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Preface

Almost all physical scientistse physicists,
astronomers, chemists, earth scientists, and
others e at some time come into contact
with statistics. This is often initially during
their undergraduate studies, but rarely is it
via a full lecture course. Usually, some statis-
tics lectures are given as part of a general
mathematical methods course, or as part of
a laboratory course; neither route is entirely
satisfactory. The student learns a few tech-
niques, typically unconstrained linear least-
squares fitting and analysis of errors, but
without necessarily the theoretical back-
ground that justifies the methods and allows
one to appreciate their limitations. On the
other hand, physical scientists, particularly
undergraduates, rarely have the time, and
possibly the inclination, to study mathemat-
ical statistics in detail. What I have tried to
do in this book is therefore to steer a path
between the extremes of a recipe of methods
with a collection of useful formulas, and
a detailed account of mathematical statistics,
while at the same time developing the
subject in a reasonably logical way. I have
included proofs of some of the more impor-
tant results stated in those cases where they
are fairly short, but this book is written by
a physicist for other physical scientists and
there is no pretense to mathematical rigor.
The proofs are useful for showing how the
definitions of certain statistical quantities
and their properties may be used. Neverthe-
less, a reader uninterested in the proofs can
easily skip over these, hopefully to come
back to them later. Above all, I have con-
tained the size of the book so that it can be

read in its entirety by anyone with a basic
exposure to mathematics, principally
calculus and matrices, at the level of a first-
year undergraduate student of physical
science.

Statistics in physical science is principally
concerned with the analysis of numerical
data, so in Chapter 1 there is a review of
what is meant by an experiment, and how
the data that it produces are displayed and
characterized by a few simple numbers.
This leads naturally to a discussion in
Chapter 2 of the vexed question of proba-
bility e what do we mean by this term and
how is it calculated. There then follow two
chapters on probability distributions: the
first reviews some basic concepts and in
the second there is a discussion of the prop-
erties of a number of specific theoretical
distributions commonly met in the physical
sciences. In practice, scientists rarely have
access to the whole population of events,
but instead have to rely on a sample from
which to draw inferences about the popula-
tion; so in Chapter 5 the basic ideas involved
in sampling are discussed. This is followed
in Chapter 6 by a review of some sampling
distributions associated with the important
and ubiquitous normal distribution, the
latter more familiar to physical scientists as
the Gaussian function. The next two chap-
ters explain how estimates are inferred for
individual parameters of a population from
sample statistics, using several practical
techniques. This is called point estimation.
It is generalized in Chapter 9 by considering
how to obtain estimates for the interval

ix



within which an estimate may lie. In the final
two chapters, methods for testing hypoth-
eses about statistical data are discussed. In
the first of these the emphasis is on hypoth-
eses about individual parameters, and in
the second we discuss a number of other
hypotheses, such as whether a sample comes
from a given population distribution and
goodness-of-fit tests. This chapter also
briefly describes tests that can be made in
the absence of any information about the
underlying population distribution.

All the chapters contain worked exam-
ples. Most numerical statistical analyses are
of course carried out using computers, and
several statistical packages exist to enable
this. But the object of the present book is to
provide a first introduction to the ideas of
statistics, and so the examples are simple
and illustrative only, and any numerical
calculations that are needed can be carried
out easily using a simple spreadsheet. In an
introduction to the subject, there is an educa-
tional value in doing this, rather than simply
entering a few numbers into a computer
program. The examples are an integral part
of the text, and by working through them

the reader’s understanding of the material
will be reinforced. There is also a short set
of problems at the end of each chapter and
the answers to the odd-numbered ones are
given in Appendix D. The number of prob-
lems has been kept small to contain the
size of the book, but numerous other prob-
lems may be found in the references given
in the Bibliography. There are three other
appendices: one on some basic mathematics,
in case the reader needs to refresh their
memory about details; another about the
principles of function optimization; and
a set of the more useful statistical tables, to
complement the topics discussed in the
chapters and to make the book reasonably
self-contained.

Most books contain some errors, typos,
etc., and doubtless this one is no exception.
I will maintain a website at www.hep.ucl.
ac.uk/~brm/statsbook.html, where any
corrections that are brought to my attention
will be posted, along with any other
comments.

Brian R. Martin

June 2011
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O U T L I N E

1.1 Experiments and Observations 2

1.2 Displaying Data 4

1.3 Summarizing Data Numerically 7
1.3.1 Measures of Location 8

1.3.2 Measures of Spread 9
1.3.3 More than One Variable 12

1.4 Large Samples 15

1.5 Experimental Errors 17

In the founding prospectus of the Statistical Society of London (later to become the Royal
Statistical Society), written in 1834, statistics was defined very broadly as ‘the ascertaining
and bringing together of those facts which are calculated to illustrate the conditions and pros-
pects of society’. In the context of modern physical science, statistics may be defined more
narrowly as the branch of scientific method that deals with collecting data from experiments,
describing the data (known as descriptive statistics), and analyzing them to draw meaningful
conclusions (known as inferential statistics).1 Statistics also plays a role in the design of exper-
iments, but for the purposes of this book, this aspect of statistics, which is a specialized
subject in its own right, will be excluded. There are many other possible definitions of statis-
tics that differ in their details, but all have the common elements of collections of data, that
are the result of experimental measurements, being described in some way and then used to
make inferences. The following examples illustrate some of the many applications of
statistics.

Consider a situation where several experiments claim to have discovered a new elemen-
tary particle by observing its decaymodes, but all of them have very few examples to support
their claim. Statistics tells us how to test whether the various results are consistent with each

1The word ‘statistics’ is used here as the name of the subject; it is a collective noun and hence singular. In

Section 1.3 we will introduce another meaning of the word to describe a function (or functions) of the data

themselves.

1Statistics for Physical Sciences: An Introduction Copyright � 2012 Elsevier Inc. All rights reserved.



other and if so how to combine them so that we can be more confident about the claims.
A second example concerns the efficacy of a medical treatment, such as a drug. A new
drug is never licensed on the basis of its effect on a single patient. Regulatory authorities
rightly require positive testing on a large number of patients of different types, that is, it is
necessary to study its effects on distributions of people. However both time and cost limit
howmany people can be tested, so in practice samples of patients are used. Statistics specifies
how such samples are best chosen to ensure that any inferences drawn aremeaningful for the
whole population. Another class of situations is where the predictions from a theory, or a law
of nature, depend on one or more unknown parameters, such as the electromagnetic force
between two charge particles, which depends on the strength of the electric charge. Such
parameters can be determined from experiment by fitting data with a function including
the unknown parameters. Statistics specifies ways of doing this that lead to precise state-
ments about the best values of the parameters. A related situation is where there are
competing theories with different predictions for some phenomenon. Statistical analysis
can use experimental data to test the predictions in a way that leads to precise statements
about the relative likelihoods of the different theories being correct.

The discussion of statistics will begin in this chapter by considering some aspects of
descriptive statistics, starting with what is meant by an experiment.

1.1. EXPERIMENTS AND OBSERVATIONS

An experiment is defined formally as a set of reproducible conditions that enables measure-
ments to be made and which produce outcomes, or observations. The word ‘reproducible’ is
important and implies that in principle independent measurements of a given quantity can
be made. In other words, the result of a given measurement xi does not depend on the result
of any other measurement. If the outcomes are denoted by xi, then the set of all possible
outcomes xið1 ¼ 1, 2,., NÞ is called the population and defines a sample space S, denoted by
Shfx1,x2, ., xNg. In principle N could be infinitely large, even if only conceptually. Thus,
when measuring the length of a rod, there is no limit to the number of measurements that
could in principle be made, and we could conceive of a hypothetical infinite population of
measurements. A subset of the population, called a sample, defines an event, denoted by E.
Two simple examples will illustrate these definitions.

