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Preface

Common engineering materials reach in many demanding applications such as
automotive or aerospace their limits and new developments are required to fulfill
increasing demands on performance and characteristics. The properties of mate-
rials can be increased for example by combining different materials to achieve
better properties than a single constituent or by shaping the material or constituents
in a specific structure. Many of these new materials reveal a much more complex
behavior than traditional engineering materials due to their advanced structure or
composition. Furthermore, the classical applications of many engineering
materials are extended to new ranges of applications and to more demanding
environmental conditions such as elevated temperatures. All these tendencies
require in addition to the synthesis of new materials, proper methods for their
manufacturing and extensive programs for their characterization. In many fields of
application, the development of new methods and processes must be accomplished
by accurate and reliable modeling and simulation techniques. Only the interaction
between these new developments with regard to manufacturing, modeling, char-
acterization, further processing and monitoring of materials will allow to meet all
demands and to introduce these developments in safety-relevant applications.

The 4th International Conference on Advanced Computational Engineering and
Experimenting, ACE-X 2010, was held in Paris, France, from 05 to 07 July 2010
with a strong focus on the above-mentioned developments. This conference served
as an excellent platform for the engineering community to meet with each other
and to exchange the latest ideas. This volume contains 45 revised and extended
research articles written by experienced researchers participating in the confer-
ence. The book will offer the state-of-the-art of tremendous advances in engi-
neering technologies of materials with complex behavior and also serve as an
excellent reference volume for researchers and graduate students working with
advanced materials. The covered topics are related to Materials and Properties,
Non-classical Materials and Structures and New Technologies.
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The organizers and editors wish to thank all the authors for their participation
and cooperation which made this volume possible. Finally, we would like to thank
the team of Springer-Verlag, especially Dr. Christoph Baumann, for the excellent
cooperation during the preparation of this volume.

November 2011 Andreas Ochsner
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Materials and Properties






A Finite Element Simulation
of Longitudinal Impact Waves
in Elastic Rods

Hesham A. Elkaranshawy and Nasser S. Bajaba

Abstract In this chapter, wave propagation in a thin rod struck by a rigid mass is
considered and a finite element simulation of the system is developed. Both cases
of free—free and fixed-free rods are considered. Though impact generates a prop-
agating stress wave in both cases, the free—free rod is going to have a rigid-body
motion. The analytical equations of motion are presented and the corresponding
finite element equations are derived. A numerical scheme is constructed and
solutions are obtained using Newmark implicit integration method and Newton—
Raphson iterative technique. Solutions include time histories of displacement,
velocity, stress, and contact force. The contact force is calculated, according to St.
Venant’s impact model. Numerical results of the simulation are compared to
traditional analytical results. A simulated visualization of the propagation of the
stress wave in the rod is presented, which enhances the understanding of this
complicated physical phenomenon. The achieved results are accurate enough to
have confidence in using this model for practical applications in wave propagation
simulation and analysis.

Keywords Longitudinal impact - Stress and strain analysis - Wave propagation -
Finite element simulation
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Cross-sectional area (mz)

Wave propagation velocity (m/s)
Young’s modulus (N/mz)

Contact force (N)

Global force vector (N)

Force vector for element in contact with the rigid mass (N)
Global stiffness matrix (N/m)

Length (m)

Lagrangean (J)

Mass of the rod (kg)

Mass of the rigid mass (kg)

Global mass matrix (kg)

Finite element shape functions (m/m)
Displacement of the rigid mass (m)
Velocity of the rigid mass (m/s)
Time (s)

Contact period (s)

Kinetic energy (J)

Displacement of the rod at position x(m)
Nodal displacement vector (m)
Velocity vector (m/s)

Acceleration vector (m/s>)

Nodal displacement vector element in contact with the rigid mass (m)
Strain energy (J)

Initial velocity of the rigid mass (m/s)

Work done (J)

Position in the rod (m)

Strain in the rod (m/m)

Potential energy (J)

Density (kg/m?)

Stress in the rod (N/m?)

Time for the wave to travel across the rod from one end to the other end (s)
Value at the previous time step (N = 0,1,2,...)

Value at the current time step (N = 0,1,2,...)

1 Introduction

Investigation of wave propagation in a rod due to impact has a long history.
Bernolli, Navier, Poisson, and St. Venant are among the great researchers who
investigated this problem. Good reviews of the treatments of longitudinal waves in
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rods produced by impact are offered in [1, 2]. Recently, due to the presence of
powerful computers, new computational methods are applied to solve this classical
problem. An analytical simulation, symbolic solution, and a solution using time
delay method have been developed [3-5]. Both theoretical and experimental
researches were conducted [6-8] and a review of the experimental studies is
offered in [9].

One practical device which utilizes longitudinal wave propagation in rods is the
Hopkinson (or Davies) bar. The device is used to calibrate shock accelerometers
under high acceleration levels and a wide frequency bandwidth. The bar is a long,
thin, and elastic rod, in which a stress wave is generated at one end by a projectile
impact. The projectile is a rigid mass or a striker bar. At the other end of the bar
the generated wave can be used in many applications. The propagation of the
shock wave in a Hopkinson bar is modeled [10, 11]. Insertion of a deformable disk
between the projectile and the bar can decrease the wave dispersion, hence, a
commercial finite element code was utilized to investigate dispersion in the bar
and to find the optimum characteristics of the inserted deformable disk [12].

Wave propagation can be used in the determination of mechanical properties of
materials. Some dynamic strength material constants were obtained using the split
Hopkinson pressure bar [13]. The split tensile Hopkinson bar tests are interrupted
to evaluate the damage in the materials at high strain rate [14]. The evaluation of
the coefficient of restitution, through numerical simulation of impact of a rigid
mass and a slender elastic rod, was investigated [15, 16]. Furthermore, there is an
increasing interest in using wave propagation in crack detection, for example,
wave propagations in cracked beams and plates were examined [17, 18].

Some machine elements are rod-like bodies that are subjected to impact loading
during their functional operations. Examples are encountered in piling, percussive
drilling and hydraulic hammering. Due to the elasticity of these axial elements,
waves propagate through them while they are in translational motion. At the same
time, it is obvious that wave propagation is gaining more potential in non-
destructive testing methods. Therefore, reliable finite element models are needed
to be used in the simulation of the propagation of waves. In this chapter, a finite
element model is constructed to represent impact of a rigid mass on a flexible rod.
The model overcomes the limitations in the previously reviewed works where the
impact forces were assumed, see [17, 18], or calculated using methods that are
highly time consuming, see [15, 16]. Hence, the contact force is calculated using
an efficient approach utilizing the St.Venant’s classical impact model. The two
cases of free—free and free-fixed elastic rods are investigated. A numerical scheme
is formulated depending upon Newmark implicit time stepping method and
Newton—Raphson iterative method. The contact force is calculated and the wave
propagation in the rod is simulated. To enhance the understanding of the com-
plicated physical phenomenon, a simulated visualization of the propagation of the
impact wave through the bar is monitored.
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2 Mathematical Modeling

It is assumed that the rod has mass m, Young’s modulus E, density p, cross-

sectional area A and length /. The rod is initially at rest and is struck on the right

end x = [ at the initial time # = 0 by a moving rigid mass my with initial velocity

vo. The displacement of the rigid mass at time ¢ is donated by ¢(¢) and the

displacement of the rod at position x and time ¢ is given by u(x,?), as in Fig. 1.
The governing equation for the longitudinal wave in the rod is

u(x,t)  ,0%u(x,1)
or ¢ ()

where c is the wave propagation velocity

E
c=\£ )

The strain &(x, ) in the rod is given by

Ou(x, 1)
1= : 3
o, 1) = =5 ()
For an elastic rod, the stress is proportional to strain, or
Ou(x, 1)
t)=E 4
olx,1) = = )

As contact is established between the mass and the rod, both the mass and the
contact end of the rod (x = [) are assumed to have the same velocity vy. Therefore,
a compression wave is created in the rod. The wave travels along the rod and is
reflected at the other end (x = 0). During the contact period, displacement ¢(¢) and
velocity ¢(t) of the mass are the same as those of the contact end of the rod (x = I).

Ou

q(t) =u(l,t) and ¢(t) = 3 (L), O<t<t, )

where ¢, is the contact period.

The contact persists as long as the contact force between the mass and contact
end of the rod does not vanish. The contact force equals the stress at the contact
end times the rod’s cross-sectional area, i.e.

F(t) = EA a”éi’ J (6)

The motion of the rigid mass is governed by
dgq

m-—=
dt

F(1) (7)
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| | |
X J‘ dx J
e ) |
P

[

A

u u+du

dx

Fig. 1 Displacement of the rod at a general position x

Equations (1), (6), and (7) are the equations of motion of the rod and the rigid
mass during the impact period. After the cease of impact the motion of the rod is
controlled by Eq. (1). In the same time, since F(¢)vanishes, Eq. (7) declares that
the rigid mass moves with a constant velocity.

3 Finite Element Solutions

The pre-mentioned differential formulation of the equations of motion is equiva-
lent to integral formulation, which requires the application of Lagrange’s equation
of motion. First, one defines Lagrangean ‘L’ by

L=T-n (8)
where ‘T is the kinetic energy and ‘m’ is the potential energy defined by
n=U—W 9)

U, and W are the strain energy and the work done, respectively, that are given by

U, = ZE%/EA (%)iix (10)

T:Ze%/pA(%>2dx+%m0E—”l‘(x1)]2 (11)

W = F(t)u(l, 1) (12)

The finite element shape functions [N (x)] link the displacement ‘u’ to the nodal
displacement vector {U} through

u(x, 1) = [N{U} (13)
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Rigid Mass
Fixed End Elastic Rod Free End
| .
— x / «—
ol
g
Rigid Mass
Free End Elastic Rod Free End
| .
L5 x ] — v,
< gl
Fig. 2 Longitudinal impact of a mass on a rod (free-fixed and free—free)
Consequently;
_ L . T 2 1 T T 14
L =10} M{U} = (U} [K{UY +{f ()} {U} (14)

[M] and [K] are the global mass and stiffness matrices and {f(¢)} is the global
force vector. {f(r)} contains only the nodal forces of the last element, {f()},, due
to the contact force. The rest of the global force vector is full of zeros. {f(r)},, is
given by

F0)}a=FOINGE=D]" (15)
The Lagrange’s equation of motion is given by
d ( oL oL
i &) =0 e
this leads to
MU} + [K{U} = {f(1)} (17)

Equations (6) and (13) give

PO = Al (=) W), (18)
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where {U},is the nodal displacement vector for the last element, which is the
element in contact with the rigid mass.

Equations (17) and (18) are the finite element equations of motion during
impact. These equations are applied for both cases of free- free rod and free-fixed
rod, see Fig. 2. In the case of free-fixed bar both [M] and [K] are positive definite
matrices. For the free—free bar, though [M]is positive definite matrix, [K] is
positive semi-definite matrix due to the existence of rigid body modes.

Newmark implicit time stepping method (Bathe [19]) is used to express the

current velocity {U}., and acceleration{U/},_, in terms of the current displace-
ment {U},., and previously determined values of displacement {U},, velocity

{0}, and acceleration{U/},. Combining these equations with the equations of
motion (17) and (18) yields a system of algebraic equations in terms of {U}, | and
F(t)y.,- The Newton—Raphson iterative method (Bathe [19]) is used to solve the
resulting equations to find the current displacement and contact force. The dis-
placement and other variables’ distributions in the rod at the end of impact serve as
the initial conditions for the subsequent free vibrations of the bar, which are governed
by the solution of Eq. (17) while Eq. (18) is no longer relevant.

4 Numerical Simulation

Numerical simulations, for a rigid mass collides with a free—free elastic rod and
with a free-fixed elastic rod, are presented in this section, see Fig. 2. The rod in
both cases is an aluminum rod with a 3 mm x 25 mm cross section, 200 mm
length, 70 GN/m? Young’s modulus, and 2,710 kg/m® mass density. The rigid
mass has the same mass as the rod. The mass is moving towards the rod with a
velocity of 1 m/s. Fifty elements are used to model the rod in the finite element
model. The elements are two-nodes and one-dimensional linear elastic elements.
The velocity of the created wave is ¢ = 5082.35 m/s and the time for the wave to
travel across the rod from one end to the other end is T = ﬁ =3.935x 1077 s.

According to St. Venant’s principle, as contact starts the velocity of the contact
end becomes immediately equals to the rigid mass velocity and right away a
compression wave is created at the contact end and travels across the rod with
velocity ‘c’. The initial compression stress at the contact end is 69 = vo/Ep and
the stress at that end starts to decrease with time until the reflected wave reaches
that end.

For the bar with the other end free, the stress at the free end is always zero,
therefore, the traveling compression stress wave is reflected at the free end as a
tension wave and whenever that tension wave reaches the contact end at time t, it
cancels out the stress at that end and contact is terminated. Following the cease of
contact, the wave is reflected from the contact end as compression wave and
periodic cycles start with a period equals to 1.
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Dimensionlesstress

*=0 Dimensionless length X _q
! l

Fig. 3 Stress wave propagation in the free—free bar; waves of dimensionless stress = o verses
dimensionless length 7 are shown at times 0.125 <t apart

The finite element solutions successfully predict this phenomenon as can be
seen in Figs. 3, 4, 5, 6, 7.
Figures 4, 5, 6, 7 show the dimensionless displacement Violu, velocity %, stress

;C 1 . . . . .
VAL and contact force AVES F, respectively, with respect to dimensionless time

<t. Slight numerical damping is introduced to reduce the oscillations in solutions.
Dimensionless analytical solutions are given in [4]. Very good agreement is found
between the solutions of the proposed finite element model and the analytical
solutions [1, 2]. Figure 3 shows the distribution of the dimensionless stress over
the dimensionless length 3, at equal dimensionless time steps of 0.125. Therefore,
the wave propagation can be visualized in that figure. Figures 3 and 7 show that
the arrival of the reflected tension wave into the contact end nullifies the contact
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2 | Contact en
Striking mas

0 T T T T T 1
1 2 3 4 5 6

Dimensionless displacement

w
|
-
I
(0]
@

><%

-1 - Dimensionless time < ¢
)

Fig. 4 Dimensionless displacements of free end, contact end and striking mass (free—free bar)

2.5
- v
Vo Contact end Free end

1.5

0.5

-0.5

Fig. 5 Dimensionless velocities of free end, contact end and striking mass (free—free bar); (%)
is the dimensionless velocity and ($7) is the dimensionless time

force. Therefore, it marks the end of impact. Most of the time, a portion of the rod
is in tension while the other portion is in compression, as can be seen in Fig. 3.
Therefore, the mid-point stress alternate between compression and tension marked
by the arrival of the wave at that point, see Figs. 3 and 6. Though the displace-
ments of the bar ends are continuous, see Fig. 4, the slope of each displacement
history suffers discontinuity corresponding to the arrival of the wave at that end,
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Mid point

14

Fig. 6 Dimensionless stresses at mid point and contact end (free—free bar); Fo
is the dimensionless stress and $7 is the dimensionless time

12

1 -
0.8
0.6 -
0.4 -

0.2 - c

0

( 1 2 3 4 5 6
-0.2 -

Fig. 7 Dimensionless contact force (free—free bar); —— F is the dimensionless force and < ¢
voAVEp 1
is the dimensionless time

which is reflected in the discontinuity of the velocities, Fig. 5. The time history of
velocity in Fig. 5 indicates that after the end of impact, the striking mass does not
change its original moving direction and the bar starts a continued free vibration.
The bar has an average rigid body motion velocity and for each end, the velocity is
varying between two limits. The arrival of the wave at each bar end increases the
velocity of that end impulsively to its maximum value. The analytical solutions
given by Goldsmith [1] predict that the final dimensionless velocity of the rigid
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Dimensionless Length

~|=
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l

Fig. 8 Stress wave propagation in the fixed-free bar; waves of dimensionless stress oE 0 verses
dimensionless length 7 are shown at times 0.125 S apart

mass to be 0.1353 and the present simulation predicts 0.1469, see Fig. 5. At the
arrival of the reflected wave to the contact end, the analytical dimensionless stress
is 0.1353 and in Fig. 6 the finite element calculates 0.1325.
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Fig. 9 Dimensionless displacements of contact end and striking mass (fixed-free bar); ;&u
is the dimensionless displacement and $¢ is the dimensionless time
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Fig. 10 Dimensionless velocities of contact end and striking mass (fixed-free bar); (ﬁ)
is the dimensionless velocity and ($¢) is the dimensionless time

Using the present finite element simulation, a visualization of the wave motion
is illustrated in Fig. 8 for the bar with one fixed end. The figure illustrates the
distribution of the dimensionless stress over the dimensionless length 3, at equal
dimensionless time steps of 0.125. It shows that the traveling compression stress
wave is reflected at the fixed end as a compression wave, as expected. Since the
contact is not terminated yet, the contact end operates as a fixed end and the
compression wave is reflected from that end as a compression wave again. Once
more, the wave is reflected as a compression wave at the fixed end, but shortly
after that the contact is terminated. For that reason, during the contact period, the
whole rod is under compression all the time, see Fig. 8. Without presenting a
similar figure, analytical solutions given in [1, 2] predict the same phenomena.
After the end of impact, the subsequent free vibration of the bar has periodic cycles
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Fig. 12 Dimensionless contact force (fixed-free bar), WET) Fis the dimensionless force

and 1 is the dimensionless time

with a period equals to 27, as can be seen in Figs. 8, 9, 10, and 11. As anticipated,
the free end reflects the wave with opposite polarity. Therefore, during these
periods, most of the time a part of the rod is in compression while the other part is
in tension, see Fig. 8. The time histories of the bar displacement, velocity, stress,
and contact force in dimensionless forms are shown in Figs. 9, 10, 11, and 12. The
figures illustrate that the displacement is continuous while velocity, stress, and
contact force suffer discontinuities. At any location in the bar, the discontinuities
occur at intervals corresponding to the arrival of the waves to that location; see
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Table 1 Comparison between the analytical and the finite element results (free-fixed rod)

Dimensionless values Analytical ~ Proposed finite
results [1, 2] element results
Duration time 3.068 3.075
Displacement of contact end at separation 0.375 0.371
Maximum value of displacement of contact end after separations 0.576 0.576
Maximum contact force 2.135 2.045

Figs. 8, 9, 10, 11, and 12. Figures 8, 11 and 12 confirm that the arrival of the
reflected compression wave to the contact end raises the stress at the contact end,
and accordingly the contact force, to its maximum value. Next, contact force starts
to decrease and impact is terminated when the stress at the contact end vanishes.
The analytical solutions given in [1, 2] predict the dimensionless duration time,
displacement of contact end at separation and its maximum value after separation,
and maximum contact force. Both the analytical results and the corresponding
results of the current finite element simulation are given in Table 1.

It has to be noticed that slight numerical damping is introduced to reduce the
oscillations in the numerical solutions.

5 Conclusion

A finite element simulation for the impact of a rigid mass on an elastic rod has
been presented in this chapter. The impact model utilizes St.Venant’s classical
impact model, and the two cases of free—free and free-fixed elastic rod have been
investigated. As contact established, a wave is initiated at the contact end and
starts to propagate through the rod. The wave propagation and the contact force
differential equations have been obtained and the finite element discretization of
the equations of motion has been developed. A numerical solution procedure has
been proposed along the lines of Newmark implicit integration method and
Newton—Raphson iterative technique. The current simulation calculates the con-
tact force accurately and efficiently which is a significant advantage over other
simulations, which just assume the contact force or calculate it inefficiently.

Results show the variation of contact force, displacements, velocities, and
stresses with respect to time for both cases of free and fixed far end of the bar. Very
good agreement has been found between numerical results and the well-known
analytical results. A simulated visualization of the propagation of the stress wave
through the bar has been developed. This visualization enhances the understanding
of the physical phenomena of impact and wave propagation including the reflec-
tion of the wave at free and fixed ends as well as at the contact end. The results
demonstrate that the proposed finite element simulation is accurate enough for
further investigation in wave analysis and simulation.
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Abstract The first part of this chapter deals with several Hamiltonian formalisms in
elasticity. The formalisms of Zhong ((1995) Dalian Science & Technology
University Press, Liaoning, China) and Bui ((1993) Introduction aux problémes
inverses en mécaniques des matériaux, Editions Eyrolles, Paris), which resolve
respectively the two-end problem and the Cauchy problem in elasticity, are presented
briefly. Then we propose a new Hamiltonian formalism, which resolves simulta-
neously the two problems mentioned above and shows the link between the two
formalisms. The potential use for fracture mechanics purposes is then mentioned. In
fact, when traditional theories in fracture mechanics are used, asymptotic analyses
are often carried out by using high-order differential equations governing the stress
field near the crack tip. The solution of the high-order differential equations becomes
difficult when one deals with anisotropic or multilayer media etc. The key of our idea
was to introduce the Hamiltonian system, usually studied in rational mechanics, into
continuum mechanics. By this way, one can obtain a system of first-order differential
equations, instead of the high-order differential equation. This method is very
efficient and quite simple to obtain a solution of the governing equations of this class
of problems. It allows dealing with a large range of problems, which may be difficult
to resolve by using traditional methods. Also, recently we developed another new
way to resolve fracture mechanics problems with the use of ordinary differential
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1 Introduction

Recently, an important effort has been made in the reform of the classical theory of
continuum mechanics in the frame of the Hamiltonian system. In these new
approaches, the principle of Hamilton is applied in a special manner, i.e., by
considering a dimensional parameter as “time”. In this topic, we can distinguish
two formalisms: the formalism of Bui [1] and the formalism of Zhong [2]. By
seeking the variations of the couple (displacements, traction forces) on an arbitrary
front in a solid when this front virtually moves from an initial position to a
neighbor one, a first-order differential equation system governing the mechanical
fields was explicitly established. That is the Cauchy problem in elasticity resolved
by Bui. On the other hand, the formalism of Zhong looks more classical. In simple
words, he established an analogy between quantities in rational mechanics and
those in continuum mechanics. For example, a dimensional coordinate in con-
tinuum mechanics is considered as time in rational mechanics; the displacement
vector as the generalized coordinates; the strain energy density as the Lagrange
function and so on. This analogy leads to the canonical equations of Hamilton
governing the mechanical fields in elastic bodies. The main advantage of these
approaches is that the fundamental equations can directly be resolved. The
traditional semi-inverse method is then replaced by a direct, systematic and more
structural resolution method.

2 Zhong’s Formalism: The Two-End Problem

Let us consider a solid V described by a coordinate system Z in which z is one
chosen coordinate. Let us consider now ¢ the displacements in the Z system
associated to neighbor displacements, g + dg. One notes ¢ = g—‘g. If we suppose
that the displacements are imposed at z = z; and z = z;, named the two end
points, then we have:

0g(z=12) =9dq(z=2) =0 (1)

Let us write the total potential energy II of the solid:

ff Uy — W)dSdz = dez avec L= f Uy — W)dsS (2)
20 S 20

where Uy is the strain energy density and W is the work density of the external
forces. We define the Lagrange function as the integral over S. If S is constant
along z and we neglect the body forces and we just consider a volume element
inside the solid, we can write L = U, —W. In general, L is a function of ¢ and 4.
Following the principle of the minimum of total potential energy, I1 = 0 with
respect to dq and using the conditions (1), one obtains the Euler equation in L:
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q <0q

In rational mechanics, L is named Lagrange’s function, and (3) Lagrange’s

equation. Then we construct the Hamilton function H (p, g) through the Legendre’s
transformation:

_ 0L(q,9)
P="% (4)

H(p.q) =p"q—L(q,q)

From (3) and (4), one deduces immediately the canonical equations of Hamilton:

0H oL . OH

— = —_-— = - — = 5
0 - P i (5)
q and p are dual conjugate variables. Differently from rational mechanics, these

two variables represent respectively the displacement vector and the normalized
stress vector.

3 Bui’s Formalism: Cauchy’s Problem in Elasticity

Bui [1] has solved the Cauchy problem in elasticity by seeking the variations of the
mechanical quantities (g as a displacement vector, p as a traction vector) at an
arbitrary front in the solid when it moves from an initial position I'; to a neighbour
position I';,4, where ¢ defines the movement of the front in the solid. This
approach leads to an explicit system of first-order differential equations.

Let us consider a domain divided into two parts Q and €, by a contour I,
Suppose that mechanical fields are known at the interior of the contour; conse-
quently ¢ and p are known at the contour I',. Suppose ¢’ a virtual compatible
displacement. The virtual work principle leads to:

/Vq.A.Vq’dQ = /q -q'dT (6)
0, r,

A is the elastic tensor. Let us consider now an evolution of I'; to Q ,, i.e. at
t + dt, the contour I'; reaches I',, ;. It’s suitable to consider that I',,; is deduced
from I, following the normal to I'; with a quantity yndt where n is a unit vector
normal to the contour and i is a positive scalar field describing the velocity of the
contour evolution. The derivation of (6) with respect to dr gives:

d d

Z | vgANVgdQ == g'dT 7

dt/ q.A.Vgq dt/p q (7)
Q, T,
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If introducing the following notations of tangential operators:
gradp () = V() =n () divr() =div() —n- £ () (8)
equation (7) leads to:
/Vq.A.Vq/tpdl“— / {il—l;—kdivr(tpn)p} -q'dl'— / wp-%—?l/dl“ =0 (9)
I, T, I

After rearrangement and integration by parts, one can deduce the following
differential equations:

d

d_3 = q(‘IaPa‘p)

o (10)
E = Bp(‘lyPalp)

B, and B, are expressed as function of quantities defined on the contour I',. Their
explicit expressions are given in the [1].

4 Unified Description of the Two Formalisms

Here we describe a formalism unifying the two precedents within the frame of
minimization of the total potential energy of the structure [3].

4.1 Hamilton Principle Written as Variation
of Total Potential Energy

Following (2) and (4), the total potential energy is written as:
22 22
H:/LdZZ/(p-q—H)dz (11)
21 21

u is a parameter describing the solid’s evolution. The description of a solid
between an event a and an event b could be done under parametrical form of six
functions in 2D media: two displacements q(u), three normalised stresses p(u) and
one coordinate z(u). Consider u; and u, as values of u corresponding to events
a and b. For z; = u; and 7, = u,, the total potential energy is re-written as:

16— [ (o2 1

uj
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And its variation becomes:

[op og Op dq OH & oM,
Ou Ou Ou Ou Ou Ou Ou Ou “

oIl = a—Héu =q ou (13)

au u

L[ 2a e

P Ou Ou “

One notes:
Oq op OH 0z

_— = M _— = M —_— = N —_— = 14
o ou = 4q; ” ou = op; o ou = OH; » ou = 0z (14)

When u represents the coordinate z, (13) is written as follow:

22
ot = [ [qop—pog—om+idi+p-og—Hos  (15)

21

So we have 0IT divided into two parts, the first one is an integral; the second one is
in the square bracket.

4.2 Application to the Two-End Problem

Consider now the variation of ¢ and z are zero at z; and z,, dq=0and Jz=0.

This means we have fixed boundaries and fixed displacement boundary conditions

at the two-ends, so we have got the so-called two end point problem. In this case,

the quantities in the square bracket of equation (15) vanish. According to the

principle of minimum total potential energy, we directly obtain the canonical

equations of Hamilton. This is the problem resolved by the formalism of Zhong.
22

oIl = / [q.6p — p.6q — 6H + Hdz| dz =0 (16)

21

OH being:0H = %i; oq + %—fp’ op + %—fz’ 0z, one obtains:

22
OH OH OH .
oIl = .0p — P.0q — —9dq ——0p — —0z+ Hoz| dz=10 17
/{qppq&lqappazw z| dz (17)
21
This equation is available for arbitrary dq, dp and dz. Consequently, we deduce
the Hamilton canonical equations:

oOH . ¥ . OH _

aZ ’ q; aq

5 - (18)
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4.3 Application to Cauchy’s Problem

Now consider a natural evolution of the structure, this means that the Hamilton
canonical equations are satisfied everywhere in the structure, but with possible
variations of (g, z) at z = z; and z = z,. In this case, we have no fixed boundaries
neither fixed boundary conditions at the two ends but we have natural evolution
everywhere, this is the so called Cauchy problem. In this case, the integral in
equation (15) vanishes i.e.:

5H=P2'5q2—H2'5Z2—P1'5q1+H1'5Z1 (19)

For a small displacement of events a and b, the variation of the total potential
energy is:
oIl oIl oIl oIl
Ol =0q, - =—+ 021 5—+ ¢, - =— + 022 — 20
ql aql 1 aZZ q2 aqz 2 azz ( )
The variables ¢, 71, g2, z» are independent. By identification between (19) and
(20), we have got the Hamilton—Jacobi equations:

om ol on o

H, (21)

o, e g PV

This is the problem resolved by Bui. We know that the Hamilton canonical

equations and the Hamilton—Jacobi equations are equivalent. So we can say the

formalism of Zhong and that of Bui are equivalent in the differential point of view,

even they look quite different. Now, dealing with Bui’s formalism, it’s obvious

that the virtual work principle (6) could be written as a total potential energy by
replacing ¢’ by virtual displacements dq.: (Note that dQ = dI'dt)

1
b /E/Vq.A.quth— /p-an =6I=0 (22)
I,

t I,

If we define:

1 d
L=~ [ Vq.ANVqdl' —— -qdI’
2/ q q dt/P q
I, I

equation (22) becomes:
0 / Ldt=0 (23)
t

The partial derivation of (6) with respect to ¢, which represents the variation of
virtual works due to virtual displacements during the evolution of the contour is
equivalent to equation (23) if we consider a natural evolution.
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5 Hamiltonian Formalism Applied to Fracture Mechanics

We can actually write the equations governing the crack tip fields under the form
of (5). The main idea [4, 5], is to consider one coordinate in the polar system as
“time” and take the total potential energy as the Lagrange function. For example,
we can consider the radial coordinate r or the angular coordinate 6 as time and take
the variational principles established in continuum mechanics as the Hamilton
variational principle. Then all the procedures currently used in rational mechanics
can be translated into continuum mechanics. In the following, the angular coor-
dinate 0 will be substituted to time.

5.1 Governing Equations of the Problem

Consider a notch formed from several elastic materials. We establish a cylindrical
coordinate system with their origins at the notch tip and the z-axis representing the
notch front. Material 1 occupies domain [60y,0;], named zone 1; Material 2
occupies zone 2, bounded by [0,,0,], and so on. Under remote loading, the stress
concentration at the notch tip will take a mixed mode nature due to the anisotropy
of the materials.

First, we write the stress components in the polar coordinate system

asio = {0, oy ’l?rg}T. The  corresponding strain  components are
e={e & yro}T. The linear elastic stress—strain relationship is:

o=Ces. (24)

C is the stiffness matrix of the material. All its components are constant.
We write now the fundamental equations of linear elasticity in the polar system:

(a) Equilibrium equations:

do, 10ty o0,—09 0t 1009 27,9
or ' r 00 0% Tre T T (25)
We perform the following variable changes:
E=Inr r=exp(f); (26)
and
S, =ro, o.=8,/r; So=roy o9g=Sy/r;
/ 0 o 09=Sy/ 27)

S =rt9 To= Srg/r; ...etc
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0
Then, by using the notation (-) = —, the equilibrium equations (25) can be

o0
rewritten as:
. as, . 08,9
So=S0——=— So=——-—-3S5; 28
0=S0—%¢ S o 0 (28)
We define the following variable vectors:
p={S So} (29)

Hence, the equilibrium equations (28) can be rewritten as:

. op
=E E,— 30
p=Epp+ 258 (30)
where
0 -1 0 -1

(b) Displacement-stress relationship:

T TR\ a0

10u, Oup uy

o = ro0  or r

By substituting (31) into (24) and by using the variable changes (26) and (27),
one obtains:

(31)

S, [c12 c1a ] [—c14 c12 ] [c14 c11 ]
So €22 €4 Oup —Cu (2 C24 €21 dug
0 uy £
- ot + wpt
A\ Cq2 C44 —C44 Ca2 C4a C41 <

(32)

Similarly, we define a displacement vector

{a} = {up u}’ (33)

By using the definitions (29) and (33), the relationship (32) can be rewritten as:
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) 0
p=Csq+C.q+ Cf% (34)
or
. _ oq
q=C;'(p-Cq—Cr— (35)
o¢
with:
C»  Cx —Cyu 2 4 €2
Ci=|ca cu Co=|—cu cp Cr=|cu cu (36)

The strain energy in solids is always positive, consequently, Cy is a positively
definite matrix. Therefore, the inversion of the matrix C, is permitted

(c) Governing equations: By substituting Eq. (34) into the equilibrium equation
(30), the variable vector p, is eliminated. Then, we obtain, from (30) and (35),
the following dual equations that govern the problem:

q=Huq+Hpp p=Hnqg+Hxnp (37)
with:
H;; =E -C;'C/ & H), = C;!
Hy =E5(C;'Cr) & My =i+ (B2 + E5C;) & (38)
with:
0 —1 0 -1 0 0
Ei=|1 0 |E=|0 0 |E=|-10

In fact, it is more convenient to define a total vector v as variables in the state
space:

v=1{gp'} (39)

such that the governing equations (37) become:

v = Hy (40)
with:
H;, Hj
H = 41
H; Hj (41)
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(d) Boundary conditions and continuity conditions: Referring to Fig. 1, we adopt
the superscript ” to indicate the quantities in zone i. For example, v, H?, etc.

The boundary conditions at the two free surfaces of the notch are:
The continuity conditions across the interfaces are:
(0 =0,)=vPO=0,) - v =0,1)=v"(0=0,,) (43)

These relations show the advantage of the choice of the dual variables in the
present study: the multi-material problem can be dealt with as a single material
problem since the variable vector v is continuous across all the interfaces. This
makes much easier the resolution of governing equation (40).

By adapting this new stiffness matrix, all formulations deduced for generalized
plane strain can directly be used for plane stress problems.

5.2 Resolution Method

By examining governing equation (40), it is self-evident to try to solve it by using
the variable separation method. We suppose that the variable vector v(&, ) can be
written under separable form:

v(&,0) = exp(28)y(0) (44)

where A is an undetermined eigenvalue and ¥(0) is a variable vector depending
exclusively on 0. Then, equation (40) becomes:

W(0) = H(O)y(0) (45)
In (45), H is function of 6 only,

E, —C;'Cs c,'

— ’ d
H(0) = E;(C;'C) > Ei+ (E» +ECy')A

(46)

The continuity conditions across the interfaces become:

yDO=0)=9y?0=0) - " D0O=0,)=y™0O=0,,) (47

Any numerical method providing a good accuracy can be used for solving this
problem and the eigenvectors ¥ can straightforwardly be given with all stress and
displacement components.
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Fig. 1 V-Notch with various A
materials
Zone
Material
x )
Crack >

(or V-notch)

Zone 2

Zone 1 Material 2
Material 1

6 Future Extensions

In this paragraph, a new way [6] is proposed in order to determine the orders of
singularity for two dimensional V-notch problems. Firstly, on the basis of an
asymptotic stress field in terms of radial coordinates at the V-notch tip, the gov-
erning equations of the elastic theory are transformed into an eigenvalue problem
of ordinary differential equations (ODEs) with respect to the circumferential
coordinate 0 around the notch tip. Then, the singularity orders of the V-notch
problem are determined through solving the corresponding ODEs by means of the
interpolating matrix method. Meanwhile, the associated eigenvectors of the dis-
placement and stress fields near the V-notches are also obtained. This method is
also available to deal with the plane V-notch problems in bonded orthotropic
multi-material.

Firstly, let us consider a V-notch of isotropic material with opening angle
21 — 0, — 6, as shown in Fig. 2.

A polar coordinate system (p, 8) is defined taking the notch tip as origin. In the
linear elastic analysis, it has been verified that the displacement field in the notch
tip region can be expressed as a series expansion with respect to the radial
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(a)

Fig. 2 : Geometry and local field a A V-notch with opening angle « b Geometry near a V-notch

coordinate p originating from the notch tip [7]. One typical term of the series can
be written in the following form:

uy(p,0) = o1ty (0) (482)
us(p. 0) = p*iig(0) (48b)

where 4, i1,(0)and iig(0)are eigenpairs. Introducing Eqs. (3) into the strain—dis-
placement relations of linear elastic theory yields the strain components as:

top = (14 2)p",(0) (49a)
g0 = ity (0) + p’iiy (0) (49b)
Vo0 = P, (0) + 2p"itg(0) (49¢)

where (---)" = d(---)/d0. From linear elastic behavior law (Hooke’s law) of plane
stress problems, the plane stresses are expressed as:

E ] - - -
Opp =732 P11+ D)ity + vty +vig] (50)
E 2 - ~ ~r
0 =1——P (14 A)v ity + @, + i) (50b)
E ... .
7= iy et ) (50c)

where E is the Young’s modulus and v the Poisson’s ratio. Neglecting the body
forces, the equilibrium equations are:

00,, n 160,,9 Gpp — 000

= 1
3 o0 5 0 (51a)
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1 6(700 6ap0+20p0 .
pod  p  p
Substituting Eqgs. (50a, 50b, 50c) into Egs. (51a, 51b) gives:

0 (51b)

AA+2)u, =0
1—v " l—vﬂ(ﬂ—i_ )ity ’ (52a)

0 € (01, 00)

1
iy + [2+—(1 +v)/l] ﬁ;+§(1 —V)A(Z+2)ig =0, (52)
0 e (01, 92)

Assume that all the tractions on the two edges, I'jand I';, near the notch tip are

Z€e10. I hat 1S:
{ } = { } = { } ( )
4 0=0, 4 0=0,

Hence, substitution of Egs. (50a, 50b, 50c) into Eq. (53) yields:
iy + (1 +v+vA)ia, =0, 0 =0, and 0, (54a)
ﬁ;JrAﬁo =0, 0 = 0 and 0, (54b)

Considering that the appearance of 7% in Egs. (52a, 52b) leads to nonlinear
eigenanalysis if Egs. (52a, 52b) are directly solved, an alternative approach is
adopted in this paper to transfer the equation into a linear eigenvalue problem. To
this end, two new field variables are introduced as follows:

gp(0)=2i(0),  0€ (0, 0) (55a)
g()(f)) =1 171()(9), 0 e (01, 92) (55b)
Thus, Egs. (55a, 55b), Egs. (52a, 52b) can been rewritten as:

- I+v 2
i =2 )ity + —— (A +2)g, =0
4+ (l—v/L >u6+1—v( +2)s ’ (56a)

0 ¢ (0, 0,)

3 (1 =v)(A1+2)gg=0, (56b)

0¢c (61, 02)

. 1 o1
ity + {2+§(1+v)},} i, +

By following the above procedure, the evaluation of the singularity orders near
a V-notch tip is transformed to solving a linear eigenvalue problem of the ODEs
governed by Egs. (55a, 55b), (56a, 56b) subjected to the boundary condition of
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Fig. 3 A V-notch of bonded

bi-material interface

Eqs. (54a, 54b). In the solutions, the associated eigenfunctions i, and iy can also
be obtained and can be used to determine the stresses in the vicinity of the notch
tip.

In Fig. 3 we show an example of solution using this method applied in the case
of bounded dissimilar linear elastic materials containing a V-notch tip.

Table 1 shows the comparison between the singularity degrees obtained by this
method for various mesh levels of the used interpolating matrix method (IMMEI)
and those of the literature. Reference [8] gives only one singularity degree 4, (one
term in Eq. 48). Reference [9] gives two singularity degrees A; and /1, as the
present method noted (IMMEI) in the table. The value of n in the table indicates
the discritization level considered in the IMMEL

7 Concluding Remarks

In this chapter, we give a new Hamiltonian formalism resolving simultaneously
the two-end problem and the problem of Cauchy and as a consequence, showing
the relationship between the formalisms of Bui and Zhong which look so different.
The key idea is to write the total potential energy of a solid as an integral along a
special axis z, then over a section S normal to it. Using integration by part, the
variation of the total potential energy can be written as two parts [see Eq. (15)].
The first part is an integral along z, and the second one is an integrated quantity
depending on the two ends z; and z,. For the two end problem, the displacements
are imposed at the two ends; so their variations vanish. According to the minimum
principle of the total potential energy, the canonical equations of Hamilton are
immediately obtained, [see Egs. (16)—(18)]. On the other hand, for a natural
evolution of the structure (i.e., the canonical equations of Hamilton are satisfied
everywhere in the solid), but with possible variations of the two ends, the first part
in the variation of the total potential energy vanishes [see Eq. (19)]. This corre-
sponds to the Cauchy problem in elasticity. In this case, the equations of Hamil-
ton—Jacobi can be deduced [see Eq. (21)]. Since the canonical equations of
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Hamilton and the equations of Hamilton—Jacobi are fundamentally equivalent, we
can see that the formalisms of Bui and Zhong are equivalent too.

Zhong’s formalism has been successfully applied to Fracture Mechanics in
order to determine the asymptotic mechanical fields near the crack tip [4]. This
work has shown that the Hamiltonian approach provides a systematic method in
asymptotic analysis near the crack tip. It leads to a first order differential equation
system, which is easy to deal with. We insist on the fact that this approach is not
only a new formalism other than the traditional methods, but it can be used as a
powerful tool in asymptotic analysis of fracture mechanics.

By using this approach, we have resolved various problems. Some of them have
been solved previously and some not yet. For example, we can calculate the stress
singularities for an interfacial crack between two elastic and isotropic materials.
The results are completely identical as those obtained by using the well-known
theoretical formula. Similar example is a crack tip normally touching an interface
has been resolved see Ref. [4]. For a crack in a generally anisotropic material, we
obtained a near tip field identical to theoretical results [S].The comparison shows
no difference between these two stress distributions. Another example consists in
finding stress singularities near a notch tip formed from two generally anisotropic
materials and stress singularities near an inclined crack tip touching an interface
between two generally anisotropic materials [5]. From this work, we see that the
present method is particularly efficient for resolving multi-material problems. This
is because the selected dual variables are continuous across all the interfaces. So
the multi-material problem can be resolved as a single material problem through
the construction of the transfer matrix.

We believe that a large domain can be found in applying this new approach into
fracture mechanics.

Nevertheless, the connection between the local obtained solution of the stress
field and the far field is still a tremendous problem. That is why we investigate a
new way transforming the fracture mechanics problem into an eigenvalue prob-
lem. That allows us to compute more terms in the stress expansion and then to
connect the local field easily to the far field. The far field could be the finite
element solution. This way will allow more efficiency to deal with various
structural geometries and boundary conditions.
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Plate With Nonlinear Viscoelastic Model
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Abstract In this study, stress wave propagation in an infinite nonlinear visco-
elastic plate is investigated by the Finite Element method. In addition, explicit
Galerkin Finite Element approach is employed with Lagrangian strain and
Gaussian stresses. For viscoelasticity modeling, Kelvin’s model with a nonlinear
dashpot is considered. The resulted relations for deflections and deflection angles
are derived during a specified period of time. Result show that second order shear
deformation theory predicts higher speed for bending wave than the first order
shear deformation theory. But both theories predict the same speed for shear
waves.

Keywords Stress wave propagation - Plate’s shear deformation theories
Nonlinear viscoelastic

S. Arabnejad (D<) - M. Salehi
Mechanical Engineering Department,
Amirkabir University of Technology,
Tehran, Iran

e-mail: sarabnezhad @yahoo.com

M. Salehi
e-mail: msalehi @aut.ac.ir

H. Farahmand

Mechanical Engineering Department, Kerman Branch,
Islamic Azad University, Kerman, Iran

e-mail: hamed_1256 @yahoo.com

A. Ochsner et al. (eds.), Materials with Complex Behaviour II, 37
Advanced Structured Materials 16, DOI: 10.1007/978-3-642-22700-4_3,
© Springer-Verlag Berlin Heidelberg 2012



38 S. Arabnejad et al.

1 Introduction

The problem of wave propagation in a solid medium that exhibits the attenuation
of a propagating wave is a wide and significant branch of continuum mechanics.
In the field of structural engineering, wave propagation phenomena has found
increasing applications especially in the area of structural health monitoring and
active control of vibrations and noise. Dynamic analysis in structural engineering
falls into two different classes: the first one involves low frequency loading and the
other one involves high frequency loading. Low frequency problems are catego-
rized as structural dynamics problems whereas those involving high frequency
loading fall into the category of wave propagation problems. In structural
dynamics problems, the frequency content of the dynamic load is in the order of a
few hundred Hertz (Hz) and the designer will be mostly interested in the long-term
(or steady-state) effects of the dynamic load on the structures. Most of the dynamic
problems in structures will fall into this category. On the other hand, in wave
propagation problems, the frequency content of the input loading is very high
(in the order of kilo-Hertz (kHz) or higher) and hence, short-term effects (transient
response) will become very critical. Furthermore, many higher order modes will
participate in amplifying the dynamic response. Impact and blast-type of loading is
in this category.

