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Preface

Almost all physical scientists — physicists,
astronomers, chemists, earth scientists, and
others — at some time come into contact
with statistics. This is often initially during
their undergraduate studies, but rarely is it
via a full lecture course. Usually, some statis-
tics lectures are given as part of a general
mathematical methods course, or as part of
a laboratory course; neither route is entirely
satisfactory. The student learns a few tech-
niques, typically unconstrained linear least-
squares fitting and analysis of errors, but
without necessarily the theoretical back-
ground that justifies the methods and allows
one to appreciate their limitations. On the
other hand, physical scientists, particularly
undergraduates, rarely have the time, and
possibly the inclination, to study mathemat-
ical statistics in detail. What I have tried to
do in this book is therefore to steer a path
between the extremes of a recipe of methods
with a collection of useful formulas, and
a detailed account of mathematical statistics,
while at the same time developing the
subject in a reasonably logical way. I have
included proofs of some of the more impor-
tant results stated in those cases where they
are fairly short, but this book is written by
a physicist for other physical scientists and
there is no pretense to mathematical rigor.
The proofs are useful for showing how the
definitions of certain statistical quantities
and their properties may be used. Neverthe-
less, a reader uninterested in the proofs can
easily skip over these, hopefully to come
back to them later. Above all, I have con-
tained the size of the book so that it can be

ix

read in its entirety by anyone with a basic
exposure to mathematics, principally
calculus and matrices, at the level of a first-
year undergraduate student of physical
science.

Statistics in physical science is principally
concerned with the analysis of numerical
data, so in Chapter 1 there is a review of
what is meant by an experiment, and how
the data that it produces are displayed and
characterized by a few simple numbers.
This leads naturally to a discussion in
Chapter 2 of the vexed question of proba-
bility — what do we mean by this term and
how is it calculated. There then follow two
chapters on probability distributions: the
first reviews some basic concepts and in
the second there is a discussion of the prop-
erties of a number of specific theoretical
distributions commonly met in the physical
sciences. In practice, scientists rarely have
access to the whole population of events,
but instead have to rely on a sample from
which to draw inferences about the popula-
tion; so in Chapter 5 the basic ideas involved
in sampling are discussed. This is followed
in Chapter 6 by a review of some sampling
distributions associated with the important
and ubiquitous normal distribution, the
latter more familiar to physical scientists as
the Gaussian function. The next two chap-
ters explain how estimates are inferred for
individual parameters of a population from
sample statistics, using several practical
techniques. This is called point estimation.
It is generalized in Chapter 9 by considering
how to obtain estimates for the interval
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within which an estimate may lie. In the final
two chapters, methods for testing hypoth-
eses about statistical data are discussed. In
the first of these the emphasis is on hypoth-
eses about individual parameters, and in
the second we discuss a number of other
hypotheses, such as whether a sample comes
from a given population distribution and
goodness-of-fit tests. This chapter also
briefly describes tests that can be made in
the absence of any information about the
underlying population distribution.

All the chapters contain worked exam-
ples. Most numerical statistical analyses are
of course carried out using computers, and
several statistical packages exist to enable
this. But the object of the present book is to
provide a first introduction to the ideas of
statistics, and so the examples are simple
and illustrative only, and any numerical
calculations that are needed can be carried
out easily using a simple spreadsheet. In an
introduction to the subject, there is an educa-
tional value in doing this, rather than simply
entering a few numbers into a computer
program. The examples are an integral part
of the text, and by working through them

the reader’s understanding of the material
will be reinforced. There is also a short set
of problems at the end of each chapter and
the answers to the odd-numbered ones are
given in Appendix D. The number of prob-
lems has been kept small to contain the
size of the book, but numerous other prob-
lems may be found in the references given
in the Bibliography. There are three other
appendices: one on some basic mathematics,
in case the reader needs to refresh their
memory about details; another about the
principles of function optimization; and
a set of the more useful statistical tables, to
complement the topics discussed in the
chapters and to make the book reasonably
self-contained.

Most books contain some errors, typos,
etc., and doubtless this one is no exception.
I will maintain a website at www.hep.ucl.
ac.uk/~brm/statsbook.html, where any
corrections that are brought to my attention
will be posted, along with any other
comments.

Brian R. Martin
June 2011
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1

Statistics, Experiments, and Data

OUTLINE

1.1 Experiments and Observations 2 1.3.2 Measures of Spread 9
1.2 Displaying Data 4 1.3.3 More than One Variable 12
1.3 Summarizing Data Numerically 7 e ey S 15

1.3.1 Measures of Location 8 1.5 Experimental Errors 17

In the founding prospectus of the Statistical Society of London (later to become the Royal
Statistical Society), written in 1834, statistics was defined very broadly as ‘the ascertaining
and bringing together of those facts which are calculated to illustrate the conditions and pros-
pects of society’. In the context of modern physical science, statistics may be defined more
narrowly as the branch of scientific method that deals with collecting data from experiments,
describing the data (known as descriptive statistics), and analyzing them to draw meaningful
conclusions (known as inferential statistics)." Statistics also plays a role in the design of exper-
iments, but for the purposes of this book, this aspect of statistics, which is a specialized
subject in its own right, will be excluded. There are many other possible definitions of statis-
tics that differ in their details, but all have the common elements of collections of data, that
are the result of experimental measurements, being described in some way and then used to
make inferences. The following examples illustrate some of the many applications of
statistics.

Consider a situation where several experiments claim to have discovered a new elemen-
tary particle by observing its decay modes, but all of them have very few examples to support
their claim. Statistics tells us how to test whether the various results are consistent with each

The word ‘statistics’ is used here as the name of the subject; it is a collective noun and hence singular. In
Section 1.3 we will introduce another meaning of the word to describe a function (or functions) of the data
themselves.

Statistics for Physical Sciences: An Introduction 1 Copyright © 2012 Elsevier Inc. All rights reserved.



2 1. STATISTICS, EXPERIMENTS, AND DATA

other and if so how to combine them so that we can be more confident about the claims.
A second example concerns the efficacy of a medical treatment, such as a drug. A new
drug is never licensed on the basis of its effect on a single patient. Regulatory authorities
rightly require positive testing on a large number of patients of different types, that is, it is
necessary to study its effects on distributions of people. However both time and cost limit
how many people can be tested, so in practice samples of patients are used. Statistics specifies
how such samples are best chosen to ensure that any inferences drawn are meaningful for the
whole population. Another class of situations is where the predictions from a theory, or a law
of nature, depend on one or more unknown parameters, such as the electromagnetic force
between two charge particles, which depends on the strength of the electric charge. Such
parameters can be determined from experiment by fitting data with a function including
the unknown parameters. Statistics specifies ways of doing this that lead to precise state-
ments about the best values of the parameters. A related situation is where there are
competing theories with different predictions for some phenomenon. Statistical analysis
can use experimental data to test the predictions in a way that leads to precise statements
about the relative likelihoods of the different theories being correct.

The discussion of statistics will begin in this chapter by considering some aspects of
descriptive statistics, starting with what is meant by an experiment.

1.1. EXPERIMENTS AND OBSERVATIONS

An experiment is defined formally as a set of reproducible conditions that enables measure-
ments to be made and which produce outcomes, or observations. The word ‘reproducible’ is
important and implies that in principle independent measurements of a given quantity can
be made. In other words, the result of a given measurement x; does not depend on the result
of any other measurement. If the outcomes are denoted by x;, then the set of all possible
outcomes x;(1 =1,2, ..., N) is called the population and defines a sample space S, denoted by
S={x1,x2, ..., xx}. In principle N could be infinitely large, even if only conceptually. Thus,
when measuring the length of a rod, there is no limit to the number of measurements that
could in principle be made, and we could conceive of a hypothetical infinite population of
measurements. A subset of the population, called a sample, defines an event, denoted by E.
Two simple examples will illustrate these definitions.

EXAMPLE 1.1

An ‘experiment’ consists of a train traveling from A to B. En route, it must negotiate three sections
consisting of a single track, each of which is governed by a set of traffic lights, and the state of these, either red
(1) or green (g), is recorded. What is the sample space for the experiment, and write an expression for the event
corresponding to the train encountering a red signal at the second traffic light?

The basic data resulting from the experiment are sequences of three signals, each either red or
green. The population therefore consists of 23 possible outcomes and the sample space is denoted
by the eight events

S = {rrr,rrq,r9q, 989,887, {11, 1g,81g}.
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The event E defined by the driver encountering a red signal at the second traffic light (and also
possibly at other lights) consists of four outcomes. Thus

E = (rrr,1rg, grr,819).

In this case the event is called complex because it contains a number of simple events each con-
taining a single outcome, 77, etc.

EXAMPLE 1.2

The number of heads’ obtained by tossing two coins simultaneously can assume the discrete values 0, 1, or
2. If we distinguish between the two coins, what is the sample space for the experiment and show the content of
its events?

Denoting H = ‘heads’ and T = ‘tails’, there are four events:

Ey =(HH); Ey=(HT); Es=(T,H); E4=(T,T),

and the sample space consists of the four events, S = {Ej, Ep, E3, E4}.

In these examples the observations are non-numeric, but in physical science the outcomes
are almost invariably numbers, or sets of numbers, and to relate these definitions to numer-
ical situations, consider firstly the simple experiment of tossing a six-sided die. A simple
event would be one of the six numbers on the faces of the die, and the occurrence of the event
would be the situation where the number defining the event was observed on the face of the
die. The outcome is thus a discrete variable and can take one of the six numbers 1 to 6. If
there were two dice, an example of a complex event would be the observation of a 2 on
one die and a 3 on the other. Another example is an experiment to measure the heights of
all students in a given class. In this case the outcomes are not discrete, but continuous,
and in practice an event would be defined by an interval of heights. Then the occurrence
of the event would be interpreted as the situation where a measured height fell within a
specified range.

In practice, statistics often consists of just the stages of describing and analyzing the
data, because they are already available, but if this is not the case, statistics can also play
a role in the design of an experiment to ensure that it produces data of a useful form.
Although this will not be discussed in detail in this book, there is a general point to
be made.

Consider the problem of how to test which of two university staff is more effective in
teaching their students. An equal number of students could be assigned to each instructor
and they could give each student the same number of lectures and tutorial classes. The
outcomes could be the examination pass rates for the two groups, and these could be
analyzed to see if there were a significant difference between them. However to interpret
the pass rates as a measure of the effectiveness of the teaching skills of the instructors, we
have to be sure that as far as possible the experiment had been designed to eliminate bias.
Only then would any inferences be meaningful. This is because we would be using only
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a sample of students to make statistical inferences and not the whole population. The
simplest accepted way of ensuring this is to assign students to the two examiners in such
a way that all possible choices of members of the groups are equally likely. Alternatively,
put another way, that if we had a very large population of students, then every possible
sample of a particular size n has an equal chance of being selected. This is called simple
random sampling. In principle, this condition could be relaxed provided we could calculate
the chance of each sample being selected. Samples obtained this way are called random
samples of size n, and the outcomes are called random variables. At first sight this choice might
appear counterintuitive. We might think we could do better by assigning students on the
basis of their compatibility with the instructor, but any alternative mode of nonrandom selec-
tion usually results in one that is inherently biased toward some specific outcome. A random
choice removes this bias. Note that the word ‘chance” has anticipated the idea of probability
that will be discussed in more detail in Chapter 2.

A question that naturally arises is: ‘How are random samples chosen?’ For small popula-
tions this is easy. One could assign a unique number to each member of the population and
write it on a ball. The balls could then be thoroughly shaken in a bag and # balls drawn. This
is essentially how lottery numbers are decided, with one ball assigned to each integer or set of
integers and drawing several balls sequentially. For very large populations, simple methods
like this are not practical and more complex methods have to be used. This problem will be
considered in more detail when sampling is discussed in Chapter 5.

Finally we should mention that although in practice in physical science ‘sampling” almost
invariably means simple random sampling, there are other types of sampling that are used in
other fields. For example, pollsters often use systematic sampling (sometimes mistakenly pre-
sented as true random sampling) where every nth member of a population is selected, for
example every 100th name in a telephone book. Another method is when the population
can be divided into mutually exclusive subpopulations. In this case simple random samples
are selected from the subpopulations with a size proportional to the fraction of members that
are in that subpopulation. For example, if we know the fractions of men and women that take
a degree in physics, we could take simple random samples of sizes proportional to these frac-
tions to make inferences about the populations of all physics students. This is called stratified
sampling and is very efficient, but not often applicable in physical science.

1.2. DISPLAYING DATA

In physical sciences, experiments almost invariably produce data as a set of numbers, so
we will concentrate on numerical outcomes. The measurements could be a set of discrete
numbers, i.e., integers, like the numbers on the faces of a die, or a set of real numbers forming
a continuous distribution, as in the case of the heights of the students in the example above.
We will start by describing how data are displayed.

Experimental results can be presented by simply drawing a vertical line on an axis at the
value of every data point, but in practice for both discrete and continuous data it is common
to group the measurements into intervals, or bins, containing all the data for a particular value,
or range of values. The binned data can be presented as a frequency table, or graphically. For
discrete data, binning can be done exactly and the results displayed in the form of a bar chart,
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where a vertical bar is drawn, the height of which represents the number of events of a given
type. The total of the heights of the columns is equal to the number of events. The width of the
bins is arbitrary and sometimes for clarity a gap is left between one bin and the next. Both are
matters of taste. We will also be interested in the frequency with which an outcome takes on
values equal to or less than a stated value. This is called the cumulative frequency.

Frequency of number of heads

EXAMPLE 1.3

The frequency table below shows the results of an experiment where 6 coins are simultaneously tossed 200
times and the number of ‘heads’ recorded.

Number of heads 0 1 2 3 4 5 6
Frequency 2 19 46 62 47 20 4

Display these data, and the cumulative frequency, as bar charts.

Figure 1.1(a) shows the data displayed as a bar chart. The total of the heights of the columns is
200. Figure 1.1(b) shows a plot of the cumulative frequency of the same data. The numbers on this
plot are obtained by cumulatively summing entries on the bar chart of frequencies.

70 210 300 FIGURE 1.1 Bar charts showing (a) the
6 K 19672 frequency of heads obtained in an experiment
60 ] E 180 176 where 6 coins were simultaneously tossed 200
3 times; and (b) the cumulative frequency of heads
50 _ug 150 - obtained in the same experiment.
46 47
™ g 129
40 - « 120 -
=]
2
30 5 9
&
D 67
20 =
20 - L S 60 -
2
10 z 30
~ - 21
4+ E
2 6 2
O0123456 O0123456
Number of heads Number of heads

(a) (b)

For continuous data, the values of the edges of the bins have to be defined and it is usual to

choose bins of equal width, although this is not strictly essential. The raw data are then rounded
toaspecificaccuracy, using the normal rules for rounding real numbers, and assigned to a partic-
ular bin. By convention, if a bin has lower and upper values of a and b, respectively, then a data
point with value x is assigned to this binif 2 < x < b. There is inevitably some loss of precision in
binning data, although it will not be significant if the number of measurements is large. It is the
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price to be paid for putting the data in a useful form. The resulting plot is called a histogram. The
only significant difference between this and a bar chart is that the number of events in a histo-
gram is proportional to the area of the bins rather than their heights. The choice of bin width
needs some care. If it is too narrow, there will be few events in each bin and fluctuations will
be significant. If the bins are too wide, details can be lost by the data being spread over
a wide range. About 10 events per bin over most of the range is often taken as a minimum
when choosing bin widths, although this could be smaller at the end points.

EXAMPLE 1.4

The table below shows data on the ages of a class of 230 university science students taking a first-year
course in mathematical methods. Draw three histograms with bins sizes of 2 yrs, 1yr and %2 yr, respectively, all
normalized to a common area of unity. Which bin size is optimal?

Age range Student numbers
17.0-17.5 2
17.5-18.0 3
18.0—18.5 35
18.5—19.0 27
19.0—19.5 61
19.5-20.0 29
20.0—21.5 28
20.5—-21.0 14
21.0-21.5 12
21.5-22.0 8
22.0-22.5 8
22.5-23.0 3

Figure 1.2 shows the three histograms. They have been normalized to a common area of unity by
dividing the number of events in a bin by the product of the bin size times the total number of

0.6
05 1 1
04 | 1t
03 | 1

0.1 - 1 r

00 1 1 1 1 1 1 1 1 1
17 18 19 20 21 22 2317 18 19 20 21 22 23 17 18 19 20 21 22 23
Age of students Age of students Age of students
(bin size 2 years) (bin size 1 year) (bin size 1/2 year)

FIGURE 1.2 Normalized histograms of the ages of 230 university science students taking a first-year course on
mathematical method, showing the effect of using different bins sizes.
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events. For example, with a bin size of 2 years, as shown in the left-hand histogram, the entry in the
19—-21 age bin is (61 + 29 + 28 + 14)/(2 x 230) = 0.29. The number of data is probably sufficient to
justify a bin size of % year because most of the bins contain a reasonable number of events. The other
two histograms have lost significant detail because of the larger bin sizes.

Histograms can be extended to three dimensions for data with values that depend on two
variables, in which case they are sometimes colloquially called lego plots. Two-dimensional
data, such as the energies and momenta of particles produced in a nuclear reaction, can
also be displayed in scatter plots, where points are plotted on a two-dimensional grid. Exam-
ples of these types of display are shown in Fig. 1.3. Although there are other ways that data
can be displayed, bar charts, histograms, and scatter plots are by far the most common graph-
ical representations of data used in physical sciences.

1.3. SUMMARIZING DATA NUMERICALLY

Although a frequency histogram provides useful information about a set of measure-
ments, it is inadequate for the purposes of making inferences because many histograms
can be constructed from the same data set. To make reliable inferences and to test the quality
of such inferences, other quantities are needed that summarize the salient features of the
data. A quantity constructed from a data sample is called a statistic* and is conventionally
written using the Latin alphabet. The analogous quantity for a population is called a parameter
and is written using the Greek alphabet. We will look first at statistics and parameters that
describe frequency distributions.

i I
i '|[{|ﬂlll|.'-

(a) (b)

FIGURE 1.3 Examples of displays for two-dimensional data: (a) lego plot; and (b) scatter plot.

This is the second use of this word, as mentioned earlier.
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1.3.1. Measures of Location

The first measure of location, and the one most commonly used, is the arithmetic mean,
usually simply called the mean. For a finite population x;(i = 1,2, ..., N) of size N, the popu-
lation mean is a parameter denoted by u, and defined by

1 N
uzﬁi;xi. (1.1)

The mean of a sample of size # < N drawn from the population is the statistic, denoted ¥,
or just X, defined by

1
X= EZ/‘, X, (1.2a)

i=1

where x can take on the values x; with frequencies f; (i = 1,2, ..., k) respectively, and

k
d fi=n, (1.2b)
i=1

is the total frequency, or sample size. Alternatively, the sum in (1.2a) can be taken over indi-
vidual data points. In this case, k =n, f; =1 and

1 n
X :*Z Xi, (1.3)
i

so that u is the limit of the sample mean, when #n — N. Note that the values of the mean calcu-
lated from (1.2a) and (1.3) will not be exactly the same, although the difference will be small
for large samples divided into many bins. (See Problem 1.5.)

Although the mean is the measure of location usually used in physical sciences, there are
two other measures that are occasionally used. These are the mode, which is the value of the
quantity for which the frequency is a maximum; and the median, which is the value of the
quantity that divides the cumulative frequency into two equal parts. The median is useful
in situation where the distribution of events is very asymmetric, because it is less effected
by events a long way from the ‘center’. An example is the income of a population, where
it is common practice for official statistics to quote the median, because this is less influenced
by the large incomes of a few very wealthy individuals. In the coin tossing experiment of
Example 1.3, the mode is 3, with a frequency 62. Both the 100th and the 101th throws,
arranged by order of size, fall in the class ‘3" and since the quantity in this example can
only take on integer values between 0 and 6, the median value is also 3. In the case of a contin-
uous quantity, such as that shown in Fig. 1.2, the mode is the value of the 19—19%-year bin
and the median could be estimated by forming the cumulative frequency distribution from
the raw data and using the 115th point on the plot to find the median age by interpolation.

The median is an example of a more general measure of location called a quantile. This is
the value of x below which a specific fraction of the observations must fall. It is thus the
inverse of the cumulative frequency. Commonly met quantiles are those that divide a set
of observations into 100 equal intervals, ordered from smallest to largest. They are called
percentiles. Thus, if the percentiles are denoted by P,(p = 0.01, 0.02, ..., 1), then 100p percent



1.3. SUMMARIZING DATA NUMERICALLY 9

of the data are at, or fall below, P,. The median therefore corresponds to the Py 5 percentile. In
practice, to find the percentile corresponding to p, we order the data from lowest to highest
and calculate g = np, where n is the sample size. Then if 4 is an integer we average the values
of the gth and the (g + 1)th ordered values; if g is not an integer, the median is the kth ordered
value, where k is found by rounding up g to the next integer.

EXAMPLE 1.5

Use the sample data below to calculate the mean, the median, and the percentile Py g; .

1.6 3.4 9.2 9.6 6.1 7.5 8.0 8.9 11.1 12.3
23 4.1 6.8 4.8 12.5 10.0 5.1 8.2 8.5 11.7

The mean is
1 &
¥ = 2—0;;@ = 7.585.

To find the median and Py g, we first order the data from lowest to highest:

1.6 2.3 34 4.1 4.8 5.1 6.1 6.8 7.5 8.0
8.2 8.5 8.9 9.2 9.6 10.0 11.1 11.7 12.3 12.5

The median is Py5, so g = np =20 x 0.5 = 10. As g is an integer, the median is the average of the
10th and 11th smallest data values, i.e., 8.1. For Pyg;, g = 16.2, and because g is not an integer,
Pyg is the 17th lowest data value, i.e., 11.1.

1.3.2. Measures of Spread

The other most useful quantity to characterize a distribution measures the spread, or disper-
sion, of the data about the mean. We might be tempted to use the average of the differences
d; = x; — u from the mean, that is,

_ 1
d= (xi_#)r
Nt

but from the definition of u, equation (1.1), this quantity is identically zero. So instead we use
a quantity called the variance that involves the squares of the differences from the means. The
population variance, denoted by ¢?, is defined by

LN
0% = N;(xi — ), (1.4)

and the square root of the variance is called the standard deviation o. The standard deviation is
a measure of how spread out the distribution of the data is, with a larger value of ¢ meaning
that the data have a greater spread about the mean. The sample variance s> is defined for
a sample of size n by
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k
2= S -®? (1.5)

n n n 2
Sz:nil, (xi—i)z - nilllez_%<zxi> ]

(1.6)

where equation (1.3) has been used to obtain the second line of (1.6) and an overbar is used to
denoted an average. Thus x? is the average value of x2, defined by analogy with (1.3) as

1 n
e 1.7)
i=1

Equation (1.6) is easily proved and is useful when making numerical calculations. Just as for
the mean, the sample variance calculated from (1.5) will not be exactly the same as that
obtained from (1.6).

Note that the definitions of the sample and population variances differ in their external
factors, although for large sample sizes the difference is of little consequence. The reason
for the difference is a theoretical one related to the fact that (1.5) contains %, that has itself
been calculated from the data, and we require that for large samples, sample statistics should
provide values that on average are close to the equivalent population parameters. In this case,
we require the sample variance to provide a ‘true’, or so-called ‘unbiased’, estimate of the
population variance. This will be discussed in later chapters when we consider sampling
in more detail, as will the role of s in determining how well the sample mean is determined.

x2

EXAMPLE 1.6

The price of laboratory consumables from 10 randomly selected suppliers showed the following percentage
price increases over a period of one year.

Supplier 1 2 3 4 5 6 7 8 9 10
Price increase (%) 15 14 20 19 18 13 15 16 22 17

Find the average price increase and the sample variance.
To find the average percentage price increase, we calculate the sample mean. This is

1 10
pzl—ogpi:16.9.

This can then be used to find the sample variance from (1.6),

110 ,
s? :§Z(Pz’—?) =8.10,

i=1
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and hence the sample standard deviation is s = v/8.10 = 2.85. Thus we could quote the outcome
of the observations as an average percentage price increase of p = 16.9 percent with a standard
deviation of 2.9 percent. In Section 1.3.4 below, an empirical interpretation is given of statements
such as this.

The mean and variance involve the first and second powers of x. In general, the nth moment
of a population about an arbitrary point A is defined as

N
(x; — A" (1.8)
i=1

Z| =

[ —
My =

Thus,
py=1, Wy=p—1=d and u)=o"+d

If 4 is taken to be the mean u, the moments are called central and are conventionally written
without a prime. For example, ug = 1, w; = 0 and w, = ¢2. The general relation between the
two sets of moments is

k
Z 'i" :u'k r( ru/l)r/ (196)

:0

with its inverse

M»

T Mer () (1.9b)
r:O

Moments can also be defined for samples by formulas analogous to those above.

In the case of grouped data, taking the frequencies to be those at the mid-points of the
intervals is an approximation and so some error is thereby introduced. This was mentioned
previously for the case of the sample mean and sample variance. In many circumstances it is
possible to apply corrections for this effect. Thus, if 4’ are the true moments, and @’ the
moments as calculated from the grouped data with interval width /, then the so-called Shep-
pard’s corrections are

B o= By =1 —Ehz;
(1.10a)

and, in general
;
u;:%{(})(? 7 —1)Bjil &, ]} (1.10b)
]:

where B; is the Bernoulli number of order i’

3The Bernoulli number B is defined as the coefficient of t//j! in the expansion of t/(e! — 1). The first few are:
By=1 B =-1/2,B,=1/6, B3 =0, By = —1/30.
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A number of statistics can be defined in terms of low-order moments that measure
additional properties, such as skewness, the degree to which a distribution of data is asym-
metric, although more than one definition of such statistics exists. In practice they are not
very useful because using the same data very different distributions can be constructed
with similar values of these statistics, and they are seldom used in physical science
applications.

Finally, the definition (1.6) can be used to prove a general constraint on how the data points
x; are distributed about the sample mean. If the data are divided into two sets, one denoted
Sk, with Ni(k < n) elements with |x; —¥| < ksand s > 0, and the other containing the rest of
the points having |x; — X| > ks, then from (1.6)

n

(=1 =>"(5-3"= > -0+ Y &-3"> Y (x-%7

i=1 x,eSk X,‘ﬁsk X,‘%Sk

where the expression i € Sy means ‘the quantity x; lies in the set S;’, and the inequality
follows from the fact that the terms in the summations are all positive. Using the condition
(x; — X)* > k%s? for points not in the set S, the right-hand side may be replaced, so that

(n—1)s> > Z n?s? = k*s%(n — Ny).
Xi %Sk

Finally, dividing both sides by nk?s? gives

n—1 Nk

e >1 — (1.11)
This result is called Chebyshev’s inequality and shows that for any value of k, greater than
100(1 — 1/k?)percent of the data lie within an interval from X — ks to X + ks. For example, if
k =2, then 75 percent of the data lies within 2s of the sample mean. Although this result is
interesting, it is only a weak bound and for the distributions commonly met, the actual
percentage of data that lie within the interval X — ks to X + ks is considerably larger than
given by (1.11).

1.3.3. More than One Variable

The mean and variance are the most useful quantities that characterize a set of data, but if
the data are defined by more than one variable, then other quantities are needed. The most
important of these is the covariance. If the data depend on two variables and consist of pairs of
numbers {(x1,¥1), (x2,y2), ...}, their population covariance is defined by

1 N
cov(¥,y) = D (% — )4 — k), (1.12a)
i=1

where 1, and u, are the population means of the quantities x and y. The related sample covari-
ance is defined by
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1 & _ _
cov(xy) = ——=> (i~ D)y —F) 1120
o ‘
_nil(xy_xy)’

where overbars again denote averages. The covariance can be used to test whether the quan-
tity x depends on the quantity y. If small values of x tend to be associated with small values of
v, then both terms in the summation will be negative and the sum itself will be positive. Like-
wise, if large values of x are associated with small values of y, the sum will be negative. If
there is no general tendency for values of x to be associated with particular values of y, the
sum will be close to zero.

Because the covariance has dimensions, a more convenient quantity is the correlation coef-
ficient (also called Pearson’s correlation coefficient), defined for a sample by

r= V&Y (1.13)

SxSy

which is a dimensionless number between —1 and +1. An analogous relation to (1.13) with
the sample standard deviation replaced by the population value, defines the population corre-
lation coefficient p. A positive value of 1, i.e., a positive correlation, implies that values of x that
are larger than the mean X tend on average to be associated with values of y that are larger
than the mean 3. Likewise, a negative value of 7, i.e., a negative correlation, implies that that
values of x that are larger than ¥ tend on average to be associated with values of y that are
smaller than y. If ¥ is +1 or —1, then x and y are totally correlated, i.e., knowing one
completely determines the other. If » = 0, then x and y are said to be uncorrelated. Examples
of scatter plots for data showing various degrees of correlation are shown in Fig. 1.4. If there
are more than two variables present, correlation coefficients for pairs of variables can be
defined and form a matrix.*

Correlation coefficients must be interpreted with caution, because they measure associ-
ation, which is not necessarily the same as causation. For example, although the failure rate
of a piece of equipment in a particular month may show an association, i.e., be correlated,
with an increase in the number of users of the equipment, this does not necessarily mean
that the latter has caused the former. The failures might have occurred because of other

r=-05 r=0 r=+09 FIGURE 1.4 Scatter plot of
two-dimensional data and
e ,° .' o* ° approximate values of their
o o0, ° e :. ° .‘.: correlation coefficients 7.
° o0 ° ° o © e®o
Y Lt .. :::0 .... :.: : o® &8 H
° .. ....ﬂ. ° ® o .. ... ..O..
°® o ® H
X X X

*A brief review of matrices is given in Appendix A.
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reasons, such as disruptions in the power supply to the equipment during the month in
question. Another example is the ownership of mobile phones over the past decade or
so. The number of mobile phones in use correlates positively with a wide range of dispa-
rate variables, including the total prison population and the increase in the consumption
of ‘organic’ foods, which common sense would say cannot possibly have caused the
increase. The answer lies in realizing that each of the latter quantities has increased
with time and it is this that has led to the observed correlations. Thus time is acting as
a ‘hidden variable’ and without knowing this, a misleading conclusion may be drawn
from the correlation.

EXAMPLE 1.7

The lengths and electrical resistances (in arbitrary units) of a sample of 10 pieces of copper wire were
measured with the results below. Calculate the correlation coefficient for the sample.

Number of piece 1 2 3 4 5 6 7 8 9 10
Length (L) 15 13 10 11 12 11 9 14 12 13
Resistance (R) 21 18 13 15 16 14 10 16 15 12

From these data we can calculate the sample means from (1.3) to be L = 12 and R = 15; the

sample variances from (1.6) to be s% = 39—0 and S% =35 and the covariance from (1.12b) to be
4

cov(L,R) = 5 So, from (1.13), the correlation coefficient of the sample is 0.79, which indicates

a strong linear relationship between length and resistance of the pieces of wire, as one might expect.

Just as the mean and variance can be calculated using binned data, so can the correlation
coefficient, although the calculations are a little more complicated, as the following example
shows.

EXAMPLE 1.8

A class of 100 students has taken examinations in mathematics and physics. The binned marks obtained
are shown in the table below. Use them to calculate the correlation coefficient.

Mathematics marks

40—49  50-59 60—69 70—79  80—89  90—99
40-49 2 5 4
. 50-59 3 7 6 2
Pm};yriss 60—69 2 4 8 5 2
70-79 1 1 5 7 8 1
80—89 2 4 6 5
9999 2 4 4
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Here we are working with binned data, but for the whole population, i.e., N = 100 students. The
variances and covariance are easiest to calculate from formulas analogous to (1.6) and (1.12b), but
for binned data. For the population, using x for the mathematics marks and y for the physics mark,
these are:

and

6
cov(x,y) = N. Z hij xiy; — e <Zf(v ) <Zfi<y) ]/i>/

’I]
where

6

6

f9=3 "y and [V =3"ny
=1 i=1

and £;; is the frequency in the individual bin corresponding to (x;,¥;), that is, fi(x) (f;y )) is the total

frequency of the bin having a central value x;(y;). Using the frequencies given in the table gives

aﬁ = 206.51, aﬁ = 22091, and cov(x,y) = 153.21. Hence the correlation coefficient is p = cov(x,y)/

(ox0y)=0.72.

1.4. LARGE SAMPLES

The total area under a histogram is equal to the total number of entries n multiplied by
the bin width Ax. Thus the histogram may be normalized to unit area by dividing each
entry by the product of the bin width (assumed for convenience to be all equal) and
the total number of entries, as was done for the data shown in Fig. 1.2. As the number
of entries increases and the bin widths are reduced, the normalized histogram usually
approximates to a smooth curve and in the limit that the bin width tends to zero and
the number of events tends to infinity, the resulting continuous function f(x) is called
a probability density function, abbreviated to pdf, or simply a density function. This is illus-
trated in Fig. 1.5, which shows the results of repeated measurements of a quantity, repre-
sented by the random variable x. The three normalized histograms N(x) show the effect of
increasing the number of measurements and at the same time reducing the bin width.
Figure 1.5(d) shows the final normalized histogram, together with the associated density
function f(x).

The properties of density functions will be discussed in detail in Chapter 3, but one feature
worth noting here is that f(x) is very often of a symmetrical form known as a Gaussian or
normal distribution, like that shown in Fig. 1.5(d), the latter name indicating its importance
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FIGURE 1.5 Normalized histograms N(x) obtained by observations of a random variable x: (a) n =100
observations and bin width Ax = 0.5; (b) n = 1000, Ax = 0.2; (c) n = 10000, Ax = 0.1; and (d) as for (c), but also
showing the density function f(x) as a smooth curve.

in statistical analysis. If the function f(x) is of approximately normal form, an empirical rule is
that:

1. approximately 68.3% of observations lie within 1 sample standard deviation of the
sample mean;

2. approximately 95.4% of observations lie within 2 sample standard deviations of the
sample mean;

3. approximately 99.7% of observations lie within 3 sample standard deviations of
the sample mean.

These results could be used in principle to interpret the results of experiments like that in
Example 1.4, although in that case with only 10 events the distribution of observations is
unlikely to closely approximate a normal distribution.

The question of to what extent a set of measurements can be assumed a priori to be nor-
mally distributed is an interesting and important one. It is often remarked that physical scien-
tists make this assumption because they believe that mathematicians have proved it, and that
mathematicians assume it because they believe that it is experimentally true. In fact there is
positive evidence from both mathematics and experiments that the approximation is often
very good, but it is not universally true. In later chapters we will discuss the circumstances
in which one can be confident about the assumption.
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A problem with the standard deviation defined in (1.6) as a measure of spread is that
because the terms in the definition of the variance are squared, its value can be strongly influ-
enced by a few points far from the mean. For this reason, another measure sometimes used is
related to the form of the probability density function. This is the full width at half maximum
height (FWHM), often (rather confusingly) called the half~width, which is easily found by
measuring the width of the distribution at half the maximum frequency. This quantity
depends far less on values a long way from the maximum frequency, that is, data points
in the tails of the distribution. For an exact normal distribution, the half-width is 2.35¢.
(See Problem 1.8.)

1.5. EXPERIMENTAL ERRORS

In making inferences from a set of data, it is essential for experimenters to be able to assess
the reliability of their results. Consider the simple case of an experiment to measure a single
parameter, the length of a rod. The rod clearly has a true length, although unknown, so the
results of the experiment would be expressed as an average value, obtained from a sample of
measurements, together with a precise statement about the relationship between it and the
true value, i.e., a statement about the experimental uncertainty, called in statistics the error.
Without such a statement, the measurement has little or no value. The closeness of the
measured value to the true value defines the accuracy of the measurement, and an experiment
producing a measured value closer to the true value than that of a second experiment is said
to be more accurate.

There are several possible contributions to the error. The first is a simple mistake —
a reading of 23 from a measuring device may have been recorded incorrectly as 32. These
types of errors usually quickly reveal themselves as gross discrepancies with other measure-
ments, particularly if data are continually recorded and checked during the experiment, and
can usually be eliminated by repeating the measurement.

Then there are contributions that are inherent to the measuring process. If the length of the
rod is measured with a meter rule, the experimenter will have to estimate how far the end of
the rod is between calibrations. If it is equally likely that the experimenter will over- or under-
estimate this distance, the errors are said to be statistical, or random. Analogous errors are also
present in realistic experiments, such as those that involve electronic counting equipment.
Mathematical statistics is largely concerned with the analysis of random errors. One general
result that will emerge later is that they can be reduced by accumulating larger quantities of
data, i.e., taking more readings. The statistical error on a measurement is a measure of its
precision. Denoting the measurement as x and the statistical error as A, the result of the exper-
iment is expressed as x & A.

An experiment with a smaller statistical error is said to be more precise than one with
a larger statistical error. In statistics, ‘precision” and ‘accuracy’ are not the same. This is illus-
trated in Fig. 1.6, which shows a set of measurements made at different values of x of a quan-
tity y that is known to be a linear function of x, as shown by the straight line. The data in
Fig. 1.6(a) are more precise than those in Fig. 1.6(b) because they have smaller errors, as
shown by the error bars. (These are the vertical lines of length 2A drawn vertically through
the data points to show the range of values x £ A.) However the data clearly show
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FIGURE 1.6 Illustration of the difference between (a) precision and (b) accuracy.

a systematic deviation from the straight line that gives the known dependence of y on x. The
data in graph (b) have larger error bars and so are less precise, but they are scattered about
the line and are a better representation of the true relationship between x and y. Thus they
are more accurate. Later chapters will show how these statements may be expressed
quantitatively.

The deviation of the data in Fig. 1.6(a) from the true values is an indication of the presence
of a third type of error, called a systematic error. There are many possible sources of these,
which may, or may not, be known and they are by no means as obvious as Fig. 1.6 might
suggest. If a meter rule is used to measure the rod it may have been wrongly calibrated during
its manufacture, so that each scale unit, for example one millimeter, is smaller than it should
be. In a more realistic case where an experiment counts the particles emitted by a radioactive
isotope, the detectors could also have been wrongly calibrated, but in addition the source
might contain other isotopes, or the detectors may be sensitive to particles other than those
that identify the decay. In the simple case of measuring the length of a rod, repeating the
experiment with another meter rule would reveal the problem and enable it to be eliminated,
but in real situations using substantial equipment this may well not be possible and one of the
skills of a good experimentalist is to anticipate possible sources of systematic errors and
design them out at the planning stage of the experiment. Those that cannot be eliminated
must be carefully investigated and taken account in the final estimation of the overall error.

Systematic errors are a potentially serious problem, because you can never be sure that
you have taken all of them into account. There is no point in producing a very precise
measurement by taking more data to reduce the statistical error if the systematic error is
larger. This would only lead to a spurious accuracy. Books on mathematical statistics usually
have little to say about systematic errors, or ignore them all together, because in general there
is no way a full mathematical treatment of systematic errors can be made. However in the
real world of science we do not have the luxury of ignoring this type of error, and a limited
analysis is possible in some circumstances, particularly if the systematic effect is the same for
all data points, or its dependence on the measuring process is known, as is often the case. We
will return to this point in Section 5.4, when we discuss how to combine data from different
experiments.

In practice, it is better for clarity to quote the statistical and systematic errors separately, by
writing x &+ Ag & Ag, where the subscripts stand for ‘random’ and ‘systematic’, respectively.
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This also allows a new source of systematic error to be incorporated into the results should
one be revealed later. The number of significant figures quoted for the measurement should
be one more than that dictated by experimental precision to avoid errors that might be caused
by rounding errors in later calculations that use the result.

1.1

1.2

1.3

14

1.5

1.6

1.7

PROBLEMS 1

An experiment consists of tossing a die followed by tossing a coin (both unbiased). The
coin is tossed once if the number on the die is odd and twice if it is even. If the order of the
outcomes of each toss of the coin is taken into account, list the elements of the sample
space.

Five students, denoted by Si, S,, S3, S4 and Ss, are divided into pairs for laboratory
classes. List the elements of the sample space that define possible pairings.

The table gives the examination scores out of a maximum of 100 for a sample of
40 students.

22 67 45 76 90 87 27 45 34 36
67 68 97 73 56 59 76 67 63 45
55 59 90 82 74 34 68 56 53 68
28 39 43 66 67 59 38 39 56 61

Cast the data in the form of a frequency histogram with 8 equally spaced bins. What is the
frequency of each bin and the numbers in the bins of the cumulative distribution?

Calculate the median and the percentile Py ¢7 for the unbinned data of Example 1.3.

Use the data of Problem 1.3 to compute the sample mean ¥ and the sample standard
deviation s, both for the unbinned and binned data. How would Shepard’s corrections
change the results? What percentage of the unbinned data falls within x & 2s and
compare this with the predictions that would follow if the data were approximately
‘normally” distributed.

Verify that the second moment of a population about an arbitrary point 2 is given by
uh = 0% +d?, where d = u — A and u and ¢? are the mean and variation, respectively, of

the population.

Show that for the normal (Gaussian) density

flx) = e “)2],

1
exp| —
oV2m P [ 242
the half-width is equal to 2.35¢.
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1.8 One measure of the skewness of a population is the parameter

1 3
T =N z (xi — )7
i=1
Show that this may be written as
L (5 sm2 40P
yz—a(x — 3xx% + 2x ),
o
where the overbars denote averages over the population.

1.9 The electrical resistance per meter R was measured for a sample of 12 standard lengths of
cable of varying diameters D. The results (in arbitrary units) were:

D 1 3 4 2 7 2 9 9 7 8 5 3
R 10 9 7 8 4 9 3 2 5 4 3 8

Calculate the correlation coefficient for the data.
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Statistics is intimately connected with the branch of mathematics called probability theory,
and so before we can meaningfully discuss the subject of statistics and how itis used to analyze
data we must say something about probabilities. This chapter therefore starts with a brief
review of the axioms of probability and then proceeds to the mathematical rules for their appli-
cation. The meaning of probability is more problematic and there is no single interpretation.
The final section examines two interpretations that are used in physical sciences.

2.1. AXIOMS OF PROBABILITY

Let S denote a sample space consisting of a set of events E;(i = 1,2, ..., 1), where for specific
events subscripts will be avoided by instead using the notation A, B, C, etc. If we have two
events in S, denoted by A and B, then the event in which both occur (called the intersection
of A and B) is denoted ANB, or equivalently BNA. If ANB = J, where the symbol ¢J denotes
a sample space with no elements (called a null space), then the events are said to be mutually
exclusive (also called disjoint or distinct). The event in which either A or B, or both, occurs is
called the union of A and B and is denoted AUB. It also follows that if A denotes the event
‘not A’, called the complement of A, then A =S — A. To summarize'

1Readers should be aware that the notations in probability theory are not unique. For example, the
complement of A is often written A and other differences in notation, particularly for the union, are
common.

Statistics for Physical Sciences: An Introduction 2 1 Copyright © 2012 Elsevier Inc. All rights reserved.
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FIGURE 2.1 A Venn diagram (see text for a detailed description).

ANB intersection of A and B (both A and B occur),

AUB union of A and B (either A or B, or both occur),

ANB = A and B are mutually exclusive (no comment elements),
A complement of A (the event ‘not A’).

These definitions may be illustrated on a so-called Venn diagram, as shown in Fig. 2.1. The
sample space S consists of all events within the boundary Q. A, B, and C are three such events.
The doubly shaded area is AN B and the sum of both shaded regions A and B is AUB. The area
outside the region occupied by A and B is AUB and includes the area occupied by the third
event C. The latter is disjoint from both A and B, and so CNA=CNB=, i.e, A and C,
and B and C are pairwise mutually exclusive. An example will illustrate these definitions.

EXAMPLE 2.1
A sample space S consists of all the numbers from 1 to 8 inclusive. Within S there are four events:

A=(2,4,7,8), B=(1,3,57), C=(2,3,4,5) and D = (1,7,8).

Construct the content of the events AUC, BNC, SNB, (CND)UB, (BNC)UA, and ANCND.
From the above

A=(1,3,5,6), B=(2,4,6,8),C=(1,6,7,8)and D = (2,3,4,5,6),
and so the events are
AUC = (1,2,3,4,5,6), BNC = (1,7), SNB = (1,3,5,7),
and

(CND)UB = (1,3,5,7,8), (BNC)UA = (1,2,4,7,8), ANCND = (2,4).

The axioms of probability may now be stated as follows.
1. Every event E; in S can be assigned a probability P[E;] that is a real number satisfying

0 <P[Ej] <1. (2.1a)
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2. Since S consists of all the events E;, then
> P[E) =P[s] =1. (2.1b)
i
3. If the events A and B are such that the occurrence of one excludes the occurrence of the

other, i.e., they are mutually exclusive, then

P[AUB] = P[A] + P[B]. 2.1¢c)

2.2. CALCULUS OF PROBABILITIES

A number of basic results follow from these axioms and will be used in later chapters. For
the case of discrete events A, B, C, etc., these are:

1. If ACB, i.e,, A is a subset of B, then P[A] < P[B] and P[B — A] = P[B] — P[A].

2. P[A] =1 — P[A], from which it follows that for any two events, A and B,
P[A] = PIANB] + PIANE.

3. P[AUB| = P|A] + P[B] — P[ANB], which reduces to

P[AUB] = P|A] + P[B] (2.2a)
if A and B are mutually exclusive, or in general
P[AUBUC...] = P[A] + P[B] + P[C]... (2.2b)

This is called the additive rule and generalizes (2.1c).

We will also need a number of other definitions involving multiple events. Thus, if the
sample space contains two subsets A and B, then provided P[B]#0, the probability of the
occurrence of A given that B has occurred is called the conditional probability of A, written
P[A|B], and is defined by

PIANB]
P[B] ’

If the occurrence of A does not depend on that fact that B has occurred, i.e.

P[A|B] = P[A], (2.3b)

P[A|B] = P[B]#0. (2.3a)

then the event A is said to be independent of the event B. (Note that independence is not the
same as being distinct.) An important result that follows in a simple way from these defini-
tions is the multiplicative rule, which follows from rewriting (2.3a) as

P[ANB] = P[B] P[A|B] = P|A] P[B|A], (2.4a)
and reduces to

P[ANB] = P[A] P|B], (2.4b)
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if A and B are independent. This may be generalized in a straightforward way. For example,
if A, B, and C are three events, then

P[ANBNC] = P[A]P[B|A]P[C|ANB]. (2.4¢)
Finally, if the event A must result in one of the mutually exclusive events B, C, ..., then
P[A] = P[B]|P|A|B] + P[C]P[A|C] + ...

or, reverting to index notation,

PlA] = zn: PIEJPJA|E]). 2.5)
i=1

The use of these various results is illustrated in the following two examples.

EXAMPLE 2.2

A student takes a multiple-choice exam where each question has n = 4 choices from which to select an
answer. If p = 0.5 is the probability that the student knows the answer, what is the probability that a correct
answer indicates that the student really did know the answer and that it was not just a ‘lucky guess’?

Let Y be the event where the student answers correctly, and let + and — be the events where the
student knows, or does not know, the answer, respectively. Then we need to find P[+|Y], which from
(2.3a) is given by

P[+NY]

PLHY] = =5

From (2.4a) the numerator is
P+NY]=P[+|PY|[+]=px1=p,
and from (2.5), the denominator is

PlY] = P[+|P[Y|+] + P[ - |P[Y|-]

1
:P+(1—P)><E-

So, finally,

_ p i np
R e gy

Thus for n = 4 and p = 0.5, the probability is 0.8 that a correct solution was because the student did
really know the answer to the question.
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EXAMPLE 2.3

A class of 100 physical science students has a choice of courses in physics (Ph), chemistry (Ch), and
mathematics (Ma). As a result, 30 choose to take physics and mathematics, 20 physics and chemistry, 15
chemistry and mathematics, and 10 take all three courses. If the total numbers of students taking each subject
are 70 (Ph), 60 (Ma), and 50 (Ch), find the probabilities that a student chosen at random from the group will
be found to be taking the specific combinations of courses: (a) physics but not mathematics, (b) chemistry and
mathematics, but not physics, and (c) neither physics nor chemistry.

These probabilities may be found using the formulas given above.

(a) P[PhN\Ma) = P[Ph] — P[Ph(\Ma] = 0.70 — 0.30 = 0.40
(b) P[ChNMaNPh] = P[ChNMa] — P[ChNMaNPh] = 0.15 — 0.10 = 0.05

(¢) P[PhNCh] = P[Ma] — P[ChNMa] — P[PhN\Ma] + P[PhNChNMa]
=0.60 — 0.15 — 0.30 + 0.10 = 0.25

They can also be found by constructing the Venn diagram shown in Fig. 2.2.

FIGURE 2.2 Venn diagram for Example 2.3.

These ideas can be generalized to the situation where an event can be classified under
multiple criteria. Consider, for example, the case of three classifications. If the classifications
under the criteria are

Al/ AZ/ ey A}’/ Bl/ BZ/ ---/BS; and Cl/ CZ/ LRy Ct/
with

r s t
P[A] =) _PB|=> PC]=1,
i=1 i=1 i=1

then a table of the possible values of the three random variables, together with their associ-
ated probabilities, defines the joint probability of A, B, and C. The marginal probability of A; and
Cy is then defined as .

PIANC)= S P [Ai NB;N ck} (2.6a)

j=1
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and likewise the marginal probability of Cy is

i=1

PlC=Y ZP[AiﬂBjﬂCk] =3 PIANG]
s (2.6b)

S

= PBNC] =ZS:P{BJ"C’<] P[B],

where (2.3a) has been used in the last expression. This result is known as the law of total
probability and is a generalization of (2.5).

The final result we shall need is the basic theorem of permutations. The number of ways of
permuting (i.e., arranging) m objects selected from n distinct objects is

n!
(n —m)!

an 7 (2.7a)

where n!, called n factorial, is defined as n! = n(n —1)(n —2) ... 1, with 0! = 1. If, on the other
hand, the set of n objects consists of k distinct subsets each containing ny objects, indistin-
guishable within the subset, with n = n; + 1y + ... + 1, then the number of distinct permu-
tations of the objects is

n!

(2.7b)

nPui, nay ey e = PP

It follows from (2.7a) that the total number of combinations of the m objects without regard to
arrangement is

([ n _an_ n!
nCm = <m>_ m! m!(n—m)!’ 28)

m

i.e., the coefficient of ™ in the binomial expansion of (1 + x)".

EXAMPLE 2.4

A set of books is arranged on a shelf purely by their subject matter. Four are physics books, three are
chemistry books, and two are mathematics books. What is the total number of possible arrangements?

The number of different arrangements N can be found by applying (2.7b) with
ny =4, ne =3, ny =2 and n = ny +ne +ny = 9. Thus

9!

N = npnp, Nep My
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EXAMPLE 2.5

A committee of 4 people is to be selected at random from a group of 6 physicists and 9 engineers. What is
the probability that the committee consists of 2 physicists and 2 engineers?

There is a total of 15C4 possible choices of 4 people for the committee and each choice has an
equal probability of being chosen. However there are 4C, possible choices of 2 physicists from the
6 in the group, and 9C, possible choices of 2 engineers from the 9 in the group. So the required
probability is

6C2 X 9C2 _ 36

=Cs T 0.396.

2.3. THE MEANING OF PROBABILITY

The axioms and definitions discussed so far specify the rules that probability satisfies and
can be used to calculate the probability of complex events from the probabilities of simple
events, but they do not tell us how to assign specific probabilities to actual events. Mathemat-
ical statistics proceeds by assigning a prior probability to an event on the basis of a given
mathematical model, specified by known parameters, about the possible outcomes of the
experiment. In physical situations, even if the mathematical form is known, its parameters
rarely are and one of the prime objectives of statistical analysis is to obtain values for them
when there is access to only incomplete information. Without complete knowledge we
cannot make absolutely precise statements about the correct mathematical form and its
parameters, but we can make less precise statements in terms of probabilities. So we now
turn to examine in more detail what is meant by the word “probability’.

2.3.1. Frequency Interpretation

We all use the word “probability” intuitively in everyday language. We say that an unbi-
ased coin when tossed has an equal probability of coming down ‘heads’ or ‘tails’. What
we mean by this is that if we were to repeatedly toss such a coin, we would expect the
average number of heads and tails to be very close to, but not necessarily exactly equal to,
50%. Thus we adopt a view of probability operationally defined as the limit of the relative
frequency of occurrence. While this is a common-sense approach to probability, it does have
an element of circularity. What do we mean by an unbiased coin? Presumably one that,
when tossed a large number of times, tends to give an equal number of heads and tails!
We have already used the word ‘random’ in this context in Chapter 1 when discussing statis-
tical errors, and again when using the words ‘equally likely” when discussing the example of
an experiment to test lecturers’ teaching capabilities.

The frequency definition of probability may be stated formally as follows. In a sequence of n
trials of an experiment in which the event E of a given type occurs ng times, the ratio R[E] =
ng/n is called the relative frequency of the event E, and the probability P[E] of the event E is
the limit approached by R[E] as n increases indefinitely, it being assumed that this limit exists.
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If we return to the sample space of Example (1.2), and denote by X the number of heads
obtained in a single throw, then

X(E1) =2; X(E) =1; X(E3) = 1; X(E4) =0,

and we can calculate P[X] using the frequency approach as follows:

1 1 1
= PX=1=5PX=0/=_

PIX =2] 5

It is worth noting that this definition of probability differs somewhat from the mathemat-
ically similar one: that for some arbitrary small quantity ¢ there exists a large n, say ny, such
that |[R[E] — P[E]| < ¢ for all n > ny. The frequency definition has an element of uncertainty
in it being derived from the fact that in practice only a finite number of trials can ever be
made. This way of approaching probability is essentially experimental. A probability,
referred to as the posterior probability, is assigned to an event on the basis of experimental
observation. A typical situation that occurs in practice is when a model of nature is con-
structed and from the model certain prior probabilities concerning the outcomes of an
experiment are computed. The experiment is then performed, and from the results obtained
posterior probabilities are calculated for the same events using the frequency approach.
The correctness of the model is judged by the agreement of these two sets of probabilities
and on this basis modifications may be made to the model. These ideas will be put on
a more quantitative basis in later chapters when we discuss estimation and the testing of
hypotheses.

Most physical scientists would claim that they use the frequency definition of probability,
and this is what has been used in the previous sections and examples in this book (such as
Examples 2.3 and 2.5), but it is not without its difficulties, as we have seen. It also has to
be used in context and the results interpreted with care. A much quoted example that illus-
trates this is where an insurance company analyzes the death rates of its insured men and
finds there is about a 1% probability of them dying at age 40. This does not mean that a partic-
ular insured man has a 1% probability of dying at this age. For example he may be a member
of a group where the risk of dying is increased, such as being a regular participant in
a hazardous sport, or having a dangerous occupation. So had an analysis been made of
members of those groups, the probability of his death at age 40 may well have been much
greater. Another example is where canvassers questioning people on a busy street claim to
deduce the ‘average’ view of the population about a specific topic. Even if the sample of
subjects approached is random (a dubious assumption) the outcome would only be represen-
tative of the people who frequent that particular street, and may well not represent the views
of people using other streets or in other towns.

Crucially, the frequency approach usually ignores prior information. Consider, for
example, a situation where two identically made devices are to be tested sequentially. If
the probability of a successful test is assessed to be p, then the two tests would be considered
as independent and so the combined probability for both tests to be successful is
P[1,2] = P[1]P[2] = p>. However, common sense would suggest that the probability P[2]

The prior and posterior probabilities were formerly, and sometimes still are, called the a priori and a
posteriori probabilities.
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should be decreased (or increased) if the first test was a failure (or a success), so really
P[1,2] = P[2|1]P[1] #p>.

The frequency approach also assumes the repeatability of experiments, under identical
conditions and with the possibility of different outcomes, for example tossing a coin many
times. So what are we to make of an everyday statement such as ‘It will probably rain tomorrow’,
when there is only one tomorrow? Critics also argue that quoting the result of the measurement
of a physical quantity, such as the mass of a body as 10 & 1 kg, together with a statement
about the probability that the quantity lies within the range specified by the uncertainty of
1kg, is incompatible with the frequency definition. This is because the quantity measured
presumably does have a true value and so either it lies within the error bars or it does not,
i.e., the probability is either 1 or 0. These various objections are addressed in the next section.

2.3.2. Subjective Interpretation

The calculus of probabilities as outlined above proceeds from the definition of probabili-
ties for simple events to the probabilities of more complex events. In practice, what is
required in physical applications is the inverse, that is, given certain experimental observa-
tions we would like to deduce something about the parent population and the generating
mechanism by which the events were produced. This, in general, is the problem of statistical
inference alluded to in Chapter 1.

To illustrate how this leads to an alternative interpretation of probability, we return to the
definition of conditional probability, which can be written using (2.3a) as

P[BNA] = P[A]P[B|A]. (2.9a)
Since ANB is the same as BN A, we also have
P[BNA] = P[B|P[A|B], (2.9b)
and by equating these two quantities we deduce that
_ P[BJP[A|B]
P[B|A] = W’ (2.10)

provided P[A]#0. Finally, we can generalize to the case of multiple criteria and use the law of
total probability (2.6b) to write

PlA] = ip[AnB]} - ip[}g,} plalB],

so that (2.10) becomes

P[Bi|A] = — PIBIPIAIB] 2.11)

%:P[B]} PlAlB]

This result was first published in the 18th century by an English clergyman, Thomas Bayes,
and is known as Bayes’ theorem. It differs from the frequency approach to probability by intro-
ducing an element of subjectivity into the definition — hence its name: subjective probability.
In this approach, the sample space is interpreted as a set of n mutually exclusive and
exhaustive hypotheses (i.e., all possible hypotheses are included in the set). Suppose an event
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A can be explained by the mutually exclusive hypotheses represented by By, By, ..., By.
These hypotheses have certain prior probabilities P[B;] of being true. Each of them can give
rise to the occurrence of the event A, but with distinct probabilities P[A|B;], which are the
probabilities of observing A when B; is known to be satisfied. The interpretation of (2.11) is
then: the probability of the hypothesis B;, given the observation of A, is the prior probability
that B; is true, multiplied by the probability of the observation assuming that B; is true,
divided by the sum of the same product of probabilities for all allowed hypotheses. In this
approach, the prior probabilities are statements of one’s belief that a particular hypothesis
is true. Thus in the subjective approach, quoting the measurement of a mass as 10 1 kg
is a valid statement that expresses one’s current belief about the true value of that quantity.

To illustrate how Bayes’ theorem can be used, consider an example where a football team
is in a knockout tournament and will play either team A or team B next depending on their
performance in earlier rounds. The manager assesses their prior probabilities of winning
against A or B as P[A] =3/10 and P[B] =5/10 and their probabilities of winning given
that they know their opponents as P[W|A] = 5/10 and P[W|B] = 7/10. If the team wins their
next game, we can calculate from (2.11) the probabilities that their opponents were either A or
B as P[A|W] = 3/10 and P[B|W] = 7/10. So if you had to bet, the odds favor the hypothesis
that the opponents were team B.

The result of this simple example is in agreement with common sense, but the following
examples illustrate that Bayes’ theorem can sometimes lead to results that at first sight are
somewhat surprising.

EXAMPLE 2.6

The process of producing microchips at a particular factory is known to result in 0.2% that do not satisfy
their specification, i.e., are faulty. A test is developed that has a 99% probability of detecting these chips if they
are faulty. There is also a 3% probability that the test will give a false positive, i.e., a positive result even
though the chip is not faulty. What is the probability that a chip is faulty if the test gives a positive result?

If we denote the presence of a fault by f and its absence by f, then P[f] = 0.002 and P[f] = 0.998.
The test has a 99% probability of detecting a fault if present, so it follows that the test yields a ‘false
negative’ result in 1% of tests, that is, the probability is 0.01 that the test will be negative even
though the chip tested does have a fault. So if we denote a positive test by 4+ and a negative one by —,
then P[+]|f] = 0.99 and P[—|f] = 0.01. There is also a 3% probability of the test giving a false positive,
i.e., a positive result even though the chip does not have a fault, so P[+|f] = 0.03 and P[—|f] = 0.97.
Then from Bayes’ theorem,

Ll
[+IfIP[f] + P+IfIPIf]
0.99 x 0.002

- = 0.062.
(0.99  0.002) + (0.03 x 0.998) _ 0°

So the probability of a chip having a fault given a positive test result is only 6.2%.>

3The same reasoning applied to a medical test for rare conditions shows that a positive test result often
means only a low probability for having the condition.
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EXAMPLE 2.7

An experiment is set up to detect particles of a particular type A in a beam, using a detector that has a 95%
efficiency for their detection. However, the beam also contains 15% of particles of a second type B and the
detector has a 10% probability of misrecording these as particles of type A. What is the probability that the
signal is due to a particle of type B?

If the observation of a signal is denoted by S, we have

P[A] =0.85, P[B] =0.15,
and
P[S|A] =0.95, P[S|B] =0.10.
Then from Bayes’ theorem,
P[B] P[S|B]
[A] P[S|A] + P[B] P[S|B]

0.15 x 0.10
= =0.018.
(085 % 0.95) + (0.15 x 0.10) _ 018

PIBIS] = -

Thus there is a probability of only 1.8% that the signal is due a particle of type B, even though 15% of
the particles in the beam are of type B.

If we had to choose an hypothesis from the set B; we would choose that one with the
greatest posterior probability. However (2.11) shows that this requires knowledge of the
prior probabilities P[B;] and these are, in general, unknown. Bayes’ postulate is the hypothesis
that, in the absence of any other knowledge, the prior probabilities should all be taken as
equal. A simple example will illustrate the use of this postulate.

EXAMPLE 2.8

A container has four balls, which could be either all white (hypothesis 1), or two white and two black
(hypothesis 2). If n balls are withdrawn, one at a time, replacing them after each drawing, what are the
probabilities of obtaining an event E with n white balls under the two hypotheses? Comment on your answer.

If n balls are withdrawn, one at a time, replacing them after each drawing, the probabilities of
obtaining an event E with n white balls under the two hypotheses are

PEH) =1 and P[E|Hy]=27".
Now from Bayes’ postulate,
1
Plth] = PlH| =5

and so from (2.11),

n
1420 T+20
Providing no black ball appears, the first hypothesis should be accepted because it has the greater
posterior probability.

P[H; |E] = and P[H|E] =
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While Bayes’ postulate might seem reasonable, it is the subject of controversy and can lead
to erroneous conclusions. In the frequency theory of probability it would imply that events
corresponding to the various B; are distributed with equal frequency in some population
from which the actual B; has arisen. Many statisticians reject this as unreasonable.*

Later in this book we will examine some of the many other suggested alternatives to
Bayes’ postulate, including the principle of least squares and minimum chi-squared. This
discussion will be anticipated by briefly mentioning here one principle of general applica-
tion, that of maximum likelihood.

From (2.11) we see that

P[B;|A]«P[B]] L, (2.12)

where L = P[A|B)] is called the likelihood. The principle of maximum likelihood states that when
confronted with a set of hypotheses B;, we choose the one that maximizes L, if one exists, that
is, the one that gives the greatest probability to the observed event. Note that this is not the
same as choosing the hypothesis with the greatest probability. It is not at all self-evident why
one should adopt this particular choice as a principle of statistical inference, and we will
return to this point in Chapter 7. For the simple case above, the maximum likelihood method
clearly gives the same result as Bayes’ postulate.

There are other ways of defining probabilities and statisticians do not agree among them-
selves on the ‘best’ definition, but in this book we will not dwell too much on the differences
between them,” except to note that the frequency definition is usually used, although the
subjective approach will be important when discussing some aspects of interval estimation
and hypothesis testing.

PROBLEMS 2

2.1 The diagram shows an electrical circuit with four switches S (S = 1,4) that when closed
allow a current to flow. If the switches act independently and have a probability p for
being closed, what is the probability for a current to flow from I to O? Check your
calculation by calculating the probability for no current to flow.

FIGURE 2.3 Circuit diagram.

“Bayes himself seems to have had some doubts about it and it was not published until after his death.

>To quote a remark attributed to the eminent statistician Sir Maurice Kendall: “In statistics it is a mark of
immaturity to argue over much about the fundamentals of probability theory.”
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In the sample space S = {1,2,3, ..., 9}, the events A, B, C, and D are defined by
A=(248),B=1(2359),C=(1,2,4),and D = (6,8,9). List the structure of the events

(@)AND, (b) (BNC)UA, (c) (ANBNC), (d) AN(BUD).