EXAMPLE 1.1

An ‘experiment’ consists of a train traveling from A to B. En route, it must negotiate three sections

consisting of a single track, each of which is governed by a set of traffic lights, and the state of these, either red

(r) or green (g), is recorded.What is the sample space for the experiment, and write an expression for the event

corresponding to the train encountering a red signal at the second traffic light?

The basic data resulting from the experiment are sequences of three signals, each either red or

green. The population therefore consists of 23 possible outcomes and the sample space is denoted

by the eight events

S ¼ frrr, rrg, rgg,ggg,ggr,grr, rgr,grgg:

1. STATISTICS, EXPERIMENTS, AND DATA2



The event E defined by the driver encountering a red signal at the second traffic light (and also

possibly at other lights) consists of four outcomes. Thus

E ¼ ðrrr, rrg, grr,grgÞ:

In this case the event is called complex because it contains a number of simple events each con-

taining a single outcome, rrr, etc.

EXAMPLE 1.2

The number of ‘heads’ obtained by tossing two coins simultaneously can assume the discrete values 0, 1, or

2. If we distinguish between the two coins,what is the sample space for the experiment and show the content of

its events?

Denoting H ¼ ‘heads’ and T ¼ ‘tails’, there are four events:

E1 ¼ ðH,HÞ; E2 ¼ ðH,TÞ; E3 ¼ ðT,HÞ; E4 ¼ ðT,TÞ,
and the sample space consists of the four events, S ¼ fE1,E2,E3,E4g.

In these examples the observations are non-numeric, but in physical science the outcomes
are almost invariably numbers, or sets of numbers, and to relate these definitions to numer-
ical situations, consider firstly the simple experiment of tossing a six-sided die. A simple
event would be one of the six numbers on the faces of the die, and the occurrence of the event
would be the situation where the number defining the event was observed on the face of the
die. The outcome is thus a discrete variable and can take one of the six numbers 1 to 6. If
there were two dice, an example of a complex event would be the observation of a 2 on
one die and a 3 on the other. Another example is an experiment to measure the heights of
all students in a given class. In this case the outcomes are not discrete, but continuous,
and in practice an event would be defined by an interval of heights. Then the occurrence
of the event would be interpreted as the situation where a measured height fell within a
specified range.

In practice, statistics often consists of just the stages of describing and analyzing the
data, because they are already available, but if this is not the case, statistics can also play
a role in the design of an experiment to ensure that it produces data of a useful form.
Although this will not be discussed in detail in this book, there is a general point to
be made.

Consider the problem of how to test which of two university staff is more effective in
teaching their students. An equal number of students could be assigned to each instructor
and they could give each student the same number of lectures and tutorial classes. The
outcomes could be the examination pass rates for the two groups, and these could be
analyzed to see if there were a significant difference between them. However to interpret
the pass rates as a measure of the effectiveness of the teaching skills of the instructors, we
have to be sure that as far as possible the experiment had been designed to eliminate bias.
Only then would any inferences be meaningful. This is because we would be using only

1.1. EXPERIMENTS AND OBSERVATIONS 3



a sample of students to make statistical inferences and not the whole population. The
simplest accepted way of ensuring this is to assign students to the two examiners in such
a way that all possible choices of members of the groups are equally likely. Alternatively,
put another way, that if we had a very large population of students, then every possible
sample of a particular size n has an equal chance of being selected. This is called simple
random sampling. In principle, this condition could be relaxed provided we could calculate
the chance of each sample being selected. Samples obtained this way are called random
samples of size n, and the outcomes are called random variables. At first sight this choice might
appear counterintuitive. We might think we could do better by assigning students on the
basis of their compatibility with the instructor, but any alternative mode of nonrandom selec-
tion usually results in one that is inherently biased toward some specific outcome. A random
choice removes this bias. Note that the word ‘chance’ has anticipated the idea of probability
that will be discussed in more detail in Chapter 2.

A question that naturally arises is: ‘How are random samples chosen?’ For small popula-
tions this is easy. One could assign a unique number to each member of the population and
write it on a ball. The balls could then be thoroughly shaken in a bag and n balls drawn. This
is essentially how lottery numbers are decided, with one ball assigned to each integer or set of
integers and drawing several balls sequentially. For very large populations, simple methods
like this are not practical and more complex methods have to be used. This problem will be
considered in more detail when sampling is discussed in Chapter 5.

Finally we should mention that although in practice in physical science ‘sampling’ almost
invariably means simple random sampling, there are other types of sampling that are used in
other fields. For example, pollsters often use systematic sampling (sometimes mistakenly pre-
sented as true random sampling) where every nth member of a population is selected, for
example every 100th name in a telephone book. Another method is when the population
can be divided into mutually exclusive subpopulations. In this case simple random samples
are selected from the subpopulations with a size proportional to the fraction of members that
are in that subpopulation. For example, if we know the fractions of men and women that take
a degree in physics, we could take simple random samples of sizes proportional to these frac-
tions to make inferences about the populations of all physics students. This is called stratified
sampling and is very efficient, but not often applicable in physical science.

1.2. DISPLAYING DATA

In physical sciences, experiments almost invariably produce data as a set of numbers, so
we will concentrate on numerical outcomes. The measurements could be a set of discrete
numbers, i.e., integers, like the numbers on the faces of a die, or a set of real numbers forming
a continuous distribution, as in the case of the heights of the students in the example above.
We will start by describing how data are displayed.

Experimental results can be presented by simply drawing a vertical line on an axis at the
value of every data point, but in practice for both discrete and continuous data it is common
to group themeasurements into intervals, or bins, containing all the data for a particular value,
or range of values. The binned data can be presented as a frequency table, or graphically. For
discrete data, binning can be done exactly and the results displayed in the form of a bar chart,

1. STATISTICS, EXPERIMENTS, AND DATA4



where a vertical bar is drawn, the height of which represents the number of events of a given
type. The total of the heights of the columns is equal to the number of events. The width of the
bins is arbitrary and sometimes for clarity a gap is left between one bin and the next. Both are
matters of taste. We will also be interested in the frequency with which an outcome takes on
values equal to or less than a stated value. This is called the cumulative frequency.

EXAMPLE 1.3

The frequency table below shows the results of an experiment where 6 coins are simultaneously tossed 200

times and the number of ‘heads’ recorded.

Number of heads 0 1 2 3 4 5 6

Frequency 2 19 46 62 47 20 4

Display these data, and the cumulative frequency, as bar charts.

Figure 1.1(a) shows the data displayed as a bar chart. The total of the heights of the columns is

200. Figure 1.1(b) shows a plot of the cumulative frequency of the same data. The numbers on this

plot are obtained by cumulatively summing entries on the bar chart of frequencies.

For continuous data, the values of the edges of the bins have to be defined and it is usual to
choose bins of equalwidth, although this is not strictly essential. The rawdata are then rounded
toaspecificaccuracy,using thenormal rules for rounding realnumbers, andassigned toapartic-
ular bin. By convention, if a bin has lower and upper values of a and b, respectively, then a data
pointwith value x is assigned to this bin if a� x < b. There is inevitably some loss of precision in
binning data, although it will not be significant if the number of measurements is large. It is the

(a) (b)

FIGURE 1.1 Bar charts showing (a) the
frequency of heads obtained in an experiment
where 6 coins were simultaneously tossed 200
times; and (b) the cumulative frequency of heads
obtained in the same experiment.
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price to be paid for putting the data in a useful form. The resulting plot is called a histogram. The
only significant difference between this and a bar chart is that the number of events in a histo-
gram is proportional to the area of the bins rather than their heights. The choice of bin width
needs some care. If it is too narrow, there will be few events in each bin and fluctuations will
be significant. If the bins are too wide, details can be lost by the data being spread over
a wide range. About 10 events per bin over most of the range is often taken as a minimum
when choosing bin widths, although this could be smaller at the end points.