The state of stress in viscoelastic materials is influenced by many factors, yet
only strain and strain rate are usually taken into account. The behavior of visco-
elastic materials is more often described by relaxation functions. For the begin-
ning, strain and stress tensors are decomposed into the deviatoric and volumetric
terms. The first one is connected with changes in shape and the other one repre-
sents volumetric relaxation. However, most of viscoelastic materials display
negligible bulk modulus changes with respect to the changes of shear modulus so
that, a constant bulk modulus and a relaxation function for shear modulus are often
assumed.

The study of wave propagation has been initiated with Pochhammer [1] with
wave propagation in an elastic rod. Afterward it was followed by Chree [2] and
Bancraft [3] in case of elastic rods. Kolsky [4] started wave propagation analysis in
viscoelastic rods and proceeded his own work in 1968 [5]. Lundberg and Blanc [6]
and Blanc [7] continued estate of viscoelastic rods. Rizzi and Doyle [8] used
spectral analysis and Fourier transform to investigate wave propagation in plates
with boundaries. Nkemzi and Green [9] studied wave propagation in linear vis-
coelastic sandwich plates. The plane wave propagation in inhomogeneous non-
linear viscoelastic plates with the finite element method (FEM) was done by Jiang
and Haddow [10]. Yang and Yuan [11] published a comprehensive analytical
solution for wave propagation in elastic plates using Second order Shear Defor-
mation Theory (SSDT) and 3D Elasticity. In the same year, Adamek et al. [12]
utilized the same procedure as that in Yang et al.’s work, however the material was
linear viscoelastic and First order Shear Deformation Theory (FSDT) was applied.
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Fig. 1 Geometry definition

Stress wave propagation in structures is usually studied in three ways: by 3D
elasticity, structural analysis and numerical methods. Because of the complexity in
3D analysis, structural and numerical methods are utilized to solve this problem.

2 Solution of the Problem

After defining the problem’s geometry and external load, finite element equations
are obtained from constitutive equations using virtual power method.

2.1 Problem Definition and Initial Assumptions

The problem’s geometry consists of an infinite plate with constant thickness, #,
loaded by transverse pressure. The loading has been applied on the upper face of
the plate (see Fig. 1). As depicted in Fig. 2, the uniformly distributed load has
a harmonic amplitude in time only in the circular area with finite radius, R. The
geometry of the plate is assumed infinite and with respect to the axial symmetry of
the loading applied, the problem is solved as an axisymmetric problem in cylin-
drical coordinates. The positive orientation of axis is depicted in Fig. 1.

2.2 Constitutive Equations

Using constitutive equation, stress tensor is decomposed into volumetric and
deviatoric tensors:

G11 O 013 oz 0 O St S Si3
gj= |0 02 oxn|=|0 o, 0|+ |80 sn s3 (1)
031 03 033 0 0 oy $31 83§33



40 S. Arabnejad et al.

110

Dir.(pa)
i~
-

External load in
5

\ 7
) 1 1 M ) 1 1
[ 05 1 13 2 25 3

Time (s) xio®

Fig. 2 Harmonic external load applied at plate center

where o, is the volumetric stress and s;; is the deviatoric stress tensor. Strain, &,
and strain rate, d;;, pursue the same way as stress:

€11 E12 €13 Ey 0 0 S‘Iiilv 8(1112V S%V
&j= | &1 €& &3 = 0 & O]+ Sgilv 8(ziizv Sggv (2)
&1 & €33 0 0 & sgil" sgizv sggv
dyy diy dis d 0 0 diy dfy  dy
di=\|dy dnp ds| =110 d, 0|+ dgilv dgizv d51i3v (3)
dy dyp  dwn 0 0 d, v ady  dgy

As it was mentioned before, volumetric strain rates regarding the mentioned
viscoelastic model are used in order to obtain the volumetric stress.

g, = Kg, (4)
ot =o'+ Kdtd (5)
Stress within each time step is calculated by a forward difference method:
t+1 __ ot div' div'
il =S, + Gdr d + F(d,.j ) (6)

This is the general form for a viscoelastic material. Where, F is represented by
Eyring model.

F(a™) = Lsinn™" (C af”) (7)

C and L are parameters defined with respect to the material properties.
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Fig. 3 Lagrangian 4
description ¥

X
O Node ———  Nodal Trafectory
o Marerial Point ————- Material Trajectory

2.3 Finite Element Form of Governing Equations

In stress wave propagation problems, the strains are usually small but strain rates
are large. This is the main reason of utilizing Lagrangian a mesh (see Fig. 3).
In this case, the material does not pass the mesh borders and also external loads
and boundary conditions are on the mesh borders and nodes.

To initiate the finite element formulation, linear momentum conservation
equation is first used.

Joj;
6(;] + pb;i=pv; in Q (8)
njo; =1 on I, 9)

where Q is the volume and I';, is its border. The momentum equation is multiplied
by a test function and is integrated on its domain, in order to obtain the weak form
of the governing equation:

s

/(3v,-< 6"’+pb,-—pf},~)dQ:0 (10)
Ox

Q

J
After simplifying the integral in Eq. 10, the weak form can be expressed as:

/ (a(aii,-))gﬁdg _ / Sviphid€ — Z}: / Svidl + / SvipndQ =0 (11)
Q Q Q

= r,

This is known as the virtual power equation. The definition for each of these
terms is specified by the first integral as shown below:
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6(51}1-) - o
( o )Gij = é)L,-jaij = (5Dlj + (3W,»j)a,»j = aDijaij =0D:o (12)

j
This term is nominated as the internal virtual power per unit volume. So we
have

5pi”’:/5D,]olde /( 5 )aijdﬂféLijaijdﬂféD:sdQ (13)
X
Q Q Q

And the second and third term in (11) can be designated as the external virtual
power.

nsp nsp
opt = / SvipbidQ + / Svitdl = / Sv.pb dsz+ / dovie; - 1dT (14)
Q =1 Q

And the last term in (11) is rewritten as the virtual kinetic power:
ophin = / ov;pv;dQ (15)

Substituting (13),(14),(15) in (12), the virtual power equation is defined as
op = op™ — Sp™ + Sphin =0 Vv, € U0 (16)

In order to transfer the character from the element domain to element nodes,
linear shape functions are used.

xi(e,) = Ni(X)xu(t) or x(X,1) = N;(X)x (1) (17)

Velocities and accelerations are defined similar to displacements. To differen-
tiate dissimilar terms, differentiating shape functions are employed whilst nodal
displacements are considered as constant terms.

ON,
L,‘j = V,‘J' = Vi <a—1) = V,']N]J' or L= V]VN] = V]N]J (18)
Xj

Therefore, the strain is described as a function of shape functions:

1 1
Dij = <§> (L,j —+ Lji) = E (V,‘[N[lj + Vj[N[_,‘) (19)

Rewriting Eq. 16, the virtual power comes to:

/(65]\,1) 0,;dQ — /N,pb dQ — /Nltdf+/N1pv AdQ =0 VY(I,i)¢T,,
Xj
Q

(20)
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The velocity increments are factored out from integrals as constants.

5v,~, ii]nt —f;;xr + Mij[j\./jj) = O V5V,‘1 g l“v,. (21)

The algorithm for solving this equation is illustrated in Fig. 4.
The nodal forces are obtained from the strain definition. The axisymmetric
linear strains in cylindrical coordinate are expressed as:

v, —
& = 67‘;7 &g =

du ) (22)

-
1 ({0 2
&9 =0, &0 =0, &= 2 (allzr + o

drr:%7 dgp =** dzz:%
1 ( Ou, Ou, (23)
drp =0, dy=0, drz:§<Tz'+a_;>

Velocity in FSDT is defined as:

v(r, 0,2,1) = vy (r,0,1) + z¢r(r, 0,1)
V()(V, Q,Z,f) :V()o(r7 07t) +Z<Dg(l’, 9,[) (24)
v(r,0,z,t) = v, (r,0,1)
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While velocity in SSDT is defined as:

Vr(}’, G,Z, t) = vm(r, 0,[) +Zl/./1(r, eﬂ[) +Z2¢l(ra Bat)
V()(r, 0,z t) = V()o(rv 0, t) + Zl/-jz(ra 0, t) + Zz(f’z(”a 0, t) (25)
v.(r,0,2,1) = v (r, 0,1) 4+ 205(r, 0,1)

Strains rates are as given below for FSDT;

v, 39, _ Vn P
W) werel)
dr=3(9,) + (%2) dy =0 (26)
dg=0

The internal virtual power using strain rate is rewritten as:

sp™ = / (6d"d + k.od" " )dv (27)

pe

5pim = / (50’,6,- + d0dyog + 20d,90,.9 + 2k5drz6rz + 2k5d()10'()z)dv (28)
where the shear correction factor is k = 0.88629, corresponding to the parabolic
distribution of t,, over the plate’s cross-section.

Before substituting strain rates, parameters of deformation theories are defined
with shape functions;

iy = Ni(r, 0)vy,, v, = Ni(r, 0)vg,,, vy = Ni(r,0)vy,

. . . . (29)
@, =Ni(r,0)p,,, @9 =Ni(r,0)p,,
The differentiation of shape functions are;
B, = p, = @30 (30)

By substituting in internal virtual power for FSDT, internal virtual power is
obtained as;

opim = / {Bl, (5"’0, + Zé(br,)"r + ko, (Nlégb,, + Bllévzl)}dv (31)

Ve

. Ry 2m h/2 Ry2m h/2
op" =ovy, [ [ [ (Byo,)rdrdidz+ov, [ [ [ (kByoy)rdrd0dz
Ry 0 —h/2 Ry 0 —h/2
R2 2n h/2
+6¢,, [ [ | (Biz0, + kNoy)rdrdldz (32)
Ri 0 —h/2
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) Rg 2 Rz 2n
Spint = v, [ /(Bllfr)rdrdﬂ +ovy [ /(kBl,frz)rdrdH

Ry O R, O
Ry 2n
+ 09, | [ (Bymy + kNif)rdrdo (33)
R 0O
In which
h/2 h/2 n/2
fr= [ oz, fro= [ Ondz, m.= [ zo.dz (34)
—h/2 —h/2 —h/2

After simplifying internal virtual power, we have

5pim — 5Vro,Fr, + ov, F,, + 5(pr1Mrl (35)
where
I
- / ( (R, — Rl )BI, ) (E(R2 = Ry) + (Ry + Ry ))dC (36)
5
1
F, = (L)R(C(R —R)) + (R +Ry))dC (37)
t -1 (R2 - Rl)B][frz 2 ! ! 2
1 2
M= / <(R2 — R\)By,m, + kN,f,) n({(Ry — Ry) + (R + Ry))dl (38)

The trail is the same for SSDT so it is exorbitant to be brought here. We start
from kinetic virtual power for mass matrix.

optin = / SvipvidQ (39a)
optn = ov;, / N;pNv;,dV (39b)
VL’
Ry 2m h/2 Ry 2n h/2
0 k’"—évr,/ / / N,lev,,rdrdez—i—évz,/ / | NipNpy,rdrdfdz (39c)
R 0 —h/2 Ry 0 —h/2

For a linear order shape function like;

N,:%[l_é] (40)
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(2r— (R + R2))

- = (Ry — Ry)

(41)
where r is the radius, and R,, R; are the inner and outer radius of the element,
respectively. Here r is a variable and R,, R, are constants. After integration,
internal power is in the following form:

op!" = {[ph(0vryrVrt + Svava)] + [((ph*)/12) (3¢, p,1)] } 27

(16/105)(Ry — R1)(Ry + Ra) — (1/15)(Ry — Ry)° (41/420)(Ry — Ri)(R1 + R2) }
(41/420)(Ry — Ry)(R1 + Ry) (16/105)(Ry — Ry)(Ry + Ry) — (1/15)(R, — R,)?
(42)

So, in this case the mass matrix of an element is defined as:

phi 0 0 phj 0 0

0 phi 0 0 ph 0

_ 0 0 (ph*/12)i 0 0 (ph’/12)j

Me =211 1 o 0 phi 0 0 (43)

0 ph 0 0 phi 0

0 0 (ph’/12)i 0 0 (ph®/12)i

where

i = (%) (Ry — R\)(Ri + Ry) — (112> (Ry —R))?

j= (112> (R —R1)(Ri +R2)

Mass matrix is obtained for SSDT by the same procedure. To verify the
assumed method, the finite element method is changed to be consistent with the
approach in Ref. [12]. In this case, a step load is used in a circular form at
the middle of plate. The deflection results are plotted 2 mm from the plate’s
center during the first 4.5 um. For this problem: 7 = 0.4 mm, oo = 50 Mpa,
R =03 mm

The constitutive equations for the linear viscoelastic material are in a nonlinear
integral form as stated below:

o, = (ﬁ) (&r + 1€0) + (ﬁ) (&r + 1280)
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E, ) E,
0= (2 ) o+ man) + (60 + o)
((1 ) ARG '
E; ‘ )
—\ 5y ) [+ uzsr)exp< dr (45)
(/1(1 u%)) -é At — 1)
(G + Gy) ¢ / @ (46)
Ty, = —|—= VX, T
rz 1 2 yrz n / /rz pn(t_‘c)

Finally, the analytical solution is compared with the present method, consid-
ering 2, 4, 6 and 8 slave node elements in Fig. 5.

Figure 5 shows that with more slave nodes for integration, response compare
better with the analytical solution which uses an exact integration through thickness.

3 Case Study and Results Analysis

After verifying the finite element method, response of the plates with two
structural theories is investigated. The problem is programmed and solved by
MATLAB 64 bit (2009). For this reason, the nonlinear viscoelastic properties of
an Acrylonitrile Butadiene Styrene (ABS) copolymer are considered.

p=7002% h=4mm E=100GPa v=033

L=100kPa C =0.01s
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Fig. 6 Plate deflection comparison of FSDT and SSDT
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A semi sinusoidal load, as depicted in Fig. 2, with a maximum of 100 kPa is
exerted in two microseconds. The loaded area is a 2 cm diameter circle.

Vertical displacements of the plate using both FSDT and SSDT are shown in
Fig. 6 at a point 75 cm far from the plate’s center. This point is selected since the
shear and moment waves are separated and the effects can be analyzed discretely.

In Fig. 6, the wave is divided in tow waves which are nominated shear and
bending wave. In case of pure elastic material, the bending wave’s speed is /2
times larger than the shear wave’s. SSDT predicts a higher speed than FSDT, but
the same deflection amplitude. In both theories, shear and bending waves have an
overlap in the middle of considered time period. In other words, the considered
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Fig. 9 Shear Force comparison of FSDT and SSDT

point is not far enough from the center so that the waves become completely
separated.

Figure 7 depicts plate’s response and wave’s behavior showing midplane’s
rotation in both theories. The location is again a point 75 cm far from the plate’s
center and the investigation time period is selected in order to cover both bending
and shear waves.

Again, SSDT predicts higher speed and larger rotations in the case of the
bending wave, while for the shear wave, the maximum amplitude, however the
time when it takes place is the same for both theories.

Figure 8 illustrates the comparison of the bending moment obtained by the two
theories. Both theories show bending wave effects on the bending moment, like
high amplitude and fluctuation in bending moment.

Finally, the transverse shear force waves are illustrated in Fig. 9. Figure 9
shows that the bending wave does not have a significant effect on the shear forces.
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But for the case of shear waves, the shape of graphs changes radically due to
changes in shear stresses.

4 Conclusion

Since structural theories are selected to solve this problem, the waves will deplete
into two main types of waves. These types are known as bending and shear waves
which propagate in different speeds. Due to nonlinearity in such problems, wave
speeds cannot be defined exactly. However, in any case, bending wave speeds are
more than shear’s. The comparison between these two structural theories (SFSDT
and SSDT) shows that SSDT predicts higher speed and larger amplitude than
FSDT for bending wave, while they are equal in the case of shear wave. In all
cases of both displacements and stress resultants, FSDT is more sensitive and
shows more fluctuations encountering waves.
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Analytical, Numerical and Experimental
Study of the Effects of Braking on Single
Disc Motorcycle Forks

Dario Croccolo, M. De Agostinis and N. Vincenzi

Abstract This work deals with the development of an analytical model which
allows to describe the tensile state arising in single-disc motorcycle forks, during
the brake. Stress and strain trends are computed as functions of some key
parameters of the motorcycle (mass and centre of gravity location) and of the fork
(lengths and diameters). The fork geometry is represented by a portal frame loaded
out of its plane, whose axisymmetric elements represent the legs (pillars) and the
wheel pin (transverse beam). Each of the three elements has material and inertia
parameters variable along their axis, allowing for the actual mechanical properties
of the component. Finally, the stress state of several fork models has been
investigated either via Finite Element Analysis and with field tests, in order to
support the validity of the proposed model.

Keywords Motorcycle - Fork - Stress «- FEA - Analytical - Experimental

1 Introduction

Although it may look as a simple component, the front fork has a critical role in
the overall dynamic behaviour of motorcycles. It must provide appropriate stiff-
ness characteristics, damping capabilities and the lowest sliding friction values in
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Fig. 1 Standard (a-left) and
Up-Side Down (b-right) forks

order to guarantee as much performance, safety and comfort as possible. From a
structural mechanics standpoint, the main frame of front suspensions consists of
two legs, two steering plates and a steering pin, put together by means of shaft-hub
couplings [1-5]. Each leg realises a cylindrical joint, providing a way for its inner
and outer tube to translate and rotate freely with respect to each other. The whole
front suspension is assembled to the motorcycle frame by means of the steering
pin. Whether the inner or outer tubes are coupled with the steering plates, the fork
architecture is referred to as ‘standard’, see Fig. la or as ‘up-side down’, see
Fig. 1b.

Inside the tubes are a number of hydraulic and elastic elements whose com-
bined action defines the damping characteristic of the fork. Figure 2 reports a
section view of a ‘standard’ fork, showing the arrangement of hydraulic and elastic
components. Motorbike forks can be subdivided further into single-disc and twin-
discs architectures. Despite single disc forks were the preferred choice for most of
motorbikes in the past, nowadays such solution may be easily found on low cost
and ‘Offroad’ motorbikes only, because the increase in performances and weight
of either ‘Supersports’ and ‘Tourism’ motorbikes determined the spread of twin
discs architectures.
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Upper steering plate Hydraulics

Lower steering plate

Outer tube

Spring preload adjustment Inner tube

Fig. 2 Inner components of a fork

2 Structural Design of Forks

The design of a motorbike fork is a challenging task which shall take into
account both the dynamic response and the structural strength of the suspension.
While a good dynamic response can be improved afterwards by a fine-tuning of
several manually adjustable parameters (whose choice is quite often based on the
rider’s feeling on the bike), only a correct design can ensure an adequate
structural strength. Moreover, the design phase of a new product shall provide a
quick fulfilment of the structural requirements because of the shortening of
vehicles lifecycle (about 2:3 years). A deep knowledge of the product lifecycle is
the key for a correct design: for that reason, suspensions producers must carry
out a number of road/bench testing activities in order to collect all the relevant
data. Several road tests carried out by our research group in cooperation with
Paioli Meccanica, led to defining the most severe load conditions in terms of
mechanical stress on the structural elements of the fork. A hard braking
manoeuvre in which the rear tyre looses contact with the ground, and the whole
motorcycle weight is transferred to the front wheel, determines the highest
flexural stress values on the fork legs. In order to build an analytical model
useful for the structural design of forks, such loading condition must be,
therefore, deeply understood and described.
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Fig. 3 Tire subject to a
brake

2.1 Basics of Tire Dynamics

Tires are flexible elements which provide shock absorption while keeping the
wheel in close contact with the ground. Tires grip characteristics play a critical
role in the overall traction, brake and cornering performances a motorbike can
deliver. Traction and brake forces arise during the ride involving shear forces
along the contact area between the tire and the ground. Such forces make the
rubber fibres belonging to the tire circumference compress along the tangential
direction during the traction phase and extend during the brake. Figure 3 shows a
tire travelling with a velocity V, = wry, subject to a braking torque 7, which
determines a braking force F), at the interface between the tire and the ground. A
vertical load N acts on the tire.

Due to the longitudinal braking force F), the rubber fibres on the running
circumference elongate when passing through the tire-ground contact segment AB
(Fig. 4).

Hence, the circumferential velocity of a point fixed to the aforementioned fibres
decreases as it travels from point A to point B: the circumferential velocity V of
such point is therefore lower than the travelling velocity V.

Now, define the longitudinal slip, k:

V-V,
Vo

k=

()

The longitudinal slip takes positive values for traction and negative values for
braking. Over the years, tire manufacturers defined a variety of semi-empirical
relationships expressing the longitudinal force F' (and then the longitudinal friction
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Fig. 4 Slip velocity during a
brake
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coefficient u’) as a function of vertical load N and longitudinal slip values k. The
best-known relationship of such kind is the ‘Magic Formula’ by Prof. H. B.
Pacejka [6], a transcendental function generally expressed in the form:

F(k) =D -sin{C - arctan|B - k — E(B - k — arctan(B - k))|} (2)

W=y (3)

With F being the longitudinal force and k the longitudinal slip, B, C, D, and
E being input coefficients which depend on several ‘static’ parameters (tied to the
geometrical and chemical characteristics of the tire) and on two ‘dynamic’
parameters, namely the longitudinal slip k£ and the vertical load N. The ‘Magic
Formula’ owes its name to the fact that there is no particular physical basis behind
the structure of the equation chosen, but it fits a wide variety of tire constructions
and operating conditions. The equation can be plotted as shown in Fig. 5, where 1/
is reported as a function of k.

Looking at Fig. 5 it could also be noticed that the curve 1/ (k) is characterized by
a peak, which is typically around k = + 0.15.

2.2 Equilibrium During a Brake

When a braking manoeuvre is performed, a load transfer from the rear wheel to the
front wheel of the motorbike takes place. The amount of the load transfer depends on
the center of mass position, on the motorbike wheelbase and on the deceleration value.
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Fig. 5 Longitudinal friction
coefficient ' as a function of
longitudinal slip k

Fig. 6 Rigid body equilibrium during the brake

Referring to Fig. 6, define:

m: bike + rider mass [kg];

p: bike wheelbase [mm];

b: bike + rider centre of mass to rear wheel axis distance [mm];
h: bike + rider centre of mass to ground distance [mm];

I centre of the aerodynamic pressure [mm];

F,,: aerodynamic force [N];

Fy; Fp,: front wheel and rear wheel braking forces [N];

Nj; N,: weight on the front and on the rear axle [N].

When the motorbike has its wheels on a flat surface, the vertical load acting on
the rear wheel is:



Analytical, Numerical and Experimental Study 57

—-b
N,=m-g 20 )
p
Now define the load transfer value due to the brake:
h
AN=m-d - (3)
p
During a brake, vertical loads on the wheels take the values:
, h
N =N —m-d-- (6)
p
Ny =m-g—N, (7)
The in-plane equilibrium governing relationships during the brake are:
FW+be-+Fb,=m~d (8)
m-d-h=m-g-(p—>b)+F, I
Where:
Fiyy =i N o
Fpr = ,Lt/ : N;/r

Here 4/ is the longitudinal friction coefficient, as defined into (3). A braking
manoeuvre in which the rear tyre looses contact with the ground, and the whole
motorcycle weight is transferred to the front wheel is, therefore, characterized by

N, =0 [7, 8]. Provided that N, = 0, (8) transforms as follows:

{be:m-d—Fw

10
m-d-h=m-g-(p—>b)+F, N (10)

Then, recalling (7) and (9), (10) gives:

Fpp=p -m-g
(p—b) (W —h) (11)
h h
Which expresses that the maximum applicable braking force during a hard
braking manoeuvre is:

Fop=m-g-

+Fw'

(p—b)
h

(H = h)
h

be_MAX:min ,u/mg,mg +FW (12)
On a dry, clean asphalt surface, it is commonly assumed that motorcycle
standard sport touring tires can deliver a maximum longitudinal friction coefficient

W =~ 1.5 [9]. During a hard brake, motorcycles with a long wheelbase and a low
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Fig. 7 Coordinate system

center of mass (like Cruisers) would probably reach the skidding condition before
capsizing, while Hypersport motorcycles would probably behave the opposite way.
The maximum applicable braking force is a key parameter for fork manufacturers,
since it is strictly tied to the maximum bending load that the legs must withstand
during the product lifecycle.

2.3 Loads Analysis

The tensile state of single disc forks subject to braking loads is worthy of particular
interest, because such an asymmetric architecture leads to an unequal distribution
of bending stresses between the two legs. Define a Cartesian coordinate system
with its origin into the wheel pin centre, x-axis coincident with the wheel pin axis
and z-axis oriented upwards along the leg axis. Referring to Fig. 7, r, is the mean
disc radius and o the angle between z-axis and the brake pads centre (brake caliper
angle). y is the caster angle and c is the offset between the wheel pin and the leg
axis.

When a hard brake is performed and the external forces shown in Fig. 6 act on
the rolling circumference of the front tire, the internal forces shown in Fig. 8 arise.
The total vertical load N = Ny (N, = 0) is transmitted to the wheel pin, along with
the braking force F),. Define the braking torque on the disc:



Analytical, Numerical and Experimental Study 59

Fig. 8 a, b, c Internal forces during the brake

Tb =F, b Tw (13)
In order to deliver a braking torque 7}, the braking pads must provide a braking
force on the disc:

Fp=-t—pF,. 1 (14)
Ta Ta

In order to satisfy the internal equilibrium of the caliper—disc system, the same
F, force shall act either on the disc and on the caliper (Fig. 8 (b)):

Such force is, therefore, transmitted by the brake caliper to the relevant leg
(Fig. 8 (¢)) and by the disc to the wheel pin (Fig. 9). From now on, F,; will be
referred to as ‘disc force’.

It must be noticed that any force applied either to the disc or to the wheel is
transmitted to the wheel pin through the front wheel hub bearings. Forces
belonging to the wheel-ground contact (i.e. N and F) act on the fork vertical
mid-plane, hence they are equally divided between the two bearings, therefore
between the two legs. Since the brake disc cannot be aligned with the leg axis, an
offset between z-axis and the disc mid-plane (£2) always exists, such that F
actually acts on €2, as shown in Fig. 9. For that reason, the disc force transmitted
by the disc to the wheel pin is unevenly distributed between the two bearings.

2.4 Structural Scheme

In order to retrieve an analytical model able to describe the stress state of the fork
under the aforementioned loading conditions, a line body scheme will now be
defined. A portal frame made up of three axisymmetric elements, the two pillars
representing the legs and the transverse beam representing the wheel pin (Fig. 10),
was chosen as a line body scheme [10]. The relevant Cartesian coordinate system
is taken as shown in Fig. 10, conforming to what was stated in Sect. 2.2.
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Fig. 9 Brake disc
offset along x-axis (d)

hub

The offset along y-axis ¢ between the wheel axle and the leg axis is reported in
Fig. 10 as well. The pillars are constrained in C and D by means of two hinges,
which allow the sole rotation around z-axis.

The beam and the pillars have material and inertia parameters variable along
their axes, in order to achieve a reliable approximation of the mechanical prop-
erties of the actual components. Each leg has been subdivided into three segments,
E; and I; being the Young’s moduli and the x-axis moments of inertia of the leg
segments respectively. In order to clarify what was above stated, variable thickness
lines represent the different properties of the portal frame elements in Fig. 2.8.

This complication is due to the fact that the leg is made up of two elements, the
inner and the outer tube, having variable materials and sections along their axes
(Fig. 11)

Looking at Fig. 12, it can be appreciated how the leg intermediate section (L;)
is actually composed of two elements (the inner and the outer tube). These ele-
ments work together like mechanical springs in parallel, therefore, the overall
Young’s modulus and the x-axis moment of inertia of the leg intermediate section
shall be computed consequently.

Wheel pins usually have their diameter variable along the symmetry axis. In
order to provide for that, the portal beam has to be subdivided into four sections
with different moments of inertia (/,;, J,;) but with the same material (E,, G, v,).
As Figs. 10 and 11 report, the overall free length of the legs (L = L; + L, + L3)
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Fig. 11 Leg section

is the distance, along z-axis, from the wheel axle to the lower edge of the lower
steering plate. Once the line body scheme has been defined, loads can be applied.
Figure 13 (a) represents the portal frame loaded out of its plane with the forces N,
F}, and F,, shown in their actual positions.

Figure 13 (b) represents an equivalent system in which all the forces have been
separated into the relevant components along the coordinate system axes. F,; (leg)
components have been transferred to the braking leg axis: three concentrated
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Fig. 13 a Forces on the portal frame, b Force components on the portal frame

moments T, ,, T, , and T, . have been introduced to enforce equilibrium condi-
tions. Referring to Figs. 13 and 14:

F =F; - cosa.
S (15)
Fq . =Fy,-sino
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Fig. 14 Force components ]—E
on the portal frame—side view e
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T, . is due to the y-axis distance between the leg axis and the brake pads centre,
as shown into the side view of the braking leg reported in Fig. 14.

Ty ,=F4 ;- (rg-sina—c) (16)
T, , can be written as:
Ty y=Fy4 .-d (17)

And will be neglected because it yields any contribution neither to the legs
deflection on yz-plane, nor to the maximum stress of the legs. Finally 7,  is given
by:

Ty ;=Faq_y-d (18)

Referring to Fig. 14, the distance, measured along z-axis, between the F,
projection on y-axis, F ,, and the constraint C, is L' = L'; + L, + L3, where:

Ly = (L — rqgcos(a)) (19)
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2.5 Analytical Solution

External force reactions are represented by upper case letter R, while external
moment reactions by upper case letter M. The number of equations of statics is six:

{ D Riy=)Y Fuy
ZMW:Z == Z Tx,y,z

And the unknown force and moment reactions in C and D are ten, being:

(20)

Mc . =Mp . =0 (21)

because the inner and outer tubes are free to rotate with respect to each other.
Rc . and Rp, ; are neglected because they are transmitted by the fork springs to
the steering plates, without affecting the flexural stress state of the inner and outer
tubes. Moreover, the following external reaction components are null due to the
loading condition:
{ RCAx — RDAx — O (22)
Mc y=Mp_,=0

However, the structure remains statically indeterminate and shall be, therefore,
solved by applying the method of consistent deformations: the reaction moments
values along x-axis (M¢ , and Mp_,) are computed. Such reaction moments would
have equal values in twin discs forks, while in single disc forks, their difference
expresses the uneven stress distribution between the two legs introduced by the
structure asymmetry. The rotation angles around x-axis of points A and B, are
defined by ¢4 and ¢p respectively. The structure is uncoupled at points A and B
and the consistent deformations [11] equation is introduced:

bp = b+ ¢’ (23)

Where ¢’ is the wheel pin torsion angle between A and B ends. As formerly
specified, a number of effects combine to bring about the overall M , and Mp .
reaction moments: for instance F, and N determine equal external reaction
moments around x-axis while F; does not. Notwithstanding such effects are sub-
divided and discussed separately on the following paragraphs, they are eventually
superimposed (relying on the fact that the analysis is carried out in the elastic field)
in order to compute the overall M , and M), , values.

2.5.1 First Effect: Fy y and T4 « Contribution

The first effect is due to the combined action of the disc force component F,; , and of
the concentrated moment 7; ., both applied to the braking leg axisatz = L; — L';.
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Fig. 15 Force components D
on the portal frame—first 2_ -E
effect
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Such effect could be split further into two contributions: the primary one is tied to the
bending of the legs under the direct action of F; y, Ty -

Referring to Figs. 14 and 15, and recalling (19), it is convenient to define T; and
T, in order to enforce the method of consistent deformations:

T~ Fu- (1 + L)

24
Ty=Fy ,-L (24)

Define also:
E,I, = E\I|} + E35 (25)

Then, the reaction moments due to the primary contribution of the first effect in
D and C are:

Fa_y L2 LIl Foy_y 13 Lol DL Ty Ly ML, ML
2Esh EsL 2Exl Exl, T 2E ExL; EL  Ei
Mp_.11 = (26)
- 2-Ls + 2-Ly + 2-Ly + Lp
Bl T Exl, " Elll T Gy,

Mc 1 = Facosa- (L) + Ly + L) — Fy - rq - sin*a+ Fy - ¢ - sinot — Mp_1
(27)
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Looking at (26) and (27), it can be appreciated how the ends of the two legs (A
and B points) undergo different rotations along x-axis due to bending. Provided
that the offset c is not null, such different rotations determine different displace-
ments of A and B points, making the wheel pin bending into xz-plane. Ends A and
B of the wheel pin react, therefore, with two forces along z-axis: R,_,;» and
Rp_.;>. These forces produce a secondary contribution to x-axis moment reactions
in C and D equal to:

(28)

Mc y12=R4s_, 12-cC
Mp _yi2=Rp_, 12-cC

The superposition principle yields the moment reactions due to the first effect
as:
Mc i =Mc_en +Mc_x2 (29)
Mp_x1 = Mp_x11 +Mp_x12

2.5.2 Second Effect: Fy Loads Applied to the Wheel Pin

For internal equilibrium reasons, F, acts on the disc as well. Then it is transmitted by
the hub to the wheel pin and, therefore, to the legs in A and B points. The legs react on
the wheel pin with two forces whose intensity depends on the distance between {2 and
the leg axis d and on the length of the wheel pin L, (Figs. 16 and 17).

Just like the first, the second effect brings about two contributions to the sup-
ports moment reactions. The first contribution yields:

S
Mp o1 =Rp_yo1 - (L1 + Lo + L3) — (RBJZI B RA"VZI) ﬁ
02 3
S, (30)
Mcile = RA*VVZI . (L[ +L2 +L'%) + (RBle - RAﬁyZl) : 2. Sz —|—S3
Where:
2 2 2
o _ 1 (Li + L) - L L Li-L, (L)
' T2 B Esl; 2 B, | E, | 2-E
L3 la Ll
5 L, L 31
2T Esls Y ebL TEnL oy
L
Sy =—2L
TG, J,

As above reported for the first effect, since the offset ¢ is not null, the different
rotations and displacements determined by R,4_,»; and Rp_,,; at A and B points,
force the wheel pin to bend into xz-plane. Ends A and B of the wheel pin react,
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Fig. 16 Wheel pin equilibrium along z-axis—second effect

therefore, with two forces along z-axis: R4_.»> and Rp_,»,. These forces, summed
up with the components along z-axis due to the first effect, produce a secondary
contribution to x-axis moment reactions in C and D equal to:

{MD_x22 =(Rp_p1+Rp_m)-c (32)

Mc 00 = (Ra_21+Ra_2) ¢

The moment reactions due to the second effect can be, therefore, written as:

{ Mc_ o =Mc_21 +Mc_ 2 (33)

Mp_ o =Mp_o1+Mp_2»

2.5.3 Third Effect: T4 , Contribution

Now, the third effect is computed as a superposition of two contributions.
Recalling Fig. 13 and (15), T, . concentrated torque brings about the last
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Fig. 17 Force components D
on the portal frame—second 3' 'E
effect
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contribution to the overall x-axis moment reactions in C and D due to the braking
force. Since the legs are allowed to rotate along z-axis (Figs. 11, 12), they behave
as simple supports for the wheel pin on xy-plane. The concentrated torque
(Fig. 18) can be transported to the wheel pin centre: the wheel pin can, therefore,
be treated as a simply supported beam, loaded by T, , (Fig. 19).
The two supports react with two forces having the same intensity and directed
along y-axis, R4_,3 and Rp_3:
Ro_y3 =Rp_y3 = Lo (34)

L,

Such forces determine the third effect, first contribution, moment reactions in C
and D:

Sy
2-S+ 83
M
2.8+ 83

Mc_ 1 =Ra_y3+ (L1 + Lo+ L3) + (Rp_y3 — Ra_y3) -
(35)
Mp w31 =Rp y3- (L1 + Ly + L3) — (RB_y3 _RA_y3) ‘
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Fig. 18 Force components D
on the portal frame—third a"?
effect

Fig. 19 Wheel pin loaded by
Tq , on xy-plane A

Rays Ra s

‘\T“.z
Ao

Where S;, S5, S3 are defined into (31).
The second contribution of the third effect can be derived as an analog of the
second contributions of first and second effect.

Mc 32 =Rs_p52-¢C (36)
Mp_30 =Rp_z32 ¢

The moment reactions belonging to the third effect are:
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Mc_ 3 =Mc_31 +Mc_x32 (37)
Mp_3 =Mp_,31 +Mp_,32

2.5.4 Fourth Effect, Symmetric Contributions Fy, and N

Since the effects, which concur in determining the load unevenness between the
legs have been examined, focus now on F}, and N forces. Their effects are equally
subdivided between the legs. Referring to Fig. 14 notation, the moment reactions
in C and D due to the vertical load N is defined as:

N
MCvx41 = MDvx41 = E . [(Ll -+ Lz + L3) . Sll’l')) +c- COS"/] (38)

While the moment reactions belonging to F), can be written as:

F

3 [(Ly + Ly + L3) - cosy — ¢ - siny] (39)

Mc o =Mp_p =

Then:

{ Mc_ =Mc_a1 +Mc_ (40)

Mp_x4 =Mp_xa1 +Mp_x42

2.5.5 Overall Moment Reactions Estimation

Recalling (29), (33), (37) and (40), the overall moment reactions in C and D can be
obtained by adding up the four aforementioned effects:

{ Mc_y=Mc_ i +Mc_o+Mc_3+Mc_u (1)

Mp . =Mp_ 1 +Mp_xo+Mp_3+Mp_,4

Where the major contribution to the overall moment reactions is given by the
fourth effect (M¢ 4, Mp 14)-

2.6 Comparison between Analytical and Finite Element
Analysis Results

Once relationships (41) are known, the stress values along the fork legs, or the
moment reactions of the constraints C and D can be back calculated. In order to
understand the validity of the presented model, a comparison with a Finite
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Table 1 Bike parameters

Bike parameter Value Unit
m 195 kg

p 1.475 mm
b 650 mm
h 650 mm
I 300 mm
rq 117,5 mm
F, 2.428 N

Table 2 Fork parameters

Fork parameter Value Unit
Y 26 deg
o 85 deg
c 34 mm
d 37 mm
L, 397 mm
L, 211 mm
L; 24 mm
L, 190 mm
I 56.261 mm*
I 378.861 mm*
I; 322.600 mm*
Jp 19.769 mm*
E,E, 206.000 MPa
E; 71.000 MPa

Elements Analysis (FEA) of a production fork is reported. The motorbike chosen
for the comparison is a 125 cc. Enduro model, equipped with a 41 mm upside-
down fork. In conforming with Sect. 2.2 notation, the bike parameters are reported
below.

Table 2 shows instead the fork parameters, used as inputs for the analytical
model.

Given Table 1 and 2 values, Eq. (41) provide the overall moment reaction
values in C and D:

MC_x = MC_xl —+ MC_xZ —+ MC_x3 —+ MC_)C4 >~ 7955, 600 Nmm

42
Mp x=Mp «1+Mp o +Mp 3+Mp 4= —527,400 Nmm (42)

1%

In the vicinity of C and D constraints, also the normal stress along z-axis on the
external tube can be calculated as follows [12]:
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’ (43)
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The FEA has been carried out with the ANSYS Workbench R.12 code on the
same geometry. The model has been meshed with tetrahedrons and hexahedrons
imposing an element size of 1 mm, which resulted into approximately 4,400,000
nodes and allowed to have more than one element across the tube thickness
(Fig. 20).

F, N and F,, forces have been applied to the structure conveniently, as shown in
Fig. 21.

Two cylindrical supports, allowing the tubes to rotate around z-axis, have been
applied in C and D. F, the force acting on the wheel pin, has been subdivided into
two components F, and Fy Then, such components have been applied each to a
restricted surface of the wheel pin, which corresponds to the contact area between
the wheel pin and the wheel bearing internal ring. Results have been obtained for
moment reactions in C and D and for normal stress values along z-axis. Table 3
reports a comparison between Analytical and FEA results.
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Fig. 21 Loads and constraints

Table 3 Analytical vs. Fea: moment reactions, normal stress (z-axis) and percentage error

Analytical FEA Error (%)
Mc x [N mm] —955.600 —926.000 3
Mp « [N mm] —527.400 —538.000 2
oc_, [MPa] 83 80 4
op_, [MPa] 46 47 2

It can be observed that a good convergence between the two methods exists,
since errors are always lower than 5%.

Figure 22 shows the normal stress distribution along z-axis: two flags indicate
the stress values near the lower steering plate.

2.7 Experimental Results

An experimental campaign has been carried out as a means for assessing the
validity of the analytical and numerical models. Results obtained for the same
motorbike-fork mentioned into Sect. 2.5 are presented. The fork has been
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Fig. 22 Z-axis normal stress

Fig. 23 Strain gauges
installation

Strain Gauge

instrumented with four strain gauges placed close to the lower steering plate joint.
The strain gauges have been glued to the external surface of the outer tubes, with
the main grid axis aligned with the tube axis (Fig. 23).

Each couple of strain gauges, half bridge configured [13], has been connected to
a National Instruments 9237 module, plugged into a NI C-Rio portable controller.



Analytical, Numerical and Experimental Study 75

Fig. 24 Brake at the
capsizing limit

A Labview software has been used to manage all the data acquisition parameters:
the data sampling frequency has been set at 100 Hz. Then, a series of hard brakes
has been performed by a professional rider on an even asphalt mat (Fig. 24), and
the relevant stress values have been recorded for both the legs. It is well known
how the asphalt mat conditions deeply influence the longitudinal friction coeffi-
cient value . Tire characteristics, as mentioned into Sect. 2.1, play a critical role
towards longitudinal friction as well. Another element which impacts on maxi-
mum bending stress values is the fork stroke during the brake: as N and F), forces
increase during the brake, taking peak values at the end of the brake, conversely
the fork L; length decreases to become minimum at the same moment. Such
behavior determines a significant decrease in flexural stresses on the outer tubes
that cannot be taken into account by a static (analytical or FEA) model. At the
same time, front suspensions outer tubes should be designed at the fully extended
position since the sliding between the inner and outer tubes can be locked due to
springs or hydraulic failures.

Therefore, the stress values sampled during field-testing can be significantly
lower than those calculated either by FEA or Analytical models. Experimental
peak stress values in C and D are reported in Table 4.

Figure 25 reports the stress tracks, for both the legs, recorded during a series of
ten brakes at the capsizing limit.

3 Discussion

Forks legs have identical sections, and all the methods described above allow
defining the ratio between the maximum stress values read on the two legs. This
parameter conveys the amount of load unbalance between the legs. Therefore,
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Table 4 Experimental values: normal stress (z-axis)

Experimental
oc , [MPa] 53
op_, [MPa] 26
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Fig. 25 Series of ten brakes at the capsizing limit

Time

Table 5 Analytical, numerical and experimental values for normal stress (z-axis) and total load
percentages on each leg

Analytical FEA Experimental
oc_, [MPa] 83 64% 80 63% 53 67 %
op_, [MPa] 46 36% 47 37% 26 33%

unbalance ratios given by each method can be compared, in order to prove the
effectiveness of the analytical model in forecasting the stress unbalance in a new
fork, given a limited set of design parameters.

Unless the peak stress values returned by experimental analyses are lower than
those given by FEA and Analytical models, Table 5 proves the analytical model
reliability in predicting the load unevenness between the two legs.

It is important to underline that the global equilibrium is always satisfied so that
the sum of M, , and M, , is equal to the total bending moment M,,, , produced by
external forces applied to the tire (¥}, and N). M,,, . can be easily calculated by
means of the following equation:

My« =Fp-[ry+ (L1 + Ly + L3) - cosy — ¢ - siny] — N
-[(Ly + Ly + L3) - siny + ¢ - cosy] (44)
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Fig. 26 Overall moment reactions vs. brake caliper angle (flexible wheel pin)

As a matter of fact, for the studied fork, M,, , results equal to 1.483.000
[Nmm]: in short, the braking leg bears about 2/3 of the total bending moment
(Mc , = —955.600 [Nmm]), whereas the non-braking leg about 1/3 (Mp , = —
527.400 [Nmm)]).

Tests made on different geometries returned similar results, with differences
between Analytical, FEA and Experimental stress distribution ratios within a few
percentage points. Moreover, the newly developed analytical method allows fork
designers to estimate the impact on the fork stress state of any design change
upfront. For example, the overall moment reactions in C and D (2.41) can be
plotted as functions of the brake caliper angle o, in order to evaluate the influence
of a different placement of the brake caliper along the disc circumference. Fig-
ures 26 and 27 report such trends either for a fork equipped with a flexible wheel
pin (J, = 19.769 mm*) and for the same fork equipped with a stiffer one
(J, = 101.806 mm*). It can be appreciated how for the flexible wheel pin an even
load distribution between the legs could never be reached, whatever the angular
position of the brake caliper is.

Conversely, if the wheel pin is rigid enough, values of o allowing an equal load
distribution between the legs exist, for example around o = 45° in Fig. 27. Similar
graphs, displaying for example the overall moment reactions as functions of the
wheel pin offset ¢ can be plotted. Moreover, the analytical model allows calcu-
lating the bending moment at each section of the legs: it is noticeable that, into the
intermediate section L, of each leg, two elements (inner and outer tube) work in
parallel.