A technician is 70% convinced that a circuit is failing due to a fault in a particular
component. Later it emerges that the component was part of a batch supplied from

a source where it is known that 15% of batches are faulty. How should this evidence alter
the technician’s view?

Over several seasons, two teams A and B have met 10 times. Team A has won 5 times,
team B has won 3 times, and 2 matches have been drawn. What is the probability that in
their next two encounters (a) team B will win both games and (b) team A will win at least
one game?

Five physics books, 4 maths books, and 3 chemistry books are to be placed on a shelf so
that all books on a given subject are together. How many arrangements are possible?

a. One card is drawn at random from a standard deck of 52 cards. What is the probability
that the card is nine (9) or a club (C)?

b. If four cards are drawn, what is the probability that at least three will be of the
same suite?

A lie detector test is used to detect people who have committed a crime. It is known to be
95% reliable when testing people who have actually committed a crime and 99% reliable
when they are innocent. The test is given to a suspect chosen at random from a
population of which 3% have been convicted of a crime, and the result is positive, i.e.,
indicates guilt. What is the probability the suspect has not actually committed a crime?

Box A contains 4 red and 2 blue balls, and box B contains 2 red and 6 blue balls. One of the
boxes is selected by tossing a die and then a ball is chosen at random from the selected
box. If the ball selected is red, what is the probability that it came from box A?

Three balls are drawn at random successively from a bag containing 12 balls, of which
3 are red, 4 are white, and 5 are blue. In case (a), each ball is not replaced after it has

been drawn, and in case (b) they are replaced. In both cases all three balls are found to
be in the order red, white, and blue. What are the probabilities for this in the two cases?
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In the present chapter we will define random variables and discuss their probability
distributions. This will be followed in the next chapter by a discussion of the properties of
some of the population distributions that are commonly encountered in physical science
and that govern the outcome of experiments.

3.1. RANDOM VARIABLES

The events discussed in Chapters 1 and 2 could be arbitrary quantities, heads, tails, etc.,
or numerical values. It is useful to associate a set of real numbers with the outcomes of an
experiment even if the basic data are non-numeric. This association can be expressed by
a real-valued function that transforms the points in S to points on the x axis. The function

Statistics for Physical Sciences: An Introduction 35 Copyright © 2012 Elsevier Inc. All rights reserved.
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is called a random variable and to distinguish between random variables and other variables,
the former will also be called variates.! Returning to the coining tossing experiment of
Example 1.2, the four events were

Ey = (H,H); E,=(H,T); Es=(T,H); E4=(T,T),

and so if we let x be a random variable” that can assume the values given by the number of
‘heads’, then

x(E]) = 2; X(Ez) = 1,‘ x(E3) = 1; X(E4) =0.
And, using the frequency definition of probability,
Plx=0] =P[E4] =1/4, P[lx=1]=P[E;UE3] =1/2; P[lx=2]=P[E]=1/4,

where we have assumed an unbiased coin, so that throwing a ‘head’ or a ‘tail’ is equally
likely. From this example we see that a random variable can assume an ensemble of numer-
ical values in accord with the underlying probability distribution. These definitions can be
extended to continuous variates and to situations involving multivariates, as we will see
below. In general, it is the quantities P[x] that are the objects of interest and it is to these
that we now turn.

3.2. SINGLE VARIATES

In this section we will examine the case of a single random variable. The ideas discussed
here will be extended to the multivariate case in Section 3.3.

3.2.1. Probability Distributions

First we will need some definitions that extend those given in Chapter 2 in the discussion
of the axioms of probability, starting with the case of a single discrete random variable. If x is
a discrete random variable that can take the values xx(k = 1,2,...) with probabilities P[x],
then we can define a probability distribution f(x) by

Plx] = f(x). (3.1a)

Thus,
Plxg] = f(xx) for x =x, otherwise f(x) =0. 3.1b)

To distinguish between the cases of discrete and continuous variables, the
probability distribution for the former is often called the probability mass function (or

1Some authors use the word “variate’ to mean any variable, random or otherwise, that can take on
a numerical value.

2A convention that is often used is to denote random variables by upper case letters and the values they can
take by the corresponding lower case letter. As there is usually no ambiguity, lower case letters will be used
for both.
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simply a mass function) sometimes abbreviated to pmf. A pmf satisfies the following two
conditions:

1. f(x) is a single-valued non-negative real number for all real values of x, i.e., f(x) > 0;
2. f(x) summed over all values of x is unity:

> flx)=1. (3.10)

X

We saw in Chapter 1 that we are also interested in the probability that x is less than or
equal to a given value. This was called the cumulative distribution function (or simply the distri-
bution function), sometimes abbreviated to cdf, and is given by

F(x) = f(x)- (3.2a)

X <x

So, if x takes on the values x (k = 1,2, ... n), the cumulative distribution function is

0 —0 < x < X1
f(x1) x1 <x<xp
F(x) = q f(x1) +f(x2) x<x<x3 (3.2b)

f)+ o+ () xmEx< o

F(x) is anondecreasing function with limits 0 and 1 as x— — and x— +o, respectively. The
quantile x, of order ¢, defined in Chapter 1, is thus the value of x such that F(x,) = &, with
0<a<1,andsox, = F! (a), where F ~1 s the inverse function of F. For example, the median
1S X0.5-

As sample sizes become larger, frequency plots tend to approximate smooth curves and if
the area of the histogram is normalized to unity, as in Fig. 1.5, the resulting function f(x) is
a continuous probability density function (or simply a density function) abbreviated to pdf, intro-
duced in Chapter 1. The definitions above may be extended to continuous random variables
with the appropriate changes. Thus, for a continuous random variable x, with a pdf f(x),
(3.2a) becomes

F(x) = /j; f(xdx, (= <x < ), (3.3)

It follows from (3.3) that if a member of a population is chosen at random, that is, by a method
that makes it equally likely that each member will be chosen, then F(x) is the probability that
the member will have a value <x. While all this is clearly consistent with earlier definitions,
once again we should note the element of circularity in the concept of randomness defined
in terms of probability. In mathematical statistics it is usual to start from the cumulative
distribution and define the density function as its derivative. For the mathematically
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well-behaved distributions usually met in physical science the two approaches are
equivalent.

The density function f(x) has the following properties analogous to those for discrete
variables.

1. f(x) is a single-valued non-negative real number for all real values of x.

In the frequency interpretation of probability, f(x)dx is the probability of observing the
quantity x in the range (x,x + dx). Thus, the second condition is:

2. f(x) is normalized to unity:

+ oo
f(x)dx =1.

— o0

It follows from property 2 that the probability of x lying between any two real values
a and b for which a < b is given by

Pa<x<b] = /bf(x)dx, 3.4)

and so, unlike a discrete random variable, the probability of a continuous random variable
assuming exactly any of its values is zero. This result may seem rather paradoxical at first
until you consider that between any two values 2 and b there is an infinite number of other
values and so the probability of selecting an exact value from this infinitude of possibilities
must be zero. The density function cannot therefore be given in a tabular form like that of
a discrete random variable.

EXAMPLE 3.1

A family has 5 children. Assuming that the birth of a girl or boy is equally likely, construct a frequency
table of possible outcomes and plot the resulting probability mass function f(g) and the associated cumulative
distribution function F(g).

The probability of a sequence of births containing g girls (and hence b =5 —g boys) is

g b 5
(;) (;) = (;) . However there are ;C, such sequences, and so the probability of having ¢ girls

is P[g] = 5C,/32. The probability mass function f(g) is thus as given in the table below.

g 0 1 2 3 4 5

f(9) 1/32 5/32 10/32 10/32 5/32 1/32

From this table we can find the cumulative distribution function using (3.2b), and f(g) and F(g)
are plotted in Figs 3.1(a) and (b), respectively, below.



FIGURE 3.1 Plots of the probability
mass function f(g) and the cumulative
distribution function F(g).
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EXAMPLE 3.2

Find the value of N in the continuous density function:

fx) = {é\]e*"xz/Z x>0

x<0’

and find its associated distribution function F(x). Plot f(x) and F(x).
Because f(x) has to be correctly normalized, to find N we evaluate the integral:

N/ e ¥x2dx = 1.
2 Jo

Integrating by parts, gives

1 1
N2

® 1 ®
/ e ¥xdx = - e (% +2x +2)],
0

1/

so that N = 1. The resulting density function is plotted in Fig. 3.2(a). The associated distribution

function is

2

1/~ 1 1
F(x) = —/ e "y2dy = _E [E—M(MZ +2u+ 2)]3 _ _E e—x(xz +2x 4 2) 11,
0

and is shown in Fig. 3.2(b).
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03 (a) -

(b)
02 —
F(x)

o1 L S

00 | | | T

8 10

FIGURE 3.2 Probability density function f(x) = e *x?/2(x > 0) and the corresponding cumulative distribution
function F(x).

Some of the earlier definitions of Chapter 1 may now be rewritten in terms of these formal
definitions. Thus, the general moments about an arbitrary point A are, for a continuous
variate,

+ oo
Moy = f)(x=2)", (3.5)

so that the mean and variance, also with respect to the point 2, are

+o +o
= f(x)(x—2)dx and o= f(x)(x — wy)?dx, (3.6)

respectively. The integrals in (3.5) may not converge for all n, and some distributions possess
only the trivial zero-order moment. For convenience, usually A = 0 will be used in what follows.

3.2.2. Expectation Values

The expectation value, also called the expected value, of a random variable is obtained by
finding the average value of the variate over all its possible values weighted by the proba-
bility of their occurrence. Thus, if x is a discrete random variable with the possible values
X1,X2, ..., Xy, then the expectation value of x is defined as

E[x] = Z xiPlxi] = > xf(x), (3.7)
i=1

X

where the second sum is over all relevant values of x and f(x) is their probability mass distri-
bution. The analogous quantity for a continuous variate with density function f(x) is

E[x] = /_+<x> x f(x) dx. (3.8a)

el
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We can see from this definition that the nth moment of a distribution about any point 4 is
/,L;7 = E[(x — 2)"]. (3.8b)

In particular, the nth central moment is

+o0
o = El(r ~ Bl = [ (6= o) (380
and for A = 0 the nth algebraic moment is
4o
w, = E[x"] = / x"f(x)dx (3.8d)

Thus, the mean is the first algebraic moment and the variance is the second central moment.
It follows from (3.8) that if ¢ is a constant, then

Elcx] = cE[x], (3.9a)
and for a set of random variables A, B, C, etc.:
E[A+B+C+--:]=E[A|+E[B]+E[C] + - - (3.9b)
In addition, if the random variables A, B, C, etc. are independent, then

E[ABC...] = E[AJE[BIE[C]... (3.90)

EXAMPLE 3.3

Three ‘fair’ dice are thrown and yield face values a, b, and c. What is the expectation value for the sum of
their face values?
From (3.7),

Ela] = f:i(l/é) =7/2,
i=1

and since E[a] = E[b] = E[c], then from (3.9b) E[a + b + ] = 21/2.

EXAMPLE 3.4

Find the mean of the continuous distribution of Example 3.2.
Using (3.8d), the mean is o
— 1/ 3 7xd
u= x’edx.
2.Jo

—X

2

Integrating by parts gives

w= [x3+3x2+6x+6]g°:3.
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3.2.3. Moment Generating, and Characteristic Functions

The usefulness of moments partly stems from the fact that knowledge of them determines
the form of the density function. Formally, if the moments !/, of a random variable x exist and
the series

o
“—'; P (3.10)
=1 n!

converges absolutely for some r > 0, then the set of moments ), uniquely determines the
density function. There are exceptions to this statement, but fortunately it is true for all the
distributions commonly met in physical science. In practice, knowledge of the first few
moments essentially determines the general characteristics of the distribution and so it is
worthwhile to construct a method that gives a representation of all the moments. Such a func-
tion is called a moment generating function (mgf) and is defined by

M, (t) = E[¢)]. (3.11)
For a discrete random variable x, this is

My (t) = e'f(x), (3.12a)

and for a continuous variable,

+
M,(t) = / ef(x)dx. (3.12b)
The moments may be generated from (3.11) by first expanding the exponential,
1 |
M (t) = E{l +Xt+ﬁ (xt)? 4 - - } = Z()Eu;t”,
n=

then differentiating n times and setting t = 0, that is:

) _ O"Mq(t)

o= (3.13)

=0

For example, setting n = 0 and nn = 1, gives u; = 1 and ) = u. Also, since the mgf about any
point A is
M;(t) = Elexp{(x — )t}],
then if 1 = u,
M(t) = e MMy (t). (3.14)

An important use of the mgf is to compare two density functions f(x) and g(x). If two
random variables possess mgfs that are equal for some interval symmetric about the
origin, then f(x) and g(x) are identical density functions. It is also straightforward to
show that the mgf of a sum of independent random variables is equal to the product of
their individual mgfs.
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It is sometimes convenient to consider, instead of the mgf, its logarithm. The Taylor expan-
sion® for this quantity is

2
In My(t) = k1t + k2 EJr e,
where «;, is the cumulant of order n, and
0"In M, (t)
Kn =—""— .
atn =0

Cumulants are simply related to the central moments of the distribution, the first few rela-
tions being

ki=p; (i=1,2,3), K4=/.L4—3/.L§.

For some distributions the integral defining the mgf may not exist and in these circum-
stances the Fourier transform of the density function, defined as

. RE
B0 = = [ x)d = My, (3.15)
may be used. In statistics, ¢, (t) is called the characteristic function (cf). The density function is
then obtainable by the Fourier transform theorem (known in this context as the inversion
theorem):

1 [t
f(x):Z / e . (H)dt. (3.16)

—

The cf obeys theorems analogous to those obeyed by the mgf, that is: (a) if two random
variables possess cfs that are equal for some interval symmetric about the origin then
they have identical density functions; and (b) the cf of a sum of independent random
variables is equal to the product of their individual cfs. The converse of (b) is however
untrue.

EXAMPLE 3.5

Find the moment generating function of the density function used in Example 3.2 and calculate the three
moments iy, wh, and p.
Using definition (3.12b),

M, (t) = / ef(x)dx :1/ eMx?e ™ dx = 1/ e ¥ 10 x2dx,
2 /o 2 Jo

JOo

3Some essential mathematics is reviewed briefly in Appendix A.
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which integrating by parts gives:

©

M = 4 - e o sl -
() = *m[(*)er(*)er}o—(l_t)y

Then, using (3.13), the first three moments of the distribution are found to be

EXAMPLE 3.6

(a) Find the characteristic function of the density function:

- Zx/a2 a<x<0
flx) = {0 otherwise ’
and (b) the density function corresponding to a characteristic function e~ !l.
(a) From (3.15),

, 2[4
o, (t) = E[e™] = —2/ e xdx.
a=Jo

Again, integration by parts gives

(b) From the inversion theorem,

f(x) :_/ e He=itx gy :l/ e~cos(tx)dx,
o m™Jo

where the symmetry of the circular functions has been used. The second integral may be evaluated
by parts to give
mf(x) = [ —e~feos(tx)]; — x [ e 'sin(tx)dt
0

o0

=1- x{ [ —e'sin(tx)], +x ? etcos(tx)dt} =1 — mx?f(x).
0

Thus,
f(x):il —oo <x< ®
m(1+x2)’ -

This is the density of the Cauchy distribution that we will meet again in Section 4.5.
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3.3. SEVERAL VARIATES

All the results of the previous sections may be extended to multivariate distributions. We
will concentrate on continuous variates, but the formulas may be transcribed in a straightfor-
ward way to describe discrete variates.

3.3.1. Joint Probability Distributions

The multivariate joint density function f(x1,x, ..., x,)of the n continuous random variables
X1, X2,..., Xy is a single-valued non-negative real number for all real values of x1,xy, ..., Xy,
normalized so that

+ -+ oo
/ f X1,%a, .. del =1, (3.17)

and the probability that x; falls between any two numbers a; and by, x; falls between any two
numbers a; and by, ..., and x, falls between any two numbers a, and b,, simultaneously, is
defined by

b, by n
Play <x1 <by;..50, <xy < by = / / f(x1, x2, ..., xn)dei. (3.18)
y a i=1

Similarly, the multivariate joint distribution function F(xq, x2, ..., X,) of the n random variables
X1, X, ..., X 1S

Xn X1 n
F(X1, X2, vy Xp) = / / f(t1, tr, ..., tn)Hdti- (3.19)
—o Jow i=1

For simplicity, consider the case of just two random variables x and y. These could corre-
spond to the energy and angle of emission of a particle emitted in a nuclear scattering reac-
tion. If an event A corresponds to the variable x being observed in the range (x, x + dx) and
the event B corresponds to the variable y being observed in the range (y, y + dy), then

P[ANB] = probability of x being in (x, x + dx) and y being in (y, y + dy)
= f(x, y)dx dy.

As noted in Chapter 1, the joint density function corresponds to the density of points on
a scatter plot of x and y in the limit of an infinite number of points. This is illustrated in
Fig. 3.3, using the data shown on the scatter plot of Fig. 1.3(b).

3.3.2. Marginal and Conditional Distributions

We may also be interested in the density function of a subset of variables. This is called the
marginal density function fM, and in general for a subset x1(i = 1, 2, ..., m < n) of the variables
is given by integrating the joint density function over all the variables other than
X1, X2, ..., Xm. Thus,
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event A

0 2 4 6 8 10

FIGURE 3.3 A scatter plot of 1000 events that are functions of two random variables x and y showing two
infinitesimal bands dx and dy. The area of intersection of the bands is dx dy and f(x, y)dx dy is the probability of
finding x in the interval (x, x 4+ dx) and y in the interval (y,y + dy).

+ [o4) n
fM(x1, X2, ey Xim) :/ f(x1, X2, oe) Xy X1, oees Xn) H dx;. (3.20a)
—® — i=m+1

In the case of two variables, we may be interested in the density function of x regardless of
the value of y, or the density function of y regardless of x. For example, the failure rate of
a resistor may be a function of its operating temperature and the voltage across it, but in
some circumstances we might be interested in just the dependence on the former. In these
cases (3.20a) becomes

+o0 +oo

M= feydy and My)=[ flrydr (3.20b)
These density functions correspond to the normalized histograms obtained by projecting
a scatter plot of x and y onto one of the axes. This is illustrated in Fig. 3.4, again using the
data of Fig. 1.3(b).

We can also define the multivariate conditional density function of the random variables
x1(i=1,2, .., m<n)by

flx1, x2, ...y Xn)
f(xm+l/ Xin42s «ees Xn)
Again, if we consider the case of two variables x and y, the probability for y to be in the

interval (y, y + dy) with any x (event B), given that x is in the interval (x, x + dx) with any
y (event A), is

(3.21)

fc(xlr X2, eeey xm|xm+1r Xm42s «oer xn)

_PANB]_ f(x,y)dx dy
PIBlA] = PlA]  M(x)dx ’
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10

FIGURE 3.4 Normalized histograms obtained by projecting the data of Fig. 1.3(b) onto the x and y axes, together
with the corresponding marginal probability density functions f*(x) and fM(y).

where fM(x) is the marginal density function for x. The conditional density function for y
given x, is thus

Cryley = f&Y) _ flxy) .
PR =) = Ty 6220

This is the density function of the single random variable y where x is treated as a constant.
It corresponds to projecting the events in a band dx centered at some value x onto the y axis
and renormalizing the resulting density so that it is unity when integrated over y. The form of
f€(y|x) will therefore vary as different values of x are chosen.

The conditional density function for x given y is obtained from (3.22a) by interchanging x
and y, so that

Cron _fY) _ fxy)
frxly) = 0y~ TR y)ar” (3.22b)

and combining these two equations gives

C M
c f )" (%)
xly) =————, (3.22¢)
e =)
which is Bayes’ theorem for continuous variables.
We can use these definitions to generalize the law of total probability (2.6b) to the case of
continuous variables. Using conditional and marginal density functions we have

fy) = lx) M) = Fxly) M), (3.23)

so the marginal density functions may be written as

+ oo
P = [ o fod
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and
+

P = [ ) My,

With more than one random variable we also have to consider the question of statistical
independence (by analogy with the work of Chapter 2). If the random variables may be split
into groups such that their joint density function is expressible as a product of marginal
density functions of the form

M
f(x1, x2, ..., Xn) :f{\/l(xl, X2, oo X)fs" (Xi1, Xig2, -ou xk)...fr],w(xlﬂ, Xi12, «oer Xn),
then the sets of variables
(1, x2, ooey Xi); (Xig1, Xigo, ooop Xg)5 oo s (Xp41s X142, ooos Xn),
are said to be statistically independent, or independently distributed. So two random variables x

and y are independently distributed if

fxy) = M) My). (3.24)

It follows from (3.22) that in this case the conditional density function of one variate does
not depend on knowledge about the other variate.

EXAMPLE 3.7

The joint mass function for two discrete variables x and y is given by

_ fk(@x+3y) 0<x<3,0<y<2
floy) = { 0 otherwise ’

where k is a constant. Find: (a) the value of k, (b) P[x > 2, y < 1], and (c) the marginal density of x.
The mass function may be tabulated as below.

Y
0 1 2 total

0 3k o6k 9%
2k 5k 8k 15k
4k 7k 10k 21k

3 6k 9k 12k 27k
total 12k 24k 36k 72k

N — O R

(a) The normalization condition is ) f(x,y) =1, so k = 1/72.
x/y
(b) Plx >2,y<1]=Px=2,y=1]4+Px=2,y=0+Px=3, y=1+Px=3, y=0]
= 7k + 4k + 9k + 6k = 26k = 13/36.
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(c) The marginal probability of x is

9% =3/24 x=0
B ) 15k=5/24 x=1
v 27k =9/24 x=3

EXAMPLE 3.8

If f(x,y)is the joint density function of two continuous random variables x and v, defined by

flx,y) = {efmw xy >0

0 otherwise’

find their conditional distribution.
From (3.22b),

Clxly) = floy) )
where the marginal density of y is given from (3.20b) as

P = [ fpax = et = e

Thus

—(x+y)
C 76 o —x
fray) =— ="

3.3.3. Moments and Expectation Values

The definition of moments and expectation values can be generalized to the multivariable
case. Thus the rth algebraic moment of the random variable x; is given by

+ o0 + n
Elx] = / / X f(x1, x2, oy xa) [[ (3.25)
from which we obtain the results

+ 00 + o0 n
,Ll.:/ / xi f(xr, x2, oy x) | [ dj (3.26a)
— —o j=1

and

+ o0 + n
alz = / / (x; — /,ci)zf(xl, X2, ey Xn) dej, (3.26b)
_ _ b

oo [ee]
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for the mean and variance. In addition to the individual moments of (3.25) we can also define
joint moments. In general these are given by

. t oo foo n
E{x;x/b...xﬂ = / / (x;x/b... xlg)f(xl, X, -eey Xp) H dxyy,. (3.27)
—® — m=1

The most important of these is the covariance, introduced in Chapter 1 for two random vari-
ables, and now defined more generally for any pair of variates as

+ o0 +® n
COV(JCI‘, X]) =04 = / / (xl- - ,U,i)(X]' - /.Lj)f(?ﬁ, X2, vy xn) H dx, (3.28)
- - m=1

where the means are given by (3.26a). In Chapter 1, the correlation coefficient p(x;, x;) was
defined by

( ) cov(x;, x;) (3.29)
p(xi, xj) = ————~. .
T a(xi)a(x)

This is a number lying between —1 and +1. It is a necessary condition for statistical indepen-
dence that p(x;, x;) is zero. However, this is not a sufficient condition and p(x;, x;) = 0 does
not always imply that x; and x; are independently distributed.

EXAMPLE 3.9

Find the means, variances, and covariance for the density of Example 3.8.
The mean u, (which is equal to My by symmetry) is, from (3.26a),

o oo % °°
Uy =/ / xf(x, y)dx dy =/ xe’xdx/ eVdy =1.
— — 0 0

The variance follows from (3.26b), and is

to o © o
a2 :[ [ (x — 1)*f(x, y)dx dy :/0 (x_:ux)ze_de/O eVdy =1,

with ¢2 = ¢2 by symmetry. Finally, from (3.28)
x = 0y by sy Y- Y,

oo oo w %
ry= [ | Gmm)@ ) e prdy = [ x=near [ -neray—o.
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EXAMPLE 3.10

If x has a density function that is symmetric about the mean, find the covariance of the two random
variables x| = x and x, = y = x*. Comment on your answer.
The covariance is

cov(x,y) = Elxy] — EREl] = EL] — EWEL).

However because x has a density function that is symmetric about the mean, all the odd-order
moments vanish and, in particular,

Thus cov(x,y) = 0 and hence p(x,y) = 0, even though x and y are not independent. Thus cov(x,y) = 0
is a necessary but not sufficient condition for statistical independence.

3.4. FUNCTIONS OF A RANDOM VARIABLE

In practice, it is common to have to consider a function of a random variable, for example
y(x). This is also a random variable, and the question arises: what is the density function of y,
given that we know the density function of x? If y is monotonic (strictly increasing or
decreasing) then the solution is simply

fydx}) = f(x{yD|5|, (3.30)

dx
dy
the absolute value being necessary to ensure that probabilities are always non-negative. If
instead vy has a continuous nonzero derivative at all but a finite number of points, the range
must be split into a finite number of sections in each of which y(x) is a strictly monotonic
increasing or decreasing function of x with a continuous derivative, and then (3.30) applied
to each section separately. Thus, at all points where (i) dy/dx#0 and (ii) y = y(x) has a real
finite solution for x = x(y), the required density function is

1
gwix}) = [ fixfyd) % (3.31)

all x

If the above conditions are violated, then g(y{x}) = 0 at that point.

The method may be extended to multivariate distributions. Consider # random variables
xi(i=1, 2, ...,n) with a joint probability density f(x1, x2, ..., x,), and suppose we wish to
find the joint probability density g(y1, ¥2, ..., ¥n) of a new set of variates y;, which are them-
selves a function of the n variables x;(i = 1, 2, ...,n), defined by y; = yi(x1, x2, ..., x,). To do
this we impose the probability condition:

If(x1, x2, ..., xy) dxq dxp---dx,| = |g(y1, Y2, oo Yn) din dyzmdyn’.
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It follows that

g(y]/ y2/ R4 yﬂ) :f(xlr x2/ LRRy4 xn)|]|/ (332a)

where []| is the modulus of the determinant of the Jacobian of x; with respect to y;, i.e., the
matrix

_00axy ) | YT O (3.32b)
01y o yn) | om | ox
ayn ayl’l

where again the absolute value is necessary to ensure that probabilities are always non-
negative. If the partial derivatives are not continuous, or there is not a unique solution for
x; in terms of the y;, then the range of the variables can always be split into sections as for
the single variable case and (3.32) applied to each section. The marginal density of one of
the random variables can then be found by integrating the joint density over all the other
variables. For several random variables it is usually too difficult in practice to carry out
the above program analytically and numerical methods have to be used.

EXAMPLE 3.11

A random variable x has a density function:

What is the density function of y = x2?
Now

x =%y and %:Zx:iZ\/y.

Thus, for y < 0, x is not real and so g(y{x}) = 0. For y = 0, dx/dy = 0, so again g(y{x}) = 0. Finally,
for y > 0, we may split the range into two parts, x > 0 and x < 0. Then, applying (3.30) gives

8) =5z [fx = —vi) +fx = +v)] = (;w) exp( ).

EXAMPLE 3.12

The single-variable density function of Example 3.11 may be generalized to two variables, i.e.,

flx1, x2) = ;?eXp{—% <x§ +x§> }
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Find the joint density function g(y1, y2) of the variables y; = x1/x and yp = x1.
The Jacobian of the transformation is

maa(z Am)-En
1 0 X1 y%

Thus, applying (3.32), (provided y; #0) gives

1 |yal 1, ¥
(1, 2) = — “Z—ex {——( + == (19&0)

A particular example of interest is the density of the sum of two random variables x and y,
If we set u = x + y and v = x, where the second choice is arbitrary, the Jacobian of the trans-
formation is

dx dy
_lou ou|_ |0 1) _
T A
dv dv

Thus the joint density of u and v is
8(u, v) =f(x, y) = f(v, u —v).

The density function of #, denoted h(u), is then

h(u) = ¢M(u) = /:: f(x, u—x)dx, (3.33a)

and in the special case where x and y are independent, so that f(x,y) = f1(x)f2(v), (3.33a)
reduces to

h(u) = /_Z f(X)f2(u — x)dx, (3.33b)

which is called the convolution of f; and f, and is denoted f; * f,.
Convolutions obeys the commutative, associative, and distributive laws of algebra, i.e.,

@ fixfha=faxf, (b) ix(faxfz)=(*f)*fs,

and
(¢) fix(f2+f3) = (frxf) + (fi *f3).

They occur frequently in physical science applications. An example is the problem of
determining a physical quantity represented by a random variable x with a density f;(x)
from measurements having experimental errors y distributed like the normal distribution
of Problem 1.6 with zero mean and variance ¢°. The measurements yield values of the
sum u = x + . Then, using the form of the normal distribution given in Problem 1.6, equa-
tion (3.33b) gives
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oo 2
) == [ filxex [ : (2‘—2)] dx,

and we wish to find f; (x) from the experimental values of f(1) and ¢?. In general this is a diffi-
cult problem unless f(u) turns out to be particularly simple. More usually, the form of f; (x) is
assumed, but is allowed to depend on one or more parameters. The integral is then evaluated
and compared with the experimental values of f(#) and the parameters varied until a match
is obtained. Even so, exact evaluation of the integral is rarely possible and numerical methods
have to be used. One of these is the so-called Monte Carlo method that we will discuss briefly
in Section 5.1.1.

EXAMPLE 3.13

If two random variables x and y have probability densities of the form

f(x) 7Lex {_i}

Tonam Tl 24

and similarly for v, find the density function h(u) of the random variable u = x +y.
From (3.33b), the density (u) is given by

* 1 * 2 (u—x)?
h(u) = —x)dx = — - dx.
w= [ hwpe-ndc=5 2 f wexp{ i e |8
Completing the square for the exponent gives
a? 2\ o , 02,
2 (r- ) g+ e

where 02 = 02 + 05. Then changing variables to v = (¢/0x0,)(x — 0%1/¢?) in the integral and simpli-
fying yields,

_ 1 (03 =)o\ o| [7( P\, _ 1 u?
h(u)%epo 2020%05 u '/700(—?)11070 2Trexp(—ﬁ)

2

Expectation values may also be found for functions of x. If i(x) is a function of x, then its
expectation value is

Elh()] = > h(xy)Pl] = S h()f (), (3.342)
i—1 x
if the variate is discrete, and

E[h(x)] = /_+°° h(x)f (x)dx. (3.34b)
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if it is continuous. Note that in general E[h(x)] #h(E[x]).
Using these definitions, the following results are easily proved, where i; and h are two
functions of x and c is a constant:

Elc]=c¢, (3.35a)
E[ch(x)] = cE[h(x)], (3.35b)
E[h(x) + ha(x)] = E[h1(x)] + E[ha(x)], (3.35¢)
and if x; and x, are independent variates,
Elh1(x1)ha(x2)] = Efh1(x1)]E[h2(x2)]. (3.35d)
PROBLEMS 3

3.1 Use the method of characteristic functions to find the first two moments of the
distribution whose pdf is

f(x) =— ™l 0<x<w a>0v>0,
where I'(y) is the gamma function, defined by

[(y) = / e x" ldx, 0<ry< o
0

3.2 A disgruntled employee types n letters and n envelopes, but assigns the letters randomly
to the envelopes. What is the expected number of letters that will arrive at their correct
destination?

3.3 An incompetent purchasing clerk repeatedly forgets to specify the magnitude of
capacitors when ordering them from a manufacturer. If the manufacturer makes
capacitors in 10 different sizes and sends one at random, what is the expected number of

different capacitor values received after 5 orders are placed?

3.4 Find the probability distribution of the discrete random variable whose characteristic
function is cos w.

3.5 Two random variables x and y have a joint density function:

3 *e ¥ 0< X,y < ®©
fley) = {0 otherwise

Find (a) Plx < y] and (b) P[x > 1, y < 2].



56
3.6

3.7

3.8

39

3. PROBABILITY DISTRIBUTIONS I: BASIC CONCEPTS

If h = ax + by, where x and y are random variables and a and b are constants, find the
variance of & in terms of the variances of x and y and their covariance.

Two random variables x and y have a joint density function:

_Jex*(1+x-y) O0<xy<l1
flxy) = {0 otherwise

where c is a constant. Find the conditional density of x given y.
The table shows the joint probability mass function of two discrete random variables x

and y defined in the ranges 1 < x < 3 and 1 < y < 4. (Note that the probabilities are
correctly normalized.)

x

y 1 2 3 Row totals
1 3/100 4/25 1/20 6/25

2 3/25 7/50 1/20 31/100

3 1/10 9/100 3/50 1/4

4 1/20 1/20 1/10 1/5
Column totals 3/10 11/25 13/50 1

Construct the following marginal probabilities:
(@) Px<2,y=1], (b) Plx>2,y<2] and (c) Plx+y =5].

Find the probability density of the random variable u = x + y where x and y are two
independent random variables distributed with densities of the form

w1 0<x<1
folx) = 0 otherwise’

and similarly for f, (y).
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In this chapter we will examine the properties of some of the theoretical distributions
commonly met in physical sciences, for both discrete and continuous variates, including
the all-important and ubiquitous so-called ‘normal” distribution that we have discussed
briefly in earlier chapters.

4.1. UNIFORM

The uniform distribution for a continuous random variable x has a density function:

1
f(x)zu(x;a,b){b—a asxsb @.1)
0 otherwise
where a and b are constants'. The distribution function from (4.1) is
0 x<a
x—a
F(x)=q 3= a<x<b 4.2)
1 x>b

Here, and in the distributions that follow, we use the convention of separating the random variable from
any constants by a semicolon.

Statistics for Physical Sciences: An Introduction 5 7 Copyright © 2012 Elsevier Inc. All rights reserved.
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An example of the uniform distribution is the distribution of rounding errors made in arith-
metical calculations. Using equations (3.5) and (3.6) we can easily show that the mean and
variance are given by

_a+b 27(b—a)2
= o = 4.3)

u

The value of a random variable uniformly distributed in the interval (0,1) is called
a (uniform) random number. These random numbers are useful because they enable
various probabilities and expectation values to be evaluated empirically. The theoretical
importance of the uniform distribution is enhanced by the fact that any density function
f(x) of a continuous random variable x may be transformed to the uniform density
function

g(u) =1, 0<u<i1

by the transformation 1 = F(x), where F(x) is the distribution function of x. This follows from
the fact that

du _
dx

d * / /
& e =,
and hence by changing variables,

-1

d
b I 0<u<l

8() = £(x)| 3
This property is useful in generating random numbers from an arbitrary distribution by
transforming a set of uniformly distributed random numbers. It enables many properties
of continuous distributions to be exhibited, by proving them for the particular case of the
uniform distribution. It also follows that there is at least one transformation that transforms
any continuous distribution to any other; it is simply the product of the transformations that
take each distribution into the uniform distribution.

EXAMPLE 4.1

Trains to a given destination depart on the hour and at 30 minutes past the hour. A passenger arrives at the
station at a time that is uniformly distributed in the interval from one hour to the next. What is the probability
that they will have to wait at least 10 minutes for a train?

Let t denote the time in minutes past the hour that the passenger arrives at the station. Because ¢
is a random variable uniformly distributed in the interval (0,60), it follows that the passenger will
have to wait at least 10 minutes if they arrive up to 20 minutes past the hour, or between 30 and
50 minutes past the hour. Thus the required probability is

20 20 2

P[0<t<20]+P[30<t<50]:@+@_§.
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4.2. UNIVARIATE NORMAL (GAUSSIAN)

This distribution is by far the most important in statistics because many distributions
encountered in practice are believed to be of approximately this form, a point that was
mentioned in Section 1.4 and that will be discussed in more detail in Chapter 5. The name
is perhaps unfortunate, because it might imply that all other distributions are somehow
‘abnormal’, which of course they are not. In physical sciences the normal distribution is
more usually known as a Gaussian distribution, although several people in addition to Gauss
have claims to have studied this function. In this book, the name used in statistics has been
adopted. We start with the case of a single variate.

The normal density function for a single continuous random variable x is defined as

f(x) = n(x;p o) = \/zl_mfexp { - %(x - “ﬂ, (¢ > 0) (4.4)

g

1 1/t—u\?
o /_Oo eXp |: — E(T) :| dt (45)

Graphs of f(x) and F(x) are shown in Fig. 4.1 for u =0 and ¢ = 0.5, 1.0 and 2.0. Keeping
the value of ¢ fixed, but changing the value of the parameter u simply moves the curves along
the x axis.

As this is the first nontrivial distribution we have encountered it will be useful to
implement some of our previous definitions. First, it is clear from (4.4) that f(x) is a single-
valued non-negative real number for all values of x. Furthermore, by the substitution

#—1x_“2
"2\ ¢ !

+ 1 + )
f(x)dx = 7/ e fdt.
—o TJ)

Since the integral on the right-hand side has the well-known value of /7, we see that f(x) is
normalized to unity and is thus a valid density function.

To find the moments of the normal distribution we first find the mgf. From equation
(3.11),

and its distribution function is

F(x)=N(x;u,0) =

we can write

Ma(t) = Efexp(tx)] = exp(tu) Elexp{t(x — u)}]

xp(tu)exp(a?t?/2) = —(x — pu — o?t)?
:ep(l{;;?/(za /)/wexpl LS >]dx_

The integral is related to the area under a normal curve with mean (u + ¢%t) and variance
2
o-. Thus

My(t) = exp(tu + o°t2/2). (4.6)
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FIGURE 4.1 Normal (Gaussian) density function (upper graphs) and distribution function (lower graphs) for
u=0and ¢ =05, 1.0 and 2.0.

On differentiating (4.6) twice and setting t = 0, we have

pi=p, wp=0"+u’
and

2
var(x) = wy — (w)* = o*.
The mean and variance of the normal distribution are therefore u and o2, respectively. The
same technique for moments about the mean gives
@n)! 5

Mon =" 50 " and py,4 =0, n>1 4.7)
The odd order moments are zero by virtue of the symmetry of the distribution. Using (4.7)
we can calculate quantities that are sometimes used to measure skewness and the degree
of peaking in a distribution. These are denoted 8, and @,, respectively (6, is also called the
kurtosis) and are

B1=wu3/u3=0 and  Br =puy/p;=3 4.8)
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This value of 3, is taken as a standard against which the kurtosis of other distributions may
be compared.

Using essentially the same technique that was used to derive the mgf we can show that the
cf of the normal distribution is

o(t) = explitu — t26%/2), 4.9)

which agrees with (3.15) and which may be confirmed by applying the result of the inversion
theorem.

Any normal distribution may be transformed to a normal distribution in z with ¢ = 0 and
0> =1 by setting z = (x — u) /0. Then, from (4.4) and (4.5),

n(z;0,1) = (273)1/2 exp(—2%/2) (4.10)

and

z

N(z0,1) (27:)1/2/ exp(—u?/2)du. 4.11)

— o0

These forms are called the standard normal density function and the standard normal distribution
function, respectively, and will usually be denoted by n(z) and N(z), omitting the constants.
Values of N(z) are given in Appendix C, Table C.1. If these functions are required for negative
values of z, they may be found from the relations
n(—z) = n(z), 4.12)
and
N(-z)=1-N(z), 4.13)

which follow from the symmetry of the distribution. Another useful relation that follows
from (4.13) is

2/02 n(u)du = /Z n(u)du = 2N(z) — 1. 4.14)

-z
Using (4.12)—(4.14) and Table C.1, the following results may be deduced:

1. The proportion of standard normal variates contained within 1, 2, and 3 standard
deviations from the mean is 68.3%, 95.4%, and 99.7%, respectively;
2. If t, denotes that value of the standard normal distribution for which

/;wﬂnm:m (4.15)
t

a

then (u + too) defines a 100(1 — 2a)% symmetric interval centered on pu.

The first of these results was mentioned in Section 1.4, when discussing the behavior of
experimental frequency plots for cases where the sample size becomes large. They are
stronger conditions than the constraints implied by the Chebyshev inequality (1.11).
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The reason why such plots tend to the normal distribution is embedded in the so-called Law
of Large Numbers and will be discussed in the next chapter. The usefulness of the second
result will be evident when confidence intervals are discussed in Chapter 9.

We will see in Chapter 5 when we consider sampling in more detail that one can often
assume that the measurement errors on a quantity x are distributed according to a normal
distribution n(x) with mean zero, so that the probability of obtaining a value between x
and x + dx is n(x)dx. The dispersion ¢ of the distribution is called the standard error and
(4.15) gives the probability for the true value being within an interval of plus or minus one,
two, or three standard errors about the measured value, given a single measurement of x.

One final useful result is that the distribution of a linear sum

T = Zuixi
i

of n independent random variables x;, having normal distributions N (x;; u;, 012), is distributed
as N(T; u, 02), ie., is also normally distributed. To show this, we can use the characteristic
function. Because the x; are independent, this may be written

¢r(t) = [ [ Elexplitaixy)] = T ] ¢:(t),
i=1

i=1
where ¢;(t) is the cf of the random variable a;x;. We have previously shown in (4.9) that
¢i(t) = explitaju; — to7a; /2]
and so

n

or(t) = exp{ > itaip; — tzafa%/z} = exp(itu — t20/2),

i—1

where

n n
uw= Zai,u,- and o2 = Za%alz.
i=1 i=1

However this is the cf of a normal variate whose mean is u and whose variance is 2. Thus, by
the inversion theorem, T is distributed as N(T; y, 02).

EXAMPLE 4.2

If x is a random variable normally distributed with mean u and variance o, show that for any constants
a and b, with b+0, y = a + bx is a random variable with mean (a + bu) and variance b242.
Let Fx(x) and Fy(y) be the distribution functions of x and y, respectively. Then, for b > 0,

Fy(y) = Pl(a+bx) <y| = Plx < (y —a)/b] = Fx({y — a}/b).
Similarly, for b < 0,

Fy(y) = Pl(a+bx) < y] = Plx > (y —a)/b] = 1 — Fa({y — a}/b).
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The associated density functions f(x) and f,(y) are obtained by differentiating the distribution
functions, so

which combined is

s = () = e e ae (- uﬂ

1 1 y—a—b,u)?
_a|b|meXp{ 2( bo :

This is a normal distribution with mean (a + bu) and variance b%a>.

EXAMPLE 4.3

A company makes electrical components with a mean life of 800 days and a standard deviation of 20 days.
If the distribution of lifetimes is normal, what is the probability that a component chosen at random will last
between 780 and 850 days? Also, what is the minimum lifetime of the longest lived 12% of the components?

First convert to standard form by using the transformation z = (x — u)/0, so that z; = —1.0 and
zp = 2.5. Then

P[780 < x < 850] = P[-1.0 < z < 2.5] =P[z < 2.5] = P[z < —1.0],

and using Table C.1, the right-hand side is 0.9938 — (1 — 0.8413) = 0.8351. To answer the second
question, we can use the ‘inverse’ transformation to find the value of z, say zp such that
Pz < zy] = 0.88. From Table C.1 this is zy = 1.175. Thus from the inverse transformation, we have

X0 = 290 + p = (1.175 x 20) + 800 = 823.5 days

4.3. MULTIVARIATE NORMAL

If x1, x2, ..., x, =x are n random variables, then the multivariate normal density function, of
order n, is defined as

1 1
flx) = PETaIad Sx - WIvlix—p)|, (4.16)

where the constant vector p is the mean of the distribution, and V is a symmetric positive-
definite matrix, which is the variance matrix of the vector x. The quantity

Q=x-p'Vix-p), 4.17)
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is called the quadratic form of the multivariate normal distribution. The distribution possesses
a number of important properties, and three are discussed below.

The first concerns the form of the joint marginal distribution of a subset of the 1 variables.
If the n random variables x1, x5, ..., x, are distributed as an n-variate normal distribution,
then the joint marginal distribution of any set x;(i =1, 2, ... m < n) is the m-variate normal.
This result can be proved in a straightforward way by constructing the joint marginal distri-
bution from (4.16) using the definition (3.20a). It follows that the distribution of any single
random variable in the set x; (this is the case m = 1) is distributed as the univariate normal.

This result can be used to derive the second property: the necessary condition under
which the variables of the distribution are independent. If we set cov(x;, x;) =0 for i#j,
then this implies that V is diagonal, so the quadratic form becomes

=)'V x =) = (i — Vi,
i=1

and the density function may be written as
n
f0) =] fix),
i=1
where

oy 1 1 _(xi*,ui)z
filxi) = 7(277)1/2 —V.l./2 exp l —Zvii . (4.18)
11

Equation (4.18) is the density function for a univariate normal distribution and so, by virtue
of the earlier result on the marginal distribution, and the definition of statistical indepen-
dence, equation (3.24), the variables x; are independently distributed. Thus a necessary
condition for the components of x to be jointly independent is if cov(x;, x;) = 0 for all i#j.
In the case of the multivariate normal distribution, this is also a sufficient condition. It is
straightforward, by an analogous argument, to establish the inverse, i.e., that if x; are jointly
independent then V is diagonal.
The third, and final, property concerns the distribution of linear combinations:

n
S = Zaix,- = XTA,
i=1

of random variables x = x;(i = 1, 2, ..., n), each of which has a univariate normal distribution,
where g; are constants and A = 4;(i =1, 2, ..., n). The moment generating function of S is

Ms(t) = E[exp(St)] = E[exp{ (x"A)t}] = exp[(n"A)t]exp [(x - u)TAt]
Now, if x has a multivariate normal distribution with mean p and variance matrix V, then
expl(x — w)TAf] = exp[(ATVA)# /2],
and thus

Ms(t) = exp[(nTA)t + (ATVA)£ /2]
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However from (4.6), this is the mgf of a normal variate with mean

n
p=n"A=> ap
i=1

and variance

n n
0'2 = ATVA = Z Zﬂiajvi]’,
i=1 j=1

and so S is distributed as N(S;u,¢?). This result is a generalization of the result obtained
at the end of Section 4.2.

4.3.1. Bivariate Normal

An important example of a multivariate normal distribution is the bivariate case, which
occurs frequently in practice. Its density function is

1 —-R
(X, Y; thy, thy, Ox, 0y, p) = 1(x, y) = ex , (4.20)
( Y bxs By, Ox, Oy ) ( y) 27T0'x0'y(1 . pz)l/Z p|:2(1 _ pZ):|

2 _ o 2
R= (" - "X> —2p (x — “x) (y “y> + (y “y> , @.21)
Oy Ox ay ay

and p is the correlation coefficient, defined in (3.29). If the exponent in (4.20) is a constant

(—K), i.e.,

where

R=2(1-p%)K,

then the points (x,y) lie on an ellipse with center (u, u,). The density function (4.20) is a
bell-shaped surface, and any plane parallel to the xy plane that cuts this surface will intersect
it in an elliptical curve. Any plane perpendicular to the xy plane will cut the surface in a
curve of the normal form.

Just as for the univariate normal distribution, we can define a standard bivariate normal
density function

1 (u? — 2puv + v?)

exo| — 4.22)
2n(1 — p2) /2 P 2(1-p?)

n(u,v) =

where

:x—,ux‘ v:y_,uy

7

Oy oy

A feature of this distribution is that for p = 0

n(u,v) = n(u)n(v), (4.23)
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which implies that # and v are independently distributed, a result that is not generally true for
all bivariate distributions.
Finally, the joint moment generating function may be obtained from the definition

Myy(t1,t2) = Elexp(tix + tyy)] = / / exp(t1x + by)f (x,y)dx dy, (4.24)
After changing variables to u and 7, this becomes

exp(tmx + topy) (t u? — 2puv + v?
Hoty)=——~"% =Y 10xU+t0,0 2 AP T T ldud
Mrylin,f2) 2m(1 — p2)1/2 // eXp[ ~2(1-p?) o

which, after some algebra, gives

1
_<t%0§ + 2pt1trox0y + t%ai)} . (4.25)

Mxy(ﬁ,tz) = exp [tmx + tz,uy + 5

The moments may be obtained in the usual way by evaluating the derivatives of (4.25) at
t; = tp = 0. For example,

My (1, t2)

E[x*] =
] on

= JJZCJr,ui.

tl =t2=0

4.4. EXPONENTIAL

The exponential density function for a continuous random variable x is

™ A>0, x>0
flx) =f(x;4) = _ (4.26)
0 otherwise.
It is an example of a more general class of gamma distributions of the form
Aaxaflef/\x
. _ 427
f(xa, 2) Tla) o, A>0, x>0, (4.27)

for o = 1, where the gamma function I'(«) was defined in Problem 3.1 and I'(1) = 1. From
(4.26) the distribution function is

x) = /Oxf(x’)dx’ =1—e™

The mgf My (t) = E[¢"] may be found from (4.26) and is
A
At

Differentiating as usual gives the mean u and variance o2 as

w =1/2 and o*=1/2% (4.29)

My (t) = A / e M dx = t< A (4.28)
0
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The exponential density is used to model probabilities where there is an interval of time
before an event occurs. Examples are the lifetimes of electronic components. In this context
the parameter A is the (failure) rate, or inverse lifetime, of the component. An interesting prop-
erty of exponential random variables is that they are memoryless, that is, for example, the
probability that a component will function for at least an interval (f + s), having already oper-
ated for at least an interval ¢, is the same as the probability that a new component would oper-
ate for at least the interval s, if it were activated at time zero.

The proof of this key property, which is unique to exponentially distributed random vari-
ables, follows from the definition of conditional probability:

Plx >t +5s]
Plx>1t ~

The probabilities on the right-hand side may be calculated from (4.26):

Plx >t+slx >t = (4.30)

®©

Plx>t+s] =2 e dy = e M),

t+s
and
w
Plx > t] = A/ ey = e M,
t
Thus,

e—As —

Plx>t+slx >t = Plx > s].

EXAMPLE 4.4

A system has a critical component whose average lifetime is exponentially distributed with a mean value of
2000 hours. What is the probability that the system will not fail after 1500 hours?

From the memoryless property of the exponential distribution, the distribution of the remaining
lifetime of the component is exponential with parameter A = 1/2000. Then,

Plremaining lifetime > 1500] = 1 — F[1500]

1500] _ 34
- 47.
P { 2000} =0.

If there are several independent random variables x, xo, ..., x;, each exponentially
distributed with parameters Ay, Ay, ..., 44, respectively, then because the smallest value of
a set of numbers is greater than some value x if, and only if, all values are greater than x,

Plmin(x1, xp, ..., X;) > x] = P[x1 > x, X0 > X, ..., X > x].

However, because the variables are independently distributed,

i=1

n
Plmin(xq, x, ..., X5) > H Plx; > x] = exp[ inx] .
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This result may be used to model the lifetime of a complex system of several independent
components, all of which must be working for the system to function.

In the exponential distribution, the quantity 2 is a constant, but there are many situations
where it is more appropriate to assume that 4 is not constant. An example is when calcu-
lating the failure rate with time of aging components. In this case we could assume that
A(t) = aBt?~1(t > 0), where « and @ are positive constants, so that A(t) increases or decreases
when 8 >1 or 8 <1, respectively. It was for precisely this situation, where the components
were light bulbs, that the Weibull distribution was devised, with a density function

fx;e, B) = apx® lexp(—axf), x>0

which reduces to the exponential distribution when g = 1. It is a useful distribution for rep-
resenting a situation where a probability rises from small values of x to a maximum and then
falls again at large values of x.

4.5. CAUCHY

The density function of the Cauchy distribution is

(O —

=, —®<J<x< %o
T1+4+(x—0)

The parameter ¢ can be interpreted as the mean u of the distribution only if the definition is
extended as follows:

N
w= lim / f(x; 0)x dx.
N — o _N

This is somewhat questionable and we will, in general, set § = 0. Then the distribution func-
tion becomes

1 1
F(x) = > + ;arctan(x).

The moment about the mean (taken to be zero) of order 2# is

1 [ X2
Moy = ;/ H—xzdx, (431)

but the integral converges only for n = 0, so only the trivial moment uy = 1 exists. Likewise,
the mgf does not exist, although the cf does and is given by (see Example 3.6b)

o(t) = eI,

It can be shown that the ratio of two standardized normal variates has a Cauchy density
function (see Example 4.5 below), which is one reason why it is encountered in practice. The
Cauchy distribution is also met frequently in physical science because it describes the line
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shape seen in the decay of an excited quantum state. In this context it is usually called the
Lorentz distribution or Breit—Wigner formula and is written as

1 r/2

T (E—Eo)* +T2/4

where E is the energy of the system and the parameters I" and Ej are interpreted as the
‘width” of the state, i.e., the full width at half maximum height of the line shape, and
its energy, respectively. This distribution must be treated with care because of the non-
convergence of the moment integrals, which is due to the long tails of the Cauchy density

compared with those of the normal density. In these regions the distribution is not necessarily
a good approximation to the physical system.

f(EEo,T) =

EXAMPLE 4.5

Two random variables x and y are each distributed with standardized normal density functions. Show that
the ratio x/y has a Cauchy probability density.

Define new variables r = x/y and s = y. Then if h(r,s) is the joint probability density of » and s,
this may be found from probability conservation, that is,

|h(r,s)drds| = |n(x)n(y)dx dy|,
where 1 is the standard normal density. Changing variables on the right-hand side to r and s gives

h(r,s)drds = n(rs)n(s)Jdrds,

where
o dy
_|or ar_}/O__
= = —y=>s
o ay| " Jo 1
ds ds

is the Jacobian of the transformation, as discussed in Section 3.4. Using the symmetry of the normal
density about zero, the probability density of r is given by

) :2/00 n(rs)n(s)s ds :l/m exp{—%sz(l +r2)}s ds
0 7 Jo

1 exp{—%sz(l +r2)} 1 1

w (1+12) Tr14r?

which is a Cauchy density.

4.6. BINOMIAL

The binomial distribution concerns a population of members each of which either
possesses a certain attribute P, or does not possess this attribute, which we will denote by
Q. If the proportion of members possessing P is p and that possessing Q is g, then clearly
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FIGURE 4.2 Plots of the binomial probability function. The top row shows f(r;p,n) for p = 0.5 and various
values of 1; the middle row shows values for n = 20 and various values of p; and the lower row shows f(r;p, ) for
a fixed value of np = 3.
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(p +q) = 1. An experiment involving such a population is called a Bernoulli trial, i.e., one with
only two possible outcomes. A simple example is tossing a coin, where the two outcomes are
‘heads’ and ‘tails’, with p = g = 0.5 if the coin is unbiased and thin, so that the probability of
landing on its edge can be neglected. Suppose now we wish to choose sets from the popula-
tion, each of which contains n members. From the work of Chapter 2, the proportion of cases
containing rPs and (n —r)Qs is

nCp' gt = ( ': )prq”", (4.32)
i.e., the rth term of the binomial expansion of
flp.9) = (g+p)", (4.33)

hence the name of the distribution. Expressed in another way, if p is the chance of an
event happening in a single trial, then for n independent trials the terms in the
expansion

f@p)=q"+ngd" p+ - +p",

give the chances of 0, 1, 2, ..., n events happening. Thus, we are led to the following defini-
tion. The probability function of the binomial distribution is defined as

f(rip.m) = ( ; )P"q”r, (4.34)

and gives the probability of obtaining r =0, 1, 2,..., n successes, i.e., events having the attri-
bute P, in an experiment consisting of n Bernoulli trials. Note that fis not a probability density,
but gives the actual probability. Tables of the cumulative binomial distribution are given in
Appendix C, Table C.2, and plots of the probability function for some values of its parameters
are shown in Fig. 4.2.

EXAMPLE 4.6

If a machine making components has a failure rate of 2%, i.e., 2% are rejected as being defective, what is the
probability that less than 3 components will be defective in a random sample of size 1007

Using the binomial distribution, the probability that less than 3 components will be found to be
defective is, with p = 0.02,

Plr<3]=Pl[r=0]+Plr=1]+Pr =2]

gD

100
( ) (0.02)"(0.98) ") = 0.6767.
.

Il
o

T

EXAMPLE 4.7

A device consists of n components, each of which will function independently with a probability p and
operates successfully if at least 50% of its components are fully functioning. A researcher can buy 4
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components with p = 0.5 or, for the same price, 3 components with a higher value of p. For what higher value
of p would it be better to use a 3-component system rather than one with 4 components?
The probability that a 4-component system will function is

4 4 4
Py = (2)P2(1 —p)*+ <3>P3(1 —p)+ (4>p4(1 -,
which for p = 0.5 is 11/16. The probability that a 3-component system will function is
3 3
Py = <2>p2(1 -+ (3>P3(1 —p)’ =3 —2p’.
A 3-component system is more likely to function than a 4-component one if P3 > Py, i.e., if
11
2 3
_opd =
3p P 16 >0,

which is true for (approximately) p > 0.63.

The moment distribution function may be found directly from (4.34) and the definition
(3.12a) and is

M (t)=> f(rip, me" =" ( ’ >Pran€tr = (pe' +q)", (4.35)
r=0 r=0
from which
Wy =p=mnp, wh=np+n(n-1)p% (4.36)
and
o> = wy — ()" = npyg. (4.37)

The mgf for moments about the mean is

M, (t) = e MM(t) (4.38)
and gives
s =npq(q —p),  ug = npg[l+3(n —2)pq). (4.39)
So, using the definitions given in (4.8), we have
B1=(q—p)?/(npg) and B =3+ (1~ 6pg)/npy, (4.40)

which tend to the values for a normal distribution as n— .

The plots shown in Fig. 4.2 suggest that the limiting form of the binomial distribu-
tion is indeed the normal. This may be proved using the characteristic function,
although it requires several stages. From the relation (3.15) and the form of the mgf
(4.35), the cf is

¢, (t) = (g +pe")", (4.41)
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and the binomial distribution may be expressed in standard measure (i.e., with u = 0 and
0? = 1) by the transformation:

x=(r—u)/o. (4.42)

This can be considered as the sum of two independent random variables r/¢ and —u/o, even
though the second term is actually a constant. From the work of Chapter 3, the characteristic
function of x is the product of the characteristic functions of these two variates. Setting u = np

and using (4.41), we have
_ —itnp it "
¢x(t) = exp {—J } {q +pexp M } :

Taking logarithms and using p =1 — g, gives

Ing,(t) = —i;np +nln {1 —l—p[exp(lg) - 1} },

and because t/g =t/,/npg—0 as n— «, the exponential may be expanded giving

. . 5
Ing,(t) = _linp+nln{1 +p[:-;<;> +:| }

Next we expand the logarithm on the right-hand side using

In(1+¢)=e—e?/24+6/3—-,

with the result

o o 2\o

g =22l (0 g2y op)
Finally, letting n— o and keeping ¢ finite, gives
Ing,(t) = —/2+0(n'/?),
where we have used o> = npq = np(1 — p). So, for any finite f,
() = exp(~1/2).

This is the form of the cf of a standardized normal distribution and so by the inversion
theorem, the associated density function is

2
flx) = Q;WQXP (—%) (4.43)

which is the standard form of the normal distribution.

The normal approximation to the binomial is excellent for large values of n and is still
good for small values provided p is reasonably close to ¥2. A working criterion is that the
approximation is good if np and ngq are both greater than 5. This is confirmed by the plots
in Fig. 4.2.
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EXAMPLE 4.8

If the probability of a success in a single Bernoulli trial is p = 0.4, compare the exact probability of
obtaining r = 5 successes in 20 trials with the normal approximation.
The binomial probability is

Py = (250) (0.4)°(0.6)"°> = 0.075,

to three significant figures. In the normal approximation this corresponds to the area under a
normal curve in standard form between the points corresponding to r; = 4.5 and r, = 5.5. Using
w=np =28 and ¢ = /npg = 2.19, the corresponding standardized variables are z; = —1.60 and
2o = —1.14. Thus we need to find

Py = Plz < —1.14] — Pz < —1.60] = F(—1.14) — F(—1.60),

where F is the standard normal distribution function. Using F(—z) = 1 — F(z) and Table C.1 gives
Py = 0.072, so the approximation is good.

4.7. MULTINOMIAL

The multinomial distribution is the generalization of the binomial distribution to the case
of n repeated trials where there are more than two possible outcomes to each. It is defined as
follows. If an event may occur with k possible outcomes, each with a probability
pz(l = 1, 2, ey k), with

k
> pi=1, (4.44)
i=1

and if r; is the number of times the outcome associated with p; occurs, then the random vari-
ables ri(i=1, 2, ..., k — 1) have a multinomial probability defined as

k k
f(r1, 12, oo, 1) = 1! Hp?/Hri!, r=0,1,2, .., n. (4.45)
=1 i—1

Note that each of the r; may range from 0 to # inclusive, and that only (k — 1) variables are
involved because of the linear constraint:

k
Z ri=n.
i=1

Just as the binomial distribution tends to the univariate normal, so does the multinomial
distribution tend in the limit to the multivariate normal distribution.

With suitable generalizations the results of Section 4.6 may be extended to the multinomial.
For example the mean and variance of the random variables r; are np; and np;(1 — np;), respec-
tively. Multiple variables mean that we also have a covariance matrix, given by

Vij = E[{ri — E[ri]}{ri — E[ri]}].
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It is straightforward to show that
Vi = { il —pi) i=]

—npip; otherwise.

An example of a multinomial distribution is if we were to construct a histogram of k bins
from n independent observations on a random variable, with r; entries in bin i. The negative
sign in the off-diagonal elements of the covariance matrix shows that if bin i contains a greater
than average number of events, then the probability is increased that a different bin j will
contain a smaller than average number, as expected.

EXAMPLE 4.9

A bag contains 5 white balls, 4 red balls, 3 blue balls, and 2 yellow balls. A ball is drawn at random from
the bag and then replaced. If 10 balls are drawn and replaced, what is the probability of obtaining 3 white, 3
red, 2 blue, and 2 yellow?

The probability of obtaining a given number of balls of a specified color after n drawings is given
by the multinomial probability. We know that in a single drawing

5 4 3 2

Thus if 10 balls are drawn and replaced, the required probability is, using (4.45),
| 3 3 2 2
100 (5N (ANT(3NT (2N o051
31312121\ 14 14 14 14

4.8. POISSON

The Poisson distribution is an important distribution occurring frequently in practice and
that is derived from the binomial distribution by a special limiting process. Consider the
binomial distribution for the case when p, the probability of achieving the outcome P, is
very small, but n1, the number of members of a given sample, is large such that

lim (np) = A, (4.46)
p—0

where 1 is a finite positive constant, i.e., where n>>np>>p. The kth term in the binomial
distribution then becomes

T A a-am”
l(k)pq ]_k!(n—k)(n) (1 —a/n)"
_A_k[n(n—1)(n—2)-~~(n—k+1)} (1—2a/n)"
K nk (1— a/n)f

:A_"(l _5)” (1-1/n)(1 =2/n)--(1 - (k—1)/n)
k! (1= 2/n)f '

n
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n
lim <1 - &> =t
n— o n

and all the terms in the square bracket tend to unity, so in the limit that #— o« and p— 0 but
np—2,

Now as n— o,

k
lim {(”)pkqn_k} =f(k; 2) = iexp(_A), A>0, k=0,1.... (4.47)
np—2A k k!
This is the probability function of the Poisson distribution and gives the probability for
different events when the chance of an event is small, but the total number of trials is
large.

Although in principle the number of values of k is infinite, the rapid convergence of
successive terms in (4.47) means that in practice the distribution function is accurately
given by the first few terms. Some examples of the Poisson probability are shown in
Fig. 4.3 and tables of the cumulative distribution are given in Appendix C, Table C.3.

Although in deriving the Poisson distribution we have taken the limit as n— o, the
approximation works well for modest values of n, provided p is small. This is illustrated
in Table 4.1, which shows probability values of the binomial distribution for various values
of n and p such that np = 3 (see also the plots in Fig. 4.2) compared with the probabilities of
the Poisson distribution for A = 3.