EXAMPLE 1.4

The table below shows data on the ages of a class of 230 university science students taking a first-year

course in mathematical methods.Draw three histograms with bins sizes of 2 yrs, 1yr and ½ yr, respectively, all

normalized to a common area of unity. Which bin size is optimal?

Figure 1.2 shows the three histograms. They have been normalized to a common area of unity by

dividing the number of events in a bin by the product of the bin size times the total number of

FIGURE 1.2 Normalized histograms of the ages of 230 university science students taking a first-year course on
mathematical method, showing the effect of using different bins sizes.

Age range Student numbers

17.0e17.5 2

17.5e18.0 3

18.0e18.5 35

18.5e19.0 27

19.0e19.5 61

19.5e20.0 29

20.0e21.5 28

20.5e21.0 14

21.0e21.5 12

21.5e22.0 8

22.0e22.5 8

22.5e23.0 3
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events. For example, with a bin size of 2 years, as shown in the left-hand histogram, the entry in the

19e21 age bin is ð61þ 29þ 28þ 14Þ=ð2� 230Þ ¼ 0:29. The number of data is probably sufficient to

justify a bin size of ½ year becausemost of the bins contain a reasonable number of events. The other

two histograms have lost significant detail because of the larger bin sizes.

Histograms can be extended to three dimensions for data with values that depend on two
variables, in which case they are sometimes colloquially called lego plots. Two-dimensional
data, such as the energies and momenta of particles produced in a nuclear reaction, can
also be displayed in scatter plots, where points are plotted on a two-dimensional grid. Exam-
ples of these types of display are shown in Fig. 1.3. Although there are other ways that data
can be displayed, bar charts, histograms, and scatter plots are by far the most common graph-
ical representations of data used in physical sciences.

1.3. SUMMARIZING DATA NUMERICALLY

Although a frequency histogram provides useful information about a set of measure-
ments, it is inadequate for the purposes of making inferences because many histograms
can be constructed from the same data set. To make reliable inferences and to test the quality
of such inferences, other quantities are needed that summarize the salient features of the
data. A quantity constructed from a data sample is called a statistic2 and is conventionally
written using the Latin alphabet. The analogous quantity for a population is called a parameter
and is written using the Greek alphabet. We will look first at statistics and parameters that
describe frequency distributions.

(a) (b)

FIGURE 1.3 Examples of displays for two-dimensional data: (a) lego plot; and (b) scatter plot.

2This is the second use of this word, as mentioned earlier.

1.3. SUMMARIZING DATA NUMERICALLY 7



1.3.1. Measures of Location

The first measure of location, and the one most commonly used, is the arithmetic mean,
usually simply called the mean. For a finite population xiði ¼ 1, 2,.,NÞ of size N, the popu-
lation mean is a parameter denoted by m, and defined by

mh
1

N

XN
i¼1

xi: (1.1)

The mean of a sample of size n < N drawn from the population is the statistic, denoted xn,
or just x, defined by

xh
1

n

Xk
i¼1

fi xi, (1.2a)

where x can take on the values xi with frequencies fi ði ¼ 1, 2,., kÞ respectively, and
Xk
i¼1

fi ¼ n, (1.2b)

is the total frequency, or sample size. Alternatively, the sum in (1.2a) can be taken over indi-
vidual data points. In this case, k ¼ n, fi ¼ 1 and

x ¼ 1

n

Xn
i¼1

xi, (1.3)

so that m is the limit of the sample mean, when n/N. Note that the values of the mean calcu-
lated from (1.2a) and (1.3) will not be exactly the same, although the difference will be small
for large samples divided into many bins. (See Problem 1.5.)

Although the mean is the measure of location usually used in physical sciences, there are
two other measures that are occasionally used. These are the mode, which is the value of the
quantity for which the frequency is a maximum; and the median, which is the value of the
quantity that divides the cumulative frequency into two equal parts. The median is useful
in situation where the distribution of events is very asymmetric, because it is less effected
by events a long way from the ‘center’. An example is the income of a population, where
it is common practice for official statistics to quote the median, because this is less influenced
by the large incomes of a few very wealthy individuals. In the coin tossing experiment of
Example 1.3, the mode is 3, with a frequency 62. Both the 100th and the 101th throws,
arranged by order of size, fall in the class ‘3’ and since the quantity in this example can
only take on integer values between 0 and 6, the median value is also 3. In the case of a contin-
uous quantity, such as that shown in Fig. 1.2, the mode is the value of the 19e19½-year bin
and the median could be estimated by forming the cumulative frequency distribution from
the raw data and using the 115th point on the plot to find the median age by interpolation.

The median is an example of a more general measure of location called a quantile. This is
the value of x below which a specific fraction of the observations must fall. It is thus the
inverse of the cumulative frequency. Commonly met quantiles are those that divide a set
of observations into 100 equal intervals, ordered from smallest to largest. They are called
percentiles. Thus, if the percentiles are denoted by Ppðp ¼ 0:01, 0:02,. , 1Þ, then 100p percent
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of the data are at, or fall below, Pp. The median therefore corresponds to the P0:5 percentile. In
practice, to find the percentile corresponding to p, we order the data from lowest to highest
and calculate q ¼ np, where n is the sample size. Then if q is an integer we average the values
of the qth and the ðqþ 1Þth ordered values; if q is not an integer, the median is the kth ordered
value, where k is found by rounding up q to the next integer.

EXAMPLE 1.5

Use the sample data below to calculate the mean, the median, and the percentile P0:81.

1.6 3.4 9.2 9.6 6.1 7.5 8.0 8.9 11.1 12.3

2.3 4.1 6.8 4.8 12.5 10.0 5.1 8.2 8.5 11.7

The mean is

x ¼ 1

20

X20
i¼1

xi ¼ 7:585:

To find the median and P0:81, we first order the data from lowest to highest:

1.6 2.3 3.4 4.1 4.8 5.1 6.1 6.8 7.5 8.0

8.2 8.5 8.9 9.2 9.6 10.0 11.1 11.7 12.3 12.5

The median is P0:5, so q ¼ np ¼ 20� 0:5 ¼ 10. As q is an integer, the median is the average of the

10th and 11th smallest data values, i.e., 8.1. For P0:81, q ¼ 16:2, and because q is not an integer,

P0:81 is the 17th lowest data value, i.e., 11.1.

1.3.2. Measures of Spread

The other most useful quantity to characterize a distribution measures the spread, or disper-
sion, of the data about the mean. We might be tempted to use the average of the differences
dih xi � m from the mean, that is,

d ¼ 1

N

Xn
i¼1

ðxi � mÞ,

but from the definition of m, equation (1.1), this quantity is identically zero. So instead we use
a quantity called the variance that involves the squares of the differences from the means. The
population variance, denoted by s2, is defined by

s2h
1

N

XN
i¼1

ðxi � mÞ2, (1.4)

and the square root of the variance is called the standard deviation s. The standard deviation is
a measure of how spread out the distribution of the data is, with a larger value of smeaning
that the data have a greater spread about the mean. The sample variance s2 is defined for
a sample of size n by

1.3. SUMMARIZING DATA NUMERICALLY 9



s2h
1

n� 1

Xk
i¼1

fiðxi � xÞ2, (1.5)

or, if the sum is over individual data points,

s2 ¼ 1

n� 1

Xn
i¼1

ðxi � xÞ2 ¼ 1

n� 1

"Xn
i¼1

x2i �
1

n

 Xn
i¼1

xi

!2#

¼ 1

n� 1

"Xn
i¼1

x2i � nx2

#
¼ n

n� 1

�
x2 � x2

�
,

(1.6)

where equation (1.3) has been used to obtain the second line of (1.6) and an overbar is used to
denoted an average. Thus x2 is the average value of x2, defined by analogy with (1.3) as

x2h
1

n

Xn
i¼1

x2i : (1.7)

Equation (1.6) is easily proved and is useful when making numerical calculations. Just as for
the mean, the sample variance calculated from (1.5) will not be exactly the same as that
obtained from (1.6).