Each element will bear an amount of the total load applied to the leg propor-
tional to its stiffness, according to a relationship of the kind (here written for
moments):
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Fig. 27 Overall moment reactions vs. brake caliper angle (rigid wheel pin)

Migc_x - BE3
LE| + 3E;3 (45)
Mir_x =Migc_x — Mor_»

M OoT_x —

Where M7 . and M, . stand for bending moment at a certain section of the leg
on outer tube and inner tube namely. Mg , is the overall leg bending moment at
the same section.

4 Conclusions

The stress field in single disc motorcycle forks, under the effects of a severe brake,
has been studied throughout this work. An analytical approach, useful to determine
the stress distribution unbalance between the legs, has been proposed and validated
either by FEA and Experimental Analyses (Errors always within 5%). The ana-
lytical model will support fork designers during the concept design phase, as it
allows understanding the effects of a structural change on the stress state of a new
fork without performing FEA.
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Computational Simulation in Centrifugal
Casted Aluminum-Silicon Engine
Cylinder Liner

Valter Barragan Neto, Antonio Augusto Couto and Jan Vatavuk

Abstract Automotive cylinder liners are mechanical components with the
function of internal coating of the cylinder automotive engines. The replacement
of parts made of steel/cast iron by aluminum alloys has been made with advan-
tages not only in reducing weight as well as fuel consumption and emission of
pollutants. This study was aided by the finite element software Hyperworks, where
the mesh was generated and the simulation was performed in Abaqus. The mesh
for the engine block was defined with elements of four nodes of tetrahedrons. The
liners were designed with hexahedron elements of six nodes. Due to the manu-
facturing process of the cylinder liners (centrifugal casting), the finite elements
model was created in layers to meet the variation in the amount of silicon along the
wall thickness. The variation in the amount of silicon affects the physical prop-
erties of the liners along the wall thickness. With this model, it was possible to
show the viability of application of aluminum liners in engine blocks made of cast
iron. The modal analysis showed that the model does not contain its first natural
frequency within the range of work of the engine, approving its application with
this concept.
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1 Introduction

Automotive cylinder liners are mechanical components assembled to the engine
block holes in internal combustion engines. Piston and piston rings run in the
internal diameter of the cylinder liners to produce mechanical power due to the
combustion action, producing high pressures, heat release, combustion products,
friction, promoting wear in the internal engine parts like piston rings, cylinder
liners, pistons, with a direct influence on the engine durability. Nowadays, the
internal combustion engines cylinder liners are based in gray cast iron, mainly with
a perlite matrix. However, the technological evolution in order to reduce vehicle
mass enhances lower density materials application. The substitution of steel and
cast iron parts by lower density materials promotes lower emissions due to the
lower fuel consumption. Besides the lower density materials with good thermal
and mechanical properties, the automotive industry has been improving the sub-
stitution of heavier materials by aluminum and aluminum based alloys. Steel and
gray cast iron density lies between 7.4 and 7.8 g/cm’ almost three times the
aluminum density 2.7 g/cm’. Like steel and gray cast iron, aluminum is totally
recyclable without property losses.

Among the aluminum alloys, the Al-Si system can be classified as the most
important cast alloys mainly due to its high fluidity, low thermal contraction, high
corrosion resistance, good welding and brazing properties, as well as low thermal
expansion coefficient. Aluminum alloys with 5-20% Si (weight percent) are the
most used in the industry. The microstructure is based on o aluminum or f silicon
primary phase and an aluminum silicon eutectic. Normally, the eutectic f§ phase
has an acicular shape, and the primary silicon based phase consists of big
faceted plates.

The main material requirement in the internal combustion engines cylinder
liners is the wear resistance, due to the heavy tribological working conditions
between the working surfaces piston/piston rings over the inner diameter of the
cylinder liners during engine running. Among the aluminum alloys, the Al-Si
hypereutectoid system (above 12.6% Si) has been preferred due to silicon effect
enhancing wear resistance. The addition of silicon in the aluminum promotes a
dispersion of hard silicon particles (proxy. 1,000 HV), that can impair machin-
ability and mechanical properties when added in high proportions.

Between the different foundry casting methods, the centrifugal casting
technique is related to a tubular die with a high rotational speed during pouring
(1,000 to 1,500 rpm). The dynamic effect of the high rotational speed, promotes a
high centrifugal acceleration in the order of 100 g, reducing porosity and pro-
moting some density segregation effect that cannot be noticed in the static foundry
processes. The centrifugal casting process applied to the Al-Si alloys for cylinder
liners can induce some reduction in the silicon content, working with low
hypereutectic compositions (above 14%) as related to the materials used in static
processes, around 17%. The high centrifugal acceleration prompts silicon to run
mainly in the inner diameter direction, due its lower density as related to
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aluminum alloy, even in the liquid state. In this way, it becomes easier to guar-
antee the wear resistance in the cylinder/piston and rings working surface, as well
as the mechanical properties requirements, due to the low silicon content in the
outer side diameter.

Nowadays, the substitution of heavier materials by lighter ones, obey a vali-
dation step, based on wear and mechanical tests, temperature resistance, as well as
vibration and noise characteristics. The cost associated with component material
change can represent a high validation tests investment. Computational techniques
have been developed in order to avoid as much as possible prototypes fabrication
associated with a reduction of tests. The industrial strategy departments promote
project expertise improving reliability in structural and systems analysis.

The reliability of a project is directly related to the model development
according to the product real working conditions. Very accurate hypotheses and
consideration must be taken in account in order to develop consistent models. In
terms of physical phenomena, as well as constructive aspects, like materials and
geometry parts [1]. A high power computational system as well as more than one
processing nucleus is required to run representative and reliable modeling systems.

The finite elements method (FEM) was introduced in 1960 by Raymond William
Clough, and is still an important science and engineering instrument. All technical
procedures can be run in a computational virtual environment. The component must
be divided in small and simple geometric elements (line, triangle, square, tetrahe-
dron, pentahedron, and hexahedron). These parts must be interconnected by their
nodes. A small part division is necessary to fit the linear equations only applicable to
finite elements, based exclusively on linear trajectories.

The main objective of this work is to test the applicability of Al-Si internal
combustion engines cylinder liners produced through the centrifugal casting
technology. The first step of this project were the manufacturing of a slightly
hypereutectoid Al-Si cylinder liner by centrifugal casting. The microstructure and
hardness were analyzed through the cylinder liner thickness. A structural finite
element numerical system was run by computational Computer Aided Design
(CAD) and Computer Aided Engineering (CAE) tools. In order to fit closely the
microstructure gradient of the centrifugal casted Al-Si alloy, the procedure was
based on the cylinder thickness division in seven slices each one with its own
characteristics, to take in account the microstructure gradient produced by the
centrifugal casting method in the Al-Si alloys.

2 Manufacturing of Al-Si Cylinder Liners
by Centrifugal Casting

This work deals with horizontal centrifugal casting foundry process, represented in
Fig. 1. The as cast products were tubes based on Al-Si alloy with 14.7% silicon
weight percent. The melting process was carried out in an induction furnace, and
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Fig. 1 Scheme of the
horizontal centrifugal casting
process with cooling die AL81 Alloy
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Fig. 2 Centrifugal casted
Al-Si alloy tube

the pouring temperature between 720 and 770°C. The cylindrical iron mold was
pre heated and the rotational speed maintained at 1,500 rpm until solidification
processes took place. The hardness tests were carried out by the Vickers indenter
technique through a 5 kg load. The sample preparation for optical metallographic
observations was carried out by conventional techniques, and the microstructure
observed in an Olympus system. The silicon (ff phase) area fraction and the
medium f primary phase particle size through the wall thickness were determined
by an Image Pro-Plus program. The silicon fraction area and the hardness deter-
minations were carried out from the external to the internal wall in I mm intervals.

Figure 2 shows tee centrifuged tubes. Figure 3 is related to a cross section for
metallographic observations of the tube, 100 mm away from one of its sides. The
mean silicon particles size (f phase) were around 25 pum ranging from 12 to
52 pum. The same alloy produced by sand casting promotes silicon particles at list
twice larger than the centrifugal casting method. The size of the hard particles
must be controlled to optimize cylinder liner tribological working conditions.
Large silicon particles typical in sand casted Al-Si hypereutectic alloys can reduce
engine performance due to particles detachment while running engine in severe
conditions. In this situation, depth scratches on the cylinder liner piston rings
working surface can promote an increase in oil consumption as well as combustion
gases blow by. The silicon particle size requirement to satisfy the engine working
conditions are fulfilled by the centrifugal casting, mainly due to its high efficiency
in terms of heat extraction method associated with the high heat extraction.
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Fig. 3 Cross section area
100 mm away from the Al-Si
tube rear

The micro hardness values for the o (Al) and f§ (Si) phases were 85 and 1,018 HV.
The higher silicon particles hardness can be compared to the Fe;C iron carbide
hardness. Aluminum corresponds to the softer continuous phase responsible for
toughness and ductility.

Figure 4 is related to the tube microstructure range through the wall thickness,
starting the observations from the external to the internal diameter. A thin layer
rich in f§ phase is observed close to the external tube diameter (Fig. 4a). The high
cooling rate due to the molten aluminum contact with the iron mold promotes a
solidification front speed higher than the primary f silicon migration in the inner
diameter direction. Going forward in the internal diameter direction, the tube
presents an eutectic structure. The observations realized close to the internal
diameter shows again f silicon primary phase, with an increasing volume (Fig. 4c
and d) fraction, reaching values much higher than that typical for a 14.7% silicon
alloy.

Figure 5 presents the total silicon volume fraction evolution (eutectic + pri-
mary) through the wall thickness from the external to the internal cylinder liner
surface in 1 mm intervals. The analyzed tube in Fig. 5 was manufactured with
14.7% Si aluminum alloy. The chemical profile shown in Fig. 5 is in accordance
with Fig. 4 observations, a thin layer with a higher silicon content coming from the
outside diameter followed by an eutectic composition (lower silicon contend)
going forward (inward) the tube wall, in the internal wall direction, and an increase
in the silicon content in the internal diameter related to the piston and piston rings
working surface. The hardness increases in the higher f silicon content regions.
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Fig. 4 Al-14.7%Si alloy microstructures from a external wall, b 3 mm from the external wall,
¢ 4 mm from the external wall, and d close to the internal wall
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Finite element modal analyses related to the vibration pattern and loading
tension related to the engine working conditions discussed above, were carried out
taking in account an Al-Si slightly hyper eutectic alloy. A cylinder liner with a
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Fig. 6 Degrees of freedom
of a solid element [3]

6.5 mm wall, were divided in six slices of I mm and one of 0.5 mm. To guarantee
the better silicon distribution as well as to reduce the wall thickness of the as cast
tube (10 mm) to 6.5, 1.5 and 2 mm material was removed from the internal and
external wall [2].

3 Modal Analysis

The best boundary conditions enable the physical model to fit closely the real
working conditions. The modal analysis is defined by frequency functions or
movement equations from the frequency response functions (FRF). The vibration
pattern takes in account a free of constraint components joints. In accordance to
Beer and Johnston [3], degree of freedom (DOF) represents the number of inde-
pendent rigid body possible movements.

Figure 6 is related to the six DOF possibilities, three translations represented by
Fx, Fy and F, in the three X, Y and Z axis, associated to three rotational axis My,
M, and M,. The block geometry was developed using CAD technique associated
to ProEngineer, in accordance to a gray cast iron 1,000 cm® commercial block.

Figure 7 shows a conventional engine block. This geometry is closely related to
reality, with a 33.340 kg approximately mass. The substitution of the internal
holes of the block by Ai-Si tubes enables a total mass reduction of 2 kg. The
model analysis was carried out by a 6 mm radial mass remotion from the block
holes. This procedure was taken in account to allow the (FEM) modeling represent
the materials properties change due to the silicon variation in the cylinder wall.

The virtual procedure of cutting of the gray cast iron cylinder liner from the
block is represented by the red lines Fig. 8. At left the new block holes taking in
account the machined material to introduce the Al-Si cylinder liners. This
methodology promotes the direct contact between the new cylinder liners with
the liquid cooling system (wet cylinder liner). The direct contact between Al-Si
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Fig. 7 Computer Aided . =8
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cylinder liner and the cooling fluid improves efficiency in terms of engine heat
dissipation, due to the higher thermal conductivity coefficient of aluminum as
related to iron (Al = 205 W/mK; Fe = 79.5 W/mK) [4]. After defining the new
block geometry taking in account the new sleeves inserts, the mathematical model
construction with the geometric information took place with the HyperMesh (HM)
software.

The boundary conditions are responsible for the restrictions imposed in the
studied system. Some care must be taken during the choice of the contour con-
ditions to establish a good fitting for the free—free condition representative of some
natural vibration characteristics; the rigid body frequency pattern must be verified.
In theory, these frequencies must be null or sufficiently low as related to flexural
modes, i.e., around 10-20% [5]. A practical solution to deal with this question is a
low rigidity suspension. On the other hand, for the set in loading condition, the
practical conditions are based on small displacements and inclinations values, that
are not taken in account. Most experiments are carried out in the free—free
condition, due to the easier contour condition as related to the fixed structure.
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The condition free—free was adopted on the modal analysis model, which means
the definition of the block vibration frequencies defining the directions and
displacement amplitude, the auto vectors and auto values, respectively.

The modal analysis objective lies on the exclusion of the block vibration mode
into the working rotational engine speed. The rotational speed adopted in the
present work goes from 800 rpm (idle speed) until 7,200 rpm (ignition limited
rotation), to avoid collision between the piston and the engine valves. Taking in
account that in the four strokes four cylinder engines there are two combustions
per rotation cycle, the components excitations per cycle can be determined by the
next expression:

RPM - n.y
Fexcitation = C76E)y (1)
rev

where:

Foxcitaion = EXcitation frequency related to the engine rotation
ney1 = Engine cylinder number

C..v = Engine combustion frequency per cycle

According to Kelly [6], the resonance is responsible for the higher vibration
amplitudes, due to the excitation in the natural body frequency. This concept
means that the first frequency of the engine parts must be out of the rotational
engine range. Some engine parts do not fit this criterion, due to low working load
condition, or physical conditions. Considering the engine speed of 7,200 rpm, a
speed limit of 7,500 rpm that prevents the collision between the valves and the
piston was used in the calculations, giving 300 rpm as safety margin. The next
mathematical expression was used for the determination of the minimum engine
frequency to avoid its natural vibration frequency:

7,500 -4
Fexcitation = ﬁ = 250Hz (2)

The frequency values calculated from Eq. 2 shows that the first vibrational
mode (natural frequency) must occur above 250 Hz, the maximum rotation engine
speed. On the other hand, Eq. 1 must be used as the lower engine rotation to
establish the frequency range to be avoided by the engine components.

800 -4
Xcitation — m

Adopting this criterion, the range frequency during engine running must be
between 26.67 Hz and 250 Hz. Taking this concept in account, the modal analysis
is the first to be discussed adopting boundary conditions based in the free—free
model, without any DOF restrictions, which means that the parts vibration occurs
without restrictions. Physically, the parts vibration reduces as the DOF restriction
values increase.

F. = 26.67Hz 3)
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Fig. 9 First vibration mode
at 692 Hz related to a normal
block (gray cast iron block
and cylinder liner)

4 Vibration Modes: Auto Vector and Auto Value

To establish a modeling comparison in the modal analysis, two simulations were
run, one with a fully gray cast iron block, and another assembled with the Al-Si
alloy cylinder liners. This criterion prompts the system rigidity reduction, the first
vibration mode occurred at 692 Hz, and the torsion between block front and rear
are represented by the auto vectors, see vectors on orange color in Fig. 9. This
figure shows in colors scale from blue to red the auto vectors, being red for the
highest displacement. The black lines represent the unloaded block to visualize the
block displacement. The natural vibration deformation displacement was amplified
ten times to be sensible for human eye. The highest auto value for this vibration
mode (fully red), reach an amplitude of 1.26 mm. Only the first frequency is
shown regarding the maximum engine frequency, 250 Hz. The second frequency
value is 890 Hz and the third 1,087 Hz. Figure 10 shows the result for the block
assembled with the Al-Si cylinder liners. As previously expected, the auto vectors
and auto values are still unchanged, but the block rigidity diminishes, and first
natural frequency reduced to 544 Hz, almost 21% lower than the normal block
(only gray cast iron), and the displacement amplitude 1.178 mm.

Figure 11 presents a block top view showing the left first cylinder in the first
modeled mode vibration. The vibration promotes a loss in circularity in the 544 Hz
excitation frequency. Although out of the engine natural frequency, in these
circumstances a 0.7 mm displacement out from the circularity would be produced,
with an excessive cylinder liner piston and rings wear, as can be seen in Fig. 11.
The second frequency was 766 Hz and its vibration mode affect more directly the
block/transmission interface, with little effect in the cylinder liners. An auto vector
displacement of 1.025 mm is represented in Fig. 12. The third frequency
was 944 Hz.

A block with Al-Si liners promotes similar auto vectors and auto values as a
system based on a block with gray cast iron cylinder liners. The block with gray
cast iron cylinder liner rigidity (stiffness) is a little bit higher than that assembled
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Fig. 10 First vibration mode
at 544 Hz related to a normal
block (gray cast iron block
with Al-Si cylinder liner)

Fig. 11 First vibration mode Contour Plot
544 Hz. Top view eimrgsinang
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with AI-Si cylinder liner. This result can be attributed to the lower elasticity
modulus of the AI-Si alloys as related to gray cast iron. This behavior was
expected, due to the block weakening effect of changing from block casted
cylinder to assembled Al-Si cylinder liner in machined block holes.

5 Finite Elements Modeling Method

The AI-Si cylinder liners gray cast iron block interaction was assumed as a slight
sliding with a 0.2 friction coefficient. The boundary conditions were maintained
for the cylinder liners block combustion pressure interaction. According to the
sliding, at least one degree of freedom must be fixed. In this study, was adopted the
interface between carter block as being clamped to avoid rotation and translation
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Fig. 12 Second vibration
mode at 766 Hz. Top view

Fig. 13 Engine block
constraint

4

in the three Cartesian axes, as can be seen in Fig. 13. Figure 13 shows the Abaqus
graphical user interface (GUI) and the bottom of the engine block with the
constrained nodes. The constraints are represented by blue and orange arrows,
translational and rotational respectively. This figure also shows the mesh density
as it grows from the cylinder liner.

The Abaqus-CAE 6.9.1. software was used to prepare the modeling, taking in
account the loading and restriction conditions. Refined hexahedral elements,
proxy. 1 mm?, were applied for the liners taking in account slices, to represent the
through thickness properties gradient due to the centrifugal casting method effect
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Fig. 14 Cylinder liners Block Cylinder liners
represented by slices and its
block interation

in the Al-Si alloy. Figure 14 shows a finite element cylinder liner block section,
with a seven fold division for the cylinder liner (six with 1 mm and one with
0.5 mm), every one taking in account the silicon stiffness effect. The tetrahedral
block elements are larger than the cylinder liner elements, but they are in perfect fit
at the interface. This methodology was adopted to adjust the interface results,
without the necessity to node fitting in the Abaqus solution, due to the components
contact surfaces development. This methodology was adopted in order to improve
results at the interface, although not necessary the knots matching to solve the
Abaqus, since they created the contact surface between the components
under study.

As mentioned before, due to the centrifugal casting process the silicon particles
volume fraction varies along the cylinder liner thickness. This was the reason to
define a different material in every cylinder liner considered layer. Between these
layers, there is an interaction surface, assembled without sliding, producing a
heavier and complex model. Figure 15 shows the squares embedded on one
hexahedral face, a graphic representation of cylinder liner contact elements. These
elements are related to the contact surfaces. They were generated for both surfaces
that are in contact, once the mesh was generated in a refined matched manner and
nodes of the cylinder liner mesh match perfectly with the engine block.

In terms of the cylinder liner block interaction, even adopting refined elements,
a perfect fit cannot be realized, due to the different elements geometry, hexahedral
for cylinder liners and tetrahedral for the block, reducing the matching conditions,
as shown in Fig. 16. Figure 16 shows the cylinder line surface elements, blue
squared, and the engine block surface, green triangles. The surface elements
are used to define the interaction between the bodies. This figure shows that the
blue squares pertain to the cylinder liner, and the green triangular surface elements
are related to the block along the face elements.

The better fitting associated to a refined mesh improves the model resolution
reducing simulation interpretation. Nowadays, the contact modeling interpretation
is the major problem, and in many circumstances the simulation stops by a fatal
error, without a converging solution.
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Fig. 15 Contact surface Contact surface
elements between cylinder
layers

Fig. 16 Surface contact
between the cylinder liner
block elements, blue squared,
and the engine block surface,
green triangles

Initially, many simulation errors occurred during the mathematical modeling,
due to the contact tolerances used to run Abaqus. A contact tolerance review was
necessary to improve its interaction. To solve this model, a nodes overlapping
technique for the closer nodes was adopted, excluding any interpenetration
between them. With this model procedure and the modal absence of loading or set
in, the model analysis took place. In the pressure working conditions study, some
modification in the block took place in order to realize the analysis criteria.

The cylinders pressures were obtained as can be seen in the Fig. 17. The
pressure peak occurs some degrees after the top death center (TDC), pointed
graphically in Fig. 17 through 90° fazed points. Cylinder 3 pressure was the
highest as related to the other cylinders (about 7,500 kPa), and was used in the
simulation program as the highest combustion pressure for all cylinders.
The pressures at every step of the engine cycle are presented in Table 1.
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Fig. 17 Cylinder pressures. Complete cycle

Table 1 Cylinder pressures for each engine cycle

Pressure (kPa) Pressure (kPa) Pressure (kPa) Pressure (kPa)
204 83 7,500 92
Exhaust Intake Ignition Compression

The engine cooling fluid medium pressure is about 100 kPa [7]. Due to the
flex furl technology in the Brazilian automotive industry, a 160 kPa pressure
was adopted for safety, due to the higher running temperature when using ethyl
alcohol fuel. Figure 18 shows the elements, in red, where the cooling fluid
pressure is applied. The pressure is represented by the orange vectors and is
applied in all elements that would be in contact with the cooling fluid. The
triangle elements represent the engine block and the squared elements the
cylinder liner.

A pressure steps map was developed from Table 1, and can be seen in Table 2
where the engine running step has its pressures mapped. In the piston assembly
positioning in order to balance the engine, the pressures were adopted according to
Table 2 step one, been applied in the areas pointed in Fig. 19, following Table 1
pressures. The left side of the illustration is related to cylinder 1.
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Fig. 18 Cooling system

pressure vectors and loaded
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Table 2 Engine cycle map

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4
Step 1 Ignition Exhaust Compression Intake
Step 2 Exhaust Intake Ignition Compression
Step 3 Intake Compression Exhaust Ignition
Step 4 Compression Ignition Intake Exhaust

Fig. 19 Cylinder pressure areas for the cylinder 1 during ignition
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Fig. 20 Maximum principal tensions—Cylinders 1, 3, 4 and 2 during ignition

After modeling, the loaded and modal conditions were calculated in High
Performance Computer (HPC) with 98 processing nucleus, running with eight
processors. The modal analysis model runs perfectly, converging to the expected
node values.

The loading analysis model showed some contact problems, and the analysis
was incomplete even after 3 h simulation. A model adjustment was necessary to
run a new calculation. The data convergence was reached after seven modeling
procedures. The running time for this analysis was about 13,755 s (229 min or
approximately 4 h). Some problems occurred due to the nodes interpenetration
during loading. Despite being careful during the contact elements generation, some
nodes penetrate elements, impairing the model solution.

The analysis sequences are related to the previously described conditions and
assume an information character, with values that do not fit perfectly the real working
conditions, due to the virtual modeling. The engine cycle working pressures affect the
stresses, as can be seen graphically in Fig. 20. The maximum cylinder liner stress was
approximately 20 MPa. This value is lower than the Al-Si alloy yield strength, pro-
ducing only elastic deformation, in accordance to a perfect engine running condition.

6 Conclusions

The finite elements numerical simulation method applied in Otto Cycle internal
combustion engine Al-Si cylinder liners, showed that the modal analysis was fit
perfectly, having as consequence the expected converging values for the nodes.
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The assembled parts modal analysis showed that the natural first frequency was out
of the engine working range. The auto vectors and auto values were unchanged,
but the system stiffness is reduced after assembling the Al-Si cylinder liner. The
computational simulation showed that the centrifugally casted Al-Si cylinder
liners are applicable taking in account the engine loading and vibration working
conditions. A prototype is in construction to study the wear behavior of the Al-Si
cylinder liner in the piston and piston rings working surface, as well as to validate
the simulation technique.
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Numerical Study of Heavy Oil Flow
on Horizontal Pipe Lubricated by Water

Tony Herbert Freire de Andrade,
Kelen Cristina Oliveira Crivelaro,
Severino Rodrigues de Farias Neto
and Antonio Gilson Barbosa de Lima

Abstract This chapter reports information related to multiphase flow with
emphasis to core-annular flow. Industrial application has been given to transient
water-heavy ultraviscous oil two-phase flow in horizontal pipe. The high viscosity
heavy oil transportation is one of the main technological challenges for the oil
industry. This fact is related with the high pressure drop due to the viscous effects
during the flow. Different techniques for the heavy oil transportation have been
cited in the literature, core-flow is one. In this technique, water is injected in the
pipe and flows as an annular film near the wall while oil moves in the core region.
This way, a smallest amount of energy is required for heavy oil pumping.
Mathematical formulation to describe transient and isothermal two-phase flow
(water-heavy oil) is presented. Results of the velocity, pressure and volume
fraction distributions of the phases were obtained and analyzed. A large reduction
of pressure drop by comparison with single phase heavy oil flow (around 59 times)
was verified and shows the efficiency of the technique applied to production and
transportation of heavy oils.
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Notation

A, density of interfacial area
per unit volume (m™")

Cb drag coefficient (-)

C,C, empirical constant (-)

Cu empirical costant (-)

Cy empirical constant (—)

D,yp drag force per unit volume (N.m™?)

dyp scale length coefficient of the mixture (m)
f volume fraction (-)

G, generation of turbulent kinetic energy (kg.m™'.s™%)
ks, turbulent kinetic energy (m?.s~?)

L, spatial length scale (-)

M, interfacial forces (N.m_3)

N, number of phases involved (-)

P pressure (Pa)

q, scale of velocity (m*s™

Sms, ~Mmass sources (kg.s_l.m_3)
NIVe momentum sources (N.m_3)
t time (s)

U velocity vector (m.s_l)

Greek letters
o, B phases (-)

e turbulent dissipation rate (mz.s_3)
I'.s  mass flow rate per unit volume (-)
U viscosity (Pa.s)

L,  turbulent viscosity (Pa.s)
0 density (kg.m™>)

1 Fundamentals of Multiphase Flow

Multiphase flow consists of one or more fluids (continuous phase) and one or more
particulate phase (disperse phase) of coexisting matter in motion. The continuous
phase can be liquid or gas and the disperse phase can be solid particles, gas bubbles
or liquid drops. A more usual definition considers a multiphase system as that in
which fluids components are immiscible and separated by interfaces. The use of
multiphase flow in pipelines is common in practice in today’s petroleum industry.
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The occurrence of multiphase flow in the petroleum industry is very common in
the transport, production and processing facilities of hydrocarbon of an oil field.
Multiphase flow occurs in the transport facilities when the produced fluids are
transferred for other areas through pipelines. In the production systems, the
multiphase flow happens when the fluids inside the reservoirs move until the
surfaces through wells, pipelines and risers (platforms offshore), for example.

Gas-liquid two-phase flow in a pipe can exhibit a variety of spatial distribution,
depending on the flow rates and physical properties of the fluids, and also on the
geometry and inclination of the pipe [8]. These spatial distributions of the two
phases are termed flow patterns. The upward gas—liquid flow in a vertical pipe can
exhibit five basic flow patterns: bubbly, slug or plug, churn, annular and dispersed
bubble flows. In horizontal pipes, the following regimes can be cited: smooth
stratified, wavy stratified, intermittent (slug and bubbles), annular with dispersed
liquid and dispersed bubble. For liquid-liquid two-phase flow (oil-water), we can
cite the following flow patterns: disperse flow, separated flow (core-annular flow
and stratified flow) and intermittent flow [21, 24].

Two-phase flows always involve some relative motion of one phase with
respect to the other; therefore, a two-phase flow problem is formulated in terms of
two velocity fields. In despite of this comment, the flow pipe is influenced by the
velocity, density and volume fraction of each phase, surface tension and shear rate
between the phases.

2 Heavy QOil
2.1 General Aspects

In the world, some areas met exceptional features of nature that allowed the
emergence of oil. The oil that is extracted from reservoirs on land or at sea is
transported for example by pipelines to onshore or offshore platforms. From this
place, oil is transported to refineries, where it will be processed to produce gas-
oline, diesel, gas, fuel oil, lubricants, asphalt etc. Among the different types of
produced oil, there is heavy ultraviscous oil. The heavy oil has low degree API
(American Petroleum Institute) (between 10 and 20°), high viscosity (between 100
and 10,000 cP) and density close to water. Besides these features, heavy oil have a
high ratio carbon/hydrogen, large amounts of carbon residue, asphaltenes, sulfur,
nitrogen, heavy metals, aromatic and/or paraffins [15]. However, interests in the
production of heavy ultraviscous oils have increased in recent years because of the
large amount of reserves available. The estimate of world reserves is difficult, but
the order of magnitude of the total volume of heavy oil is the same as conventional
oil [7]. However, Rodriguez and Bannwart [24] report heavy oil reserves esti-
mation of 4.6 trillion barrels throughout the world.
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2.2 Heavy Viscous Qil Transportation

The research and development to increase heavy oil production is very important
to world economy. However, the production of heavy oil imposes a series of
technological challenges, especially in transportation due to high viscosity. The
difficulty is still more dramatic in deep water production where low sea water
temperature is found. So, due to difference between flowing fluids (oil and water)
and sea water temperatures, heat transfer across pipe wall occurs. This fact
increases oil viscosity and provokes paraffin deposition into the pipe, and a
higher pressure drop is verified. According to Bensakhria et al. [7], one solution
to ensure the transport of heavy oil is to reduce effects of viscosity, through the
addition of heat, dilution of the heavy oil with lighter oil and formation of
emulsions. The heating process is very expensive while addition of light oil
requires storage in the same production area. An alternative to transport the
heavy ultraviscous oils is based in the behavior of annular flow, so called core-
flow technique. In this flow pattern, one fluid is placed at the core and another
fluid in the annulus. The higher viscosity fluid tends to become encapsulated by
the lower viscosity fluid [12].

In the heavy oil-water flow, water is at the pipe surface and lubricates the oil
core. This method was created by “Isaacs and Speed” in 1904, described in Patent
No 759374 in the United States, citing the ability to transport viscous products by
water lubrication. However, only in 1970 a large industrial pipeline was built to
transport heavy oil by the company “Shell” around Bakersfield in California with
38 km long and a diameter of 15 cm. For over ten years, a viscous crude oil was
transported at a flow rate of 24,000 barrels per day (bbl/d) in a system lubricated
with water [7].

This technique has brought attractive results with respect to energy consump-
tion. This fact is due to pressure drop during the oil-water flow to be comparable
to pumping water alone at the same throughput, independent of the heavy oil
viscosity. So, to keep the core annular flow pattern, it is necessary the lowest
pumping power [13].

3 Core-Annular Oil-Water Flow

3.1 Background

For establishing core-annular flow, we have setting flow conditions related
mainly for water flow rate to create a continuous water film around the oil,
reducing the shear stress on the pipe wall. The water annular film can be very
thin and thus requires a small mass flow rate. Besides, the contact surface area
and mass transfer between the phases is minimal [17]. Besides, the transport of
very viscous oil is possible with pressure close to that obtained when pure water
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flows alone. Due this fact, petroleum industry has large interest in the technique
of water-lubricated transport of heavy oil. Therefore, many theoretical and
experimental studies of this topic have been published in recent years such as
Arney et al. [1], Bai and Joseph [4], Bannwart [5, 6], Bensakhria et al. [7],
Huang et al. [9], Joseph et al. [10], Ko et al. [11], Li and Renardy [12],
Oliemans et al. [14], Ooms et al. [17], Prada and Bannwart [19], Renardy and
Li [21] Rodriguez and Bannwart [22, 23, 24]. These works include information
about model developments, pressure drop, friction factor and stability.

From the literature it is well known which core-annular flow pattern is very
stable under established flow conditions. In this sense, two theories have been
given: the hydrodynamic stability theory and the levitation theory (based on the
classical lubrication theory). Discussions about this topic can be found in the cited
works.

Bannwart [6] proposed a theory for the stabilization of the annular pattern when
two liquids of different densities and viscosities flow into a horizontal pipe. The
theory is based on the analysis of the linear momentum equation in a cross section
of the pipeline taking into account the effect of interfacial tension.

Ooms and Poesio [16] analyzed the annular flow in stationary regime in a
horizontal pipe and proposed a theoretical model based on the hydrodynamic
lubrication theory. According to this model, there was a harmonic motion in
annular flow, i.e., the more viscous fluid (oil) moved of the wavy shape in the
center of the horizontal pipe; such behavior is well known as wavy core-annular
flow (WCAF).

Bannwart [5] investigated the behavior of the annular flow in the horizontal
pipe modifying the inner surface of the pipe. This author proposed two mathe-
matical correlations to calculate the pressure gradient by considering a horizontal
pipe: (a) with an inner surface oleophobic and (b) with an inner surface oleophilic.
The difference between oleophobic and oleophilic surfaces is related to the contact
angle between the oil and the inner surface of the pipe. Therefore, it is said that a
surface is oleophobic when the contact angle decreases with decreasing inner
surface roughness of the pipe, thus facilitating the slip of the oil along the pipe and
reduces adhesion problems [25].

Bai et al. [2] presented experimental results of oil flow in vertical pipes
lubricated by water flows upward and downward. According to these authors, in
the upflow, oil tends to stay afloat in a concentric axis of the tube due to the
center of gravity. In upward flow, the pressure gradient and buoyancy have the
same direction, waves develop and the force of lubrication with the buoyant
force tends to extend the waves. In a horizontal annular flow with density
difference between fluids, the core of oil tends to occupy a position eccentric to
the axis of the pipe and the presence of waves at the interface between oil and
water induces a secondary movement perpendicular to axis of the tube. Ooms
and Poesio [16] reports that this motion is not considered secondary in a
concentric annular flow.

Ooms et al. [18] investigated theoretically the hydrodynamic counterbalances a
buoyant force of the nucleus of oil seeping into the pipe, taking into account the
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difference in density between the two fluids. During the study, it was assumed that
the fluid that forms the core consists of a solid surrounded by a layer of low
viscosity fluid. The hydrodynamic lubrication theory used takes into account the
flow of an annular layer of a low viscosity liquid and in the center a liquid layer of
high viscosity. With this, the development of interfacial waves between the fluids
was calculated.

In the literature, it is possible find theoretical and experimental studies that
show the behavior of sub-patterns of core-annular flow, known as perfect core-
annular flow (PCAF) and wave core-annular flow (WCAF).

The ideal flow or PCAF corresponds to an exact solution of the governing
equation applied to concentric fluid flow with different density and viscosity in a
pipe of circular cross section. PCAF is a rectilinear flow with a velocity com-
ponent that varies only with the radial coordinate. The two fluids are organized
asymmetrically, with a fluid in the center or core and an adjacent the wall of the
tube forming a ring. The core of oil has a perfect cylindrical interface of uniform
radius. However, the effect of gravity tends to disorder the flow in horizontal
tubes and in this case the PCAF cannot happen unless the gravity is canceled.
In vertical tubes this is not true, because gravity is concentric to the two fluids
[2]. The PCAF of two fluids with approximated densities flowing in horizontal
and vertical pipes is possible, but are rarely stable [2, 20]. According to
Bensakhria et al. [7], the ideal or perfect annular flow seems to be very rare and
can only exist for the flow of two fluids of equal densities. Bai et al. [2] made
several experimental observations showing that waves are formed at the interface
between water and oil, leading to a wavy behavior. Bensakhria et al. [7] reported
that, for a fixed volume ratio between water and oil, the annular flow is not
stable at low velocity. The capillary instability due to interfacial tension becomes
visible, causing a disturbance in the core of the oil. However, with increasing
velocity, stability is achieved and the flow pattern can then be observed. These
authors also mention that for even higher speeds, the PCAF again becomes
unstable due to interfacial tension, and then ripples appear in the flow, leading to
a wavy annular flow.

According to Bai et al. [2], two types of the oil/water interface are considered.
The Rayleigh-Taylor and Kelvin—Helmholtz type instabilities. Rayleigh-Taylor
instability is due to the combined effect of interfacial tension and/or unfavorable
density gradients in fluids and Kelvin—Helmholtz type instability is related to the
imbalance of interfacial velocities of the fluid that manifest by a ripple at the
interface of fluids. One factor that has great influence on the stability of annular
flow is the interfacial tension. To model the curvature of the oil-water interface
helps understand the configuration of the Core-Annular Flow pattern. Bannwart
[5] reports that in the field hydrostatic with fully developed flow, an equilibrium
condition can be established between surface tension and buoyancy. The lubri-
cation model proposes that the wavy motion of the core of oil with respect to the
pipe wall generates a pressure gradient in the annular region exerting forces in
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the vertical direction, counteracting the forces of buoyancy on the core due to
density difference. Thus, the presence of waves is of fundamental importance in
the lubrication of the core. If the amplitude of these waves is null, the core
reaches the top of the pipe, i.e. the wall of the pipe [17]. The lubrication theory
is valid when inertia is neglected (Reynolds Lubrication Theory) and, when the
wave amplitude is small and the radial velocity is neglected [3].

3.2 Mathematical Modeling

The modeling procedure consists in the mathematical description of the physical
problem to be analyzed. When it is possible to put the variables of the problem in
the form of one or more precise quantitative relations, we obtain a well known
mathematical models. In the case of fluid flow, the mathematical model is com-
posed by conservation equations (mass, energy and momentum), initial and
boundary conditions and mechanical constitutive equations that establish rela-
tionship between stress field and velocity field in the flow. However, this model
corresponds to a set of data and abstract ideas that allow engineers and researchers
to propose an explanation for the phenomenon.
The conservations equations can be written as follows.

(a) Continuity equation

0 Ne
a(fapa)"'v’(focpaua) :SMSa+ZFali (1)
=1

(b) Momentum equation

0
a(fapan) +Ve [foc(sza Y Ud)] = —f,VP,+ Ve {f‘“ﬂa [VU‘“ + (VU:%)T} }+

Np
3 (ToUp = THU,) + S + M,
=1

2)

where o and f3 represent the phases involved (water or oil), f is the volume fraction,
p is density, U is the velocity vector, Nj, is the number of phases involved, P is the
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pressure, u is viscosity. The term Sy, describes user specified mass sources, I',p
is the mass flow rate per unit volume from phase f to phase o, Sp, describes
momentum sources due to external body forces (buoyancy force and rotational
force), M,, describes the interfacial forces acting on phase « due to the presence of
other phases (drag force, lift force, wall lubrication force, virtual mass force and
interphase turbulent dispersion force) and, the term F;ﬁUﬁ - F/Jgg_Ux represents
momentum transfer induced by interphase mass transfer.

When we use mixture model, only the total drag force exerted by the phase f§ in
the phase o per unit volume is considered, D,z given by:

D.p = Cpp,pAss|Up - Uy|(Up - U,) (3)

where Cp is the drag coefficient and p, 5z corresponds to the mixture density given
by:

Pup = faPy + f5Pp (4)
The density of interfacial area per unit volume, A,g, is given below:
B
of

where d,p = 1 mm is the scale length coefficient of the mixture. The effects of
gravity were not taken into account because the closeness of the involved phases
densities.

(¢) k-¢ Turbulence Model

The k-¢ turbulence model is a model of turbulent viscosity which assumes that
Reynolds stress tensors are proportional the mean velocity gradient, with the
constant of proportionality characterized by turbulent viscosity (well known like
hypothesis of Boussinesq).

The characteristic of these types of models is that two transport equations
modeled separately are solved for the turbulent length and time scale or for any
two independent linear combinations of them. The transport equations for turbu-
lent kinetic energy, k and turbulent dissipation rate, ¢, are given by:

M + V 4 {fy |:an6<]€1 - (ﬂ + Hm) Vka] } :f:l(GOC - pacgac) (6)
ot Ok

O(pafuts &y

% +Ve {fotpggUxSac - <ﬂ + &) Vgac} :fz k_ (Cl Goc - CZPaSa) (7)
& o

where G, is the generation of turbulent kinetic energy inside of the phase «, C; and

C, are empirical constant. In this equation, ¢, is the rate of dissipation of the

turbulent kinetic energy of the phase «, defined by:
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3
Cuq
— o 8
L, (8)

o

and k, is the turbulent kinetic energy to phase o given by:

ky = 2% 9)

where L, represents spatial length scale, g, is the scale of velocity, ¢, is a
empirical constant calculated by:

¢, =4c (10)

where ¢, is a empirical constant.
In Egs. 6 and 7, y,, corresponds to turbulent viscosity, defined by:
k2
:utoc:Clipacio6 (11)
o

In the previous equations: C,= 1.44; C, = 1.92; ¢, = 0.09; o= 1.0 and ¢, = 1.3.

u

3.3 Applications to Heavy Ultraviscous Oil Transport

3.3.1 Mesh Generation

The geometrical representation of the pipe used to study two-phase flow of water/
heavy ultraviscous oil is illustrated in Fig. 1.

Due to the angular symmetry observed in flow in tubes of circular cross section,
a study domain in a two-dimensional space on the plane rz was considered, as
illustrated in Figs. 2 and 3.

The unstructured mesh was made in the three-dimensional domain in cylin-
drical coordinates (Fig. 4) and, after different mesh refinement and time (seeking
non-dependence of the numerical results with the time and space), resulted in a
mesh consisting of 127,210 controls volumes (84,178 tetrahedral, 42,974 prismatic
and 58 pyramidal). The grid was obtained by using the CEX® 5.6 Commercial
code.

3.3.2 Hydrodynamics Results

The heavy ultraviscous oil and water flow in pipe, using water as a lubricating
fluid, is governed by the general laws of conservation. To model core-annular flow
in horizontal pipe, the following assumptions were adopted: (a) no mass source
and interfacial mass transfer between the phases occurs, (b) gravity effects were
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Fig. 1 Geometrical representation of the pipe
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Fig. 2 Detailed illustration of two-dimensional domain rz

Fig. 3 Zoom of the water
inlet of the pipe
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Fig. 4 Grid used in the simulations. a zoom pipe inlet and b zoom pipe outlet

neglected, (c) chemical reaction effect were neglected, and (d) incompressible and
isothermal flow. The effects of gravity were not taken into account because the
closeness of the involved phases densities.

The software CFX® 10 was used to obtain numerical solutions of the physical
problem. Table 1 summarizes the thermo-physical properties of fluid phases and
inlet velocity used on the simulations. For initial and boundary conditions, it was
considered that the pipe was initially filled with water and null velocity vector
in the pipe wall (no slip condition). In the outlet, a prescribed static pressure
(P = 98.1 kPa) was used. The transient numerical results were obtained using
a At = 0.5 s for an elapsed time t = 150 s and drag coefficient Cp = 0.44.
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Table 1 The thermal-physical properties of the water and oil used in all simulations

Water Oil
Density (kg/m>) 997.00 905.00
Viscosity (Pa.s) 88.99 x 107> 12.00
Velocity (m/s) 0.80 0.40
Surface tension (N/m) 72 x 1073
Wall roughness (m) 5.00 x 1073

Heawy od volume frachon

Inlet section Oulet section

Fig. 5 Volume fraction field of heavy oil along the pipe

Figure 5 illustrates the volume fraction field of the heavy oil. By analyzing this
figure, we can see clearly the presence of water flux near the wall of the pipe. The
volume fraction gradient can be interpreted like mixture of water/heavy oil or
formed emulsion. We can note wave motion of the oil core, mainly at the input
region. This phenomenon might be related to the form of water injection, however,
does not resemble the “bamboo waves“ like reported by Bensakhria et al. [7],
Ooms et al. [17, 18], Oliemans et al. [14], Bai [3], Joseph et al. [10], Bai and
Joseph [4], Ko et al. [11], Ooms and Poesio [16], Rodriguez and Bannwart [22,
23], among others. According to these authors the presence of waves is very nature
for the real cases of heavy oil transportation, and contributes positively in the
heavy oil flow by using core-annular flow technique.

