shocks than yttria (Rm for spinel is higher
than for yttria, but R0000/(1 ? v) is similar for both of them),

• The chosen thermal shock conditions seem not to be severe for the studied
ceramics because Rm is about two orders of magnitude for spinel and one order
of magnitude for yttria higher than R0000/(1 ? v),

• Some higher rT values for yttria than for spinel were probably caused by two
factors: higher linear thermal expansion coefficient a for yttria and higher Biot
modulus b because of smaller thermal conductivity for Y2O3 than for spinel
[10]. The function f(b) and hence rT (Eq. 2) increases as b increases [3].
However, it should be noticed that Young’s modulus E is bigger for spinel.

The origin of the tensile thermal stresses generated on the sheltered surface of
samples seems to be obvious. This surface should be cooler than the exposed one
just after putting the sample into the hot furnace (Fig. 2). The big scatter of results
seen in Fig. 5 is a consequence of a complicated crack system arising around
Vickers indentations (Fig. 4). Cracks are treated as straight lines during length
measurements, but they are not and additively some of them are bifurcated. Hence
there are big errors in crack length measurements and big standard deviations in
the obtained parameter Rm.

As indicated previously, we obtained two kinds of spinel ceramics. The first
used for the disk production had a grain size d = 3.2 ± 2.1 lm, but the second
for the beam production had a grain size d = 36.1 ± 19.7 lm. The thermal
shocks were on disks but the maximum thermal stress rT and Hasselman par-
ametr R0000 were calculated using KIc and rc obtained from bending tests of
beams. The difference between results of KIc obtained by the indentation method
using disks and by the bending test using beams (Table 1) could point out that
the microstructure significantly influenced the mechanical properties of the
ceramics. In order to explain this problem, authors carefully analyzed the liter-
ature reports about it. Stewart and Bradt in [13] presented fracture toughness
data for spinel with grain size from 5 to 38 lm and they determined that KIc is
independent of grain size and equals about 1.93 MPam0.5 at room temperature.
In Table 3, some mechanical data for spinel with various grain sizes from the
literature were collected.

The review of data in Table 3 shows that spinel strength rc rather increases as
grain size decreases (according to Hall–Petch relationship [17]). A similar result is
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obtained for KIc (the value 1.38 MPam0.5 obtained by Vickers indentation method
for d = 3.2 m for disks seems to be to low) but Young’s modulus E is independent
of grain size. This conclusion is not consistent with the results presented in [13].
However, it was established that errors resulting from using KIc from beams for rT

calculations for disks in Table 1 are insignificant in comparison with errors of Rm

determination. One can say the same about the error in the calculation of
parameter R0000 in Table 1 because KIc and rc simultaneously rise as grain size
decreases.

An unexpected feature is observed in Fig. 6—rc for spinel decreases as a
function of temperature up to 800�C, remains constant up to 1000�C and next
increases up to 1200�C to a value close to the measured one at room temperature.
It could be connected with the appearance of crack tip plasticity at elevated
temperatures [15]. In this situation, the following relationship proposed in [18]
between rc and plastic zone extension s at the crack tip can be applied:

rc ¼ rc0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2s

2sþ d

r

ð14Þ

where rc0 = 104 MPa is the strength of spinel at room temperature, d = 36.1 lm
is a median grain size of spinel (for beams).

It was evaluated from Eq. 14 that for rc = 75 MPa at T = 800� and 1000�C
(Fig. 6), s & 20 lm, but for rc = 99 MPa at T = 1200�C s & 175 lm. It means
that the plastic zone extension increases as a function of temperature, which seems
to be obvious. A similar effect as for rc is observed for KIc (Fig. 6). KIc decreases
up to T = 800�C, remains constant up to 1200�C and next increases up to 1400�C.
The increase of KIc for spinel at temperatures higher than 800�C is also registered
by other authors [11, 14, 15] (data from [11] are shown in Fig. 6). This phe-
nomenon was explained by plasticity of crack tip due to cation diffusion [15]. Our
results differ from others because the strength growth is also observed at tem-
peratures higher than 800�C but in the literature [11, 15] strength of spinel
decreases monotonically as a function of temperature (Fig. 6). In order to reveal
the mode of fracture as a function of temperature, the fracture surfaces were
observed by scanning electron microscopy (Fig. 8).

Table 3 Strength rc, fracture toughness KIc and Young’s modulus E as a function of grain size
d for spinel at room temperature

Reference d (lm) rc (MPa) KIc (MPam0.5) E (GPa)

This work 36 ± 20 104 ± 29 1.85 ± 0.28 264 ± 5
This work 3.2 ± 2.1 1.38 ± 0.18
[11] 35 (10-100) 80 1.46 ± 0.44 258
[14] 50-200 2.2 275
[15] 1.5 ± 0.8 129 ± 20 3.0 ± 0.1 258 ± 2

194 ± 20
[16] 1.9 ± 1.7 120 ± 20 2.4 ± 0.24 258 ± 4
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The micrographs analysis indicates that there is a mixed transgranular and
intergranular mode of fracture but it seems that at high temperature prevails rather
the intergranular one. However, the largest grains failed transgranularly even at the
highest temperature. These observations are consistent with earlier studies
[13, 14]. The increased fraction of intergranular fracture and probably arising of
plastic zone ahead of crack tip can cause the increase of rc and KIc at temperatures
higher than 800�C for spinel.

Concerning the mechanical properties of yttria, it needs to be said that only
limited work has been published. Therefore, the authors studied three batches of
the yttria ceramics (Fig. 7) in order to obtain the verified results. Except one result
concerning unexpected high value of rc at 1000�C for batch 1, the results quite
consistent. The tendency is that for T C 600�C, rc and KIc are higher than at
room temperature and they are almost constant in the range of temperature :
600�–1500�C for rc and 800�–1500�C for KIc. In Fig. 9, fracture surfaces after
strength tests are shown for room and the highest temperature.

At room temperature, a transgranular mode of fracture is dominant but at
1500�C there is rather mixed (transgranular and intergranular) mode of fracture.

In [19] it was revealed that up to 1000�C, brittle fracture during compressive
test took place in yttria and it was experimentally showed there that more cracks
were generated in the specimens at 1000�C than at room temperature. This
phenomenon led to the decreasing of compression strength from 1100 MPa at
room temperature to 600 MPa at 1000�C.

Plastic deformation of yttria became prominent at 1200�C [19], meaning that
brittle-to ductile temperature is somewhere between 1000 and 1200�C. Plastic
deformation of Y2O3 by dislocation motion at 1200�C was confirmed in [19] by
transmision electron microscopy. At and above this temperature, yttria samples
had residual deformation in response to compressive loading, and catastrophic
brittle fracture was not observed. With an increase in temperature, compression
strength of yttria decreased to about 100 MPa at 1600�C. In this work a rather
opposite behaviour of bending strength and fracture toughness of yttria with
increasing temperature was observed. It could be explained by the fact that at

Fig. 8 Scanning electron micrographs of fracture surfaces of spinel samples at room and at the
highest temperature
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elevated temperature (above 600�C), grain boundary strength of the ceramics
weakens and tensile stress acting on the notch tip or the flaw on the tension surface
of the sample during loading could cause a crack deflection (in this case—a crack
propagation through grain boundary interfaces) which would lead to the toughness
increase [20]. This fracture increase is accompanied by the same bending strength
increase (KIc/rc & 0.02 m0.5 for all data from room temperature to 1500�C).
During loading of the samples at and above 1200�C, plastic deformation was not
visible due to the high loading rate (1 mm/min).

5 Conclusions

Thermal shock resistance and mechanical properties of two transparent ceramics,
MgAl2O4 (spinel) and Y2O3 (yttria), up to 1500�C were measured. The following
conclusions can be drawn:

• Spinel is more resistant to the thermal shocks than yttria (parameter Rm, an
indicator of severity of thermal shock conditions is higher for spinel than for
yttria, but the fourth thermal shock resistance parameter defined by Hasselman
R0000 divided by (1 ? m) is similar for both of them),

• The chosen thermal shock conditions seem not to be severe for the studied
ceramics because Rm is about two orders of magnitude for spinel and one order
of magnitude for yttria higher than R0000/(1 ? m),

• Some higher maximum thermal stress rT values for yttria than for spinel were
probably caused by higher linear thermal expansion coefficient and Biot mod-
ulus for yttria than for spinel,

• For spinel, fracture toughness KIc reached the maximum value at room tem-
perature and minimum at 800�C. Above this temperature, KIc increased up to
1400�C. Bending strength rc reached the minimum value at 800 and 1000�C,

Fig. 9 Scanning electron micrographs of fracture surfaces of yttria samples at room and at the
highest temperature
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having about the same values at room temperature and 1200�C. This behaviour
of KIc and rc at temperatures above 800�C could be caused by the increased
fraction of intergranular fracture and probably by arising of plastic zone ahead
of the crack tip,

• For yttria, KIc and rc are higher at temperature above 600�C than at room
temperature and remains almost constant up to 1500�C. It was probably caused
by crack deflection. The explanation of this phenomenon needs further studies.
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Analysis of the Effect of the Elliptical
Ratio in Tubular Energy Absorbers Under
Quasi-Static Conditions

Ahmad Baroutaji and Abdul Ghani Olabi

Abstract Tubular systems are proposed to use as energy absorber because they
are cheap and they are easy to manufacture; recently some researchers use ellip-
tical tubes as energy absorbers. In this work, the influence of elliptical ratio on
energy absorption capability and load carrying capacity and stresses of mild steel
elliptical tubes has been investigated both experimentally and numerically. The
experimental analysis was conducted by using a Zwick Type BT1-FB050TN
testing machine. In addition to the experimental work, a computational analysis
using ANSYS is made to predict the loading and response of such tubes where
series of models were performed with elliptical ratios ranging from 0.5–1.5.
Comparison of experimental and numerical force- and energy-displacement
responses are presented.

Keywords Energy absorber � ANSYS � Quasi-static analysis

1 Introduction

An energy absorber can be identified as a mechanism that converts, totally or
partially, kinetic energy of a mass moving at high speed into another form of
energy during the collision. The energy transformed is either reversible, like
elastic strain energy in solids, or irreversible, like plastic deformation energy.
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Energy absorption through material deformation has been investigated over the
last three decades, particularly in the form of tubular systems.

Circular or square sectioned tubes are widely used as structural elements due to
their prevalent occurrence and because they are readily available for selection in
the design process.

A number of authors studied the lateral compression of a single circular tube
and its strain hardening phenomena [1]. These researchers were among the first to
study such problems and each one of them gave a slightly different deformation
mechanism for the compression of a tube between rigid flat platens.

A rigid linear strain hardening material model was used to investigate the effect
of strain hardening phenomena in order to predict the force-deflection response of
tubes under lateral compression more accurately [2]. The collapse behavior of
elliptical tubes under quasi-static axial or lateral compression has been studied by
Wu and Carne [3, 4]. They carried out a study on metallic elliptical cross-section
tubes and the crushing behavior of braced elliptical tube was investigated. Their
treatment was used in the field of crashworthiness to decrease the effects of col-
lision in roadside safety applications. New systems of elliptical energy absorbers
were proposed by Olabi et al. [5]. They used nested elliptical tubes of varying
diameter to build their design. They investigated the quasi-static lateral com-
pression of these systems between rigid platens travelling with a velocity of 3 mm/
min to ensure that no dynamic effects were affected. Experimental and numerical
study were conducted on these systems to see their responses and it was found that
these systems are well suited to applications where space or volume restrictions are
an important design consideration without compromising energy absorbing
requirements.

The importance of conducting quasi-static analysis for energy absorption sys-
tems is for predicting the behavior of these systems under dynamic load since the
same pre-dominant geometrical effects will also occur under dynamic loading
conditions and also for investigating the effects of strain rate on the system when
applying dynamic load.

The primary aim of this study is to examine the effects of changing the
geometry shape of metallic circular tubes into an ellipse on the energy absorbed by
this tube.

2 Numerical Procedure

Computational analyses and finite element models of these energy absorbers were
developed by using the implicit finite element code ANSYS.

Figure 1 displays the finite element model used to simulate the responses of
these absorbers. In this model, 3D-structural solid element (solid 45) which has
eight nodes with large strain, large deflection and plasticity capabilities was used
to model the circular and elliptical tube profile. The moving mass was modeled as
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a rigid body and constrained to move vertically over the y axis. The supporting
mass was defined as a rigid body as well and constrained to be fix in its place.

The numerical models have three nonlinear features.

• Nonlinear material model where a bilinear isotropic hardening material model
was employed to define the material of the elliptical and circular tubes. A value
of 500 MPa was assigned to the yield stress of the elliptical and circular tubes
and a non-zero value of 1500 MPa for the plastic modulus was selected to depict
the plastic portion of the stress–strain curve. The same value of plastic modulus
was used by [6].

• An augmented Lagrangian penalty option describes the contact algorithm used
to capture the models changing contact status throughout the deformation
stroke.

• Finally, the third non-linearity being large deflection large strain deformation,
this feature should be included since changes in volume will happen due to
applying large displacements.

Series of models were performed with elliptical ratios ranging from 0.5–1.5.
The elliptical ratio is given by

r ¼ D1

D2
ð1Þ

where D1; D2 are horizontal and vertical semi-axes of the elliptical tube and r is
the elliptical ratio.

Figure 2 displays the horizontal and vertical semi-axes of the elliptical tube.

Moving mass

Tube

Supporting mass 

Fig. 1 Finite element model for elliptical tube with moving and supporting mass
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3 Numerical Results

3.1 Analysis the Effect of Elliptical Ratio
on the Load-Displacement Curve

Figure 3 displays the force-displacement curve for elliptical tubes with different
elliptical ratios. It can be seen from Fig. 3 that the tubes resistance increase
linearly at the beginning of the compression process until reaching the yielding
point when it change in a non-linear manner until the end of the process.

It was observed that the elliptical ratio has a great influence on the load-dis-
placement curve where by reducing the elliptical ratio the load-displacement curve
will has a peak at the beginning of the compression process and with increasing the
elliptical ratio this peak load moves to the end of compression process.

3.2 Analysis of the Effect of Elliptical Ratio
on the Energy-Displacement Curve

Figure 4 shows the energy-displacement curve for each of the elliptical tubes. It
can be seen from the figure that all tubes have a non-linear relation in terms of
energy with displacement. The energy response curve is more stable for the tubes
with an elliptical ratio higher than 1.

On the other hand the energy absorbed by tubes with a higher elliptical ratio is
smaller at any value of displacement than the energy absorbed by the tube with a
lower elliptical ratio, but at the end of the compression process the value of energy
is the same for all tubes.

Fig. 2 Elliptical tube with its
dimensions
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Fig. 3 Load-displacement response for elliptical tubes with various elliptical ratios

Fig. 4 Energy-displacement response for elliptical tubes with various elliptical ratios
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3.3 Analysis of the Effect of the Elliptical Ratio
on the Specific Energy-Displacement Curve

The specific energy-displacement curves for all tubes are presented in Fig. 5.
These curves are similar to the energy-displacement curves but with some

differences in the range because changing the elliptical ratio affects both the
energy absorbed by the tube and mass of the tube therefore the effect of elliptical
ratio on the specific energy curves is greater.

3.4 Analysis of the Effect of the Elliptical Ratio
on the Total Energy

The total energy is the area located between the load-displacement curve and
displacement axis. This area was calculated for each tube and the total energy was
obtained.

Figure 6 shows the relationship between the total energy and the elliptical ratio.
It can be seen from Fig. 6 that the graph can be divided into two parts. The first
one is for tubes with an elliptical ratio lower than (r = 1). This part has a nearly
linear relationship between energy and elliptical ratio where the energy decreases
when the elliptical ratio increases. The second part is for tubes with elliptical ratio
higher than (r = 1). In this part the energy also decreases when the elliptical ratio
increases but the slope is different from the first range.

Fig. 5 Specific energy-displacement response for elliptical tubes with various elliptical ratios
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3.5 Analysis of the Effect of the Elliptical Ratio
on the Total Specific Energy

The total specific energy is the total energy absorbed by the tube divided by the
mass of this tube.

e ¼ E

m
ð2Þ

where e is specific energy absorbed by tube, E is the total energy absorbed by tube
and m is the mass of the tube.

Figure 7 displays the relationship between the specific energy absorption and
the elliptical ratio.

It can be seen from Fig. 7 that the specific energy also decreases when elliptical
ratio increases.

3.6 Analysis of the Effect of Elliptical Ratio on the Stress
and Stress Distribution

The value of stresses at the critical point (the point which has a maximum stress)
has been affected by changing the elliptical ratio. Figure 8 shows the relationship
between the stress at the critical point and displacement of the rigid body for all
tubes.

It is clear that the tubes which have lower elliptical ratio have a higher value of
stresses at the critical point. It is clear also that the elastic range (the range before
the yield stress) is not affected by changing the elliptical ratio.

Fig. 6 Energy—elliptical ratio curve
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Figure 9 illustrates the stress distribution of an elliptical tube with an elliptical
ratio r = 1.25 and r = 1.5. It can be seen that the elliptical ratio does not has any
effect on the stress distribution.

Fig. 8 Stress at critical point-displacement response for elliptical tubes with various
elliptical ratios

Fig. 7 Specific energy—elliptical ratio curve
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4 Experimental Work

4.1 Experimental Set up

The quasi-static tests of the elliptical and circular samples were conducted by
using the Zwick Type BT1-FB050TN testing machine. The loading frame has a
maximum capacity of 50 kN.

To simulate the quasi-static conditions a displacement rate of 10 mm/min was
applied to the moving head whereas velocities between 0.5 and 15 mm/min have
been used by many researchers to represent the quasi-static lateral compression of
tubes between various indenters [7, 8]. Due to unavailability of elliptical tube in
the market the elliptical tubes were prepared in the workshops where many
samples of elliptical tubes with elliptical ratio (r = 0.5) were obtained by cutting
metal sheets of mild steel.

Fig. 9 Graphic display of stress distribution for two elliptical tubes a elliptical ratio (r = 1.25)
b elliptical ratio (r = 1.5)
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4.2 Material Properties

Mild steel was used to manufacture the tubes used in this work. A DIN standard
(DIN 2393 ST 37.2) was selected for the circular tubes and metal sheets of British
standard (BS 970 EN3B) were used for manufacturing elliptical tubes.

The true static stress–strain curve was obtained from a tensile test. More than
two dog bone samples for each material were prepared in order to confirm
consistent results. The stress–strain curves obtained from the samples showed
highly rare phenomena in which strain softening happened almost immediately
after yielding with no apparent sign of any strain hardening which is not consistent
with normal behavior of mild steel. Therefore, the material properties of tubes in
the numerical study were simulated by using a bilinear stress–strain curve as an
approximation to represent these materials. Table 1 shows the properties of
materials used in this study.

5 Experimental Results and Validation

The Fig. 10 illustrates the comparison between the numerical results obtained with
ANSYS and experimental results. The finite element models used in this section
have different material properties in order to fit the materials used in the experi-
ments whereas the numerical section assumed that all models have the same
material properties.

It can be seen that numerical curve gives an under prediction for the crash force
followed by over prediction for the rest of the process. It can be seen also that the
results compared well in terms of energy so it is possible to consider the results of
the numerical work validated.

6 Analysis of the Energy Absorption Characteristics

The effectiveness of energy absorber systems can be described by many indictors
such as crush efficiency, energy efficiency, specific energy absorption capacity and
weight effectiveness.

Table 2 explains the various indictors mentioned above.

Table 1 Material properties

Material type Tube shape Yield stress (MPa) Young’s modulus (GPa) Tangent
modulus

DIN 2393 ST 37.2 Circular 725 156 1500
BS 970 EN3B Elliptical 500 216 1500
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Fig. 10 a Experimental results and numerical solutions for a circular tube b Experimental results
and numerical solutions for an elliptical tube c Initial and final stages of circular tube d Initial and
final stages of elliptical tube
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egis the crush efficiency which was defined by [9] as the stroke length divided
by a characteristic length of the structure such as the outer diameter of the tube.

eg ¼
L

D
ð3Þ

Where Lis the stroke length and D is the major axis length of the elliptical tube.
eEis the energy efficiency as described by [9] and given by

eE ¼
A

Pd�L0
ð4Þ

Where A is the area under the force deflection curve, Pdis the peak load observed
and L0 is the original length.

Weff is the weight effectiveness, which is given by

Weff ¼ eg�Sc
s ð5Þ

Where egis the crush efficiency and Sc
s is the specific energy absorption capacity.

It can be seen from Table 2 that all systems have the same crush efficiency.
Upon inspection of Table 2, it can be seen that all indicators mentioned above

increase when the elliptical ratio decreases.
It was noticed also that the energy efficiency was 20% more when the elliptical

ratio was reduced to 0.5.

7 Discussion

In this section, depending on the numerical results and experimental validation the
effects of elliptical ratio will be discussed.

It was noticed in the Fig. 3 that the elliptical ratio has an influence on the load-
displacement curves where by changing the elliptical ratio the load-displacement
curves change and they go higher by reducing the elliptical ratio.

The increase in force observed in the elliptical tubes which have elliptical ratio
lower than 1 is because of the increase in the initial collapse load where the value
of initial collapse load increases when the horizontal dimension D1 of the elliptical

Table 2 Indicators for describing the effectiveness of energy absorber systems

r eg (%) eg (%) Weff

0.5 70 56 2885
0.75 70 44 1985
1 70 35 1427
1.25 70 33 314
1.5 70 30 280

eg: Crush efficiency eE: Energy efficiency Weff : Weight effectiveness
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is decreased. Once the load increases the energy absorbed by the tube also
increases and that is clear in Fig. 4 where the elliptical tubes with elliptical ratio
lower than 1 absorb more in terms of energy and specific energy. It was noticed
that all tubes have non-linear responses of energy that is because the loads also
have non-linear responses. Figures 5 and 6 show the effect of elliptical ratio on the
total energy and total specific energy respectively. The increase in force in the
elliptical tubes which have an elliptical ratio lower than 1 make the area located
under the load-displacement curve greater and this leads to an increase in the total
and specific energy absorbed by these tubes. When the elliptical ratio increases the
energy and specific energy absorbed by the tubes decrease where the area located
under the load-displacement curve decreases. The effect of elliptical ratio on the
stress and stress distribution were presented in Sect. 3.6. It was discovered that
changing of elliptical ratio does not affect on the stress distribution over the
elliptical tubes so it does not affect on the location of fracture point, but it affect on
the value of the stress at critical point where at any displacement the stress is
greater in the tubes which have lower elliptical ratio so the elliptical tubes which
have lower elliptical ratio need lower displacement to fracture. In Sect. 6 an
analysis on the characteristics of energy absorption systems was presented, it was
found that all tubes have the same value of crush efficiency because of applying
the same displacement to all tubes. It was found also that both energy efficiency
and weight effectiveness increase when elliptical ratio decreases that is because of
increasing the energy absorbed by these tubes.

It was found in Sect. 5 that the numerical analysis gave an under prediction for
the crash force followed by over prediction for the rest of the process. This
difference between the results is because of using the bilinear material model
which considers the flow of stress increase as strain increase but this does not
happen in real condition. It was found also that the numerical code could not
predict exactly where and when the plastic hinges should generate. Figures 10c
and d show the inability of numerical code to capture hinges at the contact points
A, B, C and D.

8 Conclusion

A number of experiments and numerical simulations were done to determine the
effects of changing the geometry of a circular tube into an elliptical tube.

The numerical method gave a little over predictions in the collapse of the tubes
because of using the bilinear material model and inability of finite element code
(ANSYS) to predict exactly when and where plastic hinges should generate.

The numerical compared well with experimental results especially in terms of
specific energy.

It has been found also that changing the elliptical ratio of the tube alter the load-
deflection curve and this leads to a change of the energy absorbed by the tube.
Changing the geometrical shape of the tube leads to change the volume of this tube
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and thus the mass of the tube change also and this leads to a change of the specific
energy absorbed by the tube.

By reducing the elliptical ratio to 0.5 the tube absorbs 43.3% more energy and
the system will gain 102% more in terms of specific energy.

The indictors which express the performance of energy absorber systems were
calculated, it was found that all these indicators increase when the elliptical ratio
decreases.
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Dynamic Response Analysis
of Thermoplastic Polyurethane

V. Fontanari, M. Avalle, C. Migliaresi, L. Peroni and B. D. Monelli

Abstract The proper modeling of the strain-rate dependence of rubber-like
polymers is of high importance in energy-absorbing systems design. There are
several possibilities for modeling the material dynamic response of such materials,
but the field of applicability, drawbacks and critical aspects of each developed
approach are not definitely assessed yet. The present chapter discusses these topics
for Thermoplastic PolyUrethane (TPU), being TPU one of the most used shock-
absorber materials. The qualification of the most promising approaches is
numerically established by performing Finite Element Analysis (FEA) of tensile
and compressive tests at different strain-rates. For the selected constitutive models,
the corresponding constitutive parameters are experimentally determined and then
implemented in FE models. The assessment of each material model is then carried
out by comparing the predicted response with the experimental one.
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FEA

1 Introduction

Nowadays, polymeric materials are commonly employed in shock-absorbing
systems. This class of materials presents peculiar constitutive properties, mainly
linked to the strain-rate dependence of their mechanical response. The design of
such energy-absorbing devices must be carried out after thorough determination of
the energy absorbed during the impact. This quantity is tightly related to the
material’s behaviour. The knowledge of the tensile and compressive material
response as well as their strain-rate sensitivity is of paramount importance: during
impact indeed, the material may experience both tensile and compressive stress
states characterized by time-varying strain rates. Currently, tensile impact and
weight-drop tests constitute the most common ways to assess the material’s shock-
absorbing capability under tensile and compressive conditions, respectively.
However, the experimental approach is often expensive and time-consuming,
while the use of predictive analytical/numerical models undoubtedly represents a
valid alternative for estimating this quantity.

In rubber-like Thermoplastic PolyUrethane (TPU), the strain rate produces
significant effects in all the three stages of the material deformation process
(Fig. 1), depending upon the loading condition (i.e. tensile or compressive) [1–6].
Strain rate effects are particularly evident on the initial slope of the curve and on
the extension of the characteristic plateau. This mechanical behavior arise as a
consequence of the strain-rate dependence of the polymeric chains rearrangement
phenomena necessary for bearing the applied loads [7].

Several constitutive models accounting for strain-rate effects can be found in
literature [2, 8–17]. However, despite the large amount of proposed models, the
application range and limits as well as the critical issues of each approach have not
been fully explained yet. The present work addresses these aspects by comparing
the predictive capabilities of different constitutive approaches, considered as the
most promising for studying hyperelastic behavior of a TPU widely used for
producing shock-absorber devices. To this purpose, tensile and compressive tests
have been carried out at different strain rates and the experimental results have
been compared with the outcomes of computational models ad hoc developed to
simulate the performed mechanical tests.

2 Theoretical Background: Nonlinear Hyper-Viscoelastic
Constitutive Model

The constitutive models, up to now proposed in the scientific literature, can be
classified into three macro-groups: empirical [8, 9], phenomenological [10–13],

338 V. Fontanari et al.



and micro-mechanical [14–17]. Even though the models belonging to the first two
groups explicitly represent the material’s response and its energy absorption
capability, only the micro-mechanical models can be used to establish the stress
strain evolution produced by the loading conditions into the material. From this
point of view, the micro-mechanical models offer the possibility, at least theo-
retically, of directly operating on the tuning of material properties in order to
optimize its mechanical response. Anyway, the second and the third of the three
aforementioned groups offer the largest amount of information on the material
response towards the comprehension of the phenomena observed during dynamic
loading; for these reasons, the attention will be focused on these two latter groups,
while the purely empirical models have been discarded, since their usefulness is
strictly confined to the specific material under examination.

Even though elastomeric TPU only recently found wide use in many engi-
neering applications, its constitutive properties and the role played by the strain-
rate in the definition of the constitutive law have been extensively studied [1–6].
The peculiar characteristic of this class of materials is the concomitant occurrence
in their mechanical response of a hyperelastic and a viscoelastic component, both
of them nonlinear and strain-rate sensitive. Therefore, only constitutive models
accounting for these two components are reputed to be able to correctly reproduce
the mechanical behaviour of these materials. In the following, two of the most
promising models developed in the literature: the hyper-viscoelastic models pro-
posed by Yang et al. [10] and by Bergstrom and Boyce [14] will be presented. The
study has not been extended to the remaining cited references, since these are
derived from the two aforementioned constitutive models.

2.1 Yang Nonlinear Hyper-Viscoelastic Constitutive Model

The Yang nonlinear hyper-viscoelastic model assumes the material as homoge-
neous, isotropic and incompressible and the macroscopic behavior to be a

Fig. 1 Schematic
representation of the
strain-rate effects onto the
stress–strain curves r� eð Þ
of rubber-like polymeric
materials

Dynamic Response Analysis of Thermoplastic Polyurethane 339



combination of a quasi-static hyperelastic and a nonlinear viscoelastic response
acting in parallel. The model is thus based on a phenomenological approach.

The hyperelastic response is expressed by the Mooney–Rivlin model [18, 19]

rhyp ¼ �peI þ a1Bþ a2B � B ð1Þ

where rhyp is the Cauchy stress tensor, B ¼ F � FT is the left Cauchy-Green
deformation tensor (F is the deformation gradient), pe is the hydrostatic pressure
and a1 ¼ 2 oW=oI1 þ I1oW=oI2ð Þ and a2 ¼ �2oW=oI2 are the terms deriving from
the strain energy potential:

W ¼ A1 I1 � 3ð Þ þ A2 I2 � 3ð Þ þ A3 I1 � 3ð Þ I2 � 3ð Þ ð2Þ

where I1 ¼ tr Bð Þ; I2 ¼ I2
1 � tr B2

� �� �

and I3 ¼ detðBÞ are the three invariants
respectively. The parameters A1; A2 and A3 are material constants that can be
determined by fitting the r� e curve of the material (tension/compression) under
quasi-static loading conditions.

The viscoelastic component rvð Þ is given by the T-BKZ model [20–22],
expressing the Cauchy stress tensor rv as follows:

rv ¼ �pv þ FðtÞ �Xt
s ¼ �1 C sð Þf g � FTðtÞ ð3Þ

where pv is usually an arbitrary pressure, C ¼ FT � F is the right Cauchy-Green
deformation tensor, X is a matrix functional which describes the effect of strain
history on stress.

According to the authors of the model, X takes the following form:

Xt
s¼0 C sð Þf g ¼ Z

t

0

u I1; I2ð Þmðt � sÞ _EðsÞds ð4Þ

where _E ¼ _FT � Fþ FT � _F
� �

is the strain rate, while u and mðt � sÞ are the
damping and the relaxation function, respectively. In order to restrain the number
of parameters, in the present model, the following expressions:

u ¼ A4 þ A5 I
0

2 sð Þ � 3
h i

m t � sð Þ ¼ e� t�sð Þ=A6 ð5Þ

have been assumed for the two functions defining the constitutive functional,
where I

0

2 I
0

2 ¼ I2
� �

is the second invariant of the C tensor and A4;A5, and A6 are a
set of material parameters that can be determined by simultaneously fitting two or
more r� e curves corresponding to different strain rates through a nonlinear
multi-fitting procedure [10, 23]. The material constitutive law is obtained by
combining Eqs. (1–5). In the monoaxial case, being rhyp

yy ¼ rhyp
zz ¼ 0 and ryy ¼

rzz ¼ 0; this takes the following form:
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rxx ¼ rhyp
xx þ k2 Z

t

0

k A4 þ A5 I2 � 3ð Þ½ �e� t�sð Þ=A6 _kds

þ 1
2
k�1 Z

t

0

k�2 A4 þ A5 I2 � 3ð Þ½ �e� t�sð Þ=A6 _kds
ð6Þ

in this case the stretch term kðk ¼ 1þ eÞ is used as a measure of the material
strain. In the Yang model, the material behaviour is thus univocally determined
once the set of constitutive parameters A1; . . .; A6 is defined. The first three
parameters identify the hyperelastic material response and can be calculated by
analyzing the quasi-static uniaxial material response according to the procedure
devised by the authors. The remaining parameters determine the viscoelastic
material response whose strain-rate dependence is incorporated in the constant A6:
The estimation of these parameters can be carried out by analyzing the variation of
the uniaxial material response within a given strain-rate interval.

Although the present model is relatively easy in its conception and imple-
mentation, it should be noted that such an approach must face two important
critical aspects. First, the model is not able to simultaneously interpret tensile and
compressive response: this can be a major limit if the material under investigation
is characterized by a tensile response different from the compressive one. Sec-
ondly, the constitutive parameters estimation is based on nonlinear multi-fitting
procedures whose results are strictly correlated to the initial guesses as well as to
the adopted minimum search algorithm, as extensively discussed in literature. In
other terms, the material behavior may be described by two or more sets of
constitutive parameters, thus frustrating every attempt to establish a correlation
between the characteristics of this material class and the above-stated parameters.

2.2 Bergstrom–Boyce Nonlinear Hyper-Viscoelastic
Constitutive Model

Bergstrom and Boyce [14–16] proposed a representation of the hyper-viscoelastic
material behaviour on the basis of microstructure considerations. The basic
hypotheses are the same as those of the Yang’s model. Even in this case, the
material is assumed to be isotropic, homogeneous and incompressible, its response
is subdivided into a hyperelastic and a viscoelastic component acting in parallel.
The first is meant to interpret the material behavior under equilibrium conditions,
the second the material time dependence.

The hyperelastic component is schematized according to the Arruda–Boyce
model [24]. In other terms, the quasi-static material response is referred to that of a
cubic cell containing eight Langevin chains [24] linking the cell centre with its
vertices. If ki indicates, as usual, the network stretch along the ith direction, the
following correlation [24, 25],
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r1
i ¼ C1

R

ffiffiffiffiffiffi

N1
p k1

i

� �2� k1
chain

� �2

k1
chain

L�1 k1
chain
ffiffiffiffiffiffi

N1
p

� �

þ Bln I1
3

� �

ð7Þ

yields the link between the stress along this direction and the corresponding

stretch. In Eq. (7), C1
R;

ffiffiffiffiffiffi

N1
p

and B represent the initial elastic modulus, the
boundary network stretch and the bulk modulus, respectively. I1

3 is the third
invariant of the deformation tensor while L�1 xð Þ is the inverse of the Langevin
function L xð Þ ¼ cot xð Þ � 1=x:

According to experimental evidences [14], the viscoelastic component is further
subdivided into two contributions, a hyperelastic one described by the Arruda–
Boyce model, and a viscous one, both of them acting in series. The latter one is
introduced in order to model the strain relaxation in the hyperelastic element, thus
capturing the material time dependence. While for the hyperelastic network con-
tribution the correlation between stress and corresponding stretch is immediately
established, being this formally identical to Eq. (7),

r2
i ¼ C2

R

ffiffiffiffiffiffi

N2
p k2

i

� �2� k2
chain

� �2

k2
chain

L�1 k2
chain
ffiffiffiffiffiffi

N2
p

� �

þ Bln I2
3

� �

ð8Þ

the formulation of a constitutive time dependent model on the basis of micro-
structure considerations is pretty difficult. However, if the time dependence is
assumed to be caused by reptational motions of the fully or partially inactive
polymeric chains, it is possible to model the strain relaxation according to the
following model [14],

_c ¼ C1 k2
chain � 1

� �C2 s2

ŝ2

� �m

ð9Þ

where _cð Þ is the effective creep rate, s2ð Þ the equivalent shear stress acting on the
hyperelastic network. In Eq. (9) C2 and m are material constants, as well as
C1=ŝm

2 ¼ Ĉ1; while k2
chain ¼ I2

1=3; being I2
1 the first invariant of the strain tensor

corresponding to the hyperelastic model of the second network. In the present
model, the strain-rate dependence of the constitutive law is thus incorporated in
this latter parameters set.

In conclusion, once the material parameters
	

C1
R;

ffiffiffiffiffiffi

N1
p

; C2
R;

ffiffiffiffiffiffi

N2
p

; B; Ĉ1; C2; m



have been determined, the material behavior is univocally

determined by the equation set (7–9). The first five parameters

C1
R;

ffiffiffiffiffiffi

N1
p

; C2
R;

ffiffiffiffiffiffi

N2
p

; B
	 


can be experimentally assessed, by analyzing the quasi-

static uniaxial material response and its behavior during loading/unloading uniaxial
cycle at a given strain-rate (for the estimation of these parameters, refer to the
appendix in [14]); the evaluation of the remaining parameters, on the contrary, can be
only performed through trial and error techniques based on the comparison of the
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uniaxial material response in a given strain-rate range with that predicted by a
numerical model able to simulate the considered experimental test and implementing
the constitutive law containing the parameters to be estimated.

3 Experimental Characterization

The implementation of the theoretical models described in the previous section
needs the determination of material constants which can be obtained by carrying
out a proper experimental campaign. Since any shock-absorber device can undergo
both tensile and compressive stress states during the impact transient, it is apparent
that both tensile and compressive responses must be experimentally accounted for.
Due to the widespread use of polyurethane rubbers in shock-absorbing devices, the
investigation was focused onto one of the most popular elastomeric thermoplastic
polyurethane (APILON 52, API S.p.A., Italy), which main physical and mechanical
properties are collected in Table 1.

The constitutive behavior was determined by performing standard tensile and
compressive tests in which the strain-rate was varied between 10-3 and 102 s-1,
thus making it possible to establish both the quasi-static and dynamic material
behavior at medium–low strain-rates. Although the considered strain-rates range
does not cover all the potential impact conditions, it is representative for a large
number of engineering applications. The results of the experimental campaign are
reported in the following subsections.

3.1 Tensile Response

The experimental true stress-true strain rt � etð Þ curves obtained by the experi-
mental investigation as regards to the tensile behavior of APILON 52 are sum-
marized in Fig. 2. The rt � etð Þ curves were obtained from a set of standard
specimens (ISO 527-2). An universal electro-mechanical testing machine (Instron
4502, ITW Group, US) was used for determining the both quasi-static
_e ¼ 2:210�3s�1ð Þ and cyclic material behavior.

Engineering strains up to 65% and strain-rates ranging from 10-4 and 10-2 s-1

were enforced to explore the quasi-static cyclic material behavior. By contrast, the
dynamic response was explored through universal servo-hydraulic testing machine

Table 1 Physical and mechanical properties of APILON 52

Density
[kg/m3]

Glass transition
temperature [�C]

Hardness
[shore A]

Load at
100%
[MPa]

Load at
300%
[MPa]

Ultimate tensile
strength [MPa]

Strain at
break [%]

1,185 30 63 2.2 3.8 27 850

Dynamic Response Analysis of Thermoplastic Polyurethane 343



(DARTEC HA100, Dartec Inc, USA) specifically developed by Politecnico of
Torino for investigating the material response at medium strain-rates [26]. As
expected, the tested material exhibits a significant elastomeric characteristics: even
though large elongations are applied to APILON 52, these are recovered almost
completely. The tested material also shows a dependence of the constitutive law on
the strain-rate, even at very low strain-rates: the strain-rate effects especially
involve the initial elastic modulus, whereas no appreciable shortening of the
plateau extension can be detected, at least in the strain-rate range considered in the
present work.

Fig. 2 APILON 52 tensile (a) and cyclic (b) rt � et curves at different strain-rates _e; respectively
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As will be clarified in the next section, the knowledge of the material tensile
impact response is necessary for implementing the theoretical model proposed by
Bergstrom and Boyce. Figure 3 shows the average true stress-true strain curves
obtained after performing a proper elaboration of the experimental impact force
L vs. stretch k curves (L–k curve) at three impact velocities: 2, 2.5 e 3 m s-1. In
the present investigation the material L–k curves were determined through
instrumented pendulum testing machine (Resil Impactor 6596, CEAST, ITW
Group, US) over a set of 15 standard specimens (ISO 527-2). Impact velocities
ranging from 2 and 3 ms-1 were considered, thus making it possible to infer the
material response at strain-rates within 70 and 100 s-1. As shown by Fig. 3, strain-
rate effects are not really much meaningful in the considered range. For APILON
52 strain-rate effects become relevant when the variation are of an order of
magnitude, especially at very low strain-rate values. These findings suggest that
the dependence of the constitutive behavior of the tested material is highly non-
linear even at medium–low strain-rates.

3.2 Compressive Response

As regards the characterization of the material compressive behavior, standard
uniaxial compressive and cyclic tests were performed. Experimental tests were
carried out using the same testing machines employed to characterize the material
tensile behavior. A set of 24 cylindrical specimens having height and diameter of
20 mm was used, whereas the strain-rate was varied between 10-3 and 101 s-1.

Fig. 3 Tensile impact rt � et curve of APILON 52 at strain-rates ranging from 70 and 100 s-1
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The analysis of the experimental trends (Fig. 4) allows to identify same
interesting features characterizing the material behavior. The comparison between
the results summarized in Figs. 2 and 4 reveals the existence of an asymmetry in
terms of structural response. The tested material appears to be more compliant in
compression than in tension and the strain-rate effects are much more relevant with
respect to what was observed in tensile tests, especially as regards the increase of
the initial elastic modulus. In addition, a significant contraction of the plateau can
be appreciated. It is apparent that the investigated material is characterized by
asymmetric behavior. This experimental evidence is of paramount importance

Fig. 4 Strain-rate effects onto the compressive and cyclic rt � et curves of APILON 52
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because it must be taken into account in the development or selection of the most
proper constitutive model for reproducing the effective material behavior.

4 Constitutive Models Analysis

The qualification of the theoretical models described in the previous section firstly
requires the estimation of the corresponding sets of constitutive parameters. While
for the determination of the Yang material parameters it is sufficient to fit the
uniaxial responses at different strain-rates (tensile and compressive) by Eqs. (1–5)
simultaneously, ad hoc inverse methods must be built-up for estimating the
material constants of the Bergstrom–Boyce model. In the following subsections,
the evaluation procedures employed for establishing the material constants in both
theoretical models will be presented.

4.1 Yang’s Model Qualification

The procedure proposed by Yang et al. [10] was adopted for estimating the consti-
tutive parameters. Hyperelastic constants ðA1;A2;A3Þ were determined fitting the
uniaxial tensile and compressive stress–strain curves r� e under quasi-static load-
ing conditions by Eq. (1), whereas the viscoelastic ones ðA4;A5;A6Þ by means of
nonlinear multi-fitting procedure proposed by Doman et al. [2, 23]. In more detail,
the viscoelastic constants were calculated by minimizing the following functional:

Err A4; A5; A6ð Þ ¼ N �
X

N

n¼1

X

M�1

i¼0

r̂n iDt; A4; A5; A6ð Þ � rnðiDtÞ½ �2

�rn � rn iDtð Þ½ �2
ð10Þ

in which N and M denote the number of the experimental curves and data points
involved into the fitting respectively, while r̂n;rn and �rn are the estimated stress
(refer to Eq. (6)), the experimental stress and the mean experimental stress,
respectively. The stress–strain curves provided by the experimental campaign were
used to calculate the aforementioned parameters. The time step Dt was chosen
according to the criteria defined by Wineman [27] for solving Volterra equation.
Table 2 collects the fitting parameters provided by the fitting procedure and
inherent the compressive response of APILON 52 for strain-rates ranging from
10-3 to 0.89102 s-1. Similar results were obtained from the fitting of the tensile
stress–strain curves.

The results obtained from these analyses allow to finely reproduce the stress–
strain curves of APILON 52 at strain-rates within the range considered in the
present work: relative discrepancies between the predicted curves and the exper-
imental ones were found to be lower than 2% in both tensile and compressive
conditions. Although the theoretical model proposed by Yang et al. [10] accounts
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for the strain-rate effects excellently for this material, it must be highlighted that
the procedure used for estimating the constitutive parameters does not allow to
identify the material constants set uniquely once the stress condition (tensile,
compressive) has been specified. Depending on the algorithm used for minimizing
the objective function and the initial values, different material constants set pro-
viding a very good reproduction of the effective material behavior were found both
under tensile and compressive loading. It is authors’ opinion that the lack of
uniqueness inherent in the evaluation procedure developed by Yang et al. repre-
sents a very important critical issues. The magnitude of the energy stored by the
material was found to be particularly sensitive to the materials constants set
A4; . . .; A6 : small variations in these constants values result in significant vari-
ations in the estimation of the energy stored by the material. In addition, the fitting
procedure may provide material constants estimation without any physical
meaning. From the analogical point of view indeed, the integral formulation of
Eq. (4) corresponds to a modified Maxwell model [7, 10] in which the spring and
dashpot elements have a stiffness E ¼ A4 þ A5 I2 � 3ð Þ and viscosity g ¼
A6 A4 þ A5 I2 � 3ð Þ½ �; respectively. For the material investigated in the present
work, it easy to probe that spring stiffness takes always negative values when the
compressive constitutive behavior is considered. Thus, any possibility to assume
or establish correlations between the model constants set and physical and
mechanical material properties is precluded.

4.2 Bergstrom–Boyce Model Qualification

As regards the theoretical model proposed by Bergstrom and Boyce, the consti-
tutive parameters must be desumed through a proper elaboration of the experi-

mental data. However, while the elastic constants C1
R;

ffiffiffiffiffiffi

N1
p

;C2
R;

ffiffiffiffiffiffi

N2
p

;B
	 


can be

uniquely determined from the experimental results (cf. Sect. 2.2), the time-
dependent material constants can be estimated either tentatively or through trial
and error techniques based on the comparison of the uniaxial material response in
a given strain-rate range with that predicted by a numerical model able to simulate
the considered experimental test and implementing the constitutive law containing
the parameters to be estimated. Being these parameters particularly crucial in the
prediction of the strain energy stored by the material under a specified loading
condition, the estimation of such parameters must be accurately carried out. Trial

Table 2 Hyper-viscoelastic constants reproducing the compressive response of APILON 52 at
strain-rates ranging from 10-3 and 0.8 102 s-1

A1 [MPa] A2 [MPa] A3 [MPa] A4 [MPa] A5 [MPa] A6 [ls]

1.9584 -0.627 0.0434 1.85 -4.2 15.6
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and error techniques developed by Peroni and Peroni et al. [28, 29] resulted to be
particularly accurate and effective and for these reasons were adopted in the
present investigation.

As revealed by the experimental campaign, an asymmetric response charac-
terizes the behavior of APILON 52. Accordingly, it is reasonable to expect the
existence of two different sets of constitutive parameters: one for the tensile
response and one for the compressive response. In order to evaluate the Berg-
strom–Boyce parameters as a function of the stress state typology (tension and
compression), two different Finite Element (FE) models were built-up, the first one
for simulating the uniaxial compressive test at fixed strain-rate and the second one
for reproducing the experimental conditions proper of tensile impact tests at
specified impact velocity. The conceptual schemes of both FE models with their
basic assumptions are illustrated in Fig. 5. With regard to the simulation of the
uniaxial compressive test, since the testing machine frame is very stiff, the
deformation process solely involves the polymeric material and therefore only the
cylindrical specimen was modeled. The supporting plane of the testing machine
was introduced into the computational model by constraining the displacements
along the loading direction (roller boundary conditions) at the bottom surface of
the cylinder. The loading conditions were implemented by enforcing a displace-
ment history u ¼ uðtÞ along the same direction so as to produce thee prescribed
strain-rates in the specimen.

Due to the complexity of the testing apparatus for characterizing the materials
tensile impact response, only a part of the specimen and of the instrumented
pendulum was implemented into in the FE model.

In more detail, as shown by Fig. 5, only the hammer end and the clamping
systems were modeled. In order to conserve the masses values involved into the
experimental test, an equivalent mass density was assigned to the modeled ham-
mer end. Specimen was constrained so that to reproduce the effective clamping
conditions in the experimental test. By contrast, loading conditions were imple-
mented assigning to the hammer end a prescribed velocity having the same time-
law obtained during the experimental tests.

Fig. 5 Conceptual schemes of the computational FE models used for simulating the compressive
and tensile impact tests
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For both FE models proper sensitivity and convergence analyses were carried
out in order to establish all the numerical parameters providing solutions model-
independent. 3D structural 20-nodes elements were used to discretize specimens
and parts of the testing apparatus in both cases. Convergence analyses revealed
that mesh-independent results are obtained if the characteristic element size is
lower than H=14 in the case of uniaxial compressive test modeling and lower the
half width of the specimen for the tensile impact test (Fig. 6). The contact between
the specimen-fixing grip system and hammer end was implemented by meshing
the contacting surfaces with 8-nodes surface-to-surface elements. The contact
problem was introduced into the computational model as an associate problem by
the Augmented Lagrangian Multipliers (ALM) thus minimizing the effects of
contact stiffness onto the model response. Both computational models were
developed using the general purpose commercial code ANSYS Rel. 12.0. The
Newmark algorithm was used to account for the time-transient.

The first five material constants (Table 3) in both cases (compression and
tension) were calculated analyzing the quasi-static and cyclic experimental
responses according to the indications and suggestions of the authors (see
Appendix in [14]).

The estimation of the remaining material parameters Ĉ1;C2;m
� �

was based on
the comparison of the experimental and numerical impact force F vs. time t curves
in the case of tension and the experimental and numerical evolution of the mean
compressive stress in the case of compression. The experimental results referring
to the uniaxial compressive test at 88 s-1 and the tensile impact test at the impact
speed of 3 m s-1 were not used for deducing the aforementioned parameters: these
results were in fact used as comparison purposes for probing the predictive
capabilities of the Bergstrom–Boyce model. In both cases the aforementioned

Fig. 6 Meshes used for
evaluating the time-
dependent Bergstrom–Boyce
parameters as a function of
the loading configuration.
a compression, b tensile
impact

Table 3 Compressive and tensile elastic Bergstrom–Boyce parameters for APILON 52

C1
R [MPa]

ffiffiffiffiffiffi

N1
p

[/] C2
R [MPa]

ffiffiffiffiffiffi

N2
p

[/] B [MPa]

Compression 0.294 2.04 1.32 2.04 147
Tension 0.233 4.92 1.42 4.92 117
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procedures developed by Peroni and Peroni et al. [28, 29] were employed for
deducing the materials parameters Ĉ1;C2 and m. A functional akin to that used by
Doman et al. [2, 23] (Eq. (10) with N = 1) was assumed as the objective function
to be minimized.

The comparison between the numerical predictions and the corresponding
experimental results is illustrated in Fig. 7 for compression and tension, respec-
tively, while Table 4 collects the numerical values of the corresponding time-
dependent constitutive parameters Ĉ1;C2;m

� �

: The comparisons refer respectively

Fig. 7 Comparison between the experimental trends and final numerical predictions obtained by
the inverse analysis for compression (strain-rate: 88 s-1) (a) and tension (impact speed: 3 m/s) (b)
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to uniaxial compressive testing condition at a strain-rate of 88 s-1 and tensile
impact test at impact speed of 3 m s-1. As shown by Fig. 7, the comparisons show
that Bergstrom–Boyce model is able to correctly reproduce the material behavior
in both stress conditions, tension and compression. A very good agreement
between the experimental findings and the numerical prediction is found, espe-
cially at medium–high strains, even if non negligible discrepancies between the
two approaches characterize the low strains regime (percentage deviations greater
than 20%). Being the effective material behavior systematically under-estimated
by Bergstrom–Boyce constitutive model, it is reasonable to expect that the present
theoretical model always provides an under-estimation of the energy storing
capabilities offered by the material.

5 Concluding Remarks

The employment of polymeric materials, especially Thermoplastic PolyUrethane
with elastomeric properties, for shock-absorber devices is steadily increasing.
Since the absorbed energy is one of the key parameters in design of such devices,
its estimation is of paramount importance. Although experimental techniques
represent the most accurate and reliable approach for assessing the energy
absorbing capabilities of a given material, analytical–numerical approaches are an
equally valid alternative, since they are able to promptly and inexpensively yield
suitable estimates. However, it ought to be kept in mind that accurate estimates of
the absorbed energy are strictly dependent upon the capability of the adopted
constitutive models to simulate the effective material’s mechanical behavior. The
present work is aimed at addressing this issue. For this purpose, one of the most
used Thermoplastic PolyUrethane has been firstly experimentally characterized
and then, among the constitutive models proposed in the literature, those better
simulating its dynamic tensile and compressive response have been identified and
analyzed.

The hyper-viscoelastic nonlinear approaches proposed by Yang and Bergstrom
and Boyce have been identified as the most promising and reliable. Although the
two models have been conceived in very different ways, being the first one purely
phenomenological and the second one based on microstructure considerations, the
predictive capabilities of both of them proved to be adequate. In addition, the
Yang’s model seems to yield much more accurate results in terms of absorbed
energy as compared to the Bergstrom and Boyce’s model. The average percentage
deviation between the experimental tensile and compressive r� e curves and the

Table 4 Compressive and tensile time-dependent Bergstrom–Boyce parameters for APILON 52

Ĉ1 [s-1MPa-m] C2 [/] m [/]

Compression 2.5910-5 -0.80 3.50
Tension 3.1910-3 -0.97 3.81
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corresponding ones predicted by the Yang’s model is below 2% for the material and
the strain rate range (10-3–102 s-1) considered in the present study. Percentage
deviations larger than 20%, for both traction and compression, have been found when
the experimental curves are compared with those predicted by the Bergstrom and
Boyce’s model. It should be noted that, although the Yang’s model is able to satis-
factorily predict the energy absorbed by the material, the method followed to esti-
mate the constitutive law does not permit to establish a biunique correspondence
between material behavior and the constitutive parameters. Accordingly, the
determination of these parameters is performed through nonlinear fitting procedures
whose results proved to be dependent on both the adopted algorithm and the initial
guess values. The Yang’s approach does not permit to operate on the constitutive
parameters in order to optimize for instance the material response. On the contrary,
Bergstrom and Boyce’s model does not present this limitation: the characteristic
constants of the model possess a clear physical meaning and can be uniquely
determined through a suitable experimental and numerical campaign.

In conclusion, the limitation of both models shall be remarked. In fact, they
have been conceived to separately account for the two possible types of response.
However, during an impact transient, it can be expected that the material simul-
taneously experiences both tensile and compressive loading conditions. Given the
critical applications of this class of materials, the development of a constitutive
model able to incorporate both responses is surely desirable, especially if the
tensile response of the material significantly differs from the compressive one.
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A Study on the Displacement Field
of Nonlocal Elasticity for Mechanical
Analysis of Nano Structures
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Abstract In this chapter, a study on the displacement field equations of nonlocal
elasticity is developed for mechanical analyses of nano structures. Considering the
small scale effect, the three dimensional equations of nonlocal elasticity are
obtained. At first, three decoupled equations in terms of displacement components
and three decoupled equations in terms of rotation components are obtained. These
equations are also invariant with respect to the coordinate system. In order to solve
a nonlocal elasticity problem based on the presented formulation, one of the three
equations in terms of displacement components and corresponding rotation
equation should be solved independently. Using some relations, the other two
displacement components can be obtained in terms of the mentioned displacement
and rotation component. In an illustrative example, these equations associated with
simply supported boundary conditions are solved for a nano-plate using the
Fourier series technique. In addition, the results are compared with the first order
and third order shear deformation theories. It is seen that the natural frequencies of
the nonlocal plate theories are not as accurate as the results in classical plate
theories.
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1 Introduction

Multiple recent experimental results have shown a significant size effect in
mechanical properties when the dimensions of the specimen or the probed material
volume become small. The classical continuum theories, on the other hand, lack
the capability of representing such effects since they do not include any internal
length scale. Consequently, these theories are expected to fail when the specimen
size becomes comparable with the internal length scale(s) of the material. The
common feature of all nonlocal formulations is the elimination of stress field
singularities. The gradient elasticity solution shows no singularity in both stress
and strain fields at the core of dislocations. Furthermore, the strain energy is finite
at sites where local elasticity predicts stress singularities and infinite strain energy
density.

The scale effects are accounted by considering the internal size as a material
parameter. The most general form of the constitutive relation for nonlocal
elasticity involves an integral over the whole body and therefore the governing
equations become integro-differential equations (see e.g. [1, 2]). Eringen [3]
showed that it is possible to represent the integral constitutive relations of
nano-structures in an equivalent differential form. Eringen presented a nonlocal
elasticity theory to account the small scale effect by specifying the stress at a
reference point is a functional of the strain field at every point in the body. Since
then, many studies have been carried out for bending, buckling and vibration
analyses of nano-structures based on the gradient elasticity. The nonlocal theory of
elasticity has been extensively used to study buckling and vibration analyses of
carbon nano-tubes with the help of beam and shell theories [4–6]. Also, the
vibration analysis of graphite sheet has been investigated using plate theories.
Kitipornchai et al. [7] used the continuum plate model for mechanical analysis of
graphene sheets. Pradhan and Phadikar [8] presented the vibration analysis of a
simply supported nano-plate based on the first order shear deformation plate theory
(FSDT). Aghababaei and Reddy [9] solved bending and vibration of plates based
on the nonlocal third order shear deformation plate theory (TSDT) considering the
small scale effect.

Apparently, using decoupled forms of governing equations of each theory for
solving related problems is much easier than using the original coupled form for
both analytical and numerical methods. Thus, decoupling of governing equations
is one of the important aspects of solid mechanics problems. Plevako [10]
reformulated the elastostatics Navier equations into two uncoupled equations.
These uncoupled equations are in terms of two new functions. Levinson [11]
presented an exact three dimensional solution for the free vibrations of simply
supported rectangular plates by decoupling the equations of elastodynamics.
Charalambopoulos et al. [12] represented the Helmholtz decomposition theorem
and the method of separation of variables to solve the Navier equations. Poullikkas
[13] considered the application of the method of fundamental solutions to isotropic
elastostatics problems in three dimensions by the method of fundamental solutions
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(MFS). Ozer [14] presented the analytical solutions of axially-symmetric Navier
equations in classical elasticity by applying Lie group theory. Recently, Saidi et al.
[15] reformulated the Navier equations for solving elastostatic and elastodynamic
problems.

Although a few researches studied the decoupling of displacement field of local
elasticity, no such work is available in literature in the field of nonlocal elasticity.
The primary objective of this chapter is to decouple the displacement field
equations of nonlocal elasticity. To this end, three decoupled equations in terms of
displacement components and three decoupled equations in terms of rotation
components are introduced. Also, some relations for one of the three displacement
components are presented. Each of these relations is in terms of other two
components of the displacement field and corresponding rotation components.
At first, one of the three decoupled equations in terms of displacement components
and also its corresponding rotation equation are solved independently. Then, using
the presented relations, the other two displacement components can be obtained.
Application of this reformulation is presented for a simply supported nano-plate
considering the small scale effect. Influence of nonlocal parameter and there
dimensional analysis on the vibration characteristics of the nano-plates is studied.

Since the resulted equations are presented in decoupled and invariant form, they
can be used for solving the known problems in the field of nonlocal elasticity much
easier not only in Cartesian system but also in other coordinate systems. Results
for natural frequencies of nano-plates from three dimensional analysis are given
for the first time and these can serve as reference values for other numerical
analysis.

2 Field Equations of Nonlocal Elasticity

Several modifications of the classical elasticity formulation have been proposed to
address the small scale effect. They are of integral non-local or gradient type
and, as a common feature, include one or several intrinsic length scales. Their
predictions reduce to those of local continuum theories when the specimen size is
much larger than the internal length scale. In the integral formulation of non-local
elasticity due to Eringen and Edelen [2] the constitutive equation is expressed in
terms of a non-local kernel introduced to account for the effect of long-range
interatomic forces. The stress at point X is a function of the strain at all points X0 in
the body, through a weighting kernel a. Specifically, for homogeneous and
isotropic elastic solids, the linear theory is expressed by the set of equations as

tkl;k þ qðFl � €ulÞ ¼ 0; ð1aÞ

rijðXÞ ¼
Z

V

aðjX0 � Xj; sÞtijðX0Þ dV ð1bÞ
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rklðX0Þ ¼ kerrðX0Þdkl þ 2leklðX0Þ; ð1cÞ

eklðX0Þ ¼
1
2

ouk

ox0l
þ oul

ox0k

� �

; ð1dÞ

where tkl; q;Fl and ul are, respectively, the nonlocal stress tensor, mass density,
body force density and the displacement vector at a reference point X in the body
at time t. Also, dot above each parameter denotes differentiating with respect to
time. rklðX0Þ is the usual local (classical) stress tensor at X0: k and l are the Lame’s
coefficients which are related to the Young’s modulus E and Poisson ratio m as

k ¼ Em
ð1þ mÞð1� 2mÞ ; l ¼ E

2ð1þ mÞ ð2Þ

It can be seen that the only difference between the nonlocal equations and the
classical elasticity equations is in the constitutive Eq. 1b. The field equations of
nonlocal elasticity are obtained by combining Eqs. 1a–1d. Eringen [3] showed
that it is possible to represent the integral constitutive relation in an equivalent
differential form as

ð1� br2Þtkl ¼ rkl ð3Þ

where b ¼ ðe0aÞ2 is nonlocal parameter, a an internal characteristic length and e0 a
constant. Also, r2 is the Laplacian operator.

3 Reformulation of Nonlocal Displacement Field Equations

Based on the Eringen constitutive equation [3], it can be shown that the
displacement field equations of motion in three dimensional state are written as

lr2~uþ ðkþ lÞrðr:~uÞ þ ð1� br2Þ~F ¼ ð1� br2Þq~€u ð4Þ

where ~u is the displacement vector and ~F is the body force per unit volume. It is
easy to show that the vector Eq. 4 in a Cartesian coordinate system can be written
as

gu1;11 þ lu1;22 þ ðg� lÞu2;12 þ ðg� lÞu3;13 þ lu1;33 þ ð1� br2ÞF1

¼ ð1� br2Þq€u1 ð5aÞ

gu2;22 þ lu2;11 þ ðg� lÞu1;12 þ ðg� lÞu3;23 þ lu2;33 þ ð1� br2ÞF2

¼ ð1� br2Þq€u2 ð5bÞ

lr2
2D u3 þ ðg� lÞðu1;1 þ u2;2Þ;3 þ gu3;33 þ ð1� br2ÞF3 ¼ ð1� br2Þq€u3 ð5cÞ

where r2
2D is the two dimensional Laplacian operator, i.e.
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r2
2D ¼

o2

ox2
1

þ o2

ox2
2

ð6Þ

and g is defined in terms of material properties as

g ¼ ð1� mÞE
ð1þ mÞð1� 2mÞ ð7Þ

Differentiating Eqs. 5a and 5b with respect to x1 and x2, respectively and adding
the results, yields

gr2
2D fþ lf;33 þ ðg� lÞr2

2D u3;3 þ ð1� br2ÞðF1;1 þ F2;2Þ ¼ ð1� br2Þq€f ð8Þ

where the parameter f is defined as

f ¼ u1;1 þ u2;2 ð9Þ

Also, using definition (9), Eq. 5c can be rewritten in the form of

lr2
2D u3 þ gu3;33 þ ðg� lÞf;3 þ ð1� br2ÞF3 ¼ ð1� br2Þq€u3 ð10Þ

Eliminating f from Eqs. 8 and 10 yields a partial differential equation in terms
of u3 as

lgr4 u3 � qðgþ lÞð1� br2Þr2€u3 þ q2ð1� br2Þ2€€u3 þ gr2F3

�ðg� lÞð1� br2ÞðF1;1 þ F2;2 þ F3;3Þ;3 � qð1� br2Þ2 €F3 ¼ 0 ð11Þ

This equation is a fourth order partial differential equations and is only in term
of unknown displacement u3: Differentiating Eqs. 5a and 5b with respect to x2 and
x1, respectively and subtracting the results, yields

lr2ðu1;2 � u2;1Þ þ ð1� br2ÞðF1;2 � F2;1Þ ¼ qð1� br2Þð€u1;2 � €u1;2Þ ð12Þ

It can be seen that for finding Eqs. 11 and 12, the third Navier equation (i.e.
Eq. 5c) is written in a different form from Eqs. 5a and 5b. Similarly, one can write
the first or second Navier equation in different forms. Therefore, two other
equations similar to Eq. 11 in terms of u1 and u2, and also two equations like as
Eq. 12 can be obtained. In other words, one can write these three equations as
follows

lgr4 ui�qðgþlÞð1�br2Þr2€uiþq2ð1�br2Þ2€€uiþgr2Fi�ðg�lÞð1�br2ÞFj;ij

�ð1�br2Þ2q€Fi¼0 ð13Þ

and similarly, Eq. 12 can be written in general form as

lr2xij þ ð1� br2ÞðFi;j � Fj;iÞ � qð1� br2Þ€xij ¼ 0 ð14Þ
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where xij is the anti-symmetric rotation tensor (i.e. xij ¼ ðui;j � uj;iÞ). Equa-
tions 13 and 14 can be rewritten in the invariant form as

lgr4~u�qðgþlÞð1�br2Þr2 €~uþq2ð1�br2Þ2€€~uþgr2~F�ðg�lÞð1�br2Þ ~rð ~r�~FÞ

�qð1�br2Þ2 €~F¼0 (15a)

lr2~xþ ð1� br2Þðr~F � ðr~FÞTÞ � qð1� br2Þ €~x ¼ 0 ð15bÞ

where the superscript T denotes the transpose of matrix. Equations 15a and 15b are
two vector equations with total order of six. These two vector equations represent
six decoupled partial differential equations in terms of displacement and rotation
components. Also, these two equations are invariant from the choice of the
coordinate system.

In the static case, in the absence of body forces, Eqs. 13 and 14 can be
simplified as

r4ui ¼ 0 ð16aÞ

r2xij ¼ 0 ð16bÞ

Thus, the displacement and rotation components should satisfy biharmonic
and harmonic equations, respectively. Looking carefully at Eqs. 13 and 14 it
can be found that the total degree of one of the three equations of (13) and the
corresponding Eq. 14 is the same as the original displacement field equations.
Hence, some relations should be found which describe the other displacement
components in terms of the selected displacement component and the corre-
sponding rotation component. For this purpose, differentiating x12 with respect
to x1 and x2, yields

u2;12 ¼ u1;22 � x12;2 ð17aÞ

u1;12 ¼ u2;11 þ x12;1 ð17bÞ

Substituting Eqs. 17a and 17b into 5a and 5b respectively, it can be obtained

gr2
2Du1 � ðg� lÞx12;2 þ ðg� lÞu3;13 þ lu1;33 þ ð1� br2ÞF1 ¼ ð1� br2Þq€u1

ð18aÞ

gr2
2Du2 þ ðg� lÞx12;1 þ ðg� lÞu3;23 þ lu2;33 þ ð1� br2ÞF2 ¼ ð1� br2Þq€u2

ð18bÞ

From Eq. 10, it can be found that

f;3 ¼
1

l� g
ðlr2

2D u3 þ gu3;33 þ ð1� br2ÞF3 � q€u3Þ ð19Þ
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Also, from definitions of x12 and f it can be concluded that

r2
2Du1;3 ¼ f;13 þ x12;23 ð20aÞ

r2
2Du2;3 ¼ f;23 � x12;13 ð20bÞ

Using Eqs. 19 and 20a, Eq. 18a becomes as

ðlu1;33 � q€u1 þ qb€u1;33Þ;3 ¼
g

g� l
½lr2u3 þ lð1� l

g
Þu3;33 � qð1� br2Þ€u3

þ qb
g
ðlr2

2D€u3 þ g€u3;33 � qð1� br2Þ€€u3Þ

þ ð1� br2ÞðF3 þ
qb
g

€F3Þ�;1

� ½lx12;2 þ ð1� br2ÞF1 þ qb€x12;2�;3 ð21Þ

Also, using relations (19) and (20b), Eq. 18b will be simplified to

ðlu2;33 � q€u2 þ qb€u2;33Þ;3 ¼
g

g� l
½lr2u3 þ lð1� l

g
Þu3;33 � qð1� br2Þ€u3

þ qb
g
ðlr2

2D€u3 þ g€u3;33 � qð1� br2Þ€€u3Þ

þ ð1� br2ÞðF3 þ
qb
g

€F3Þ�;2

� ½�lx12;1 þ ð1� br2ÞF2 � qb€x12;1�;3 ð22Þ

Equations 21 and 22 represent displacement components u1 and u2 in terms of
u3 and x12: Thus, for solving a known three dimensional nonlocal elastodynamics
problem much simpler, it is sufficient to solve the decoupled Eq. 13, with i ¼ 3;
and decouple Eq. 14, with i ¼ 1; j ¼ 2: Substituting the obtained relations for u3

and x12 into Eqs. 21 and 22 yields the displacement components u1 and u2:
Equations 21 and 22, in absence of body forces, are simplified for nonlocal

elastostatics problems as

u1;333 ¼
g

g� l
r2u3 þ u3;33

� �

;1

�x12;23 ð23aÞ

u2;333 ¼
g

g� l
r2u3 þ u3;33

� �

;2

þx12;13 ð23bÞ

In a similar way which have used for finding Eqs. 21 and 22, the following
equations can be obtained
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ðlu2;11 � q€u2 þ qb €u2;11Þ;1 ¼
g

g� l
½lr2u1 þ lð1� l

g
Þu1;11 � qð1� br2Þ€u1

þ qb
g
ðlð€u2;22 þ €u2;33Þ þ g€u2;22 � qð1� br2Þ€€u2Þ

þ ð1� br2ÞðF1 þ
qb
g

€F1Þ�;2

� ½lx23;3 þ ð1� br2ÞF2 þ qb€x23;3�;1 (24a)

ðlu3;11 � q€u3 þ qb €u3;11Þ;1 ¼
g

g� l
½lr2u1 þ lð1� l

g
Þu1;11 � qð1� br2Þ€u1

þ qb
g
ðlð€u2;22 þ €u2;33Þ þ g€u2;22 � qð1� br2Þ€€u2Þ

þ ð1� br2ÞðF1 þ
qb
g

€F1Þ�;3

þ ½lx23;2 þ ð1� br2ÞF3 þ qb€x23;2�;1 (24b)

or

ðlu3;22 � q€u3 þ qb €u3;22Þ;2 ¼
g

g� l
½lr2u2 þ lð1� l

g
Þu2;22 � qð1� br2Þ€u2

þ qb
g
ðlð€u2;11 þ €u2;33Þ þ g€u2;22 � qð1� br2Þ€€u2Þ

þ ð1� br2ÞðF2 þ
qb
g

€F2Þ�;3

� ½lx31;1 þ ð1� br2ÞF3 þ qb€x31;1�;2 (25a)

ðlu1;22 � q€u1 þ qb €u1;22Þ;2 ¼
g

g� l
½lr2u2 þ lð1� l

g
Þu2;22 � qð1� br2Þ€u2

þ qb
g
ðlð€u2;11 þ €u2;33Þ þ g€u2;22 � qð1� br2Þ€€u2Þ

þ ð1� br2ÞðF2 þ
qb
g

€F2Þ�;1

þ ½lx31;3 þ ð1� br2ÞF1 þ qb€x31;3�;2 (25b)

Equations 24a and 24b represent the displacement components u2 and u3 in
terms of u1 and x23: Therefore, another way for obtaining the solution of a known
nonlocal elastodynamics problem is solving Eqs. 13, with i ¼ 1 and 14 with i ¼ 2
and j ¼ 3: Then, Eqs. 24a and 24b are used to find out the remaining displacement
components. In a similar way, Eqs. 13 and 14 in terms of u2 and x31 can be solved
and then Eqs. 25a and 25b are used.