The moment generating function for the Poisson distribution is

kt N (Aet)k -2 t
M (t) =E[e"] =e ; 0= exp(Ae'). (4.48)
Differentiating (4.48) and setting t = 0 gives
! !/
M =2 2% :A(A—i_l)/
4.49
Wy =2A(A+1)2+ 4, wy=2A2+622+71+1], (“49)
and from (1.11a)
Ww=4 uz=2=4 ug=A81+1). (4.50)
Thus,
a simple result which is very useful in practice. Also from (4.50) and (4.8), we have
1
Br=5 Br2=3+- (4.52)

X A
From these results, and the fact that the Poisson distribution is derived from the binomial,
one might suspect that as A— o the Poisson distribution tends to the standard form of the
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FIGURE 4.3 Plots of the Poisson probability function f(k; 1) = A* exp(—2)/k! for various values of 1.
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TABLE 4.1 Comparison of the Binomial and Poisson probability functions fornp = A =3

Binomial

p=105 p=02 p=01 p = 0.05 p = 0.02 p =0.01 Poisson
k n==6 n=15 n =30 n =60 n =150 n = 300 A=3
0 0.0156 0.0352 0.0424 0.0461 0.0483 0.0490 0.0490
1 0.0937 0.1319 0.1413 0.1455 0.1478 0.1486 0.1486
2 0.2344 0.2309 0.2276 0.2259 0.2248 0.2244 0.2244
3 0.3125 0.2501 0.2361 0.2298 0.2263 0.2252 0.2252
4 0.2344 0.1876 0.1771 0.1724 0.1697 0.1689 0.1689
5 0.0937 0.1032 0.1023 0.1016 0.1011 0.1011 0.1010
6 0.0156 0.0430 0.0474 0.0490 0.0499 0.0501 0.0501
7 0.0000 0.0138 0.0180 0.0199 0.0209 0.0213 0.0213
8 0.0035 0.0058 0.0069 0.0076 0.0079 0.0079
9 0.0007 0.0016 0.0021 0.0025 0.0026 0.0026
10 0.0001 0.0004 0.0006 0.0007 0.0008 0.0008
11 0.0000 0.0001 0.0001 0.0002 0.0002 0.0002
12 0.0000 0.0000 0.0000 0.0000 0.0000

normal, and indeed this is the case. It can be proved by again using the characteristic func-

tion, which using (3.15) and (4.48) is
d(t) = e exp(e’).

Transforming the distribution to standard measure by the relation
z=(k—mu)/o,
gives
6.0)= [ fleexplittoz + pldz = 5. (o).
However from (4.51), u = ¢ = A, and so
or(f) = exp(—itkl/z)eflexp(/leiml/z).

and

Ing,(t) = —itAl/2 — 1+ 2 exp(itkil/z).
If we now let 1— o, keeping t finite, and expand the exponential, then

Ing,(t) = —£/2+0(1/?).
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Thus, for any finite ¢,

() —>exp(~/2),

which is the form of the c.f. of a standardized normal distribution and so, by the inversion
theorem, the associated density function is the standardized form of the normal distribution.
The rate of convergence to normality is the same as for the binomial distribution and so, in
particular, the normal approximation to the Poisson distribution is quite adequate for values
of A > 10 and some authors suggest even lower values.

As for the normal distribution, the characteristic function may also be used in a straightfor-
ward way to show that the sum of quantities independently distributed as Poisson variates is
itself a Poisson variate.

An example of a Poisson distribution is the probability of decay of a radioactive material.
A macroscopic amount of the material contains a vast number of atoms, each of which could
in principle decay, but the probability of any individual atom decaying in a given time
interval is a random event with a very small probability. In this case the quantity 1/2 is
the lifetime of the unstable atom or nucleus. If decays occur randomly in time, with an
average of A events per unit time, then from the Poisson distribution, the probability of N
events occurring in an interval f is

LN it

PIN] = 7(At)"e™™,
and so the probability of no events in time ¢ is an exponential distribution and the probability
that the time interval ¢ between events (e.g., the time interval between the detection of the

decay particles in a detector) is greater than a specified value x is
Plt > ] =e ™.

The memoryless property of the exponential distribution implies that if no events have
occurred up to a time y, the probability of no events occurring in a subsequent period x is
independent of v.

Finally, it can be shown that if each of a Poisson number of events having mean 2 is
independently classified as being of one of the types 1,2, ..., r, with probabilities
p1, P2, ..., pr respectively, where ZLl pr =1, then the numbers of events of types
1,2,...,r are independent Poisson random variables with means Ap1, Ap2, ..., Ap;,
respectively.

EXAMPLE 4.10

If the probability of an adverse reaction to a single exposure to a very low dosage of radiation is 0.1% and
10000 people are exposed in an accident, use the Poisson distribution to find the probability that less than 3
will be adversely affected? Why is the use of this distribution justified?

The probability of an adverse reaction is an example of a Bernoulli trial, i.e., there is either
a reaction or no reaction. However, if the radiation dose is very low, the probability of an adverse
reaction is very small, so in practice the Poisson distribution may be used to predict how many
people will suffer an adverse reaction in a large sample. Then,

Pk < 3] = Plk = 0] + Plk = 1] + Pk = 2].
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Using the Poisson distribution with A = np = 10000 x 0.001 = 10, this is

10° 10 102
Pk <3| =e1° (% + % + %) =61e71 = 0.0028.

EXAMPLE 4.11

Use the data of Example 4.10 to investigate the normal approximation to the Poisson for calculating the
probability that exactly 5 people will have an adverse reaction.
The Poisson probability that exactly 5 people will have an adverse reaction is

—101 5
Plk=5] = % = 0.0378.

In the normal approximation this corresponds to the area under the normal density curve between
the points 4.5 and 5.5 and in standard form these points are, using u = A =10 and ¢ = V2 =3.16,
z1 = —1.74 and zp = —1.42. Then using Table C.1, as in Example 4.8, we find a probability of 0.0384.
So the normal approximation is good.

PROBLEMS 4

4.1 The probability of recovering from a certain illness without medical intervention is 50%.
A new drug is developed and tested on 20 people with the illness. Fourteen rapidly
recover. Is the drug effective?

4.2 In a system designed to destroy incoming missiles, defensive weapons are arranged in
layers, each having an efficiency of 95%. To be sure of totally destroying a missile,
‘hits’” from weapons in at least two defensive layers are required. How many layers
would be needed to ensure a probability of at least 99.9% of destroying an incoming
missile?

4.3 A biased coin has a probability of 0.48 to fall ‘heads” and 0.49 to fall ‘tails’. If the coin is
thick, so that there is also a probability of it landing on its edge, what is the probability of
obtaining 4 heads and 4 tails if it is tossed 10 times?

4.4 Find the coefficient of the term x°y*z° in the expansion of (2x? — 3xy? + z° )°.

4.5 A beam of particles is incident on a target with sufficient energy to penetrate it.
The particles are mostly absorbed, but there is a small probability p of 5% that this is
accompanied by the emission of a new particle from the target. If 100 particles per second
are incident on the target, what is the probability that at least 5 particles per second are
emitted? Compare your result using the Poisson distribution.
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PROBLEMS 4 81

The average number of car accidents at a dangerous road junction is 5 per month. What is
the probability that there will be more than 3 accidents next month?

A nuclear physics experiment uses 80 detectors. They are checked between data runs and
any that have failed are replaced. It is found that the detectors have a 1% probability of
failing between checks. If a run can be successfully completed provided no more than 3
detectors fail during the run, find the probability that a data run will be spoiled because
of detector failure.

Resistors are manufactured with a mean value of R = 50 ohms and values less than 48.0
ohms, or greater than 51.5 ohms, are considered defective. If the values of R are assumed
to be normally distributed with a standard deviation of 1 ohm, what percentage of
resistors would be expected to be defective?

A supply voltage V is assumed to be a normal random variable with mean 100 volts and
a variance of 5 volts. It is applied to a resistor R = 50 ohms and the power W = RV?
measured. What is the probability that W > 6 x 10° watts?
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The previous chapters have been concerned almost exclusively with descriptive statis-
tics. The main properties of statistical distributions have been described, and some of the
general principles associated with them established. We are now going to consider how to
use these ideas to make inferences about a population, given that in practice we usually
only have access to a sample of the whole population. This raises several problems,
including how to ensure that any sample is random, what is the distribution of the func-
tion of the sample data chosen to make statistical inferences, and how to define the desir-
able properties of such functions so that reliable estimates may be made about the
corresponding population parameters. One aspect that will emerge from this discussion
is the explanation of why the normal distribution is so important in statistical applications
in physical sciences. Finally the formal link is made between theoretical statistics and
experimental data.

5.1. RANDOM SAMPLES AND ESTIMATORS

In this section we will consider how random samples are selected, what are their proba-
bility distributions, and what are the desirable properties of the functions of random vari-
ables that are used to make inferences about the underlying population.
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84 5. SAMPLING AND ESTIMATION

5.1.1. Sampling Distributions

A random sample of size 1 selected from a population was defined in Section 1.1 as result-
ing from a situation where every sample of this size had an equal chance of being selected,
while noting the intrinsic circularity of this definition. A more formal definition is as follows.
If x is a random variable distributed according to a density f(x), then the population is the
totality of possible values of x. A sample of size 1, i.e.,, x = x1, X2, ..., x;;, defines a sample
space and is a random sample if (a) all samples are taken from the same distribution as
the population and (b) the samples are independently selected. The latter implies that the
joint probability density is given by

fO) = flxr)f (x2).f (xn)- G.1)

If f(x) is known, random samples can be obtained in principle from (5.1), but if f(x)
is unknown, it is often difficult to ensure that the conditions for randomness are
strictly met, particularly the first one. It is possible to test whether a given sample is
random, but since this is formally testing an hypothesis about the nature of the sample,
we will defer discussion of this until hypothesis testing in general is discussed in
Chapters 10 and 11. For the present, we will assume that samples have been selected
randomly.

We are very often interested in a function y of the sample x1, x3, ..., ;. Any such function
is called a statistic, a term introduced in Chapter 1, and is itself a random variable. Because of
this, the values of y will vary with different samples of the same size and will be distributed
according to a new density function. The formal solution for finding the latter is via construc-
tion of the distribution function of y using (5.1), i.e.

Fly) = /.../lf[lf(xi)dxi, (5.2)

where the integral is taken over the region such that y > y(x1,x2, ..., x,;). In practice it is often
convenient to let y(x1,xp, ..., x,) be a new variable and then choose n — 1 other variables
(functions of x;) such that the n-dimensional integrand in (5.2) takes a simple form. An
example will illustrate this.

EXAMPLE 5.1

Find the sampling distribution of the means X,, of samples of size n drawn from the Cauchy distribution

1 1
w1+ x%

flx) = o <x< @,
If we choose new variables u; = x;(i = 1,2,...,n — 1) and u, = ¥, then the Jacobian of the trans-

formation is

d(x1,%2, ..., Xp)
a(ulluZ/ ce Un—1, yI’l)’

] =
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and the distribution function of the means becomes

n—1
F(%,) = /.../f(xl)f(xz)...f(xn)]dx;de,,

i=1

where the density functions are expressed in terms of the new set of variables and the integrals are
taken over the region such that

Y:l > %ZX,‘.

Thus

- - . . . 29N —
F(xy) = /; dun/ﬂo /700(%) ]l__[i{(l+u]2> 14 (nu”—gm) ]} ldu]-,

and the density function of x;, is given by the (1 — 1)-fold integration in u;(j = 1,2,... ,n —1). The
integral can be evaluated, but the algebra is rather lengthy. The result is the probability density

fEn) = L !

T1+%,
which is the same form as the population density for any value of n. We will see later in this chapter
that this result is unusual, and the sampling distribution of the sample mean for most distributions
commonly met in physical science is a normal distribution for large sample size n.

Even in the simple case given in Example 5.1, the integral is complicated and in practice
it is rarely possible to evaluate the required multidimensional integrals analytically.
Instead, numerical evaluation is used, but even then conventional techniques are usually
far too time consuming and a statistical method, known as the Monte Carlo method,
mentioned in Section 3.4, is used. The Monte Carlo technique is of rather general applica-
tion and a technical subject outside the scope of this book, but very briefly the principle of
the method in the current context is to use a sequence of random numbers to calculate prob-
abilities and related quantities. Random numbers u uniformly distributed in the interval
0 < u <1 are readily available from computer programs called random number generators
and may be used to generate a new sequence of numbers distributed with any probability
density f(x) that is being studied by using the transformation property of probability distri-
butions referred to in Section 4.1. The new values of x can be viewed as simulated measure-
ments and used to build up an integral of f(x), i.e., the distribution function F(x), such as
given in (5.2).

EXAMPLE 5.2

Find an expression for random variables distributed with an exponential density in terms of random
variables uniformly distributed with the density

( ) { 1 0<u<1
u) =
F 0 otherwise.
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The exponential density is, from Equation (4.26),

™ 1>0, x>0

0 otherwise.

f) = {

Conservation of probability requires that

/:; p()du’ = /j; f(x') dx'

andsou = 1—e*,andx = —In(1 — u)/A Asu is distributed uniformly, then sois (1 — u). Thus to
select random numbers distributed with an exponential density, we generate a sequence u; and
from them generate a new sequence x; using x; = —In(u;)/A.

Another useful method for finding sampling distributions is to construct the moment
generating function, or the characteristic function, for the statistic. If either of these is recog-
nized as that of a known pdf, then this is the pdf of the sampling distribution. This technique
is very practical and we shall have occasion to use it later. Alternatively, the inversion
theorem may be used to identify the density function. For example, we have shown in Section
4.8 that the cf for a Poisson distribution with a general term e—** /k! is

(1) = e exp(e"),

where 4, the Poisson parameter, is also the mean of the distribution. From this we can form
the cf for a sample of size n as the product of terms of the form ¢(¢) and hence show that the cf
for the mean is exp{nA(¢" — 1)}. Finally, the inversion theorem may be used to show that the
sampling distribution of the mean is also a Poisson distribution, but whose general term is
e " (n2)k k!

A common situation is where the exact form of f(x) is unknown, but one has a model (or
hypothesis) for f(x) that depends on an unknown parameter 6. The central problem is then to
construct a function of the observations xj, x3, ..., X, that contains no unknown parameters
to estimate 0, i.e., to give a value to 6, and hence determine f(x). This situation is an example of
parametric statistics. In these circumstances the statistic is referred to as a point estimator of 0
and is written as §. The word ‘point’ will be omitted when it is obvious that we are talking
about the estimation of the value of a parameter by a single number. In general there could
be several unknown parameters @ = 6y, 0y, ..., 8, and associated estimators. Since the esti-
mator is a function of the random variables x = x1, xp, ..., x;, it is itself a random variable
and its value will therefore vary with different samples of the same size and be distributed
according to a new density function g(6; #). The merit of an estimator is judged by the prop-
erties of this distribution and not by the values of a particular estimate. So we will now turn to
consider the properties of ‘good” estimators.

5.1.2. Properties of Point Estimators

An intuitively obvious desirable property of an estimator is that, as the sample size
increases, the estimate tends to the value of the population parameter. Any other result
would be inconvenient and even possibly misleading. This property is called consistency.
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Formally, an estimator 9;4 computed from a sample of size 1, is said to be a consistent estimator
of a population parameter 4 if, for any positive ¢, arbitrarily small,

Jim P[|f, — 6] > ¢] = 0. (5.3)
In these circumstances, 8, is said to converge in probability to 6. Thus, 6, is a consistent esti-
mator of @ if it converges in probability to 6.

The property of consistency tells us the asymptotic (1 — ) behavior of a suitable esti-
mator, although the approach to consistency does not have to be monotonic as 7 increases.
Having found such an estimator we may generate an infinite number of other consistent
estimators:

b, = p(n) by, (5.4)
provided
nlerlo p(n) = 1. (5.5

However, we may further restrict the possible estimators by requiring that for all n the
expected value of 0, is 6, i.e., E[8,] = 6, or in full, using (5.1),

E[i(x)] = / 0(x)g(0;0) do = / / O(X)f (x1)f(x2)...f () doxydixa...dx,, = 6. (5.6)

Estimators with this property are called unbiased, with the bias b defined by

b = E[6,] - 6. G.7)

Estimators for whichb — 0asn — o« are said to be asymptotically unbiased. Despite the name,
the fact that an estimator is biased is not often a serious problem, because there usually exists
a simple factor that converts such an estimator to an unbiased one. Unbiased estimators are
just more convenient to use in practice, although as the following example shows, they are
not unique.

EXAMPLE 5.3

If @,» (i =1,2, ..., n) is a set of n unbiased estimators for the parameter 6, show that any linear
combination

m
0 = Z/lié,-, m<mn
i=1

where A; are constants, is also an unbiased estimator for 0, provided

A=1

m
i=1
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The expectation of § is

E[f] = E[il,@l} = Em:x,-E[@i] = zmja,-a =
i=1

i=1 i=1

Hence from (5.7), 6 is an unbiased estimator for the parameter 6.

The requirements of consistency and lack of bias alone do not produce unique estimators.
One can easily show that the sample mean is a consistent and unbiased estimator of the mean
of a normal population with known variance. However the same is true of the sample
median. Further restrictions must be imposed if uniqueness is required. One of these is the
efficiency of an estimator. An unbiased estimator with a small variance will produce estimates
more closely grouped around the population value # than one with a larger variance. If
two estimators 6; and 0o, both calculated from samples of size 7, have variances
such that varf; < var&z, then 01 is said to be more efficient than 02 for samples of size n.
For the normal distribution,

var(mean) = ¢2/n,

for any n (this result is proved in Section 5.2 below). But for large n,

var(median) = 7wo?/2n > o*/n.

Thus the mean is the more efficient estimator for large n. (In fact this is true for all n.) Consis-
tent estimators whose sampling variance for large samples is less than that of any other such
estimators are called most efficient. Such estimators serve to define a scale of efficiency. Thus if
6, has variance v, and 67, the most efficient estimator, has variance vy, then the efficiency of 6,
is defined as

E;)_ = v1/v2. (5.8)

It may still be that there exist several consistent estimators f for a population parameter 6.
Can one choose a ‘best’ estimator from among them? The criterion of efficiency alone is not
enough, since it is possible that for a given finite 1, one estimator ,,, which is biased, is consis-
tently closer to § than an unbiased estimator ¢,. In this case the quantity to consider is not the
variance but the second moment of 6, about 0 which is

E {([9,1 - 0)2]
Using (5.7) gives (see Problem 5.1)
E[(én - 0)2} = var(fy,) + b~ (5.9)

This quantity is called the mean squared error and we define 6, to be a best, or optimal, estimator
of the parameter 0 if

E[(6. - 0] < E[@ - 07,
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where 9’” is any other estimator of ¢. Thus an optimal unbiased estimator 9n is one with
minimum variance. We will discuss how to obtain minimum variance estimators in more
detail in Chapter 7, Section 7.4.

EXAMPLE 5.4

If 6; (i = 1,2) are two independent and unbiased estimators for a parameter 0 with variances o?, what
value of the constant A in the linear combination

0 =261+ (1-2) 6,

ensures that 6 is the optimal estimator for 6?
Because 91 and 6, are both unbiased, so is é (see Example 5.3). Thus the optimal estimator of 6 is
one that minimizes the mean squared error

var(d) = E{(@— a)z]

Now because 91 and 3’2 are independent,

var(f) = 2% var (61) + (1 — 2)? var ()
= 262+ (12203,
and the minimum of var(f) is found from d var(d)/dA = 0, i.e.
I Vi
B 1/ +1/03

The discussion above gives an idea of the desirable properties of estimators, but there is
a more general criterion that can be used. Consider the case of estimating a parameter ¢
and let

f(él, éZI LRRy4 é}’/ 0)

be the joint density function of r independent estimators éi(i = 1,2, ..., r). Then, from the
definition of the multivariate conditional density, we have (cf. equation (3.23))

(61, B, ..., 0,;0) = M (0;0)fC(6a, s, ..., 6,;0/61), (5.10)

where fM(91 ;0) is the marginal density of 6, and fc(@z, b3, ..., 0); 6|91) is the conditional
density of all the other f; given ;. Now if fC is independent of 6, then clearly once 0; is spec-
ified the other estimators contribute nothing to the problem of estimating 6, i.e., §; contains all
the information about 4. In these circumstances 6 is called a sufficient statistic for 6. It is more
convenient in practice to write (5.10) as a condition on the likelihood function introduced in
Chapter 2.

Let f(x; 0) denote the density function of a random variable x, where the form of fis known,
but not the value of §, which is to be estimated. Then let x1, xp, ..., x, be a random sample of
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size n drawn from f(x;0). The joint density function f(x1, x2, ..., x;; 0) of the independent
random variables x1, xp, ..., x, is given by

fxr, x2, o 20 0) = ] f(xi50), (5.11)

i=1

where f(x;,6) is the density function for the ith random variable. The function
f(x1, x2, ..., xn; 0) is the likelihood function of § and is written as L(x1, xa, ..., xy;0). If L is
expressible in the form

L(x1, X2, ..., Xp;0) = L1(6;0) Lo(x1, x2, ..., Xu), (5.12)

where L, does not contain the x’s other than in the form 6, and L, is independent of §, then fis
a sufficient statistic for the estimation of 6.

EXAMPLE 5.5

Find a sufficient estimator for estimating the variance of a normal distribution with zero mean.
The probability density is

) = = rew(-23),

and the likelihood function is therefore

l n —l n
Lx,x,...,x;02 :(7) exp| —=—= %% .
(1 2 n ) O'\/E P 202;1

If we let L = 1in (5.12), we have L1 = L and L, is a function of the sample x; only in terms of
>°x?. Thus, >_x? is a sufficient estimator for ¢2. We will show in Section 5.2 that this estimator
is biased.

5.2. ESTIMATORS FOR THE MEAN, VARIANCE,
AND COVARIANCE

Estimators for the mean, variance, and covariance are of central importance in statistical
analysis, so we consider them in more detail. Let S denote a sample of n observations
xi(i = 1,2,...,n) selected at random. The sample S is called a random sample with replacement
(or a simple random sample) if, in general, the observation x,_; is returned to the population
before x; is selected. If x,,_1 is not returned, then S is called a random sample without replace-
ment. Sampling with replacement implies, of course, that it is indeed possible to return the
‘observation” to the population, as is the case when drawing cards from a deck. In most prac-
tical situations this is usually not possible and the sampling is without replacement.
Sampling from an infinite population is equivalent to sampling with replacement.

For any continuous population, finite or infinite, the sample mean X is an estimator for the
population mean u and since this is true for all possible samples of size 1, the sample mean is



5.2. ESTIMATORS FOR THE MEAN, VARIANCE, AND COVARIANCE 91

an unbiased estimator. This result follows simply from the definition of the sample mean,
equation (1.3). Thus

] -

E[xj] / / xi f(x1)...f(xy) dxp...dx, = p

Ex] = % uw = u. (5.13)

But using (5.1),

and so

- 2
E[nllz(x,-—j)z] :nilE Z(xi—%zx]‘>:|

[ (5.14)
_ 1 e n-—1 ]

n—1 n lex]

2
=y — (u1)” = o=

Thus the presence of the factor 1/(n — 1) in the definition of the sample variance, as we noted
in Chapter 1 differs from the analogous definition for the population variance to ensure that
s? is an unbiased estimator of ¢2. Similarly, the sample covariance defined in (1.12b) is an
unbiased estimator for the population covariance of equation (1.12a).

Given any estimator 9, one can calculate its variance. For example, the variance of the
sample mean drawn from an infinite population, or a finite population with replacement,
is by definition

2 = var (%) = E[(E—E[z])z] - E[(E— u)z}, (5.15)

n 2
var (X) = anEKZ(x,-—u)) ]

i=1

=®IN

which may be written as

If we expand the square bracket on the right-hand side and again use (5.1), there are n terms
containing the form (x; — ), each of which gives a contribution

/ / ). f(xn) dxj...dx, = o2
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The remaining terms are integrals over the forms (x; — u)(x; — ) with i <j, each of which,
using the definition of u, is zero. Thus

_ 1 1 2 (72
var(x) = FZO’ =
=t (5.16a)
-1 (x; — %)
-1 & ’

where the second line follows if o2 is replaced by its estimator s. If the sample is drawn from
a finite population without replacement, then this result is modified to

2 —
var(x) = %(II:,] — 711) (5.16b)

The square root of a%, that is, the standard deviation o3, is called the (standard) error of the mean
and was introduced briefly when we discussed the normal distribution in Section 4.2. It is
worth emphasizing the difference between the standard deviation ¢ and the standard error
on the mean o5. The former describes the extent to which a single observation is liable to vary
from the population mean y; the latter measures the extent that an estimate of the mean
obtained from a sample of size  is liable to differ from the true mean.

The result (5.16a) is of considerable importance, because it shows that as the sample size n
increases, the variance of the sample mean decreases, and hence the statistical error on a set of
measurements decreases (like 1/1/n in the case of (5.16a)) and the probability that the sample
mean is a good estimation of the population mean increases, a result that was referred to in
Chapter 1. Results (5.16) assume that the measurements are random samples and uncorre-
lated. If this is not the case, then this must be taken into account. They also assume that the
samples are obtained by simple random sampling from a single population. Better estimates
can be obtained if we have additional information about the sample. One example is stratified
sampling, mentioned briefly in Section 1.1. This technique requires that the population can be
divided into a number of mutually exclusive subpopulations, with known fractions of the
whole population in each. Then simple random samples using, for example, sample sizes
proportional to these fractions lead to smaller estimates for var(x) with the same total sample
size. However, as this situation is not usually met in physical science, we will continue to
consider only simple random sampling from a single homogeneous population.

We can go further, by using the general results for expectation values, and find the esti-
mator of the variance of s2 and hence the estimator of the standard deviation a,. The latter
is not the square root of the former, but, anticipating equation (5.45), is given by

ds?\?
var(s?) = (d_ss> var(s).
For a normal distribution, the result is simple:
o

V2 —1)

Just as in (5.16a), to use this result one would usually have to insert an estimate for ¢ obtained
from the data. Providing # is large, there is little loss in precision in doing this, but for small

(5.17)

0s =
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an alternative approach would have to be adopted. This is discussed in Section 6.2. Alterna-
tively, (5.17) can be used to predict how many events would be needed to measure ¢ to a given
precision under different assumptions about its value. This could be useful at the planning
stages of an experiment.

EXAMPLE 5.6

A random sample x;(i = 1, 2, ..., n) is drawn from a population with mean w and variance a. Two
unbiased estimators for u are

R 1 . _
g1 = E(xl +x) and fp = Xy

What is the relative efficiency of fi1 to jip?

From (5.16a), var (1) = var(x,) = 02/ n. If the same steps to derive this result are used for jiy,
then there is one term containing the form (x; — u)z, and one containing the form (x — /.L)z, each of
which gives a contribution ¢2 and a single term containing (x; — p)(xp — 1) which contributes zero.
Thus var (ji;) = ¢%/2 and so

var(i)

relative efficiency = =2
- ovar(ip) 2

5.3. LAWS OF LARGE NUMBERS AND THE CENTRAL
LIMIT THEOREM

The results of Section 5.2 may be stated formally as follows. Let x; be a population of inde-
pendent random variables with mean u and finite variance and let X, be the mean of a sample
of size n. Then, given any ¢ > 0 and ¢ in the range 0 < 6 < 1, there exists an integer n such that
forallm >n

Pllxym —p| <e >1-4. (5.18)

This is the weak law of large numbers. It tells us that |x,, — u| will ultimately be very small, but
does not exclude the possibility that for some finite n it could be large. Since, in practice, we
can only have access to finite samples, this possibility could be of some importance. Fortu-
nately there exists the so-called strong law of large numbers, which, in effect, states that the
probability of such an occurrence is extremely small. It is the laws of large numbers that
ensure that the frequency definition of probability adopted in Chapter 2 concurs in practice
with the axiomatic one.

The weak law of large numbers may be proved from Chebyshev’s inequality that we dis-
cussed in Chapter 1, equation (1.11), provided the population distribution has a finite vari-
ance. Chebyshev’s inequality may be written as

_ ko 1
P[|Xn — | > m] < % (5.19)

so if we choose k = 6~ 1/2 and n > o2 / 6¢? and substitute in (5.19), then (5.18) results.
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The bound given by (5.19) is usually weak, but if we restrict ourselves to the sampling
distribution of the mean then we can derive the most important theorem in statistics, the
central limit theorem, which may be stated as follows. Let the independent random variables
x; of unknown density be identically distributed with mean w and variance 2, both of which
are finite. Then the distribution of the sample mean ¥, tends to the normal distribution with
mean u and variance ¢2/n when n becomes large. Thus, if u(t) is the standard form of the
normal density function, then for arbitrary t; and t,

lim Pl <X F < —/tzu(t)dt (5.20)
. 1_0/111/2_2 =, : .
The proof of this theorem illustrates the use of several earlier results and definitions and so is
worth giving.

By applying the results on expected values given in Chapter 3 to moment-generating func-
tions, it follows immediately that if the components of the sample are independent, then the
mean and variance of their sum

n
S = Z Xi
i=1
are given by

us = nu and a% = no’.

Now consider the variate

S — Ms 1 1
= _ % — ), (5.21)
s \/T_IU;( i ,u)

with characteristic function ¢, (t). If ¢;(t) is the cf of (x; — u), then
- t
t) = () —=
) = ][ o (%)

But all the (x; — u) values have the same distribution and so

t n
0. = |6 ()| 6522)
Just as the mgf can be expanded in an infinite series of moments, we can expand the cf,
P S 1O
t) =1+ ; e (5.23)

and since the first two moments of (x; — u) are zero and o2, respectively, we have from (5.22)

and (5.23)
b, (1) = {1 —%Jro(%)r.
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Expanding the square bracket, and then letting n —  but keeping fixed ¢, gives

by (t)—eF12, (5.24)

which is the cf of a standardized normal distribution. So by the inversion theorem, S is
distributed as the normal distribution n(S; ug, o%), and hence X, is distributed as
n(Xn; u, 02/n).

In practice, the normal approximation is good for n > 30 regardless of the shape of the pop-
ulation. For values of n less than about 30, the approximation is good only if the population
distribution does not differ much from a normal distribution. The sampling distribution of
the means when sampling from a normal population is normal independent of the size of .

The form of the central limit theorem above is not the most general that can be given.
Provided certain (weak) conditions on the third moments are obeyed, then the condition that
the x; values all have the same distribution can be relaxed, and it is possible to prove that the
sampling distribution of any linear combination of independent random variables having arbi-
trary distributions with finite means and variances tends to normality for large samples. There
are even circumstances under which the assumption of independence can be relaxed.

EXAMPLE 5.7

Five hundred resistors are found to have a mean value of 10.3 ohms and a standard deviation of 0.2 ohms.
What is the probability that a sample of 100 resistors drawn at random from this population will have
a combined value between 1027 and 1035 ohms?

For the sampling distribution of the means, uz = u = 10.3 and the standard deviation of this
value is

o [N-m) 02 [(500-100)
%= -1~ v\ Goo—1) OO

We seek the value of the probability such that P[10.27 < x < 10.35]. Using the central limit theorem,
we can use the normal approximation. So, using standardized variables, this is equivalent to

P[-1.67 <z < 2.78] = N(2.78) + N(1.67) — 1 = 0.95.

The central limit theorem applies to both discrete and continuous distributions and is
a remarkable theorem because nothing is said about the original density function, except that
it has finite mean and variance. Although in practice these conditions are not usually restric-
tions, they are essential. Thus we have seen in Example 5.1 that the distribution of x; for the
Cauchy distribution is the same as for a single observation. The failure of the theorem in this
case can be traced to the infinite variance of the Cauchy distribution and there are other exam-
ples, such as the details of the scattering of particles from nuclei, where the long ‘tails’ of distri-
butions cause the theorem to fail. It is the central limit theorem that gives the normal distribution
such a prominent position both in theory and in practice. In particular, it allows (approximate)
quantitative probability statements to be made in experimental situations where the exact form
of the underlying distribution is unknown. This was briefly mentioned in Section 1.4.
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Just as we have been considering the sampling distribution of means we can also consider
the sampling distribution of sums T = ) x; of random variables of size n. If the random vari-
able x is distributed with mean u, and variance ¢, then the sampling distribution of T has mean

ur = ny, (5.25)
and variance
»(N—n
oF = " (N - 1), (5.26)
no?

where the first result is for sampling from a finite population of size N without replacement
and the second result is otherwise.

We will conclude with some results on the properties of linear combinations of means,
since up to now we have been concerned mainly with sampling distributions of a single
sample mean.

Let

n
1= ax, (5.27)

i=1
where a; are real constants, and the x; values are random variables with means y;, variances
01-2, and covariances ai]«(i, j=1,2,..n;i#j). (The index i now indicates different random

variables, not a sample of a single random variable.) Then,

n
wo=) i (5.28)
i=1
and
n
0'12 = Z 11120';';2 +2 Z {11'5!]'0'1‘]', (5.29)
i=1 i<j
which reduces to
n
o =) ao} (5.30)

if the x’s are mutually independent. Note that the constants are squared in (5.30), so for
example, the variance of (x; + x3) is the same as that of (x; — x3). (For the proof of these
results, see Problem 5.3.)

A useful corollary to the above result is as follows. Let x;(i = 1, 2, ..., n) be the means of
arandom sample of size ; drawn from an infinite population with mean u; and variance o;. If
X1 and X, are independently distributed, then

Bz 43, = M1 T (5.31)

and

2 2 (o?
0%+% Z n_z, . (5.32)
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These results follow immediately from (5.28) and (5.30), and the results (5.14) and (5.16a), by
the substitutions x; = X3 and x, = Xp, witha; = a, = 1 for the firstcaseand gy = —ap, = 1
for the second.

5.4. EXPERIMENTAL ERRORS

In the preceding sections we were concerned with theoretical statistics only. In this section
we provide the link between theoretical statistics and experimental situations. This continues
the discussion started in Chapter 1. In an experimental observation one can never measure
the value of a quantity with absolute precision, that is, one can never reduce the statistical
error on the measurement to zero, although we can reduce it by increasing #, i.e., taking
more data. Recall in Section 1.4 we distinguished the precision of a measurement from its accu-
racy, that is, the deviation of the observation from the ‘true’ value, assuming that such
a concept is meaningful. Thus there may exist, in addition to fluctuations in the measurement
process that limit the precision, unknown systematic errors that limit the accuracy. In general,
the only errors that we can deal with in detail here are the former type, and the conventional
measure of this type of error is taken to be the standard error, defined above and which we
have previously introduced in Section 4.2. This definition of the error is, of course, arbitrary,
and formerly (but now only very rarely) the probable error p, defined by

utp
[ iwdx =12,
H=p
was used. Needless to say, multiplying errors by an arbitrary factor ‘to be on the safe side’
renders statistical analyses meaningless.

Consider, for example, an idealized nuclear counting experiment for a scattering process.
The number of trials is very large, because the numbers of particles in the beam and target are
large, but the probability of a scatter, p, is very small. In this situation the Poisson distribution
is applicable, and as we have seen in equation (4.51), if N, = np is the total number of counts
recorded then ¢ = /N,. The result of the experiment would be given as

N = N, £ AN, (5.33)
where
AN = +/N,. (5.34)

If the population distribution is unknown, then we can consider the sampling distribution.
For example, from a set of observations x;, we know that an estimate of the mean is the
sample mean

1 n
X == x (5.35)
i3
and the laws of large numbers ensure that X is a good estimate for large n. The variance of x is

o2 = d?*/n, (5.36)
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so to calculate a%, we need to estimate ¢2. We have seen that the sample variance is

1 n
2 _ Y
s° == 1;:1(9(, -5, (5.37)

and thus
1 _
R o 539)

n(n—1)~—

An experimental result would then be quoted as
X = X, + Ax, (5.39a)

where

1/2
1 -2
Ax — o= — - ) 3%
X = o [n(ﬂ—l);(xl ")1 >0
Now by the central limit theorem we know that the distribution of the sample means is
approximately normal, and therefore (5.39) may be interpreted (compare Section 4.2) as

Plx, — Ax < x <X, + Ax] = 68.3%,
Plx, — 2Ax < x <X, + 2Ax] = 95.4%, (5.40)
P[x, — 3Ax < x <X, + 3Ax] = 99.7%.

So even though the form of the underlying distribution of x is unknown, the central limit
theorem enables an approximate quantitative statement to be made about the probability
of the true value of x lying within a specified range.

Since we have moved away from mathematical statistics into the real world of experi-
mental data, it is worth commenting on a situation that commonly arises. In calculating o3
from (5.39b) one often finds that a few data points (referred to as ‘outliers’) are making
very significant contributions to the summation. What, if anything, should one do about
this? A general comment is that transforming the data can reduce the effect of outliers. For
example, taking logarithms shrinks large values much more than smaller ones, but this is
not always practical. In the light of (5.40), it might seem reasonable to ignore data that are,
say, three standard deviations away from the mean, and tables exist giving criteria to select
data for rejection. There is even a ‘rule’ for rejecting data (called Chauvenet’s criterion), one
version of which states that if we have n data points, the point x; should be rejected if
Plx; > X] < 1/2n. However, common sense tells you that the more data that you take, the
more outliers will be found. So, if we expect a rare (but real) event with a probability 1/2n
in a single trial, the probability of its occurrence at least once in 7 trials is

1 n 1 2n 1/2
1-(1—E> :1-{(1—%> } =1-¢ 2 =039

when n becomes large, which is not negligible. If outliers are rejected, for whatever reason,
and then X, and o3 recalculated, because o3 will now be smaller, you may well find new
points that satisfy the recalculated rejection criterion, and logically these should also be
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rejected. But if you were to repeat this process, you could converge to a value that seriously
distorted the information in the origin data set. So blindly applying a rule, however reason-
able it may appear, is dangerous and is to be discouraged.

The existence of outliers should alert you to possible problems and such points should be
examined very carefully to see if there is any valid experimental reason why they should be
rejected. But this should be done honestly, avoiding any temptation to ‘massage the data” and
must be defensible. In the absence of such reasons, there are only two alternatives: either
include the outliers and accept that such statistical fluctuations do rarely occur or reject
them and possibly miss the chance of finding some new phenomenon. You should certainly
never use a rejection criterion on a data set more than once. Also, if you use n standard devi-
ations as the criteria for rejection, you will have to decide on a value for 1, and n = 3 would
definitely be considered too small. The choice is yours. But whatever you do, it should be
clearly stated when reporting the data.

5.4.1. Propagation of Errors
If we have a function y of the p variables 6;(i = 1, 2, ..., p), i.e.

y = y(e) = y(91/ 02/ ceey ap)/

then we are often interested in knowing the approximate error on y, given that we know the
errors on 6;. If the true values of 6; are 6; (in practice, estimates of these quantities would
usually have to be used) and the quantities (6; — 6;) are small, then a Taylor expansion of
y(0) about the point @ = 0 gives, to first order in (6; — 6;),

)

)+ N g 7. V(@
0) = y(0) + 0; — 0; . (5.41)
ORFOEDSURUE 7= i
Now
2 _
vary(0) = E|(y(0) — Ely(0)]) | =E|{y(0) -~ y(0))’] (5.42)
and using (5.41) in (5.42) gives
L & 9y(0) 2 2119v(0)
var y(0) = _E|(6; —0)(0; - 0)|—=—| - (5.43)
But from Equation (3.28),
Vij = E[(ﬁi —0;)(0; - Ej)}/
is the variance matrix of the parameters 6;. Thus, if we set
(Ay)? = vary,
we have
-] oy() ay(6)
(Ay)? = { Vi : (5.44)
l.; ]21 3; log | 06; |y 5
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Equation (5.44) is often referred to as the law of propagation of errors. If the errors are uncorre-
lated (i.e. cov(6;,0;) = 0), then
AGY, Q=
Vij = { B0t
0, i#]
and (5.44) reduces to

2
Aal} . (5.45)

When using these expressions one should always ensure that the quantities A¢;=0; — 0,
are small enough to justify truncation of the Taylor series (5.41). In particular, care should
be taken with functions that are highly nonlinear in the vicinity of the mean of a size compa-
rable to the standard deviation of the parameters 6;. Such situations are better dealt with by
using the method of confidence intervals discussed in Chapter 9.

EXAMPLE 5.8

If s and t are two random variables with variances > and o7, respectively, and a covariance o2, what are the

approximate errors on the function: (a) x = as + bt, (b) x = ast,and (c)x = as/t,wherea and b are constants?

(a) Taking derivatives, we have dx/ds = a and dx/dt = b. Also, the variance matrix is

2 2
g5 o
_ s st . 2 2
Vg = ( ) 2), with o}, = 0%

Tt Ot
So, using (5.44) gives

2 _ 22 3202 2
oy = a‘o; +b°o} + 2aboy,

and the approximate error on x is Ax = o,.

(b) Taking derivatives, dx/ds = at and dx/dt = as, and using the same variance matrix as in

(a) gives
aﬁ = (utas)z + (asat)z + 2azsta§t.
(c) Taking derivatives, dx/ds = a/t and dx/dt = —as/t?, and using the same variance matrix as in
(a) gives

2 2 2
2 = (@)2 L L]
x t) |2 2 st

The results (5.44) and (5.45) are for the case of a single function y(0) that is a function of the
p parameters 6;(i = 1, 2, ..., p). They are easily generalized to the case where there are n
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functions yx(k = 1, 2, ...,n) = y(0) that are functions of the same p parameters. Then (5.44)
becomes the set of equations

p_r
var(ye) = (8P = z{"yggj”

A new feature is that the various functions y; will be correlated, because they are all formed
from the same set of parameters 6;(i = 1, 2, ..., p). This will be true whether or not the param-
eters are themselves correlated. Their covariances may be found from definition (3.28) and are

cov(yx, 1) Z Z(ayk) ( ) cov(0;,6;). (5.47)

i=1j=

dyx(0)
o—o | 00

}, k=12, .., n (5.46)
0=0

The two results (5.46) and (5.47) may be combined in the single matrix form
V, = GV,GT, (5.48)

where V,, is the (n x n) variance matrix of y; Vy is the (p x p) variance matrix of 0;and G is an
(n x p) matrix of derivatives with elements

_ Ok
le = 601'.

EXAMPLE 5.9

Measurements are made of a particle’s position in two dimensions using the independent Cartesian
coordinates (x,y), with measurement errors o, and oy. What is the variance matrix for the corresponding
cylindrical polar coordinates (r,¢), where

r=4/x2+y? and tan¢ = y/x?

From the relationship between cylindrical polar and Cartesian coordinates, we have
or/ox Or/dy x/r y/r
-~ \oag/ox ag/oy )  \ —y/rr x/r)
a2 0
VCartesian = < OX 0_2 ) ’
x/r y/r a2 0 x/r —y/r?
Vpolar = 2 2 0 2 > .
—y/r* x/r oy ) \y/r x/r

(P2 @] [(/R) (o - o)
[Gv?) (2 —a2)]  lm?od + wmiel]

Also

and so from (5.48)

Multiplying out gives

Vpolar =
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Calculations involving a set of parameters that are uncorrelated are less complicated than
those where correlations exist, because in the former case the variance matrix is diagonal.
Given a set of variables 6; that are correlated, it is always possible to find a new set of uncor-
related variables w;, for which the associated variance matrix is diagonal, in terms of the orig-
inal set. This is achieved by a linear transformation of the form

n
w; = ZA,']‘(?]‘, (5.49)
j=1

which leads to a variance matrix Uj; for the set y;, given by

n n
ll,-]' = COV(O),’,wj) = COV( Z Aikakr Z Ajlal>
k=t =1 (5.50)

n n
klz AAjcov(by,0) = 3 AxVuA[,
=1 =1

or in matrix notation U = AVAT. Thus we need to find the matrix A that transforms the real
symmetric matrix V to diagonal form. This is a standard technique in matrix algebra, but we
will not pursue it further, because although this may simplify calculations, the transformed
variables usually do not have a simple physical interpretation, and also if there are more than
three variables, numerical techniques have to be used anyway.

So far we have implicitly assumed that the errors are statistical in origin, i.e., random, but
since we are making the connection between mathematical statistics and experiments, this is
a convenient place to return to the problem of systematic errors. In Chapter 1, the advice was
to keep these separate from random errors and quote results in the form x = Ag £+ Ag, where
AR and Ag are the random and systematic errors, respectively. One reason for this is that it
makes clear whether making more measurements is worthwhile. This is because taking
more data will in general reduce the size of Ag, but will not change Ag, and there is no point
in reducing Agr much below the value of Ag.

Nevertheless, we may still need to use both errors to calculate the overall error, or in
general the variance matrix, for a function of x. This can be done using the general result
(5.48) provided we know the variance matrix Vy. For example, if we have two parameters
61 and 6, with random errors ¢; and ¢, and a common systematic error S, then we can
consider each parameter to be the sum of two parts, 6} with random error o7 and 6§ with
a systematic error S, and similarly for 6. By construction, 6% and 65 are independent of
each other, but #; and 65 are totally correlated because they effect §; and 6 in the same
way. Then, using the definitions from Chapter 3,

var (61) = E[] — (E[6n])®
= E[(0F +09)"] - (B[R + aﬂ)z = 02452,
and similarly for 6,; and
cov(6h,6,) = E[f16,] — E[61]E[0,]
= E[(6F +67) (05 + 63)] — E[(0F + 67)|E[ (65 + 63)]

= cov(#;,05) = S~
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So the variance matrix is

v, = <U%+52 § (5.51)
T e gaest) '

This may be generalized in a straightforward way to the case where there are several sources
of systematic errors that may be shared by subsets of the parameters.

PROBLEMS 5

5.1 Avariable x is uniformly distributed in the interval I < x < I+ 1. If X, is the mean of
a random sample of size n drawn from the population, find an unbiased estimator for I in
terms of X,,. What is the mean squared error of the associated biased estimator?

5.2 Prove the relation (5.9).

5.3 A sample of size n;y = 6 is drawn from a normal population with a mean u; = 60
a variance o% = 12. A second sample, of size n, = 4, is selected, independent from the
first sample, from a different normal population having a mean u, = 50 and variance
05 = 8. What is P[(x; — X2) < 7.5)?

5.4 Prove the results given in (5.28) and (5.29).

5.5 A particular organism is repeatedly exposed to doses of radiation r; that are normally
distributed with mean 4 and variance 2 (in arbitrary units). It is found that the maximum
cumulative dosage of radiation R that the organism can absorb without suffering
permanent damage is normally distributed with mean 100 and variance 25 (in the same
units). What is the maximum number of doses that the organism may absorb before the
probability of damage exceeds 3%?

5.6 A power unit is manufactured by an identical process in several different factories A, B,
C, etc. and the mean output of the unit across all factories is 50 watts with a standard
deviation ¢ of 7 watts. A random sample of 100 units is taken from factory A and the
sample mean is found to be 49 watts. Is the product from factory A up to the overall
standard of manufacture?

5.7 A prospective purchaser of resistors decides to buy a sample of size n from the
manufacturer to check that their average value does not vary by more than 3% from
the average value R of all resistors from the same manufacturer, with a probability of 0.05.
If the values of the resistors are normally distributed with a standard deviation that
is 15% of the value R, how many would have to be bought?

5.8 A beam of particles is incident on a target and F events are recorded where the particle
scatters into the forward hemisphere and B events where it scatters into the backward
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hemisphere. What is the standard deviation on the ‘forward—backward asymmetry’ R,
defined as R = (F — B)/(F + B)?

5.9 F(x,y,z)is a function of the three variables x,y,z with the form F(x,y,z) = xy?z>. If the

variance matrix of x,y,z is
1 1 -1 1
V=—— -1 1 0],
1000 1 0 1

what is the percentage erroron Fwhenx =2, y =1 and z = 1?
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The special position held by the normal distribution, mainly by virtue of the central limit
theorem, is reflected in the prominent positions of distributions resulting from sampling from
the normal. In this chapter we consider the basic properties of three frequently used sampling
distributions: the chi-squared, the Student’s t,! and the F distributions. These are widely used in
estimation problems, for finding both the best values of parameters and their optimal ranges,
and in testing hypotheses, topics that will be discussed in detail in Chapters 7—11.

6.1. CHI-SQUARED DISTRIBUTION

If we wish to concentrate on a measure to describe the dispersion of a population, then we
consider the sample variance. The chi-squared distribution is introduced for problems
involving this quantity. It is defined as follows.

If x;(i =1,2, ..., n) is a sample of n random variables normally and independently
distributed with means u; and variances 012, then the statistic

o=y (ks |

!Confusingly, this not a distribution specifically designed for use by students. The name refers to its
originator, W.S. Gosset, who published under the pseudonym ‘Student’.

Statistics for Physical Sciences: An Introduction 105 Copyright © 2012 Elsevier Inc. All rights reserved.



106 6. SAMPLING DISTRIBUTIONS ASSOCIATED WITH THE NORMAL DISTRIBUTION

is distributed with density function

1
~21/2/T(n/2)

This is known as the x2-distribution (chi-squared) with n degrees of freedom. It is another example
of the general gamma distribution defined in equation (4.27), this time with
x = x?, « = n/2 and A = 1/2. The symbol T in (6.2) is the gamma function (used previ-
ously in Problem 3.1) defined by the integral

fOE ) 2 exp(—x*/2), x* > 0. ©.2)

I(x) = / e ldu, 0<x< . (6.3)
0

It is frequently encountered in sampling distributions associated with the normal
distribution.

The x?-distribution may be derived using characteristic functions, as follows. We first
write x2 as

n
2 2
X =D
i1

where the z; are distributed as the standard normal distribution N(z;;0,1). The quantities
u; = z? therefore have density functions

1

n(u;) = ————exp(—u;/2),
( l) (27‘(1/[1')]/2 P( l/ )
and the cf of u; is
® 1 /) itus N —1/2
¢;(t) = / /it qy. — (1 — it , (u; >0). 6.4)
l() 0 (27rui)1/2 1 ( ) ( 1 )

If ¢(t) is the cf of x?, then since the random variables u; are independently distributed, we
know from the work of Section 3.2.3 that

b(t) = i:qsi(t) = (1—2i)™"/2. (6.5)
i=1

Finally, the density function of x? is obtained from the inversion theorem

fOAEn) = ZL/O (1 — 2it)"/2e~ Xt gt

™

Using the definition of the gamma function, this yields (6.2), although the evaluation of the
integral is rather lengthy.

If the variables x; are not independent, but have a joint n-dimensional normal distribution
with an associated variance matrix V, as discussed in Section 4.3, then the variable to consider is

z=(x-—p V7 x-p).
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EXAMPLE 6.1

Use the result T'(1/2) = \/x to verify (6.4).
Change variables in the integrand to x = u (ﬁ - it>. This gives

1 Y
¢i(t) = / x 1274y,
® V(1 =2it)' 2 Jo
and from (6.3)
/ x12e¥dx = T(1/2) = V7.
0

Therefore

FIGURE 6.1 Graphs of the x*> density
function f(x? 1) and its distribution func-
tion F(x%,n) forn = 1, 4 and 10.
=
R
=
S
<
— T T T T T
~ _
= ]
e -
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The x? distribution is one of the most important sampling distributions occurring in phys-
ical science. Its density and distribution functions are one-parameter families of curves.
Examples of f(x?,1) and the distribution function F(x2,n) for n = 1, 4 and 10 are shown
in Fig. 6.1. The distribution function F(x?,n) is tabulated in Appendix C, Table C.4 for a range
of values of n. An alternative useful table may be constructed by calculating the proportion «
of the area under the x? curves to the right of x2, i.e., points such that

oo

PRC 2] = a = [ fGdm ©6)
X2

Such points are called percentage points, or critical values, of the x? distribution (recall the

percentiles defined in Chapter 1) and may be deduced from Table C.4. They are shown

graphically in Fig. 6.2. A point of interest about these curves is that for a fixed value of P,

the ratio x*/n —> lasn — «.

EXAMPLE 6.2

(a) What is P[x* < 30] when x? is a random variable with 26 degrees of freedom? (b) If x? is a random
variable with 15 degrees of freedom, what is its value that corresponds to « = 0.057

(a) From Table C.4, we have to find an entry close to, but not more than 30 for n = 26. This is a little
less than 0.75. The exact figure would have to be found by direct integration of the density
function.

(b) From the definition (6.6), we need to find a value xg of x? for 15 degrees of freedom such that
P [XZ > Xg] = 0.05, that is, a value Xf such that P[)(2 < X%] = 0.95. From Table C 4, this is
x2 = 25.

FIGURE 6.2 Percentage points of the chi-
squared distribution, P = P[x? > ¥2].
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The mgf of the x? distribution is obtainable directly from (6.4) and is
M(t) = (1 -2~ 6.7)
It follows that the mean and variance are given by
w=mn and ¢* = 2n. 6.8)
The third and fourth moments about the mean may also be found from the mgf. They are

M3 = 81/1, My = 12”(7’1"‘4)

8 4
B = o Bo = 3(1 +E)'

which tend to the values for the normal distribution as n — o, and the x? distribution does
indeed tend to normality for large samples.
This can be demonstrated by constructing the cf for the standardized variable

(5 ()

. R
int 2it
W = exp[_ <zn>l/2] [1 ) <zn>“2] ’

and taking logarithms gives
int n 2it
Ing,(t) > ———% —-In|1 - ——|.
y( ) (27”1)1/2 2 [ (2”)1/2]

Finally, letting n — o« and expanding the logarithm gives

2
int n 2it 1( 2it
e _W‘E[_ <zn>”2_5<<zn>”2> 1 e

giving

which from (6.4) is

implying
¢y (1)~ exp(~£/2).

This is the cf of a standardized normal distribution and so, by the inversion theorem, the x2
distribution tends to normality as n — o, although the rate of convergence is quite slow.

Because the x? distribution is a one-parameter family of curves, it frequently happens
that tabulated values do not exist for precisely the range one requires. In such cases
a very useful statistic is (2x?) /2 which can be shown to tend rapidly to normality with
mean yu = (2n—1) 1/2 and unit variance. The statistic

u = (2x)% - 2n-1)12 (6.92)
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TABLE 6.1 Values of P[xz > xi] forn = 5, 10, and 20, and xi = 2, 5, 10, 20, and 30 using the exact x?

distribution function, and the normal approximation using the variable u of (6.9a)

" 5 10 20
xi exact approx. exact approx. exact approx.
2 0.849 0.841 0.996 0.991
5 0.416 0.436 0.891 0.885
10 0.075 0.071 0.441 0.456 0.968 0.963
20 0.001 0.001 0.029 0.024 0.458 0.462
30 0.001 0.000 0.070 0.067

is therefore a standard normal variate for even quite moderate values of 1, and so tables of the
normal distribution may be used. Table 6.1 shows a comparison between the exact x? distri-
bution and the normal approximation based on the statistic (2)(2)1/ 2 for a range of values of 1
and x2. Another statistic that converges to normality faster, but is more complicated to calcu-
late, is (x2/n)'/. This can be shown to tend very rapidly to normality with mean 1 — 2/(9n)
and variance 2/(9n). Thus the statistic

B XZ 1/3 ) 91 1/2
G w1 E) o

is a standard normal variate for even moderate values of n.

An important property of the x? distribution is that the sum of m-independent random
variables X%/ X%/ s X%w each having chi-squared distributions with #y, ny, ..., n, degrees
of freedom, respectively, is itself distributed as Y2 with n = +np+ ... +ny degrees
of freedom. This is called the additive property of x> and may be proved by using the
characteristic function (see Problem 6.3).

There are two other important results that we shall need later. The first concerns a sample
X1, X2, ..., Xy of size n drawn from a normal population with mean zero and unit variance.
Then the statistic

n

u=>y (x—x7 (6.10)

i=1

is distributed as x* with (n — 1) degrees of freedom. In general, if the parent population has
variance ¢2, then

1 _
=) (=97 6.11)
i=1

is distributed as x? with (n — 1) degrees of freedom. Moreover, since the sample variance is

P2 =2X 6.12)




6.2. STUDENT'S ¢ DISTRIBUTION 111

it follows that (n — 1)s?/0? is distributed as x> with (n — 1) degrees of freedom, independent of
the sample mean X. Thus the sample mean and sample variance are independent random
variables when sampling from normal populations. This somewhat surprising result is
very important in practice and we shall use it later to construct the sampling distribution
known as the Student’s ¢ distribution.

If we assume that a sample is drawn at random from a single normal population with
mean u and variance ¢2, then from (6.1)

1 n
2 = ?E(xi — ) (6.13)
1=

However, since the mean of the population is rarely known, in these cases it is more useful
to use the result that the quantity u in (6.10) is distributed as x? with (17 — 1) degrees of
freedom. In that case x? defined in (6.11) is distributed with (n — 1) degrees of freedom if X
is used instead of u. This illustrates an important general result: the number of degrees of freedom
must be reduced by one for each parameter estimated from the data.

EXAMPLE 6.3

Points are plotted randomly in a two-dimensional plane using Cartesian coordinates (x,y) and the
distance from a fixed point (xo,yo) measured. If the differences

Ay =xp—x and Ay = yo—y

are independent random variables, normally distributed with zero means and standard deviations 2.1, what is
the probability that the distance between the points (x,y) and (xg,yo) exceeds 3.5?
The distance d between the points (x,y) and (xp,yp)is given by

= AT+ 4,
and because the quantities zy,, = Ay, y Jo = Ay y /2.1 are standard normal variates,
Pl > (35) = 12.25} = P[zﬁ +22> (12.25/(2.1) = 2.78]

= P[x*>278] = 1-P[x*> <2.78] = 0.25.

6.2. STUDENT’S ¢t DISTRIBUTION

The central limit theorem tells us that the distribution of the sample mean x is approxi-
mately normal with mean u (the population mean) and variance 2 /n (where ¢? is the pop-
ulation variance and # is the sample size). Thus, in standard measure, the statistic

X —
On
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where 6, = 0//n, is approximately normally distributed with mean zero and unit variance
for large n. However, in experimental situations neither the mean nor the population variance
may be known, in which case they must be replaced by estimates from the sample. While ¢2
can be safely replaced by the sample variance s? for large n > 30, for small n the statistic u will
not be approximately normally distributed and serious loss of meaning in the interpretation
will occur. So we have to consider the distribution of the variable

- (f/_ﬁ)

where s = ¢ is an estimator for . If we write t as

= (o) (Dl

we see from the central limit theorem that the numerator is distributed like a standard
normal variable and the denominator is distributed like a x> variable with either (n — 1) or
n degrees of freedom, depending whether or not u is estimated from the data (see equation
(5.16a)). The distribution of ¢ is called the Student’s t distribution. It enables one to use the
sample variance, as well as the sample mean, to make statements about the population
mean. The discussion will concentrate around three important results, but firstly we will
derive the density function of ¢.

Let u have a normal distribution with mean zero and unit variance. Further, let w have a x2
distribution with n degrees of freedom, and let u and \/w be independently distributed.
Because u and /w are independently distributed, their joint density is the product of their
individual densities. Thus from the form of the chi-squared distribution (6.2), and the stan-
dardized normal distribution (4.10), the joint density function of u and w is

P -y 1 (n-2)/2 —w)2
f(u,w;n) = (Zw)l/zb F(n/2)2"/2vu e . (6.14)

If we substitute

)"

then (6.14) becomes
e Fw/2np—w/2,,(n-2)/2

@m) 21T (n/2)212

and f(t;n) is the marginal distribution of ¢, i.e.

ft,w;n) =

f(tn) = /wa(t,w,'n)dw.

This integral may be evaluated directly using the definition of the gamma function (6.3) with
result that the random variable
u
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has a density function

, —oo<t< o, (6.15)

—(n+1)/2
o) — Ll /2] {Hﬁ]

(en)'?T(n/2)L

The statistic ¢ is said to have a Student’s t distribution with n degrees of freedom. 1t tends
to a standard normal distribution for n — , as we will prove below, but for small n the
tails are wider than those of the latter, and for n = 1 the distribution is of the Cauchy
form.

Like the x? distribution, the Student’s t distribution is a one-parameter family of curves.
The distribution function is tabulated in Table C.5, and in using it one can use the fact that

P[t < _ta(n)] = P[t > ta(n)] = o

since the distribution is symmetrical about ¢+ = 0. Percentage points for the distribution are
shown graphically in Fig. 6.3.

EXAMPLE 6.4

(a) What is P[t < 0.7) when t is a random variable with 16 degrees of freedom? (b) If t is a random variable
with 5 degrees of freedom, what is its value that corresponds to o« = 0.057

(a) From Table C.5, we have to find an entry close to, but not more than, 0.7 for n = 16. This is very
close to 0.75.

(b) From the definition analogous to (6.6), we need to find a value f. of t for 5 degrees of freedom
such that P[t > t;,] = 0.05, that is, a value t, such that P[t < t.] = 0.95. From Table C.5, this is
approximately ¢, = 2.

FIGURE 6.3 Percentage points of the 50 T T T T T
Student’s t distribution, P = P[t > t,].

20

P=001

¢
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| 2 5 10 20 50 100
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The mean and variance as usual can be found from the mgf. From (6.13) and the defini-
tions (3.11) and (3.13) we can show that moments of order r only exist for r < n and are
zero by symmetry for odd moments. For even moments, direct integration gives

JL(r+1/2)I(n/2 — 1)

= 2 . 1
Yoy = 1 T2 2 r<n (6.16)
The mean and variance follow from (6.16): they are
5 n
w=0; 0" = (n>2) (6.17)

T =2

We now return to the three basic results mentioned earlier. The first of these specifies the
distribution of the difference of the sample mean and the population mean with respect to the
sample variance. Let x;(i = 1,2, ..., n) be a random sample of size n drawn from a normal
population with mean u and variance ¢2. Then the statistic

u = XK
~ \o/vn
is distributed as N(u;0,1). Furthermore, from (6.12) we know that the statistic

w = (n—1)s?/a?, where as usual s* is the sample variance, is distributed as x> with (n — 1)
degrees of freedom. Therefore, from the form of the Student’s t distribution, the statistic

S — @(y—u) (6.18)

fwfn-1]"* *

is distributed as t with (n — 1) degrees of freedom.

EXAMPLE 6.5

A group of 9 students entering the physics department of university A has a mean score of 78% in
a national science examination, with a standard deviation of 5%. The national average for all students taking
the same examination is 75%. What can be said about whether university A is getting significantly better
than average students?

Using ¥ =78, s =5, and u = 75, we have t = /n(x —u)/s = 1.8, and this value is for
n—1 = 8 degrees of freedom. From Table C.5, F(t,n) = 0.95 for t = 1.86 and n = 8. Thus the
probability of getting a sample mean at least as large as this is approximately 5%.

The second result concerns the asymptotic behavior of the t distribution. As the number of
degrees of freedom of the distribution approaches infinity, the distribution tends to the
normal distribution in standard form. This follows by using Stirling’s approximation,

T(n+1)— 2m) 20" 12", 1 o
in the gamma functions in (6.16). Then the moments (6.16) become

(2r)!

o 6.19)

Moy —
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However (6.19) is the form for the moments of the normal distribution expressed in standard
measure (see equation (4.7)). Therefore the Student’s t distribution tends to a normal distri-
bution with mean zero and unit variance.

The final result concerns the ¢ distribution when two normal populations are involved. Let
random samples X1, X12, ..., X1, and X1, X2, ..., X2, Of sizes 11 and ny, respectively, be
independently drawn from two normal populations 1 and 2 with means u; and u,, and
the same variance ¢?; and define the statistic ¢ by

(X1 — %) = (1 — o)

t= 2 (6.20)
[SB(1/m +1/m)] ",
where
1 n;
X; = n—izxi]', 1 = 1,2,
j=1
and S3, the pooled sample variance, is given by
’ Ziz:l Z}l’;ﬂxij - %) (m —1)s2 + (ny — 1)s3
2 — = : (6.21)
ny+ny—2 nm +ny—2
Then, using (6.12) and the additive property of x?, the quantity
w = S’%(m + 1y —2)/0%, (6.22)

is distributed as x? with (n1 4+ ny — 2) degrees of freedom. Furthermore, we know, from equa-
tions (5.31) and (5.32), that ¥ = X; — X3 is normally distributed with mean u = u; — u, and
variance

, @
ni ny
Thus the quantity
y - (x1 — %) — (g — ?22) Xk (6.23)
02(1/m +1/m)]"* 7

is normally distributed with mean zero and unit variance. But we showed in Section 6.1
that the sample mean and sample variance are independent variables when sampling
randomly from a normal population, so X and u are independent random variables.
Thus the quantity

= u (6.24)

[w/ (1 +mnp — 2)]Y/%

has a t distribution with (17 4+ ny — 2) degrees of freedom. Substituting (6.22) and (6.23) into
(6.24) gives (6.20) and completes the proof.
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EXAMPLE 6.6

The table shows the scores in a certain examination of two groups of students, A and B. The students in
group A attended revision classes to prepare for the exam. Has this significantly improved the mean score of
the group compared to that of group B?

n 1 2 3 4 5 6 7
A 71 75 79 71 70 73 72
B 70 68 72 73 67

From the data we can calculate, X4 = 73, X = 70, (n4 — 1)5% = 58, and (np — 1)512; = 26,
where ny = 7 and ng = 5, so from (6.21), S]% = 8.4 We can now test whether u4 = ug by calcu-
lating t from (6.20). Thus, assuming u, = ug,

1 1 -1/2
= (X1 — Xx 2 [R— [ =
t = (xA xB) [SP (I’IA =+ HB):| 1.77.