A search through the ratio between the velocity of input water/oil adequate, so
that the efficiency of lubrication of the wall be maximum (minimum pressure
drop), i.e., transport of oil by core-flow technique be optimized, leads that to
change water velocity and keeping fixed the oil velocity. Figure 6 depicts the
results of pressure drop in the pipe as a function of the ratio between water and oil
volumetric flow rates, Q,/Qo. This result shows a decrease in pressure drop along
the pipe for increased water velocity. This fact can be explained by the reduction
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of friction in consequence of the presence of water film, thereby forming a oil core
that practically does not touch with the wall of the pipe. It was found that from the
ratio Q,,/Q,= 0.12 there is no practically pressure drop change (AP = 388 Pa). This
observation suggests that the water flow rate has a maximum value (optimum
value) that becomes the process of heavy ultraviscous oil transportation to be
optimized in an economic and mechanical perspective.

When water velocity is progressively increased, we have an increase of the
pressure drop due to a significant effect of the water turbulent flow regime. Huang
et al. [9], Ooms and Poesio [16], Bensakhria et al. [7], Ooms et al. [18] and
Vanaparthy and Meiburg [26] by studying the core-flow technique, they reports
that due to density difference between phases, the oil tends to rise to the top of the
pipe (if it is in horizontal).

However, the lubrication forces tend to repel the oil core to the center of the
pipe. A competition between these two effects gives a variation in the position of
the oil core inside the pipe, which depends strongly on the ratio between the
velocities of water and heavy oil.

Figure 7 illustrates superficial velocity field of heavy oil in the axial direction
and details about the inlet and outlet of the pipe. This figure clearly shows the
presence of a water stream near the pipe wall (lubricating film of water).

Figure 8 illustrates the evolution of the radial distribution of axial velocity
components of heavy oil for different process time placed to 1 m from the pipe input.
It can be observed that for an elapsed time of more than four seconds, the velocity
profiles are coincident and present a behavior of plug flow in the section of oil core
flow. Moreover, it can be said that due to the formation of water ring around the core
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oil, there is a significant reduction in the pressure drop. In this case, the oil presents
almost the same velocity of water in heavy oil-water interface.

It is desirable to transport as much heavy ultraviscous crude oil as possible at
fixed pressure drop. Then, to evaluate the efficiency of the core-flow technique, we
compare the pressure drop in the water—oil two-phase flow with water and oil
single-phase flows. In core-annular flow, water always touch the pipe wall, so,
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pressure drop should be close to the pressure drop in the water flowing alone at the
mass flow rate of the mixture, in accordance with the cited literature.

Figure 9 shows the behavior of pressure drop versus time along the pipe. We
can see an increase in pressure drop until 40 s, due to the increased heavy oil—
water mixture viscosity. From this moment, reduction in pressure occurs until a
stable condition is reached in the elapsed time 80 s. This fact is associated with the
lubrication of the pipe wall by the formed water film. By analyzing the Fig. 9 we
can see a large reduction of the pressure drop (approximately 59 times). If water
flow is stopped, the pressure drop will be increased continuously until it reaches
stable conditions of the single-phase oil flow.

These observations can be better understood by observing Fig. 10 where the
evolution of the oil as advanced inside the pipe initially full with water is illus-
trated. The results correspond to the volume fraction of oil on the rz plane for
different times. It is very clear that when oil moves through the pipe there is a
reduction in heavy oil-water mixture that favors the formation of a oil core in the
center of the pipe until a proper lubrication of the tube wall is reached minimizing
the pressure drop along the pipe. The stability in the lubrication can be observed in
detail in Fig. 10, after an elapsed time of 150 s.

According to Fig. 10, around 28 s, a considerable concentration of oil was
observed (average volume fraction of heavy oil equal to 0.662) in this same
position (z = 10 m). For an elapsed time more than 28 s, it is observed that oil
velocity profile reaches the plug flow behavior.

Figures 11 and 12 illustrate velocity and volume fraction of the oil as a function
of the radial position, respectively, in one section located 10 m from inlet of the
pipe. We can see that, in the elapsed times of 4 and 12 s, the velocity and volume
fraction of the oil are null, i.e., complete absence of oil in the pipe section.
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Joseph et al. [10] recommend lubricating oil core with lower water flow rate as
much as possible to minimize the problem of dewatering. On the other side, the
probability to oil fouls the wall is large when small water flow rate is used. Here,
we can use a 3 mm water thickness layer. Moreover, when oil fouls the wall
continuously, pressure drop increases very much, so, it is necessary to stop the
flow. The cleaning of the pipe and restart of the flow will be easier if the oil does
not strongly stick the pipe wall. Additional discussions about this topic will be
found in Arney et al. [1] and, due to importance of this theme, the authors rec-
ommend new researches.

Figures 13 and 14 illustrate pressure profiles along the radius at the positions
taken z = 2 and 10 m, respectively, from pipe inlet. The results presented here
highlight four different situations (it should be noted that the pipe was initially
filled with water):

(a) Attime t =4 s at z = 2 m, the heavy oil volume fraction is still very small
inside the tube (Fig. 10), keeping a pressure of 98,400 Pa approximately
(Fig. 13).

(b) Int = 12 s the oil volume fraction has already achieved the position z = 2 m
(Fig. 10), so pressure increases to 98,800 Pa approximately in this position
(Fig. 13).

(c) Attimet = 36 s, the oil volume fraction reached position z = 10 m (Fig. 10).
In this section, the pressure increases immediately to 99,400 Pa (Fig. 14).

(d) For t =100 s at z = 10 m the annular flow pattern is reached, and the
pressure decreases drastically to 98,200 Pa approximately (Fig. 14).
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When annular flow is reached, the pressure measured in a section 10 meters
from the input (Fig. 14) has a value very close to the situation where water flows
alone through this section (single-phase flow water). This fact confirms the results
presented and discussed in Figs. 9 and 10. In this case, we conclude that core
annular flow technique has a big importance in the transport of heavy oils in
horizontal and vertical pipes.
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4 Conclusions and Remarks

This chapter provides a discussion about the core-annular flow and its importance
to petroleum industry. Information about pressure drop and saving energy
pumping are given too. Application is directed to heavy ultraviscous oil flowing in
horizontal pipes lubricated by water (20.32 cm internal diameter). From the
numerical results of the heavy ultraviscous oil transportation we can conclude that:

(a) There is presence of water stream near the pipe wall forming a film of water
that surrounds the oil core flowing into the central region of the pipe, char-
acterizing the annular flow or “core-flow”.

(b) A reduction in pressure drop was observed approximately 59 times when
compared with single heavy oil flow by using inlet oil and water velocities of
0.4 and 0.8 m/s, respectively.

(c) Core-annular flow pattern is obtained 40 s after water is injected into the tube,
and remains stable during the time rest period keeping a relatively low pres-
sure drop by friction, 388 Pa.

(d) For a water/oil volumetric flow rate relationships of 0.12, the core-annular
flow was established and, oil does not touch the wall (fouling). Sometimes,
when the fouling builds up, progressively, we have a big increase of the
pressure drop which leads to block the flow.

Despite the stability of the core-annular flow we notice that pump power,
roughness and geometry of the pipe and phase flow conditions must be compatible.
For example, at low water velocity, this flow pattern is not stable. Besides, when
using pipes with large diameters, the effects of roughness of the pipe wall can be
diminished depending on the flow conditions.
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Bending Experiments on Thin
Cylindrical Shells

Tohid Ghanbari Ghazijahani and Hossein Showkati

Abstract Cylindrical shell structures are highly susceptible to buckling phe-
nomena when they experience compressive stress. In fact, there are few experi-
mental researches that give the real behavior of a cylindrical shell submitted to
pure bending, especially thin shells. This is due to the difficulty of pure bending
applying to such thin shells and that such structures behavior under bending is
frequently considered rather similar to pure compression. This chapter describes an
experimental investigation of a procedure including a system for applying
pure bending to cylindrical shells with radius to thickness ratio equals 155.
The instrumentation consists of a new loading system in which the pure bending is
applied using concentrated loads at the ends of the test model. Ultimately, the
critical values for moments as well as buckling modes were compared with finite
element (FE) results.

Keywords Cylindrical shells - Experimental technique - Pure bending - Buckling
load - Failure mode

1 Introduction

Thin-walled cylindrical shells form numerous parts of many deep-seated industrial
structures. Therefore, accurate assessments of the maximum load carrying capacity
of such structures are of paramount concern to the engineers. Above all, stability
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behavior of such shell structures exposed to pure bending has been reported mostly
related to finite element analyses carried out on the subject and there are few
experimental studies on this field.

Generally, for thin-walled metal cylinders with clamped edges, failure mostly
occurs similar to those obtained under pure axial compression. The mode of such
instability is in diamond-shaped buckling waves at the compression half of the
experimental models. In such tubes, which have moderate length, this instability is
due to the fact that the boundary conditions prevent the sectional ovalization which
is in general not visible prior to failure. A bifurcation type of instability was
analyzed in [1] for the first time. Bifurcation stress equal to 1.3 g¢; was also
obtained, where o, is the buckling stress of a cylindrical shell under axial
compression which independently was identified by Timoshenko [2], Lorenz [3]
and Southwell [4]. According to a statistical analysis, the experimental buckling
stress is from 20 to 60% higher in bending, depending on the radius to thickness
ratio [5, 6].

In 1927, for long cylindrical shells, another collapse mechanism was reported
by Brazier [7] and in 1933 by Chwalla [8] in which the flattening of cross-section
occurs due to the produced curvature developed by bending moment. It should be
noted that, this phenomenon can diminish the bending resistance of pipes pro-
gressively because for producing a certain curvature, the required bending moment
for an oval section is smaller than for a round one. This nonlinear effect leads to
limit load-type instability, whereas the snap buckling into diamond-shaped waves
is bifurcation instability [9]. Brazier also theoretically calculated the flexural limit
moment of cylindrical shells considering section flattening (ovalization). It is
worth bearing in mind that as obtained in [5, 10], for long tubes without consid-
ering pre-buckling cross-sectional state, a high value of critical bending buckling
moment is reached.

Seide and Weingarten [11] studied bifurcation of cylindrical shells subjected to
bending, assuming a linear pre-buckling state, and a Ritz-type bifurcation solution.
They numerically obtained that for finite length simply supported cylindrical
shells, the buckling stress of the shells under bending can be considered similar to
the shells under pure compression. Reddy [12] studied steel and aluminum spec-
imens and observed the presence of wave-like ripples on the compression half of
the tubes under bending, before collapse occurred in the tests. Instability of an
aluminum cylindrical shell subjected to pure bending with a diameter to thickness
ratio of 19.5-60.5 and a length to diameter ratio of 18.1-30.1 was studied by
Kyriakides and Ju [13] and Ju and Kyriakides [14]; they also observed the pres-
ence of wave-like ripples on the compression side of the bent tubes before col-
lapse. The interaction between Brazier’s flattening effect and bifurcation instability
has been investigated by Libai and Bert [15], Tatting et al. [16], Stephens and
Starnes [17] and Fabian [18]. Stephens and Starnes [17] observations indicate that
for short cylinders (L/R < 3, where L = length and R = radius of the shells)
Brazier effect can be excluded.

Generally, the flexural capacity of steel cylindrical shells is a function of the
following parameters, which are listed in arbitrary sequences:
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Stress—strain behavior of used material,

the ratio of D/t (where D is diameter and ¢ is thickness of the shells),

initial out-of-circularity of the cross sections and other cases of imperfections,
stress concentrations near the critical points, e.g. the zone of stiffness variation,
welding (longitudinal as well as circumferential).

Some of the above parameters were investigated to assess the behavior of thin
shells subjected to bending. Nonetheless, there are quite few experiments studying
the real behavior of plain thin shells (without reinforcement) and also strengthened
thin shells under pure bending, so that it has remained almost untouched. The
present study investigates the buckling behavior and the load carrying capacity of
plain/reinforced cylindrical shells under pure pending. To this end, three cylin-
drical steel shells were tested to evaluate the buckling capacity and the failure
mode of such thin structures. Note that, the efficiency of local end thickening of
the cylindrical shells on the strengthening of such shells was detected. Ultimately,
acceptable concord was obtained, comparing the experimental results and the
numerical outcomes.

2 Experimental Means
2.1 Test Setup

An overall view of the empirical set-up is shown in Fig. 1. The same general
procedure was followed for all three tests. A vertical hydraulic jack was used to
apply flexural stress to the specimens labeled as CSP1, CSP2 and CSP3 which the
two later mentioned specimens were thickened at both ends. The hydraulic jack
was mounted on a bearing frame anchored to rigid floor. The bending moment was
applied through an IPE 160 section beam which was mounted under the hydraulic
jack. The beam was laterally braced to prevent potential torsional instabilities.
Two loading arms with sectorial shell segments were connected to the bottom
flange of the beam to a proper load application. A digital load cell was placed and
fixed between the top flange of the beam and the hydraulic jack, to record the loads
applied on the specimens. Linear variable differential transformer (LVDTs) were
fixed on the sections of the specimens to determine the relative motion. All data
were recorded and processed by means of a digital scanner and data logger.

The test model includes a simply supported system. Two UCP bearing and a
connected shaft, as can be seen in Fig. 1b, used as a model of a hinged support and
two ball bearings with a proper shaft was used to model the roller support in this
set-up. The shafts were fitted and fixed into the internal rings surfaces of the ball
bearings. These supports allow the specimen to have free axial displacement and
corresponding rotation to which the pure bending is being closely applied.

The pipes (cylindrical models) in these tests consist of two parts: (1) rigid part
at both ends, (2) main specimen with thickness of 0.5 mm and corresponding end
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Fig. 1 a Overall view of test
setup; b hinged support

thickening, as shown in Fig. 2. The rigid part of the models was designed to apply
the net bending moment to the cylindrical specimens. These pipes were braced and
stiffened with some cross-shaped reinforcements increasing the stiffness of such
pipes and were connected to the specimens by means of eight bolts on each side
and friction which connect the two aforementioned parts (the rigid pipe and the
main specimen).

The three models, with diameter of 155 mm and length of 900 mm, were
carefully assembled by cord-oriented spot welding over the rolled sheet fragment
edges. It is worth to mention that CSP1 (plain specimen) was directly connected to
the rigid pipe without any end thickening, whereas CSP2 and CSP3 were thickened
with stepped wall thickness at both ends, as the length of the thickened zone and
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Fig. 2 Thickness variation along the length of the specimens

the thickness variation of the specimens was different from one to another
(see Fig. 2).

Tensile coupon tests machined from the experimental models waste material
revealed the stress—strain curve of Fig. 3.

2.2 Fabrication Techniques

The fabrication of high quality specimens is a major important issue in shell
buckling experiments because their buckling behavior is more sensitive to the
details, in particular initial geometrical imperfections, the choice of material and
fabrication method. Babcok [19] pointed out that the most considerable point in
shell fabrication is that the shell must be made with a method in which the
difference between buckling loads and behavior of one nominally identical spec-
imen to another must be less than a parameter in the experiment under
investigation.

Fabrication methods have been developed extensively in [19, 20], among which
is electroforming which was introduced by Thompson from University College,
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London, in 1960 [21]. This method has been developed making duplicates by
electroplating metal onto a mold of an object, then removing the mold in which
the intricate surface details are precisely reproduced by this process. Another
fabrication method is the Mylar shell specimen method which is most proper to
develop the surfaces such as cylindrical shells. Thermal vacuum forming is
another widely-used method of plastic models of shells and cold-worked and
machined metal shells methods (spinning, explosive forming, or hydroforming),
are another realistic fabrication shells methods. The methods are mostly special-
ized laboratory techniques for making geometrically perfect models. Where the
present experiments were aimed at duplicating full-scale steel shell construction as
closely as possible, the method of rolling thin steel sheets followed by spot
welding has been commonly used [22].

2.2.1 Specimen Fabrication

Sheet cutting was performed using manually controlled shears for a precise shell
specimen fabrication. It should be noted that parts were obtained with an accuracy
within £0.1 mm. After cutting the sheets, the plates were cold-rolled into the
desired shape. Then, meridional seam connection was performed by means of a
proper electrical spot welding machine. Such a connecting process is widely used
in industrial shell structures. It should be emphasized that before the main tests, we
tested such a connecting method and obtained a good strength at the zone of
welding with minor imperfections in the different cases of shell deformations.
Therefore, such promising connection was used in pure bending stability tests.
Other advantages of such welding in small scale stability tests are as follows:

1. Deformability of the zone of seam welding and proportionality of the stiffness
of the welding zone to its adjacent shell body.

2. Minimum residual stresses in comparison to other longitudinal welding
techniques.
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(O8]

. Having a symmetric model in comparison with other welding methods.

. Minimum geometrical imperfections along the aforementioned connected zone.
5. Prevention of stress concentration development in comparison to the other
welding methods near the zone of stiffness differing.

N

It is of interest to note that when the seam welding process were completed, all
the specimens were placed on the rolling machine and rolled again to minimize the
geometrical fabrication imperfections. It should be noted that using the described
method, nearly geometrically perfect shells could be obtained.

2.3 Measurement of Geometric Imperfections

Generally speaking, instability of thin-walled shells is known to be highly sensitive
to the different modes of imperfections. In fact, if one wants to get a good agreement
between experimental results and theoretical or numerical upshots, then one must
take the effects of unavoidable imperfections into account. In addition, all the
deviations from the shells perfect shape, so-called geometric imperfections, load
eccentricities, supporting system imperfections, used material non-similarities and
residual stresses in welded assemblies are all examples of initial imperfections [9].
Thanks to the importance of the measurement of such geometric irregularities, many
measuring techniques have been developed [23]. Contacting and non-contacting
probes are used for measuring the geometric imperfections. Indeed, non-contacting
probes are preferably used for very thin shells (particularly isotropic ones)
which have relatively weaker transverse strength, preventing the distortion of the
measurements and consequently providing accurate imperfection measurement.
In this research, contacting probes were used to a full survey of the imperfections.
The details of such measuring technique are available in two previous experimental
studies [22, 24]. Topographical layout of initial geometric imperfections of outer
surface of CSP2 and CSP3 is shown in Figs. 4 and 5.

2.4 Shell Thickness Variation

As we already mentioned, the nominal wall thickness of the steel sheets used for
these experiments is 0.5 mm. However, to obtain exact results and conduct reliable
analysis, wall thickness variation was also detected and investigated in the spec-
imens. This was done through measuring 18 points in the circumferential direction
at both ends of the specimens. A proper micrometer was employed to this purpose.
It can be seen from Fig. 6 that thickness variation differs from —8.8 to 8.4% which
can be most likely thanks to the manufacturing process, particularly rolling.
However, the tolerances are small and we can consider the nominal wall thickness
in numerical simulations.
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Fig. 5 Topographical layout of initial geometric imperfections of outer surface of CSP3

3 Exhaustive Implementation of the Experiments

Firstly, the instrumental apparatus was installed and calibrated. After full instal-
lation of the whole system, all the imperfections of the geometry were gauged
through the technique as before mentioned. Then, the bending moment was
increasingly applied up to 15% of the numerically anticipated critical load to
ensure that the empirical system and the gauging probes are behaving satisfactory.
After making certain the system behaviors well, the bending moment was grad-
ually increased up to the first indication of initial buckling. Subsequently load
applying was continued to reach the full buckling mode and failure. Finally, a full
survey of shell buckling deformations was conducted to evaluate the structural
behavior of such thin shells.
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4 Experimental Observations

In all specimens, as the load reached the critical value, the first evidence of initial
buckling appeared at the compression half of the cross section, closely adjacent to
the longitudinally thickness variation of the shells. By increasing the bending
moment, the buckling propagates circumferentially up to development on the
whole of the compression side. Then, one can observe one-tier, sharp-edged dia-
mond pattern buckling mode. Figure 7 shows plainly the global buckling mode of
the specimens.

In this pattern of instability, the onset of buckling forms a local unstable pattern.
This local deformation, after propagating circumferentially, transforms into a
rounded pattern of diamonds of about twice the size of the initial rounded buckles.
Initial local buckling is of infinitesimal amplitude and hence cannot be observed
by the naked eye. As the buckles grow and deepen, they can be detected by
naked eye.

It is of interest to note that along with such rounded diamond shapes to be
grown and deepen, shriveling of the outward buckles to narrow ridges simulta-
neously happens. It should be underlined that such buckling mode is accompanied
by a circumferentially bulging state near the intersection of the thickened zone and
the thinnest part of the specimens. In contrast, in such mode, inward deformations
are larger than the outward ones as obvious in Fig. 8. Moreover, the ratio of the
outward deformations to the inward deformations is mostly less than 1:3 in
different sections.

It should be pointed out that deformational diamonds are arranged regularly and
symmetrically. One may note that the regular and symmetric form of the defor-
mations can indicate the fact that the loading was applied quite vertically and the
loading beam properly braced laterally. The remarkable point to be emphasized is
that in all the tests, the buckling occurred near the location of the roller support.
Therefore, one can consider that the present structures buckle near the side in
which axial freedom is applied (near the roller support).
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Fig. 7 General buckling mode of the specimens

Fig. 8 Buckling mode features

Fig. 9 Finite element model
of CSP3 specimen
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5 Finite Element Modeling

The FEA presented in this chapter was obtained using the general-purpose finite
element program ABAQUS designed specifically for advanced structural analysis.
The program has been shown to give accurate predictions and has been extensively
applied to study buckling behavior of shells of revolution. The derived results are
referred to as linear and nonlinear buckling loads respectively in this chapter.
Finite element model of CSP3 specimen is shown in Fig. 9.

Generally speaking, buckling stability studies of shell structures require two
types of analysis. First, eigenvalue analysis is used to obtain estimates of the
buckling loads and modes. Such studies also provide guidance in mesh design
because mesh convergence studies are required to ensure that the eigenvalue
estimates of the buckling load have converged. This requires that the mesh be
adequate to model the buckling modes, which are usually more complex than
the pre-buckling deformation mode. The second phase of the study is the
performance of load-displacement analyses, usually using the Riks method to handle
possible instabilities. These analyses would typically study imperfection sensitivity
by perturbing the perfect geometry with different magnitudes of imperfection to
assess the effect of such geometric perturbation on the response [25].

The numerical models which have been studied herein are intended for the
non-linear elasto-plastic analysis of shells of revolution. Comprehensive modeling
of structures requires determination of the entire equilibrium path until collapse
occurs. For the instability analysis of these structures, material and geometrical
nonlinear analysis should be undertaken. The imperfect geometry of each
specimen has been used in finite element analyses. In the present study, the
‘Arc-Length-Type Method’ has been used which is the most efficient method for
this purpose and is now predominantly used in structural nonlinear analysis
programs. Use of this technique in structural analysis was originally proposed by
Riks [26], in which a constraint equation controls the load increment in order to
force the iteration path to follow either a plane normal to the tangent at the starting
point of the iteration, or a sphere with its center at the starting point.

The element of S4R has been commonly used for modeling such shell elements.
Element S4R has four nodes including five independent degrees of freedom. Note
that, these are the three orthogonal translations and the dimensions changing of
two independent components of a unit vector normal to the surface of the shell,
which is considered as the rotations. It is to be said that the normal vector third
component is derived from the condition in which the normal vector length
is assumed to be equal to unity. The independent degrees of freedom are all
interpolated linearly. Externally, three rotational and three translational degrees of
freedom per node are available to the user. This element is well suited for
modeling shell structures. Large deflection, stress stiffening and nonlinear analysis
are from its capabilities.

The geometric non-linear analysis feature has been taken into account, which is
reliable for the large displacements, large rotation, and finite membrane strain
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Table 1 Comparison of buckling moment and mode derived by experiments and FEA

Specimen Initial Initial Initial Number of Number  Difference
label buckling buckling buckling rounded of between
moment moment difference diamonds rounded diamonds
(experimental (FEA) between (experiments) diamonds number
study) (N.m) (N.m) experiments (half-section) (FEA) (experiments
and FEA (half- and FEA)
(%) section)
CSP1 2,788.7 3,187.5 143 3 4 1
CSP2 3,049.6 3,413 11.9 4 5 1
CSP3 3918.4 4,219.8 7.7 4 5 1

analysis. Two concentrated forces have been modeled at both ends of the models,
as follower forces. Boundary conditions are simply supported. It is worth recalling
that the model has a degree of freedom in the axial direction. The stress—strain
input of the model matched the properties in Fig. 3.

Without doubt, in shell structures, by varying the location and the value of
geometrical irregularities, we obtain big differences in the critical buckling load.
Therefore, to get realistic results, the imperfections were modeled directly and
closely as a table of node numbers and perturbations.

6 Results and Discussion

Table 1 gives a comparison between experimental and numerical values of the
initial buckling loads of specimens CSP1, CSP2 and CSP3. Good agreement was
obtained which shows that the FEA was able to predict the buckling load of the
specimens. Bearing in mind that the test values are in lower range in comparison to
the numerical ones owing to the presence of initial imperfections of the geometry,
shortcomings of the apparatus and other human and instrument-related parameters.
Figures 10 and 11 illustrate the deformed mode for specimens, CSP1 and CSP3
and corresponding deformations derived from the nonlinear finite element
analysis.

In Figs. 12, 13, 14, 15, 16 and 17 a comparison is carried out between initial
and ultimate geometry of specimen CSP1, CSP2 and CSP3 in which the maximum
deformation is located roughly at a distance 2 cm from the end of the thickening
region. In Figs. 13, 15 and 17 parts “a” are related to the experimental mea-
surements of the specimens, and parts “b” are related to corresponding deformed
sections derived from FEA simulations. As is shown in these figures, three
buckling waves were formed and a good agreement between careful experiments
and numerical predictions was achieved.

The following points can be concluded, considering both the aforementioned
experimental and FEA outcomes:
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Fig. 10 Final deformed mode of CSP1 specimen and corresponding FE model

Fig. 11 Final deformed mode of CSP3 specimen and corresponding FE model

Fig. 12 Deformed shape of
different sections on the
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measured from the end of
thickened length toward the
center
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In shell structures under pure bending, the junctions and generally the points
of discontinuities are a structural weakness. Thanks to this fact, in various types of
industrial applications, out of roundness due to point loads is to be checked. For
example, critical point loads may arise at free-span shoulders, artificial supports
and support settlement [27]. In this experimental study, the parameter of the local
thickening was performed to overcome negative local effects. This local thick-
ening and its length and the steps of thickness variation, has a dominant influence
on the buckling load of the experimental and numerical models. However, we can
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Fig. 14 Deformed shape of

different sections on the 84
tested specimen CSP2, 83 1 —— 38 cm from the end of thickened area
measured from the end of
thickened length toward the
center

— - 2cm from the end of thickened area

82 7 ——4 cm from the end of thickened area

— —end of thickened area

-=====1 cm from the end of thickened area

Radius (mm)

T
300 400

define the parameter & as a factor in which the local thickening length (J;), the
thickness of thickened area (#;) and local thickening step numbers n are effective in
this parameter:

Z:l:l l,'.l‘,‘
i i

Note that, /; and #; are for each thickening step of half-length of the whole shell,
respectively. As is shown in Fig. 18, the considerable point of this issue is that the
critical buckling moment varies linearly with the parameter A.

It can be concluded from the experimental and numerical results that, the
buckling capacity increases with stepped increasing length of thickening. The
reason of this behavior can be due to the negative effect of boundaries, an abrupt
changing in the stiffness in the zone of rigid pipe connection to the main specimen
(stress concentration). It can also be due to the decrease in the length of the thin
specimen which leads to the corresponding decrease in the value of sectional
ovalization and, therefore, approaching to the bifurcation type of instability which
contain a smaller value of bending buckling load, in comparison to the limit point
flattening type of instability. It is noteworthy that the interaction between Brazier’s
flattening effect and bifurcation buckling has been studied in [17, 18]. The results
of [17] show that for short cylinders of (L/R < 3), Brazier ovalization effect can be
excluded (specimen CSP3).

In the models of this research, as local thickening length and the number of
stiffness variation steps from the rigid pipe to the thinnest part increases gradually
and step by step, the buckling load increasingly changes. Therefore, for similar
cases, with stiffness difference of the parts along the longitudinal direction,
gradually thickness variation is recommended as an approach to increase the
bending capacity of such structures.

h = (1)
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Fig. 15 Polar plot of final (a)
geometry of CSP2 for the Max. deformations of CSP2
section with maximum
deformations: a experimental
gauging; b corresponding FE
model

(b)

Generally, a good agreement is observed between the numerical models and
experimental results in terms of initial buckling load, buckling waves, and the
region of buckling incidence. The numerical and experimental results show that
the diamond mode of buckling has been formed in the thinner part of the cylinders
and near the intersection of the thinnest part and adjacent local thickened region
(Fig. 19). The development of such mode also caused a clear break angle between
the two parts of the models. This result correlates with the point which has been
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Fig. 16 Deformed shape of
different sections on the
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pointed out in [28] that thin-walled shells with large radius to thickness
ratio possess a low strength for the pure bending condition. However, in some
cases, bending conditions cannot be neglected. It turns out that strong severe
bending conditions are localized only in a small domain near some disconti-
nuities in loading and geometrical conditions, as well as near supports, etc.
As we move away from such a disturbance zone, the bending stresses will
decrease rapidly.

All the samples buckled in a diamond pattern in the compression half of the
specimens. On the one hand, the local thickening of such models has not a sig-
nificant effect on the circumferentially wave number of the buckled section.
Moreover, it is obvious that the length of buckling development of the waves
toward the mid-span of the specimens is rather affected by the steps of thickening.
As the local end thickening of the shells become longer, the development of the
deformations in the longitudinal direction become shorter, thereby the CSP3
specimen deformation is less developed along the length of the specimen,
comparing the two other specimens.

The yield lines were formed in a semicircular pleated shape in the hoop
direction of the buckled region. As the shell thickening steps increase, the radius of
these semicircles in the longitudinal direction decrease.

In terms of imperfection sensitivity, we can remark that shells under pure
bending are less imperfection sensitive than under pure compression, though in
both cases, shells must withstand compression stresses. The reason for lower
imperfection sensitivity of such structures under pure bending is primarily that in
pure bending condition, buckling initiated in a narrow zone of greatest compres-
sive stress, while under pure axial compression any imperfect point on the shell
surface can trigger buckling. In this study, the aforementioned narrow region is
limited to the joint area of local stiffened section (local thickening in specimens
CSP2, CSP3 and rigid pipe in specimen CSP1) and the shell with the lowest
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thickness. Thus, this region is of major importance which extreme care should be
taken to have high quality geometry due to the sensitivity of this area. In our sense,
we can emphasize that imperfection sensitivity of such models is less than the
other cases of structures under compressive stresses owing to the relatively small
target area size of the discontinuity region.
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7 Concluding Remarks

The structural buckling behavior of thin-walled cylindrical shells of radius to
thickness ratio equal to 155 exposed to pure bending has been investigated with an
experimental approach. It has been shown that the general buckling mode of such
models can be assimilated to that of pure axial compression. The salient conclusive
points to be drawn from the experimental program described herein are as follows:

e In the above specimens, buckling mode formed locally in a diamond pattern
circumferentially in the compression half of pipe sections. The diamond mode
of buckling formed in the thinner part of the shells and near the intersection of
the thinnest part and adjacent local thickened area.

e In all the tests, buckling occurred near the location of the roller support.
Consequently, we can consider that the structure buckles near the side in which
axial freedom is applied.
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e A reasonable agreement is observed between the numerical models and
experimental results in terms of initial buckling load, buckling mode, and the
region of buckling incidence. However, experimental values are lower in
comparison to the FEA results owing to the presence of initial imperfections of
the geometry, shortcomings of the apparatus and other human and instrument-
related parameters.

e The buckling capacity of the specimens increase as the length and the step
number of local thickening increase.

e Under pure bending, some discontinuity zones created by loading and
geometrical conditions, supports, etc. are most susceptible to the buckling
phenomenon. Thus, these critical regions must be considered in designing
such cases.

e In these tests, the yield lines were developed in a semicircular pleated shape in
the hoop direction of the bucked region. As the shell thickening steps increase,
the radius of these semicircles in the longitudinal direction decrease.

e In all the specimens, imperfection sensitivity is mostly related to the region of
joint areas and the points of geometrical discontinuity. Therefore, in these
models, imperfection sensitivity is less than the other cases of structures under
compressive stresses owing to the relatively small target area of the disconti-
nuity region.
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Numerical Simulation of Cross Wedge
Rolling: Influence of Die Geometry,
Process Conditions and Inclusion Content
of Two Steels on the Formation of Internal
Defects
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Abstract Cross wedge rolling (CWR) is a metal forming process used in the
manufacturing of stepped rotational parts. In this process, a cylindrical billet is
heated and plastically deformed into an axisymmetric product by the action of
wedge-shaped dies moving tangentially relative to one another. Since internal
defects in CWR can weaken the integrity of the final product and can ultimately
lead to catastrophic failures, it is necessary to investigate the mechanisms of their
generation and growth. This defect has its origin in the center of the rolled pieces
and its causes are not fully identified yet. Based on the finite element method,
numerical simulations of CWR in three dimensions were studied with a com-
mercial software. Numerical simulations can provide useful information helping
decision making about die geometry and process conditions and, therefore, is a
valuable tool to define ideal process parameters. Aided by this tool, researchers try
to understand the role of process variables and die geometric features on the
internal defects formation. The purpose of this study was aimed at the variables:
rolling speed, relative reduction and forming and stretching angles. Stress, effec-
tive plastic strain and damage values at the rolled parts cross section were chosen
as analysis criteria in several situations according to a given set of process vari-
ables. Earlier practical tests performed by the author showed the significant
influence of these variables, and also proved the random behavior of that influence.
Due this randomness, further studies were done with two different steels (AISI
1045 and 38MnSiVS5) taking into account their chemical composition and the
possibility of the inclusion content has any influence on the crack generation which
causes the internal defects.
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1 Introduction

In cross wedge rolling (CWR), a forged part or a cylindrical billet is formed by
wedge-shaped dies which are fixed in rolling mills or plates. Until this moment, the
plastic forming mechanisms of CWR are not totally clear due the complexity of
the metal forming and thus experimental research is still dominant. The lack of
precise theories lead to experiments with many repetitions in which products
defects are hardly controlled, as well as porosity, voids and cracks initiation, and
therefore these defects limit the use of the process in large scale [1].

The first objective of this work was to improve the knowledge about the for-
mation of central cavities which are the main defect found in CWR products.
Several researches have been dedicated to better know the role of the process
variables in the generation of such defects. Equations that correlate geometric
variables and try to establish safe process conditions have been defined. Tests
performed by the author in a laboratory equipment showed that even in stable
conditions, internal defects can occur pointing that other influent mechanisms and
variables should be present.

The second objective was to establish the influence of the inclusions present in
two commercial steels on the crack generation that origin the internal defects.

2 The CWR Process

CWR s a rotational forming process. As a result of tools movement, a cylindrical
workpiece is rolled, obtaining shafts with tapers, steps, shoulders and free elon-
gation in the axial direction. Figure 1 shows the typical design of a CWR tool with
its four forming zones: knifing, guiding, stretching and sizing [2].

Due to modification of the billet geometry along the process, plastic forming
mechanisms are meaningly different in each of these zones. In the knifing zone, the
tool presents a wedge with height starting at zero and that increases to the total
reduction of the workpiece diameter. In the guiding zone, tool cross section does
not change to obtain a uniform V-shaped groove around the workpiece surface.
The stretching zone is the most critical tool section because in it happens the most
meaningful plastic deformation of the process. In this zone, the material is stret-
ched and forced to flow to the edge of the workpiece, and therefore the shaft steps
can be formed.

In the sizing zone, a small plastic deformation occurs in order to adjust the
tolerance and the surface quality of the workpiece [3].



Numerical Simulation of Cross Wedge Rolling 143

Fig. 1 CWR tool zones
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The key parameters of the process related to tool geometry are the forming
angle o on the wedge side, the stretching angle f of the wedge, and the relative
reduction 6, or the ratio between the initial diameter of the billet and the smaller
diameter of the rolled product.

These parameters determine the plastic forming level experimented by the
workpiece and they have a relevant role in the probability of internal defects
occurrence [4]. The forming angle «, for example, controls the contact area
between tools and rolled part. Smaller angles mean less sharp tools and a larger
contact area with the part.

The stretching angle [ determines the total axial deformation, so bigger
stretching angles mean higher plastic deformation and elongation.

The relative reduction J is a measure of the radial reduction of the rolled part.
The bigger the relative reduction, the bigger the radial compression suffered by the
part [5].

Besides these geometric variables, the rolling speed (v) was also considered in
this research.

3 Numerical Simulation

In the numeric simulations of the CWR process, the commercial software Deform
3D, version 6.1 based on the finite element (FE) method was used. With the
purpose of minimize the processing time, the tools were considered as rigid and
the friction factor as constant. Figure 2 presents a picture captured from the
software showing the tools and its zones and the rolled workpiece. The tools were
designed with only three zones, eliminating the guiding zone. The material used in
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Fig. 2 Workpiece positioned
on the lower tool

the numerical models was the steel AISI 1045, available in the FE program library.
The pre-heating temperature was 1,100°C for the material and the tools were
considered at room temperature, 25°C. The friction factor was assumed as
m = 1.0.

Workpieces were discretized with 45,000 elements on average. Billet diameters
varied between 24 and 34 mm, according to the relative reduction chosen for each
simulation. Billet length was assumed as 80 mm.

Considering the process variables, the following conditions were analyzed:

. forming angle « = 20° with relative reductions 6 = 1.44; 1.57 and 1.70;

. forming angle « = 25° with relative reductions 6 = 1.41; 1.51 and 1.61;

. forming angles « = 10 and 30° with relative reduction 6 = 1.57;

. rolling speed (v): 100; 150 and 200 mm/s to the conditions (1) and (2), and
200 mm/s to the condition (3).

AW N =

Stretching angle f§ was kept constant in all simulations and equal to 7°. The pre-
heating temperature was also kept constant considering preliminary studies which
showed that small variations around 1,100°C did not caused meaningful influence
on the material plastic behavior.

3.1 Damage

Damage is usually associated with the fracture in a component. Particularly, the
damage model developed by Cockcroft-Latham, which is one of the damage
models available in the simulation software, has been shown to be a good indicator
of ductile fracture under tensile stress in cold forming. Although this research is
related to hot rolling, damage results can be used as a reliable option of damage
evaluation [6].
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Fig. 3 Damage distribution
on the cross section of the
rolled part

The numerical analysis was initiated by studying the cross sections of the rolled
parts to know the damage distribution along those sections. A typical example of
such sections can be seen in Fig. 3, which shows the part right after passing the
knifing zone. Preliminary studies done by the author and confirmed by other
researchers point the center of the rolled parts as the place where the internal
cavities initiate. The damage distribution showed in Fig. 3 confirms that
conclusion.

Afterwards, the analysis was chosen by tracking points in some regions of the
rolled parts, which means that the values of each variable were studied during the
whole rolling process for each chosen point.

The chosen points for the analysis damage variable and the effective stress of
the rolled part are shown in Fig. 4. Two points were chosen in the central cross
section: P1, in the center of the part and P2, right under the surface and at the same
vertical line of P1.

3.1.1 Damage Versus Rolling Speed

Three rolling speeds were chosen: 100; 150 and 200 mm/s. In general, simulation
results presented the same trend: the damage levels increase as the rolling speed
decreases, as shown in the damage charts with the variables: o« = 20° and
0 = 1.44 (Fig. 5).

At the points P1 and P2, damage presented a significant increase from the
knifing zone to the initial region of the stretching zone, and then the damage
becomes stable. Short baselines in the P2 curve show the time when that region
loses contact with the tools during the revolutions of the part.
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Fig. 4 Position of selected
points for tracking

3.1.2 Damage Versus Forming Angle

To analyze the influence of this variable, the process speed and the relative
reduction were kept constant. Then, two situations are presented: (a) o = 10°;
0 = 1.53; v =200 mm/s and (b) a = 30° 6 = 1.53; v = 200 mm/s, and the
results are shown in Fig. 6.

These results prove the important influence of the forming angle on the pos-
sibility of failure in the rolled part. With smaller angles, damage levels are much
higher if compared to the levels of bigger forming angles for the two considered
points. With « = 10°, damage levels are higher in the center of the part than under
the surface during all the process. The damage increases until practically the end of
the stretching zone, stabilizing only in the sizing zone. With « = 30°, damage
levels under the surface are bigger than in the center of the part. For both regions,
damage increases in the knifing zone stabilizing along the process.

3.2 Stress

The simulation software adopted the von Mises flow yield criterion and denomi-
nates the effective stress as the flow stress g given by:

JO:\/LE\/(GI —02)2+(62—J3)2+(O’3—O'1)2 (1)

where ¢, g, and g5 are the principal stresses. According to the von Mises crite-
rion, metal flow does not depend on a particular normal stress or shear stress,
although depends on a function of the three main shear stresses values. Due to the
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Fig. 6 Damage versus forming angle: a o = 10°, b a = 30°
involving quadratic terms, von Mises criterion presents a result that does not
depend on the signals of each stress [7].

3.2.1 Effective Stress Versus Relative Reduction

The charts in Fig. 7 show the results of the simulations with o = 20° v =
200 mm/s and 6 = 1.41; 1.51 and 1.61. As the relative reduction increases, the
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stress in the center of the part, point Pl, increases until the beginning of the
stretching zone. Till the end of the process, the stress behavior is unstable, how-
ever, the trend of higher level stresses with increasing values of reduction is
maintained.

The analysis described above can also be done to the region near the surface of
the part, point P2, taking in account that in the first stages, the stress values present
more pronounced peaks and valleys.

Considering the effective stress, it can be observed that the probability for
occurrence of internal defects increases with higher relative reductions.

3.2.2 Effective Stress Versus Forming Angle

The influence of the forming angle is shown in the charts of Fig. 8. With o = 10°
and in the center of the part, the effective stress was practically constant on the first
two zones of the tools, with values between 80 and 74 MPa. In the region under
the surface, there was a significant variation with peaks of up to 135 MPa.

With o = 30° the effective stress was stable in the center of the part on the
knifing zone and at the beginning of the stretching zone. In the remainder of
the stretching zone, there was a marked decrease to stresses around 40 MPa.
On the region under the surface, there were peaks of 150 MPa in the knifing zone
with a decrease up to 40 MPa in the stretching zone.

Smaller forming angles cause higher effective stress during all the forming
process, both in the center and near the surface of the part.

3.3 Stress Component

Whereas in the CWR process, material flows mainly in the axial direction of the
workpiece, the normal stress component on that direction was also studied.
According to the coordinate system presented in Fig. 3, it is the component in “x”
direction (from now denominated “x” stress).

3.3.1 Analysis of “x” Stress Versus Rolling Speed

With decreasing rolling speeds, an increase in the “x” stress was noted. The results
can be exemplified with o = 20° and 6 = 1.44 (Fig. 9). Except for the initial
instants of the process when alternating peaks of tensile and compressive stresses
can be observed in the center of the part, the stress is tensile, up to about half the
stretching zone causing the longitudinal flow of the material. From this point,
tensile and compressive stresses alternate again, predominating the compressive
stress caused by the tools.
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Near the surface of the part, the whole process presents alternating tensile and
compressive stresses when that region is in contact or not with the tools. That
particular behavior among the regions of the rolled part explains the difficulty of
knowing with detail the forming and failure mechanisms of the CWR process.

3.3.2 Analysis of “x” Stress Versus Relative Reduction

The analysis of “x” stress also indicates that increasing relative reductions can be
harmful to the CWR process. In the center of the part, stress remains tensile and
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increases as the reduction increases until the beginning of the stretching zone.
Under the surface of the part, tensile and compressive stresses alternated practi-
cally during the whole process. Those results can be found in the charts of Fig. 10.

3.3.3 Analysis of “x” Stress Versus Forming Angle

Figure 11 shows “x” stress charts for two conditions: o = 10 and 30°. In the
center of the part, with o = 10°, tensile stress is present practically during the
whole rolling process, except for the initial instants. With « = 30°, stress behavior
is more alternated, varying between tensile and compressive stresses, with tensile
stresses lower than with o = 10°. Therefore, it can be concluded that o« = 10° is
certainly more favorable for the generation of voids and cracks and subsequent
propagation.

However, under the surface, the “x” stress behavior follows the pattern of
previous analysis with interchange between tensile and compressive stresses
during the entire process.

It can be stated that with conditions favorable to the generation of defects,
mainly in those near to the limits of safe conditions, i.e. close to points of overall
process failure, an option to consider is to increase the rolling speed. Speed
increase is related to lower damage and tensile stress in the axial direction, which
contributes to avoid crack generation or minimize the propagation of generated
cracks.

An increase of relative reductions is harmful to the process and favors the
occurrence of internal defects, since they lead to higher effective stress and axial
tensile stress in the center of rolled parts.

Tool designs with small forming angle must be avoided. The smaller the
forming angles, the higher are the damage levels, effective stresses and axial
tensile stresses in the center of the part.