362 E. Jomehzadeh and A. R. Saidi



4 Application for Free Vibration Analysis of a Nano-Plate

Consider a simply supported rectangular plate with dimensions a and b
and thickness h. The transverse deflection and in-plane rotation equations are
considered as

u3 ¼
X

1

m¼1

X

1

n¼1

U3mnðx3Þ sin amx1 sin cnx2 eIxk
mnt ð26aÞ

x12 ¼
X

1

m¼1

X

1

n¼1

X12mnðx3Þ cos amx1 cos cnx2eIxk
mnt ð26bÞ

where am and cn denote mp=a and np=b;xk
mn is the natural frequency and k denotes

the number of mode shape in thickness direction. Substituting Eqs. 26a and 26b
into Eqs. 13 for i = 3 and 14 for i ¼ 1; j ¼ 2 respectively, yields

Uð4Þ3 mn þ A U003 mn þ B U3 mn ¼ 0 ð27aÞ

X0012mn þ C X12mn ¼ 0 ð27bÞ

where the coefficients A, B and C are defined as

A ¼ �2lgða2
m þ c2

nÞ þ qx2ðgþ lÞð1þ 2bða2
m þ c2

nÞÞ � 2q2x4bð1þ bða2
m þ c2

nÞÞ
lg� qx2bðgþ lÞ þ q2x4b

ð28aÞ

B¼ lgða2
mþ c2

nÞ
2�qx2ðgþlÞða2

mþ c2
nÞð1þbða2

mþ c2
nÞÞþq2x4ð1þbða2

mþ c2
nÞÞ

2

lg�qx2bðgþlÞþq2x4b

ð28bÞ

C ¼ �lða2
m þ c2

nÞ þ qx2ð1þ bða2
m þ c2

nÞÞ
l� qx2b

ð28cÞ

The solutions of differential Eqs. 27a and 27b are in the form of

U3mnðx3Þ ¼ C1 sinh J1x3 þ C2 cosh J1x3 þ C3 sinh J2x3 þ C4 cosh J2x3 ð29aÞ

X12mnðx3Þ ¼ C5 sin J1x3 þ C6 cos J1x3 ð29bÞ

in which the parameters J1 and J2 are defined as

J1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqx2b� gÞða2
m þ c2

nÞ þ qx2

qx2b� g

s

; J2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqx2b� lÞða2
m þ c2

nÞ þ qx2

qx2b� l

s

ð30Þ
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Substituting Eqs. 29a and 29b into 26a and 26b, and then into (21) and (22) in
absence of body forces, yields two ordinary differential equations. Only the
homogeneous solutions of the mentioned differential equations are the solution of
the displacement components and thus the extra constants assumed to be zero. In
such a case, the displacement components u1 and u2 can be written as

u1 ¼
X

1

m¼1

X

1

n¼1

½a1 sinh J1x3 þ a2 cosh J1x3 þ a32x3

þ a4 cosh J2x3� cos amx1 sin cnx2eIxk
mnt

ð31aÞ

u2 ¼
X

1

m¼1

X

1

n¼1

½b1 sinh J1x3 þ b2 cosh J1x3 þ b3 sinh J2x3

þ b4 cosh J2x3� sin amx1 cos cnx2eIxk
mnt

ð31bÞ

where ai and bi ði ¼ 1; . . .; 4Þ are the constant coefficients in terms of material
properties and coefficients Ci ði ¼ 1; . . .; 6Þ: The six boundary conditions on top
and bottom surface of the plate are

t13 ¼ t23 ¼ t33 ¼ 0 at x3 ¼ �h=2 ð32Þ

Using strain-displacement and constitutive relations to satisfy the above
boundary conditions will result in an eigen-value problem. Setting the determinant
of the six order coefficient matrix equal to zero, the natural frequencies of the
nano-plate are evaluated.

5 Numerical Results and Discussion

To verify the accuracy of the formulations, a comparison study of the results is
performed with the results reported by Levinson [11] for classical rectangular plate
b = 0. The first flexural and breathing (thickness-twist mode) frequencies are
presented in Table 1 and it can be seen that the frequencies are accurate.

For numerical results, the following material properties are used throughout the
investigation

E ¼ 1:2 TPa, m ¼ 0:3 ð33Þ

The two first non-dimensional frequencies X ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

q=Eh2
p

are tabulated in
Table 2 for various values of nonlocal parameter, different thickness to length
ratios h/a and some aspect ratios a/b.

Based on the results in this tables, it can be concluded that for constant h/a, the
frequency parameter decreases for all modes as the nonlocal parameter b increa-
ses. The reason is that with increasing the nonlocal parameter, the stiffness of the
nano-plate decreases. i.e. the small scale effect makes the nano-plate more flexible
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as the nonlocal model may be viewed as atoms linked by elastic springs while the
local continuum model assumes the spring constant to take on an infinite value.

The influence of thickness-length ratio on the frequency parameter can also be
examined by keeping the nonlocal parameter constant while varying the thickness
to length ratio. It can be easily observed that as h/a increases, the frequency
parameter decreases. The decrease in the frequency parameter is due to effects of
the shear deformation, rotary inertia and use of term a2

�

h in the definition of the
non-dimensional frequency X. These effects are more considerable in the second
mode than in the first modes.

A comparison has been carried out with the results of nonlocal classical plate
theory (CPT), first order shear deformation theory (FSDT) and third order shear
deformation theory (TSDT) reported by Aghababaei and Reddy [9]. The first

non-dimensional natural frequency parameter X ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

q=Eh2
p

is listed in

Table 1 Comparison of natural frequencies of classical isotropic rectangular plate (b = 0)

h/a Theory First flexural frequencyðx1
11Þ Breathing frequencyðx2

11Þ
0.05 FSDT [11] 3049 ——

Elasticity [11] 3016 47750
Present (3D) 3038 47773

0.1 FSDT [11] 5918 ——
Elasticity [11] 5096 47700
Present (3D) 5928 47717

0.2 FSDT [11] 10820 ——
Elasticity [11] 10880 47460
Present (3D) 10884 47481

0.4 FSDT [11] 17073 ——
Elasticity [11] 17315 46230
Present (3D) 17323 46447

Table 2 Two first non-dimensional natural frequencies ðX ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

q=Eh2
p

Þ of nonlocal rect-
angular plate

b h/a b=a ¼ 1 b=a ¼ 2

x1
11

x1
21

x1
11

x1
21

0 0.1 5.7769 13.8051 3.6549 11.8616
0.2 5.3036 11.6455 3.4513 10.1875

1 0.1 5.1260 10.7794 3.3768 9.5246
0.2 4.7513 9.3524 3.2040 8.3789

2 0.1 4.6550 9.1451 3.1540 8.1836
0.2 4.3433 8.0524 3.0035 7.2954

3 0.1 4.2938 8.0832 2.9702 7.2860
0.2 4.0258 7.1829 2.8366 6.5505

4 0.1 4.0056 7.3029 2.8151 6.6311
0.2 3.7694 6.5480 2.6949 5.9971
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Table 3 for some nonlocal parameters. It can be seen that the natural frequencies
of the nonlocal plate theories are not as accurate as the results in classical
elasticity. Since the plate theories simplify the shear effect in transverse direction,
their results are not accurate in nonlocal elasticity. This is because of the small
scale effect makes the nano-plate more flexible than local model and it is more
convenient to use three dimensional nonlocal elasticity for vibration analysis of
nano-plates. Also, the variation of the natural frequencies versus the aspect ratio
(h/a) is depicted in Fig. 1 for FSDT and present theories.

Table 3 Comparison of first non-dimensional frequency ðxa2p4
ffiffiffiffiffiffiffiffiffiffiffiffiffi

q=Eh2
p

Þ of a square nano-plate
with 2-D plate theories ða ¼ 10; E ¼ 30� 106; m ¼ 0:3Þ
b h/a Theory xa2p4

ffiffiffiffiffiffiffiffiffiffiffiffiffi

q=Eh2
p

Error

1 0.05 CPT [9] 0.0220 4.3%
FSDT [9] 0.0218 3.3%
TSDT [9] 0.0218 3.3%
Present(3-D) 0.0211

0.1 CPT [9] 0.0880 6.4%
FSDT [9] 0.0850 2.8%
TSDT [9] 0.0854 3.3%
Present(3-D) 0.0827

2 0.05 CPT [9] 0.0204 6.8%
FSDT [9] 0.0202 5.8%
TSDT [9] 0.0202 5.8%
Present(3-D) 0.0191

0.1 CPT [9] 0.0816 8.7%
FSDT [9] 0.0788 4.9%
TSDT [9] 0.0791 5.3%
Present(3-D) 0.0751

3 0.05 CPT [9] 0.0191 8.5%
FSDT [9] 0.0189 7.4%
TSDT [9] 0.0189 7.4%
Present(3-D) 0.0176

0.1 CPT [9] 0.0763 10.3%
FSDT [9] 0.0737 6.5%
TSDT [9] 0.0741 7.1%
Present(3-D) 0.0692

4 0.05 CPT [9] 0.0180 9.8%
FSDT [9] 0.0178 8.5%
TSDT [9] 0.0179 9.1%
Present(3-D) 0.0164

0.1 CPT [9] 0.0720 11.4%
FSDT [9] 0.0696 7.7%
TSDT [9] 0.0699 8.2%
Present(3-D) 0.0646
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The shear correction factor for FSDT has been assumed to be 5/6 [8]. As it can
be seen, the natural frequencies obtained from first order shear deformation theory
are higher than the frequencies of three dimensional nonlocal elasticity. This effect
is more significant in higher values of thickness to length ratio. This may be
because of the value of 5/6 is no longer appropriate for nonlocal elasticity analysis
due to the small scale effect.

6 Conclusion

In this chapter, the displacement field equations of nonlocal elasticity have been
reformulated. To this end, a new form of displacement field equations of motion
has been developed considering the small scale effect. The main feature of this
formulation is converting coupled equations of motion into decoupled equations in
terms of displacement and rotation components. These decoupled equations are
invariant with respect to choice of coordinate system. One of the decoupled
equations of displacement component and corresponding rotation equation can be
solved independently and the other unknown problem parameters can be defined in
terms of these components. Since the total degree of selected displacement and
corresponding rotation equations is the same as original coupled equations, the
presented reformulation does not require any complementary equation. Finally,
accurate natural frequencies of the nano-plates have been presented for various
values of nonlocal parameter.
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A Finite Element Model to Investigate
the Stress–Strain Behavior of Single
Walled Carbon Nanotube

Ehsan Mohammadpour and Mokhtar Awang

Abstract This chapter describes a finite element (FE) method that is appropriate
for the numerical prediction of mechanical behavior of different types of isolated
Single walled carbon nanotube (SWCNT). The aim of this research is to develop a
FE model based on the modified Morse interatomic potential to evaluate axial
Young’s modulus of nanotubes. The novelty of the model lies on the use of
ANSYS’s beam element with non-linear capability, i.e., element type BEAM188
is used to evaluate SWCNT‘s mechanical properties. In the present modeling
work, an individual carbon nanotube (CNT) is simulated as a frame-like structure
and the primary bonds between two nearest-neighboring carbon atoms are treated
as 3D beam elements. The beam element properties are determined via the concept
of energy equivalence between molecular dynamics and structural mechanics
using modified Morse potential. The calculated mechanical properties show good
agreement with existing works.
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1 Introduction

The discovery of carbon nanotubes (CNT) has stimulated considerable experimental
and theoretical studies. Various promising applications have been proposed based on
their unique geometrical and mechanical properties [1]. They are structurally unique
materials that exhibit excellent mechanical, electrical, thermal, and optical proper-
ties, e.g., Nanotubes can have diameters ranging from 1 to 100 nm and lengths of up
to millimeters. Their densities can be as low as 1.3 g/cm3 and their Young’s moduli
are superior to all carbon fibers with values greater than 1 TPa [2, 3].

Moreover, the extreme small size makes them suitable to be embedded into any
type of light weight and soft materials as reinforcements to form strong and light
nanocomposites. Therefore, the potential use of CNTs as reinforcing materials in
nanocomposites has originated the need to explore their mechanical properties. To
unlock the potential of carbon nanotubes for application in polymer nanocom-
posites, one must fully understand the elastic and fracture properties of carbon
nanotubes as well as the interactions at the nanotube/matrix interface.

However, the true mechanical properties of nanotubes such as their Young’s
modulus, yield strength, ultimate strength, elastic properties and even fracture
behavior are still uncertain to date. This actually induces many arguments in
whether the nanotubes are suitable to be used as nano-reinforcements for the
nanocomposites or not.

Experiments conducted previously showed that the Young’s moduli of nano-
tubes range from 270 to 950 GPa. Such a large discrepancy was due to the
different sizes, lengths and numbers of wall layers used in different tests. However,
it is hard to produce identical nanotubes even in the same experiment [4]. At
present, since experimental investigation in this area is still a challenging work,
numerical studies are another available tool for predicting nanotubes properties.
CNTs were simulated extensively using molecular dynamics and continuum
mechanics. The atomistic approaches, based on the force field and total potential
energy related to the interatomic potentials for CNTs in a macroscopic sense has
been used most extensively, include classical molecular dynamics, tight-bonding
molecular dynamics and density functional theory [2]. Despite the fact that these
approaches can be used for any problem associated with molecular or atomic
motions, their huge computational tasks restricted their applications to small
number of molecules or atoms. Alternatively, continuum mechanics approaches
have also been utilized to estimate physical properties of CNTs with less com-
putational efforts [5]. These approaches mainly involve classical continuum
mechanics and continuum shell modeling [4]. Since a CNT can be well described
as a continuum solid beam or shell subjected to tension, bending or torsional
forces, it is reasonable to model CNT as a frame- or shell-like structure. The
mechanical properties of such structure can then be obtained using the FE method
for classical continuum mechanics.

Due to the uncertainty of the CNTs characteristics for both of the above
modeling techniques, however, the obtained mechanical properties of CNTs are
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widely scattered. The predicted Young’s modulus of CNTs yields a widespread
range of about 1.0–5.5 TPa [6]. Experimentally determined Young’s modulus of
Single walled carbon nanotubes (SWCNT) are also scattered in a relatively large
interval of 2.8–3.6 TPa [6, 7]. Furthermore, different configurations of imperfec-
tions in CNTs wall such as cracks, vacancies and defects influence the mechanical
behavior of carbon nanotubes effectively. These phenomena have been studied
using molecular dynamics [8] and FE method [9] to show how the defects and the
imperfections affect the CNT structure under different loading conditions.

In this work, the main objectives are to develop a FE model of SWCNTs and to
investigate the Young’s modulus of SWCNTs based on nanoscale continuum
modeling. By employing frame elements to represent carbon-to-carbon bonds, the
FE model is developed to predict the elastic modulus of SWCNTs. The effect of
CNT chirality, diameter and structure on mechanical properties is also studied in
this work.

2 Modeling of Carbon Nanotubes

There are several ways to view a SWCNT. The most widely used is by reference to
rolling up graphene sheet to form a hollow cylinder with end caps. The cylinder is
composed of hexagonal carbon rings, while the end caps are pentagonal rings. The
hexagonal pattern is repeated periodically leading to binding of each carbon atom
to three neighboring atoms with covalent bonds. The very strong chemical bond
between carbon atoms plays significant role to the impressive mechanical prop-
erties of graphene and as a consequence, of all carbon-related nano-structures [7,
10]. The atomic structure of CNTs depends on tube chirality, which is defined by
the chiral vector and the chiral angle [7]. In Fig. 1, a section of graphene sheet is
presented. One could make a nanotube by cutting of the graphene sheet along the
dotted lines and rolling the tube so that the tip of the chiral vector touches its tail.
The chiral vector, also known as the roll-up vector, can be described by the
following equation:

~Ch ¼ n~a1 þ m~a2 ð1Þ

where the integers n and m are the number of steps along the zigzag carbon bonds
of the hexagonal lattice and~a1 and~a2 are unit vectors. The chiral angle determines
the amount of twist in the tube. The limiting values for chiral angle are 0 and 30�
which referred to zigzag and armchair CNTs, respectively. Any other form of
chiral vector placed between two limiting values is so called Chiral CNT. The roll-
up vector of the nanotube also defines the nanotube diameter,

DCNT ¼
ffiffiffi

3
p

L

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn2 þ m2 þ nmÞ
p

ð2Þ
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The physical properties of carbon nanotubes are sensitive to their diameter,
length and chirality. In particular, tube chirality is known to have a strong influ-
ence on the electronic properties of carbon nanotubes [1]. Graphite is considered to
be a semi-metal, but it has been shown that nanotubes can be either metallic or
semi-conducting, depending on tube chirality. The influence of chirality on the
mechanical properties of carbon nanotubes has also been reported.

The bonds have a characteristic bond length aC–C and bond angle in the 3D
space. The displacement of individual atoms under an external force is constrained
by the bonds. Therefore, the total deformation of the CNT is the result of the
interactions between the bonds. By considering the bonds as connecting load-
carrying elements, and the atoms as joints of the connecting elements, CNTs can
be modeled as space-frame structures [4, 11, 12]. In Fig. 2a, a typical CNT in the
form of a 3D frame structure is illustrated.

As mentioned before, by treating CNTs as space-frame structures, their
mechanical behavior can be analyzed using classical structural mechanics meth-
ods. In this work, a 3D FE model is proposed to assess the mechanical properties
of SWCNT. The 3D FE model is developed using ANSYS commercial FE code.
To model the C–C bonds, 3D beam elements are used, as shown in Fig. 2b.

To calculate the elastic modulus of beam elements, a linkage between molec-
ular and continuum mechanics is used. In its general formula, the potential energy
is described as [9].

U ¼ RUr þ RUh þ RU/ þ RUx þ RUvdW þ RUel ð3Þ

where, Ur, Uh, Uu, Ux, UvdW, Uel are bond stretching, bond angle bending,
dihedral angle torsion, inversion terms, van der Walls interaction and electrostatic
interaction, respectively. Various functional forms may be used for these potential

Fig. 1 Schematic of
nanotube structure
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energy terms depending on the particular material and loading conditions. In most
cases, the effects of Uu, Ux, UvdW, are neglected under the uniaxial loading and
small strain [4, 13, 14]. In addition, in most cases where continuum methods were
used to analyze CNTs embedded in an elastic medium, a linear behavior of the
reinforcements was assumed such as reported in Fan et al. [14] and Shokrieh et al.
[5] works. Therefore, by adopting the simple harmonic form under the assumption
of small deformation, and merging Uu, Ux into a single equivalent term, we obtain
the energy form of each bonded interaction as

Ur ¼
1
2

krðDrÞ2 ð4Þ

Uh ¼
1
2

khðDhÞ2 ð5Þ

Us ¼ U/ þ Ux ¼
1
2

ksðDuÞ2 ð6Þ

where kr, kh and ks are the associated force constants. Dr;Dh and Du stand for the
bond stretching increment, the bond angle change and the angle of bond twisting,
respectively.

In the counterpart, the strain energy forms of a uniform beam due to pure
tension, bending and torsion can be represented as

UA ¼
1
2

EA

L
ðDLÞ2 ð7Þ

UM ¼
1
2

EI

L
ð2aÞ2 ð8Þ

UT ¼
1
2

GJ

L
ðDbÞ2 ð9Þ

where UA, UM and UT are the axial strain energy, the bending energy and the
torsion energy, respectively. L, A, I, J, E,G are defined as the length, the cross
section area, the moment of inertia, the polar moment of inertia of the cross
section, the Young’s modulus and the shear modulus of the beam, respectively.

Fig. 2 a The hexagonal structure of a typical CNT. b FE modeling concept of the hexagonal
structure of a CNT

A Finite Element Model to Investigate the Stress–Strain Behavior 373



DL, 2a, Db are the axial stretching deformation, the total relative rotation angle
and the relative torsion angle. Comparing Eqs. (4–6) to (7–9) will easily lead to the
following relationships via the concept of energy equivalence,

EA

L
¼ kr ð10Þ

EI

L
¼ kh ð11Þ

GJ

L
¼ ks ð12Þ

In the FE model, BEAM4 element in ANSYS is selected to simulate the elastic
behavior of carbon bonds. This element is a uniaxial element with tension, com-
pression, torsion and bending capabilities. It has six degrees of freedom at each
node: translations in the nodal x, y, and z directions and rotations about the nodal x,
y, and z-axes. The element is defined by two or three nodes as well as its cross
cross-sectional area, two moments of inertia, two dimensions and the material
properties. The cross sections of the beam elements are assumed to be uniform and
circular, and the necessary input data of the BEAM4 element are the Young’s
modulus E, the Poisson’s ratio m and the diameter of the circular cross section db.
From Eqs. (10) and (11), we have

db ¼ 4

ffiffiffiffiffi

kh

kr

r

; E ¼ Lk2
r

4pkh
ð13Þ

The values of kr, kh, are adopted as those used by other references [4, 5, 11],
which are 938 kcal mol-1 Å-2 (equivalent to 6.53 9 10-7 N/nm) and
126 kcal mol-1/rad2 (equivalent to 8.79 9 10-10 Nnm/rad2), respectively. The
element length L is set to be equal to the length of a C–C bond, which is 1.42 Å.
By using Eq. (13), the values of E and db can be computed as 5.5 TPa and
0.147 nm, respectively. It is worth to mention that this assumption leads to
accurate predictions only in cases where very small CNT deformations take place.
Consequently, this method cannot be used for modeling the mechanical behavior
of the composites.

As mentioned above, for larger strains of CNTs the more accurate behavior of
carbon bond must be considered. Various functions forms could be used.
Regarding the bond stretching, an attempt to represent the experimentally
observed bond energy curves of diatomic molecules by simple analytical functions
could be utilized. In the following section, the tensile behavior of the isolated
carbon CNTs is simulated using a simple analytical Morse function, which can be
written as [13],

U ¼ Ustretch þ Uangle ð14Þ

Ustretch ¼ De 1� e�bðr�r0Þ
� �2

�1

� �

ð15Þ
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Uangle ¼
1
2

khðh� h0Þ2 1þ ksexicðh� h0Þ4
h i

ð16Þ

where Ustretch is the bond energy due to bond stretching and Uangle is the bond
energy due to bond angle-bending, r is the current bond length and h is the current
angle of the adjacent bonds. The other parameters of the potential are
r0 = 1.421 9 10-10 m; De = 6.03105 9 10-19 Nm; b = 2.625 9 1010 m-1;
h0 = 2.094 rad; kh = 0.9 9 10-18 Nm/rad2; ksexic = 0.754 rad-4 [15]. For strains
above 10%, as stretching dominates CNT fracture and the effect of angle-bending
potential is very small, in the present model only the bond stretching potential is
considered [16] to simplify the situation. By differentiating the stretching energy
term in Eq. (15), the stretching force of atomic bond, F, is obtained in the
molecular force field as

FðrÞ ¼ 2bDe½1� e�bðr�r0Þ�e�bðr�r0Þ ð17Þ

The relationship between stress r and bond strain eb for the C–C bonds could be
calculated using the element’s cross-sectional area equal to 1.69 9 10-20 m for
the C–C bond as shown in Fig. 3. The strain of the bond is defined by eb ¼
ðr � r0Þ=r0: As may be seen, the stress–strain relation is highly non-linear espe-
cially at large strains and the inflection point (peak force) occurs at about 19%
strain. Therefore, a different element, BEAM188, was chosen to simulate the
carbon–carbon atom stretching behavior described by Morse potential. BEAM188
is a two-node beam element in 3D and has six or seven degrees of freedom at each
node. So, it is well-suited for linear, large rotation, and/or large strain non-linear
applications. Again, we assume that the cross sections of the beam elements are
uniform and circular. The initial stiffness is set at 6.5 TPa, according to the initial
slope of the C–C bond stress–strain curve (Fig. 3).

3 Numerical Results and Discussion

In this section, we will use the FE to compute the axial Young’s modulus of carbon
CNTs of various types and sizes. In addition, comparison of these results to those
found in the literature will be given. We also discuss the influence of element type
and tube size on the mechanical properties obtained.

The CNT is loaded by an incremental force at one end while the other end is
being fully constrained, as shown in Fig. 4. To compute the axial Young’s mod-
ulus from the numerical results, the following equation was used

E ¼ r
e
¼ FLn

ADLn
ð18Þ

where E is the axial Young’s modulus, r and e are the axial stress and strain
respectively, F is the total force applied on one end of the tube, A is the cross
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section area of the CNT, which is defined as A = p Dn tn (where Dn = CNT
diameter, thickness tn = 0.34 nm is the interlayer graphite distance) [9].)

Figure 5 showed the strain of carbon nanotube under axial loading and related
stress–strain curve of zigzag (12,0) CNT, respectively. The axial Young’s modulus
for six zigzag SWCNTs of different sizes and chirality, (6,0), (8,0), (10,0), (12,0),
(14,0), (22,0) were simulated using linear elastic theory (Eq. 13) and the results are
listed in Table 1 and also depicted in Fig. 6 for comparison. Form the results it
could be seen that the axial Young’s modulus whose values are about 1.2 TPa for
elastic modeling increase slightly with increasing diameter. From Fig. 6, the effect
of tube diameter on the Young’s modulus is also clearly observed.

Based on modified Morse potential, the stress–strain curve for a six zigzag
(6,0), (8,0), (10,0), (12,0), (14,0), (22,0) and six armchair (5,5), (8,8), (10,10),
(12,12), (14,14), (16,16) SWCNT were calculated. The value of Young’s modulus
for each CNT was calculated in the same way and listed in Tables 1 and 2 as well.

Results show that the axial Young’s modulus in the nonlinear cases also
increase slightly with increasing diameter. For smaller tubes, for example to a

Fig. 3 aThe C–C bond. b stress–strain curve for C–C bond according to the modified Morse
potential (Eq. 15)
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diameter less than 1.0 nm, the Young’s modulus exhibits a stronger dependence on
the tube diameter.

However, for tube diameters larger than 1.0 nm, this dependence becomes very
weak. The general tendency is that the Young’s modulus increases with increasing
tube diameter.

The lower Young’s modulus of zigzag nanotubes at smaller CNT diameter
could be attributed to the higher curvature, which results in a more significant
distortion of C–C bonds. As the CNT diameter increases, the effect of curvature
diminishes gradually [17].

It also could be seen that the Young’s modulus calculated from Eq. (15) in all
cases is higher than the same values based on Eq. (17). These results show the
importance of initial assumption in the FE modeling of carbon nanotubes.

Fig. 4 Isometric view of the
FE mesh of the (12,0)
SWCNTs along with the
applied boundary conditions

Fig. 5 Uniaxial strain–stress
curve for zigzag CNT (12,0)
under uniaxial loading
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For nonlinear analysis, armchair nanotubes exhibited higher axial modulus in
comparison with zigzag nanotubes, as shown in Fig. 7. This fact emphasized the
dependence of mechanical properties on the CNT structure which is in agreement
with Fan et al. [14], Tserpes et al. [16] and Xiao et al. [18].

Table 1 Axial Young’s modulus of zigzag single-walled CNTs

CNT configuration Axial Young’s
modulus [TPa]
(Elastic theory)

Axial Young’s
modulus [TP])
(Morse potential)

CNT Diameter [nm]

Zigzag (6,0) 1.1950 0.8174 0.4697
Zigzag (8,0) 1.2170 0.8657 0.6263
Zigzag (10,0) 1.2270 0.8693 0.7828
Zigzag (12,0) 1.2289 0.8735 0.9394
Zigzag (14,0) 1.2316 0.8794 1.0960
Zigzag (22,0) 1.2328 0.8862 1.7223

Fig. 6 Axial Young’s
modulus for zigzag CNTs
with various CNT diameters
using elastic theory and
Morse potential

Table 2 Axial Young’s modulus of armchair single-walled CNTs

CNT configuration Axial Young’s
modulus [TP])
(Morse potential)

CNT Diameter
[nm]

Armchair (5,5) 1.0477 0.553523
Armchair (8,8) 1.0555 0.885637
Armchair (10,10) 1.0573 1.107046
Armchair (12,12) 1.0631 1.328456
Armchair (14,14) 1.0670 1.549865
Armchair (16,16) 1.0675 1.771274
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Our computational results are comparable to those obtained from numerical
studies. Comparison between reported data for CNT Young’s modulus in literature
and obtained results in this study is presented in Table 3.

4 Conclusions

The FE simulation technique for SWCNTs has been developed which can be easily
performed by the commercial finite element code ANSYS. The key modeling
concept is that molecular bonds are presented as beam elements. We proposed and
verified a simplifying method to model non-linear nature of covalent bond between
two carbon atoms in the CNT wall. This method can significantly save the mod-
eling and computing effort when FE analysis is performed. Numerical results for
axial Young’s modulus are presented to illustrate the accuracy of the established
FE models. In addition, the relations between these mechanical properties and the
CNT size are also investigated to give a better understanding of the variation of

Fig. 7 Axial Young’s
modulus for zigzag and
armchair CNTs with various
CNT diameters using Morse
potential function (Eq. (17)

Table 3 Comparison between Young’s modulus of CNT reported by past researchers

Investigators Method CNT type Young’s
modulus [TPa]

CNT
thickness [nm]

Tserpesa et al. [4] FE method SWCNTs 1.029 0.34
Shokrieh et al. [5] Closed-form solution SWCNTs 1.033 0.34
Fan et al. [14] FE method SWCNTs 1.033 0.34
Georgantzinosa

et al. [19]
FE method SWCNTs 0.936 0.34

Jin et al. [20] Molecular dynamics SWCNTs 1.238 0.34
Present work FE method

(Elastic theory)
SWCNTs 1.220 0.34

(Morse potential) SWCNTs 0.873 0.34
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mechanical properties of CNTs. From the above results and the outstanding
advantage that the present modeling concept can be easily extended to cases of
MWCNTs with higher number of layers, this method will be an effective and
convenient tool in studying the mechanical behavior of MWCNTs.

Acknowledgments The authors would like to thank Universiti Teknologi PETRONAS for the
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Nonlinear Bending and Post Buckling
of Functionally Graded Circular Plates
under Asymmetric Thermo-Mechanical
Loading

F. Fallah and A. Nosier

Abstract Based on the first-order shear deformation plate theory with
von Karman nonlinearity, the nonlinear bending and post buckling of functionally
graded circular plates under asymmetric transverse loading and a temperature
variation through the plate thickness is investigated. Introducing a stress function
and a potential function, the governing equations are uncoupled to form equations
describing the interior and edge-zone problems of functionally graded plates. This
uncoupling is then used to conveniently present an analytical solution for the
nonlinear asymmetric deformation of an FG circular plate. A two parameter
perturbation technique, in conjunction with Fourier series method to model the
problem asymmetries, is used to obtain the solution for clamped and simply-
supported boundary conditions. The material properties are graded through the
plate thickness according to a power-law distribution of the volume fraction of
the constituents. The results are verified with the existing results in the literature.
The effects of nonlinearity, material constant, and boundary conditions on various
response quantities in a solid circular plate are studied and discussed. Snap-
through buckling is observed in simply-supported FG plates under thermo-
mechanical loading. Moreover, it is found that linear theory is inadequate for
analyzing FG plates under thermal loading.
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1 Introduction

Functionally graded materials (FGMs) were first introduced in 1984 by material
scientists in Japan as thermal barrier materials [1] in a high temperature envi-
ronment. They belong to a new class of materials which are microscopically
heterogeneous and their material properties vary continuously. This is achieved by
gradually changing the volume fraction of the constituent materials along certain
dimension (usually in the thickness direction). Due to the smooth variation of
material properties, they offer many advantages over laminated composite mate-
rials including improved fatigue resistance, reduction of thermal stresses, residual
stresses and interlaminar stresses, and more efficient joining techniques. Thus,
FGMs are finding applications in many fields such as aerospace, power generation
industries, and energy conversion. Sureh and Mortensen [2] provide an excellent
introduction to the fundamentals of FGMs.

Studies on nonlinear behavior of FG plates are, however, rare in comparison
with those available on linear analyses of FG rectangular [3–6] and circular [7–9]
plates. Using finite element method, Praveen and Reddy [10] investigated the static
and dynamic responses of functionally graded plates using first-order shear
deformation plate theory (FSDT) and geometric nonlinearity in von Karman sense.
Based on the higher-order shear deformation plate theory, Reddy [11] developed
Navier’s solutions for rectangular plates and finite element models to study the
nonlinear dynamic response of FG plates. Based on the classical nonlinear von
Karman plate theory, an analytical solution in terms of Fourier series was obtained
by Woo and Meguid [12] for the nonlinear bending of functionally graded plates
and shallow shells under transverse mechanical loads and a temperature field.
Based on the higher-order shear deformation plate theory with the von Karman
nonlinearity, Woo et al. [13] provided an analytical solution for the post buckling
behavior of functionally graded plates and shallow shells under compressive edge
loads and a temperature field. Na and Kim investigated nonlinear bending [14] and
thermal buckling and post buckling [15] of FG clamped square plates based on the
Green–Lagrange nonlinear strain–displacement relation using a 3-D finite element
method. Thermo-mechanical loading is considered in [14]. Yang and Shen [16]
investigated the large deflection and post buckling responses of functionally gra-
ded rectangular plates with clamped supports on two opposite edges under
transverse and in-plane loads using the classical von Karman plate theory. More
recently, based on Reddy’s higher-order shear deformation plate theory with a von
Karman-type of kinematic nonlinearity, Shen presented nonlinear thermal bending
[17] and post buckling [18] analysis for a simply-supported FG plate using a two
step perturbation technique. Heat conduction is considered in the thickness
direction. Based on the same assumptions, Yang and Huang [19] analyzed
nonlinear transient response of simply-supported imperfect FG plates in
thermal environments. Prakash et al. [20] investigated nonlinear behavior of FG
plates exposed to high temperature on the ceramic surface using neutral surface-
based first-order shear deformation theory with the von Karman nonlinearity.
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They reported snapping phenomenon in FG rectangular and skew plates under
thermal loading.

From the literature review, it is evident that analysis of nonlinear bending and
post buckling of FG circular plates [21–27] are much less than rectangular plates
[10–20], while circular plates made of functionally graded materials are often
employed as a part of engineering structures. Gunes and Reddy [21] carried out
geometrically nonlinear analysis of FG circular plates with different boundary
conditions subjected to mechanical and thermal loads using all the terms in
Green–Lagrange strain tensor. Based on the classical nonlinear von Karman plate
theory, the axisymmetric bending and post buckling of functionally graded thin
circular plates subjected to mechanical and thermal loadings were studied by Ma
and Wang [22]. Li et al. [23] studied nonlinear thermo-mechanical post buckling
of an imperfect and perfect clamped FG circular plate using shooting method.
Several authors have investigated the buckling of functionally graded circular
plates [24, 25] in which the existence of bifurcation buckling for both clamped and
simply-supported FG plates is assumed and the buckling point is searched using an
eigen-value analysis. On the other hand, some other authors [13, 15, 18, 22, 23]
have shown that in FG plates, due to edge compression, bifurcation-type buckling
happens in clamped FG plates, while bending occurs in simply-supported FG
plates.

Prakash and Ganapathi [26] investigated asymmetric free vibration and ther-
moelastic stability of FG circular plates using finite element procedure. Based on
FSDT, Nosier and Fallah presented analytical solution for asymmetric linear [8]
and nonlinear [27] bending of FG circular plates with various clamped and simply-
supported boundary conditions. In the linear analysis [8] thermo-mechanical
loading is considered while only mechanical loading is considered in the nonlinear
analysis [27]. Here, asymmetric nonlinear behavior of FG plates subjected to
thermo-mechanical loading is investigated. From the review of literature it appears
that although axisymmetric buckling and bending of FG circular plates have been
taken up by some researchers, very little work is available on asymmetric bending
and post buckling of FG circular plates [8, 26, 27]. The authors have so far not
come across any paper dealing with asymmetric nonlinear bending of FG circular
plates subjected to thermo-mechanical loading.

In the present study, the tenth-order, nonlinear equilibrium equations of FSDT
describing the bending-extension problem of FG circular plates subjected to
thermo-mechanical loading are studied for analytical solutions. The formulation
accounts for moderately large deflection in the von Karman sense. Here, based on
the method developed in [27] which uses two potential functions; boundary-layer
and stress functions to decouple the governing equilibrium equations, the system
of five nonlinear coupled equations are reformulated into three equations; one
linear second-order differential equation defining the edge-zone problem of the FG
plate in terms of the boundary-layer function U, similar to the one obtained in
[8], and two nonlinear fourth-order equations in terms of the transverse deflection
w, and stress function F. This uncoupling makes it possible to conveniently
present an analytical solution for asymmetric nonlinear behavior of clamped and
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simply-supported FG circular plates. The effects of nonlinearity, material prop-
erties, and boundary conditions on nonlinear behavior of a solid circular plate are
studied and discussed in detail.

2 Theoretical Formulation

A functionally graded circular plate of inner and outer radii of, respectively, a
and b and thickness h is considered here. The geometry of the plate and the
coordinate system are shown in Fig. 1. FGMs are modeled as non-homogenous
isotropic or orthotropic materials with different types of material description.
Here, they are modeled as a non-homogenous isotropic linear thermoelastic
material whose properties P, vary continuously through the plate thickness, as a
function of the volume fraction and properties of the constituent materials.
Assuming the plate is made from a mixture of ceramic and metal, P can be
expressed as [7, 22, 28]:

PðzÞ ¼ ðPm � PcÞ h� 2z

2h

� �n

þPc ð1Þ

where subscripts c and m refer to ceramic and metal, respectively and n is the power-
law index that takes values greater than or equal to zero. To obtain Eq. 1, the linear
rule of mixture is used which is the simplest estimate of the effective material
properties at a point in a dual-phase metal-ceramic material. A survey on different
models to ascertain effective properties of an FGM is included in [3]. In the present
study, relation (1) will be used as a model for Young’s modulus E, thermal con-
ductivity K, thermal expansion coefficient a and Poisson’s ratio t of FG plates.

2.1 Thermal Analysis

In thermal analysis it is assumed that the temperature variation is only in the
thickness direction and constant surface temperatures at the ceramic and metal rich

metal

ceramic

Pz(r,θ)

h

b

a

r

θ

z

Fig. 1 Geometry of FG
circular plate and coordinate
system
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surfaces are imposed. The one-dimensional steady state heat conduction equation
in the z-direction is given by;

� d
d z

�KðzÞ dTðzÞ
d z

� �

¼ 0 ð2Þ

with the boundary condition Tðh=2Þ ¼ Tc and Tð�h=2Þ ¼ Tm: Here a stress-free
state is assumed to exist at T0 ¼ 25�C: The thermal conductivity coefficient �KðzÞ is
assumed here to obey the power-law relation in (1). Equation 2 is solved analyt-
ically for n = 0, 0.5 and integer values of n and its detail is given in [8, 28]. Here,
only the final results are presented.

TðzÞ ¼ �C1n
h

D�K
AnðzÞ þ C2n ð3aÞ

where D�K ¼ �Km � �Kc and C1n and C2n are found by imposing the appropriate
thermal boundary conditions on the top and bottom surfaces of the plate. The
results are as follows:

C1n ¼ �
ðTc � TmÞD�K

h Anðh=2Þ � Anð�h=2Þ½ � ; C2n ¼
TmAnðh=2Þ � TcAnð�h=2Þ

Anðh=2Þ � Anð�h=2Þ½ � ð3bÞ

with

A0ðzÞ ¼
DK

Km

1
2
� z

h

� �

;A1=2ðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi

1
2
� z

h

r

� 2
Kc

DK
ln

ffiffiffiffiffiffiffiffiffiffiffi

1
2
� z

h

r

þ Kc

DK

 !

ð4aÞ

Also, for the integer values of n, the quantity An appearing in (3a) is given by;

AnðzÞ¼
2

n
�Kc
D�K

� �n�1
n

X

n�1
2

k¼1

sin
2kp

n
tan�1 ð12� z

hÞþð
�Kc

D�KÞ
1
n cos2kp

n

�Kc
D�K
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n
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1
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þ 1

n
�Kc

D�K

� �
n�1
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2
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n
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1
2
� z

h
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1
n 1

2
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þ
ln 1
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n
�Kc

D�K

� �n�1
n

n¼ 1; 3; ::: (4b)
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AnðzÞ ¼
2

nð �Kc

D�KÞ
n�1

n

X

n
2

k¼1

sin
ð2k � 1Þp
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tan�1

ð12� z
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2.2 Equilibrium Equations

Within the first-order shear deformation plate theory, the displacement field in
polar coordinate is given by:

u1ðr; h; zÞ ¼ uðr; hÞ þ zWrðr; hÞ; u2ðr; h; zÞ ¼ vðr; hÞ þ zWhðr; hÞ
u3ðr; h; zÞ ¼ wðr; hÞ

ð5Þ

where u, v, and w denote the displacements of a point on the middle plane of the
plate along r, h , and z coordinates, respectively, and Wr and Wh represent the
small rotations of a transverse normal about the h- and r- axes, respectively. Upon
substitution of Eq. 5 into the von Karman nonlinear strain–displacement relations
of elasticity [30] the strain components are obtained as follows:

er ¼ e0
r þ zkr; eh ¼ e0

h þ zkh; ez ¼ 0; ch z ¼ kh z; crz ¼ krz; crh ¼ c0
rh þ zkrh ð6Þ

where

e0
r ¼ u;r þ

1
2
ðw;rÞ2; e0

h ¼
1
r
ðuþ v;hÞ þ

1
2

1
r2
ðw;hÞ2;

c0
rh ¼

1
r
ðu;h � vÞ þ v;r þ

1
r

w;rw;h

ð7aÞ

kr ¼ Wr;r; kh ¼
1
r
ðWr þWh;hÞ; krh ¼

1
r
ðWr;h �WhÞ þWh;r ð7bÞ

kh z ¼ Wh þ
1
r

w;h; krz ¼ Wr þ w;r ð7cÞ

In Eq. 7 and what follows a comma followed by a coordinate variable indicates
partial differentiation with respect to that variable. Based on relations (6) and (7),
by using the principle of minimum total potential energy [30] the equilibrium
equations are readily found to be:

388 F. Fallah and A. Nosier



d u ; Nr;r þ
1
r
ðNr � NhÞ þ

1
r

Nrh;h ¼ 0; d v ; Nrh;r þ
1
r

Nh;h þ
2
r

Nrh ¼ 0 ð8aÞ

d Wr ; Mr;r þ
1
r
ðMr �MhÞ þ

1
r

Mrh;h � Qr ¼ 0;

dWh ; Mrh;r þ
1
r

Mh;h þ
2
r

Mrh � Qh ¼ 0
ð8bÞ

d w ; rQr;r þ Qh;h þ Qr ¼ rPzðr; hÞ � rN1 ð8cÞ

where Pzðr; hÞ is the pressure applied on the top surface of the plate (see Fig. 1)
and

N1 ¼ Nrw;rr þ Nh
1
r

w;r þ
1
r2

w;hh

� �

þ 2Nrh
1
r

w;h

� �

;r

ð9Þ

The stress and moment resultants in (8) and (9) are defined as follows:

ðNr;Nh;NrhÞ ¼
Z

h=2

�h=2

ðrr;rh; rrhÞdz; ðQh;QrÞ ¼
Z

h=2

�h=2

ðrh z; rrzÞdz

ðMr;Mh;MrhÞ ¼
Z

h=2

�h=2

ðrr;rh; rrhÞzdz

ð10Þ

With a normal vector ~en ¼ nr~er þ nh~eh acting on the boundary surface of the
plate, the boundary conditions corresponding to Eq. 8 require the specification of
(see Fig. 1) either u or nrrNr þ nhNrh; v or nrrNrh þ nhNh; Wr or nrrMr þ
nhMrh; Wh or nrrMrh þ nhMh; and either w or nr rQr þ nh Qh þ QNL where
QNL ¼ nrðrNrw;r þ Nrhw;hÞ þ nhðNrhw;r þ Nhw;h=rÞ:

Using the linear plane-stress thermoelastic constitutive relations of an isotropic
material [8, 29], the stress and moment resultants are obtained as:

Nr ¼ A1e
0
r þ ðA1 � 2A2Þe0

h þ B1kr þ ðB1 � 2B2Þkh � NT

Nh ¼ ðA1 � 2A2Þe0
r þ A1e

0
h þ ðB1 � 2B2Þkr þ B1kh � NT

Nrh ¼ A2c
0
rh þ B2krh (11a)

Mr ¼ B1e
0
r þ ðB1 � 2B2Þe0

h þ D1kr þ ðD1 � 2D2Þkh �MT

Mh ¼ ðB1 � 2B2Þe0
r þ B1e

0
h þ ðD1 � 2D2Þkr þ D1kh �MT

Mrh ¼ B2c
0
rh þ D2krh (11b)

Qh ¼ K2A2kh z; Qr ¼ K2A2krz ð11cÞ

where K2 is a shear correction factor and the stiffness coefficients, and also the
thermal stress and moment resultants are defined as:
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ðA1;B1;D1Þ ¼
Z

h=2

�h=2

EðzÞ
1� t2ðzÞð1; z; z

2Þdz

ðA2;B2;D2Þ ¼
Z

h=2

�h=2

EðzÞ
2ð1þ tðzÞÞð1; z; z

2Þdz

ðNT ;MTÞ ¼
Z

h=2

�h=2

EðzÞ
1� tðzÞ aðzÞTðzÞð1; zÞdz

ð12Þ

where E, a, and t are the Young modulus, the coefficient of thermal expansion, and
the Poisson’s ratio which, on the other hand, are assumed here to vary according to
the power-law in (1). For constant Poisson’s ratio through the thickness of FG
plates (an assumption made in the numerical results section of the present study)
the integrals in (12) are explicitly evaluated and presented in [8].

2.3 Reformulation of Equilibrium Equations

Here, the five nonlinear coupled equilibrium equations in (8), will be reformulated
to yield uncoupled equations. Towards this goal, the force function Fðr; hÞ is
introduced as follows:

Nr ¼
1
r

F;r þ
1
r2

F;hh; Nh ¼ F;rr; Nrh ¼ �
1
r

F;h

� �

;r

ð13Þ

With the stress resultants in (13), Eq. 8a are identically satisfied. Furthermore, the
variable N1 as introduced in Eq. 9 can be expressed in terms of F and w. Next, it is
noted that Eq. 11a may be solved for e0

r ; e0
h; and c0

rh to yield:

e0
r ¼

A1

�A
ðNr þ NhÞ �

1
2A2

Nh þ
2�C
�A
ðkr þ khÞ �

B2

A2
kr þ 2

A2

�A
NT ð14aÞ

e0
h ¼ �

1
2A2

Nr þ
A1

�A
ðNr þ NhÞ þ

2�C
�A
ðkr þ khÞ �

B2

A2
kh þ 2

A2

�A
NT ð14bÞ

c0
rh ¼

1
A2

Nrh �
B2

A2
krh ð14cÞ

where �A ¼ 4A2ðA1 � A2Þ and �C ¼ A1B2 � A2B1: Upon substituting Eqs. 7b and 13
into 14 and the ensuing results into the compatibility relation, e0

r;hh � re0
r;r �

ðrc0
rhÞ;rh þ ðr2e0

h;rÞ;r ¼ N2; which exists among the strain components appearing in
(7a), the following equation is obtained:

r2r2F þ 2�C

A1
r2 1

r
Wh;h þ

1
r
ðrWrÞ;r

	 


¼
�A

A1

1
r2

N2 ð15Þ
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where

N2 ¼
1
r2
ðw;hÞ2 þ ðw;rhÞ2 � rw;rw;rr �

2
r

w;hw;rh � w;rrw;hh ð16Þ

Alsor2 is the two-dimensional Laplace operator in polar coordinates. Substituting
(7c) into (11c) and the ensuing results into (8c) yields:

1
r
Wh;h þ

1
r
ðrWrÞ;r ¼ �r2wþ 1

K2A2
ðPz � N1Þ ð17Þ

Finally, substituting (17) into the compatibility Eq. 15 results in:

r2r2F � 2�C

A1
r2r2w ¼ � 2�C

A1K2A2
r2ðPz � N1Þ þ

�A

A1

1
r2

N2 ð18Þ

Next, upon substitution of Eqs. 7b, 13 and 14 into 11b, 7c into 11c, and the
subsequent results into (8b), the following two equations are obtained:

Wr ; � 2�C
�A
ðr2FÞ;r þ �D

1
r
ðrWrÞ;r

	 


;r

þD̂
1
r2

Wr;hh

� �

� ð�Dþ D̂Þð 1
r2

Wh;hÞ þ ð�D� D̂Þð1
r
Wh;rhÞ � K2A2ðw;r þWrÞ ¼ 0

dWh ; � 2�C
�A

1
r
r2ðF;hÞ þ ð�D� D̂Þð1

r
Wr;rhÞ þ ð�Dþ D̂Þð 1

r2
Wr;hÞ

þ D̂½1
r
ðrWhÞ;r�;r þ �Dð 1

r2
Wh;hhÞ � K2A2ð

1
r

w;h þWhÞ ¼ 0 ð19Þ

where �D ¼ D1 �A� 4A2B2
1 þ 8A2B1B2 � 4A1B2

2

� �

=�A and D̂ ¼ D2 � B2
2=A2: Next,

by introducing a new function, U, which is known as boundary-layer function
[8, 27], as follows:

Uðr; hÞ ¼ 1
r
½Wr;h � ðrWhÞ;r� ð20Þ

and following the same procedure as in [27], the equations in (19) are reformulated
into the following two equations:

r2U� K2A2

D̂
U ¼ 0 ð21Þ

�2�Cr2r2F � �D �Ar2r2w ¼ �AðPz � N1Þ �
�D �A

K2A2
r2ðPz � N1Þ ð22Þ

Equations 18 and 22 may, for convenience, be replaced by the following two
equations:
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r2r2w ¼ � 1
D
ðPz � N1Þ þ

1
K2A2

r2ðPz � N1Þ �
2�C

A1D

1
r2

N2 ð23aÞ

r2r2F ¼ � 2�C

A1D
ðPz � N1Þ þ

�AA1D� 4�C2

A2
1D

1
r2

N2 ð23bÞ

where D ¼ D1 � B2
1=A1: Thus, the five nonlinear coupled equilibrium equations in

(8) are replaced by a set of three uncoupled equations in (21) and (23). It is to be
noted that Eqs. 21 and 23 are known, respectively, as the edge-zone (or boundary-
layer) equation and the interior equations of the plate (also see [8, 27]).

Next, it is noted that, by utilizing relation (17), Eq. 19 may be rewritten so as to
find Wr and Wh in terms of U; w, and F as follows:

Wr ¼ �w;r �
2�C

�AK2A2
ðr2FÞ;r þ

D̂

K2A2

1
r
U;h �

�D

K2A2
r2w� Pz � N1

K2A2

	 


;r

Wh ¼ �
1
r

w;h �
2�C

�AK2A2

1
r
ðr2FÞ;h �

D̂

K2A2
U;r �

�D

K2A2

1
r
r2w� Pz � N1

K2A2

	 


;h

ð24Þ

Lastly, substituting Eq. 24 into Eq. 7b and the subsequent results, along with
(7a) and (13), into Eq. 14 yield:

u;r ¼�
1
2
ðw;rÞ2þ

A1

�A
r2F� F;rr

2A2
þB2

A2

2�Cðr2FÞ;rr

�AK2A2
�B2

A2

D̂L2ðUÞ
K2A2

þB2

A2
w;rrþ

B2

A2

�D

K2A2

o2

2
� 2�C

�A

� �

r2w�Pz�N1

K2A2

	 


þ 2A2

�A
NT

1
r

v;hþ
u

r
¼�1

2r2
ðw;hÞ2þ

A1

�A
r2F�L1ðFÞ

2A2
þB2

A2

2�CL1ðr2FÞ
�AK2A2

þ 2A2

�A
NT

þB2

A2

D̂L2ðUÞ
K2A2

þB2

A2
L1ðwÞ þ

B2

A2

�DL1

K2A2
� 2�C

�A

� �

r2w�Pz�N1

K2A2

	 


1
r

u;hþ v;r�
v

r
¼�1

r
w;rw;h�

L2ðFÞ
A2
þB2

A2

4�CL2ðr2FÞ
�AK2A2

þ 2B2

A2
L2ðwÞ

�B2

A2

D̂

K2A2
L1ðUÞ�U;rr

� �

þ 2B2

A2

�D

K2A2
L2 r2w� 1

K2A2
ðPz�N1Þ

	 


ð25Þ

where the partial differential operators L1 and L2are defined in Appendix 1. It is to
be noted here that if Poisson’s ratio is assumed to be constant through the plate
thickness, the identity �C ¼ A1B2 � A2B1 ¼ 0 holds for any assumption arbitrarily
made regarding the distribution of Young’s modulus (e.g., as in (1)) and the
preceding relations become slightly more concise.
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2.4 Solution Methodology

The nonlinear partial differential equations in (21), (23a), and (23b) are solved in
two steps. First, in Sect. 2.4.1, a two parameter perturbation technique is used to
replace the three nonlinear partial differential equations by an infinite set of linear
partial differential equations. Second, in Sect. 2.4.2, the Fourier series expansions
are used to reduce each set of linear partial differential equations to ordinary ones
which are then analytically solved.

2.4.1 Perturbation Technique

To solve the governing equations in (21) and (23) by the perturbation procedure,
U, w, F, the transverse loading Pz; and the thermal loadings NT and MT are
expanded in two parameter ascending power series:

ðUðr; hÞ; wðr; hÞ; Fðr; hÞÞ ¼
X

1

i¼0

X

1

j¼0

ðUijðr; hÞ ;wijðr; hÞ; Fijðr; hÞÞei
1e

j
2 ð26Þ

and

Pzðr; hÞ ¼
X

1

i¼0

X

1

j¼0

Pzijðr; hÞ ei
1e

j
2; NT ¼

X

1

i¼0

X

1

j¼0

NT
ij ei

1e
j
2;

MT ¼ MT

NT

X

1

i¼0

X

1

j¼0

NT
ij ei

1e
j
2

ð27a; b; cÞ

where i and j cannot be zero simultaneously and the perturbation parameters
e1 ¼ wð0; 0Þ=h and e2 ¼ Nrð0; 0Þb2=ðEmh3Þ are the non-dimensional center
deflection and non-dimensional radial resultant force at the center of the plate. The
definition of perturbation parameters requires that:

w10ð0; 0Þ ¼ h and wijð0; 0Þ ¼ 0; for all other i; j

Nr01ð0; 0Þ ¼
Emh3

b2
and Nrijð0; 0Þ ¼ 0; for all other i; j

ð28Þ

Substituting (26) and (27) into the governing equilibrium equations in (21) and
(23) and collecting the terms having the same order of e1 and e2 lead to an infinite
set of linear equations as follows:

r2Uij �
K2A2

D̂
Uij ¼ 0 ð29Þ

r2r2wij ¼ �
1
D
ðPzij � N1ijÞ þ

1
K2A2

r2ðPzij � N1ijÞ �
2�C

A1D

1
r2

N2ij ð30Þ
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r2r2Fij ¼ �
2�C

A1D
ðPzij � N1ijÞ þ

�AA1D� 4�C2

A2
1D

1
r2

N2ij ð31Þ

where N1ij and N2ij, which are determined from the preceding perturbation step, are
treated as ‘‘pseudo loads’’ at each perturbation step and they are given as follows:

e1 : N110 ¼ 0 ; N210 ¼ 0 ði ¼ 1; j ¼ 0Þ; e2 : N101 ¼ 0 ; N201 ¼ 0 ði ¼ 0; j ¼ 1Þ
ei

1e
j
2ði; j : 2; 0 ; 0; 2 ; 1; 1; 3; 0; 0; 3; 2; 1; 1; 2Þ :

N1ij ¼
X

j

q¼0

X

i

p¼0

‘1ðFpq;wði�pÞðj�qÞÞ þ ‘1ðwpq;Fði�pÞðj�qÞÞ þ ‘2ðFpq;wði�pÞðj�qÞÞ
� �

N2ij ¼
X

j

q¼0

X

i

p¼0

‘3ðwpq;wði�pÞðj�qÞÞ þ ‘4ðwpq;wði�pÞðj�qÞÞ
� �

ð32Þ

where p and q and also ði� pÞ and ð j� qÞ cannot be simultaneously zero. Also
ði� pÞ and ð j� qÞ cannot be negative and ‘1; ‘2; ‘3; and ‘4 are presented in
Appendix 1. Finally, in order to determine Wr; Wh; u; and v, these four dis-
placement field variables are also expressed in two parameter ascending power
series as follows:

ðWr ; Wh; u; vÞðr; hÞ ¼
X

1

i¼0

X

1

j¼0

ðWrij;Whij; uij; vijÞðr; hÞ ei
1e

j
2 ð33Þ

Substituting (33), (26), and (27) into (24) and (25) and following a standard
perturbation procedure result, respectively, in an infinite set of linear relations as
follows:

Wrij ¼ �wij;r �
2�Cðr2FijÞ;r

�AK2A2
þ 1

r

D̂Uij;h

K2A2
�

�D

K2A2
r2wij �

Pzij � N1ij

K2A2

	 


;r

Wh ij ¼ �
wij;h

r
� 1

r

2�Cðr2FijÞ;h
�AK2A2

� D̂Uij;r

K2A2
�

�D

K2A2

1
r
r2wij �

Pzij � N1ij

K2A2

	 


;h

ð34Þ

and

uij;r ¼NL1ij þ
A1

�A
r2Fij �

Fij;rr

2A2
þ B2

A2

2�C
�AK2A2

ðr2FijÞ;rr �
B2

A2

D̂L2ðUijÞ
K2A2

þ B2

A2
wij;rr þ

B2

A2

�D

K2A2

o2

or2
� 2�C

�A

� �

r2wij �
Pzij � N1ij

K2A2

	 


þ 2A2

�A
NT

ij

1
r

vij;h þ
uij

r
¼ A1

�A
r2Fij �

L1ðFijÞ
2A2

þ B2

A2

2�CL1ðr2FijÞ
�AK2A2

þ B2

A2

D̂L2ðUijÞ
K2A2
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þ NL2ij þ
B2L1ðwijÞ

A2
þ B2

A2

�DL1

K2A2
� 2�C

�A

� �

r2wij �
Pzij � N1ij

K2A2

	 


þ 2A2

�A
NT

ij

1
r

uij;h þ vij;r �
vij

r
¼ NL3ij �

L2ðFijÞ
A2

þ B2

A2

4�CL2ðr2FijÞ
�AK2A2

þ 2B2

A2
L2ðwijÞ

� B2

A2

D̂

K2A2
L1ðUijÞ � Uij;rr

� �

þ 2B2

A2

�D

K2A2
L2 r2wij �

Pzij � N1ij

K2A2

	 


ð35Þ

where N1ij is presented in (32) and

e1; NL110 ¼ 0 ; NL210 ¼ 0; NL310 ¼ 0; e2; NL101 ¼ 0 ; NL201 ¼ 0; NL301 ¼ 0

ei
1e

j
2 ði; j : 2; 0 ; 0; 2 ; 1; 1; 3; 0; 0; 3; 2; 1; 1; 2Þ :

NL1ij ¼
�1
2

X

j

q¼0

X

i

p¼0

wpq;rwði�pÞðj�qÞ;r; NL2ij ¼
�1
2r2

X

j

q¼0

X

i

p¼0

wpq;hwði�pÞðj�qÞ;h

NL3ij ¼ �
1
r

X

j

q¼0

X

i

p¼0

wpq;rwði�pÞðj�qÞ;h

ð36Þ

Again, it is emphasized that p and q and also ði� pÞ and ð j� qÞ cannot be
simultaneously zero. Furthermore, ði� pÞ and ð j� qÞ cannot be negative.

2.4.2 General Solutions for a Complete Circular Plate

Here, the general solutions of the perturbed governing equations are obtained for a
complete circular plate. For such a plate, the response quantities must be periodic
in the h direction. Thus, to begin with, the boundary-layer function Uij within each
set of perturbation equations may be represented as:

Uijðr; hÞ ¼
X

1

m¼0

UijmðrÞ cos mhþ
X

1

m¼1

~UijmðrÞ sin mh ð37Þ

with Uijm and ~Uijm being two unknown functions of r. Substitution of Eq. 37 into
29 yields two modified Bessel equations whose general solutions are given by
(e.g., see [31]):

UijmðrÞ
~UijmðrÞ

 �

¼ A1ijm~A1ijm

n o

Im

ffiffiffiffiffiffiffiffiffiffiffi

K2A2

D̂

s

r

0

@

1

A

þ A2ijm~A2ijm

n o

Km

ffiffiffiffiffiffiffiffiffiffiffi

K2A2

D̂

s

r

0

@

1

A

m ¼ 0; 1; 2; . . .
m ¼ 1; 2; . . .

n o

ð38Þ
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where A1ijm; A2ijm ; ~A1ijm; and ~A2ijm are the integration constants and Im and Km are
the modified Bessel functions of the first and second kinds, respectively. Next,
wij; Fij; and Pzij within each set of perturbation equations may be represented as:

wijðr; hÞ ¼
X

1

m¼0

wijmðrÞ cos mhþ
X

1

m¼1

~wijmðrÞ sin mh ð39aÞ

Fijðr; hÞ ¼
X

1

m¼0

FijmðrÞ cos mhþ
X

1

m¼1

~FijmðrÞ sin mh ð39bÞ

Pzijðr; hÞ ¼
X

1

m¼0

PijmðrÞ cos mhþ
X

1

m¼1

~PijmðrÞ sin mh ð39cÞ

where ðPijmðrÞ; ~PijmðrÞ Þ ¼ 1
p

R p
�p Pzijðr; hÞðcos mh; sin mhÞdh (e.g., see [31]) and

wijm; ~wijm; Fijm and ~Fijm are unknown functions of r. Upon substituting (39a) and
(39b) into (32) and using trigonometric identities to express the resulting trigo-
nometric functions in terms of cos mh and sin mh; the quantities N1ij and N2ij are
rearranged as follows:

ðN1ij;N2ijÞðr; hÞ ¼
X

1

m¼0

ðN1ijm;N2ijmÞðrÞ cos mhþ
X

1

m¼1

ð~N1ijm; ~N2ijmÞðrÞ sin mh ð40Þ

where N1ijm; ~N1ijm; N2ijm; and ~N2ijm (which are determined from a preceding per-
turbation step) are known functions of r in each perturbation step. Substitution of
Eqs. 39a, 39c, and 40 into Eq. 30 results in what follows:

rm�1 d

dr
r1�2m d

dr
r2m�1 d

dr
r1�2m d rmðwijm; ~wijmÞ

� �

dr

	 
 �� �

¼ � 2�C

A1D

ðN2ijm; ~N2ijmÞ
r2

þ rm�1

K2A2

d

dr
r1�2m d rmðPijm � N1ijm; ~Pijm � ~N1ijmÞ

� �

dr

( )

� Pijm � N1ijm; ~Pijm � ~N1ijm

D

ð41Þ

Direct integration of (41) yields:

wij0ðrÞ ¼ �
q1ij0 � v1ij0

D
þ

q2ij0 � v2ij0

K2A2
� 2�C

A1D
X1ij0

þ D1ij0 þ D2ij0r2 þ D3ij0 ln r þ D4ij0r2 ln r

wij1

~wij1

 �

¼� 1
D

q1ij1 � v1ij1

~q1ij1 � ~v1ij1

( )

þ 1
K2A2

q2ij1 � v2ij1

~q2ij1 � ~v2ij1

( )

� 2�C

A1D

X1ij1

~X1ij1

( )

þ
D1ij1

~D1ij1

 �

r þ
D2ij1

~D2ij1

 �

r3 þ
D3ij1

~D3ij1

 �

r�1 þ
D4ij1

~D4ij1

 �

r ln r
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wijm

~wijm

 �

¼� 1
D

q1ijm � v1ijm

~q1ijm � ~v1ijm

( )

þ 1
K2A2

q2ijm � v2ijm

~q2ijm � ~v2ijm

( )

� 2�C

A1D

X1ijm

~X1ijm

( )

þ
D1ijm

~D1ijm

 �

rm þ
D2ijm

~D2ijm

 �

rmþ2 þ
D3ijm

~D3ijm

 �

r�m þ
D4ijm

~D4ijm

 �

r�mþ2

m ¼ 2; 3; . . . (42a)

where

q1ijm; ~q1ijm; v1ijm; ~v1ijm;

X1ijm; ~X1ijm

( )

¼ 1
rm

Z

1
r1�2m

Z

1
r2m�1

Z

1
r1�2m

Z

1
rm�1

� Pijm; ~Pijm;N1ijm; ~N1ijm;

N2ijm=r2; ~N2ijm=r2

( )

drdrdrdr

ð42bÞ

ðq2ijm; ~q2ijm; v2ijm; ~v2ijmÞ ¼
1
rm

Z

1
r1�2m

Z

1
rm�1

ðPijm; ~Pijm;N1ijm; ~N1ijmÞdrdr ð42cÞ

Next, substituting Eqs. 39b, 39c, and 40 into Eq. 31 and integrating the ensuing
result yields:

Fij0ðrÞ ¼ �
2�C

A1D
ðq1ij0 � v1ij0Þ þ

�AA1D� 4�C2

A2
1D

X1ij0

þ B1ij0 þ B2ij0r2 þ B3ij0 ln r þ B4ij0r2 ln r

Fij1

~Fij1

 �

¼ � 2�C

A1D

q1ij1 � v1ij1

~q1ij1 � ~v1ij1

( )

þ
�AA1D� 4�C2

A2
1D

X1ij1

~X1ij1

( )

þ
B1ij1

~B1ij1

 �

r þ
B2ij1

~B2ij1

 �

r3 þ
B3ij1

~B3ij1

 �

r�1 þ
B4ij1

~B4ij1

 �

r ln r

Fijm

~Fijm

 �

¼ � 2�C

A1D

q1ijm � v1ijm

~q1ijm � ~v1ijm

( )

þ
�AA1D� 4�C2

A2
1D

X1ijm

~X1ijm

( )

þ
B1ijm

~B1ijm

 �

rm þ
B2ijm

~B2ijm

 �

rmþ2 þ
B3ijm

~B3ijm

 �

r�m þ
B4ijm

~B4ijm

 �

r�mþ2

m ¼ 2; 3; . . . ð43Þ

where q1ijm; ~q1ijm; v1ijm; ~v1ijm; X1ijm; and ~X1ijm are defined in (42b). The functions
Wrij and Wh ij within each set of perturbation relations are expressed as follows:

ðWrij;WhijÞðr; hÞ ¼
X

1

m¼0

ðWrijm;Wh ijmÞðrÞ cos mhþ
X

1

m¼1

ð ~Wr ijm; ~Wh ijmÞðrÞ sin mh

ð44Þ
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Upon substitution of Eqs. 44, 39, and 40 into 34, the following results are
obtained:

ðWrijm; ~WrijmÞ ¼ �
2�C

�AK2A2

d

dr
L3ðFijm; ~FijmÞ þ

D̂mð~Uijm;�UijmÞ
r K2A2

� ðw0ijm; ~w0ijmÞ �
�D

K2A2

d

dr
L3ðwijm; ~wijmÞ

þ
�DðP0ijm � N 01ijm;

~P0ijm � ~N 01ijmÞ
ðK2A2Þ2

ðWh ijm; ~Wh ijmÞ ¼ �
2�C

�AK2A2

m

r
L3ð~Fijm;�FijmÞ �

D̂ðU0ijm; ~U0ijmÞ
K2A2

� mð~wijm;�wijmÞ
r

� m�DL3ð~wijm;�wijmÞ
rK2A2

þ m

r

�D½~Pijm � ~N1ijm;�ðPijm � N1ijmÞ�
ðK2A2Þ2

ð45Þ

where a prime here and in what follows indicates total differentiation with respect to
the variable r and L3 is an ordinary differential operator presented in Appendix 1.
Lastly, uij; vij; and thermal stress resultant NT

ij within each set of perturbation rela-
tions are expressed as follows:

ðuij; vijÞðr; hÞ ¼
X

1

m¼0

ðuijm; vijmÞðrÞ cos mhþ
X

1

m¼1

ð~uijm;~vijmÞðrÞ sin mh ð46Þ

NT
ij ¼

X

1

m¼0

NT
ijm cos mhþ

X

1

m¼1

~NT
ijm sin mh ð47Þ

where ðNT
ijm;

~NT
ijm Þ ¼ 1

p

R p
�p NT

ij ðcos mh; sin mhÞdh (e.g., see [31]). Upon substitu-
tion of (39a) into (36) and using trigonometric identities to express the resulting
trigonometric functions in terms of cos mh and sin mh; the quantities NL1ij; NL2ij;

and NL3ij are rearranged as follows:

NL1ijðr; hÞ
NL2ijðr; hÞ
NL3ijðr; hÞ

8

<

:

9

=

;

¼
X

1

m¼0

NL1ijmðrÞ
NL2ijmðrÞ
NL3ijmðrÞ

8

<

:

9

=

;

cos mhþ
X

1

m¼1

~NL1ijmðrÞ
~NL2ijmðrÞ
~NL3ijmðrÞ

8

<

:

9

=

;

sin mh ð48Þ

where NL1ijm; ~NL1ijm; NL2ijm; ~NL2ijm; NL3ijm and ~NL3ijm are known functions of
r in each perturbation step (see Appendix 2). Next, substituting (46), (47), (48),
(37), (39), and (40) into (35) yields:
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u0ijm
~u0ijm

( )
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~NL1ijm

 �

þ A1

�A
L3�
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dr2

1
2A2
�B2
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2�C
�AK2A2

L3

� �	 


Fijm
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�B2

A2

D̂m
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d

dr

1
r
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( ) !
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A2

d2

dr2
1þ

�D

K2A2
L3

� �

�2�C
�A
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 �

þ �B2
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�D
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(49a)
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ð49bÞ

m

r
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(49c)

where the ordinary differential operators L4 and L5 are displayed in Appendix 1.
Integrating (49a) yields:
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�D
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ð50Þ

The integration constants Cijm and ~Cijm are determined by substitution of (50)
and (49b) into (49c). This completes the solution development for asymmetric
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nonlinear behavior of functionally graded circular plate under thermo-mechanical
loading within the first-order shear deformation theory.