From Table C.5, the probability of getting a value of ¢ at least as great as this for 10 degrees of
freedom is less than 5%.

6.3. F DISTRIBUTION

The F distribution is designed for use in situations where we wish to compare two vari-
ances, or more than two means, situations for which the XZ and the Student’s t distributions
are not appropriate.

We begin by constructing the form of the F density function. Let two independent random
variables u = X‘% and v = X% be distributed as x2 with m and n degrees of freedom, respec-
tively. Then the joint density of u and v is, from (6.2),

u(m=2)/2,,(n-2)/2 1
m/2)T(n/2)20m+m/2 &P { i ”)} '

g(u’ U) = F(
The statistic F is defined by

xi/m _ ujm
Xa/n  v/n

- (O

into g(u,v) gives the joint density function of F and v as

p(1=2)/2 v oF\ ("=2)/2 v
fEY) = S22y 272 (%) (mnF> exp| (1 +%F )]

F = F(m,n) = (6.25)

and so substituting
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The density function of F is then obtained by integrating out the dependence on v. Thus

F(n-2)/2 i m/2
fEsm ) = T )  AEm.

where, using the definition of the gamma function,

I(Fom,n) — /'°°U<m+n_z)/z exp{f%(l +%Fﬂ 4o
0

_Dl(m 4 m)/2J20m )2
(1 +mF/n)(m+n)/2 '

So, finally, the density function for the statistic F is

f(F;m,n) = F>0 (6.26)

T'[(m+n)/2] (ﬂ) m/2 F(m—n)/2
Dim/2)0(n/2)\n) (1 & k)72
with m and 7 being degrees of freedom.

The mgf may be deduced in the usual way from its definition. The moments of order r exist
only for 2r < n and are given by

, n\'T(r+m/2)T'(n/2 —r)
Br = (%) T(m/2)T(n/2) 627)

The mean and variance follow directly from (6.27) and are

IJ, =
and

2 _
52 = 2n(m+2n 2), n> 4
m(n —2)"(n—4)

Equation (6.27) may also be used to calculate 61 and 8, and the result shows that the F distri-
bution is always skewed. The pdf of the F distribution is more complicated than those of the
x> and t distributions in being a two-parameter family of curves.

The distribution function of F is tabulated in Table C.6. Percentage points are defined in the
same way as for the x? distribution. Thus,

PIF>Fu] = a = / " f(Em, m)dE,
F,

Right-tailed percentage points may be obtained from Table C.6, and should left-tailed
percentage points be needed they may be obtained from the relation

Fi_o(m,n) = [Fo(n,m)]™". (6.28)
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FIGURE 6.4 Percentage points of the F distribution, P = P[F > F,] = 0.05.

As an example, the percentage points for P = 0.05 are shown graphically in Fig. 6.4.

EXAMPLE 6.7

(a) Find the critical value Fy g5 for m = 6 and n = 14. (b) Find the critical value Fy 975 for m = 9 and
n = 30.

(a) This is the value for which P[F > Fy 5] = 0.05, or equivalently P[F < Fy 5] = 0.95. From
Table C.6, with m = 6 and n = 14, this is Fy g5 = 2.85.

(b) We first find the critical value Fy 5 for m = 30 and n = 9. This is the value for which
P[F > Fy 5] = 0.025, or equivalently P[F < Fyps] = 0.975. From Table C.6, with m = 30 and
n =9, this is Fpgp5 = 3.56. Now we can use (6.28) to give

Fo.975(30,9) = [Fo025(9,30)] " = 0.281.

One use of the F distribution is to compare two variances, for example to see whether two
variances are equal so that the conditions for applying the Student’s f test are satisfied. Let s
and s3 be the variances of two independent random samples of sizes m and 1, respectively,
whose populations are assumed to be normal with variances ¢2 and o3. Then from the defi-
nition of the sample variance, we may write

5 1 n 0 XZ
; :n—lg(xi_x) a1
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where x? is a chi-squared random variable with (n — 1) degrees of freedom. Thus, if we
assume that O’% = U%, the ratio F = S%/S% is distributed as an F random variable with
(m—1) and (n — 1) degrees of freedom.

EXAMPLE 6.8

Do the data of Example 6.6 justify the use of the t distribution to compare the mean scores of the two groups
of students?

From the results of Example 6.6, we have 5124 = 9.67 and s% = 6.50, so that F(6,4) = 1.49. From
Table C.6, the value of F(6.4) is 4.01 for a critical value of 10%. As the value found from the data is
well below this, the use of the Student’s ¢ distribution is compatible with the data.

6.4. RELATIONS BETWEEN yx?, t, AND F DISTRIBUTIONS

The F distribution is related to the x? distribution as follows. It is straightforward to show
thatasn — «,

PHX2/n _ 1H - 0.

Thus
F(m, ) = xi/m, (6.29)

(see for example Fig. 6.2), and the distribution of x2 /m with m degrees of freedom is a special
case of the F distribution with m and o degrees of freedom. So for any «,
2
Fu(m, ) = %), (6.30)
m
which may be directly verified by the use of a set of tables. If we consider the limitasm — o,
we have

n
Floo,n) = ) 6.31
(1) x?(n) ©31
and so
n
F (w,n) = , (6.32)
(om) =2 @)

Thus the left-tailed percentage points of the x?/n are special cases of the right-tailed
percentage points of F(,n).
The F distribution is also related to the Student’s ¢ distribution. This can be seen by noting
thatwhenm = 1, then x2 /m = 12, where u is a standard normal variate. We may thus write
R — (633)
F1,n) = ———. 6.33
(G3/m)
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But the variate
u

~ @/m

(6.34)

is distributed as the Student’s ¢ distribution with n degrees of freedom, so (6.33) may be

written as
F(1,n) = (n).
Using (6.35),
PF(1,n) < Fu(l,n)] =1 -«
is equivalent to
P[—(Fa(1,n))? < t(n) < (Fo(1,n)?}] = 1— o,

and using the symmetry of the t distribution about t = 0 we have

Pt(n) < —(Fa(1,m))'?] = Plt(n) > (Fa(1,n))"/?] = a/2.

But

Plt(n) > ta/z(n)] = a/2
and so

tapp(n) = Fal(1,m)]'/?,
or

Fo(L,n) = £ 5(n).
Similarly, we can show that for n = 1
F(m,1) = [F(m)]™",
and
— 42 -1
Fa(m, 1) = [t ) p(m)] .
Finally, if m = 1and n — o0
F(X(lr OO) = ui/zl
andifn = land m — o

Fo(®,1) = [Uf110/22)

where u, is a point of the standard normal variate such that

Plu>u,| = a.

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)
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TABLE 6.2 Percentage points Fy of the F(m,n) distribution and their relation to the x* and Student’s ¢
distributions.

m
n 1 m ©
1 1 1
1 2,(1) = - —
a2
/ t%1+zx)/2(l) t%na)/z(m) ”%Ha)/z
2 n
n ta/z(”) Fo(m,n) C ()
2
Xa(m)
*® ”i/z m 1

The various relationships above are summarized in Table 6.2.

FIGURE 6.5 The relationships

between the population distributions Binomial p—0,np—> A Poisson
(Binomial, Poisson, and normal) and the . > .
sampling distributions (chi-squared, frspm) f(k:2)
Student’s t and F) as their parameters \ /
tend to certain limits. 11— oo Normal n—> oo
f(x;su,0)
A
17— oo 1 —> oo m—> oo
n— oo
Student's ¢
n —» o
L T
Chi-squared Jam \ F distribution
ftsn) e F(m,n)
n— oo

The relationships between these three distributions in certain limiting situations are
shown in Fig. 6.5, together with their relationships to the three most important population
distributions discussed in Chapter 4.

PROBLEMS 6

6.1 Find the value of the 90th percentile of the x? distribution for n = 100 degrees of
freedom.

6.2 Prove the result stated in the text that for a sample x1, xp, ..., x,; of size n drawn from
a normal population with mean zero and unit variance, the statistic

n

u=>y (xi—-%7?

i=1

is distributed as x> with (n — 1) degrees of freedom.
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6.3

6.4

6.5

6.6

6.7

6.8

6.9

Prove the additive property of x.

Twenty measurements taken from a normal population that was assumed to have mean
14.5 yielded values of the sample mean and sample variance of 15 and 2.31, respectively.
Use the Students’s t distribution to test the assumption.

A target is to be located in an n-dimensional hyperspace by measuring its coordinates
from a fixed point. If the coordinate errors are normal variates with mean zero and
variance %/ 3, what is the largest value of n for which the method can be used if the
probability that the distance from the fixed point to the target D exceeds 4 is 10%.

Prove the relation (6.28).

A random sample of size 20 is selected from a normal distribution and the ¢ statistic
calculated. Find the value of k that satisfies Pk < t < —1.328] = 0.075.

Find the number / such that P[-h < t < h] = 0.90 where t is a random variable with
a Student’s ¢ distribution with 15 degrees of freedom.

Resistors of a given value are manufactured by two machines A and B, and for
consistency the outputs from both machines should have equal variances. A random
sample of 14 = 16 resistors from machine A has s3 = 15 and an independent random
sample of size np = 21 from machine B has s3 = 5. Are the machines making the
resistors consistently?
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In previous chapters we have encountered the problem of estimating the values of the
parameters of a population from a sample. For example, we have used the sample mean
and the sample variance as estimators of the corresponding population parameters. These
choices satisfy the desirable general properties of point estimators discussed in Chapter 5
and are supported by the laws of large numbers. In this chapter and in the one that follows
we turn to a discussion of specific practical methods of point estimation, starting with the so-
called maximum likelihood method. We briefly met the likelihood function in Chapters 2 and 5,
but in this chapter we will consider its use in estimation problems. Of all the possible
methods of parameter estimation, that of maximum likelihood is, in a sense to be discussed
below, the most general, and is widely used in practice.

7.1. ESTIMATION OF A SINGLE PARAMETER

The likelihood function has been defined in (5.11). If the dependence of L on x; is sup-
pressed, then for a sample of size n,

L) = ﬁf(xi} 0), 7.0)
i=1

Statistics for Physical Sciences: An Introduction 123 Copyright © 2012 Elsevier Inc. All rights reserved.
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where f(x;0) is the density function of the parameter population.' The maximum likelihood
(ML) estimator of a population parameter ¢ is defined as that statistic # which maximizes
L(6) for variations of 6, that is, the solution (if it exists) of the equations®

oL(6) 9%L(0)
——= . 72
30 0, 9 <0 (7.2)
Since L(f) > 0, the first equation is equivalent to

10L(6) 9InL(9)
L 66 a0

which is the form more often used in practice. It is clear from (7.2) that the solution obtained
by estimating the parameter 6 is the same as estimating a function of 6, e.g., F(6) since

dInL _dInL(F) oF
a9 ~—  OF 93¢
and the two sides vanish together. This is a useful invariance property of maximum likeli-

hood estimators, but it does not extend to their variances. This is readily seen by considering
the probability

=0, (7.3)

(7.4)

-1
Pl6y < 0 < 6] = l / 62L(0)d0] l / ) L(B)dt?] , 75)
2} —

i.e., the probability that an interval (61, 6,) will contain the true value 6. For example, if this
probability is chosen to be 0.68, then for a normal distribution it would correspond to a stan-
dard error of one standard deviation in the usual sense. If we now use a function F(6) to esti-
mate the parameter 6, then

-1
Pl61 <6< 6] = l/FFZLz—ﬁdFl [/_w L(e)ow] ,

which in general will not be equal to the value obtained from (7.5).

A practical consideration when using the maximum likelihood method is that the data do
not have to be binned. However, this strength can become a weakness in the case of very large
samples, because a complicated function may have to be evaluated at many points. In this
case it is usual to apply the method to binned data. If N observations, distributed with
a density f(x;6), are divided into m bins, with nj(i =1, 2,...,m) entries in bin j, then

max
X

¢i(0) =N [ f(x; 6)dx

min
X

'We have assumed that f(x; 0) is a function of the single random variable x, but all the results of this section,
and Section 7.2, may be generalized in a straightforward way to the case of estimating a single parameter
from a multivariate distribution.

2A brief review of maxima and minima is given in Appendix A, Section A.2.
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is the expectation value of the number of entries in the jth bin having lower and upper limits
xmin max

and x;", respectively. If we take the probability to be in bin j as (¢j/N), the joint prob-
a]bility is given by the multinomial distribution defined in Section 4.7,

and
m
InL(0) = njInej(0) +C, (7.6)
j=1

where C does not depend on the parameter 6. The ML estimator § is now obtained by
maximizing (7.6) with respect to 6, usually by numerical means. It is evident from
this expression that the method has no difficulty in accommodating bins that have
no data.

The importance of ML estimators stems from their properties. It can be shown that they are
generally consistent and have minimum variance. If a sufficient estimator for a parameter
exists then it is a function of the ML estimator. The latter follows directly from the factoriza-
tion condition (5.12), because maximizing L is equivalent to choosing # to maximize L; (6;6) in
that equation. Another important property is that for large samples, ML estimators have
a distribution that tends to normality. There are situations where these results do not hold
and the ML estimator is a poor estimator, but for the common distributions met in practice
they are valid.

To prove the normality property, we set InL(f) = h(6), so that the ML estimator is
defined by the solution of dh(6)/dé = 1'(6) = 0. Then, providing #'(f) can be differentiated
further, we can expand it about the point 6 to give

W (0) =1 (0) + (0 — O)H"(0) + - 7.7)
where, setting f; = f(x;; §) and using (7.1),

=S (0} e v -${(1)]

and the primes denote differentiation with respect to #. For large samples we know that
E[l(6)] =0, i.e.

R4
0=0

E[H(8)] = [ Z ;/((j:)) f(x)dx = 0.

Differentiating this result again, and writing out in full gives
o RN P ()

<] <[ (5] o
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that is,
E[{h’(é)}z] — _E"(#)] =1/, (7.8)

where ¢2 depends on the density f and the estimator f. Substituting (7.8) into (7.7) and inte-

grating gives
N 2
wio) (o) =5 (* )

c

where we have used /' (f) = 0. Finally, taking exponentials,

L(8) =k exp{— %(0 : 9)2},

where kis a constant. So we have proved that ML estimators are asymptotically distributed as
a normal distribution.

One has to be a little careful about using (7.4), because if the result of maximizing L,
or its logarithm, results in an unbiased estimator, it does not always follow that the
estimator obtained by maximizing a function of L is also unbiased. So one has to
balance the convenience of the invariance property of ML estimators against the fact
that the resulting estimator may not be unbiased. For example, for the exponential
distribution

. _1 —t/t
flb) = e,

that among other things describes the decay of an unstable quantum state, the mean of the
measurements f; is an unbiased ML estimator for the lifetime 7, i.e.

T = 1 i t; 7.9)

for all n (see in Problem 7.1). However, the estimator for any function of T may be found by
evaluating the function using z. So if we were to take the function to be R = 1/ (the rate of

decay), then from (7.9),
| no\ 7
R = ~=n ( Z t1> ,
t i=1

but it is straightforward to show (for example by the method used in Problem 7.1) that

~ n

E[R] = R,

n—1

and so R is not an unbiased estimator for R, except asymptotically when 7 is large. Fortu-
nately, this latter condition is usually satisfied in practical applications of the maximum like-
lihood method.
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The use of the maximum likelihood method for estimating one parameter is illustrated by
the following example. The related problem of finding the ML estimator for the variable o2 in
a normal population is left to Problem 7.2.

EXAMPLE 7.1

Find the ML estimator fi for the parameter u in the normal population

f(x; ,u,oz) = (Zmlz)l/zexp{;(x ; M)Z},

for samples of size n, where o is known and —o < x < oo [s the estimator unbiased?
From (7.1) we have

1/2 1 &
InL(u,0%) = —nln {(2#02) } ~ 5.2 Z(x,- —
i=1
The ML estimator of u is found by maximizing In L with respect to u, that is, the solution of

dlnL(u) 1
GInLm) _ 1S~y =0,

Thus

1 n
ﬂ = - X = X.

i
Therefore the sample mean is the ML estimator of the parameter u. One could shown in a straight-
forward way that i is an unbiased estimator for u by calculating its expectation value using the joint
probability distribution for the x;. (This is done in full for a related exercise in Problem 7.2.)
However it also follows from the general result that the sample mean is an unbiased estimator of
the mean for any probability density function.

EXAMPLE 7.2

Find the ML estimator for the parameter 0 in a population with a density function
fl0)=(1+0)x", (0<x<1).

The likelihood function is

n

L(6) = [Tt + o),

=1

with

n
InL(#) =nIn(1+6)+6%, where == Z In x;.
i=1
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Taking the derivative gives
dInL(#)/00 =n/(14+60)+Z=0,
and so

0=—-(n+3)/=.

In the above discussion, we have made the usual assumption that 7 is a fixed known
number. However, there are often circumstances where the number of events observed in
an experiment is itself a random variable, typically with a Poisson distribution with mean
A. In these cases, the overall likelihood function is the product of the probability of finding
a given value of n (given by equation (4.47)) and the usual likelihood function for the n values
of x. So the combined likelihood function is

L(n,6) = i_’:ﬂ [1f i 0).
’ i=1

This is called the extended likelihood function. It differs from the usual likelihood function
only in that it is taken to be a function of both n and the sample values x;. Much of the stan-
dard formalism of the maximum likelihood method carries over to L(n,6) and we will not
pursue it further here, except to say that the extended likelihood method usually results in
smaller variances for estimators § because the method exploits the statistical information
contained in n as well as that in the sample.

7.2. VARIANCE OF AN ESTIMATOR

The likelihood function L(0) may be formally regarded as a probability density function for
the parameter ¢ viewed as a random variable. Thus we can define the variance of the esti-
mator as

varf = /_ : (6 — 0)*L(6)do / /_ : L(6)dd, (7.10)

and, by analogy with the work of Section 5.4, an estimate from experimental data would be
quoted as

0 =6, + AB, (7.11a)
where 99 is the ML estimator obtained from the data and
Af?e = (var 96)1/2. (7.11b)

The interpretation of (7.11a) is that if the experiment were to be repeated many times, with
the same number of measurements in each experiment, one would expect the standard devi-
ation of the distribution of the estimates of 6 to be A#f,.
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From the normality property of ML estimators, it follows that for large samples, the form
of L(0) is

1 1 (0-06)7
where v = var . Then
N2
_ 12] 1 (690
InL(0) = 1n[(2m;) } 5 (7.13)
and
FInL@) 1
a2 v
Thus
P nL6)]
var § = [ — —21 . (7.14)
a6 0=0

This is the most commonly used form for the variance of an ML estimator when making
numerical calculations.

EXAMPLE 7.3

Find the ML estimator fi and its variance for the parameter u in the same normal population as in
Example 7.1, but now for a set of experimental observations of the same quantity x; with associated
experimental errors Ax;.

The density function is

from which

n L 2
InL(g) = - In {(zfo” 2y Ax,} - % (xkx.”) ,
i=1 !

i=1

and

Setting this last expression to zero gives

n

B3 (/o)) Y0 /)

i=1
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This result is called the weighted mean of a set of observations. The variance of {i may be found using
the second derivative

PinLp) &[ 1
o ;sz}

in (7.14). Tt is
-1

var i = (AR)? = {Z(AL)}

i=1

The formula for the weighted mean , although formally correct, should be used with care. This is
because the experimental errors Ax; are only estimates of the population standard deviation and we
must be sure that they are mutually consistent; that is, we must be sure that the measurements all
come from the same normal distribution. We will return to this question in Section 11.1, where we
discuss ways of testing whether a set of data does indeed come from the same population distribution.

7.2.1. Approximate methods

If an experiment has ‘good statistics’ then the likelihood function will indeed be a close
approximation to a normal distribution and the method above for estimating the variance
will be valid. However, many effects may be present which could produce a function that
is clearly not normal and in this case the use of (7.14) usually produces an underestimate
for Af. In these circumstances a more realistic estimate is to average 0% In L(0)/36% over the
likelihood function, so that

- -1
1 [(#WmLEO)) | [*( #InL(®) >
iy —( -7 ) = /_ i} ( —7 )L(ﬂ)dﬁ /_ ) L(o)do| (7.15)

where the overbar denotes an average.
A related method that partially deals with the problem of non-invariance is to use the

function
2 \17?
S(0) = | - 0“ InL(6) dInL(6)
B 96> a0

called the Bartlett S function, which can be shown to have a mean p = 0 and variance o2 = 1.
In the case of a normal distribution, S(6) is a straight line passing through zero when 6 = @
and the values at £n standard deviations are found from the points where S = +n. For
non-normal functions, the solutions of the equations S(f+) = F1 determine the ‘one-stan-
dard deviation” quantities 6. so that the result would be quoted as

A0,
=06
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Alternatively, a direct graphical method can be used to estimate the variance. A plot of L(f)
is made and the two values found where it falls to e!/? of its maximum value, i.e., the two
values that would correspond to one standard deviation in the case of a normal distribution.
Reverting to using In L(#), we can expand this in a Taylor series about the ML estimate f to give

InL(6) = InL(6) + {6 In L] ’”(0 —0) +l[621—nL] (8—6)*+ - (7.16)

0=0

90 21 962

From the definition of 6, we know that In L(@) = In Lnax, and the second term is zero because
dInL(0)/90 = 0 for 0 = 0. So, if we ignore terms of higher order than those shown in (7.16),
we have

(6—9)°
2varf’

where we have used (7.14), and var 6 is evaluated at § = 6. Equation (7.17a) implies that

InL(O+6) = In Lyax — % (7.17b)

InL(0) = In Lyax — (7.17a)

Thus a change in the value of 6 of one standard deviation from its ML estimate # corresponds
to a decrease in the value of %2 from its maximum value. Likewise a decrease of 2 defines the
points where  changes by two standard deviations from its ML estimate, and so on. In the
case where the likelihood function has an approximate normal distribution, In L(#) will be
approximately parabolic.

This is illustrated in Fig. 7.1 for a case where 6 =10.0 and In Lmax = —50. In this case the
two points where f changes by one standard deviation can be found from the figure and lead
to error estimates 6_ = 0.52 and 6, = 0.58. These are close enough that it is reasonable to
average them and quote the final result as ¢ = 10.0 & 0.55. Alternatively, the asymmetric

FIGURE 7.1 Graphical method for finding
errors on an ML estimate.
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errors could be quoted, ie., ¢ = 10.0f8:gg, as would have to be done if the curve were not
approximately parabolic.

Another useful formula for Af may be derived for situations where one wants to answer
the question: how many data are required to establish a particular result to a specified accu-
racy? The problem is to find a value for 6% In L(6)/36* averaged over many repeated exper-
iments consisting of n events each. Since

InL(x; 0) = i In f(x;; ),
i=1

we have

(%) = n/%f(?ﬁﬁ)dx =nE [W} : (7.18a)

This form may be used in (7.15) directly, or it may be expressed in terms of first derivatives by
writing

96> foe® f2\30) fog> \ 40

and then taking expectation values to give

Pinf 19 1 (af>2_ 1 6%f (M)Z

Pinf|  _[olnf]> _[16%] 1/0f\?
E[ 002 ] __E{ 30 ] +Elfae2 __/f(ae> dx, (7.18b)
since the second term is
10| 9 3
EL?W] _ﬁ/f(ﬂ)dx_o.
From (7.18a) and (7.18b),
PInf(x;0),, B A (x; 0)\* 1
/Tf(x, 0)dx/< T > i 0)dx, (7.19)
and so
.1 of(x; 0)\> 1 172
AH—\/—E[/< ] )jc(x;ﬂ)dx} . (7.20)

This result also confirms that to increase the precision of the experiment n-fold requires n? as

many events.

EXAMPLE 7.4

Consider the density function
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How many events would be required to determine 6 to a precision of 1% for a value of 6 = 0.5?
We have

and

Thus from (7.20),

($)-C) [o(i2t) 4"

Setting (A8/6) = 0.01 for 6 = 0.5 gives n = 1.01 x 10°.

7.3. SIMULTANEOUS ESTIMATION OF SEVERAL PARAMETERS

If we wish to estimate simultaneously several parameters then the preceding results
generalize in a straightforward manner. The maximum likelihood equation becomes the
set of simultaneous equations

81nL(01,02,..., 01',...,0”)
a0;
Also the analogous properties of the ML estimators for a single parameter hold. As an
example, consider the generalization of the normality property. This states that the ML
estimators [91'(1' =1,2,...,0,) for the parameters of a density function f(x; 61,0,,...,6,)
from samples of size n are, for large samples, approximately distributed as the multivar-
iate normal distribution with means 61,65, ...,6, and a variance matrix V where

P Inf(x; 61,0y, ...,0,)
30,00; '

=0, i=1,2,..,n (7.21)

M= (vVy) ' = —nE[ (7.22)

The use of (7.21) and (7.22) is illustrated in the following example.

EXAMPLE 7.5

Find the simultaneous ML estimators for the parameters u and o of the normal population

fx o) =(27T;2)1/2eXp[é(x . M)T'

and find the form of the joint distribution of the estimators for large samples.
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From (7.21),

M:li(x}‘—ﬂ): )

2
ou o3
and
dlnL(u,0) 1 ¢ 2 n
i AT a0
giving

=X (}2:12(36],7%)2.

Note that 62 is a biased estimator of ¢2. This is often the case with ML estimators, but fortunately
there usually exists a constant ¢, in this case 11/(n — 1), such that multiplying the ML estimator by ¢
produces an unbiased estimator.

Because the two estimators i and ¢ are approximately normally distributed with mean u and
a matrix M given by (7.22), we have, with u = ¢y and ¢ = 65,

1 3(x—u)2 1 2n
My = —nE|—| = = My = —nE| - 22—/ 4 " | =
we ] = e S

and
M12 :M21 = —HE{—M} =0.

Thus, the variance matrix is

_ a?/ 0
Vij = (M 1)1‘}: ( On az/Zn)'

and the variance and covariances are given by

1
ﬁo,-]' = V,]

Finally, from (4.17) the form of the distribution of the estimators is
o V2n n 6—a\? a—u 2
siwe) = segenl52(57) +(450) 1}

There is one point that should be remarked about the simultaneous estimation of several
parameters, which is illustrated by reference to Example 7.4. If we know g, the estimation of
o2 alone gives (see Problem 7.2)

62 = EZ(xi —u)? (7.23a)
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whereas in Example 7.5, we found from the simultaneous estimation of u and ¢ that

7 =13 (-2 (7.23b)
i1

However, from the results found in Example 7.1 we see that we can estimate g,
independent of any possible knowledge of o2, to be x. Thus, if we now find the
estimator of ¢? that maximizes the likelihood for all samples giving the estimated value
of u =X, it might be thought that the result (7.23b) would ensue, whereas in fact in this
latter case

R 1 ¢ =2
52 = — ;(x,- —x)°. (7.23¢)
The difference between (7.23b) and (7.23c) is that in the former case we have considered the
variations of In L(u, o) over all samples of size 1, whereas in the latter the constraint that > x
is a constant has been imposed, and thus the number of degrees of freedom has been lowered
by one. For large n the difference is of little importance, but it is a useful reminder that every
parameter estimated from the sample (i.e., every constraint applied) lowers the number of
degrees of freedom by one.

The maximum likelihood method has the disadvantage that in order to estimate a param-
eter the form of the distribution must be known. Furthermore, it often happens that L(0) is
a highly nonlinear function of the parameters, and so maximizing the likelihood function
may be a difficult problem.? Finally, if the data under study are normally distributed, then
maximizing L(f) is equivalent to minimizing

) n X — W 2
- i i
X _Z< a; )

i=1

which may be more useful in practice, as we shall illustrate when we consider the method of
minimum chi-squared in Chapter 8.

We will conclude with a few brief remarks on the interpretation of maximum likeli-
hood estimators. Bayes’ theorem tells us that maximizing the likelihood does not neces-
sarily maximize the posterior probability of an event. This is only true if the prior
probabilities are equal or somehow ‘smooth’. Thus, ML estimators (and of course other
estimators) should always be interpreted in the light of prior knowledge. In Chapter 8
we shall see how such knowledge can formally be included in the estimation procedure.
However, because in general it is difficult to reduce prior knowledge to the required
form, the actual method of estimation is not always of practical use. An alternative
method is to form a likelihood function that is the product of the likelihood functions
for all previous related experiments and use this function to make a new estimate of
the parameter.

3A brief discussion of optimizing non-linear functions is given in Appendix B.
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7.4. MINIMUM VARIANCE

The requirement that an estimator has minimum variance can also, in principle, be used as
a criterion for parameter estimation and this is illustrated below.

7.4.1. Parameter Estimation

Consider the problem of estimating the population parameter u, where samples are drawn
from n populations, each with the same mean u but with different variances. The estimate
will be obtained by combining the sample means X; and the corresponding sample variances.

Since ¥; is an unbiased estimate of u, we have seen in Example 5.3 that the quantity

n
T= Zaifi, (7.24a)
i=1
with

n
Z a; =1, (7.24b)
i=1
is also an unbiased estimate, regardless of the values of the coefficients a;, so the problem is

one of selecting a suitable set of 4;. This will be done by choosing the set 4; such that X has
minimum variance. Thus we seek to minimize

n
var (X) = var < Z a,x,-)
i=1

=
=

subject to the constraint (7.24b). To do this we use the method of Lagrange multipliers.*
If we introduce a multiplier 2, then the variational function is

n n
L= Zaizalz+/\<2ai— 1).
i=1 i=1

and
dL 5
0_611':0:21110-1' +A
Thus a; = -1/ 20‘17-, and since the sum of the g; is unity,
-1
n
A==-2 Z(l/ajz)
=1

*Readers unfamiliar with this technique are referred to Appendix A.
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Hence

giving
n

(1/01«2)]_ and Var(x):{Z(l/a]Z)] .

j=1

=|
| —— |
I\ =
MA
—
Red!
\

Q
=~
S—

—_ 1
| — |
N 2

—_

In this example, the minimum variance estimator is the weighted mean, identical to the
estimator obtained using the maximum likelihood method (cf. Example 7.2), where the popu-
lation distribution was assumed to be normal. For other population densities, the results of the
two methods will differ.

7.4.2. Minimum Variance Bound

In many cases it is not possible to find the variance of an estimator analytically (i.e., exactly)
and even to do so numerically, for example by using the Monte Carlo method, involves a great
deal of computation. In this situation, a very useful result that puts a lower limit on the vari-
ance may be used. This has various names, such as the Cramér—Rao, or Fréchet, inequality, or
simply the minimum variance bound, and is true in general and not just for ML estimators.

Consider the ML estimator § of a parameter # that is a function of the sample
X = X1,X2, ..., Xy, with a joint pdf given by (7.1). The expectation value of 0 is

E[f] = / OL(x; 0)dx. (7.25)
Differentiating with respect to 6, gives

dE[d] _ /adL(x; 04,

v dlch( 0) dInL(6) (726
~dIn L(x; . _ - n
:/0TL(X,0)dx_E[07d0 }
However in general,
E[6] = 6 + b(0), (7.27)

where b is the bias. Differentiating (7.27) and suppressing the dependence of L on x give

db(6)  _[.dInL(6)
1+da_15{0d0 } (7.28)

The right-hand side of (7.28) may be evaluated by firstly differentiating the normalization
condition

/L(x,' f)dx =1
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to give

dL(f) .,  [dInL(0) _ [dInL(x;0)]

Multiplying (7.28) by E[f] and subtracting the result from (7.27) give

E {[9 %ﬁ(ﬁ)} — E[AE [%5(0)} =E Ka - E[é]) %ﬁ(ﬁ)} =1+ %(;). (7.30)

The second step is to use a form of the so-called Schwarz inequality, which for two random
variables x and v, such that x> and y? have finite expectation values, takes the form®

{Elxy]}*< EP)E[]. (7.31)
Applying this to (7.30) gives
db(0)\? . o1 [/dInL(6))?
<1 +57 ) < E[(0 - E[B) }EKda . (7.32)
The first factor on the right-hand side is var(f) = o(). To evaluate the second factor,
we have
dInL(O\*]  .[(df(x; 0)/d6\*] _

where the quantity I() is called the information of the sample with respect to 6, or simply the
information. It may also be written in the form (cf (7.19))

d?1In L(0)}
1(0) =E| ——————|.
0 - -0
So, finally, for a single parameter # having an estimator § with a bias b, the bound is
. . db\? Emr)
_ 2

It is worth noting that in the derivation no assumption has been made about the estimator. If
the equality holds in (7.34), the estimator is efficient.

5The result (7.31) may be proved as follows. For any value A, E[(Ax + y)z] = PE[x?] + 2AE[xy] + E[y?] > 0
and the solutions for A in the case of the equality are

= {5 (59}

So the inequality holds only if {E [xy]}2 < E[x*E[y?].
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There remains the question of what conditions are necessary for the minimum variance
bound to be attained, that is, for the equality in (7.31) to hold. This is valid if (Ax +y) =0,
because only then is E[(Ax +1)?] = 0 for all values of A, x, and y. Applying this to (7.31)
with x = 6 — E[f] and y = d In L(6)/d# gives

dinL®) . . .
= = Ab)6 - E[)), (7.35)

where A(9) does not depend on the sample x1, X, ..., x,,. Finally, integrating (7.35) gives the
condition

In L(6) = B(6)8 + C() + D, (7.36)

where B and C are functions of §, and D is independent of §. Thus an estimator 6 will have
a variance that satisfies the minimum bound if the associated likelihood function has the
structure (7.36). The actual value of the minimum variance bound may be found by using
(7.34) in (7.32). For an unbiased estimator, this gives

() = : -

AW)E|(0—EB)?|  [A@Fe0)

and so

a2(0) = |A®0)| . (7.37)

EXAMPLE 7.6

Find the ML estimator for the parameter p of the binomial distribution and show that it is an unbiased
minimum variance estimator.
The binomial probability is given by equation (4.34) as

fepm = (3 -

and so

Then, taking logarithms,

n

InL(p) = {r,»lnp—i—(n—rf)ln(l—p)-i- ln(Z)}

i=1
and

dinL(p) h n-—h

dpp 1-p

7
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where

Setting d In L(p)/dp = 0 shows that p =h/n =7 is an unbiased estimator for the parameter p.
Moreover, using p = ¥ we can write In L(p) as

InL(p) = np[Inp — In(1 = p)] + 7 In(1 —p>+Z<f),
i=1 N !

which is of the form (7.36), so 7 is a minimum variance estimator for p. The value of the variance is
found by writing

dinL(p) h n—-h n{p-p)

d p 1-p pi-p)’
which is of the form (7.35), with A(p) = n/[(p(1 — p)], and so

() = A" (p) =p(1—p)/n.

PROBLEMS 7

7.1 Find the ML estimator for the parameter 7 (the lifetime) in the exponential density
f(t; 1) = e7/7 /7 and show that it is an unbiased estimator. Also find its variance.

7.2 Find the ML estimator 62 for the parameter ¢? in the normal population

fosm) = e 35 ]

for samples of size n. Is the estimator unbiased?

7.3 Find the ML estimator for the parameter A of the Poisson distribution (see equation (4.47))
and show that it is an unbiased minimum variance estimator.

7.4 Find equations for the ML estimators of the constants « and § in the Weibull distribution
of Section 4.4.

7.5 Find the ML estimator for the parameter k for a sample of size # from a population having
a density function

o) = {a(k+2)3xk 0<x<1

0 otherwise

where a is a constant.
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7.6 A data set is subject to two independent scans. In the first scan, 17 events of a given type x
are identified and in the second, n; events of the same type are found. If there are 71
events in common in the two scans, what is the efficiency E; of the first scan and what is
its standard deviation? Estimate the total number of events of type x.

7.7 A set of n independent measurements E;(i = 1, 2, ..., n) is made of the energy of
a quantum system in the vicinity of an excited state of energy Eg and width I" described
by the Breit—Wigner density of Section 4.5. If |E; — Ey| < T, show that the mean energy E
is the ML estimator of Ej.

7.8 Find the unbiased minimum variance bound (MVB) for the parameter ¢ in the
distribution

Note the integral:



This page intentionally left blank



CHAPTER

8

Parameter Estimation II: Least-Squares

and Other Methods

OUTLINE

8.1 Unconstrained Linear Least Squares 143 8.2 Linear Least Squares with

8.1.1 General Solution for the Constraints 159
8.12 gﬁ:g::eotz”che Parameter 19 8.3 Nonlinear Least Squares 162

Estimates 149 8.4 Other Methods 163
8.1.3 Quality of the Fit 151 8.4.1 Minimum Chi-Square 163
8.1.4 Orthogonal Polynomials 152 8.4.2 Method of Moments 165
8.1.5 Fitting a Straight Line 154 8.4.3 Bayes’ Estimators 167
8.1.6 Combining Experiments 158

The method of least squares is an application of minimum variance estimators, which
were introduced in Section 7.4, to the multivariate problem and is widely used in situations
where a functional form is known (or assumed) to exist between the observed quantities and
the parameters to be estimated. This may be dictated by the requirements of a theoretical
model of the data, or may be chosen arbitrarily to provide a convenient interpolation formula
for use in other situations. We will firstly consider the technique for the situation where it is
most used; where the data depend linearly on the parameters to be estimated. In this form the
least-squares method is frequently used in curve-fitting problems.

8.1. UNCONSTRAINED LINEAR LEAST SQUARES

_ Initially the method will be formulated as a general procedure for finding estimators
0;(i =1, 2, ..., p) of parameters 0;(i = 1, 2, ..., p) which minimize the function

Statistics for Physical Sciences: An Introduction 143 Copyright © 2012 Elsevier Inc. All rights reserved.
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n n
S=>wi—-w)?=>.1 ®.1)
i=1 i=1
where
i = f(x1i, X2i, <oy Xgis 01, O, ..y ), (8.2)

with x5, x9;, ..., Xx; being the ith set of observations on (k + 1) variables, of which only y; is
random. Relation (8.2) is called the equation of the regression curve of best fit, or simply the best-
fit curve. The word ‘regression’ comes from an early investigation that showed that tall fathers
tended to have tall sons, although not on average as tall as themselves — referred to as
‘regression to the norm’” — and some authors prefer that regression is used to describe situ-
ations like this one where only qualitative statements can be made about the relationship
between two variables.

We shall consider firstly the general case where the observations are correlated and have
different ‘weights’ that are proportional to their experimental errors.' Later we will look at
simpler cases, which follow easily from the general situation. Suppose we make observations
of a quantity y that is a function f(x; 61, 2, ..., ) of one variable x and p parameters
0;(i =1, 2, ..., p). Note that x is not a random variable and f is not a density function. The
observations y; are made at points x; and are subject to experimental errors ¢;. If the n obser-
vations y; depend linearly on the p parameters then the observational equations may be
written as

P
yi = Zﬂkq’)k(xi) +e,i=1,2,...,n (8.3)
k=1

where ¢, (x) are any linearly independent functions of x. The word ‘linear” here refers to the
coefficients 6y, that is, they contain no powers, square roots, trigonometric functions, etc.
Many situations that at first sight look nonlinear can be transformed so that the linear
least-squares method may be used. For example, by taking logarithms of the equation
y = ae’™*, we get Iny = Ina + Ax, which is a linear relationship between Iny and x (see
Example 8.1). On the other hand, the fitting functions ¢;(x) can be nonlinear provided

they only depend on the variables x;. In matrix notation® (8.3) may be written as
Y =®0+E, (8.4)

where Yand E are (n x 1) column vectors, ® is a (p x 1) column vector, and ® is the (n x p)
matrix (known as the design matrix):

d1(x1)  da(x1) - Pp(x1)
$1(x2)  da(x2) - Pp(x2)

bin) balm) o Byln)

!The least-squares method can also be formulated when both x and y have errors, but is more complicated.
As it is not the usual situation met in practice, it will not be discussed here.

%A brief review of matrix algebra is given in Appendix A, Section A.1.
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8.1.1. General Solution for the Parameters

The problem is to obtain estimates 6 for the parameters. For n = p a unique solution
exists and is obtainable directly from (8.4) by a simple matrix inversion, but for the more
practical case where 1 > p the system of equations is over-determined. In this situation, no
general unique solution exists, and so what we seek is a ‘best average solution’ in a sense
that will be discussed later. Thus we seek to approximate the experimental points y; by
a series of degree p, i.e.

p
fi = f(xi; 01,02, ..., 0y) = > Opie(x). 8.5)
k=1

Since the experimental errors are assumed to be random we would expect them to have
a joint distribution with zero mean, i.e.,

EY =Y = ¢ 0, (8.6)
and an associated variance matrix
0] 012 O1n
2
o g5 o
Vi = a0 1, 8.7)
Opnl  On2 0%
where
o7 = Elef] = var(y,),
and

ojj = oji = Eleigj] = cov(y;, yy).

Note that we have only assumed that the population distribution of the errors has a finite
second moment. In particular, it is not necessary to assume that the distribution is normal.
However, if the errors are normally distributed, as is often the case, then the least-squares
method gives the same results as the maximum likelihood method.

The quantities r; of (8.1), called the residuals, are now replaced by

. p
n=yi—fi = yi— Y Ocdr(xi), 8.8)
k=1
and we will minimize the weighted sum

n n
S=> > (v =R'VIR, 8.9)

i=1j=1

where R is an (n x 1) column vector of residuals.
To minimize S with respect to ®, we set 3S/0® = 0, giving the solution

0= (@' v'ie) 'a'vly, (8.10)
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or, in nonmatrix notation,

where

(8.11)

(8.12)

These are the so-called normal equations for the parameters. Note that to find the estimators for
the parameters only requires knowledge of the relative errors on the observations, because
any scale factor in V would cancel in (8.10). However, this is not true for the variances of

the parameters, as we shall see in Section 8.1.2 later.

EXAMPLE 8.1

The table below shows the values of data y; (i = 1, 2, ... ,7) with uncorrelated errors o; taken at the
points x;. Use the general formulation of the least-squares method to find estimators for the parameters a and
bin afit to the data of the form y = aexp(bx) and calculate the predictions for ij;. Plot the data and the best-fit

line.

i 1 2 3 4 5 6 7
X; 1 2 3 4 5 6 7
Y; 5 8 16 30 38 70
o; 2 2 3 3 4 5 5

By taking logarithms of the fitting function, the problem can be converted to the linear form
y =d +Vx, wherey =1Iny, 4 =Ina, V' = band x' = x. The errors on y follow from (5.45)

for the propagation of errors, that is

dlny o
0'/ = g = —.
dy y

A new table can then be constructed as follows:

i 1 2 3 4 5 6 7
X! 1 2 3 4 5 6 7

v, 1.386 1.609 2.079 2.773 3.401 3.638 4.248
7} 0.500 0.400 0.375 0.188 0.133 0.105 0.071

Using the notation above, the various matrices needed for the primed quantities are

(I),T_lllllll
“\1 2 3 4567
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YT = (1.386 1.609 2079 2.773 3.401 3.638 4.248),

and
250.00 0 0 0 0 0 0
0 160.00 0 0 0 0 0
0 0 140.63 0 0 0 0
V' =107 0 0 0 35.34 0 0 0
0 0 0 0 17.69 0 0
0 0 0 0 0 11.03 0
0 0 0 0 0 0 5.05

These can be used to calculate the matrices (®'7V'~'®') ! and (®7V'~1Y’) and hence © from (8.11),
where §; = & = Indand f, = b’ = b. The result isa = 2.101 and b = 0.498. From these we can
calculate the fitted values from ij; = a4 exp(bx;) and they are given below:

i 1 2 3 4 5 6 7
f/i 346 5.69 937 1542 2338 41.78 68.76.

A plot of the data and the fitted function is shown in Fig. 8.1.

60 E

y 40 - -

20 + E

FIGURE 8.1 Best fit to the data using y = 2.101exp(0.498x).

In (8.9) the sums are over all the data points, but the least-squares method can also be
applied to binned data. In this case we will assume that the fitting function is a probability
density, and for simplicity is a function of a single parameter ¢ to be estimated. Using the nota-
tion in the analogous discussion in Section 7.1 about fitting binned data using the maximum
likelihood method, we assume there are N observations of a random variable x independently
distributed with a density function f(x;0), and divided between m bins. If the observed number
of entries in the jth bin is o;, then the predicted (expected) number of entries for that bin is

Xmax
X

¢j(6) = Elo] = N x": f(x; 0)dx = Np;(6), (8.13)

]
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where ™" and ™ define the bin limits and pj(0) is the probability of having an entry in

the jth bin. Then, by analogy with (8.9), the least-squares estimators are found by numerically
minimizing the quantity

n Jo; — ¢(0)]
— ] ]
DI (8.14)
j=1 ]
where o2 are the variances on the observed number of entries in the jth bin. If the mean

number of entries in each bin is small compared to N, the entries in each bin are defined by

the Poisson distribution, for which the variance is equal to the mean, 0]2 = ¢;, so in this case

szz[ Z NNp’ ) (8.15)

j=1 j=

Sometimes, for reasons of computational simplicity, the variance of the number of entries in
a bin is replaced by the number of entries actually observed o;, rather than the predicted
number ¢j, SO that S becomes

m[,i m
:201 Z
]=

but this is only valid if the number of entries in each bin is large; if for example any of the o;
were zero, clearly S is undefined.

The estimates 6 from (8.11) have been obtained by minimizing the sum of the residuals,
and although this has an intrinsic geometrical appeal, it still might be considered rather arbi-
trary. However, the importance of least-squares estimates stems from their minimum vari-
ance properties, which are summarized by the statement that the least-squares estimates
0 of the parameters f; minimize the variance of any linear combination of the parameters.
To prove this, consider the general sum

Np]

(8.16)

L =C'o, (8.17)

where Cis a (p x 1) vector of known constant coefficients. Let G be any (n x 1) vector such
that

cl = GTo. (8.18)

The problem of minimizing the variance of L is now equivalent to minimizing the variance of
GTY subject to the constraint (8.18). To do this, we use the method of Lagrange multipliers, as
used in Section 7.4.1 when discussing the maximum likelihood method. Since G is a constant
vector,

var(GTY) = Gl (varY) G = GTVG,

which is easily proved from the definition of the variance matrix, and we can construct a vari-
ational function

F=G'VG-A®'G-0Q), (8.19)
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where A is a (p x 1) vector of Lagrange multipliers. Setting dF = 0 gives
G' = ATo"V ], (8.20)
and so
AT = GTe (@TV'®) . (8.21)
Eliminating AT between (8.20) and (8.21) gives
G' = G'e (@'v'ie) laTv (8.22)
If we now multiply (8.22) on the right by Y and use (8.10), we have
G'Y = (GT®)® = CTO. (8.23)

Thus we have shown that the value of ® which minimizes the variance of any linear combi-
nation of the parameters is the least-squares estimate, a result originally due to Gauss.

8.1.2. Errors on the Parameter Estimates

Having obtained the least-squares estimates 6, we can now consider their variances and
covariances. As mentioned above, this cannot be done with only knowledge of the relative
errors on the observations, but instead requires the absolute values of these quantities. It is
therefore convenient at this stage to allow for the possibility that the variance matrix may
only be determined up to a scale factor w by writing

V = ww_l, (8.24)
where W is the so-called weight matrix of the observations. In this case (8.9) becomes

_1
T w

S (Y- ®0) ' W(Y - #0). (8.25)

and the solution of the normal equations is

O = (®'We) 'd"WY. (8.26)

We have previously used the result that for any linear combination of y;, say PTY, with P
a constant vector

var(PTY) = PTvar(Y) P. (8.27)
Applying (8.27) to © as given by (8.26), we have
var(@) = (®"W®)' ®"W var(Y)Wd (@ 'Wd) !,
and using
var(Y) = V=w WL
gives

E = var(®) = w(®"Wd) . (8.28)
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This is the variance matrix of the parameters and is given by a quantity that appears in the
solution (8.26) for the parameters themselves. The matrix E is also called the error matrix, and
the errors on the parameters are

Al = &; = (Eq)V>

It is sometimes useful to know which linear combinations of parameter estimates have
zero covariances. Since E is a real, symmetric matrix, it can be diagonalized by a unitary
matrix U. This same matrix then transforms the parameter estimates into the required linear
combination.

Finally, if w is unknown, we need to find an estimate for it. This may be done by returning
to (8.25) and finding the expected value of the weighted sum of residuals S:

wE[S] = E[RTWR]. (8.29)
When ® = O, the right-hand side of (8.29) becomes
ERTW(Y - ® ®)] = E [RTWY|,

since
R'We6 = 0,
is equivalent to the statement of the normal equations. Furthermore,
RTWY = (Y - 07Ta)WY = (Y/WY) - (@' NO), (8.30)
where
N = &"Wo.

By using the normal equations once again, (8.30) may be reduced to
Y-Y)'WY-Y)) - (6 -0)'N®O -0),
where YU is defined in (8.6), and thus we have arrived at the result that
E[S] = ERTV™'R]
T . T . (8.31)
— E(Y-Y)'V(Y-Y) - (6 - ©)'M (6 - 0)),
where
M=wN"
The result (8.31) is the variance matrix of the parameters.
Consider the first term in (8.31). The quantity (Y —Y?) is a vector of random variables
distributed with mean zero and variance matrix V. Thus
E[(Y = YO)'V-I(Y = YO)] = E[Tr {(Y = Y))' V-1 (Y~ YO)}]
= Tr{E[(Y - Y)T(Y - Y)V']}
= Tr (VV'1) =g,
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where Tr denotes the trace of a matrix. Similarly, since M is the variance matrix of (:),
E(© - )M (6 - ©)] = p.
Thus, from (8.31) we have
ER'VIR] = n—p,

and so an unbiased estimate for w is

. RTWR
w = ,
n—p
and consequently an unbiased estimate for the variance matrix of ®is
RTWR RTV-IR
E = @we) ! == Z(@Tvie) ! (8.32)
n—p n—p

Equation (8.32) looks rather complicated, but RTWR can be calculated in a straightforward
way from

RTWR = (Y- ® ©)'W(Y - & ©),
using the measured and fitted values. In the common case where the values y; are random

variables normally distributed about f;, then RTV~IR is the chi-squared value for the fit
and (n — p) is the number of degrees of freedom . In this case (8.32) becomes

X2
E=2"(@'vie) (8.33)
ndf

EXAMPLE 8.2

Calculate the errors on the best-fit parameters in Example 8.1.
These follow immediately using the matrices calculated in Example 8.1. For the primed quan-
tities defined in Example 8.1, the error matrix is

E/ — ((I)/Tvlf'l(b/)fl _ 1072( 6.053 70959)

—-0.959 0.159

from which
a(a) = ag(a’) = 2.101 x v0.06053 = 0.517
and

a(b) = o(t') = V0.00159 = 0.040

8.1.3. Quality of the Fit

To examine how well the predictions of the least-squares method fit the data we have to
assume a distribution for the y;, and this will be taken to be normal about f;, with the errors on
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the observations used to define the weights of the data,i.e., w = 1, whichis the usual situation
in practice. In this case, we have seen above that the weighted sum of residuals S, of (8.9), is
distributed as x*> with n — p degrees of freedom. Thus for a fit of given order p, one can calculate
the probability P, that the expected value S, is smaller than the observed values S,. The order
of the fit is then increased until this probability reaches any desired level. To increase p
below the point where x?>~(n—p) would result in apparently better fits to the data.
However, to do so would ignore the fact that y; are random variables and as such contain
only a limited amount of information. The fit of Example 8.1 has a x? value of 2.72 for 5
degrees of freedom, which is acceptable because P[x2 25 < 2.72] is approximately 0.25.

What should one do if a satisfactory value of x“~(n —p) cannot be achieved using
a reasonable order p (for example if p is dictated by the model), that is, if 2> nge? Firstly,
one should examine the data to see whether there are isolated data points that contribute
substantially higher-than-average values to x2. If this is the case, then these points should
be carefully examined to see if there are any genuine reasons why they should be rejected,
but as emphasized in Section 5.4 this must be done honestly, avoiding any temptation to
‘massage the data’, and must be defensible. In the absence of such reasons, one may have
to conclude that the errors on the data have been underestimated and/or contain systematic
errors. In this situation, one possibility is to scale the experimental errors by choosing a value
of w so that x* ~ ng4¢. This will not change the values of the estimated parameters of the best fit,
but will increase their variances to better reflect the spread of the data. Conversely, if
Y2 < ngf, the errors should be examined to see whether they have been overestimated.

Another test that can be used to supplement the x? test is based on the F distribution of
Section 6.3. This procedure can test the significance of adding additional terms in expansion
(8.5), that is, to answer the question: is 0 different from zero? If S, and S, 1 denote the values
of S for fits of order p and p — 1, respectively, then from the addltlve property pf x2, the quan-
tity (Sp—1 — Sp) obeys a x? distribution with one degree of freedom, and which is distributed
independently of S, itself. Thus the statistic

_ Sp-1=5
Sp/(n—p)

obeys an F distribution with 1 and (n — p) degrees of freedom. From tables of the F distri-
bution we can now find the probability P that the observed value F, is greater than the
expected value F.. Thus if P, corresponds to F,(n — p) then we may assume 6, = 0 with
a probability P, of being correct It is still possible that even though 6, = 0, higher terms
are nonzero, but in this case the x? test would indicate that a satlsfactory fit had not yet
been achieved. These points will be discussed in more detail in Chapter 10, when we
discuss hypothesis testing.

8.1.4. Orthogonal Polynomials

The solutions for the parameters @ and their error matrix E both require the inversion of
the matrix (®'V~!®). In the discussion so far we have not specified the functions ¢;(x)
except that they form a linearly independent set. If simple powers of x are used for ¢;(x),
then the matrix is ill-conditioned for even quite moderate values of k, and the degree of
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ill-conditioning increases as k becomes larger. Ill-conditioning simply means that the large
differences in the size of the elements of the matrix to be inverted can lead to serious round-
ing errors in the inverted matrix, and these can lead to errors in O as calculated from (8.10). If
a power series, or similar form, is dictated by the requirements of a particular model, the
parameters of which are required to be estimated, then one can only hope to circumvent
the problem by a judicious choice of method to invert the matrix. Such techniques are to
be found in books on numerical methods. However, if all that is required is any form that
gives an adequate representation of the data then it would clearly be advantageous to choose
functions such that the matrix (®’V~!®) is diagonal. Such functions are called orthogonal
polynomials and their construction is briefly described here.

We will assume that the observations are uncorrelated (this is the usual situation met in
practice) and denote the diagonal elements of the weight matrix W = w V™! for the data
as W(xj) (j = 1,2, ...n). Then if we fit using polynomials ¥;(x) (k = 1,2, ...,p), the
matrix of the normal equations will be diagonal if

n
Z W(X]) "//r(x]) Vs (x]) =0, (8.34a)
j=1
for v # s. In this case, the least-squares estimate ® from (8.10) is
; 2i—1 Wy (x;)
k = 7
o1 Wi (x)

Avaluable feature of using orthogonal polynomials is seen if we calculate the weighted sum
of squared residuals at the minimum. From (8.9) this is, using p polynomials,

n p .
5, = 37w |- S s |

j=1

k=1,2 ..,p (8.35)

If we now perform a new fit using p + 1 polynomials, S, is reduced by

1 . n
— 0 Z; W ()W (%)),
ji=
and the first p coefficients f(k = 1, 2, ... ,p) are unchanged.

To construct the polynomials we will assume for convenience that the values of x are
normalized to lie in the interval (—1, 1), and since it is desirable that none of the y;(x) has
a large absolute value, we will arrange that the leading coefficient of y;(x) is 22, In this
case it can be shown that the polynomials satisfy the following recurrence relations, the deri-
vation of which may be found in many textbooks on numerical analysis:

Yi(x) = 1/2,
Yo (x) = (2x + B1)y4(x),

and forr > 2,

Vi (x) = (23( + 6r)¢r(x) + Y11 (x).
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To calculate the coefficients 6, and vy,, we apply the orthogonality condition to ¥, and ¥, 1,
that is,

> W) Ys(x)¥a(x)) = 0, s#r+1. (8.34b)
j=1

Then using the recurrence relations in (8.34b) and setting firsts = jand thens = j — 1 leads
immediately to the results

S Wpxwy (%))

b S Wiy

=12, .., (8.36a)

and

Y1 Wy (%)
S W) (%)

Y, g = r=273 .. (8.36b)

8.1.5. Fitting a Straight Line

Because the least-squares method has been formulated above for any linear functions
and allows for the data to have correlated errors, the resulting formulas look a little forbid-
ding, so it is instructive to derive explicit formulas for the simple case where the errors are
uncorrelated, the situation often met in practice, and are fitted by a linear form containing
just two parameters. It is worth re-emphasizing that ‘linear’ refers to the parameters and
that the fitting functions do not have to be linear, so even the two-parameter case can be
far from trivial and is widely used (see Example 8.1). To make things even simpler, we shall
assume that the fitting function is the straight line ¥ = a + bx. In this case, p = 2, with
61 =a, 0, =b, ¢1(x) =1, and ¢»(x) = x, and the variances of the data values will be
used to construct the weights, i.e., we will set the scale factor w = 1. It is then straightfor-
ward, if rather tedious, to show from the general equations that for data with uncorrelated
errors,

i =Y g - YT
2 X 25

(8.37a)

where the overbars as usual denote averages, but in this case taking account of the errors on
the measurements. For example,

>i_1Yilo? 1¢ .
=—=—— — — ) vy if the errors are all equal. (8.37b)
Z?:l 1/‘712 ”i; 1

The denominator is the total weight and acts as a normalization factor. Thus, denoting the
denominator in (8.37b) as N, (8.37a) for b written out in full is

b= N xi?/z‘/"i2 i xi/”zz > }/i/‘fl2
3 )
NYI 3/o? = (S0 /a7

]75

(8.38a)
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A similar expression can be derived for 4, but in practice, it is easier to calculate 4 from
i=7-bx (8.38b)

once b has been found. The final result y=a+ bx can be used to interpolate to points where
there are no measured data. In principle it can also be used to extrapolate to points outside
the region where measurements exist, but care should be taken if this done, because no data
have been used in these regions to constrain the parameters, and the results can rapidly
become unreliable as one moves away from the fitted region.

To find the variances and covariance for the fitted parameters for the simple case of
a straight-line fit we could again return to the general result (8.26). However it is simpler
to use the results for @ and b given in (8.37a). For example, b may be written as

LT -xy N1 (xi- %)
x2—X ; n(x2 — Ez)yl
Setting 0; = o for simplicity, and using the results in Section 5.4.1 for combining errors, gives
R n = 2 2
var(h) = Z[l <_>} . (3.40)
=L (=% n(x? —x°)

Finally, if the errors on the data are independent but unequal, we make substitutions analo-
gous to those in (8.37b), including setting

g2 g2
2o 2 Zzn:m, /021 _ " N (8.41)
Yi—11/0; >iz11/0;

Then, writing out the result for the variance in full gives

-1
var(h) = [Nsz/a — (Zx/a) ] . (8.42a)

i=1 i=1

In a similar way we can show that

29 -1
var(a sz/o [NZJ{Z/J - <Zx/a> ] , (8.42b)

i=1 i=1

and

i=1 i=1

-1
cov(b, i) = Zx]/a [NZ)Q/J - (le/a) ] , (8.42¢)

with a common factor appearing on the right-hand side of all three expressions.
To find the error on the fitted value of f we can use (8.5), leading to

p

(Af)> =varf(x) = > Y ge(x)Eudy(x (8.43)

k=11=1
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which could also have been obtained from (5.44). For the straight-line fit y = a + bx, this
reduces to

var(y) = var(a) + x> var(b) + 2x cov(b, a). (8.44)

It is essential that the covariance term is included in (8.44). Without it, the value of var (y)
could be seriously in error.

EXAMPLE 8.3

The table below shows the values of data y; (i = 1, 2, ... ,7) with uncorrelated errors o; taken at the
points x;. Use the specific formulas for a straight-line fit y = a + bx to find estimators for the parameters
a and b and their error matrix. Calculate the predictions for i; and plot the data and the best-fit line. What is
the predicted error at the point x = 1.5?

i 1 2 3 4 5 6 7
x; -3 -2 -1 0 1 2 3
y; 1 2 10 12
oi 1 1 1 1 2 2 2

Using the notations above,

7 7 7
N = > 1/o} = 475, Z o = —45, Y yi/a7 =160,

i=1 i=1

i=1
7 7
> xt/e} =175, (Zx1/0> = 20.25, Zx,yl/a = 115.
i=1

i=1

15

FIGURE 8.2 Least-squares fit to the data using y = 5.276 +2.014x.

Substituting these numbers into (8.38a) gives b = 2.014. Then from (8.38b) a is given by

i=y- bx = 5.276. To find the error matrix we substitute into equations (8.42) to find the variances
and the covariance. This gives
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var(b) = 0.2783, var(a) = 0.0755 and covar(b,i) = 0.0716,

and hence the error matrix is

E — 0.2783 0.0716
~ \0.0716 0.0755

From the values i and b we can calculate the values of Vi =a+ Bxi as:

i 1 2 3 4 5 6 7
y; —077 125 326 528 729 930 11.32

A plot of the data and the fitted function is shown in Fig. 8.2. To calculate the predicted error at the
pointx = 1.5, we use (8.44). This gives the variance as 0.9165 and hence the error on the fitted point
is 0.96.

Because in the foregoing discussion we have not in general assumed a specific distribu-
tion, the basic formulation given above (but not necessarily that involving the x* values of
the fit) can be generalized to the case where the observations have both random and system-
atic errors. To illustrate this in principle, we will consider the simple example of a straight-
line fit to data that have independent random errors o; and a systematic error w that is
common to all data points. We have shown in Section 5.4.1, equation (5.51), that in this
case the variance matrix of the observations y; has the form

2 2 i
2 4 =
Vi = {"1 o (8.45)

w? i#]

We now repeat the steps that led to (8.42a). Thus, setting ¢; = o, (8.40) becomes
var(h) = —— 2 Z Z — X) cov (i, ¥j),
n x i=1j=1

which using (8.45) is

n n n

- 1 _ _ _
Var(b) = m ;(x,- — x)20'2 +l z (xi - x)(x]' - x) (1)2 . (846)

From the definition of the mean, the second term in (8.46) is zero. So after relaxing the condi-
tion g; = o, (8.46) reduces to (8.40), or written in full to (8.42a), and hence var(b) is
unchanged. This is in accord with common sense, because if the systematic error is the
same for all data points, then they will all move in parallel and the slope of the fitted straight
line will not change. In a similar way, we can show that

var(d) = —— 2 Z Z — X x;)(x* — X x;j) cov (Y, Yj)-

i=1j=1
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Again, using (8.45), we see that the term in ¢> will reproduce the former result
(8.42b), but the term in w? in this case does not cancel. Thus, over all, the effect of
the systematic error in this simple case is to modify the error on the slope of the
best-fit line, with the random and systematic errors adding in quadrature to the vari-
ance of 4.