4 Experimental Tests With AISI 1045 Steel

Several tests were performed with workpieces made with commercial steel AISI
1045 bars. That steel has the typical chemical analysis described in Table 1.

All workpieces were 80 mm in length and with diameters equal to 25.0; 27.5
and 29.5 mm. Other process and geometric variables of the tests are shown in
Table 2.

The workpieces were cut from the steel bars withdrawing small slices before
and after each workpiece for micrographic analysis of the inclusions (Fig. 12).

This analysis showed the variability of the quantity and size of inclusions along
the bars and even though it was difficult to prevent the presence of those inclusions
in the center of the workpieces, it was possible to observe the regions of higher and
lower concentration of inclusions.
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Table 1 Chemical analysis of steel AISI 1045 (% in weight)
C Mn P (max) S (max)
0.43/0.50 0.60/0.90 0.030 0.050

After the tests under the conditions shown in Table 2, the rolled parts were
sectioned transversally in relation to the main axis in the central region for analysis
of present defects.
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Table 2 Process and geometric variables

o (°) B (© 0 T (°C) v (mm/s)
20 7 1.61 1,100 100
20 7 1.61 1,100 150
20 7 1.61 1,100 200
20 7 1.57 1,100 100
20 7 1.57 1,100 150
20 7 1.57 1,100 200
25 7 1.51 1,100 100
25 7 1.51 1,100 150
25 7 1.51 1,100 200

Fig. 12 Workpieces and

slices \\

4.1 Analysis of Inclusions

4.1.1 Criterion for Quantifying Inclusion Distribution

In order to analyze the amount of inclusions, the criterion described as follow was
established. The magnification chosen to visualize the inclusions at the optical
microscope was 50, which corresponds to a visual field in the workpiece equal to
7.4 mm?. Within that field and in the central region of each slice, the amount of
conclusions was then determined. A color code was also established, as can be
seen in Fig. 13.

4.1.2 Analysis of Inclusions Distribution

The micrographic analysis of inclusions was performed with light optical
microscopy and scanning electronic microscopy (SEM). A typical micrograph of a
slice which had more than 100 inclusions can be seen in Fig. 14. The distribution
of inclusions is homogeneous and their size varies.

Figures 15 and 16 present the micrographs obtained by SEM, as well as the
chosen points for chemical analysis by energy dispersive spectrometer (EDS). The
chemical composition of each point is presented in Table 3.
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Fig. 13 Color code for the 0
amount of inclusions
1to 50

51 t0100

more than100

Fig. 14 Inclusions in steel 7 7 6
AISI 1045 i

Fig. 15 Inclusions in steel
AISI 1045 (SEM)

The chemical analysis of inclusions indicates high sulfur and manganese con-
tents, which means they are manganese sulfides that are quite common for that
commercial steel.
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Fig. 16 Chosen points for
chemical analysis of
inclusions in steel AISI 1045

Table 3 Chemical composition of inclusions in steel AISI 1045

Point % in weight

Si S Mn Fe
1 0.38 13.71 19.43 66.48
2 0.17 9.32 14.86 75.66
3 0.21 8.89 15.54 75.36
4 0.17 14.27 27.41 58.15

4.2 Internal Defects

4.2.1 Classification

Internal defects found within rolled parts were classified according to their size.
Those defects visible with the naked eye, with no magnification, were classified as
“big” and those which needed a minimum magnification of 40x to be identified
were classified as “small”. A color code was established for the defects, similarly
to the inclusions, as shown in Fig. 17.

Experimental results with the different conditions are shown in Fig. 18. At least
two tests were performed for each condition. The largest rectangles represent the
rolled parts and the smallest ones represent their respective slices. The conditions
were grouped into columns (1, 2 and 3) representing the same forming angle and
the same relative reduction and columns (A, B and C) representing the same
rolling speed.

The analysis of these results leads to the following conclusions:

e The inclusion distribution along the bars was totally random. A correlation
between inclusion content and internal defects generation could not be estab-
lished. There were slices with high inclusion content adjacent to rolled parts
with no defects as well as slices with no adjacent defects to rolled parts with big
and small defects.
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Fig. 17 Color code for the
defect size classification no defects

small defects

large defects

Fig. 18 Results of rolled
parts with their respective
slices |
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e For that steel, with that inclusion distribution, the effect of process and geo-
metric variables is predominant over the effect of inclusions. The conditions
with smaller forming angle and bigger relative reductions were more favorable
for defect generation. This conclusion confirms results previously obtained by
the author and by Idoyaga et al. [8].

5 Experimental Tests With Microalloyed Steel 38MnSiVS5

The microalloyed steel 38MnSiVS5, whose chemical composition is shown in
Table 4, was used for another set of tests. The choice of that steel was due to the
fact that microalloyed steels are increasingly used in the automotive industry,
because they represent a great saving of time and energy since they do not require
subsequent heat treatment reaching good mechanical properties when cooled from
hot working temperatures.

A second reason that determined the use of that steel was the idea that it is a
nobler material, produced in smaller scale with higher unit cost per kilo and thus,
the inclusion control would be more effective, despite the results presented below
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Table 4 Chemical analysis of microalloyed steel 38MnSiVS5 (% in weight)
C Mn Si P S Cr Ni Mo v Cu Al N
037 141 060 0.014 0.055 0.11 0.10 002 0.09 0.04 0011 0.0157
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Fig. 20 Inclusions in
39MnSiVSS5 steel (SEM)

show exactly the opposite. The analysis of inclusions made similarly to Steel AISI
1045 is presented next. The tests conditions were exactly the same as the Steel
AISI 1045 ones.

5.1 Analysis of Inclusions

The same criterion for classification of the steel AISI 1045 was adopted. Micro-
graphic analysis with light optical microscopy showed that all slices presented
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Fig. 21 Chosen points for
chemical analysis of
inclusions in 39MnSiVS5

Table 5 Chemical composition of the inclusions in 39MnSiVS5 steel

Point % in weight

Al Ti Si S Mn Fe
1 1.39 0.45 0.63 7.22 33.45 56.86
2 - - - 24.85 48.95 26.20
3 - - - 18.38 33.36 48.26
4 - - 0.23 18.61 36.02 45.14

high inclusion content, significantly higher than steel AISI 1045 slices. A typical
example of those micrographs is shown in Fig. 19.

Analyses of those steel inclusions are presented in Figs. 20 and 21. The high
percentage of the elements shown in Table 5 indicates that these inclusions are
manganese sulfides, similar to the steel AISI 1045 ones.

5.2 Internal Defects

All the rolled parts were sectioned and absolutely all had large internal defects. For
this steel and with this inclusions content, the inclusion influence on the defects
generation prevailed over the process and geometric variables influence.

6 Conclusion

Considering the several tests performed, results were not always as expected.
Some tests produced parts without defects, while others under the same conditions
produced parts with big and small defects.
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That may be related to process limiting conditions or to the presence of
inclusions in both steels which favors the crack formation and consequently the
internal defects. Up to a certain inclusion content in the workpieces, as observed in
steel AISI 1045, the geometric and process variables have a predominant influence
on internal defects generation.

For materials like the microalloyed steel studied in this work, which contains
high inclusion content, those inclusions are the most important factor to the
internal crack formation.
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Nonlinear Creep Model for Concrete
in Analysis of Plates and Shells

Jure Radni¢, Domagoj Matesan and Marija Smilovi¢

Abstract A numerical model for analysis of reinforced and prestressed concrete
plates and shells including creep, shrinkage and aging of concrete, already
developed by the authors, has been updated with a nonlinear creep model for
concrete. The model can be applied for all levels of concrete stresses, while its use
for ultimate stress levels is still not fully tested. The presented nonlinear concrete
creep model is simple, based on the well known linear model of concrete creep,
and intended for simulation of practical concrete structures. For the verification of
the presented model, an experimentally tested square concrete plate and cylindrical
prestressed concrete shell were analysed numerically. The results of experimental
tests at high stress levels and numerical results show good agreement.

Keywords Plate - Shell - Nonlinear concrete creep - Numerical model

1 Indroduction

As verified by experimental tests, a linear functional relationship between the
creep strain of concrete in time and instantaneous elastic strain of concrete is valid
only for low levels of concrete stresses. According to Bazant et al. [1-3], when the
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Fig. 1 Effect of concrete stress levels on accuracy of a linear concrete creep model

ratio between concrete stresses under a long-term static load and the average
compressive strength of concrete is greater than 0.4, the aforementioned linear
relationship between the instantaneous and time-dependent strains is no longer
valid and there is a progressive non-linear increase of concrete creep strain
(Fig. 1). When concrete stresses due to a long-term static load exceeds 80% of the
average compressive strength of concrete, creep will cause failure of the concrete.
There were numerous attempts to analytically describe the actual creep of con-
crete. Some nonlinear creep models for concrete, based on different rheological
models and/or models of uniaxial experimental tests, can be found in [4-10].

Here, a nonlinear concrete creep model is presented. An empirical expression
for nonlinear concrete creep is proposed that was used for numerical modelling of
plates and shells under long-term load by finite element analysis. The model was
verified in the numerical simulation of carried out experimental tests of concrete
plates and prestressed concrete shells.

2 Linear Concrete Creep Model

A developed linear concrete creep model included in the numerical model for the
analysis of concrete plates and shells under a long-term load [11, 12] will be
described in short below.

The uniaxial creep strain has been calculated using the Glanville and Dischinger
method [13], based on the assumption that the rate of creep is a function of the current
uniaxial concrete stress and the time ¢ elapsed after the loading, namely
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de

C
—L = f(o,1). 1
"L~ fon) (1)
If time is divided into discrete time intervals Af, when t, =t and 1,1 = t + At,
an incremental version of Eq. (1) is
Agf =¢' AD,

Tyt Int1

Iy = 8Zj+1 |:¢tu+l - ¢tn] (2)

where Ag; s the increase in creep strain between times 7, and 41, &, is an
instantaneous mechanical strain of concrete at 7, (it can be a nonlinear function of
stress ), A®,, , . is the increase of creep coefficient between ¢, and #,1, @;,,, is the
creep coefficient at 1, and @, is the creep coefficient at 7,. The increment of the
creep strain A‘sf”+l is calculated based on the conditions at the beginning of the next
time increment ¢, ;. This method, in general, is very simple and describes the strain
history very well even for sudden and irregular stress changes. Since the increment of
the creep strain is based only on the current instantaneous strain (or stress) and time-
dependent value, this method is very attractive in terms of calculations.

Creep coefficients values given in EUROCODE 2 [14] were used. Thus, Eq. (2)
can be written in the following form

Ae =e' [P0 — P (3)

where
D = (D0ﬁ2+1,to (4)
Dy, = Pof; 4, (5)

If Egs. 4 and 5 are inserted in (3), then

Int1 Iyt

Agg =g Do [ﬁtcn+1-,to - lCnJu ) (6)

In the above equations, @, denotes the basic creep of concrete, while ﬁfnﬂ o and
.
In,lo
Basic creep of concrete @y can be determined as

@y = Pry By, By, (7)

where @rpy denotes the coefficient of relative humidity effect, fi,, is the coefficient
of concrete strength effect and f, is the coefficient of concrete age effect on the
basic creep at the beginning of loading. Then:

are the coefficients describing the creep development in time under loading.

Oy =1+ (1 - RH/100) / (0.1 1) 8)

By, = 16.8/f0 (9)
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B, =1/(01+45) (10)

In the above given equations RH is the relative humidity (%), hy is the nominal
size of the cross-section (mm), f,,, is the mean compressive strength of concrete at
the age of 28 days (N/mm?), 1, is the age of concrete at the time of first loading
(days), A, is the cross-sectional area (mmz) and u is the perimeter of the part which
is exposed to drying (mm).

Coefficients that describe the creep development in time can be calculated as

ﬁfnﬂ,to = [(tlH-l - l‘())/(ﬁH N - to)]0.3 (12)

;;1,10 = [(ta —10)/(By + tn — to)]O'S, (13)

In the above given equations #, and #,;; are the time limits of the observed time
increment (days), while 8 is the coefficient of the effect of the relative humidity
RH (%) and the nominal size of the cross-section /ip(mm), given by

By =15 [1 + (0.0IZRH)lg} ho + 250 < 1500 (14)

The effect of cement type on concrete creep can be taken into account if the
concrete age at the time of first loading 7 is adjusted as

to=tor{9/[2+ (t01)"*] + 1}“ >0.5 (15)

where #) 7 is the adjusted age of concrete (days) at the moment of loading, also
taking into account temperature effect, while o is the exponent dependant on the
cement type:

o = —1 slowly hardening cement
o = 0 normally hardening and rapidly hardening cement (16)

o = 1 rapidly hardening high strength cement

The effect of the temperature variation between 0 and 80°C on concrete
hardening level can be taken into account by concrete age adjustment as follows

tr = exp{—[4,000/(273 + Ta,)] — 13.65}At; (17)

n
i=1

where t; is the age of concrete (days) adjusted according to the temperature effect, Ta,,
is the temperature (°C) in time interval At; (number of days with the temperature 7).

Since the analyzed spatial discretization refers to shell problems [11, 12], with
Strains &, &y, Yy Vxp Vyp» the same creep coefficients were used for all strain
components. Creep coefficients, namely, creep increments for different compo-
nents of strain, were determined as for one-dimensional problem [11, 12].
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3 Nonlinear Concrete Creep Models

Two empirical models of non-linear creep of concrete are briefly described
hereinafter. Also, an original model for simulation of nonlinear concrete creep is
presented. The model was verified in the numerical simulation of carried out
experimental tests of concrete plate and concrete shell [15, 16] under relatively a
high long-term static load.

3.1 Nonlinear Concrete Creep Model According
to EUROCODE 2

According to the model given in Eurocode 2 [14], a nonlinear concrete creep at 7
can be described accurately enough for average levels of the ratio between the
concrete stresses due to long-term static load o, and the mean compressive
strength of concrete f,,, in the range 0.4f., (%) <|o.| < 0.6f.m(t0). The coefficient
of nonlinear concrete creep @y is calculated as the coefficient of linear concrete
creep @y multiplied by the creep factorF'(o.), namely,

ka = Q()F(O'(.). (18)

A nonlinear creep factor F(o,) is defined as a simple functional dependence
between the instantaneous concrete stress due to static load o, and the mean
compressive strength of concrete f.,, as

loc| _—
F(O'c) = 61-5 (f"”’('O) 044) (19)

The model is simple and provides satisfying results in practice. Its main dis-
advantage is a narrow stress level range that it covers (Fig. 2). Namely, it neglects
the strong nonlinear concrete creep when the ratio between concrete stresses under
a long-term static load and the average compressive strength of concrete is greater
than 0.6.

3.2 Nonlinear Concrete Creep Model According
to BaZant-Prasnnan and BaZant-Kim

An important researcher in the field of concrete creep modelling research is
Bazant, who developed different concrete creep models (namely [1-8]). Two of
those models [1-3] are presented hereinafter, which comprise high and very high
concrete stress level ranges due to long-term static load.
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Fig. 2 Nonlinear concrete creep function according to EUROCODE 2 [14]
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Fig. 3 Nonlinear concrete creep function according to Bazant-Prasannan [2, 3]

According to [2, 3], a nonlinear creep factor F(g.) can be defined as an
empirical expression for functional dependence between the instantaneous con-
crete stress due to static load o, and the compressive strength of concrete f,. as

1+

Flo) =10

(20)

where s = o, /f., and Q = s'(Fig. 3). Q is a measure of the effect of concrete
damage at high stresses, namely, when micro fractures develop. The expression
remains valid in a wider range than expression (19), namely, at high stress levels.
However, for concrete stresses exceeding 0.7f, expression (20) can be only used
as provisional estimates.



Nonlinear Creep Model for Concrete in Analysis 169

9
8 /
; //
6 /
5
~
S 4
3
2
: L
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O'C/f cm

Fig. 4 Nonlinear concrete creep function according to Bazant-Kim [1]

For concrete stresses exceeding 0.7f;, when the ratio (|o.|/f.) — 1, namely,
when F(o.) — o0, the following expression according to [1], is proposed (Fig. 4):
1+ 3s3

Flo) =5—q (21)

3.3 Proposed Nonlinear Concrete Creep Model

Similarly as for the previously described models, an empirical expression for
nonlinear concrete creep is proposed that was used for numerical modelling of
experimentally tested concrete plate and prestressed concrete shell under long-
term load [15, 16]. Considering the need for a simple practical model for nonlinear
creep of concrete, a simple function was adopted for a nonlinear creep factor F (o)
as a function of the instantaneous concrete stress due to static load o. and the
compressive strength of concrete f. according to the expression

F(o.) = # (22)

=)
7.

This function covers all stress levels from 0 < |o.| <fuu(fo) (Fig. 5). It is con-
tinuous and simple for numerical applications. However, the proposed model is not
completely valid for stress levels |a.| > 0.8f,,(t).

A proposed nonlinear concrete creep model is based on small-scale performed
experimental tests, which are planned to be extended and intensified. Then, a more
reliable nonlinear concrete creep model for all stress levels will be defined precisely.

Figure 6 shows the comparison of nonlinear concrete creep models according to
Eqgs. 19-22.
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Fig. 5 Proposed nonlinear concrete creep function

4 Application of the Proposed Nonlinear Concrete
Creep Model

A proposed model of nonlinear concrete creep according to Eq. (22) has been
included in the numerical model for static analysis of prestressed concrete plates
and shells under long-term load [11, 12]. The model was verified on the results of
an experimentally tested reinforced concrete plate [15] and prestressed concrete
shell [16] under relatively high levels of long-term static load. A detailed
description of the performed experiments and developed numerical model can be
found in previously listed references and will not be repeated here. Only a com-
parison between some experimentally determined and numerically obtained results
will be given in short.

4.1 Numerical Analysis of the Concrete Plate Under
Long-Term Load

First, a square reinforced concrete plate, supported at the edges and loaded by a
uniform long-term load was experimentally tested [15]. Then, the behaviour of the
same plate was analyzed by a previously developed numerical model [11, 12] with
a linear creep model presented in Sect. 2 and the nonlinear creep model according
to Eq. (22). The plate deflection as a function of time at mid-span is shown in
Fig. 7.

As can be observed, there is a good correspondence between the results of
experimental and numerical results, in particular those with the nonlinear concrete
creep model.
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Fig. 6 Comparison of the described nonlinear concrete creep functions
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Fig. 7 Comparison between experimentally determined deflection at mid-span of reinforced
concrete plate under long-term load and numerical results

4.2 Numerical Analysis of the Prestressed Concrete
Shell Under Long-Term Load

Following the experimental test of the prestressed cylindrical concrete shell sup-
ported at the edges and loaded with uniform long-term load at its vertex [16], the
shell was analyzed by a numerical model [11, 12]. A comparison between
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Fig. 8 Comparison between experimentally determined deflection of prestressed concrete shell
under long term load at its midpoint and the numerical results

experimentally determined deflections at shell midpoint and the numerical results
using the linear concrete creep model and nonlinear creep model according to
Eq. 22 is shown in Fig. 8.

A good correspondence between the experimental and numerical results of shell
deflections, in particular for a nonlinear concrete creep model can also be observed.

5 Conclusion

A simple numerical model for nonlinear creep of concrete at high stress levels,
intended for use in practice, is presented. Numerical results of the proposed model
show good agreement with the experimental test results for reinforced concrete
plate and prestressed concrete shell. The model shall be further improved for
application for very high stress levels and verified by experimental tests.
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Numerical Model for Fluid-Structure
Coupled Problems Under Seismic Load

Danijela Brzovi¢, Goran gunjié, Jure Radni¢ and Alen Harapin

Abstract This chapter briefly describes the numerical models for the simulation
of fluid—structure coupled problems. The applied models are primarily intended to
simulate the fluid—structure dynamic interaction in seismic conditions. The parti-
tion scheme of coupled (multi-field) problems is briefly described as the most
common approach for the fluid—structure dynamic analysis. Models can simulate
the most important effects of plane and spatial structures that are in direct contact
with the fluid. Some of models’ possibilities are illustrated in numerical analyses
of the seismic behavior for four practical examples.

1 Introduction

Structures which are in direct contact with fluid, for example: dams, water tanks
(reservoirs), off shore structures, pipelines and water towers etc., can often be
encountered in engineering practice. Numerical models for real simulations of
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these structures have to include the simulation of the fluid—structure interaction to
ascertain the real behavior of such a complex system. This problem is particularly
emphasized under dynamic/seismic conditions and it is commonly referred to as a
coupled (multi-field) problem.

A coupled multi-field problem involves two or more interacting fields, for
example gravity dam with accumulation, water tower full of water etc. Such a
problem is time dependent and the state of one field is continuously linked to the
state of other fields and neither field can be solved independently from the other.
Here, the coupling normally occurs through the differential equations representing
the physical phenomena.

The most natural treatment for coupled problems is, as previously mentioned,
partitioned analysis. In this approach the overall system is partitioned into zones or
fields. Then the individual fields are solved independently by considering the
interaction information transfer between them at every stage of the solution
process.

The various advantages are: (i) the resulting model is very modular, (ii) it is
easy to make any modifications, (iii) every modification in one field improves the
whole model, (iv) the programmer/improver can have knowledge in (only) a single
field.

This chapter briefly describes the partition approach in numerical modeling of
the dynamic interaction of water-structure systems. The described model is suit-
able for problems with limited fluid motions, such as the response of offshore
structures and dams to waves or earthquake.

2 Short Description of the Numerical Model’s Basic
Characteristics for the Simulation of the Dynamic
Water-Structure System Interaction

In articles [1-3] the basic algorithms for fluid—structure interaction problems are
given. Furthermore, articles [4, 5] present the development of non-linear numerical
models for dynamic interactions of the fluid-soil-structure system for plane and
spatial problems. Articles [6—11] present some recent works in this field.

All solutions shown here are based on the partitioned scheme where individual
fields are solved independently by considering the interaction information transfer
between them at every stage of the solution process. This approach allows the
usage of ordinary approaches and appropriate mathematical/physical models for
separate fields (structure and fluid) that include minor modifications for the
influence of interactions.

Developed models and software are based on finite elements method for the
spatial discretization and finite differences method for the time discretization of the
system. For structure and soil the displacement formulation is used, and for fluid
the displacement potential formulation is used. For spatial structure discretization
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8 and 9 node elements can be used for plane problems, 20 and 27 node (“brick”™)
elements can be used for 3D problems and for shell like structures 8 and 9 node
shell elements can be used.

Very similar elements can be used for fluid: 8 and 9 node elements for plane
problems and 20 and 27 node (“brick”) elements for 3D problems.

Developed models include the most important non-linear effects of each field,
such as:

e Material nonlinearity of the structure with the reinforced concrete model that
can simulate:

— Concrete yielding in compression,

Cracks occurrence and propagation in tension (opening and closing of cracks),
Tensile and shear stiffness of cracked concrete,

Yielding of steel or reinforcement in compression and tension,

Influence of strain rate effects on mechanical characteristic of concrete and
reinforcing steel [12]

Influence of hydrostatic and hydrodynamic water pressures in structure cracks

e Material nonlinearity of water:

— Cavitation,
— Influence of suspensions in water;

e Geometrical nonlinearity of structure (large displacements).

2.1 Equation for Coupled Fields Motions and Spatial
Discretization

Behaviors of the fluid—structure system (structure includes the structure itself as
well as the surrounding soil) in dynamic load conditions, can be expressed with
two second order differential equations [1-5]. If we use the displacement formu-
lation for the structure and the displacement potential formulation for the fluid,
dynamic equilibrium equations can be expressed in the following form:

Mii + Cou + Kou = f; — Md + foq

i ) (1)
MY + GV + Ky = f; + ¢

where
fcs = Q\P
for = —p; Q' (u+d)

In the above equations M, C, and K represent mass, damping and stiffness
matrices for structure, and My, Cy and Ky represent mass, damping and stiffness

)
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Fluid (f) Structure (s)

Fig. 1 Fluid-structure interaction surface and unit norm

matrices for fluid. Vectors u, u, i represent structure’s displacements and dis-
placement’s derivations (velocities and accelerations) and ‘P,‘i’,‘i’ are the dis-
placement potential and associated derivations. Q is the interaction matrix between
structure and fluid.

Interaction between structure and base soil is modeled indirectly by contact
elements in the connection surface. In fact, by applying the appropriate material
model for contact elements, various effects in the contact surface can be simulated,
such as: separating, embedment and sliding.

Fluid-structure interaction surface with fluid and structure elements is shown in
Fig. 1. Interaction matrix Q includes only the surface integration and is defined as:

(Q)ij:/NEiﬁNdeFi 3)

I

2.2 Solution Concept for the Dynamic Fluid-Structure
Interaction Problem

Direct solution of the equation system (1) requires large computer capacity. So, the
previously described partitioned scheme is ideal for this kind of problems. In that
approach for every increment of the imposed load and every non-linear problem
iteration step, each field is solved separately by including interaction forces on the
contact surface between fluid and structure. Presentation of the solution scheme is
given in Fig. 2.

In the presented approach, structure is solved first and fluid second. This
approach allows the developed independent models to be used for each field, with
additional calculations of the interaction forces only. Thus, in the fluid—structure
interaction model, all non-linear effects of material and geometry, that are present
in a particular field, can also be simulated in the coupled problem.
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Fig. 2 Solution scheme for
the fluid—structure coupled
problem

Iteration
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Calculation of fluid forces
on structure
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2.3 Solution Algorithm

Solution algorithm for the fluid—structure coupled problem with non-linear fluid
model (cavitation) is schematically presented in Fig. 3. For time integration,
explicit-implicit algorithm developed by Hughes [13] is used.

Predicted values u, u, it and ¥, ¥, ¥ at the beginning of every time step are
corrected at the end of the same time step. For convergence control of the iterative
procedure, the increase of the structure’s displacements in comparison with current
total displacements and the increase of the fluid’s displacements potential in
comparison with the current total displacements potential are simultaneously
monitored. Various options of the Newton—Raphson method are used to solve the
non-linear equations.

2.4 Finite Elements

For plane (2D) problems, 8-node and 9-node isoparametric elements are used for
fluid and structure. For spatial (3D) problems, 20-node and 27-node (“brick”)
elements are used for fluid and structure. For thin curved structures, 8-node or 9-
node degenerated shell elements can be used for structure and 20 or 27-node
spatial element for fluid. Those shell elements are free of membrane and shear
locking, according to [14].

For the simulation of connections between the foundation soil and the structure,
6-node contact elements can be used for plane and 16 or 18 nodes for spatial
problems.
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2.5 Material Model

For fluid simulations, two formulations are generally included: (i) pressure for-
mulation, which presumes unlimited negative pressures in fluid and (ii) dis-
placement potential formulation which can simulate cavitation effects in fluid.

In the fluid—structure interaction, nonlinearities are generally confined to the
structural behavior where the fluid is considered linear. Pressure formulation,
which presumes unlimited negative pressures in fluid, is very suitable for this
approach.

The fluid can take some tension which depends upon the concentration and size
of micro bubbles present in the fluid. However, if the absolute pressure in a
subregion of fluid drops to a value close to vapor pressure of the fluid, bubbles are
formed and this physical phenomenon is known as cavitation. Physically, cavi-
tation occurs when the total absolute pressure is less then the vapor pressure of the
fluid. Cavitation can cause significant damaging effects on solid surfaces.

Cavitation occurs when the total absolute pressure is less then the vapour
pressure of the fluid i.e.:

Pabs = P+ P + Pa <Py (4)

where p,ns 1S the total absolute pressure, p is hydrodynamic pressure, py is
hydrostatic pressure, p, is atmospheric pressure and p, is vapour pressure.
This implies that cavitation occurs when the hydrodynamic pressure drops below
(pv — ps)- The vapour pressure of water, for all practical purposes, can be taken
from 0.02 to 0.03 MPa.

The changes which the fluid may undergo under hydrodynamic excitation are a
direct function of the mass dilatation s, defined as:

s = V' (psur) = Div(psuy) (5)

where uy is displacement of the fluid relative to the initial static state. As long as
Pabs 18 greater then the vapour pressure py, a linear relation between s and p is
assumed:

p=—us; o=c (6)

where c is the acoustic velocity of the fluid.

If Eq. 4 is true, cavitation occurs and the stage of linear fluid is no longer valid.
A simple fluid model can be represented by the bilinear pressure-mass dilatation
relation shown in Fig. 4. Cavitation, therefore, commences when the following
condition is reached:

s> (pp +Pa— Pv)/c2 (7)

If cavitation occurs, the iteration procedure, shown in Fig. 4, has to be per-
formed to obtain the value of the coefficient o.
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For the structure, the classic elastic, elasto-plastic and elasto-visco-plastic
material model can be used.

A special material model was developed for the simulation of reinforced
concrete structures [12, 15-20]. It includes the most important nonlinear effects of
reinforced concrete behavior: yielding in compression and opening and propaga-
tion of cracks in tension, with tensile and shear stiffness of cracked concrete, as
well as nonlinear behavior of reinforced steel. In every integration point of every
element, simulation of cracks opening and closing is possible, according to Fig. 5.

These models will not be discussed here, but they can easily be found in quoted
references.

2.6 Additional Model Characteristics

Solution of eigen value problem is also based on the partition solution
scheme, with the Wilson—Yuan-Dickens (so-called WYD) method [21-24] as the
solution procedure. In dynamic problems, as well as in the structures’ response
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Fig. 6 Koyna dam, photograph [25] and comparison with typical gravity dam [26]

calculations, eigen values and eigen vectors are needed to know the vibration
characteristics (determination of time step length).

Radiation damping can be simulated on artificially formed fluid boundaries, as
well as radiation and multi-axis structure damping for structure [3, 4, 13].

Simulation of fluid pressure in open cracks of a structure is included by addi-
tional nodal forces in finite elements that have cracks that fluid can get into.

As external dynamic forces, various time-dependant dynamic loads can be
applied. Also, seismic base excitations can be applied to the model.

3 Examples

What follows are four complex practical examples which illustrate some possi-
bilities of the developed models and the applied software.

3.1 Example 1: Koyna Dam

Koyna dam, built in 1963, is one of the largest dams in India (Fig. 6). It is an
atypical gravitational dam, with a crest length of 853.44 m. It consists of 56
dilatation blocks of 17.07 m in thickness. Spillway length is 91.44 m. During
construction, two accelerographs were embedded in the dam, and in one of them,
in 1967, an earthquake that caused several significant damages was registered.
Dominant damages of the dam manifested as horizontal cracks on the up-stream
and down-stream sides on many blocks, especially on lines where the total
thickness of the dam changes.

Figure 7 presents the main geometric data of the Koyna dam. Detailed infor-
mation of the dam geometry, construction materials, damages (cracks) and
earthquake characteristics can be found in [26, 27].



184 D. Brzovic et al.

< 656.06 T ¥ < 656.06 |
i 649.94 |
E ST | 564650
O
Lag]
E E
=r <
i g
e £
“
8
i 13
. 70.2m X " 734 443 ,

Fig. 7 Koyna dam—some geometrical data (all dimensions are in meters) [26]: a cross-section
through dam body; b cross-section through spillway
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Fig. 8 Spatial discretization of Koyna dam

Spatial discretization of the system is presented in Fig. 8, and the used material
characteristics are presented in Table 1. The behavior of the water-dam-soil sys-
tem was analyzed for the previously mentioned registered earthquake. The system
was analyzed separately for the linear and for the non-linear (cavitation) fluid
model, with the following structure models: a) non-linear model without including
the fluid pressure in open structure cracks (no FPC), b) non-linear model which
includes the fluid pressure in open structure cracks (FPC).

Some numerical results are presented in Figs. 9 and 10. Other results can be
found in [26, 27]. Dam damages calculated through numerical models match the

real crack pattern very well.
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Table 1 Material characteristics of the Koyna dam system
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Fluid (water) Structure (concrete dam) Ground
pr = 1019.0kg/m? E; = 31640.0MPa E; = 18000.0MPa
¢ =1439.0m/s vs =02 ve =02
p, = 0.10MPa P = 2690.0kg/m3 pe = 1830.0kg/m3
py=0 (f.),= 24.6MPa (fe),= 20.0MPa;
(f) = 2.46MPa (f)),= 2.0MPa
(maX?t) (maxssh)s— ’ (maxa) (maxesh)gz 0.0017
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Fig. 9 Horizontal displacement of the Koyna dam crest for non-linear fluid model
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Fig. 10 Hydrodynamic pressure at the bottom of the Koyna dam

3.2 Example 2: Grancarevo Dam

The Grancarevo Arch Dam in Bosnia and Herzegovina (Figs. 11, 12) is a double-
curvature concrete dam with a perimetral joint. The dam was constructed in 1968.
The height of the dam is 123 m and the crest length is 439 m. Its bottom thickness
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Fig. 11 Grancarevo arch dam
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Fig. 12 Plan of the dam’s body with land topology (left) and cross section through central
cantilever (right) [30]

is 27 m and its top thickness 4.6 m. The dam’s foundation dig was 230.000 m? and
the volume of poured concrete was 376.000 m>. The head of the dam is 100 m.
The dam created the Bileéa reservoir with a maximum water depth of 51 m and an
available storage capacity of 1,100 million cubic meters. The Bileca reservoir is
the largest storage lake in Balkan. Its dimensions are: total storage volume:
1,280 hm? and surface of the reservoir on normal top water level: 2,764 ha.
Geometrical data tables (on Fig. 13) show basic geometrical characteristics for
individual arches some of which are shown in Fig. 13. Other detailed information
about dam can be found in [28-31].
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Fig. 13 Geometry of some arch elements of the Grancarevo dam [30]

The Institute of Earthquake Engineering and Engineering Seismology
(IZ1I1S-Skopje, Macedonia) monitored the dam and performed several numerical
simulations on different models, which were compared with results in situ [30]. All
applied models included only the dam (structure), and water was treated as an
additional mass on structure.

The complex model of the water-dam-foundation rock system is presented in
Fig. 14. The behavior of this complex system was analyzed for the registered
earthquake from 1986, [30, 31]. Material characteristics are given in Table 2.

The registered accelerations on the bottom of the dam (accelerograph 688,
Fig. 15) were taken as imposed accelerations of the foundation’s rock (excitation)
along the canyon (perpendicular to the dam axis). The maximal registered imposed
acceleration was 47.8 cm/s”. The maximal registered acceleration on the dam was
Amaxr = 145.1 cm/s? (accelerograph 681, Fig. 15), and the maximal acceleration
obtained through the numerical model was a.x, = 149.3 cm/s? '(Fig. 16).
Applied excitations cause hydrodynamic pressures that are always less than the
hydrostatic pressure, so cavitation did not occur.
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Fig. 14 Finite element mesh of the Grancarevo dam-—water—foundation rock interaction
system—axonometric view

Table 2 Material characteristics of Grancarevo dam system

Fluid (water) Structure (concrete dam) Foundation rock
p; = 981kg/m? E. = 33000.0MPa E, = 80GN/m?
¢ = 1440.0m/s ve =0.15 v =0.2
p. = 2400.0kg/m? pr = 2620.0kg/m’
foc = 25MPa; f = 2.5MPa fix = 12.0MPa; f,;, = 1.2MPa

& = 0.083; Etmax = &smax = 1.7

Some calculation results are presented in Figs. 16, 17 and 18. Figure 16
presents accelerations of the Grancarevo dam crest in time, Fig. 17 presents dis-
placement of the Grancarevo dam crest in time and Fig. 18 presents hydrodynamic
pressures on the bottom of the Grancarevo dam in time. Other results can be found
in [30-32].

3.3 Example 3: Underwater Tank “Khazzan”

Khazzan (meaning: “To Store” in Arabic) was the name given to the tanks
designed and built in late 1960s to store Dubai’s Oil by Chicago Bridge and Iron
Company. Dubai’s Khazzans are unique in that they store Dubai’s Oil under
the Sea. Khazzan is a 500.000 barrel (80.000 m3) oil storage tank (Fig. 19).
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Fig. 16 Accelerations of the Grancarevo dam crest
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The 15.000 ton structure is 80 m in diameter on bottom and 8 m diameter on top,
and about 82.0 m in height. Sea depth is about 70 m, so tank crest is 12 m under
sea level. It has no bottom and operates on the water displacement principle. It is
filled by placing oil in the tank above water where the additional weight of the oil
on the water creates an imbalance in pressure. This force pressures the water out of

the tank through the openings in the wall at the bottom.
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Fig. 19 Oil-storage tank “Khazzan” [33, 34]. a Construction on shallow dewatered basin on
shore. b Towing to the site
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Fig. 20 Spatial discretization of the Kazzan tank, the oil in the tank and the surrounding sea
water—longitudinal section of the finite element mesh (all dimensions in meters)

(b) 3D view of oil-storage tank
finite element mesh

(a) — 3D view of finite element mesh

Fig. 21 Spatial discretization of the Kazzan tank, the oil in the tank and the surrounding see
water—axonometric view. a 3D view of finite element mesh. b 3D view of oil-storage tank finite
element mesh

Initial construction was in a shallow, dewatered basin. When the tank was
sufficiently complete so that it could float as a single unit, using compressed air,
the basin was flooded, and the tank, a bottomless hemisphere, was moved laterally
into a deeper basin and seated on its floor by releasing the internal air pressure. The
structure was then fully completed. Floated once again by filling the tank with
compressed air, it was towed to the site and positioned by mooring lines, and the
air was gradually released. It was allowed to slowly sink further and settle on the
seafloor [33].

The geometrical characteristic of the model were taken from [33-35]. Figure 20
shows the vertical section of the oil tank with the adjacent part of the surrounding
sea.

The sea-oil-tank system was modelled with the spatial 3D model, shown in
Figs. 20 and 21. Spatial discretization of the liquid was done with 27-node 3D
brick elements, and the structure with 9-node shell elements.
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Table 3 Material characteristics of the Khazzan store tank

Fluid—sea water Fluid—oil Structure—steel (tank)
pr = IOOO.Okg/m3 Pn = 900.0kg/m3 E = 210GN/m?
¢ = 1430.0m/s ¢ = 1300.0m/s v =03

p, = 78.5kN/m*
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Fig. 22 Hydrodynamic water pressure in the specified points on the surface of the Kazzan oil-
storage tank for the horizontal seismic action

The harmonic ground acceleration with the period of 0.207 s (which is in
accordance with the first period of the sea-oil-tank system), and amplitudes of
0.3 g for the horizontal and 0.2 g for the vertical acceleration component is
accepted. The material characteristics are shown in Table 3. Implicit time inte-
gration (At = 0.002 s) and diagonal mass matrix were used.

Some results are shown in Figs. 22, 23, 24 and 25, and a detailed description of
the model and results can be found in [35].

Figure 22 shows the hydrodynamic water pressure for the horizontal seismic
action in the specified points on the tank surface and Fig. 23 shows the horizontal
displacements of the specified points of the tank for the horizontal seismic action.
Figure 24 show the maximal displacements of the Kazzan oil-storage tank for the
horizontal and the vertical seismic action.

3.4 Example 4: Underwater Tunnel “Hpgsfjord”

The seismic behavior of the planned underwater tunnel “Hggsfjord” in Norway
was analyzed. The tunnel is about 1,400 m long and 20 m immersed in the sea. It
is connected to the sea-bed with cables of 200 m (axial distance) (Fig. 26).
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Fig. 23 Horizontal displacements of the specified points of the Kazzan oil-storage tank for the
horizontal seismic action

(@) horizontal seismic action (b) vertical seismic action

Fig. 24 The Kazzan oil-storage tank maximal displacements. a horizontal seismic action.
b vertical seismic action

The tunnel has a circular cross-section with a 8.6 m inner diameter and
50-80 cm thick walls (Fig. 26). Intended construction material for the tunnel is
prestressed concrete. Some other information about the planned structure can be
found in [35, 36] (Fig. 27).

The seismic response to the vertical earthquake component was analyzed.
A plane (2D) model was adopted with the discretization shown in Fig. 28.
Some results are shown in Figs. 29, 30 and 31, and a detailed description of the
model and results can be found in [35]. Displacements and stresses in the tunnel
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(@) horizontal (Gy,) stresses (b) vertical (oy,) stresses

Fig. 25 Maximum stresses of the Kazzan oil-storage tank in t = 0.73 s, for the horizontal
seismic action. a horizontal (o) stresses. b vertical (ay,)

3
(b) visualization of tunnel

(a) cross-section of tunnel

Fig. 26 Underwater tunnel “Hggsfjord”, Photo: Statens Vegvesen Rogaland [36]. a cross-
section of tunnel. b visualization of tunnel
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Fig. 27 Longitudinal section of “Hggsfjord” tunnel [35]
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Fig. 31 Stresses in reinforcement and cables, “Hggsfjord” tunnel, segments 12—13

from applied vertical excitations are relatively small, and the tunnel has significant
seismic resistance. On these types of structures, wave and sea current actions have
more influence.

4 Conclusion

The presented models for the dynamic (seismic) analysis of various types of
structures that are in contact with fluid can simulate some of the most important
non-linear effects. The models are simple, reliable and can be used in a wide range
of practical problems. Shown examples illustrate some of the possibilities of the
models and the developed computer programs (software) for various types of
engineering structures.
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matical model based on Richards’ nonlinear and degenerate equation expressed in
terms of effective saturation using the Van Genuchten—Mualem approach for the
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1 Introduction

To predict the flow and solute transport in soils, one needs the soil hydraulic
properties in terms of soil parameters. Once determined, these parameters can be
used as input data in the governing mathematical model. For unsaturated flow, this
model is given in terms of the saturation and the pressure head in Richards’
equation (see below), which is a nonlinear and degenerate parabolic equation.
Furthermore, when part of the sample is saturated, free boundaries between the
saturated zone and the partially saturated zone arise, as well as between the dry
and the partially saturated zone. This is a major problem for many modeling
approaches, leading to experimental set-ups that avoid the formation of these
boundaries.

The soil retention and hydraulic permeability functions linking the saturation
and pressure head for unsaturated flow are expressed using the Van Genuchten—
Mualem ansatz by means of soil parameters. Measuring these soil parameters is
usually time consuming and tedious, especially for low conductive porous media.
Several set-ups based on centrifugation have been proposed to obtain a large
acceleration of the processes involved, see [2-6] and citations therein. These
techniques have several disadvantages. Aiming for a steady-state flow regime
inside the centrifuge [2, 5] requires expensive and/or complex apparatus, and
obtains only a few water content versus conductivity measurements per run. Also,
transient set-ups based on keeping a top boundary at a fixed prescribed setting [3]
are expensive. The quasi-steady centrifuge (QSC) method [1] is a simpler tech-
nique (a slowly emptying reservoir at the top that is refilled when needed), but
requires that the criterion for steadiness of flow through the sample is relaxed,
leading to higher uncertainty in the obtained results.

The alternatives for determining conductivity with a steady-state flow, combine
transient flow with parameter estimation techniques, see e.g. [3, 6]. In this way, the
conductivity and retention curve can be determined inversely over a large satu-
ration domain. These methods require experiments of some state variables which
relate to the conductivity. One-step or multi-step outflow methods are common in
column experiments. The measurements are then used to estimate the hydraulic
parameters. This technique is transferred to the centrifuge device in [6]. Good
results are obtained, but there remain some disadvantages to this technique: there
are few measurements close to saturation, leading to a high error in the prediction
of the conductivity close to saturation, the sample needs to be disturbed to
introduce electrodes, and there is a very long waiting time in order to achieve
equilibrium when the equilibrium analysis approach is used.

The main goal of this manuscript is to develop a precise numerical method
enabling to determine the soil parameters (via solution of inverse problem) in a
very simple way requiring very cheap measurements.

In this chapter we focus on a partially saturated sample which is sealed at the
right boundary (from the center of centrifuge) and has no inflow at the left
boundary. The only measurements required are the rotational momentum and the
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center of gravity of the sample at several time values, preferably also at the
equilibria corresponding to predetermined rotational speeds. These measurements
are sufficient due to the fact that the saturation profile at the equilibria do not
depend on the initial distribution of water in the specimen, but only on its amount,
which, when the right boundary of the sample is sealed, is identical in all
equilibria.

To use this procedure, we have to face serious difficulties in the numerical
modeling. The main one is that if the right side of the sample reaches effective
saturation, an interface between partially saturated zone and saturated zone
appears. This boundary is very difficult to control numerically, causing problems
with the mass balance conservation which is very important in this set-up.

To reach the equilibrium is an infinite asymptotic process, but after some time
(e.g. 1-3 days for low conductive material) the change of the rotational momentum
and of the center of gravity can no longer be measured. At that moment, the
rotational speed is increased, and the system moves towards a new corresponding
equilibrium. Note that even when equilibrium was not reached and a small error is
present in the measurements of the rotational momentum and the center of gravity,
this will not influence the error at the higher equilibrium level. This error depends
only on the running time of centrifugation at the actual rotational speed. The
differences between applied rotational speeds are chosen in such a way that that
the differences in outputs (rotational momentum and center of gravity) are tech-
nically well distinguishable.