2.5 Solid Circular Plate under Asymmetric Transverse Pressure
and Thermal Loading

For numerical purposes, a functionally graded solid circular plate of radius
b subjected to the following asymmetric transverse pressure (see Fig. 2) and a
temperature variation in the thickness direction (heat transfer in this direction) are
considered:

Pzðr; hÞ ¼ P̂0ð1þ a
r

b
cos hÞ ð51aÞ

NT ¼ constant ð51bÞ

where P̂0; a; and NT are three known parameters. By comparing Eq. 51a with
27a and 39c and also comparing Eq. 51b with (27b) and (47) it can be con-
cluded that:

P̂0 ¼
X

1

i¼0

X

1

j¼0

Pij0ðrÞ ei
1e

j
2; P̂0a

r

b
¼
X

1

i¼0

X

1

j¼0

Pij1ðrÞ ei
1e

j
2;

NT ¼
X

1

i¼0

X

1

j¼0

NT
ij0 ei

1e
j
2

ð52aÞ

PijmðrÞ ¼ 0 ; m ¼ 2; 3; . . .; ~PijmðrÞ ¼ 0 ; m ¼ 1; 2; . . . for all i and j

NT
ijm ¼ ~NT

ijm ¼ 0 ; m ¼ 1; 2; . . . for all i and j
ð52bÞ

where the functions Pij0
0s and NT

ij0
0s must be considered here to be unknown

constants. Furthermore, from the first two relations in (52a), it can readily be
concluded, therefore, that Pij1ðrÞ ¼ aPij0r=b : Since all response quantities must be
finite at r = 0, for the loading considered in (51) the response quantities of a solid

P0(1+α)

z

r
b

P0(1-α)

Pz(r,θ)

θ

Fig. 2 FG solid circular
plate subjected to an
asymmetric pressure
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circular plate within each perturbation step are simplified to what follows (see the
appropriate relations of the previous section):

ðUij;Wh ij; vijÞðr; hÞ ¼
X

iþj

m¼1

ð~Uijm; ~Wh ijm;~vijmÞðrÞ sin mh

ðwij;FijÞðr; hÞ ¼
X

iþj

m¼0

ðwijm;FijmÞðrÞ cos mh

ðWrij; uijÞðr; hÞ ¼
X

iþj

m¼0

ðWrijm; uijmÞðrÞ cos mh

ð53Þ

where
~UijmðrÞ ¼ ~A1ijmImðl rÞ

wijmðrÞ ¼ �
q1ijm � v1ijm

D
þ

q2ijm � v2ijm

K2A2
� 2�CX1ijm

A1D
þ D1ijmrm þ D2ijmrmþ2

FijmðrÞ ¼ �
2�Cðq1ijm � v1ijmÞ

A1D
þ

�AA1D� 4�C2

A2
1D

X1ijm þ B1ijmrm þ B2ijmrmþ2

ð54aÞ

In Eq. 54a l2 ¼ K2A2=D̂ and

q1ij0 ¼
Pij0r4

64
; q1ij1 ¼

aPij0r5

192b
; q2ij0 ¼

Pij0r2

4
; q2ij1 ¼

aPij0r3

8b
;

q1ijm ¼ q2ijm ¼ 0; m ¼ 2; 3; . . .

ð54bÞ

Also the quantities v1ijm; v2ijm; and X1ijm appearing in (54a) are in terms of N1ijm and
N2ijm and defined in (42b) and (42c). For the first nine perturbation steps, the func-
tions N1ijm and N2ijm; on the other hand, are presented in Appendix 2. Furthermore,
substitution of Eqs. 52, 53 and 54a into Eqs. 45, 50, and 49b yield, respectively:

WrijmðrÞ ¼
q01ijm � v01ijm

D
þ Ĉðq02ijm � v02ijmÞ þ

2�CĈX02ijm

A1
þ m~A1ijm

l2

Imðl rÞ
r

þ
2�CX01ijm

A1D
� ðmþ 2ÞD2ijmrmþ1 � m½D1ijm þ

4�Dðmþ 1Þ
K2A2

D2ijm

þ 8�Cðmþ 1Þ
�AK2A2
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~Wh ijm ¼ �
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r
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D
� Ĉ
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r

� 2�CĈ
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m

r
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d½Imðl rÞ�
dr
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A1D
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4�Dðmþ 1Þ
K2A2

D2ijm

þ 8�Cðmþ 1Þ
�AK2A2

B2ijm�rm�1 (54c)
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where Ĉ ¼ 1
K2A2

½ 4�C2

�AA1D
� ð1�

�D

D
Þ�; ~C ¼ 1

A2A1D

�AA1D� 4�C2

2A1
þ 2B2 �C

� �

; and

X2ijm ¼
1
rm

Z

1
r1�2m

Z

1
rmþ1

N1ijmdrdr ð54fÞ

The nonlinear terms NL1ijm and NL2ijm appearing in (54d) and (54e) are presented
in Appendix 2 for the first nine perturbation steps. Also, upon substitution of Eqs.
54d and 54e into 49c, it is found that Cijm is zero. It is to be noted that the
integration constants in Eqs. 54a, 54c, 54d, and 54e are determined by imposing
the appropriate boundary conditions at r ¼ b: Here, clamped and simply-supported
boundary conditions are considered. In terms of the functions associated with the
perturbation power series of the present study, they are defined as:

C : Wrij ¼ Wh ij ¼ wij ¼ 0 and uij ¼ vij ¼ 0

S : Mrij ¼ Wh ij ¼ wij ¼ 0 and uij ¼ vij ¼ 0
ð55Þ

By imposing these boundary conditions at r ¼ b, the integration constants are
found in terms of the unknown constants Pij0‘s and NT

ij0‘s (appearing in 54b) in
each perturbation step. These unknown parameters are determined by solving a set
of algebraic equations which, on the other hand, are obtained by utilizing the
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conditions in (28). Finally, the perturbation parameters e1ande2 are determined by
numerically solving the first and the third equations in (52a) which are, in general,
two nonlinear polynomial equations in e1 and e2: It is to be reminded that the
solutions of the first-order perturbation steps (associated with e1 and e2) represent
the linear asymmetric solution of the FG plate under the same thermo-mechanical
loading assumed in the nonlinear problem.

3 Numerical Results and Discussions

To validate the results of the present study, two validation examples are presented
here for linear and nonlinear bending problems of circular plates.

Example 1 The numerical results for the linear asymmetric bending of clamped and
simply-supported FG circular plates subjected to mechanical (asymmetric transverse
pressure with a ¼ 1), and thermal loadings are obtained here and compared with
those presented by Nosier and Fallah in [8]. The plate profiles after deformation
under mechanical and thermal loadings are shown in Fig. 3. The material properties
are the same as those in [8] Em ¼ 70 GPa, tm ¼ 0:3; Ec ¼ 151 GPa; tc ¼ 0:3ð Þ:
Exact agreements are seen to exist between the two results. It is to be mentioned that
according to linear theory the responses of the four types of clamped supports
identically coincide with each other (see [8] for further discussions).

Example 2 Here, the numerical results for the nonlinear axisymmetric bending of
FG circular plates within the classical plate theory (K2A2 !1) under thermo-
mechanical loading (thermal loading Tc=Tm ¼ 15 and a uniform transverse pressure
(a ¼ 0)) are obtained and compared with those presented by Ma and Wang [22].
Figure 4a, b display the load–deflection curves for clamped and simply-supported FG
plates for different values of power-law index n, respectively. The material properties
are the same as those in [22] Em ¼ 70 GPa, tm ¼ 0:3; Ec ¼ 151 GPa; tc ¼ 0:3ð Þ
and Dc ¼ Ech3=ð12ð1� t2ÞÞ: The trends in the curves of the two results are
seen to be similar, although some discrepancies are seen to exist between the
two results.

In the remaining of the present work, axisymmetric and asymmetric, linear and
nonlinear behavior of FG solid circular plates under a linearly varying transverse
mechanical load and a temperature variation in the thickness direction (see Fig. 2
and Eq. 51) are considered. For the purpose of numerical illustrations, Aluminum-
Zirconia is considered. The material properties (i.e., Young’s modulus, Poisson’s
ratio, and coefficients of heat conduction and thermal expansion) are assumed to be
70 GPa, 0.3, 204 W/m�K, and 23 x 10�6 =�C for Aluminum and 151GPa, 0.3,
2.09 W/m�K, and 10 x 10�6 =�C for Zirconia, respectively [10, 11]. The Poisson’s
ratio is assumed to be constant through the plate thickness. Chi and Chung [4, 5]
studied the effect of Poisson’s ratio on the static response of FG plates. They
concluded that the effect of changing Poisson’s ratio on the mechanical behavior of
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the FG plates is very small so that it can be assumed to be constant. In all
calculations the shear correction factor is taken to be 5/6. Identification of this
factor in FGMs was investigated by Nguyen et al. [6]. Also, unless mentioned
otherwise, the value of a appearing in (51) are assumed to be 1 and the results are
presented for h ¼ p=4, using third-order perturbation expansions (including nine
terms) for the solutions. In thermal loading, it is assumed that Tm ¼ T0 and
Tc ¼ T0 þ 200�C. For convenience, the following non-dimensional parameters are
introduced:

�w ¼ w=h; �P ¼ P̂0b4=ðEmh4Þ; �Nij ¼ Nijb
2=ðEmh3Þ ð56Þ

(a) (b)

Fig. 3 Comparison of linear transverse deflection of clamped and simply-supported FG circular
plate under a asymmetric pressure, and b thermal loading

(a)(a) (b)(b)

Fig. 4 Comparison of nonlinear results for load–deflection curves in a a clamped, and b simply-
supported FG circular plate under thermo-mechanical loading
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It is to be reminded that the perturbation parameters are defined at the center
point of the plate (i.e., e1 ¼ wð0; 0Þ=h and e2 ¼ Nrð0; 0Þb2=ðEmh3Þ) for simplicity
and convenience. However, numerical studies, conducted by the present authors
[27], indicate that the accuracy of any-order expansion considerably depends on
the location chosen for the perturbation parameter. It is, in general, observed that
the solution becomes more accurate when the perturbation parameter is specified
at the location where its corresponding response quantity is maximum. It is noted
that numerical results indicate that the maximum deflection and radial resultant
force occur at a point near the center of the plate.

The nonlinear center deflections versus load in clamped and simply-supported
FG circular plates for various values of n under thermo-mechanical loading are
presented in Fig. 5 and are compared with corresponding results under mechanical
loading [27]. In Fig. 5b the results for n = 0.3 and Aluminum are not shown since
snap-buckling occurs in these two cases and their results are shown in Figs. 6 and
7, respectively. Figure 6a shows the nonlinear center deflection versus load in
simply-supported FG circular plates with n = 0.3 under mechanical and various
thermo-mechanical loadings. For mechanical loading and also for the temperature
change of DT ¼ 100�C or DT ¼ 150�C only one form of equilibrium is possible
and the equilibrium is stable (the first and third nonlinear polynomial equations in
(52a) converge to only one root for e1 and e2 under a definite loading). But for
DT ¼ 200�C, there is a region (surrounding �P ¼ 0:7) for which there exists more
than one equilibrium path. In this region, under a definite loading, more than one
root (two or three roots) are obtained for the two nonlinear polynomial equations in
(52a) and the question of instability arise. In the investigation of stability, the logic
to obtain the variation of center deflection versus load is changed. Here, by taking
a series of values for e2 and under a definite thermal loading, the corresponding
values of e1 and P̂0 are calculated from the third and first relations in (52a),
respectively. The results are displayed in Fig. 6b in which it is seen that the
deflection gradually increases with an increase of the load up to point A. At this

(a) (b)

Fig. 5 Center deflection of a clamped, and b simply-supported FG circular plates versus load
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point, further deflection continues with a decrease of load. This fact indicates that
the upward form of the equilibrium of the plate has become unstable and plate
buckles downward through the dashed line to point B. At this point, any further
increase of load gradually increases the deflection and the new equilibrium form of
the plate is stable. On the other hand, by starting from point B, as the load is
diminished, the deflection of the plate decreases up to point C. At this point,
further decrease of deflection results in a load increase. This fact indicates that the
downward form of the plate is unstable and the load is not enough to keep the plate
downward and the plate buckles upward through the dashed line to point D. In
Fig. 7a the same phenomenon is shown to exist for Aluminum when temperature
change of the upper surface of the plate is DT ¼ 200�C. Of course, snap-buckling

(a) (b)

Fig. 6 Center deflection of simply-supported FG circular plates (n ¼ 0:3) a under various
thermo-mechanical loadings, and b under DT ¼ 200 �C versus load

(a) (b)

Fig. 7 Center deflection of simply-supported Aluminum circular plates under a mechanical and
various thermo-mechanical loadings, and b thermo-mechanical loading
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happens in an Aluminum circular plate when DT ¼ 150�C, but for clarity it is
shown in Fig. 7b. It is seen that the region in which more than one form of
equilibrium is possible becomes larger as DT increases. The same phenomenon is
seen when axisymmetric behavior of FG circular plates a ¼ 0ð Þ is considered.

In Fig. 8 the behavior of clamped circular FG plates under thermo-mechanical
and thermal loading is investigated. It is seen that bending does not occur in
clamped FG plates under thermal loading and bifurcation buckling occurs as
thermal load is increased. The same phenomenon is seen to be present in clamped
FG plates when they are subjected to a uniform temperature rise. The situation is,
however, reversed for simply-supported FG plates. The bifurcation buckling is not
seen to occur while bending takes place under the thermal loading considered (i.e.,
heat conduction through plate thickness), as shown in Fig. 9.

(a) (b)

Fig. 8 Center deflection of clamped FG circular plates a under mechanical and various thermo-
mechanical loadings, and b under thermal loading

Fig. 9 Center deflection of
simply-supported circular FG
plates under thermal loading
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A comparison of linear (i.e., the first-order perturbation steps) and nonlinear
analysis for non-dimensional centre deflection and radial stress resultant Nr of a
simply-supported FG plate subjected to thermal loading is displayed in Fig. 10a
and b, respectively. Two values of power-law index (namely, n ¼ 0:3 and n ¼ 3)
are considered. In Fig. 10b it is observed that Nr is compressive in the beginning
and then becomes tensile as the loading is increased (i.e., as the large deformation
effect becomes dominant). This, on the other hand, justifies the observation that the
nonlinear deflection is larger than the linear deflection, as the compressive
radial resultant force has a softening effect. It must be emphasized that when
only thermal load is present, the linear analysis may result in significant errors.

(a) (b)

Fig. 10 a Center deflection �w, and b radial stress resultant �Nr of simply-supported FG circular
plate versus thermal load

(a) (b)

Fig. 11 a Center deflection, and b radial resultant force of simply-supported FG circular plate
versus load parameter �P under thermo-mechanical loading
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This observation is also reported in the cylindrical bending analysis of simply-
supported FG plates [28].

Figures 11 and 12 show a comparison of the linear and nonlinear analyses for
the centre deflections and in-plane forces in simply-supported and clamped FG
plates under a thermo-mechanical loading, respectively. It is, again, emphasized
here that when the thermal loading is dominant, the linear theory becomes inad-
equate due to the existing compressive in-plane force within the plate.

The results for the deflection of a clamped FG plate (as a function of r/b) for
different values of a and h due to load parameter �P ¼ 15 are depicted in Fig. 13.
The volume fraction index is taken as n = 1. By taking a ¼ 0; the results under an

(a) (b)

Fig. 12 a Center deflection, and b radial resultant force of clamped FG circular plate versus load
parameter �P under thermo-mechanical loading

Fig. 13 Nonlinear center
deflection of a clamped FG
circular plate for different
values of a and h versus load
parameter �P under thermo-
mechanical loading

Nonlinear Bending and Post Buckling of Functionally Graded Circular Plates 409



axisymmetric loading are obtained and compared with the results of asymmetric
loading. The asymmetry effects of transversal load are clearly pronounced in
Fig. 13.

4 Conclusions

In the present work, by introducing a stress function and a potential function, the
von Karman nonlinear equilibrium equations of FG plates within the first-order
shear deformation theory are reformulated into interior and boundary-layer
equations. A two parameter perturbation technique, in conjunction with Fourier
series method, is employed to develop analytical solutions for simply-supported
and clamped FG circular plates under an asymmetric transverse load and a tem-
perature variation through the plate thickness. The results for solid circular plates
are validated with the existing results in the literature. Several numerical results
are generated to manifest the effects of nonlinearity, material constant, and edge
supports on various response quantities. Snap-through buckling behavior is
observed in simply-supported FG plates under thermo-mechanical loading which
may, on the other hand, be avoided by increasing the amount of ceramic con-
stituent in the FG system. It is shown that bifurcation-type buckling happens in
clamped FG circular plates, while bending occurs in simply-supported FG plates.
Moreover, it is observed that in FG plates subjected to thermal loadings, since the
linear analysis always underestimates the deflection, a nonlinear theory must be
used even for deflections that are normally considered small.

Appendix 1

The differential operators appearing in (25), (32), (45), and (49) are defined as
follows:

L1 ¼
1
r
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þ 1

r2

o2

oh2 ; L2 ¼
o

or

1
r

o

oh

� �

; ‘1ð ; Þ ¼ L1ðÞ
o2ðÞ
or2

; ‘2ð ; Þ ¼ �2L2ðÞL2ðÞ;

‘3ð ; Þ ¼
1
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o
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� o2

oroh

� �
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r
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Appendix 2

The pseudo loads N1ijm and ~N1ijm in Eq. 40 for the loading considered in (51) for
the first nine perturbation steps are found to be as follows:

e1 : N110m ¼ ~N110m ¼ 0; e2 : N101m ¼ ~N101m ¼ 0 ðB1aÞ

e2
1 : N120 ¼

X

2

m¼0

N1gmð1; 0; 1; 0Þ cosðmhÞ;

e2
2 : N102 ¼

X

2

m¼0

N1gmð0; 1; 0; 1Þ cosðmhÞ;

e1e2 : N111 ¼
X

2

m¼0

N1gmð1; 0; 0; 1Þ þ N1gmð0; 1; 1; 0Þ
� �

cosðmhÞ;

N1ij3 ¼ 0; for iþ j ¼ 2;

e3
1 : N130 ¼

X

3

m¼0

N1gmð1; 0; 2; 0Þ þ N1gmð2; 0; 1; 0Þ
� �

cosðmhÞ;

e3
2 : N103 ¼

X

3

m¼0

N1gmð0; 1; 0; 2Þ þ N1gmð0; 2; 0; 1Þ
� �

cosðmhÞ;

e1e
2
2 : N112 ¼

X

3

m¼0

N1gmð1; 0; 0; 2Þ þ N1gmð0; 2; 1; 0Þ

þN1gmð0; 1; 1; 1Þ þ N1gmð1; 1; 0; 1Þ

 !

cosðmhÞ

e2
1e2 : N121 ¼

X

3

m¼0

N1gmð1; 0; 1; 1Þ þ N1gmð1; 1; 1; 0Þ

þN1gmð0; 1; 2; 0Þ þ N1gmð2; 0; 0; 1Þ

 !

cosðmhÞ

N1ijmðrÞ ¼ 0 m ¼ 4; 5; . . .; ~N1ijmðrÞ ¼ 0 m ¼ 1; 2; . . .

ðB1bÞ

where

N1g0ði; j; k; lÞ ¼
1
r

F0ij0w00kl0 þ
1
r

w0kl0F00ij0 þ NN1ijkl � NN2ijkl;

N1g1ði; j; k; lÞ ¼
1
r

F0ij0w00kl1 þ w00kl0ð
1
r

Fij1Þ0 þ
1
r

w0kl0F00ij1 þ F00ij0ð
1
r

wkl1Þ0

þ ðOrd � 2Þ NN3ijkl � NN4ijkl

� �

;

N1g2ði; j; k; lÞ ¼NN1ijkl þ NN2ijkl

þ ðOrd � 2Þ
1
r F0ij0w00kl2 þ F00ij0ð1r w0kl2 � 4

r2 wkl2Þ if iþ j ¼ 1

ð1r F0ij2 � 4
r2 Fij2Þw00kl0 þ F00ij2

1
r w0kl0 if iþ j ¼ 2

( )

N1g3ði; j; k; lÞ ¼NN3ijkl þ NN4ijkl

ðB1cÞ
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In Eq. B1c and what follows the value of the parameter Ord is two for the second-
order perturbation steps and it equals three for the third-order perturbation steps
and

NN1ijkl ¼
1
2
ð1
r

Fij1Þ0w00kl1 þ F00ij1ð
1
r

wkl1Þ0
	 


;NN2ijkl ¼ ð1
r

Fij1Þ0ð
1
r

wkl1Þ0
	 


NN3ijkl ¼
1
2

1
r

F0ijðiþjÞ �
ðiþ jÞ2

r2
FijðiþjÞ

 !

w00klðkþlÞ

þF00ijðiþjÞ
1
r

w0klðkþlÞ �
ðk þ lÞ2

r2
wklðkþlÞ

 !

2

6

6

6

6

6

4

3

7

7

7

7

7

5

NN4ijkl ¼ 2 ð1
r

FijðiþjÞÞ0ð
1
r

wklðkþlÞÞ0
	 


ðB1dÞ

Also the pseudo loads N2ijm and ~N2ijm in Eq. (40) for the loading considered in
(51) for the first nine perturbation steps are found to be as follows:

e1 : N210m ¼ ~N210m ¼ 0; e2 : N201m ¼ ~N201m ¼ 0 ðB2aÞ

e2
1 : N220 ¼

1
2

X

2

m¼0

N2gmð1; 0; 1; 0Þ cosðmhÞ

e2
2 : N202 ¼

1
2

X

2

m¼0

N2gmð0; 1; 0; 1Þ cosðmhÞ

e1e2 : N211 ¼
X

2

m¼0

N2gmð1; 0; 0; 1Þ cosðmhÞ; N2ij3 ¼ 0; for iþ j ¼ 2

e3
1 : N230 ¼

X

3

m¼0

N2gmð1; 0; 2; 0Þ cosðmhÞ;

e3
2 : N203 ¼

X

3

m¼0

N2gmð0; 1; 0; 2Þ cosðmhÞ

e1e
2
2 : N212 ¼

X

3

m¼0

N2gmð1; 0; 0; 2Þ þ N2gmð0; 1; 1; 1Þ
� �

cosðmhÞ

e2
1e2 : N221 ¼

X

3

m¼0

N2gmð1; 0; 1; 1Þ þ N2gmð0; 1; 2; 0Þ
� �

cosðmhÞ

N2ijmðrÞ ¼ 0 m ¼ 4; 5; . . .; ~N2ijmðrÞ ¼ 0 m ¼ 1; 2; . . .

ðB2bÞ

where
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N2g0ði; j; k; lÞ ¼ �ðrw00ij0w0kl0 þ rw00kl0w0ij0Þ þ NN5ijkl þ NN6ijkl

N2g1ði; j; k; lÞ ¼ � rw00ij0ðw0kl1 �
1
r

wkl1Þ þ rw00ij1w0kl0

	 


� rw00kl0ðw0ij1 �
1
r

wij1Þ þ rw00kl1w0ij0

	 


þ ðOrd � 2ÞðNN7ijkl þ NN8ijklÞ

N2g2ði; j; k; lÞ ¼ NN5ijkl � NN6ijkl

� ðOrd � 2Þ rw0ij0w00kl2 þ rw00ij0ðw0kl2 �
4
r

wkl2Þ
	 


N2g3ði; j; k; lÞ ¼ NN7ijkl � NN8ijkl (B2c)

NN5ijkl ¼ �
1
2

rw00ij1ðw0kl1 �
1
r

wkl1Þ þ rw00kl1ðw0ij1 �
1
r

wij1Þ
	 


NN6ijkl ¼ ðw0ij1 �
1
r

wij1Þðw0kl1 �
1
r

wkl1Þ

NN7ijkl ¼ �
1
2

rw00ij1ðw0kl2 �
4
r

wkl2Þ þ rw00kl2ðw0ij1 �
1
r

wij1Þ
	 


NN8ijkl ¼ 2ðw0ij1 �
1
r

wij1Þðw0kl2 �
1
r

wkl2Þ

ðB2dÞ

Finally, the nonlinear terms NL1ijm; ~NL1ijm; NL2ijm; ~NL2ijm; NL3ijm; and ~NL3ijm

appearing in (54) (or in (48)) for the nine perturbation steps are found to be as
follows:

e1 : NL110m ¼ NL210m ¼ NL310m ¼ ~NL110m ¼ ~NL210m ¼ ~NL310m ¼ 0

e2 : NL101m ¼ NL201m ¼ NL301m ¼ ~NL101m ¼ ~NL201m ¼ ~NL301m ¼ 0
ðB3aÞ

e2
1 : NL120 ¼

1
2

X

2

m¼0

NL1gmð1; 0; 1; 0Þ cosðmhÞ

e2
2 : NL102 ¼

1
2

X

2

m¼0

NL1gmð0; 1; 0; 1Þ cosðmhÞ

e1e2 : NL111 ¼
X

2

m¼0

NL1gmð1; 0; 0; 1Þ cosðmhÞ; NL1ij3 ¼ 0; for iþ j ¼ 2

e3
1 : NL130 ¼

X

3

m¼0

NL1gmð1; 0; 2; 0Þ cosðmhÞ;

e3
2 : NL103 ¼

X

3

m¼0

NL1gmð0; 1; 0; 2Þ cosðmhÞ
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e1e
2
2 : NL112¼

X

3

m¼0

NL1gmð1;0;0;2ÞþNL1gmð0;1;1;1Þ
� �

cosðmhÞ

e2
1e2 : NL121¼

X

3

m¼0

NL1gmð1;0;1;1ÞþNL1gmð0;1;2;0Þ
� �

cosðmhÞ

NL1ijmðrÞ¼ 0; m¼ 4; 5; . . .; ~NL1ijmðrÞ¼ 0; m¼ 1; 2; . . .

ðB3bÞ

e2
1 : NL220 ¼

1
2

X

2

m¼0

NL2gmð1;0;1;0ÞcosðmhÞ

e2
2 : NL202 ¼

1
2

X

2

m¼0

NL2gmð0;1;0;1ÞcosðmhÞ;

e1e2 : NL211 ¼
X

2

m¼0

NL2gmð1;0;0;1ÞcosðmhÞ; NL2ij3 ¼ 0; for iþ j¼ 2

e3
1 : NL230 ¼

X

3

m¼0

NL2gmð1;0;2;0ÞcosðmhÞ;

e3
2 : NL203 ¼

X

3

m¼0

NL2gmð0;1;0;2ÞcosðmhÞ

e1e
2
2 : NL212 ¼

X

3

m¼0

NL2gmð1;0;0;2ÞþNL2gmð0;1;1;1Þ
� �

cosðmhÞ

e2
1e2 : NL221 ¼

X

3

m¼0

NL2gmð1;0;1;1ÞþNL2gmð0;1;2;0Þ
� �

cosðmhÞ

NL2ijmðrÞ ¼ 0 ; m¼ 4; 5; . . .; ~NL2ijmðrÞ ¼ 0 m¼ 1; 2; . . .

ðB3cÞ

and

e2
1 : NL320 ¼

1
2

X

2

m¼1

~NL3gmð1; 0; 1; 0Þ sinðmhÞ

e2
2 : NL302 ¼

1
2

X

2

m¼1

~NL3gmð0; 1; 0; 1Þ sinðmhÞ

e1e2 : NL311 ¼
X

2

m¼1

~NL3gmð1; 0; 0; 1Þ sinðmhÞ; ~NL3ij3 ¼ 0; for iþ j ¼ 2

e3
1 : NL330 ¼

X

3

m¼1

~NL3gmð1; 0; 2; 0Þ sinðmhÞ;

e3
2 : NL303 ¼

X

3

m¼1

~NL3gmð0; 1; 0; 2Þ sinðmhÞ;
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e1e
2
2 : NL312 ¼

X

3

m¼1

~NL3gmð1; 0; 0; 2Þ þ ~NL3gmð0; 1; 1; 1Þ
� �

sinðmhÞ

e2
1e2 : NL321 ¼

X

3

m¼1

~NL3gmð1; 0; 1; 1Þ þ ~NL3gmð0; 1; 2; 0Þ
� �

sinðmhÞ

NL3ijmðrÞ ¼ 0 m ¼ 0; 1; . . .; ~NL3ijmðrÞ ¼ 0 m ¼ 4; 5; . . .

ðB3dÞ

where

NL1g0ði; j; k; lÞ ¼ �w0ij0w0kl0 �
1
2

w0ij1w0kl1

NL1g1ði; j; k; lÞ ¼ �ðw0ij0w0kl1 þ w0ij1w0kl0Þ �
Ord � 2

2
w0ij1w0kl2

NL1g2ði; j; k; lÞ ¼ �ðOrd � 2Þw0ij0w0kl2 �
1
2

w0ij1w0kl1;

NL1g3ði; j; k; l; Þ ¼ �
1
2

w0ij1w0kl2

ðB3eÞ

NL2g0ði; j; k; lÞ ¼ �
1
2

1
r2

wij1wkl1;

NL2g1ði; j; k; lÞ ¼ �ðOrd � 2Þ 1
r2

wij1wkl2;

NL2g2ði; j; k; lÞ ¼ �NL2g0ði; j; k; lÞ; NL2g3ði; j; k; lÞ ¼ �NL2g1ði; j; k; lÞ

ðB3fÞ

and

~NL3g1ði; j; k; lÞ ¼
1
r
ðw0ij0wkl1 þ w0kl0wij1Þ

þ ðOrd � 2Þ 1
r
ðw0ij1wkl2 �

1
2

wij1w0kl2Þ

~NL3g2ði; j; k; lÞ ¼
1
2

1
r
ðw0ij1wkl1 þ w0kl1wij1Þ þ ðOrd � 2Þ 2

r
w0ij0wkl2

~NL3g3ði; j; k; lÞ ¼
1
r
ðw0ij1wkl2 þ

1
2

wij1w0kl2Þ

ðB3gÞ
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Finite Element Analysis of the Total
Forming Force of Thin-Walled Metallic
Tube Junctions Employing Elastomers

Cristiano Roberto Martins Foli, Miguel Ângelo Menezes
and Lindolfo Araújo Moreira Filho

Abstract Among the forming processes can be emphasized the metallic junction
forming using elastomers. This forming process presents a considerable number of
variables, as for instance: the definition of the necessary relationship between the
progress of the dome formed and the developed pressure in the elastomer, the friction
and lubricating conditions during the junction forming, the role of the anisotropy and
the material strain-hardening, as well as the influence of the strain-rate in the forming
process and the definition of the maximum force to form the junctions. Process
modelling has become an effective tool in reducing the lead-time and the cost for
designing forming processes for manufacturing automotive and aerospace compo-
nents. Several research works are being developed seeking to approximate the
experimental and mathematical analysis in manufacturing processes. Computer
software’s for process modelling, and the transfer of this technology to the industry
have contributed towards the development of this tool. This chapter aims to calculate
the total forming force through numerical simulation process of thin-walled tube
junctions using an elastômero, where important parameters are considered such as:
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friction, elastomer length and material mechanical properties. Furthermore, in the
work the finite element program Deform 3D is employed. Hence, comparisons are
made between the obtained numerical results and available experimental results.

1 Introduction

With the development of synthetic elastomers such as polyurethane, urethane and
plastiprene, several papers were published using the elastomer metal forming
technique, e.g., deep-drawing of metal sheets [11], bending and piercing of tubes
[1, 3]. Among the forming processes, stands out the forming of thin-walled tube
junctions using elastomer [5, 6, 10, 13, 14].

1.1 Finite Elements Method

Process modeling has become an effective tool in reducing the lead-time and the
cost for designing forming processes for manufacturing automotive and aerospace
components. Several research programs aimed towards the development of the
experimental and mathematical analysis of the mechanics of forming operations,
computer software for process modeling, and transfer of this technology to the
industry have contributed towards the overall objectives of superior technology for
process design in net shape and near net shape forming, [8].

Ribeiro [15] quote as pioneering work on finite elements, the works of [2] and
[16]. Zienkiewicz, in his historical paper ‘‘The Finite Element method: from
Intuition to generality’’ [18] presents a more detailed description of the finite
element method evolution in this initial phase. In the 1970s the finite element
method has extended its applications to problems of fluid mechanics and has since
been consolidating itself as the more general method of solution of partial dif-
ferential equations.

The finite element method considers the region to solve the problem formed by
small elements interconnected. The area under study is modeled analytically or
approximated by a set of predefined discrete elements. Since these elements can be
put together in countless different configurations have been modeled complex
geometric shapes. It also enables the designer to have good chances in the mode of
application of load and boundary conditions.

The finite element method is applicable to a wide range of boundary value
problems of engineering. On a boundary value problem, a solution is sought in the
body region (domain) as the contours of this region the values of the dependent
variables (or their derivatives) are known [4].
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1.2 Finite Elements Method in Forming Process

The development of reliable analytical procedures and the common applicability
to predict the behavior of deformation in forming processes, has encountered some
obstacles, such as the nonlinearity of the material, the unstable nature of the
processes, the large magnitude of deformation, and involvement of significant
effects of friction during forming, which makes the study of forming processes
very complex [7].

Between the initial cut and the final shape conformed, the material is subjected
to an extremely complex history of deformation, including continuous changes in
boundary conditions, large distortions of the membrane, the phenomenon of
acceleration due necking (narrowing of the dome), and also decreasing thickness
due to the effect of Poisson’s ratio and incompressible plastic deformations. Thus,
it is necessary to consider geometric and/or material nonlinearity in the process
analysis [17].

An elastic–plastic formulation is required due to the fact that the materials also
have a portion of non-linear response of stress–strain during processing. What
added to the need to simulate parts with geometric and physical nonlinearities,
such as those required in the aerospace industry, justify the need to use computer
algorithms of large scale [19].

The analysis of forming processes through the finite element method can be
classified into two groups, an approach based on rigid-plastic and visco-plastic
approach and another based on elastic–plastic. Because of the large deformation in
forming processes, the simulation by the finite element method requires special
formulations, such as Eulerian, Eulerian Current, Total Lagrangian and Updated
Lagrangian [9, 12].

2 Experimental Details

The initial and final geometries of the elastomer (polyurethane of Shore hardness
95 A) and the tested tubes employed in the forming process of thin-walled tube
junctions using elastomers are shown in Fig. 1, so as the double stage punch.

Each tube set up in the device with the chamfered part ahead of the die hole was
lubricated outside and clean inside with acetone to increase the elastomer-tube
friction that improves the forming process. The larger is the elastomer-tube
internal wall friction, the larger will be the material flow for the junction formation
(dome). Consequently, after the elastomer surface cleaning, it was impregnated
with chalk powder (CaCO3), with the purpose of increasing the adherence
(friction).

Grease based on colloidal aluminium (Aluminipart) and grease based on
sodium (Esso Draw EX-41) were used for the tube external lubrication. The former
has presented a better behavior during the deforming process.
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The initial elastomer length is determined as a function of the ‘‘clearance
height’’ (Z), value determined by the empiric equation obtained by Marreco [10]:

Z ¼ L1 � L2 ¼ 15:8þ 0:55Xð Þ½ � � 1:8 mm; ð1Þ

where,
X dome feed (mm);
L1 second stage length of the punch, Fig. 1, (mm); and
L2 half of the difference among the tube length (L) and the elastomer

length, (mm)

The success of the operation, that is, the forming process without presenting
failure by fracture or buckling (Fig. 2a, 2b) depends on application of pressures
in adequate proportion in the elastomer as in the tube. The control of the called
‘‘clearance height’’ was possible through the Eq. 1. The clearance height grows
with the process development due to the increase of the available space for the
elastomer to flow, which is function of the length of the formed dome (X).

In the automated case, a mechanism of four bars was developed, which is
presented in Fig. 3 that controls the relative feed of the second stage automatically
in relation to the first stage, avoiding fracture or buckling failures (Fig. 2a, 2b) that
could happen during the development of the forming process.

Fig. 1 Description of the
tube geometry
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3 Theoretical Analytical Model

According to the upper bound theory, the existence of a kinematically admissible
velocity field is assumed such that the loads responsible by the formation of this
field constitute an upper bound to the loads required for the real solution. The aim
of this calculation is to obtain an estimate of the total forming force, and so to
define the set of equipments necessary for the test.

The total force required would be determined by the energy balance involved in
the process, where the following energy portions take place:

We

�
¼ Wi

�
þWa

�
þWb

�
ð2Þ

Fig. 2 Types of failure in the
forming tubes. a Failure by
fracture in the dome.
b Failure by local buckling

Fig. 3 Scheme of the forming device
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where,

We

� External energy applied to the system;

Wi

� Energy due to internal strain;

We

� Energy due to friction losses; and

Wb

� Energy applied to the elastomer

The estimating of these energy portions leads the formula employed for the
calculation of the total forming force, which was previously deduced in reference,
[6], as follows:

FT ¼
p

2
ffiffi

3
p :�r d2

0 � d2
i þ 2:m:ðL� Y þ XÞ:d0

� �

þ A0EC
d2

i �d2
r

d2
r

� �

þ AiE�:Y3
L0

2� K:E�
ð3Þ

FT is the total forming force, �ris the yield stress, d0 and di are the outside and
inside diameters of the tube, m is the constant shear friction parameter, L is the
initial tee length, Y is the total axial shortening of tube, X is the lateral penetration,
A0 is the initial area of elastomer, Ec is the initial modulus of elasticity of the
elastomer, dr is the diameter of the elastomer, Ai is the internal area of the tube, E*
is the theoretical modulus of elasticity of the elastomer, Y3 is the ram movement
due to the displacement of the elastomer, L’ is L-Y1 (where Y1 is the ram move-
ment required to fill the elastomer/tube gap) and K is the volume compressibility.

4 Simulations of the Forming Process

The mechanical properties of the materials used are presented in Table 1, where
C is the material strength coefficient and n is the strain-hardening index. These
values were obtained according to ASTM E8-69 standard.

4.1 Finite Element Model

The forming process was simulated using the finite element method using the
software Deform 3D Version 5.1 for pre-processing and post processing. The
model uses 28,254 tetrahedral type elements to model the tube and 10,809 to
model the elastomer. Rigid elements were used to model the matrix and the
punches, and only half of the tooling was discretized due to symmetry of the piece.
The Newton–Raphson method was used as a method of interaction. Figure 4
presents the finite element model at the beginning in the process.

Due to the ‘‘clearance height’’ previously quoted, it is necessary to stop the
simulation process to change the length of the elastomer or punch.
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5 Results and Discussion

Figure 5 shows some of the cycles of brass tube forming, so as Fig. 6 shows the
cycles of the corresponding numerical simulation for the tube forming.

The numerical simulation of the forming process can also show or follow the
success of the operation, that is, the forming process without failure by fracture or
buckling (Figs. 7a, 7b) depending on the application of pressures in adequate
proportion in the elastomer as well as in the tube. The control of the called
‘‘clearance height’’ was possible through Eq. 1.

Figure 8 presents a ‘‘T’’ junction forming using the finite element method, as an
example of using the ‘‘T’’ junction forming process using elastomers.

By analysing Eq. 2, one verifies that it depends on geometric factors,
mechanical properties of materials used, operational conditions (dome progress)
and on the friction factor (m).

Fig. 4 Finite element model
at the beginning in the
process

Table 1 Mechanical properties of materials used

Materials Yield stress
re kgf = mm2ð Þ

Ultimate tensile stress
rt kgf = mm2ð Þ

Strain-
hardening
(n)

Strength coefficient
(C) (kgf/mm2)

Aluminium,
annealed

5.00 11.00 0.22 19.50

Copper
annealed

6.00 27.00 0.45 41.00

Finite Element Analysis of the Total Forming Force 425



Due to the difficulty for determining previously the friction factor (m) during
the process, a series of theoretical curves obtained using Eq. 2, fixing m and
varying X up to X = do (maximum forming) were built in order to find an average
value for the friction by comparing between the theoretical and experimental

Fig. 5 Cycles of brass tube forming (experimental)

Fig. 6 Cycles of simulation of the tubes forming

Fig. 7 Types of failure in the
numerical simulation forming
tubes. a Failure by fracture in
the dome. b Failure by local
buckling
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values. The following points should be taken into account: uniform application of
the lubricant along the outside surface of the tube and the inside wall of the die,
with the purpose of minimizing the friction variations; and the experimental
process should be rigorously followed to avoid great tube variations when
rehearsing the forming process of thin-walled metallic tube junctions.

During the simulation of the forming process by the finite element method, the
amount of friction between the elastomer and the tube remained constant and equal
to 0.08.

Examining Figs. 9 and 10 for the case of aluminium, it is noted that the friction
factor values, as well as its variation in the finite elements method simulation is
smaller than those found using Eq. 2. This is because of the simplifications
adopted in the mathematical model, such as not incorporating the friction factor
between the tube and the elastomer.

Examining Fig. 9, for the case of the aluminium, it is noticed an initial friction
factor value of m = 0.05. After that, it is observed that the friction factor of
m = 0.05, stays practically constant up to the displacement point of the dome is
X = 10 mm. It increases afterwards continually from 0.05 up to 0.08; a value
corresponding to X = do equivalent to the total forming.

For the numerical simulation in Fig. 10, there is a friction factor at the
beginning equal m = 0.04, where from the point of displacement of the dome of
X = 7 mm up to 16 mm, values quite similar were observed close a friction factor
between m = 0.04 and m = 0.05, which remain so up to the point X = 22 mm.
From this point on up to the end of the process there is an increasing in friction
factor that can reach a value equal to m = 0.07.

This variation can be explained by the fact that, as the process goes on, the
lubricant between the external wall of the tube and the die loses efficiency due to
its elimination, increasing more the contact metal/metal.

For the copper tube (Fig. 11) and using Eq. 2, it is observed that the friction
factor m = 0.07 remains constant up to the displacement of the dome is equal
X = 10 mm. After a narrow variation in friction factor, it is relevant to note that

Fig. 8 ‘‘T’’ junction. a Finite
elements method. b Forming
using elastomer
(experimental)
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Fig. 10 Experimental and numerical values of total forming forces using the finite element
method–aluminium

Fig. 9 Experimental and analytical values of the total forming forces using the Upper Bond
theory–aluminium
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Fig. 11 Experimental and analytical values of total forming forces using the Upper Bond
theory–copper

Fig. 12 Experimental and numerical values of total forming forces using the finite element
method–copper
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between X [ 10 mm and X = do (total conformation), there is no significant
variation in the value of friction factor m = 0.08.

In the finite elements method simulation in Fig. 12, it is observed that the value
of the friction factor has remained virtually constant up to m = 0.05. This fact can
be related to the smaller loss of the lubricant efficiency and explained by the
excellent surface finishing of the copper tube when compared to the aluminium
tube. Besides, it can be inferred that the granulation of the copper tube would be
more satisfactory in comparison with that of the aluminium tube because it did not
present the orange peel defect on its surface.

6 Conclusions

The process of numerical simulation has become an effective tool to reduce time
and cost of projects to manufacture automotive and aerospace components. Soft-
ware to model the process, and transfer this technology to the industry has helped
to develops of this tool.

Knowledge of the loads acting on the material during forming, the geometry of
flow, and the degree of forming, for instance, constitute a valuable aid to the
analysis of possible causes of defects and allows preventing such conveniences.
The finite element method simulation can predict failure by fracture or buckling in
the dome, helping the designer to relate the pressure between the elastomer and the
tube.

The differences found between the values of friction factor using the finite
element method and analytical model (upper bound theory) can be explained by
better evaluation of the parameters involved during forming, for example, friction
between the elastomer and the tube.

The results obtained by the theory of the upper limit constitute a method to
assess the burden of forming, which is useful to provide a first approximation of
the friction factor.

The finite element method was able to respond satisfactorily, thus becoming an
estimation method for calculating the load of forming, useful in defining the tools
and devices needed.

The forming process of thin-walled metallic tube junctions, at the actual stage,
it is an important area of application of elastomers, which due to its simplicity and
low cost of tooling, can be an option of interest in industrial applications involving
small-scale production, replacing advantageously the junctions obtained by con-
ventional methods, since it has a cold forming process which increases the strength
properties of the material.
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On the Stretching and Bending Analyses
of Thin Functionally Graded Annular
Sector Plates

H. R. Noori, E. Jomehzadeh and A. R. Saidi

Abstract In this chapter, an exact levy solution is presented for the bending
analysis of a functionally graded (FG) annular sector plates. The governing
equilibrium equations are obtained based on the classical plate theory. Introducing
an analytical method for the first time, the three coupled governing equilibrium
equations are replaced by an independent equation in terms of transverse deflec-
tion. This equation, which is a forth-order partial differential equation, is similar to
the governing equilibrium equation of a homogeneous isotropic annular sector
plate. Using an equivalent flexural rigidity, the solutions of FG annular sector
plates can be easily extracted from the equation of homogeneous annular plates.
Finally, the effects of power of functionally graded material (FGM), aspect ratio,
inner to outer radius ratio and boundary conditions on the mechanical behavior of
a functionally graded annular sector plate are discussed.
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1 Introduction

A new class of materials known as ‘‘functionally graded materials’’ (FGMs) has
been introduced in which the material properties vary continuously in one or more
directions according to a specific profile. These materials are microscopically
heterogeneous and are typically made of isotropic components such as metals
and ceramics. FGMs exploit the ideal performance of their composition, e.g. heat
and corrosion resistance of ceramics on one side, and mechanical strength and
toughness of metals on the other side of a body.

Thin plates are light weight structures with high load-carrying capacity,
economy, and technological effectiveness. Because of the distinct advantages, thin
plates are extensively used in all fields of engineering. Thus, understanding the
behavior of such structures is the main purpose of the researchers in this field.
Many models have been developed for static and vibration analysis of homoge-
neous or non-homogeneous plates with different shapes. Liu and Liew [1]
developed the differential quadrature element method (DQEM) for static analysis
of the two-dimensional Reissner–Mindlin plate in the polar coordinate system by
integrating the domain decomposition method (DDM) with the differential quad-
rature method (DQM). The axisymmetric bending and stretching analysis of
functionally graded solid and annular circular plates was studied by Reddy et al.
[2] using the first order shear deformation Mindlin plate theory. Cheng and Batra
[3] derived the three-dimensional thermoelastic analysis for functionally graded
elliptic plates. The analysis of the functionally graded plates based on the classical
plate theory was developed by Chi and Chung [4, 5]. They presented the solution
for simply supported S-FG (sigmoid functionally graded) and E-FG (exponential
functionally graded) rectangular plates. Abrate [6, 7] showed that no special tools
are required to study the analysis of functionally graded rectangular plates because
they behave like homogeneous plates. He selected the different reference surface
instead of middle surface and showed that based on this surface the static and
vibration analysis of FG plates and homogeneous plates related to each other.
An approximate closed-form solution is presented for bending of thin isotropic
sector plates with clamped edges subjected to uniform and non-uniform loading
using the extended Kantorovich method (EKM) by Aghdam et al. [8]. Nie and
Zhong [9] investigated the free and forced vibration of functionally graded annular
sector plates with simply supported radial edges and arbitrary boundary conditions
along the circular edges. They studied an approximate solution along the radial
direction using the one-dimensional differential quadrature method (DQM). The
meshless local Petrov–Galerkin (MLPG) method was used for analysing two-
dimensional static and dynamic deformations of functionally graded materials with
material response modeled as either linear elastic or as linear viscoelastic by
Gilhooley [10]. Sahraee [11] presented the bending analysis of functionally graded
circular sector plates based on the Levinson plate theory. He ignored the middle
plane displacement of the FG sector plate and solved the problem similar to the
isotropic one. A two-dimensional higher-order deformation theory was presented

434 H. R. Noori et al.



for the evaluation of displacements and stresses in functionally graded plates
subjected to thermal and mechanical loadings by Matsunaga [12]. Zhang and Zhou
[13] presented a theoretical analysis to the FG thin rectangular plates based on the
physical neutral surface. Jomehzadeh and Saidi [14, 15] studied the vibration
analysis of laminated sector and annular sector plates made of transversely iso-
tropic layers. Saidi and Jomehzadeh [16] introduced an analytical method for
decoupling the equilibrium equations of Kirchhoff and Mindlin rectangular plates.

Lot of investigations dealing with static and dynamic behavior of isotropic and
functionally graded rectangular plates can be seen in literature. However, no such
works can be found for analysis of FG annular sector plates. In this study, the static
analysis of a functionally graded annular sector plate is presented based on the
classical plate theory. Using an analytical method, three coupled stretching and
bending equilibrium equations of a FG annular sector plate are decoupled. Solving
the decoupled equation, the solution of a FG annular sector plate is obtained. It is
found that using an equivalent flexural rigidity, the decoupled equation of a FG
annular sector plate becomes like the equilibrium equation of an isotropic plate in
polar coordinates. The variations of some physical parameters are shown for
different functionally graded materials.

2 Material Properties of the FG Annular Sector Plate

The annular sector plate material is made of a mixture of ceramic and metal. It is
assumed that the material properties of the annular sector plate vary as a power law
through the thickness as in [17]

gðzÞ ¼ gm þ gcmð1=2� z=hÞp ð1Þ

where gðzÞ is the material property of the annular sector plate such as Young’s
modulus, h is the total thickness of the plate and p is the power of the FG plate.
According to the small range of Poisson’s ratio variation, it is assumed to be
constant through the thickness of the FG annular sector plate.

3 Governing Equilibrium Equations of the Annular
Sector Plate

Consider a FG annular sector plate of inner radius a, outer radius b, uniform
medium thickness h and sector angle a, as shown in Fig. 1. The annular sector
plate is subjected to transverse loading. It is assumed that the annular sector plate
has simply supported radial edges and arbitrary boundary conditions along the
circular edges.

The displacement components of the plate in r, h and z directions are assumed as
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urðr; h; zÞ ¼ uðr; hÞ � z
ow

or
ð2aÞ

uhðr; h; zÞ ¼ vðr; hÞ � z

r

ow

oh
ð2bÞ

wðr; h; zÞ ¼ wðr; hÞ ð2cÞ

where u, v and w are the displacements of the middle surface in r, h and z direc-
tions, respectively. Under the assumption of small deformation and linear strain–
displacement relations, the strain components of the FG annular sector plate can be
expressed as

er ¼
ou

or
þ z � o2w

o2r

� �

eh ¼
1
r

ov

oh
þ u

r
þ z � 1

r2

o2w

o2h
� 1

r
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� �

2erh ¼
1
r

ou

oh
þ ov

or
� v

r
þ z � 2

r

o2w

oroh
þ 2

r2

ow

oh

� �

ð3Þ

In classical plate theory, it is assumed that the cross section perpendicular to the
middle surface of the plate remains normal and unstretched after deformation.
Consequently, the transverse shear deformation is neglected and the shear strain
components 2erz and 2ehz vanish.

Substituting strain components (3) into the principle of minimum potential
energy, the equilibrium equations of Kirchhoff plate in polar coordinates are
obtained as

oNr

or
þ 1

r

oNrh

oh
þ 1

r
ðNr � NhÞ ¼ 0 ð4aÞ

oNrh

or
þ 2

r
Nrh þ

1
r

oNh

oh
¼ 0 ð4bÞ

α
θ

r
a b

Fig. 1 Geometry of the
annular sector plate
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o2Mr

or2
þ 2

r

oMr

or
þ 1

r2

o2Mh

oh2 �
1
r

oMh

or
þ 2

r

o2Mrh

oroh
þ 2

r2

oMrh

oh
þ P ¼ 0 ð4cÞ

where P is external loading function and the resultant forces Nr; Nh and Nrh can be
defined by integrating corresponding stresses along the thickness as follows

Nr ¼
Z

h=2

�h=2

rr dz; Nh ¼
Z

h=2

�h=2

rh dz; Nrh ¼
Z

h=2

�h=2

rrh dz ð5Þ

and the resultant moments Mr; Mh and Mrh are

Mr ¼
Z

h=2

�h=2

rrz dz; Mh ¼
Z

h=2

�h=2

rhz dz; Mrh ¼
Z

h=2

�h=2

rrhz dz ð6Þ

Considering plane stress state for the FG annular sector plate, the stresses are
defined as

rx ¼
EðzÞ

1� m2
ðer þ mehÞ ð7aÞ

rh ¼
EðzÞ

1� m2
ðeh þ merÞ ð7bÞ

rrh ¼
EðzÞ

2ð1þ mÞ ð2erhÞ ð7cÞ

Using Eqs. (3), (7a–c) and the definition of resultant forces and moments in
Eqs. (5) and (6), it can be obtained
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where the integration coefficients Aij; Bij and Dij ði; j ¼ 1; 2; 3Þ are defined as
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Substituting the resultant forces and moments obtained in Eqs. (8) into Eqs.
(4a- c), the governing equilibrium equations are obtained as
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Equations (10a–c) are three highly coupled equations in terms of in-plane and
transverse displacements. For solving such coupled equations, it is reasonable to
find a method for decoupling them. Using an analytic method, the three equilib-
rium equations (10a–c) are decoupled. Equations (10a–c) can be rewritten as
follows

A11
o/1

or
þ A33

1
r

o/2

oh
� B11

o

or
ðr2wÞ ¼ 0 ð11aÞ
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where r2 is two dimensional Laplace operator in polar coordinate ðr2 ¼
o2=or2 þ o=ror þ o2=r2oh2Þ and the variables /1 and /2 are defined as
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ou
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r
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Differentiating of Eq. (11b) with respect to h and dividing by r and differen-
tiating Eq. (11a) with respect to r and then adding the two results, yields

A11r2/1 ¼ B11r4w ð13Þ

Upon substitution of Eq. (13) into the last governing equilibrium equation
(11c), yields

D11 �
B2

11

A11

� �

r4w ¼ P ð14Þ

Equation (14) is an independent forth-order partial differential equation in terms
of transverse displacement w. This equation is very similar to the equation of
isotropic homogenous Kirchhoff plate. Introducing an equivalent flexural rigidity,
the decoupled governing equilibrium equation of the FG annular sector plate (Eq.
(14)) becomes as the governing equation of an isotropic homogeneous annular
sector plate. Equation (14) can be rewritten as

D̂r4w ¼ P ð15Þ

where D̂ is the equivalent flexural rigidity of the FG annular sector plate which is
equal to D11 � B2

11=A11: The coefficients A11; B11 and D11 can be defined in terms
of the material properties of the FG annular sector plate from Eqs. (1) and (9a-c)
as follows
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A ¼ h

1� m2
Em þ

Ecm

nþ 1

� �

ð16aÞ

B ¼ � Ecmh2

1� m2

n

2ðnþ 1Þðnþ 2Þ

� �

ð16bÞ

D ¼ Emh3

12ð1� m2Þ þ
Ecmh3ðn2 þ nþ 2Þ

4ð1� m2Þðnþ 1Þðnþ 2Þðnþ 3Þ ð16cÞ

Also, differentiating of equation (11) with respect to h and dividing by r and
differentiating equation (11b) with respect to r and then subtracting the two results
from each other, yields

r2/2 ¼ 0 ð17Þ

Due to Eqs. (13), (17) and the definition of variables /1 and /2 in Eqs. (12a, b),
it can be concluded that these equations are satisfied by letting the in-plane dis-
placements as follows

u ¼ B11

A11

ow

or
ð18aÞ

v ¼ B11

A11

ow

roh
ð18bÞ

It is easy to show that the relations (18a, b) satisfy Eqs. (13) and (17) and all
boundary conditions along the edges of the plate. Substituting these middle plane
displacements into Eqs. (2a-c), the proposed displacement field of the FG Kir-
chhoff annular sector plate becomes as

urðr; h; zÞ ¼ B11=A11 � zð Þ ow

or
ð19aÞ

uhðr; h; zÞ ¼ B11=A11 � zð Þ 1
r

ow

oh
ð19bÞ

wðr; h; zÞ ¼ wðr; hÞ ð19cÞ

It can be found from Eqs. (18a, b) that the in-plane displacements of the FG
annular sector plate do not vanish at the middle surface ðz ¼ 0Þ: Unlike the
isotropic homogeneous annular sector plate, the FG plate is not symmetric with
respect to the middle plane. Because of the variable properties through the
thickness, the neutral surface of the FG annular sector plate is not located
at the middle plane. It can be seen from Eqs. (19a–c) that the in-plane
displacements of the plate at z ¼ B11=A11 vanish. The surface located at
z ¼ B11=A11 is the real neutral surface of the FG annular sector plate. In fact,
the neutral surface of the FG plates depends on the variation of material

440 H. R. Noori et al.



properties in the thickness direction and the location of the neutral surface is
independent of the geometric parameters.

Based on the obtained displacement field for the FG annular sector plate
(Eqs. (19a–c)), the resultant moments can be obtained in the form of

Mr ¼ D̂
ow

or
þ m

ow

ror
þ 1

r2

o2w

oh2

� �� �

ð20aÞ

Mh ¼ D̂
ow

ror
þ 1

r2

o2w

oh2 þ m
ow

or

� �

ð20bÞ

Mrh ¼ D̂ð1� mÞ 1
r

o2w

oroh
þ 1

r2

ow

oh

� �

ð20cÞ

where the parameter D̂ is the equivalent flexural rigidity as mentioned before.

4 Solution

For static analysis of the FG annular sector plate which is simply supported at two
radial edges, the transverse displacement and uniformly distributed load can be
represented as

wðr; hÞ ¼
X

1

m¼1;3;::

wmðrÞ sinðbmhÞ ð21aÞ

P ¼
X

1

m¼1;3;::

4p0

mp
sinðbmhÞ ð21bÞ

where bm denotes mp=a: Substituting the proposed series solutions (21a, b) into
Eq. (15) and solving the resulted ordinary differential equation, yields

wmðrÞ¼ C1rbmþC2r�bmþC3r�bmþ2þC4rbmþ2þ 4p0r4

pnD̂ðb4
m�20b2

mþ64Þ

 !

sinðbmhÞ

ð22Þ

Imposing arbitrary boundary conditions at inner ðr ¼ aÞ and outer ð r ¼ bÞ circular
edges, the four unknown coefficients ðC1;C2;C3 ; C4Þcan be determined.
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5 Numerical Results and Discussion

For simplicity and generality, the following non-dimensional terms are introduced

�w ¼ wðr; a=2Þ
h

; �rr ¼
rr

aþb
2 ; a=2

� �

h2

p0b2
; �rh ¼

rh
aþb

2 ; a=2
� �

h2

p0b2
ð23Þ

In numerical calculation, the FG annular plate is assumed to have simply
supported radial edges. The inner radius, outer radius and thickness of the annular
plate are considered to be a ¼ 2:5; b ¼ 10 and h ¼ 0:2; respectively. The Pois-
son’s ratio of the plate is assumed to be constant through the thickness and equal to
0.3. The functionally graded material used is composed of aluminum with Em ¼
70 GPa and Silicon Carbide with Ec ¼ 420 GPa: The plate is subjected to uni-
formly distributed load with intensity of p0 ¼ 1� 104 N/m2:

The boundary conditions are identified according to the inner and outer
radius of the annular sector plates (e.g. F–C denotes free inner and clamped
outer edges).

In Fig. 2, the non-dimensional deflection is shown along the radial direction for
the FG annular sector plate with two circular edges simply supported. The vari-
ation is depicted for various power of FGM. As the power of FGM decreases, the
FG annular plate becomes stiffer and this leads to lower deflection. The non-
dimensional radial and circumferential stresses of the FG annular sector plate with
two circular edges simply supported are shown in Figs. 3 and 4 for different power
of FGM. It can be found that unlike the homogeneous plates ðp ¼ 0Þ; the stresses
�rr and �rh do not vanish at the mid-plane of the FG annular sector plates. The
normal stress in r direction is equal to zero at the neutral surface which is located
at z ¼ B=A as discussed. Also, the stress components of the FG annular sector
plates along the thickness direction are not linearly proportional to z direction.
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Fig. 2 Non-dimensional
deflection along radial
direction (S–S)
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The variation of non-dimensional radial stress ð�rrÞ is depicted in Fig. 5 through
the thickness direction for different powers of functionally graded material ðpÞ:
The plate is assumed to have clamped edges in two circular edges. It can be seen
that for p equal to 3.5, the non-dimensional stress vanishes at a distance far from
the middle plane. It can be easy to show that the parameter B=A has a maximum
value at n ¼ 3:5:

The non-dimensional transverse displacement is shown for a=b ¼ 0:25 and
a=b ¼ 0:5 in Figs. (6) and (7), respectively. It can be seen that when the inner edge
of the annular plate is close to the center of the annular sector plate, the maximum
deflection does not occur at the free edge. However, approaching the inner edge to
outer one, the maximum non-dimensional deflection occurs at the free inner edge.
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Fig. 3 Non-dimensional
radial stress along thickness
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This is acceptable because with decreasing the inner radius, the length of the free
inner edge decreases and the annular sector plate becomes stiffer.

The maximum non-dimensional transverse deflection is tabulated for different
sector angles and some aspect ratios and inner to outer radius ratios in Table 1. In
this case, the plate has free inner and clamped outer edges and power of FGM is
assumed to be 0.5.
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Fig. 5 Non-dimensional
radial stress along thickness
direction (C–C)
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6 Conclusion

In this chapter, an exact analytical solution has been presented for static analysis of
functionally graded annular sector plate. The annular sector plate is assumed to
have simply supported radial edges and arbitrary boundary conditions along the
circular edges. Three coupled governing equilibrium equations of FG annular
sector plate have been converted to a decoupled equation in terms of transverse
displacement. Introducing a flexural rigidity, the decoupled equation of FG plate
has become similar to the governing equilibrium equation of isotropic homoge-
neous plate. Finally, the variation of some parameters has been shown in figures
and in a table.

The exact solution for functionally graded annular sector plate has been
obtained for the first time and the present results can be regarded as a database in
the field of FG annular sector plates.
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Fig. 7 Non-dimensional
deflection along radial
direction ðF� C; a=b ¼ 0:5Þ

Table 1 Maximum Non-dimensional deflection for C–F plate, p ¼ 0:5

a h=b a=b ¼ 0:25 a=b ¼ 0:5

30� 0.01 0.0341 0.0321
0.02 0.0021 0.0020

45� 0.01 0.1590 0.1158
0.02 0.0099 0.0072

60� 0.01 0.4567 0.2184
0.02 0.0285 0.0136

120� 0.01 2.1001 0.3734
0.02 0.1313 0.0233
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Multi-Walled Carbon Nanotubes Effect
on Mechanical Properties of High
Performance Fiber/Epoxy
Nanocomposite
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Abstract In this study, the effect of multi-walled carbon nanotubes (MWNTs)
and functionalized multi wall carbon nanotubes having covalent attachments of
carboxylic groups (MWNTs-COOH) on mechanical properties of carbon fiber-
reinforced epoxy were investigated. Multi-walled carbon nanotubes (MWNTs)
were used as a nanofiller to enhance the mechanical properties of carbon fiber
reinforced epoxy composite. This was performed through a high speed mechanical
stirring as well as high intensity ultrasonic technique to obtain a homogeneous
mixture of epoxy resin and carbon nanotubes. It was found that the CNTs give
enhanced strength and elastic modulus.
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1 Introduction

The enhanced mechanical properties of carbon fibre-reinforced composites make
them attractive for structural applications in the aerospace, civil, marine, military,
etc. Carbon fiber composites have attracted great attention due to the unique
properties introduced by nanofillers, which typically refer to carbon blacks, silicas,
clays, or carbon nanotubes (CNTs).

Compared to other nanofillers, the unique structures of CNTs potentially pro-
vide superior mechanical, electrical, and thermal properties which was discovered
by Iijima, a Japanese scientist, in 1991 [1, 2]. They are known to possess the
mechanical properties that, when used in conjunction with conventional structural
materials such as carbon fiber composites, have the potential to enhance or con-
tribute to increases in mechanical performance without the penalties of excessive
weight gain. Carbon nanotube, a novel crystalline carbon form is basically a
cylindrical tubule containing sp2 hybridized carbon–carbon bond along its lengths
without any defect as far as structure is concerned because of its nano size [3].
There are two main types of carbon nanotubes that can have high structural per-
fection. Single walled nanotubes (SWNT) consist of a single graphite sheet
seamlessly wrapped into a cylindrical tube, and multi walled nanotubes (MWNT)
comprise an array of such nanotubes that are concentrically nested-like rings of a
tree trunk [4, 5].

Adding CNTs to the matrix is expected to improve the stiffness, toughness,
electrical conductivity and the interlaminar shear strength of composites. The
effective utilization of carbon nanotubes in composite applications strongly
depend on the ability to homogeneously disperse them throughout the matrix
without destroying their integrity. Furthermore, good interfacial bonding is
required in order to achieve load transfer across the CNT–matrix interface and a
necessary condition is needed for improving the mechanical properties of the
composite [6]. Load transfer from matrix to CNTs plays a key role in the
mechanical properties of composites. If the adhesion between the matrix and the
CNTs is not strong enough to sustain high loads, the benefit of the high tensile
strength of CNTs are lost [7].

In this study, MWNTs and MWNTs-COOH were mixed with the epoxy resin to
fabricate carbon fiber/CNTs/epoxy nanocomposites. The tensile strengths and the
Young’s modulus of the three kinds of composites were measured. The purpose of
this paper is to show the effect of carbon nanotubes on the mechanical properties
of conventional carbon fiber reinforced epoxy matrix as well as to improve
compatibilty between epoxy and nanofiller by introducing functional groups onto
the surface of carbon nanotubes.

448 M. Taghavi Deilamani et al.



2 Experimental

2.1 Materials

The fabric used in this work was 2D plain weave carbon fibers. MWNTs used in
this study were provided by the Research Institute of Petroleum Industry (RIPI)
and were synthesized by a chemical vapor deposition (CVD) with a purity[95%.
MWNTs were prepared with diameter ranging from 10 to 50 nm, lengths varying
from 1 to 3 lm. For preparation of MWNTs-COOH, MWNTs were dispersed into
a flask containing the mixture of sulfuric acid and nitric acid with 3:1 volumetric
ratio and sonicated for 3 h. After that the MWNTs were washed with deionized
water until the pH of the solution reached approximately 7 and then the mixture
was filtered and dried at 120�C. According to previous investigations, this pro-
cedure is designed to achieve functionalized multi wall carbon nanotubes having
covalent attachments of carboxylic groups (MWNTs-COOH) with specific con-
centration. The epoxy matrix utilized in this study is based on two parts: part A:
Aralditely-556 based on bisphenol A (DGEBA) and part B: a hardner HY-951
(aliphatic amine) in wt. ratio 100/12 (Ciba-Geigy company, Switzerland).

2.2 Experimental Procedure

In this study, for fabrication of the nanocomposite, at first the amount of 0.5 wt%
nanofillers with epoxy resin, Aralditely-556 were sonicated, and then the hardner
HY-951, was added to the mixture. This blend was mixed using a high intensity
ultrasonic processor and manual stirrer simultaneously in three 30-min phases and
for better dispersion between these phases a high speed mechanical stirrer was
used. Ultrasonic process is an efficient method of dispersing carbon nanotubes into
epoxy resin when CNTs weight fractions are 0.5 wt% or lower than this amount.
Above this concentration, a CNTs agglomerate. The carbon fiber/CNTs/epoxy
nanocomposite laminate were prepared using hand lay-up process, and the lami-
nates were cured under vacuum at 80�C for 4 h and then post-cured at room
temperature overnight before the mechanical testing. Carbon fiber/epoxy com-
posite laminates without carbon nanotubes were prepared for comparision as well.
The specimens were cut to 25 9 250 9 2.5 mm3, and mechanical properties of
samples were investigated according to ASTM D3039, at room temperature with a
constant cross-head rate of 2 mm/min by an Instron mechanical testing machine.
Five specimens were tested for each sample and the average value was obtained
from the data of these measured specimens.

Fourier-transform infrared spectroscopy (FT-IR) was used to analyze the
changes in the surface chemical bonding and structure in the frequency range of
4000–400 cm-1. Spectrometer used was a Bruker Equinox 55 FTIR.
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Morphologies of the nanocomposites were studied using a SEM (SEM XL 30;
Philips Instruments). SEM micrographs were taken from cryogenically fractured
surfaces of specimens. The specimens were fractured manually after immersion in
liquid nitrogen and were then coated with a thin layer of gold prior to SEM
investigation.

3 Results and Discussion

Figure 1a and b shows the FT-IR spectra of pristine and functionalized MWNTs.
The spectra of the acid-treated MWNTs showed peaks at around 1,701 and
1,187 cm-1 apparently corresponding to the stretching mode of carboxylic C=O
and C–O, respectively. The peak at around 1,570 cm-1 corresponds to the C=C
graphene sheet bonds of the MWNTs [8].

Intrinsic van der waals attraction among tubes, in combination with their high
surface area and high aspect ratio often leads to significant agglomeration, and thus
prevents efficient transfer of their superior properties to the matrix. To unlock the
potential of carbon nanotubes for application in polymer nanocomposites, the
dispersion property becomes very important when carbon nanotubes are added into
matrix. Carbon nanotubes tend to remain agglomerated and a homogenous dis-
persion is not easily obtained, therefore, the dispersion of the nanotubes in the
resin is a key parameter. Additional processing difficulties for carbon nanotubes
reinforced epoxy composites come significantly in viscosity when the nanotubes
are directly added to the epoxy.

Figure 2a and b are SEM images of the MWNT-COOH/Epoxy. It can be seen
that the nanotubes were dispersed with good quality. The white spots indicate
MWNT’s ends that were pulled out of the epoxy matrix.

The mechanical properties of carbon fiber-reinforced epoxy matrix composites
and carbon fiber/CNTs/epoxy nanocomposites such as Young’s modulus, tensile
strength, and strain at break were investigated and listed in Table 1.

The modification of the mechanical properties of composite laminates made of
long carbon fibers and epoxy matrix modified by the addition of MWNTs depends
on many parameters. Adding some MWNTs can enhance the properties but adding
more MWNTs may not guarantee more improvement. This is due to the increase in
viscosity of the epoxy on the addition of the MWNTs and the augmentation of the
amount of air bubbles during the mixing process.

The MWNTs–matrix interfacial adhesion is an important factor determining the
mechanical properties of composites. Interfacial engineering was extensively
applied to improve the mechanical and thermo-mechanical properties of fiber
reinforced epoxy composites (including MWNT/epoxy, SWNT/epoxy and carbon
nanofiber (CNF)/epoxy systems) [9–17]. These reported results indicated that the
formation of covalent bonding between functionalized MWNTs and epoxy matrix
would lead to a more effective stress transfer and form denser crosslink structure
which might limit the mobility of matrix backbone, so mechanical properties of
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carbon fiber/epoxy composites could be improved. Improvements in Young
modulus and tensile strength have been achieved with 0.5 wt% nanotubes. These
improvements in mechanical properties are attributed to both the improved dis-
persion of the nanotubes and grafting of epoxy resin to MWNTs by an esterifi-
cation reaction. The formation of covalent bonds between the MWNTs and epoxy
resin facilitates load transfer between the MWNT and epoxy matrix and contrib-
utes to the improvement in the mechanical properties of the composites.

Fig. 1 FT-IR spectra of (a) pristine MWNTs and (b) MWNTs-COOH
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4 Conclusions

In order to obtain uniform dispersion of MWNTs in the epoxy matrix and combine
the design of MWNT–epoxy interfacial interaction with the demand for the
improvement of mechanical properties of carbon fiber/MWNT/epoxy composites,
we carried out sidewall carboxylic acid functionalization of MWNTs. In the

Fig. 2 SEM image of the
MWNT-COOH/Epoxy
nanocomposite,
magnification is 150009 (a),
300009 (b)

Table 1 Mechanical properties of carbon fiber/epoxy composites and carbon fiber/MWNTs/
epoxy nanocomposites

Samples Young’ s modulus
(GPa)

Tensile strength
(MPa)

Strain at break
(%)

Carbon fiber/Epoxy composite 45.04 340.18 1.44
Carbon fiber/MWNTs/Epoxy

nanocomposite
46.17 365.84 1.53

Carbon fiber/MWNTs-COOH/Epoxy
nanocomposite

49.58 372.21 1.45
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functionalization process, acid treatment of MWNTs should be executed to
effectively generate carboxyl groups on their surface. FTIR analyses indicate that
H2SO4/HNO3 treatment would vary the feature of the MWNT surface and effi-
ciently introduce carboxyl groups onto it.