Note that the definitions of the sample and population variances differ in their external
factors, although for large sample sizes the difference is of little consequence. The reason
for the difference is a theoretical one related to the fact that (1.5) contains x, that has itself
been calculated from the data, and we require that for large samples, sample statistics should
provide values that on average are close to the equivalent population parameters. In this case,
we require the sample variance to provide a ‘true’, or so-called ‘unbiased’, estimate of the
population variance. This will be discussed in later chapters when we consider sampling
in more detail, as will the role of s in determining how well the sample mean is determined.

EXAMPLE 1.6

The price of laboratory consumables from 10 randomly selected suppliers showed the following percentage

price increases over a period of one year.

Supplier 1 2 3 4 5 6 7 8 9 10

Price increase (%) 15 14 20 19 18 13 15 16 22 17

Find the average price increase and the sample variance.

To find the average percentage price increase, we calculate the sample mean. This is

p ¼ 1

10

X10
i¼1

pi ¼ 16:9:

This can then be used to find the sample variance from (1.6),

s2 ¼ 1

9

X10
i¼1

ðpi � pÞ2 ¼ 8:10,
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and hence the sample standard deviation is s ¼ ffiffiffiffiffiffiffiffiffi
8:10

p ¼ 2:85. Thus we could quote the outcome

of the observations as an average percentage price increase of p ¼ 16:9 percent with a standard

deviation of 2.9 percent. In Section 1.3.4 below, an empirical interpretation is given of statements

such as this.

The mean and variance involve the first and second powers of x. In general, the nthmoment
of a population about an arbitrary point l is defined as

m0nh
1

N

XN
i¼1

ðxi � lÞn: (1.8)

Thus,
m00 ¼ 1, m01 ¼ m� lh d and m02 ¼ s2 þ d2:

If l is taken to be the mean m, the moments are called central and are conventionally written
without a prime. For example, m0 ¼ 1, m1 ¼ 0 and m2 ¼ s2. The general relation between the
two sets of moments is

mk ¼
Xk
r¼0

k!

ðk � rÞ!r! m
0
k�rð�m01Þr, (1.9a)

with its inverse

m0k ¼
Xk
r¼0

k!

ðk � rÞ!r! mk�rðm1Þr: (1.9b)

Moments can also be defined for samples by formulas analogous to those above.
In the case of grouped data, taking the frequencies to be those at the mid-points of the

intervals is an approximation and so some error is thereby introduced. This was mentioned
previously for the case of the sample mean and sample variance. In many circumstances it is
possible to apply corrections for this effect. Thus, if m0 are the true moments, and m0 the
moments as calculated from the grouped data with interval width h, then the so-called Shep-
pard’s corrections are

m01 ¼ m01; m02 ¼ m02 �
1

12
h2;

m03 ¼ m03 �
1

4
m01h

2; m04 ¼ m04 �
1

2
m02h

2 þ 7

240
h4;

(1.10a)

and, in general

m0r ¼
Xr
j¼0

��
r
j

��
21�j � 1

�
Bjh

j m0r�j

�
, (1.10b)

where Bj is the Bernoulli number of order j.3

3The Bernoulli number Bj is defined as the coefficient of t j=j! in the expansion of t=ðet � 1Þ. The first few are:

B0 ¼ 1, B1 ¼ �1=2, B2 ¼ 1=6, B3 ¼ 0, B4 ¼ �1=30:
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A number of statistics can be defined in terms of low-order moments that measure
additional properties, such as skewness, the degree to which a distribution of data is asym-
metric, although more than one definition of such statistics exists. In practice they are not
very useful because using the same data very different distributions can be constructed
with similar values of these statistics, and they are seldom used in physical science
applications.

Finally, the definition (1.6) can be used to prove a general constraint on how the data points
xi are distributed about the sample mean. If the data are divided into two sets, one denoted
Sk, with Nkðk < nÞ elements with jxi � xj < ks and s > 0, and the other containing the rest of
the points having jxi � xj > ks, then from (1.6)

ðn� 1Þs2 ¼
Xn
i¼ 1

ðxi � xÞ2 ¼
X
xi ˛Sk

ðxi � xÞ2 þ
X

xi ; Sk

ðxi � xÞ2 �
X

xi ; Sk

ðxi � xÞ2,

where the expression i ˛Sk means ‘the quantity xi lies in the set Sk’, and the inequality
follows from the fact that the terms in the summations are all positive. Using the condition
ðxi � xÞ2 � k2s2 for points not in the set Sk, the right-hand side may be replaced, so that

ðn� 1Þs2 �
X

xi ; Sk

n2s2 ¼ k2s2ðn�NkÞ:

Finally, dividing both sides by nk2s2 gives

n� 1

nk2
� 1�Nk

n
: (1.11)

This result is called Chebyshev’s inequality and shows that for any value of k, greater than
100ð1� 1=k2Þpercent of the data lie within an interval from x� ks to xþ ks. For example, if
k ¼ 2, then 75 percent of the data lies within 2s of the sample mean. Although this result is
interesting, it is only a weak bound and for the distributions commonly met, the actual
percentage of data that lie within the interval x� ks to xþ ks is considerably larger than
given by (1.11).

1.3.3. More than One Variable

The mean and variance are the most useful quantities that characterize a set of data, but if
the data are defined by more than one variable, then other quantities are needed. The most
important of these is the covariance. If the data depend on two variables and consist of pairs of
numbers fðx1,y1Þ, ðx2,y2Þ,.g, their population covariance is defined by

covðx,yÞh 1

N

XN
i¼1

ðxi � mxÞðyi � myÞ, (1.12a)

where mx and my are the population means of the quantities x and y. The related sample covari-
ance is defined by
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covðx, yÞh 1

n� 1

Xn
i¼1

ðxi � xÞðyi � yÞ

¼ n

n� 1
ðxy� x yÞ,

(1.12b)

where overbars again denote averages. The covariance can be used to test whether the quan-
tity x depends on the quantity y. If small values of x tend to be associated with small values of
y, then both terms in the summation will be negative and the sum itself will be positive. Like-
wise, if large values of x are associated with small values of y, the sum will be negative. If
there is no general tendency for values of x to be associated with particular values of y, the
sum will be close to zero.

Because the covariance has dimensions, a more convenient quantity is the correlation coef-
ficient (also called Pearson’s correlation coefficient), defined for a sample by

rh
covðx, yÞ

sxsy
, (1.13)

which is a dimensionless number between e1 and þ1. An analogous relation to (1.13) with
the sample standard deviation replaced by the population value, defines the population corre-
lation coefficient r. A positive value of r, i.e., a positive correlation, implies that values of x that
are larger than the mean x tend on average to be associated with values of y that are larger
than the mean y. Likewise, a negative value of r, i.e., a negative correlation, implies that that
values of x that are larger than x tend on average to be associated with values of y that are
smaller than y. If r is þ1 or e1, then x and y are totally correlated, i.e., knowing one
completely determines the other. If r ¼ 0, then x and y are said to be uncorrelated. Examples
of scatter plots for data showing various degrees of correlation are shown in Fig. 1.4. If there
are more than two variables present, correlation coefficients for pairs of variables can be
defined and form a matrix.4

Correlation coefficients must be interpreted with caution, because they measure associ-
ation, which is not necessarily the same as causation. For example, although the failure rate
of a piece of equipment in a particular month may show an association, i.e., be correlated,
with an increase in the number of users of the equipment, this does not necessarily mean
that the latter has caused the former. The failures might have occurred because of other

FIGURE 1.4 Scatter plot of
two-dimensional data and
approximate values of their
correlation coefficients r.