Next, the soil parameters and eventually the amount of originally infiltrated water,
can be determined by minimizing a cost functional expressing the distance between
the measured and the computed output, e.g., with the Levenberg—Marquard method.
The advantage of this approach is that the full range of saturation values are present in
the setup, while preventing outflow means equilibrium can be obtained faster.
However, due to the set-up, it is clear that the water flows from the unsaturated zone
to the saturated zone, with no flow occurring in the saturated zone. Indeed, we notice
that the rotational momentum and center of gravity are not sufficiently sensitive on
the “saturated hydraulic conductivity”. This parameter is hence better determined
from saturated flow experiments, see e.g. [4].

In the numerical method, we reduce the mathematical model to a system of
ordinary differential equations (ODE) using the method of lines (MOL), which has
already been successfully applied to Richards’ equation in e.g. [7]. As a variation,
a reduction to a system of ODE and algebraic equations (DAE) is considered. Our
main contribution is in correctly handling the moving free boundary. The obtained
system can be solved with ODE/DAE solvers for stiff systems. The numerical
method can be successfully applied in other centrifugation settings (concerning
control of the inflow, or control of the outflow) as, e.g., in [3, 6].

In Sect. 2, we present the mathematical model, giving specific attention to the
movement of the free boundary. In Sect. 3 the numerical method based on the MOL
approach is given, while in Sect. 4 the approach to determine the saturated hydraulic
conductivity is explained. We finish in Sect. 5 with several numerical experiments
showing the sensitivity of the output parameters on the soil parameters.
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2 Mathematical Model

We consider a one dimensional model for a partially saturated sample in the form
of a tube. The tube starts (top or left boundary) at the distance r = ry from the
center of the centrifuge and ends at the distance » = ry + L. The right boundary of
the specimen is isolated. Flow in porous media under centrifugation is modeled by
Darcy’s equation in the saturated region and by Richards’ equation in the
unsaturated region (see, e.g., [3, 6]). So

o, [K <6,h - %zr)] =0, (1)

3,0 =0, [k(e) (6,h - %zrﬂ : 2)

in the saturated region, and

in the unsaturated region. Here, h is the piesometric head, 0 the saturation of the
porous medium, o the angular speed of rotation (in radians per second), Kj
the hydraulic conductivity in the saturated region, g the gravitational constant and
the function k() describes the hydraulic conductivity in the unsaturated region.

Denote by u = g:%' the effective saturation, where 0, is the volumetric water

content at saturation and 0, is the residual volumetric water content. We have
u € (0,1), since 0 € (6y,0,). The soil hydraulic properties are represented by
empirical expressions (see [8]),
1 1/2 1 2

= o ME (00 k) =Kl (1—ul MR (3)
wherem = 1 — 1/n, n > 1 and y are empirical soil parameters. Determining y, n and
K, from the experiments means the soil retention curve has been determined. Note
that we do not take hysteresis of the retention curve in consideration with this model.

It is possible to rewrite the flow in unsaturated form as

du =0, (D(u)a,u - “;k(u)r), (4)

K
(n - l)y(os - 01‘)

Equation 4 is strongly nonlinear and degenerate. We note that D(0) = 0, D(1) =
oo. Equilibria at the high rotational speed can be expected to have a fully saturated
zone (supposing the initial amount of infiltrated water is sufficiently large), which
appears at the right boundary and of which the front evolves to the left of the

D(I/t) — M1/2—1/m(1 _ Ml/m)fm « [l B (1 B u]/m)m]z‘ (5)
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specimen (under non-decreasing rotational speed). We denote the position of this
interface by s(f). This saturated zone is governed by Darcy’s equation, but s(¢) is
unknown and time dependent. The time evolution of s(¢) is difficult to compute. The
dynamics of this region is linked with the (finite) interface flux ¢;

r=s(r)

qi = — (D(u)@,u - Q:k(u),>

and based on a mass balance argument we can expect §(¢) = —g;. Unfortunately,
we cannot use this model for the determination of the time evolution of s(7), since
at r = s(t) it holds u = 1 and D(1) = oco. Consequently, 8,u|,_, = 0.

If we transform Richards’ equation in terms of the piesometric head using (3),
we obtain

2
ds(h)azh = koar |:k(h)arh — w?k(h)r:| , (6)
with ko = 52, where kok(h) is the hydraulic conductivity function,

. 1 e Y
Mh)_(1+@hfy”2<l (1+(W03m>’

and the specific moisture capacity function d(h) = du/dh is given by

"
(1+ (ym))"*"

dy(h) = —(n — 1)

We can see that k(h) — 1 for & — 0. In Fig. | we present the graph of the
functions k(h) and 100d,(h) for h € (—200,0), and parameter values K, =
24 %107, n =281, y=—0.0189. As we can see, Eq. 6 also degenerates at
h = 0. This has to be taken into account when saturation becomes 1 at the right
boundary of specimen. After this moment, ¢ = #;, the mathematical model must be
changed to reflect the physical phenomenon. At the right hand side of the (isolated)
specimen appears a saturated zone with an interface s(f) moving from the right
boundary to the left. The flux at the interface s(z) is equal to —s(¢), but also in this
pressure-head form of Richards’ equation it is difficult to approximate correctly
6,h|X:X(t), which leads to a significant error in the mass balance.

Therefore, to determine the interface s(f), we will consider the algebraic
equation
ro+L
ulh(x,1))dt + L —s(t) = M,,, s(0) =L, (7)

o
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Fig. 1 k() and 100 x d,(h) for n = 2.81, y = —0.0189

where M,, is the amount of infiltrated water (which remains constant during the
centrifugation). This condition reflects the global mass balance in the specimen
and does not suffer from a flux approximation at r = ro + s(¢).

Then, mathematical model (6) only needs to be solved over the interval r €
(ro,r0 + s(¢)) with right boundary condition h(ro+ s(¢)) =0 for all r. We
approximate this mathematical model in the next section.

3 Numerical Method

For the output parameters that will be measured (gravity center and rotational
momentum), there is no need to model the head in the saturated zone, as we
consider the compressibility of water to be negligible. The numerical approxi-
mation of (6-7) results in a coupled system of a partial differential equation (PDE)
and an algebraic equation. Moreover, the solution domain is a moving region, with
unknown interface s(#), which has to be determined.

We shift (6) to the domain r € (0, s(¢)) and use the fixed domain transformation
y= ﬁ This gives

s - _ o wPs
dy(h) (d,h(y, 1) — y%@h) = koﬁéy <k(h)6yh — k(h)?(ro + ys(t))). (8)
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Consider the space discretization 0 = yg and 0o =0, o :=y; —yi—1, i=1,...,N
and integrate (8) over I;:= (yi_1/2,Vis12) for i=1,...,N—1 where
Yiei2 = i +¥i-1)/2, Yiyryp = (Vi +yiv1) /2.

We denote by (1) = h(y;,t), Vi=1,...,N — 1, and approximate d,i(y, 1) ~
h,-(t) in the interval I;. We approximate

 hia(t) — hi(7)

. At
a«"h|y=}"‘+1/z ~ =:0 hi

%it+1

S and denote it by : 0" h;. Let £ (z;y;) be
the second order Lagrange polynomial crossing the points (y;_i, hi—1), (i, k) and
(yi+1,hir1). We use the abbreviation ki, := k(hy,,, ,). Then, the approximation

and similarly we approximate 0|

of (8) (based on finite volume type approximation) at the point y = y; reads as
follows

. §yid P (zy0) 2 1 n ,
dy(hy) | = 2ELEID ) g —@~ Ot hi— ki 20 hi
s( )( s A |, Oty 2 [i+1/2 1/2
w?s
_?(ki+l/2(r0+s)’i+l/2)_kifl/z(r0+5yi71/2)) (9)

fori=1,...,N — 1. We add the corresponding equation at point y, taking into
account that the flux is zero there. In a similar way as in (9) (following the finite
volume type of approximation) we obtain

. 2 1
ds(ho)hy = ko——— X%
(ho)ho U 1)s2 {
At the point yy = 1 we have hy(f) = 0, so no additional equation is considered.
We approximate the amount of water M,, using the trapezoidal rule for the inte-
gration. Define

N s
ki 20" hy — ?(kuz(m +5y12)) |- (10)

N-1
o + Uiy
Q(l) ~ u0a1/2 +OCN/2+ XI:T iy
where u; = W Then, system (9-10) will be completed by the algebraic
equation
0=L-—s(0[l —0(t)] — M,. (11)

This algebraic equation is used instead of an ODE equation that models 5(¢).
System (9-11) is degenerate and is of the form

M(t,2)z(t) = f(t,2) (12)
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where z = (ho,hy,...,hy_1,s). The last equation of this system is just (11).
This system can be readily solved, e.g., by the solver “odel5s” in MATLAB® or
the “ida” solver of the Sundials package.

As is usual with these solvers, some regularization in (11) is needed as well as a
tuning of the space discretization. Most important is to have a “good” starting
point.

If the equilibria have the property Ay <0, then no interface appears. It is then
needed to set s(f): = L in the previous mathematical model and replace algebraic
equation (11) by an ODE equation for /y which will be similar to (10). Succes-
sively increasing the rotational speed of the centrifuge increases the head at the
right boundary. The model remains in the state where s(f): = L up to the point
when A(N) = 0, at which point the computation is automatically halted. The full
model (9-11) is used onwards to compute the equilibrium states.

In numerical equilibrium experiments it is observed, as expected, that the
values of the rotational moment M, and the center of gravity G. are not very
sensitive to the K, parameter. Also, the transient experiments where the time
sections between different equilibria are measured, are not very sensitive. The
saturated conductivity K can only be determined from measurements of M,, G,
that are accurate up to three digits. Therefore, another method must be used for the
determination of K.

4 Alternative Experiments
4.1 Saturated Flow

For the determination of the saturated conductivity, we propose to use the method
put forward in [4], a water reservoir put to the left of a saturated sample and
collection of the water in an outflow reservoir, with the addition of allowing for
transient measurements. We specifically use the ability to measure when a res-
ervoir has completely drained out, combined with the measurements of the rota-
tional moment.

This leads to the following equation for the dropping water level ¢(¢) in the
reservoir,

2

)
i0=Ks;

|22 = 0 + 2n0(L + €0))| = =), (13)
with £(0) = Iy and ¢(T,) = 0. Solving this ODE, we obtain the relation between T,
and K;, whereas £(¢) fully determines the change of the rotational moment M, (z)
over time.



Numerical Model for the Determination of the Soil Retention Curve 207

4.2 Water Reservoir and Outflow Reservoir

The mathematical and numerical model presented can be extended also to allow
for a water reservoir to the left of an unsaturated sample, and an outflow reservoir
to the right. This allows several different centrifugation experiments to be per-
formed, and allows to change the set-up during an experiment. For example, the
following scenario is possible: 1. Start from a saturated sample and a water res-
ervoir to the left. This makes it possible to determine K;. 2. Continue with outflow
of the water content, making the sample unsaturated. 3. Isolate the right boundary
(that is, close it), which means we have the problem as described in the previous
two sections. 4. Continue step 2 and 3 of above so as to change the global
water content.

The advantage of the above centrifugation scenario is that all parameters can be
determined with one ground sample, and that more saturation levels are sampled
during the entire experiment. The main point to arrive at an accurate solution of
the model doesn’t change: an algebraic equation for mass balance determines the
difficulty to control unknowns. With a closed right boundary, this is the moving
interface, with an open boundary, this will be the outflow flux.

5 Numerical Experiments

For the first experiments we use as data ro = 10, L = 10, w = 30, K; = 2.4 X
107>, 0, =0.02, 0, = 0.4, y = —0.0189, n = 2.81, except where sequences are
compared to investigate the sensitivity of the set-up on the parameters. A uni-
formly distributed space discretization with N = 40 grid points is used.

The formulas for M,, G. and M,, at time ¢ are:

s(t

M, = %/(ro +s(1)2)*u(1,2)dz + é(ﬁ —s(1)"),
0

/u t,z)dz + ( —s(t)?), Ge= s(t)/yu(t,z)dZ/Mw,
0

0

and are all evaluated numerically using the trapezoidal rule. Note that if u(z, 1)
then s(#) = L. The sensitivity of the measured quantities on the changing water
content is very good. The following experiments allow to determine the contri-
bution a change in the different soil parameters has on the measurements.
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Table 1 Rotational . time M,. % 10-° G. I
momentum, center of gravity, 2000

water amount for Exp. 5.1 0 1.5201 7.2512 4.0141
1 1.5248 7.2813 4.0128
3 1.5299 7.3119 4.0131
7 1.5345 7.3413 4.0133
15 1.5389 7.3697 4.0134
31 1.5430 7.3972 4.0134
63 1.5469 7.4234 4.0135
127 1.5505 7.4478 4.0135
255 1.5537 7.4699 4.0136
511 1.5565 7.4893 4.0136
770 1.5588 7.5056 4.0136
1800 1.5645 7.5462 4.0133
2300 1.5649 7.5494 4.0133

5.1 Reaching Equilibrium

To investigate the head profiles we start this experiment from the equilibrium
corresponding to @ = 40 and a rotational speed w = 50. The centrifuge normally
operates up to T, = 1.540.000 seconds. At that time, equilibrium for w = 50 is
almost reached. We compare 13 values, the starting value, nine increasing time
steps (with At; = £;41 — ¢; = 2000 x 2.j=1,...,9), the sensible end time step
T, =770 x 2.000s, and two extra time steps to investigate the very long time
behavior. The measured values for the rotational momentum, gravity center, and
water amount, are given in Table 1. The small change between the last two values
in Table 1 demonstrates that equilibrium is eventually reached.

We can conclude that reaching equilibrium is a very slow process. The reason
for this is that the hydraulic permeability at low head is negligibly small, so it takes
a very long time to reach the equilibrium. If the centrifugation is continued, also
the section with low head obtains the required parabolic shape associated with the
equilibrium. Note however, that the other part of the head profile (for higher head
values) is changing insignificantly. Therefore, we arrive at the conclusion that it
makes sense to increase the rotational speed and not wait for these lower head
values to stabilize.

5.2 Dependence on n

In this experiment, we demonstrate the sensitivity of M, and G, to the model
parameter n. We start with a constant saturation # = 0.4 and apply the rotational
speed w = 20. The centrifuge is operated for 800.000s. In Fig. 2 the obtained
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Table 2 Rotational

. M,e x 1076 Gc Mw

momentum, center of gravity

and water amount for Exp. 1.51 0.1887 5.0736 4.0043

52 1.81 0.1927 5.2391 4.0052
2.11 0.2020 5.6188 4.0043
241 0.2068 5.8096 4.0062
271 0.2083 5.8701 4.0054
2.81 0.2112 5.9870 4.052
3.01 0.2153 6.1524 4.0060
3.31 1.5505 7.4478 4.0135

equilibrium profiles are depicted for successively n = 1.51; 1.81; 2.11; 2.41; 2.71;
2.81; 3.01 and 3.31.

The resulting values for M,, G, and M,, are given in Table 2, and indicate a
good sensitivity.

5.3 Dependence on y

We now investigate the sensitivity of M, and G. to the 7y soil retention curve
parameter. We again use a rotational speed of w = 50, starting from the equilib-
rium position at w = 35. As values for 7 we consider y = —y, x 10?> with y, €
(1.59;2.19) where increments of size 0.1 are used. The values of M, and G, are
listed in Tables 3 and 4, respectively. The corresponding saturation and head
profiles at time section ¢ = 10° are given in Fig. 3. In Tables 3 and 4 the water
amount is 4.05. The sensitivity on 7y is less than that of n, but is sufficient.
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Table 3 Rotational momentum M, x 10~¢ for Exp. 5.3

time\y, 1.59 1.69 1.79 1.89 1.99 2.09 2.19

1000 1.5189 1.5093 1.5013 1.4949 1.4896 1.4854 1.4819
3000 1.5352 1.5213 1.5097 1.5000 1.4919 1.4852 1.4797
5000 1.5438 1.5278 1.5144 1.5030 1.4935 1.4855 1.4788
104 1.5565 1.5376 1.5216 1.5079 1.4963 1.4864 1.4780
5% 10* 1.5901 1.5645 1.5423 1.5231 1.5063 1.4917 1.4791
10° 1.6058 1.5777 1.5530 1.5313 1.5124 1.4958 1.4812

Table 4 Center of gravity for Exp. 5.3

time\y, 1.59 1.69 1.79 1.89 1.99 2.09 2.19

1000 7.1117 7.1031 7.0948 7.0872 7.0805 7.0744 7.0693
3000 7.1487 7.1379 7.1271 7.1170 7.1076 7.0990 7.0912
5000 7.1697 7.1581 7.1464 7.1351 7.1245 7.1146 7.1056
10* 7.2026 7.1903 7.1775 7.1649 7.1527 7.1411 7.1303
5 x 10* 7.3012 7.2898 7.2763 7.2617 7.2466 7.2314 7.2167
10° 7.3512 7.3429 7.3309 7.3167 7.3012 7.2851 7.2689

Nevertheless, taking transient information into account, as given in the rows of
Tables 3 and 4, will benefit the determination of y via this experimental set-up.

5.4 Inverse Determination of y, n and K;

In this numerical experiment, we use ro=30L = 10,0 =20, K; =2.4 X
1072, 0, = 0.02,0, = 0.4, y = —0.0189 and n = 2.81. The space discretization
for T € (0,Ty) is not equidistant. Here 7; is the time needed to empty the left
water reservoir. We shall consider N = 40 grid points with geometrical distribu-
tion as follows. The first space interval is d; = 1/20 and then d;.; = ¢d; with ¢
Once the water reservoir is empty, a uniform space discretization with N = 40 is
used.

In this experiment, we restore the soil parameters applying the following
centrifugation scenario. First, we centrifugate the fully saturated sample along the
time 10* and collect data; = {M, G1,M,, 1 }. Then, we isolate the right boundary
of the sample and centrifugate it tor + = 5000 s with rotational speed w = 15.
Then, we obtain data, = {M,,G,,M,,,»} (where M,,, = M,,;, since we have zero
output). After this, we repeat these two steps with the same sample at the same
running time f=5000s and ® =20. Successively we obtain data; =
{M3,G5,M,,3}, datay = {M4, G4, M,, 4} where (M,,4 = M,,3) and continue up to
data;. Then, the total measurement data is represented by the vector data =
{data,,data,, . . .,data;}. To imitate a realistic situation, we perturb every
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Fig. 3 Saturation profiles at equilibrium for w = 50,7, = 1.59;1.69;1.79; 1.89;1.99;2.09;2.19.
a Saturation profiles, b head profiles

Table 5 LMe-iterations for

S L Iteration  —100xy n Ky x 10°  RMS
determination of y, n, Kj
0 1 2 1.6 3.3977
1 1.7643 3.4612 1.6149 5.057 x 1072
3 1.8555 2.8423  2.2320 2.878 x 1074
5 1.8469 28519  2.2185 1.506 x 10~*

component of data by 0.01 - (rand — 0.5), where rand is a generator of random
numbers from (0,1). This corresponds to 0.5% noise. Next, we apply the
Levenberg—Marquardt method to restore the soil parameters, starting from initial
parameters y = —0.01,n = 2,K; = 1.6 x 107>. The corresponding iterations of
the LM method are presented in Table 5.

6 Conclusion

In this chapter, it is shown that global characteristics measured with a centrifuge
can be used to determine the soil retention curve of ground samples. In order for
this to work, transient data must be used, different centrifugation scenario’s must
be coupled to obtain sufficient information, and a very precise numerical model
must be used. Specifically, this model must be able to accurately track the moving
interface. We further draw attention that in the alternative scenario using outflow,
no outflow boundary condition is imposed. This gives more freedom to the
experimentator. Instead, for all simulations, an algebraic equation based on mass
balance is used to obtain a solution.
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Numerical Investigation of Chatter
in Cold Rolling Mills

S. K. Dwivedy, S. S. Dhutekar and P. Eberhard

Abstract In this work, considering a four high cold rolling mill and using a
dynamic friction model, expressions for the variation of pressure in the roll bite
have been developed. The effects of parameters used in the dynamic friction model
on the variation of pressure and shear stress are investigated. The numerically
obtained horizontal and vertical work roll deflections using the dynamic friction
model have been compared with those obtained by the conventionally used con-
stant friction model. The effects of rolling parameters like strip thickness; periodic
back tension and strip velocity on the work roll deflections have been studied. This
work will find applications in predicting the critical system parameters in cold
rolling to avoid chatter.

Keywords Chatter - Cold rolling mill - Dynamic friction model - Constant
friction model - Roll bite

Nomenclature

M Mass per unit length of the work roll (kg/m)
y Vertical displacement of the work roll (m)
f* Reaction force from metal sheet (N/m)

D,, Diameter of work roll (m)

D,  Diameter of backup roll (m)

E Young’s modulus of the material (GPa)
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u Poisson’s ratio of the material
£ Steady sheet force (N/m)
3 Dynamic sheet force (N/m)

Vs Work roll displacement due to the steady sheet force (m)

Ya Work roll displacement due to the dynamic part of sheet force (m)
Va Rate of change of dynamic roll gap displacement (m/s)

he Gap between two work rolls (m)

ho  Gap between two work rolls at £ = 0 (m)

he Rate of change of roll gap (m/s)

w,  Natural frequency of the system not considering f; (Hz)

hy Strip thickness at entry (m)

hy Strip thickness at exit (m)

R Radius of work roll (m)

uy Strip velocity at entry (m/s)

Ty Strip shear yield strength (MPa)

oxx Normal stress in X-direction (MPa)

oxy Normal stress in Y-direction (MPa)

Txy Shear stress (MPa)

m Contact friction coefficient between the work roll and the strip

Ts Shear stress at the surface of strip (MPa)

X1 Distance measured from strip entry to the centerline of rolls (m)
X2 Strip exit position (m)

Xy Distance of neutral plane from the centerline of rolls (m)

my Friction factor between x, and x; (considered positive)
my  Friction factor between x,, and x, (considered negative)
p Roll pressure (MPa)

1 Introduction

Chatter in rolling mills is the undesirable mechanical vibration observed in most
of the rolling mills operating at high speed and rolling thin strips. It results in
unacceptable gauge variations in the rolled strip, affects the surface quality,
damages mill components and produces undesirable noise. Hence, it may lead to
loss in productivity if sufficient care hasn’t been taken to prevent it. Chatter is a
type of self excited vibration which is believed to arise in rolling operations as a
consequence of the interaction between structural dynamics of the rolling mill
stand and the dynamics of the rolling operation itself. Generally three types, i.e.,
torsional, third octave and fifth octave chatters are observed in rolling mills.
Torsional chatter is related to torsional vibrations and is generally observed in
5-15 Hz range. The other two types are related to vertical vibrations of the roll
system. While third octave chatter falls in the range of 125-240 Hz, fifth octave
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chatter falls in the range of 550-650 Hz. These are characterized by the frequency
range of musical octaves. It has been observed that third octave chatter is
responsible for gauge variations and fifth octave chatter causes damage to the
backup roll and in turn parallel strip marks are found in the rolling sheet. Over the
years there has been lot of research on chatter in rolling mills. A brief review of
the dynamics and chatter model developed by different researchers is given below.

Roberts [1] considered the rolling mill as a single spring-mass system and
analytically predicted the natural frequency to show the origin of fifth octave
chatter. Chefneux et al. [2] developed a numerical model to show that chatter
tends to occur when there is a sudden change in rolling force which may be due to
a weld line or sudden change in lubrication. Johnson and Qi [3] and Johnson [4]
studied the effect of friction and inelastic deformation on chatter in sheet rolling
and developed analytical expressions for rolling force and corresponding spring
and damping coefficients. They have shown that inter stand tension plays a great
role in the chatter of rolling mill. They modeled the mill as two degrees and four
degrees of freedom systems and explained fifth octave chatter. Yun et al. [5]
reviewed different chatter models and in a series of papers [6—8] developed cor-
relation between different rolling parameters such as strip speed, tension at entry
and exit, rolling force and rolling torque. Performing experiments, they tried to
understand the conditions which lead to the dynamic instability and proposed that
negative damping, mode coupling and regeneration are the basic mechanisms
which lead to chatter in rolling. To carry out the investigation of chatter due to
negative damping, a unimodal structural model (the structure is allowed to
oscillate only in one direction perpendicular to the flow of strip) was formulated.
There they coupled a dynamic rolling model with an unimodal chatter model and
simulated the results to show roll force, roll gap, back tension variations leads or
lags in phase to produce negative damping. In mode coupling, they took roll
vibrations in more than one direction and attempted to show this as one of the
causes of chatter [8].

Hu and Ehmann [9] proposed a dynamic rolling model considering homoge-
nous material and the movement of the roll in both directions has been considered.
Using a linearised model they validated their results with experiments. They also
developed a dynamic rolling model considering non-homogenous material [10]. It
may be noted that in these works, chatter studies have not been carried out.
A constant friction model has been considered in these works.

Kimura et al. [11] studied the chatter problem in a five stand continuous rolling
mill and showed the influence of rolling speed and friction coefficient on vibration
in rolling mill. They deduced an optimal range of friction coefficients and proposed
a stability index to damp the vibration and make the mill stable against any
disturbance. Meehan [12] also developed a comprehensive stability criterion for
the third octave rolling chatter and suggested a critical rolling speed below which
chatter does not occur. He used a spring-mass-damper model and with the help of
simplified block diagrams illustrated the roll stack vibrations and inter stand
tension interaction. Lin et al. [13] presented a nonlinear dynamic model to describe
the dynamic interaction between work rolls and metal sheets and obtained critical
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speed for initiation of fifth octave chatter. They coupled a work roll sub model with
a roll bite sub model to produce simulation results and concluded that even though
the governing dynamics is highly nonlinear, the rolling chatter instability is
nothing else than mode excitation or beating and thus linear. Their results corre-
spond well with a physical rolling mill and the frequency predicted for a 4-H
rolling mill falls within 550-650 Hz (fifth octave chatter range). Niziol and
Swiatoniowski [14] and Hu et al. in a series of paper [15, 16] extended their
previous work [9, 10] to study third octave chatter in a single stand [15] and a
multi-stand mill [16]. Their model combined a homogeneous process model with
suitable mill structure models to obtain a linear characteristic equation which was
investigated to study the stability of the system.

In all of the mentioned cases, either constant friction or Coulomb friction
models have been used to obtain the expression for roll force and the system
stiffness and damping properties of the roll. However, these models do not cor-
rectly predict distribution of contact stresses in flat rolling, particularly in the
neutral plane. Tan et al. [17] proposed a dynamic friction model considering both
friction and viscosity effects in flat rolling. They have validated their model using
the published experimental data.

In the present work, an attempt has been made to investigate the chatter phe-
nomena by combining the roll-bite sub-model of Hu et al. [9] and the dynamic
friction model of Tan et al. [17] for a four-high cold rolling mill. It may be noted
that unlike constant friction or Coulomb friction models where only the coefficient
of friction () is required to obtain the shear stress during rolling, in the case of a
dynamic friction model one requires four parameters (f,, &, B, kr) for doing the
computation. Initially, numerical investigations have been carried out to study the
effect of these parameters on the variation of pressure and shear stress in the roll
bite. Then, a comparative study has been made between the deflection obtained
using dynamic friction model and the constant friction model for different strip
velocity, strip thickness and back tension.

2 Mathematical Model

Figure la shows the schematic diagram of a four high stand rolling mill with the
metal strip passing through the work rolls which are supported by backup rolls. It
is assumed that the physical contact between work roll and backup roll can be
modeled as springs, as shown in Fig. 1b. The damping between them is assumed to
be negligible. Further, it is assumed that the work roll and backup roll are always
in contact during rolling process.

Considering both upper and lower work rolls, a chatter model of work rolls has
four degrees of freedom. These are vertical and horizontal displacements of both
the work rolls. Considering the symmetry of rolling process, the degrees of free-
dom can be reduced to the horizontal and vertical displacement of any of the two
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Fig. 1 a Schematic representation of a four-high rolling mill, b representation of rolling mill by
a spring-mass system

work rolls. Now, considering the vibration of the upper roll only, see Fig. 1b, and
applying Newton’s second law, one can write the governing differential equation
of motion for a spring mass system in vertical and horizontal directions as follows.

d? d?
Y Ky =4

M= ===
dr? Y de?

+Kox =f; (1)
Here M is the mass per unit length of work roll, K is the spring constant which
represents the contact between the work roll and the backup roll, see Fig. 1, K>
represents the stiffness of the equivalent spring in the horizontal direction, x and
y are the deflections of the work roll in horizontal and vertical direction, respec-
tively. Also, f; and f3, respectively, represent force per unit width on work rolls in
horizontal and vertical directions while rolling. The expression for these forces can
be obtained by using different friction models such as a constant friction model,
Coulomb’s friction model or a dynamic friction model. While the expression for
forces for a constant friction model has been obtained by Hu and Ehmann [9], here
these expressions for a dynamic friction model are derived.

Following the procedure of Lin et al. [13], the total sheet force and total
displacement can be divided into steady and dynamic parts. Hence, they can be
written as

=r+fjandy=y;+ya (2)

Considering homogeneous deformation of the sheet, the different quantities
used in the roll-bite are shown in Fig. 2a. The roll gap in vertical direction &, and
in the horizontal direction x. and their rate of change of roll gap /. and k.in
respective directions are given by
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Fig. 2 a Roll bite model, b Half slice of the roll bite
hc - th + 2yd; hc = 2yd and Xe = Xeo + Xd, ).CC = ).Cd (3)

The quantities hq and x. are the initial roll gap in vertical and horizontal
direction i.e., when time ¢ is equal to 0. From Fig. 2a, the expression for strip
thickness 4 varying in the roll bite in terms of the vertical roll gap A, horizontal
roll gap x,, radius of work roll R is given by

h=he+ (x— xc)z/R (4)

The half varying thickness is y = /2. It is defined so as to properly apply the
boundary conditions. Applying material volume preservation, one can obtain

uh = uhy — (x; — x)he + (hy — h)x, (5)

where u is the strip velocity, u; and hjare the strip velocity and thickness,
respectively, at the inlet. Differentiating u with respect to y we get

du _ —(k +u)

= e W 6)
dy y (
The contact length at inlet x; is given as,
X] = X + R(h] - hc) (7)
The position of the strip at the exit of roll bite x, is given as
Rhh,
X2 =X+ ' (8)

2(u1h1 — (X] *x)hc + hlxc)

The location of the neutral point x, can be determined by equating the strip
velocity with the roll velocity. Then x, can be given by
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2x.(vy + ) + heR + \/(ZXC(V, +xc) + th)2—4(Vr + X )x2 (v + Xc)

n - 9
* 2(vy + x¢) ©)
The exit strip velocity u, can be determined from Eq. 5 as
hi — (x1 — x2)he + (hy — ho)x,
1y — urhy — (x1 — x2)he + (hy — ha)x. . (10)

hy

From Fig. 2b, the equilibrium equation can be determined from the slice of roll
bite.

—0,y + (0y + do,)(y + dy) + p tan ¢pdx £ t,dx = 0. (11)
The shear stress 7, with a dynamic friction model can be given according to Tan
et al. [17] as
du
s =pB—p. 12
s =Bgp (12)

Here f§ is the dynamic coefficient of friction, du/dy is the strip velocity across the
rolling direction and p is the rolling pressure. Then, applying the von-Misses
criterion for the plane strain condition using o, and 1, as the horizontal tensile
stress and yield strength in shear for the strip material, one obtains

oy +p =21,. (13)
Differentiating Eq. 13 with respect to x, one gets

daxiid_p
de  dx’

(14)

Inserting Eq. 14 in Eq. 11 and considering only positive sign of f3, one obtains after
rearranging
dy dp du
27, — —y— —p=0
it ao? =
d —27,d d
0r7 _u — T} _y _|_ l_p .
dy  fp dx  fpdx

Integrating Eq. 15 with respect to y gives

2T,y X — X, y* dp
u= +——4c 16
pp R 2fpdx (16)

Applying the boundary conditions at the exit of the strip from the roll bite yields
the constant ¢y,

y=0, X=X, u=up, ¢ =u. (17)
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Then, the differential equation in p follows

dp 2p 4ty (x — x;)

2= =X %/ 18

=0 (18)
Taking A(x)=(2B/y*)(u, —u) and B(x) = 4k(x —x.)/Ry, Eq. 20 can be
rewritten as

P AP =B, (19)

Solving Eq. 19 gives the expression for the variation of pressure in the roll bite as

o130 52, ()

pix) = 1—2B(D; +E + Fy) ’ (20)

where the abbreviations are,

Ay

(4(h]jh%) (Cee = a00) (uahy = e + ey + hexe) )>

By = (3/(812m1)) ((xe — x1) (urhy — hexy + Xchy + hexe))

C = (3R tan”! ((x, - xc)/\/@) / (Sth))) (1 (=t — &) + he(s — x2))

D = (Rz((xg —x) (wrhy — hexy + ichy + hcxc))/4 (hc (Rhc + (x — xc)2)2)>
E| = <3R/8 (hf (Rhc +(x— xc)z)>) ((xc - xl)(u]hl — hexy + Xchy + izc.xc))

F) = 3R tan™! ((x - xc)/\/R_hc) (hy (—uy = &) + he(x) — xc))/ (Shg\/k_hc)

Then, the roll force can be computed as

X

f;:/xzptandbdx—i-/(i)rsdx, f;:/xzpdx—i—/xz(i)rstanqbdx. (21)

X1 X1

These forces are used in Eq. 1 to numerically compute the vertical and hori-
zontal work roll deflections. As proposed by Tan et al. [17], while computing
pressure p in the roll bite, # should be replaced by 8, and the strip velocity term
should be multiplied by a term k,. Similarly, in the shear stress expression f
should be replaced by f8; and the strip velocity term should be multiplied by a term
k. In their work, they obtained these parameters by comparing their result with
those obtained from experiments. In the following section, the effect of k, and f3,
on the variation of pressure and shear stress in the roll bite has been investigated.
Also, incorporating the expression for forces as given in Eq. 21, the time responses
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Table 1 System parameters used in numerical analysis

M Mass per unit length of work roll 2299.98 kg/m
D,, Diameter of work roll 0.61 m

D, Diameter of backup roll 1.52 m

E Young’s modulus of steel 207 GPa

n Poisson’s ratio 0.3

i Steady sheet force 2.6 MN/m

Ty Strip shear yield strength (for 3004 Al alloy) 110 MPa

Table 2 Input of roll bite sub-model

o1 Horizontal tensile stress at entry (<170 MPa: 3004 Aluminum tensile yield strength)
) Horizontal tensile stress at exit (<170 MPa: 3004 Aluminum tensile yield strength)
u Strip velocity at entry (typical value 0-25.4 m/s)

hy Strip thickness at entry (typical value 2.54-0.001 mm)

for horizontal and vertical work roll displacements are determined by numerically
solving Eq. 1.

3 Results and Discussions

In this section, initially the effects of the parameters used in the dynamic friction
model on the variation of pressure and shear stress in the roll bite are considered.
The parameters used in this analysis are given in Tables 1 and 2.

Figure 3 shows the flow chart used for computation of the work roll deflection
and velocity in both horizontal and vertical direction. Considering the system
parameters such as mass, stiffness in horizontal and vertical direction, thickness
and velocity at the entry and the roll radius as the input parameters, in the first step,
the strip velocity, pressure and shear stresses are calculated in the roll bite. Using
the calculated values of exit thickness and velocity and the position of the neutral
plane and thickness at the neutral plane, the horizontal and vertical components of
the roll forces are computed. These forces are used in the dynamic equation of
motion to compute the work roll deflection in horizontal and vertical direction.

Figure 4 shows the variation of pressure and shear stress considering different
values of the coefficient of the dynamic friction model. It may be observed that for
constant k¢ and f;, and for all values of f3,, the zero shear stress occurs at a
distance from the exit point. Though Tan et al. [17] claimed that the dynamic
friction model is better than thother two friction models, its applicability highly
depends on the correct prediction of these four constants. It is shown that the
pressure variation is very sensitive to the change in the parameter f3,. While a
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Fig. 3 Flow chart showing
the calculation of the
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lower value of f8, predicts more accurately the pressure distribution in the forward
slip zone, it fails to predict the pressure distribution in the backward slip zone.
Also, as pointed out in [17], the pressure hill does not coincide with the neutral
plane. Hence, if one calculates the pressure distribution for both the forward slip
zone and for the backward slip zone, a jump in the pressure can be observed at the
neutral point, as shown in Fig. 5. This jump is most probably the driving factor for
chatter at higher speed while rolling a thin strip.

Figure 6 shows the horizontal and vertical work roll deflections obtained by
using both dynamic friction model and constant friction model. Here the rolling
speed is taken as 20 m/s. With an increase in rolling speed, the dynamic friction
model clearly predicts unstable response in vertical direction, while the constant
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Fig. 4 Variation of pressure and shear stress in the roll bite with f§, and k,. System parameters as
in Tan et al. [17]
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Fig. 5 a pressure variation in roll bite, b shear stress variation in roll bite for 3.17 mm strip
thickness at entry, with reduction of 27.44%, strip shear yield strength 110 MPa and roll velocity
40 mm/s

friction model predicts constant amplitude (82 um) of vertical deflection. Both of
these methods predict stable horizontal work roll deflection. The dynamic friction
model gives a higher value of deflection than the constant friction model. It should
be noted that in this investigation no front or back tension was considered.

To study the effect of inter stand tension, which is a very important parameter in
tandem rolling mills, in the present case a time varying back tension with
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frequency 150 Hz has been introduced. This causes large variations in the hori-
zontal component of the roll force. Figure 7 shows the work roll deflections
obtained using dynamic friction model and constant friction model. Here, while
both methods show a clear increase in vibration, constant friction model predicts a
higher value of horizontal roll deflection. This back tension also affects the
deflection in the vertical direction. This may be due to the coupling between the
forces in the horizontal and vertical direction. This observation is similar to
those observed in linear parametrically excited systems where a time varying force
applied in horizontal direction causes a deflection in the vertical direction. Here,
while constant friction model predicts periodic stable solutions, dynamic friction
model clearly shows the vibration of the system growing with time.

Figure 8 shows the time response obtained for the system when the strip
thickness is increased from 1 mm to 2.5 mm. While clearly the horizontal and
vertical components of the work roll deflections obtained by dynamic friction
model are increasing with time showing an unstable system, the constant friction
model shows stable steady state vibration.



226 S. K. Dwivedy et al.

4 Conclusion

In this work, the expression for the roll forces in both horizontal and vertical
directions of a four high mill has been developed incorporating the dynamic
friction model with the homogeneous rolling model. It has been shown that
improper choice of the dynamic parameters used for the pressure calculation using
a dynamic friction model may lead to wrong prediction of pressure and shear stress
in the roll bite. This point has its significance as it is impossible to conduct
experiment each time to obtain optimum values of these parameters which match
the experimentally obtained pressure curve. This study gives an idea about the
variation of pressure and shear stress with change in these parameters. The results
for the horizontal and vertical work roll deflections obtained using this method for
different strip velocity, strip thickness and back tension has been compared with
those obtained using the constant friction model.
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Heavy QOils Transportation in Catenary
Pipeline Riser: Modeling and Simulation

Severino Rodrigues de Farias Neto, Jobsan Sueny de Souza Santos,
Kelen Cristina de Oliveira Crivelaro, Fabiana Pimentel Macédo Farias
and Antonio Gilson Barbosa de Lima

Abstract This chapter presents information about multiphase flows such as
definition, flow pattern and modeling. Application to petroleum industry has been
given to water-heavy oil flow in catenary riser. In offshore platforms a catenary
riser is often used to carry heavy ultraviscous oils. However, the high viscosity of
these oils provides an elevated pressure drop in the flow. Several studies report
the use of the core-flow technique in vertical and horizontal pipes to reduce the
pressure drop in the transport of heavy oils. Nevertheless, so far no record of
studies using catenary riser was found. Results of velocity, pressure, temperature
and volumetric fraction distribution were presented and analyzed. The pressure
drop in the catenary riser decreased 3.28 times compared with the single-phase oil
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flow. This low value compared with the available literature was attributed to the
presence of regions of adhesion along the surface of the overhead line and the high
viscosity of the produced water.

Keywords Core-flow - Riser - Catenary - Heavy oil - Numerical simulation

Nomenclature

Ayp Interfacial area density (1/m)

Cp Drag coefficient (-)

D.s Drag force (N)

dyp Mixture length scale (m)

dg Mean diameter (m)

Eo Eo6tvos number (-)

fa Volume fraction (-)

g Gravitational acceleration (m/s)
hy, Specific enthalphy (J/kg)

hyp Heat transfer coefficient W/m*> K
k Turbulent kinetic energy (m?/s”)
LB.g Lubrication force (N)

| Lift force (N)

M, Total force on phase o (N)

M, Interphase momentum transfer (N)
Nu Nusselt number (-)

Pr Prandtl number (-)

O, Heavy oil and water volumetric flow (m*/s)
0, Interphase heat transfer (W/m?)
Re Reynolds number (-)

SMmx Mass source (kg/mBS)

Sy External heat source (kg/m )

S. Momentum sources (kg//m2 s%)

t Time (s)

TD,; Turbulent dispersion force (N)

U, Velocity vector (m/s)

VM, Virtual mass force (N)

I'yp Mass flow rate per unit volume (kg/m3 S)
e Turbulence dissipation rate (m?/s%)
Ao Thermal conductivity (W/m K)
- Misture conductivity scale (m)

Uy Turbulent viscosity (kg/m s)

Uy, Dynamic viscosity (kg/m s)

[ Density (kg/m?)

Pop Mixture density (kg/m3)

o Surface tension coefficien t (N/m?)

G, g, O,

Empirical constants to k-¢ turbulence model (-)
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1 General Features of Multiphase Flow

The incidence of multiphase flows is involved in many industrial processes.
Examples are fluidized beds, fluid catalytic cracking reactors, bubble column
reactors, combustion, treatment of environmental pollution, and many others
operations. Multiphase flows refer to situations in which two or more fluids are
present and each of the fluids are immiscible or when there are different ther-
modynamic phases (gas-liquid, liquid—liquid, gas-liquid—solid and so on). One of
the most challenging aspects of dealing with multiphase flow is the fact that it can
take many different forms (flow patterns). Therefore, it can be classified broadly
into dispersed flow (continuous—dispersed flows) and stratified flow (continuous—
continuous flow). A dispersed flow pattern occurs when one or more phases are
dispersed (bubbles, droplets or solid particles) within another continuous phase,
while in a stratified flow pattern the two phases are separated by a continuous
interface. In most of the reported studies, the identification and classification of the
flow pattern is based on visual observations.

In the petroleum industry, a complex mixture of hydrocarbon can exist as a
single-phase (liquid or gas) or as a two-phase mixture or multiphase mixture,
depending on temperature, pressure, and the composition of mixture. The pro-
duction and transportation of this mixture leads to a stream with different multi-
phase variations (oil—gas, oil-water, oil-water—gas, and so on). For many energy
plants, annular two-phase flow is the most common flow pattern in boiling heat
transfer systems, such as boiler, heat exchanger and in pipes, often used for the
production and transport of gas.

In the specific case of two-phase immiscible flow (liquid-liquid flow) the
annular flow pattern depend on the flow rates of the phases, geometry and
roughness of pipe, the flow properties of the phases, and interfacial tension
between the phases. The knowledge about the hydrodynamic properties asso-
ciated with these flows is extremely important to ensure safe design and effi-
cient operation of an offshore transportation pipeline. The annular flow pattern
stands out among the other flow regimes, for their important application in the
transport of heavy ultra-viscous oil. Its very interesting feature is that the
frictional pressure loss is comparable to that of single-phase flow of a thinner
fluid in the same pipe at mixture flow rate. To obtain this flow pattern, water
is injected in the oil such that it flows as an annular film along the pipe
wall while oil flows in the core region. Many oil companies have shown an
interest in this flow pattern, i.e., in the technology of water-lubricated transport
of heavy oils. These oils frequently are very viscous and somewhat lighter
than water. Typical oils might have a viscosity of 100 Pa.s and a density of
990 kg/m® at 25°C.

Most flow models have been published to predict the flow characteristics of the
core-annular flow in horizontal and vertical pipelines to heavy oil transportation
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and artificial lifting in heavy oil wells. These models require theoretical and
experimental information about the pressure-gradient and flow patterns, where a
thin fluid surrounds a viscous one [4, 5, 7, 11, 13-15, 19, 20, 22, 23]. Application
of a computational fluid dynamics (CFD) based approach is being increasingly
adopted to predict the detailed thermo fluid mechanics of core-annular flow [1, 8,
9, 17, 26].