Sonication was an efficient method of infusing carbon nanotubes into epoxy
resin when CNT weight fractions are lower than 0.5 wt%. Above the 0.5 wt%,
CNTs agglomerated. The morphology characterization of the fracture surfaces of
MWNT-COOH/epoxy nanocomposite shows that their fracture patterns are brittle
fracture and ductile fracture, respectively. In addition, MWNTs are homoge-
neously dispersed in epoxy matrix and they possess an intimate contact with
matrix. The mechanical properties of MWNTs and MWNTs-COOH reinforced
carbon fibers/epoxy composites were investigated at the same nanotube loading of
0.5 wt%. A hybrid laminate is presented that demonstrates enhancement
of mechanical properties. The Young’s modulus and tensile strength properties of
carbon fiber/MWNT-COOH/epoxy composites are better than those of carbon
fiber/MWNT/epoxy composites. Mechanical properties improvement indicating
that there is efficient load transfer between the matrix and the functionalized
carbon nanotubes.
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Effects of Single-Walled Carbon
Nanotubes on Fiber Diameter Distribution
of Poly (Butylene Terephthalate)
Electrospun Composite Nanofibers

Mehdi Forouharshad, Omid Saligheh, Rouhollah Arasteh
and Reza Eslami Farsani

Abstract In this Study, Poly (butylene terephthalate) (PBT)/Single-walled carbon
nanotubes composite nanofibers mats were prepared by electrospinning, being
directly deposited in the form of a random fibers web. The effect of different loads
of single-walled nanotubes on the morphology of the electrospun PBT/SWCNTs
composite nanofibers was investigated with scanning electron microscopy (SEM).
SEM observations indicated that the presence of SWCNTs resulted in finer
nanofibers for lower loading; however, a broader distribution, especially for the
higher diameter ranges was found for nanofibers with higher amounts of carbon
nanotubes.

Keywords Composite nanofibers � Poly butylenes terephthalate � Single wall
carbon nanotube � Electrospinning � Morphology
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1 Introduction

Carbon nanotubes (CNTs) with a high aspect ratio and low density have been
shown to possess excellent mechanical, thermal and electronic properties [1].
These characteristics make them an ideal candidate as a filter to develop poten-
tially revolutionary composites with light weight and enhanced mechanical [2],
electrical [3] or thermal properties [4]. Polymer fibers reinforced with CNTs are of
particular interest [5–7]. Several parameters can affect the properties of the CNTs
composites, such as the filler dispersion, orientation and interfacial bonding [8].

Recently, electrospinning has been used to produce ultrafine CNT composite
fibers. Electrospinning is a novel and efficient tool for producing nanotube-poly-
mer composites. The electrospinning set-up consists of a bipolar high voltage
source, a syringe injector coupled to a needle and a conducting collector to obtain
randomly orientated or aligned nanofibers. The electrospinning process involves
stretching a polymer solution under a strong electric field to form dry or semi-dry
fibers with diameters on the nanometre scale [9]. From solution to dry fiber, the
fiber stretching process takes just tens of milliseconds [10]. With such a fast fiber-
stretching speed and high aspect ratio of the resultant nanofiber, an alignment of
CNTs along the axis of the nanofiber could be achieved when a polymer solution
containing well-dispersed carbon nanotubes is electrospun [11, 12]. Dror et al.
reported that one advantage of electrospinning was that carbon nanotubes or their
bundles orient parallel to the main nanofiber axis during fiber formation due to
combination of dielectrophoretic forces caused by dielectric or conductivity mis-
match between CNTs and the polymer solution and high shear forces induced by
the electrospinning [13]. Carbon nanotubes generally tend to exist as bundles or
even networks of aggregates because of strong non-bonded interaction. Therefore
for exploiting their full potential as fillers, particular attention need to be paid to
achieving a good dispersion of nanotubes in the spinning solution, and achieving a
high degree of axial orientation of CNTs to maximize mechanical properties of
nanofibers. Experimentally, this is achieved by either mechanical methods (using
either high shear mixers) or more commonly by sonication [14]. Although
nanofibers have wide range of applications in various fields, their mechanical
properties are comparatively low, but they may be improved by the incorporation
of reinforcing nanomaterials.

PBT, a linear polyester of aromatic nature, is a thermoplastic of excellent
mechanical properties. Like PET, electrospun fibers of PBT can be used in blood
vessel tissue engineering applications as scaffolds for endothelial cells [15].
Lately, electrospun composite nanofiber of carbon nanotubes with different
polymers such as polycaprolactone [16], nylon [17], polyvinyl alchohol (PVA)
[18], polycarbonate (PC) [19], polyacrylonitrile (PAN) [20, 21], etc. have been
reported, which show enhanced mechanical properties of nanofibers compared to
their pure polymer nanofibers. In this study, we used single-wall carbon nanotubes
(SWCNTs)/PBT composite nanofibers as model material to examine the effect of
loading of carbon nanotubes on the diameter of composite fibers.
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2 Experimental

2.1 Materials

The PBT (PBT 1800, MFI = 20 g/10 min) used in this study was supplied by
Shenzhan Youhua Engineering Plastic Co., China, in the form of pellets. Triflu-
oroacetic acid (TFA) and dichloromethane (DCM) (Merck, Germany) were
obtained and used without further purification. A volume ratio of 50/50 TFA/DCM
was used as a solvent for dissolving PBT to prepare the polymer solution for
electrospinning. The single walled carbon nanotubes (SWCNTs) (diameter \
2 nm, length \ 20 lm, purity [ 95%) were obtained from Shenzhen Nanotech-
nologies Co., Ltd. (NTP) and were used as-received without purification and
surface treatment.

2.2 Samples Preparation and Electrospinning

For making nanocomposite solutions, quantitative SWCNTs (0.5, 1, 2, 4 wt%)
were added to TFA/DCM, 50/50 (v/v); and ultrasonicated with a probe sonicator
for 10 min at an amplitude of 50% using a 24 kHz ultrasonic processor (Model
UP200H, Hielscher Ultrasonics GmbH, Stuttgart, Germany) at room temperature
to produce uniformly dispersed SWCNT suspensions. Then, the powdered poly-
mer was added to the solution while the mechanical mixer was working. After
adding PBT, the mixture was stirred via the heater stirrer (1,700 rpm) for 30 min to
obtain a uniform composite solution for electrospinning. A concentration of 14
wt% pure PBT solutions was found to be optimum for PBT nanofiber fabrication
[22]. Thus, the concentration of nanocomposite PBT/CNT solutions was 14 wt%
with a variation in the weight of the nanotubes of 0.5, 1, 2 and 4 wt%. The
electrospinning process consisted of (1) a polymer solution delivery system, (2) a
power supply to generate an electrical field, and (3) a fiber collection device.
Electrospinning dopes (pure PBT and SWCNTs/PBT solutions) were placed in a
syringe with a capillary tip of 0.7 mm diameter, with pressure applied by a syringe
pump (KDS 100, KD Scientific Inc., USA); the syringe pump speed was adjusted
to a flow rate 0.5 mL/h. The electric field was provided by a high voltage power
supply (model RR30-1.25P, Gamma High Voltage Research, Inc., USA). The
applied voltage was 20 kV, the tip to collector distance was set to be 15 cm and
the electrospining was carried out according to [23]. When the voltage rises to a
critical value (20 kV), the charged jet is ejected; as the jet travels in air, most of
solvent is evaporated and the fibers hit the surface on an aluminum foil which was
placed on the metal collector and solidified rapidly because of the low boiling
point of DCM and TFA.
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2.3 Scanning Electron Microscopy (SEM)

The morphology of the electrospun composite nanofibers was observed by scan-
ning electron microscopy (VEGA TESCAN, Czech Republic). Samples were fixed
to SEM holders and coated with a thin layer of gold prior to SEM investigation.

3 Results and Discussion

3.1 Morphology

The SEM images of electrospun SWCNT/PBT composite nanofibers are shown in
Fig. 1. They demonstrate that the PBT/CNT composite nanofibers were success-
fully spun by electrospinning at 20 kV. The mats are composed of numerous,
randomly oriented, continuous fibers which have a distribution in diameter without
abnormal morphology, such as beads.

Figure 2 shows the fiber diameter distribution of the electrospun composite
nanofibers; the diameter of the pure PBT electrospun fiber from the 14 wt%
concentration solution ranged from 300 to 800 nm with average diameter 549 nm
[22], compared to PBT/CNT composite nanofibers for which the average fiber
diameters were 473, 422 and 462 nm for 0.5, 1 and 2% SWCNTs, respectively.
The presence of SWCNTs resulted in finer nanofibers and the fiber distribution
became narrow as well. The reduction in fiber diameter suggests that the presence

Fig. 1 SEM images of electrospun SWCNTs/PBT composite nanofibers
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of carbon nanotubes in the polymer solution affected the fiber stretching process
due to the increased electrical conductivity; the consequent increase in surface
charge in the jet may have led to smaller average nanofiber diameters according to
references [23]. However, a broader distribution, especially in the higher diameter
ranges, was found for PBT/CNT with 4% of SWCNTs. The diameter of the
electrospun composite nanofibers with 4% SWCNTs ranged from 300 to 1000 nm
with average diameter 651 nm. The increase in diameter can be explained by the
increase in solution viscosity with addition of more CNTs. This kind of solution
viscosity to the diameter effect has been extensively studied [24, 25].

Fig. 2 Fiber diameter distribution of electrospun SWCNTs/PBT composite nanofibers. a PBT
neat, b PBT-SWCNT 0.5%, c PBT-SWCNT 1%, d PBT-SWCNT 2%, e PBT-SWCNT 4%
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4 Conclusions

In the present work composite nanofibers of poly (butylene terephthalate) and
single wall carbon nanotubes were successfully spun by the electrospinning
method. A scanning electron microscope was used for the morphology investi-
gation and to determine the fiber size. It was found that the average fiber diameter
decreased with the addition of single wall carbon nanotubes until 2 wt%, and then
increased at 4 wt%.
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Structure, Surface and Hardness
Properties of YxAgyBa2Cu3O7-d

Composites Superconductor

Nurulhawa Ali Hasim and Mohd Rafie Johan

Abstract Samples of the nominal composition, YxAgyBa2Cu3O7-d where
x = (0.10, 0.30, 0.50, 0.70, 0.90) and y = (0.12, 0.36, 0.60, 0.84, 1.09) were
prepared using the conventional solid state reaction. XRD patterns show that silver
was incorporated into the Y123 orthorhombic structure up to 1.09 molar ratios and
released the excess Ag2O. Silver was present within the grains of Y123 composite
as confirmed by field emission scanning electron microscopy (FESEM) images and
energy dispersive spectroscopy (EDS) analysis. Silver atoms were agglomerated
among the Y123 intercrystalline grain growth as shown by FESEM images and
filling the voids within the grain boundaries. As a result, the microhardness
properties were improved.

Keywords Solid state reaction � Y123 � Silver � Microhardness � Grain
boundaries

1 Introduction

The discovery of the high-Tc superconducting materials Yttrium Barium Copper
Oxide (Y123) in 1986 set into motion an extraordinary worldwide outburst of
superconductivity research [1, 2]. However, it shows relatively poor mechanical

N. A. Hasim (&) � M. R. Johan
Advanced Materials Research Laboratory, Department of Mechanical Engineering,
Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur,
Malaysia
e-mail: nurulhawa@siswa.um.edu.my

M. R. Johan
e-mail: mrafiej@um.edu.my

A. Öchsner et al. (eds.), Materials with Complex Behaviour II,
Advanced Structured Materials 16, DOI: 10.1007/978-3-642-22700-4_28,
� Springer-Verlag Berlin Heidelberg 2012

463



properties such as brittleness and others superconducting properties. With respect
to that addition of other doping material such as silver (Ag) may provide a large
number of beneficial effects to the Y123 composite.

Ag can be incorporated into the Y123 matrix by different methods: mixing with
metallic Ag [3–5] or Ag2O [6, 7] and electrochemical ways [8–10]. The former
produced a random non-uniform distribution of Ag in the composite while the later
produced a non-random distribution of Ag on the grain surface of the composite.

Ag was combined with Y123 oxide in many solid states sintering process,
which shows signs of superior superconducting and mechanical properties
[10–19]. It has been used either as an isolated phase filling voids within the solid-
state sintered Y123 bulk [10–14], as the substrate material in the Y123/Ag
composite wire or tape [16–18]. The hardness properties of Y123 bulk at room
temperature were mostly obtained by conventional Vickers measurements in the
range of 5–8 GPa [19, 20].

In this chapter, we synthesize Ag doped Y123 superconductor by using
conventional solid state reaction technique. We show that the addition of Ag into
the Y123 matrix has improved the microstructure and hardness properties of the
composites.

2 Experimental Method

The current investigation involved a series of sample preparation by conventional
solid-state reaction. High-purity powders of Y2O3, BaCO3, CuO and Ag2O were
mixed in the stoichiometric proportions. The mixtures were then calcined at 930�C
for 24 h and subsequently pressed into pellet form under 5 tonne of pressure. It
follows a sintering process at 950�C under oxygen flow for 20 h. The samples
were then cooled and oxygenation to 500�C with a cooling rate of 1�C/min. It
continues until reaching 300�C with a higher cooling rate of 10�C/min. The
structural properties of the samples were tested by Philips X’Pert MPD PW3040
XRD with CuKa radiation at 1.5406 Å. The surface morphology and elemental
analysis were carried out using Zeiss AURIGA and EDAX TSL, respectively. The
microhardness measurements were performed by Mitutoyo MVK-H2.

3 Results and Discussion

XRD patterns shown in Fig. 1 indicate that the addition of Ag2O does not change
the superconducting structures nor form an undesirable second phase. The peak
appearing at 2h value of 44.2� be indexed as (200) reflection of Ag and appears as
a separate phase at the grain boundaries of Y123. The (111) plane of Ag2O which
has the highest intensity, overlapped with the (013) plane of Y123 orthorhombic
structure at 2h = 32.9�. The (111) plane of Ag2O is clearly seen in the diffraction
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pattern indicating that excess of Ag2O remains in a separate phase and has not
been decomposed to Ag and O.

Figure 2 shows the FESEM micrograph of pure Y123 and several composites
materials. The granular and porosity of the sample are clearly seen. The pure Y123
exhibits a non-uniform structure and relatively with large number of pores. The
surface of the Ag2O diffused sample is much denser than that of the pure material.
These results indicate that the surface morphology of the Y123 sample is improved
by Ag diffusion doping. The grain growth enhanced with Ag concentration up to
y = 0.12. Beyond this concentration, the grain growth is inhibited, as illustrated in
Fig. 2d. The prominent change of grain growth can be seen at y = 0.36 as shown
in Fig. 2c. Ag atoms were agglomerated among Y123 composites and formed a
bulk sample up to 0.47 lm size. The EDAX result shows that Ag existed in the
bulk sample of Y123 as shown in Fig. 3.

In Fig. 4, the microhardness of samples increases with the increase Ag2O content
with the exception of y = 1.09. This indicates that effect of Ag in the Y123
superconducting phase on strengthening the composites. It could be inferred that this
could be due to the reduction of pores in the samples as shown in Fig. 2b–f.

Fig. 1 XRD patterns of YxAgyBa2Cu3O7-d

Structure, Surface and Hardness Properties YxAgyBa2Cu3O7-d 465



Furthermore, the existence of Ag produces a compressive stress field in the Y123
matrix. However, the standard deviation was 42.14 HV with Ag addition does not
show any clear tendency and the strength depend on the amount of Ag and yttrium
in the composites.

Fig. 2 FESEM micrographs of a Y123, b Y0.90Ag0.12Ba2Cu3O7-d, c Y0.70Ag0.36Ba2Cu3O7-d,
d Y0.50Ag0.60Ba2Cu3O7-d, e Y0.30Ag0.84Ba2Cu3O7-d and f Y0.10Ag1.09Ba2Cu3O7-d
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4 Conclusion

In summary, we have demonstrated that the addition of Ag2O to Y123 matrix does
not only increases the microhardness, but also affects their microstructures. It was
found that Y123 sites are substituted by Ag ions at 1.09 molar ratios, as well as
that Ag2O also fills the pores in the grain boundaries. In addition, Ag has promoted
good grain growth among the multiphase composition.

The authors are grateful to the University of Malaya for financial support under
PPP [PS068/2008C] and UMRG [RG038/09AET] grants.

Fig. 3 EDAX spectrum of Y0.5Ag0.6Ba2Cu3O7-d

Fig. 4 Microhardness of composites as a function of dopant content
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Transport Phenomena in an Evaporated
Black Hole

R. Leticia Corral-Bustamante and Aarón Raúl Rodríguez-Corral

Abstract In this chapter, the study of the behavior of a gigantic mass is presented,
the mass collapses becoming a mini hole in the continuous space–time, like the
ones that were formed in the first instants of the Universe, when not yet elapsed a
billionth of second in the Big Bang, due to an enormous concentration of energy in
a tiny region of the Space. To detect the presence of mini-hole of infinite surface
gravity, were studied the transport phenomena during the evaporation stage of the
mass until its disappearing by means of theoretical measurements of energy, in
matter of General Relativity, originating from a proposed metric. The Hawking’s
radiation emissions from the hole whose loss is measured by its entropy, are the
ones responsible for the loss of hole energy. The radiation emitted by the black
hole at the end of its life could be similar to gamma radiation. The results obtained
show evidence that the final state of the hole would be able to be treated as a pure
quantum state, that is, in the period of its evaporation, the information of its
interior escaped with the Hawking’s radiation, nevertheless, the entropy that its
emissions show in indefinite form, allows us to include in the calculation some of
the possible evolutions of the last scenes of this physical phenomenon, with some
of the possible angular positions (energy states) of the hole. The lost information
measured by means of entropy is calculated with the relationship of the natural
logarithm of the wave length of the mass to consider the situation in which the hole
not even has been formed.
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1 Introduction

Einstein’s theory of the General Relativity came to revolutionize and to give sense
and light to the human mind upon permitting us to examine this unprecedented
bequest in magnitude: the matter behavior in the continuous space–time. This
chapter makes use of the mathematics of Einstein’s theory proposing a metric that
permits to obtain the information of the mass in measured transportation phe-
nomena terms through different types of energy: kinetic, potential and internal.
The true anomaly associated with the orbit; the entropy (quantized energy) of the
hole of enormous superficial gravity, measured by means of the semi-parameter of
the conic section of a gigantic mass; the enthalpy measured through the angular
coordinate for a relativistic particle; as well as the arbitrary starting anomaly of the
mass were calculated. The behavior of the mass studied is seemed to matter that
existed early in the Universe [1, 2].

The Hawking radiation process reduces the mass of the black hole and is
therefore also known as black hole evaporation [3–5].

In this work, determinations were made of the temperature of the mass of huge
surface gravity, which collapsed to a mini-black hole that probably exploded (as
predicted by evaporation results in some energy states). Measurement were done
with and without charge and angular momentum.

Because Hawking radiation [6] allows black holes to loose mass, this black hole
looses more matter than it gains through other means and is expected to dissipate,
shrink, and ultimately vanish. Forming a black hole is the most efficient way to
compress mass into a region, and this entropy [7, 8] is also a bound on the
information content of any sphere in space time. The radiation emitted by the
event horizon, seems to resemble the gamma rays [9].

In prior work [10], the entropy of the mass was calculated before collapsing, as
well as the entropy of the mass collapsed to a mini black hole, with the purpose of
considering the lost information during the Hawking‘s radiation, like a precedent
to confirm that the temperature and the entropy of a black hole is due to purely
quantum effects [6–8, 11]. The results obtained permit to show an increase of the
total entropy and can confirm that the radiation of the last phases of evaporation of
the hole is indefinite [12].

Such black hole might possibly be formed in an early stage of the evolution of
the universe, just after the Big Bang, when densities were extremely high.
Therefore, this hypothetical baby black hole is called primordially black hole [1, 2,
13, 14].
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1.1 Nomenclature

a Angular momentum or spin of a black hole, a = 0.9965,
0.99616, 0.995 (cm2 s-1). Semi-major axis of an elliptical
orbit. [For the planet Mercury, a = 5.78 9 1012 [cm])

A Event horizon’s area (cm2)
c Speed of light [cm s – 1]
_Cn, n = 1, 2 Constants to be determined
G Universal Gravitation Constant, G = 6.67 9 10-8

(dyne cm2 g-2)
Gij, i, j = 1, 2, 3, 4 Riemann-Christoffel tensor or contracted tensor of Einstein
�h Reduced Planck0s constant, �h = 6.6260689633 9 10-27

(erg s)
k Boltzman constant, k = 1.380650424 9 10-16 (erg K-1)
lp Planck length, lp & 1.61625281 9 10-33 (cm)
M Mass of a black hole (g)
M Sun mass (g); 1solar mass = 1 M = 1.99 9 1033 (g)
P Power of the emissions of event horizon (W)
Q Electric charge of a black hole (cm dyne1/2)
r+ Radius of external horizon (cm)
r- Radius of internal horizon (cm)
s Arch element (cm)
S Entropy (erg K-1). Semi parameter of the conic section of a

mass or spatial coordinate (cm)
t Temporal coordinate (s), evaporation time (s)
T Temperature of a black hole (K)
xi, i = 1,2,3,4 Spatial and temporal coordinates in a four-dimensional

space

1.2 Greek letters

j Surface gravity of a black hole (cm s-2)
/ Energies: kinetic, potential, internal, quantized (erg). True anomaly

associated with the orbit (spatial coordinate) (rad, degrees)
/0 Arbitrary starting anomaly (rad, degrees)

Enthalpy (erg g-1 K-1). Angular coordinate for a relativistic particle
(spatial coordinate) (rad, degrees)
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2 Modelling

This chapter the mathematical model described by the metric is proposed

ds2 ¼ �e� cos u Sð Þð Þ dSð Þ2�S2 dhð Þ2

� S2 sin2 hð Þ d/ð Þ2þe� cos v Sð Þð Þ dtð Þ2
ð1Þ

where u(S) and v(S) are functions to be determined.
Modeling the behavior of a matter in space–time continuum suggests a

spherical symmetry with 3 spatial coordinates and 1 temporal, in this case:
(x1,x2,x3,x4) = (S,h,/,t), in a four-dimensional space. For the proposed metric, the
differential equations that contain the information of the behavior of matter cor-
respond to the non-zero components of the Einstein tensor

G11 ¼
e� cos uð Þ

S2

G22 ¼ �
1

4e� cos uð Þ
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G44 ¼
e� cos vð Þ

S2
ð2Þ

The differential equations representing the geodesics are found to be

d2t

ds2
�

C1
dS

ds

dt

ds
C1� c2Sð ÞS ¼ 0 ð3Þ

d2/
ds2
þ

2
dS

ds

d/
ds

S
þ

2 cos h
dh
ds

d/
ds

sin h
¼ 0 ð4Þ

d2h
ds2
þ

2
dS

ds

dh
ds

S
þ sin h cos h

d/
ds

� �2

¼ 0 ð5Þ
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d2S

ds2
þ 1

2

C1
dS

ds

� �2

C1� C2Sð ÞSþ
C1� C2Sð Þ dh

ds

� �2

C2

�
C1� C2Sð Þ sin2 h

d/
ds

� �2

C2
� 1

2

C1� C2Sð Þ C1
dt

ds

� �2

C2S3
¼ 0 ð6Þ

where S = 1/u.
According to Hawking [5, 6], a black hole behaves like black body radiation in

quantum mechanics. The temperature, T, of the mass, M, of a black hole, without
electric charge neither angular momentum or spin, can be calculated with the
relationship [15]

T ¼ �hc3

16p2GMk
¼ 1023

M
ð7Þ

The time that would take a back hole in being evaporated completely can be
calculated; this time results to be of the order of

t ¼ G2M3
�

�hc4 ð8Þ

or, approximately, t = 8.40716 9 10-17 M3 s (s), if the mass M is measured in
kilograms (kg). Black hole entropy is

S ¼ pc3k

2�hG
A ð9Þ

where the event horizon area, A, is given by three parameters: mass, M, electric
charge, Q, and angular momentum, a [15].

A ¼ 4pG 2GM2 � Q2 þ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2M2 � GQ2 � c2a2
p

� �.

c4 ð10Þ

The electric charge of the hole is calculated clearing Q from Eq. 10.
Temperature, T, can be related without ambiguity with the superficial gravity,

j, of a black hole with mass, charge and angular momentum, by means of the
relationship

T ¼ �hj
�

4p2ck ð11Þ

where j is given by Kerr–Newmann relationship

j ¼ 4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2M2 � GQ2 � a2c2
p

.

A ð12Þ

The power of the emissions of the event horizon of the hole is given by

P ¼ 3:56345� 1032 1=Mð Þ2 ð13Þ
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for a mass in kilograms.
To verify the natural law of cosmic censorship, the radii of the external horizon

(sign +) and internal (sign -) were computed through the relationship

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p Ac2 � 4pa2ð Þ
p

.

2pc ð14Þ

to the values of angular momentum or spin of 0:9965; 0:99616 and 0:995. Event
horizon area was calculated with the expression

A ¼
4‘2

pS

k
; ‘p ¼

ffiffiffiffiffiffi

G�h

c3

r

ð15Þ

3 Results and Discussions

Modeling results by means of the metric proposal, Eq. 1, for the study of the
behavior of the collapsed mass, are shown through Tables 1, 2 and 3.

In Table 1, results of mass, temperature, initial power emissions, and the black
hole evaporation time to diverse angular positions are shown by means of: (i) The
spatial coordinate called true anomaly associated with the orbit, /, to which at the
same time, is associated with different energy types (kinetic, potential, internal);
and (ii) The arbitrary starting anomaly, /0.

For a hole mass of 1.481411892 9 106 g, the temperature increases to
6.750317082 9 1019 K, which is indicative of a high degree of entropy in the
event horizon of the hole (see Table 1). Then the Hawking effect takes importance.
This evidence that although the hole seems naked, is actually wrapped by his event
horizon which shining by the radiation emitted it as in [10].

Thus, the black hole radiates, at the cost of losing its own energy or, what is
equivalent, its mass. When temperature increases, the mass of black hole decreases,
and the radiation is more intense. Consistently, the mass diminishes more each time
and faster, until the black hole evaporates completely in a true explosion. The black
hole emits more than it absorbs, and thereby looses mass.

For mass of 0.I and 0, infinite temperatures are observed because the hole lost
its mass. The quantity Float (?) for temperature is used to indicate a floating-point
value that is too large to be otherwise represented.

The temperatures of the collapsed mass in angular positions of 0 to p/2 in
Table 1, as well as in the huge mass before collapse (5.027399326 9 10-8 K
calculated with Eq. 7) are greater than absolute zero, which supports the third law
of thermodynamics.

Also, for the position / = p (energetic state in Table 1), the temperature of
–Float(?) is an infinitely small quantity above the absolute zero.

This unexpected value that apparently indicates absence of quantum effect in
the hole, seems to indicate that the position measurement or energy state was
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carried out in a part where the two horizons disappear, leaving apparently the
naked singularity. In this case, a prior study [10] shows that, for the mass of this
hole complies the relation G2M2 � GQ1

2 ? a2c2 according to the first and second
thermodynamics laws. Besides, in this case, the superficial gravity is infinite
(-Float(?)), so this physical process does not produce a naked singularity
according to the third law of thermodynamics, which confirms the natural law of
cosmic censorship. Another evidence of the existence of the quantum effect in the
hole, is the presence of the emissions of the event horizon that are shown by means
of the graphic of entropy of Fig. 1 in which y = S, where we can observe that for
determined positions, the quantum effect is important, while in a rank of

Table 1 Mass, temperature, emissions power and black hole evaporation time without charge
and angular momentum or spin determination

/0 (rad) / (rad) M (g) T (K) Eq. 7 P (W) Eq. 13 t (s) Eq. 8

0 0 1.48 9 106 6.750 9 1019 1.624 9 1020 573.323
-0.04 0.39 9 10-135 0.I -Float(?)I -Float(?) -0.I
-1.11 9 10243 6.63 9 10-14 0 1/0 = +? +? 0.
-1.1 9 10270 p/2 0 1/0 = +? +? 0.
-1.7 9 10270 p -0. -Float(?) Float(?) -0.
-6.85 9 10270 2p Undefined Undefined Undefined Undefined

Table 2 Temperature and superficial gravity of the black hole with mass, charge and angular
momentum calculation

M (Solar masses) T (K) Eq. 11 k (cm s-2) Eq. 12

7.45 9 10-28 3.35 9 10-7-2.02 9 1038 I,
j T j = 2.02 9 1038

5.19 9 1016-3.12 9 1061 I,
j j j = 3.12 9 1061

0.I -Float(?)I -Float(?)I
0 1/0 = ? ? Float(?)I
0 1/0 = ? ? Float(?)I
-0. -Float(?) -Float(?)I
Float(undefined)

? Float(undefined)I
Float(undefined)

? Float(undefined)I
Float(undefined)

? Float(undefined)I

Table 3 Calculation of black hole temperature with charge, angular momentum and mass for
other angular positions or energetic states

/0 (rad) / (rad) M [g] T (K), Eq. 11

1.712E ? 270 -p -0. -Float(?)
1.070e ? 269 p/4 0. Division by zero
9.631e ? 269 3p/4 Float(undefined)

? Float(undefined)I
Float(undefined)

? Float(undefined)I
3.852e ? 270 3p/2 0. Division by zero
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Fig. 1 Entropy (y = S) of black hole corresponding to its event horizon of cylindrical symmetry,
which illustrates a trapped surface that implies the existence of a singularity and whose area is not
reduced along the light rays that are initially orthogonal to it. The solution of Einstein’s equations
that describe the black hole, allow a glimpse into a collapsing dust cloud, inside which there is a
singularity that is not visible from the outside, since it is surrounded by the event horizon
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approximately -2 9 1018 B / B 2 9 1018 radians the quantum effect seems not
to exist. In fact, the entropy is quantized in that range [10].

Thermodynamically (third law), the temperature of absolute zero is unattain-
able, therefore, the temperature of p energy state in Table 1 is above this reference
value. The entropy (or disorder) of the hole would be null in the absolute zero. For
the time being, the unique thing that can be argued is that the mass presents strange
properties when is chilled to very low temperatures.

In p energy state, the angular momentum is bigger than the mass of the hole
(0.99616 [ -0.) [10], according with the predictions of Petters and Werner [16]
for naked singularity.

Figure 1 shows a powder cloud in the collapse of the black hole similar to that
of Oppenhieimer and Snyder [17] that illustrates a trap surface. This model, unlike
Oppenhieimer and Snyder’s model, possesses a trapped surface that corresponds to
a surface whose area doesn’t decrease along the rays of light that are initially
perpendicular to it.

The solution of the equations of Einstein that describe the black hole, allows us
to glimpse a cloud of powder collapsed with a singularity hidden by the event
horizon.

You can infer, as made by Roger Penrose in 1965 [18] that the existence of a
trapped surface implies the existence of a singularity on the base of reasonable
suppositions of causation supposing a spherical symmetry.

Figure 2 has three graphs in 2D for: (a) internal event horizon radius,
(b) external event horizon radius and (c) both radii, all in centimeters for three
values of the angular momentum calculated with Eq. 14. From these graphs, we
can conclude that there is a naked singularity, due to the distance between both
radii that is of the order of 6.644 9 10-11 cm, which can be verified in Fig. 2c.
Until this moment, this singularity alters the well-known theoretical physics. Also,
the area of event horizon shown in Fig. 3 calculated with Eq. 15, allows to confirm
the nakedness of the hole, because is of the order of 10-51 cm2.

Finally, when the hole has mass Float(undefined ? Float(undefined)I, it has
an undefined temperature. In computing, floating point describes a system for
representing numbers that would be too large or too small to be represented as
integers. The quantity undefined in Table 1 for the position 2p comes from
the math expression: Float(undefined) ? Float(undefined)I, where undefined
= ?/?.

Table 1 also shows that when the black hole has a mass of 1.4814119 9 106 g,
equivalent to an energy of 1.3332707028 9 1023 J, this could be liberated with a
initial power of 1.62374944711 9 1020 W. When the mass is null and indefinite,
the power of the emissions of the horizon is infinite or indeterminate and indefi-
nite, respectively, as was to be expected.

For different angular positions (states of energy), the time of evaporation of the
black hole is zero, almost zero, an imaginary number or is undefined, as can be
appreciated in Table 1. For a black hole with a mass of a hundred million tons
(1 9 1011 kg), evaporation time results in about 2.66 9 109 years, comparable to
the universe age (1010 years). It is possible that black holes with this characteristics
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had form with relatively small masses in the first instants of the Universe.
A fundamental black hole that was born in those remote epochs would be found
currently exactly in the final phase of evaporation. Due to its highest temperature,
such black hole would be observed probably as an intense source of gamma rays,
produced by its explosion. If this turned out to be certain, we can see for the hole
studied here, with a mass approximately of 67,503 times less than 1 9 1011 kg,
that currently it has evaporated (evaporation times of 0., -0. and 573.32 s), but,
the results of undefined and imaginary time in Table 1 allow us to show black hole
radiations for a process with undefined evaporation.

Collapsed mass of 1 9 1011 kg at 1.481411892 9 106 g may have evaporated
in 9.999961 9 109 years with emissions indefinitely that shine through the entropy
of event horizon (see Fig. 1).

Fig. 2 Radius (a) of the inner horizon, (b) the outer horizon (c) of both horizons, as a function of
the entropy of the hole, S, for three values of angular momentum
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The fact that a black hole have a different temperature from the absolute zero
(Table 1) implies a precise relation between the entropy and the area of the
horizon. The temperature and the entropy of a black hole are due to purely
quantum effects [7, 8].

Finally, we indicate that the evaporation and eventual disappearance of a
black hole does not contradict the second law of thermodynamics: though the
area—entropy—of the hole diminishes, the radiation produced possesses a very
high entropy, therefore, the total entropy increases, which confirms the existing
radiation in the last phases of the evaporation of the hole [7, 8].

Temperature and superficial gravity of the black hole were calculated with
charge, angular momentum and mass for three values of angular momentum, a, to
know: 0.9965, 0.99616 and 0.995. The results for a = 0.99616 are the ones shown
in Table 2 for the same cases of Table 1, only that in Table 2 the conversion from
grams to solar masses were made for the hole mass. Here, the fact is confirmed that
small primordial black holes would emit more than they absorb, and thereby loose
mass.

Fig. 3 Magnitude of the event horizon area of black hole with respect to its entropy
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In general, it is observed that the mass of the black hole in the course of the
time has a superficial infinite, and undefined gravity. For the case in which j is a
real number plus an imaginary number, taking its absolute value, that is to say, if
j = 5.194164713 9 1016-3.124791380 9 1061I, then, to j j j= 3.124791380 9

1061 cm s-2, we can confirm that the law zero of the mechanics of the black holes
is complied where j is likewise infinite anywhere in the horizon of a black hole
independently of the time. Hole mass and temperature were calculated for other
angular positions and the results are shown in Table 3.

It is verified that the hole temperatures obtained with Eq. 7, shown in Table 1,
are similar to the ones obtained with Eq. 11, shown in Table 3 for different angular
positions, which signifies that their determination is independent from the fact that
hole possesses only one parameter (mass) or possesses three parameters (mass,
charge and angular momentum). From Tables 1 and 3, the same temperatures can
be seen when / = p and / = -p; / = p/2, / = 6.628 9 10-14, / = 3 p/2 and
/ = p/4; / = 2p and / = 3p/4.

The model presented here, deserves a detailed study of the quantum geometry
of the black hole horizon using loop quantum gravity.

This leads to the computation of quantum gravity corrections to the entropy
and radiation of the hole [11].

4 Conclusions

The behavior of the mass (1.98892 9 1030 kg) collapsed to a black mini-hole
studied here, corresponds to an evaporated hole, exhibiting Hawking’s radiation
indefinitely.

From the calculation of some of the possible evolutions of the last scenes,
during the time of the process of evaporation of the micro black hole, with some of
its possible angular positions (states of energy), the postulated metric allows to
predict the entropy transportation phenomenon, in very approximate form to the
scientific predictions carried out by Hawking, Penrose, Bekenstein, Werner and
Petters and Oppenheimer and Snyder, as well as the phenomena of transportation
by means of enthalpy and other energy types, according to the system of coor-
dinates used.

The results of the mass, the temperature, the initial emissions power, the
superficial gravity and the black hole evaporation time for diverse angular posi-
tions or energy states, show evidence of a fundamental black hole evaporated, that
emits more matter than the one it absorbs loosing its mass. Given time results in
complex and undefined numbers permit to argue that, although the hole must have
evaporated since 109 years ago, its emissions could continue in indeterminate form
for indefinite time. The entropy betrays the presence of the hole, while the event
horizon hides the singularity exposing the naked hole, confirming thus, the natural
law of cosmic censorship.
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Of the analyzed cases, the cases when / = p and / = -p, are against the
natural law of cosmic censorship. The angular momentum is greater than the mass,
so it is said that the hole is naked, but the surface gravity keeps it wrapped,
validating this way the third law of the thermodynamics.

The relativist metric proposed here for the calculations of energies, enthalpy
and entropy predicts similar results for the cases of one parameter (mass) and three
parameters (mass, charge, angular momentum) of the mini-hole in the continuous
space–time. Except for the only evidence of mentioned nakedness, in all the cases
the three laws of thermodynamics are confirmed, as well as law zero of the black
holes mechanics. It is verified that the temperature and the entropy of the hypo-
thetical mini-hole are due to purely quantum effects and the results obtained show
a fundamental black hole similar to the ones that arose in the first instants after the
Big Bang.

Black hole’s temperature increases as it radiates away mass. The rate of tem-
perature increase is infinite, with the most likely endpoint being the dissolution of
the black hole in a violent burst of gamma rays. A complete description of this
dissolution requires a model of quantum gravity, however, as it occurs when the
black hole approaches Planck mass (2.17644(11) 9 10-8 kg) and Planck radius
(1.616252(81) 9 10-35 m). The results presented here are estimates made during
the evaporation time, when the event horizon of the black hole emits Hawking
radiation.

In this study, a strange value for the hole temperature was obtained when mass
in state of collapse had -0. kg for / = p and / = -p, which is indicative of null
entropy and violation of the third law. In the p energy state, the hole has an infinite
surface gravity, which confirms the cosmic censorship law, which has not been
proven scientifically.
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Calendering Process Numerical
Simulation with an Elastoviscoplastic
Polymer Blend Model

Baya Madani and Ahmed Ouibrahim

Abstract The actual earth environment constitutes the major world preoccupa-
tion. This involved situation is linked to several parameters among which the fossil
energy consumption. Thereby, the recycling of material waste takes on great
importance. For example, brand new polymers are then substituted by polymer
blends using appropriate wasted materials. With this idea, we propose here a
rheological model having elastoviscoplastic properties. This model is elaborated as
a result of a blend between a material having a viscoplastic behaviour modelled by
a generalized power law type and a viscoelastic material the behaviour of which is
provided by Oldroyd B type. As an application, we use then this model in the case
of the calendering processing of (elastoviscoplastic) sheets of a finite thickness
through two counter rotating cylinders (a two roll mills). Numerical analysis had to
be used to solve the whole associated equations. The conducted numerical simu-
lations provided then the pressure distribution of the flow field, the separating
force and the power required for the calendering processing at different values of
the relaxation and retardation times for the viscoelastic model and at different
values of the consistency and the power law index for the viscoplastic model. The
effect of concentration of the two blend components is considered as well.
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Nomenclature
Dij Components of the deformation rate tensor
HE Exit sheet thickness (m)
HF Entry sheet thickness (m)
XE Exit sheet distance (m)
XF Entry sheet distance (m)
H0 Half of nip opening (m)
K Material consistency (Pa s1-n)
n Fluidity index
p Pressure (Pa)
R Roll radius (m)
U Tangential velocity of the roll (m/s)
V(x,y) Velocity of the blend melt in the two rolls mill (m/s)
u, v Velocity components in x and y direction (m/s)
w Width of the sheet (m)
sij Components of the deviatoric stress tensor (N/m2)
k Relaxation time (s)
kq Retardation time (s)
l Newtonian viscosity (Pa s)
la Apparent viscosity (Pa s)
_c Shear rate (s-1)
q Volumic mass of the blend melt (kg/m3)
a Concentration of the viscoelastic part in the blend
X Rotation of the rolls (rad/s)

1 Introduction

Global warming and the environment protection are actually the main problems to
be urgently handled. They are related to many factors including the consumption
of energy fossil. As an issue of possible solutions participating to these two
problems is the recycling of material wastes leading for example to the substitution
of brand new polymers by polymer blends to be used in many industrial processes
such as calendering.

On the other hand, some of these polymer blends, because involving several
materials having different mechanical properties, may therefore need brand new
rheological models to take into account their whole properties.

Calendering is a continuous process used in many industries such as the pro-
duction of sheets or films of uniform thickness of paper, rubber, steel, etc.

The process was extensively studied by many researchers. Starting with
Ardichvili [5], the work was extended to Newtonian and Bingham plastics by
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Gaskel [8]. His analysis was based on the assumption that the diameter of the rolls
was large enough compared to the gap between the two rotating rolls.

Most models proposed in the literature are based on Gaskel’s model. It is a one
dimensional, a rather restrictive model, and to use the model, the location XE,
where the rolls come in contact with the polymer, must be known; which is
tantamount to the knowledge, a priori, of the exiting sheet thickness 2HE.
Mc. Kelvey [11] pointed out that XE must be considered to be an experimentally
determined parameter of the model.

Following Gaskel’s work, a great deal of effort was invested by numerous
workers in the field to improve his model. Most of this effort, however, concen-
trated on solving basically the Gaskell model with the original realistic constitutive
equations and attempts to account for nonisothermal effects.

Mc. Kelvey [11] and Brasinsky et al. [6] extended the model to power law
fluids; while Alston and Astill [4] investigated fluids whose shear rate dependent
viscosity can be represented by a hyperbolic tangent function. Flow of viscoelastic
fluids in the roll geometry was considered by Paslay [14] who obtained an
approximate solution essentially for an Oldroyd’s fluid model with three rheo-
logical constants. He analysed the interrelation of the parameters of the consti-
tutive equation with the flow kinematic but he neglected the normal stress in the
equation of motion. Tokita and White [15] related experimental observations on
milling of elastomers to rheological parameters of a second order Rivlin-Ericksen
asymptotic expansion fluid and pointed out the significance of the Deborah and
Weissenberg numbers in milling and calendering. However, velocity and pressure
were not obtained by them. Chong [7] analysed a power law model fluid, a three
constants Oldroyd fluid and a modified second order Rivlin-Ericksen equation; the
velocity profile for the Oldroyd fluid cannot be obtained analytically. Therefore,
he [7] obtained an approximation pressure distribution by assuming Newtonian
flow kinematics, and he analysed the flow pattern with the Rivlin-Ericksen flow in
terms of dimensionless groups only. He also measured the separating force at
various calendering conditions of cellulose acetate.

Calendering defects with polyvinyl chloride (PVC) were also studied by
Agassant and Avenas [1] using Newtonian and power law models. All these
analyses are based on lubrication approximation theory of Reynolds. Lifting this
assumption leads to a two-dimensional analysis, as was done by Mitsoulis and
Safou [12, 13] and Agassant and Espy [2]. These works have shown interesting
results with intricate patterns dominated by large vortices in the melt bank before
the rolls, found both experimentally and computationally.

However, most of the fluid used in calendering only exhibit either pseudo plastic
(inelastic) and viscoplastic or viscoelastic; but never all together elastoviscoplastic.
Moreover, besides the increase of the equations complexity to be solved, it seems
there is no full numerical solution available for a viscoelastic calendering problem,
while materials such as polymeric fluids and foods processed in calendars, mostly
exhibit viscoelastic behaviour.

In the present work, we gather all together these properties by proposing an
elastoviscoplastic rheological model. We then use this model by undertaking here
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a 2D analysis of calendering processing of a blend melt displaying the above
mentioned mechanical properties.

2 Rheological Model

2.1 Constitutive Equations

As a result of a blend of recycled materials having different mechanical properties,
an elastoviscoplastic rheological model has been developed by considering toge-
ther a viscoplastic model of a generalised power law type and a viscoelastic model
of Oldroyd-B type, at a given concentration a. This rheological model has the
following constitutive equations, Madani and Ouibrahim [9]; Madani [10]:

sij þ k
Dsij

Dt
¼ 2alþ ð1� aÞla þ kð1� aÞDla

Dt

� �

Dij þ 2alkr þ kð1� aÞla½ �DDij

Dt

ð1Þ

where
D

Dt
is the convective or Oldroyd derivative, Dij the shear rate tensor com-

ponents, a the viscoelastic concentration in the blend, k and kr the relaxation and
the retardation time, respectively, l the Newtonian viscosity of the viscoelastic
part, while the apparent viscosity la is given by:

la ¼ K
I2

2

� �n�1

ð2Þ

in which K and n are the consistency and the flow index, respectively, I2 is the
second invariant of the shear rate tensor.

3 Application–Calendering Processing

3.1 Governing Equations

We now test the above rheological model in the case of a polymer blend submitted
to a calendering processing.

A schematic of the associated geometry, two counter rotating rolls of radius R,
is illustrated in Fig. 1.

The geometric parameters and variables involved in the model are included in
Fig. 1 and they do not need any further description.

The variables XE, and XF, however, need to be defined: XE, represents the
distance at which the sheet separates from the rolls and it is known as the sepa-
ration point or the exit sheet distance, and XF represents the entry sheet distance.
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The motion of the blend melt is assumed to be 2D, incompressible, isotherm
and stationary.

So that we have the following set of governing equations as described in below.

3.1.1 Continuity Equation

oVi

oxi
¼ 0 ð3Þ

with the velocity ~V ¼ uðx; yÞ; vðx; yÞf g

y

HE 0H HE

x

R

XF

XE

(b)

(a)

x

y

Ω 1

Ω 2

Fig. 1 Schematic representation of calendering processing (a), with associated geometric
parameters (b)
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3.1.2 Momentum Equations

q
dVi

dt
¼ � op

oxi
þ osij

oxj
ð4Þ

q is the melt density, p the pressure and sij the components of the deviatoric
stress tensor of the constitutive equations given by Eq. 1.

3.2 Boundary Conditions

Boundary conditions on the roll surface and at the inlet and outlet are specified. No
slip conditions on each roll surface are assumed.

The boundary conditions are then:

• On the rolls and on the film thickness (y = H(x)): V = U = XR
• Upstream and downstream the rolls: Dp = 0 for x B XF and x C XE

• On both sides of the rolls: an approximated equation for the film thickness
H(x) prevailing between the rolls is assumed, with H(x) \\ R, to be:

HðxÞ ¼ Ho 1þ x2

2RHo

� �

ð5Þ

4 Resolution Procedure

The above involved equations were numerically solved. The transport equations
for mass and momentum were solved with the help of the Finite Volume software
Fluent 6.3 completed by appropriate user defined functions (UDF) to take into
account the formulation of the constitutive equations and then the associated
contributions in the momentum equations.

5 Results and Discussion

5.1 Newtonian Material

In order to check the validity of the proposed model, we compare first our
numerical solution with the results obtained by Agassant and Hinault [3] in the
case of a Newtonian model with the same dimensions and data they used.

To simulate the Newtonian behaviour with the rheological model here pre-
sented, we set in the above constitutive Eq. 1, a = 0 (no viscoelastic fluid) and
n = 1 (value of the flow index corresponding to a Newtonian fluid).
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As Agassant and Hinault [3], we have here used the following data:
Ho = 0.2 mm, U = 0.15 m/s (tangential velocity of the rolls), la = K = l = 103

Pa.s, and q = 103 kg/m3

Pressure distributions along the center line are shown in Fig. 2a for different
values of the attachment of the entry sheet relative thickness HF/Ho, a quite
significant factor on the pressure. The results of Fig. 2a are all in very good
agreement with those obtained by Agassant and Hinault [3] represented in Fig. 2b.
The pressure increases from the entry to reach a maximum located close to the
minimum gap after which it decreases drastically, obviously at the beginning of
the diverging region. The magnitude of the pressure, as well as the maximum
reached, increases with the increase of the relative sheet thickness.

5.2 Power Law Material

For the power law analysis, we use the same procedure as indicated above for the
Newtonian material with the only difference that the flow index n = 1. The
pressure distributions corresponding to different values of n are shown in Fig. 3a.

It is important to notice the significant decrease of the pressure by decreasing
the flow index n of the power law. The pressure is as low as the material is shear
thinning. These results are also in very good agreement with those of Agassant and
Hinault [3] shown in Fig. 3b.

5.3 Elastoviscoplastic Material

5.3.1 Elastic Contribution in the Blend

We are here mainly interested in the viscoelastic response of the blend via the
influence of the viscoelastic concentration a. Simulations were carried out for
several values of the concentration a. As previously, the same geometrical and
kinematic parameters were used while the rheological ones for the blend are as
follows: l = 103 Pa.s, k = 0.01 s, k/kr = 0.4, q = 103 kg/m3, K = 103 Pa.s1-n

with n = 0.7.
Figure 4 represents the pressure distribution for various values of the concen-

tration a. It can be seen in Fig. 4 that increasing the viscoelastic contribution from
a = 0, to a = 1 leads to increase the magnitude of the pressure as well as its
maximum.

The value of a = 0 corresponds to a power law material pressure distribution. It
is then interesting to notice, by comparison to Fig. 3a, that we obtain exactly the
same value of the maximum pressure for the corresponding flow index n = 0.7.
The case of a = 1 represents a purely viscoelastic material, no longer a blend.
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Fig. 2 a Pressure distribution between the inlet and the outlet for different values of the entry
relative sheet thickness HF/HO, for a Newtonian material (a = 0 and n = 1). b Newtonian
pressure distribution between the inlet and the outlet following Agassant and Hinault [3]
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Fig. 3 a Pressure distribution between the inlet and the outlet for a Power law material
(a = 0).at different values of the flow index n b Pressure distribution between the inlet and the
outlet of a Power law material following [3]
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5.3.2 Viscoplastic Contribution in the Blend

We analyze here the viscoplastic contribution just via the variation of the con-
sistency K. The data considered are those given above in Sect. 5.3.1.

In Fig. 5, we present the pressure distribution obtained for different values of
the consistency K. The increase of the consistency of the viscoplastic contribution
from K = 103 to 2.103 Pa.s1-n (n = 0.7) leads to a significant increase of the
pressure as well as its maximum. Of course, we observe the same values of the
pressure for K = 103 when we compare Figs. 4 and 5, at the same concentration a
(a = 0.3) and the flow index n (n = 0.7).

A complete analysis, when considering the blend melt, with the elastic con-
tribution via the effect of the relaxation and retardation times k and kr, the vi-
scoplastic contribution via the flow index n and the consistency K, these two
contributions completed by the influence of the kinematic (speed rotation X of the
rolls) and the geometric (HF/Ho) parameters, is considered in more details in a
forthcoming contribution.

6 Separating Force Acting on the Rolls: Power Required

In practice, the film thickness produced is controlled by the geometry of calenders,
especially by the nip distance. The roll separation caused by the stress acting on
the roll surfaces in the normal direction must be adjusted by the loading force in
order to balance the reactive force of the calendered fluid. The roll separating
force can be calculated by integrating the product of the total normal stress, which
is represented here by ryy following Fig. 1, to the roll surface area in contact

Fig. 4 Pressure distribution
between the inlet and outlet
for a elastoviscoplastic
material at different values of
the viscoelastic concentration
a with HF/H0 = 20
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with the melt. Then, the normal force F acting on the roll surfaces can be deter-
mined from the following relation:

F ¼ �
Z

XE

XF

ryydS ð6Þ

where

ryy ¼ �pþ syy ð7Þ

while

dS ¼ wdx ð8Þ

is the elementary surface of the calendered sheet of width w. We consider here the
force F per unit length (i.e. w = 1).

Thus, it follows that the power input into each roll can be calculated by inte-
grating the product of shear stress rxy at the roll surface with the area of contact
with the blend melt and the tangential velocity of the roll, that is to say:

P ¼
Z

XE

XF

rxyVdS ð9Þ

Figure 6 clearly indicates that the roller separating force, calculated from
Eqs. 6 and 7, is affected by the concentration a of the viscoelastic part in the blend
melt. More precisely, it can be noticed that this separating force: (a) increases with
the concentration a and (b) this increase varies linearly with a. Moreover, the
magnitude of this increase appears to be more pronounced with the increase of the
entry relative thickness HF/H0; it increases drastically with the increase of HF/H0

but slightly for high enough values of HF/H0.

Fig. 5 Pressure distribution
between the inlet and outlet
for a elastoviscoplastic
material at different values of
the consistency K with
n = 0.7 and a = 0.3 while
HF/H0 = 20
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In the case of the power required for the motion of each roll, Fig. 7, provided by
the calculations with Eq. 9, also indicates that the power depends on the con-
centration a, and that it increases linearly with a with a magnitude and a slope
increasing with the increase of the relative sheet thickness HF/H0.

7 Conclusion

A new rheological model for elastoviscoplastic polymer is here proposed.
It is elaborated, as a result of a blend of different materials governed for a part

by a viscoplastic model of a generalized power law type and for the other part, at a
given concentration a, by a viscoelastic model of Oldroyd B type.

As an application, we use this model in the case of calendering processing.
Numerical solutions have been obtained for this model for different values of its

characteristic parameters using, for comparison purpose geometric and kinematic

Fig. 6 Separating force
versus viscoelastic
concentration a for an
elastoviscoplastic material at
different values of the entry
relative thickness HF/H0

Fig. 7 Power versus
viscoelastic concentration a
for different values of HF/H0
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parameters found in literature. It is important to note that a finite volume software,
Fluent 6.3, not especially devoted for a non Newtonian elastoviscoplastic model,
has been adapted for our purpose via user defined functions (UDF).

This technique has been tested first, from this proposed model, for a Newtonian
(n = 1 and a = 0 in the model), then a power law model (a = 0 in the model) to
show that the obtained results are in agreement with those existing in the literature
for Newtonian and power law models. This allows us to validate the numerical
procedure and the obtained results.

In the case of the entire elastoviscoplastic model, the numerical simulation
indicates that the concentration a of the viscoelastic contribution has a significant
effect on the distribution of the pressure as well as on the separating force on the rolls.

As expected, the increase in the concentration a of the viscoelastic part of the
blend leads to the increase of the magnitude of the pressure along the line between
the rolls as well as the maximum reached by the pressure. Such an increase with a
is also observed for the roll separating force and the power required which are seen
to increase linearly with the concentration.
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Condensation Issues in Ventilated Façades

Matthias Haase and Tore Wigenstad

Abstract The design of ventilated glass–glass facades in large buildings seems a
promising technology to enhance energy efficient building design. In order to
describe the optical and thermal heat transfer mechanism in glass–glass configu-
rations with vertical airflow regimes radiation, conduction and convection models
have been developed and validated by Arasteh et al. (ASHRAE Trans 95:2, 1989),
Manz (Energy Buildings 35(3):305–311, 2003). In application to existing
buildings, condensation on various surfaces in the construction is always a risk.
A prediction model that takes weather conditions for a specific site into consid-
eration is needed. In this work measured data of condensation on external window
panes was used and a mathematical model for predicting condensation depending
on air temperature, humidity and airflow regimes was developed by Thyholt
(SINTEF Byggforsk, 2006). The validation shows very good agreement and gives
confidence in using the model for further analysis of condensation times over the
year in this type of façade. The model was implemented in a programme for heat
transfer calculations and used to evaluate condensation and energy issues for
various façade material configurations.
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1 Introduction

Energy usage for room heating, cooling and ventilation still accounts for more than
one third of the total primary energy demand in the industrialized countries, and it is in
this way a major polluter of the environment with CO2 and greenhouse gas emissions.
To successfully achieve the targets set out in the Kyoto protocols, it is necessary to
identify innovative energy technologies and solutions for the medium and long term.
They should facilitate the implementation and integration of low carbon technologies,
such as renewable power generation devices within the built environment [1].

One focus has to be put on the energy efficient refurbishment of the existing
building stock. Here, appropriate solutions have to be identified and possible tech-
nologies have to be developed that are integrated into the building. One possibility
might be an advanced façade system. A lot of developments in façade design has
focused on ventilated double façade systems for new buildings [2, 3]. However,
there exists very little work on exploring the possibility of energy efficient refur-
bishment by applying a ventilated double façade system to an existing building.

1.1 What is a Double Façade System?

A double façade system consists of an exterior facade in glass added outside the
original facade. The space is usually expected to be 50 cm deep, and usually holds
a sunshade, and any other technical installations such as ventilation ducts, cooling
installations or daylight systems.

The internal façade of new buildings can thus be made easier, or in the case of
rehabilitation, they can be maintained or repaired by simple means. Ventilated
double facades are often categorized by the type of ventilation principle they are
designed for. The ventilation solution is important, because this greatly affects the
energy consumption for heating, ventilation and cooling, comfort, air quality,
sound insulation and fire safety [4].

1.2 Type of Double Façades

It is usual to divide double facades into five different categories as illustrated in
Fig. 1:

• Exhaust air facade,
• Supply air facade,
• Static air buffer,
• External air curtain,
• Internal air curtain.
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In addition there are various combinations of these.

Closed Buffer

For this type of double façade solution, there is no air exchange between the resi-
dence zone and the gap in the double façade. Exterior facades may have permanent
or controllable openings. The double facade works here as a thermal buffer, and will
reduce heating needs in relation to a single facade. It will also provide better sound
insulation against the exterior. Ventilation of the residence zone and ventilation
within the double facade are, in this case, two independent systems.

Open Buffer

In this concept, the exterior facade windows can be opened for ventilation or
utilization of the space for preheating the ventilation air. If the free height of the
double facade is large, i.e more than third and fouth floors, the air temperature in
the gap can become uncomfortably high. The free height of the double façade can
also be limited by requirements for sound insulation between floors and fire
requirements. Therefore, most projects realized with this type of facade close the
air gap between floors. In this project it was important to find out how high
temperatures get in the gap and to estimate the potential of problems with thermal
comfort in the upper floors.

Fig. 1 Simple ventilation principle of double facades [5]
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1.3 Description of the Building

The authors were engaged by the Convention Centre people house (AOF), to
conduct a detailed study of energy and ventilation concepts by adding a double
façade to an existing building complex in Krambuveita, Trondheim.

The existing building is a convention and meeting center with cinema halls,
restaurants and hotels. The façade is in the west, east and south as shown in Fig. 2.
Western and east facing facades are facing other surrounding buildings while the
south facing facade is facing a small square. The existing facade has a thermal
resistance of U-value = 0.6 W/m2K. Windows consists of two layers glazing with
a U-value = 2.6 W/m2K.

1.4 Weather Data

Outside temperature and solar radiation on vertical surfaces are the most important
parameters to describe the effect of a double façade. Figure 3 shows the outside
temperature and solar radiation on a vertical south facing facade situated in Oslo
every hour throughout the year.

Fig. 2 Situation plan for building complex (a textile covers the facade that is considered in the
project; Source Gulesider.no)
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1.5 Objectives

AOF in Trondheim wants to upgrade parts of the existing facade at the Congress
people house. The aim of the study was to find the energy consequences of the use
of a double facade system (dfs) on the south facing facade.

2 Method

With the help of dynamic computer simulations of energy and indoor environment
for a case building in Norway, the impact of an additional ventilated glass facade
on the energy demand and indoor environment was analyzed. A focus was put on a
comparison of energy demand and thermal comfort levels of various cases. Main
parameters to study were:

Different construction standards (air tightness, thermal bridges, and facade design)
and their energy demand implications
Simulation robustness in dependence of different assumptions (thermal bridges in
and air tightness of the existing building)
Airflow control strategies and their energy demand implications

Fig. 3 Outdoor temperature and vertical solar radiation for each hour throughout the year.
(Source Meteonorm)
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Comfort criteria and energy issues (thermal versus visual comfort versus heating
cooling demand).
Condensation problems on two positions; inner and outer surface of the exterior
façade layer

A model of the existing building with an extra glass layer on the outside has been
developed. Dynamic thermal building simulation has been coupled with airflow
network in order to simulate the airflow through the ventilated double-skin façade.

2.1 Thermal Model

Three different models were developed using dynamic building thermal perfor-
mance tools TRNSYS and airflow network model TRNFLOW [6–8]:

Existing facade (base case) model
Ventilated double façade system with insulated glass (dfs (1))
Ventilated double façade system with single laminated glass (dfs (2))

Two different rooms were taken to compare the results; an office room in the
3rd and a hotel room in the fifth floor. The model description is detailed in Table 1.

2.2 Airflow Model

Airflow modeling was coupled to the thermal model (see Fig. 4). Here, the double
facade system consists of 16 different zones that were linked using the specifi-
cations in Table 2.

In order to evaluate the winter and summer performance the following
parameters were examined:

Temperature (inside window surface),
Energy (power),
Thermal comfort (with values as described in Table 3; according to ISO 7730 [9]).

Table 1 Description of simulation model

Climatic data Trondheim (meteonorm file)

3rd floor Office room: 5.3 9 6 m (internal gains: equipment 11 W/m2, 2 persons (2 9

75 W), lights 8 W/m2, operation 12 h/5 days/52 weeks)
5th floor hotel room: 5.3 m 9 6 m (internal gains: equipment 1 W/m2, 2 persons (2 9

75 W), lights 8 W/m2, 16 h/7 days/52 weeks)
Ventilation

system
2 fans per room (120 m3/s, balanced ventilation),

17�C supply air temperature
Walls External walls with U-value = 0.6 W/(m2 K)
Shading: Automatically controlled venation blinds in cavity (no shading in base case)
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The simulations are done with TRNSYS connected with TRNSFLOW [10].
Figure 4 shows a schematic representation of the air currents.

3 Results

Results can be seen in Figs. 5, 6, 7 and 8. They are divided into temperature,
energy, and thermal comfort in the following sections.

Fig. 4 Model for air flow between the different types of rooms

Condensation Issues in Ventilated Façades 503



T
ab

le
2

D
es

cr
ip

ti
on

of
ai

rfl
ow

an
d

le
ak

ag
e

S
pe

ci
fi

ca
ti

on
s

B
as

e
ca

se
D

ou
bl

e
fa

ça
de

sy
st

em

E
xi

st
in

g
fa

sa
de

df
s

(1
)

df
s

(2
)

W
in

do
w

pr
op

er
ti

es
G

la
ss

la
ye

rs
In

su
la

ti
ng

gl
as

s
(4

gl
as

s/
16

ai
r/

4
m

m
gl

as
s)

,
ai

r
fi

ll
ed

A
dd

it
io

na
l

in
su

la
ti

ng
gl

as
s

(4
gl

as
s/

16
K

ry
pt

on
/

4
m

m
gl

as
s)

,
lo

w
E

,
K

ry
pt

on
fi

ll
ed

A
dd

it
io

na
l

si
ng

le
gl

as
s

10
m

m

U
-v

al
ue

2.
6

W
/(

m
2
K

)
1.

1
W

/(
m

2
K

)
5.

46
W

/(
m

2 K
)

g-
va

lu
e

0.
76

0.
60

0.
77

A
ir

le
ak

ag
e,

m
=

C
m

x
(D

p)
n

L
ea

ka
ge

be
tw

ee
n

ro
om

an
d

ou
ts

id
e

ro
om

an
d

df
s

(1
)

S
am

e
as

df
s

(1
)

C
m

0.
01

28
kg

/s
@

1
P

a
(b

as
ed

on
0.

6
h-

1
)

S
am

e
as

ba
se

ca
se

S
am

e
as

df
s

(1
)

n
0.

65
S

am
e

as
ba

se
ca

se
S

am
e

as
df

s
(1

)
O

th
er

le
ak

ag
e,

m
=

C
m

x
(D

p)
n

L
ea

ka
ge

be
tw

ee
n

–
df

s
(1

)
an

d
ou

ts
id

e
S

am
e

as
df

s
(1

)
C

m
–

0.
00

21
kg

/s
at

1
P

a
(b

as
ed

on
0.

1
h-

1
)

S
am

e
as

df
s

(1
)

n
–

0.
65

S
am

e
as

df
s

(1
)

504 M. Haase and T. Wigenstad



3.1 Temperatures

Figure 5 presents the temperatures of the window at the inside of the hotel room
for a typical winter week It can be seen that window temperatures are higher for
the dfs than the base case in the winter. Figure 6 presents the temperatures of the
window at the inside of the hotel room for a typical summer week. In the summer,
temperatures are lower than in the base case.

Table 3 Criteria for thermal
comfort. Values for NS ISO
7730

Parameter value

Clothes level [CLO] 1
Metabolic rate (metabolic rate) [MET] 1
Activity [W/m2] 0
Air speed [m/s] 0.1
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3.2 Energy

Figures 7 and 8 present the power needed for the office and the hotel room for a
typical winter week. It can be seen that power distribution in the office (left) is
reduced for both dfs types (1 and 2) with slightly more reduction for dfs (1). The
power distribution in the hotel room (right) shows an increase for both dfs types
(1 and 2) with higher increase for dfs (2). Figures 5 and 6 show the net energy
demand results for both rooms (left) and a reduction in energy demand in per-
centage compared to base case for all rooms (right). It can be seen that energy
demand in the different rooms vary. Energy demand for heating in the office room
(third floor) is reduced by 59% while energy demand in the hotel room (fifth floor)
is increased by 89% (Figs. 9 and 10).
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3.3 Thermal Comfort

Figure 11 presents thermal comfort of the office and Fig. 12 of the hotel room for a
typical summer week.
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4 Condensation

In the previous section, temperature, energy, and thermal comfort were evaluated
for different solutions.

Within the case study, it was also questioned whether internal or external
condensation will occur on the glass in a double façade.

Simply expressed, condensation can occur on a surface when it is colder than
the surrounding air, and there is sufficient moisture available in the air.

To determine the probability of condensation, it is therefore important to use
climate files with actual temperature and humidity values.

4.1 Exterior Condensation

When looking at the surface of a window in a facade one can ask how it is possible
that this may be colder than the outside air temperature? Physical cause is
heat radiation from the window to the cold atmosphere as illustrated in Fig. 13.
Metaphorically one can imagine the opposite course; cold exposure towards the
glass surface from space. We only seldom observe this phenomenon in the daily
life, because the windows have traditionally had a large heat transfer from inside
the building, which helps to keep the outside surface temperature of the glass at a
relatively high level. (After cold exposure)

The conditions of condensation on the outside of windows depends, therefore,
on a combination of a variety of climatic conditions, including outdoor air tem-
perature, the environment (landscapes, buildings, sky) radiation temperature,
relative humidity and wind speed. However, it is not sufficient for a cold, clear and
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calm night for the condensation to occur. Outdoor air relative humidity must
also be so high that the dew point temperature is higher than the outer surface
temperature of the window pane. Surface temperature is influenced in turn by the
heat insulation ability of the window glazing and the indoor temperature level.

4.1.1 Practical Experiments

Measurements conducted in Borås in Sweden show some conditions (individually)
that must be met in order for condensation to occur:

The difference between the outdoor air temperature and the ambient radiation
temperature (sky, landscapes, buildings, etc.) was between 4 and 7�C
The relative humidity was a minimum of 95% (average winter is about 85%)
External condensation performed at an outside air temperature of 0�C in the spring
and at approximately 10�C in the autumn
External condensation appeared especially at low wind speeds (0–3 m/s), only a
few instances condensation performed at wind speeds between 3 and 4 m/s.

4.1.2 Previous Calculations

In connection with the report ‘‘Exterior condensation on window panes’’, a number
of computer calculations were carried out in order to investigate the effect of a
number of parameters contributions for condensation to occur.

Computer calculations showed otherwise good accordance with measurements
referenced.

In the simulations, there was no climate data of Trondheim available. Varnes
airport, some 40 km from Trondheim is therefore used as the nearest station.

Radiatio
n tra

nsmission
Sky radiation (-30

O
Existing
facade

Double  
facade

C
)  

Fig. 13 Exterior
condensation
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Moreover, the year 1985 was selected as most representative of typical weather
(temperature, wind, humidity).

Figure 14 shows a typical result for an arbitrary day. This shows that the
conditions for condensation is present in 2, 3, 4, 5 and 6 h. Each of these hours
are recorded together with the record that the condensation occurred in this day.
In the subsequent period when the conditions for condensation is no longer
present, there will still be condensation on the glass. The ‘recovery’ period is not
recorded.

Simulation

Table 4 summarizes the data that can be extracted from the simulations:
It is important to note that condensation ring would normally occur over

consecutive periods, i.e. condensation extends over several hours. Table 5 can
shed light on how this can be understood:

Shielding

In the simulations, it is assumed that the vertical glass surface ‘‘sees’’ 40% of the
sky. The remaining 60% represented in this case, shielding and radiation from the
surrounding ‘‘hot’’ building/environment.

The value of 40% is relatively high, since 50% is the maximum value that a
vertical-scale window can have.

The façade will often be exposed to varying shielding. This means that different
parts of the façade will be exposed to different proportion of cold air exposure.
Typically, the lower floors are very sheltered, and in practice do not get con-
densation, while the upper floors are considerably more exposed to cold exposure.

Based on simulations for Tromsø, an increase from 40 to 50% (window with
free horizon) sky radiation results in an increase of about 150% of the values in
Tables 1 and 2. Conversely, a reduction to 30% sky radiation results in a reduction

Fig. 14 The assessment of the condensation-based simulations
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to about 50%. The effect of sky radiation is thus very large, and in practice is
crucial for condensation to actually occur, even if climatic and temperature con-
ditions are present.

Effect of Internal Temperature

In the simulations above, it is assumed a constant temperature in the room behind
the double façade at 20�C.

In the double façade, the ‘‘indoor temperature’’ varies and could be down to 5�C
at design outdoor temperature in winter.

Based on simulations for Tromsø, a reduction from 20 to 17�C results in an
increase of the values in Tables 4 and 5, by approximately 50%. Temperature
levels thus have a great effect on condensation risk.

4.1.3 Calculations Using TRNSYS

It was decided to proceed on the issue of current temperature conditions within the
double façade, and there was done/performed calculations using the program
TRNSYS.

The starting point is climate data in the same winter week as used in the Sects.
3.1 and 3.2

Three different cases are calculated:

The existing façade, U-value new window: 1.1 W/(m2 K)
This metric is chosen as a reference, and to test the model.
New double façade, U-value 2-layer glass: 1.1 W/(m2 K)
This corresponds to previously simulated double façade, type: DFS (3). See Sect. 3.1
New dual front, U value of one-layer glass: 5.7 W/(m2 K),
This is equivalent to previously simulated double façade, type: DFS (4). See Sect. 3.1

Surface temperature of the glass exterior is always higher than the condensation
temperature (dew point temperature) for outdoor air. The result is that it will not
cause condensation on the outside window through the simulation period as shown
in Fig. 15.

Surface temperature of the glass exterior is lower than the condensation tem-
perature (dew point temperature) for outdoor air in much of the period. The result
is that the climatic conditions are present that condensation will occur significantly
during night time as shown in Fig. 16.

Figure 17 shows large heat losses from the building and through the double
façade, leading to a relatively high surface temperature of the exterior glass layer.
In practice, the temperature never falls below the dew point temperature for
outside air and the conditions for condensation do not appear.
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Fig. 15 The existing façade
with a new glass
(U = 1.1 W/(m2 K)). Typical
winter week

Fig. 16 New double façade,
U-value 2-layer glass: 1.1
W/(m2 K), DFS (3). Typical
winter week

Fig. 17 New double facade,
U-value one-layer glass:
5.7 W/(m2 K), DFS (4).
Typical winter week
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4.2 Internal Condensation

As shown previously, a glass with high U-value gives a relatively high temperature
outside the double façade, which helps to reduce the external condensation. The
same glass quality will lead to more heat losses which results in cavity tempera-
tures that are similar to outside temperatures. If there is critical moisture conditions
inside the double facade, this can lead to internal condensation as illustrated in
Fig. 18.