4A brief review of matrices is given in Appendix A.
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reasons, such as disruptions in the power supply to the equipment during the month in
question. Another example is the ownership of mobile phones over the past decade or
so. The number of mobile phones in use correlates positively with a wide range of dispa-
rate variables, including the total prison population and the increase in the consumption
of ‘organic’ foods, which common sense would say cannot possibly have caused the
increase. The answer lies in realizing that each of the latter quantities has increased
with time and it is this that has led to the observed correlations. Thus time is acting as
a ‘hidden variable’ and without knowing this, a misleading conclusion may be drawn
from the correlation.

EXAMPLE 1.7

The lengths and electrical resistances (in arbitrary units) of a sample of 10 pieces of copper wire were

measured with the results below. Calculate the correlation coefficient for the sample.

Number of piece 1 2 3 4 5 6 7 8 9 10

Length (L) 15 13 10 11 12 11 9 14 12 13

Resistance (R) 21 18 13 15 16 14 10 16 15 12

From these data we can calculate the sample means from (1.3) to be L ¼ 12 and R ¼ 15; the

sample variances from (1.6) to be s2L ¼ 30

9
and s2R ¼ 86

9
; and the covariance from (1.12b) to be

covðL,RÞ ¼ 40

9
. So, from (1.13), the correlation coefficient of the sample is 0.79, which indicates

a strong linear relationship between length and resistance of the pieces of wire, as one might expect.

Just as the mean and variance can be calculated using binned data, so can the correlation
coefficient, although the calculations are a little more complicated, as the following example
shows.

EXAMPLE 1.8

A class of 100 students has taken examinations in mathematics and physics. The binned marks obtained

are shown in the table below. Use them to calculate the correlation coefficient.

Mathematics marks

Physics

marks

40e49 50e59 60e69 70e79 80e89 90e99

40e49 2 5 4

50e59 3 7 6 2

60e69 2 4 8 5 2

70e79 1 1 5 7 8 1

80e89 2 4 6 5

99e99 2 4 4

1. STATISTICS, EXPERIMENTS, AND DATA14



Here we are working with binned data, but for the whole population, i.e.,N ¼ 100 students. The

variances and covariance are easiest to calculate from formulas analogous to (1.6) and (1.12b), but

for binned data. For the population, using x for the mathematics marks and y for the physics mark,

these are:

s2x ¼
1

N

X6
i¼1

f
ðxÞ
i x2i � 1

N2

 X6
i¼1

f
ðxÞ
i xi

!2

,

s2y ¼
1

N

X6
i¼1

f
ðyÞ
i y21 � 1

N2

 X6
i¼1

f
ðyÞ
i yi

!2

and

covðx,yÞ ¼ 1

N

X6
i, j¼1

hij xiyj �
1

N2

 X6
i¼1

f
ðxÞ
i xi

! X6
i¼1

f
ðyÞ
i yi

!
,

where

f
ðxÞ
i ¼

X6
j¼1

hij and f
ðyÞ
j ¼

X6
i¼1

hij

and hij is the frequency in the individual bin corresponding to ðxi,yjÞ, that is, f ðxÞi ðf ðyÞj Þ is the total

frequency of the bin having a central value xiðyjÞ. Using the frequencies given in the table gives

s2x ¼ 206:51, s2y ¼ 220:91, and covðx,yÞ ¼ 153:21: Hence the correlation coefficient is r ¼ covðx,yÞ=
ðsxsyÞx0:72:

1.4. LARGE SAMPLES

The total area under a histogram is equal to the total number of entries n multiplied by
the bin width Dx. Thus the histogram may be normalized to unit area by dividing each
entry by the product of the bin width (assumed for convenience to be all equal) and
the total number of entries, as was done for the data shown in Fig. 1.2. As the number
of entries increases and the bin widths are reduced, the normalized histogram usually
approximates to a smooth curve and in the limit that the bin width tends to zero and
the number of events tends to infinity, the resulting continuous function fðxÞ is called
a probability density function, abbreviated to pdf, or simply a density function. This is illus-
trated in Fig. 1.5, which shows the results of repeated measurements of a quantity, repre-
sented by the random variable x. The three normalized histograms NðxÞ show the effect of
increasing the number of measurements and at the same time reducing the bin width.
Figure 1.5(d) shows the final normalized histogram, together with the associated density
function fðxÞ.

The properties of density functions will be discussed in detail in Chapter 3, but one feature
worth noting here is that fðxÞ is very often of a symmetrical form known as a Gaussian or
normal distribution, like that shown in Fig. 1.5(d), the latter name indicating its importance
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in statistical analysis. If the function fðxÞ is of approximately normal form, an empirical rule is
that:

1. approximately 68.3% of observations lie within 1 sample standard deviation of the
sample mean;

2. approximately 95.4% of observations lie within 2 sample standard deviations of the
sample mean;

3. approximately 99.7% of observations lie within 3 sample standard deviations of
the sample mean.

These results could be used in principle to interpret the results of experiments like that in
Example 1.4, although in that case with only 10 events the distribution of observations is
unlikely to closely approximate a normal distribution.

The question of to what extent a set of measurements can be assumed a priori to be nor-
mally distributed is an interesting and important one. It is often remarked that physical scien-
tists make this assumption because they believe that mathematicians have proved it, and that
mathematicians assume it because they believe that it is experimentally true. In fact there is
positive evidence from both mathematics and experiments that the approximation is often
very good, but it is not universally true. In later chapters we will discuss the circumstances
in which one can be confident about the assumption.

(a) (b)

(c) (d)

FIGURE 1.5 Normalized histograms NðxÞ obtained by observations of a random variable x: (a) n ¼ 100
observations and bin width Dx ¼ 0:5; (b) n ¼ 1000, Dx ¼ 0:2; (c) n ¼ 10000, Dx ¼ 0:1; and (d) as for (c), but also
showing the density function fðxÞ as a smooth curve.
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A problem with the standard deviation defined in (1.6) as a measure of spread is that
because the terms in the definition of the variance are squared, its value can be strongly influ-
enced by a few points far from the mean. For this reason, another measure sometimes used is
related to the form of the probability density function. This is the full width at half maximum
height (FWHM), often (rather confusingly) called the half-width, which is easily found by
measuring the width of the distribution at half the maximum frequency. This quantity
depends far less on values a long way from the maximum frequency, that is, data points
in the tails of the distribution. For an exact normal distribution, the half-width is 2:35s.
(See Problem 1.8.)

1.5. EXPERIMENTAL ERRORS

In making inferences from a set of data, it is essential for experimenters to be able to assess
the reliability of their results. Consider the simple case of an experiment to measure a single
parameter, the length of a rod. The rod clearly has a true length, although unknown, so the
results of the experiment would be expressed as an average value, obtained from a sample of
measurements, together with a precise statement about the relationship between it and the
true value, i.e., a statement about the experimental uncertainty, called in statistics the error.
Without such a statement, the measurement has little or no value. The closeness of the
measured value to the true value defines the accuracy of the measurement, and an experiment
producing a measured value closer to the true value than that of a second experiment is said
to be more accurate.

There are several possible contributions to the error. The first is a simple mistake e
a reading of 23 from a measuring device may have been recorded incorrectly as 32. These
types of errors usually quickly reveal themselves as gross discrepancies with other measure-
ments, particularly if data are continually recorded and checked during the experiment, and
can usually be eliminated by repeating the measurement.

Then there are contributions that are inherent to the measuring process. If the length of the
rod is measured with a meter rule, the experimenter will have to estimate how far the end of
the rod is between calibrations. If it is equally likely that the experimenter will over- or under-
estimate this distance, the errors are said to be statistical, or random. Analogous errors are also
present in realistic experiments, such as those that involve electronic counting equipment.
Mathematical statistics is largely concerned with the analysis of random errors. One general
result that will emerge later is that they can be reduced by accumulating larger quantities of
data, i.e., taking more readings. The statistical error on a measurement is a measure of its
precision. Denoting the measurement as x and the statistical error as D, the result of the exper-
iment is expressed as x� D.