Core-annular flow of highly viscous oil and water in a horizontal pipe was
analyzed by Ooms et al. [15]. They assumed that the oil viscosity is so high that
the oil-water interface can be treated as a solid—liquid interface and, the buoyancy
forces generated due to the density difference of oil and water are counterbalanced
by the lubrication forces acting on the core. They showed that the theoretical
predictions agreed with their experimental data.

Bai et al. [4] identified a new flow type namely bamboo waves in upflow and
corkscrew waves in downflow. They observed that the single oil pressure drop was
about 200 times larger than in case of water lubricated flow for the same oil
superficial velocity.

Different strategies for preventing oil from fouling the walls of core-annular
flow pipelines and also for restart from an unexpected pipeline shut-down was
present by Arney et al. [3]. Experiments in a pilot scale cement-lined core-annular
flow pipeline showed that cement-lined pipes can resist fouling by oil and facilitate
the restart of transport operation.

Rovinsky et al. [25] in another annular flow study concluded that the velocity
profiles, pressure drop reduction factor and power saving factor depend on the
viscosity ratio of two phases. They also report that the power saving factor does
increase with increase of viscosity ratio.

Frictional pressure drop measurements for upward vertical core-flow in a 1 in.
pipe, using a 17.6 Pa.s, 963 kg/m’ oil and water at room temperature was mea-
sured by Prada and Bannwart [18]. The authors reported a decrease by more than
1,000 times with respect to single phase oil flow, being comparable to the flow of
water alone in the pipe at mixture flow rate. Similar results were obtained by
Rodriguez et al. [24] using this technique to heavy ultraviscous oil transport.

The aforesaid survey brings out the importance of core flow to heavy oil
transportation, and the different aspects of this phenomenon were reviewed by
Ghosh et al. [28], like nozzle design, wettability characteristics, restart procedure,
etc., and allow us to say which dynamics of core-annular flow is yet not com-
pletely understood. It should be emphasized that, the two-phase annular flow
patterns with heat transfer are customary in many industrial processes. The reliable
prediction of pressure drop and heat transfer rates associated with these processes
are essential to developing more reliability to heavy oil transportation, reducing or
eliminating problems and cost. Even less information is available on non-iso-
thermal two-phase core-annular flow in the catenary riser. Some studies have been
initiated by the present authors in this direction that was conducted at the
Departments of Chemical Engineering and Mechanical Engineering at Federal
University of Campina Grande (UFCG), Brazil.
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2 Multiphase Transport Modeling

For the studies of multiphase flows models are needed that are able to predict the
detailed hydrodynamic behavior of those flows. Two different ways present
highlights: experimental and theoretical. In this last case, the power of modern
computers can be employed to address the complexity of the flow. However, the
predictive capability must rely on complex theoretical and computational models
for each phases or components. According to Ranade [21] there are three main
approaches for modeling multiphase flows:

e Volume of fluid (VOF) approach (Eulerian framework for both the phases with
reformulation of interface forces on volumetric basis).

e Eulerian framework for the continuous phase and Lagrangian framework for all
the dispersed phases.

e Eulerian framework for all phases (without explicitly accounting for the inter-
face between phases).

If Eulerian framework is assumed, two distinct models can be distinguished:
homogeneous and inhomogeneous models. Inhomogeneous multiphase flow
occurs when separate velocity fields and other fields (temperature, turbulence, etc.)
exist for each phase. The pressure field is shared by all fluids. The fluids interact
via interphase transfer terms; while in the homogeneous multiphase flow has the
same velocity and pressure fields, and other relevant fields.

In the inhomogeneous multiphase model there are different sub-models how
differ in the way which these models are compared. The differences are related
mainly to interfacial area density and the interphase transfer terms. These are:

e The particle model—this model is applied when one of the phases is continuous
and the other is dispersed (solid particles, liquid droplets or gas bubble).

e The mixture model—this model treats both phases symmetrically and requires
both phases to be continuous.

e Free surface model—this model is applicable to free surface flows.

The set of governing equations that describe the three-dimensional two-phase
flow, transient and non-isothermal in a catenary riser shall consist of conservation
laws of mass, momentum and energy as described in the following.

2.1 Continuity Equation

A continuity equation corresponds to a partial differential equation that describes
the transport of some type of conserved quantity. For a multiphase flow this
equation is defined by:

d =
5, (02) + V- (10, Us) = S+ YT (1)
p=1
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where the subscript o represent the phases involved (water and heavy oil); fis the
volume fraction; p is density and U is the velocity vector; S,,, describes user
specified mass sources, and I',4 is the mass flow rate per unit volume from phase «
to phase . This term only occurs if interphase mass transfer takes place. For
details see ANSYS [2].

2.2 Momentum Equation

The linear momentum equation can be developed by Newton’s Second Law and
relates that the sum of all forces applied on the control volume is equal to the sum
of the rate of change of momentum inside the control volume and the net flux of
momentum through the control surface. In the case of multiphase flow this
equation is given by:

0
5 (p,Us) + V- [f(p, Uy @ U,)] = —£,Vp, + V- {furt, [VU, + (VU,) "]}

Np
+ ,;Z (FpUp = T U ) +8,+ M,
=1

)

where p is dynamic viscosity; S, describes momentum sources due to external
body (buoyancy force and rotational force); the term I7,5Ug — I'g, U, represents
momentum transfer induced by interphase mass transfer and occurs when mass is
carried from one phase into another. I',5 is a positive mass flow rate per unit
volume from phase f§ to phase «. M, describes the total force on phase o due to
interaction with other phases, such as drag force, lift force, virtual mass force, etc.,
and is given by:

M, = My (3)

BFa

Here, M, is the interphase momentum transfer, which occurs due to interfacial
forces acting on each phase «, due to interaction with another phase f.

The total interfacial force acting between two phases may arise from several
independent physical effects:

M, = D“ﬁ + Lz[; + LB“/; + VMx/g + TD“/; (4)

The lift force (L,p) acts perpendicular to the main relative velocity and thus
contributes to the lateral void distribution. The wall lubrication force (LBo:y)
occurs when the dispersed phase is observed to concentrate in a region close to the
wall, but not immediately adjacent to the wall. The virtual mass force (VM,g)
accounts for transient behavior in the flow field. It represents the force required to
accelerate the apparent mass of the surrounding continuous phase, when the
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relative velocity changes. The interphase turbulent dispersion force (TD,g) cor-
responds to an additional dispersion of the phases of a region of high volume
fraction to another of low volume fraction due to turbulent fluctuations. This is
caused by the combined action of eddies and interfacial drag [12].

Drag forces (D,p) act in the direction opposing the relative flow between the
phases, which is defined by the following equations:

e For the particle model

C
D, = ?Dp“Axﬁ U; - U,|(Up - U,) (5)
Here, o represents the continuous phase and f the dispersed phase and A,g
corresponds to the interfacial area density, which is characterized by the
interfacial area per unit volume between phase o and phase f§ given by:
ofp
Aup =—— 6
where djg is the mean diameter of the spherical particles and fj is the volume
fraction of the dispersed phase.
e For the mixture model

D.s = Cpp,pA.s|Us — U,|(Up — U,) (7)

Here, p,p is the mixture density and the interfacial area density, A, defined
respectively by:

Pup = JuPs +TpPp (8)
fo(fﬂ

Ay =—+ 9

8 oy )

where dog is a mixture length scale.
e For the free surface model.
In this model the interphase drag is calculated in the same way as for the mixture
model, except that the interfacial area density is given by:

Aup = IVfa] (10)
When more than two phases are present, these parameters can be written as
follows:

o 2|vfx|’vf[3|

(11)

VAL V]

The drag coefficient (Cp) is the obtained by empirical or theoretical correla-
tion. As an example, we can write:
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e Schiller-Neumann Drag Model—this model is only used for solid spherical
particles, or for fluid particles that are sufficiently small and considered like
spherical. This parameter depends on the particle Reynolds number (Re) as
follows:

24
Cp = — (1 +0.15Re"%%7 12
b Re( + ¢ ) (12)

with 0.2 < Re < 500. The particle Reynolds number is given by:

_ pocdﬂ(U“ — Uﬁ)
Hey

Re (13)

where (Ua—Up) is the relative velocity.

e Ishii-Zuber Drag Model—this model is applied to distorted particle regime. In
this case the drag coefficient is independent of the Reynolds number, but
dependent on the particle shape through the dimensionless group known as the
E6tvos number, Eo. For an elliptical particle we can use the following equation:

2
Cp = 3Eol/2 (14)

where the Eotvos number (Eo) represents the ratio between gravitational and
surface tension forces, defined by:

Apd?
028 pag
a

(15)

where, Ap is the density difference between the phases, g is the gravitational
acceleration, and ¢ is the surface tension coefficient.

2.3 Turbulence Model

Turbulence occurs when the inertia forces in the fluid becomes significant com-
parable to viscous forces. This one consists basically of fluctuations in the flow in
time and space. To enable the effects of turbulence without recourse to a pro-
hibitively fine mesh it is necessary to use a turbulence model that offers a good
compromise between numerical effort and computational accuracy. Several tur-
bulence models are reported in the literature, the k—¢ two-equation model is
one these models. This one uses the gradient diffusion hypothesis to relate the
Reynolds stress to the mean velocity gradients and turbulent viscosity. In this
model, the turbulence kinetic energy (k) is defined as the variance of the fluctu-
ations in velocity and turbulence eddy dissipation (¢) corresponds to the dissipation
rate of the velocity fluctuations.
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In multiphase flow, the values of k and ¢ come directly from the differential
transport equations for the turbulent kinetic energy and the turbulence dissipation
rate as follows:

ag(pzxfotk%) +V- {fx |:pa<Uockoc - (,u =+ &) Vko'] } :f%(Ga - pa?‘%) (16)
t Ok

0
& (pofﬁsi) +V- {fotanocSz - (/J + ,Um) v&:}

&

. 1)
:fx k_ (Cl G, — Csz&x)
o

where the empirical constants C; = 1.44; C, = 1.92; 0, = 1.2 and 6, = 1.0. G, is

the turbulence production due to viscous and buoyancy forces, which is modeled
as follows:

Gy = 1, VU, - (VU, + VUT) — ’%g Vp (18)
P
where o, = 1; , correspond to the turbulent viscosity defined by:
K
Hiy = CuPy <_) (19)
o

where ¢, is a constant equal 0.99.

2.4 Thermal Energy Equation

The thermal energy equation for the multiphase flow is given by:

0
or (fﬁphx) +V. [fx(perthx - XO(VT“)} =0y + S (20)

where h,, T,, A, denote the static enthalpy, the temperature, and the thermal
conductivity of phase o, S, describes external heat sources; Q, denotes interphase
heat transfer across interfaces with other phases, and is given by:

0, = ZhaﬁAaﬂ (T[} - Tac) (21)
2=

here, h,p is the heat transfer coefficient, which is the amount of heat energy
crossing a unit area per unit time per unit temperature difference between the
phases.

The Nusselt number (Nu,;) is the ratio of convective to conductive heat transfer
across (normal to) the boundary, and is given as follows:
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e For the particle model

ixNua/;

b (22)

hyp =

where dg is the diameter of dispersed phase. The Nusselt number can be
obtained by empirical correlation, for example, the Ranz—Marshall correlation
for spherical particles:

Nu,s = 2 + 0.6Re’ Pr’? (23)

with 0 < Re <200 and 0 < Pr < 250. Here, Pr is the Prandtl number given
by:

C
pr = Hz=re (24)

v

where C,, represents the specific heat of the phase a.
e For the mixture model
AxpNuy,

hyp = % (25)

af

where d, s is the mixture length scale and 2,4 is a mixture conductivity scale,
given by:

Aap = falo + g (26)

It is noticed that Eq. 26 corresponds to the weighted equations that account the
effect of the volumetric fraction of the phases.

3 Heat Transfer and Fluid Flow in Catenary Riser

On offshore structures are usually flexible pipes connecting the platform with the
Christmas tree at points further away, which give the riser configuration in the
form of a catenary. Often these pipes are surrounded by buoyancy modules to
reduce their weight, especially when it is used in deep water. In many circum-
stances, the mixture flowing through curved pipelines can be greatly affected by
the maldistribution of the phases. Situations more dramatic occur when the fluid
flow is accompanied by heat transfer. In this case we have paraffin deposition and
higher oil viscosity into the pipe which provokes increase of the pumping power
and until flow obstruction for severe situations.

The complexity of the phenomena associated with the maldistribution of phases
has been addressed by a particular flow pattern during the transport of produced
fluids and sediments from the well on the seabed to the production platform. In this
sense, a numerical study was developed for the annular heavy oil-water flow at a
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=1 Outlet

1226 m

Water inlet

Heavy oil inlet
A
X

Fig. 1 Illustration of catenary riser and dimensions

submerged catenary riser illustrated in Fig. 1 considering a non-isothermal flow
and unsteady state regime.

3.1 Boundary Layers and Physical Properties

A numerical solution for conservation equations was developed using ANSYS
CFX Commercial code which the following initial conditions and boundary
conditions applied to the catenary riser illustrated in Fig. 1.

(a) For the initial conditions, it was considered that the catenary riser is full with
water, and it has a null velocity vector (uy,, = uy,,, = uz,, = 0).

(b) Uniform velocity and volume fraction of water and heavy oil at the inlet
surfaces are given as follows:
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Table 1 Simulations data using core-flow

Case u, (m/s) u,, (m/s) T, (K) T, (K) T, (K)
1 1.20 1.90 323 298 283
2 1.20 1.90 373 298 283
3 1.20 1.90 423 298 283
4 1.20 1.90 473 298 283
5 1.20 1.90 523 298 283

u,, inlet heavy oil velocity; u,, inlet water velocity; 7, inlet heavy oil temperature; 7,,, inlet
water temperature; 7, wall temperature

e Water inlet:
Uz = Uy
R, <r<R; fw =1
=
z=0 Uz0 = Uxo = Uxw = Uyo = Uyw :fo =0
T=T,

values of uw and Tw are shown in Table 1
e Heavy oil inlet:

Uz o = Up
0<r<R fo=1
=
z=0 Uzw = Uxo = Uxyw = Uy o = Uyy :ﬁ) =0

T=T,

values of uo and To are shown in Table 1

(c) No slip conditions at the wall catenary riser/fluid interface:

Uyw = Uy = Uy = 0

= Uyo = Uy = Uz =0
T=T,

r:R2
0<z<L

values of Tp are shown in Table 1
(d) Static pressure on the outlet catenary riser is equal to 98 kPa.
(e) The drag coefficient Cp = 0.44.

Aiming to compare the results of the transport of heavy oils using core-annular
flow with oil and water single-phase flow the new values of inlet velocities of
water (u,,5) and heavy oil (u,,) was determined. The values of these velocities were
determined by making the sum of heavy oil and water volumetric flow rate equal
to the mixture, Q,,. Then, we can write:

4"Qm

Uys = Ups =
nD?

(27)

Here D corresponds to the catenary riser diameter.
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Table 2 Simulations data using single-phase flow to water and heavy oil

Case Ugys (M/s) Uges (mM/s) Tas (K) Tes (K) T, (K)
14 1.33 1.33 423 298 283
Case Uoys (/5) Uoes (/s) Ty (K) T (K) T, (K)
15 1.33 1.33 423 298 283

Uyas, inlet heavy oil velocity in the annular section; u,,, inlet water velocity in the annular
section; u,., inlet heavy oil velocity on the circular section; u,,, inlet water velocity on the
circular section; T, inlet temperature on the annular section; 7, inlet water temperature on the
cylindrical section; 7, wall temperature

Table 3 Thermal—physical properties of the fluid phases

Produced water Heavy oil
Density (kg/m®) 997 989
Viscosity (Pa 5)* Ky = (40.I2—0.005211§4§7-T)-T—10()0 [72,3935(, T Toin )}
U, =51.87-¢e
Heat capacity (J/kg K) 4,181.7 1,800
Thermal conductivity (W/m K) 0.6069 0.147
Surface tension (N/m) 0.062

# Produced water viscosity correlation was based in the work of Babadagli and Al-Bemami [29]
with 72 < T < 440°F (Fahrenheit)

Parameters 7,,;, and T,,,, of heavy oil viscosity correlation is 273 K and 573 K, respectively
(Perry [30])

In Table 2 we illustrate the inlet velocities to water and heavy oil used to
simulated the water and heavy oil single-phase flows.

The thermal—physical properties of water and heavy oil used in all simulations
are shown in Table 3.

3.2 Numerical Grid

All simulations were developed using the numerical grid illustrated in Fig. 2. By
using the ANSYS CFX-Build 5.5 an unstructured mesh was obtained after several
refinements contained 346,075 elements. This mesh was optimal for good pre-
dictions and reasonable computational time for simulations.

3.3 Hydrodynamics Effects

In order to illustrate the formation of core-annular flow on the catenary riser we
present the volume fraction fields in the yz plane passing through the axis in Fig. 3.
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Fig. 2 Numerical mesh used in all simulations

Note that there is a formation of an annular pattern that moves along the catenary
riser. We can observe near the inlet section that the density difference between the
phases tends to lift the core in the upper part of the pipe (Fig. 4). In Fig. 3b, c, d it
can be observed the influence of pipe curvature about phases distributions. It is
verified that the heavy oil tends to collide with the wall in the lower region of the
catenary (Fig. 3b), and the lubricating forces tend to move the core to the centre. A
competition between these effects gives a variation in the position of the core
inside the catenary (Fig. 3c, d). When lubricating forces are small (small water
velocity) the core approaches of the pipe touching the wall as shown in Fig. 5. This
figure displays that oil touches the inner wall of the catenary in different positions,
which can be attributed to the imbalance between the forces acting on the annular
flow. The difference of density makes the oil-core to move closer to the upper
wall of the catenary, while the lubrication forces tend to repel the core to
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= 423 K (Case 3)

Fig. 3 Heavy oil volume fraction fields on the yz plane at r = 60 s and T,
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Fig. 4 Heavy oil volume fraction fields on several cross sections at # = 60 s and 7, = 423 K
(Case 3)

catenary center. Similar results were obtained by Bensakria et al. [7], Huang et al.
[10], Ooms and Poesio [14], Ooms et al. [16] and Vanaparthy and Meiburg [27].
However, all these studies are related to horizontal tubes. Bannwart et al. [6]
reports that wettability phenomena play an essential role in the stabilization of
horizontal core-annular flow. In order to keep the viscous core completely sur-
rounded by water for a long time, the pipe wall must exhibit a hydrophilic-
oleophobic behavior, i.e., interfacial tension forces must overcome oil-wall
adhesion forces.

Figure 6 shows a detail referring to Fig. 3. In this figure are displayed the
superficial velocity vector field and a zoom of the area highlighted. It can be
observed that there is a sudden reduction of the water velocity close to the wall,
leading to near-zero values. This fact may be verified in Fig. 6b, c.

Figure 7 presents the variation of the pressure drop versus oil to water velocity
ratio. According to this figure, the two-phase pressure drop increases by increasing
the oil velocity for fixed water velocity, which can be associated with increased oil
concentration in the film of water that surrounds the core (Fig. 3, 4).

The absolute pressure drop as a function of the operation time in the catenary
riser was measured with or without water lubrication. Results are presented in
Fig. 9 (Case 3—Table 1). By using water lubrication, it can be observed an
increase of the absolute pressure drop, which becomes almost constant after the
first 20 s (approximately 150 kPa). Without lubrication, it can be observed an
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Fig. 5 Heavy oil volume fraction fields on the wall of the catenary at t = 60 s and 7, = 423 K
(Case 3)

@ (b) (©)

Fig. 6 Details referring to Fig. 3 a oil volume fraction distribution; b water superficial velocity
vector field; ¢ zoom of the vector field highlighted
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adverse behavior and it is verified a decrease of absolute pressure drop with
the time.

Comparisons between absolute pressure drop with and without lubrication show
a large discrepancy as one can see in Fig. 9. The absolute pressure drop for heavy
oil transportation without lubrication was 3.28 times higher than with lubrication
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Fig. 10 Heavy oil temperature fields on the yz plane at = 60 s and 7, = 423 K (Case 3)
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(156.5 kPa). However, when comparing the results of the absolute pressure drop
between the annular-core flow and the water single-phase flow, we get 1.59 core-
flow to water ratio only.

3.4 Heat Transfer Effects

The effect of the temperature on the heavy oil transportation using the core-flow
technique was also investigated. In Fig. 8 are represented the numerical results of
the pressure drop as a function of the oil temperature in the entrance. The results
show a linear decrease of the pressure difference with temperature, as expected,
with a slope of —231.58 Pa/K. According to Bensakhria et al. [7], the addition of
heat transport system provides a reduction of pressure drop in the flow of heavy
oil.

As we already pointed out, the decrease of the absolute pressure drop for the
heavy oil single-phase flow (Fig. 9) in the first 20 s, giving a difference (between 2
and 20 s) of approximately 164 kPa. Such result is due to the boundary layer
imposed in the entrance section (7, = 423 K), which provides a reduction in
absolute pressure drop due to reduced heavy oil viscosity. This fact can be better
understood when observing the Fig. 10, which represents the heavy oil tempera-
ture fields in the yz plane.

4 Conclusions

In this chapter, we have presented an introduction to multiphase flow, its concepts,
definitions, flow patterns, governing equations and typical application for core-
annular flow of water and heavy oil in catenary riser. Numerical results were
obtained by using the ANSYS CFX commercial code. Discussion about the heavy
ultraviscous oil transportation is given too. We have clarified that the interest in
this type of problem is motivated by its importance to oil companies.

In agreement with the analyzed results, the following conclusions may be
derived:

e We observed the presence of a water film between the core and the catenary
riser wall, characterizing the core-annular flow;

e Confirmed the presence of regions with points of adhesion of heavy oil on the
wall of the catenary;

e The use of core-annular flow provided to reduce the absolute pressure drop by
3.28 times compared with heavy oil single-phase flow;

e The linear decrease of pressure drop as a function of temperature is due to
reduced viscosity of the fluids.



Heavy Oils Transportation in Catenary Pipeline Riser 249

Acknowledgments The authors thank to Brazilian offices CNPq, ANP/UFCG-PRH-25, FINEP,
and CAPES, to Brazilian private enterprisess PETROBRAS and JBR Engenharia LTDa, for the
granted financial support and to researcher reported in the text for their contributions for
improvement of this work. The authors acknowledge also the opportunity given by the Editors to
present our researches in the chapter.

References

10.

11.

12.

13.

14.

15.

16.

18.

. Andrade, T.H.F.: Numerical study of heavy oil transport on pipe lubrificated by water. Master

Sci. Chem. Eng. Federal University of Campina Grande, PB-Brasil (2008) (In Portuguese)

. ANSYS: Solver theory guide of ANSYS CFX 11.0. ANSYS Europe Ltd, USA (2006)
. Arney, M.S., Ribeiro, G.S., Guevara, E., Bai, R., Joseph, D.D.: Cement-lined pipes for water

lubricated transport of heavy oil. Int. J. Multiph. Flow 22, 207-221 (1996)

. Bai, R., Chen, K., Joseph, D.D.: Lubricated pipelining: stability of core-annular flow. Part. 5,

experiments and comparison with theory. J. Fluid Mech. 240, 97-132 (1992)

. Bannwart, A.C.: A simple model for pressure drop in horizontal core annular flow. J. Braz.

Soc. Mech. Sci. 21, 233-244 (1999)

. Bannwart, A.C., Rodriguez, O.M.H., Trevisan, F.E., Vieira, F.F., de Carvalho, C.H.M.:

Experimental investigation on liquid-liquid-gas flow: flow patterns and pressure-gradient.
J Pet. Sci. Eng. 65, 1-13 (2009)

. Bensakhria, A., Peysson, Y., Antonini, G.: Experimental study of the pipeline lubrication for

heavy oil transport. Oil Gas Sci. Technol. 59, 523-533 (2004)

. Crivelaro, K.C.O., Damacena, Y.T., Andrade, T.H.F., Lima, A.G.B., Farias Neto, S.R.:

Numerical simulation of heavy oil flows in pipes using the core-annular flow technique. WIT
Trans. Eng. Sci. 63, 193-203 (2009)

. Damacena, Y.T.: Reduction of friction during the transport of heavy oils in pipelines.

Monogr. in Mech. Eng., Federal University of Campina Grande, p. 111 (2009) (In
Portuguese)

Huang, A., Christodoulou, C., Joseph, D.D.: Friction factor and holdup studies for lubricated
pipelining-ii laminar and k-e models for eccentric core-flow. Int. J. Multiph. Flow 20,
481-491 (1994)

Joseph, D.D., Bai, R., Chen, K.P., Renardy, Y.Y.: Core-annular flows. Annu. Rev. Fluid
Mech. 29, 65-90 (1997)

Kleinstreuer, C.: Two-phase flow: theory and applications. Taylor & Francis, New York
(2003)

Oliemans, R.V.A., Ooms, G., Wu, H.L., Duijvestijn, A.: The core-annular oil/water flow
turbulent-lubricating-film model and measurements in a 5 cm pipe loop. Int. J. Multiph. Flow
13, 23-31 (1987)

Ooms, G., Poesio, P.: Stationary core-annular flow through a horizontal pipe. Phys. Rev. 68
(2003)

Ooms, G., Segal, A., Van Der Wees, A.J., Meerhoff, R., Oliemans, R.V.A.A.: Theoretical
model for core-annular flow of a very viscous oil core and a water annulus through a
horizontal pipe. Int. J. Multiph. Flow 10, 41-60 (1984)

Ooms, G., Vuik, C., Poesio, P.: Core-annular flow through a horizontal pipe: hydrodynamic
counterbalancing of buoyancy force on core. Phys. Fluids, (2007) 19:092103-092103-17

. Pereira Filho, G.H.S.: Non-isothermal heavy oils transportation in submerged risers Monogr.

Mech. Eng. Federal University of Campina Grande, p. 111 (2010) (in Portuguese)

Prada, JJW.V., Bannwart, A.C.: Modeling of vertical core annular flows and application to
heavy oil production.In: Proc. of ETCE/OMAE: energy for the new millen, February 14-17,
New Orleans, LA (2000)



250

19.

20.

21.

22.

23.

24

25.

26.

217.

28.

29.

30.

Severino R. de Farias Neto et al.

Prada, J.W., Bannwart, A.C. Pressure drop in vertical core annular flow. J. Fr. Soc. Mech. Sci.
23 (2001)

Preziosi, L., Chen, K., Joseph, D.D.: Lubricated pipelining: stability of core-annular flow.
J. Fluid. Mech. 201, 323-356 (1989)

Ranade, V.V.: Computational flow modeling for chemical reactor engineering. Academic
Press, San Diego (2002)

Rodriguez, O.M.H., Bannwart, A.C.: Analytical model for interfacial waves in vertical core
flow. J. Pet. Sci. Eng 54, 173-182 (2006)

Rodriguez, O.M.H., Bannwart, A.C.: Experimental study on interfacial waves in vertical core
flow. J. Pet. Sci. Eng. 54, 140-148 (2006)

. Rodriguez, O.M.H., Bannwart, A.C., Carvalho, C.H.M.: Pressure loss in core-annular flow:

modeling, experimental investigation and full-scale experiments. J. Pet. Sci. Eng. 65, 67-75
(2009)

Rovinsky, J., Brauner, N., Moalem Maron, D.: Analytical solution of laminar two-phase flow
in the limit of fully eccentric core-annular configuration. Int. J. Multiph. Flow 23, 523-543
(1997)

Santos, J.S.S.: Numerical study of the lubrification of submerged risers for the heavy oil
transportation, Master Sci. Chem. Eng. Federal University of Campina Grande, PB- Brasil
(2009) (In Portuguese)

Vanaparthy, S.H., Meiburg, E.: Variable density and viscosity, miscible displacements in
capillary tubes. Eur. J. Mech B/Fluids 27, 268-289 (2008)

Ghosh, S., Mandal, T.K., Das, G., Das, P.K.: Review of oil water core annular flow. Renew.
Sustain. Energy Rev. 13(8), 1957-1965 (2009)

Babadagli, T., Al-Bemani, A.: Investigations on matrix recovery during steam injection into
heavy-oil containing carbonate rocks. J. Petroleum Sci. Eng. 58, 259-274 (2007)

Perry, J.H. (ed.): Chemical Engineer’s Handbook, 4th edn. McGraw-Hill, New York (1963)



First Principle Study on the Lead-Free
Perovskite Structure of SnTiO;

M. Taib, K. H. K. Arifin, M. K. Yaakob, A. Chandra,

M. F.
A. K. Arof and M. Z. A. Yahya

Abstract The electronic band structure, density of states, dielectric function, born
effective charges, and phonon dispersion of perovskite SnTiO; (ST) are investi-
gated from the first principles calculation using Density Functional Theory within
local density approximation. Calculated along the high symmetry direction in the
Brillouin zone, the resulting band gap of ST is 0.967 eV. The dielectric function in
this work shows the details of the absorptive transitions from the valence bands to
the conduction bands in the ST compound. In addition, an analysis of the born
effectives charges and phonon dispersion of ST shows that this compound has a
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covalent band between Ti—O and Sn—O that provides a stable tetragonal structure,
P4mm, which refers to the imaginary value of TO1(—213.222 cm™') in phonon
calculation. All results are compared, and they showed good agreement with other
calculated values using different methods.

Keywords Bandstructure - Density of state - Dielectric function - Phonon dispersion -
Born effective charges - Density Functional Theory - Local density approximation

1 Introduction

Numerous studies on the crystal in the perovskite family have been conducted to
meet the high demand brought about by the rapid development of ferroelectric
devices such as non-volatile memory, optical waveguides, laser frequency mod-
ulations, and piezoelectric transducers [1-3]. Lead-based ferroelectric ceramics
such as PbTiO3 and PbZrO; are important members of the perovskite family that
have widely used in industrial applications. However, PZT (Pb(Ti,Zr)O3) materials
contain toxic Pb, which can contribute to serious environment pollution [4]. To
overcome this problem, the Pb atom in A-site perovskite ceramic must be replaced
with an alternative material such as Tin (Sn), which is expected to give good
performance. SnTiO5 (ST) is a new potential ferroelectric material because of its
high dielectric constant and polarization.

Yahong et al. [4] showed that the disproportion and oxidation of Sn** can be
avoided using a spark plasma sintering method. The results of their experiments
showed that perovskite oxide BaTiO3 had excellent ferroelectric properties, such
as visible light absorption ability. Suzuki et al. [5] also investigated the charac-
teristics of Sn** in (Ba;_, Ca,)TiO; compound and found that Sn** could change
or enhance the properties of the material when it was doped in the system. They
reported that the results of the tetragonality increased directly with increased Sn**
in the (Ba;_, Ca,)TiO5; compound as confirmed by X-ray diffraction profiles. In
addition, the phase transition temperature of (Ba,_, Ca,)TiO; increased from 130
to 155°C when doped with Sn**.

Other investigations delved into the use of the first principles calculation on ST.
This study is important in predicting the properties of ST without having to
synthesize the compound. Konishi et al. [6] calculated the electronic structure of
ST using plane-wave pseudopotential (PWPP). Lebedev [7] calculated the phonon
spectra of ST using ABINIT computer code, while Uratani et al. [8] used ST in the
tetragonal structure (P4Amm and P4/mm) and Matar et al. [9] reported on the
properties of ST in tetragonal structure using the VASP computer code. Matar also
reported on the moment of spontaneous polarization for an ST value of
Psy = 1.1 cm™2, as large as that of PbTiO3; Pgr = 0.72 cm 2. These studies
indicated the excellent properties of ferroelectric oxide, which could be potentially
used in ferroelectric devices.
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Fig. 1 Cubic structure of ST
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However, no other detailed analysis of the electronic, optical, and structural
properties in Pm3m (cubic) structure of ST using the Cambridge Serial Total
Energy (CASTEP) computer code has been reported. In this work, the first
principles studies on the properties of ST were performed using CASTEP
computer code. The behavior and characteristics of ferroelectricity, such as energy
band gap, density of state (DOS), dielectric function, born effective charges
(BEC), and phonon dispersion are studied and are compared with other compu-
tational methods such as ABINIT and VASP.

2 Computational Method

In this study, the first principle calculations were performed using the the
Cambridge Serial Total Energy (CASTEP) computer code [10]. In all the calcu-
lations of ST compound in the cubic ABOj perovskite structure (Pm3m space
group), the A (Sn) occupied the corner of cubic structure (0, 0, 0), B(Ti) in the
body-centered cubic at (0.5, 0.5, 0.5) and O atoms at the face-centered cubic
(0, 0.5, 0.5) and (0.5, 0, 0.5), as shown in Fig. 1. The electrons in Sn (5s, 5p),
Ti (3d 4s), and O (2s 2p) were treated as valence states. The exchange—correlation
energy functional was evaluated within the local density approximation (LDA) using
the Caperly—Alders parameterized by the Perdew—Zunger scheme (CA-PZ) [11, 12]
as electron—ion interactions as the Vanderbilt ultrasoft pseudo-potential [13].

To determine the structural parameters of ST, CASTEP was used based on the
Broyden Goldfarb Shenno (BFGS) minimization technique. This method usually
provides the fastest way to find the lowest energy structure. It is the only scheme
that supports cell optimization in CASTEP. This geometry optimization was
performed with convergence of energy change per atom of less than 5 x 107° eV,
residual force of less than 0.01 eV/A, stress below 0.02 GPa, and displacement of
atoms during the geometry optimization of less than 0.0005 A.

The structural, band structure, and DOS of ST were calculated with the kinetic
cut-off energy for the plane wave expansion taken as 380 eV and 6 x 6 x 6
k-points according to the Monkhorst—Pack scheme in the Brillouin zone integra-
tion, which was employed to obtain good convergence.

The optical properties may be acquired from the knowledge of the complex
dielectric function &(w) = &;(w) + iex(w). In this work, &(w) was performed using



254 M. F. M. Taib et al.

LDA, whose advantage [14] is the largest underestimation of &(w) peaks of
materials. The imaginary part &;(w) was calculated from the momentum matrix
elements between the occupied and unoccupied wave functions within the selec-
tion rules. The real part ¢;(w) of the dielectric function can be extracted from & (w)
using the Kramers—Kroning relation. Similar to those in the band structure and
DOS calculations, phonon dispersion curves were calculated within LDA for ST.
However, for the BEC and phonon dispersion calculation, the norm-conserving
pseudo-potential was used with 550 eV cut-off energy.

3 Results and Discussions

(a) Band structure and DOS of ST

The calculation of ST was performed at parameter a = 4.01A at cubic
structure. Figure 2a shows the calculated electronic-band structure of ST along the
various symmetry lines G, M, R, and X in the Brillouin Zone using LDA approach.
In this work, the highest valence bands (VB), which lie close to the Fermi level
(Eg), are dominated by the O 2p at X point. The conduction bands (CB) have
compounds primarily from the Ti d-state and the bands occur at G point for ST.
The result for ST shows an indirect band gap with 0.967 eV. The value of energy
band gap calculated in this work is significantly less than the 1.19 eV obtained by
Rozo [15], which was obtained using DFT with the generalized gradient
approximation (GGA).

The LDA method underestimates the band gap; thus, to adjust the theoretical
band gap to the experimental result, we estimated a multiplicative correction factor
of 1.66 to the calculated band gaps [16]. We estimated the experimental value of
the band gap for ST to be 1.605 eV. The value of band gap of ST was small and
needed some modification to enhance its value and become useful for ferroelectric
application.

The total and partial DOS of ST were calculated to understand the chemical
bonding of the materials as shown in Fig. 2b. The lowest state for ST was O 2s and
was located at around —16 eV. In our calculation, the O 2s states were separated
from the Sn 5s state approximately 8.5 eV in ST. In these compounds, the upper
valence parts were dominated by O 2p states and the CB had compounds primarily
formed from the Ti d-state and Sn 5p. In addition, the CB of ST had small
contributions from Sn 5p. From ST, the lowest CB comprised Ti 3d and Sn 5p
formed at 0.97-9.5 eV. The top VB was dominated by O 2p and consisted of Sn 5s
at —7.5-0 eV. The energy gap existing in the structure was separated between Ti
3d treated as conduction state and maximum O 2p.

(b) Dielectric function of ST

The calculated optical properties for dielectric function for ST for the energy
range of up to 50 eV are presented in Fig. 3. To explain the peak observed in the
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Fig. 2 Calculated a energy band structure and b total DOS of ST

optical spectra, it is customary to consider transitions from occupied to unoccupied
bands in the electronic energy band structure, particularly at high symmetry points
in the Brillouin zone [17]. These calculated optical properties (dielectric function)
could be helpful in understanding the electronic structure in the cubic phase of ST.
Figure 3 shows the real and imaginary parts of the dielectric function for cubic ST
compound. The imaginary part can be obtained directly from the band structure,
while whereas the real part can be derived according to the Kramers—Kronig
relations explained in the computational method.

Figure 3 illustrates the four peaks of the imaginary part, which are at 4-37 eV.
These peaks are the absorptive transitions from the VB to the CB. These peaks are
labeled A, B, C, and D and are located at 4.37, 13.6, 20.1, and 36.3 eV, respec-
tively. According to the analysis of the electronic structure of cubic ST in Fig. 2,
peak A originated from the transitions of O 2p into Ti 3d CB, peak B originated
from the transitions of O 2p into Ti 3d CB as well as O 2p into Sn 5p and Ti 4s CB,
and peak C originated from the transitions of O 2s and Sn 5s into Ti 3d CB. Peak D
had no transition because the DOS in Fig. 2 showed no peak. For the real part,
there were three peaks located at 2.8, 12.7, and 34.8 eV, respectively. Addition-
ally, the calculated static dielectric constant of Pm3m cubic ST was about 9.75.

(¢) BEC and phonon dispersion of ST

Table 1 illustrates the BEC of ST in the cubic structure, which was compared
with the work of Lebedev [7]. However, the work of Lebedev was performed using
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Fig. 3 Graph of the real and 16
imaginary parts of the
dielectric function of ST
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Table 1 Bond effective ABO;
charges of ST compounds
ST [71

Z*Sn 4.605 4.255
Z*Ti 6.548 7.529
Z*0L —2.882 —2.745
Z*Oll —5.389 —6.294

the ABINIT computer code. BEC is important to identifying the long-range part of
the interatomic force constants and making the interpolation of phonon frequency
tractable. For the case of ST, Z*Ti (6.548) and Z*Oll (—5.389) were anomalously
large with respect to the nominal ionic charges (+4 for Ti and —2 for O). This
surprising phenomenon was explained recently in connection with dynamic
charges of hybridization between O 2p with Ti 3d [18-20]. The Z*Sn is signifi-
cantly greater, indicating that the bonding Sn—O becomes more covalent in
character and the value of Z*Sn for ST is 4.605 in Table 1.

Phonon dispersion is important in determining the properties of solids,
particularly when referring to the frequencies of vibration atoms in a solid
structure. The unstable modes, which determine the nature of the transition of the
compounds, have imaginary frequency (below the zero frequency line). In this
work, the unstable modes of ST exhibited at X, M, R, and G points are illustrated
in Fig. 4. The longitudinal optical existed at 6, 12 and 15th mods with frequencies
of 73.639 (LO1), 351.475 (LO2), and 780.969 cm™' (LO3) at G point, respec-
tively. In contrast, the first transverse optical for ST existed in the imaginary part
with a value of —213.222 cm ™! (TO1) and remained unstable along the X, R, M,
and G points, while TO2 and TO3 existed at the 10-11 and 13-14 modes with



First Principle Study on the Lead-Free Perovskite Structure of SnTiO5

Fig. 4 Calculated phonon
dispersion for ST
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208.887 and 631.475 cm™ ", respectively. The instability of ferroelectric oxide of a
transverse optic (TO1) in the phonon dispersion is an important key to explaining
structural instability and lattice dynamic.

In this work, we expected that the nature of the ferroelectric instability of the ST,
would most favorably be the tetragonal PAmm phase due to the imaginary phonon
energies associated with structural instability of the crystals represented at TO1 (G
point). The analysis emphasized the correlation of the Ti displacement and showed
that the Ti and O atomic displacements were only weakly coupled. However, this
small coupling remains important in reproducing ferroelectric instability. Hence, ST
is a good candidate to replace PbTiO3 because both compounds have similar prop-
erties especially in the transition structure. Based on the analysis of phonon
dispersion in this work, ST can change to tetragonal structure (P4mm) and can be
expected to have excellent properties for application to ferroelectric devices.

4 Conclusion

In this paper, we described the first principles band structure, DOS, dielectric
function, BEC, and phonon dispersion of cubic ST. All calculations show good
agreement with other reported calculations. The results showed that the energy
band gap of ST was 0.967 eV (indirect band gap at X—G point). In addition, the
transition electron from the VB into CB was explained by the peak occurring in the
dielectric function of ST. The BEC results proved that Ti—-O and Sn—O bonds in
the ST compound have covalent characteristics. The phonon dispersion calculation
shows that the ST compound provides a stable tetragonal structure PAmm relative
to cubic. However, the single-component ferroelectric material in bulk of ST
requires some modifications to display superior functional properties, which would
be beneficial for future applications, particularly in enhancing the energy gap using
the first principle calculation.
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Strength Anisotropy in Prestressing
Steel Wires

Jesiis Toribio, Beatriz Gonzalez and Juan-Carlos Matos

Abstract Cold-drawn prestressing steel wires exhibit strength anisotropy in the
form of fracture path deflection towards a direction approaching the wire axis, or
cold drawing line, as a consequence of the pearlitic microstructure orientation
induced by the manufacturing procedure. Such a crack path deflection is initiated
at certain nuclei (fracture origins) at which axial cracking appears in the cold
drawing direction (or wire axis) in the form of micro-cleavage units producing a
macroscopic phenomenon of pop-in in the load—displacement curve. This chapter
shows that such fracture initiators appear at a certain distance from the fatigue pre-
crack tip at which a local maximum of the cleavage stress is located.
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1 Introduction

It is well known that macroscopic fracture behaviour of materials is strongly
dependent on microstructural features controlling the specific micromechanisms
of fracture in the process zone [3, 6]. In the case of randomly oriented pearlitic
microstructures, the prior austenite grain size was shown to be the micro-
structural parameter governing the fracture process [1, 5]. However, when
pearlitic steels are heavily cold drawn to produce prestressing steel used in
prestressed concrete, such a manufacturing procedure affects the microstructural
arrangement in the form of a progressive orientation and slenderising of the
pearlitic colonies in the drawing direction [8, 9], together with an also pro-
gressive orientation of the ferrite/cementite lamellae in the drawing direction
and an increase of packing density, i.e., a drawing-induced decrease of inter-
lamellar spacing of pearlite [10, 11].

Previous research work [12] established the microstructural bases of the
anisotropic fracture behaviour of heavily drawn steel, assuming that such a
particular behaviour was due to the existence of the so called pearlitic
pseudocolonies (cf. [12]), i.e., extremely slender colonies, aligned quasi-parallel
to the wire axis or drawing direction, and with specially high local interlamellar
spacing due to the fact that the cementite plates are not oriented along the wire
axis direction and in some cases are pre-fractured by shear during the manu-
facturing process, according to the model proposed by [4]. Thus, the pearlitic
pseudocolonies are preferential fracture paths with minimum local fracture
resistance.

This chapter goes further in the analysis of anisotropic fracture behaviour of
heavily drawn steels and associates fracture path deflection in a direction close to
the wire axis with a local maximum of a cleavage stress perpendicular to the axial
crack, i.e., parallel to the initial macroscopic crack, such a stress being computed
at the fracture instant.

2 Experimental Procedure

Material was an eutectoid steel whose chemical composition is given in Table 1.
It comes from a previously hot rolled bar that was heavily cold drawn in seven
passes (plus a stress relieving procedure to eliminate or, at least reduce, residual
stresses) finally producing heavily drawn pearlitic steel in the form of prestressing
steel wires with an oriented microstructure, as seen in Fig. 1 in which the longi-
tudinal section shows an oriented arrangement, whereas the transverse section
shows a randomly-oriented microstructure.

The drawing process produces important microstructural changes in the steel
at the two basic microstructural levels of pearlitic colonies and lamellae. The
colonies become progressively enlarged and oriented in axial direction with
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Table 1 Chemical composition of the steel

% C % Mn % Si % P % Cr % V
0.789 0.698 0.226 0.011 0.271 0.078

Fig. 1 Longitudinal (top)
and transverse (bottom)
metallographic sections of the
cold drawn prestressing steel
wire. In the longitudinal cut,
the wire axis or cold drawing
direction corresponds to the
vertical side of the
micrograph, whereas the
transverse cut is oriented in
radial direction

cold drawing [8, 9]. With regard to the lamellae, they are also axially oriented
after drawing and at the same time the pearlite interlamellar spacing decreases
with the level of cumulative plastic strain [10, 11]. Therefore, the micro-
structure becomes progressively packed and oriented with cold drawing, and
such an orientation is the cause of the anisotropic fracture behaviour of the
cold drawn steel.
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Fig. 2 Curve g—¢ of the 2.0
considered steel
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Mechanical properties of the material, obtained from standard tension tests
(Fig. 2) were as follows: Young’s modulus E = 205 GPa, yield strength
oy = 1.57 GPa, ultimate tensile strength (UTS) ogr = 1.84 GPa and strain at UTS
er = 0.053. This implies a significant improvement of conventional mechanical
properties in relation to plain hot-rolled pearlitic steel (not cold drawn). In par-
ticular, both yield strength and UTS clearly increase with cold drawing.