The calculation results of a typical winter week are shown in Fig. 19 (simu-
lation No. 3 in Table 6). As we see the calculation shows large periods (sum equal
to 130 h/week) with large amounts (= very likely) of interior condensation.

Measures that Reduce Indoor Condensation

Simulation results must be considered to describe unacceptable conditions, and
therefore we have looked at various measures to improve conditions.

In Table 6 it can be seen that the use of double glazing (Simulation No. 1 and 2)
improve conditions somewhat.

Night Ventilation

Measures for one-layer glass show small effects, except for night venting the
cavity between 21 pm and -05 am (simulation No. 7). The measure increases the
energy use, because hot (and humid) air is replaced with cold (but dry) air.

Condensation risk as shown in Fig. 20 is a conservative estimate. The reason
for this is that the calculation program does not take into account the effect of air
movements on the glass surface. Halving the probability of the risk of conden-
sation in relation to the figures may be a reasonable assumption.

Fig. 18 Internal
condensation
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Table 6 Number of hours/events with internal condensation. Typical winter week

Simulation
no.

Code Type
glazing

U-
value

measures Condensation
hours/week

Figure

1 iso Double 1.1 Air tightened on first
and second floor

108

2 iso (2) Double 1.1 Not air
tightened

108

3 esg Single 5.5 Air tightened on first
and second floor

130 5.7

4 esg2 Single 5.5 operation times
ventilation
office = hotel

130

5 esg3 Single 5.5 operating times
ventilation and
heating
office = hotel

130

6 esg4 Single 5.5 DF open (23-5) 118
7 esg5 Single 5.5 DF open (21-5) 108 5.8
8 esg6 Single 5.5 DF open (6-20) 134
9 esg7 Single 5.5 DF with cracks in first

and second flor,
DF closed

130

Fig. 19 Internal condensation. New double facade, U-value of 1 layer glass: 5.7 W/m2 K, DFS
(4). Typical winter week
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However, probability and extent of internal condensation is significant and the
increase of energy consumption so large that the use of one-layer glass as an outer
part of a double façade cannot be recommended.

4.3 Shading as a Measure Against the Outside Condensing

Among the measures that are possible to apply is exterior shading to reduce sky
radiation. This measure is combined with the use of double glazing.

The purpose of the overhang is to shield the external radiation and thereby
reduce the external condensation we have previously identified for this glass
quality (Fig. 21).

Fig. 20 Internal condensation. New double facade, U-value one-layer glass: 5.7 W/m2 K, DFS
(4). Typical winter week. Night Ventilated

Overhang
2m

Fig. 21 Overhang. Sketch of
the overhang with depth 2 m
installed at the cornice of the
sixth floor
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With an overhang in this shape, external condensation risk reduces practically
to zero as shown in Fig. 22.

Figure 23 shows that internal condensation will occur (106 h/week), but in
small quantity. Given the conservative method in the model, the condensation may
in praxis be near zero.

5 Summary and Conclusion

This report deals with thermal indoor climate, energy and condensation challenges
for a planned double façade of the Convention Centre (AOF) in Trondheim.

For the calculations, the simulation program TRNSYS, in combination with
TRNSFLOW, wais used [8]. The software modules were developed within a PhD
study by Haase [7]. The use of a double façade is not very widespread in Norway.
As far as SINTEF knows, there exist only 10–12 buildings to date where it is used.
Of these projects, only a couple of the double façades are used in connection with
the renovation of the façade. Applying a double façade system this way, reno-
vation work on existing façades can be reduced, in addition to the building’s
energy, and power performance being improved. The use of dfs must be done
properly, and problems are far more complex—the energy aspect, fire risk, escape
paths, noise issues, operation and security of the system must also be included in
the design of an optimal solution. The reduction of condensation risk is an issue
that must be considered.

Within these areas there is still lack of knowledge, calculation tools and of
course the experience and feedback from completed projects.

In the case of condensation, we have also relied on earlier work by SINTEF
report, ‘‘Exterior condensation on window panes’’ [11].

Fig. 22 Exterior
condensation. New double
facade, U-value 2-layer
Glass: 1.1 W/m2 K. Typical
winter week. Shielded

Condensation Issues in Ventilated Façades 517



The results of the calculations and the conclusions will necessarily be specific
to the actual case of AOF Convention Centre in Trondheim. But the problems
discussed can be applied to other commercial buildings in Norway and countries
with similar climates.

5.1 Summary

Energy

The results show that energy efficient refurbishment of an existing façade with
double façade system is possible. Temperatures on the inside of the windows as
well as thermal comfort are improved with both types of dfs (1 and 2). Energy
savings seem to depend on the vertical airflow within the dfs and range between 59
and -89% for the different rooms.

The construction of a double façade (df) in combination with high air leakages
in the old façade results in airflows between rooms and the df cavity. The amount
of airflow increases because of the df, which leads to an increase in energy demand
for heating. Especially, the hotel room in the fifth floor needs between 43 and 89%
more heating (with an additional insulated glass layer (dfs 1) and single glass layer
(dfs 2) respectively).

The solution (1) with insulated glass seems to perform better with respect to
glass temperatures, thermal comfort, and energy savings than solution (2).

Fig. 23 Internal condensation. New double facade, U-value 2-layer Glass: 1.1 W/M2 K.
Typically winter week. Shielded
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More work is needed in order to optimize the construction of a ventilated dfs in
respect to operational energy savings. One possibility could be to reduce air
leakages in the old façade construction.

Condensation of humid cold air on the outside and inside of the dfs layer could
lead to unwanted effects and was therefore evaluated.

Exterior Condensation

The calculations show, however, that the likelihood of condensation outside is
great, both when we count the number of hours and condensed amount, when
using double glazing.

With one-layer glass the calculations show that the exterior condensation is
nearly absent.

Internal Condensation

By using 2-layer glass, the calculations show that the probability of condensation
inside is large in terms of hours, but not in quantity.

Using one-layer glass calculations show that internal condensation is very likely
in terms of both number of hours and quantity. Ventilation of the cavity will improve
the situation significantly but the consequences are huge energy consumption.

Shelter From the Sky Radiation

If the building had mounted external shading/overhang (depth 2 m), this would have
a major impact on the outside condensation of double layered glass. Simulations
show that the condensation is reduced to near zero. The measure is recommended.

5.2 Conclusion

Based on the simulations we have conducted, we recommend that it be used
double layer glass U-value equal to 1.1 W/(m2 K). Moreover, we recommend that
low emission coating facing outwards on the outer glass should be used.

This solution is combined with horizontal shading/overhang (depth 2 m)
located at the cornice of the top floor.

Elements of applying a double façade system that are not considered in this
report:

Can result in reduced light levels in the room due to several layers of glass and
overhangs
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Can provide greater sound transmission between adjacent rooms (also vertically)
Can provide greater danger of fire and smoke spreading.
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Structural Design and Experimental
Investigation of a Carbon Fibre Wheel
for Low Consumption Vehicle

Massimiliana Carello and Alessandro Scattina

Abstract Today, in the design of a new vehicle, one of the most important
challenge is the weight reduction. This item is even more important in the
design of prototype vehicles aimed to low consumption competitions, where it
is necessary to minimize the weight of all components. For this reason the
carbon fibre composite materials appear the best solution in terms of low
density and mechanical properties. In this work the attention is focused on the
wheel of the IDRA prototype, which participated in the Shell Eco Marathon
competition. The wheel rim is a lenticular single part made of carbon fibre
materials, without the use of structural adhesive. The different design steps,
from the concept phase to structural analysis made by means of finite element
code, are discussed. At the end the innovative manufacturing production
process is presented.

1 Introduction

The weight reduction is, together with aerodynamics, frictions reduction and
propulsion efficiency, a key factor in the design of new vehicles [1] and in
particular it is even more important for design of prototype vehicles aimed to low
consumption competition, such as the Shell Eco Marathon [2]. The target is very
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sophisticated, the vehicle’s weight is about 30–35 kg. For this reason it is
necessary to search the minimum weight not only on the major parts, such as the
chassis and the body, but also to minimize the weight of different components with
smaller size. In particular in this work the attention was focused on the wheels.
Moreover, in this type of prototype, the wheels have also an important aero-
dynamic function. For this reason a spoked wheel does not appear as a right
solution, while a lenticular geometry should be an optimum solution to obtain also
the best aerodynamic efficiency.

A good technological process to obtain a lenticular geometry is the use of
carbon fibre composite materials, which have excellent performance in terms of
low density and mechanical properties if compared to traditional mechanical
construction materials like aluminium and steel [3]. Usually in the automotive
field the carbon fibre is used for high level applications, where there is need for
high performance and low weights while the higher costs are fewer important
[4–9].

A typical manufacturing technology used to make carbon fibre parts for the
automotive applications, provides the use of prepregs [10, 11]. They are fabric
composite material already impregnated with resin. The prepregs (unidirectional
or multi directional carbon fibre) are shaped by hand on moulds that are covered
by the vacuum bags and then polymerized in autoclave, with pressure and
temperature defined a priori. With this process it is possible to obtain product with
high resistance, stiffness and good surface finish.

For these reasons, during the construction of IDRA prototype, which
participated in the Shell Eco Marathon 2008, 2009 and 2010 in the prototype
category with fuel cell propulsion, the H2politO Team adopted lenticular carbon
fibre wheel rims. These wheel rims are specifically designed to use the particular
Michelin’s tyres with very low rolling coefficient. These tyres are specific for the
Shell Eco Marathon competition, and, on the market, there are not wheel rims
that can adopt these tyres. Moreover the wheel rims must have also different
requirements, such as the low weight, the compatibility with very low friction
ceramic ball bearings, small hubs with particular design and, at last but not least,
the lenticular shape.

Up to now other Italian and European teams for the same competition adopt
aluminium or nylon wheels specially designed, or different types of carbon
fibre solutions [12, 13]. However, in this last case, the wheel rim is made of
two lenticular parts and by a central groove joined together with structural
adhesive.

In this work the structural design and the production of the lenticular carbon
fibre wheel rim for the IDRA prototype will be examined in detail. The main
innovation of this wheel rim described in the following is the monolithic
architecture, moreover the wheel does not need the use of tube being a tubeless
solution. In particular this work is focused on the wheel rim for the IDRA09 and
IDRA10 prototype, which was born as an evolution of the wheel rim for the
IDRA08 prototype.
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2 Lenticular Wheel Rim

2.1 Geometry

The design of the wheel rim started from two important points: the dimensions and
the shape of the tyre groove and the wheel hub which have specific dimensions and
geometry. With a benchmarking analysis, different solutions were examined.
In particular the first idea was to make a nylon wheel rim in a single part. This
solution led to an estimate weight of about 5 kg. In order to reduce thickness
and consequently weight, a second solution completely made of aluminium was
considered. A lenticular aluminium solution should lead to a total weight of about
2.2 kg, while a spoked solution should lead to a total weight of 1.5 kg. However,
this last solution is not very good from the aerodynamic point of view. A third
solution considered the use of a groove and a hub made of aluminium and two
lenticular carbon fibre discs. The lenticular discs are joined with the groove with
structural adhesive. This wheel should have a weight of about 1.2 kg, but it should
not ensure the tightness in pressure if the bonding shows some irregularities. From
this overview it was decided to design a monocoque solution completely made of
carbon fibre. The use of structural adhesive is avoided with consequently
improvements in term of total weight and better tightness, strength and stiffness.
This solution should ensure a total weight lower than 1 kg. In this way was made
the wheel rim for the IDRA08 prototype.

The wheel rim for the IDRA09 prototype (Fig. 1) was born as evolution of the
wheel rim of the previous prototype. The use during competition of the firt solution
put in evidence some weakness, in particular a vibration of the lenticular wall
along the wheel hub axis. It is due to the too large section in the central zone and to
the presence of plate part not well connected to the pending wall. These vibrations
caused loss of aerodynamic efficiency and could lead to structural problems.

Starting from these considerations the geometry of the new wheel rim was
redesigned. Figure 2 shows the two sides of the IDRA09 wheel rim while Fig. 3
shows also a section view of the wheel rim. Comparing the new design with the
previous one (Fig. 3 on the left), the IDRA09’s wheel rim has a lower frontal
section (about 25% less). This choice has been done to further reduce the aero-
dynamic vehicle resistance of vehicle and to solve the vibration problems. On the
front view, the design of the wheel rim wall is characterized, on one side, by the
hole for the tyre valve, while, on both sides, the central zone has a particular shape
necessary to introduce and to fasten the wheel hub. This last zone was redesigned
to use an improved wheel hub, and to facilitate the assembly. The section view
(Fig. 3) allows to better understand the profile shape, which is substantially
defined by the tyre’s constructor with specific dimensions. Also in order to use the
same parts of the previous die, and consequently to save money, the design of the
groove profile has not been changed from that of the previous solution.

The new solution is also a tubeless wheel. This improvement was made using
an Easytubeless system which consists in a specific valve and liquid applied along
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the groove profile to make the tightness. In fact the first wheel rim had some
problems of sealing due to leaks both through the fibres and through the valve.

2.2 Materials

Starting from the calculation of equivalent properties for the lamina [14–16] and
considering the wheel rim as a circular plates where a symmetrical bending load is
applied [17] a series of composite materials and a specific ply lay-up were chosen
to make the wheel rim. The attention was pointed to prepregs materials, in order to
simplify the production process. Many considerations were done during this phase,

Fig. 1 Idra09 prototype and its wheel rim

Fig. 2 Left and right side of the IDRA09 wheel rim design
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but mechanical performance and weight containment were the key points which led
to the choice. In particular a unidirectional carbon fibre material (STS-150-DT-36 F)
and a bidirectional fabric were selected (Epoxy resin system DT150). In order
to improve the performance of the component, the use of a middle layer of
polymethacrylimide foam (Evonil Degussa Rohacell) positioned between the
prepregs layer was also taken into consideration, in this way a sandwich
structure is obtained. The main properties of these materials are summarized in
Tables 1, 2 and 3.

Always considering previous experience a first ply lay-up was defined. The
target was to obtain a symmetric ply lay-up in order to balance the stress due to
pressure and temperature variation, which may occur during cure cycle in auto-
clave. For the ply lay-up the wheel rim was divided in three different zones: the
lateral walls of the wheel rim (part A in the Fig. 4), the zone around the wheel hub
(part B in the Fig. 4), and the groove profile (part C in the Fig. 4). Examining in
more details the different ply lay-up, for the lateral walls, from the external side to
the interior one, the different layers have been illustrated in Table 4.

For the zone around the wheel hub, the layers were the same as shown in
Table 4, but between the fourth and fifth layers, two layers of bidirectional fibres,
with 90� orientation and a thickness of 0.2 mm were added to improve stiffness

Fig. 3 On the left: comparison between the first and the last version of the wheel rim. On the
right: diametrical section view of the wheel rim with a profile detailed view

Table 1 Evonil Degussa Rohacel polymethacrylimide foam

Density 0.0521 (g/cm3)

Tensile strength 1.6 (MPa)
Modulus of elasticity 0.075 (GPa)
Compressive strength 0.8 (MPa)
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and strength of this part. At the end, the groove had a structure completely
different. It was made of four layers of bidirectional fibres with a 0� orientation and
a thickness of 0.2 mm.

Due to the symmetric design of the wheel rim and its circular shape, it is not
very important to define the main direction of fibres for the side walls and for the
zone around the wheel hub. For what concerns the groove profile the main
direction was defined along the wheel rotation axis, which is the direction
perpendicular to the side walls.

3 Structural Analysis

3.1 FEM Model

The FEM model of the wheel rim was obtained starting from a CAD geometry
using the Altair Hypermesh� pre-processor. The mesh of the wheel rim model is
shown in Fig. 4. The mesh of the wheel rim was made using shell elements
and thanks to the geometry of the wheel rim it was possible to obtain a mesh

Table 2 Unidirectional fibre STS-150-DT-36 F

Features of the resin matrix

Chemical nature Toughered thermosetting epoxy
Cure temperature 120 7 150�C
Gel time 5 7 9 min @ 120�C
Tg (cure cycle) 140 7 145�C (90 min @ 120�C)
Features of the impregnated tape
Standard width 600 ± 3 mm
Standard length 150 ± 10 m
FAW 150 ± 5 g/cm3

Resin content 36 ± 3% by weight
Laminate thickness 0.152 mm

Table 3 Bidirectional fibre epoxy resin system DT150

Chemical nature Toughered thermosetting epoxy

Cure temperature 120 7 150�C
Gel time 5 7 9 min @ 120�C
Tg (cure cycle) 140 7 145�C (90 min @ 120�C)
Plate mechanical properties
Test Strength (MPa) Modulus (GPa)
Traction 831 57.4
Flexion 964 50.3
Compression 682 49.2
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completely made of four node elements. Only few three node elements (less than
0.5% of the total model) were used near the valve’s hole and in the zone around
the wheel hub. The medium size of element was about 4 mm for the side walls and
the groove and about 2 mm for the wheel hub zone due to its more defined
geometry and because in this zone the loads were applied. The complete model
was made of about 20,000 elements. The geometry of the wheel rim suggested to
model only a quarter of the wheel but the little dimensions of the model made
possible to consider the entire wheel rim, the calculation time was not substantially
influenced. The solutor software adopted for this analysis is the Radioss� Linear

Fig. 4 The FEM model of
the wheel rim:lateral walls
(A); zone around wheel hub
(B); groove profile (C)

Table 4 Ply lay-up for the side walls of the wheel rim

N� Layer quantity Thickness (mm) Type Orientation (�)

1 1 0.2 Bidirectional fibres 0
2 1 0.15 Unidirectional fibres 45
3 1 1 Structural foam reinforcement (Rohacell) –
4 1 0.15 Unidirectional fibres -45
5 1 0.2 Bidirectional fibres 90
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10.0, it has a specific module oriented to the composite materials quite reliable and
easy to use.

This solutor uses the classic theory of composite laminate, in particular the
single layer was considered:

• Homogeneous;
• Linear elastic;
• Orthotropic at macroscopic level;
• Fibres and matrix are perfect integrated.

The main parameters required by the solutor software for the carbon fibre
materials card were: the elastic modulus in longitudinal and transversal direction,
the Poisson’s ratios and the allowable stresses or strains in the longitudinal and
transversal directions. These last parameters are used to make the failure calcu-
lations. It is possible to select different failure criteria on the element properties.

For what concerns the boundary conditions, two different load cases were
examined. The first one was the calculation of side stiffness of the wheel rim and
the second one was a static load condition which simulates the real use of the
wheel. For the first case, the load (200 N) was applied on the walls on a circular
zone (with a diameter of about 150 mm) along the wheel rotating axis. The load
was applied using a rigid one dimensional spider element. The constraints were
applied on the opposite side of the wall, in this way the wheel rim was uniformly
supported on its lateral surface. These conditions allow to measure the side stiff-
ness of the wheel rim and reply some experimental tests done. These experimental
tests will be illustrated in the following, they are aimed to validate the finite
element model of the wheel rim. In the second load case, vertical loads were
applied in the rotational centre of the two side walls of the wheel rim. The nodes of
the wheel hub zone were connected to a single central node using rigid one
dimensional spider elements. For each side a load of 900 N was applied. This
value was obtained considering the worst load condition and applying a safety
coefficient to consider short disconnectedness of the ground. To calculate the loads
the single rear wheel of the prototype was considered, applying on this wheel the
60% of the moving vehicle mass (1,000 N).

The wheel was considered supported to the ground in its work position. For this
reason some nodes on the perimeter of the wheel rim, in the support area were
constrained. Moreover, to consider the worst condition, the vertical loads, and
consequently the nodes constrained were applied in radial direction in corre-
spondence of the hole for the valve.

3.2 FEM Results

For what concerns the lateral stiffness, it was calculated as the ratio between the
load applied and the displacement obtained in the load direction and in the
application point of load. For this wheel a value of about 90 N/mm was obtained.
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This value of stiffness refers only to the monocoque shell of carbon fibre and it
does not consider the presence of the wheel hub which drastically increases the
stiffness of the complete wheel.

For the second load case first of all were examined the displacements and in
particular the attention was focused on component along the wheel rotating axis (Y
axis, Fig. 5). The maximum value obtained is about 0.6 mm, which is far from
1 mm, which was considered the maximum accepted value for this application.
Moreover the displacements are well distributed along the lateral wall, while in the
wheel rim for IDRA08 the displacements were concentrated in correspondence of
the slope change in the lateral wall. This is a first important result because in this
zone, during the practice on the track, the wheel rim showed important dangerous
vibrations. With this design, this phenomenon is avoided. This result was obtained
redesigning the profile of the side wall of the wheel rim and introducing a layer of
reinforcement foam. As it is possible to see in the Fig. 5, the presence of the valve
hole created an important discontinuity on the wheel’s walls, for this reason the
displacements were not perfectly symmetrical. However the magnitude of the
difference is very little. To solve this problem a further development of the wheel
rim should erase the discontinuity created by the valve hole, using a specific little
rubber pipe. In this way the number of composite layers could be further reduced.

For what concerns the structural behaviour, for each composite layer the failure
index was examined. It is a parameter calculated by the solver on the basis of the
material parameters introduced and on the failure criteria selected. It is based on
energy criteria [18] and if the value obtained is higher than one it is possible to
have delamination or break of lamina. For these analyses the Tshai–Hill criteria
was adopted [18–20]. The different parts of the wheel rim, which have different ply

Fig. 5 Absolute displacement on both side of the wheel rim along Y axis
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lay-up, were separately examined. The values obtained from simulation were
always very low and far from the critical value of one. Only few elements in
correspondence of the constraints and near the wheel hub, where the loads were
applied, needed more attention. However these elements were not very significant
because their behaviour was high influenced by the boundary conditions which
were worst than reality. The contribution of the tyre pressure and of the wheel hub
could be considered in more detail.

4 Experimental Tests

On the lenticular wheel rim the experimental tests were done in order to validate
the FEM model. In particular three different types of static and quasi static
compression tests were done on the lateral wall of the wheel rim.

The test layout for the first type of test is shown in Fig. 6. The wheel rim is
supported by one of its semi shell die (Fig. 6 on the left). On the other side, in the
central zone, different defined masses were applied. In particular starting from
5 kg, the masses was increased to 20 kg with steps of 5 kg. The vertical
displacements of the lateral walls were measured by means of comparators.
In particular three different positions, with the same angular distance were
considered. The measures were replicated at six different radius with steps of
20 mm from the wheel rim external edge. The arrangement of the measured points
is shown, in Fig. 6 on the right. Both sides of the wheel rim were measured. Three
replications for all measurements were done both increasing and then decreasing
the weight. The average results of the vertical displacement measurements are
shown in Fig. 7. It is possible to note that the displacements obtained on one side
(figure on the left—side opposite valve) are higher than those on the other side
(figure on the right—side with valve). This is due to a partial overlapping of

Fig. 6 On the left: the test layout for the first type of experimental test. On the right: the
arrangement of measured points in a top view

530 M. Carello and A. Scattina



prepregs layers on one side wall when the die is closed during the production
process. However this partial asymmetry does not cause unbalance phenomena
during wheel rotation.

The second type of test is very similar to the first one, but in this case the wheel
rim is not supported by the semi shell die but it is supported on a rigid plane. In this
way the contribution of both sides of walls is taken into consideration. The same
points and the same replications were made also for this test. The results in terms of
vertical displacements are shown in Fig. 8. The values obtained are much higher
than those of first test, because there is the displacement also of the opposite side.

The third type of test was performed to better investigate the behaviour of the
wheel in conditions that reproduce the real work situation. In particular the wheel
hub and the tyre, pressurized at 6.5 bar, was assembled on the wheel rim. For this
purpose a specific test bench was prepared (Fig. 9). The wheel is fixed on its shaft
and a lateral force is applied by means of a pneumatic actuator. In this way the

Fig. 7 Vertical displacements of the side walls for the first type of static compression test

Fig. 8 Vertical displacements of the side walls for the second type of static compression test
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work condition of the vehicle along a curve can be simulated. A force of 200 N
(which correspond approximately to 0.5 g of acceleration) is applied on the tyre.
The vertical displacements were measure always by means of two comparators:
the first in correspondence of the load application and the second in a opposite
diametrical position. The measurements were repeated every 60�. The tests results,
in terms of displacements as a function of the angle are shown in Fig. 10. It is
possible to note that the displacements are very low and the assembly wheel
appears to be very stiff.

Fig. 9 Test bench for the third type of test

Fig. 10 Vertical displacements of the side walls for the third type of static compression test
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5 FEM Model Validation with Experimental Data

The first two types of compression tests were simulated also by means of finite
element model techniques, using the same model described in the paragraph 3, in
order to validate this model for further improvements and more accurate analysis.
In the model the constraints were applied like in the experimental tests, and the
application of load was done by means of rigid one dimensional elements. The
vertical displacements were evaluated on nodes positioned in the same points
evaluated with the experimental tests. The results obtained with the finite element
model are compared with the experimental ones in Fig. 11 and 12, considering two
different masses (15 and 20 kg). Examining the results, excluding the points which
are influenced by boundary conditions (in particular those at high radius) it was
possible to conclude that there is a good correlation between the results of the

Fig. 11 Comparison between experimental and numerical results for vertical displacements of
the side walls obtained with the first type of static compression test

Fig. 12 Comparison between experimental and numerical results for vertical displacements of
the side walls obtained with the second type of static compression test
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experimental tests and those of the FEM model, also considering that the
parameters used for material cards could be affected by low reliability and they are
quite scattered .

6 Conclusions

Designing a prototype vehicle aimed to low consumption competitions a key factor
is the weight reduction for all components and structures. In this work the struc-
tural design, from the concept phase to the manufacturing process, has been
illustrated for the wheel rim of IDRA prototype, which participated in the Shell
Eco Marathon competitions. The wheel rim for this type of vehicle has also an
important aerodynamic function, for this reason a lenticular geometry has been
chosen. To minimize the weight and to obtain a lenticular geometry, carbon fibre
materials have been used. The wheel rim has been made in a single monocoque
part, without the use of structural adhesive, this innovative solution allows to
further reduce the final weight and to improve the strength and stiffness.

After defining a first arrangement for geometry, materials, and ply lay-up, a
structural analysis has been done by means of finite element model. The structural
design analysis has been validated by means of some experimental tests on the
prototype wheel rim and they are in good agreement.
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Non Linear Shear Effects on the Cyclic
Behaviour of RC Hollow Piers

P. Delgado, A. Monteiro, A. Arêde, N. Vila Pouca, A. Costa
and R. Delgado

Abstract Reinforced concrete (RC) hollow section piers have been the subject of
several studies in the recent past, from which one important drawn conclusion is
the significant influence of shear effects on these piers behaviour, particularly
under cyclic loading. In that framework, tests were carried out at Laboratory of
Earthquake and Structural Engineering (LESE) from Faculty of Engineering of
University of Porto (FEUP) on several reduced scale (1:4) RC hollow section
bridge piers under lateral cyclic loading with constant axial force reported by
Delgado (Bull Earthquake Eng 7:377-389, 2009). This work aims at presenting
the numerical simulations performed for some of the referred piers in order to
better understand phenomena associated with its cyclic behaviour, as observed in
the experimental campaign. The numerical strategy was based on refined 3D Finite
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Element Mesh (FEM) discretization using a two-scalar variable damage model for
the concrete constitutive law and a suitable cyclic behaviour law for steel bars
represented by uniaxial elements. As is well known, the shear effects are complex
phenomena involving the global behaviour of the structural elements and where
the non linear effects have a crucial role. In this chapter a detailed modelling was
used allowing for realistic simulations of the non linear behaviour, which was
found particularly suitable when significant shear effects are involved. The bond
between the bars and the embedding concrete, by incorporating a bond stress—slip
behaviour law in the numerical calculations is considered, an effect particularly
important when thin plain steel bars are considered, as is the case of the tested
piers. The adopted formulation is similar to the well known Eligehausen proposals
although with slightly modified cyclic behaviour parameters.

Keywords Numerical modelling �Non-linear cyclic behaviour �RC hollow piers �
Damage model � Shear effects � Bond stress-slip behaviour

1 Experimental Campaign

The test setup, shown in Fig. 1, makes use of a 500 kN actuator to apply lateral
loads and a 700 kN actuator to apply axial loads. The specimen and reaction frame
are bolted to the strong floor with high strength prestressed rods. A constant axial
load was applied during the tests, herein described, while the lateral loads were
cycled, under displacement controlled conditions. A special sliding device con-
sisting of two steel plates, shown also in Fig. 1, was used to minimize the friction
created by the axial loads. The lower plate was bonded to the specimen top,
whereas the upper was hinged to the vertical actuator, allowing top-end dis-
placements and rotations on the specimens to take place when lateral loading was
imposed during the test. The upper plate was also connected to a load cell to
measure the residual frictional force between the two plates. During the tests, the
hydraulic system of the vertical actuator was designed to keep constant the oil
pressure, in order to maintain constant the axial force.

The horizontal actuator control is done using a PXI controller system from
National Instruments (NI) and specifically home developed control routines based
on the LabVIEW software platform (also from NI). The data acquisition is also
based on another PXI system equipped with acquisition and signal conditioning
cards and allows direct reading of data from strain gauges, load cells, Linear
Voltage Displacement Transducers (LVDTs) and other types of amplified ana-
logical or digital sensors.

The specimens presented in this chapter correspond to the third group of piers
tested within this framework, being the results of the first and second group
already shown in previous reports, [1–3]. This set of specimens was based on
square piers tested at the Laboratory of Pavia University, Italy, [4, 5]. The model
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schemes shown in Fig. 2a correspond to � scale representations of hollow section
bridge piers, herein referred to as PO1-N4 for square section and PO2-N4 for
rectangular section, with the material characteristics presented in Table 1. The
transverse reinforcement details consisted of a single stirrup in each pier wall,
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Fig. 1 Schematic layout of the test setup at LESE laboratory and sliding device used to apply
the axial load
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Fig. 2 Hollow RC piers: (a) model schemes (dimensions in meters) and ( b) lateral LVDT
layout
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deemed representative of typical old bridge design and construction. Instrumen-
tation to measure curvature and shear deformations was included along the pier
height, because important shear deformations were expected in these tests. The
LVDT configuration used in both specimens is shown in Fig. 2b.

2 Numerical Simulations

Concerning the numerical analysis for cyclic loading, the CAST3M computer code
[6] was adopted, a general purpose finite element based program, where a wide
variety of non-linear behaviour models are available and, particularly, a damage
model developed at FEUP [7] and recently implemented in CAST3M [8], that has
already proved to be suitable for seismic behaviour analysis of RC bridge piers [9].
This later modelling strategy thus involves: the above mentioned Continuum
Damage Mechanics based constitutive model for the concrete zone discretized into
3D finite elements and incorporating two independent scalar damage variables that
account for the degradation induced by tensile or compressive stress conditions;
the Giuffré-Menegotto-Pinto model [10] for the cyclic behaviour simulation of the
steel reinforcement discretized via truss elements.

Numerical simulations were performed for the two tested piers under the
assumption of full bond between all steel bars and the concrete. In order to account
for plain transverse rebars, the full bond between the stirrups and the concrete was
considered only at the corner loop nodes. Subsequently, in Sect. 2.2, alternative
simulations were also carried out including suitable modelling of the bond-slip
between stirrups and concrete.

The modelling strategy was applied to the experimentally tested specimens and
the analysis of obtained results was focused first on the response comparison in
terms of force–displacement plots concerning both experimental and numerical
findings. The flexural and shear capacity curves are also depicted as calculated by
Delgado [11] where, the flexural capacity cross-section was obtained by per-
forming a moment–curvature analysis of the section, while for shear strength a
methodology suggested by Priestley et al. [12] was adopted, which can be con-
veyed by Eq. (1):

Table 1 Material characteristics: Young modulus (Es), yielding strength (fs) and ultimate
strength (fs) for longitudinal and transversal steel reinforcement

Steel (Asl; Ast) Asl Ast Concrete

Esl; Esw 200 GPa 190 GPa fcm, cub = 35.7 MPa
fsy; fswy 560 MPa 443 MPa fcm, cyl = 28.5 MPa
fsu; fswu 670 MPa 505 MPa Ecm = 22 GPa
Quantity (square piers): 40 U8 21 U2.6//0.075
Quantity (rectangular piers): 64 U8 21 U2.6//0.075

Confined (fcm, cub) and unconfined (fcm, cyl) compressive strength and elastic modulus (Ec) for
concrete
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Vd ¼ Vc þ Vs þ Vp ð1Þ

where Vc, Vs and Vp are the shear force components accounting, respectively, for
the nominal strength of concrete, the transverse reinforcement shear resisting
mechanism and the axial compression force.

Regarding those plots, four drift levels are also included. Those levels, D1, D2,
D3 and D4 represent 0.21, 0.93, 1.43 and 2.14% respectively, which were the
reference drift levels used in all the numerical applications for comparisons sake
throughout the entire campaign. In addition, some other representative parameters
were analysed, namely deformed configurations, maps of principal stress values
and directions, strain and stress distributions in steel reinforcement and maps of
concrete damage variables.

2.1 Piers Considering Full Bond Conditions

The square and rectangular cross-section piers, respectively PO1-N4 and PO2-N4,
have the same transverse reinforcement ratio and single loop type (shown in
Fig. 2), the same dimension in the loading direction but a larger cross-section
width.

These piers transverse reinforcement was made with plain bars, thus leading to
a weaker bond mechanism which is likely to have an influence on the strength and,
particularly, on the deformation capacity of the specimen. In order to account for
the low bond interaction between the transverse reinforcement (stirrups) and the
surrounding concrete, the stirrup mesh was connected to the concrete mesh only at
the corner loop nodes (Fig. 3).

(a) (b)

Fig. 3 Rectangular hollow pier cross-sections. (a) ‘‘as designed’’ and (b) finite element
discretization
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Therefore, the flexural capacity of PO2-N4 pier was increased (due to larger
steel contents and compression web area) while the shear capacity of both
remained the same. As observed in the experimental tests, shear effects showed a
clear influence on the piers numerical response, wherein the expected shear force
levels were satisfactorily reached (Fig. 4).

It should be remarked, however, that a sudden force decay is also exhibited by
the numerical response of PO1-N4 pier for the 21 mm cycle; in the numerical
model this effect was found to be due to local concrete crushing near the footing
caused by the stress accumulation in that zone induced by the footing, without an
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Fig. 4 Force-displacement for (a) PO1-N4 and (b) PO2-N4 piers. Experimental versus
numerical comparison
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appropriated concrete confinement, as certainly occurred in the experimental test.
However, although this effect has prevented a better response simulation for that
displacement level, it was found irrelevant for the development of the observed
shear effects.

In fact, shear effects are well captured by the numerical model as evidenced in
Fig. 5a, b where compressive principal stress directions are illustrated for two drift
levels (solid diagonal lines), showing the formation of the well-known strut-and-tie
mechanism typical of a shear dominant stress state; as exhibited in Fig. 5b, this
effect becomes more apparent for larger drifts. In accordance with the latter plot,
Fig. 5c shows the corresponding deflected shape evidencing significant distortions
in the PO1-N4 pier web where approximate borderlines of the distorted zone are
sketched by the thick dotted lines on the deformed shape.

The numerically simulated flexural effects showed little influence on this pier
response. Indeed, the plastic hinge mechanism was not mobilized as evidenced by
the longitudinal reinforcement stress maps which indicate that yielding was not
reached.

The above observations point again to shear-driven collapse of both piers,
which is readily supported by experimental evidence. In fact, generalized yielding
of transverse reinforcement web bars was achieved, which agrees with strong
diagonal cracking observed in the experimental test (illustrated in Fig. 6a for pier
PO2-N4, also available in [11]), eventually causing some concrete spalling near
the longitudinal steel bars. Accordingly, these experimental results are supported
by numerical simulation, where the shear stress map (sxz) clearly suggests the
referred web distortions (Fig. 6b) and the large concrete principal strains was also
able to detect the cracking pattern in the pier web (Fig. 6c).

Fig. 5 PO1-N4 pier. Compressive principal stress directions (solid diagonal lines) for:
(a) 12 mm displacement, (b) 20 mm displacement and (c) corresponding deformed shape
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2.2 Piers Including Stirrup Bond-Slip Behaviour Modelling.

From previously presented results, although the global behaviour was satisfactorily
simulated, none of the cases reached the peak force recorded in the experimental
tests. Therefore, some considerations were made regarding possibilities of refining
their numerical models in order to improve results.

A careful analysis of both pier results showed that the generalized yielding of
transverse reinforcement was reached for small drift levels, typically within the

Fig. 6 PO2-N4 pier for 20 mm displacement: (a) web damage, (b) Numerical shear stress map
(MPa) and (c) Numerical concrete principal strains map

Fig. 7 Refinement scheme
of cross-section finite element
discretization
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range of 10-15 mm. Since the numerical peak force was expected to be achieved
for a displacement level around 20 mm (by comparison with the experimental
results), when both piers were already strongly governed by their shear resisting
mechanisms, it is reasonable to assume that the early spread of stirrup yielding
might have restricted the global pier behaviour, namely by not allowing it to reach
larger peak forces.

Moreover, since stirrups are made of plain steel bars, once bond strength is
reached and destroyed for a given loading direction, they are no longer effective in
the other direction because this type of bond strength does not recover during load
reversals.

(a)

(b)

Fig. 8 Model improvement for pier PO2 simulation: (a) Adopted bond stress-slip law:s sð Þ and
(b) Force–displacement response with model 2 (refined model with bond-slip law)
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Additionally, it should be reminded that each stirrup bar was modelled with just
one element throughout the whole web length. This means that, once stirrup
yielding occurs, the entire web length (attached to the transverse bar end nodes)
might have a reduction on the shear resisting mechanisms. Thus, a new model
discretization was carried out, which consisted in dividing each unique transverse
bar element into several elements, so that a better spread of the reinforcement
strength can be achieved, particularly in the yielding phase, but including a bond
stress-slip behaviour law to the bar elements simulating the web stirrups (bars
delimited by circles, in Fig. 7) in order to control each pier web deformability.

Therefore, the improved model was developed based on the original PO2
numerical simulation model, namely with the new transverse reinforcement refine-
ment scheme (Fig. 7) and the added bond-slip law (herein denoted as model 2).

The adopted bond-slip behaviour law, s(s), was defined according to the
parameters proposed by Tassios [13], thus taking the form illustrated in Fig. 8a for
plain steel bars embedded in concrete with the characteristics included in Table 1.

Results from this new model is represented in Fig. 8b. As evidenced, the model
yielded similar behaviour, though with an improved approximation of the exper-
imental results. The same shear-driven response previously described can also be
observed, particularly resorting to the compressive damage maps (not illustrated
here) where low damage values are found. The distribution of strain ductility
demands in longitudinal reinforcement also showed small yielding excursion.
Nonetheless, for the cycles close to the collapse drift level, the results are, as
expected, very similar since both pier models have the same bending and shear
strengths.

3 Conclusions

The analyses presented in this chapter, which comprised both square and rectan-
gular cross-sections, have highlighted the adequacy of the modelling strategy
adopted to simulate the most important features of the cyclic behaviour of rein-
forced concrete hollow piers. Particularly, shear effects were herein thoroughly
addressed with the Continuum Damage Model that was found to be suitable for
numerically capturing concrete behaviour under strong shear forces.

Concerning the square piers, shear effects were also seen to be of key impor-
tance and governed the global numerical response. However, larger bending
influence was detected (in comparison with the rectangular section cases) since
curvatures were more concentrated near the pier base and significant yielding
spread was found along the longitudinal reinforcement.

As described in the chapter, an improvement was proposed for the modelling
strategy regarding the anchorage of the transverse reinforcement in order to
account for the interface slippage between concrete and stirrups. The refinement
included in this model showed better ability to represent a shear dominated
behaviour, where insufficient shear strength mechanisms were observed due to
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premature generalized yielding of stirrups. Unlike the initial modelling strategy,
the proposed model with the referred improved anchorage scheme was found to
provide an improved approximation of the experimental test, namely the peak
force level obtained.

In particular, by coupling a more detailed scheme of transverse rebar anchorage
to the surrounding concrete (which adds on increased web stiffness) with a bond-
slip behaviour law for the steel–concrete interface, more satisfactory results are
obtained comparatively to experimental ones. Thus, considering the obtained
numerical results, the adopted modelling strategy can be considered good enough
for the purposes of the cyclic simulations herein presented.
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Heat Transfer in a Packed-Bed
Cylindrical Reactor of Elliptic Cross
Section: Mathematical Modeling
and Simulation
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Wagner Celso Paiva Barbosa de Lima

Abstract This chapter provides information about heat transfer in porous media
such as definition and modeling, with particular emphasis to packed bed reactor.
The packed-bed reactors with heated or cooled walls are frequently used to carry
out solid–gas reactions in many engineering applications. The design of a fixed
bed reactor requires an extensive knowledge of heat transfer characteristics within
the equipment. Here, application to chemical industry has been given to predict the
steady-state three-dimensional heat transfer inside a packed-bed elliptic cylindrical
reactor including chemical reaction term. The energy conservation equation,
written in the elliptical cylindrical coordinate system, was discretized by using
finite-volume method. Effects of the fluid-wall heat transfer coefficient, inlet
reactant fluid concentration, inlet fluid temperature, and pre-exponential factor of
the Arrhenius equation on the temperature profiles within the reactor are presented.
To validate the proposed model, numerical results of the heat transfer obtained for
a circular cylindrical reactor are compared with experimental data and a good
agreement was obtained.
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Notation
C Concentration (mol/m3)
cp Specific heat of the fluid (J/kg/K)
dp Particle diameter (m)
Ea Activation energy (J/mol)
hw Wall-bed heat transfer coefficient (W/m2/K)
H Height of the bed (m)
DĤ Heat of reaction (J/mol)
J Jacobian of the transformation (1/m2)
k Effective thermal conductivity of the bed (W/m/K)
L Focal length of the ellipse (m)
L1 Minor axis of the ellipse (m)
L2 Major axis of the ellipse (m)
_q Heat generation (W/m3)
R Radius of the bed, m
�R Universal constant of gas (J/mol/K)
t Time (s)
T Temperature (�C)
To Temperature in the entrance of the reactor (�C)
Tw Wall temperature of the reactor (�C)
Tabs Absolute temperature (K)
uz Interstitial velocity of fluid (m/s)
z Axial position (m)
a and b Coefficients
q Density of the fluid (kg/m3)
e Porosity of the bed
n, g Radial and angular elliptical coordinates

1 Heat Transport and Forced Flow in Reactive Porous System

1.1 Fundamental of Porous Media

In fluid–solid systems, either both phases are moving or the solid is stationary. The
stationary solid with the fluid moving through it is considered as a porous media
and the solid phase is envisioned as being made of particles. These particles can be
consolidated (for example, rock, and foams) or nonconsolidated as in packed beds
of pellets (for example, granular material) [26, 48]. According to Nield and Bejan
[37], Bejan [5] and Nield [36], porous media is a material consisting of a solid
matrix with an interconnected void. In the usual situation, the solid matrix is either
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rigid or it undergoes small deformation. The interconnectedness of the void (pores)
allows the flow of one or more fluids through the material. In a natural porous
media the distribution of pores with respect to shape and size is irregular.

Transport phenomena in porous media represent an important research area
related to heat and mass transfer and fluid fields. The practical interest in con-
vective heat transport in porous media is expanding quickly, due to a wide range of
applications in several areas of science and technology for several geometries and
different processes. This interest occurs due to the porous media to be present in
grains, fruits, vegetables, soils and plants, as well as in different branches of
agricultural, food, civil, mechanical, petroleum and chemical engineering such as:
combustion, filtration, distillation, absorption and adsorption in filled columns,
drying and catalytic reactions in fixed and fluidized beds as well as in petroleum
reservoir, storage of geothermal energy, recoverable systems, pollutant dispersion
in aquifers, irrigation systems, etc. to name just a few applications of this area.
Many of these systems are complex and involve two-phase flow, phase change,
heterogeneity, property variations, localized effects among others characteristics
[8, 9, 13, 16, 20, 23, 27, 45, 46, 51, 52, 56, 57, 61, 62].

1.2 Heat Transfer in Packed Bed Reactor

The packed bed tubular reactors of heated or cooled walls are often used in the
industry to carry out homogeneous or heterogeneous catalytic reactions (gas–solid)
which can be exothermic or endothermic. In solid–gas transport-reactions systems,
reactions can occur within the fluid phase, within the solid phase, or at solid–fluid
interface. Reactions between molecules of different constituents can occur during
their collision and in some cases a third and still different molecule may be needed
for a reaction to occur. There are many chemical reactions which proceed only
very slowly, on not at all, except in the presence of a catalyst. In despite of its
importance, chemically reactive flow both viscous (non-porous) fluids and fluid-
saturated porous media have received for less attention than those of non-reactive
systems [45]. The design of a packed bed reactor requires an extensive knowledge
of heat transfer inside the equipment. However, for a good design of such
equipment theoretical and experimental studies and an adoption of efficient models
based on experiments is required. Models describing transport phenomena in
packed bed reactors are generally presented in a form of partial differential
equations containing temporal and spatial derivatives. The complexity of real
processes taking place in a packed bed reactor not only leads to uncertainties and
difficulties with their mathematical formulation, but also cause considerable pro-
blem with the numerical and analytical treatment of resulting equation.

Numerical and analytical solutions of the heat diffusion/convection equation in
fixed bed reactor, for several cases have been reported by many researchers in
early works [1–3, 6, 7, 11, 18, 21, 24, 34, 40, 42, 50, 54, 58, 60]. However, all the
studies are limited to the use of rectangular or circular cylindrical geometries.
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Hence, rigorous solutions to the heat transfer in other geometrical shapes are
essential, for the predictions of both the performance and control of the reactor.

For ducts and fixed beds with a more complex geometry, or exhibiting
boundary conditions that involve time and space dependence, or for temperature
dependent fluid properties, etc., analytical solutions, and even approximate solu-
tions are more difficult to be obtained and, therefore, are not often found in the
literature.

In recent years, special attention has been given to ducts of elliptic cross-
section which have increased heat transfer rates compared to circular pipe [30,
31, 43, 49]. The problem of forced convection heat transfer from duct with
elliptic cross-section is important because of its numerous direct applications in
heat exchangers, energy conservation and many others [4]. More recently,
Oliveira et al. [41] reports a 3D theoretical study of heat transfer in a fixed bed
tubular reactor of elliptic cross section, but no reference to chemical reaction
was given.

2 Modeling Conduction/Convection Heat Transfer
in Homogeneous Porous Media

2.1 Heat Transfer Model

Heat transfer through fully-saturated matrices, as with heat conduction/con-
vection through any heterogeneous media, depends on the structure of the
matrix and the thermal properties of each phase (fluid and solid). One of the
most difficult aspects of the analysis is structural modeling. Since the thermal
properties of the solid phase is generally different than that of the fluid, the
manner in which the solid is interconnected influences the conduction/convec-
tion heat transfer significantly.

In packed bed reactor, the evaluation of the heat transfer rates and tem-
perature distribution is essential in the control and performance of the reactor
[12]. The heat transfer in porous media can be modeled of two ways: local
thermal equilibrium (LTE), and local thermal non-equilibrium (LTNE). In the
local thermal equilibrium approach, both solid and fluid phase temperatures are
represented by the unique value, then we have the absence of any interfacial
heat transfer or heat transfer between phases occurs quickly (temperature reach
equilibrium instantaneously). In this case, Ts = Tf = T, where Ts and Tf are the
temperature of the solid and fluid phases, respectively [8, 10, 14–16, 26, 29, 37,
38, 47, 57, 61] and the multiphase system can be treated as a single continuum
(single media representing all the phase). This assumption is an idealization and
can simplify the theoretical treatment and be used when the dynamic and
thermal behaviors are relatively slow, thus providing ample time for efficient
heat transfer between the individual phases [57]. However for many industrial
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applications such approach cannot be considered, mainly in high-speed flows
transient situations and when there is significant heat source in any one of the
two phases [16, 27]. Rees and Pop [47] report the conditions to validate the
LTE approach for some physical problems.

The heat transfer phenomenon in porous media by assuming LTE approach
is given by the macroscopic conservation equation of energy as follows
[25, 48]:

o

ot
ðkUÞ þ r � ðk~vUÞ ¼ r � ðCUrUÞ þ SU ð1Þ

In the Eq. 1, we have k = qcpe; U = T and CU = k, where q, cp, T and k,
represent density, specific heat, temperature and effective thermal conductivity,
respectively, while e, it is the porosity of bed, and t is the time. In this same
equation, ~v is the velocity vector and SU represents the source term given by:

SU ¼ fT
DP
Dt
þ luþ _q ð2Þ

where DP/Dt is the substantive derivative of the pressure, l/ is the viscous
dissipation term (local production of thermal energy by internal friction), _q is the
heat internal generation, and f is the coefficient of thermal expansion. For an ideal
gas f = 1/T. The porosity of a porous media is defined as the fraction of the total
volume of the porous media that is occupied by the void space.

2.2 Chemical Reaction Model

The special interest in chemical reactions as a heat source is in the temperature
dependence of the rate of reaction [26].

Besides, if the consumption of one mole of reagent causes the heat energy to
increase by an amount �DĤ due to the reaction, then the increase in energy per
unit volume of the fluid mixture is

_q ¼ DĤ
dC
dt

ð3Þ

where DĤ is the heat of reaction and dC=dt represents the reaction rate. For
exothermic reactions, DĤ is negative and for endothermic reaction, DĤ is positive.
This heat source is the major source of the non-uniformity of the temperature
distribution across the reactor.
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3 Heat Transfer in Packed Bed Elliptical Cylindrical Reactor

3.1 Governing Equations

Now, consider a fluid mixture flowing through the interstices of a porous media
with heat being removed from the system by a percoolant flowing on the outside of
the equipment, according to Fig. 1. This figure presents a scheme of the fixed bed
reactor with an elliptic cylindrical shape. Fluid 2 maintains the wall temperature of
the reactor with a constant value. In this figure, n and g are the elliptic cylindrical
coordinates. Information of the elliptic cylindrical coordinates system and its
relationships with the Cartesian coordinate system can be found in literature
[22, 33, 53].

To model heat transfer inside the packed-bed cylindrical reactor of elliptic cross
section including chemical reaction, the following assumptions were used:

(a) Steady-state operation;
(b) The packed bed is isotropic;
(c) The thermo-physical properties of the fluid are constant during the process;

Fig. 1 Scheme of the
packed-bed elliptic
cylindrical reactor
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(d) The process occurs with internal energy generation due to chemical reaction
in the fluid;

(e) Temperature and velocity distributions are constant and uniform at the
entrance of the bed;

(f) Symmetry of the temperature profile at the center of the reactor (homo-
geneous flow);

(g) The fluid velocity and porosity are uniform and constant in the bed;
(h) Convective boundary condition at the surface of the equipment;
(i) Fluid velocity is lower than sonic velocity, so the viscous dissipation and

work done by pressure changes are negligible;
(j) No distinction is made between the solid and fluid phases and local thermal

equilibrium between the phases occurs;
(k) Cooling fluid temperature is constant along the equipment.

Based on those hypotheses and geometry presented in Fig. 1, the energy con-
servation equation, written in elliptic cylindrical coordinates, for a three-dimen-
sional case, is given as follows:
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where uz is the interstitial velocity of the fluid and J is the Jacobian of the
transformation obtained by:

J ¼ 1

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn2 � 1Þð1� g2Þ
q

n2 � g2
ð5Þ

with L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
2 � L2

1

q

being the focal length, and L2 and L1 the major and minor

axis of the ellipse (see Fig. 1).
To model effects of a chemical reaction inside the reactor, we suppose that the

rate equation for the first order reaction is given as follows [37]

dC
dT
¼ �k̂C ð6Þ

where C is the reactant concentration in the fluid mixture.

The rate coefficient k̂ is a function of the absolute temperature T given by the
Arrhenius equation as follows

k̂ ¼ A0 exp � Ea

�RTabs

� �

ð7Þ

where Ea is the activation energy of the reaction (energy per mole), �R is the
universal constant of gas, and A0 is a constant called the pre-exponential factor.
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We assume further that the solid material of the porous media is inert, that the
reaction produces a product whose mass can be neglected, and that there is no
change in volume.

3.2 Symmetry and Boundary Conditions

Due to the symmetry condition at the reactor center (see Fig. 1), the following
symmetry and boundary conditions are used:

(a) Symmetry conditions:

oT
on
ðn ¼ 1; g; z; tÞ ¼ 0 ð8Þ

oT
og
ðn; g ¼ 0; z; tÞ ¼ 0 ð9Þ

oT
og
ðn; g ¼ 1; z; tÞ ¼ 0 ð10Þ

(b) Boundary condition at the wall of the reactor:

� k
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 1
� �

n2 � g2
� �

s

oT
on

�

�

�

�

n¼nn

¼ hw T n ¼ nn; g; tð Þ � Tw½ � ð11Þ

where nn = L2/L at the wall and hw is the fluid-wall convective heat transfer
coefficient.

Tðn; g; z ¼ 0; tÞ ¼ To ð12Þ

oT
oz
ðn; g; z ¼ H; tÞ ¼ 0 ð13Þ

The domain of the variables n, g and z are: 1 B n B L2/L; 0 B g B 1 and
0 B z B H. The value n = 1 correspond to the line 0 B x B L in y = 0; n = L2/L
corresponds to the surface of the reactor; g = 0 correspond to the line 0 B y B L1

in x = 0, and g = 1 correspond to the line L B x B L2 at y = 0 (see Fig. 1).
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3.3 Numerical Procedure

Several numerical methods (finite-difference, finite-element, finite-volume, etc.)
are used to solve the problem of the heat transfer and fluid flow (CFD problems).
In this work, the finite-volume method was used, considering a fully implicit
scheme, practice B (nodal points in the center of the control-volume), and the
WUDS interpolation scheme for the convective terms. In the method to be
developed, integrating the governing differential equation over a volume and in the
time derives a system of linear algebraic equations [32, 44, 59]. The resulting
discretized linear equation is given by:

APTP ¼ AETE þ AWTW þ ANTN þ ASTS þ AFTF þ ATTT þ B� ð14Þ

where:

AE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
e

n2
e � 1

s

kbeDnDz
dge

AW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
w

n2
w � 1

s

kbwDnDz
dgw

AS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
s � 1

1� g2
s

s

kbsDgDz
dgs

AN ¼
0; for boundary control–volume

bnkn

dnn
DgDz
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1�g2
P

r

; for internal control–volume

8
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The a and b coefficients in the equations are given by:

a ¼ r̂2

10þ 2̂r2� � ð15Þ

b ¼ ð1þ 0:005̂r2Þ
1þ 0:05̂r2Þ

ð16Þ

where r̂ is the ratio between the convective and diffusive flux in the coordinate
direction. Figure 2 illustrates a typical control-volume and the neighbor grid points
used in this work. The AK coefficients, with K = P, represent the contributions of
the diffusive and convective transports of T due to the neighbor points in the
direction to the point P. The linear equations system was solved interactively using
the Gauss–Seidel algorithm. After grid refinement a structured grid of
20 9 20 9 20 nodal points was chosen.

The convergence criterion adopted, to be satisfied at all the points of the
computational domain, it is given by:

Tnþ1 � Tn
�

�

�

�� 10�8 ð17Þ

where n represents the nth iteration. The values of the parameters used in the
model are given in Table 1.

The proposed model has been applied to determine the temperature distribution
inside a packed-bed reactor. The effects of parameters: feed temperature, reactant
concentration, pre-exponential factor of the Arrhenius equation and heat transfer
coefficient on the temperature along the bed are presented. The fluid properties
used were estimated by the mean temperature between the initial value T0 and the
wall temperature of the equipment, TW. A computational program codified in the
Mathematica� ambient was elaborated to solve the set equations and to obtain
numerical results.

3.4 Model Validation

To validate the numerical methodology used in the present work, a comparison
between numerical (L2/L1 = 1.001) and experimental data of the temperature both
obtained by the authors for a packed-bed circular cylindrical reactor was made (no
chemical reaction). The comparison with analytical data for this situation has been
presented in previous work [41].
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The experimental reactor made in brass (copper–zinc alloy) consisted of a
column 57 mm in diameter with a packed-bed height of 100 mm. The wall was
surrounded by water cooling flowing at ambient temperature (22.5�C). The cooling

Fig. 2 a Grid points and b control-volume
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temperature was practically constant. The bed consisted of zinc oxide cylindrical
particles (dp = 3 mm in diameter). In order, to obtain plug flow and constant
porosity (0.40) in the bed, inert layers of particles were inserted and compacted
successively until the bed is full.

Radial and axial temperature profiles were measured with Fe-constantan ther-
mocouples positioned at different r and z positions. The experiments were carried
out at constant inlet flow rate ðG ¼ equz ¼ 0:63 kg=s=m2Þ and inlet air tempera-
ture (70�C). The reactor was isolated, to avoid heat losses to surroundings. The
flow rate was metered by a rotameter. More details about the experimental pro-
cedure can be found in Oliveira [39]. After metering, the air was lead into the
heater to increase air temperature. The comparison between numerical and
experimental data of the cross section mean temperature of the equipment along

the bed is shown in Fig. 3. In this figure Re¼Gdp

l represents the Reynolds number.

Table 1 Parameters used in the simulation

Physical properties and bed characteristics
q 1.09488 kg/m3

cp 1000.35 J/kg/K
k 0.1 W/m/K
uz 0.11417 m/s
To 100 �C

120 �C
Tw 30 �C
hw 2 W/m2/K

1 9 1030 W/m2/K
dp 4 9 10-3 m
e 0.4 m
H 0.2 m
L1 0.05 m
L2 0.10 m
�R 8.3143 J/mol/K
Kinetic parameters

DĤ -104.55 MJ/kmol

Ea 158.92 MJ/kmol
A0 9.4 9 1019 1/s

9.4 9 1023 1/s
9.4 9 1025 1/s

C 0.0008 kmol/m3

0.0080 kmol/m3

0.8000 kmol/m3
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3.5 Temperature Distribution in the Reactor

The study about the geometry of packed bed reactors is a fundamental requirement
for the knowledge of the fluid flow and heat transfer through porous media. Here,
the packed bed is treated as quasi-phase as if it were wholly homogeneous.

The knowledge of the temperature distribution within the reactor is very
important for verifying the stability of the equipment, to increase thermal effi-
ciency and to minimize operational cost. In this sense, the developed model was
used to investigate the effects of some operational conditions such as inlet fluid
temperature, reactant fluid concentration, Arrhenius pre-exponential factors and
convective heat transfer coefficient on the steady-state heat transfer within the
packed bed. Dimensionless temperature profiles [(T - Tw)/(To - Tw)] inside the
packed bed, at positions z = 0.00556 m, 0.03889 m, 0.10556 m and 0.19444 m
are shown in Figs. 4, 5, 6, 7, 8 and 9, for aspect ratios L2/L1 = 2.0 and 5.0 and
several operational conditions.

In any of the figures, it is possible to see that the temperature gradients exist
at different scales. The different values of dimensionless temperature in the bed
particles and gas flowing through the interstices of the bed indicate that the heat
flux occurs from center to wall (angular and radial directions) and from the
entrance to outline of the reactor, as expected [17–19, 28, 55]. It can be seen,
in accordance with the isothermal lines, that the highest temperature gradient
occurs near the wall. There is a strong heating also near the focal point. This is
true for other cross sections presented in early work [39, 41].

The rate of heat transfer in porous media with a flowing fluid is determined
by a combination of several mechanisms. When heat transfer takes place during
fluid flow through a packed bed, dispersion and diffusional mixing occurs. The
heat axial dispersion may occur, for example, by molecular conduction, irre-
gularities in the fluid flow through packed-bed due to irregularities in the
packing of the bed, alternatively converging and diverging void passages, and
fluid flow rate. When the pores are small, convection can be neglected. Then,
the contribution of the heat transfer through the solid phase is much larger;
however, this situation is not used in practice. The axial diffusion in packed bed
industrial equipment is of minor importance.

Fig. 3 Comparison between
numerical and experimental
dimensionless cross section
mean temperature along of
the fixed bed circular reactor
for _q ¼ 0, L2/L1 = 1.001,
T0 = 70�C and hw infinity
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Fig. 4 Dimensionless
temperature profile inside the
bed for an aspect ratio
L2/L1 = 2.0, hw infinity,
m = 1,
A0 = 9.4 9 1019 s-1,
C ¼ 0:8 kmol=m3 and
T0 = 100�C.
a z = 0.00556 m,
b z = 0.03889 m,
c z = 0.10556 m,
d z = 0.19444 m
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Fig. 5 Dimensionless
temperature profile inside the
bed for an aspect ratio
L2/L1 = 2.0, hw = 2.0 W/
m2 K, m = 1,
A0 = 9.4 9 1019 s-1, C ¼
0:8 kmol=m3 and
T0 = 100�C.
a z = 0.00556 m,
b z = 0.03889 m,
c z = 0.10556 m,
d z = 0.19444 m
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3.5.1 Effect of the Fluid-Wall Convective Heat Transfer Coefficient

The effect of the heat transfer coefficient on the diffusive and convective heat
transfer within the elliptic cylindrical reactor at the same operational conditions is
presented in Figs. 4 and 5. These figures illustrate temperature distribution inside
the reactor with aspect ratio L2/L1 = 2.0 for hw = 2.0 W/m2 K and hw infinity.

For comparison between these figures it is verified high thermal gradients to the
case where hw is very large (hw infinity), so, in this case, convective heat transfer
mechanisms is dominant when compared to heat transfer by conduction. Then,
heat transfer depends strongly of the fluid velocity in agreement with experimental
observations.

Fig. 6 Dimensionless
temperature profile inside the
bed for an aspect ratio
L2/L1 = 2.0, hw = 2.0 W/
m2 K, m = 1,
A0 = 9.4 9 1019 s-1,
z = 0.19444 m and
T0 = 120�C.
a C ¼ 0:0008 kmol=m3,
b C ¼ 0:008 kmol=m3,
c C ¼ 0:8 kmol=m3
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3.5.2 Effect of the Reactant Fluid Concentration

Figure 6 shows the effect of the reactant concentration on the heat transfer within
the fixed-bed reactor. By comparing Fig. 6a–b it is verified which an increase of 10
times in the reactant concentration (from 0:0008 to 0:008 kmol=m3) temperature
inside the bed was not modified significantly. However, when reactant con-
centration changes from 0:008 to 0:8 kmol=m3; a big modification is found. Then,
for highest reactant concentration, we have the highest number of molecules
within the bed, consequently we have more collisions between the molecules and
consequently, an increase of the local temperature is verified due to high chemical
reaction rate (volumetric energy conversion by chemical reaction).

Fig. 7 Dimensionless
temperature profile inside the
bed for an aspect ratio
L2/L1 = 2.0, hw infinity,
m = 1, C = 0.0008 kmol/
m3, z = 0.10556 m and
T0 = 100�C.
a A0 = 9.4 9 1019 s-1,
b A0 = 9.4 9 1023 s-1,
c A0 = 9.4 9 1025 s-1

Heat Transfer in a Packed-Bed Cylindrical Reactor of Elliptic Cross Section 565



3.5.3 Effect of the Pre-exponential Factor of the Arrhenius Equation

Figure 7 shows the effect of the pre-exponential factor on the Arrhenius equation
on the heat transfer within the fixed-bed reactor. By comparing Fig. 7a–c it is
verified which an increase of this term (from 9.4 9 1018 to 9.4 9 1025 s-1)
temperature inside the bed was not modified significantly.

Fig. 8 Dimensionless
temperature profile inside the
bed for an aspect ratio
L2/L1 = 2.0, hw infinity and
_q ¼ 0. a z = 0.00556 m,
b z = 0.19444 m

Fig. 9 Dimensionless
temperature profile inside the
bed for an aspect ratio
L2/L1 = 5.0, hw infinity and
_q ¼ 0: a z = 0.00556 m,
b z = 0.19444 m
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3.5.4 Effect of the Inlet Mixture Temperature

The effect of the inlet mixture temperature on the temperature distribution inside
the reactor is shown in Figs. 5d and 6c for the same operational conditions (fixed
values of the heat transfer coefficient, reaction order and reactant concentration). It
can be seen that the value of the inlet mixture temperature has an insignificant
effect on the bed temperature (dimensionless) inside the reactor. However, it is
important to cite that inlet temperature affects reaction rate.

3.5.5 Effect of the Heat Generation Term by Chemical Reaction

Figures 8 and 9 present temperature distribution inside the reactor for aspect ratios
L2/L1 = 2.0 and 5.0 and hw infinity, respectively, for the case without to consider
chemical reaction effect. By comparing Figs. 4 and 8, higher thermal gradients are
verified in comparison to the case where heat generation is considered as expected.

A comparison of Figs. 8 and 9 indicates that as the aspect ratio L2/L1 at cross
section increases from 2.0 to 5.0, the temperature profile acquires higher gradients
in radial and angular directions. This is true for other cross sections presented in
previous work [39, 41].

In this research, the shape, size and directions of the interstices and the detailed
locations of the particles inside the bed are neglected and the bulk flow of the fluid
in the bed in the axial direction (z-axis) is assumed to be plug flow (gas velocity is
assumed constant) and there is axial, radial and angular dispersion of heat. In
reality, the velocity distribution across the bed depends on the variations in the
flow resistance over different parts of the bed, and changes from zero at the wall to
maximum nearly one particle diameter from the wall and falls to a minimum at the
center of the bed. The porosity is higher near the wall and lower towards the centre
of the bed and the particles are not monosize. Also, the shape of the particles may
vary and the surface roughness of the particles could increase the flow resistance
[34]. The local changes in porosity can lead to large variations in predicted
velocity and temperature profiles and the non-uniform heat loss along the packed
bed.

According to Nemec and Levec [35], in commercial packed bed reactors,
porosity does not vary a lot and a uniform flow distribution within the bed is
encountered. These reactors are made up of roughly uniform particles in terms of
both shape and size, where the possible porosity span encountered is relatively
narrow (0:35\e\0:55), and the wall effect is negligible. Since in reality two
phases are involved in the system, the thermal properties are termed as effective
which is dependent on the nature of the individual phases comprising the
packed bed.
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4 Concluding Remarks

In this chapter, conduction/convection heat transfer in porous media (packed bed
reactor) has been explored. Interest in this type of problems is motivated by its
importance in many practical situations, such as in hydrology, food processing,
petroleum, mechanical, civil and chemical engineering, where heat and mass
convections is involved. Here, our attention is focused on steady-state and local
thermal equilibrium conditions.

A consistent three-dimensional mathematical model for the conduction/con-
vection heat transfer inside a packed bed reactor of elliptic cross section is pro-
posed. A general numerical formalism for the governing equation, which is based
on the finite-volume method, has been applied to the solution of the heat transfer
equation in porous media. The analyses of the obtained results using this model
following predictions are made by including agreement with experimental data.
The heat flow occurs from center to wall (angular and radial directions) and from
the entrance to outlet, as expected. The heat transfer rate increases with the
increase in the axial position for fixed values of the aspect ratio. The region near
the focal point of the ellipse presents a higher heat flow rate. For all axial positions
of the bed, temperature increases as the radial position increases but it decreases as
the angular position increases. The model may be used for heat transfer problems,
such as diffusion and convection in fixed bed equipment with geometry that
changes from circular cylinder to elliptic cylinder and also having rectangular
channel.

In a general way, we can say that fluid-wall convective heat transfer coefficient
affect strongly heat transfer inside the reactor. However, reactant concentration,
inlet fluid temperature and pre-exponential factor of the Arrhenius equation have
minor importance on the heat flux inside the equipment. Obviously this comment
is dependent of the values of these parameters.

Finally, we would like to cite the fact that models, such as this outlined in this
work, can be used with great confidence to elucidate unknown features of several
complex systems in porous media.
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Study of Thermal and Rheological
Behavior of Polystyrene/TiO2,
Polystyrene/SiO2/TiO2 and Polystyrene/
SiO2 Nanocomposites

A. Mohebbi, M. Dehghani and A. Mehrabani-Zeinabad

Abstract In this study, polystyrene/TiO2, polystyrene/SiO2/TiO2 and polystyrene/
SiO2 nanocomposites were initially prepared by solution method. Their charac-
teristics were investigated by Thermo Gravimetric Analysis (TGA), and parallel
plate rheometer. Then, their rheological behaviors were studied through analysis
either by shearing alone, or in combination with temperature. Results of experi-
ments show that the type of nano-filler and the method of composite preparation
affect the thermal and rheological properties of the composites. Results demon-
strate that the produced composites had various phase morphologies with nano-
scales and distinct behaviors of a percolation network structure under certain
conditions. Also the linear viscoelastic region of the nanocomposites is much
narrower than that for Polystyrene (PS) matrix. Moreover, nanocomposites present
the nature of temperature independence of storage modulus versus loss modulus.
Furthermore, PS/TiO2 had a strain-scaling stress response to the startup of steady
shear that indicate formation of more connections sites between the nano particles
and polystyrene matrix.
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1 Introduction

The field of nanocomposites exists in many diverse topics including composite
reinforcement, barrier properties, flame resistance, electro-optical properties,
cosmetic applications, and bactericidal properties [1]. These properties are usually
increased by increasing the amount of added fillers. Addition of fillers in polymers
also alters their flow behaviors and various processing abilities. Studies on rheo-
logical properties of particle filled polymers matrix have been attracted researchers
attention [2–5].

Dynamic rheological tests are believed to be a preferential method for dealing
with the structure/morphology of materials, as the structure of exposing materials
to testing processes is not destroyed under small-strain amplitude [6]. The so-
called second plateau, a phenomenon in dynamic viscoelastic functions, for
example, the storage modulus G0 and loss modulus G00, which exhibit a special
response corresponding to linear viscoelasticity, is thought to give important
information concerning the viscoelastic behavior of multicomponent/multiphase
polymer systems at very low frequencies (terminal region) [7]. Moreover, the
appearance of a second plateau in the terminal region is considered to be induced
by formation of infra-structures of particles, such as, agglomerated structures,
skeletons, or network structures [8].

Compared with the rheological behavior of the pure polymer matrix, polymer
composites generally exhibit pronounced elastic properties and longer relaxation
times [9–11].

Rheological behaviors of a filled polymer composite is initially governed by
properties of both polymer matrix and incorporated fillers, and then is influenced
by the volume fraction and agglomerations of fillers particles and the interfacial
adhesion between the filler and matrix [12–14]. On the other hand, dynamic
rheological measurement has been an effective method to characterize the mor-
phological and structure of the multicomponent and/or multiphase polymer com-
posites [15–17].

Rheological properties of a polymer matrix induced by fillers is thought to
be affected by two factors. The first one is the mechanical coupling between
fillers and polymer matrix [13, 14]. The other one is the interfacial adhesion or
adsorption between the phases. But, in addition to these factors, the state of fillers,
solid or liquid, has also a significant influence on the rheological behaviors of
composite.