An experiment with a smaller statistical error is said to be more precise than one with
a larger statistical error. In statistics, ‘precision’ and ‘accuracy’ are not the same. This is illus-
trated in Fig. 1.6, which shows a set of measurements made at different values of x of a quan-
tity y that is known to be a linear function of x, as shown by the straight line. The data in
Fig. 1.6(a) are more precise than those in Fig. 1.6(b) because they have smaller errors, as
shown by the error bars. (These are the vertical lines of length 2D drawn vertically through
the data points to show the range of values x� D.) However the data clearly show
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a systematic deviation from the straight line that gives the known dependence of y on x. The
data in graph (b) have larger error bars and so are less precise, but they are scattered about
the line and are a better representation of the true relationship between x and y. Thus they
are more accurate. Later chapters will show how these statements may be expressed
quantitatively.

The deviation of the data in Fig. 1.6(a) from the true values is an indication of the presence
of a third type of error, called a systematic error. There are many possible sources of these,
which may, or may not, be known and they are by no means as obvious as Fig. 1.6 might
suggest. If a meter rule is used to measure the rod it may have been wrongly calibrated during
its manufacture, so that each scale unit, for example one millimeter, is smaller than it should
be. In a more realistic case where an experiment counts the particles emitted by a radioactive
isotope, the detectors could also have been wrongly calibrated, but in addition the source
might contain other isotopes, or the detectors may be sensitive to particles other than those
that identify the decay. In the simple case of measuring the length of a rod, repeating the
experiment with another meter rule would reveal the problem and enable it to be eliminated,
but in real situations using substantial equipment this may well not be possible and one of the
skills of a good experimentalist is to anticipate possible sources of systematic errors and
design them out at the planning stage of the experiment. Those that cannot be eliminated
must be carefully investigated and taken account in the final estimation of the overall error.

Systematic errors are a potentially serious problem, because you can never be sure that
you have taken all of them into account. There is no point in producing a very precise
measurement by taking more data to reduce the statistical error if the systematic error is
larger. This would only lead to a spurious accuracy. Books on mathematical statistics usually
have little to say about systematic errors, or ignore them all together, because in general there
is no way a full mathematical treatment of systematic errors can be made. However in the
real world of science we do not have the luxury of ignoring this type of error, and a limited
analysis is possible in some circumstances, particularly if the systematic effect is the same for
all data points, or its dependence on the measuring process is known, as is often the case. We
will return to this point in Section 5.4, when we discuss how to combine data from different
experiments.

In practice, it is better for clarity to quote the statistical and systematic errors separately, by
writing x� DR � DS, where the subscripts stand for ‘random’ and ‘systematic’, respectively.

(a) (b)

FIGURE 1.6 Illustration of the difference between (a) precision and (b) accuracy.
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This also allows a new source of systematic error to be incorporated into the results should
one be revealed later. The number of significant figures quoted for the measurement should
be onemore than that dictated by experimental precision to avoid errors that might be caused
by rounding errors in later calculations that use the result.

PROBLEMS 1

1.1 An experiment consists of tossing a die followed by tossing a coin (both unbiased). The
coin is tossed once if the number on the die is odd and twice if it is even. If the order of the
outcomes of each toss of the coin is taken into account, list the elements of the sample
space.

1.2 Five students, denoted by S1,S2,S3, S4 and S5, are divided into pairs for laboratory
classes. List the elements of the sample space that define possible pairings.

1.3 The table gives the examination scores out of a maximum of 100 for a sample of
40 students.

22 67 45 76 90 87 27 45 34 36

67 68 97 73 56 59 76 67 63 45

55 59 90 82 74 34 68 56 53 68

28 39 43 66 67 59 38 39 56 61

Cast the data in the form of a frequency histogramwith 8 equally spaced bins. What is the
frequency of each bin and the numbers in the bins of the cumulative distribution?

1.4 Calculate the median and the percentile P0:67 for the unbinned data of Example 1.3.

1.5 Use the data of Problem 1.3 to compute the sample mean x and the sample standard
deviation s, both for the unbinned and binned data. How would Shepard’s corrections
change the results? What percentage of the unbinned data falls within x� 2s and
compare this with the predictions that would follow if the data were approximately
‘normally’ distributed.

1.6 Verify that the second moment of a population about an arbitrary point l is given by
m02 ¼ s2 þ d2, where d ¼ m� l and m and s2 are the mean and variation, respectively, of
the population.

1.7 Show that for the normal (Gaussian) density

fðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp

"
� ðx� mÞ2

2s2

#
,

the half-width is equal to 2:35s.

PROBLEMS 1 19



1.8 One measure of the skewness of a population is the parameter

g ¼ 1

Ns3

XN
i¼1

ðxi � mÞ3:

Show that this may be written as

g ¼ 1

s3

	
x3 � 3xx2 þ 2x3



,

where the overbars denote averages over the population.

1.9 The electrical resistance per meter Rwas measured for a sample of 12 standard lengths of
cable of varying diameters D. The results (in arbitrary units) were:

D 1 3 4 2 7 2 9 9 7 8 5 3

R 10 9 7 8 4 9 3 2 5 4 3 8

Calculate the correlation coefficient for the data.
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Statistics is intimately connected with the branch of mathematics called probability theory,
and so beforewe canmeaningfully discuss the subject of statistics andhow it is used to analyze
data we must say something about probabilities. This chapter therefore starts with a brief
reviewof the axiomsof probability and thenproceeds to themathematical rules for their appli-
cation. The meaning of probability is more problematic and there is no single interpretation.
The final section examines two interpretations that are used in physical sciences.

2.1. AXIOMS OF PROBABILITY

Let S denote a sample space consisting of a set of events Eiði ¼ 1, 2,.,nÞ, where for specific
events subscripts will be avoided by instead using the notation A, B, C, etc. If we have two
events in S, denoted by A and B, then the event in which both occur (called the intersection
of A and B) is denoted AXB, or equivalently BXA. If AXB ¼ B, where the symbolB denotes
a sample space with no elements (called a null space), then the events are said to be mutually
exclusive (also called disjoint or distinct). The event in which either A or B, or both, occurs is
called the union of A and B and is denoted AWB. It also follows that if A denotes the event
‘not A’, called the complement of A, then A ¼ S� A. To summarize1

1Readers should be aware that the notations in probability theory are not unique. For example, the

complement of A is often written Ac and other differences in notation, particularly for the union, are

common.
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AXB intersection of A and B ðboth A and B occurÞ;
AWB union of A and B ðeither A or B, or both occurÞ;
AXB ¼ B A and B are mutually exclusive ðno comment elementsÞ;
A complement of A ðthe event ‘not A’Þ:

These definitions may be illustrated on a so-called Venn diagram, as shown in Fig. 2.1. The
sample space S consists of all events within the boundary U. A, B, and C are three such events.
The doubly shaded area isAXB and the sum of both shaded regionsA and B isAWB. The area
outside the region occupied by A and B is AWB and includes the area occupied by the third
event C. The latter is disjoint from both A and B, and so CXA ¼ CXB ¼ B, i.e., A and C,
and B and C are pairwise mutually exclusive. An example will illustrate these definitions.

EXAMPLE 2.1

A sample space S consists of all the numbers from 1 to 8 inclusive. Within S there are four events:

A ¼ ð2, 4, 7, 8Þ, B ¼ ð1, 3, 5, 7Þ, C ¼ ð2, 3, 4, 5Þ and D ¼ ð1, 7, 8Þ:

Construct the content of the events AWC, BXC, SXB, ðCXDÞWB, ðBXCÞWA, and AXCXD.