8.1.6. Combining Experiments

The least-squares results may be used in a simple way to combine the results of
several experiments measuring the same quantities. This was considered in Example
7.2 for the simple case of repeated measurements y;(i = 1, 2, ..., n) of a single quantity
y each having independent errors o;(i = 1,2, ..., n). The result was the so-called
weighted mean,

S 1vilo? . . 1
=—=—1  with var(y) = ——-
S 1/0? Sy

It also follows directly from the general solution (8.11) for the simple case where the fitted
function is a constant and V is a diagonal matrix. Thus (8.47) are the least-squares estimators.
Knowing this, we can easily generalize the result to the case where the measurements are not
independent, which would occur, for example if they were based in part on the same data set.
Then the expression for S of (8.9) becomes

7= (8.47)

n

S = 3 = NVl - ),

i,j=1

and we seek an estimator 1 for the true value 1, given a set of measurements ; of 1. As
usual, this is found by setting the derivative of S with respect to A equal to zero and
gives

n
A= Zw,»yi, (8.48a)
i=1
where the weights are now given by
-1
n n
wi =Y (Vi YVl (8.48b)
j=1 ki=1
with the variance of 1 given by
. n
Var(A) = Z w,Vljw] (8.48¢)

=1

Formulas (8.48) reduce to (8.47) if the errors are uncorrelated.
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EXAMPLE 8.4

Three measurements of a quantity A yield the results 3, 3.5, and 4 with a variance matrix

2 01
v=1[0 3 1].
1 1 4

Find the least-squares estimate for A and its variance.
From the variance matrix, we have

Lf(11 1 -3
A\ =1 1 7 =2
-3 -2 6

-1
3
19
V| =1
ki
|:k,ll } 16
Thus from (8.48b) the weights are
w; = 9/16, wp = 6/16, w3 = 1/16

and from (8.84a), A = 52/16 = 3.25. The variance is found from (8.48c) and is 19/16. Thus
J=33+11.

and so

Combining data from different experiments has to be done with care if it is to be meaning-
ful, because the various experiments may not be compatible, something we mentioned
briefly in Section 7.2. Thus a test, such as that based on the Student’s t distribution, or on
x?, should be used to establish compatibility. For example, the results in Example 8.4 yield
avalue x> = 0.2. Even if the data are compatible, averaging highly correlated data is difficult
because a small error in the covariance matrix can result in a large error in the estimated
value 4 and an incorrect estimate of its variance. Also, the relative weights of the observations
may not be what they might seem at first sight. For example, when counting the decay parti-
cles from a long-lived radioactive atom, assumed to be a Poisson process, one might be temp-
ted to assume that the errors were the square root of the number of counts. However this is
only true for the expected number of counts, which is a constant for a given time interval. So
in this case the weights of different counts are the same, although unknown.

The above discussion can be generalized to situations where we wish to combine data
from experiments that measure combinations of quantities 41, A2, etc. An example is given
in Problem 8.3.

8.2. LINEAR LEAST SQUARES WITH CONSTRAINTS

It sometimes happens in practice that one has some information that can be used to refine
the fit. As an example, we will generalize the discussion of Section 8.1 by considering the
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situation where the additional information takes the form of a set of linear constraint equations
on the parameters of the form

Clp 6].7 = Zl/
or, in matrix notation

cCO=27 (8.49)

where the rank of C is [. Thus we have to now minimize the sum of residuals S given by (8.9),
subject to the constraint (8.49). This problem can be solved if we introduce an (I x 1) vector of
Lagrange multipliers A. Then the variation function that we have to consider is

L = (RTV7'R) —2AT(CO-2Z),

and the minimum of S subject to (8.49) is found by setting the total differential dL = 0, which
gives

dL = 0 = 2[-YTV7'® + Ol (@"Vv~l®) — ATC] dO,
ie.
ATC = Ol(@'v'®e) — YTV 'e, (8.50)

where @, is the vector of estimates under the constraints.
Earlier we have seen that

Y'V1e) = 0T(@"V'®e), (8.51)

where @ is the estimate without the constraints, and using this relation in equation (8.50)
gives

ATC = (0. -0) @'V '®), (8.52)
If, as before, we set
M = w(®'V'id) = (@TWe), (8.53)
then
wATcM'CT = (0, - ®)'C = 2T - 0'C,
from which we obtain the result for AT:
wAT = (z" —eTchcm1c”) L. (8.54)
Substituting (8.54) into (8.52) and solving for o, gives
O — 0"+ @Z"-o'c"yecm'c)'em T, (8.55)

This is the solution for the least-squares estimate of ® under the constraints, and like the
unconstrained problem it only depends on the relative variances of the observations, because
any scale factor in V, and hence in M, cancels in (8.55).



8.2. LINEAR LEAST SQUARES WITH CONSTRAINTS 161

To find the variance matrix for the estimates @, does require knowledge of the full vari-
ance matrix of the observations, so if we use a scale factor w as defined in (8.24), then from
(8.55),

var(®,) = w M —M'cl(cm~'c’)lem ], (8.56)

and we are again left with the problem of finding an estimate for w. This may be done in
a similar way to the unconstrained problem. Thus we consider the expected value of the
weighted sum of the residues under the constraints. This is

E[S] = E[RTVIR) + (O, — ®)T(@"V 1®)(0, — ©)], (8.57)

where R is the matrix of residuals without constraints as defined in (8.9). Using the same
technique previously used in Section 8.1.2, we can show that the second term has an expected
value of /, the rank of the constraint matrix C, and we have already shown that the expected
value of the first term is (n — p). So an unbiased estimate of w is

(RTWR) + (@, — ©)T (#"W®) (O, — ©)

] . (8.58)

’(}) =
The second term may be written in a form that is independent of @, by using (8.55) for
(O, — ®). This gives

(RTWR) + (Z — c®)T(cM~1cT) 1z - CO)
n—p+1I

) (8.59)

ﬁ):

Finally, the error matrix for the parameters O, is given by (8.56) with w given by (8.59). An
example using these results is given in Problem 8.4.

Analogous formulas to those above may be derived for situations where the constraints
are directly on the measurements themselves. As before, we will only consider the simple
case of a set of linear constraint equations of the form

Bn=2Z
analogous to (8.49). Then repeating the steps that led to (8.55) gives the constrained solution
Y' = Y + (2" —YTBT) (BVBT)'B"V, (8.60)
with an associated variance matrix
var(Y,) = var (Y') — VBT(BVBT) !BV, 8.61)

where for simplicity we have set w = 1. The use of (8.60) and (8.61) is illustrated in the
following example.

EXAMPLE 8.5

Independent measurements of the three angles y;(i = 1, 2, 3) of a triangle yield (in degrees) the values
89+ 1,33 + 2,and 64 + 2. Find the least-squares estimate for the angles and their variance matrix, subject to
the constraint that the sum of the angles is exactly 180 degrees.
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The various matrices we will need are

1 00
V=104 0],
0 0 4
B=(11 1), Y=(8 33 64) and Z = 180.
Then
BVB')™' =1/9 and BTV = (1 4 4)
and so from (8.60),
- 2
YT = (89 33 64)—3(1 4 4),
and hence
N 1 . 1 . 1
7 —885, 2 —30§ and i3 _615.

As expected, the ‘excess’ of 6 in the measured sum of the angles has been divided unequally, with
least being subtracted from y; because it is more precisely determined than the other angles. The
variance matrix follows from (8.61) and is

o 1 8 4 4
Var(YC):§ -4 20 0],
-4 0 20

so that i; = 883+09, i, = 303+15, andyz = 61.3+1.5. Imposing the constraint has
improved the precision of the angles, as expected.

The above discussion may be extended in several ways, for example to situations where
there are constraints on both the data and the parameters to be estimated from them, or
where the constraints are nonlinear. The general formalism is considerably more compli-
cated, and in the nonlinear case the solution can usually only be obtained by iteration.

8.3. NONLINEAR LEAST SQUARES

If the fitting functions F(®) are not linear in the parameters, then the weighted sum of
residuals to be minimized is

S = [Y - F(®)|"W[Y — F(®)], (8.62)

and differentiating S with respect to @ and setting the result to zero leads to a set of nonlinear
simultaneous equations and consequently present a difficult problem to be solved. In prac-
tice S is minimized directly by an iterative procedure, starting from some initial estimates for
®, which may be suggested by the theoretical model or in extreme situations may be little
more than educated guesses. We will illustrate how such a scheme might in principle be
applied.
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The method is based on trying to convert the nonlinear problem to a series of linear ones.
Let the initial estimate of ® be ®, Then if @ is close enough to the ‘true’ value ®, we may
expand the quantity [Y — F(®)] in a Taylor series about @ and keep only the first term. The
technique relies on the truncation of the series being valid. Thus,

— e 00, (8.63)

where 8 is a vector of small increments of ®@. The problem of calculating 8y is now reduced
to one of linear least squares, since both Ay and the design matrix

IF(®o)
@ =
7 e
are obtainable. Given a solution for 8y from the normal equations, a new approximation
F(®1) = F(@) + d)
may be calculated. This in turn will lead to a new design matrix

& — IF(®1)

0
and a new vector Aj and hence, via the normal equations, to a new incremental vector 8. This
linearization procedure may now be iterated until the changes in ® from one iteration to the
next one are very small. At the close of the iterations the variance matrix for the parameters is
again taken to be the inverse of the matrix of the normal equations.

As we have emphasized, the above procedure is only to illustrate a possible method of
finding the minimum of S. In practice several difficulties could occur, for example the initial
estimates ®@g could be such as to invalidate the truncation of the Taylor series at its first term.
In general such a method is not sure of converging to any value, let alone to values represent-
ing a true minimum of S.

The problem of minimizing S is an example of a more general class of problems that come
under the heading of ‘optimization of a function of several variables’ and in Appendix B
there is a brief review of the methods that have proved to be successful in practice.

8.4. OTHER METHODS

Estimation using maximum likelihood, as described in Chapter 7, is a very general tech-
nique and is widely used in practical work, as is the method of least-squares described above.
But several other methods are also in common use, and may be more suitable for certain
applications. Three of them are briefly described below.

8.4.1. Minimum Chi-Square

Consider the case in which all the values of a population fall into k mutually exclusive
categories ¢;(i = 1, 2, ..., k) and let p; denote the proportion of values falling into category
¢;, where
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k
Zpi = 1. (8.64)
i=1

Furthermore, in a random sample of n observations, let 0; and e; = np; denote the observed
and expected frequencies in category c;, where

Zoi = Zei = n. (8.65)

Now in Section 4.7 we considered the multinomial distribution with density function:

k k -1
f(r1, 12, .o, 1k_1) = n!Zp? <Zri!> , (8.66)

i=1 i=1
where 7; denotes the frequency of observations in the ith category in which the true propor-

tion of observations is p;(i = 1, 2, ..., k). We recall that the multinomial density function
gives exact probabilities for any set of observed frequencies

r =01, 1 = 02, ..., Tx = O. (867)

Each r; is distributed binomially and we have seen in Section 4.8 that the binomial distri-
bution tends rapidly to a Poisson distribution with both mean and variance equal to np;.
The Poisson distribution in turn tends to a normal distribution as np; increases. Conven-
tionally the Poisson distribution is considered approximately normal if the mean u > 9.
Thus if np; > 9, r; is approximately normally distributed with mean and variance np;.
By converting to standard measure, it follows that the statistic

w, = 1 (8.68)

1/2
(npi)"!
is approximately normally distributed with mean zero and unit variance. Furthermore,
k k 2 k 2
r; — np; 0; — ¢
T I 669
i=1 i—1 i -1 G

is distributed as x?> with (k — 1) degrees of freedom. Equation (8.69) can be used to test
whether data are consistent with a specific distribution. We will return to this use of chi-

squared in Chapter 11 when we discuss hypothesis testing.
A more common situation that arises in practice is where the generating density function
is not completely specified, but instead contains a number of unknown parameters. If the

observed frequencies are used to provide estimates of the p;, then the quantity analogous
to x2 of (8.69) is

k (0532
X/Z — ZM (8.70)

i1 i

There now arise two questions: (1) what is the best way of estimating p; and (2) what is the
distribution of x'2? There are clearly many different methods available to estimate the p;, but
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one which is widely used is to choose values which minimize x”. This may in general be
a difficult problem and is another example of the general class of optimization problems
mentioned above, and which are briefly discussed in Appendix B. It can be shown that for
a wide class of methods of estimating the p;, including that of minimum chi-square, X’ is
asymptotically distributed as x> with (k — 1 — ¢) degrees of freedom where c is the number
of independent parameters of the distribution used to estimate the p;.

In general, if x; is a sample of size n from a multinomial population with mean p(8) and vari-

ance matrix V(0), where 0 is to be estimated, then the value 0 (x1,X2, ..., X,) which minimizes

@ =[x~ w(O)] V() K- (0)]

i.e., the minimum y? estimate of @, is known to be consistent, asymptotically efficient, and
asymptotically normal distributed if x is distributed like the binomial, Poisson, or normal
distribution (and many others).

EXAMPLE 8.6

A method for generating uniformly distributed random integers in the range 0—9 has been devised and
tested by generating 1000 digits with results shown below.

Digit 0 1 2 3 4 5 6 7 8 9
Frequency 106 89 85 110 123 93 82 110 91 111

Do these results support the idea that the method of generation is suitable?

If the digits were uniformly distributed, then the expected frequencies would all be 100. So,
using (8.69), we find x?> = 16.86 and this is for 9 degrees of freedom. From Table C 4, Plx? > 16.9] for
9 degrees of freedom is 0.05. So although it cannot be ruled out, as this is a fairly low probability, it
raises some doubt that the method really is producing uniformly distributed integers. (Such
statements will be made more precise when hypothesis testing is discussed in Chapter 11.)

The minimum chi-squared method of estimation can be used in a range of other situations,
including those where the parameters are subject to constraints. An example is given in
Problem 8.5.

8.4.2. Method of Moments

In Section 3.2.3 we saw that two distributions with a common moment generating function
were equal. This provides a method for estimating the parameters of a distribution by esti-
mating the moments of the distribution.

Let f(x; 01, 62, ..., 6) be a wunivariate density function with p parameters
0;(i =1, 2, ..., p), and let the first p algebraic moments be

w(61,6, .., 6p) = / X f(x;01,0,, ..., 0y) dx, i=12..,p (8.71)
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Let x,, be a random sample of size n drawn from the density f. The first p sample algebraic

moments are given by
(8.72)

/ I~
=13

i=1

The estimators 6; of the parameters 6; are obtained from the solutions of the p equations
(8.73)

EXAMPLE 8.7

Use the method of moments to find the estimators for the mean and variance of a normal distribution.
We have previously seen (equation (4.6)) that for a normal distribution,

W= wh = ok

The sample moments are

1 1
I 2 : . /o 2 : 2
my = ﬁ Xi; my = E Xi.
i=1 i

Applying (8.73) gives
n

and

ie.
62 = 1[211:3(2 —nfz} = 1Z:(xi —f)2~
n

i=1 i=1
Thus, the estimators obtained by the method of moments are, for this example, the same as those

obtained by the maximum likelihood method.

In some applications where the population density function is not completely known it may

be advantageous to use particular linear combinations of moments. Consider, for example,
., 0y), which is unknown but may be expanded in the form

a density function f(x; 61,62, ..
P
f(x; 01,02, ..., 6,) = > 0;Pj(x), (8.74)
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where P;(x) is a set of orthogonal polynomials normalized such that
. ' ' - d)], i = ]
/ Pi(x)Pj(x)dx = { 0, %] (8.75)
The population moments deduced from (8.74) are
p .
W= / > 0;Pi(x) ¥/ dax. (8.76)
j=1
However, we may also consider the linear combination of moments given by
Q; = / > 6,Pi(x (8.77)
j=1
which by (8.75) is

Qi = 0id;. (8.78)
The equivalent sample moments are
ZP (x7), (8.79)
] =1
and so, by equating the two, we have
. 1 <&
0; = —» Pi(xj). 8.80
LT g, Z (%)) (8.80)

This method is useful, for example, for finding the angular distribution coefficients 4; in the
expansion of a differential cross-section in particle scattering problems. In this case, the
differential cross-section do/d cosf is

Teosd cosﬁ Z a;P; i(cosf), (8.81)

where P; are Legendre polynomials and the coefficients are

& = (2]+1)ZP

i=1

The modifications necessary to the above simple account in order to apply it to binned data are
similar to those that have been discussed for the maximum likelihood and least-squares methods,
and so we will not discus these further. Under quite general conditions, it can be shown that esti-
mators obtained by the method of moments are consistent, but not in general most efficient.

8.4.3. Bayes’ Estimators

In Section 2.3.2 we discussed the Bayesian interpretation of probability. There are several
advantages of the Bayesian viewpoint. Foremost of these is that it can incorporate prior
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information about the parameter to be estimated. However, we saw from Bayes’ theorem that
to maximize the posterior probability requires knowledge of prior probabilities, and in
general these are not known completely. Nevertheless, cases do occur where partial informa-
tion is available, and in these circumstances it would clearly be advantageous to include it in
the estimation procedure if possible. The objection to the Bayesian approach is that one has to
choose a prior pdf and as this is necessarily subjective, different choices can lead to different
outcomes. The Bayesian answer to this objection is that it is a fact of life that different people
will have different views about data and so it is entirely reasonable that different interpreta-
tions should exist. There is no definite answer to this question, but it can make it difficult to
compare different inferences drawn from comparable data sets.

We will consider the case where the prior information about the parameter is such that the
parameter itself can be formally regarded as a random variable with a prior density fyrior(f), as
in the maximum likelihood method. There has been much theoretical work done on the ques-
tion of how to choose a prior density, but all suggestions have problems. Empirically, the
form for fyrior(#) could be obtained, for example, by plotting all previous estimates of 6.
This will very often be found to be an approximately Gaussian form, and from the results
estimates of the mean and variance of the associated normal distribution could be made.
In these cases where both the usual variable and the parameter be regarded as random vari-
ables we will denote the corresponding pdf as fr(x; 6).

In Bayesian estimation, the emphasis is not on satisfying the requirements of ‘good” point
estimators as discussed in Section 5.1.2, but rather on minimizing ‘information loss’,
expressed through a so-called loss function 1(;0). Expressed loosely, the latter gives the
loss of information incurred by using the estimate § instead of the true value 6. In practice
it is difficult to know what form to assume for the loss function, but a simple, common sense,
form that suggests itself is

1(6; 0) = (6 — 6)>. (8.82)

(A loss function that is bounded by zero, as in (8.82), is an example of a more general function
found in decision theory, called a risk function.) The other quantities we need follow directly
from work of previous chapters. Thus

j(x1, x2, oo, X5 0) = f(x1, x2, ..., xn|0)fprior(0), (8.83)

is the joint density of x1, xp, ..., x, and 6 and

m(x1, Xp, ..., Xp) = / j(x1, x2, ..., Xy, 0)d0 (8.84)

is the marginal distribution of the x’s. From equation (3.23) it then follows that the conditional
distribution of # given x1, xp, ..., x, is
j(x1, x2, ..o, X5 0)
m(x1,X2, ..., Xn)
f(x1, x2, ..., xn|0)fprior(0)
m(x1, X2, .., Xn)

c(0x1, x2, ..., X) =

(8.85)

This is the posterior density fpost(f|x1, X2, ..., xu). We can now define a Bayes’ estimator.



8.4. OTHER METHODS 169

Let x1, x2, ..., X, be a random sample of size n drawn from a density fr(x; 6); and let
fpnor( ) be the prior density of 6 and f(x1, x2, ..., x,|0) be the conditional density of the set
x; given 6. Furthermore, let foost(6|x) be the poster1or density of ¢ given the set x;, and let
1(8,0) be the loss function. Then the Bayes” estimator of  is that function defined by

6 = d(x1, X2, ..., Xn)

which minimizes the quantity

B(6; x1, X3, ..., Xn) = / 18, 0) foost(0]x1, X2, ..., xu)d. (8.86)

The disadvantage in using (8.86) is the necessity of assuming a form for both fyrior () and
1(6; 6). The following example illustrates the use of the method.

EXAMPLE 8.8

Let x1,X2, ..., X, be an independent random sample of size n drawn from a normal density fr(x; 0, a) with
unknown mean 0 and unit variance a®> = 1. If  is assumed to be normally distributed with known mean p
and unit variance b> = 1, find the Bayes’ estimator for 6, using a loss function of the form 1(6,6) = (6 — 6)*.

From the above, setting a = 1,

fr(x; 6, a) = 2m) 2 exp { - %(x - 0)2],

and hence

1 1 n n
f(.X'], X2, ..., xn|6’) = (27r)71/2exp|:2<2x122021x1+7102>:|
i=

i=1

Also, setting b = 1,

forior () = (2m) "1 expl—(0 — )’ /2],
so that from (8.83)

. 1 1 <
jo, x2, oy X0, 0) = W“F[z(i"%*#Z)

and from (8.84)

exp [ - %(n +1)6% + (nx + ,u)ﬁ} ,

_ 1 r _ 1
m(xy, X2, ..., Xy) = (2m) (”+1>/2exp[77(2x,~2+p2)] / exp[ﬁ(nerﬂ) fi(n+1)02} dé

B 1 1 (n% + p)?
= P { H(EA i) 50

Then using these in (8.85) gives

n+1\Y2 (n+1) nx + ul*
prSt(6|x1/x2/ ey xn) = ( 27T ) eXp{— 2 |:6_ n+1— }'
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and, using 1(5’, 0) = (9 — 0)2 and this expression for fpost(0]x1, X2, ..., xn) in (8.86), we find, after
some algebra,

1/2 « R _ 2
B(6; x1, X2, ..., Xp) = <n2—;l) / (ﬂfﬂ)zexp{ — (n—;l)[einxﬁ-u} }d0

n+1

n+1 n+1 n+1)/)"°

Finally, to minimize B we set

0B .
—(6; x1, x0, ..., x5) = 0,
849( 1, X2 )
giving
é:,LH—nx’
n+1

which is the Bayes’ estimator for 6. It can be seen that @ is the weighted average of the sample mean ¥
and the prior mean u.

If we extend the case studied in Example 8.8 to the situation where the variances a and
b are not zero, then a useful general result is as follows, which is given without proof, but
may be obtained by repeating the step in Example 8.8. If ¥ is the mean of a random sample
of size n from a normal population with known variance a2, and the prior distribution of the
population mean is a normal distribution with mean u and variance b?, then the posterior
distribution of the population mean is also a normal distribution and the Bayes’ estimators
for the mean and variance are

a’u + nb*x
M1 = m (8.87a)
and
21,2
»  a‘h
A= (8.87b)

If the prior was uniform, the posterior density is also normal, although in this case with u; = x
and o2 = a?/n, which are the limits of (8.87) as n— . In fact for large samples, equations
(8.87) hold for an independent random sample of size n drawn form any distribution with
a finite variance. This is the Bayesian statement of the central limit theorem.

Under very general conditions it can be shown that Bayes’ estimators, independent of the
assumed prior distribution furior(f), are efficient, consistent, and a function of sufficient
estimators.

It is useful to consider the relation between Bayes’ estimators and those obtained from the
maximum likelihood method. Using Bayes’ theorem, the posterior pdf of (8.85) may be
written in terms of the likelihood (which is not a pdf) as

L(x| e)fprior (6)

oo 0% = TLC fon )00 689
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In the absence of any prior information, it is common to take fprior(ﬁ) to be a constant and in
this case the posterior pdf is proportional to the likelihood and the two methods are very
similar. However, a uniform prior has potential problems. First, if the parameter can take
on any values, forior(f) cannot be normalized, although in practice this is not usually a diffi-
culty because in the denominator it appears multiplied by the likelihood function. But
a second problem is that one could take the prior to be uniform in a function of # rather
than the parameter itself and this would lead to a different posterior pdf and hence a different
estimate. Thus Bayes’ estimators with a uniform prior do not have the useful invariance
property that ML estimators have. In practice, the distinction between different methods
of estimation lessens as the sample size increases (because of the central limit theorem)
and in particular Bayes” estimators depend less on the assume prior density.

PROBLEMS 8

8.1 Figure 8.3 shows some data fitted with polynomials of order 1, 2, and 3. Assuming the
data are normally distributed, the x2 values for the fits are 13.9, 12.0, and 5.1, respectively.
Comment on these results.

5 1 1 T 1 1 T 1
T e linear |
4 L e quadratic —
cubic i
y3r b
L |
L |

FIGURE 8.3 Data fitted with linear, quadratic, and cubic polynomials.

8.2 The table below shows the values of a quantity y, assumed to be normally distributed,
and their associated errors ¢, measured at six values of x.

i 1 2 3 4 5 6
x; 1 2 3 4 5 6
y; 25 3.0 6.0 9.0 10.5 10.5

o 1 1 1 1 1 1
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8.3

8.4

8.5

8.6

8.7

8.8

By successively fitting polynomials of increasing order, deduce the lowest order polyno-
mial that gives an acceptable fit to the data and justify your answer. Find the coefficients
of the polynomials corresponding to the best fit and their errors and plot the resulting
best-fit curve.

An experiment determines two parameters A; and A, and finds values ygl) = 1.0 and
yél) = —1.0 with a variance matrix
o _ ( 20 -10 i
v = (—1.0 15) 10
A second experiment finds a new value of 1, to be yéz) = —1.1 with a variance 1072. Find

the least-squares estimates for A; and A, and their associated error matrix.

Rework Problem 8.3, but now with the constraint A + A, = 0.

Measurements are made of the lengths x;(i = 1,2,3) of the sides of a right-angled
triangle and the values h;(i = 1,2,3) found. If these are assumed to be normally
distributed with equal variances a2, find the minimum chi-squared estimates for
x(i = 1,2,3).

Two determinations are made of the parameters of a straight line y = ax + b. The first is
a1 = 4, by = 12 and the second is 4, = 3, b, = 14. The associated variance matrices

are
1 -1 1 -1
V1 = (_1 2) and V2 = (_1 3>

Find the best estimate for a and b and the associated error matrix.

Let 1, 1, ..., t, be an independent random sample of size n drawn from a binomial
density fr(7; p, n) with unknown parameter p. If p is assumed to be uniformly distributed
in the interval (0,1), find the Bayes’ estimator for p, using a loss function of the form
I(p,p) = (p — p)*. Compare your solution with that obtained by using the maximum
likelihood method (Problem 7.7). Note the integral

nlm!

1
nq .M _
/0 (U =x)Tdx = o Sy

Use the method of moments to find an estimator for the parameter « in the two-
parameter distribution:

f(x; o, B) = aexp[—a(x—0)], «8>0, x>0

in terms of the first two sample moments.
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In Chapters 7 and 8, we discussed point estimation — the estimation of the value of
a parameter. In practice, point estimation alone is not enough. It is also necessary to supply
a statement about the error on the estimate. In those chapters, we did this by calculating the
variance on the estimator and taking its square root, the standard deviation, as a ‘standard
error’ to define error bars. In practice, because of the central limit theorem, most density func-
tions lead to a normal form for the sampling density of the estimate in the case of large
samples. In cases where this is not true, we could still use the standard deviation as a measure
of uncertainty, but in these situations it is more usual to consider a generalization called
interval estimation, based on the concept of a confidence interval, which is an interval con-
structed in such a way that a predetermined percentage of them will contain the true value
of the parameter. This chapter will describe these ideas and their application, including the
problematic case where an estimate leads to a value of a parameter that is close to its physical
boundary.

Statistics for Physical Sciences: An Introduction 1 73 Copyright © 2012 Elsevier Inc. All rights reserved.
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9.1. CONFIDENCE INTERVALS: BASIC IDEAS

We have already encountered the idea of a confidence interval in Chapter 1, although it
was not called that there. In Section 1.3.4, we noted that the distribution of the observations
on a random variable x for large samples often, indeed usually, had a density n(x) of approx-
imately normal form about the sample mean ¥ with variance ¢2. In that case, we could find

values
Xu
C :/ n(x)dx

XL

for any values x;, and x{;. The quantity C is called the confidence coefficient and is usually written
C = (1 —2a). (The reason for using the quantity (1 — 2«) will become clear later.) We also
refer to 100C% = 100(1 — 2«)% as the confidence level. The confidence coefficient corresponds
to arandom interval (x, xy7), called the confidence interval x;, < x < xy;, which depends only on
the observed data. For example, from tables of the normal density, we know that C = 0.683,
i.e., a confidence level of 68.3%, for a confidence interval 4 — ¢ < x < u + 0. In general, if the
confidence coefficient is C = (1 — 2«), then 100(1 — 2a)% of the corresponding confidence
intervals computed will include the true value of the parameter being estimated. Figure 9.1
shows an example of a confidence interval for a 90% confidence level of a normal distribution.
Note that, in this case, the shaded areas both contain %2(100 — 90)% = 5% of the area of the
distribution.

Confidence intervals are not uniquely defined by the value of the confidence level. In addi-
tion to the choice used in Fig. 9.1, where the probabilities above and below the interval are
equal, called a central interval, we could, for example, have chosen a symmetric interval about
the mean, so that (x;; — ) and (u — x1) were equal, or values of x;, and xy; that minimize
(xir — x1), although, in practice, the construction of confidence intervals that are shortest
for a given confidence coefficient is difficult, or may not even be possible. For symmetric
distributions like the normal distribution, all three choices produce the same confidence
intervals, but this is not true in general for asymmetric probability densities. The usual choice
is the central interval.

n(x)

5%

— Confidence interval <+——
u

FIGURE 9.1 Central confidence interval corresponding to a 90% confidence level for a normal distribution.
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Suppose we are interested in estimating a single parameter ¢ from an experiment that
consists of n observations of a random variable x drawn from a probability density f(x; 6).
The sample x1, xy, ..., x, is used to construct an estimator 9§x1, x2,..., Xn) for 6, for example,
by one of the methods discussed in earlier chapters. If ¢, is the value of the estimator
observed in the experiment, and &, is the estimate of its standard deviation, then the
measurement would be given as § = 6, + .. The interpretation of this is that if repeated esti-
mates, all based on n observations of the random variable x, are made, they will be distrib-
uted according to the same sampling distribution g(6; #) centered around the true value @
and with a true standard deviation o, that are estimated to be 6, and ,. For most practical
cases, g(0; 0) will be approximately normal for large samples. Our aim is to find intervals
about the estimator # such that we may make probabilistic statements concerning the prob-
ability of the true value 6 being within the intervals.

One method that is applicable in many cases is the following. One finds, if possible, a func-
tion of the sample data and the parameter to be estimated, say #, which has a distribution
independent of the parameter. Then a probability statement of the form

Plupy <u<up] =p

is constructed and converted into a probability statement about the parameter to be esti-
mated. It is not always possible to find such a function, and in these cases more general
methods (to be described in Section 9.2) must be used. For the present, we will illustrate
this method by an example.

EXAMPLE 9.1

A sample of size 100 is drawn from a population with unit variance, but unknown mean u. If i is
estimated from the sample to be fi, = 1.0, find a random interval for a confidence coefficient of 0.95.
The quantity

u = (l::/—?/—g) = 10(g, — u),

is, in general, normally distributed with mean zero and unit variance, and so has a density function
W2

f) = —=exp( -5 ).

which is independent of u. The probability that u lies between any two arbitrary values u; and u; is
thus

Pl < < ] = / " .

Then, from Table C.1, we can find values u1 = —u, = —1.96 such that
1.96

P[-1.96 < u < 1.96] — / f(t)dt = 0.95.
J—-1.96

Transforming back to the variable p, this becomes

Plite — 0.196 < p < fi +0.196] = 0.95,
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and since [ is estimated from the sample to be i, = 1.0, we have

P[0.804 < u < 1.196] = 0.95.

This is the required confidence interval. The interpretation of this is that if samples of size 100 were
repeatedly drawn from the population, and if random intervals were computed as above for each
sample, then 95% of those intervals would be expected to contain the true mean.

For obvious reasons, the intervals discussed above are called two-tailed confidence intervals.
One-tailed confidence intervals are also commonly used. In these cases, the confidence coeffi-
cients are defined by

Cy = Px<xy] = /xuf(x)dx

if one is only interested in the upper limit of the variable, or
Cr = Plx>xg) = / f(x)dx
XL

if one is only interested in its lower limit. It is worth emphasizing that a central interval cor-
responding to a confidence level C is not the same as a one-tailed limit corresponding to the
same value of C. For example, for a normal distribution, the upper limit of a 90% two-tailed
central confidence interval has 95% of the distribution below it and 5% above, whereas for
a one-tailed confidence interval, a 90% upper limit has 90% of the distribution below it
and 10% above.

EXAMPLE 9.2

Out of 1000 decays of an unstable particle, 9 are observed to be of type E. What can be said about the upper
limit for the probability of a decay of this type?

The Poisson distribution is applicable here and we have u = ¢? = 9. However, we also know that
for u > 9, the Poisson distribution is well approximated by a normal distribution. Thus, the quantity

= (x—w)/o = (x—9)/3,
is a standard normal variate. So, for example, from Table C.1,
Plu < 1.645] = 0.95,

and, hence, x < 13.9. Hence, the upper limit for the probability of this type of decay is P < 0.014 with
95% confidence.

The concept of interval estimation for a single parameter may be extended in a straightfor-
ward way to include simultaneous estimation of several parameters. Thus, a 100(1 — 2)%
confidence region is a region constructed from the sample such that, for repeatedly drawn
samples, 100(1 — 2«)% of the regions would be expected to contain the set of parameters
under estimation.
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It should be remarked immediately that confidence intervals and regions are essentially
arbitrary, because they depend on what function of the observations is chosen to be an esti-
mator. This is easily illustrated by reference to the normal distribution of Example 9.1. If we
use the sample mean as an estimator of the population mean, then for a confidence coefficient
of 0.95,

Plx——<u<x+—=| = 095. 9.1)

and the length of the interval is 2 x 1.965/+/n. However, we could also use any given single
observation to be an estimator, in which case, the confidence interval would be /1 times as
long. An important property of ML estimators is that, for large samples, they provide confi-
dence intervals and regions that, on average, are smaller than intervals and regions deter-
mined by any other method of estimation of the parameters.

9.2. CONFIDENCE INTERVALS: GENERAL METHOD

The method used in Section 9.1 requires the existence of functions of the sample and
parameters that are distributed independently of the parameters. This is its disadvantage,
for in many cases such functions do not exist. However, for these cases, there exists
a more general method that we now describe.

Let g(6; 0) be the sampling pdf of 6, the estimator for samples of size  drawn from a pop-
ulation density f(x; #) containing a parameter f. Figure 9.2 shows a plot of g(f; 6) as a function
of @ for a given value of the true parameter f. Also shown are two shaded regions that give the
values of @ for which

P[0 > ho(0)] = / g(6;0)d0 = 1—G(hy; 0) = « 9.2)
o (6)
and

. he(6)
P[0 < hg(6)] = / g(6;0)d0 = G(hg; 6) = B, ©9.3)

(6,6

FIGURE 9.2 The density function of g(#; §) for a given value of the true parameter 6.
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where G is the distribution function corresponding to the density g(0; 0). Thus, for a fixed
value of ¢, a 100(1 — & — 8)% confidence interval for 6 is

hg(6
Plho(6) < 6 < hg(0)] = / ! )g(é, 0)dd = 1—a—g. 9.4)
ha (8)
Equations (9.2) and (9.3) determine the functions f,(6) and hg(6). If the equations 6 = h,(6)
and 6 = hg(0) are plotted as a function of the true parameter 6, a diagram such as that shown
in Fig. 9.3 would result. The region between the two curves is called the confidence belt.
A vertical line through any value of 6, say 6, intersects h,(f) and hg(0) at the values
6 = ho(6) and 8 = hg(f), which determine the 100(1 — « — )% confidence limits. Thus,
(9.4) gives the probability for the estimator to be within the belt, regardless of the value of 0.
A horizontal line through some experimental value of § = 6,, corresponding to an esti-
mate based on a sample of size 1, cuts the curves at values 6‘,1(493) and ﬁﬁ(ée), where 6, and
05 are the values of the inverse functions /;'(#) and hy! (9), respectively. Since the
inequalities

S

> ho(f) and 6 < hg(6)
imply
0,>60 and 05 <90,
respectively, (9.2) and (9.3) become
Pl0o>6] =a and Plig<6] =g

or, equivalently

h, (6)

hy ()

=
=
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|
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|
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FIGURE 9.3 General method to construct a confidence interval.
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Thus, to construct a confidence interval for 6, we first calculate an estimate 06 from a sample
of size n. Then, we draw a horizontal line through f, to cut the curves at values 0, (f,) and
05(06) as shown in Fig. 9.3, so that, by construction, the required confidence limit is

P[0a(8e) <0< 05(8:)] =1—a—§. 9.5)

A confidence interval is often expressed by asymmetrlc error bars in the same way as the
use of a standard deviation. Thus, if we set a = 04(0,) and b = 0(8,), then the result of the
measurement would be written 6 = 6, 4 7, where ¢ = =0,—aand d = b—0,. If we are
only interested in one-sided confidence intervals, then 6, represents a lower limit on 6,
ie, Pla < 0] = 1— «, and, similarly, 0 represents an upper limit with P[0 < b] = 1 — 6.

To find the curves h,(0) and hg(6) may be a lengthy procedure. However, in some cases,
the values 4 and b may be obtained without knowing these curves. From (9.2) and (9.3),
a and b are solutions of the equations

a= / g(0, a)dd = 1 — G(0,; a), (9.6a)

and
ée A~ A ~
5= [ 50, 0)ab = (o), ©.65)

So, if these equations can be solved (possibly numerically), the confidence interval results
directly.

The general method given above can be extended to the case of confidence regions for the p
parameters of the population f(x; 61, 6>, ..., 0), i.e., that region R in the parameter space,
such that

P[91, by, ... 9p are contained in R]

/ /g 01,0, ..., 0,1,01,02,...,0)Hd0'

=1—-a-0 9.7)

This can be done assuming that the sampling distribution of the estimators is a multivariate
normal distribution with a given covariance matrix. This will not be pursued further here,
except to say that the confidence region for two variables is approximately an ellipse and,
for n variates, is an n-dimensional ellipsoid.

Finally, we note that the method cannot be used to obtain confidence regions for a subset r
of the p parameters in the density f(x; 61, 02, ..., 0)), except for the case of large samples. This
is discussed in Section 9.5 below.

9.3. NORMAL DISTRIBUTION

Because the normal distribution is very widely used in physical sciences, we will obtain
specific confidence intervals for its parameters.
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9.3.1. Confidence Intervals for the Mean

From (9.1), it is clear that a confidence interval for the mean u cannot be calculated unless
the variance ¢2 is known, and so we will initially assume that this is the case. We will also
assume, as usual, that the distribution of X, the sample mean, is approximately normal
with mean u and standard deviation o, i.e., its sampling distribution function is

_ 1 /7 1/% —u\?]
G(x; u, 0) :\/Q}_&/ exp[—i( - )]dx’.

Then a confidence interval [a, b] may be constructed if equations (9.6) can be solved. These
are

a=1-N(Xa,0)
and
B = N(x;b,0),

where N is the standardized form of the normal distribution function. The solutions for a and
b are

a=%-0oN1(1-a) (9.8a)
and

b=x+0oN1(1-5), (9.8b)
where N1 is the inverse function of N, i.e., the quantile of the standardized normal distribu-
tion function, and we have taken N~!(8) = —N~!(1 — ) for symmetry. The relationship

between the inverse function and the confidence level is illustrated in Fig. 9.4.

If we consider a central confidence interval so that « = 8 = v/2, a common choice for the
interval is to use values such that N"1(1 — y/2) = 1,2,... Similarly, for a one-sided interval
we could choose N1 (1—-a) = 1,2, ... Tables of the inverse function N 1 are published, but

0.6 T T T T T T T T T T T T T T

N/ N'd-y/2) i N (1-a)

0.4 -

n(x)

0.2

(a) (b)

FIGURE 9.4 The standardized normal density n(x) and the relationship between the inverse function N~! and
the confidence level for (a) a two-tailed central confidence level and (b) a one-tailed confidence level.
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TABLE 9.1(a) Values of the confidence level for different values of the inverse of the
standardized normal distribution N=!: (A) for a central confidence interval
with confidence level (1 — 7) (see Fig. 9.4(a)); and (B) a one-tailed
confidence interval with confidence level (1 — «)(see Fig. 9.4(b))

(A) Central two-tailed (B) One-tailed
N=1(1—~v/2) 1—y N=l(1—a) 11—«
1 0.6827 1 0.8413
2 0.9544 2 0.9772
3 0.9973 3 0.9987

in practice only a few values are commonly used. The resulting confidence levels for
these values are shown in Table 9.1(a). The conventional 68.3% central confidence
interval has @ = 8 = v/2 with N71(1—-+v/2) =1 and corresponds to ‘one ¢ errors
bars. Alternatively, we could choose a convenient number for the confidence level itself
and find the corresponding values of N~!. Again, the commonly used values are shown
in Table 9.1(b).

If 62 is not known, then, for large samples, we could use an estimate G2 for this quantity
without significant loss of precision, but, for small samples, this procedure is not satisfactory.
The solution is to use the quantity

n

~ “1)2
X—pu — 1 =
t= i (X~ ) [WZ@ x)zl , ©.9)

i=1
which we have seen in Section 6.2 has a Student’s ¢ distribution with (1 — 1) degrees of
freedom, and only involves u. Thus, we can find a number ¢, such that

ta
Pl—ty <t <ty = / f(En—1)dt = (1 —2a). (9.10)
—t

As in Example 9.1, we may now transform the inequality in (9.10) to give

PE—Ty <u<T+Ts = (1-2a), 9.11)

TABLE 9.1(b) Values of the inverse of the standardized normal distribution N~ for different
values of the confidence level: (A) for a central confidence interval and
N-1 (1 — v/2) (see Fig. 9.4(a)); and (B) a one-tailed confidence interval with
N-1 (1 — «) (see Fig. 9.4(b))

(A) Central two-tailed (B) One-tailed
1—vy N=1(1-vy/2) 1—a N=1(1-a)
0.90 1.645 0.90 1.282
0.95 1.960 0.95 1.645

0.99 2.576 0.99 2.326
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where

1 n 1/2
Ta =ty [mZ(X’l — f)2‘| .

i=1

The width of the interval is then 2T,,. The number ¢, is called the 100a% level of t, and gives the
point that cuts off 100a% of the area under the curve f(f) on the upper tail.

EXAMPLE 9.3

Find: (a) a 95% central confidence interval for the mean of a normal distribution with unknown variance,
given that the sample mean and sample variance are X = 5 and s> = 6, respectively, using a sample size of
60; (b) an exact 95% central confidence interval using the Student’s t distribution for the same statistics.
Repeat the calculations for a sample size of 8 and comment on your results.

(a) For n = 60, we can use the normal approximation and the interval [a, b] is then given by (9.8).
Using Table 9.1(b), a 95% confidence interval is

1.96 x s 1.96 x s
X — X = [4. .62
Kx v )'(x+ Vvn )} [4.38,5.62]
and has a length 1.24.

(b) For an exact confidence level, we use the t distribution and (9.11). Then, using Table C.4,
a 95% confidence interval is

Ki - ﬂﬁxs) (E + 1'6;; S)} — 447,553

which has a length 1.06, i.e., a reduction of 15%. Repeating the calculation using a sample size of 8,
the confidence intervals are [3.30, 6.70], with a length 4.40, in the normal approximation, and [3.55,
6.45], with a length 2.90, using the exact form from the f distribution, a reduction of 34%. These
differences are greater for n = 8 than for n = 60, because in the former, the small sample size

means that the normal approximation is poor.

9.3.2. Confidence Intervals for the Variance

To find confidence intervals for the variance, we use the x? distribution. We know that the
quantity

1L _
=5 (6% 9.12)
i=1

has a x? distribution with (n — 1) degrees of freedom, and so we can use it to find numbers x?
and X% such that

2

X2
P <x*<x3] = /2 fx%n—1)dx* = 1-2a,
X1
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or, equivalently,

1 & 1 ¢

P [—ZZ(x,- 7)< <= (i —-%)? =1-2a (9.13)
X2i=1 XTi=1

Since the x? distribution is not symmetric, the shortest confidence interval cannot be simply

obtained for a given «. However, provided the number of degrees of freedom is not too small,

a good approximation is to choose x? and x3 such that 100a% of the area of f(x?) is cut off
from each tail, i.e., such that

/ fokn—1)dx% =1-q
3

and

/ fOFn—1)dx® = a
%

Such numbers can easily be obtained from tables of the x? distribution function.

EXAMPLE 9.4

The following random sample was drawn from a normal distribution with variance o?:

10 11 13 13 12 13 10 14 12 12

Find an approximate 99% central confidence interval for o
This is found by using (9.13). First, we find the sample mean ¥ = 12, and hence

10

> (xi—x%) = 16.

i=1

For an approximate central confidence interval, we need to find values of x? and x3 such that equal
areas are cut off from the upper and lower tails of the chi-squared distribution function. So, for
a 99% confidence level,

=)

X% 2 2 2 2 X% 2 2
/ f(x?,n—1)dx?> = 0.005 and / f(x*,n — 1)dx :17/ f(x%n—1)dx®> = 0.005,

X
where f(x?,n — 1) is the chi-squared distribution for n — 1 degrees of freedom. Using Table C.4,
for n = 10, gives x% = 1.73 and X% = 23.6. Hence, from (9.13) the interval is [0.68, 9.25], with
width 8.57.

9.3.3. Confidence Regions for the Mean and Variance

In constructing a confidence region for the mean and variance simultaneously, we cannot
use the region bounded by the limits of the confidence intervals obtained separately for u and
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d (a rectangle in the (u, a?) plane), because the quantities ¢ of (9.9) and u are not indepen-
dently distributed, and hence the joint probability that the two intervals contain the true
parameter values is not equal to the product of the separate probabilities. However, the distri-
butions of ¥ and Y (x; — X)? are independent and may be used to construct the required confi-
dence region. Thus, for a 100(1 — 2«a)% confidence region, we may find numbers a;(i = 1,4)
such that

P{— a < (j/\/%) < uz} = (1-2a)'7? (9.14a)
and
_\2
Pl—a; < (2:(";72X)> gM] — (1-2a)'2. (9.14b)

The joint probability is then 100(1 — 2«) by virtue of the independence of the variables.
The region defined by (9.14) will not, in general, be the smallest possible, but will not
differ much from the minimum (which is roughly elliptical) unless the sample size is
very small.

9.4. POISSON DISTRIBUTION

Another important distribution commonly met in physical science is the Poisson that we
discussed in Section 4.8. Recall that the probability of observing k events is given by the
Poisson density (4.47),

/\k
fll62) = 15exp(=2), A>0, k=0,1,2,... 9.15)

and 4 is the mean of the distribution, i.e., A = E[k]. The aim is to a construct a confidence
interval for a single measurement e = k.. For values of k, > 9, we can use the normal
approximation to the Poisson, as we did in Example 9.2, but for smaller values, we
must use the exact form of the distribution. The general technique given in Section 9.2
is not directly applicable because, for a discrete parameter, the functions h, and hg
that define the confidence corridor do not exist for all values of the parameter. For
example, in the present case, we would need to find values of h, and hs satisfying the
conditions

P[i >he()] = @ and PA<hg(R)] = B

for all values of A. But, if « and 8 have fixed values, then because A only takes on the discrete
values k., these inequalities hold only for particular values of 2. However, we can still
construct a confidence interval [a, b] by using equations (9.6). For discrete variables, these
become

o = P[;l > Ao a and 6 = P[;l < de; b] (9.16a)
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and, for the case of a Poisson variable, using (9.15), they take the forms

*© k=1 k=1 k
a _
a= D floa)=1-3 flka)=1-% e (9.16b)
k=k, k=0 k=0
and
e ka bk
B =Y fmb) = Ee‘b. 9.16¢)
k=0 k=0

For a given estimate A = k,, these equations may be solved numerically by iteration to yield
values for a and b. Some values of the upper and lower limits obtained for a range of values of
k. are given in Table 9.2. Note that a lower limit is not obtainable if k, = 0.

The interpretation of equations (9.16a) is that if 1 = g, the probability of observing a value
greater than or equal to the one actually observed is «. Likewise, if 2 = b, the probability of
observing a value less than or equal to the one actually observed is 6. The confidence inter-
vals for the mean are

PA>al>1—a PA<L<b>1-8
and

Pa<i<bl>1-—a-§.

An important case is when k. = 0, i.e,, no events are observed. In this case, (9.16c)
becomes § = exp(—b), or b = —Inp.

TABLE 9.2 Lower and upper limits for a Poisson variable for various observed values k,.

Lower limit a Upper limit b

ke a=0.1 a=0.05 a=0.01 =01 6=0.05 6=0.01
0 - — - 2.30 3.00 4.61
1 0.11 0.05 0.01 3.89 4.74 6.64
2 0.53 0.36 0.15 5.32 6.30 8.41
3 1.10 0.82 0.44 6.68 7.75 10.04
4 1.74 1.37 0.82 7.99 9.15 11.60
5 243 1.97 1.28 9.27 10.51 13.11
6 3.15 2.61 1.79 10.53 11.84 14.57
7 3.89 3.29 2.33 11.77 13.15 16.00
8 4.66 3.98 291 12.99 14.43 17.40
9 5.43 4.70 3.51 14.21 15.71 18.78

10 6.22 5.43 413 15.41 16.96 20.14
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EXAMPLE 9.5

How does the probability calculated in Example 9.2 change if no events were observed?

With less than about 9 events, the normal approximation used in Example 9.2 is not appropriate
and we have to use the Poisson distribution. If we still work at a confidence level of 95%, so that
B = 0.05, the upper limit obtained from (9.16¢) is b = —In(0.05) =3, as shown in Table 9.2. Thus, if
the number of occurrences of a rare event follows a Poisson distribution with mean A and no such
event is observed, the 95% upper limit for the mean is 3; that is, if the true mean were 3, then the
probability of observing zero events is 5%. So, if no events were seen, the probability of the
occurrence of a type E event is P < 0.003 with 95% confidence.

9.5. LARGE SAMPLES

In Chapter 7, we have seen that the large-sample distribution of the ML estimator § of
a parameter ¢ in the density function f(x; 0) is approximately normal about # as mean. In
this situation, approximate confidence intervals may be simply constructed. The method
is, by analogy with Example 9.1, to convert an inequality of the form

P[_uagwgual =1-2«a (917)
var

for the distribution of § expressed in standard measure, to an inequality for ¢ itself. Recall that
o is defined by

1 Uy 1/12
™J—u,

This will be illustrated by applying the method to the binomial distribution.

EXAMPLE 9.6

Find an approximate 95% confidence interval for p, the parameter of the binomial distribution.
If we apply equation (7.14) to the binomial distribution of equation (4.29), we find (see
Example 7.6)

var(f) = 6> = P(ln—P). (9.19)

An approximate (1 —2a) confidence interval is then obtained from (9.17) by considering the
statement

Ploug<—2P"P <y | =1-2q (9.20)
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which, if we neglect terms of order 1/y/n, may be written as
S 2y y1/2 Ao 2y y1)/2
P{f)—ua{p(lnp)} gpgfﬂrua{@} }:1—201. ©9.21)

So, a 95% confidence interval for p is defined by

S s\ 1/2 S i\ 1/2
P{fzfl.96(w> §p§ﬁ+1,96(p(1n P)) }:0_95,

The above method may be extended to confidence regions. In terms of the matrix M
defined in equation (7.34), we know that

ijs

P A
=D > (0= 0):Mi(8; — 6)), 9.22)

is approximately distributed as x2, with p degrees of freedom. So, just as we used (9.15) for
the normal distribution, we can use the « percentage points of the x> distribution to set up
a confidence region for the parameters 6;. It is an ellipsoid with the center at (01,65, ..., 0p).

At the end of Section 9.2, we remarked that it was not possible, in general, to obtain a confi-
dence region for a subset of the p parameters for samples of arbitrary size. However, for large
samples, this is possible. If we wish to construct a region for a subset of r parameters (r < p),
then the elements of the matrix M;j analogous to M;; above are given by
-1

i 9.23)

M = (V)

where the matrix V' is obtained by removing the last (p — r) rows and columns in V;;. The
quadratic form

r r
X% =20 (0 — 0)Mj(6; — 0y), (9.24)
i=1j=1

is then approximately distributed as x> with r degrees of freedom, and will define an ellip-
soid in the 6;(1,2, ..., 7) space.

9.6. CONFIDENCE INTERVALS NEAR BOUNDARIES

In the discussion of point estimation in Chapters 7 and 8, it was implicitly assumed that an
individual measurement could take on any value.' However, this assumption is not always
true. An example often cited is that of the mass of a body, which cannot be negative. If the
mass of a body is obtained by a direct measurement, for example by weighing it, then this

!The constraints discussed in the context of the least-squares method were on combinations of data or the
parameters used in the fitting procedure.
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condition is automatically satisfied. But a direct measurement may not always be possible.
For example, in the case of a sub-atomic particle, it is usual to measure its energy E and
momentum p. The mass m is then found from the general expression m?c* = E? — p?c?,
where c is the speed of light. But, in this situation, E and p are both random variables with
associated uncertainties, so that even though both will be positive, the resulting experimental
value of the squared mass, being the difference of two terms, can be, and sometimes is, found
to be negative. In general, a measurement of any quantity ¢, that is known to be positive for
physical reasons, when found from the differences of random variables, can result in a nega-
tive value for a specific measurement of its estimator 6. In these circumstances, the construc-
tion and interpretation of confidence intervals must be treated with care if one is not to end
up making misleading probability statements. Similar difficulties occur whenever a param-
eter has a physical boundary, but the method of estimation allows its estimator to take values
in unphysical regions. The example below will illustrate this.

Consider the simple case where an estimator # of a parameter 6, known for physical
reasons to be non-negative, is given in terms of two independent random variables, x and
y, by # = x —y. If x and y are both normally distributed with means g, and | 1, and variances

o2 and o2, respectively, we know from the work of prev1ous chapters that @ is also normally

dlstrlbuted with mean 6 = p, — u, and variance 0’% = a + 2. If, now, an experiment gives
a value 6, for f, then the upper limit for 4 at a conf1dence level of (1 — @) is obtained from

(9.8b) and is
Oup = O+ agN"1(1 - B). (9.25a)

For example, if 6, is measured to be —3.0 with gy = 1.5, where the latter is either known or
estimated from the data, and we use a 95% confidence interval, with N1 (0.95) = 1.645 (see
Table 9.1b), then from (9.25a), fup = —0.532. The interval, [—o, —0.532], therefore will
contain, by construction, the true value # with a probability of 95%, regardless of the actual
value of 0. Although this may look odd at first sight, there is nothing intrinsically wrong with
this. If the true value of § were zero, half of such estimates would be expected to be negative.
But the upper limit is also in the unphysical region. Again, we would expect this for 5% of
similar experiments if ¢ really were zero. There is nothing incorrect with the procedure;
we have simply encountered an experiment that does not lie within the interval constructed
by applying the frequency definition of probability. So, unless there are other compelling
reasons for doing so, the data should certainly not be discarded as being ‘wrong’. Neverthe-
less, since we know that # cannot be negative, the measurement has not added to our prior
knowledge in any significant way, so the question arises as to whether this single estimate can
be better used.

Unfortunately, there is no unique answer to this question. The first possibility is to do
nothing except to report the measurement. Other experiments will produce different values
of . and by combining them (for example, by combining the likelihood functions for each
experiment, as mentioned in Chapter 7, or by using the least-squares method as in Section
8.1.6), a more precise overall estimate § may be found. A second possibility is to increase
the confidence limit until the upper limit enters the physical region. Using the example
above, if the confidence limit is increased to 99%, with N=1(0.99) = 2.326 from Table 9.1b,
then from (9.25a), 0, = 0.489. Although this is comfortably greater than zero, it could be
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smaller than the precision of the experiment as measured by o4, and in this example it is
because we took gy = 1.5. An extreme example of the difficulty that this strategy can lead
to is if a confidence level is deliberately chosen so that . is only just positive. Thus, if we
choose a confidence level of 97.725%, we would quote the value fyp = 1.5 x 1075 at this
confidence level, which is clearly absurd. A third possibility is to move a negative value of
6, to zero, before using (9.25a) to calculate fyp, so that

Oup = max(,0) + apN (1 - B). (9.25b)

For the example above, this gives 6, = 2.468, which is both in the physical region and
compatible with the precision of the experiment. The drawback with this method is that
we can no longer interpret the computed interval as a range that will include the true value
with a probability (1 — 8). The actual probability will always be greater, because the value of
fup from (9.25b) will always be greater than the value calculated from (9.25a).

9.7. BAYESIAN CONFIDENCE INTERVALS

The strategies outlined in Section 9.6 to handle the problem of confidence intervals when
the estimated value of a parameter is close to a boundary all use the frequency interpreta-
tion of probability. A final possibility is to incorporate our prior knowledge, including the
fact that the parameter cannot have a negative value, by using subjective probability,
leading to so-called Bayesian intervals. Although such intervals may look similar to the
confidence intervals discussed previously, because they are based on posterior probability
densities their interpretation is very different and, for this reason, they are usually called
probability intervals or credible intervals, to distinguish them from confidence intervals con-
structed using the frequency interpretation of probability. In the latter, x is a random vari-
able and gives rise to a random interval that has a specific probability of containing the
fixed, but unknown, value of the parameter 6. In the Bayesian approach, the parameter is
random in the sense that we have a prior belief about its value and the interval can be
thought of as fixed, once this information is available. Only if the prior distribution of
the unknown parameter is chosen to be a uniform distribution are the two intervals
equivalent.

The starting point for constructing credible intervals is Bayes’ theorem, which we first intro-
duced for discrete variables in equation (2.11) and generalized to the case of continuous variables
in equation (3.22c). In the present context, it is more convenient to write Bayes’ theorem in terms
of the likelihood function, as was done in Section 8.4.3. Thus, for a single variable 6, if L(x; §) is
the likelihood function of the set of n variables x(x1, xy, ..., x;;) for a given value of 4, i.e.,

n
L(xl) = T f(xi; 6),
i=1
where f(x; 0) is the density function of the variables x, then rewriting (8.88), the posterior
probability density fpost(f]x) is given by
L(x|0)fprior(0)

fpost(0|X) = fL(Xw/)fprior(ﬁ/)dﬁ/ ’ (9.26)
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where forior(0) is the prior probability density for 6. The density fpost(6]x) replaces the distri-
butions (usually the normal) assumed in previous sections and can be used to construct an
interval [a, b], such that for any given probabilities « and 8,

«= [ fpoul@pds and 6 = [ froalopic

Thus, « = @ gives a central interval with a predetermined probability (1 — « — 8); alterna-
tively, one could choose fyost(aX) = fpost(b|x), which leads to the shortest interval and is
what is usually used in practice. The advantage of the subjective approach over the
frequency approach is that, in principle, prior knowledge can be incorporated via the
density fprior(f). The credible interval then contains a fraction of one’s total belief about
the parameter, in the sense that one would be prepared to bet, with well-defined odds
that depend on « and @, that the true value of  lies in the interval. The qualifier ‘in principle’
is necessary because, as in all applications of subjective probability, the problem arises in
choosing a form for fprior(ﬁ). An example of the construction of a credible interval is given
in Problem 9.7.

For the case discussed in Section 9.6, where 6 > 0, we can certainly set fprior(ﬂ) = 0for6<0.
Then, using (9.26), the upper limit is given by

Oup
1-8 = / Foose(6]x)d6

Oup o !
_ [ L(x|0)fprior(0)d0[ [ L(xﬁ)fprior(ﬁ)dﬁl .

el oo

But, for § > 0, it is not so clear what to do. If we invoke Bayes’ postulate, we would choose

0 6<0

fprior(e) = {1 0>0 (9.27)
While this has the advantage of simplicity, it also has a serious problem. Continuing with our
example of identifying ¢ with a mass, usually one would have some knowledge of at least its
order of magnitude from physical principles. If the body were an atom, for example, we
would expect to find values of the order of 10-22 grams, and it would be unrealistic to assume
that the probabilities of obtaining any positive value were all equal. Other forms have been
suggested for fprior(¢), but none are without their difficulties. Moreover, Bayes” postulate
applied to different functions of ¢ result in different credible intervals, that is, the method
is not invariant with respect to a nonlinear transformation of the parameter. Despite these
limitations, in practice, the simple form (9.27) is often used.

PROBLEMS 9

9.1 Potential voters in an election are asked whether or not they will vote for candidate X. If
700 out of a sample of 2000 indicate that they would, find a 95% confidence interval for
the fraction of voters who intend to vote for candidate X.
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A signal of strength S is sent between two points. En route, it is subject to random noise
N, known to be normally distributed with mean zero and variance 5, so that the received
signal R has strength (S + N). If the signal is sent 10 times with the results:

R 6 7 11 15 12 8 9 14 5 13
construct (a) a 95% central confidence interval and (b) 95% upper and lower bounds, for S.

Rework Problem 9.2(a) for the case where ¢ is unknown.

In the study of very many decays of an elementary particle, 8 events of a rare decay
mode are observed. If the expected value of events due to other random processes is 2,
what is the 90% confidence limit for the actual number of decays?

Electrical components are manufactured consecutively and their effective lifetimes 7
are found to be given by the exponential distribution of (4.26) with a common parameter
). Use the fact that the sample mean lifetime T of n components is related to the >
variable with 21 degrees of freedom by 2AnT=yx3 , to construct a 90% confidence interval
for the population lifetime, given that the sample mean for the first 15 components is
200 hrs.

Extend the work of Section 9.3.1 to the case of two normal populations N(u;,0%) and
N(uy, a3), to derive a confidence interval for the difference (u; — ). If a national physics
examination is taken by a sample of 40 women and 80 men, and produces average marks
of 60 and 70, with standard deviations of 8 and 10, respectively, use your result to
construct a 95% confidence interval for the difference in the marks for all men and
women eligible to take the examination.

Electrical components are manufactured with lifetimes that are approximately normally
distributed with a standard deviation of 15. Prior experience suggests that the lifetime is
a normal random variable with a mean of 800 hrs and a standard deviation of 10 hrs. If
a random sample of 25 components has an average lifetime of 780 hrs, use the results
given in Section 9.6 to find a 95% credible interval for the mean and compare it with

a 95% confidence interval.

All school leavers applying for a place at university take a standard national English

language test. At a particular school, the test was taken by 16 boys and 13 girls. The boys’
average mark was 75 with a standard deviation of 8, and the corresponding numbers for
the girls were 80 and 6. Assuming a normal distribution, find a 95% confidence interval
for the ratio o7/ 052;, where aﬁl g are, respectively, the variances of all boys and girls who

take the test nationally.
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In earlier chapters, we have discussed one of the two main branches of statistical infer-
ence as applied to physical science: estimation. We now turn to the other main branch:
hypothesis testing. This is a large topic and so, for convenience, it has been split into two
parts. In this chapter we consider situations where the parent distribution is known, usually
a normal distribution, either exact or approximate, and the aim is to test hypotheses about
its parameters, for example, whether they do, or do not, have certain values, rather than to
estimate the values of the parameters. This topic was touched upon in previous chapters,
particularly Chapter 6, where we discussed the use of the x2, t, and F distributions, and
much of the preliminary work has been done in Chapter 9, when confidence intervals
were constructed. The aim of the present chapter is to bring together and extend those ideas
to discuss hypothesis testing on parameters in a systematic way. The Bayesian approach to
hypothesis testing will not be discussed. It is very similar, from a calculational viewpoint, to
the frequency approach, but uses the appropriate posterior probability distributions, as
defined in Chapter 9, and hence, by analogy with Bayesian confidence intervals, the inter-
pretation is different.

In the following chapter, we consider other types of hypotheses, such as whether a sample
of data is compatible with an assumed distribution, or whether a sample is really random. We
also discuss hypotheses that can be applied to situations that are occasionally met in physical
science where the data are non-numeric.

Statistics for Physical Sciences: An Introduction 193 Copyright © 2012 Elsevier Inc. All rights reserved.
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10.1. STATISTICAL HYPOTHESES

Consider a set of random variables x1, xy, ..., x;, defining a sample space S of n dimen-
sions. If we denote a general point in the sample space by E, then if R is a region in S, any
hypothesis concerning the probability that E falls in R, i.e., P[E€R], is called a statistical
hypothesis. Furthermore, if the hypothesis determines P[E € R] completely, then it is called
simple; otherwise, it is called composite. For example, when testing the significance of the
mean of a sample, it is a statistical hypothesis that the parent population is normal. Further-
more, if the parent population is postulated to have mean u and variance ¢?, then the hypoth-
esis is simple, because the density function is then completely determined.

The hypothesis under test is called the null hypothesis and denoted Hy. The general proce-
dure for testing Hy is as follows: Assuming the hypothesis to be true, we can find a region S,
in the sample space S such that the probability of E falling in S, is any pre-assigned value «,
called the significance level. The region Sg = (S — S) is called the region of acceptance, and S, is
called the critical region, or region of rejection. If the observed event E falls in S., we reject Hy;
otherwise, we accept it. It is worth being clear about the meaning of the phrase ‘accept the
hypothesis Hy'. It does not mean that Hy is definitely true; rather, it means that the data
are not inconsistent with the hypothesis, in the sense that the observed value would be
expected at least a% of the time if the null hypothesis were true. In practice, as we shall
discuss below, the critical region is determined by a statistic, the nature of which depends
upon the hypothesis to be tested.