In recent years, researches have been performed on dynamic rheological
behaviors of polymers composites mixtures containing either traditional fillers or
nanoscope fillers, such as high density polyethylene (HDPE) filled with conductive
particle, PS filled with Sn–Pb alloy, low density polyethylene (LDPE)/montmo-
rillonite (MMT-Clay) nanocomposites.

An important effect of addition of nano particles in polymer matrix is the
variation of the Tg property. There are reports on increasing and decreasing of Tg
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depending to the interaction between matrix and added particles. Silica has been
demonstrated to be an ideal inorganic additive for composites [18–20].

In this present work, an investigation of rheological and thermal properties of
Polystyrene in presence of nano-materials such as nano-silica and nano-titan has
been conducted. Preparations of nanocomposites were preformed by solution
method and by comparison of the effect of each nanoparticle alone and together.

2 Experimental

2.1 Materials

In this study, the main materials for the preparation of nanocomposites were
polystyrene, nano SiO2, and nano TiO2 with following grades and manufacturer.

• Polystyrene: grade GPPS-1540 from IR-TABRIZ Petrochemical Co.
• Nano SiO2: grade F-110 from Fadak Chemical Co. (Non-Surface treated)
• Nano TiO2: grade P-25 from Evonik Germany Co. (Surface treated with HNO3)

2.2 Nanocomposite Preparation

Silica (SiO2) and titanium dioxide (TiO2) are inorganic materials and have no
tendency for agglomeration. The surface energy of nano-scale size of these par-
ticles is increased which leads their aggregation. Therefore, physical methods
cannot be implemented for preparation of highly dispersed nanocomposite based
on nano particles of silica and titan. Thus, the nanocomposites of silica and titan
were synthesized based on the solution method using toluene as a solvent. Initially,
16 g of silica was dispersed in the solvent by a magnetic mixer. The mixing
process was performed at temperature of 70�C for a period of 30 min. Then, an
ultrasonic mixer was used for having a higher dispersion of nano particles in
the solvent. This process was performed at a frequency of 50 MHz for 15 min.
The dispersed product was carefully mixed with a prepared solution of 30 wt%
Polystyrene in toluene. The final compound was prepared by removal of the
solvent in a vacuum oven. This master-batch contained 17 wt% of nano silica
particles. By using a twin screw extruder, the nanocomposite samples with 1 wt%
and 3 wt% of the nano particles were prepared from the produced master-batch.

The samples of PS-TiO2 and PS-TiO2-SiO2 nanocomposites were produced
similarly. The amounts of each particle in the mixed nanocomposite samples, i.e.
PS-ST1 and PS-St3, were the same. The labels and specifications of all prepared
samples are shown in Table 1.
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2.3 Thermogravimetric Measurements Analysis (TGA)

TG analysis was conducted through a DuPont 2010 system in the range of ambient
temperature to 600�C under a steady flow of nitrogen.

2.4 Rheological Analysis

Prior to the rheological measurement, all the samples were tested with a capillary
rheometer at 100�C. Melt flow behavior of the samples was characterized at an
angular frequency ranging from 10-2 to 102 s-1.

Table 1 Specifications of
prepared samples

Sample-label Nano filler Content (wt%)

PS-S1 SiO2 1
PS-ST1 SiO2 ? TiO2 1
PS-T1 TiO2 1
PS-S3 SiO2 3
PS-ST3 SiO2 ? TiO2 3
PS-T3 TiO2 3

Fig. 1 TGA curve of sample PS-S3
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3 Results and Discussion

Thermal stability is an important property in processing and application of
materials. Various factors such as the structure of the repeating unit, and crys-
tallinity influence thermal stability of polymers. Figures 1, 2 and 3 illustrate TGA
curves of samples having 3 wt% of nano particles under application of thermal
energy at a rate of 10�C/min by using a steady flow of nitrogen.

Thermogravimetric analysis of PS-nanocomposites shows that the presence of
nano particles has a clear influence on the thermal stability of PS. Thermal stability

Fig. 2 TGA curve of sample PS-ST3

Fig. 3 TGA curve of sample PS-T3
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of polystyrene in presence of either nano TiO2, nano SiO2, particles or both of
them was increased around 50�C. Results demonstrate that the presence of one the
nano particles or both of them in polystyrene matrix had the same effect on thermal
stability.

The investigations of rheological behavior of samples at 100�C were carried out
using capillary rheometer. Effect of nano particle loading on storage modulus, G0,
of nanocomposites are shown in Fig. 4. The magnitude of G0, increased mono-
tonically by increasing the frequency. Also, the storage modulus was increased by
increasing of nano particles content. The enhancement for the samples with nano
SiO2 was lower than that for the samples with nano TiO2. The storage moduli of
samples with a mixture of two nano particles were about the average of the storage
modulus of samples with a single kind of particles. The same trend was also
observed for G00, Fig. 5.

Variations of complex viscosity of samples with of frequency are illustrated in
Fig. 6. It exhibits a shear-thinning phenomenon. The complex viscosity of
PS-nanocomposite melts were decreased sharply by increasing of shearing rate.
This is due to the existence of entangled points in molecular chains (between the
surface of nanoparticles and polymer matrix). By increasing the shearing rate, a
slide between molecular chains occurred, and the number of tangled points
decreased. Therefore, low flowing obstacle and low apparent viscosity are expe-
rienced [21].

4 Conclusion

PS-SiO2 and PS-TiO2 nanocomposites melt are shear-thinning fluids. The apparent
viscosity of these melts was decreased by an increasing shearing rate (Fig. 6).
These were as a result of high hydrolysis rate. The thermal stability and rheo-
logical properties of nanocomposites were obviously influenced in presence of
nano particle.

Also, the linear viscoelastic region of the nanocomposites was much narrower
than the one for PS matrix. Moreover, PS/TiO2 had a strain-scaling stress response
to the startup of steady shear. This issue indicates formation of more connecting
sites between the nano particles and polystyrene matrix. Furthermore, the storage
modulus property was augmented by increasing the nano particles content. The
increasing of this property for nano SiO2 particles was lower than that for TiO2

particles. This property for nanocomposites containing a mixture of the two nano
particles was about the corresponding average of the property for nanocomposites
containing the single particles. This subject shows a similar structure upon pres-
ence of TiO2 and SiO2 in PS matrix.

Therefore, the type of nano particles and their amounts of in a PS-nanocom-
posite is an effective method for controlling PS properties.
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Characterizing the Anisotropic Hardening
Behavior of Aluminum Bonding Wires

Holm Altenbach, Christian Dresbach and Matthias Petzold

Abstract In power electronic devices the electrical connections of different
components are mainly realized by heavy aluminum wire bonding. When a device
heats up or cools down during use, there is a relative displacement between the
first and the second contact because of differences in thermal expansion coeffi-
cients of the components and the housing of the device. This cyclic thermo
mechanical loading can lead to fatigue failure of the bonding wire. Especially
when placed near mechanical working components (e.g. automotive engine)
additional vibrations can increase damage evolution and heating can accelerate
ageing effects of the bonding wire. In the last few years there have been multiple
publications presenting experimental and numerical results for high and low cycle
fatigue of wire bonded devices. But all of these publications did not consider the
mechanical properties of the wire in an adequate way. We present results of a
micro-compression test that allows the determination of the hardening behavior
parallel and perpendicular to the wire axis at moderate and large strains of small
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wire cylinders. The hardening behavior in compression parallel to the wire axis
correlates very well to the hardening behavior determined by tensile tests at
moderate strains. The hardening behavior perpendicular to the wire axis shows an
anisotropic behavior of the aluminum wires depending on the drawing texture
which was also analyzed by electron backscatter diffraction methods. The results
for different wire materials show a dependence of the yield stress on the grain size.
With the determined hardening parameters it is possible to consider the hardening
of the material during the bonding process.

keywords Aluminum wire bonding � Electron backscatter diffraction � Micro
compression test � Hall-Petch relation

1 Introduction

The electrical connection of different components in power and automotive
electronic devices are mainly realized by heavy aluminum wire bonding. Typical
dimensions of heavy aluminmum bonding wires are between 125 and 500 lm in
diameter. An example of a contacted microelectronic device is shown in Fig. 1a.

In the wedge/wedge wire bonding process, a very pure aluminum wire is carried
through a wedge bond tool. The wire is pressed with the wedge on the pad surface
by a bond force F and the connection is formed under the presence of additional
ultrasonic power (US), see Fig. 2. After that, the loop is formed by moving the
wedge to the second pad. The second contact is formed by pressing the wire on
the pad surface and applying additional ultrasonic power. When the wire is cut, the
next wire bond connection can be realized in the same way [1].

In some cases the connected bond pads are on different substrates which are
mounted in a housing. When the device heats up ðþ125�CÞ or cools down ð�20�CÞ
during use, there is a relative displacement between the first and second contact
because of differences in thermal expansion coefficients of the components and the
housing of the device. The relative displacement leads to a bending of the bonding
wire and the yield stress can be exceeded locally, thus a local plastic deformation
results. The geometrically most critical regions are the heel and the loop top, where
also additional pre-deformation has occured during the bond process. The cyclic
thermo mechanical loading can lead to fatigue failure of the bonding wire. Espe-
cially when placed near mechanical working components (e.g. automotive engine)
additional vibrations can increase damage evolution and heating can accelerate
aging effects of the bonding wire. Fig. 1b shows a fatigue crack in an aluminum
bonding wire, which has not failed at that moment, because the electrical con-
nection is still remaining. But additional movement will increase crack growth or
damage evolution until the component fails. In the last few years there have been
multiple publications presenting experimental and numerical results for high and
low cycle fatigue of wire bonded devices [2–4]. But all of these publications did not
consider the mechanical properties of the wire in an adequate way.
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We present results of a micro-compression test that allows the determination of
the hardening behavior parallel and perpendicular to the wire axis at moderate and
large strains of small wire cylinders. The results are compared to microstructure
and mechanical properties of typical heavy aluminum bonding wires. An overview
of the used bonding wires is shown in Table 1.

2 Microstructure and Macroscopic Mechanical Properties

For verification and interpretation of the results described in the following sections,
the macroscopic mechanical properties and the microstructure of typical heavy
aluminum bonding wires will be discussed in this section. The microstructure was

Fig. 1 Heavy aluminum wire bond contact of a microelectronic component a; detail of a fatigue
crack in the heel of an aluminum wedge contact b

(a) (b) (c) (d) (e)

FF USUS

Fig. 2 Principle of wedge/wedge bonding for heavy aluminum bonding wires after [1];
positioning a; first contact b; loop forming c; second contact d; cut of wire e

Table 1 Overview of
aluminum bonding wires
used in this investigation

Code Supplier Diameter ½lm�
A A 125, 150, 200, 300, 400, 450, 500
B A 150, 300, 450
C A 150, 300, 450
D B 125, 250, 350, 500
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determined by the electron backscatter diffraction (EBSD) method. Multiple
cross-sections of each wire were produced by metallographic preparation techniques
in combination with ion polishing. A nearly artifact-free surface over the whole
cross-section had to be assured.

The samples were analyzed by a TSL-EBSD system with a DigiViewIII
detector in a scanning electron microscope Zeiss SUPRA VP55. The specimens
were tilted 20� to the incident electron beam and the diffraction patterns were
analyzed at 15 kV acceleration voltage and 12 mm working distance. From the
diffraction patterns of each scan point the corresponding orientations were cal-
culated. Neighboring scan points with only small differences in the orientation ð5�Þ
were merged to one grain. The area of each grain was used for the calculation of
the mean grain size. In the following figures, the microstructure is displayed in an
inverse pole figure color code. The grain size distribution was analyzed by
advanced statistical methods.

The analyses showed that it is necessary to perform EBSD measurements at least
of three to ten wire cross-sections for each wire, depending on the ratio of mean grain
diameter to wire diameter and the width of the grain size distribution. It can be shown
that the grain size is logarithmic normal distributed, when a sufficient number of
grains is used for the analysis ð[ 10; 000 grainsÞ: The used evaluation procedure to
calculate the mean grain size has also an influence on the statistical distribution.
A more detailed discussion of this aspect can be found in [5].

In this study we quantified the microstructure by an equivalent mean grain
diameter DAw

calculated from the expected value of the grain area Aw :

DAw
¼ 2

ffiffiffiffiffiffi

Aw

p

r

Aw ¼
X

n

i¼1

Ai
Ai

Atot

Atot ¼
X

n

i¼1

Ai ð1Þ

Ai is the area of each individual grain and Atot is the total analyzed area,
respectively the sum of Ai:

The investigations showed that all heavy aluminum bonding wires can be
divided into two classes of Al wires: coarse-grained and fine-grained wires.
The coarse-grained aluminum wires consist of very large grains compared to the
wire diameter, see Fig. 3. The majority of grains is h100i orientated.

The fine-grained aluminum wires consist of very small grains compared to the
wire diameter. The grains are mainly h111i orientated, even though the grains in
the center of the wire are mainly h100i orientated, see Fig. 4.

The macroscopic mechanical properties of the aluminum bonding wires were
determined by tensile tests. Ten to twenty specimens were tested for each wire
material and wire diameter. From the recorded force/diplacement data the nominal
stress/strain behavior was directly calculated from the inititial area A0 and the
initial specimen length L0 by:

rn ¼
F

A0
and en ¼

DL

L0
ð2Þ

586 H. Altenbach et al.



Possible experimental artifacts were corrected by determining the point of
maximum slope in the first part of the stress/strain curve and shifting the strain
data by the value of the intersection from a tangent at the point of maximum slope
with the x-axis. The initial specimen length was also corrected by the shifting
strain [5]. Considering volume constancy and actual specimen length, the flow
curves (true stress rt to plastic logarithmic strain ep) were calculated by:

rt ¼ rn 1þ enð Þ and ep ¼ ln 1þ enð Þ � rt

E
ð3Þ

E is the Young’s modulus of the material. Exemplary nominal stress/strain curves
and flow curves of tensile test experiments of a 450 lm aluminum bonding wire
are shown in Fig. 5.

Reduced mean curves of the nominal stress strain curves and the flow curves
were calculated and will be used in the following. The initial yield stresses
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K0 were determined in terms of nominal stresses at 0.2% plastic strain. Exemplary
mean curves of the nominal stress/strain behavior of different bonding wires are
shown in Fig. 6. Here, the good reproducibility of the experiment and the differ-
ences between the bonding wire materials and diameters become evident. Most
aluminum bonding wires show a pronounced hardening and no distict point of
yield, except some of these wires with higher initial yield stresses.

Compared to microstructure, the initial yield stresses increase with decreasing
mean grain diameter. Even though a critical value of mean grain size to wire
diameter is achieved for these materials, the results evaluated here are in a very
good agreement with the Hall-Petch relation [6, 7]:

r ¼ r0 þ
k0
ffiffiffiffi

D
p ð4Þ

The value k0 is material constant, r0 is the initial yield stress of the single
crystal and D is the grain diameter. The Hall-Petch plot (r to 1=

ffiffiffiffi

D
p

) is discussed
in Sect. 4 in more detail.

3 Local Hardening in an Axial Micro-Compression Test

The local hardening behavior of heavy aluminum bonding wires can be investi-
gated using a special test setup called axial micro-compression test. Therefore, it is
necessary to produce small cylindrical samples with a length to diameter ratio of
L=D � 2 out of the region of interest. When the geometry is nearly an ideal
cylinder, the specimen can be placed upright on a flat steel support and loaded in
the wire direction by a steel flat punch using an material testing machine, like it is
shown in Fig. 7.

Using special metallographic preparation techniques, it is possible to produce
samples with high geometric quality for axial micro-comperssion tests from
bonding wires between 250 lm and 500 lm in diameter. The specimen should be
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handled with care to avoid damage or hardening due to sample preparation and
handling. With a plane-parallel arrangement of support and punch, the cylindrical
sample can be loaded in a displacement controlled experiment while force and
displacement are recorded. The nominal stress/strain curves, the flow curves and
the reduced mean curves can be calculated as described for the tensile test
experiments. In Fig. 8 the results of a 450 lm aluminum bonding wire are shown
exemplarily. Here, the strong influence of considering actual specimen length and
volume constancy at higher strains becomes evident.

In compression experiments, it is necessary to regard strain constraints due to
friction between support and specimen. For this purpose the Siebel’s correction
[8, 9] can be applied:

rs � rt 1þ 2lR0

3h0
e3=2ep

� ��1

ð5Þ

Here, R0 is the initial cylinder radius, h0 is the initial cylinder height and l is the
friction coefficient between the sample and the support, respectively the sample
and the flat punch. Because the effects of friction depend on the ratio of specimen
radius and specimen height R0=h0; the unknown friction coefficient can be iden-
tified from experiments with cylinders of different heights. For this reason, spec-
imens with four different heights were prepared from one wire material and tested
in axial micro-compression experiments.
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The friction coefficient was identified by an optimization routine, which
minimizes the sum of the error square of the variation coefficient between all
siebel corrected stress/strain curves. Considering all four specimen heights of 290,
616, 903 and 1238 lm for a 450 lm wire the friction coefficient is identified to be
l � 0:355; the corresponding flow curves and the Siebel-corrected stress/strain
data are shown in Fig. 9. Because the height of the smallest cylinder is smaller
than the wire diameter and, therefore, the assumptions made for this evaluation are
questionable [8], additional identification of the friction coefficient was performed
with the results from the three biggest cylinder heights. Here, the friction coeffi-
cient is identified to be l � 0:185: So, the friction coefficient is assumed to be
between 0.18 and 0.36 and will be discussed in the following.

Ten different bonding wires with diameters between 250 lm and 500 lm from
four different wire materials were analyzed using the described axial micro-
compression test. Five to ten samples were tested for each bonding wire. The flow
curves were corrected by a friction coefficient of l ¼ 0:2 and l ¼ 0:3 and the
results compared to each other and tensile test experiments. In Fig. 10 the mean
flow curves of three different aluminum bonding wires are shown exemplarily.
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Here, it becomes evident that considering a friction coefficient lowers the deter-
mined yield stresses, but the differences are rather small compared to the hard-
ening and the differences between the wire materials.

Furthermore, using a Siebel’s correction with l ¼ 0:2 results in a good corre-
lation of the yield stresses with tensile test results, whereas the stresses without
considering friction are slightly higher and the stresses assuming a friction coef-
ficient of l ¼ 0:3 are slightly lower, see Fig. 11. Consequently, the aluminium
bonding wires behave isotropic in tension and compression when loaded parallel to
the wire axis and a friction coefficient of l ¼ 0:2 is an appropriate assumption for
this experiment.

The axial micro-compression test is the first methodology that allows a quan-
titative characterization of local mechanical properties also for samples taken from
processed bonding wires and real field returns. Furthermore, it is the first approach
which allows a characterization of quantitative meaningful mechanical properties
for bonding wires up to plastic strains of ep ¼ 0:6; which is necessary when
considering the bond deformation for loop simulations and lifetime estimations.
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4 Local Hardening in an Transversal Micro-Compression Test

The axial micro-compression test, as described in the former section, is limited to
testing wires with a diameter equal or above 250 lm: To overcome this drawback,
a transversal micro-compression test was developed. Here, the metallographically
prepared cylindrical sample is laid on the support and loaded perpendicular to the
wire axis by a flat punch as shown in Fig. 12. Because the requirements to the
plane-parallelity are much lower than for the axial micro-compression test, it is
possible to perform meaningful transversal micro-compression tests on bonding
wires with diameters between 18 and 500 lm: So this methodology can further be
applied to characterize the deformation behavior also of smaller copper, gold and
AlSi1 bonding wires. In this case, a diamond flat punch and diamond support are
used in a micro indenter, as shown in [10].

From the recorded force/displacement behavior, it is not possible to calculate
directly material properties in terms of stress/strain relationships, because of the
multiaxial stress state in the specimens. It is necessary to identify the material
properties by using optimization strategies with finite element simulations.

The force/displacement data in Fig. 13 show a very good reproducibility of the
experiment. For parameter identification, mean curves with reduced data points
were calculated from the loading part of the force/displacement data. When testing
small samples, it is very important to correct the data by the compliance of the
experimental setup. Therefore, the system stiffness is determined from every
unloading curve by:

Ssystem ¼
dF

du
ð6Þ

Assuming an equivalent model of a serial connection, the machine stiffness can
be identified if the stiffness of the specimen Sspecimen is known:

Smachine ¼
1

Ssystem

� 1
Sspecimen

� ��1

ð7Þ

When unloading the specimen after a nominal compression of more than 50%,
an uniaxial stress state can be assumed for the elastic unloading, thus the specimen
stiffness can be calculated easily, if the elastic properties of the material are
known:

flat punch

support

specimen

Fig. 12 Principle of
transversal micro-
compression test for
determining local hardening
curves of small wire sections
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E ¼ r
e
¼ dF=Ac

du=Dmin

¼ dF

du

Dmin

Ac

) Sspecimen ¼
EAc

D� umax

ð8Þ

With a specimen height of Dmin ¼ D� umax when starting the unloading, the
only unknown value is the contact area Ac at that point. Because of the dominating
plastic deformation in a transversal micro-compression test when loading up to
60% strain, there is nearly no difference between the real contact area when
starting the unloading and the resulting area after deformation. Consequently,
Ac can be determined by light optical inspection after the experiment. But when
testing a very small cylindrical specimen ð18 lm �D� 32 lmÞ; a lightoptical
inspection after the test is not always possible, due to adherence of the specimen at
the flat punch.

To overcome this problem, finite element simulations with typical bonding wire
material properties and geometries [5] were performed using Abaqus 6.9 (Dassault
Systèmes Simulia Corp., Providence, RI, USA). The used finite element model is
shown in Fig. 14a. In the simulations, a wire cylinder was deformed by the
translation of an analytical rigid body perpendicular to the wire axis and the
contact area was calculated. The results indicate that material properties have
nearly no influence on contact area, whereas friction coefficient and length to
diameter ratio are very important. Considering the former verified friction coef-
ficient of l ¼ 0:2; a normalized contact area function Anc was calculated and
implemented into a Scilab-scribt as shown in Fig. 14b, so that the contact area
could be determined by Ac ¼ AncLD:

For parameter identification, the plastic properties have to be defined in a
parameterized material model, whereas the elastic properties have to be constant.
An isotropic hardening law for finite strain was used. The flow curve was defined
in a modified Chaboche model for isotropic hardening [11]. An additional term
Cep

2 was added for reflecting the flow curve also at large strains in an adequate
way [5]:
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ry ¼ K0 þ K1 1� e�bep
� �

þ Hep þ Cep
2 ð9Þ

The parameters of the hardening law were varied by an adaptive response
surface methodology (ARSM) using the optimization software optiSLang [12]
until the minimum in the error square sum between the experimental and simulated
force/displacement data was achieved. The reduced data points of the displace-
ment defined the load steps, whereas the resulting reaction forces were used for the
calculation of the error square sum:

min
X

n

i¼1

�

FexpðuiÞ � FsimðuiÞ
�2

ð10Þ

FexpðuiÞ is the force at a defined displacement increment ui of the reduced
experimental results and FsimðuiÞ is the corresponding force calculated by finite
element simulation. The good correlation between experiment and final simulation
with identified material properties is exemplarily shown in Fig. 15.

The identified flow curves and corresponding tensile test results of three dif-
ferent bonding wires are shown in Fig. 16. The results clearly indicate different
material properties determined in transversal micro-compression tests and tensile
tests. These differences can be explained by microstructure, as will be discussed in
the following.

The results show that the initial yield stresses determined in a transversal micro-
compression test and a tensile test are nearly the same, if the bonding wire is a
coarse-grained material (relatively to the wire diameter). In contrast, the hardening
is a bit higher for that kind of material, when testing perpendicular to the wire axis.
The initial yield stresses of the fine-grained material identified in the transversal
micro-compression test are significantly lower than those determined in tensile test
or axial micro-compression test. Here, the hardening is comparable for all testing
directions.
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Microstructural investigations of lengthwise cross-sections from typical wire
materials show that the grains of the coarse grained materials are nearly globular,
whereas the fine-grained materials show a distinct drawing texture with grains
much longer than wide, see Fig. 17. These elongated grains result in a bigger
mean grain diameter in a longitudinal cross-section compared to a perpendicular
cross-section. Thus, the initial yield stress must be lower when testing perpen-
dicular to the wire axis.

This effect is shown in the Hall-Petch plot in Fig. 18. The values investigated
from transversal micro-compression experiments and EBSD measurements of
lengthwise cross-sections are in the range expected from the tensile test results and
EBSD measurements on perpendicular cross-sections. Consequently, the mean
grain size is the dominating factor for the initial yield stress of the material.
The small differences in hardening of the coarse-grained wire materials can be
explained by the decreasing free surface to grain boundary ratio during the
transversal micro-compression test, which results in a small amount of additional
hardening.
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The shown results clearly demonstrate that the transversal micro-compression
test is the first methodology to quantify the material properties of small wire
sections. It can also be applied to characterize sections of real bond loops.
Furthermore, the results show that the plastic material properties of the aluminum
bonding wires depend on the loading direction and can be explained by the
drawing texture.
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Fig. 17 Microstructure
(inverse pole figure color
code in wire direction) of
longitudinal cross sections
from a coarse grained wire
A 300 (a) and a fine
grained wire B 300
(three individual scans of
neighboring regions) (b)
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5 Summary

For life-time estimations and failure diagnostics of wire bonded power and
automotive electronic devices, it is necessary to know and to consider the
mechanical properties of the bonding wires in an adquate way. The most critical
regions for low cycle fatigue failure of heavy aluminum wire bonded devices are
the heel and the loop top, where the wire is predeformed.

To determine the mechanical properties of the bonding wires parallel and
perpendicular to the wire axis at moderate and large strains, a micro-compression
test for small wire cylinders was developed. The results clearly indicate that the
mechanical behavior is isotropic when loading the wires in tension or compression
along the wire axis. On the other hand, due to the drawing texture, the wires show
an aniosotropic plastic behavior depending on the loading situation. The deter-
mined initial flow stresses correlate very well with the mean grain size in terms of
the well known Hall-Petch relation, wich was verified by tensile tests and electron
backscatter diffraction analyses.

Using the developed methodologies, it is now possible to determine the
static hardening parameters of bonding wires depending on the loading direc-
tion in a meaningful way. The micro-compression test can also be applied to
characterize the material properties of wire sections from real components and
field returns. The micro-compression test is the basis for further developments
of new cyclic tension/compression tests, which can be applied for character-
izing the cyclic hardening behavior, so that more reliable lifetime estimations
can be performed.
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Part III
New Technologies





Numerical Computation of Melting
Efficiency of Aluminum Alloy 5083
During CO2 Laser Welding Process

Joseph Ifeanyichukwu Achebo and Oviemuno Oghoore

Abstract This chapter is aimed at determining the melting efficiency of aluminum
alloy 5083 during CO2 laser welding process. Theoretical models were used for the
melting efficiency determination as proposed by other investigators which also
included an examination of the fluid flow pattern of the alloy. The results obtained
indicate that the acceptable melting efficiency calculated was 38%. This value
compares well with and falls within the range of other values reported in other
literature. The theory of metal melting as it relates to laser welding depends on the
thermal state of the material under investigation. Applying high laser power under
a controlled environment would achieve deeper penetration with fewer heat
affected zones; therefore a deep understanding of the chemo-physical properties of
a metal is required to determine its melting efficiency and these properties have
been adequately treated in this study.

Keywords Melting efficiency � Coupling � Surface tension �Melting temperature �
CO2 laser welding process

1 Introduction

Okon et al. [1] wrote that laser welding is at the frontier of welding technology and
the use of keyhole welding has been increasingly adopted by various sectors of the
manufacturing industry. They stated that the possibility of welding materials of
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varying thickness quickly, efficiently and with resultant small heat affected zones
continues to attract more attention in manufacturing and industrial complexes.

Weston [2] posited that in laser welding, sufficient power density is necessary
to produce a high heat input that should cause some of the volatile alloying
elements such as magnesium to vaporize and become ionized to form a plasma.
The plasma contains electron and ions that would further increase the temper-
ature that should lead to the further melting of the metals to be joined because
the plasma is itself responsible for transferring the energy from the beam to
the weld.

In the melting of aluminium alloys using the laser welding process, a lower
energy of between 106 and 108 W/cm2 is desirable since a higher energy above the
threshold value would possibly lead to unnecessary increase in vaporization of
alloy elements. It must be remembered that aluminium alloys have a higher heat
absorption rate (lower heat losses), than pure aluminium [3].

Olander [4] stated that absorbed power density together with the laser pulse
duration and the reflectivity of the surface, jointly determine the absorbed energy
density. He went further to state that energy absorption depends on thermal dif-
fusivity, the vapor pressure and optical absorbance. These properties govern the
depth of penetration of the thermal front, the maximum surface temperature, and
the density of the vapor just above the surface.

In fusion welding, metals are joined together by the melting and subsequent
solidification of the adjacent areas of the two separate parts [5]. These separate
parts can only be melted, when temperatures much higher than the ambient
temperature are achieved and applied. This critical temperature, capable of
agitating the molecules and transforming them from the solid phase to the liquid
phase, is known as the melting temperature. Mahfoud et al. [6] were of the opinion
that melt quality assessment is based on thermal analysis of the material investi-
gated. David and DebRoy [7] also observed that the achieved melting rate is an
important factor in determining the composition change of weld metal [8]. This
situation happens during the melting process of aluminium alloys when highly
volatile alloying elements such as magnesium would normally vaporize. The
chemical composition of the solidified weldment is therefore altered in the process,
and this alteration would affect its mechanical properties which includes the
corrosion resistance and hot crack susceptibility of the weldment, as well as its
load bearing capacity [9, 10].

Researchers have investigated the thermal behavior of aluminium alloys
which assists to further explain the melting process of these alloys during laser
welding [11, 12, 13]. Weston [2] noted the changes in the melting pattern of
metal under increased temperature. He observed that at temperatures above half
the melting of a metal, the flow is very plastic and of great significance when
determining future strains that have resulted from thermal changes during the
welding. At above 80% of the melting point, the metal looses its plasticity and
viscous behavior occurs.

This chapter aims at determining the melting efficiency of aluminum alloy 5083
using available data obtained from experimental results, and applying these results
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to models proposed by Fuerschbach [14] and Weston [2]. Their resultant melting
efficiencies are compared with experimentally determined standard ranges of
values.

2 Classification of the Laser Welding Process by Mode

There are two major modes of laser welding, the conduction mode and keyhole
mode.

2.1 Conduction Mode

The heat flow present in this mode is governed by thermal conduction from a
surface heat source that causes the melting of the portions of the base metal to be
joined. Trautmann [15] wrote extensively on the conduction mode of the laser
welding process. The laser beam once focused is designed to generate a power
density on the base metal of the order of magnitude of 103 W mm-2. A power
density of this order of magnitude is used to join materials to form a joint, no
significant vaporization occurs as there is not a high enough heat input to form a
significant keyhole.

Trautmann [15] observed that heat flow in Laser welding mode is measured by
the determination of the Peclet number, Pe. The Peclet number is a measure of the
distribution of the radiation power absorbed through the melt pool present in the
conduction and convectional flow process. For a typical case of aluminium
welding, Pe scales with 54.8u when Pe is 5, meaning that heat transportation is by
conduction as well as convection. Note here that, u denotes the welding speed.
This further reveals that when Pe is less than 5, it is in the conduction mode
welding process but above this value signifies that the welding process is con-
vective, that is, the convection mode is dominant. In the conduction mode, flow is
restricted near the fusion boundary, which is a cooler region away from the
weldpool. In this mode, the Marangoni effect which is the spatial temperature
gradient of the surface tension, creates a driving force that pulls the melts away
from the hotter region towards the cooler region. During laser welding, this surface
tension force dominates the flow of the melt. In conduction mode welding, a
hemispherical weld bead, a large heat affected zone (HAZ), and a low aspect ratio
are formed.

Zhao et al. [16] measured the value of Peclet number as expressed as

Pe ¼ uqcpL

k
ð1Þ
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where u is the average velocity of the weldpool which is in the order of 0.1 m s-1,
less than the maximum velocity. q is the density, cp is the specific heat at constant
pressure, L is the characteristic length, and k is the thermal conductivity of the
melt.

2.2 Keyhole Mode

Al-Kazzaz et al. [17] wrote on the keyhole mode of the laser welding process.
Using this method, a keyhole is formed when the laser power absorbed by the
metal is greater than the material specific intensity threshold value [8, 18]. The
heating power is obtained by focusing the laser beam into a very small spot that
generates a very high power [18, 19, 20]. Okon et al. [1] and Weston [2] said that
with a high laser power, maximum penetration and rapid welding can be achieved.
The maximum power density depends on the maximum machine power output and
the minimum focused spot size. The exact spot focusing of the beam is further
dependent on both the wavelength of the light and the beam quality. The wave-
length of the laser light, limits the focused spot size through diffraction effects.
Duley [21] said that the minimum power density that can form a keyhole should be
about 106 W cm-2 for the CO2 laser welding of aluminum alloys. Zhao and
Debroy [8] were of the opinion that the power density of the laser beam is
Gaussian in nature. The distribution of absorbed laser power density on the weld
pool surface as proposed by Mouroulis and Macdonald [22] is as in Eq. 2

J rð Þ ¼ 2gabsP

pr2
b

e
�2r2

r2
b

� �

ð2Þ

where gabs is the absorption coefficient, P is the laser power, rb is the beam radius,
and r is the radial distance from the beam axis. Howard et al. [23] said that
absorptivity is an important factor in laser welding processes, as greater absorp-
tivity will have a strong influence on the process efficiency and weld cross sec-
tional area attainable at a given travel speed.

The beam radius is defined at different locations along the beam axis z as

rb ¼ ro 1þ kzM2

pr2
o

� �� �

1
2

ð3Þ

where ro is the beam radius at the focal point, k is the beam wavelength, z is the
beam defocusing, i.e, the distance from the focal point to the top surface of the
weldment, and M2 is the dimensionless beam quality figure of merit expressed as

M2 ¼ prob
k

ð4Þ
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where b is the half angle of beam divergence. The value of M2 varies with
increasing laser power due to the intrinsic distortion of the laser beam [8].

The concentration of the laser power on a localized spot on the workpiece
causes the alloying elements, like Mg which is very volatile and highly susceptible
to heat, to evaporate and creating a cavity under the beam. This ablation according
to Weston [2] causes a recoil pressure on the liquid surface, further depressing it.
When the cavity is sufficiently deep, reflections of laser light from the inclined
sides of the cavity can impinge upon the other side of the cavity rather than being
lost to the environment. The repeated contact of the beam with the material in the
cavity leads to increase in energy adsorption and an increase in the rate of material
loss. Thus, the cavity deepens to form a deep narrow keyhole.

As the keyhole hole is formed, Al-Kazzaz et al. [17] wrote that its stability
depends on the force balance between the keyhole wall and the molten metal
around it. This means that the stability of the keyhole depends on the force balance
between the vapor pressure and surface tension pressure. The vapor pressure tends
to open the keyhole whereas the surface tension pressure tends to close it at the
threshold intensity of the material ([8, 24]).

Al-Kazzaz et al. [17], noted that the threshold intensity, Is, is determined by
materials vaporization temperature, Tv, thermal conductivity, k and absorptivity at
normal incidence, gn [25]. This is expressed as

Is a
Tvk

gn
ð5Þ

Leong et al. [26] proposed a model for the irradiance necessary for melting and
forming a keyhole as expressed in Eq. 6

Im ¼
k Tmelt � Toð Þ

gsdJmax

ð6Þ

where k is the thermal conductivity of the metal; (Tmelt - To) is the difference in
melting and ambient temperature. gs is the absorptivity of the surface, d is the
diameter of the beam at the surface and Jmax is a function of the ratio of the
thermal diffusivity to the product of the reverse speed and diameter of the incident
beam [27]. Leong et al. [26] used a value of 5% for the absorptivity and traverse
speed of 12.7 ms-1, and obtained irradiance values of 2.7 and 1.3 MW cm-2 for
the 200 and 400 lm beam diameter, respectively.

However, the increase in power intensity could also increase weld penetration.
The depth at which temperature reaches melting point, Zm was measured by Okon
et al. [1]

Zm ¼
1:2KTm

H

Tb

Tm
� 1

� �

ð7Þ

where H = I(1 - Rs), I is the beam intensity, Rs is the surface reflectance, Von
Allmen [28] obtained a reflectance value of 94% for 1.06 lm light (Nd:YAG laser
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output) and 98% for 10.6 lm light (CO2 laser output), K is the thermal conduc-
tivity, Tb is the boiling temperature and Tm is the melting temperature.

Okon et al. [1] wrote that the temperature at a depth z below the surface of a
semi infinite solid at a time t after heat flow starts is expressed as

T z;tð Þ ¼
2H

k
atð Þ

1
2 ierfc

Z

2 atð Þ
1
2

 !

ð8Þ

where a is thermal diffusivity and t is the time.
Grong [29] looked at the study by Rosenthal in 1948 of a thermal field theory

around a moving heat source and considered a two dimensional form for thin sheet
welding of a given point in the workpiece at a given time. The temperature rise in a
metal welding scenario was given as

T � T0 ¼
P=d

2pk
exp

�ux

2a

� �

k0
ur

2a

� �

ð9Þ

where P = absorbed power; d = sheet thickness; k = thermal conductivity;
u = welding speed x = distance travelled along weld; a = thermal diffusiv-
ity = (k/qCp); ko = modified Bessel function of the second kind and zero order;
r = radial distance from weld; q = density; Cp = specific heat.

3 Melting Efficiency Computation

Pure aluminium, from experimental procedures, has been found to melt at 660�C
and its alloys (including their oxides) at about 1,926�C. Some alloys melt at
temperatures below 1,926�C. The melting of aluminium alloys using the CO2 laser
welding process requires a high laser power density which produces a temperature
high enough to melt the surfaces of the aluminium metals to the joined.

Zhao et al. [16] defined melting efficiency as the ratio of the heat required to
melt the base metal to the heat absorbed by the workpiece. Fuerschbach [14]
suggested an equation for melting efficiency, gm in the CO2 laser welding of 1,018
steel, 304 stainless steel and Tin correlated with a modified Rykalin number, Ry,
as expressed in Eq. 10

gm ¼ 0:48� 0:29exp
�Ry
6:8

� �

� 0:17exp
�Ry
59

� �

ð10Þ

where Ry ¼ qinU
a2MHm

qin is the net power absorbed by the workpiece, U is the welding

speed, MHm is the latent heat and a is the thermal diffusivity. Weston [2] proposed
an equation for determining the melting efficiency of aluminum alloys which is
expressed in Eq. 11
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gm ¼
V qcp Tm � Toð Þ þ MHm

� 	

gcP
ð11Þ

where, gc is the coupling. The coupling is a dimensionless term used to describe
the efficiency of energy transfer from a laser beam to a weld. Coupling can be
defined as:

Coupling =
energy absorbed by weld

energy output by laser source
ð12Þ

in this study, the value for coupling is taken to be equivalent to the absorptivity
energy value. P is the laser power; Cp, the specific heat, Tm is the melting tem-
perature; To the ambient temperature, q is the liquid density and V is the volume of
metal droplet.

Al-Kazzaz et al. [17] defined coupling efficiency, gc, as the portion of the laser
power available to the workpiece which is equal to the ratio of the absorbed power,
Pabs by the keyhole wall to the total laser power, P. The absorbed power as written
by Zhao et al. [16] and developed by Bramson [30] using the series expansion
method is expressed as

gabs Tð Þ ¼ 0:365
r

k

� �1
2�0:0667

r

k

� �

þ 0:006
r

k

� �3
2 ð13Þ

where r is the resistivity (X cm) at temperature, T; k is the wavelength in cm for
CO2 laser welding, k = 10.6 lm.

gc ¼
gabs Tð Þ

P
ð14Þ

From Eq. 13, it can be seen that the absorbed power is dependent on temper-
ature. This indicates that coupling efficiency depends on the thermal conductivity
of the base metal material. The thermal efficiency, gth, is defined as the portion of
the absorbed laser power that produced the weld seam and is equal to the ratio of
the heat of melting, Hmelting divided by the absorbed laser power, gabs [17].

gth ¼¼
Hmelting

gabs

ð15Þ

The heat of melting, Hmelting can be calculated from the equation proposed by
Kaplan [31] and Lampa et al. [32] for heat flow in keyhole mode as expressed in
Eq. 16

Hmelting ¼
1
r

T � Toð ÞkPe cos uþ k1Pe

k0Pe

� �

ð16Þ

where q is the heat flow (W m-2), k1 is the modified Bessel function of second
kind and first order, and r, u are the polar coordinates. At the boundary between
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the PMZ and HAZ, r is equal to ± half the average width of fusion zone, and
u ± p/2.

The laser process efficiency is calculated as

gp ¼ gcgth ð17Þ

The laser process efficiency, gp, can be defined as the ratio of the melting power
to the total laser power

gp ¼
Hmelting

P
ð18Þ

Punkari et al. [24] and Swift-Hook and Gick [33] defined melting ratio (MR) as
the fraction of total incident laser power that is used to melt the weld metal.

MR ¼
VAwq Cp Tmp � T0


 �

þ MHf


 �

P
ð19Þ

where Aw is the melted area (i.e., FZ area), q is the density of the molten metal, Cp

is the specific heat, DHf is the latent heat of fusion, V is the welding speed, Tmp is
the melting point temperature, To is the room temperature and P is the incident
laser power.

Kwon and Weckman [34] wrote that the melting ratio, MR is used to determine
the effects of welding process conditions on the overall energy coupling efficiency.
Swift-Hook and Gick [33] were of the opinion that the melting ratio is the fraction
of the total incident power which is used to heat and melt the weld metal. They
proposed the following equation.

MR ¼
lCp Tmp � T0


 �

þ DHf

� 	

Lw
Pl
vw

� � LwAw ð20Þ

where Lw is the length of weld metal, Aw is the weld metal area, q is density, Cp is
the specific heat, DHf is the latent heat of fusion, Vws is welding speed and Tmp is
the solidus temperature. To is the room temperature and PL is the power from
the power supply. Kwon and Weckman [34] used the thermo physical properties
of A5182, as obtained from ASM Handbook [35] for their calculations,
given q = 2.65 mg m-3, Cp = 0.904 kJ kg-1 K-1; DHf = 397 kJ kg-1 and
Tmp = 850 K.

Increasing laser power leads to increased heat input per unit length. A high
melting ratio variation is obtained when the welding speed is similarly increased to
match the increasing heat, because the quicker the weld process the lower the time
spent or lost. The heat is, therefore, more localized within the heat affected zone as
high conductivity is curbed and a reasonably sized weld pool is formed and
maintained. The weld pool has accumulated to a reasonable size due to prolonged
localized heating, and quickly enough too. Thus, heat is immediately dissipated
around the weld environment through the reflection of the multiple incident laser
beam rays out of the surface of the weld, and this heat is not absorbed by the base
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metal. It means that the threshold value for the laser power that would ensure a
good melting ratio has been attained.

However, in the cases where further increase in laser power continues unnec-
essary, it could reduce the melting ratio. It means that the threshold value for the
laser power that was available in the melting ratio has been exceeded [34]. Swift-
Hook and Gick [33] have actually proposed a threshold value for the melting ratio
as 0.48 for 2D keyhole mode laser beam welds.

Kwon and Weckman [34] obtained a maximum value of 0.45 at 2.8 kW with
improved cathode cleaning and good weld quality using the double sided arc
welding (DSAW) process. Fuerschbach and Knorovsky [36], in studying the
melting efficiency of plasma arc welding (PAW) and gas tungsten arc welding
(GTAW) of 304 stainless steel and Ni 200 specimens reported their melting effi-
ciency of 0.46 at the highest welding speed. Punkari [37] and Deutsch [38] as
reported by Kwon and Weckman [34] found that the maximum melting ratio of
single beam Nd:YAG laser welded AA5182 alloy sheet was approximated to be
0.3, while that for dual beam laser welds was 0.2, and for variable polarity plasma
arc welding (VPPAW) welds full penetration was obtained at a maximum
threshold value of 0.2.

Quintino et al. [39] derived the equations as proposed by Ready [40] for
determining melting efficiency. They considered a case of full efficiency when the
power, P, available is used to melt a unit of material volume, V, the weld bead is
cylindrical in shape and no losses were observed. This expression is shown in
Eq. 21

P ¼ VE ð21Þ

where P is the laser power in watts, V is the volume of metal melted per unit of
time (m3/s) and E is the energy required for melting.

Paleocrassas and Tu [41] studied the critical fluence per weld length, Ec which
they said indicates the amount of energy per area for a unit length of weld that is
required to form a weld in an aluminium alloy. They assume that at a specific laser
power and travel speed, a burnt mark starts to form when the fluence per weld
length reaches a threshold. This threshold value is determined by

Ec ¼
P

pr2
i

:
li

vc
:
1
li
¼ P

pr2
i vi

ð22Þ

i = 1, 2, …., n where Ec is in J/cm3. P is the incident power in watts, ri is the beam
radius at the onset of the burn mark in centimeters, li is the total length of the
burning mark, and vi is the processing speed.

Total welding time ¼ total weld length

welding speed
¼ lw

v
ð23Þ

Paleocrassas and Tu [41] observed that the smaller width has a higher aspect
ratio, deeper penetration and higher welding efficiency, Ew
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Ew ¼ q:Aweld

f

pr2
profile

ð24Þ

where

f ¼ CpDT þ DHf ð25Þ

where Aweld is the cross sectional area of the weld, q is the density, rprofile is half
the weld’s cross sectional width at the top of the weld. Cp is the specific heat, DT is
the temperature rise from room temperature to melting temperature and DHf is the
latent heat of fusion.

Equation 21 is further expanded to form Eq. 26,

P ¼ V:q Cp DTð Þ þ H
� 	

ð26Þ

where q is the density in kg/m3, Cp is the specific heat in J/kg. K, DT is the
difference between the melting temperature and the ambient temperature in Kelvin
and H is the latent heat of melting in J/kg.

The volume of the metal melted per unit of time, V is given in Eq. 27

V ¼ vtbh ð27Þ

where b and h is the weld bead width and depth or penetration respectively.
Substituting the value of V and thermal conductivity, k = qCpa (W/mK) in

Eq. 26. P becomes

P ¼ vtb

a
h:k Tm � To þ

H

Cp

� �

ð28Þ

Assuming that d ¼ Tm � To þ H
Cp

Equation 28 becomes

P ¼ vtb

a

� �

hkdð Þ ð29Þ

Rearranging Eq. 29

vtb

a
¼ P

hkd
ð30Þ

Quintino et al. [39] used Eq. 30 to compute the melting efficiency. They
classified Eq. 30 as welding speed parameter (vtb/a) which forms the vertical axis
of the graph and laser power parameter (P/hkd) which constituted the horizontal
axis of the graph. The slope of this graph gave a value of 0.66 which resulted
to a melting efficiency of 66%. This was regarded as good when compared to
conventional lasers. What energy losses that may have occurred, is attributed to
conduction losses.
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4 Determination of Volume of the Melted Metal, V

4.1 Filler Wire in Laser Welding

Filler wire is important to laser welding because it is used to increase the volume
of molten metal used to achieve deep penetration. Al-Kazzaz et al. [17] stated the
advantages of using filler metals to include improving weld properties, increasing
the gap between the welding parts and welding thick sections using a multi pass
technique. Haferkamp et al. [18] observed that during laser welding, underfill, and
notching effect and porosity of the welded joint can be reduced using filler metal.
The filler wire is positioned at the intersection of laser beam and top surface of the
work piece at an angle of 60o

Wire feed rate ¼ welding speed x gap area

filler wire area
ð31Þ

To determine the volume of melted material, the equations proposed by
Padmanobham et al. [42], were used to determine the volume of the melted metal
as expressed in Eqs. 32–36.

Volume of wire melted,

Vf ¼ wf � prw2 ð32Þ

where, wf is the wire feed rate and rw is the wire radius.
Laser beam pulse frequency,

F ¼ 1
T

ð33Þ

where T is the cycle time to make one droplet

F ¼ Vf

Vs
ð34Þ

Vs is the volume of a single droplet.
The radius of the spreading droplet, rs was also determined using the equation

suggested by De Gennes [43] written in Eq. 35

rs ¼ V
3

10
s

cT

l

� � 1
10

ð35Þ

where c is the surface tension and T is the time taken to make one drop of
aluminum metal. l is the viscosity

V ¼ 4
3
pr3

d ð36Þ
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where rd is the radius of metal droplet which, in this study is equivalent to the
radius of spreading droplet, rs.

The value of V, from Eq. 36 is input into Eq. 27 for the determination of
melting efficiency, gm of aluminum alloy.

The viscosity, l as proposed by Smithells and Brandes [44] can be determined
computationally using Eq. 37

l ¼ 0:1492 exp
1984:5

Tm

� �

mNs=m2 ð37Þ

Tm is the melting temperature in degree kelvin

5 Surface Tension Determination

5.1 Forces Acting on the Keyhole in Laser Welding
of Aluminium Alloys

Weston [2] outlined and discussed as follows the forces acting on the keyhole of
aluminium alloy

1. Surface tension and surface tension gradients;
2. Hydrostatic and hydrodynamic forces due to liquid metal (fluid flow);
3. Gaseous pressure in the keyhole; and
4. Ablation pressure from evaporation.

The first two forces act to close the keyhole, the last two act to open it [45].
Arata [46] has claimed that the fourth force, the ablation pressure of evaporation,
balances the surface tension and is responsible for the keyhole stability. As the
temperature of the surface of the weld pool is not always constant, it would lead to
surface tension gradients which cause liquid flow. This process is known as the
marangoni effect. However, the liquid surface is often in contact with rapidly
flowing ionized gas and plasma (extremely high temperature is present in the
plasma) at pressures above ambient and this subjects the liquid metal to a steep
temperature gradient, taking into account the different temperatures that exist at
different locations in the weld pool. These temperatures range from the boiling
point at the irradiated surface [47] to the liquidus at the solid/liquid boundary.
Since these temperatures are not constant across its width, the change in surface
tension with temperature as well as the steep curvature of the surface are
responsible for flow. Heiple and Burgardt [48] were of the opinion that Marangoni
forces can influence fluids to flow in various patterns in the weld pool.

In conduction and keyhole modes, Weston [2] observed that buoyancy forces
exist. They arise from the volume increase of molten metal and corresponding
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density decrease as the material expands on heating. Howard et al. [23] said that
buoyancy forces are due to density changes of the molten metal and emphasized
that in weld pools of uniform composition, liquids at higher temperatures become
less dense and thus tend to flow upward while cooler and therefore denser liquids
flow downward. The density differences due to the different alloying compositions
overcome buoyancy due to heating, and thus have a stronger influence on fluid
motion. At this point, the gravity effect seems to be dominant as it eventually leads
to achieving deep weld penetration. The more plastic molten metal are usually
found nearer the cooler part of the weld pool, that is, the boundary of the melt/solid
interface. Whereas, the liquid metal exist at the center of the weld pool where
convection mode is dominant. Berkmanns et al. [49] have found that in diode laser
welding of steel Marangoni forces are the dominant force on the weld pool, and
combined with the effect of buoyancy, affect the direction of fluid flow in the weld
pool. Fujii et al. [50] studied the effect of gravity on fluid motion of weld pools and
found that surface tension and buoyancy had the greatest effects of fluid motion in
electron beam welds. Goumiri et al. [51] observed that the surface tension of pure
aluminium reduces with the increase in temperature and also stated that it is
difficult to determine the true surface tension of molten aluminium because of the
formation and effect of thin oxide layers on its surface.

Aerodynamic effects do arise mainly due to the high rate of evaporation of
alloying elements from the keyhole. The ablation pressure tends to produce a rapid
flow of liquid out of the keyhole [2].

Howard et al. [23] wrote that Lorentz forces (Electromagnetic forces) are
present in arc welding processes where the current density gradient in the arc and
weld pool interact with the magnetic field generated by the current to generate
forces acting away from the surface of the weld pool. Since there is no arc in laser
welding processes there is no Lorentz force.

Paul and DebRoy [52] observed that the primary driving force for fluid flow in
the laser melted pools is the surface tension gradient.

The surface tension, c, of aluminium alloy 5083 was calculated using the model
proposed by (Sahoo and DebRoy [53]) for non ferrous metals. This equation is
expressed in Eq. 38

c ¼ 1:39� 3:9� 10�4 Tb � 1356ð ÞNm�1 ð38Þ

where Tb is the boiling temperature in Kelvin.

6 Results and Discussion

The melting efficiency of aluminium alloy 5083 was investigated in this study by
applying the melting efficiency equations given by Fuerschbach [14] and Weston
[2] and comparing the obtained results with acceptable standard ranges of values.
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The welding parameters used for calculating the results discussed, are shown
in Table 1.

A CO2 laser heat source of 35 J mm-1 was used to conduct an experimental
procedure, and the obtained results were used to calculate the melting efficiency of
aluminium alloy 5083 by applying the Fuerschbach Equation, giving a melting
efficiency of 6%. The 6% low melting efficiency can be attributed to the claim
made by Zhao et al. [16] that aluminum has a much higher thermal diffusivity than
other common metals; therefore, under the same welding conditions, the dimen-
sionless, number Ry is expected to be lower for aluminum than for other alloys,
resulting in a lower melting efficiency.

However, the low melting efficiency using Fuerscbach equation was not quite
acceptable; therefore, the Weston equation for determining melting efficiency was
considered. The melting efficiency obtained using Weston’s equation was 38%.
This result is more acceptable and is close to the threshold value of 48%. Swift-
Hook and Gick [33] claimed that no melting efficiency should exceed this
threshold value, whatever the welding situation. However, the melting efficiency
calculated by Weston in 1999 fell within the range of 24 and 46% with only two
values above the theoretical limit. From this analysis, the Weston equation has
proved to be more dependable than the Fuerschbach equation.

The melting behavior of the wire (bare electrode) was also investigated. From
the study, the volume of filler wire melted per second was 15 mm3 s-1. The
volume of single droplets is 0.942 mm3 and the radius of the spreading droplet was
0.356 mm at an average speed of 0.1 m/s in the weldpool, whereas, the volume of
a metal droplet was 0.189 mm3. These values compare very well with the ones
obtained by Sun and Wu [54], although in the case of Sun and Wu, the MIG
welding process was the process actually applied and considered. The surface
tension of the weldpool surface was calculated to be 0.84 Nm-1. This value of
surface tension accurately compared with 0.84 Nm-1 being the value obtained by
Leong et al. [27]. Tang et al. [55] were of the opinion that surface tension along an

Table 1 Parameters used for calculation

Absorptivity g = 12% (as received aluminum alloy)
Welding speed, v = 6 m min-1

Thermal diffusivity, a = 0.68 cm2 s-1

Latent heat, DHm = 0.80 J mm-3

Net power absorbed by the workpiece, qin = 35 J mm-1

Wire feed rate, wf = 30 cm min-1

Wire diameter, Df = 2 mm
Cycle time for making one drop of metal, T = 0.06 s
Liquid aluminum density, q = 2,385 kg m-3

Viscosity, l = 0.0013 kg m-1 s-1

Melting temperature, Tm = 2,482�C
Ambient temperature, To = 25�C
Specific heat at constant pressure, Cp = 1,295 J kg-1�C-1
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interface arises as the result of attractive forces between molecules in a fluid and
they further said that in a droplet surface, the net force is radially inward, and the
combined effect of the radial components of forces across the entire spherical surface
is to make the surface contract, thereby increasing the pressure on the concave side of
the surface. At equilibrium, the opposing pressure gradient and cohesive forces
balance each other out to form spherical drops. Surface tension acts to balance the
radially inward intermolecular attractive force with the radially outward pressure
gradient across the surface. However, the increase of temperature by a corresponding
increase in heat input reduces the effect of surface tension, which initiates flow. Low
surface tension causes high amount of spatter when welding aluminium [27].

7 Conclusion

The melting behavior of aluminium alloys under the conduction and convection
modes, in general was investigated. The effect of using filler metal to increase
molten metal volume used to achieve deep penetration during backfills or notching
effect was emphasized. The scenario where volume increments as they relate to the
effects of surface tension forces was also looked at.

The melting efficiency of aluminum alloy 5083 was investigated in this study.
The equation proposed by Fuerschbach [14] was applied and the value obtained for
the melting efficiency was very low, although Fuerschbach applied his equation to
determine the melting efficiencies of steel and tin and not aluminum. However,
this value was unacceptable when compared to the one obtained by employing the
equation provided by Weston [2]. From Weston’s equation, the melting efficiency
calculated was closer to the threshold value provided by Swift-Hook and Gick [33]
and falls within the range provided by Weston [2].
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The Credibility Measure of Probabilistic
Approaches in Life-Cycle Assessment
of Complex Systems: A Discussion

Elsa Garavaglia

Abstract The life-cycle assessment of complex systems over time suffers of
uncertainty and its probabilistic modeling is required. Two kinds of uncertainties
reside in a probabilistic model: epistemic and aleatory. Both of these uncertainties
can be reduced but cannot be eliminated. In this chapter the effect of the epistemic
uncertainty on the service life prediction of a steel truss subjected to deterioration
will be investigated. For this purpose, an opportune credibility indicator will be
introduced. This indicator will be able to compare two models and decide which
one is the most reliable. The results prove that the credibility index is able to
recognize, in qualitative and quantitative terms, the most reliable modeling. Using
the case study proposed it is shown how the influence of the epistemic uncertainty
can have a relevant influence on the lifetime prediction and, consequently, on the
possible maintenance strategies and their related costs.

Keywords Life-cycle assessment � Structural reliability � Predictable models �
Markovian processes � Credibility of modeling

1 Introduction

The assessment of the life-cycle performance of deteriorating structures can be
formulated as a reliability problem where a loss of performance greater than
prescribed threshold values is considered as a failure. Therefore, when a failure is
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reached, the system passes from the current state into another characterized by a
lower level of performance. On the other hand, the structural performance can also
be improved by maintenance and/or rehabilitation interventions. In this case the
system may move from the current state into another characterized by a higher
level of performance. In both cases the failure process may be defined as a
transition process through different service states due to environmental attacks
and/or maintenance actions. Since the problem is affected by several sources of
uncertainty, the assessment of the life-cycle performance must be based on a
suitable damage modeling and on a probabilistic analysis able to model the main
features of the time-variant deterioration process.

Under this point of view the deterioration process can be assumed to be a
transition process and modeled as a semi-Markov process. This modeling, as all
probabilistic modeling, suffers of epistemic and aleatory uncertainties. In this
chapter the influence of the epistemic uncertainty on service life prediction is
investigated with the application of a relative criterion of validation introduced by
Grandori et al. [1] and based on an estimator called credibility. The aim of this
criterion is the construction of an index able to compare two models and decide
which one is the most reliable. In this chapter Gamma, Weibull and Exponential
distributions are put in competition in the modeling of the failure times of a steel
truss subjected to damage process and their credibility evaluated assuming as true
failure times process the failure time process reproduced by Monte Carlo
simulation.

The credibility is built comparing the probability of failure obtained by the
Gamma, Weibull and Exponential processes with the probability of failure repre-
senting the truth. The comparison shows the importance to have information con-
cerning which between two models is the most reliable to assess a given process and,
consequently, the important role of credibility indicator. Moreover, it is also shown
as the wrong model used can have a relevant influence on the lifetime prediction and,
consequently, on the maintenance strategies and their related cost [2].

2 Uncertainty in Prediction

Two kinds of uncertainties reside in a probabilistic model: epistemic and aleatory.
Epistemic uncertainty concerns the formal model. Even if the model is correct,
there is an uncertainty related to the parameters involved into the model. Epistemic
uncertainty can be reduced if the physical aspect of the phenomenon dealt with is
well known. The phenomenon is, seldom, known a priori; often the law governing
the phenomenon must be deduced by experimental tests and monitoring, but,
usually, they are reduced in number and extension, therefore the level of uncer-
tainty could remain high.

Aleatory uncertainty is difficult to reduce because the estimation of the model’s
parameters is made starting from the available data, but usually the available
samples of data are few among all performable samples.
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In structural performance prediction, the presence epistemic uncertainty cannot
be excluded. In fact, in structural performance analysis, the available samples are
the monitoring results. The monitoring of a given significant damage parameters is
usually made over the lifetime of the structure at discrete time instants, only at the
end of a long monitoring it is possible to describe the variability of each quantity
over time. Moreover, the monitoring concerns a single structure, therefore, the
development of an evolution law, generally valid for each structure of the same
type, becomes a difficult matter.

In this context, it is important to develop a procedure having general validation
and being able to predict the possible time dependent behavior of significant
damage parameters, starting from few monitoring data. It is clear that the pre-
diction must be made in probabilistic terms, but the choice of the ‘‘true’’ model is a
debated question. Moreover, what is called ‘‘statistical validation’’ is usually not
reachable. To be fully statistically substantiated, a proposed model must be
developed on the basis of a sufficient number of directly observed successes and
failures so to establish its performance at different levels of agreement [3]. In
addition, it should be noted that a probabilistic model can not be validated in
absolute sense [1, 4]. A probabilistic model consists in a continuous way towards
more robust degree of knowledge [5]. The Bayesian approach indicates how,
starting from a basic guess (a basic prior probability) the confidence grows towards
a posterior more credible probability when more information becomes available
and can be incorporated in the probabilistic model.

Usually, in statistical analysis the choice among different models can be sup-
ported by classic statistical tests if other evaluations are done. Typically,
comparison between models and methods is done with relative likelihood functions
or least squares method. They help to explore the reliability of one model
(or hypothesis). The physics of the hazard deserves particular care: a ‘‘model’’ is not
a pure statistical consequence of a data set. Each distribution contains some physical
interpretations. Therefore, the modeling over time of the behavior of a structure
affected by deterioration will require the physical knowledge about the mechanism
of damage like crack propagation, carbonation, corrosion, diffusive attacks [6, 7].

In conclusion, a (probabilistic) model can be supported by a wide data inter-
pretation in such a way as to get a certain degree of confidence. Even if it contains
always a subjective choice, a careful analysis can make reasonable the choice.
Obviously the most unsatisfactory residual field of uncertainty remains in prob-
lems concerning small samples. However, when the physic of the phenomenon is
not clearly defined, the modeling can suffer of epistemic uncertainty; in order to
reduce this uncertainty an opportune index of credibility must be assumed.

Concerning uncertainty in prediction, in 1998 Grandori et al. [1, 4] developed
an index D, called credibility, that has the merit to focus the possible error in the
estimation of a given parameter and, in this way, to decide, between two candidate
models, which one is the best. This index has been developed in seismic engi-
neering to investigate the peak ground acceleration at a given site and corre-
sponding to given return period, but it can be extended also to other engineering
problems [8].
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Based on the approach proposed by Grandori et al. [1, 4] the credibility for the
semi-Markov approach, already used by the author in prediction of reliability and
planning maintenance of structures subjected to deterioration [9, 10] is, here,
investigated.

3 Improvement in Credibility

To investigate credibility of two models put in competition in the evaluation of a
quantity P starting from a single data set means to shift the attention from the data
fitting to the error in estimating the quantity P of interest. This, if well approached,
leads to catch which between the two models is more reliable.

In this section, the Grandori’s method is extended to the structural lifetime
prediction. Supposing that in a given structure the time evolution of a given
parameter is completely defined, it is possible to suppose that also the ‘‘truth’’ is
completely defined and the quantity P assumes a precise value P� in each instant
t*. In other words, if the variation law F� of a given quantity P is given in both its
form and parameters, the value assumed by P in each instant t* is known and in the
follow will be marked with an upper index as all the values or function considered
as the statistical truth. On the contrary, lower index will indicate all estimate
values or functions with estimated parameters.

Therefore, if the distribution F� is known, it will be assume like the statistical
truth, and following a Monte Carlo simulation, it will be possible to draw from it
many samples of size m on which the credibility analysis can be developed.

The proposed procedure follows the following steps: each sample m will be
modeled with a chosen r – model, the parameters of the cumulative distribution Fr

will be evaluated through the likelihood method and a value Pr of the parameter
investigated will be estimated (one for each sample). All the Pr values, obtained by
the size m samples drawn by the truth F�; together, will form the random vari-
ablePr; which distribution is the sampling distribution of the parameter considered
(in sequence: waiting time into a performance state, failure time, transition
probability through two consequent states of performance, conditioned probability
of occurrence of an event, and so on).
The index:

D�r ¼ Pr P � � h\Pr �P � þ hf g ð1Þ

is the probability that the estimated value Pr with the r – model falls in a given
interval around the ‘‘true’’ value P� (h defines a conventional interval around P�).
The index D�r takes into account both epistemic and aleatory uncertainty. It
measures the credibility of r – model with respect to F� when P is the estimable
quantity (credibility based not on data fitting, but looking at the results).
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Briefly: D�r is the probability that, on the basis of a random size m sample drawn
from F�; the model Fr leads to estimate the random variable with an error e�r � h
(as absolute value)

D�r ¼ Pr e�r
�

�

�

�� h
� �

: ð2Þ

An analogous procedure is followed for the s – model, with Fs cumulative
distribution. The difference:

D�rs ¼ D�r � D�s ð3Þ

is the index of the relative credibility between the two models in competition.
Assuming that r – model is more reliable than s – model for estimation of P, the
value of (1) will be D�rs [ 0 and vice versa. Then the sign of D is of crucial
importance: it decides which model is the most reliable.

4 The Deterioration Process Modeling

Aggressive environmental attacks can induce damage into the members of a
structural system. Each time a significant damage level is reached, the system
reliability decreases and the system reaches a performance level and it remains in
this level until a new dangerous damage will happen (Fig. 1).

Following this approach the damage evolution due to environmental aggressive
attacks can be modeled as a transition of the structure through different states of
performance, where each state’s transition is due to the reaching of a specific
significant damage level (Fig. 1). Therefore, the evolution of the system perfor-
mance can be considered as a transition process described by a random variable
representing the waiting time ti spent by the system into a state i before the
transition into another state j. The transition can happen between contiguous states
or not contiguous states.

A transition process can be modeled as Semi-Markov process (s-MP) [11].

i

(i-1)

State i

State j

xij Time

Performance

x(i−1),i

State i−1

Fig. 1 Schematic transitions
process between different
states of performance.
Transition can happen
between contiguous states
(light gray area) or between
not contiguous states (dark
gray area)

The Credibility Measure of Probabilistic Approaches 623



A s-MP is completely determined if we know its initial laws [12]:

1. initial conditions: initial state J1, i.e. the state occupied by the system at the
time in which the prevision starts. Of interest is also the knowledge of the time
t0 already spent by the system into the initial state before the time in which the
prevision starts [13].

2. Pr ðJ0 ¼ kÞ ¼ ak for every k [ E, initial probability distribution a describing the
probability that initial state will be J0 = k and its semi-Markov kernel

3.

Pr ðJn ¼ k; sn� t J0j ; J1; s1; . . . ; Jn�1; sn�1Þ ¼ pJn�1;kFJn�1;kðtÞ 8 t
2 ð0;þ1Þ ; k 2 E: ð4Þ

pJn�1;k are the transition probabilities of the Markov chain ðJnÞn� 0 and FJn�1;kðxÞ
are the distribution function associated to waiting times in state Jn-1 before going
in state Jn = k. In other words, Eq. 4 describes the probability that transition into
the next state Jn, happens by time x, if the present state is Jn-1.

Some consequences of the definition now introduced are:

i. ðJnÞn� 0 is a E-valued Markov chain with transition matrix P and initial
distribution a.

ii. for every n [ 1, s1,…, sn are conditional independent, given ðJnÞn� 0; and

Pr ðJn ¼ j J0; J1; . . .; Jn�1 ¼ i Þj ¼ pij; for all n [ 0; ð5Þ

Pr ðsn� t J0; . . .; Jn�1 ¼ i ; Jn ¼ jÞj ¼ FijðtÞ; for all n� 0 and t� 0; ð6Þ

Pr ðs1� t1; . . . ; sn� tn Jn ;n�0Þj ¼
Y

n

i¼1

FJi�1;JiðtiÞ; for all n�0 and ti�0: ð7Þ

Equations 5–7 describe respectively the transition probabilities between
states, the distribution functions of waiting times between two transitions and
the marginal distribution function of the waiting times ti describing the
probability of transition into each state Ji by time ti.

In a transition process the role played by the transition rate function or hazard
rate function is crucial. For all i and j in E, the immediate transition rate function
kij(x) is given by:

kijðtÞ ¼ lim
Dt!0

1
Dt

Pr ð Jn ¼ j; t\sn� t þ Dt Jn�1 ¼ i; snj [ t Þ

¼
qij

½1�HiðtÞ�
0

�

if pij [ 0 and ½1� HiðtÞ�\1
otherwise

ð8Þ

where qij ¼ pijfijðtÞ and Hi ¼
P

s

j¼1
pijFijðtÞ 8t 2 <þ:
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The estimation of transition rate is not a simple matter. Ouhbi and Limnios [14]
consider a history of s-MP and maximize its likelihood function to obtain the
maximum likelihood estimator of hazard rate function.

Let (J0, J1, t1,…, tw-1, Jw) be a realization of the s-MP on the time window
[0,T]; w represents the number of states visited in [0, T] and for the lost event Jw

we have the censored data tw [ [T - (t1 +_ ? tw -1)].
Then, the conditional likelihood is

LðTÞ ¼
Y

w�1

i¼0

pJi;Jiþ 1 fJi;Jiþ 1ðtiÞ 1w [ 0 þ 1w¼0

" #

�
X

s

k¼1

pjw;k 1� Fjs;kðtwÞ
� �

ð9Þ

where 1w [ 0 is equal one if w [ 0 and zero otherwise, and vice versa for 1w¼0:

4.1 Crossing State Prediction

In the damage transition process, when the system passes from the performance state
i into the performance state j it already has spent some time, t0, into i before the
crossing into j. The time t0 plays an important role in the prediction model and the
probability of transition becomes a conditional probability strictly connected to t0.

The probability of transition into the next state j, if the present state is i and t0 is
the time already passed by the last transition occurred, can be defined as follow:

Prðstate j; sij� t0 þ Dt state i; sij

�

� [ t0Þ; i; j ¼ 1; s ð10Þ

where i is the state of the present performance; j is the state of next lower per-
formance; sij is the waiting time spent by the system into the state i before to have
the transition into j, under the condition that no transition has already happened
(defined through the condition: state i; sij [ t0Þ; Dt is the discrete time in which
the prediction would be obtained.

If the distribution functions Fij(t) are defined and sij = t0, Eq. 10 can assume
the following form:

PðijÞ
Dt t0j ¼

Fijðt0 þ DtÞ � Fijðt0Þ
� �

pij

P

s

k¼1
1� Fikðt0Þ½ � pik

: ð11Þ

5 The Deterioration of a Steel Truss Modeled as a Transition
Process

To investigate the credibility of a probabilistic approach, the procedure introduced
will be applied on a statically indeterminate steel truss (Fig. 2) immerged into an
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aggressive environment and subjected to a damage process inducing loss of
performance over time.

To describe the deterioration process of the system here proposed, the random
variable chosen is the stress value r recorded/evaluated at every monitoring and
considered as the ratio between the internal forces and the deteriorated area of the
elements’ cross sections. In order to model the time evolution of such variable
within s-MP, the following assumptions are introduced [9]:

• the structure is undamaged at the initial time t0 = 0.
• the damaged structure is considered to be in a state i [ 0 when ri B r B r(i+1),

where ri and r(i+1) are the lower and upper thresholds, respectively, which
characterize the state i.