From the above

A ¼ ð1, 3, 5, 6Þ, B ¼ ð2, 4, 6, 8Þ, C ¼ ð1, 6, 7, 8Þ and D ¼ ð2, 3, 4, 5, 6Þ,
and so the events are

AWC ¼ ð1, 2, 3, 4, 5, 6Þ, BXC ¼ ð1, 7Þ, SXB ¼ ð1, 3, 5, 7Þ,
and

ðCXDÞWB ¼ ð1, 3, 5, 7, 8Þ, ðBXCÞWA ¼ ð1, 2, 4, 7, 8Þ, AXCXD ¼ ð2, 4Þ:

The axioms of probability may now be stated as follows.

1. Every event Ei in S can be assigned a probability P[Ei] that is a real number satisfying

0 � P½Ei� � 1: (2.1a)

FIGURE 2.1 A Venn diagram (see text for a detailed description).
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2. Since S consists of all the events Ei, then

X
i

P½Ei� ¼ P½S� ¼ 1: (2.1b)

3. If the events A and B are such that the occurrence of one excludes the occurrence of the
other, i.e., they are mutually exclusive, then

P½AWB� ¼ P½A� þ P½B�: (2.1c)

2.2. CALCULUS OF PROBABILITIES

A number of basic results follow from these axioms and will be used in later chapters. For
the case of discrete events A, B, C, etc., these are:

1. If A3B, i.e., A is a subset of B, then P½A� � P½B� and P½B� A� ¼ P½B� � P½A�.
2. P½A� ¼ 1� P½A�, from which it follows that for any two events, A and B,

P½A� ¼ P½AXB� þ P½AXB�:

3. P½AWB� ¼ P½A� þ P½B� � P½AXB�, which reduces to

P½AWB� ¼ P½A� þ P½B� (2.2a)

if A and B are mutually exclusive, or in general

P½AWBWC.� ¼ P½A� þ P½B� þ P½C�. (2.2b)

This is called the additive rule and generalizes (2.1c).
We will also need a number of other definitions involving multiple events. Thus, if the

sample space contains two subsets A and B, then provided P½B�s0, the probability of the
occurrence of A given that B has occurred is called the conditional probability of A, written
P½AjB�, and is defined by

P½AjB�hP½AXB�
P½B� , P½B�s0: (2.3a)

If the occurrence of A does not depend on that fact that B has occurred, i.e.

P½AjB� ¼ P½A�, (2.3b)

then the event A is said to be independent of the event B. (Note that independence is not the
same as being distinct.) An important result that follows in a simple way from these defini-
tions is the multiplicative rule, which follows from rewriting (2.3a) as

P½AXB� ¼ P½B� P½AjB� ¼ P½A� P½BjA�, (2.4a)

and reduces to

P½AXB� ¼ P½A� P½B� , (2.4b)
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if A and B are independent. This may be generalized in a straightforward way. For example,
if A, B, and C are three events, then

P½AXBXC� ¼ P½A�P½BjA�P½CjAXB�: (2.4c)

Finally, if the event A must result in one of the mutually exclusive events B, C, ., then

P½A� ¼ P½B�P½AjB� þ P½C�P½AjC� þ .

or, reverting to index notation,

P½A� ¼
Xn
i¼1

P½Ei�P½AjEi�: (2.5)

The use of these various results is illustrated in the following two examples.

EXAMPLE 2.2

A student takes a multiple-choice exam where each question has n ¼ 4 choices from which to select an

answer. If p ¼ 0.5 is the probability that the student knows the answer, what is the probability that a correct

answer indicates that the student really did know the answer and that it was not just a ‘lucky guess’?

Let Y be the event where the student answers correctly, and let þ and � be the events where the

student knows, or does not know, the answer, respectively. Then we need to find P½þjY�, which from

(2.3a) is given by

P½þjY� ¼ P½þXY�
P½Y� :

From (2.4a) the numerator is

P½þXY� ¼ P½ þ �P½Yjþ� ¼ p� 1 ¼ p,

and from (2.5), the denominator is

P½Y� ¼ P½ þ �P½Yjþ� þ P½ � �P½Yj��

¼ pþ ð1� pÞ � 1

n
:

So, finally,

P½þjY� ¼ p

pþ ð1� pÞ=n ¼ np

1þ ðn� 1Þp :

Thus for n ¼ 4 and p ¼ 0.5, the probability is 0.8 that a correct solution was because the student did

really know the answer to the question.
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EXAMPLE 2.3

A class of 100 physical science students has a choice of courses in physics (Ph), chemistry (Ch), and

mathematics (Ma). As a result, 30 choose to take physics and mathematics, 20 physics and chemistry, 15

chemistry and mathematics, and 10 take all three courses. If the total numbers of students taking each subject

are 70 (Ph), 60 (Ma), and 50 (Ch), find the probabilities that a student chosen at random from the group will

be found to be taking the specific combinations of courses: (a) physics but not mathematics, (b) chemistry and

mathematics, but not physics, and (c) neither physics nor chemistry.

These probabilities may be found using the formulas given above.

ðaÞ P½PhXMa� ¼ P½Ph� � P½PhXMa� ¼ 0:70� 0:30 ¼ 0:40

ðbÞ P½ChXMaXPh� ¼ P½ChXMa� � P½ChXMaXPh� ¼ 0:15� 0:10 ¼ 0:05

ðcÞ P½PhXCh� ¼ P½Ma� � P½ChXMa� � P½PhXMa� þ P½PhXChXMa�
¼ 0:60� 0:15� 0:30þ 0:10 ¼ 0:25

They can also be found by constructing the Venn diagram shown in Fig. 2.2.

These ideas can be generalized to the situation where an event can be classified under
multiple criteria. Consider, for example, the case of three classifications. If the classifications
under the criteria are

A1, A2, ., Ar; B1, B2, .,Bs; and C1, C2, ., Ct;

with Xr
i¼1

P½Ai� ¼
Xs
i¼1

P½Bi� ¼
Xt

i¼1

P½Ci� ¼ 1,

then a table of the possible values of the three random variables, together with their associ-
ated probabilities, defines the joint probability of A, B, and C. The marginal probability of Ai and
Ck is then defined as

P½AiXCk�h
Xs
j¼1

P
h
AiXBjXCk

i
(2.6a)

FIGURE 2.2 Venn diagram for Example 2.3.
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and likewise the marginal probability of Ck is

P½Ck�h
Xr
i¼1

Xs
j¼1

P
h
AiXBjXCk

i
¼

Xr
i¼1

P½AiXCk�

¼
Xs
j¼1

P
h
BjXCk

i
¼

Xs
j¼1

P
h
Bj

��Ck

i
P
h
Bj

i
,

(2.6b)

where (2.3a) has been used in the last expression. This result is known as the law of total
probability and is a generalization of (2.5).

The final result we shall need is the basic theorem of permutations. The number of ways of
permuting (i.e., arranging) m objects selected from n distinct objects is

nPm h
n!

ðn�mÞ!, (2.7a)

where n!, called n factorial, is defined as n! h nðn� 1Þðn� 2Þ. 1, with 0!h 1. If, on the other
hand, the set of n objects consists of k distinct subsets each containing nk objects, indistin-
guishable within the subset, with n ¼ n1 þ n2 þ . þ nk, then the number of distinct permu-
tations of the objects is

nPn1, n2,., nk
¼ n!

n1!n2!.nk!
: (2.7b)

It follows from (2.7a) that the total number of combinations of the m objects without regard to
arrangement is

nCm h

�
n
m

�
¼ nPm

m!
¼ n!

m!ðn�mÞ! , (2.8)

i.e., the coefficient of xm in the binomial expansion of ð1þ xÞn.

EXAMPLE 2.4

A set of books is arranged on a shelf purely by their subject matter. Four are physics books, three are

chemistry books, and two are mathematics books. What is the total number of possible arrangements?