Just as there are many confidence intervals for a given confidence level, so there are many
possible acceptance regions for a given hypothesis at a given significance level «. For all of
them, the hypothesis will be rejected, although true, in some cases. Such ‘false negatives’
are called type I errors and their probability, denoted by P[I], is equal to the significance level
of the test. The value of « is arbitrary, and the choice of a suitable value depends on how
important the consequence of rejecting Hy is. Thus, if its rejection could have serious conse-
quences, such as a substantial loss, either of money, time etc., or even lives in extreme cases,
then one would tend to be conservative and choose a value « = 0.05, 0.01, or even smaller.
Values commonly used in physical science are 0.1 and 0.05. It is also possible that even
though the hypothesis is false, we fail to reject it. These ‘false positives’ are called type II errors.
We are led to the following definition of error probabilities.

Consider a parameter ¢ and two hypotheses, the null hypothesis Hy: 6 € Ry and the alter-
native H, : 0 € R,;, where R, and R, are two mutually exclusive and exhaustive regions of the
parameter space. Further, let Sy and S, be the acceptance and critical regions of the sample
space S associated with the event E = (x1, Xy, ..., X;;), assuming Hy to be true. Then, the prob-
ability of a type I error is

P[I] = P[E€S,|Hy:6€Ry), (10.1)
and, if Hy is false, but H, is true, the probability of a type II error is
P[II] = P[E€So|Ha:0€R,]. (10.2)

The two types of error are inversely related; for a fixed sample size, one can only be reduced
at the expense of increasing the other. From (10.1) and (10.2), we can define a useful quantity;,
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called the power, that can be used to compare the relative merits of the two tests. The power of
a statistical test is defined as
B(0) = P[EeSy|Hy:0€R;] = 1 —P[EeSo|H,:0€R,] (10.3)

and so is the probability of rejecting the hypothesis when it is false. Clearly, an acceptable test
should result in a power that is large. From (10.1) and (10.2), it follows that

o= [ W feR (10.4)
Blo) = {1—13[11], 0 eR,. '

To see how these definitions are used in practice, we will look at a simple example con-
cerning a normal population with unknown mean p and known variance 2. We will test
the null hypothesis Hy: ¢ = g against the alternative H;: u # py, where ug is a constant,
using a sample of size n. Since the arithmetic mean is an unbiased estimator for g, it is reason-
able to accept the null hypothesis if X is not too different from u, so the critical region for the
test is determined by the condition

P[[% — ol > :Hol = a,

where Hj indicates that the probability is calculated under the assumption that Hy is true, i.e.,
that the mean is u. In this case, we know that X is normal distribution with mean u and vari-
ance ¢2/n, so that the quantity z = (¥ — y)/(o/+/n) has a standard normal distribution and
thus

Plz > cvn/o] = a/2.
However, we know that
P{z > Za/2:| = af2

and so ¢ =z, o/+/n. Thus, at the significance level «, we conclude that

\/TZR — Kol > zq/p = Hp is rejected (10.5a)
and
?W — ol < z42 = Hy is accepted. (10.5b)

This is shown in Fig. 10.1 and, for obvious reasons, this is called a two-tailed test.

The decision of whether or not to accept a null hypothesis using a test with a fixed value of
o often depends on very small changes in the value of the test statistic. It is therefore useful to
have a way of reporting the result of a significance test that does not depend on having to
choose a value of the significance level beforehand. This may be done by calculating the
so-called p-value of the test. It may be defined in several ways. For example, the smallest level
of significance which would lead to rejection of the null hypothesis using the observed
sample, or the probability of observing a value of the test statistic that contradicts the null
hypothesis at least as much as that computed from the sample. Thus Hy will be accepted
(rejected) if the significance level « is less than (greater than or equal to) the p-value.
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FIGURE 10.1 Two-tailed test for
Ho:p = ug against Hy:p # .

<«——reject » acceptance region <reject—»

“Zan 0 Zan

EXAMPLE 10.1

A manufacturer aims to produce power packs with an output O of 10 watts and a standard
deviation of 1 watt. To control the quality of its output, 20 randomly chosen power packs are tested and
found to have an average value of 9.5 watts. Test the hypothesis Hy:O = 10 against the alternative
H;:0 # 10 at a 5% significance level. What is the lowest significance level at which Hy would be

accepted?
If we assume we can use the normal distribution, then the test statistic is
x—0
z = | | = 2.236,
a/\n

if Hy is true. This value is to be compared with zg g5 because we are using a two-tailed test. From
Table C.1, zp g25 = 1.96 and since z > z( gp5, the null hypothesis must be rejected at the 5% signifi-
cance level, and the critical region from (10.5a) is

X <9.56 and x > 10.44.

Notice that even though the lower of these values is very close to the observed mean, we are
forced to reject Hy because we have set the value of « before the test. The p-value for the sample
is given by

p = P[lz| > 2.236] = 2Pz > 2.236] = 0.0254,

again using Table C.1. Thus, for « > 0.0254, Hy would still be rejected, but for values lower than this,
it would not be rejected.

We also have to consider type Il errors, because if these turn out to be large, the test may
not be useful. In principle, this is not an easy question to address. In the present example,
each value of u # uj leads to a different sampling distribution, and, hence, a different
value of the type II error. In practice, however, what can be done is to find a curve that,
for a given value of «, gives the probability of a type II error for any value of (1 — ug).
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This is called the operating characteristic (OC) curve. From the definition (10.2), and using
the fact that

_X-n

o/yn
is approximately distributed as standard normal distribution, it is straightforward to show
that the OC curve is given by

PlII; 4] = N( —E_ za/z) (10.6)

Ho
i o) N (o
and is symmetric about the point where (1 — pg) equals zero.

Figure 10.2(a) shows a plot of (10.6) as a function of u for the data of Example 10.1. For this
example, the maximum of the OC curveis at 4 = 10, where (1 — a) = 0.95. The curve shows
that the probability of making a type Il error is larger when the true mean is close to the value
uo and decreases as the difference becomes greater, but if u = g, a type II error will presum-
ably have smaller consequences. The associated power curve 1— P[IL;u] is given in
Fig. 10.2(b). This shows that the power of the test increases to unity as the true mean gets
further away from the Hj value, which is a statement of the fact that it is easier to reject an
hypothesis as it gets further from the truth. Decreasing «, with a fixed sample size, reduces
the power of the test, whereas increasing the sample size produces a power curve with
a sharper minimum and will increase the power of the test, except at u = uy. Once « and
the sample size n are chosen, the size of the type II error is determined, but we can also
use the OC curve to calculate the sample size for a fixed « that gives a specific value for
the type II error. From (10.6), this is equivalent to

PIIL; 1, ] N(”O/\/_ +z,1/2> N(’“‘g/\/_ Za/2)

10 T T T T ] 10 O T T T]
0.8 P(IT; 1] 108 L B(u)=1-P[II] i
0.6 | - 06 | g
04 + -4 04 g
02 L | 402t -
|
1
1
0.0 C1 I | I 1] 0.0 1 1]
9.0 9.5 10.0 10.5 11.0 9.0 11.0
u u

FIGURE 10.2
Example 10.1.

(a) Operating characteristic curve as a function of; u and (b) power curve, both for the data for

(a)

(b)
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where P[II; u,] is the probability of accepting Hy when the true mean is u,,. Given P[II; u,,] and
«, a solution for n may be obtained from this relation numerically.

10.2. GENERAL HYPOTHESES: LIKELIHOOD RATIOS

The example in Section 10.1 exhibits all the steps necessary for testing an hypothesis. In
this section, we turn to tests derived from a consideration of likelihood ratios, starting
with the simplest of all possible situations, that of a simple hypothesis and one simple alter-
native. This case is not very useful in practice, but it will serve as an introduction to the
method.

10.2.1. Simple Hypothesis: One Simple Alternative

The likelihood ratio A for a sample x;(i = 1, 2, ..., n) of size n having a density f(x,0) is
defined by
n .9
3= Hizifiibo) _ L(Bo) (10.72)
i1 f(xi;02)  L(6a)
Then, for a fixed k > 0, the likelihood ratio test for deciding between a simple null hypothesis
Hp:0 = 6p and the simple alternative H,:0 = 0, is

for A > k, Hy is accepted
for A <k, Hy isrejected (10.7b)
for A = k, either action is taken.

The inequality A > k determines the acceptance and critical region Sy and S,, respectively, as
illustrated by the following example.

EXAMPLE 10.2

If x is a random sample of size one, drawn from a normal distribution with mean and variance both equal
to 1, find the acceptance and critical regions for testing the null hypothesis Hy:u = —1 against the
alternative Hy: . = 0 for k = el/2.

The normal density with unit variance is

2
f(x;0) = \/%exp[_ (x zu) }

and from (10.7a), the likelihood ratio is

A = exp { - %(x + 1)2} exp Exz] = exp [— %(Zx + l)} .

So, with k = ¢!/2, the inequality A > k implies e > e, which is true for —% < x < —1 and deter-
mines the acceptance region for Hy. Likewise, © > x > —1 determines the critical region.




10.2. GENERAL HYPOTHESES: LIKELIHOOD RATIOS 199

For a fixed sample size, the method of testing described in Section 10.1 concentrates on
controlling only type I errors, and type Il errors are calculated a posteriori. A better test would
be one that for a null hypothesis Hy: 6 € Ry, with an alternative H,: 0 €R,, gives

P[I] < «, forfeRy,

and maximizes the power
B(#) = 1—PlI], forfeR,.

For the case of a simple null hypothesis and a simple alternative, such a test exists, and is
defined as follows.

The critical region Ry, which, for a fixed significance level «, maximizes the power of the
test of the null hypothesis Hy: 6 = 6 against the alternative H,: 0 = 6,, where x1, x3, ..., x,
is a sample of size n from a density f(x; ), is that region for which the likelihood ratio

<k, (10.8a)

for a fixed number k, and

/ .../Hf(xi;ﬂo)dxi = a. (10.8b)
Ry i=1

This result is known as the Neyman—Pearson lemma. The proof is as follows.
The object is to find the region R that maximizes the power

8 = /R L(0,)dx,

subject to the condition implied by equation (10.8b), i.e.,

/RL(HO)dx = a.

Consider the region Rj defined to be that where the likelihood ratio

In Ry, it follows that

/ L(Ha)dx>% L(6)dx.
Rk Rk

But, for all regions, equation (10.8b) must hold, and so we have, for any region R,

/ L(62)dx > % / L(8)dx. (10.92)
Ry

R
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Now for a region R outside Ry,

L(6o)
A= >k,
L(6a)
and hence,
1
E/L(ﬁo)dx > /L(f)a)dx. (10.9b)
R R
Combining the two inequalities (10.9a) and (10.9b) gives
/ L(6,)dx > / L(6,)dx, (10.9¢)
Ry R

which is true for any R, and all Ry such that A < k. Thus Ry is the required critical region. Once
A is chosen, the values of type I and type II errors, and hence the power, are determined.

We will illustrate the use of the Neyman—Pearson lemma by an example involving the
normal distribution.

EXAMPLE 10.3

If 0 is the mean of a normal population with unit variance, test the null hypothesis Hy:0 = 2 against the
alternative Hy:0 = 0, given a sample of size n.
Using the normal density, the likelihood ratio is

1 1 -1
A= exp[2 (xiZ)z} {exp{2 xf]}
i=1 i=1

= exp { él:l(Zx,- - 2)} = exp[2nx — 2n],

and thus, from (10.7b), Hy is accepted if A > k, i.e., if

X>c = M +1, (10.10)
2n

and rejected if X < c.

The error probabilities for Example 10.3 are given by the shaded areas in Fig. 10.3. To find
the point for which P[I] is a given value for a fixed value of 1, we note that when § = 2,
Pl =Px<clf =2] =«
so, for « = 0.05 and n = 4 (say), using Table C.1 gives

~ 1645

c=0-"2
N

= 1.1775,
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FIGURE 10.3 Error probabilities for T T T T T T T
Example 10.3.

P[]
P[1I]

and for this value of c,
P[II] = P[x > 1.1775|¢ = 0] = 0.009.
It is also possible to find the sample size necessary to control the values of P[I] and PIII].

Thus, for example, if we want the error probabilities to be P[I] = 0.03 and P[II] = 0.01,
then using approximate numbers from Table C.1, we require that

L, 188 188
Y 7N TH
and
g 2323
ot yn oy

simultaneously. This gives n = 4.43, and so a sample size of 5 would suffice.

10.2.2. Composite Hypotheses

The case considered in Section 10.2.1 is really only useful for illustrative purposes. More
realistic situations usually involve composite hypotheses. The first that we will consider is
when the null hypothesis is simple and the alternative is composite, but may be regarded
as an aggregate of simple hypotheses. If the alternative is H,, then for each of the simple
hypotheses in H,, say H),, we may construct, for a given «, a region R for testing Hj against
H]. However, R will vary from one hypothesis H), to the next and we are therefore faced with
the problem of determining the best critical region for the totality of hypotheses H,. Such
a region is called the uniformly most powerful (UMP) and a UMP test is defined as follows.
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A test of the null hypothesis Hy : § € Ry against the alternative H, : § € R, is a uniformly most
powerful (LIMP) test at the significance level « if the critical region of the test is such that

PI] <a forall #eRy
and

B6(6) = 1—P[II] isamaximum foreach 6#eR,.

The following simple example will illustrate how such a UMP test may be constructed.

EXAMPLE 10.4

Test the null hypothesis Hy: u = g against the alternative H, : > g, for a normal distribution with
unit variance, using a sample of size n.

The hypothesis H, may be regarded as an aggregate of hypotheses H,, of the form H,:u = p,
where u, > ug. The likelihood ratio for testing Hy against H), is, from (10.7a),

A= exp{ f%[m(ua — o) + (5 fuﬁ)]}

The Neyman—Pearson lemma may now be applied for a given k and gives the critical region

Toc o —Ink +1( )
(e, — o) | 200 Ha)

Thus the critical region is of the form x > ¢, regardless of the value of u,, provided u, > pg. There-
fore, to reject Hy if X > c tests Hy against H,: u > uy. The number ¢ may be found from

Pl = a = (%)szcw exp[—g(x—uof]dx,

The integral is evaluated by substituting u = /n(X¥ — ug) and using Table C.1. For example,
choosing & = 0.025 gives ¢ = ug + 1.96//n.

A more complicated situation that can occur is testing one composite hypothesis against
another, for example, testing the null hypothesis Hy: 61 < 6 < 6, against H;:0 < 61,0 > 0,.
In such cases, a UMP test does not exist, and other tests must be devised whose power is
not too inferior to the maximum power tests. A useful method is to construct a test having
desirable large-sample properties and hope that it is still reasonable for small samples.
One such test is the generalized likelihood ratio described below.

Letxi, x2, ..., x, be asample of size n from a population density f(x; 01, 02, ..., ), where S
is the parameter space. Let the null hypothesis be Hy: (61,62, ..., 0,) € Ro, and the alternative
be H,: (01,02, ...,0y) € (S — Ro). Then, if the likelihood of the sample is denoted by L(S) and its
maximum value with respect to the parameters in the region S denoted by L(S), the general-
ized likelihood ratio is given by

, (10.11)
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and 0 < A < 1. Furthermore, if P[I] = «, then the critical region for the generalized likelihood
ratio test is 0 < A < A where

A
/ g(AHo)dA = a,
0

and g(A|Hp) is the density of A when the null hypothesis Hy is true. Again, we will illustrate
the method by an example.

EXAMPLE 10.5

Use the generalized likelihood ratio to test the null hypothesis Hy : u = 2 against Hy : p # 2, for a normal
density with unit variance.
In this example, the region Ry is a single point u = 2, and (S — Ry) is the rest of the real axis. The

likelihood is
1 n/2 1 )
L= (ﬂ) exp[zi_l(xiu)

n/2 n

and the maximum value of L(S) is obtained when u = ¥, i.e.

—_

. H/Z n
L(S) = (21—”) exp [ —% (x; — f)z} : (10.12)
i=1

Similarly,

N 1 n/2 1 oon, )
and so the generalized likelihood ratio is
_ e 52
A= exp[ SE-2) ] (10.14)
If we use o = 0.025, the critical region for the test is given by 0 < A < A, where
A
/ g(A|Hp)dA = 0.025.
0

Now, if Hy is true, x is normally distributed with mean 2 and variance 1/n. Then, n(x — 2)% is distrib-
uted as chi-square with one degree of freedom. Taking the logarithm of (10.14), it follows that
(—21In2) is also distributed as chi-square with one degree of freedom. Setting x> = —21In 4, and
using Table C.4 gives

©

A
0.025 = /O g(A|Ho)d2 = / F(%51)dx?

—2In2A
= / f(xz;l)dxz.
5.02
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Thus, the critical region is defined by —2In1 > 5.02, i.e., n(¥ — 2)* > 5.02, or

2.24 2.24
X>24— x¥<2-—

Nk 7 (10.15)

The generalized likelihood ratio test has useful large-sample properties. These can be stated
as follows. Let x1, xp, ..., x; be a random sample of size n drawn from a density
f(x;01,62,...,0,), and let the null hypothesis be

H():ﬁ,' = 5,', i= 1,2,...,k <p,
with the alternative
H;:0; # 9,’.

Then, when Hy is true, —21n A is approximately distributed as chi-square with k degrees of
freedom, if n is large.

To use this result to test the null hypothesis Hy with P[I] = «, we need to only compute
—2InA from the sample, and compare it with the « level of the chi-square distribution.
If —21n 4 exceeds the « level, Hy is rejected; if not Hy is accepted.

10.3. NORMAL DISTRIBUTION

Because of the great importance of the normal distribution, in this section we shall give
some more details concerning tests involving this distribution.

10.3.1. Basic Ideas

In Section 10.1, we discussed a two-tailed test of the hypothesis Hy: # = p, against the
alternative H,: u # w for the case where the population variance is known n(x: u,?). To
recap the result obtained there, the null hypothesis is rejected if the quantity
Wo = V/n(x — pg)/o is greater than W, in modulus, i.e., if |Wy| > W,, where

L\ ™ —£/2 )
P[|W| > W,]| = > / e dt+/w e "/edt

=2[1-N(W,;0,1)] = 2.
If the alternative hypothesis is H, : u > g, then P[I] is the area under only one of the tails of the
distribution, and the significance level of the test is thus
Pl = a = 7.
Such a test is called a one-tailed test. We also showed how to find the probability of a type II

error and, from this, the power of the test. If, for definiteness, the alternative is taken to be
H;:p = p,, then the power is given by
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-4 -3 -2 - 0 1 2 3 4
FIGURE 10.4 The power of a test comparing two means for a normal population with known variance.

If w, — wo is small, then
Pl =1- P[],
and hence

8= a.

Thus, the power of the test will be very low. This situation can only be improved by making
(g — mo) large, or by having n large. This is in accord with the common-sense view that it is
difficult to distinguish between two close alternatives without a large quantity of data. The
situation is illustrated in Fig. 10.4, which shows the power § as a function of the parameter
A = /n(u, — ugy)/o for two sample values of «, the significance level. This is a generalization
of the specific case shown in Fig. 10.2(b).

We are now in a position to review the general procedure followed to test a hypothesis:

Y

. State the null hypothesis Hy, and its alternative H,;

2. Specify P[I] and P[II], the probabilities for errors of types I and II, respectively, and
compute the necessary sample size n." In practice, P[I] = « and n are commonly given.
However, since even a relatively small P[II] is usually of importance, a check should
always be made to ensure that the values of « and # used lead to a suitable P[II].

3. Choose a test statistic and determine the critical region for the test. Alternatively, calculate
the p-value and then choose a suitable value of « a posteriori.

4. Accept or reject the null hypothesis Hy, depending on whether or not the value obtained

for the sample statistic falls inside or outside the critical region.

A graphical interpretation of the above scheme is shown in Fig. 10.5. The curve fy(8|Ho)is the
density function of the test statistic 6 if Hy is true and f,(6|H.,) is its density function if H,, is true.
The hypothesis Hy is rejected if § > 0, and H, is rejected if § < 6. The probabilities of the errors
of types I and II are also shown. It is perhaps worth repeating that failure to reject a hypothesis
does not necessarily mean that the hypothesis is true. However, if we can reject the hypothesis
on the basis of the test, then we can say that there is experimental evidence against it.

!Tables for this purpose applying to some of the tests we will consider are given in O.L. Davies Design and
Analysis of Industrial Experiments, Research Vol 1, Oliver and Boyd Ltd (1948).
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3 pim=1-p EE Plll=a

a

FIGURE 10.5 Graphical representation of a general hypothesis test.

10.3.2. Specific Tests

We shall now turn to more practical cases, where one of the parameters of the distribution
is unknown, and use the general procedure given above to establish some commonly used
tests, deriving them from the likelihood ratio.

(a) Test of whether the mean is different from some specified value.
The null hypothesis in this case is

Hy:p = ,u0,0<z72 < o,
and the alternative is

HO:,ui,uo,0<02< o,
since the variance is unknown. The parameter space is

S={-0<u< 0;0< 0* < w},
and the acceptance region associated with the null hypothesis is
Ry = {/.L = /.LOZO<0'2< 00}.

In this case, the null hypothesis is not simple because it does not specify the value of 2. For
large samples we could use an estimate s? for 0> and then take over the results of Section
10.3.1. However, for small samples, this procedure could lead to errors and so we must
devise a test where ¢ is not explicitly used. Such a test is based on the use of the Student’s
t-distribution. Its derivation is as follows.

The likelihood function for a sample of size n drawn from the population is given by

1 1 1< (xi —,LL)Z
L=—— —exp|-= , (10.16)
(27r)"/2 " p[ 21'2::1 o
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and we have seen in Chapter 7 that the ML estimators of u and o2 are

n n
i = Ein and ¢ = 1zj(xi —-%)% (10.17)

i3 i3

Using (10.17) in (10.16) gives
n/2
- n
LS) = |——| 2 (10.18)
©) [2772(9@ —x)zl

To maximize L in Ry, we set u = u, giving

1 1 1N (% — 1o\ 2
' =— —exp| —= (1—0> .
(277)"/2 " p[ 24+ a

Then, the value of ¢? that maximizes L' is

R 1¢
it = _Z(xi — o),
i=1

n

and hence

n/2
_ n -n/2
L(Rg) = 1 e "2, (10.19)

[277 do(xi— Mo)z
So, from (10.18) and (10.19), the generalized likelihood ratio is

n/2
Y —%)°
We must now find the distribution of A if Hy is true. Rewriting (10.20) gives
= 2 —n/2 2 —n/2
A= 1+%} - (1+nt 1) , (10.21)
Xi—X -

where

nn—1) 1/2_

is distributed as the t-distribution with (n — 1) degrees of freedom. From (10.21), a critical
region of the form 0 < A < A is equivalent to the region t* > F(A). Thus, a significance level
of a corresponds to the pair of intervals

< —ta/z and t> ta/z,

where

f(tmn —1)dt = a/2, (10.22)
ta/Z
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and f(t;n — 1) is the t-distribution with (n — 1) degrees of freedom. If f lies between —t, , and
ta/2, then Hy is accepted; otherwise, it is rejected. This is a typical example of a two-tailed test,
and is exactly equivalent to constructing a 100(1 — 2«)% confidence interval for u, and accept-
ing Hy if p lies within it. The test is summarized as follows:

Observations n values of x
Significance level o
Null hypothesis Hy:u = pg, 0<o?<
Alternative hypothesis Ho:p#py, 0<0®< o
n-1]" (3~ )
Test statistic PR B T — ) = X Ho (10.23)
[z(x,- - y)zl ° s/\n

Decision criterion. The test statistics obeys a f-distribution with (n — 1) degrees of freedom if
null hypothesis is true; so if the observed value of t lies between —t, , and ¢, /,, where the latter
is defined by (10.22), the null hypothesis is accepted; otherwise, it is rejected. Alternatively, it is
accepted (rejected) if the calculated p-value is larger (smaller) than a specified value of «.

This may be generalized in an obvious way to test the null hypothesis against the alterna-
tives Hy:u > pp and Hy:u < pg. The test statistic is the same, but the critical regions are now
t > t, and t < —t,, respectively.

The above procedure has controlled type I errors by specifying the significance level. We
must now consider the power of the test. This is no longer a simple problem, because if Hy is
not true, then the statistic + no longer has a Student’s t-distribution. If the alternative
hypothesis is

Hyipw = p, 0<0?< o0

and H, is true, it can be shown that t obeys a noncentral t-distribution of the form

x/wx”ex —1 x—t—y dx
0 P72 (2 + )2 '

where v = n—1and 6 = /n|u, — wo|/o. Unfortunately, this distribution, apart from being
exceedingly complex, contains the population variance ¢? in the noncentrality parameter o.
An estimate of the power of the test may be obtained by replacing o2 by the sample variance
s? in the noncentral distribution and then using tables of the distribution.

Noncentral distributions typically arise if we wish to consider the power of a test, and are
generally functions of a noncentrality parameter that itself is a function of the alternative
hypothesis and a population parameter that is unknown.
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EXAMPLE 10.6

An experiment finds the mean lifetime of a rare nucleus to be t = 125 us. A second experiment finds 20
examples of the same decay with lifetimes given below (in us):

120 113 120 140 136 117 140 136 110 119
123 119 118 120 134 121 137 129 137 140

Test whether the data from the second experiment are compatible with those from the first experiment at the
10% level.

Formally, we are testing the null hypothesis Hy: 7 = 125 with the alternative H, : t # 125, using
test (a) above. Firstly, using the data given, we find the mean to be ¥ = 126.45 and the standard
deviation ¢ = 10.02, and using these, then calculate the value of t as 0.647. Next, we find t,, from
(10.23) for & = 0.10 and 19 degrees of freedom. Using Table C.5, this gives t,, = 1.73. As this value
is greater than the observed value of ¢, the null hypothesis is accepted, that is, the two experiments
are compatible at this significance level.

Another use of the Student’s ¢-distribution is contained in the following test, which we will
state without proof.

(b) Test of whether the means of two populations having the same, but unknown, variance
differ.

Observations m values of x1, n values of x,
Significance level o
Null hypothesis Ho:py = pp, — ® <07, < ®(0] = 03)
Alternative hypothesis Hotpy # gy, — © <07y < ®(0] = 03)
Test statistic t = (1 — %) , (10.24a)
sp/(1/m) + (1/n)
where the pooled sample variance, sg, is given by
-1 2 -1 2
2= M Datm-1s (10.24b)

4 m+m—2

Decision criterion: The test statistic obeys a t-distribution with (m + n — 2) degrees of freedom
if the null hypothesis is true; so, if the observed value of ¢ lies in the range t_,/» <t <y,
where

/ f(bm+n—2)dt = /2, (10.25)
ta/Z

the null hypothesis is accepted; otherwise, it is rejected.
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Again, this test may be extended to the cases u; > u, and u; < u,, with critical regions
t >ty and t < —t,, respectively. It may also be extended in a straightforward way to test
the null hypothesis Hy:u; — up = d, where d is a specified constant, and to cases where
the two variances are both unknown and unequal.

We will now consider two tests associated with the variance of a normal population, and,
by analogy with the discussion of tests involving the mean, we start with a test of whether the
variance is equal to some specific value.

(c) Test of whether the variance is equal to some specific value
The null hypothesis in this case is
Ho:a2 = o%, —00 < u< °©,
and the alternative is
Ha:a2 +* a%, —00 < u< %o,
since the mean is unknown. The parameter space is
S={-0<u<®;0<0’>< o},
and the acceptance region associated with the null hypothesis is
Ry = {—00 <p< o0t = 0%}.

The test will involve the use of the x? distribution and will again be derived by the method of
likelihood ratios.
As before, the likelihood function for a sample of size n drawn from the population is

given by
1\"%21 1A% — p\2
L=(—) — —= !
<27r> Unexpl 24_< g )
i=1
and in the acceptance region Ry
L (1 "/2lex 1A (% — w)>
2 ag P 244\ 0o ’

This expression is a maximum when the summation is a minimum, i.e., when ¥ = u. Thus,

LR - i Tl/zl N _1 n x,-—f 2 B i 71/2i _(7’1—1)52
(Ro) = 2w Ugep 214:1 09 T \2n Jgexp 20% ’

where s? is the sample variance. To maximize L in S, we have to solve the maximum likeli-
hood equations. The solutions have been given in (10.18) and, hence,

N n/2 n/
16 = (7)) ee(3)
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We may now form the generalized likelihood ratio

L(Ry) _ [(n—nﬂ”/zex ln (n—1)52]

L(S) no3 P35~ 203

from which we see that a critical region of the form A < k is equivalent to the region

2
kl < ) < kz,

90
where ki and k; are constants depending on 7 and «, the significance level of the test. If Hy is
true, then (n — 1)s? /a3 obeys a x? distribution with (7 — 1) degrees of freedom and so, in prin-
ciple, the required values of k; and ky could be found. A good approximation is to choose
values of k1 and k, using equal right and left tails of the chi-squared distribution. Thus,
we are led to the following test procedure.

Observations n values of x

Significance level o

Null hypothesis Hy: 0% = a3

Alternative hypothesis H,: 02 # a3

Test statistic X2 = " (x,- — x>2 = 5—22(11 —1). (10.26)
i=1\ 90 %

Decision criterion. The test statistics obeys a x? distribution with (1 — 1) degrees of freedom if
the null hypothesis is true; so if the observed value of x? lies in the interval X%fa n < t< Xi /27
where

/wf(x2;n - 1)dt = «/2, (10.27)

ta/Z

the null hypothesis is accepted; otherwise, it is rejected.

As previously, we now have to examine the question: what is the probability of a type II
error in this test? If the alternative hypothesis is

.2 2
H,:0° = oy,

and if H, is true, then the quantity

2

2 S
= —(n-1
Xa ag( )

will be distributed as x> with (n — 1) degrees of freedom. Thus, from the definition of the
power function, we have

Q|U')M

(=] 8}

B=1-P|pn-1)20-1)5 > xi_ph-1),
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and therefore,

2 7% 2 i
B=1=P|xypn— 1)? > (n— 1)? 2 Xi_a2(n — 1)? . (10.28)
a a a

Having fixed the significance level « and the values of ¢y and o,;, we can read off from tables
the probability that a chi-square variate with (17 — 1) degrees of freedom lies between the two
limits in the square brackets.

Again, this test may be simply adapted to deal with the hypotheses H,:0? > ¢3 and
H,:0? < o3. The critical regions are x> > x2 and x? < x?__, respectively.

EXAMPLE 10.7

Steel rods of notional standard lengths are produced by a machine whose specifications states that,
regardless of the length of the rods, their standard deviation will not exceed 2 (in centimeter units). During
commissioning, a check is made on a random sample of 20 rods, whose lengths (in centimeters) were found to be

105 104 103 98 100 102 103 97 99 106
105 102 99 100 98 97 102 101 100 99

Test at the 10% level whether the machine is performing according to its specification.

Here, we are testing the null hypothesis Hy: 2 < 05 against the alternative H,: a2 > 0(2), where
03 = 4. That is, we are using a one-tailed test, which is an adaptation of test (c) above. From the
data, ¥ = 101 and s? = 7.474, so the test statistic is

x> = s°(n—1)/d% = 355.

Now, from Table C.4, we find that for o = 0.10 and 19 degrees of freedom, X%.l = 27.2. As this
value is less than 2, we conclude that the machine is not performing according to its
specification.

The final test concerns the equality of the variances of two normal populations, which we
quote without proof.

(d) Test of whether the variances of two populations with different, but unknown, means
differ.

Observations m values of x1, n values of x;
Significance level o
Null hypothesis Hop: 0% = 05
Alternative hypothesis Hg: 0% # o3
PRUES I SCES S
Test statistic F="21= ! 5 (10.29)

st (m—1)Y(x — %)

]
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Decision criterion. The test statistic obeys the F distribution with (m — 1) and (n — 1) degrees
of freedom if null hypothesis is true; so, if the observed value of F lies in the interval

-1
Fopn—=1,m—-1)| <F<Fypm—-1n-1),
/ /

where

[*<]

f(F;m—1,n—1)dF = /2, (10.30)
ta2

the null hypothesis is accepted; otherwise, it is rejected.

To calculate the power of the test, we note that P[II] depends on the value of o3 /3. If the
true value of this ratio is ¢ then, since (m — 1)s? /a2 for a sample from a normal population is
distributed as x2,_;, we find s3/s3 is distributed as

2
g
—F(m—1,n—1) = 6F(m —1,n—1).
)
Thus,
st
B=1-P|F_gpm-1,n-1) < 2 < Fyp(m—1,n-1)
2
is equivalent to
Fi_qpm—1,n-1) Fopom—1,n-1)
g=1-P «2(m — 1, <F<- d (10.31)
0 0
TABLE 10.1 Summary of hypothesis tests on a normal distribution
H, Test statistic H, Critical region
;;,2: Ko — T M0 Gistributed as ¢ with 1 — 1 degrees of K7 Ho E>typ and £ < —ty
- unknown s/\/n n> po >ty
freedom n < po F< —ty
= X1 —X *+ t>t, dt< —t
M; M% . (%1 — %) where B 7 U2 t> ta/Z and t < —t,2
0] = 03 spy/(1/m) + (1/n) My > po >ty
unknown ~1)g2 _ 12 < g < —ty
§2 = (m Js1 + (1 )52, distributed as t with
P m—+n—2
(m + n — 2)degrees of freedom
0 = 0% x> = 2(n— 1)/05 distributed as x* with (1 —1) o # a% ¥ < X%fa/Z and x? > Xi/z
w unknown degrees of freedom a2 > g% 2> Xﬁ
< oé XZ < X%fa
o} = o} F = s3/s3 distributed as F with (m — 1) and (n — 1) o2 * a3 F<Fi_q4p and F>F,p
B F Mo degrees of freedom a2 > a3 F>F,
unknown 2 2 F<Fi_4

a7 <(72
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For any given value of 6, these limits may be found from tables of the F distribution. It can be
shown, by consulting these tables, that the power of the F test is rather small unless the ratio
of variances is large, a result that is in accordance with common sense.

As before, this test may be adapted to test the null hypotheses 07 > ¢3 and % < 03. The
critical regions are f > f, and f < f1_, respectively.

A summary of some of the tests mentioned above is given in Table 10.1.

10.4. OTHER DISTRIBUTIONS

The ideas discussed in previous sections can be applied to other distributions and we will
look briefly at two important examples, the binomial and Poisson.

Consider a situation where there are only two outcomes of a trial, for example, either satis-
factory or unsatisfactory, with the latter outcome having a probability p. In this situation, the
number of unacceptable outcomes in n independent random trials is given by the binomial
distribution. As an example, we will test the null hypothesis Hy : p < pg against the alternative
H;:p > po, where py is some specified value. If the observed number of unacceptable
outcomes is x, then from equation (4.34),

Plv> K = ;::k(’:)pfu .

It follows that when Hj is true, that is, when p < py,

& n , n—r __
P>k < Zk( )=o) = ek
In practice, if we calculate B(k, py), we accept the null hypothesis if B(k,py) > «; otherwise
reject it. Alternatively, from the value of B(k, py), we can decide at what value of « the null
hypothesis can be accepted and decide at that stage whether it is a reasonable value.

EXAMPLE 10.8

In the literature of a supplier of capacitors, it is stated that no more than 1% of its products are defective. A
buyer checks this claim by testing a random sample of 100 capacitors at the 5% level and finds that 3 are
defective. Does the buyer have a claim against the supplier?

We need to calculate the probability that in a random sample of 100 capacitors, there would be at
least 3 that are defective if py = 0.01. From the binomial distribution with p = py,

Plx>3] =1-Plx <3
2

=1-> ( 120) (0.01)7(0.99)'%.

r=0

This may be evaluated exactly by direct calculation, or approximately by using the normal approx-
imation to the binomial for large n. The value of P[x > 3] then corresponds approximately to

25— ,u}

P{zz
g
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whereu = npg = land ¢ = [npy(1 — po)]l/ % — 1.005. The direct calculation gives 0.0694 compared
to the normal approximation of 0.0681, and as these are both greater than 0.05, the hypothesis
cannot be rejected and no claim can be made against the supplier.

In the case of a random Poisson variable k distributed with parameter 4, as an example we
could consider testing the null hypothesis Hyp: A = Ay against the alternative H,:1 # Ap. By
analogy with the procedure followed for the binomial distribution, for a given significance
level, we would calculate the probability that the observed value of k is greater than or
less than the value predicted if the null hypothesis is true and compare this with the signif-
icance level. Alternatively, the p-value could be calculated and, from this, a value of the
significance level found, above which the null hypothesis would be rejected. An example
is given in Problem 10.9.

Just as for the normal distribution, these tests may be extended to other related cases, for
example to test the equality of the parameters p; and p; in two Bernoulli populations, or the
equality of the parameters of two Poisson distributions, but we will not pursue this further.

Finally, can we test a null hypothesis, such as Ho:u = ug, against a suitable alternative
when the population distribution is unknown? The answer is yes, but the methods are gener-
ally less powerful than those available when the distribution is known. Hypothesis testing in
the former situation is an example of nonparametric statistics and is discussed in Chapter 11.

10.5. ANALYSIS OF VARIANCE

In Section 10.3, we discussed how to test the hypothesis that the means of two normal
distributions with the same, but unknown, variance differ. It is natural to consider how to
extend that discussion to the case of several means. The technique for doing this is called anal-
ysis of variance, usually abbreviated to ANOVA. It can be used, for example, to test the consis-
tency of a series of measurements carried out under different conditions, or whether different
manufacturers are producing a particular component to the same standard. ANOVA is an
important technique in biological and social sciences, but is much less used in the physical
sciences and so the discussion here will be very brief.

Consider the case of m groups of measurements, each leading to an average value
wi(i =1, 2, ...,m). We wish to test the null hypothesis

Hoipg = pp = oo = Uy (10.32a)
against the alternative

Hp:pi # w for some i # j, (10.32b)

at some significance level. Thus, we are testing whether the various measurements all come
from the same population and, hence, have the same variance. ANOVA is a method for split-
ting the total variation in the data into independent components that measure different sour-
ces of variation. A comparison is then made of these independent estimates of the common
variance ¢2. In the simplest case, there are two independent estimates. The first of these, 53, is
obtained from measurements within groups, and their corresponding means. It is a valid
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estimator of o2, independent of whether Hj) is true or not. The second estimator, 512;, is obtained
from the measurements between groups, and their corresponding means. It is only valid when
Hy is true, and moreover if Hy is false, it will tend to exceed 2. The test is, therefore, to
compare the values of these two estimators and to reject Hy if the ratio s3/s2, is sufficiently
large. This is done using the F distribution.

The above is an example of a one-way analysis because the observations are classified under
a single classification, for example, the manufacturing process in the example above.
ANVOA may be extended to deal with multi-way classifications. In our example, a second
classification might be the country where the components were made. This situation is
referred to as multi-way analysis, but we will discuss only the simpler, one-way analysis. In
addition, we will assume that all samples are of the same size. This condition is preferable
in practical work, but can be relaxed if necessary at the expense of somewhat more compli-
cated equations.

The procedure starts with random samples, each of size n selected from m populations.
Each sample is assumed to be normally and independently distributed with means
Uy = My = ... = i, and a common, but unknown, variance ¢2. If xjj is the jth sample value
from the ith population, the sample mean of the ith population is

B R ,
X; = njzlxij, 1 = 1, 2,...,m (10333)
and the mean of the whole sample is
1 r n
X=— xj =

> (10.33b)
mni = i=1

The estimate of the variance from the entire sample is given by
s = SST/(mn —1) (10.34)
where SST is the total sum of squares given by
SST = Zm: zn:(xij - x)z‘ (10.35)
i=1j=1
By writing the right-hand side of this expression as

n 2
2X%-E+E—ﬂ,

m
=1j=1

and noting that by virtue of (10.33a,b),

the quantity SST may be written as the sum of two terms,

SST = SSB + SSW, (10.36)
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where
m
SSB=nd (% —x) (10.37)
i=1
is the sum of squares between the groups, and
m n 2
ssw =3 (xij —xi) (10.38)
i=1j=1

is the sum of squares within the groups. Alternative forms for (10.35), (10.37) and (10.38), that are
more convenient for calculations, are:

m n
SST = > 3" 2% — nm?, (10.39a)
i=1j=1
m
SSB=n>» (% —%) (10.39b)
i=1
and, using (10.36),
m n m
SSW = Z x%j —n ZE'IZ (10.39¢)
i=1j=1 i=1

The two sums, SSW and SSB, form the basis of the two independent estimates of the vari-
ance we require. From previous work on the chi-squared distribution, in particular its addi-
tive property, we know that if Hy is true, the quantity s2, = SSW/m(n — 1) is distributed as
x> with m(n — 1) degrees of freedom; s3 = SSB/(m — 1) is distributed as x? with (m — 1)
degrees of freedom; and s2 = SST/(nm — 1) is distributed as x> with (nm — 1) degrees of
freedom. The quantities s7, s3 and s2, are also called the mean squares. The test statistic is
then F = s3/s3,, which is distributed with (m — 1) and m(n — 1) degrees of freedom and is
unbiased if Hy is true. The variance of SSW is the same, whether Hj is true or not, but the
variance of SSB if Hy is not true may be calculated and is greater if Hy is false. Thus, since
5123 overestimates o2 when Hj is false, the test is a one-tailed one, with the critical region
such that Hy is rejected at a significance level « when F > F,[(m — 1), m(n — 1)]. Alternatively,

one could calculate the p-value for a value » of the test statistic, i.e.
p—value = P[F{(m—1),m(n —1)} >y

and choose the significance level a posteriori. The test procedure is summarized in Table 10.2.

TABLE 10.2  Analysis of variance for a one-way classification

Source of variation Sums of squares Degrees of freedom Mean square Test statistic
Between groups SSB m—1 s2 = SSB/(m —1) F = s3/s3,
Within groups SSW m(n—1) 52y = SSW/[m(n —1)]

Total SST nm—1 s = SST/(nm —1)
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EXAMPLE 10.9

Three students each use five identical balances to weigh a number of objects to find their average weight,
with the results as show below.

S1 22 17 15 20 16
52 29 23 22 20 28
S3 29 31 27 30 32

Test, at a 5% significance level, the hypothesis that the average weights obtained do not depend on which
student made the measurements.
This can be solved using a simple spreadsheet. Intermediate values are:

x1 = 18.0, xp = 24.4, x3 = 29.8 and x = 24.07.
Then, from (10.39)
SSB = 209.4, SSW = 249.6
and so
F = s3/s3 = 2.10.

From Table C.5, Fy5(4,10) = 3.48 and since F < 3.48, the hypothesis cannot be rejected at this
significance level.

PROBLEMS 10

10.1 A signal with constant strength S is sent from location A to location B. En route, it is
subject to random noise distributed as N(0, 8). The signal is sent 10 times and the
strength of the signals received at B are:

14 15 13 16 14 14 17 15 14 18

Test, at the 5% level, the hypothesis that the signal was transmitted with strength 13.

10.2 A factory claims to produce ball bearings with an overall mean weight of W = 250g and
a standard deviation of 5g. A quality control check of 100 bearing finds an average
weight of W = 248g. Test, at a 5% significance level, the hypothesis Hy:W = 250g
against the alternative H,:W #250g. What is the critical region for W and what is the
probability of accepting Hy, if the true value of the overall mean weight is 248g?

10.3 Nails are sold in packets with an average weight of 100 g and the seller has priced the
packets in the belief that 95% of them are within 2g of the mean. A sample of 20 packets
are weighed with the results:

100 97 8 93 103 105 93 110 101 102
98 99 105 106 8 103 90 93 92 106
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Assuming an approximate normal distribution, test this hypothesis at a 10% significance
level against the alternative that the variance is greater than expected.

A supplier sells resistors of nominal value 5 ohms in packs of 10 and charges a premium
by claiming that the average value of the resistors in a pack is not less than 5 ohms. A
buyer tests this claim by measuring the values of the resistors in two packs with the
results:

53 54 49 51 50 48 51 52 47 49
52 55 47 46 55 54 50 50 48 54

Test the supplier’s claim at a 10% significance level.

New production technique M1 has been developed for the abrasive material of car
brakes and it is claimed that it reduces the spread in the lifetimes of the product. It is
tested against the existing technique M2, by measuring samples of the effective lifetimes
of random samples of each production type. Use the lifetime data below to test the claim
at a 5% significance level.

M1 98 132 109 116 131 124 117 120 116 99 109 113
M2 100 120 134 99 130 113 106 124 118

Two groups of students study for a physics examination. Group 1 of 15 students study
full-time at college and achieve an average mark of 75% with a standard deviation of 3.
Group 2 of 6 students study part-time at home and achieve an average mark of 70% with
a standard deviation of 5. If the two populations are assumed to be normally distributed
with equal variances, test at a 5% level of significance the claim that full-time study
produces better results.

Six samples of the same radioisotope are obtained from four different sources and their
activities in kBq measure and found to be:

S1 S2 S3 S4
91 129 119 100
100 127 141 93
99 100 123 89
89 98 137 110
110 97 132 132
96 113 124 116

Test, at a 10% significance level, the hypothesis that the mean activity does not depend
on the source of the supply.
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10.8 A manufacturer of an electrical device states that if it is stress tested with a high voltage,
on average no more than 4% will fail. A buyer checks this by stress testing a random
sample of 1000 units and finds that 50 fail. What can be said about the manufacturer’s
statement at a 10% significance level?

10.9 The supplier in Example 10.8 claims that a defective rate of 1% means that no more than
10 unacceptable capacitors are distributed on any day. This is checked by daily testing
batches of capacitors. A five-day run of such tests resulted in 13, 12, 15, 12, 11 defective
capacitors. Is the supplier’s claim supported at the 5% significance level?
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In Chapter 10 we discussed how to test a statistical hypothesis Hy about a single popu-
lation parameter, such as whether its mean u was equal to a specific value u, against a defi-
nite alternative Hj, for example that u was greater than y,, and gave a very brief explanation
about how this may be extended to many parameters by the method known as analysis of
variance. In this chapter we will discuss a range of other tests. Some of these address ques-
tions about the population as a whole, without always referring to a specific alternative,
which is left as implied. Examples are those that examine whether a set of observations
is described by a specific probability density, or whether a sample of observations is
random, or whether two sets of observations are compatible. We will also discuss some tests
that are applicable to non-numeric data. We will start by looking at the first of these
questions.

11.1. GOODNESS-OF-FIT TESTS

In Section 8.4.1 we introduced the method of estimation known as ‘minimum chi-square’,
and at the beginning of that chapter we briefly discussed how the same technique could be
used to test the compatibility of repeated measurements. In the latter applications we are
testing the statistical hypothesis that estimates produced by the measurement process all

Statistics for Physical Sciences: An Introduction 22 1 Copyright © 2012 Elsevier Inc. All rights reserved.
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come from the same population. Such procedures, for obvious reasons, are known as good-
ness-of-fit tests and are widely used in physical science.

11.1.1. Discrete Distributions
We will start by considering the case of a discrete random variable x that can take on a finite
number of values x;(i = 1, 2, ..., k) with corresponding probabilities p;(i = 1,2, ..., k). We
will test the null hypothesis
Ho:p,' = m;, i = 1, 2,...,k, (11.1a)
against the alternative
H,:p; # m, (11.1b)
where ; are specified fixed values and

k

k
ZTFZ' = Zpl = 1.

i=1 i=1

To do this we will use the method of likelihood ratios that was developed in Chapter 10. The
likelihood function for a sample of size n is

k
L(p) = [[ ],

i=1

where f; = fi(x) is the observed frequency of the value x;. The maximum value of L(p) if Hy is
true is

k
maxL(p) = L(w) = lef’ (11.2)

To find the maximum value of L(p) if H, is true, we need to know the ML estimator of p, i.e.,
p- Thus we have to maximize

k
InL(P) = ) filnp;, (11.3a)
i=1

subject to the constraint

k
dopmi=1 (11.3b)

i=1

Introducing the Lagrange multiplier A, the variation function is

i=1

P = InL(P)— A
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and setting dP/dp; = 0, gives p; = f;/A. Now since
k k
1 n
j=1 ji=1
the required ML estimator is p; = f;/n. Thus the maximum value of L(P) if H, is true is
k fi
; fi
L(p) = (— . (11.4)
1t
The likelihood ratio is therefore, from (11.2) and (11.4),
L(m) _ T <m>ff
A= oy 1) (11.5)
L(p) 11:[1 fi

Finally, Hy is accepted if A < A, where 4. is a given fixed value of 1 that depends on the confi-
dence level of the test, and Hy is rejected if A > Ac.

EXAMPLE 11.1

A die is thrown 60 times and the resulting frequencies of the faces are as shown in the table.

Face 1 2 3 4 5 6
Frequency 9 8 12 11 6 14

Test whether the die is ‘true” at a 10% significance level.
From equation (11.5),

2Ini = Z{nlnnqtifiln(}:i)}, (11.6)
where
m = 1/6; n =60; and k = 6.
Thus
—2InA = -2[60In60 —60In6 —91In9... — 14In14] = 4.3.

We showed in Chapter 10 that —2In 1 is approximately distributed as x?, with (k — 1), in this case 5,
degrees of freedom. (There are only 5 degrees of freedom, not 6, because of the constraint (11.3b).)
From Table C.4 we find

X51(5) = 9.1,
and since x2 < 9.1, we can accept the hypothesis that the die is true, i.e.,
H() pi = 1/6, i = 1, 2,..., 6,

at a 10% significance level. Alternatively, we could calculate the p-value for a x? value of 4.3. This is
approximately 0.5, so that the hypothesis would be accepted for all significance levels a < 0.5.
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An alternative goodness-of-fit test is due to Pearson. He considered the statistic

Z (i - e’ Z (fi— ””’ ) 11.7)

i=1 i=1

where f; are the observed frequencies and ¢; are the expected frequencies under the null
hypothesis. Pearson showed that X? is approximately distributed as x> with (k — 1) degrees
of freedom for large values of n. At first sight the two statistics X*> and —21n A appear to be
unrelated, but in fact they can be shown to be equivalent asymptotically. To see this, we
define

Ai = (fi — 1/171’,')/7”171’1',
and write (11.6) as

k
—2In2 =2) filn(1+4).
i=1

For small A; we can expand the logarithm as

In(1+4;) = A —A2)2+ ...,
which gives

k

—2Ini = 2> [(fi — nm;) + nm;] [AZ ;A$+o< 3/2)]
i=1

P

=2 [(f,-nm)A,-+mr,-A,-
i=1

Using the definition of A; and the fact that

k
ZA,‘TF,‘ = 0,
i=1

Sl 0 (n—w)} |

gives

“2Ina = zk:[nmA% +0(n?)] = x2[1+0(n12)].

i=1
So X? and —21n 1 are asymptotically equivalent statistics, although they will differ for small

samples. Using the data of Example 11.1, gives X?> = 4.20, compared to —2In A = 4.30. The
Pearson statistic is easy to calculate and in practice is widely used. It is usually written as

k YA
XZ _ Zw7 (11.8)
i=1 !

where o; are the observed frequencies and ¢; are the expected frequencies under the null
hypothesis.
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EXAMPLE 11.2

A manufacturer produces an electrical component in four different and increasing qualities A, B, C, and D.
These are produced independently with probabilities 0.20, 0.20, 0.25, and 0.35, respectively. A laboratory
purchases a number of components and pays a lower price by agreeing to accept a sample chosen at random
from A, B, C, and D. To test that the manufacturer is not in practice supplying more lower quality
components than expected, the lab tests a random sample of 60 of them and finds 15, 7, 19, and 19 are of
quality A, B, C, and D, respectively. At what significance level do the components not satisfy the manu-
facturer’s claim?

We are testing the hypothesis

Hy:pi=m, i=1,2,..,k
where

m; = 0.20, 0.20, 0.25, 0.35, for i= 1, 2, 3, 4, respectively.

We start by calculating the expected frequencies under Hy, i.e., ¢; = 60m;. Thus
e =12, 12, 15, 21, fori = 1, 2, 3,4, respectively.

Then from (11.8) we find x> = 4.09 for 3 degrees of freedom. The p-value of the test is therefore
p = P[x? >4.09:Hy] and from Table C.4 this is approximately 0.25. Thus Hy would only be rejected
at significance levels above about 0.25, i.e., in practice the manufacturer is fulfilling the contract.

11.1.2. Continuous Distributions

For the case of continuous distributions, the null hypothesis is usually that a population is
described by a certain density function f(x). This hypothesis may be tested by dividing the
observations into k intervals and then comparing the observed interval frequencies
0i(i =1, 2,..., k) with the expected values ¢;(i = 1, 2,..., k) predicted by the postulated
density function, using equation (11.8). For practical work a rule of thumb is that the number
of observations in each bin should not be less than about 5. This may necessitate combining
data from two or more bins until this criterion is satisfied.

If the expected frequencies m; are unknown, but are estimated from the sample in terms of
r parameters to be 7; then the statistic
k ~\2
N g L (11.9)
F B
is also distributed as x? but now with (k — 1 — r) degrees of freedom. In using the chi-square
test of a continuous distribution with unknown parameters, one always has to be careful that
the method of estimating the parameters still leads to an asymptotic x* distribution. In
general, this will not be true if the parameters are estimated either from the original data
or from the grouped data. The correct procedure is to estimate the parameters 8 by the ML
method using the likelihood function
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k
L) = [1lpix o),
i=1
where p; is the appropriate density function. Such estimates are usually difficult to
obtain; however if one uses the simple estimates then one may be working at a higher
significance level than intended. This will happen, for example, in the case of the normal
distribution.

EXAMPLE 11.3

A quantity x is measured 100 times in the range 0—40 and the observed frequencies o in eight bins are
given below.

X 0-5 5—-10 10—15 15—-20 20-25 25-30 30—-35 35—40
0 5 9 15 26 18 14 8 5

Test the hypothesis that x has a normal distribution.

If the hypothesis is true, then the expected frequencies ¢ have a normal distribution with the
same mean and standard deviation as the observed data. The latter may be estimated from the
sample and areX = 19.6 and s = 8.77. Using these we can find the expected frequencies for each of
the bins. This may be done either by finding the z value at each of the bin boundaries and using
Tables C.1 of the normal distribution function or by direct integration of the normal pdf. Either way,
the expected frequencies are

e 3.5 8.9 16.3 21.8 21.3 15.1 7.8 29

Since the first and last bins have entries less than 5, we should combine these with the neighboring
bins, so that we finally get

0 14 15 26 18 14 13
e 12.4 16.3 21.8 21.3 15.1 10.7

Then from (11.9) we find x?> = 2.21 and because we have estimated two parameters from the data,
this is for 3 degrees of freedom. From Table C.4, there is a probability of approximately 50% of
finding a value at least large as this for 3 degrees of freedom; so the hypothesis of normality is
very consistent with the observations.

A disadvantage of Pearson’s XZ test is that the data have to be binned, which could be
a problem in cases where the number of observations is small. One method that does not
require binning is the Kolmogorov—Smirnov test. In this test we start with a sample y; of size
n from a continuous distribution and test the hypothesis Hy that the distribution function
is F(x). This is done by defining a piecewise continuous function F,(x) as the proportion of
the observed values that are less than x, i.e., (y; < x)/n. If Hy is true, F.(x) will be close to
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1 =
F(x) |
Fe(x)
0 | | |
) y2 ¥4 ¥(6)

FIGURE 11.1 Construction of the Kolmogorov—Smirnov statistic.

F(x) and a natural test statistic is the quantity D = max|F.(x) — F(x)|, where the maximum
is found by considering all values of x. This is called the Kolmogorov—
Smirnov statistic.

To compute D, the sample is first ordered in increasing values and relabeled
y(1), y(2),...,y(n). Then F,(x) consists of a series of steps with increases of 1/n at the
points y(1), y(2),...,y(n) as shown in Fig. 11.1. Now because D is defined in terms of
a modulus, it can be written as

D = max{max[F,(x) — F(x)], max[F(x) — F.(x)]}
' j— (11.10)
= max{ L~y ) -1,

n

where j takes all values from 1 to n. So if the data lead to a value of D = d, the p-value of the
test is

p = P[D >d: Hy).

Although this probability in principle depends on whether Hj is true, it can be shown that in
practice it is independent of the form of F(x) and, without proof, a test at significance level «
can be found by considering the quantity

D* = (vn+0.12+0.11/y/n)D, (11.11)
which approximates to y/n D for large samples. Then if P[D* > d*] = q, the critical values of
d} are

doq = 1224, dygs = 1.358, djgps = 1.480, dyg = 1.626. (11.12)

Finally, a test at a significance level « would reject Hy if the observed value of D* is at least as
large as d,.



228 11. HYPOTHESIS TESTING II: OTHER TESTS

EXAMPLE 11.4

A sample of size six is drawn from a population and the values in ascending order are:

1 2 3 4 5 6
0.20 0.54 0.71 1.21 1.85 2.45

Test the hypothesis that the sample comes from a population with the distribution function of Example 3.2.
From the data and the distribution function of Example 3.2, we can construct the following table:

j 1 2 3 4 5 6

Fly(j)] 0.001 0.018 0.035 0.123 0.283 0.443
i/n = Fly(j)) 0.166 0316 0.465 0.544 0.551 0.557
Fly()] — (—1)/n 0.001 —0.149 —0.298 —0.377 —0.385 —0.390

From this table and equation (11.10) we have D = 0.557 and hence from (11.11) we have
D* = 1.456. Finally, using the critical values given in (11.12), we reject the null hypothesis at the
0.05 level of significance, but not at the 0.025 level.

11.1.3. Linear Hypotheses

In Section 8.1.3 we briefly mentioned the use of the x?and F distributions as goodness-of-fit
tests in connection with the use of the linear least-squares method of estimation. These appli-
cations were designed to test hypotheses concerning the quality of the approximation of the
observations by some assumed expression linear in the parameters. We shall generalize that
discussion now to consider some other hypothesis tests that can be performed using the least-
squares results.

We have seen in Section 8.1 that the weighted sum of residuals S = RTV~!R, where
R=Y-®0,

and V is the variance matrix of the observations, is distributed as x> with (n — p) degrees of
freedom, where n is the number of observations and p is the number of parameters
Ok = 1,2,...,p). We also saw (compare equation (8.31)) that

R'VIR = Y-Y) VI Y-Y) - (O®-0)'M (6 -0),

where M is the variance matrix of the parameters. It follows from the additive property of x>
that since

Y -Y)Tv 1y —Y")
is distributed as x? with n degrees of freedom, the quantity

(O®-0)M (O -0)
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is distributed as x? with p degrees of freedom. To test deviations from the least-squares esti-
mates for the parameters we need to know the distribution of

(O®-0)E'(O-0)
where E is the error matrix of equation (8.32). In the notation of Section 8.1.2,

E = @(®"Wd) !, (11.13)

and so

That is,

But we have seen above that
(O®-0)'M (6O -0)
is distributed as x> with p degrees of freedom, and so
(©-©)'E(0-0)/)

is distributed as

X(p)/p
X*(n—p)/(n—p)
Thus to test the hypothesis Hy : @ = @y, we compute the test statistic

= Flpn—p).

Fo=(®-0)E(®-0)/)p (11.14)

and reject the hypothesis at a significance level of « if Fy > Fy(p,n — p).

The foregoing discussion is based on the work of Section 8.2, where we considered the
least-squares method in the presence of linear constraints on the parameters. By analogy
we will now generalize the discussion to include the general linear hypothesis

Ho:Cpby = Z;, 1<p. (11.15)

This may be a hypothesis about all of the parameters, or any subset of them. The null hypoth-
esis Hy may be tested by comparing the least-squares solution for the weighted sum of resid-
uals when Hj is true, i.e., S;, with the sum in the unconstrained situation, i.e., S. In the
notation of Section 8.2, the additional sum of residuals S, = S. — S, which is present if the
hypothesis Hy is true, is distributed as x> with I degrees of freedom, independently of S,
which itself is distributed as x> with (n — p) degrees of freedom. Thus the ratio

Sa/1

STy

(11.16)
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is distributed as F(I,n — p). Using the results of Section 8.2 we can then show that

F=(z-CO®)T(CEC) 1z -CO)/I (11.17)

Thus Hy is rejected at the « significance level if F > F.(I,n — p). (Compare the discussion at
the end of Section 8.1.3.)

EXAMPLE 11.5
An experiment results in the following estimates for three parameters, based on ten measurements
91 :2; é2:4; égil,

with an associated error matrix

Test the hypothesis

at the 5% significance level.
For the above hypothesis,

2
- 1 00 0
o[- (3002 (1)
1
and the calculated value of F from equation (11.17) is 6. From Table C.5 of the F distribution, we find
that
Fa(l,n - p) = F0.05(2, 7) = 4.74,

and so we can reject the hypothesis at a 5% significance level.

Finally, we have to consider the power of the test of the general linear hypothesis, i.e., we
have to find the distribution of F if Hy is not true. Now S/(n — p) is distributed as x*/(n — p)
regardless of whether Hy is true or false, but S,/! is only distributed as x?/I if Hy is true. If Hy
is false, then S,/I will in general be distributed as noncentral x?, which has, for ! degrees of
freedom, a density function

) N
e = 30
p=0~ T

; )f(xz;lJrZP),

where f(x?; | + 2p) is the density function for a x? variable with (I + 2p) degrees of freedom,
and the noncentrality parameter is

A= %(C@ —-z)"(emc”)H(coe - z).
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It follows that F is distributed as a noncentral F distribution. Tables of the latter distribution are
available to construct the power curves. A feature of the noncentral F distribution is that the
power of the test increases as A increases.

11.2. TESTS FOR INDEPENDENCE

The x? procedure of Section 11.1 can also be used to construct a test for the independence
of variables. Suppose 1 observations have been made and the results are characterized by
two random variables x and y that can take the discrete values xi, xy,..., x, and
Y1, Y2, ---, Yc, respectively. (Continuous variables can be accommodated by dividing the
range into intervals, as described in Section 11.1.2) If the number of times the value x; is
observed together with y; is 1, then the data can be summarized in the matrix form shown
in Table 11.1, called an r x ¢ contingency table.

If we denote by p; the marginal probability for x;, i.e., the probability for x to have the value
x;, independent of the value of y, and likewise denoted by g; the marginal probability for y;,
then if the null hypothesis Hj is that x and y are independent variables, the probability for
observing x; simultaneously with y; is pig; (i = 1, 2,..., r;j = 1, 2,..., ¢). Since the marginal
probabilities are not specified in the null hypothesis they must be estimated. Using the
maximum likelihood method, this gives

. 1< .
pi = E]E1nij’ i=1,2,..r (11.18a)
and
1 T
4 =~ E ni, j=1,2,..0c (11.18b)

i=1

and if Hy is true, the expected values for the elements of the contingency table are np;g;. So Ho
can be tested by calculating the quantity

r c (n--—nﬁ.f].)z
X => . (11.19)

i=1j=1 pif;j

TABLE 11.1 An r x c contingency table

0 2 Ye
X1 n n12 " nic
X2 o1 N2 e

Xr ny1 ny1 Ny
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and comparing it with x2 at a significance level a. It remains to find the number of degrees of
freedom for the statistic x2. First we note that because

T c
Y= d=1 (11.20)
i1 i=j

only (r — 1) parameters p; and (c — 1) parameters g; need to be estimated, i.e., (r + ¢ —2) in
total. Therefore the number of degrees of freedom is

(number of entries — 1) — (r+c¢—2) = (r—1)(c - 1). (11.21)

EXAMPLE 11.6

A laboratory has three pieces of test apparatus of the same type, and they are used by four technicians on
a one-month rota. A record is kept of the number of machine breakdowns for each month, and the average
number is shown in the table according to which technician was using the machine.