• the structure evolves from a state i [ 0 into another state j [ i, characterized by
a lower level of performance ri ri \ rj, during a time interval sij. Of course, the
condition j \ i, with ri [rj, is also possible if some maintenance will be
operated.

Under the hypothesis of s-MP, the time evolution of the structural behavior is
then represented as transitions between different states of performance.

For each transition, the waiting time sij must be modeled by choosing an
appropriate probability density function (p.d.f). This choice is not a simple choice
and it can be ‘‘not unique’’. It should be made on the basis of physical knowledge
of phenomenon and on the characteristic of the distributions in their tails where,
usually, no much data are recorded.

The physic suggest that the deterioration follows an increasing law over time,
therefore the distributions that can satisfy this tendency are distributions with
increasing hazard rate functions k(t) (Eq. 8). Distributions obeying to this law are,
for example, the Weibull distributions where, if t ? ?, k(t) tends to an infinite
value, and Gamma distributions where, if t ? ?, k(t) tends to an asymptotic
value.

Gamma and Weibull distributions will be put in competition with the ‘‘true’’
distribution, obtained by application of a Monte Carlo simulation, to investigate
which distribution is the most reliable in the modeling of the failure time of the
system in Fig. 2.

Exponential distributions present a constant hazard rate function and seem to be
not able to catch the real behavior of a damage process due to environmental
aggressive attacks. However, the Poisson behavior described by the Exponential
distribution is often used to model stochastic damage processes, therefore also the

     L=1m L L L L L

L/2

F=25kN F F F F F FFig. 2 Statically
indeterminate truss system
with members area
A = 2500 mm2 and total
volume V = 0.0723 m3
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exponential distribution will be put in competition with the statistical truth obtained
by the Monte Carlo simulation.

5.1 Deterioration Modeling of a Steel Truss: A Monte Carlo
Simulation

The credibility method introduced in the previous sections requires the definition
of a statistical truth (true process) with which different models can be compared
with the aim to catch the most reliable one. The statistical truth can be built
through a Monte Carlo simulation where the structural performance evolution is
assumed depending on an adequate time depending damage model. In the fol-
lowing, a general approach to deterioration modeling of structural members is
presented and an adequate damage index introduced [10].

By denoting J a generic material property, the deterioration over time t of it
can be measured by the following law:

KðtÞ ¼ K0½1� dðtÞ� ð12Þ

where ‘‘0’’ denotes the initial undamaged state, and the time-variant damage index
d = d(t)[[0;1] is the measure of deterioration over time. The index d is assumed to
follow the damage model proposed by Biondini et al. [10]:

dðsÞ ¼
x1�qsq ; s�x
1� ð1� xÞ1�qð1� sÞq ; x\s\1
1 ; s� 1

8

<

:

ð13Þ

where s = t/TC, TC is the normalized time instant of reaching the failure threshold
d = 1, x and q are shape parameters of the damage curve. The damage parameters q
and x must be chosen according to the actual evolution of the damage process.
Damage rates may be associated with the aggressiveness of the environment, as well
as with the level of acting stress through the following linear relationship [10]:

q ¼ qa þ ðqb � qaÞ n x ¼ xa þ ðxb � xaÞ n ð14Þ

where the subscript ‘‘a’’ refers to damage associated with environmental aggres-
sion, and the subscript ‘‘b’’ refers to damage associated with loading effects and n
refers to ratio between the level of acting stress and the limit state value. The law
(13) is able to model damage mechanisms induced both by environmental dete-
rioration, like carbonation of concrete, corrosion of steel or material fatigue, and
by changing in mechanical aspects, like, for example, the changing of live loads
during the system service life. Generally, these mechanisms are present and
interacting, and a proper calibration of the damage parameters is required based on
experimental observations and/or laboratory accelerated test data.
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As said before, the calibration of each probabilistic approach requires many
experimental data usually difficult to collect. In this study, the data samples for
parameter estimation are obtained by means of a Monte Carlo simulation of the
life-cycle structural performance based on the damage modeling previously
introduced. In this simulation process, the damage parameters qa, qb, xa, xb, and
TC, are modeled as random variables with prescribed probability distribution:
lognormal distribution for q parameters, normal for x parameters, and Gamma for
the failure time TC. Each distribution here used is chosen on the basis of physical
knowledge of the phenomena investigated [15, 16].

The Monte Carlo procedure has been applied to investigate the performance of
the statically indeterminate truss system in Fig. 2 with members’ area
A = 2500 mm2 and total volume V = 0.0723 mm3. The allowable material
strength is �r ¼ 140MPa: Buckling failures are assumed to be avoided. The
structure is subjected to a set of forces F = 25 kN. The initial value of member
cross-sectional area A and of the material strength �r; as well as the force F, are
assumed as deterministic.

The deterioration process follows the damage model (13), it induces in each
system’s member a reduction of both the cross-sectional area A and material
strength �r of each structural member. Without any loss of generality, in this study
it is assumed that such properties undergo the same damage process:

AðtÞ ¼ A0½1� dðtÞ� �rðtÞ ¼ �r0½1� dðtÞ� ð15Þ

where ‘‘0’’ denotes the initial undamaged state, and the damage rates may be
associated with the aggressiveness of the environment, as well as with the level of
acting stress r with respect to the material strength �r; or n ¼ r=�r:

The results obtained by Monte Carlo simulation will be assumed in the
following credibility analysis as statistical truth, as the true deterioration process.

6 Credibility in Life–Cycle Prediction

The prediction of the failure time of structures subjected to environmental attacks,
usually, is based on monitoring data of several parameters able to describe the
damage evolution over time. However, the physical behavior of a structural system
affected by deterioration is hard to model also if the monitoring is very long and
detailed. Therefore, the prediction can be approached only in probabilistic terms
with all the uncertainty properly modeled.

As shown in the previous sections, the deterioration process of a structural
system in an aggressive environment can be modeled as a transition process
through different states of performance and where the probability of failure is
described as the probability of transition from a given state i into another state
j characterized by a lower degree of performance. The random variable assumed to
describe it was the waiting time sij spent by the system into the state i before
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transition into j. In this study, the state i is the safe state and j the unsafe state. The
transition process will present just two states and sij will be equal to t0, the age of
the system at the instant of analysis. In this case Eq. 11 becomes:

PDt t0j ¼
Fðt0 þ DtÞ � Fðt0Þ½ �

1� Fðt0Þ
ð16Þ

where F(t) is the cumulative distribution chosen to model the waiting time in state
i (safe state) before transition and t0 is the time already spent by the system into
i. Eq. 16 describes the probability to have a failure in the next Dt if no failure
happens until the current instant t = t0.

Of course, the probability PDt t0j depends on the model, F(t0), chosen to model
the failure time of the system. The credibility index D (2.1), here, will have the aim
to measure the error made in the evaluation of the probability (16) in the com-
parison of different models F(t0) with the true process F� .

The proposed procedure uses Monte Carlo simulation to generate a large
sample of failure times. The large population obtained by 5000 simulations can be
considered in statistical way the true failure time process F�. On the basis of F� the
probability P�Dt t0j can be evaluated and assumed as the statistical true process in

credibility analysis.
The large population will be modeled with a theoretical distribution too.

Clearly, the choice of distribution cannot be based only on the data fitting but
require physical knowledge of the phenomenon investigated and of the distribu-
tions in the tails, where usually less monitoring data are present. As already
discussed, Gamma and Weibull distribution seem to be suitable choices to model
the deterioration process of structural systems and elements. The true failure
process is modeled with a Gamma distribution and with a Weibull distribution and,
for both the distributions used, the probability PDt t0j is evaluated. To complete the
analysis, the failure time process is supposed following a Poisson process, there-
fore, it was modeled with an exponential distribution.

For the three distributions: Gamma, Weibull and Exponential, the credibility
index D� is built following Eq. 2. The range of error h in (2) is defined as
h = 0.2�P� where P� is the probability (16) evaluated for the true process F�,
therefore Eq. 2 assumes the form:

D�r ¼ Pr e�r
�

�

�

��ð0:2 � P�Þ
� �

; ð17Þ

where as absolute error ej j is assumed the difference (in absolute value)

e�r
�

�

�

� ¼ P� � Pr ð18Þ

In (18), Pr is the probability (16) evaluated for the models Gamma, Weibull or
Exponential. The probabilities (16) are evaluated for different t0 and Dt = 1 year.

Figure 3 shows the comparison between the probability of failure, PDt t0j ;

evaluated for the models (Gamma, Weibull and Exponential), with respect to
P�Dt t0j ; evaluated for the true process. The radius of each circle is proportional to
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the value of the absolute error ej j: Fig. 3 shows that the error ej j connected with the
Exponential model increases with t0, whereas the errors connected with Gamma
and Weibull are very similar for each t0 considered. Only for the last t0 = 35 years
the Weibull seems to be more reliable than Gamma.

Table 1 shows the values of D�r from Eq. 18, which is the average result
obtained by considering all the t0 investigated.

Table 1 highlights that the Gamma model seems to be the most reliable model
in the modeling of the failure process of deteriorated structural systems.
Conversely, the Exponential model appears to be the worst model between the
three models in competition.

The results shown in Fig. 3 and Table 1 suggest that the Gamma model is the
most reliable model for the failure process. Instead, the interpretation of the failure
process as a Poisson process leads to predictions affected by rather large error.

After this first step of analysis, the question now is: if the prediction is based on
a limited number of monitoring which model is the most reliable? And, which
error is made if the model chosen is wrong?

Supposing that the true process F� is known and that it is a Gamma process;
with a random procedure, a lot of samples of m size will be generated from F� and
modeled with the right model, Gamma, and with other wrong models. The cred-
ibility index D�r , obtained by Eq. 1 or 2 with h = 0.05, and the relative credibility
index D�rs obtained by Eq. 3 will highlight which model will be the most reliable in
the failure time prediction.

Assuming a small error’s interval, h = 0.05, around the true value P�, Fig. 4
shows the credibility of the three different models investigated to predict, for
different t0, the system’s failure in the next Dt = 1 year. This figure shows, it is
evident that the samples drawn by the true process Gamma and models with
Gamma and Weibull lead to very similar values of credibility. On the contrary,
when the samples are modeled with the Exponential, the reliability in prediction
significatively decreases. These results highlight the importance of the knowledge
of the physics of the phenomenon studied and on the theoretical frame of
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distribution’s hazard rate: Gamma and Weibull present a hazard rate function
increasing with time; therefore, the prediction can be very similar for both the
distribution until extreme values of t0 where, instead, the probability could
significantly diverge.

In Table 2 the values of the relative credibility index D�rs obtained by Eq. 3 are
presented. Each time that D�rs [ 0 the r-model is the most reliable in the prediction
of probability PDt t0j :

7 Influence of the Model on Maintenance Strategies

As it is well known, the modeling of a process influences the planning of main-
tenance strategies. Each time the probability of failure reaches a dangerous level,
two maintenance actions are taken in consideration: replacing of the whole
members or repairing of the members heavy damaged (selective maintenance),
however crucial is the prediction of the instant in which one of these actions must
be made. The analysis presented in the previous section has highlighted that the
prediction of the failure in the next year becomes important between 25 and
30 years of system lifetime. To plan maintenance in advance the failure, the
probability PDt t0j is assumed as a dangerous threshold when its magnitude is higher
or equal to n� 10�4 and t0 is the instant in which the failure could happen.

Table 1 Credibility index D�r evaluated for the Exponential, Weibull and Gamma models in
comparison with the true process F� (h = 0.2). For each model the D�r represent the average
value obtained considering all the t0 investigated

r-model D�r
Exponential 0.00
Weibull 0.36
Gamma 0.54
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Table 3 collects the data corresponding to of the dangerous threshold PDt t0j ¼
n� 10�4 for each model.

When PDt t0j reaches the dangerous threshold, the maintenance can be applied to
improve the performance of the system.

Maintenance can be applied:

• on the whole system. In this case the system comes back into its initial state of
performance, but, usually, without reaching the characteristics of the new sys-
tem, so the new failure will happen after a time t0 different by the t0 of the
previous failure.

• only on some members (selective maintenance). In this case the system
improves its performance but it does not reach the initial state of performance,
therefore, so the new failure will happen after a time t0 different by the t0 of the
previous failure.

The scenario here investigated involves the improvement of performance of the
whole system. In Fig. 5 the maintenance scenarios of the true process and of the
Gamma and Weibull models are plotted.

For the Exponential model, the choice of the maintenance instant cannot be
decided on the basis of the constant PDt t0j : The choice must be based on expert
judgments (here t0 = 20 years will be assumed).

As it is well known, each maintenance scenario must be associated to main-
tenance cost and the convenience of the choice must take into account this
important aspect. For example, for a prescribed maintenance scenario, the total
cost of maintenance Cm can be evaluated by summing the costs Cq of the indi-
vidual interventions [2, 17],

Table 2 Relative credibility index D�rs; r – model: Gamma, s – model: Weibull, Exponential,
evaluated for Dt = 1 year and different t0 (h = 0.05)

r – model s – model D�rs

t0 = 25 t0 = 27 t0 = 29 t0 = 31 t0 = 33 t0 = 35

Gamma Weibull 0.05 -0.01 0.12 0.19 -0.02 0.21
Gamma Exponential 0.05 0.03 0.19 0.31 0.23 0.21

Table 3 Instant t0 in which
the probability PDt t0j becomes
equal or higher than n� 10�4

for the true process obtained
by a Monte Carlo simulation,
and for all the models
investigated

Model PDt t0j t0(years)

True process 2.22E-04 25
Gamma 2.63E-04 24
Weibull 1.82E-04 19
Exponential 3.11E-02 1
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Cm ¼
X

n

q¼1

Cq

ð1þ vÞtq
¼
X

n

q¼1

C0q ð19Þ

where the cost Cq of the qth rehabilitation has been referred to the initial time of
construction by taking a proper discount rate of money v into account [17]. Here,
the cost Cq of the individual intervention is assumed as follows:

Cq ¼ Cf þ
X

m

k¼1

dk � Vk � cqk ð20Þ

where Cf = aC0 is a fixed cost computed as a percentage a of the initial cost C0, dk

is the damage index of element k of the structural system, Vk is the volume of
element k, and cqk is the volume unit cost for restoring the element k. Therefore,
the total cost C will be considered as the sum of the initial cost C0 and the
maintenance cost Cm, defined in (19).

Based on this cost model, the maintenance scenarios previously introduced are
now compared with each other under the economic point of view.

Figure 6 shows the total cost C, computed as the sum of initial cost C0 and
maintenance cost Cm, of the scenario (2): Weibull model, scenario (3): Gamma
model and scenario (4): Exponential model, normalized to the cost C of scenario
(1): true process. All normalized costs are evaluated for different discount rates m,
and a = 0 of the fixed cost of maintenance Cf = aC0 (no fixed cost admitted). The
primacy in economic terms of scenario (3) over scenario (2) and (4) is evident for
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all the discount rates m. For discount rate m\ 0.04 scenario (3) seems to be more
convenient even then the true process (scenario (1)).

The influence of the fixed cost a on the total costs of maintenance is shown by
Fig. 7 where the comparison between scenario (3), normalized with scenario (1), is
made for different values of a. The differences recorded are not so heavy, however
if a increases the total cost increases for each value of discount rate considered.

8 Conclusions

The prediction of the failure time of a structural system affected by deterioration
due to environmental aggression cannot be approached in deterministic way. Each
probabilistic approach suffers of uncertainty. Two kinds of uncertainties reside in a
probabilistic model: epistemic and aleatory. Both these uncertainties can be
reduced but cannot be eliminated. Epistemic uncertainty concerns the modeling of
a process. For example, the wrong modeling of a failure process can suggest
inadequate strategies of maintenance, therefore, it is crucial to reduce the episte-
mic uncertainty in the modeling of any kind of phenomena.

In this chapter, the influence of the epistemic uncertainty on service life
prediction has been investigated with the application of a relative criterion of
validation introduced by Grandori et al. [1] and based on an estimator called
credibility.

To investigate the reliability of the probabilistic modeling, the main features of
a procedure for life-cycle reliability assessment and maintenance planning of
deteriorating structural systems have been presented. This procedure is based on
an effective modeling of structural damage and takes advantage from the

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

0.00 0.02 0.04 0.06 0.08 0.10

Discount rate 

N
o

rm
al

iz
ed

 c
o

st
  c

(1)

(2)

(3)

(4) 

Fig. 6 Total cost C,
computed as the sum of initial
cost C0 and maintenance cost
Cm, of the scenarios (2)
Weibull (3) Gamma, and (4)
Exponential normalized to
the cost C of the scenario (1)
true process, versus the
discount rate m, for a = 0 of
the fixed cost of maintenance
Cf = a C0 (no fixed cost
admitted)

634 E. Garavaglia



generality of the Markov renewal process assumed to model the deterioration
process when it can be dealt as a transition process between performance states. To
support the s-MP with many experimental data, a Monte Carlo simulation is
adopted. The use of Monte Carlo simulation is finalized to collect many samples
representing a significant population for a probabilistic approach.

In the credibility analysis, the results developed with the Monte Carlo simu-
lation and concerning the failure time process has been assumed as the true
process. Different models were put in competition with each other to identify
which of them was the most reliable in the modeling of the failure process
investigated.

The small size of the samples experimentally collected can compromise a
probabilistic analysis of their time variant behavior. Following the procedure
introduced, a credibility analysis using small samples is made to investigate the
magnitude of the epistemic uncertainty in presence of small populations.

In the chapter the comparison of different scenarios of maintenance is
approached. In each scenario, the maintenance is always made on the whole
system. The results prove that the failure process modeled following the knowl-
edge on the physic of the phenomenon investigated is reliable and the error made
is limited. Moreover, to make maintenance before reaching failure threshold can
be convenient until the fixed costs of maintenance do not become important.
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Simulation of Blunt Defect Behaviour
in a Thin Walled Cylinder
for the Development of Structural Health
Monitoring Techniques for Pipeline
Repairs

M. A. Murad and F. P. Brennan

Abstract The objective of this chapter is to analyse numerically the effects of
artificial notch defect size on a pressurised straight pipe (thin walled cylinder)
subjected to limited testing pressures within an elastic working region. The chapter
reports part of a wider study into the use of composite wrap repair techniques to
extend the fatigue life of pipelines containing flaws and cracks. The methodology
employed has been to verify the numerical stress analysis using strain gauge
measurements made before during and after application of the composite repair.
The measurement system will be further developed as a permanently deployed
structural health monitoring system to ensure structural integrity during service.
Finite element analysis using ABAQUS was employed to simulate stress and strain
behaviour of the blunt defects. A comparative study was carried out in terms of
stress concentration factor, relative notch length, Poisson’s ratio and loading. The
chapter reports the parametric analysis of the flaws and of the physical notched
specimen.
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1 Introduction

In oil and gas applications, pipes containing flaws and cracks detected during
inspection are sized and assessed using fracture mechanics techniques [1].
In order to assess whether or not a flaw is critical, the structural integrity
engineer needs to understand the ability of the structure to resist further loading
and the critical amount of damage that the structure can sustain before
remedial action is required [2]. If repair is required, then composite materials
may be used to contain flaws or mitigate against other mechanical damage in
pipelines [3].

The flaw type considered here is a blunt flaw (notch) due to local wall
thinning caused by erosion or corrosion. The presence of a notch in a structural
system is not only a common occurrence in engineering but any geometric
discontinuity can initiate a surface crack due to the stress concentration effects.
The methodology for strength and fatigue life assessment of notched components
is well known [1].

It is important to understand this notch effect in terms of stress concentration
factors (SCFs). SCFs are normally obtained analytically from elastic theory,
computationally from Finite Element Analyses (FEA), and experimentally using
methods such as photoelasticity or strain gauges [4]. Thus, by conducting a three-
dimensional (3D) FEA, the elastic stress concentration factor for a pressurised pipe
with a circumferentially arc-shaped notch on the external surface was determined
in this study as a precursor to further FEA analysis of the stress–strain distribution
in the composite based pipeline repair. Knowing the external loading, the stress
concentration factor can be obtained in the 3D pipeline repair as a function of
defect geometry and Poisson’s ratio [5]. The effect of stress gradient due to dif-
ferent sizes of notch is also presented.

This geometry presents an interesting biaxial situation changing in signifi-
cance with notch length and depth and future experimental work will be limited
to only a small number of configurations. The FEA model once validated will
allow the study of the biaxial SCFs so that an optimum repair scenario can be
investigated.

Nomenclature L = Notch length t = Nominal thickness

L/t = Relative notch
length

d = Defect depth P = Internal pressure

rh
max = Maximum hoop

stress
rh

nom = Nominal hoop
stress

Kh
t = Stress concentration factor based on

hoop stress
ra

max = Maximum axial
stress

ra
nom = Nominal axial

stress
Ka

t = Stress concentration factor based on
axial stress
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2 Geometry and Finite Element Analyses

An experimental test rig configuration fabricated from API 5L Grade B carbon
steel pressurized pipe containing artificial arc-shaped notches (machined defects)
within two zones is illustrated in Fig. 1. The physical experiment and test
parameters are described in Ref. [6].

This chapter only presents the preliminary finite element work on the unre-
paired notches. The analysis assumes a perfectly straight arrangement without the
effect of bending moments induced by misalignment. Loading is solely by internal
pressure within the elastic working region. Symmetry was applied as shown in
Fig. 2. Point 1 (at the root notch) and point 2 (away from the discontinuity), as
shown in Fig. 3, indicate the local and remote reference stress positions respec-
tively and partitioning and seeding were used to gain additional control over the
mesh generation process [7]. Five FE models of various arc-shaped notches are
shown in Fig. 4 and Table 1. The notch length is denoted L, nominal thickness, t,
and defect depth, d, respectively. The nominal thickness is 8.2 mm and defect
depth, d is 3.5 mm and remains constant throughout the whole process.

Element types including eight-node hexahedrons led to more reliable FEA
solutions. There are many reasons why the eight-node hexahedral elements pro-
duce more accurate results than other elements (e.g. four-node tetrahedrons).
These elements capture the singularities of the model at much less cost since they
consume much less computer time and memory compared to the processing of
higher order of Polynomial (p) or making element size smaller (h) or both. Hence,
in the present work, the linear eight node hexahedral elements (p = 1) with
reduced integration (C3D8R) were used. For example, for the N40 model, 4452

Fig. 1 The experimental test set up using strain gauges technique within a composite pipeline
repair
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elements up to 14504 were used and resulting the smallest element size
(h) = 0.996 mm. Although tetrahedral elements are linear they were not used in
this FEA model. They can have more discretization errors since they have a
constant strain [8].

Fig. 2 A finite element model; the location of points used in stress concentration factors
calculation

Fig. 3 Cross sectional view of the model that illustrates the smallest elements
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Fig. 4 The detailed dimensions of different arc-shaped notch sizes

Table 1 Convergence tests on various sizes of notch; test pressure at 50 bar

No of elements rh
max rh

nom Kh
t ra

max ra
nom Ka

t

Relative notch, L/t = 0.85 (N7); Arc shaped (semi circle)notch
4576 90.86 62.61 1.45 55.45 15.44 3.59
5120 90.94 61.36 1.48 55.65 15.37 3.62
11872 90.86 61.23 1.48 55.47 15.51 3.57
14000 90.82 61.25 1.48 55.33 15.63 3.54
Relative notch, L/t = 4.88 (N40); Arc shaped notch
4454 98.04 66.86 1.61 48.69 17.80 2.73
6800 98.94 60.99 1.62 49.94 17.69 2.82
11664 100.73 61.01 1.65 56.21 17.95 3.13
14504 100.74 60.90 1.66 56.18 17.73 3.17
Relative notch, L/t = 7.32 (N60); Arc shaped notch
3840 104.98 61.76 1.70 50.05 19.46 2.57
7200 105.04 61.82 1.70 48.91 19.32 2.53
11520 105.07 61.59 1.71 48.54 19.86 2.44
14190 105.08 61.75 1.70 48.31 19.77 2.44
Relative notch, L/t = 10.98 (N90); Arc shaped notch
3840 107.88 61.49 1.75 42.89 22.53 1.90
7200 107.31 61.47 1.75 41.34 22.36 1.85
11520 107.17 61.21 1.75 40.91 22.33 1.83
14448 107.14 61.15 1.75 40.78 22.35 1.83
Relative notch, L/t = 12.20 (N100); Arc shaped notch
3936 108.17 61.17 1.77 40.79 23.65 1.72
7200 107.29 61.08 1.76 39.22 23.43 1.67
11520 107.10 60.81 1.76 38.80 23.40 1.66
14448 107.10 60.75 1.76 38.68 23.42 1.65
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3 Results

3.1 Internal Pressure and Stress Concentration

For a pipe under internal pressure, the hoop stress, rh; and the axial stress, ra are
the two major stress components that are always considered. In this FE model, the
maximum hoop and axial stresses were taken at Point 1 and nominal hoop and
axial stresses were taken at Point 2 which gives the stress concentration factor, Kt

by

Kh
t ¼

rh
max

rh
nom

and Ka
t ¼

ra
max

ra
nom

The problem of SCF for circumferentially notched pipe has been examined by
several authors [9], yet the study of arc-shaped notches in a pipe has not been
carried out so far. The outer radius of the external notch is difficult to obtain
because of the nature of its geometry and this makes comparison against other
types of notches (e.g. those given in Ref. [4]) impractical. Prior to making
experimental measurements, confidence can be attributed to the FEA by consid-
ering the results of the parametric variations and using engineering experience and
judgment.

3.2 Convergence Study

Convergence tests were carried out on all notch geometries as represented in
Table 1 and Figs. 5 and 6. These show all model stress concentration factor results
converging, based on both hoop and axial stresses as the number of element

Fig. 5 Convergence test for
SCF: notched pipe under
hoop stress
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increases and the size of element becomes smaller. Notch N100 has the highest Kh
t

(i.e. 1.76) and the lowest Ka
t (i.e. 1.65).

Notch N100 shows a similar trend, as the Poisson’s ratio increases, as shown in
Table 2 and Figs. 7 and 8. Due to the increased biaxial effect, all notches show a
converging increment in SCF values based on hoop stress. It can also be observed
that for notch N100, the SCF based on both stresses remains constant as the
Poisson’s ratio increases. So, it can be concluded, as expected, that the Poisson’s
ratio effect has a lesser influence on stress concentration factors if the arc-shaped
notch is made longer.

Table 3 and Fig. 9 show that as the relative notch increases, Kh
t increases and

Ka
t decreases. Figure 10 confirms that the increasing pressure in the elastic

working region has no influence in the increment of SCF values for any type of FE
model.

Fig. 6 Convergence test for
SCF: notched pipe under
axial stress

Table 2 Poisson’s ratio influence on hoop stress concentration of various notches; pressure
at 50 bar

m N7 N40 N60 N90 N100

Kh
t

0.26 1.42 1.62 1.68 1.74 1.75
0.30 1.48 1.65 1.70 1.75 1.76
0.34 1.55 1.70 1.73 1.76 1.77
0.38 1.63 1.74 1.75 1.78 1.78
Ka

t

0.26 3.65 3.29 2.51 1.83 1.64
0.30 3.54 3.17 2.44 1.83 1.65
0.34 3.46 3.07 2.39 1.82 1.66
0.38 3.39 2.99 2.35 1.81 1.66
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Fig. 7 Variations of the
stress concentration based on
hoop stress against increasing
Poisson’s ratio

Fig. 8 Variations of the
stress concentration based on
axial stress against increasing
Poisson’s ratio

Table 3 Loading influence
on stress concentrations of
two types of notches

P Kh
t Ka

t

N7 N40 N7 N40

10 1.48 1.66 3.54 3.17
20 1.48 1.66 3.54 3.17
30 1.48 1.66 3.54 3.17
40 1.48 1.66 3.54 3.17
50 1.48 1.66 3.54 3.17
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4 Conclusions

A biaxial notch situation has been studied in an internally pressurised pipe as a
precursor to a repair method study. Without published results to compare with,
results have been examined to consider whether or not the FEA model is acting
sensibly. As predicted the relationship between hoop and longitudinal stress
concentration factors varies with notch geometry and Poisson’s ratio effectively
altering the degree of biaxiality. Future work will be to validate the models against
strain gauge results and then to apply a composite wrap repair technique.

Fig. 9 Effects of notch
length to hoop and axial
stresses

Fig. 10 The influence of
increasing pressure in the
stress concentration study
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High-Low Sequence Loading Effect
on the Crack Growth Rate using UniGrow
Model

N. Nik Abdullah, Mohammad Hadi Hafezi and S. Abdullah

Abstract Fatigue crack growth (FCG) behaviour under variable (VA) amplitude
loading is a subject that has been studied since 1970, with Elber’s contribution to
fracture mechanics. Simple VA load sequences are most commonly used to study
the load interaction effect phenomenon. Changes in the loading amplitude, so-
called high-low sequence loading experiments, can introduce profound effects on
fatigue crack growth. The purpose of this research is to test the applicability of a
unified two-parameter FCG model—called UniGrow model—for the above
mentioned loading conditions. Finally, the authors have made efforts to identify
some uncertainty parameters to evaluate the prediction accuracy of the model.

Keywords Fatigue crack growth � Load sequence � UniGrow model

1 Introduction

Fatigue crack growth models under variable amplitude (VA) loading with
consideration of the preceding cyclic loading histories (memory effects) caused by
various load sequences have had a high significance for investigation among
researchers during the past decade. At the same time, FCG models under VA
loading are involved in load interaction effects. As a result, control on the retar-
dation and/or acceleration of fatigue crack growth rate (FCGr) has been a
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challenging subject. In other words, understanding the transient effect is important.
A new achievement in this area is represented by Glinka and Noroozi’s so-called
UniGrow model [1]. This chapter is intended to show the sensitivity of UniGrow
model in different load sequences mathematically, as an introduction for appli-
cability of the UniGrow model to reliable life prediction of components subjected
to random loads. A simple deterministic loading function as an input for the
UniGrow model was defined, with the aim of investigating the response of the
model to probable analysis outcomes. As a reasonable assumption, we have taken
constant frequency, with variations only in amplitudes. High-low sequence effects
have been investigated. Study on the behaviour of fatigue crack growth rate can be
an introduction to extend the scope of the work to application of reliability
techniques. These are involved in random variables which are applied to calculate
local stress/strain at the crack tip. It is clear that Noroozi’s work has shown load
interaction effects with experimental verification on metallic materials. However,
this research is made in relation to the use of UniGrow for load sequences studies.
The rationale is that a few models can explain the load sequence effect. So this is
the first time the authors have tried to do this using the UniGrow model.

Mikheevskiy [2] presented a stepwise procedure for fatigue crack growth
analysis based on the UniGrow fatigue crack model. Significant questions have
been raised which have prompted the author to carry out this research into what
will happen if the UniGrow model is used for investigating the successive block of
cycles. We selected AISI 304 stainless steel, which belongs to a class of 300-type
austenitic stainless steels, widely used in engineering applications. Monotonic
material properties and Coffin–Manson fatigue material properties have to be taken
from available sources [3]. These properties are listed in Table 1. Constant
amplitude fatigue crack growth data obtained at several mean stresses needs to be
selected as a base for subsequent fatigue crack growth and fatigue life analysis.
One important parameter in the UniGrow model is elementary material block or
notch tip radius. The magnitude of the elementary material block size parameter q�

needs to be obtained according to three methods, which are suggested by Mi-
kheevskiy [2]. The elementary material block size q� can be determined for each
particular point of the experimental fatigue crack growth rate curve. The iteration

Table 1 Monotonic and Fatigue Material Properties

Elastic modulus (MPa) E 121000
Poisson’s ratio v 0.3
Fatigue strength coefficient (MPa) r0f 1276

Fatigue strength exponent b -0.139
Fatigue ductility coefficient e0f 0.174

Fatigue ductility exponent c -0.415
Cyclic strength coefficient(MPa) K 0 2275
Cyclic strength hardening exponent n0 0.334
Notch tip radius or elementary material block size (m) q� 1.1 9 10-05

1.45 9 10-04
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procedure is complete when approximately the same value of q� parameter is
obtained for all experimental data points. Determination of q� parameter that is
initially unknown is an important factor in the accuracy of the UniGrow model.
But because the main focus in this chapter is to investigate load sequence effects,
and we would like to consider parameter q� as a random variable, it will be logical
if we just assume the parameter q� in the range for steel materials. The present
work covers the addition of further loading condition information to the UniGrow
model proposed by Noroozi et al. [4], in such a way that FCG relations are applied
for a complex load spectra. Traditionally, the crack length vs. number of cycles to
failure are plotted. As mentioned briefly above, the problem involved some
approximate calculations, and most importantly, a complete understanding of all
parameters used in the equations. Methodologies of calculation, mathematical as
well as physical, and mechanical interpretation are both important. This is a pri-
mary objective, and will help in proving the UniGrow model.

2 Fatigue Crack Growth Simulation

The analytical concept is selected based on the framework which has been rep-
resented by authors in another work [5]. In fact, this framework has obviously
decreased the degree of difficulty for analyses of fatigue crack growth model under
variable amplitude loading conditions. All stages of this study have been carried
out based on the following stepwise procedures: Material selection and specimen
geometry, Loading conditions (load spectra), Data collection, Using UniGrow
model, and Results and discussion respectively.

2.1 Material and Specimen Geometry

The material used in this study is stainless steel 304. A lot of work has been done
in the past on crack growth behaviour in stainless steel 304, which is used for high
temperature components. We are interested in analyzing components under as
realistical as possible loading conditions, including mixed mode. That is to say,
fatigue and creep modes for fracture in a high temperature environment. The
reasons for choosing this material can be listed as follows:

(1) Welding: Excellent weld ability by all standard fusion methods, both with and
without filler metals

(2) Heat resistance: Good oxidation resistance in intermittent service to 870�C and
in continuous service to 925�C.

(3) Corrosion resistance: Excellent in a wide range of atmospheric environments
and many corrosive media.

Table 1 shows the material property values which will be needed for
the UniGrow model calculations. The selected geometry—used successfully in
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South Korea fatigue crack growth tests [6]—is a compact tension specimen [7]
with a width of 50 mm and a thickness of 12.5 mm.

2.2 Loading Conditions (Load Spectra)

It has been shown by a number of researchers that the application of a high-low
sequence loading consisting of two loading steps with higher loading amplitude in
the first step, and lower loading amplitude in the second step, can cause noticeable
effects in fatigue crack growth rate. In our case, the four steps have the same
R-ratio of 0.6. The load amplitude is 1.2 kN in the first step, 0.72 kN in the second
step, 0.432 in the third step and 0.2596 in the last step. Figure 1 shows an illus-
tration of high-low sequence loading histories, with identical R-ratio of 0.6.
Table 2 lists the details of load generation which were conducted to study the
high-low sequence effect.

The sequence load effect perturbs steady state fatigue crack growth conditions and
affects the growth rates by retarding or accelerating growth. Understanding these
transient effects is important for the reliable life prediction of a component subjected
to random loads. As an example, in crack propagation experiments conducted on
6061-T6 al alloy by Kumar [8] in the low–high sequence, acceleration is observed in
the crack growth rate. For the high–low load sequence, retardation was observed in
the crack growth rate. To give another example, as Kalnaus et al. [9] has mentioned:
‘‘in a two-step high-low loading experiment, the first loading step has significant

Fig. 1 Schematic high-low
sequence loading identical R-
ratio of 0.6

Table 2 Four succesive block of cycles, identical R-ratio of 0.6

f (Hz) R (ratio) DP1/2(kN) DP2/2(kN) DP3/2(kN) DP4/2(kN)

0.05 0.6 1.2 0.72 0.432 0.2592
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influence on the subsequent crack growth in the second loading step, if the minimum
load or the R-ratio is the same in the two loading step’’.

2.3 Stress Intensity Factor

The strain-based approach is still used in many situations. In fact the application of
fracture mechanics to analysis of fatigue crack growth comes from the strain-based
approach. Fracture mechanics is a most promising approach to assess sequence
load effects. In particular the stress intensity factor (SIF) used in the regime of
linear elastic fracture mechanics has been applied. The stress intensity factor for a
compact tension specimen [7] is given by:

K ¼ PFðaÞ
ðBW0:5Þ ð1Þ

Where

a ¼ a

w
; FðaÞ ¼ ð2þ aÞð0:886þ 4:64a� 13:32a2 þ 14:72a3 � 5:6a4Þ

ð1� aÞ1:5
ð2Þ

and a, W, B are the crack length, specimen width and thickness, respectively, and
P is the applied load. Using the formulation DKappl ¼ Kmax; applð1�RÞ in order to
calculate the applied stress intensity is the best way. Note that for analysis in high
stress ratios—for stress ratios more than 0.5—the residual stress effect can be
ignored. On the other hand, the residual stress intensity will be zero at the crack
tip. This means the total value of stress intensity is equal to the applied value. This
point has been clarified in the following discussion regarding the UniGrow model
and the principles used in this model.

3 Discussion on UniGrow Model

As could be found in the original work by Noroozi et al. [4], the two-parameter
fatigue crack model is based on the following assumptions. In relation to using
Coffin–Manson in the UniGrow model, the question is what will influence the
accuracy of the model. As we know, Coffin–Manson does not show the mean-stress
effect. In response to this question, let us examine some phenomenological reasons.
First, macroscopic phenomenological equations such as Coffin–Manson strain life
approach and/or Smith–Watson–Topper (SWT) equation, elaborated in [10]
are ways to interlink fundamental concepts to give engineering solutions. Second,
the accuracy of the UniGrow model does not depend on the Coffin–Manson strain
life approach. As Noroozi mentioned, it (Coffin–Manson) has been used only to
derive the form of the UniGrow model. The main feature of the UniGrow model is
the correct estimation of residual stresses produced by all previous loading cycles
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and corresponding residual SIF, because this becomes one of the most important
and complicated parts of the UniGrow model. Moreover, two models can be used
to show the mean-stress effect. The first one is the closure model and the second is
the two-parameter model. Recent experimental and analytical evaluation of crack
closure has confirmed its negligible contribution to crack growth, and has dem-
onstrated that changes in the stress ahead of the crack tip are more important than
closure behind the crack tip [11]. However, for crack growth under constant-
amplitude loading, the weakness is in those methods that changed from local to
remote methods, and not the crack-closure concept itself. On a side note, the load-
shedding test method in ASTM E647 causes remote closure, as may happen under
variable-amplitude loading. Yamada found that remote crack-mouth-opening-
displacement (CMOD) and/or Backface Strain (BFS) gauge records are satisfac-
tory at low stress ratios (R), but at high R the remote methods do not measure the
correct opening loads [12]. They have gone back to a local method, similar to what
Elber originally used. In the UniGrow model, SWT parameter is used to accu-
mulate fatigue crack growth in each cycle, and the strain–stress material behaviour
was modelled by the Ramberg–Osgood expression (for each particular material
used in analysis). Therefore, the following phenomenological assumptions are
reasonable:

• Ramberg–Osgood rule for stress/strain behaviour
• Neuber plasticity rule for calculation of stress/strain field in the crack trip
• Coffin–Manson strain life approach to derive a form for UniGrow expression
• Smith–Watson–Topper fatigue model to determine the fatigue damage accu-

mulation at the crack tip

Using strain-life test data which is obtained with various mean stress damage
parameters (SWT), the following expression can be derived [13]. Equation (3) has
been used to handle mean-stress effects. It is shown to correlate mean-stress data
better for a wider range of materials and is therefore regarded as more promising
for general use. Monotonic material properties such as the modules of elasticity,
E and the Poisson ratio, v and cyclic stress–strain material properties such as the
cyclic hardening coefficient, K 0 as well as cyclic strain hardening exponent, n0; and
Coffin–Manson fatigue material properties have to be provided for simulations
using UniGrow model.

ra
max

Dea

2
¼

r0f

� �

E
2Nf

� �2bþr0f e
0
f 2Nf

� �bþc ð3Þ

Where

rmax ¼ rm þ ra ð4Þ

In this chapter, to collect the constant amplitude FCG data, the authors tried to
use the literature review. In order to do that, the range of the applied SIF reported
by [6] for the SS 304 has been used. It was also necessary to collect sufficient data
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to explain the fatigue behaviour of material around threshold region—elastic
fracture mechanics. Besides, in Appendix I, all formulations used in the UniGrow
model are sequenced.

In using the UniGrow model, it was assumed that the material at the crack tip
was of discrete composition, and the material block size was assumed to be an
inhomogeneous block, of average dimension, but which still retained the behavior
characteristics of the bulk material. Thus, The crack tip also was modeled as a
notch with finite radius of q�: This assumption has been indicated in Fig. 2
whereby the fatigue crack growth rate and fracture mechanics are related [14]. The
determination of elementary block size is most important to the effectiveness in
the UniGrow model, because the accuracy of the model strongly depends on that.
The authors take the value of parameters based on Noroozi’s work. This will not
be fully accurate, but because the goal is to investigate the sensitivity of this model
to sequence loading, it will suffice for our purpose.

There are some complexities in calculating elementary material block size.
The size of the elementary material blocks q� has an effect on the calculated
crack tip residual stresses rr and on the resulting residual stress intensity factor.
Consequently, the residual stress intensity factor, when factored into the applied
value of stress intensity factor (SIF), influences predicted fatigue crack growth
rate. Besides, the reversed plastic deformation around the crack tip, induced at
relatively high stress ratio R [ 0.5 and relatively small stress intensity ranges
(near threshold FCG), are usually not sufficient to produce compressive residual
stresses. Therefore, the residual stress intensity factor is close to zero (Kr = 0) and
the total SIFs are the same as the applied ones (See Sect. 3, Appendix I).

4 Results and Discussion

Regarding the crack front passing through a component from a cross section of
micro crack, and the modeling of material in the UniGrow feature based on
parameter q� as a bulk property, this model has good potential for inititation

Fig. 2 Relationship between
fatigue and fracture Source:
Ref. [14]
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analysis, and it is well known that ‘‘in the crack initiation period, fatigue is a
material surface phenomenon’’. But, attention should be given to something else as
well. First, in some structural applications, the fatigue threshold is very important,
and the dependency of determination of q� on this data can be a source of
uncertainty in the prediction process. The smallest change in the value of
parameter q� will make a tangible change in the fatigue life prediction. Figure 3
shown the results when the parameter q� are taken 13 times lower. Secondly,
cyclic strain fields in the plastic zone are greatly influenced by crack closure, so
the model is missing a major contributor to cyclic damage in a basic sense. This
work is approached with consideration of different mean stresses. However, it was
based on using the identical R-ratios in constant-amplitude of each block of cycles.
Table 3 shows different numbers of cycles in the same stress–strain field (equality
in the applied SIF range) in the transition lengths. Physically this phenomeonon is
called retardation. Another conclusion is that in the fourth step we can observe
many more cycles to failure in the same crack length by comparing to other step
loadings. This means that when the amplitude of loads is decreasing in relation to
prior high amplitude loads, a retardation can be observed in fatigue propagation.
Fatigue crack growth data for stainless steel as a function of the applied stress
intensity factor using the UniGrow model are shown in Fig. 4. But the load
interaction effects are not considered. The range of rates is marked for four blocks
of cycles one-by-one. Using the regression technique the distribution of data is
captured in the Paris law form. By comparing Figs. 3 and 4 it was found that,

da/dN = 3E-11( kappl)5.3984

1.E-07

1.E-06

1.E-05

1.E-04

1 10 100
da

/d
N

 (m
/c
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le

s)

SS 304
-05

4 successive block of cycles
Without load interaction effects 

Fig. 3 Fatigue crack growth data calculated using the UniGrow model for the stainless steel as a
function of the applied stress intensity factor. Block of cycles are considered separately without
load interaction effects, the parameter q� is assumed 11 micrometers
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surprisingly, the FCG exponent of data was constant m = 5.3984, and the FCG
parameter, C is changed. It can be understood that in the same load intensity range
the rates are constant, this means the model dose not make sense when only the
current number of cycles to failure are assumed to calculate the rates. This is
number of cycles that are needed for the crack to propagate to a certain incre-
mental length. This number of cycles should be added to the next corresponding
number of cycles to failure in the new position of the crack, and then the rates can
be calculated.

Table 3 Material behaviour in the pre-cracked length and transition lengths before and after
immediately after changing the intensity of loads. Number of cycles to failure of the material
element Nf and the local stress–strain values are summarized

a (mm) P(kN) Nf Kmax MPa:
ffiffiffiffiffiffiffiffi

mm
p

ð Þ Dk MPa:
ffiffiffiffiffiffiffiffi

mm
p

ð Þ De rmax (MPa)

22.7 6 9344 17.844 7.137 3.19 9 10-3 547.6
29 B 6 1050.5 26.75 10.7 4.78 9 10-3 670.6
29 A 3.6 271962.3 10.7 4.282 2.87 9 10-3 519.3
34.7B 3.6 612882.2 26.48 10.6 4.74 9 10-3 667.3
34.7A 2.196 630359.2 6.42386 2.569 2.84 9 10-3 516.7
38.9B 2.196 887117.9 26.55 10.62 4.75 9 10-3 668
38.9A 1.296 904353.9 15.93 6.37 2.85 9 10-3 517.37

A and B are denoted as ‘‘After’’ or ‘‘Before’’ status

da/dN = 4E-10( kappl)5.3984
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-04

Fig. 4 Fatigue crack growth data calculated using the UniGrow model for the stainless steel as a
function of the applied stress intensity factor. Block of cycles are considered separately without
load interaction effects, the parameter q� is assumed 145 micrometers
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Figure 5 shows the crack length from the notch root for a given loading con-
dition using the UniGrow model. Regarding the similarity approach, the fatigue
crack growth data for stainless steel as a function of the applied stress intensity
factor using the UniGrow model is shown in Fig. 6. The load interaction effects
can be felt where in the same applied SIF range the rates are different in different
load steps. Although the load intensity increases in each load step, the rates
decreases. It should be noted that in the lower amplitude of loading the rates
approaches to a constant value, which means that physically, the propagation of
the crack is slow. The FCG rates vs. crack length are plotted in Fig. 7. The crack
length in each steps and the retardation can also be understood from this figure.

In a simulation program we defined a constant interval for crack propagation as
0.1 mm. It has been observed that we have sufficient data from a numerical point
of view. But why cannot enough data be observed in all three regions of fracture.
The answer is because the mechanism of failure depends on the number of cycle to
failure. In fact, this is also the nature of the failure mechanism in the UniGrow
model. A deeper look can refer to the choice of analytical concept [5] that is used
to derive the final expression of the fatigue crack growth model. However,
although the investigators tried to study all aspects, in some areas they were also
forced to simplify. This does not mean that it is wrong, but also it is proof that we
need a new way to cover all the reasonable possibilities. Therefore, the problem
will involve the study of the threshold effect and some other complicated aspects,
if we intend to complete the process of fatigue failure. If we have enough R-ratio
data all the way from very low (near threshold DK), to very high DK, we can make
a complete plot of DK � Kmax: We should pick out the DK data at each R-ratio and
plot DK vs. Kmax. It is predicted that we can see the L-shape diagram, just as

20

25

30

35

40

45

0 200000 400000 600000 800000 1000000 1200000

a 
(m

m
)

N (Number of cycles) 

Step1

Step2

Step3

Step4

SS 304
ρ * = 1.45 E-04 (m)
4 Succesive block of cycles 
With load interaction effecs

Fig. 5 Crack growth length calculated using UniGrow model from the notch root for a given
loading condition

656 N. Nik Abdullah et al.



Sadananda et al. investigated [11]. This is a link between unified approach [11] and
UniGrow model [4]. Thus, the threshold relationships with Kmax that are affected
with residual stress effect will be clear.
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5 Conclusion

The present work tested the 4 successive block of cycles using the UniGrow
model. The crack length vs. number of cycles to failure and FCG rates vs. applied
SIF range are plotted. For the high-low load sequence, significant retardation was
observed in the crack growth rate. In the UniGrow model the determination of
parameter q� can be investigated as a most uncertain value in calculation.
Attention must be given to the size of this parameter, as it will directly influence
the accuracy of the UniGrow model.
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A.1 6 Appendix I—UniGrow FCG relations

A.1.1 Bi-axial Neuber’s Rule

It is shown that Neuber’s rule is actually a particular case of equivalent strain
energy density (ESED), namely when the dissipation of the plastic strain energy at
the notch root is neglected in ESED method.

1. Plane stress

The normal and shear stress components in the Z-direction are zero or negligible.

2. Plane strain

Plane strain state is obtained if strains in the z direction are precluded.

Plane stress assumptions were made for all calculations. The relationship
between elastic behaviour and local (actual) stress and strain is given by:

reee ¼ raea

A.1.2 Elastic–Plastic Material Behaviour at the Crack Tip

We studied the Elastic–Plastic material behaviour at the crack tip. There are many
important classes of materials that are too ductile to permit description of their
behaviour by LEFM: the crack tip plastic zone is simply too large in comparison to
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the cracked body. For this case we must apply EPFM. Therefore, the maximum stress
and strain range at the crack tip can be determined in a closed form given by [2] :

ra
max ¼

K0ð Þ
1
n0 wy;1

� �2

2pEq�

" #

n0
n0þ1

K2
max; tot

� �
n0

n0þ1

Dea ¼ 1
E

DKtot � wy;1
ffiffiffiffiffiffiffiffiffiffi

2pq�
p

� �

A.1.3 Calculation of Stress Intensity Factor for High Stress
Ratios (R > 0.5):

For some materials, there are some small differences between R = 0.5 and higher/
lower R. However, special consideration was made in order to omit the residual
stress intensity factor. Thus, the stress intensity factor is given by [4] :

Kmin; tot ¼ Kmin; net ¼ Kmin; appl

Kmax; tot ¼ Kmax; net ¼ Kmax; tot

DKtot ¼ Kmax; tot � Kmin; tot ¼ DKnet ¼ DKappl

A.1.4 Number of Cycles to (Nf) Needed to Fail the Elementary
Material Block at the Crack

Smith, Watson and Topper (SWT) equation [10] was used to calculate the number
of cycles to failure. The plastic term in the Manson–Coffin together with the SWT
was omitted [13].

ra
max

De
2
¼

r0f

� �2

E
2Nf

� �2b

References

1. NorooziSani, A.: Development of a two-parameter model (K(max), delta-K) for fatigue crack
growth analysis, p. 192. University of Waterloo, Canada (2007)

2. Mikheevskiy, S.: Elastic-plastic fatigue crack growth analysis under variable amplitude
loading spectra, p. 167. University of Waterloo, Canada (2009)

High-Low Sequence Loading Effect on the Crack Growth Rate using UniGrow Model 659



3. Ralph, I., Stephens, A.F.: Metal Fatigue in engineering, 2nd edn, p. 497. Willey–Interscience,
New York (2001)

4. Noroozi, A.H., Glinka, G., Lambert, S.: A two parameter driving force for fatigue crack
growth analysis. Int J Fatigue 27(10–12), 1277–1296 (2005)

5. Abdullah N.N., Hafezi, M.H., Abdullah, S.: Analytical concepts for recent development in
fatigue crack growth under variable amplitude loading, part I: qualitative interpretation. Key
Eng. Mat. 462–463, 59–64 (2011)

6. Baik, Y.M., Kim, K.S.: The combined effect of frequency and load level on fatigue crack
growth in stainless steel 304. Int. J. Fatigue 23(5), 417–425 (2001)

7. ASTME647-08e1, Standard test method for measurement of fatigue crack growth rates
(2004)

8. Kumar, R.: An investigation of the influence of high-low and low-high amplitude block
loadings on fatigue crack growth. Eng. Fract. Mech. 38(2–3), 225–230 (1991)

9. Kalnaus, S., et al.: An experimental investigation of fatigue crack growth of stainless steel
304L. Int. J. Fatigue 31(5), 840–849 (2009)

10. Dowling, N.E.: Mean stress effects in strain-life fatigue. Fatigue Fracture Eng Mater Struct
32(12), 1004–1019 (2009)

11. Sadananda, K., et al.: Analysis of overload effects and related phenomena. Int. J. Fatigue
21(Suppl. 1), S233–S246 (1999)

12. Newman, J., Yamada, Y.: Crack-closure behavior of 2324–T39 aluminum alloy near-
threshold conditions for high load ratio and constant Kmax tests. Int. J. Fatigue 31,
1780–1787 (2009)

13. Noroozi, A.H., Glinka, G., Lambert, S.: Prediction of fatigue crack growth under constant
amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains.
Eng. Fract. Mech. 75(2), 188–206 (2008)

14. Stoychev, S., Kujawski, D.: Analysis of crack propagation using Dk and Kmax. Int. J. Fatigue
27(10–12), 1425–1431 (2005)

660 N. Nik Abdullah et al.



Molecular Dynamics Simulation on
Nano-Machining of Single Crystal
Copper with a Void

Seyed Vahid Hosseini, Mehrdad Vahdati and Ali Shokuhfar

Abstract Nowadays, the ultra-precision machining with single diamond tools can
remove materials at nanometer scale, which has been used to produce surface with
high quality finishing. As far as the conventional finite-element method becomes
impossible for numerical analysis, as an alternative, molecular dynamics (MD)
method is significantly implemented in the field of nano-machining process to
investigate cutting mechanism. Although it is well known that even the purest real
material contains a large number of defects within its crystal structure, in con-
ventional MD simulation of nano-cutting process the workpiece is assumed as a
perfect single crystal. So, there is a need to check the effect of defect inclusion in
the workpiece on nano-machining process.

In this chapter molecular dynamics simulations of the nano-metric cutting on
single-crystal copper were performed with the embedded atom method (EAM)
potential. To investigate the effect of the void on the workpiece machining
characteristic, a comparison was done between perfect single crystal and a single
crystal with a certain void. The numerical results reveal that the void inclusion can
decrease the tool forces and affect the chip formation mechanism. Also, in
defected workpiece, the value of pressurized atoms is decreased in front of the tool
tip. In addition, the plastic zone becomes larger in a workpiece with a void defect
compared to a pure workpiece, which can affect the surface integrity. Finally,
results show that the internal surface of a void that is positioned under the
machined surface is crumpled due to high compressive hydrostatic pressure.
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Keywords Nano-metric cutting � Molecular dynamic simulation � Material defect �
Nano void

1 Introduction

With the increasing demand on scaling down surface roughness of mechanical and
electronic components, ultra precision machining (UPM) has attracted significant
interest to date. This requires a deeper understanding of the mechanical behavior
of materials on the nanometer scale. However, the deformation mechanism in the
nano-cutting has not been completely understood. The experimental investigation
on the nano scale is constrained by high costs, long time and large uncertainty of
measurements. With the increase of computer power, molecular dynamics (MD)
simulation has become an important complementary tool that may appropriate
help to interpret nano-cutting experimental data.

Maekawa and Itoh [1] have developed a MD simulation model to investigate
friction and tool wear in nano-scale machining. They revealed that as the bonding
energy at the interface increases, both chip thickness and contact length between
the chip and tool become larger, leading to increases in average cutting forces and
temperature. Fang et al. [2] carried out the scratching experiments and MD
simulations to study the mechanical characteristics of an Atomic Force Micro-
scope (AFM) based lithography process. They found that rougher surfaces are
produced at larger loads and surface roughness can be improved by adjusting the
scratching feed to a small value. The simulated results showed that the wear depth
of gold decreased as the scratching velocity was increased and the temperature was
decreased. Komanduri et al. [3, 4] used a MD simulation model to investigate the
effect of tool geometry in nano-metric cutting of single crystal aluminum. They
reported that an increase in the magnitudes of forces, the ratio of the thrust to the
cutting force, specific energy and sub-surface deformation were observed with
increase in the negative rake. Unlike in the conventional cutting, the edge radius
plays an important role in nano-metric cutting.

As the cutting proceeds, in real condition in nano-scale, chip formation
mechanism is triggered by initial material defects such as precipitates, disloca-
tions, grain boundaries, voids etc. [5]. Consequently, plastic deformation in cutting
process leads to a multiplication of defects, a considerable number of which will
remain in the sub-surface layer and will thus influence the surface integrity [3].
Most MD research papers, reported in the literature, only address perfect materials
such as pure single crystal metals with no defects. Although these MD simulations
offer many advantages, it is important to bear in mind that the defects in base
material of workpiece have a significant effect on approximation of true cutting
characteristics. So, to understand the effect of material defects, there is a need to
compare pure single crystal workpiece with a workpiece containing defects in
nano-machining process.

Some studies were done on the effects of material defect using uni-axial loading
and nano-indentation. Chang investigated the mechanical properties of nano-scale
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copper with vacancies under static and cyclic loading using MD simulation [6].
The Young’s modulus decreases with increasing vacancy fraction, and it also
decreases with increasing temperature. From the fatigue test, fatigue limit of the
nano-scale copper increases with decreasing vacancy fraction and increasing
temperature, when the material is under a less-than-critical value of applied stress.
Kim et al. and Jang et al. studied the interaction of lattice dislocations with a grain
boundary during nano-indentation simulation [7, 8]. The results showed that the
dislocation transmitted across the grain boundary during nano-indentation and left
a step in the boundary plane. Burgers vector analysis suggested that a partial
dislocation in first grain merged into the grain boundary and it was dissociated into
another partial dislocation in second grain and a grain boundary dislocation,
introducing a step in the grain boundary. Tan and Jeng simulated the nano-
indentation on copper with a void [9]. They observed that the void disappears
when the indentation depth is sufficiently large. Also, stress concentration is
observed at the internal surface of the void in all simulation cases. In addition,
results indicate that the presence of a void has a significant influence on the nano-
hardness extracted from the nano-indentation tests.

Although it is well known that even the purest real material contains a large
number of defects within its crystal structure, it is impractical to simulate all of
these defects at the atomic level. Hence, this study analyzes the interesting and
computationally more straightforward problem of how the nano-cutting of single
crystal copper is influenced by the presence of a single void.

2 MD Simulation Model

Figure 1 shows a schematic of the MD simulation model. The dimension of the
workpiece is 20(a), 30(a) and 30(a) along x, y and z directions respectively that (a)
is lattice constant.

The nanomachining is done along the [010] direction of the (001) surface of the
workpiece. The material of the workpiece is a single crystal copper that has a Face
Centered Cubic (FCC) lattice with 3.62 Å lattice constant (a). The outer three
layers of atoms on the bottom side and left side of the substrate are fixed (magenta
color). The periodic boundary condition is applied along the x direction and the top
surface (machined surface) is free. Also, three layers of atoms on the bottom side
and left side of the workpiece, next to the fixed zone, are considered as a ther-
mostatic boundary which temperature was maintained at 300(�K) with a standard
nose thermostatic algorithm (green color). The diamond tool has an edge with 5(a)
radius. The rake and flank angles of the tool are 15� and 10� respectively. Also, the
tool is assumed to be rigid (blue color). All atoms in the tool move together during
nanocutting. Their relative distances are fixed.

Details of the computational model are summarized in Table 1. Two cases of
workpiece have been simulated in this study. In the first case (Case I), the
workpiece is a pure single crystal that is assumed in most researches. In the second
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case (Case II), the workpiece is a single crystal with a specified void. The void has
a spherical shape with 8(a) diameter that is placed under the machined surface and
there is no atom in void zone (yellow color in Fig. 1).The model consists of
144807 atoms for Case I and 143750 atoms for Case II.

In the MD simulation, the motion of atoms is governed by Newton’s second
law, which is integrated by the Velocity-Verlet algorithm [10]. The force exerting
on each atom is calculated by the summation of interaction from the neighbor
atoms based on an inter-atomic potential. In this chapter, pair-wise Morse potential
is used for interaction of tool atoms with workpiece atoms (C–Cu bonding). Also,
having more accuracy in atoms interaction of the metallic workpiece, Embedded
Atom Method (EAM) potential is used for the Cu–Cu interaction. The EAM
potential is based on molecular dynamics principles developed initially by Foiles
et al. [11]. EAM allows the calculation of the thermodynamic forces and
stress tensors for the atoms in the lattice based on the notion of embedded energy.

Fig. 1 Schematic of the MD
model with a void

Table 1 Computational parameters used in the MD simulation of nanocutting process

Type of Workpiece Case I: Pure Single Crystal Case II: Single Crystal with a Void

Potential type Embedded atom method (EAM) for Cu–Cu; Cut off distance = 5 (Å);
Morse for Cu–C; Cut off distance = 6.5 (Å)

Workpiece material Single crystal of copper; FCC lattice; lattice constant (a) = 3.62 (Å)
Tool properties Rake angle: 15�; Clearance angle: 10�; Tool edge radius = 5 (a)
Cutting parameters Cutting depth = 10 (Å); Cutting speed = 100 (m/s); Directions: [010] on

(001) surface
Simulation parameter Time step = 1 (fs); Boundary temperature = 300 (�K)
Defect properties No defect Spherical void

Void diameter = 8 (a)
Void position = [10 (a), -10 (a), 22 (a)]

Number of atoms 4553 Rigid tool atom 4553 Rigid tool atom
58320 Newtonian atoms 57263 Newtonian atoms
14420 Thermostatic atoms 14420 Thermostatic atoms
16100 Fixed atoms 16100 Fixed atoms
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The total energy of an atomic system (Umetal) is calculated by summing the
individual embedding energy (F) of each atom i in the atomic aggregate with
short-range repulsive potential (Vij) energy, as shown in Eq. (1).

Umetal ¼
1
2

X

N

i¼1

X

N

j 6¼i

VijðrijÞ þ
X

N

i¼1

FðqiÞ ð1Þ

The embedding energy is the energy to place an atom i in a host electron
density (qi) at the site of that atom. The electron density (qi) at any point is well
described by a sum of the individual atomic densities. EAM potential has been
very successful in modeling the elastic properties, defect formation energies and
fracture mechanisms of various bulk metals [11]. The EAM has also been widely
applied to surface properties as well, successfully describing surface energies,
surface reconstructions and adsorption on metal surfaces.

3 Results and Discussions

To validate MD simulation, a comparison is made between results on pure
workpiece and other MD simulations and also experimental results of Ultra Pre-
cision Machining (UPM) in the terms of specific cutting energy versus nominal
depth of cut normalized by the tool edge radius that shows a good agreement [12].

3.1 Tool Forces During the Nano-cutting Process

Figures 2 and 3 show the behavior of tool forces during the ploughing process in
pure and defected workpieces.

Although the cutting force is not changed significantly, the trust force is
decreased dramatically. As shown in Fig. 3, the trust force reduction is intensified
after 2 nm tool travel. At this moment, the tool is positioned on the top of the void.
So, the inner wall of the void is deformed by tool pressure. Table 2 shows the
comparison of pure and defected workpiece on averaged tool forces. Results show
that the cutting force and trust force are declined about 7 and 27% respectively in
workpiece with a specific void. Also, the resultant force is decreased about 17%.

3.2 Distribution of Hydrostatic Stress

Figure 4 compares the hydrostatic pressure in pure workpiece and workpiece with
a void at 3.5 (nm) ploughing distance. The area that is highlighted with dashed line
indicates the deformed space of the spherical void during the nano-cutting process.
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During machining, material ahead of the tool is subjected to great compressive
hydrostatic stress that leads to plastic flow when the flow criterion is fulfilled.
During the penetration of tool edge, material separated on a specific location on the
rounded tool edge known as the stagnation point. Under such a condition, material
above the stagnation point was separated from the workpiece as chip. It can be

Fig. 2 Behavior of cutting
force during the machining
process in pure and defected
workpiece
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Fig. 3 Behavior of trust
force during the machining
process in pure and defected
workpiece

Table 2 Comparison of pure workpiece with a known defected workpiece on averaged tool
forces

Width-direct Force
(Fx) [nN]

Cutting Force
(Fy) [nN]

Trust Force (Fz)
[nN]

Resultant Force
[nN]

Pure workpiece 1.0 71.3 79.7 108.6
Workpiece with

a void
-1.0 66.4 58.5 90.1

Difference (%) – 7% 27% 17%
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seen that in case of a pure workpiece, the hydrostatic pressure is distributed
uniformly only in front of the tool tip. But in the case of a workpiece with a void,
the number of pressurized atoms decreases which leads to tool force reduction
(Table 2). Also, the high pressurized atoms are distributed in a bigger space that is
confined between the tool and the void.

3.3 Atomic Displacement in the Nano-machining Process

Figure 5 indicates the atomic deformation in pure and defected workpiece during
the nano-cutting. To better understand the deformation mechanism, the values
lower than 2 (Å) are eliminated. In the case of machining with defect-less material,
the large deformation zone is confined only near the machined surface. But in
defected specimen, this zone is started from tool tip and continued to void surface.
For example with 10 (Å) depth of cut at 5 (nm) cutting distance, the large
deformation zone depth is about 22 (Å) in pure workpiece compared with 30 (Å) in
defected workpiece.

3.4 Mechanism of Void Crumpling

To check the deformation mechanism of the workpiece with a void, centrosymmetry
parameter [13] is used, as shown in Fig. 6. To highlight the surface atoms, centro-
symmetry parameter is plotted in range of upper 12. It can be seen that during the
nano-machining process, the upper internal surface of void is folded due to high
hydrostatic pressure. In this case, the spherical void is shrunk about 41% of its
volume at 5 (nm) cutting distance.

Fig. 4 Comparison of hydrostatic stress in pure and defected workpiece [cutting distance = 3.5
(nm)]
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4 Conclusion

The three-dimensional MD simulations for nano-cutting process were performed
to evaluate void defect influenced on the nature of chip formation, void defor-
mation and tool forces. From the current study, the specific conclusions were
deduced that is summarized as follows:

• Void inclusion in workpiece can influence on tool forces. The cutting and trust
force in a workpiece with a specific void are reduced, compared with pure

Fig. 5 Atomic displacement in pure and defected workpiece during the ploughing process

Fig. 6 Mechanism of void crumpling in nanomachining process
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material, about 7 and 27% respectively. Also, resultant force decreased about
17%.

• Results show that in a pure workpiece, the hydrostatic pressure area is distributed
uniformly in front of the tool tip. However in a defected workpiece, the area of
hydrostatic pressure is expanded while the number of high pressurized atoms is
decreased. This can affect on tool forces.

• The plastic zone in a defected workpiece is larger than that of a pure workpiece.
That can affect surface integrity. With a specific void, the depth of plastic zone
is increased from 22 (Å) to 30 (Å) compared with a pure workpiece using 10 (Å)
depth of cut.

• Because of high compressive hydrostatic pressure during the nano-cutting, the
void is crumpled. In this case, the shrinkage of void is about 41% of its volume.
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Dynamic Modeling and Control Study
of the NAO Biped Robot with Improved
Trajectory Planning

E. Hashemi and M. Ghaffari Jadidi

Abstract Motion study of bipedal robots necessitates correct solutions of the
forward and inverse kinematics with optimized and fast closed form computations
which justifies an accurate kinematic model. On the other hand, dynamic modeling
and stability analysis are essential for control study of humanoid robots to reach
robust walk. This chapter is focused on dynamic modeling of the Nao humanoid
robot, made by Aldebaran Co., in the RoboCup standard platform league.
Moreover, trajectory approximation with a cubic Spline and kinematic analysis are
described in brief here in this chapter. Main constraints such as inertial forces and
joint angles for the given position and nominal conditions are simulated, mathe-
matically described, and verified through experimental results from the real robot
sensory data. The above mentioned modifications on the solution together with the
dedication of other physical properties in dynamic modeling results in more
precise acceleration and torque values as it is concluded in this work.

Keywords Bipedal locomotion � Dynamic simulation � Inverse kinematics �
Motion planning � Trajectory approximation
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1 Introduction

Bipedal locomotion has been a topic of great attention in a various researches
performed on legged robots and is probably the most suitable method for robots to
execute assigned maneuvers in a real environment with various obstacle conditions
and geometry [1–3]. Extensive studies have been conducted on various control
methods of bipedal walking and stability, and now biped robots are capable of
walking with a certain amount of stability [4–9]. Combined Forward and Inverse
Kinematics models are utilized to specify the reliable method to control motion
and preserve stability as discussed in [10–12]. The humanoid bipedal locomotion
needs reasonable solutions of the inverse kinematics and localization problems
with optimized computations as illustrated in [13]. Since the end effector config-
urations and its exact locations are related to the above mentioned joint parameters
with nonlinear characteristics, inverse kinematics problems are usually compli-
cated. It is essential to do a transformation between the Cartesian end effector
orientation and location vector and the corresponding vector of joint angular
position which leads to determination of actuating signals and driver torque values
in the dynamic model. Trajectory approximation, kinematic, and dynamic mod-
eling are described in the following sections of this material.

2 NAO Walking Trajectory Generation

Kinematic and dynamic study of linkage systems are key and fundamental issues
for trajectory control, motion planning and locomotion modeling which are dis-
cussed in [4, 5]. In order to attain a stable and reliable walk in different ground
conditions such as regions containing obstacles, rough terrain and slopes, it is
required to maintain the stability of the biped robot and adapt to such environ-
mental conditions with a suitable foot motion and a smooth hip shift which justifies
comprehensive study of trajectory generation and transformation to desirable joint
angles and develop some specific controllers such as torque control methods.

Zero Moment Point (ZMP) stability criteria is introduced for the stability
assessment of the bipedal robots during walking [14] and consideration of this
criterion for trajectory generation has an essential role to reach a dependable
trajectory for both foot and hip joints as studied in [15–17]. The presented method
in [15] uses a stability margin to achieve a certain degree of stability instead of
marginal stability. Walking cycles falls into two main stages including the single-
support phase (SSP) and the double support phase (DSP). In the SSP, one foot is
stationary on the ground and the other foot swings from the rear to the front, but
both feet are in contact with the ground in DSP. DSP begins with the heel of the
forward foot touching the ground, and ends with the toe of the rear foot taking off
the ground [18]. The walking pattern can therefore be denoted uniquely by both
foot and the hip trajectories as presented in [19, 20]. If foot and hip trajectories are
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identified, all joint trajectories of the robot will be determined by the kinematic
constraints and geometrical relations.

Trajectories considered for dynamic modeling are derived with the assumptions
of 10 cm/s walking velocity and a 5 cm step length. Implementing velocity and
kinematic constraints specified in Eq. A.1, Appendix brings about Eqs. 1 and 2
which comprehensively offered a cubic Spline for foot movement in sagittal plane
in x and z directions.

xf tð Þ ¼

� Lstep;

� 1:2848t3 þ 1:4202t2 � 0:1938t � 0:0435;

� 1:5144t3 þ 1:5855t2 � 0:2334t � 0:0404;

Lstep;

8

>

>

>

>

<

>

>

>

>

:

t1\t\t2

t2\t\t3

t3\t\t4

t4\t\Tcycle

ð1Þ

zf tð Þ ¼

FootHeight;

� 19:724t3 þ 10:2116t2 � 1:2359t þ 0:0412;

8:1169t3 � 9:8338t2 þ 3:575t � 0:3437;

FootHeight;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

t1\t\t2
t2\t\t3
t3\t\t4
t4\t\Tcycle

ð2Þ

Torso trajectory with execution of the cubic Spline could be written as bellow
in which coefficients are calculated by the method presented in [18–20] and
mentioned in Eq. A.2, Appendix.

xt tð Þ ¼ 1:4687t3 � 0:1762t2 þ 0:0554t � 0:0228 t1\t\t2

�0:3672t3 þ 0:3745t2 þ 0:0003t � 0:0209 t2\t\t4

�

ð3Þ

ytðtÞ ¼
1:3782t3 � 0:0292t2 � 0:239t; t1\t\t3

�1:2079t3 þ 1:8328t2 � 0:6859t þ 0:0358; t3\t\t4

�1:3768t3 þ 2:0862t2 � 0:8126t þ 0:0569; t4\t\t1 þ Tstep

1:2066t3 � 3:6491t2 þ 3:4353t � 0:9928; t1 þ Tstep\t\Tcycle

8

>

>

<

>

>

:

ð4Þ

zt tð Þ ¼ �0:8413t3 þ 0:2436t2 þ 0:0317t þ 0:2 t1\t\t3

0:7766t3 � 0:9214t2 þ 0:3113t þ 0:1776 t3\t\t4

�

ð5Þ

Equations 3–5 are tailor made for a Nao robot’s step length and velocity sce-
nario and modified for the robot’s torso within the above mentioned periods.