In addition, fracture test on prestressing steel wire allowed the evaluation of the
material fracture toughness in transverse direction Kjc (0°) = 152.1 MPa m'"? and
the same critical parameter in axial direction Kjc (90°) = 54.2 MPa m'?. The
cold drawing procedure generates microstructural orientation in the pearlitic
arrangement of the steel, cf. Fig. 1, thus producing two different values of the
directional fracture toughness in axial and transverse directions, the axial tough-
ness (associated with longitudinal splitting or delamination) being clearly lower
than the transverse one (linked to fracture of the strongest units), as discussed
elsewhere [2, 13, 14].

Samples for testing were cylindrical rods with a length of 300 mm and a
diameter of 7 mm taken from the commercial wires. After axial tensile fatigue
with a sinusoidal wave (at a frequency of 10 Hz and R-ratio equal to 0) under load
control and decreasing loading steps, specimens were subjected to monotonic
tensile loading under displacement control up to fracture, the crosshead speed
being 2 mm/min. An extensometer with a gage length of 25 mm was placed in
front of the crack mouth (symmetrically in relation to the crack faces), so that both
the load applied on the sample (F) and the relative displacement by the exten-
someter (u) were recorded to plot the load—displacement curve (F—u). Some tests
were interrupted before final fracture in order to perform a fracto-metallographic
analysis on the unloaded sample (evaluating both the fracture path and the
microstructure of the material). To this end, specimens were cut, mounted,
grounded, polished and attacked with 4% Nital.
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Fig. 3 Fracture surface in a sample taking from a commercial prestressing steel wire; fop view
(left) and front view (right)

3 Experimental Results

Fracture surface in heavily drawn steels shows cracking path deflections, so that
the fracture path is not contained in the transverse section of the wire (Fig. 3), with
frequent secondary cracking in axial direction, a signal of anisotropic fracture
behaviour. The fracture angle, in relation to the transverse axis of the wire (i.e., the
fatigue propagation direction), is 39° in heavily drawn steels with a high level of
cumulative plastic strain (1.09) as a consequence of seven steps of cold drawing
undergone by the steel wire.

The F—u plot in the fracture tests on cold drawn steel always consisted of three
stages, as shown in Fig. 4. After an initial elastic period (linear behaviour), the
load F. may be defined as the end of the elastic stage. Later the plot becomes
curved up to a load Fy at which a pop-in appears in the form of sudden (and small)
decrease of load. Finally the increase of load continues up to final fracture at a load
F, max-

The fracto-metallographic analysis of a test interrupted between Fy and F .«
(Fig. 5) shows vertical cracking in axial direction, i.e., parallel to the drawing axis.
The pop-in associated with the load Fy is not produced by plastic yielding but by a
kind of microstructural yielding due to the appearance of the local axial cracking
(cf. Fig. 5). This is consistent with the ideas presented by [7], according to which
the pop-in in the load—displacement curve is produced by a small amount of abrupt
crack extension and could be related to the presence of heterogeneities in the
material in the form of large inclusions, carbides or, in the case of the cold-drawn
pearlitic steel under study, the afore-said pearlitic pseudocolonies or any other
microstructural pre-defect (pre-damage) created in the steel during manufacture by
heavy drawing.

During the critical phase of fracture, the initial fatigue crack tip (left hand side
of Fig. 5) exhibits an increase of crack tip opening displacement (CTOD) in
relation to the typical value associated with subcritical regime of fatigue.
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Fig. 4 Load-displacement
curve in the fracture test
Fmax

Fig. 5 Metallographic
section perpendicular to the
crack front, in a fracture test
interrupted at a load level
after the pop-in, i.e., between
Fy and F,y, cf. Fig. 4,
showing vertical cracking in
axial direction, i.e., parallel to
the cold drawing axis

In addition, a cornered crack tip shape appears in the material and a small micro-
crack initially inclined 60° in relation to the fatigue crack propagation direction.
The vertical cracking (right hand side of Fig. 5) exhibits irregularities in the form
of micro-discontinuities, differences in the size of the crack opening displacement
and small portions of the cracking path oriented in transverse directions. These
vertical cracks are generated by delamination in axial (drawing) direction
accompanied by secondary delamination (also in axial direction) in their vicinity.

Figure 6 shows a metallographic section of the cracking path just before the
fracture instant and the fractographic aspect of the vertical cracking path showing
cleavage appearance (Fig. 7), i.e., unstable (brittle) fracture. This is again con-
sistent with a sudden drop (pop-in) in the load—displacement plot. It is not con-
ventional cleavage, but a sort of oriented and enlarged cleavage, its enlargement
and orientation being in the cold drawing direction (wire axis). Considering the
cleavage facet as associated with a common crystallographic orientation of ferrite
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Fig. 6 Metallographic
section of the cracking path
just before the failure instant

Fig. 7 Fractographic aspect
of the vertical cracking path
showing enlarged-oriented
cleavage
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[5], the enlarged cleavage facet unit could be linked with an oriented and elon-
gated colony of pearlite that undoubtedly maintains a shared crystallographic
alignment during the drawing procedure.

With regard to the appearance of axial cracking not at the crack tip, but a
certain distance ahead of it, the mechanical stress—strain field in the K-dominance
region could be responsible for the described fact, in addition to the clear
microstructural weakness in axial direction (pseudocolonies, micro-cracks, dam-
age, pre-defects, etc.) as a consequence of drawing. Next section of the chapter
provides a numerical analysis to clarify this important item.
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Fig. 8 Full mesh (left) and
detail of the same in the
vicinity of the crack tip
(right)

4 Finite Element Analysis

A large-displacement elastoplastic finite element analysis was performed within
updated lagrangian formulation with additive decomposition of strain rates. The
material properties were those associated with the prestressing steel analyzed in
this chapter (cf. Fig. 2) with elastic—plastic isotropic behaviour and von Mises
yield criterion, and the analysis was performed under the control of the stress
intensity factor K in the K-dominance region, so that a standard geometry with an
edge crack could be used to reproduce the stress—strain state in the vicinity of the
crack tip for any loading level up to final fracture in the tests.

Figure 8 shows the full finite element mesh (left) and a detail of the same
(right) in the close vicinity of the crack tip where mesh refinement is more defined
to properly reproduce the stress gradient in the area. The element type is a four-
node, isoparametric, arbitrary quadrilateral specially design for axisymmetric
applications.

Considering the axial cracking (fracture path deflection) described in the pre-
vious section and associated with cleavage appearance, it is interesting to compute
the values of a cleavage stress which could act as a driving force for cracking (in
addition to the microstructural weakness in that axial direction). To this end, the
opening cleavage stress to produce fracture path deflection in axial (vertical)
direction (perpendicular to the crack plane) should be the horizontal stress in the
crack direction, i.e., the o4, component of the stress tensor, whose distributions for
different loading levels are given in Fig. 9. The loading levels represent ¢./100,
0./10, 6./2 and 0., where o, is the critical remote stress at the fracture instant,
i.e., that applied far from the crack in axial (vertical) direction.

5 Discussion

Numerical results of Fig. 9 show, firstly, that a local maximum of such a cleavage
stress appears at a certain distance form the crack tip (but not exactly at the tip)
and, secondly, that the location of such a maximum moves far from the crack tip as
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o, (GPa)

Fig. 9 Distributions of cleavage stress o4 (X is the crack direction) at increasing loading levels
0./100, ¢./10, 6./2 and o, where o is the critical remote stress at failure. Large deformations at
the crack tip shape are also shown

Fig. 10 Evolution of the o
cleavage stress profile oy, at xx
increasing loading levels

0./100, 0./10, o./2 and o,

e
X

the loading process goes on, as shown in Fig. 10 by means of the cleavage stress
profiles at increasing loading levels, so that the probability of appearance of
cleavage crack deflection increases with the level of loading, the horizontal
cleavage stress being the mechanical responsible for cracking.
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Fig. 11 Pearlitic
pseudocolonies in the steel

In addition to such a mechanical driving force for cracking, the microstructural
weakness must also be taken into account. With regard to this, local weakening
can be observed in heavily drawn steel in the form of pearlitic pseudocolonies
(Fig. 11), special microfracture units oriented in the direction of the drawing axis
where the lamellae are not properly oriented in axial direction and, as a conse-
quence of such a disorientation and of the drawing force, they have anomalous
(very high) local interlamellar spacing (quite higher than the average pearlite
interlamellar spacing). In addition, severe pre-damage appears in the form of
cracking (always in axial direction) as a consequence of the manufacturing pro-
cedure by heavy drawing, as shown in Fig. 12 in which an array of axial (vertical)
cracks is clearly detectable after a metallographic analysis of the supplied wire,
without any previous mechanical action (either fatigue or fracture) on the sample,
apart from the drawing process itself.

From the macroscopic point of view, the combination of axial pre-damage and
the increasing cleavage stress produces the pop-in in the load—displacement plot
(cf. Fig. 4). After this sudden, abrupt, axial, local extension of cracking, the
sample is able to support increasing levels of loading with the main macroscopic
crack and the secondary deflected crack separated by a certain distance. Finally
catastrophic fracture takes place after coalescence between the two cracked areas
following a really tortuous crack path (cf. Fig. 6). In this new fracture surface the
most common fractographic mode is micro-void coalescence (MVC), with the
exception of the frequent vertical walls (deflected crack paths) consistent of ori-
ented and enlarged cleavage.

As a summary, the marked microstructural orientation in pearlitic steel after
cold drawing (at the two levels of pearlitic colonies and lamellae) produces
strength anisotropy in the material. At the macroscopic level, it manifests itself
through the presence of deflections in the cracking path and pronounced initial
fracture angle in relation to the transverse direction, due to the elevated cleavage
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Fig. 12 Axial cracks
(aligned in the drawing
direction) produced by cold
drawing

stress next to the crack tip and the microstructure weakness in axial direction
producing vertical microcracking. At the microscopic level, it manifests itself
through the existence of zones with enlarged cleavage oriented in the drawing axis
direction (over the vertical walls) and fracture regions where the predominant
fractographic mode is MVC (over the transversal and inclined surfaces).

6 Conclusions

The following conclusions may be drawn on the basis of the experimental, frac-
tographic and numerical analysis performed in this chapter on commercial pre-
stressing steel:

(I Cold-drawn prestressing steel wires exhibit strength anisotropy in the form of
fracture path deflection towards a direction approaching the wire axis, or cold
drawing direction.

(IT) Such an anisotropic behaviour is a clear macroscopic consequence of the
pearlitic microstructure orientation induced by the manufacturing procedure at
the two levels of the pearlitic colonies and lamellae.

(IIT) Crack path deflection is initiated at certain nuclei (fracture origins) at which
axial cracking appear in the cold drawing direction (or wire axis) in the form
of micro-cleavage units.

(IV) This cracking produces a sudden and small decrease of load in the load—
displacement curve (pop-in phenomenon) as a consequence of the slight loss
of bearing capacity of the sample.

(V) The typical fractographic mode associated with the frequent vertical walls
appearing in the fracture surface is enlarged cleavage, oriented in the drawing
direction. In other fracture areas the failure mode is MVC.
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(VI) The cleavage stress is responsible for this locally deflected cracking
appearing at a certain distance from the crack tip, in addition to the pre-
damage (at the micro-level) after cold drawing.
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Tensile Characteristics of High-Toughness
Steel at High Temperatures

S. H. Park, Y. K. Yoon and J. H. Kim

Abstract In this study, material properties of a high toughness steel under high
temperatures were investigated through the tensile test. A-basis and B-basis
strength are taken from sampling based calculation by using noncentral t-distri-
bution. The sampling-based basis strength gives a more conservative value than
that taken by using a normal distribution. From material properties as a function of
temperature, shear-lip size and morphology of fractured surface, it is confirmed
that there is a ductility minimum temperature at 500°C.

Keywords Tensile test - Sampling-based basis strength - Temperature
Noncentral t-distribution - Ductility minimum temperature

1 Introduction

High-strength and high-toughness steels have traditionally been used in the case of
earth-penetrating munitions or gravity-dropped weapons, which requires an
understanding of the dynamic mechanical properties at relevant strain-rates.
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A structural steel shows different mechanical and thermal properties at room and
high temperatures. So, material characteristics at high temperatures must be
considered in structural design such as aircraft parts.

Aircraft structural design still relies on the deterministic design code such as
federal aviation administration (FAA) regulations. In deterministic design,
conservative material properties such as A-basis or B-basis strength are used and
safety factors are introduced to protect against uncertainties. Generally, the
material properties are acquired from tensile tests and the samples are taken from
material’s population. Moreover, we can only acquire limited number of test data
because of the cost to get test material, the operation time of equipment, etc. So,
the true material’s properties cannot help being estimated from test samples.
Because the nature of mechanical behavior of materials and failure are probabi-
listic, the strength of materials has variations from size effect, surface finish, notch
effect, etc. and the stress varies due to stress concentration, temperature factor,
stress combinations, etc. Therefore, it is compulsory to get A-basis or B-basis
strength from sampling-based method.

Fractography is critical to failure analysis of metals and plastics. This shows us
the mode of failure. It is well known that the ductility minimum occurs in an
intermediate temperature range for all ductile metals and alloys. Fractography is a
useful tool to investigate this ductility minimum temperature.

The purpose of this study is to investigate the material’s tensile properties at
high temperatures. Some methods to calculate the A-basis and B-basis strengths
are reviewed. By detailed investigation on the fractured surface and material
property at elevated temperatures, it will be confirmed that there is a ductility
minimum temperature (DMT).

2 Theory
2.1 Basis of Strength of Material

The allowable stress should be less than the material’s strength to prevent failure.
The material’s strength is determined by standard test methods and specimens. But
it has a statistical distribution from the deviation of manufacture, microstructure,
test environment, etc. Moreover, there is variation of loads acting on the structural
materials from load and environmental conditions. So, the test result of the
material’s strength is non-deterministic but statistical. It is important to investigate
the distribution of the material’s strength to analyze its characteristics statistically.
It is well known that the strength data has a normal distribution [1].

In the statistically-based design approach, the material property of interest must
be regarded as a random variable which is a quantity that varies from specimen to
specimen according to some probability distribution. A designated value for a
material is the minimum value of a material property expected to be used in the
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fabrication of the structure. Basis values are 95% lower confidence limits on
prescribed percentiles, which are also sometimes referred to as tolerance limits.

Aircraft structural design still relies on the FAA deterministic design code. The
FAA regulations (FAR-25.613) [2] state that in deterministic design, conservative
material properties are characterized as A-basis or B-basis values. In U.S. Military
Handbooks, MIL-HDBK-5 J [3] for metallic materials and elements for aerospace
vehicle structures and MIL-HDBK-17-1F [4] for polymer matrix composites, the
detailed methods to determine the allowable stress from A-basis or B-basis for
military planes, light alloy materials and composite materials are described.

In the definition of conservative material properties by the FAA regulation
(FAR 25.613), A-basis value is defined as a 95% lower confidence bound on the
first percentile of a specified population of measurements. On the other hand,
B-basis value is defined as 95% lower confidence bound on the tenth percentile of
a specified population of measurements. In other words, A-basis value is a 95%
lower tolerance bound for the upper 99% of a specified population and B-basis
value is a 95% lower tolerance bound for the upper 90% of a specified population.
A-basis or B-basis material property values depend on the failure path in the
structure. A-basis values are used when there is a single failure path in the
structure, while B-basis values are used when there are multiple failure paths in
the structure.

2.2 Methods to Acquire Basis-Values

According to the military handbook of MIL-HDBK-17-1F, the basis values are
calculated by

Basis = X — ks (1)

where X, sample mean; s, sample standard deviation; k, tolerance coefficient.

One-sided A-basis tolerance factor, ks, for the normal distribution can be
acquired as 1/+/n times the 0.95th quantile of the noncentral t-distribution with
noncentrality parameter 2.326,/n and n — 1 degrees of freedom. An approximation
to the k4 value is

ka ~ 2.326 + exp{1.34 — 0.522 In(n) + 3.87/n} (2)

Similarly, one-sided B-basis tolerance factor, kg, for the normal distribution can
be calculated as 1/+/n times the 0.95th quantile of the noncentral t-distribution with
noncentrality parameter 2.326+/n and n — 1 degrees of freedom. An approximation
to the kg values is

kp ~ 1.282 + exp{0.958 — 0.520 In(n) + 3.19/n} (3)
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Fig. 1 Stress-strength
interference model

Strength

[ I &
Interference Area

Acar [5] suggested the equation to calculate the tolerance coefficient, k, for
normal distribution given by

ety /d, —ab o o2 a ()

k= a=1

a ’ 2(N—1)’

where N, sample size; z;_, critical value of normal distribution that is exceeded
with a probability of 1-p (for A-basis value p = 0.99 while for B-basis value
p = 0.90); z;_,, critical value of normal distribution that is exceeded with a
probability of 1-y (y = 0395 for both A-basis and B-basis values).

For the B-basis value, kg =z;_, =201 = ®(0.1) = 1.282, where ® is the
cumulative distribution function (c.d.f.) of the standard normal distribution.
z01 = @(0.1) = 1.282 is the critical value of normal distribution that is exceeded
with a probability of 10%. Of course, z;_, corresponds to zg os.

One-sided A-basis and B-basis tolerance limit factors, k4 and kg respectively,
for the normal distribution for sample size, n are presented in MIL-HDBK-17-1F
as Tables. For infinite number of samples, n = 0o, k4 = 2.326 and kg = 1.282.

2.3 Determination of Basis Values from Interference Model

The allowable stress and the strength of a material are statistical quantities.
A component, a subsystem, or a system fails when the stress, in general, exceeds
the strength. The reliability of the system or the probability of failure may be
estimated from stress-strength interference model [6], as shown in Fig. 1. In this
model, the shaded portion is an interference area, which is indicative of the
probability of failure.
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Let the probability density function (p.d.f.) for the stress (s) be denoted by fi(s),
and that for the strength (J) by f5(), as shown in Fig. 1. Then, the reliability R is

R= 7 £i(9) /OC £5(8)dé | ds (5)

—00

In general, the strength of a material has a normal distribution. If the applied
stress distributes normally, the p.d.f. for the stress f; (s) and that for the strength f;
(0) are expressed as follows

1 -5\ ?
fi(s) = eié(ﬂ_s) , —00<S§< 00 (6)

V2no,

I =
f5(9) = 5t 2(”"> , —00 <8 <00 (7)
o

Let us define y = ¢ - s. It is well known that the random variable y is normally

distributed with a mean of y, = 5 — u, and a standard deviation of gy = 4/ o% + a2.

Then, the reliability R which is the probability to overcome the applied stress can be
expressed in terms of y as

R=P(6>s5)=P(y>0)

:7 L), ®)
0

o,V2m

If we let z = (y — ,uy)/ay, then

I
R=—— e * dz 9
V21 / ( )

Hg—Hs

/2.3
%%

Because the random variable z = (y — ,uy) /oy is clearly the standard normal
variable, the reliability can be found by merely referring to the normal tables.
Equation 9 may be expressed using standard normal distribution function, F( ), as

Re1_F|_Ho =8 (10)

/2 2
05+05

Because the allowable stress is a maximum stress that may be safely applied to
a component, S,, the probability of failure, Py, is expressed as
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Hs — K —1-F Hs — K5 (11)

/2 2 [ 2 2
05+ 0j 05+ 05

If we assume that the strength, S, is normally distributed with known mean and
standard deviation of population and if we let u, = u, 0, = 0,5 = S4,05 =0,

Eq. 11 is
S —
p=r (%) (12)

g

Pp=F|—

The allowable stress, S, must be determined as the probability of failure, Py, is
below a certain value of P. If we let Py = P and rearrange Eq. 9, then

F'(P)=-F'(1-P) (13)
Se=p—F'(1-P)o=p—uo (14)

Here, u, = F~'(1 — P) is the upper probability of standard normal distribution. For
example, when P = 0.01, then u, = 2.326 and when P = 0.05, then u, = 1.282.

2.4 Determination of Sampling-Based Basis Strength

Unfortunately, in general we cannot know the mean and the standard deviation of a
population. So, we can merely estimate them from the mean and the standard
deviation of samples. If we assume that the strength, S, is normally distributed with
unknown mean and standard deviation of population and the mean and the stan-
dard deviation of n samples are ji and ¢ respectively then the allowable stress
it — ko should satisfy Eq. 15, as shown Fig. 2.

Pljit — k6 > u—upo] =y (15)
If we manipulate and rearrange Eq. 15, Eq. 16 is obtained.

Pl(i = p) + wpo > k6] =y

=7

P[ﬁm — )+ oy _ ﬁk]

G

P[(ﬂ—u)\/ﬁ/0+\/ﬁup - \/ﬁk] _,

dlo

A—p
P PN + \/’_”/‘p

(n—1)62 /a2
n—1

Vnk| =y (16)
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If Z is a normally distributed random variable with unit variance and zero mean,
and V is a y’distributed random variable with v degrees of freedom that is
statistically independent of Z, then T = -4t&

N
variable with v degrees of freedom and noncentrality parameter . Because the -
distribution with k degrees of freedom is defined as the distribution of a sum of the
squares of k independent standard normal variables, (n — 1) 62/a> will be dis-
tributed as y>-distribution with v =n — 1 degrees of freedom in Eq. 16 and
apparently (it — u)/(a/+/n) will be distributed as standard normal distribution,
N(0,1). So, the left side of inequality in Eq. 16 distributes as noncentral t-distri-
bution with v = n — 1 degrees of freedom and noncentrality parameter p = \/nu,.
So, if the upper probability of noncentral t-distribution, 7, is #,(n — 1, /nu,),, the
value of k should satisfy Eq. 17

ik =t (n — 1, /) (17)

The risk of S, > p—u,0 can be restricted within y if we determine the
allowable stress as S, = jt — ko by selecting the appropriate value of k. In this
way, the tolerance coefficients, k,, for the number of samples are calculated and
shown as Tables in MIL-HDBK-17-1F. In Table 1, three methods to get the
tolerance coefficient are compared. The values listed in the MIL-HDBK-17-1F are
probably accurate the most but the values calculated by approximate equations
may be accurate to within 0.2% of the tabulated values for n greater than or equal
to 16. The values from Acar’s equation are also acceptable but less accurate than
approximate equations of Eqs. 2 and 3. The tolerance coefficients for the infinite
number of samples are the same as the case of which we know the mean and the
standard deviation of population as shown in Eq. 14.

A test of specimens obtained in a material can be regarded as sampling from a
population. If the number of test samples is infinite then the mean and the standard
deviation of samples and population will be the same. Unfortunately, we cannot

is a noncentral t-distributed random
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Table 1 Tolerance coefficients, k,, for the number of samples between methods

Number of Tables in MIL-HDBK-17-1F  Approximate Eqs. 2 and 3  Acar’s Eq. 4
samples (1)

kA kB kA kB kA kB

2 37.094 20.581 20.741 10.240 —13.999 -7.375
3 10.553 6.157 10.145 5.545 13.335 7.625
5 5.741 3.408 5.901 3.418 5.750 3.382
10 3.981 2.355 4.017 2.365 3.940 2.322
16 3.464 2.034 3.470 2.035 3.437 2.013
20 3.295 1.927 3.296 1.926 3.274 1.911
30 3.064 1.778 3.062 1.777 3.050 1.768
0 2.326 1.282

Fig. 3 Experimental setup
for tensile tests under various
temperatures

r‘

know the mean and the standard deviation of a population and cannot increase the
number of samples infinitely. As the sample size increases the allowable stress also
increase because the certainty of estimate of ji increase. When we can test infinite
number of samples, the allowable stress is the same as the case of which we know
the mean and the standard deviation of population. As shown in Table 1, more
than 16 samples are necessary to estimate the population’s mean and deviation
more accurately. Considering the cost of test and the accuracy of estimation, at
least 10 samples are essential.

3 Experimental Procedure

Tensile tests were conducted in accordance with ASTM E8 [7] and E21 [8] using
an MTS 810 servo-hydraulic test machine, as shown in Fig. 3. Figure 4 is the
geometry of the test specimen. Thermocouples (K type) were attached at the center
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Fig. 4 Test specimen =
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Table 2 Tensile characteristics at elevated temperatures
Temperature Young’s modulus Elongation Reduction
(°O) (GPa) (%) in area (%)
R.T. 184.0 57.8 18.6
100 170.2 60.5 15.3
200 171.1 61.3 13.9
300 160.7 58.4 12.6
400 155.9 58.7 12.3
500 132.5 45.2 10.9
550 108.7 59.7 15.9
600 92.7 76.7 30.7
700 67.1 91.5 40.6
800 56.2 97.2 422
900 36.4 97.8 554
1000 54.9 73.2 494

of it. The test was run in strain control mode at a constant strain rate of 2 mm/min.
The tensile tests were conducted at room temperature (R.T.), 100, 200, 300, 400,
500, 550, 600, 700, 800, 900 and 1000°C. At each temperature, for ten specimens a
steady state tensile test was conducted. The tensile load was applied to specimen
after the specimen was heated up to a specified temperature and maintained for
30 min. A tensile loading rate of 2 mm/min was used, leading to an initial strain
rate of 107> s™', and the heating rate of the furnace is 1.9-2.0°C/sec. An exten-
someter with a total gauge length of 25 mm was used.

4 Results and Discussion
4.1 Tensile Characteristics at Elevated Temperatures

The mean value of Young’s modulus, elongation and reduction in area at elevated
temperatures are shown in Table 2. The mean, standard deviation, A-basis and B-
basis of ultimate tensile strength and yield strength at elevated temperatures are
shown in Tables 3 and 4 respectively.

Young’s modulus as a function of temperature is shown in Fig. 5. Young’s
modulus decreases gradually as the temperature increase. There is an abrupt
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Table 3 Ultimate tensile strength at elevated temperatures

Temperature Mean S.D.  Normal distribution Noncentral t-distribution
(°C) (MPa) (MPa) (k4 = 2.326, kg = 1.282) (ksa = 3.981, kg = 2.355)
A-Basis B-Basis A-Basis B-Basis
R.T. 2034.7 23.68 1979.6 2004.3 1940.4 1978.9
100 19354 3195 1861.1 1894.4 1808.2 1860.2
200 1824.9 6.58 1809.6 1816.5 1798.7 1809.4
300 1764.5 28.36 1698.5 1728.1 1651.6 1697.7
400 1656.2 14.63 1622.2 1637.4 1598.0 1621.7
500 1407.1 37.31 13203 1359.3 1258.6 1319.2
550 981.3 16.38 9432 960.3 916.1 942.7
600 619.0 3.22 6115 614.9 606.2 611.4
700 4254 521 4133 418.7 404.7 413.1
800 1785 3.70 1699 173.8 163.8 169.8
900 100.1 12.27 71.6 84.4 51.3 71.2
1000 57.7 2.20 52.5 54.8 48.9 52.5

Table 4 Yield strength at elevated temperatures

Temperature Mean S.D.  Normal distribution Noncentral t-distribution
(°C) (MPa) (MPa) (ky = 2.326, kg = 1.282) (ka = 3.981, kg = 2.355)
A-Basis B-Basis A-Basis B-Basis
R.T. 1764.3 24.10 1708.2 17334 1668.4 1707.5
100 1685.4 32.40 1610.0 1643.9 1556.4 1609.1
200 1604.2 13.60 1572.6 1586.8 1550.1 1572.2
300 15355 13.80 1503.4 1517.8 1480.6 1503.0
400 14254 13.50 1394.0 1408.1 1371.7 1393.6
500 1242.7 22.60 1190.1 1213.7 1152.7 1189.5
550 9269 8.10 908.1 916.5 894.7 907.8
600 559.1 2.60 553.1 555.8 548.7 553.0
700 372.1 840 352.6 361.3 338.7 3523
800 1525 530 140.2 145.7 131.4 140.0
900 74.7 12.40 459 58.8 25.3 455
1000 413 430 313 35.8 24.2 31.2

change of decreasing rate in Young’s modulus at 500°C. The reduction in area and
elongation gradually fall or are constant till 500°C but rapidly rise to 900°C and
then fall, as shown in Fig. 6. The stress—strain curve at room and elevated tem-
peratures is shown in Fig. 7 which shows a smooth elastic—plastic transition. As
shown in Fig. 8, the ultimate tensile strength and the yield strength decrease
gradually to the temperature of 500°C but rapidly fall over at 500°C and gradually
decrease over the temperature of 800°C.
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Fig. 5 Young’s modulus as a 200
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The Ramberg—Osgood (RO) equation has been used in most modern strength
analysis to describe the non linear relationship between stress and strain in near
their yield points. It is especially useful for metals that harden with plastic
deformation, showing a smooth elastic—plastic transition. The equation for strain is
expressed as Eq. 18.

sz%ﬂ((%)m (18)

where K and m are constants that depend on the material being considered and
describe the hardening behavior of the material. So, these values have been con-
sidered to be a material property. The exponent parameter of RO equation
increases as the temperature increases, as shown in Fig. 9. In Fig. 10, the exponent
parameter of RO equation decreases as Young’s modulus increase.
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4.2 Ductility Minimum Temperature and Fractured Surface

Rhines and Wray [9] have pointed out that the minimum ductility occurs at an
intermediate temperature range for all ductile metals and alloys. At low temper-
atures, fracture occurs by the usual transgranular crack propagation mechanism
and ductility is high. At temperatures near minimum, deformation occurs by grain
boundary sliding, causing the formation of intergranular cavities at triple junctions.
At high temperatures, recrystallization occurs simultaneously with intergranular
cavity formation as a result of which intergranular crack propagation is retarded.
The ductility, therefore, increases at high temperatures. Sikka et al. [10] have
reported elevated temperature tensile ductility minima in AISI 304 and 316
stainless steels and their metallographic findings were found to be consistent with
the model proposed by Rhines and Wray. That is, the ductility minimum was
associated with the temperature, the strain rate and the metallurgical condition
under which intergranular crack propagation was not inhibited [11]. Boyce et al.
[12] suggested that at slower strain rates or higher temperatures, flow is controlled
by long-range obstacles to dislocation motion and is largely strain-rate insensitive.
At lower temperature or higher strain-rate, weaker short range obstacles become
controlling due to the time-dependent diffusion-limited mechanisms such as climb
which are necessary to overcome these short range obstacles, leading to stronger
strain-rate dependence. The variation of ductility from different fracture mecha-
nism is the cause of variation of the elongation with temperature.

In the last study of the present analysis for the AISI 304 austenitic stainless steel
[13], there was also ductility minimum at the temperature of 500°C. From the
result of EDX (Energy Dispersive X-ray) microanalysis, it has been confirmed that
AISI 304 austenitic stainless steel has a characteristic of being harder and more
brittle at temperatures between 500 and 800°C and this is due to a precipitation of
o phase chrome carbide (Crp3Cg) in this temperature range. The density of chrome
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Fig. 11 Low-magnification images of cup-and-cone fracture morphology for the test specimen

in the material decreases as a result of the precipitation and the weight % of carbon
and chrome decreased above 500°C from EDX analysis. In this study, Figs. 6 and
8 show that there is a ductility minimum at 500°C and this is the same as for AISI
304 stainless steel.

The fractured surfaces were inspected to observe temperature dependent
changes in fractography. In all cases, the cylindrical test specimen resulted in a
cup-and-cone fracture morphology. According to Metals Handbook [14], the
cup-and-cone morphology consists of three zones: fibrous zone, radial zone and
shear-lip zone. At the center of the tensile specimen, there is a fibrous zone
associated with early coalescence and slow, stable crack growth. In the radial zone,
fast and unstable cracks propagate away from the fibrous zone. Around the rim of
fracture, there is a shear-lip zone from planes of maximum shear ahead of the
growing crack tip.

As shown in Fig. 11, the relative size of the shear-lip diminishes as the
temperature increases and has an abrupt change after the ductility minimum
temperature of 500°C. The morphology of the fibrous zones at each temperature is
shown in Fig. 12. High-magnification images from scanning electron microscope
(SEM) show that there is a typical microvoid coalescence morphology expected in
ductile metal fracture. The dimple size grows as the temperature rises and has
abrupt change after the ductility minimum temperature of 500°C.



Tensile Characteristics of High-Toughness Steel at High Temperatures 285

R.T. 400TC 550C

600 800C 9007C

Fig. 12 High-magnification of the ductile dimples in the fibrous zone of the tensile fracture
surfaces

5 Conclusions

This chapter aimed to get sampling-based basis strength of high toughness steel at
room and elevated temperatures and investigate the ductility minimum tempera-
ture from inspecting the material property and fractured surface. The following
conclusions can be drawn.

(1) The tensile strength, yield strength and Young’s modulus decrease as the
temperature increases. But the elongation and the reduction in area decrease as
the temperature increases below 500°C which corresponds to a ductility
minimum temperature. From low and high magnification of the fractured
surface, typical evidence of ductile fracture is shown. The abrupt change in the
size of shear-lip and dimple size showed that there is a ductility minimum
temperature at 500°C.

(2) The sampling-based basis strength values were taken from mean, standard
deviation of tensile test results and tolerance coefficient from noncentral
t-distribution. The sampling-based basis strength gives us more conservative
strength values than from normal distribution.
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Damage and Fracture Analysis of Rubber
Component

Chang-Su Woo, Wan-Doo Kim, Hyun-Sung Park and Wae-Gi Shin

Abstract Rubber components have been widely used in automotive industry as
anti-vibration components for many years. These subjected to fluctuating loads,
often fail due to the nucleation and growth of defects or cracks. To prevent such
failures, it is necessary to understand the fatigue failure mechanism for rubber
materials and evaluate the fatigue life for rubber components. Fatigue lifetime
prediction and evaluation are the key technologies to assure the safety and reli-
ability of automotive rubber components. The objective of this study is to develop
the durability analysis process for vulcanized rubber components, which is
applicable to predict fatigue lifetime at initial product design step. Fatigue lifetime
prediction methodology of vulcanized natural rubber was proposed by incorpo-
rating the finite element analysis and fatigue damage parameter of maximum
Green-Lagrange strains appearing at the critical location determined from fatigue
test. In order to develop an appropriate fatigue damage parameter of the rubber
material, a series of displacement controlled fatigue tests was conducted using
3-dimensional dumbbell specimens with different levels of mean displacement.
It was shown that the maximum Green-Lagrange strain was a proper damage
parameter, taking the mean displacement effects into account. Nonlinear finite
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element analyses of the engine mount insulator and 3-dimensional dumbbell
specimens were performed based on a hyper-elastic material model determined
from the simple tension, equi-biaxial tension and planar test. Fatigue lifetime
prediction of engine mount insulator was made by incorporating the maximum
Green-Lagrange strain values, which was evaluated from the finite element
analysis and fatigue tests, respectively. Predicted fatigue lives of the rubber
component showed a fairly good agreement with the experimental fatigue lives.
Fatigue analysis procedure employed in this study could be used approximately for
the fatigue design.

Keywords Rubber component - Strain energy function - Finite element analysis -
Fatigue test - Damage parameter - Lifetime prediction

1 Introduction

Rubber’s ability to withstand very large strains without permanent deformation or
fracture makes it ideal for many applications including tires, vibration isolators,
seals, hoses, belts, impact bumper, medical devices and structural bearing to name
a few [1, 2]. These rubber components subjected to fluctuating loads often fail due
to the nucleation and growth of defects or cracks. To prevent such failures, it is
necessary to understand the fatigue failure mechanism for rubber materials and to
evaluate the fatigue life for rubber components. For these reasons, not only the
rubber component manufacturers but also their customers like automotive makers
perform a series of strict fatigue test on the components such as component fatigue
tests and driving fatigue tests.

Currently, designers rely on their own trial-error based experiences for the
fatigue design. Thus, those designs depending on only experience may result in
disqualification from the fatigue test during final product evaluation. Those fatigue
failures of any new designs are prohibitive for automotive manufacturers. In order
to avoid this problem, many researchers [3—5] are focusing on evaluation of fatigue
life using computer added engineering techniques that could supplement draw-
backs of evaluation through tests and could significantly reduce the time for
fatigue-proof design. However, there are the following problems. First, the rubber
materials show particular mechanical properties according to compounding
ingredients and manufacturing conditions [6, 7]. Therefore, in order to evaluate the
fatigue life of designed rubber components, the material properties of the com-
ponents should be obtained. It is practically impossible to measure the material
properties for the whole component. Second, some parameters like stress, strain,
Strain Energy Density (SED) and so on are .generally used to estimate fatigue life
of rubber components [8—10] but the question remains how we should use these
parameters to estimate component life and what the limitation of the parameters is.
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Fig. 1 Procedure to fatigue life prediction system

The fatigue lifetime prediction on the rubber components has been increasing
according to the extension of warranty period of the automotive components.
A design of rubber components against fatigue failure is one of the critical issues
to prevent the failures during the operation. Therefore, fatigue lifetime prediction
and evaluation are the key technologies to assure the safety and reliability of
mechanical rubber components [11, 12]. Fatigue lifetime evaluation of rubber
components has hitherto relied mainly on a real load test, road simulator test or
bench fatigue test. Although the above methods have advantages in accuracy of
fatigue life, they cannot be used before the first prototype is made and the fatigue
test should be always conducted whenever material or geometry changes are made
[13]. In order to predict the fatigue life of the rubber components at the design
stage, a simple procedure of life prediction is suggested in Fig. 1.

In this chapter, engine mount insulator for automobile, which is damaged by
repeated loading during operation, is selected for a typical application of fatigue
life prediction methodology developed in the research. Uniaxial tension, equi-
biaxial tension and planar tests were conducted to determine the nonlinear material
constants of the rubber components. The maximum Green-Lagrange strain of 3
dimensional dumbbell specimens and engine mount insulator were obtained from a
nonlinear finite element analysis (FEA) using the hyper-elastic material model
determined from the material tests. We used the 3-dimensional dumbbell speci-
mens to evaluate the fatigue life of rubber materials. Fatigue tests of 3-dimensional
dumbbell specimens with various mean strains were performed, and a fatigue life
curve equation represented by the maximum Green-Lagrange strain was obtained.
Fatigue lifetime prediction of engine mount insulator was made by incorporating
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the maximum Green-Lagrange strain values, which was evaluated from the FEA
and fatigue tests, respectively. Predicted fatigue lives of the rubber component
showed a fairly good agreement with the experimental fatigue lives. The fatigue
analysis procedure employed in this study could be used as an approximation for
fatigue design.

2 Measurement of Material Property
2.1 Stain Energy Function

The material of the rubber component is taken to be an incompressible rubberlike
material modeled as a hyper-elastic material. The constitutive behavior of a
hyper-elastic material is defined as a total stress—total strain relationship [14, 15].
Hyper-elastic materials are described in terms of a strain energy potential, which
defines the strain energy stored in the material per unit of reference volume as a
function of the strain at that point in the material. The strain energy functions have
been represented either in terms of the strain invariants that are functions of the
stretch ratios, or directly in terms of the principal stretch. Successful modeling and
design of rubber components relies on both the selection of an appropriate strain
energy function and an accurate determination of material coefficient in the
function. Material coefficient in the strain energy functions can be determined
from the curve fitting of experimental stress—strain data. There are several different
types of experiments, including simple tension, equi-biaxial tension and pure shear
tests. In general, a combination of simple tension, equi-biaxial tension and pure
shear tests are used to determine the material coefficient. The classical Mooney-
Rivlin and Ogden model are an example of a Hyper-elastic model that is imple-
mented in FEA [16].

In order to explain the deformation of the rubber materials, it is assumed that
the material has elastic behavior and is isotropic. Then, strain energy function (W)
can be written as Eq. 1, with strain invariant functions (I,, 1,, [3) and principal
stretch functions (4;,4,, ;).

W=W({,L,I), W=W(,2,7%) (1)
When the material is isotropic, I, I,, I3 can be expressed as follows;
I =2+ 725+ 3
L =735+ 2375 + 2377 (2)
I = 277375

Most rubber materials are incompressible and its bulk modulus is much greater
than its shear modulus. Thus, it is widely accepted to presume the materials to be
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incompressible when they are under less restriction. When the materials are
incompressible in Eq. 2, 4;, 4,,4;=1 and I; = 1. Since, Eq. | can be rewritten as
follows,

W=W(l,, L) (3)

Strain energy function, which is widely used to analyze deformation of incom-
pressible materials, can be described with Mooney-Rivlin’s function and Ogden’s
function.

N
Mooney-Rivlin’s function : W = Z Ci(1, —3) (I - 3)’ (4)
n=1

N
Ogden’s function : W = Z%()“{ + A7+ A7 —3) (5)
n:l n

where Cj;, u,, «, are material constants determined experimentally from the stress—
strain relationship.

2.2 Uniaxial Tension Test

The rubber material property, which is essential in FEA, is expressed with the
coefficient values of strain energy function and these values are determined by
fitting stress—strain data obtained from the material tests under various load con-
ditions into the stress—strain curve induced from strain energy function. And it is
determined to minimize the differences between the test values and calculated
values. Therefore, we analyzed the property of the material and determined the
nonlinear material coefficient, which is necessary in finite element analysis, by
conducting uniaxial, equi-biaxial tension and pure shear tests [17].

Figure 2a shows the uniaxial tension test by using non contacting strain mea-
surement (laser extensometer). When rubber materials are deformed, their network
structure lose their stiffness due to modification and reformation, and damping
properties change. Mullins suggested this is due to the stress—strain response,
called the Mullins effect [18]. This is more prevalent in carbon black-filled rub-
bers. In other words, the stiffness of rubber depends on its history and strain range.
In addition, the stress—strain curve in initial stage is not repeated anywhere and the
curve stabilize after receiving approximately five repetitive loads within the same
strain range. The stress—strain curve exhibits yet another change when the rubber
material is subjected to a larger strain than the previous one. Lastly, the rubber
material possesses properties in which fixed permanent deformation occurs when
the material returns to the initial strain value; the strain is not equal to O even if the
stress is equal 0. Figure 2b shows the Mullins effect in uniaxial tension test.
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Fig. 2 Uniaxial tension test and Mullins effect a Laser extensometer b Mullins effect

2.3 Equi-Biaxial Tension Test

In uniaxial compression test, it is very difficult to obtain the pure compressed
stress—strain relationship because of the frictions on the grip and the contact plane
of rubber test specimen. Also, there is some bubbling phenomenon in the middle
part of the test sample due to this friction. Therefore, it is hard to say that the
property values of materials obtained from uniaxial compression tests are accurate.
Thus, Woo et al. [5] suggested equi-biaxial tension tests, in which the pure strain
values can be obtained, in order to resolve such issues in uniaxial compression test.
For equi-biaxial tension tests, we prepared round shaped test specimen (Fig. 3)
with 16 grips placed on the outer edges of the test specimen in order to apply
evenly distributed loads in the direction of the circumference.

FEA of the specimen is required to determine the appropriate geometry of the
clamping point in Fig. 3a. The equi-biaxial strain state may be achieved by radial
stretching a circular disc in Fig. 3b. Once again, a non-contacting strain measuring
device must be used such that strain is measured away from the clamp edges in
Fig. 3c.

2.4 Pure Shear Test

A shear strain state is a more important mode of deformation for engineering
applications than tension. The quad lap simple shear test piece is standardized
[19]. But, the pure shear test is not yet standardized. There are two difficulties in
the simple shear test. The first difficulty is making the specimen. This may require
either bonding to rigid supports during vulcanization or molding blocks bonded
with a high modulus adhesive. Secondly, the low shear strain range is limited
because the rigid plates are bent on straining. Alternatively, the pure shear test can
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Fig. 3 Specimen and grips for equi-biaxial tension test a Finite element model b Specimen
¢ Equi-biaxial tension test

be developed high strain range than simple shear test. If the material is incom-
pressible and the width of the specimen is longer than the height, a pure shear state
exists in the specimen at 45° angle to the stretching direction. Aspect ratio of the
specimen is most significant in the pure shear test because the specimen is per-
fectly constrained in the horizontal direction.

Figure 4 shows the deformed shapes obtained by FEA at 100% stretching for
aspect ratios of 5:1 and 10:1. Stress—strain curves obtained from the tests are
shown Fig. 4c, compared to those predicted by FEA. Even though there exist some
differences in the stress—strain responses between the experiment and the analysis,
fairly good correlations are observed. A better agreement can be seen for the
aspect ratio of 10:1, compared to 5:1. The differences are attributed to the spec-
imen slippage from the clamp edges, leading to the inadequate states of pure shear
strain. Therefore, it is necessary to design a gripping device to prevent specimen
slippage, in order to improve the tes