Equipment
Technician E1 E2 E3 Total
T1 3 6 1 10
T2 0 1 2 3
T3 3 2 4 9
T4 6 2 1 9
Total 12 11 8 31

Are the variables E, the equipment number, and T, the technician who used the equipment, independent
random variables in determining the rate of breakdowns?
In the notation above, r = 4, ¢ = 3andn = 31. So from (11.18), using the data given in the table,

10 . 3 9 9
PL=3p P2=3p 3= 31 P+ = 3p

and
N
=3 =3 ® 357
Then from (11.19)
PPN}
cr (nj—mnpq.)
D L SO 10.7,

i=1j=1 "Pifj

=
Il

and this is for (r —1)(c — 1) = 6 degrees of freedom. The p-value is
p = P[x% > 5.66:Hy| = «

and from Table C.4, « = 0.1; so the data are consistent at the 10% significance level with the inde-
pendence of the two variables in determining the number of breakdowns.
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11.3. NONPARAMETRIC TESTS

The tests that were discussed in Chapter 10 all assumed that the population distribu-
tion was known. However there are cases were this is not true, and to deal with these situ-
ations we can order the observations by rank and apply tests that do not rely on
information about the underlying distribution. These are variously called nonparametric
tests, or distribution-free tests. Not making assumptions about the population distribution
is both a strength and a weakness of such tests; a strength because of their generality
and a weakness because they do not use all the information contained in the data. An
additional advantage is that such tests are usually quick and easy to implement, but
because they are less powerful than more specific tests we have discussed, the latter
should usually be used if there is a choice. In addition, although the data met in physical
science are usually numeric, occasionally we have to deal with non-numeric data, for
example, when testing a piece of equipment the outcome could ‘pass’ or ‘fail’. Some
nonparametric tests can also be applied to these situations. The discussion will be brief,
and not all proofs of statements will be given.

11.3.1. Sign Test

In Section 10.5 we posed the question of whether it is possible to test hypotheses about the
average of a population when its distribution is unknown. One simple test that can do this is
the sign test, and as an example of its use we will test the null hypothesis Hy : © = p( against
some alternative, such as H, : u = p,; or H; : u > puy using a random sample of size n in the
case where # is small, so that the sampling distribution may not be normal. In general if we
make no assumption about the form of the population distribution, then in the sign test and
those that follow, u refers to the median, but if we know that the population distribution is
symmetric, then u is the arithmetic mean. For simplicity the notation u will be used for both
cases.

We start by assigning a plus sign to all data values that exceed py and a minus sign to all
those that are less than . We would expect the plus and minus signs to be approximately
equal and any deviation would lead to rejection of the null hypothesis at some significance
level. In principle, because we are dealing with a continuous distribution, no observation
can in principle be exactly equal to gy, but in practice approximate equality will occur
depending on the precision with which the measurements are made. In these cases the
points of ‘practical equality’ are removed from the data set and the value of n reduced
accordingly. The test statistic X is the number of plus signs in the sample (or equally we
could use the number of minus signs). If Hy is true, the probabilities of obtaining a plus
or minus sign are equal to % and so X has a binomial distribution with p = py = 1/2.
Significance levels can thus be obtained from the binomial distribution for one-sided and
two-sided tests at any given level a.

For example, if the alternative hypothesis is H, : u > g, then the largest critical region of
size not exceeding « is obtained from the inequality x > k,, where

n
> B(x:npo) < a (11.22a)

x=k,
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and B is the binomial probability with pg = p = % if Hy is true. Similarly, if H; : p < ug, we

form the inequality x < k], where k], is defined by

K,
> B(x:np) <« (11.22b)
x=0

Finally,if H, : u # po,i.e., we have a two-tailed test, then the largest critical region is defined by
x < k;/2 and x> ky/o. (11.22¢)

For sample sizes greater than about 10, the normal approximation to the binomial may be
used with mean u = np and o> = np(1 — p).

EXAMPLE 11.7

A mobile phone battery needs to be regularly recharged even if no calls are made. Over 12 periods when
charging was required, it was found that the intervals in hours between chargings were:

50 35 45 65 39 38 47 52 43 37 44 40

Use the sign test to test at a 10% significance level the hypothesis that the battery needs recharging on average
every 45 hours.

We are testing the null hypothesis Hy : ug = 45 against the alternative H, : uy # 45. First we
remove the data point with value 45, reducing n to 11, and then assign a plus sign to those
measurements greater than 45 and a minus sign to those less than 45. This gives x = 4 as the
number of plus signs. As this is a two-tailed test, we need to find the values of kg5 and kj 5 for
n = 11. From Table C.2, these are kj, ;5 = 3 and ko5 = 9. Since x = 4 lies in the acceptance region,
we accept the null hypothesis at this significance level.

The sign test can be extended in a straightforward way to two-sample cases, for example,
to test the hypothesis that u; = u, using samples of size n drawn from two non-normal
distributions. In this case the differences d;(i = 1, 2,...,n) of each pair of observations is
replaced by a plus or minus sign depending on whether d; is greater than or less than
zero, respectively. If the null hypothesis instead of being u; —u, = 0 is instead
u1 — gy = d, then the procedure is the same, but the quantity d is subtracted from each d;
before the test is made.

11.3.2. Signed-Rank Test

The sign test uses only the positive and negative signs of the differences between the
observations and ug in a one-sample case (or the signs of the differences d; between observa-
tions in a paired sample case). Because it ignores the magnitudes of the differences, it can, for
example, lead to conclusions that differ from those obtained using the f-distribution, which
assumes the population distribution is normal. There is however another test, called the Wil-
coxon signed-rank test, or simply the signed-rank test, that does take into account the magnitude
of these differences. The test proceeds as follows.
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We will assume that the null hypothesis is Hp:u = pp and that the distribution is
symmetric. If the latter is not true then the tests will refer to the median of the distribution.
First, the differences d; = x; — uo(i = 1, 2,...,n) (or d; = x; — y;) are found and any that are
zero discarded. The absolute values of the remaining set of differences are then ranked in
ascending order, i.e., rank 1 assigned to the smallest absolute value of d;, rank 2 assigned
to the second smallest absolute value of d;, etc. If |d;| is equal for two or more values, their
rank is assigned to be the average of the ranks they would have had if they had been slightly
different and so distinguishable. For example, if two differences are equal and notionally
have rank 5, both would be assigned a rank of 5.5 and the next term would be assigned
arank 7.

We now define w and w_ to be the sum of the rank numbers corresponding to d; > 0 and
d; < 0, respectively, and w = min{w,,w_}. For different samples of the same size n, the
values of these statistics will vary, and for example to test Hy : u = p against the alternative
H, :p < pg,ie., aone-tailed test, we would reject Hy if w,. is small and w_ large. (Similarly for
testing Hp : uqy = up against H, : uq < up.) Likewise if w is large and w_ small, we would
accept H, : u > pg (and similarly H, : uq > up). For a two-tailed test with H, : u # ug, or
Hg : py # up, Hp would be rejected if either wy, w_, and hence w, were sufficiently small.
If the two-tailed case is generalized to Hy : 41 — uy = dp, then the same test can be used by
subtracting dp from each of the differences d;, as in the sign test, and in this case the distribu-
tion need not be symmetric.

The final question is to decide what is ‘large’ and ‘small’ in this context. For small n < 5, it
can be shown that provided « < 0.05 for a one-tailed test, or less than 0.10 for a two-tailed
test, any value of w will lead to acceptance of the null hypothesis. The test is summarized
in Table 11.2.

For n greater than about 25, it can be shown that the sampling distribution of w., or w_,
tends to a normal distribution with
» nmn+1)2n+1)

nn+1) . _
—1 and variance ¢° = Sy E— (11.23)

so that the required probabilities may be found using the standardized variable
z4+ = (w+ — pu)/o. For the range 5 < n < 25 itis necessary to calculate the explicit probabilities
or obtain values from tabulations, such as given in Table C.7.

mean u =

TABLE 11.2 Signed-rank test

H, H, Test statistic
b= H M F po w

< Mo w4

M > o w-
M = p M1 F o w

M1 < M w4

H1 > M2 w—
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EXAMPLE 11.8

Rework Example 11.7 using the rank-sign test.
Using the data of Example 11.7 with ug = 45, we have

X 50 35 45 65 39 38 47 52 43 37 44 40
d; 5 —10 0 20 —6 -7 2 7 -2 -8 -1 -5
|di] 5 10 20 6 7 2 7 2 8 1 5
rank 4.5 10 11 6 7.5 2.5 7.5 2.5 9 1 4.5

where the point with d; = 0 has been discarded and the rank of ties have been averaged. From the
rank numbers we calculate w, = 25.5, w_ = 40.5,and sow = min{w,,w_} = 25.5. From Table
C.7, the critical region for n = 11 in a two-tailed test with &« = 0.10 is strictly w < 13 (although w <
14 is also very close), but since w is greater than either of these values we again accept the null
hypothesis at this significance level.

11.3.3. Rank-Sum Test

The rank-sum test, which is also called the Wilcoxon, or Mann—Whitney, rank-sum test, is
used to compare the means of two continuous distributions. When applied to the case of
non-normal distributions, it is more powerful than the two-sample t-test discussed in
Chapter 10.

We will use it to test the null hypothesis Hy : 41 = u, against some suitable alternative.
First, samples of sizes 111 and n; are selected from the two populations, and if n; # n; we
assume that 11 > n1. Then the n = 17 + ny observations are arranged in an ascending order
and a rank number 1, 2, ..., n is assigned to each. In the case of ties, the rank number is taken
to be the mean of the rank numbers that the observations would have had if they had been
distinguishable, just as in the signed-rank test. We now proceed in a similar way to that used
in the signed-rank test.

Let wy,, be the sums of the rank numbers corresponding to the 1y, sets of observations.
With repeated samples, the values of w1, will vary and may be viewed as random variables.
So, just as for the signed-rank test, Hy : 4 = up will be rejected in favor of H, : uy < p, if wy is
small and w is large, and similarly it will rejected in favor of H, : uq > u, if w; islarge and wy is
small. For a two-tailed test, Hy is rejected in favor of H; : uq # pp if w = min{wy, w,} is suffi-
ciently small. It is common practice to work with the statistics

ni,2(n1,2 +1)

> (11.24)

Uy, = W1,2 —
The test is summarized in Table 11.3.
For large sample sizes the variables u; » are approximately normally distributed with

1
mean u = % and variance ¢° = n1n2(n11—; "2t ) (11.25)
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TABLE 11.3 Rank-sum test

H, H, Test statistic
M= M1 F Mg u

My < p2 Uy

M1 > Mo Uz

Conventionally this approximation is used for n; > 10 and n, > 20. Then, as usual, the statis-
tics z1,» = (u1,2 — u)/0 are standardized normal variates and may be used to find suitable
critical regions for the test. For smaller samples, critical values of # may be found from tables,
such as Table C.8. The rank-sum test may be extended to accommodate many populations,
when it is called the Kruskal—Wallis test.

EXAMPLE 11.9

A laboratory buys power packs from two sources S1 and S2. Both types have a nominal rating of 10 volts.
The results of testing a sample of each type yield the following data for the actual voltage:

S1 9 8 7 8
52 10 9 8 11 7 9

Use the rank-sum test to test the hypothesis that the two types of pack supply the same average voltage at the
10% significance level.
The data are first ranked as follows:

51 9 8 7 8
52 10 9 8 11 7 9
Rank 7 9 4 7 1.5 4 4 10 1.5 7

where we have averaged the ranking numbers for ties. From this table we calculate w; = 16.5,
wy = 38.5 and hence, in the notations above, u; = 6.5 and u, = 17.5, so that u = 6.5. From Table
C.8, the critical region u, for a two-tailed test at significance level 0.10 and sample sizes n; = 4 and
ny = 6is u < 3. Since the calculated value of u is greater than 3, we accept the hypothesis at the 10%
significance level.

11.3.4. Runs Test

It is a basic assumption in much of statistics that a data set constitutes a simple random
sample from some underlying population distribution. But we have noted in Section 5.2.1
that it is often difficult to ensure that randomness has been achieved and so a test for this
is desirable. The runs test does this. In this test, the null hypothesis Hy is that the observed
data set is a random sample.

To derive the test, we shall consider a simple case where the elements of the sample
xi(i—1, 2, 3...,N) can only take the values A or B. (In a non-numeric situation these might
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be ‘pass’ and ‘fail’.) A run is then defined as a consecutive sequence of either A’s or B’s, for
example

AAABAABBBBBAABBBABBAA.

In this example, there are n = 10 A’s, m = 11 B’s, with N = n+m = 21, and v = 9 runs.
The total number of permutations of the N points is C, = N!/(n!m!), and if Hy were
true, then each would be equally likely. We therefore have to find the probability mass func-
tion for r, the number of runs. This is

probability of obtaining k runs

P[T’Zk:H()} = C
N

(11.26)

n

The numerator can be found by considering only the A’s and calculating for a given n how
many places are there where a run can terminate and a new one begin. If k is even, there
are (k/2 — 1) places where a run ceases and a new one starts. There are (1 — 1) of these where
the first run could cease and the second start, (n — 2) where the second ceases and the third
starts, and so on, giving ,_;C, 21 distinct arrangements for the A’s. There is a corresponding
factor for the possible arrangements of the B’s and the product of these two terms must be
multiplied by a factor of two because the entire sequence could start with either an A or
a B. Thus,

C X C
P[r = 2k: Hy) = 200D~ (nml) 7o) (11.27a)
Ncn
An analogous argument for k odd gives
0Ch 1 X 1 Cr ) T oG X o i
P[?’ — k41 ZH()] _ ((n 1) (k-1) (m—1) k) ((n =k~ (m=1)"(k 1)) (11.27b)

~C

n

For small values of n and m these expressions can be used to calculate the required
probabilities, but it is rather tedious. Usually one consults tabulations, an example of
which is Table C.9. For example, for a two-tailed test at significance level «, the critical
region is defined by the inequalities » < a and v > b, where a is the largest value of r
for which

Plr <a:Hp < «/2, (11.28a)
and b is the smallest value of ry for which
Plr>b:Hy| > a/2. (11.28b)

The values of a and b are given in Table C.9, and may be used for a one-tailed test at a signif-
icance level of 0.05, or a two-tailed test at a significance level of 0.1.

For large n and m, it can be shown that r is approximately normally distributed with mean
and variance given by

2nm 5> 2nm(2nm — N)
1 = 11.2
n+m+ and o N2(N—1) / (11.29)

'u:



11.3. NONPARAMETRIC TESTS 239

so the variable z = (r — u)/o will be approximately distributed as a standardized normal
distribution. In this case the p-value is approximately

p-value = 2min{N(z),1 — N(z)}. (11.30)

One use of the run test is to supplement the x?> goodness-of-fit test described in
Section 11.1.1. An example of this is given below.

EXAMPLE 11.10

Figure 11.2 shows a linear least-squares fit to a set of 24 data points. The x> value is 19.8 for 22 degrees of
freedom, which is acceptable. Use the runs test to test at a 10% significance level whether the data are
randomly distributed about the fitted line.

it

I . I . I
0 2 4 6
X

FIGURE 11.2 Linear fit to data.

The data have n = 7, m = 16 (one point is on the fitted line) and for a two-tailed test at a 10%
significance level, the critical regions may be found using Table C.9. They are r < 6 and r > 15. Since
the observed value of  is 9, the hypothesis that the data are randomly distributed about the best-fit

line must be accepted.

11.3.5. Rank Correlation Coefficient

In previous chapters we have used the sample (Pearson’s) correlation coefficient p to
measure the correlation between two sets of continuous random variables x and y. If instead
we replace their numerical values by their rankings, then we obtain the rank correlation coef-
ficient (this is due to Spearman and so is also called the Spearman rank correlation coefficient)

denoted pg. It is given by

6 n
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where 7 is the number of data points and d; are the differences in the ranks of x; and y;. In
practice, ties are treated as in the previous tests, i.e., the differences are averaged as if the
ties could be distinguished. The rank correlation coefficient pg is similar to p. It is a number
between +1 and —1 with the extreme values indicating complete positive or negative corre-
lation. For example, pg = 1 implies that the ranking numbers of x; and y; are identical and
a value close to zero indicates that the ranking numbers are uncorrelated. The advantages
of using the Spearman correlation coefficient rather than Pearson’s are the usual ones: no
assumptions need to be made about the distribution of the x and y variables, and the test
can be applied to non-numeric data.

The significance of the rank correlation coefficient is found by considering the distribu-
tion of pg under the assumption that x and y are independent. In this case pg = 0 and
values of critical values can be calculated. An example is Table C.10. Note that the distribu-
tion of values of pg is symmetric about pg = 0, so left-tailed areas are equal to right-tailed
areas for a given significance level a and for a two-tailed test the critical regions are equal in
the two tails of the distribution. For larger values n > 30, the normal distribution may be
used with mean zero and variance (n — 1)_1/ 2 so thatz = prVn — 1 is a standard normal
variable.

EXAMPLE 11.11

A laboratory manager is doubtful whether reqular preventive maintenance is leading to fewer breakdowns
of his portfolio of equipment, so he records details of the annual rate of breakdowns (B) and the interval in
months between services (I) for 10 similar machines (M), with the results shown below. Test the hypothesis
that there is no correlation between B and I at a 5% significance level.

M 1 2 3 4 5 6 7 8 9 10
B 5 4 3 6 8 9 10 1 12
I 3 4 3 5 6 4 6 5 3 6

We start by rank ordering B and I to give Bg, Ig, and d?> = (Bg — IR)2:

M B I Br Ir & = (Br—Ig)’
1 2 3 2 2 0
2 5 4 5 45 2.25
3 4 3 4 2 4
4 3 5 3 6.5 12.25
5 6 6 6 8 4
6 8 4 7 45 6.25
7 9 6 8 8 0
8 10 5 9 6.5 6.25
9 1 3 1 2 1
10 12 6 10 8 4
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Then from (11.31) we find pg = 0.76. We will test the null hypothesis Hy : pr = 0 against the alter-
native Hy : pg > 0. From Table C.10, we find that we would reject Hy at the 0.05 significance level
because pg > 0.564. Recall from the remarks in Section 1.3.3 that this does not mean that preventive
maintenance causes fewer breakdowns, but simply means that there is a significant correlation
between the two variables so that this assumption cannot be ruled out.

PROBLEMS 11

11.1 Aradioactive source was observed for successive periods of 1 minute and the number of
particles emitted of a specific type during 500 intervals recorded. The resulting
observations o; are shown below.

counts 0 1 2 3 4 5 6 7 8 9 10 11 12
0; 1 8 38 67 75 85 89 66 39 15 10 5 2

Test the hypothesis that the number of particles emitted has a Poisson distribution with
parameter A = 5.

11.2 Two experiments give the following results for the value of a parameter (assumed to be
normally distributed), 2.05 & 0.01 and 2.09 £ 0.02, what can one say about their
compatibility?

11.3 A sample of size ten is drawn from a population and the values are:.

1 2 3 4 5 6 7 8 9 10
48 55 65 77 94 118 135 150 167 190

Use the Kolmogorov—Smirnov technique to test at a 10% significance level
the hypothesis that the sample comes from an exponential population with
mean 100.

11.4 Four measurements of a quantity give values 1.12, 1.13, 1.10, and 1.09. If they all come
from the same normal population with o> = 4 x 107%, test at a 5% significance level the
hypothesis that the populations are identical and have a common mean py = 1.09
against the alternative that uy # 1.09.

11.5 Three operatives (O) are given the task of testing identical electrical components for
a fixed period of time in the morning (M), afternoon (A), and evening (E) and the
numbers successfully tested are given below.
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11.6

11.7

11.8

11.9

11. HYPOTHESIS TESTING II: OTHER TESTS

M A E
01 65 70 75
02 95 89 70
03 85 70 58

Test at the 10% significance level the hypothesis that the variables O and the time of
day are independent variables in determining the number of components tested.

Use the normal approximation to the sign test to calculate the p-value for the hypothesis
that the median of the following numbers is 35.

9 21 34 47 54 55 53
47 38 28 21 15 11 8

The sample of size 10 shown below was drawn from a symmetric population.

X 12 11 18 17 15 19 19 20 17 16

Use the signed-rank test to examine at a 5% significance level the hypothesis that the
population mean is 15.5.

Two samples of weights are measured and give the following data:

S1 9 6 7 8 7
52 8 7 9 10 9 11 8

Use the rank-sum test to test at a 5% significance level the hypothesis that the mean
value obtained from S1 is smaller than that from S2.

Test at a 10% significance level whether the following numbers are randomly
distributed about their mean.
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A.1. MATRIX ALGEBRA

A matrix A is a two-dimensional array of numbers, which is written as

ann  ai o

a1 dxp o A
A= 7 . .

Aml Am2  *° Amn

where the general element in the ith row and jth column is denoted by a;. A matrix with m
rows and # columns is said to be of order (m x n). For the cases m = 1 and n = 1, we have the
row and column matrices
m
a
(mqy ap ... ay) and .2 ,
Am

respectively.
Matrices are frequently used in Chapter 8 to write the set of n linear equations in p
unknowns:

4
Zaijx]-:b,-, iil, 2,...,1’1
j=1

Statistics for Physical Sciences: An Introduction 243 Copyright © 2012 Elsevier Inc. All rights reserved.
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in the compact form

AX =B,

where A is of order (n x p), Xis an (p x 1) column vector, and B is a (1 x 1) column vector.
The set of n column vectors X;(i =1, 2, ..., n), all of the same order, are said to be linearly
dependent if there exist n scalars «;(i =1, 2, ..., n), not all zero, such that

n

Z al-X,- = 0,
i=1

where 0 is the null matrix, i.e., a matrix with all its elements zero. If no such set of scalars
exists, then the set of vectors is said to be linearly independent.

The transpose of the matrix A, denoted by A, is obtained by interchanging the rows and
columns of A, so

a1 a1 ... Ayl
AT . aip Aayp ... A2
le aZn oo umn

is an (n x m) matrix.

A matrix with an equal number of rows and columns is called a square matrix, and if
a square matrix A has elements such that 4;; = a;;, it is said to be symmetric. A particular
example of a symmetric matrix is the unit-matrix 1, with elements equal to unity for i = j,
and zero otherwise. A symmetric matrix A is said to be positive definite if for any vector
V, (i) VTAV > 0 and (ii) VTAV = 0 implies V = 0. A square matrix with elements a;;#0
only if i = jis called diagonal; the unit matrix is an example of such a matrix. The line contain-
ing the elements a1, a2, ..., auy is called the principal, or main, diagonal and the sum of its
terms is the trace of the matrix, written as

n
TrA = Z aj;.
i=1

The determinant of a square (n x n) matrix A is defined by

detA=|A| = Z(:l:ﬂhﬂzj ﬂnk), (A1)

where the summation is taken over all permutations of i, j, ..., k, where these indices are the
integers 1, 2, ..., n. The positive sign is used for even permutations and the negative sign for
odd permutations. The minor m;; of the element a;; is defined as the determinant obtained
from A by deleting the ith row and the jth column, and the cofactor of a;; is defined as (-1 )" times
the minor m;;. The determinant of A may also be written in terms of its cofactors. For example, if

1 3
2 4, (A2)
11
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then

detA =2 x

2 4‘_1 ’1 4

11 X ’ 1‘+3><

1 2
2 1

—2x(2-4)—(1-8)+3x(1—4)=—6.

The adjoint matrix is defined as the transposed matrix of cofactors and is denoted by A'. Thus,
the adjoint of the matrix in (A.2) is

(2 2 2
Al = 7 -4 5. (A3)
-3 0 3

A matrix A with real elements that satisfies the condition AT = A~! is said to be orthogonal

and its complex analog is a unitary matrix for which AT = A~!. For any real symmetric matrix
A, a unitary matrix U may be found, that when multiplying A transforms it to diagonal form,
i.e., the matrix UA has zeros everywhere except on the principal diagonal.

One particular determinant we have met is the Jacobian |. Consider n random variables
xi(i=1, 2, ..., n) which are themselves function of n other linearly independent random
variables y;(i=1, 2, ..., n), and assume that the relations can be inverted to give
xi(y1,Y2, -+, yn)- If the partial derivatives dy;/dx; are continuous for all i and j, then | is
defined by (some authors use the term Jacobian to mean the determinant of J, i.e., |J|)

0x7  0xq dxq

j= W) G Gy T ax
d(x1, x2, *+ xp)

dx, 9xy, dxy

The Jacobian has been used, for example, in Section 3.4, when discussing functions of
arandom variable. In this case, if # random variables x;(i = 1,2, ..., n) have a joint probability
density f(x1,xy, ..., Xx), then the joint probability density g(y1,y2, ..., yx) of a new set of vari-
ates y;, which are themselves function of the n variables x;(i=1,2,...,n) defined by
yi = yi(x1,x2, ..., Xn), is given by

g(]/lz]/z/ -~~/]/n) :f(xlleI "'/xn)|]|'

Two matrices may be added and subtracted if they contain the same number of rows and
columns, and such addition is both commutative and associative. The (inner) product
A = BC of two matrices B and C has elements given by

0= Y tacy
k



246 A. MISCELLANEOUS MATHEMATICS

and so is defined only if the number of columns in the first matrix B is equal to the number of
rows in the second matrix C. Matrix multiplication is not, in general, commutative, but is
associative.

Division of matrices is more complicated and needs some preliminary definitions. If we
form all possible square submatrices of the matrix A (not necessarily square), and find
that at least one determinant of order r is nonzero, but all determinants of order (r + 1) are
zero, then the matrix is said to be of rank r. A square matrix of order n with rank < n has
det A = 0 and is said to be singular. The rank of a matrix may thus be expressed as the greatest
number of linearly independent rows or columns existing in the matrix, and so, for example,
anonsingular square matrix of order (1 x 1) must have rank n. Conversely, if a square matrix
A, of order (n x n), has rank r = n, then it is nonsingular and there exists a matrix A~ known
as the inverse matrix, such that

AATT=ATA=1, (A4)
where 1 is a diagonal matrix with elements of unity along the principle diagonal and

zeros elsewhere. This is the analogous process to division in scalar algebra. The inverse
is given by

Al =AfA|L (A.5)
Thus, if
1 2
(0
then
Al = (_‘; _f) and |A|=(1x4)—-(3x2)=-2,
so that

_ 1/ 4 =2
1—__
A= 2(—3 1)’

L 1(1 2\( 4 -2\ (1 0
1_ - — =
A= 2(3 4)(—3 1) <o 1) 1

Finally, for products of matrices,

and to check

(ABC...D)T =D”...C"BTAT, (A.6)
and, if A, B, C, ..., D are all square nonsingular matrices,

(ABC..D)' =D '..c’'B 1A (A7)
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A point worth remarking is that in practice equations (A.1) and (A.5) are only
useful for the practical evaluation of the determinant and inverse of a matrix in simple
cases of low dimensionality. For example, in the least-squares method where the
matrix of the normal equations (which is positive definite) has to be inverted, the
most efficient methods in common use are those based either on the so-called Choles-
ki’s decomposition of a positive definite matrix or on Golub’s factorization by orthog-
onal matrices, the details of which may be found in any modern textbook on
numerical methods.

A.2. CLASSICAL THEORY OF MINIMA

If f(x) is a function of the single variable x which in a certain interval possesses continuous
derivatives

df(x)

0 () = i —
fV(x) = T G=12,...,n+1),

then Taylor’s Theorem states that if x and (x + h) belong to this interval then

"W
flr+h) = ;j—!f@(x) + Ry,
where f(O)(x) = f(x), and the remainder term is given by

hn+1

mf<”+1)(x +0n), 0<f6<1

R, =
For a function of p-variables, Taylor’s expansion becomes

n

flx+th)=>" ;;(hV)ff(x) +Ry,

j=0

where h is the row vector (h1,hy, ..., hy), vTis the row vector

( d s 0 )
dx1  0xp dxy
and
tn+l il
R, = T 1)!(hV) f(x+06th), 0<6<1

A necessary condition for a turning point (maximum, minimum or saddle point) of f(x)to
exist is that

9f (x)

axi
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foralli=1,2,...,p. A sufficient condition for this point to be a minimum is that the second
partial derivatives exist, and that D; > 0 for alli =1,2,...,p, where

i
ax% dx10x7 dx10x;
of of . f
D; = |0x20x1 %3 dx20x; |.
A S
6x,~6x1 ax,‘('jXQ zez

If we seek a minimum of f(x), subject to the s equality constraints
ej(x) =0, j=12,..5,

then the quantity to consider is the Lagrangian form
S
LK) =) + ) Aiej(x),
j=1

where the constants 4; are the so-called Lagrange multipliers. If the first partial derivatives of
ej(x) exist, then the required minimum is the unconstrained solution of the equations

ej(x) =0, j=1,2,...,5

and

This technique has been used in several places, and extensively in the discussion of the least-
squares method of estimation in chapter 8.
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In Chapters 7 and 8 we encountered the problem of finding the maxima, or minima, of
nonlinear functions, sometimes of several variables. These are examples of a more general
class of optimization problems, which although occurring frequently in statistical estimation
procedures, are not of a statistical nature. In practice, computer codes exist to tackle these
problems, and it is not suggested that the reader write their own optimization code except
in the simplest of circumstances, but nevertheless it is useful to know a little of the theory
on which the methods are based to better appreciate their limitations. The discussion of
this appendix is therefore confined to the main ideas involved, illustrated by one or two
examples. Fuller accounts are given in the books cited in the bibliography, from which these
brief notes draw extensively.

B.1. GENERAL PRINCIPLES

We consider only minimization problems since

min f(x) = max [—f(x)].

This appendix makes extensive use of matrix notations. These are reviewed briefly in Appendix A.

Statistics for Physical Sciences: An Introduction 249 Copyright © 2012 Elsevier Inc. All rights reserved.
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The general problem to be solved is then to minimize the function f(x1, x2, ..., xp) = f(x),
subject to the m inequality constraints

¢(x) >0, i=1,2, .. m
and the s equality constraints,

ei(x) =0, j=1,2, ..s

All other constraints can be reduced to either of the above forms by suitable transformations.
We will discuss first the features of methods of optimization in general and then describe in
more detail a few of the most successful methods in current use.

Any point that satisfies all the constraints is called feasible, and the entire set of such points
is called the feasible region. Points lying outside the feasible region are said to be nonfeasible.
Nearly all practical methods of optimization are iferative in the sense that an initial feasible
vector x('must be specified from which the method will generate a series of vectors
x(M, x?), ..., x(") etc., which represent improved approximations to the solution.

The iterative procedure may be expressed by the equation

x") = x(m 4 d,, (B.1)
where d;, is a p-dimensional directional vector, and I, is the distance moved along it. The basic
problem is to determine the most suitable vector d,, since once it is chosen the function f(x)
can be calculated and a suitable value of 1, found. Iterative techniques fall naturally into two
classes, (a) direct search methods and (b) gradient methods.

Direct search methods are based on a sequential examination of a series of trial solutions
produced from an initial feasible point. On the basis of the examinations, the strategy for
further searching is determined. These methods are characterized by the fact they only explic-
itly require values of the function, and knowledge of the derivatives of f(x) is not required. The
latter fact is both a strength and a weakness of the methods, for although in problems
involving many variables the calculation of derivatives can be difficult, and/or time
consuming, it is clear that more efficient methods should be possible if the information con-
tained in the derivatives is used. In practice, direct search methods are most useful for situa-
tions involving a few parameters, or where the calculation of derivatives is very difficult, or for
finding promising regions in the parameter space where optima might reasonably be located.

Gradient methods make explicit use of the partial derivatives of the function, in addition
to values of the function itself. The gradient direction at any point is that direction whose
components are proportional to the first-order partial derivatives of the function at the point.
The importance of this quantity will be seen as follows. If we make small perturbations 6x
from the current point x, then to first order in 0x,

afzzp:a—fax- (B.2)
- 18.‘)6]‘ ) '
]:

To obtain the perturbation giving the greatest change in the function, we need to consider the
Lagrangian form

P
F(x,3) =of + 2| Y_ox7 — A% |, (B.3)
j=1
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where 1 is a Lagrange multiplier and A is the magnitude of the perturbations, i.e.,

. 1/2
_ 2
A= -51 6x]-
=

Using (B.2) in (B.3), and forming the differential with respect to dx;, gives

of .
a—){j—&—ZAéx]—O, =12 ..,p
and hence
5X1 . (3X2 _ . (3xp
of foxy  Of fox, T of /ox,

That is, for any A the greatest value of df is obtained if the perturbations dx; are chosen to be
proportional to df / 9x;, and that, further, if 6f < 0, i.e., the search is to converge to a minimum,
the constant of proportionality must be negative. This direction is called the direction of steep-
est descent. It follows that the function can always be reduced by following the direction of
steepest descent, although this may only be true for a short distance.

One remark that is worth making about gradient methods concerns the actual calculation
of the derivatives. Although gradient methods are in general more efficient than direct search
methods, their efficiency can drop considerably if the derivatives are not obtained analyti-
cally, and so if numerical methods are used to calculate these quantities, great care has to
be taken to ensure that inaccuracies do not result.

So far we have not specified the form of the function to be minimized, except that it is
nonlinear in its variables. However, in many practical problems involving unconstrained func-
tions it is found that the function can be well approximated by a quadratic form in the neigh-
borhood of the minimum. There is therefore considerable interest in methods that guarantee to
find the minimum of a quadratic in a specified number of steps. Such methods are said to be
quadratically convergent, and the hope is that problems that are not strictly quadratic may still be
tractable by such methods, a hope that is borne out rather well in practice.

The most useful of the methods having the property of quadratic convergence are those
making use of the so-called conjugate directions, defined as follows. Two direction vectors
d; and dy are said to be conjugate with respect to the positive definite matrix G if
d] G d, = 0. The importance of conjugate directions in optimization problems stems from
the following theorem. If d;(i = 1, 2, ..., p) is a set of vectors mutually conjugate with respect
to the positive definite matrix G, the minimum of the quadratic form

f(x) = %xTGx +b'x+a, (B.4)

where a is a constant and b a constant vector, can be found from an arbitrary point x(¥) by
a finite descent calculation in which each of the vectors d; is used as a descent direction
only once, their order of use being arbitrary. The proof of this important result may be found
in the books listed in the bibliography.

Although methods having the property of quadratic convergence will guarantee to
converge to the exact minimum of a quadratic in p steps, where p is the dimensionality of
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the problem, when applied to functions that are not strictly quadratic the problem arises of
determining when convergence has taken place. A suitable practical criterion is to consider
that convergence has been achieved if, for given small values of ¢ and ¢

) - fix ) <,
and/or

X — x0H D) <,

for a sequence of g successive iterations, where g is a number which will vary with the type of
function being minimized. A generous overestimate is 4~p, the number of variables and
a considerably smaller number of values are usually sufficient.

Finally, it should be mentioned that all present techniques for optimizing nonlinear func-
tions locate only local optima, i.e., points x,, at which f(x;,) < f(x) for all x in a region in the
neighborhood of x;,. For multivariate problems there may well be better local optima located
at some distance from x,. At present, there are no general methods for locating the global
optimum (i.e., the absolute optimum) of a function, and so it is essential to restart the search
procedure from different initial points x(*) to ensure that the full p-dimensional space has
been explored.

B.2. UNCONSTRAINED MINIMIZATION OF FUNCTIONS
OF ONE VARIABLE

The problem of minimizing a function of one variable is very important in practice,
because many methods for optimizing multivariate functions proceed by a series of
searches along a line in the parameter space, and each of these searches is equivalent to
a univariate search. The latter fall into two groups (a) those which specify an interval within
which the minimum lies and (b) those which specify the minimum by a point approxi-
mating it. The latter methods are the most useful in practice and we shall only consider
them here. The basic procedure is as follows. Proceeding from an initial point x(?), a system-
atic search technique is applied to find a region containing the minimum. This bracket is
then refined by fitting a quadratic interpolation polynomial to the three points making
up the bracket, and the minimum of this polynomial found. As a result of this evaluation
a new bracket is formed, and the procedure is repeated. The method is both simple and
Very safe in practice.

yractlcal 1mplementat10n of this procedure is as follows. The function is first evaluated
atx® and (x© 4 7). If f(x© + 1) < f(x(@), then f(x©) + 2h) is evaluated This doublmg of the
step length I is repeated until a value of f(x) is found such that f(x(*) 4 2"h)> f(x(0) 4 27=1p).
At this point the step length is halved and a step again taken from the last successive point,
ie., the (n — 1)th. This procedure produces four points equally spaced along the axis of
search, at each of which the function has been evaluated. The end point farthest from the
point corresponding to the smallest function value is rejected, and the remaining three points
used for quadratic interpolation. Had the first step failed, then the search is continued by
reversing the sign of the step length. If the first step in this direction also fails, then the
minimum has been bracketed and the interpolation may be made. If the three points used
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for the interpolation are x1, x2, x3 with x1 <xp <x3 and x3 —xp = x2 —x7 =1, then the
minimum of the fitted quadratic is at

() — fos)]
2[f(x1) = 2f(x2) + f(x3)]
An iteration is completed by evaluating f(x;;). Convergence tests are now applied and, if

required, a further iteration is performed, with a reduced step length, using as the initial
point whichever of x; or x,, corresponds to the smaller function value.

X = X2 +

B.3. UNCONSTRAINED MINIMIZATION
OF MULTIVARIABLE FUNCTIONS

Many methods for locating optima of multivariate functions are based on a series of linear
searches along a line in the parameter space. By a linear method, we will therefore mean any
technique which uses a set of direction vectors in the search, and which proceeds by explo-
rations along these directions, deciding future strategy by the results obtained in previous
searches.

B.3.1. Direct Search Methods

The simplest of all possible direct search methods would be to keep (p — 1) of the parameters
fixed and find a minimum with respect to the pth parameter, doing this in turn for each vari-
able. The progress of such an alternating variable search is in general very inefficient because
the contours of equal function value will be aligned along the so-called principal axes, which
are not parallel to the coordinate axes, so only very small steps will be taken at each stage.
Moreover, the inefficiency increases as the number of variables increases. It would clearly
be very much more efficient to re-orientate the direction vectors along more advantageous
directions and this is done in several techniques, the most successful of which is due to Powell.

The method uses conjugate directions and utilizes the fact that, for a positive definite
quadratic form, if searches for minima are made along p conjugate directions then the join
of these minima is conjugate to all of those directions, a result that follows from the definition
of conjugate directions. The procedure is to start from x(?)and locate the minimum in the
direction dgn). Then from the new minimum point x1) locate the minimum in the direction
dzn) etc. until the minimum in the direction d,(,") is found. The direction of total progress
made during this cycle is then

d—x® _xO

New search directions are now constructed and care must be taken to ensure that the new
direction vectors are always linearly independent. Powell showed that for the quadratic
form of (B.4), if dg") is scaled so that

d"Gd" =1, i=1,2,..,p

then the determinant D of the matrix whose columns are dl(”) has a maximum if, and only if,

the vectors dl@ are mutually conjugate with respect to G. Thus, the direction d only replaces
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an existing search direction if by so doing D is increased. In this case, the minimum in the
direction d is found and used as a starting point in the next iteration, the list of direction
vectors being updated as follows:

(d(n+l)’ d(n+l) d](911+1)) _ (d(n) d(n) d(n) d(n)

(n)
( (D, ., Wod, A, dl, L, d), d),

where d" is that direction vector along which the greatest reduction in the function value
occurred during the nth stage.

B.3.2. Gradient Methods

The simplest technique using gradients is that of steepest descent mentioned above. In this
method, the normalized gradient vector at the current point is found, and using a step length
h; a new point is generated via the general iterative equation. This procedure is continued
until a function value is found which has not decreased. The step length is then reduced
and the search restarted from the best previous point. If the actual minimum along each
search direction is located, then the performance of this method is similar in appearance to
an alternating variable search, and is rather erratic, the search directions oscillating about
the principal axes. A method that in principle is far better is based on an examination of
the second derivatives of the function.

a. Newton’s Method

A second-order Taylor expansion of the function f(x) about the minimum point Xpin is
P p_p 2
af 1 9°f

f(x)f(xmm)‘i’jzl:h](%) N +§Z Zh]hk<ax]axk>

Differentiating this equation gives

, i=1,2, .., B.11
81'= axl Z <6x]6xl> ! P ( )
X=Xmin

j=1

The minimum is therefore obtained in one step by the move xpin = x — h, where the compo-
nents of h are found by solving the p linear equations (B.11). If we define

Pf
Gi=|-——|.
ik (anaxk>

_ -1
Xmin = X — Gmin 2

then

where, again, Gpin, means that G is evaluated at xpyn. Since Gm}n will not of course be

known, it is usual to replace it by G™! evaluated at the current point x!) and use the iterative
equation

XD — () G;lgn. (B.12)

The method is clearly quadratically convergent, but suffers from severe difficulties.
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First, there is the numerical problem of calculating the inverse matrix of second deriva-
tives, and second, and more seriously, for a general function, G ! is not guaranteed to be
positive definite, and in this case the method will diverge. Thus, while Newton’s method
is efficient in the immediate neighborhood of a minimum, away from this point it has little
to recommend it, the method of steepest descent being far preferable.

In view of the above remarks, an efficient method would be one that starts by using the
method of steepest descent and, at a later stage, uses Newton’s method. A method that
does this automatically is due to Davidon, and represents the most powerful method
currently available for optimizing unconstrained functions.

b. Davidon’s method

This method is an iterative scheme based on successive approximations to the matrix
G, The best approximation to this matrix, say Hy, is used to define a new search direction
by a modification of equation (B.12), i.e.,

x(H) = X1 — h,H,g,,

where g, is the vector of first derivatives of f(x!")) with respect to x"). The step length h,, is
that necessary to find the minimum in the search direction d,, = —H, g,, and may be found by
any univariate search procedure. If the sequence {H,} is positive definite, it can be shown
that the convergence of this method is guaranteed. Furthermore, if the search directions d,
are mutually conjugate, then the method is quadratically convergent.

Davidon has shown that both of these conditions can be met if, at each stage of the itera-
tion, the matrix Hj, is updated according to the relation

Hn+1 = Hn + An + Bn/

where the matrices A, and B, are given by

~h,[Hug, g HY
An = [ ngn% ] and Bn =
(Hngn) v

~H,VVTH!
VviH,V

7

with V=g , —g, 6 whereg, ,isthe gradient at x,1. It is usual to start the iteration from
the unit matrix Hy = 1. The matrix A, ensures that the sequence {H,,} converges to G| , and
B,, ensures that each H,, is positive definite. The derivation of these expressions may be found
in the book by Kowalik and Osborne, cited in the bibliography.

B.4. CONSTRAINED OPTIMIZATION

Constrained optimization, not surprisingly, is a more difficult problem than unconstrained
optimization, and only a very brief discussion will be given here.

First, an obvious remark: if the constraints can be removed by suitable transformations
then this should be done. For example, many problems involve simple constraints on the
parameters that can be expressed in the form

I<x<u,
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which can be removed completely by the transformation
x =1+ (u—1I)sin%y,

thereby enabling an unconstrained minimization to be performed with respect to y. Such
transformations cannot produce additional local optima. If the constraints cannot be
removed, then one of the simplest ways of incorporating them is to arrange that the produc-
tion of nonfeasible points is unattractive. This is the basis of a practical technique involving
penalty functions, where the function to be minimized is modified by additional terms
designed to achieve this.

The general problem was stated in Section B.1. Using the notation for constraints given
there, we consider the function

FOx) = £ + 3 4 20Sie00] + 5 22, B.13)
i=1 j:1

where 5(g) is the function

0, g>20
s - {
1, g<0

and %;, A} are positive scale factors, chosen so that the contributions of the various terms to
(B.13) are approximately equal. The “penalty’, i.e., the sum of the second and third terms
on the right-hand side of (B.13), is thus the weighted sum of squares of the amounts by which
the constraints are violated.

This method works reasonably well in practice, but has the disadvantage of requiring that
values of f(x) be calculated at nonfeasible points, and this may not always be possible,
leading to program failure. A method which restricts the search to feasible points is due to
Carroll, and is known as Carroll’s created response surface technique. In this method, if the
constraints are inequalities, the surface

F(x k) = f(x) +kY -
1

is considered, where k > 0, and the w; are positive constants. A minimum is found as a func-
tion of x and this is then used as the starting value for a new minimization for a reduced value
of k, and the procedure repeated until kK = 0 is reached. In all minimizations, nonfeasible
points are excluded. The theoretical development of this method and its extension to incor-
porate equality constraints may be found in the book of Kowalik and Osborne.
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The table gives values of the standardized cumulative distribution function

C.1. NORMAL DISTRIBUTION

1 "X t2
F(X) = W/_w exp (E) dt.
Note that F(—x) =1 — F(x).
x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 .5000 5040 5080 5120 5160 .5199 5239 5279 5319 5359
1 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753
2 5793 5832 5871 5910 .5948 5987 .6026 .6064  .6103 6141
3 .6179 6217 6255 6293 .6331 .6368 .6406 .6443  .6480 6517
4 .6554 6591 6628 6664 6700 .6736 .6772 .6808  .6844 .6879
(Continued)
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x .00 01 .02 .03 .04 .05 .06 .07 .08 .09
5 6915 6950 .6985 7019 7054 7088 7123 7157 7190 7224
6 7257 7291 7324 7357 7389 7422 7454 7486 7517 7349
7 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852
8 7881 7910 7939 7967 .7995 8023 .8051 .8078 8106  .8133
9 8159 8186 .8212 .8238 .8264 .8289 8315 .8340  .8365  .8389

1.0 8413 8438 8461 .8485 .8508 .8531 .8554 .8577  .8599  .8621

1.1 8643 8665 .8686 .8708 .8729 8749 8770 8790 8810  .8830

12 8849 8869 .8888 .8907 .8925 .8944 8962 .8980  .8997  .9015

13 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177

14 9192 9207 9222 9236 9251 9265 9279 9292 9306  .9319

15 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441

1.6 9452 9463 9474 9484 9495 9505 9515 9525 9535  .9545

1.7 9554 9564 9573 9582 9591 9599 9608 .9616  .9625  .9633

1.8 9641 9649 9656 9664 9671 9678 9686 9693 9699 9706

1.9 9713 9719 9726 9732 9738 9744 9750 9756 9761 9767

20 9773 9778 9783 9788 9793 9798 9803 9808 9812  .9817

21 9821 9826 9830 .9834 9838 9842 9846 9850 9854  .9857

22 9861 9864 9868 9871 9875 9878 9881 9884 9887  .9890

23 9893 9896 9898 9901 .9904 9906 9909 9911 9913  .9916

24 9918 9920 9922 9925 9927 9929 9931 9932 9934  .9936

25 9938 9940 9941 9943 9945 9946 9948 9949 9951  .9952

26 9953 9955 9956 9957 9959 9960 9961 9962 9963  .9964

27 9965 9966 9967 9968 9969 9970 9971 9972 9973  .9974

28 9974 9975 9976 9977 9977 9978 9979 9980 9980  .9981

29 9981 9982 9983 9983 9984 9984 9985 9985 9986  .9986

30 9987 9987 9987 9988 9988 9989 9989 9989 9990  .9990

31 9990 9991 9991 9991 9992 9992 9992 9992 9993  .9993

32 9993 9993 9994 9994 9994 9994 9994 9995 9995 9995

33 9995 9995 9996 9996 9996 9996 9996 9996 9996  .9997

34 9997 9997 9997 9997 9997 9997 9997 9997 9997  .9998

x 1282 1.645 1960 2326 2576 3.090 3291 3.891 4417

F(x) 9 95 975 99 995 999 9995 99995 999995

21 — F(x)] 20 10 .05 .02 .01 002 .001 0001  .00001
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C.2. BINOMIAL DISTRIBUTION

The table gives values of F, the cumulative binomial distribution, i.e., the probability of
obtaining s or more successes in 7 independent Bernoulli trials,

n
_ A _r n—r
F= ;( ) )rf g,
for specified values of 1, 'and p, where the probability of a success in a single trial is equal to
p. If p > 0.5 the values for F are obtained from

1— Z (Z)pran.

r=n—r'+1

n r .05 .10 15 .20 25 .30 35 40 45 .50
2 1 .0975 1900 2775 3600 4375 .5100 .5775 .6400 .6975 .7500

2 .0025 .0100 .0225 .0400 .0625 .0900 .1225 .1600 2025 .2500
3 1 1426 2710 .3859 4880 5781 .6570 .7254 .7840 .8336 .8750
2 .0072 .0280 .0608 .1040 .1562 2160 .2818 .3520 4252 .5000
3 .0001 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 1250
4 1 1855 .3439 4780 .5904 .6836 .7599 .8215 .8704 .9085 9375
2 0140 .0523 .1095 .1808 .2617 .3483 .4370 .5248 .6090 .6875
3 .0005 .0037 .0120 .0272 .0508 .0837 .1265 1792 2415 3125
4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625
5 1 2262 4095 5563 .6723 7627 .8319 .8840 9222 .9497 9688
2 .0226 .0815 .1648 2627 3672 4718 5716 .6630 .7438 .8125
3 .0012 .0086 .0266 .0579 .1035 .1631 .2352 3174 4069 .5000
4 .0000 .0005 .0022 .0067 .0156 .0308 .0540 .0870 1312 1875
5 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312
6 1 2649 4686 .6229 7379 .8220 .8824 9246 9533 9723 .9844
2 .0328 1143 2235 3447 4661 5798 .6809 7667 .8364 .8906
3 .0022 .0158 .0473 .0989 .1694 2557 .3529 4557 .5585 .6562
4 .0001 .0013 .0059 .0170 .0376 .0705 .1174 1792 .2553 .3438
5 .0000 .0001 .0004 .0016 .0046 .0109 .0223 .0410 .0692 .1094

6 .0000 .0000 .0000 .0001 .0002 .0007 .0018  .0041 .0083  .0156
(Continued)
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p
n r 05 10 15 20 .25 30 35 40 45 50
7 1 3017 5217 .6794 7903 .8665 9176 .9510 9720 .9848 .9922
2 .0444 1497 2834 4233 5551 .6706 .7662 .8414 .8976 9375
3 .0038 .0257 .0738 .1480 .2436 .3529 4677 .5801 .6836 7734
4 .0002 .0027 .0121 .0333 .0706 .1260 .1998 .2898 3917 .5000
5 .0000 .0002 .0012 .0047 .0129 .0288 .0556 .0963 1529 2266
6 .0000 .0000 .0001 .0004 .0013 .0038 .0090 .0188 .0357 .0625
7 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078
8 1 3366 5695 7275 .8322 .8999 9424 9681 9832 9916 .9961
2 .0572 1869 .3428 4967 .6329 .7447 .8309 .8936 .9368 .9648
3 .0058 .0381 .1052 .2031 .3215 .4482 5722 .6846 7799 .8555
4 .0004 .0050 .0214 .0563 1138 .1941 .2936 4059 5230 .6367
5 .0000 .0004 .0029 .0104 .0273 .0580 .1061 1737 .2604 .3633
6 .0000 .0000 .0002 .0012 .0042 .0113 .0253 .0498 .0885 .1445
7 .0000 .0000 .0000 .0001 .0004 .0013 .0036 .0085 .0181 .0352
8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039
9 1 3698 6126 .7684 .8658 9249 9596 .9793 9899 9954 .9980
2 0712 2252 4005 .5638 .6997 .8040 .8789 9295 9615 .9805
3 .0084 .0530 .1409 2618 .3993 5372 .6627 7682 .8505 9102
4 0006 .0083 .0339 .0856 1657 2703 .3911 5174 .6386 7461
5 .0000 .0009 .0056 .0196 .0489 .0988 .1717 .2666 3786 .5000
6 .0000 .0001 .0006 .0031 .0100 .0253 .0536 .0994 .1658 .2539
7 .0000 .0000 .0000 .0003 .0013 .0043 .0112 .0250 .0498 .0898
8 .0000 .0000 .0000 .0000 .0001 .0004 .0014 .0038 .0091 .0195
9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020
10 4013 6513 .8031 .8926 .9437 9718 .9865 .9940 9975 .9990

0861 2639 4557 .6242 7560 .8507 .9140 9536 9767 .9893
0115  .0702 1798 .3222 4744 6172 7384 .8327 .9004 .9453
.0010 .0128 .0500 .1209 .2241 .3504 .4862 .6177 .7340 .8281
.0001 .0016 .0099 .0328 .0781 .1503 .2485 .3669 4956 .6230

Ul = W N =
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p
n r .05 .10 15 .20 25 .30 .35 40 45 .50
6 .0000 .0001 .0014 .0064 .0197 .0473 .0949 1662 2616 3770
7 .0000 .0000 .0001 .0009 .0035 .0106 .0260 .0548 1020 1719
8 .0000 .0000 .0000 .0001 .0004 .0016 .0048 .0123 .0274 .0547
9 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0017 .0045 .0107
10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010
11 1 4312 6862 .8327 9141 9578 9802 .9912 9964 .9986 .9995
2 .1019 3026 5078 .6779 .8029 .8870 .9394 9698 9861 9941
3 .0152 .0896 2212 3826 .5448 .6873 .7999 8811 .9348 9673
4 0016 .0185 .0694 .1611 2867 4304 .5744 .7037 .8089 .8867
5 .0001 .0028 .0159 .0504 .1146 .2103 .3317 4672 .6029 7256
6 .0000 .0003 .0027 .0117 .0343 .0782 .1487 .2465 .3669 .5000
7 .0000 .0000 .0003 .0020 .0076 .0216 .0501 .0994 1738 2744
8 .0000 .0000 .0000 .0002 .0012 .0043 .0122 .0293 .0610 1133
9 .0000 .0000 .0000 .0000 .0001 .0006 .0020 .0059 .0148 .0327
10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0007 .0022 .0059
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0005
12 1 459 7176 .8578 9313 9683 .9862 .9943 9978 9992 .9998
2 1184 3410 .5565 .7251 .8416 9150 .9576 .9804 9917 9968
3 .0196 1109 2642 4417 .6093 7472 .8487 9166 9579 .9807
4 0022 .0256 .0922 2054 3512 5075 .6533 7747 .8655 9270
5 .0002 .0043 .0239 .0726 .1576 2763 .4167 5618 .6956 .8062
6 .0000 .0005 .0046 .0194 .0544 1178 2127 .3348 4731 .6128
7 .0000 .0001 .0007 .0039 .0143 .0386 .0846 1582 2607 3872
8 .0000 .0000 .0001 .0006 .0028 .0095 .0255 .0573 1117 .1938
9 .0000 .0000 .0000 .0001 .0004 .0017 .0056 .0153 .0356 .0730
10 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0028 .0079 .0193
11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0011 .0032
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002
13 1 4867 7458 8791 .9450 9762 9903 .9963 9987 .9996 .9999
2 135 3787 .6017 .7664 .8733 9363 9704 9874 9951 .9983
3 .0245 1339 2704 4983 6674 7975 .8868 9421 9731 .9888
4 0031 .0342 .09¢7 2527 4157 5794 7217 .8314 9071 .9539
5 .0003 .0065 .0260 .0991 2060 .3457 .4995 .6470 7721 .8666

(Continued)
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.0000 .0009 .0053 .0300 .0802 .1654 .2841 4256 5732 .7095
.0000 .0001 .0013 .0070 .0243 .0624 .1295 .2288 .3563 .5000
.0000 .0000 .0002 .0012 .0056 .0182 .0462 .0977 .1788 2905
.0000 .0000 .0000 .0002 .0010 .0040 .0126 .0321 .0698 1334
10 .0000 .0000 .0000 .0000 .0001 .0007 .0025 .0078 .0203 .0461

Nele BN B

11 .0000 .0000 .0000 .0000 .0000 .0001 .0003  .0013  .0041 .0112
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000  .0001 .0005  .0017
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000  .0000  .0000  .0001

14 1 5123 7712 8972 9560 9822 9932 9976 9992 .9998 .9999
2 1530 4154 6433 8021 .8990 9525 .9795 9919 9971 9991
3 .0301 .1584 .3521 5519 7189 .8392 9161 9602 9830 9935
4 .0042 .0441 1465 3018 4787 .6448 7795 .8757 9368 9713
5 .0004 .0092 .0467 1298 2585 4158 .5773 7207 .8328 9102
6 .0000 .0015 .0115 .0439 .1117 .2195 .3595 5141 .6627 .7880
7 .0000 .0002 .0022 .0116 .0383 .0933 .1836 3075 4539 .6047
8 .0000 .0000 .0003 .0024 .0103 .0315 .0753 1501 .2586 .3953
9 .0000 .0000 .0000 .0004 .0022 .0083 .0243 .0583 1189 2120

10 .0000 .0000 .0000 .0000 .0003 .0017 .0060 .0175 .0426 .0898
11 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0039 .0114 .0287
12 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0022 .0065
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0009
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

15 1 5367 7941 9126 9648 9866 .9953 .9984 9995 29999  1.0000
2 1710 4510 .6814 .8329 9198 9647 .9858 .9948 .9983 .9995
3 .0362 1841 3958 .6020 .7639 .8732 .9383 9729 9893 9963
4 0055 .0556 1773 3518 .5387 .7031 .8273 9095 9576 .9824
5 .0006 .0127 .0617 .1642 3135 4845 .6481 7827 .8796 .9408
6 .0001 .0022 .0168 .0611 .1484 2784 4357 .5968 7392 .8491
7 .0000 .0003 .0036 .0181 .0566 .1311 .2452 .3902 5478 .6964
8 .0000 .0000 .0006 .0042 .0173 .0500 .1132 2131 .3465 .5000
9 .0000 .0000 .0001 .0008 .0042 .0152 .0422 .0950 1818 .3036

10 .0000 .0000 .0000 .0001 .0008 .0037 .0124  .0338 .0769  .1509
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n r .05 .10 15 .20 25 .30 .35 40 45 .50
11 .0000 .0000 .0000 .0000 .0001 .0007 .0028 .0093 .0255 .0592
12 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0019 .0063 .0176
13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0011 .0037
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

16 1 5599 8147 9257 9719 9900 .9967 .9990 .9997 29999  1.0000
2 1892 4853 7161 .8593 9365 9739 .9902 .9967 9990 .9997
3 .0429 2108 4386 .6482 .8029 9006 .9549 9817 9934 9979
4 .0070 .0684 .2101 4019 5950 .7541 .8661 .9349 9719 .9894
5 .0009 .0170 .0791 .2018 .3698 .5501 .7108 .8334 9147 9616
6 .0001 .0033 .0235 .0817 .1897 .3402 .5100 6712 .8024 .8949
7 .0000 .0005 .0056 .0267 .0796 1753 3119 4728 .6340 7228
8§ .0000 .0001 .0011 .0070 .0271 .0744 .1594 .2839 4371 .5982
9 .0000 .0000 .0002 .0015 .0075 .0257 .0671 1423 .2559 4018
10 .0000 .0000 .0000 .0002 .0016 .0071 .0229 .0583 1241 2272
11 .0000 .0000 .0000 .0000 .0003 .0016 .0062 .0191 .0486 1051
12 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0149 .0384
13 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0035 .0106
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0021
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

171 5189 .8332 9369 9775 9925 9977 .9993 29998 1.0000 1.0000
2 2078 5182 7475 .8818 9499 9807 .9933 9979 .9994 .9999
3 .0503 2382 4802 .6904 .8363 .9226 .9673 9877 .9959 .9988
4 .0088 .0826 2444 4511 .6470 .7981 .8972 9536 9816 .9936
5 .0012 .0221 .0987 2418 4261 .6113 .7652 .8740 9404 .9755
6 .0001 .0047 .0319 .1057 2347 4032 .5803 7361 .8529 .9283
7 .0000 .0008 .0083 .0377 1071 .2248 3812 5522 .7098 .8338
8§ .0000 .0001 .0017 .0109 .0402 .1046 .2128 .3595 5257 .6855
9 .0000 .0000 .0003 .0026 .0124 .0403 .0994 .1989 3374 .5000
10 .0000 .0000 .0000 .0005 .0031 .0127 .0383 .0919 1834 3145

(Continued)



264 C. STATISTICAL TABLES

n v .05 .10 15 .20 25 .30 35 40 45 .50

11 .0000 .0000 .0000 .0001 .0006 .0032 .0120  .0348  .0826  .1662
12 .0000 .0000 .0000 .0000 .0001 .0007 .0030  .0106  .0301 0717
13 .0000 .0000 .0000 .0000 .0000 .0001 .0006  .0025  .0086  .0245
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000  .0005  .0019  .0064
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000  .0001 .0003  .0012

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 1 6028 .8499 9464 9820 .9944 9984 .9996 29999  1.0000 1.0000
2 2265 .5497 7759 9009 9605 9858 .9954 .9987 9997 .9999
3 .0581 2662 .5203 .7287 .8647 9400 .9764 9918 9975 .9993
4 0109 .0982 2798 4990 .6943 .8354 .9217 9672 .9880 .9962
5 .0015 .0282 1206 .2836 4813 .6673 .8114 .9058 .9589 .9846
6 .0002 .0064 .0419 1329 2825 4656 .6450 7912 .8923 9519
7 .0000 .0012 .0118 .0513 .1390 .2783 .4509 .6257 7742 .8811
8§ .0000 .0002 .0027 .0163 .0569 .1407 2717 4366 .6085 .7597
9 .0000 .0000 .0005 .0043 .0193 .0596 .1391 2632 4222 5927
10 .0000 .0000 .0001 .0009 .0054 .0210 .0597 1347 2527 4073
11 .0000 .0000 .0000 .0002 .0012 .0061 .0212 .0576 1280 .2403
12 .0000 .0000 .0000 .0000 .0002 .0014 .0062 .0203 .0537 1189
13 .0000 .0000 .0000 .0000 .0000 .0003 .0014 .0058 .0183 .0481
14 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0154
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0010 .0038
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0007
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
19 6226 8649 9544 9856 9958 .9989  .9997 29999  1.0000 1.0000

2453 5797 8015 9171 9690 9896 .9969 9992 29998  1.0000
0665 2946 5587 7631 .8887 9538 .9830 .9945 9985 .9996
0132 1150 3159 5449 7639 .8668 .9409 9770 9923 9978
.0020 .0352 1444 3267 5346 7178 .8500 9304 9720 .9904

U = WO N =
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6 .0002 .0086 .0537 .1631 .3322 .5261 .7032 .8371 9223 .9682
7 .0000 .0017 .0163 .0676 .1749 3345 .5188 .6919 .8273 9165
8 .0000 .0003 .0041 .0233 .0775 .1820 .3344 5122 .6831 .8204
9 .0000 .0000 .0008 .0067 .0287 .0839 .1855 3325 .5060 .6762
10 .0000 .0000 .0001 .0016 .0089 .0326 .0875 1861 .3290 .5000
11 .0000 .0000 .0000 .0003 .0023 .0105 .0347 .0885 1841 .3238
12 .0000 .0000 .0000 .0000 .0005 .0028 .0114 .0352 .0871 1796
13 .0000 .0000 .0000 .0000 .0001 .0006 .0031 0116 .0342 .0835
14 .0000 .0000 .0000 .0000 .0000 .0001 .0007 .0031 .0109 .0318
15 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0028 .0096
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0022
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
20 1 6415 8784 9612 9885 9968 .9992 9998 1.0000 1.0000 1.0000
2 2642 6083 .8244 9308 9757 .9924 9979 9995 29999  1.0000
3 .0755 .3231 5951 .7939 9087 9645 9879 9964 9991 9998
4 0159 1330 .3523 5886 .7748 .8929 9556 .9840 9951 .9987
5 .0026 .0432 1702 3704 5852 .7625 .8818 .9490 9811 9941
6 .0003 .0113 .0673 .1958 .3828 .5836 .7546 .8744 9447 9793
7 .0000 .0024 .0219 .0867 2142 .3920 .5834 .7500 .8701 9423
8§ .0000 .0004 .0059 .0321 .1018 .2277 .3990 5841 .7480 .8684
9 .0000 .0001 .0013 .0100 .0409 1133 .2376 4044 5857 7483
10 .0000 .0000 .0002 .0026 .0139 .0480 .1218 .2447 4086 .5881
11 .0000 .0000 .0000 .0006 .0039 .0171 .0532 1275 .2493 4119
12 .0000 .0000 .0000 .0001 .0009 .0051 .0196 .0565 1308 2517
13 .0000 .0000 .0000 .0000 .0002 .0013 .0060 .0210 .0580 1316
14 .0000 .0000 .0000 .0000 .0000 .0003 .0015 .0065 .0214 .0577
15 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0016 .0064 .0207
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0015 .0059
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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C.3. POISSON DISTRIBUTION

The table gives values of the cumulative Poisson distribution

[ee]

F=3 f(k2)

k=K
for specified values of 4 an k, where
k

A
flk;2) = Hexp(—l), A>0, k=01, ...