3 Kinematic and Dynamic Modeling

This section deals with the model derivation for Nao robot of the MRL team. The
purpose of the model is to give the necessary insight of the system to design, test
and simulate controllers for the above mentioned biped robot. The models
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developed are a kinematic model to determine joint angles, link positions,
velocities, and acceleration for different torso and foot trajectories and a dynamic
model to estimate dynamic behavior of the links and related joint torques.

3.1 Inverse Kinematics

The kinematic model concerns relations between different joints on the robot and
the position of the individual links. This is done by transforming from joint space
to Cartesian space [21]. With this transformation, the position of the links’ CoM is
calculated from the given rotation of the joints. Required data for the forward
kinematic model are the system phase and the angular position of the joints hn:
Kinematic model output is the global position Gin the global Cartesian coordi-
nates. Mechanical and geometrical data are already extracted from the Nao
physical specifications provided by Aldebaran Co. and listed in Appendix. The
calculated data for the link vectors are listed in Table 3 together with the acces-
sible CoM vectors.

Denavit–Hartenberg (DH) method and an open loop serial chain system is
used in [20–24] for determination of all the joint rotations. The first rotation is
assumed in the supporting foot and the last rotation is considered in the non
supporting foot. The frames are aligned with the global reference frame in case
all the joints are in their zero state because no rotations are needed to describe
the system when all the angles of the joints are zero. Furthermore, the position of
the ground frame is fixed to the initial frame {0} such that the initial frames
always contain the global position and all frames have the same direction when
the angles are zero. As mentioned above, the kinematic model estimates the
global velocity and acceleration vectors as explained in the following para-
graphs. The global position of the links CoM, Gnf g can be expressed as the
following relation [23]:

Gnf g ¼ Gm;n�1
� �

þ n�1
0R bnf g ð6Þ

In which bnf g represents the CoM local position of link n. Position of joint n-1
in the global coordinates, Gm;n�1

� �

is defined as:

Gm;n�1
� �

¼ n�2
0R an�1f g þ Gm;n�2

� �

ð7Þ

Local position vector of joints is shown by aif g in Eq. 7. Controller design and
development justifies making use of precise inverse kinematics and dynamic
models to satisfy stability and agility requirements in biped robots such as Nao.

Nao robot has 21 degrees of freedom, including 6 in each leg introduced as
ankle roll, ankle pitch, knee pitch, hip pitch, hip roll, and hip yaw-pitch. Yaw-pitch
joints of the hips are physically bound and driven with one servo motor. The
purpose of the inverse kinematic model is to determine the joint angles which yield
a specific position of the limbs in Cartesian space. Inverse kinematics model
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requires expected positions of links which could be attainable by torso and foot
trajectories and calculates joint angles corresponding to the determined trajecto-
ries. Numerical and closed-form solutions are widely used to solve the inverse
kinematics problems.

Goldenberg et al. [25] presented an iterative numerical solution to transform the
desired position of a limb into joint angles by solving the pseudo inverse Jacobian
to reach accurate results. One of the drawbacks of this method is this iterative
method is a time consuming process for both legs solution and does not satisfy the
time response requirements of the control loop model [22].

Closed-form solution of the non-linear equations of the robot manipulators with
limited degrees of freedom is introduced as an alternative method of solving
inverse kinematics equations. This method is also employed to carry out the
solution of MRL team Nao robot’s kinematic equations with utilization of Pieper’s
solution [23] for developing transformation and rotation matrices. This method and
its modification is described in this section as an approach for solving related
equations which enables the approach to compute the same hip Yaw-Pitch joint
variable for both legs.

DH frame assignment and related coordinate sequences are shown in Fig. 1,
and associated parameters are mentioned in Table 1. DH parameters for the right
leg is assumed the same as the left one except a6 which is p=4.

Homogeneous transformation 0
6T which describes position and orientation of

frame {6} relative to frame {0} is introduced as Eq. 8

0
6T ¼

0
6R 0p6ORG

0 1

� �

ð8Þ

Position vector 0p6ORG expresses coordination of frame {6} origin relative to
frame {0} in the homogeneous transformation matrix. Joint angles h1; h2; h3 could
also be computed by using 0p6ORG; then the last three joint angles of each leg,
h4; h5; h6 are approximated using 0

6R which is rotation matrix explaining orienta-
tion of frame {6} relative to {0}. Since origins of frames {4}, {5}, {6} are
coincident at a point, 0p6ORG is equal to 0p4ORG and mathematically shown in
Eq. 9. Calculation of 0p6ORG is vital because it results in determination of h1; h2; h3

in Pieper’s solution.

0p6ORG ¼ 0p4ORG ¼0
3 T �3 p4ORG ¼0

1 T �1
2 T �

f1ðh3Þ
f2ðh3Þ
f3ðh3Þ

1

2

6

6

6

4

3

7

7

7

5

¼

c1g1ðh2; h3Þ � s1g2ðh2; h3Þ
s1g1ðh2; h3Þ þ c1g2ðh2; h3Þ

g3ðh2; h3Þ
1

2

6

6

6

4

3

7

7

7

5

¼

x

y

z

1

2

6

6

6

4

3

7

7

7

5

ð9Þ
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In which c1 and s1 represent Cos h1 and Sin h1; and approximation functions
f and g are given in the Appendix section of this chapter. The first three joint
angles h1; h2 and h3 are estimated by position vector components x,y and z and
solving Eqs. 10 and 11 simultaneously.

z ¼ g3ðh2; h3Þ ð10Þ

Fig. 1 a DH representation of legs for the Nao robot kinematic simulation; b mass and
geometrical model for the Nao robot
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r ¼ x2 þ y2 þ z2 ¼ g1ðh2; h3Þ½ �2þ g2ðh2; h3Þ½ �2þ g3ðh2; h3Þ½ �2 ð11Þ

Variables a1 and sa1 are influencing parameters in solution of Eqs. 10 and 11
and can be extracted from the geometric conditions of the left or right legs. The
first joint angle h1 is estimated after analytic solution of the second and the third
joint angles and replacing these two values in Eq. 9. The following paragraph
presents calculation of h4; h5 and h6 in Pieper’s solution using 0

6R and the esti-
mated first three joint angles. Computation of h1; h2 and h3 leads to calculation of
0
3R using Eq. 12 which simply describes the relation between rotation matrices in
frames {0}, {3} and {6}.

3
6R ¼ 0

3R
� ��1�0

6R ð12Þ

The cubic spline described in the previous section to generate trajectories for
steady state walk is utilized to present the kinematic model. Validation of formulas
for both left and right legs is performed through getting joints’ values in walking
state and generating the hip trajectories relative to the foot with forward kinematic
model. Inverse kinematic module employs forward kinematic outputs as a tra-
jectory and produces all joint angles according to the particular trajectory input.
This verification is straightforward because the calculated joint angles are expected
to be the same as the input ones for the forward kinematic module. Complete
description of kinematic equations and model validation is available in [20] which
comprehensively focused on joint parameters and closed form solution of inverse
kinematics.

3.2 Dynamic Model

Position of estimated center of mass which represents the links, drivers and con-
nection effects shall be calculated for the next stages of the dynamic simulation.

Table 1 Dedicated DH parameter values for the left leg

Frame (joint) ai ai di hi

1 -p/2 0 0 h1

2 p/2 0 0 h2

3 0 Tibia length 0 h3

40 0 Thigh length 0 0
4 0 0 0 h4

5 -p/2 0 0 h5

6 -p/4 0 0 h6 - 3p/4
41 Rotzðp=2Þ � Rotxðp=2Þ
42 Rotxð�p=2Þ � Rotzð�p=2Þ
60 Rotxðp=2Þ � Rotzðp=2Þ
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This position will be computed from the newly introduced homogenous trans-
formation matrix in Eq. 13

Ti ¼
Ri;3�3 Li;3�1

O1�3 1

� �

ð13Þ

Ri s are the basic rotation matrix for all 12 joints about three axes and defined in
Eq. 14. In addition, Li s are joints’ vectors as shown in Table 3,
Appendix. Basic rotation matrix for three-dimensional transformation in xyz
coordinates are as follows:

Rx;h ¼
1 0 0

0 cos h � sin h

0 sin h cos h

2

6

4

3

7

5

; Ry;h ¼
cos h 0 sin h

0 1 0

� sin h 0 cos h

2

6

4

3

7

5

;

Rz;h ¼
cos h � sin h 0

sin h cos h 0

0 0 1

2

6

4

3

7

5

ð14Þ

Table 2 represents all 12 joint numbers and their axis of rotation are as depicted
in Fig. 1a.

Global position of links’ center of mass vectors are defined from the successive
multiplication of transformation matrix in Eq. 13 and the local position vectors
tabulated in Table 3, Appendix I as:

Pmj ¼
Y

n

i¼1

Ti

 !

Lmj ð15Þ

Pmi ¼ xmi ymi zmi 1h iT ð16Þ

where i starts from 1 and ends to the number of joint n before mass i. A dynamic
model is developed to determine the joints’ angular acceleration for which the
mass and diagonal elements of the inertia tensors of each Nao’s link are listed in
Table 4 and schematically illustrated in Fig. 1b. A movement study of the MRL
team Nao robot and ZMP estimation will be done after determination of joint
values. The presented dynamic model is for the SSP and will be used as a fun-
damental calculation for the DSP which is the authors’ next research subjects. SSP
dynamic equations are derived by the assumption of the Lagrange-d’Alembert
Eq. 17 which relates the external force Fi on the Nao links for the single support
phase and variations of Lagrangian L relative to the system state ri.

Table 2 Joints axes of
rotation

Name Axis Joint

Roll X 1,5,8,12
Pitch Y 2,34,9,10,11
Yaw-Pitch Y–Z 6,7
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d

dt

oL

o_rsn

	 


� oL

orsn
¼ Fn ð17Þ

The state vector rsf g consists of the position vectors and the angles as:

rsf g ¼ x1 y1 z1 � � � x5 y5 z5 h1 � � � h12h iT ð18Þ

The Lagrangian L is defined as the difference between a system’s kinetic energy
and potential energy and could be written as follows:

L ¼
X

Number of Links

n¼1

1
2

mnð _x2
n þ _y2

n þ _z2
n � 2gznÞ þ

1
2
~xT

n In~xn ð19Þ

In which mn is the mass of nth link, In is the inertia tensor of nth link around
base frame, and ~xn is the angular velocity vector of the link n around base frame.
j is the total number of link masses which is 5. Partial differentiation of Eq. 19

with regards to~rs and _~rs yields:

oL

o~rs
¼ oL

ox1

oL

oy1

oL

oz1
� � � oL

ox5

oL

oy5

oL

oz5

oL

oh1
� � � oL

oh12

� �T

ð20Þ

Table 3 Link vectors and
CoM vectors extracted from
the Nao physical
specifications provided by
Aldebaran Co. and
geometrical modeling by
MRL-Nao team

Center of mass vector (mm)
Lm1 = [3.66, -1.52, 38.72]T

Lm2 = [-3.68, 0.03, 66.79]T

Lm3 = [-4.80, 50.06, 127.27]T

Lm4 = [-3.38, -0.03, -33.21]T

Lm5 = [3.66, 1.52, -64.03]T

Joint vector (mm)
L1 = [0,0,0]T

L2 = [0,0,0]T

L3 = [0,0,102.75]T

L4 = [0,0,100]T

L5 = [0,0,0]T

L6 = [0,0,0]T

L7 = [0,100,0]T

L8 = [0,0,0]T

L9 = [0,0,0]T

L10 = [0,0,-100]T

L11 = [0,0,-102.75]T

L12 = [0,0,0]T

Table 4 The mass and
diagonal elements of the
inertia tensors of each Nao’s
link

Mass (g) Inertia (kg 9 m2)

m1 = 435.98 [Ixx1, Iyy1, Izz1] = [0.0012, 0.0012, 0.0006]
m2 = 605.72 [Ixx2, Iyy2, Izz2] = [0.0018, 0.0018, 0.0010]
m3 = 1026.28 [Ixx3, Iyy3, Izz3] = [0.0049, 0.0047, 0.0016]
m4 = 605.72 [Ixx4, Iyy4, Izz4] = [0.0018, 0.0018, 0.0010]
m6 = 435.98 [Ixx5, Iyy5, Izz5] = [0.0012, 0.0012, 0.0006]
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oL

o _~rs

¼ oL

o _x1

oL

o _y1

oL

o_z1
� � � oL

o _x5

oL

o _y5

oL

o_z5

oL

o _h1

� � � oL

o _h12

� �T

ð21Þ

Differentiating Eq. 21 results in the determination of the left side of Eq. 17.
This vector contains all links’ linear and angular accelerations.

The global angular velocities ~xn are calculated in Eq. 22 as described in [23]
with consideration of the previous link position and rotation matrix. ff g vector

represents the axis about which _hn rotation takes place.

~xn ¼ ~xn�1 þ 0
nR _hn ff g ð22Þ

The torque exerted on the links by electrical drivers could be calculated after
mapping the Lagrange-d’Alembert equation to the actuators with implementation
of Jacobian as:

Tf g ¼ JLJ hf gð ÞT d

dt

oL

o _~r

	 


� oL

o~r

	 


ð23Þ

In which JLJ hf gð Þ is the Jacobian for mapping the Lagrange to the joints and
mathematically described as:

JLJ hf gð Þ ¼ o rf g
o hf g ¼

orð1;1Þ
oh1

� � � orð1;1Þ
oh12

..

. ..
. ..

.

orð27;1Þ
oh1

� � � orð27;1Þ
oh12

2

6

6

4

3

7

7

5

ð24Þ

The generalized equation of motion of each actuator with consideration of

MðfhgÞ for inertia effect, Cðfhg; f _hgÞ for coriolis and centrifugal effects, and BðhÞ
for gravitational effect is described in Eq. 25.

fTg ¼ MðfhgÞf€hg þ Cðfhg; f _hgÞ þ BðfhgÞ ð25Þ

This yields to determination of f€hg in Eq. 26 with the presence of the total
exerted torque vector fTg by actuators.

€h
n o

¼ M�1 hf gð Þ Tf g � Cðfhg; f _hgÞ � BðfhgÞ
 �

ð26Þ

Equation 25 requires the predicted joint angles according to the trajectory
requirements, but Eq. 26 results in the real joint angles with the robots inertia,
coriolis, and centrifugal effects and exerted torques on joints. The main idea of
developing control methods on MRL-Nao robots such as torque control or adap-
tive controllers on joint positions necessitates a comparison between the prede-
fined and feedback joint values.
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4 Results and Discussion

The generated trajectory performs as an input for the inverse kinematic model to

produce the required joints’ angles, velocities and accelerations hr; _hr; €hr. The
following curves depict joint angles h1 to h12 for the predefined trajectory. h1 to h6

is for the right leg and h7 to h12 is contributed to the left leg.
The input torso trajectory could be a cubic type presented in Eqs. 1–5 or real

sensory data on the torso and foot provided by experimental results of biped
robots. Experimental data of 12 joint angles regarding the Nao trajectory is shown
in Figs. 2, 3 and 4. h5; h6; h7 and h8 symbolize the right leg’s hip roll and hip yaw-
pitch and left leg’s hip yaw-pitch and hip roll angles in Fig. 3 respectively.

Numerical differentiation is employed to determine the joints’ angular veloci-
ties and accelerations in which time intervals play a significant role. These time
intervals are well regulated form the joints sensory position data in this research.

Calculation of joint torques needs joint position specifications as it is stated in
Eq. 21 and graphically illustrated in Figs. 5, 6 and 7 in which torque values are
shown for all 12 joints.

Drivers’ torques are plotted with the supposition of right leg as the supporting
leg on the ground and left leg as the non-supporting leg.

Assumption of left leg as the non-supporting leg justifies small values of cal-
culated T9 and T10 values in comparison with the corresponding joints on the right
leg and zero values for T11 and T12.

Phase estimator calculates the phase parameters for SSP and DSP states, and
then joints’ reference angles are used in the forward kinematic model together with
the phase estimator to produce all links’ state position, velocity and acceleration
vectors rsf g; _rsf g; €rsf g.

Generalized position vectors of links and five masses shown in Fig. 1b are
estimated by Eq. 15, then velocity and acceleration values are achievable with
numerical differentiation. Figures 8 and 9 demonstrate acceleration of two
assumed mass on the torso and the right leg shown as m2 and m3 in Fig. 1b.

State position vectors and actuator torques are executed in the dynamic model
to generate real joints’ angles and velocities. The reference joint angles are
compared with the estimated ones to build up a reliable controller such as adaptive
PID or fuzzy logic controller. Torque control is this group’s next research topic in
order to reach a smooth Nao bipedal motion on the slopes.

All plotted curves are based on single support assumption of the right leg, but
the transient mode and successive leg changes have not been considered in this
simulation. Torque increase at specified times shows this change and may result
into some errors in the calculated joint torques.
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Fig. 3 Real sensory data of (a) right hip roll, (b) right hip yaw-pitch, (c) left hip yaw-pitch,
(d) left hip roll

Fig. 2 a ankle roll, b ankle pitch, c knee pitch, and d hip pitch joint angles on the right leg
extracted from real sensory data
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Fig. 4 a Hip pitch, b knee pitch, c ankle pitch, and d ankle roll joints angles on the left leg
extracted from real sensory data

Fig. 5 Driver torques calculated by desired trajectories for (a) ankle roll, (b) ankle pitch,
(c) knee pitch, and (d) hip pitch joints on the right leg
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Fig. 6 Driver torques calculated by desired trajectories for (a) right hip roll, (b) right hip yaw-
pitch, (c) left hip yaw-pitch, (d) left hip roll joints

Fig. 7 Driver torques estimated by desired trajectories for (a) hip pitch, (b) knee pitch, (c) ankle
pitch, and (d) ankle roll joints of the left leg
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5 Conclusions

The proposed dynamic model and related analysis in this chapter simulates the
joint values including torque and angular acceleration for the recorded trajectories
as the real sensory data. The observed fluctuations on the torque curves are pro-
duced during the change support leg behavior in which acceleration values of joint
oscillate due to transient phase between SSP and DSP.

The proposed transformation matrix in Eq. 13 contains rotation and position
vectors of the joints and reduces the total number of calculation as a combined
transformation.

Optimization in trajectories and parameters regulation could improve per-
formance of the robot and lead to minimum energy consumption. Authors’
future research topics are focused on a) torso trajectory optimization by genetic
algorithm and particle swarm optimization, b) adding the double support phase
and the transient mode, and c) torque control for performing stable walk on
slopes.

Acknowledgments Authors gratefully acknowledge Qazvin Islamic Azad University, Young
Researchers Club (YRC), and technical support of Mechatronics Research Lab. Nao team
members.

Fig. 8 Acceleration of mass 2 on the right leg computed by generalized position vector

Fig. 9 Acceleration of dedicated mass on torso, m3, obtained by generalized position vector

Dynamic Modeling and Control Study of the NAO Biped Robot 685



6 Appendix

Position constraints of foot and torso in sagittal plane are defined as:

xf tð Þ ¼

k � 1ð ÞLstep

k � 1ð ÞLstep

k � 1ð ÞLstep þ Lmax

ðk þ 1ÞLstep

8

>

>

>

<

>

>

>

:

; t ¼ t1

; t ¼ t2

; t ¼ t3

; t ¼ t4

zf tð Þ ¼

FootHeight t ¼ t1

FootHeight t ¼ t2

hf max t ¼ t3

FootHeight t ¼ t4

8

>

>

<

>

>

:

ðA:1Þ

In which Lstep is the step length, Lmax is the maximum horizontal distance of the
ankle from the start point in Tmax; hf max is the maximum ankle height during Tstep:

Constraints in torso position for specified times are as below:

xt tð Þ ¼
kLstep � 1:3xts

kLstep � xts

kLstep þ xte

8

>

<

>

:

; t ¼ t1

; t ¼ t2

; t ¼ t4

; yt ¼
ytmid ; t ¼ t1

yt min ; t ¼ t3

�

; zt tð Þ ¼
ht min ; t ¼ t1
ht max ; t ¼ t3
ht min ; t ¼ t4

8

<

:

ðA:2Þ

ytmid stands for the distance between the feet and yt min is the minimum distance
from the ankle of the supporting foot to the spinal column. Experimental results
substantiate the margin of yt min between �0:2 ytmid and 0:4 ytmid: Furthermore,
ht max and ht min symbolizes maximum and minimum torso height (Tables 3, 4.

Approximation functions of Eq. 9 in text are described as:

f1ðh3Þ ¼ a3ðch3Þ þ d4sa3ðsh3Þ þ a2 ðA:3Þ

f2ðh3Þ ¼ a3ca2ðsh3Þ � d4sa3ca2ðch3Þ � d4sa2ca3 � d3sa2 ðA:4Þ

f3ðh3Þ ¼ a3sa2ðsh3Þ � d4sa3sa2ðch3Þ þ d4ca2ca3 þ d3ca2 ðA:5Þ

g1ðh2; h3Þ ¼ ch2f1ðh3Þ½ � � sh2f2ðh3Þ½ � þ a1 ðA:6Þ

g2ðh2; h3Þ ¼ ca1 sh2f1ðh3Þ½ � þ ca1 ch2f2ðh3Þ½ � � sa1 f3ðh3Þ½ � � d2sa1 ðA:7Þ

g3ðh2; h3Þ ¼ sa1 sh2f1ðh3Þ½ � þ sa1 ch2f2ðh3Þ½ � þ ca1 f3ðh3Þ½ � þ d2ca1 ðA:8Þ
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Comparison Between BEM Analysis
and SONAH Measurements Using
an Acoustic Camera

Christian Maier, Rolf Winkler, Wolfram Pannert
and Markus Merkel

Abstract There are several methods available to determine Eigenmodes of
structural objects. These can be calculated by modal analysis. The Eigenmodes
cause maximum of displacements in the material at different positions. This effect
is similar to a speaker. So the sound pressure is maximum at the points with
maximal surface-velocity. With an acoustic camera these sound sources can be
visualized with an appropriate signal processing method. A suitable algorithm is
the statistically optimal near-field acoustical holography (SONAH). This algorithm
shows its power at low frequencies in comparison to other (Beamforming)
algorithms. Beamforming is a signal processing method to locate sound sources
using an acoustic camera. In this chapter a comparison between the boundary
element method (BEM) calculation and the SONAH sound processing method is
performed. The BEM method is used to calculate the sound pressure field, which is
caused by a vibrating surface of a structure. In a further step, a BEM software
calculates with help of a structural harmonic analysis, which contains the
displacement, velocity or acceleration of the elements, the sound pressure in
the vicinity of the vibrating surface, especially on the surface. The harmonic
analysis is given from a linear finite element method (FEM) software in this case.
The measurement setup consists of a sawing blade with a diameter of 0.65 m and a
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thickness of about 0.005 m. In the middle, it is fixed by a clamping spigot. At a
small drilled hole at the outer side, the sawing blade is connected to a shaker which
impinges the sawing blade with different frequencies.

Keywords Acoustic camera � Beamforming � Eigenmodes � BEM � SONAH

1 Introduction

Achieved as a project at the University of Applied Sciences of Aalen, a
comparison between the theoretical BEM method with an experimental method
was carried out. The statistically optimal near-field acoustic holography SONAH
algorithm was realized as a Labview source code in the Noise Inspector� Software
package.

The sawing blade is excited by a shaker with different frequencies over a certain
frequency range. At the Eigenmodes, the oscillation and, therefore, the surface
velocity is maximal and a regular pattern of a standing wave develops. The regular
pattern corresponds to sound sources which are located at the positions of maximal
velocity. This pattern is reproduced with a numerical acoustic BEM calculation.
As an input, this software needs a result file with the displacement of the elements.
This result file can be delivered from a FEM software.

The near-field acoustic holography (NAH) is an experimental technique that
makes it possible to reconstruct three-dimensional sound fields from measure-
ments on two-dimensional surfaces.

This can be extremely useful, and NAH is a well-established tool for visualising
and analyzing sound fields near sources of noise [1, 2]. Conventional planar NAH
is based on discrete spatial Fourier transforms of sound pressure data measured
with a microphone array. However, to avoid serious truncation errors caused by
the finite two-dimensional spatial transform (‘leakage’ in the wave number
domain), the array must extend well beyond the source so that the sound pressure
has decayed to an insignificant level near the edges of the array [2].

SONAH is an interesting variant of NAH developed a few years ago by Steiner
and Hald [3]. It has the great advantage of avoiding spatial transforms and thus the
mentioned truncation effects; therefore, the measurement array can be smaller than
the source [3].

2 Theory

In planar SONAH the ‘propagator’ that transforms data from one plane to another
is a transfer matrix that works directly on the measured data, that is, the sound
pressure p at an arbitrary position above the source r ¼ ðx; y; zÞ (where z [ 0), can
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be expressed as a weighted sum of sound pressures measured at N positions ðrh;nÞ
in the hologram plane (z = zh).

pðrÞ ffi
X

N

n¼1

cnðrÞpðrh;nÞ ¼ pTðrhÞcðrÞ ð1Þ

With a development coefficient cn and the measured sound pressure p.
Governed by the Helmholtz equation the radial propagation of acoustic pressure
p in a linear isotropic acoustic domain is given by:

r2pþ k2p ¼ 0 ð2Þ

where r2 is the Laplacian operator for the three dimensional flow field

and k2 ¼ x
c

� �2
the square of the wave number vector [4].

In the frequency domain, a special solution consists of two parts, which can be
plane waves or the evanescent wave, depending on the value of Kz.

pð~K; xÞ ¼ p̂ðxÞ � e�jKzz � ejðKxxþKyyÞ ð3Þ

With the three spatial directions of the wave number (Kx, Ky, Kz) we can notice
from the formula 3 that the amplitude decays exponentially with the distance
z from the surface, if Kz is imaginary. So it is necessary that the measurement
distance be very close to the sound source. Otherwise information about the
evanescent modes gets lost and the enhanced resolution at low frequencies cannot
be realised. The dispersions equation (Eq. (4)) with the k value is defined by the
wave number vector and the local wave number Kx, Ky, Kz.

k2 ¼ K2
x þ K2

y þ K2
z ð4Þ

The value Kz is the z component of the wave vector and it can be computed for
arbitrary z values (real or complex).

Figure 1 shows the set-up of a SONAH measurement. The sound pressure is
measured in the x-y plane in the near-field for the z = 0 value. The distance from
the microphone array and sound source is d.

The BEM method uses the Green’s formula which gives an analytical
connection between the values of the sound field on the limiting surface (rq) and
the values somewhere in space (rn). The integral is carried out on a surface grid which
is split in small so-called ‘‘boundary elements’’. The boundary is defined by C which
contains rigid boundary, vibrating boundary and absorption boundary. The index
p describes the observation point and q the source point on the boundary.

1
2

pðrpÞ ¼
Z

C

pðrqÞ
oGðr; rqÞ

onq

�
op rq

� �

onq

Gðrp; rqÞ
� �

dSþ pdðrpÞ ð5Þ

where q/qnq specifies an inner normal derivative. At the point p on the boundary,
pd is an external sound pressure to which objects other than the boundaries
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contribute. G represents the Green’s function (fundamental solution) of the three-
dimensional wave equation [6].

The advantage in comparison to a FEM is obvious, if one has to calculate the
sound field in a large region—only a surface mesh has to be generated and not a
mesh into a infinite distance.

3 Measurements

Acoustic methods based on microphone arrays are able to locate sound sources
using an appropriate signal processing. Finally it is possible to superimpose an
optical picture with the acoustic picture (see Figs. 3, 4, 5). In this combination it is
possible to locate sound sources directly on the object under investigation.

There are many algorithms available to process the microphone signals. Beside
the standard Beamforming which is commonly used for far-field measurements the
near-field acoustical holography (NAH) is an effective method for near-field
measurements. A fundamental criterion for the different methods is the ability to
separate closely located sound sources. This ability to separate sound sources is
called resolution. Often the resolution is a function of the frequency. In the
standard delay-and-sum Beamforming method, a measure of resolution is

H3dB �
k
D

and R ¼ a
z

D
k: ð6Þ

With the wavelength k and array dimension D. The resolution in distance z is
R with the array geometry-factor a. A steered arrangement of microphones is

Fig. 1 SONAH
measurement plane [5]
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characterised by a so-called main lobe.1 The width of the main lobe 3 dB below of
the maximum is the H3dB width [7].

Beside information about sound pressure, the NAH method provides informa-
tion about velocity potential and sound intensity close to the emitting surface.
In contrast to the standard Beamforming advantages, like better resolution and the
ability to analyse lower frequencies (\ 800 Hz) prevail, SONAH works with
regular and irregular microphone arrays. The programmed SONAH method is
available as a Plug-In for the Noise Inspector� software2 package.

For this chapter the Eigenmodes of the above described sawing blade are
depicted and the measurements at the frequencies of the Eigenmodes are carried
out. For the measurements, the microphone array is positioned at 0.15 m distanced
from the sawing blade in the z coordinate and is centered to it (see Fig. 1).
To control the results of the SONAH measurements, a simultaneous measurement
with a laser vibrometer was carried out. In the following figures, comparisons
between laser vibrometer, SONAH method and acoustic BEM calculation is car-
ried out for some frequencies. The SONAH result shows the sound pressure level
(SPL) coded in terms of colours directly on the vibrating surface. Furthermore, the
SONAH measurements are validated with a sound level meter on the surface to
control the SPL. Among other things, the laser vibrometer measurements deliver
information about vibrating velocity orthogonal to the surface.

Figures 3, 4, 5 shows the SONAH method on the left and the laser vibrometer
measurements on the right side. Number and location of the sound sources are in

Fig. 2 Test set-up

1 The characteristic is more weighted in this direction than in other directions.
2 The software used to operate the acoustic camera.
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agreement with the measurements with the laser vibrometer and therefore with the
maxima of the sound source. In this chapter, the lowest analysed frequency for
SONAH measurements is 73 Hz and it works well for that frequency. Frequencies
at these low values cannot be handled with the standard Beamforming method.
Beamforming yields good solutions for frequencies above 800 Hz. So, the
advantage of SONAH at low frequencies in contrast to Beamforming is
demonstrated.

Based on simplification of the sawing blade (no modelling of the shaker and
adapter), the acoustic BEM calculation may show minimal deviation to the laser
vibrometer and SONAH measurements Fig. 2.

The recalculated Eigenmodes with the FE software ANSYS� are close to the
actual Eigenmodes. The second Eigenmode is at 73.75 Hz. This frequency is
recalculated with the FE software ANSYS� and the acoustic BE software
WAON� for 72.5 Hz. The next Eigenmode, the third, is at 145 Hz and

Fig. 3 Mode 2 at 73 Hz, four maxima Eigenmode 2: 73 Hz SONAH-method laser-vibrometer
acoustic BEM surface pressure plot

Fig. 4 Mode 3 at 145 Hz, six maxima Eigenmode 3: 145 Hz SONAH-method laser-vibrometer
acoustic BEM surface pressure plot
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recalculated for 143.42 Hz. Mode 4 at 245 Hz is recalculated with ANSYS� for
247.65 Hz.

The SONAH plots on the left side of Figs. 3, 4, 5 show the sound pressure level
with 6 dB dynamic range on the surface. In the middle, the laser-vibrometer shows
the maximum acceleration and the acoustic BEM calculation on the right side
shows the pressure on the surface of the structural body.

4 Conclusion

SONAH and BEM are effective methods to show sound fields which are caused by
vibrations of structural bodies like a sawing blade. Real situations can be repro-
duced by these methods. Indeed there is an ANSYS result file for an acoustic BEM
calculation necessary, but in combination with this result file WAON is able to
calculate the sound pressure level on the surface of the sound source object using
Green’s formula. The BEM calculation can be compared with SONAH mea-
surement in the case of the Eigenmodes and, concerning the mode-pattern good
agreement is achieved.
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Simulation of Thin Metal Laser Lap
Welding

Welding Behavior of Heat Conduction Welding
and Keyhole Welding

Takeji ARAI

Abstract The majority of laser welding carried out today is related to the
processing of thin metals. Although many papers have been published on thin
sheet laser lap welding, few researchers have looked at the heat transfer charac-
teristics during the process and the effect of local deformation of the material
during welding and its influence on the welding properties. In lap welding, the gap
at the interface is known to have a major influence on the welding performance.
The welding phenomenon in keyhole type welding of thin sheet has hitherto not
been completely clarified. In the present study, a more detailed understanding of
the process when two of thin sheets with a variable gap are welded by high power
laser was been established.

Keyhole type welding using a high power density and heat conduction welding
using a low power density were compared. The presence of a gap between the
sheets and the influence of the sheet deformation were investigated. In addition to
welding trials computational simulations were carried out using finite element
analysis (FEA). The welding deformation and behavior of the molten metal during
the stages of the welding process were analyzed and the deformation of the
materials and the angular distortion were calculated.

The analysis was carried out using the best available information regarding
simulation of the welding process. Further refinements to the analysis are planned in
the future, in particular using the results of X-ray fluoroscopy. However, reasonably
good correlation was found between the experimental and analytical results.

Keywords Simulation of laser materials processing � Laser lap welding � Penetra-
tion welding � Keyhole welding � Effects of welding gap � Laser processing of metal
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1 Introduction

In the previous study [1], the welding behavior of the thermal conduction type
welding was simulated for thin metal butt welding. In this chapter, the welding
mechanisms and the molten metal behavior in thin metal lap welding is discussed.
There are two types of welding mechanisms in the laser lap welding, a thermal
conduction type welding and a keyhole type welding. The thermal conduction type
welding is the phenomenon where the melting and joining processes are mainly
caused by thermal conduction. This type of welding occurs when the power
density of the laser beam is comparatively low. On the other hand, when the power
density is high, it is known that the keyhole type welding occurs because a keyhole
is generated in the molten pool immediately beneath the heat source, which causes
a deep joint penetration. This type of welding occurs in most thicker section welds
with a high density laser beam [2–11].

In conventional research into keyhole welding, plates thicker than 10 mm have
been processed using a laser power higher than 10 kW. Many of these made
investigations into X-ray transmission experiments that used ‘bead on plate’ welds.
In those researches, the generation of a molten pool and the porosity behaviors
were studied [6–11]. However, bead on plate is not the same as actual welding.
Moreover, most of the actual laser welding in industry is either butt welding or lap
welding for thin plates. From a content point of view, they have mainly discussed
the welding properties such as the melting geometry, defects, metallographic
structure of the joining surface and processing conditions. There are few reports
and documents on the actual distortion caused while welding [12, 13].

In the course of researches on the phenomenon of thin metal welding, the
following is generally known. When lap welding is carried out with high laser
power, a keyhole is generated. In lap welding, there is always a gap at the interface
of the two plates. It is qualitatively known that the gap between the two plates and
the surface condition of the upper plate influence the welding performance.
However, there are extremely few researches that discuss the welding process of
the lap welding. Especially, the welding phenomena in the keyhole type welding
have not been fully understood, even through observations with an X-ray fluo-
roscopy. Moreover, due to a lack of accurate data and information, simulations that
have dealt with the keyhole formation in the welding process are extremely rare.
In this study, keyhole welding has been simulated to establish a series of prediction
techniques for laser welding. The simulation was based on the latest information
available at the present time, although it still contained some assumptions. In the
future, if a more accurate understanding of the keyhole in lap welding by X-ray
observation method can be specified, the accuracy of calculation of this simulation
will be improved further.
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2 Experimental Conditions

In the actual processing experiment, a lap welding was carried out, using two
SUS304 plates of 1 mm thickness with 100 9 50 mm2 size. A laser diode (LD)
excited yttrium aluminum garnet (YAG) laser with 4 kW power (3.4 kW at the top
of the nozzle) was used. The spot diameter for the fiber transmission was
u = 0.6 mm and the welding speed was 5 m/min. As shown in Fig. 1, a shim with
the same thickness as the gap was inserted between the lapped plates and the plates
were held with a jig from the upper side while welding. In the simulation, a
calculation model was built based on these conditions. The welding process and
the amount of distortion were calculated, varying the gap between the two lapped
plates from 0.005 mm (which means there is little gap) to 0.25 mm (which means
a significantly large gap, considering the plate thickness).

3 The Welding Mechanisms

3.1 Heat Analysis Simulation

When a high power laser is used, the power density is greater at the focused
irradiation area so that a keyhole is generated on the material surface, which is
known as the so called ‘‘keyhole welding’’. However, there is no simulation model
yet for the keyhole type lap welding process for thin plates. In lap welding, the
material of the upper plate melts and thermally expands during welding due to the
temperature rise. In addition, there is an increase in mass due to oxidization.
Because of these phenomena, the gap is closed up and the heat transfers to the
surface of the lower plate so that the upper and the lower plates are in contact.
The presence of a keyhole makes this phenomenon complicated. The following
points are presumed based on several research reports for X-ray observations [10] as
well as on discussions among colleagues who were involved in our study, although
not all of the phenomenon have been clarified in the present circumstances.

In the laser welding with high energy density, the material is heated and melts
to form a molten pool first. As the temperature increases, a keyhole appears in the
upper plate immediately beneath the nozzle. Because of this keyhole, the heat
conducts in a downward direction. As the material temperature rises, it melts
further and the keyhole grows downward. The temperature inside the keyhole is
kept higher than its boiling point. As shown above, the distribution of the gen-
erated energy was taken into consideration to establish the model for the keyhole
welding. The amount of distortion caused by the temperature increase and the
volume expansion was obtained quantitatively for the whole material.

This simulation was developed for high power laser welding of a thin metal as a
new method. The laser beam is continuously irradiated on the material as the heat
source moving at a constant speed, and behavior of the deformation of the material
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was analyzed by 3D Nonstationary elastoplasticity analysis. In this calculation,
radiation and convection are taken into account for contact heat transfer at the
nodal points of element.

The flow chart is similar to the former report [1]. Figure 2 shows the flow chart of
the calculation. This simulation is basically a thermal analysis simulation using the
finite element method but it obtains the temperature field by using heat transfer
equation which takes radiation, convection and contact heat transfer into account,
and then elastic–plastic stress distortion analysis is carried out using the thermal strain
obtained from the temperature. In this simulation, the laser heat source is replaced by
heat flux which is converted to the quantity of heat, and the temperature is calculated
considering the ratio of beam absorption and the thermal properties of the material.

Fig. 2 Flow chart of elastoplasticity stress transformation analysis

Fig. 1 Schematic diagram of the lap welding experiment which intermediate gap is managed by
using shim (slip gauge)
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Moreover, the stress, thermal strain, phase transformation strain, plastic strain
and elastic strain were determined by using the physical properties of the material
such as Young’s modulus and Poisson’s ratio, and finally the distortion of the
entire plate was calculated. Also, temperature dependence was taken into account
for the physical properties of the materials and latent heat was also considered in
the molten state.

3.2 Computing Model

The calculation model for lap welding simulation assumed two plates of stainless
steel (SUS304) 1 mm thick. The laser beam moved to one direction on the
material, and the size of the steel was 100 9 100 mm2. The laser output at this
time was 3.4 kW on the material, and a spot diameter of u = 0.6 mm was
employed. In the simulation, the material was fixed by fixed clamping at both ends,
and the welding jig was released ten seconds after the laser irradiation ended.
The volumetric expansion of the metal caused during the melt of the metal by the
irradiation of the laser heat source and the increase of mass by the oxidation were
calculated, and finally the deformation of the overall sheet metal was evaluated
over time, and the residual stress and the amount of deformation were obtained
in the calculation process as a result though the method for analyzing used to
calculate is the same as a former report [1]. In the calculation for lap welding, the
gap in the middle of the plates was varied from 0.05 to 0.25 mm under these
conditions.

An original computing model that enabled the calculation by inserting virtual
space for the gap layer that would be caused by overlapping two sheets in
the model calculation as a layer was used. Figure 3 shows the computing model.

Fig. 3 Simulation model for the calculation
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The amount of deformation of the welding plates at various welding speeds was
simulated based on this model. On the other hand, as well as the computing model,
the size of the material of 100 9 100 mm was investigated with thickness of
1 mm stainless steel materials. The sample for the actual laser experiment was
selected carefully. The state of the sample before the welding has been adjusted for
the surface-roughness of 5 lm. In an actual experiment, the lap welding was
performed on the same conditions as the calculation.

3.3 Keyhole Model

In keyhole welding mode, if a laser above a certain level of power density (for
example, higher than 105 W/cm2) is irradiated on the metal surface, it is consid-
ered that a keyhole is generated, which is called as keyhole welding. The obser-
vation with a high speed X-ray fluoroscopy camera reported that the keyhole
generation starts more or less some milliseconds (ms) after the laser irradiation,
although the time varies depending on the power density of the laser and the
penetration depth. For example, according to the Tsukamoto [8] and Seto [9]
group, the X-ray observation indicates that a keyhole starts to be formed in
2-3 ms. If the power density is high, the difference in power accelerated the rate
growth of the depth of the keyhole rather than on the time taken to form a keyhole.
In the simulation where the power was set as 4 kW, it was assumed that the
keyhole generation would start in 2 ms after the form of molten pool.

The diameter of a keyhole is roughly the same as the spot diameter, although
the center of the diameter is known to change (in width and length) periodically.
Therefore, it is assumed that a keyhole whose diameter is nearly equivalent to the
laser spot diameter is generated in the material and the heat source with
the temperature higher than the evaporating temperature contributes to warm the
material from inside the keyhole. As described above, the keyhole diameter is
assumed to be constant in the calculation this time but when the changing cycle
becomes clear and if the diameter variation needs to be considered, they can be
dealt with in the calculation. The coordinate system for the computation used for
this study is shown in Fig. 4.

4 Calculation Results

4.1 Welding Behavior of the Heat Conduction Type Welding

In lap welding where two plates are joined vertically, the size of the gap between
the two plates determines the welding quality. Figure 5 shows the simulation
results in time-series under the condition where the heat conduction type welding
occurs in lap welding, using stainless plates (SUS304) of 1 mm thickness with
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1 kW power. Figure 5a) shows the result for narrow gap (g = 0.05 mm) and
Fig. 5b) shows the one for wide gap (g = 0.15 mm). The calculation conditions
are as follows: the spot diameter is 0.6 mm, the power density is 8.8 9 104 W/cm2

and the feeding speed is 1.5 m/min for both simulations. The right circle describes
the heat source. The horizontal line in the figure describes the observation point.
The welding phenomenon such as heating, expanding, melting and grafting at the
cross-section surface were simulated along the heat source movement.

Having an arbitrary cross-section of the welding surface as the observation point,
the temperature increases as the heat source approaches and the material expands
and then melting starts. The largest expansion is observed when the heat source
slightly passed the center on the material and the highest temperature can also be
seen in the molten part at that time. Then, as the heat source passes, the natural
cooling starts and the material shrinks slightly. The upper plate is heated by the
laser heat source and the heat conducts to the intermediate part where the lower
plate is located. There is little difference in the heat conduction speed in this
process. In lap welding, the heat reaches the gap between the plates and the gap is
filled up due to the melting and the expansion. Immediately after the gap is filled up,
the heat conducts to the lower plate and its temperature increases. If the gap is
small, the heat conducts to the lower plate more quickly so that the penetration bead
is generated in the back side of the plate in a short time. Also, a wider interface can
be obtained at the gap. On the other hand, if the gap is large, it takes longer time for
the heat to reach the bottom of the plate. As the gap is relatively large, more molten
metal is needed to fill the gap so that the interface between the upper and the lower
plates becomes somewhat small. Consequently, if the gap is large, the interface is
decreased and the welding intensity is reduced as well. The time for the penetration
bead to be created is also delayed. To compensate this, it will inevitably be required
to lower the welding speed and increase the laser power.

Fig. 4 The coordinate
system for the computation
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4.2 Welding Behavior of the Keyhole Type Welding

Regarding the keyhole type welding of a thin plate, the study has to contain
assumptions for some elements that have not been clarified yet through researches
to date, since little researches have been made for the keyhole welding of thin
plates. One of the elements that have not been clarified yet is the timing for the
keyhole to be generated in the molten pool.

The size of the keyhole diameter is also unknown. Hence, the following
assumptions were made for the simulation. The timing for the keyhole to be
generated is assumed to be 2 ms after the molten pool appears which was esti-
mated from the studies in the past. The keyhole diameter is assumed to be almost
the same as the spot diameter. The keyhole is assumed to appear when the tip
temperature immediately beneath the spot diameter exceeds the evaporation
temperature, since the keyhole is generated and moves downward when the

Fig. 5 The simulation
results in time-series under
the condition where the heat
conduction type welding
(moving picture). Where laser
power is 1 kW, and welding
speed is 1.5 m/min. The view
of observation is y–z plane.
a Narrow gap of
g = 0.05 mm. b Wide gap
of g = 0.15 mm
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melting proceeds and the temperature reaches this point. In the actual X-ray
fluoroscopy observation for a carbon steel plate which has enough thickness, the
downward advance rate of the keyhole is reported as 1.4 mm/ms when processed
with 12 kW power [9, 10]. In our research, lap welding is performed with the
power output less than half of this and the target material is a thin stainless steel
plate of 1 mm so that this result is assumed to be less than the processing rate of
previous work. In our research, lap welding is performed with the power output
less than half of that used in the referenced work and the target material is a thin
stainless steel plate of 1 mm so that this result is assumed to be less than the
processing rate of previous study. Under these assumptions, welding was per-
formed at 5 m/min which is the standard speed to process a plate with this
thickness. The calculation has been made for the process where the melting is
induced by the irradiated laser beam on the material, the keyhole is generated and
then the material is welded.

Figure 6 shows the calculation result based on the keyhole generation model.
The temperature at the surface of the upper plate increases due to the laser irra-
diation and just after the molten pool appears (in 2 ms), a keyhole is generated
immediately beneath the beam. This keyhole grows and penetrates the upper plate
of 1 mm thickness in 5 ms. The molten metal that has reached the intermediate
gap expands to fill the gap and the heat starts to conduct to the lower plate. During
this period, the heat stays at the intermediate part for a while so that there is a
slight delay for the heat shifting to the lower plate. As a result, there is a difference
in heat distribution level between the upper and the lower plates. Also, the keyhole
in the lower plate is a little smaller than the one in the upper plate. When the
middle gap is small (g = 0.05 mm), the time required for the two boards to
penetrate is 8 ms. On the other hand, when the gap is large (g = 0.15 mm), it takes
9 ms. The time to penetrate during welding varies according to the size of the gap.

In this process, it took 9 ms to penetrate the two plates. For justification, actual
measurement was performed using a digital video camera (Canon), although it adopts
a slightly perfunctory method. The shutter speed is 60 frames per minute, which is
16 ms per frame. In this measurement, the initiation of the irradiation and the
penetration splash right under the welding material were confirmed within one frame
so that at least it has been proved that the time taken to penetrate the plates is less than
16 ms. Figure 7 show the measurement and observation system for the penetration
time with high-speed charge coupled device (CCD) image sensor camera.

In actual laser welding, 15-20 l/min assist gas is blown out coaxially with the laser
beam. In the simulation, the gas was blown out toward the molten pool in the same
manner. The result shows that this gas flow pushed down the molten metal in the
generated molten pool and served as the driving force to move it backward.
The molten metal is cooled while going away from molten pool. Also, it was con-
firmed that the gas flow played the role to coagulate the molten metal moderately.

After a molten pool is generated, the molten metal surrounds the keyhole and
then runs backward. Molten metal begins to flow outside of molten pool, and it is
cooled soon sequentially and accumulates. This forms a welding nugget and the
nugget is cooled from the surrounding base material toward the center. When
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cooling starts, a part of the new molten metal laps to form an ‘‘imbricate’’ nugget.
The simulation result is shown in Fig. 8.

In Fig. 8, the lap welding process with keyhole type welding is shown in time-
series, observed from the X–Z plane. The process includes the initiation of the irra-
diation, keyhole generation and penetration. The sections in the Y-Z plane correspond

Fig. 6 The simulation
results in time-series under
the condition where the
keyhole type welding
(moving picture). Where laser
power is 3.4 kW, and welding
speed is 5 m/min. The view
of observation is y–z plane.
a Narrow gap of g = 0.05 mm
b Wide gap of g = 0.15 mm
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to the cross section of the metallographic structure. The actual welding phenomenon
was also observed with Simadzu: Hyper Vision, Model HPV-1. Figure 9 shows the
surface phenomenon of actual welding behavior observed by high speed CCD camera.
It shows that the molten metal is undulating toward the back in the molten pool.

The photo of the cross section showing the structure of the actual weld sample
and the melting geometry of the simulated material as well as the temperature
distribution were compared. Both of these show the molten cross sections observed
from the plane perpendicular to the travel direction (y–z plane) for the same
conditions. The result is shown in Fig. 10. It shows the cross section structure of
the metal obtained through the lap welding experiment with a gap (g = 0.05 mm)
and an example of the calculation result obtained through the simulation. From the
comparison, it can be seen that similar geometries were obtained. In lap welding
with a gap in the middle, the heat stays at the gap interface for a while so that the
melting width is assumed to be slightly wider around the gap. By using the keyhole
model, the shape that is close to the actual one was obtained.

Figure 11 shows the cross section photos obtained through the actual pro-
cessing experiments with different gaps. The upper layer shows the material cross
section photos for a little gap (g = 0.005 mm) processed with 3.4 kW power,
changing the welding speed from 2 to 7 m/min for comparison. When the speed is
less than 5 m/min, penetration welding is observed, but at a speed of 7 m/min,
only partial welding is observed. The lower layer shows the material cross section
at a constant welding speed of 5 m/min, and the effect of changing the size of the
intermediate gap. It is shown that an under filled condition is observed in the upper
plate when the gap is greater than 0.25 mm.

Fig. 7 The measurement and observation system for the penetration time with high-speed CCD
camera
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4.3 Comparison of Heat Conduction Type Welding
and Keyhole Type Welding

For comparison purposes, heat conduction type welding was performed on the
same material surface with the power density less than 105 W/cm2. As well as
keyhole type welding, it is assumed that the two plates with 1 mm thickness
are lap welded and the heat reaches to the bottom of the lower plate so that the
penetration bead is created for this heat conduction type welding. To achieve

Fig. 8 The simulation
results in time-series under
the condition where the
keyhole type welding
(moving picture). Where laser
power is 3.4 kW, and
welding speed is 5m/min, gap
is g = 0.05 mm. The views of
observation are x–z plane and
y–z plane
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this, the power output should be less than 1 kW. In this comparison, the
welding speed was 5 m/min for the keyhole type welding with 3.4 kW power
and the power density was 3.0 9 105 W/cm2, while the welding speed for the
heat conduction type welding was 1.5 m/min with 1 kW power and the power
density was 8.8 9 104 W/cm2. Figure 12 shows a comparison of the time
needed to penetrate (until the heat is conducted sufficiently to the back side and
the penetration bead is created) the lapped plates with 2 mm thickness. The
result shows that the time needed for the penetration was 9 ls for keyhole type
welding and about 38 ls for heat conduction type welding. This indicates that
the presence of a keyhole accelerates the welding speed. From a different point
of view, if heat conduction type welding would have been carried out using
high power laser welding, it would have taken too long to join the material,
which does not reflect industrial processing. Therefore, the result indicates that
the keyhole type welding is carried out also in thin plates lap welding with
high power.

Fig. 9 The actual welding
behavior observation by high
speed CCD camera. The view
of observation is x-y plane.
Where laser power is 3.4 kW,
and welding speed is 5 m/min

Fig. 10 Comparison
between cross section of
actual sample and result in
simulation in keyhole
welding. Where laser power
is 3.4 kW, and welding speed
is 5 m/min. The view of
observation is y–z plane.
a Narrow gap of
g = 0.05 mm b Wide
gap of g = 0.15 mm
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4.4 Comparison of the Plate Distortion Through Simulation

Figure 13 shows the amount of distortion along the axis of the welding direction in
lap welding with different intermediate gaps, where the vertical axis indicates the
amount of distortion and the horizontal axis indicates the distance of the welding
axis direction. For comparison purposes, the calculation was made for heat con-
duction type welding with 1 kW power and 2.5 lm gap in the middle, where the
keyhole is not considered to be generated. The speed with which welding can be
performed was 2 m/min. This indicates that the processing speed is faster in
keyhole type welding than in heat conduction type welding and, what is more, the
amount of distortion is smaller for the keyhole type welding, although there is a
difference in power and welding speed. In addition, in keyhole type welding, the
greater the intermediate gap, the smaller the amount of distortion. It is believed

Fig. 12 The comparison
result of the time needed to
penetration time to the back
side in the welding of heat
conduction type and keyhole
type

Fig. 11 The cross section photos obtained through the actual processing experiments with
a different welding speed and b different gaps
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that some of the heat energy is used to fill the intermediate gap so that less heat is
conducted into the lower plate. As a result, it is considered that the plate distortion
in the whole is reduced.

4.5 Comparison of the Angular Distortion

Figure 14 shows the angular distortion process and its distortion behavior with
time observed from the welding surface (y–z plane). The amount of deformation of
the upper and lower plates is shown in Fig. 15. It shows the cross section surface
where the welding point is located in the center of the plates and the jig to hold the
material is arranged on and under the plates. It describes the distortion in the y–z
plane, or the angular distortion that starts immediately after the jigs are released
when the welding process is completed.

Figure 15 shows that the distortion does not appear in two plates concurrently
nor evenly in thin plate lap welding. The upper plate initially deforms toward the
beam irradiation direction due to the heating and after the heat source has passed,

Fig. 13 The amount of distortion along the welding line direction in the lap welding with
different intermediate gaps

Fig. 14 The angular
distortion process and its
distortion behavior in time-
series observed from the
vertical section (y–z plane)
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the distortion reduces slightly during cooling. During this process, the lower plate
deforms in the same manner but the amount of distortion is larger than that in the
upper plate because of the intermediate gap.

The distortion in the lower plate continues, maintaining the gap around the
welding point in the middle and finally the distortion stops when both edges of the
lower plate touch the upper plate. The greater the gap, the wider the angle between
the upper and the lower plates.

5 Conclusions

While the simulation process of keyhole welding includes some assumptions, they
can be supported by the best experimental observations that are possible at the
present time, so that the simulation result is not very different from the experi-
mental results. In addition, the following new knowledge has been obtained
through the simulation of high power lap welding.

1) When the intermediate gap is small, the heat transfers more easily between the
lapped materials so that sufficient heat is conducted from the upper to the lower
plate to increase the molten area. As a result, the overall distortion in the
direction of welding becomes greater. On the other hand, if the intermediate
gap is wider, less heat is conducted to the lower plate so that the amount of
distortion is smaller.

2) When the intermediate gap is large, the molten metal of the upper plate is used
to fill the gap so that an under fill condition is generated at the top of the upper
plate. The smaller the intermediate gap, the wider interface can be maintained
so that the molten cross section surface looks like the bead-on-plate without
a gap.

3) In thin plate lap welding, the angular distortion increases as the intermediate
gap becomes wider. In addition, the amount of distortion differs between the

Fig. 15 The amounts of deformation of the upper and lower plates
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upper and the lower plates in lap welding. The angular distortion is larger in
the lower plate. The difference is proportional to the size of the intermediate
gap both in the actual experiment and the simulation.

4) In lap welding with a gap, the material surface of the upper plate is heated and
the heat conducts downward in a short period but the conduction stops at the
gap and becomes an adiabatic state. During this adiabatic period, the convec-
tive flow of the heat and the volume expansion of the molten metal cause the
upper plate to touch the lower plate. Once they touch, the heat conducts rapidly
toward the lower plate to form a molten layer.

5) Given that heat conduction type welding would be performed in thin plate lap
welding with a high power, the molten area and the time required to join the
material does not match the actual processing. Therefore the conclusion can be
drawn that keyhole type welding is performed in the high power welding.

6) In thin plate lap welding, there is a difference in the heat distribution between
the upper and the lower plates because of the gap between them. In heat
conduction welding the laser power is lower, the welding speed is slower and
the amount of distortion is greater compared to keyhole welding.

A basic model for keyhole welding has been established. With this simulation,
it is assumed that the welding phenomenon observed in thin plate lap welding can
be explained. In the future more precise measurement and X-ray fluoroscopy
observation data should improve the simulation accuracy.
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Crack Propagation Analysis
in Underwater Laser Drilling

Etsuji Ohmura, Takashi Okazaki, Keiichi Kishi, Toshio Kobayashi,
Masahiro Nakamura, Satoshi Kubo and Komei Okatsu

Abstract In recent years, a state-of-the-art method of rock drilling has been
developed by Japan Drilling Co., LTD. (JDC) and Japan Oil, Gas and Metals
National Corporation (JOGMEC). In that method, a pulsed laser of the wavelength
that is absorbed by water is used. Bubbles are generated in the water by the
absorbed energy. The rock surface is irradiated by the laser beam through
the bubbles. It was reported by the experiments under atmospheric pressure that
there are two processing types in this method: melting and spallation. In the
former, rock is partially melted and removed by a water stream caused by the
bubble formation or the bubble extinction. In the latter, rock is spalled by thermal
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stress and removed in the same way as in the former case. In this study, the
processing mechanism in the spallation type was clarified first by the thermal stress
analysis based on fracture mechanics. Then, the possibility of laser drilling at the
sea bottom which is several thousand meters from the sea level was also inves-
tigated, because the experiments are very difficult. As a result, the following
conclusions were obtained: In the tensile stress field of the rock inside caused by
laser irradiation, the rock is spalled by crack propagation in mode I. In the com-
pression field generated in the neighborhood of the rock surface, a rock is spalled
by crack propagation in mode II. These spallations occur also under the condition
of high pressure that the bottom of the sea was assumed. Contribution of crack
propagation in mode II to the spallation increases as the depth becomes large.

Keywords Underwater laser drilling � Crack propagation � Spallation � Granite �
Thermal stress � Fracture mechanics

1 Introduction

Rotary drilling is currently the only method used for the digging of oil. The
digging of oil using a laser has been studied from the 1970s. In past research, a
fused glass component has been generated by laser irradiation, and it disturbs laser
drilling. In recent years, a state-of-the-art method of rock drilling has been
developed by Japan Drilling Co., LTD. (JDC) and Japan Oil, Gas and Metals
National Corporation (JOGMEC) [1]. In that method, a pulsed laser of the
wavelength that is absorbed by water is used. Bubbles are generated in the water
by the absorbed energy. The rock surface is irradiated by the laser beam through
the bubbles. It was reported by the experiments under atmospheric pressure that
there are two processing types in this method: melting and spallation. In the
former, rock is melted partially and removed by water stream caused by the bubble
formation or the bubble extinction. In the latter, rock is spalled by thermal stress
and removed in the same way as in the former case.

In this study, the processing mechanism of the spallation type was clarified first
by a thermal stress analysis based on fracture mechanics. Granite was used as the
rock material. Then, the possibility of laser drilling at the sea bottom which is
several thousand meters from the sea level was also investigated, because the
experiments are very difficult.

2 Analysis Method

In this study, the commercial software ANSYS was used for analysis. Heat conduction
analysis was performed first, and thermal stress analysis was conducted based on the
obtained temperature distribution as a plane strain problem. The Analysis model is
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shown in Fig. 1. The obtained temperature distribution was then applied to the model
including precrack, and thermal stress analysis and crack propagation analyses were
conducted. In the crack propagation analysis, the mode I stress intensity factor (SIF)
and the mode II SIF were calculated at crack tips, and the crack was progressed when
the value exceeded each fracture toughness value of rock. Precracks were supposed in
the inside of the rock and in the vicinity of the rock surface. The laser irradiation
condition was as follows: laser power 1 kW, beam size (width) 10 mm, repetition rate
10 Hz and duty 60%.

Using ANSYS CFX, the velocity of the water stream at the rock surface was
analyzed from the formation of the bubble due to laser absorption to the bubble
extinction after laser pulse end. As a result, the following results were obtained:
among pulse duration which is 60 ms, about 20 ms of the beginning contributes to
bubble formation, and laser is irradiated to the rock surface during the remaining
pulse duration which is about 40 ms. Bubbles are collapsed after the laser pulse
end. Therefore, the real laser irradiation to the rock was assumed, as shown by
halftone dot meshing in Fig. 2. In addition, the heat transfer coefficient during
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Fig. 1 Analysis Model for
heat conduction and thermal
stress analyses
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Fig. 2 Laser irradiation condition
(real laser irradiation to the rock is
shown by halftone dot meshing.)
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bubble formation and bubble collapse was estimated to be 1.89 kW/m2K from
average flow rate on the rock surface [2]. It was assumed that both the initial
temperature and the ambient temperature are 300 K.

3 Analysis Results and Discussion

The results of heat conduction analysis and the thermal stress analysis where the
obtained temperature distribution was used for are shown in Figs. 3 and 4,
respectively. The surface temperature of the granite rises by the laser irradiation.
As a result, in the vicinity of the surface, a compressive stress field is present and a
tensile stress field is present in the interior.

(a) 30 ms (b) 40 ms (c) 50 ms (d) 60 ms

Temperature    K 478300 5 mm

Fig. 3 Time variation of temperature distribution

(a) 30 ms (b) 40 ms (c) 50 ms (d) 60 ms

Stress xxσ     GPa
0.014-0.130 5 mm

Fig. 4 Time variation of normal stress rxx
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3.1 Case Supposing a Precrack Inside the Rock

A vertical precrack of 500 lm long from a point of 4 mm in depth from rock
surface was supposed. Figure 5 shows the normal stress rxx at 30 and 60 ms. Stress
concentrates at the tips of the precrack in the internal tensile stress field at both
moments in time. Figure 6 shows the stress concentration at the tips of the
precracks. Because such stress concentration occurs at the crack tips, the crack
progresses.

5 mm

(a)

5 mm

(b)

0.10-0.13
Stress xxσ   GPa

Fig. 5 Normal stress rxx at 30 and 60 ms
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Fig. 6 Time variation of
normal stress rxx at precrack
tips
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The crack propagation analysis results at 30, 60, 130 and 160 ms are shown
in Figs. 7 and 8. Figure 7 shows the time variation of the temperature distri-
bution and crack propagation. Figure 8 shows the time variation of the stress
distribution and crack propagation. Time variation of the depth of the upper and
lower crack tips is shown in Fig. 9. As for the upper tip, crack propagates at
60 ms, but stops afterwards. This is because the crack progresses and reaches
the compressive stress field. The lower tip of the crack progresses remarkably
by the first heating. The tensile stress of the inside of granite decreases after
laser pulse ends, and the stress concentration slowly becomes weak. During
re-heating by the next laser pulse, the surface is more subjected to a com-
pressive stress field, and the tensile stress field spreads by the counteraction.
As a result, larger stress concentration occurs at the lower crack tip, and the
crack progresses more.

Initial crack

(a) 30ms (b) 60 ms (c) 130 ms (d) 160 ms

Temperature K 580300 5 mm

Fig. 7 Time variation of the temperature distribution and crack propagation

Initial crack

(a) 30ms (b) 60 ms (c) 130 ms (d) 160 ms

Stress xxσ     GPa
0.15-0.21 5 mm

Fig. 8 Time variation of the stress distribution and crack propagation
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3.2 Case Supposing a Precrack in the Vicinity
of the Rock Surface

Here a vertical precrack of 500 lm long from the rock surface was supposed.
The laser irradiation condition is the same as in the previous section. The
influence of heat transfer coefficient on the time variation of the normal stress
rxx at the precrack tip is shown in Fig. 10. The crack does not progress during
the heating period under laser irradiation because a compressive stress field is
present in the vicinity of the surface. When the heat transfer coefficient is
assumed to be 1.89 or 10 kW/m2K, the crack does not progress after laser pulse
ends, because the cooling effect is small. On the other hand, a tensile stress acts
on the crack tip if a large heat transfer coefficient such as 100 kW/m2K is used,
then the crack progresses as shown in Fig. 11. However, its crack propagation
is considerably low comparing to the propagation of the above-mentioned
interior crack. The heat transfer coefficient 100 kW/m2K is about 50 times
larger than 1.89 kW/m2K. Therefore, it is concluded that cracks in the
compressive stress field at the vicinity of the rock surface do not almost
progress.
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3.3 Thermal Stress Analysis Considering a Confining Pressure

The previous analyses were conducted under atmospheric pressure, but the real
laser drilling is carried out on the sea bottom whose depth may be several thousand
meters. Therefore, the crack propagation analysis was performed assuming
constraint pressure on the sea bottom. Here, the depth of sea bottom was assumed
to be 3,000 m, where its confining pressure is about 30 MPa. The laser irradiation
condition is the same as the above analysis where a precrack of 500 lm long was
assumed in the interior of granite. The heat transfer coefficient was also assumed to
be 1.89 kW/m2K.

Time variation of the normal stress rxx at the precrack tips is shown in Fig. 12.
For comparison, the analysis result under atmospheric pressure 0.1 MPa is also
shown. It is understood that stress is hard to concentrate at precrack tips in
comparison to atmospheric pressure. This is because the analysis area is easier to
become a compressive stress field under the confining pressure in comparison to
atmospheric pressure conditions. Crack propagation began at 60 ms in the analysis
under atmospheric pressure, but it can be understood that the SIF does not reach
the fracture toughness value 0.35 MPa m1/2 of the granite [3] at 60 ms under the
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confining pressure of 30 MPa. The tensile stress at the crack tip decreases in the
later cooling period, and crack propagation starts at 160 ms by heating of the next
laser pulse. Time variation of the depth of crack tips is shown in Fig. 13. It is
concluded that while cracks can progress at the sea bottom which is several
thousand meters from the sea level, when compared to crack progression under
atmospheric pressure, they do not progress as easily.

3.4 Crack Propagation in Mode II

Then, the possibility of crack propagation in mode II, that is, crack propagation by
shearing stress in a compressive stress field in the rock surface was examined.
The analysis procedure is the same as in the previous sections. Applying the tem-
perature distribution obtained in the heat conduction analysis to the model including
a precrack, thermal stress analysis was conducted. The mode II SIF at the crack tips
was calculated, and crack progressed when the value exceeded the fracture toughness
in mode II of the granite. The laser irradiation condition was the same as above. The
mode II fracture toughness value of the granite is 0.46 MPa m1/2 [3, 4], and heat
transfer coefficient was assumed to be 1.89 kW/m2K. It was supposed that the pre-
crack is 500 lm long, its center is 500 lm in depth and the inclination angle is 60�.
The finite element model is shown in Fig. 14.

The shearing stress at the precrack tips is shown in Fig. 15. Figure 16 shows the
time variation of temperature distribution and crack propagation. The time vari-
ation of the depth of the crack tips is shown in Fig. 17. The upper crack tip reaches
at the surface at 40 ms. The lower crack tip also progresses remarkably at
30–60 ms during laser irradiation time, and crack progresses still slowly after the
laser pulse irradiation. It is concluded that cracks in the vicinity of the rock
surface, where crack propagation in mode I cannot occur because of the com-
pressive stress field, can progress by the shearing stress.
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Confining pressure which acts as hydrostatic pressure at the sea bottom does
not affect the shear stress field. Therefore, it can be estimated that the mode II
crack propagation at the sea bottom will be almost the same as the propagation
under atmospheric pressure. Actually, the analysis result was the same as
Fig. 17 when a confining pressure of 30 MPa was given. It is concluded that
crack propagation by shear stress becomes dominant in underwater laser drilling
as the depth of water increases because the confining pressure becomes
increasingly large.

3.5 Multiple Cracks Propagation

In the above-mentioned analysis, only one precrack was supposed in the
granite. Here, analysis results where multiple adjacent precracks were supposed
are given. At first, the crystal grain boundaries were extracted from a polarizing

Fig. 15 Shearing stress at the pre-
crack tips in mode II
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Fig. 14 Finite element model for analysis of crack propagation in mode II
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microscope image of the granite by an image analysis software Image J. Then,
a finite element model where three precracks are in the adjacent of the grain
boundaries was made. Each crack was assumed to be a line along the grain
boundary. The crack center was defined applying random numbers on the grain
boundary, and all of them were assumed to be 500 lm long. Crack propagation
analysis was conducted as in the previous sections. The same laser irradiation
condition and physical properties of granite were used. The heat transfer
coefficient was assumed to be 1.89 kW/m2K.

Temperature distribution and stress distribution at 130 ms are shown in
Fig. 18. It is understood that stress concentration is generated at crack tips.

0

0.5

1

1.5

2

2.5
0 20 40 60 80 100

Time   ms

D
ep

th
 o

f c
ra

ck
 ti

p 
   

m
m Upper tip

Lower tip

Fig. 17 The time variation of the depth of the crack tips in mode II

(a) (b)

60

40 (c)

(e)(d)

Fig. 16 Time variation of temperature distribution and crack propagation in mode II

Crack Propagation Analysis in Underwater Laser Drilling 725



For all precracks, mode I is dominant because they are in the tensile stress area.
Time variations of temperature and crack propagation under atmospheric
pressure and a confining pressure of 30 MPa, are shown in Figs. 19 and 20,
respectively. In Fig. 19, two cracks collide at 140 ms at first, then the third
crack also collides at 150 ms. Under the confining pressure 30 MPa, cracks are
hard to progress comparing to atmospheric pressure, and two cracks finally
collide at 560 ms in Fig. 20. The analysis where three precracks on crystal
grain boundaries in the granite were supposed was performed here, however in
the actual drilling phenomena, this crack propagation occurs at various areas.
It is supposed that a rock is spalled by such crack propagation and then pul-
verized particles are removed by the water jet which is generated by bubble
collapse after the end of laser pulse.

(a) 30ms 40 ms 50 ms(b) (c) 60 ms(d)

130 ms(e) 140 ms(f) 140 ms(g)

Fig. 19 Time variation of temperature and crack propagation under atmospheric for multiple
cracks

Temperature    K 545

Fig. 18 Temperature distribution and stress distribution at 130 ms for multiple cracks
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4 Conclusion

In this chapter, the crack propagation in spallation type, which is one of the
processing mechanisms in underwater laser drilling developed by JDC and JOG-
MEC, was investigated by a thermal stress analysis based on fracture mechanics.
Possibility of laser drilling at the sea bottom which is several thousand meters from
the sea level was also investigated, because the experiments are very difficult. As a
result, the following conclusions were obtained: In the tensile stress field of the
rock inside caused by laser irradiation, the rock is spalled by crack propagation in
mode I. In the compressive stress field generated in the neighborhood of the rock
surface, a rock is spalled by crack propagation in mode II. These spallations occur
also under the condition of high pressure at the bottom of the sea. Contribution of
the crack propagation in mode II to the spallation increases as the depth becomes
large.
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