K01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1 .0952 1813 2592 3297 .3935 4512 5034 5507  .5934 .6321
2 .0047 0175 .0369 .0616  .0902 .1219  .1558  .1912 2275 2642
3 .0002 .0011 .0036 .0079 .0144 .0231 .0341 .0474 .0629 .0803
4 .0000 .0001 .0003 .0008 .0018 .0034 .0058 .0091 @ .0135 .0190

5 .0000 .0000 .0000 .0001 .0002 .0004 .0008 .0014  .0023 .0037
6 .0000 .0000  .0000  .0000 .0000 .0000 .0001 .0002 .0003 .0006
7 .0000  .0000 .0000 .0000 .0000  .0000  .0000 .0000  .0000 .0001

Ko 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1 6671 .6988 7275 7534 7769 7981 8173  .8347  .8504 .8647
2 3010 3374 3732 4082 4422 4751 5068 5372  .5663 .5940
3 .0996 1205 .1429 1665 1912 2166 2428 2694 2963 3233
4 0257 .0338 .0431 .0537 .0656  .0788  .0932  .1087  .1253 .1429

5 .0054 .0077 .0107 .0143 .0186  .0237 .0296 .0364  .0441 .0527
6 .0010 .0015 .0022 .0032 .0045 .0060 .0080 .0104 .0132 0166
7 .0001 .0003 .0004 .0006 .0009 .0013 .0019 .0026  .0034 .0045
8§ .0000 .0000 .0001 .0001 .0002 .0003 .0004 .0006  .0008 .0011
9 .0000 .0000  .0000 .0000 .0000 .0000 .0001 .0001 @ .0002 .0002
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A

K21 2.2 2.3 24 25 2.6 2.7 2.8 29 3.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1 8775 8892 8997 9093 9179 9257 9328 9392  .9450 .9502
2 .6204 6454 6691 6916 7127 7326 7513 7689 7854 .8009
3 .3504 3773 4040 4303 4562 4816 5064 5305  .5540 5768
4 1614 1806 2007 2213 2424 2640 2859  .3081  .3304 3528
5 .0621 .0725 .0838 .0959  .1088  .1226  .1371  .1523  .1682 1847
6 .0204 .0249 .0300 .0357 .0420 .0490 .0567  .0651  .0742 .0839
7 .0059 .0075 .0094 .0116 .0142 .0172 .0206  .0244  .0287 .0335
8§ .0015 .0020 .0026 .0033 .0042 .0053 .0066  .0081  .0099 .0119
9 .0003 .0005 .0006 .0009 .0011 .0015 .0019 .0024 .0031 .0038
10 .0001 .0001 .0001 .0002 .0003 .0004 .0005 .0007  .0009 .0011
11~ .0000 .0000  .0000  .0000 .0001 .0001 .0001  .0002  .0002 .0003
12 .0000  .0000  .0000  .0000  .0000  .0000  .0000  .0000 .0001 .0001
kK 3.1 3.2 3.3 34 3.5 3.6 3.7 3.8 3.9 4.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1 9550 9592 9631 9666 9698 9727 9753 9776  .9798 9817
2 .8153 8288  .8414  .8532 8641  .8743  .8838  .8926  .9008 .9084
3 5988 6201  .6406 .6603 6792  .6973 7146 7311  .7469 7619
4 3752 3975 4197 4416 4634 4848 5058 < .5265  .5468 .5665
5 2018 .2194 2374 2558 2746 2936 3128 3322  .3516 3712
6 .0943 1054 1171 1295 1424 1559 1699 1844 1994 2149
7 .0388 .0446 .0510 .0579 .0653  .0732 .0818 .0919  .1005 1107
8§ .0142 0168 .0198 .0231 .0267 .0308 .0352 .0401 .0454 .0511
9 .0047 .0057 .0069 .0083 .0099 .0117 .0137 .0160  .0185 .0214
10 .0014 .0018 .0022 .0027 .0033 .0040 .0048 .0058  .0069 .0081
11 .0004 .0005 .0006 .0008 .0010 .0013 .0016 .0019  .0023 .0028
12 .0001 .0001  .0002 .0002 .0003 .0004 .0005 .0006  .0007 .0009
13 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002  .0002 .0003
14  .0000  .0000  .0000 .0000  .0000  .0000  .0000  .0000  .0001 .0001
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K 41 4.2 4.3 44 4.5 4.6 4.7 4.8 49 5.0

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
9834 9850 9864 9877 9889 9899 9909 9918  .9926 .9933
9155 9220 9281 9337 9389 9437 9482 9523  .9561 .9596
7762 7898 8026  .8149 8264 8374 8477 8575  .8667 .8753
5858  .6046  .6228  .6406  .6577  .6743  .6903  .7058  .7207 7350

0
1
2
3
4
5 3907 4102 4296 4488 4679 4868 5054 5237 5418 .5595
6 2307 2469 2633 2801 2971 3412 3316  .3490  .3665 .3840
7 1214 1325 1442 1564 1689  .1820 1954 2092 2233 2378
8§ .0573 .0639 .0710 .0786  .0866  .0951  .1040 .1133  .1231 1334
9 .0245 0279 .0317 .0358 .0403 .0451 .0503 .0558  .0618 .0681

10 .0095  .0111 0129 0149 0171 .0195 .0222  .0251  .0283 .0318
11  .0034 .0041 .0048 .0057 .0067 .0078 .0090 .0104 .0120 .0137
12 .0011 .0014 .0017 .0020 .0024 .0029 .0034 .0040 .0047 .0055
13 .0003 .0004 .0005 .0007 .0008 .0010 .0012  .0014 .0017 .0020
14 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006 .0007

15 .0000  .0000 .0000 .0001 .0001 .0001 .0001 .0001 @ .0002 .0002
16 .0000  .0000  .0000 .0000  .0000  .0000  .0000  .0000  .0001 .0001

kK 5.1 52 5.3 54 5.5 5.6 5.7 5.8 5.9 6.0

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
9939 9945 9950 9955 9959 9963 9967 9970 9973 9975
9628 9658 9686 9711 9734 9756 9776 9794 9811 9826
8835 .8912 8984 9052 9116 9176 9232 9285 9334 .9380
7487 7619 7746 7867 7983  .8094  .8200 .8300  .8396 .8488

4016 4191 4365 4539 4711 4881 5050 5217  .5381 5543
2526 2676 2829 2983 3140 3297 3456 3616  .3776 3937
1440 1551 1665 1783 1905 2030 2159 2290 2424 .2560

0
1
2
3
4
5 5769 5939 6105 .6267 .6425 .6579  .6728  .6873  .7013 7149
6
7
8
9 0748 0819 .0894 .0974 1056  .1143 1234 1328  .1426 1528
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A

kK 51 52 53 54 55 5.6 5.7 5.8 59 6.0
10 .0356  .0397 .0441 .0488 .0538 .0591 .0648 .0708  .0722 .0839
11 .0156 .0177 .0200 .0225 .0253 .0282  .0314 .0349 .0386 .0426
12 .0063 .0073 .0084 .009¢ .0110 .0125 .0141 .0160  .0179 .0201
13 .0024 .0028 .0033 .0038 .0045 .0051 .0059 .0068  .0078 .0088
14 .0008 .0010 .0012 .0014 .0017 .0020 .0023  .0027  .0031 .0036
15 .0003 .0003 .0004 .0005 .0006  .0007  .0009 .0010 .0012 .0014
16 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0004 .0004 .0005
17 .0000  .0000  .0000 .0001 .0001 .0001 .0001  .0001 .0001 .0002
18 .0000 .0000 .0000  .0000  .0000  .0000  .0000  .0000  .0000 .0001
kK 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1 9978 9980 9982 9983 9985 9986  .9988  .9989  .9990 9991
2 9841 9854 9866 9877 9887 9897 9905 9913  .9920 9927
3 9423 9464 9502 9537 9570 9600 9629 9656  .9680 9704
4 8575 8658 .8736  .8811  .8882  .8948 9012 9072 9129 9182
5 7281 7408 7531 7649 7763 7873 7978  .8080  .8177 .8270
6 5702 5859  .6012 .6163 .6310 .6453 .6594  .6730  .6863 .6993
7 4098 4258 4418 4577 4735 4892 5047 5201  .5353 .5503
8§ 2699 2840 2983 3127 3272 3419 3567 3715  .3864 4013
9 1633 1741 1852 1967 2084 2204 2327 2452 2580 2709
10 .0910 .0984 .1061 .1142 1226 .1314 .1404 .1498  .1505 .1695
11 .0469 .0514 .0563 .0614 .0668 .0726 .0786 .0849  .0916 .0985
12 .0224  .0250 .0277 .0307 .0339 .0373 .0409 .0448 .0495 .0534
13 .0100 .0113 .0127 .0143 .0160 .0179  .0199  .0221  .0245 .0270
14 .0042 .0048 .0055 .0063 .0071 .0080 .0091 .0102  .0115 .0128
15 .0016 .0019 .0022 .0026 .0030 .0034 .0039 .0044 .0050 .0057
16 .0006  .0007 .0008 .0010 .0012 .0014 .0016  .0018  .0021 .0024
17 .0002 .0003 .0003 .0004 .0004 .0005 .0006  .0007  .0008 .0010
18 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0003  .0003 .0004
19 .0000  .0000 .0000 .0000  .0001 .0001 .0001 .0001 .0001 .0001
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A

K71 7.2 7.3 74 7.5 7.6 77 7.8 79 8.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1 9992 9993 9993 9994 9994 9995 9995 9996  .9996 .9997
2 9933 9939 9944 9949 9953 9957 9961 9964  .9967 9970
3 9725 9745 9764 9781 9797 9812 9826 9839  .9851 9862
4 9233 9281 9326 9368 9409 9446 9482 9515 9547 9576

5 8359  .8445 8527 8605 .8679  .8751  .8819  .8883  .8945 .9004
6 7119 7241 7360 7474 7586 7693 7797 7897 7994 .8088
7 5651 5796 5940 .6080 .6218 .6354 6486 .6616  .6743 .6866
8 4162 4311 4459 4607 4754 4900 5044 5188  .5330 .5470
9 2840 2973 3108 .3243 3380 .3518 .3657 .3796  .3935 4075

10 1798 1904 2012 2123 2236  .2351 2469 2589 2710 .2834
11 1058 1133 1212 1293 1378 1465 1555 1648  .1743 1841
12 .0580 .0629 .0681 .0735 .0792 .0852 .0915 .0980 .1048 1119
13 .0297 .0327 .0358 .0391 .0427 .0464 .0504 .0546 .0591 .0638
14 0143 .0159 0176 .0195 .0216 .0238 .0261 .0286  .0313 .0342

15 .0065 .0073 .0082 .0092 .0103 .0114 .0127 .0141 .0156 .0173
16 .0028 .0031 .0036 .0041 .0046 .0052 .0059 .0066  .0074 .0082
17 .0011  .0013 .0015 .0017 .0020 .0022 .0026  .0029  .0033 .0037
18 .0004 .0005 .0006  .0007 .0008 .0009 .0011 .0012  .0014 .0016
19 .0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0006 .0005

kK 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1 9997 9997 9998 9998 9998 9998 9998  .9998  .9999 .9999
2 9972 9975 9977 9979 9981 9982 9984 9985  .9987 .9988
3 9873 9882 9891 9900 .9907 9914 9921 9927  .9932 .9938
4 9604 9630 9654 9677 9699 9719 9738 9756 9772 9788

5 9060 9113 9163 9211 9256 9299 9340 9379 9416 9450
6 .8178  .8264  .8347  .8427 8504 .8578 .8648 8716  .8781 .8843
7 .6987 7104 7219 7330 7438 7543 7645 7744 7840 7932
8§ 5609 5746 5881 .6013  .6144 .6272  .6398  .6522  .6643 .6761
9 4214 4353 4493 4631 4769 4906 5042 5177 5311 .5443
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A

K 81 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0
10 2959 3085 3212 3341 3470 3600 3731 3863 .3994 4126
11 1942 2045 2150 2257 2366  .2478 2591 2706  .2822 .2940
12 1193 1269 1348 1429 1513 .1600  .1689 1780  .1874 1970
13 .0687 .0739 .0793 .0850 .0909  .0971 1035 1102  .1171 1242
14 0372 0405 .0439 .0476 .0514 .0555 .0597 .0642  .0689 .0739
15 .0190 .0209 .0229  .0251 .0274 .0299 .0325 .0353  .0383 .0415
16 .0092 .0102 .0113 .0125 .0138 .0152 .0168 .0184  .0202 .0220
17 .0042 .0047 .0053 .0059 .0066 .0074 .0082 .0091 .0101 .0111
18 .0018 .0021  .0023 .0027 .0030 .0034 .0038 .0043  .0048 .0053
19 .0008 .0009 .0010 .0011 .0013 .0015 .0017 .0019  .0022 .0024
K 9.1 9.2 9.3 94 9.5 9.6 9.7 9.8 9.9 10.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
1 9999 9999 9999 9999 9999 9999 9999 9999 1.0000  1.0000
2 9989 9990 9991 9991 9992 9993 9993 9994  .9995 .9995
3 9942 9947 9951 9955 9958 9962 9965 9967  .9970 9972
4 9802 9816 9828 9840 9851 9862 9871 9880  .9889 .9897
5 9483 9514 9544 9571 9597 9622 9645 9667  .9688 .9707
6 .8902 .8959 9014 9065 9115 9162 9207 9250  .9290 .9329
7 .8022  .8108  .8192  .8273  .8351 .8426  .8498  .8567  .8634 .8699
8 .6877 .6990 7101 7208 7313 7416 7515 7612  .7706 7798
9 5574 5704 5832 5958  .6082 .6204 .6324  .6442  .6558 .6672
10 4258 4389 4521 4651 4782 4911 5040 5168  .5295 5421
11 3059 3180 .3301 .3424 3547 3671 3795 .3920 4045 4170
12 2068 2168 2270 2374 2480 2588 2697 2807  .2919 .3032
13 1316 1393 1471 1552 1636  .1721 1809 1899  .1991 .2084
14 0790 .0844 .0900 .0958 .1019 .1081  .1147 1214 1284 1355
15 .0448 .0483 .0520 .0559 .0600 .0643 .0688 .0735 .0784 .0835
16 .0240 .0262 .0285 .0309 .0335 .0362 .0391 .0421 .0454 .0487
17 .0122 0135 .0148 .0162 .0177 .0194 .0211  .0230  .0249 .0270
18 .0059 .0066 .0073 .0081 .0089  .0098 .0108 .0119  .0130 .0143
19 .0027 .0031 .0034 .0038 .0043 .0048 .0053 .0059  .0065 .0072
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A

K91 9.2 9.3 94 9.5 9.6 9.7 9.8 9.9 10.0

20 .0012 .0014 .0015 .0017 .0020 .0022  .0025 .0028  .0031 .0035
21 .0005 .0006  .0007 .0008 .0009 .0010 .0011  .0013  .0014 .0016
22 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0005 .0006 .0007
23 .0001 .0001 .0001 .0001 .0001 .0002 .0002  .0002  .0003 .0003
24 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 @ .0001 .0001




C.4. CHI-SQUARED DISTRIBUTION

2

The table gives values of x? for values of n and F, where F(x%n) = 1 / h "/ 2lexp(—t/2)dt.
21/21(n/2) Jo
F

n .005 .010 .025 .050 .100 .250 .500 750 900 950 975 990 995
1 .0000393 .000157 .000982 .00393 .0158 102 455 1.32 2.71 3.84 5.02 6.63 7.88
2 .0100 .0201 .0506 .103 211 575 1.39 2.77 4.61 5.99 7.38 9.21 10.6
3 .0717 115 216 .352 .584 1.21 2.37 4.11 6.25 7.81 9.35 11.3 12.8
4 .207 297 484 711 1.06 1.92 3.36 5.39 7.78 9.49 111 13.3 14.9
5 412 .554 .831 1.15 1.61 2.67 4.35 6.63 9.24 1.1 12.8 15.1 16.7
6 676 872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 14.4 16.8 18.5
7 989 1.24 1.69 217 2.83 4.25 6.35 9.04 12.0 14.1 16.0 18.5 20.3
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.2 13.4 15.5 17.5 20.1 22.0
9 1.73 2.09 2.70 3.33 417 5.90 8.34 11.4 14.7 16.9 19.0 21.7 23.6
10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 232 25.2
11 2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7 219 24.7 26.8
12 3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0 23.3 26.2 28.3
13 3.57 411 5.01 5.89 7.04 9.30 12.3 16.0 19.8 224 24.7 27.7 29.8
14 4.07 4.66 5.63 6.57 7.79 10.2 13.3 17.1 211 23.7 26.1 29.1 31.3
15 4.60 523 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0 27.5 30.6 32.8

(Continued)
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F
n .005 .010 .025 .050 .100 .250 .500 .750 900 950 975 990 995
16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3 28.8 32.0 34.3
17 5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 30.2 33.4 35.7
18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 315 34.8 37.2
19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 329 36.2 38.6
20 7.43 8.26 9.59 10.9 124 15.5 19.3 23.8 28.4 31.4 34.2 37.6 40.0
21 8.03 8.90 10.3 11.6 13.2 16.3 20.3 249 29.6 32.7 355 38.9 414
22 8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.8 40.3 42.8
23 9.26 10.2 11.7 13.1 14.8 18.1 22.3 27.1 32.0 35.2 38.1 41.6 442
24 9.89 10.9 12.4 13.8 15.7 19.0 23.3 28.2 33.2 36.4 39.4 43.0 45.6
25 10.5 11.5 13.1 14.6 16.5 19.9 24.3 29.3 344 37.7 40.6 44.3 46.9
26 11.2 12.2 13.8 15.4 17.3 20.8 25.3 30.4 35.6 38.9 419 45.6 48.3
27 11.8 12.9 14.6 16.2 18.1 21.7 26.3 31.5 36.7 40.1 43.2 47.0 49.6
28 12.5 13.6 15.3 16.9 18.9 22.7 27.3 32.6 37.9 413 445 48.3 51.0
29 13.1 14.3 16.0 17.7 19.8 23.6 28.3 33.7 39.1 42.6 45.7 49.6 52.3
30 13.8 15.0 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.8 47.0 50.9 53.7
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The table gives values of t for specific values of n and F where

275

t 2y —(1+1)/2
F(t;n) = L Iln+ 1)/2]/ 1+ dx.
(wn)l/z '(n/2) Cw n
Note that F(—t) =1 — F(t).
F

n .60 .75 .90 95 975 99 995 9995

1 .325 1.000 3.078 6.314 12.706 31.821 63.657 636.619

2 .289 816 1.886 2.920 4.303 6.695 9.925 31.598

3 277 765 1.638 2.353 3.182 4.541 5.841 12.921

4 271 741 1.533 2.132 2.776 3.747 4.604 8.610

5 267 727 1.476 2.015 2.571 3.365 4.032 6.869

6 265 718 1.440 1.943 2.447 3.143 3.707 5.959

7 263 711 1.415 1.895 2.365 2.998 3.499 5.408

8 262 706 1.397 1.860 2.306 2.896 3.355 5.041

9 261 703 1.383 1.833 2.262 2.821 3.250 4.781
10 .260 .700 1.372 1.812 2.228 2.764 3.169 4.587
11 .260 697 1.363 1.796 2.201 2.718 3.106 4.437
12 .259 .695 1.356 1.782 2.179 2.681 3.055 4.318
13 .259 694 1.350 1.771 2.160 2.650 3.012 4221
14 258 .692 1.345 1.761 2.145 2.624 2977 4.140
15 258 .691 1.341 1.753 2131 2.602 2.947 4.073
16 .258 .690 1.337 1.746 2.120 2.583 2.921 4.015
17 257 689 1.333 1.740 2.110 2.567 2.898 3.965
18 257 688 1.330 1.734 2.101 2.552 2.878 3.922
19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.883
20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.850
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.819
22 256 .686 1.321 1.717 2.074 2.508 2.819 3.792
23 256 .685 1.319 1.714 2.069 2.500 2.807 3.768
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.745
25 .256 684 1.316 1.708 2.060 2.485 2.787 3.725
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F
n .60 .75 .90 .95 975 .99 995 9995
26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.707
27 .256 .684 1.314 1.703 2.052 2473 2.771 3.690
28 256 .683 1.313 1.701 2.048 2.467 2.763 3.674
29 256 .683 1.311 1.699 2.045 2.462 2.756 3.659
30 256 .683 1.310 1.697 2.042 2.457 2.750 3.646
40 .255 .681 1.303 1.684 2.021 2.423 2.704 3.551
60 254 679 1.296 1.671 2.000 2.390 2.660 3.460
120 254 .677 1.289 1.658 1.980 2.358 2.617 3.373
c 253 .674 1.282 1.645 1.960 2.326 2.576 3.291




C.6. F DISTRIBUTION

The table gives values of F such that
T[(m+n)/2] jmy\m/2 /F §(m=2)/2
F(FFmn) = ————— " (— dx
( ) F(m/Z)F(Tl/Z) (11) 0 [1+ (m/n)x](m—m)/Z

for specified values of m and n. Values corresponding to F(F) = 0.10, 0.05 and 0.025 may be found using the relation
Fi_o(n,m) = [Fo(m,n)] .

F(F; m, n) = 0.90

m

n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 o

1 3986 4950 5359 5583 5724 5820 5881 5944 5986 60.19 60.71 6122 6174 6200 6226 6253 6279 63.06 63.33
2 853 900 916 924 929 933 935 937 938 939 941 942 944 945 946 947 947 948 949
3 554 546 539 534 531 528 527 525 524 523 522 520 518 518 517 516 515 514 513
4 454 432 419 411 405 401 398 395 394 392 39 387 384 38 38 38 379 378 376

5 406 378 362 352 345 340 337 334 332 330 327 324 321 319 317 316 314 312 310
6 378 346 329 318 311 305 301 298 296 294 290 287 284 282 280 278 276 274 272
7 359 326 307 296 288 283 278 275 272 270 267 263 259 258 256 254 251 249 247
8§ 346 311 292 281 273 267 262 259 256 254 250 246 242 240 238 236 234 232 229
9 336 301 281 269 261 255 251 247 244 242 238 234 230 228 225 223 221 218 216

10 329 292 273 261 252 246 241 238 235 232 228 224 220 218 216 213 211 208 206
11 323 286 266 254 245 239 234 230 227 225 221 217 212 210 208 205 203 200 197
12 318 281 261 248 239 233 228 224 221 219 215 210 206 204 201 199 196 193 190
13 314 276 256 243 235 228 223 220 216 214 210 205 201 198 196 193 190 188 1.85
14 310 273 252 239 231 224 219 215 212 210 205 201 19 194 191 189 18 183 1.80

(Continued)
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m
n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 LS
5 307 270 249 236 227 221 216 212 209 206 202 197 192 19 187 18 182 179 176
16 305 267 246 233 224 218 213 209 206 203 199 194 18 187 184 181 178 175 172
17 303 264 244 231 222 215 210 206 203 200 19 191 18 184 181 178 175 172 1.69
18 301 262 242 229 220 213 208 204 200 198 193 189 184 181 178 175 172 169 1.66
19 299 261 240 227 218 211 206 202 198 19 191 18 181 179 176 173 170 167 1.63
20 297 259 238 225 216 209 204 200 19 194 18 18 179 177 174 171 168 164 1.61
21 29 257 236 223 214 208 202 198 195 192 187 183 178 175 172 169 166 162 159
22 29 256 23 222 213 206 201 197 193 19 18 181 176 173 170 167 164 160 157
23 294 255 234 221 211 205 199 195 192 189 184 180 174 172 169 166 162 159 155
24 293 254 233 219 210 204 198 194 191 188 183 178 173 170 167 164 161 157 153
25 292 253 232 218 209 202 197 193 18 187 182 177 172 169 166 163 159 156 152
26 291 252 231 217 208 201 19 192 18 18 18 176 171 168 165 161 158 154 1.50
27 29 251 230 217 207 200 19 191 187 18 180 175 170 167 164 160 157 153 149
28 289 250 229 216 206 200 194 19 187 18 179 174 169 166 163 159 156 152 148
29 28 250 228 215 206 199 193 18 18 183 178 173 168 165 162 158 155 151 147
30 283 249 228 214 205 198 193 188 1.8 182 177 172 167 164 161 157 154 150 146
40 284 244 223 209 200 193 187 18 179 176 171 166 161 157 154 151 147 142 138
60 279 239 218 204 19 187 18 177 174 171 166 160 154 151 148 144 140 135 129
120 275 235 213 199 190 18 177 172 168 165 160 155 148 145 141 137 132 126 1.19
o 271 230 208 194 18 177 172 167 163 160 155 149 142 138 134 130 124 117 1.00
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F(F; m, n) = 0.95

m
n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 o
1 1614 1995 2157 2246 2302 2340 2368 2389 2405 2419 2439 2459 2480 249.1 250.1 251.1 2522 2533 2543
2 1851 19.00 19.16 1925 1930 19.33 1935 1937 1938 1940 1941 1943 1945 1945 1946 1947 1948 1949 19.50
3 1013 955 928 912 9.01 894 889 885 881 879 874 870 866 864 862 859 857 855 853
4 771 694 659 639 626 616 609 604 600 59 591 58 580 577 575 572 569 566 563
5 661 579 541 519 505 495 488 482 477 474 468 462 456 453 450 446 443 440 436
6 599 514 476 453 439 428 421 415 410 406 400 394 387 384 381 377 374 370 3.67
7 559 474 435 412 397 387 379 373 368 364 357 351 344 341 338 334 330 327 323
8 532 446 407 384 369 358 350 344 339 335 328 322 315 312 3.08 3.04 301 297 293
9 512 426 386 363 348 337 329 323 318 314 3.07 301 294 290 286 28 270 275 271
10 496 410 371 348 333 322 314 3.07 302 298 291 285 277 274 270 266 262 258 254
11 484 398 359 336 320 309 301 295 290 28 279 272 265 261 257 253 249 245 240
12 475 389 349 326 311 3.00 291 285 280 275 269 262 254 251 247 243 238 234 230
13 467 381 3.41 318 3.03 292 283 277 271 267 260 253 246 242 238 234 230 225 221
14 460 374 334 311 296 28 276 270 265 260 253 246 239 235 231 227 222 218 213
15 454 368 329 306 29 279 271 264 259 254 248 240 233 229 225 220 216 211 2.07
16 449 363 321 3.01 285 274 266 259 254 249 242 235 228 224 219 215 211 2.06 201
17 445 359 320 296 281 270 261 255 249 245 238 231 223 219 215 210 206 201 1.96
18 441 355 316 293 277 266 258 251 246 241 234 227 219 215 211 2.06  2.02 197 192
19 438 352 313 290 274 263 254 248 242 238 231 223 216 211 2.07 203 1.98 1.93 1.88
(Continued)
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m
n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ©
20 435 349 310 287 271 260 251 245 239 235 228 220 212 208 204 199 195 190 184
21 432 347 307 284 268 257 249 242 237 232 225 218 210 205 201 19 192 187 181
22 430 344 305 282 266 255 246 240 234 230 223 215 207 203 198 194 189 184 178
23 428 342 303 280 264 253 244 237 232 227 220 213 205 201 196 191 18 181 176
24 426 340 301 278 262 251 242 236 230 225 218 211 203 198 194 18 18 179 173
25 424 339 299 276 260 249 240 234 228 224 216 209 201 19 192 187 182 177 171
26 423 337 298 274 259 247 239 232 227 222 215 207 199 19 190 18 180 175 1.69
27 421 335 29 273 257 246 237 231 225 220 213 206 197 193 188 184 179 173 1.67
28 420 334 295 271 256 245 236 229 224 219 212 204 19 191 187 182 177 171 1.65
29 418 333 293 270 255 243 235 228 222 218 210 203 194 190 18 181 175 170 1.64
30 417 332 292 269 253 242 223 227 221 216 209 201 193 18 18 179 174 168 1.62
40 408 323 284 261 245 234 225 218 212 208 200 192 184 179 174 169 164 158 151
60 400 315 276 253 237 225 217 210 204 199 192 18 175 170 165 159 153 147 1.39
120 392 3.07 268 245 229 217 209 202 196 191 183 175 166 161 155 150 143 135 125
o 3.8 300 260 237 221 210 201 194 18 183 175 167 157 152 146 139 132 122 1.00
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F(F; m, n) = 0.975

m
n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 o
1 6478 799.5 8642 899.6 921.8 9371 9482 956.7 963.3 968.6 976.7 9849 993.1 9972 1001 1006 1010 1014 1018
2 3851 39.00 39.17 39.25 3930 39.33 39.36 39.37 39.39 3940 3941 3943 3945 3946 3946 3947 3948 3949 39.50
3 1744 16.04 1544 1510 1488 1473 14.62 1454 1447 1442 1434 1425 1417 1412 1408 14.04 1399 1395 13.90
4 1222 1065 998 960 936 920 9.07 898 890 884 875 866 856 851 8.46 8.41 8.36 8.31 8.26
5 1001 843 776 739 715 698 685 676 668 662 652 643 633 628 6.23 6.18 6.12 6.07 6.02
6 88l 72 660 623 599 58 570 560 552 546 537 527 517 512 5.07 5.01 496 4.90 4.85
7 807 654 589 552 529 512 499 490 482 476 467 457 447 442 4.36 431 425 4.20 4.14
8 757 6.06 542 505 482 465 453 443 436 430 420 410 400 395 3.89 3.84 3.78 3.73 3.67
9 721 571 508 472 448 432 420 410 403 396 387 377 3.67 3.61 3.56 3.51 3.45 3.39 3.33
10 694 546 483 447 424 407 395 385 378 372 362 352 342 337 3.31 3.26 3.20 3.14 3.08
1 672 529 463 428 404 38 376 366 359 353 343 333 323 317 3.12 3.06 3.00 2.94 2.88
12 655 510 447 412 389 373 361 351 344 337 328 318 3.07 3.02 2.96 291 2.85 2.79 2.72
13 641 497 435 400 377 360 348 339 331 325 315 305 295 289 2.84 2.78 2.72 2.66 2.60
14 630 486 424 38 366 350 338 329 321 315 3.05 295 284 279 2.73 2.67 2.61 2.55 2.49
15 620 477 415 380 358 341 329 320 312 3.06 29 286 276 270 2.64 2.59 2.52 2.46 2.40
16 612 469 408 373 350 334 322 312 305 299 289 279 268 263 2.57 2.51 2.45 2.38 2.32
17 6.04 462 401 366 344 328 316 306 298 292 282 272 262 256 2.50 244 2.38 2.32 2.25
18 598 456 395 361 338 322 310 301 293 287 277 267 256 250 2.44 2.38 2.32 2.26 2.19
19 592 451 390 356 333 317 305 29 283 382 272 262 251 245 2.39 2.33 227 2.20 2.13
(Continued)
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m
n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 o
20 587 446 386 351 329 313 301 291 284 277 268 257 246 241 2.35 2.29 222 2.16 2.09
21 583 442 382 348 325 309 297 287 280 273 264 253 242 237 2.31 2.25 2.18 2.11 2.04
22 579 438 378 344 322 305 293 28 276 270 260 250 239 233 227 221 2.14 2.08 2.00
23 575 435 375 341 318 3.02 29 281 273 267 257 247 236 230 224 2.18 211 2.04 1.97
24 572 432 372 338 315 299 287 278 270 264 254 244 233 227 221 2.15 2.08 2.01 1.94
25 569 429 269 335 313 297 28 275 268 261 251 241 230 224 2.18 2.12 2.05 1.98 191
26 566 427 367 333 310 294 282 273 265 259 249 239 228 222 2.16 2.09 2.03 1.95 1.88
27 563 424 365 331 308 292 280 271 263 257 247 236 225 219 213 2.07 2.00 1.93 1.85
28 561 422 363 329 306 29 278 269 261 255 245 234 223 217 211 2.05 1.98 1.91 1.83
29 559 420 361 327 304 28 276 267 259 253 243 232 221 215 2.09 2.03 1.96 1.89 1.81
30 557 418 359 325 303 287 275 265 257 251 241 231 220 214 2.07 2.01 1.94 1.87 1.79
40 542 405 346 313 290 274 262 253 245 239 229 218 207 201 1.94 1.88 1.80 1.72 1.64
60 529 393 334 301 279 263 251 241 233 227 217 206 194 188 1.82 1.74 1.67 1.58 1.48
120 515 380 323 28 267 252 239 230 222 216 205 194 182 176 1.69 1.61 1.53 1.43 1.31
o 502 369 312 279 257 241 229 219 211 205 194 183 171 1.64 1.57 1.48 1.39 1.27 1.00
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C.7. SIGNED-RANK TEST 283

C.7. SIGNED-RANK TEST

The table gives critical values of w, for a one-tailed signed-rank test for samples of size .
For a two-tailed test use the statistic w at a 2« value.

One-tailed a = 0.01 One-tailed a = 0.025 One-tailed a = 0.05
n Two-tailed a = 0.02 Two-tailed a = 0.05 Two-tailed a = 0.10
5 0
6 0 2
7 0 2 3
8 1 3 5
9 3 5 8
10 5 8 10
11 7 10 13
12 9 13 17
13 12 17 21
14 15 21 25
15 19 25 30
16 23 29 35
17 27 34 41
18 32 40 47
19 37 46 53
20 43 52 60
21 49 58 67
22 55 65 75
23 62 73 83
24 69 81 91
25 76 89 100
26 84 98 110
27 92 107 119
28 101 116 130
29 110 126 140
30 120 137 151

Footnote: Formulas for the calculation of this table are given in F. Wilcoxon, S.K. Katti and R.A. Wilcox, ‘Critical values and probability
levels for the Wilcoxon rank-sum test and the Wilcoxon signed-rank test’, Selected Tables in Mathematical Statistics, Vol. 1 (1973),
American Mathematical Society, Providence, Rhode Island, U.S.A.
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tailed test use the statistic u at a 2« value.

C. STATISTICAL TABLES

C.8. RANK-SUM TEST (See footnote to Table C.7.)

Values of u] , such that Pu1,» < ] ,] < e, for samples of sizes ny and 1, > n;. For a two-

1y
m 3456 7 8 910 11 12 13 14 15 16 17 18 19 20
2 1 1 1 1 1 2 2 2 2 One-tailed test,
3 1 1 2 2 3 3 4 5 5 6 6 7 7 8 a=00250r
4 12 3 4 4 5 6 7 8 910 11 11 12 13 14 two-tailed test,
5 23 5 6 7 8 9 11 12 13 14 15 17 18 19 20 ¢~ 000
6 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27
7 8 10 12 14 16 18 20 22 24 26 28 30 32 34
8 13 15 17 19 22 24 26 29 31 34 36 38 41
9 17 20 23 26 28 31 34 37 39 42 45 48
10 23 26 29 33 36 39 42 45 48 52 55
np
m 3456 7 8 910 11 12 13 14 15 16 17 18 19 20
2 1 1.1 1 2 2 3 3 3 3 4 4 4 One-tailed test,
3 12 2 3 4 4 5 5 6 7 7 8 9 9 10 11 a=0.05o0r
4 123 4 5 6 7 8 910 11 12 14 15 16 17 18 two-tailed test,
5 45 6 8 9 11 12 13 15 16 18 19 20 22 23 25 ¢ =010
6 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32
7 11 13 15 17 19 21 24 26 28 30 33 35 37 39
8 15 18 20 23 26 28 31 33 36 39 41 44 47
9 21 24 27 30 33 36 39 42 45 48 51 54
10 27 31 34 37 41 44 48 51 55 58 62




C.9. RUNS TEST

The table gives lower and upper critical values for r, the number of runs, in the form (a,b), for given values of n and
m > n for use in a one-tailed test at significance level « = 0.05, or a two-tailed test at significance level « = 0.1. A dash
means there is no value that satisfies the required conditions.

m
n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 e 22 29 29 29 2o 2o 2 2 2 20 @2 29
3 =7 2 2 2 2 ¢ 6 6 6 6 6 G B G 6 B GO
4 28 29 G9 G99 B G G @) @) @) @) @ @) @) @G G @)
5 89 G110 G100 G11) “1) ¢1) ¢ ¢ @G- 6o 6 6 6 6o 60 67)
6 GI) @G11) 412) 412) (120 (513) (513) (513) (513) (6-) (6~ 6-) G- 6-)  (6-)
7 412) 413) (513) (513) (514) (614) (614) (614) (615 (615 (715) (715 (715) (7-)
8 G13) (14) (614) (615 (615 (615 (7,16) (716) (716) (716) (816) (816)  (817)
9 614) (615 (615 (7,16) (7,16) (717) (817) (817) (817) (818) (8,18)  (9,18)
10 616) (7,16) (717) (817) (817) (818) (818) (9,18) (9190 (9,19) (9,19
11 717) (817) (818) (818) (9,19 (9190 (9,19) (1020) (10,20) (10,20)
12 818 (918) (9,19 (9,19) (1020) (1020) (10,21) (1021) (11,21)
13 9,19 (9200 (1020) (1021) (1021) (11,21) (11,22) (11,22)
14 (10200 (1021) (11,21) (11,22) (11,22) (12,23) (12,23)
15 (11,21) (1122) (11,22) (1223) (12,23) (12,24)
16 (11,23) (12,23) (1224) (1324) (13,25)
17 (1224) (1324) (1325) (13,25)
18 (13,25) (14,25) (14,26)
19 (14,26) (14,27)
20 (15,27)

LS4dL SNNY 60
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C.10. RANK CORRELATION COEFFICIENT

The table gives critical values of Spearman’s rank correlation coefficient for specified
values of «, the significance level.

n a=0.05 a=0.025 a=0.01
5 0.900
6 0.829 0.886 0.943
7 0.714 0.786 0.893
8 0.643 0.738 0.833
9 0.600 0.683 0.783
10 0.564 0.648 0.745
11 0.523 0.623 0.736
12 0.497 0.591 0.703
13 0.475 0.566 0.673
14 0.457 0.545 0.646
15 0.441 0.525 0.623
16 0.425 0.507 0.601
17 0.412 0.490 0.582
18 0.399 0.476 0.564
19 0.388 0.462 0.549
20 0.377 0.450 0.534
21 0.368 0.438 0.521
22 0.359 0.428 0.508
23 0.351 0.418 0.496
24 0.343 0.409 0.485
25 0.336 0.400 0.475
26 0.329 0.392 0.465
27 0.323 0.385 0.456
28 0.317 0.377 0.448
29 0.311 0.370 0.440

30 0.305 0.364 0.432




APPENDIX

D
Answers to Odd-Numbered Problems

OUTLINE

Problems 1 287 Problems 7 289
Problems 2 288 Problems 8 290
Problems 3 288 Problems 9 290
Problems 4 288 Problems 10 290
Problems 5 289 Problems 11 291
Problems 6 289

PROBLEMS 1

1.1 Possible events are 1H, 1T, 3H, 3T, 5H, 5T, 2HT, 2TH, 2TT, 4HH, 4HT, 4TH, 4TT, 6HH,
6HT, 6TH, and 6TT; 18 elements in the sample space.

1.3 Thebinsare0 <x < 12.5,12.5 <x < 25.0, etc. with widths 12.5. The frequencies are 0, 1, 5,
7,9, 11, 4, and 3. The cumulative distribution is

Bin <125 <25 <375 <50 <625 <75 <875 <100
Cumulative frequency 0 1 6 13 22 33 37 40

1.5 For the unbinned data, x = 58.375 and s = 18.62. For the binned data x = 58.75
and s = 18.82. Shepard’s correction reduces this to 18.47, but would not alter the estimate
for the mean. The percentage of unbinned data that falls within the range
X —2s <x <X+ 2sis 97.5%. If the data followed a normal distribution, the percentage
would be 95.4%.

Statistics for Physical Science: An Introduction 287 Copyright © 2012 Elsevier Inc. All rights reserved.



288 D. ANSWERS TO ODD-NUMBERED PROBLEMS

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

33

35

Solve the quadratic equation for p that follows from fmax(x) = 1/0v 2.
The correlation coefficient ¥ = —0.64.
PROBLEMS 2
Probability for a current to flow is P = [(1N2)U(3U4)] =2p :2;73 + p*, and for no

current to flow is P = P[TU2]P[3N4] =1 — 2p + 2p® — p*. P+ P = 1, which checks.

If F denotes the event where the component is faulty and B the event where the
component is part of a faulty batch, then P[F|B] = 0.94 and the technician should now be
94% certain that the component is the problem.

The number of possible arrangements is 103680.

If + denotes a positive (guilty) test result and G innocence, then P[G|+] = 0.254

If W, means the second draw has resulted in a white ball, etc., then
(a) P[RiNW,NB3] = 0.022 and (b) P[R1NW,NB3] = 0.018.

PROBLEMS 3

uy =vy/aand uh = y(y+1)/a.
Expected number is 4.095.

(a) Plx <y] =0.25. (b) P[x > 1,y < 2] = 0.367.

3.7 fc(x\y) =12x2(1 +x — y)/ (7 —4y)

39 fu)=u, 0<u<1l)and f(u) =2 —u, (1 <u<?2),ie, a triangle with a peak at u = 1.

4.1

4.3

4.5

PROBLEMS 4

Without medical intervention, P[n = 14] = 0.0369, i.e., 3.7%. This is to be compared with
70% who recover if they use the drug. So, on the basis of this very small sample, the drug
is effective.

P =0.0087.

Using the binomial, P[r > 5] = 0.564; using the Poisson, P[r > 5] = 0.559.



4.7

4.9

5.1

5.3

5.5

5.7

5.9

6.1

6.3

6.5

6.7

6.9

7.1

7.3

1.5

1.7

PROBLEMS 7 289

Pk > 3] = 0.047.

P[W > 6 x 10°] = 0.09

PROBLEMS 5

An unbiased estimator for I is X, — 1/2 and E {(En - ,u)ﬂ =1/12n+1/4.
P[x < 7.5] = 0.1056.

Any more than 22 exposures.

Approximately 96.

The percentage error on F is 12%.

PROBLEMS 6

x? =823.

Use the properties of the characteristic function of a variate ij having a chi-squared
distribution with n; degrees of freedom.

n=7
k= -2.093
The probability of a difference in the variances of the measured size is between 0.02 and

0.05 and hence the machines do not appear to be consistent.

PROBLEMS 7

The ML estimator 7 of the lifetime 7 is the mean of the measured times f. To show that it
is an unbiased estimator for 7, show that E[%(t1, 1, ...,t,)] = t. The variance is

0% (z) = 1°/n.

The mean k is an unbiased estimator A for the parameter A and o2 (k) = /1.

k=-2-3/Inx;

Find the ML estimators for E in the case where |E; — Eg| < T"'and " > 0.
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PROBLEMS 8

8.1 From the x? probabilities only the cubic fit is acceptable.

8.3 ;\1 =1.04 and ;12 = —1.06, with an error matrix

(16 —04\ .
E= (—0.4 0.6) <1075

1 61 61
8.5 =(1-— =hy(1—-— =h3(1+—
X1 1( 02>,x2 2( 62),X3 3( +03),

where

01 = I + I3 — h3; 62 =2<h%+h%+h3\/h%+h§>;
03 :2<h§+h3,/h§+hg>.

and

8.7 The Bayes’ estimator is

. (> +1
P

This differs slightly from the ML estimator found in Problem 7.7, which was p = (>_r)/n.

PROBLEMS 9

9.1 0.329 < p < 0.371
9375<5<125
95 137.0 <t <3247

9.7 credible interval: 780.5 < u < 782.7: confidence interval: 774.1 < u < 785.9.

PROBLEMS 10

10.1 The test statistic is z = 2.24 and z( gp5 = 1.96. Therefore, the hypothesis must be rejected.

10.3 The test statistic is x> = 43.9. As this is greater than x3 ;(19), the null hypothesis must be
rejected.



10.5

10.7

10.9

11.3

11.5

11.7

11.9

PROBLEMS 11 291

The test statistic is F = 0.738 for 11 and 8 degrees of freedom. Since
F < Fyo5(11,8) = 3.3, we cannot reject the alternative hypothesis.

Using ANOVA, F = s% / s%,v = 1.39. Since F < Fy05(5,18) = 2.77, the hypothesis cannot be
rejected at this significance level.

Plk > 63] = 0.033 < 0.05, so the supplier’s claim is rejected.

PROBLEMS 11

Using chi-squared to compare the values of the expected number of intervals e; with
a given number of counts with the observations, gives x> = 10.51 for 12 degrees of
freedom, and since x3 5 = 11.3 and X3 ,5 = 8.4, the hypothesis is acceptable at any
reasonable significance level.

From (11.10) D = 0.356, and from (11.11) D* = 1.18. Thus, from (11.12) the hypothesis
would accepted at a 10% significance level.

The calculated 2 = 6.03 for 4 degrees of freedom, and since x? < X%.m (4) =7.78, we
accept the null hypothesis of independence.

From the rank numbers, w, = 37.5, w_ = 15.0 and hence w = min{w,,w_} = 15.0. The
critical region for n = 10 in a two-tailed test (because we are testing an equality) with
a =0.051is w < 8, so we accept the null hypothesis at this significance level.

Assigning + and — signs to whether the value is greater than or less than the mean,
wehaven =8, m = 10 and r = 9 runs. The critical regions at a 10% significance level are
r < 6 and r > 14, so the hypothesis is accepted.
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density and distribution functions of, 107f, 108

independence tests and, 231

mgf, 109

normal approximations, 109—110, 110t
normal distribution and, 105—111
normality convergence and, 109—110, 110t
percentage points of, 108, 108f
population distributions related to, 121f
quality of fit and, 152

Student’s t distribution and F distribution and,

119—121, 121f, 121t
tables, 272—274

Classical theory of minima, 247—248
Composite hypotheses, 194, 201—204

likelihood ratio test, 198, 202, 203b—204b
UMP test and, 201

Conditional density function, 45—49
Conditional probability, 23, 25f
Confidence belt, 177—178
Confidence coefficient, 174
Confidence intervals, 174—190

Bayesian, 189—190

central interval, 174, 174f
confidence belt, 177—178
confidence coefficient, 174
confidence region, 176
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Confidence intervals (Continued)
credible intervals, 189
general method, 177—179, 177f, 178f
for mean and variance, 183—184
large samples, 186—187
near boundaries, 187—189
normal distribution, 179—184
for mean, 180—182, 181t
for mean and variance, 183—184
for variance, 182—183
one-tailed, 176, 176b
Poisson distribution, 184—186, 185t
two-tailed, 175
Confidence level, 174
Confidence regions, 176, 183—184
Consistent estimator, 86—87
Constrained optimization, 255—256
Contingency table, 231, 231t
Continuous single variate probability distribution, 37
Converge in probability, 86—87
Convolutions, 53
Correlation, 12—14. See also Spearman rank correlation
coefficient
binned data and, 14
coefficient, 50
interpretation, 13—14
Pearson’s correlation coefficient, 13
rank correlation coefficient, 239—241
scatter plot, 13, 13f
Covariance, 50
estimators for, 90—93
sample, 12—13
Cramér-Rao inequality, 137—140
Credible intervals, 189
Critical region, 194
Critical values, 108, 108f
Cumulants, 43
Cumulative distribution function, 37, 39f
Cumulative frequency, 4—5, 5f

D
Data
numerically summarized, 7—15
location measures, 8—9
more than one variable, 12—15
spread measures, 9—12
representations
bar chart, 4—5, 5f
frequency table, 4—5
histograms, 45, 6f, 7
lego and scatter plots, 7, 7f
Davidon’s method of minimization, 225
Degrees of freedom, chi-squared distribution and, 111

INDEX

Density function. See Probability distributions
Descriptive statistics
defined, 1
displaying data, 4—7
bar chart, 4—5, 5f
frequency table, 4—5
histograms, 4—5, 6f, 7
lego and scatter plots, 7, 7f
experimental errors, 17—19
experiments and observations, 2—4
large samples and, 15—17
Discrete single variate, 36
Dispersion, 9—10
Displaying data
bar chart, 4—5, 5f
frequency table, 4—5
histograms, 45, 6f, 7
lego and scatter plots, 7, 7f
Distribution. See Probability distributions
Distribution-free tests. See Nonparametric tests

E
Equation of regression curve of best fit, 143—144
Error, 17—19
bars, 17—18
contributions to, 17
experimental
descriptive statistics and, 17—19
estimation and, 103—104
outliers and, 98—99
probable error, 97
propagation of errors law, 99—103
random, 17
sampling and, 103—104
statistical, 17
systematic errors, 102
matrix, 149—150
mean squared, 88—89
precision and accuracy, 17—18, 18f
probabilities, 194—195
standard, 62
of mean, 91-92
statistical hypotheses and, 194
systematic, 18, 18f
type L or II, 194
Estimation
central limit theorem and, 93—97
interval estimation, 173—191
large number laws and, 93—97
of mean, variance and covariance, 90—93
point estimation
Bayesian, 167—171
least-squares, 143—162



maximium likelihood, 123—135
method of moments, 165—166
minimum chi-squared, 163—164
minimum variance, 136—140
Event, 2
Expectation values, 40—41, 4951
Experimental errors, 17—19
outliers and, 98—99
probable error and, 97
propagation of errors law, 99—103
sampling and estimation and,
103—104
systematic errors, 102
variance matrix, 102—103
Experiments and observations, 2—4
Exponential probability distributions, 66—68
memory and, 67
Extended likelihood function, 128

F
F distribution
chi-squared and Student’s t distributions and,
119—121, 121f, 121t
constructing form of, 116
linear hypotheses and, 230—231
mgf, 117
noncentral, 230—231
normal distribution and, 116—119
pdf, 117
percentage points of, 117, 118f
population distributions related to, 121f
quality of fit and, 152
tables, 276—282
Fréchet inequality, 137—140
Frequency interpretation of probability, 27—29
table, 4—5
Full width at half maximum height (FWHM), 17
Functions of random variables. See Random
variables

G

Gamma distributions, 66

Gaussian distribution, 16, 16f

General hypotheses: likelihood ratios, 198—204
composite hypotheses, 201—-204
likelihood ratio test, 198
Neymane-Pearson lemma and, 199
simple hypothesis, 198—201

Generalized likelihood ratio test, 198, 202

Goodness-of-fit tests, 221—231
continuous distributions, 225—228
discrete distributions, 222—225
independence tests as, 231—232
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Kolmogorov-Smirnov test, 226—227, 227f
linear hypotheses, 228—231
Pearson’s chi-squared test, 224—225, 225b
rank correlation coefficient, 239—241
runs test, 237—239
signed-rank test, 234—236

Gradient method of optimization, 254—255
Davidon’s method, 255
Newton’s method, 254—255

H
Half-width, 17
Histograms, 4, 6f, 7
Hypothesis testing
acceptance region, 194
alternative hypothesis, 205
analysis of variance, 215—218
ANOVA, 215-218
composite hypothesis, 194
critical region, 194
error probabilities, 194
generalized likelihood ratio, 202—204
goodness-of-fit tests, 222—231
likelihood ratios, 198—201
Neyman-Pearson lemma, 199
nonparametric tests, 233—241
normal distribution, 204—214
table of tests, 213
tests of means, 206—210
tests on variances, 210—214
null hypothesis, 194
OC curve, 196—197, 197f
one-tailed test, 195
p-value, 195
Poisson distribution, 214—215
power of test, 195
rejection region, 194
significance level, 194
simple hypothesis, 84—85
tests for independence, 231—-233
two-tailed test, 195
type I errors, 194
type II errors, 194
uniformly most powerful test, 201—202

1
Independence tests
chi-squared procedure and, 231
as goodness-of-fit tests, 231—232
contingency table, 231, 231t
Independent measurements, 2—3
Inference, statistical, 29

Interval estimation. See Confidence intervals
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Inverse lifetime, 67 M
Inversion theorem, 43 Mann-Whitney rank-sum test, 236—237
summarized, 237t
J Marginal density function, 45—49, 47f
Joint marginal distribution, 64 Marginal probability, 25—26
Joint moments, 49—51 Mass function, 37, 39f
Joint probability density, 45 Matrix algebra, 243—247
Maximum likelihood (ML)
K Bayes’ theorem, 170—171
Kolmogorov-Smirnov test, 226—227, 227f estimation
Kurtosis, 60—61 approximate methods, 130—133
binned data and, 124—125
L combining experiments, 135
Large numbers laws, 93—97 defined, 123—124
Large samples, 15—17, 186—187 disadvantages, 135
Law of total probability, 25—26 extended likelihood function, 128
Laws of large numbers, 93—97 graphical method, 131, 131f
Least squares estimation interpretation of, 135
constrainted, 159—162 minimum variance bound and,
variance matrix, 161 137—-140
nonlinear, 162—163 several parameters, 133—135
linearization procedure and, 163 single parameter, 123—128
unconstrained linear, 143—159 unbiased estimator and, 126
best fit curve, 143—144 variance of estimator, 128—133, 137—140
binned data, 147—148 normality of large samples, 125—126
combining experiments, 158—159 principle, 32
error matrix, 149—150 Mean
minimum variance properties, 148—149 arithmetic, 8
normal equations, 145—147 confidence intervals for, 180—182
orthogonal polynomials, 152—154 error of, 91-92
parameters estimates errors, 149—151, 151b estimators for, 90—93
parameters general solution, 145—149 linear combinations of, 96
quality of fit, 151152 location measures, 8
residuals, 145 point estimators for, 90—91
straight line fit, 154—158 population, 8
weight matrix, 149—150 squared error, 88—89
Lego plots, 7, 7f Median, 8
Likelihood, 32 Memory, 67
ratios, 198—204 Method of moment, 165—167
composite hypotheses, 201—-204 mgf. See Moment generating function
Neymane-Pearson lemma and, 199 Minima, classical theory of, 247—248
simple hypothesis, 198—201 Minimum chi-square, 163—165
test, 198, 202 Minimum variance, 136—140. See also Least squares
Linear hypotheses bound, 137140
goodness-of-fit tests and, 228—231 parameter estimation and, 136—137
noncentral F distribution and, 230—231 properties, 148—149
power of test and, 230—231 Schwarz inequality and, 138
Location measures, 8—9 ML. See Maximum likelihood
mean, 8 Mode, 8
mode and median, 8 Moment generating function (mgf), 42—43
quantile and percentile, 8—9 chi-squared distribution and, 109
Lorentz distribution, 68—69 F distribution, 117

Loss function, 168 multivariate normal distribution, 66



Poisson distribution, 76—79
sampling distributions, 86
Student’s ¢ distribution, 114
Moments, 11
algebraic, 41
central, 41
expectation values relation to, 41, 49—51
generating function, 72
joint, 49—51
Monte Carlo method, 85—86
Multinomial probability distributions, 74—75
Multiplicative rule, probability, 23—24
Multivariate distributions
conditional density function, 45—49
joint density function, 45, 46f
joint distribution function, 45
normal probability distributions, 63—66
bivariate normal, 65—66
independent variable, 64
joint marginal distribution, 64
joint mgf, 66
quadratic form, 63—64
Multi-way analysis, 216

N

Newton’s method of minimization, 254—255
Neyman-Pearson lemma, 199
Noncentral F distribution, 230—231
Nonlinear functions, optimization of
constrained optimization, 255—256
general principles, 249—252
unconstrained minimization
direct search methods, 253—254
of multivariable functions, 253—255
of one variable functions, 252—253
Nonlinear least squares, 162—163
linearization procedure and, 163
Nonparametric tests, 233—241
rank correlation coefficient, 239—241
rank-sum test, 236—237
summarized, 237t
runs test, 237—239
sign test, 233—234
signed-rank test, 234—236
summarized, 235t
Normal approximations
binomial, 73—74
chi-squared, 109—110
student’s ¢, 114—115
Normal density function, 59—63, 60f
Normal distribution, 16, 16f
bivariate, 65—66
characteristic function, 61
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chi-squared distribution and, 105—111
confidence intervals, 179—184
for mean, 180—182, 181t
for mean and variance, 183—184
for variance, 182—183
Gaussian distribution and, 59—63, 60f
hypothesis testing: parameters, 204—214
table of tests, 213t
tests on means, 206—210
tests on variances, 210—214
inverse of standardized
N~! table, 180—181, 181t
multivariate, 66
sampling distributions related to, 121f
standard form, 61
Student’s t distribution and, 111-116
tables, 257—258
univariate, 59—63, 60f
Null hypothesis, 194

(0]

OC. See Operating characteristic curve
One-tailed confidence intervals, 176
One-tailed test, 204—205
One-way analysis, 215—216
Operating characteristic (OC) curve, 196—197, 197f
Optimal estimator, 88—89
Optimization of nonlinear functions. See Nonlinear
functions, optimization of
Orthogonal polynomials, 153
ill-conditioning and, 152—153
least squares and, 152—154
recurrence relations and, 153—154
Outliers, 98—99

P

Parameter, 7
Parameter estimation. See Estimation
Parametric statistics, 86
pdf. See Probability density function
Pearson’s chi-squared test, 224—225
Pearson’s correlation coefficient, 13
Percentage points, 108—109, 108f
chi-squared distribution, 108—109, 108f
Student’s t distribution, 113f
Percentile, 8—9
Permutations theorem, 26
Point estimators, 86
Bayesian, 167—171
for mean, 90—91
least squares method, 143—158
minimum variance and, 136—140
bound, 137—140
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Point estimators (Continued)
parameter estimation, 136—137
Schwarz inequality, 138
ML method, 123—136
moments method, 165—167
Poisson probability distributions, 75—80
binomial distribution and, 75—76, 78t
cf and mgf for, 76—79
hypothesis testing and, 215
interval estimation and, 184—186, 185t
normal approximation, 76—79
sampling distributions related to, 121f
tables, 266—272
Population
defined, 2—3
distributions. See Probability distributions
mean, 8
variance, 9—10
Posterior probability density, 167—168
Power, 194—195
Power of test
linear hypotheses and, 230—231
normal distribution and, 204—205, 205f
UMP and, 201
Prior probability density, 168
Probability
additive rule, 23
axioms of, 21—23
calculus of, 23—27
conditional probability, 23—24, 25f
frequency interpretation, 27—29
intervals, 189
law of total probability, 25—26
marginal, 25—26
multiplicative rule, 23—24
permutations theorem, 26
posterior probability density, 167—168
prior probability density, 168
subjective interpretation, 27—32
Venn diagrams, 22, 22f
Probability density function (pdf). See Probability
distributions
F distribution and, 117
sampling distributions and, 86
Probability distributions
binomial, 69—74
bivariate normal, 65—66
Cauchy, 68—69
chi-squared, 105—111
continuous single variate, 37
cumulative distribution function, 37, 39f
discrete single variate, 36
exponential, 66—68

INDEX

F distribution, 116—119
gamma, 66
marginal density function, 45—49, 47f
mass function, 37, 39f
multinomial, 74—75
multivariate conditional density function,
45—49
multivariate joint density function, 45, 46f
multivariate joint distribution function, 45
multivariate normal, 63—66
Poisson, 75—80
Student’s t distribution, 111—116
uniform, 57—58
univariate normal, 59—63, 60f
Weibull, 68
Probability mass function, 37, 39f
Probable error, 97
Propagation of errors law, 99—103
p-value, 195—196

Q
Quadratic form, 63—64
Quality of fit
least squares and, 151—152
chi-squared test, 152
F distribution test, 152
Quantile, 8—9

R

Random error, 17

Random number, 58
generators, 85—86

Random samples
central limit theorem and, 93—97
definition regarding, 3—4, 84
estimators and, 83—90
large numbers laws and, 93—97
point estimators, 86—90
with and without replacement, 90
sampling distributions, 84—86

cf, pdf, and mgf and, 86
Monte Carlo method and, 85—86

simple sampling, 3—4

Random variables
cf, 42—44
convolutions, 53
cumulative distribution function, 37, 39f
density function, 37, 40f
expectation values, 40—41
functions of, 51—55
marginal density function, 45—49, 47f
mass function, 37, 39f
mgf, 42—44



moments and expectation values, 41, 49—51
multivariate
conditional density function, 45—49
joint density function, 45, 46f
joint distribution function, 45
single variates, 36—44
Rank correlation coefficient, 239—240
tables, 286
Rank-sum test, 236—237
summarized, 237t
tables, 284
Region of acceptance, 194
Region of rejection, 194
Regression curve, 144
Rejection region, 194
Risk function, 168
Runs test, 237—239
tables, 284—285

Sample
covariance, 12—13
space, 2—3
variance, 9—10
Sampling
central limit theorem and, 93—97
experimental errors and, 103—104
large numbers laws and, 93—97
linear combinations of means and, 96
random samples and estimators, 83—90
Sampling distributions, 84—86
cf, pdf, and mgf and, 86
chi-squared distribution, 105—111
F distribution, 116—119
Monte Carlo method and, 85—86
parametric statistics and, 86
population distributions related to, 121f
statistic and, 84—85
Student’s ¢ distribution, 111-116
Scatter plots, 7, 7f
Schwarz inequality, 138
Sheppard’s corrections, 11
Sign test, 233—234
Signed-rank test, 234—236
summarized, 235t
tables, 283
Significance level, 194
Simple hypothesis: one alternative, 198—201
likelihood ratios and, 198—204
likelihood ratio test, 198
Neymane-Pearson lemma and, 199
Simple random sampling, 3—4
Single variates, 36—44
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cf, 42—44
continuous, 37
cumulative distribution function, 37, 39f
discrete, 36
expectation values, 40—41
mgf, 42—44
probability density function, 37, 40f
probability distributions, 36—40
probability mass function, 37, 39f
Skewness, 12
Spearman rank correlation coefficient, 239—241
Spread measures, 9—12
SSB. See Sum of squares between groups
SST. See Total sum of squares
SSW. See Sum of squares within groups
Standard bivariate normal density function,
65—66
Standard deviation, 9—10
Standard error, 62
of mean, 91—92
Standard normal density function, 61
Standard normal distribution function, 61
Statistic, 7
Statistical error, 17
Statistical hypotheses, 194—198
error probabilities and, 194
OC curve and, 196—197, 197f
one-tailed test, 204—205
power and, 194—195
p-value and, 195—196
two-tailed test and, 195, 196f
Statistical independence, 48
Statistical tables
binomial distribution, 259—265
chi-squared distribution, 272274
F distribution, 276—282
normal distribution, 257—258
Poisson distribution, 266—272
rank correlation coefficient, 286
rank-sum test, 284
runs test, 284
signed-rank test, 283
Student’s t distribution, 275—276
Statistics
applications, 1—2
definitions, 1
Stratified sampling, 4
Strong law of large numbers, 93—97
Student’s ¢ distribution
asymptotic behavior of, 114—115
background, 111112
derivation, 112
mgf and, 114
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Student’s ¢ distribution (Continued)
normal distribution and, 111-116
percentage points of, 113f
population distributions related to, 121f
tables, 275—276
Subjective interpretation of probability, 29—30
Sufficient estimator, 89

Sum of squares between groups (SSB), 216, 217, 217t
Sum of squares within groups (SSW), 216, 217t

Systematic error, 18, 18f
propagation of errors law and, 102
Systematic sampling, 4

T
Tables. See Statistical tables
Taylor’s series, 247—248
Tests for independence, 231233

Total sum of squares (SST), 216, 217, 217t, 218b
Two-tailed confidence intervals, 175b, 175—176

Two-tailed test, 195, 196f
Type I or II errors, 194

U
UMP. See Uniformly most powerful test
Unbiased estimator, 126
Unbiased point estimators, 87—88
Unconstrained linear least squares, 143—159
best fit curve, 143—144
binned data, 147—148
combining experiments, 158—159, 159b
error matrix, 149—150
minimum variance properties, 148—149
normal equations, 145—147
orthogonal polynomials, 152—154
parameters estimates errors, 149—151, 151b
parameters general solution, 145—149
quality of fit, 151—152
residuals, 145
straight line fit, 154—158
weight matrix, 149—150
Unconstrained minimization
of multivariable functions, 253—255

INDEX

direct search methods, 253—254
gradient methods, 254—255
of one variable functions, 252—253
Uniform probability distribution, 57—58
Uniformly most powerful (UMP) test, 201
Univariate normal distribution function,
59—63, 60f
Univariate normal probability distributions,
59—63, 60f
linear sum distribution, 62—63

v

Variance
confidence intervals, 182—184
of estimator, 128—133
approximate methods, 130—133
graphical method and, 131, 131f
estimators for, 90—93
matrix, 102—103
minimum, 136—140
bound, 137—140
parameter estimation and, 136—137
Schwarz inequality and, 138
ML estimator and, 128—133,
137—140
point estimators for, 91-92
population, 9—10
sample, 9—10
unconstrained linear least squares and,
148—149
Venn diagrams, 22, 22f

w

Weak law of large numbers, 93—97
Chebyshev’s inequality and, 93

Weibull distribution, 68

Weighted mean, 130, 158

Weight matrix, 149—150

Wilcoxon rank-sum test, 236—237
summarized, 237t

Wilcoxon signed-rank test, 234—236
summarized, 235t
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