The number of different arrangements N can be found by applying (2.7b) with

np ¼ 4, nc ¼ 3, nm ¼ 2 and n ¼ np þ nc þ nm ¼ 9. Thus

N ¼ nPnp, nc, nm
¼ 9!

4!3! 2!
¼ 1260:
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EXAMPLE 2.5

A committee of 4 people is to be selected at random from a group of 6 physicists and 9 engineers. What is

the probability that the committee consists of 2 physicists and 2 engineers?

There is a total of 15C4 possible choices of 4 people for the committee and each choice has an

equal probability of being chosen. However there are 6C2 possible choices of 2 physicists from the

6 in the group, and 9C2 possible choices of 2 engineers from the 9 in the group. So the required

probability is

6C2 � 9C2

15C4
¼ 36

91
¼ 0:396:

2.3. THE MEANING OF PROBABILITY

The axioms and definitions discussed so far specify the rules that probability satisfies and
can be used to calculate the probability of complex events from the probabilities of simple
events, but they do not tell us how to assign specific probabilities to actual events. Mathemat-
ical statistics proceeds by assigning a prior probability to an event on the basis of a given
mathematical model, specified by known parameters, about the possible outcomes of the
experiment. In physical situations, even if the mathematical form is known, its parameters
rarely are and one of the prime objectives of statistical analysis is to obtain values for them
when there is access to only incomplete information. Without complete knowledge we
cannot make absolutely precise statements about the correct mathematical form and its
parameters, but we can make less precise statements in terms of probabilities. So we now
turn to examine in more detail what is meant by the word ‘probability’.

2.3.1. Frequency Interpretation

We all use the word ‘probability’ intuitively in everyday language. We say that an unbi-
ased coin when tossed has an equal probability of coming down ‘heads’ or ‘tails’. What
we mean by this is that if we were to repeatedly toss such a coin, we would expect the
average number of heads and tails to be very close to, but not necessarily exactly equal to,
50%. Thus we adopt a view of probability operationally defined as the limit of the relative
frequency of occurrence. While this is a common-sense approach to probability, it does have
an element of circularity. What do we mean by an unbiased coin? Presumably one that,
when tossed a large number of times, tends to give an equal number of heads and tails!
We have already used the word ‘random’ in this context in Chapter 1 when discussing statis-
tical errors, and again when using the words ‘equally likely’ when discussing the example of
an experiment to test lecturers’ teaching capabilities.

The frequency definition of probability may be stated formally as follows. In a sequence of n
trials of an experiment in which the event E of a given type occurs nE times, the ratio R½E� ¼
nE=n is called the relative frequency of the event E, and the probability P½E� of the event E is
the limit approached by R½E� as n increases indefinitely, it being assumed that this limit exists.
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If we return to the sample space of Example (1.2), and denote by X the number of heads
obtained in a single throw, then

XðE1Þ ¼ 2; XðE2Þ ¼ 1; XðE3Þ ¼ 1; XðE4Þ ¼ 0 ,

and we can calculate P½X� using the frequency approach as follows:

P½X ¼ 2� ¼ 1

4
; P½X ¼ 1� ¼ 1

2
; P½X ¼ 0� ¼ 1

4
:

It is worth noting that this definition of probability differs somewhat from the mathemat-
ically similar one: that for some arbitrary small quantity 3 there exists a large n, say nL , such
that jR½E� � P½E�j < 3 for all n > nL. The frequency definition has an element of uncertainty
in it being derived from the fact that in practice only a finite number of trials can ever be
made. This way of approaching probability is essentially experimental. A probability,
referred to as the posterior probability,2 is assigned to an event on the basis of experimental
observation. A typical situation that occurs in practice is when a model of nature is con-
structed and from the model certain prior probabilities concerning the outcomes of an
experiment are computed. The experiment is then performed, and from the results obtained
posterior probabilities are calculated for the same events using the frequency approach.
The correctness of the model is judged by the agreement of these two sets of probabilities
and on this basis modifications may be made to the model. These ideas will be put on
a more quantitative basis in later chapters when we discuss estimation and the testing of
hypotheses.

Most physical scientists would claim that they use the frequency definition of probability,
and this is what has been used in the previous sections and examples in this book (such as
Examples 2.3 and 2.5), but it is not without its difficulties, as we have seen. It also has to
be used in context and the results interpreted with care. A much quoted example that illus-
trates this is where an insurance company analyzes the death rates of its insured men and
finds there is about a 1% probability of them dying at age 40. This does notmean that a partic-
ular insured man has a 1% probability of dying at this age. For example he may be a member
of a group where the risk of dying is increased, such as being a regular participant in
a hazardous sport, or having a dangerous occupation. So had an analysis been made of
members of those groups, the probability of his death at age 40 may well have been much
greater. Another example is where canvassers questioning people on a busy street claim to
deduce the ‘average’ view of the population about a specific topic. Even if the sample of
subjects approached is random (a dubious assumption) the outcomewould only be represen-
tative of the people who frequent that particular street, and may well not represent the views
of people using other streets or in other towns.

Crucially, the frequency approach usually ignores prior information. Consider, for
example, a situation where two identically made devices are to be tested sequentially. If
the probability of a successful test is assessed to be p, then the two tests would be considered
as independent and so the combined probability for both tests to be successful is
P½1, 2� ¼ P½1�P½2� ¼ p2. However, common sense would suggest that the probability P½2�
2The prior and posterior probabilities were formerly, and sometimes still are, called the a priori and a

posteriori probabilities.
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should be decreased (or increased) if the first test was a failure (or a success), so really
P½1, 2� ¼ P½2j1�P½1�sp2.

The frequency approach also assumes the repeatability of experiments, under identical
conditions and with the possibility of different outcomes, for example tossing a coin many
times. Sowhat arewe tomakeof aneverydaystatement suchas ‘Itwill probably rain tomorrow’,
when there is only one tomorrow? Critics also argue that quoting the result of themeasurement
of a physical quantity, such as the mass of a body as 10 � 1 kg, together with a statement
about the probability that the quantity lies within the range specified by the uncertainty of
1kg, is incompatible with the frequency definition. This is because the quantity measured
presumably does have a true value and so either it lies within the error bars or it does not,
i.e., the probability is either 1 or 0. These various objections are addressed in the next section.

2.3.2. Subjective Interpretation

The calculus of probabilities as outlined above proceeds from the definition of probabili-
ties for simple events to the probabilities of more complex events. In practice, what is
required in physical applications is the inverse, that is, given certain experimental observa-
tions we would like to deduce something about the parent population and the generating
mechanism by which the events were produced. This, in general, is the problem of statistical
inference alluded to in Chapter 1.

To illustrate how this leads to an alternative interpretation of probability, we return to the
definition of conditional probability, which can be written using (2.3a) as

P½BXA� ¼ P½A�P½BjA�: (2.9a)

Since AXB is the same as BXA, we also have

P½BXA� ¼ P½B�P½AjB�, (2.9b)

and by equating these two quantities we deduce that

P½BjA� ¼ P½B�P½AjB�
P½A� , (2.10)

provided P½A�s0. Finally, we can generalize to the case of multiple criteria and use the law of
total probability (2.6b) to write

P½A� ¼
Xn
j

P
h
AXBj

i
¼

Xn
j

P
h
Bj

i
P
h
A
��Bj

i
,

so that (2.10) becomes

P½BijA� ¼
P½Bi� P½AjBi�Pn

j
P
h
Bj

i
P
h
A
��Bj

i : (2.11)

This result was first published in the 18th century by an English clergyman, Thomas Bayes,
and is known as Bayes’ theorem. It differs from the frequency approach to probability by intro-
ducing an element of subjectivity into the definition e hence its name: subjective probability.

In this approach, the sample space is interpreted as a set of n mutually exclusive and
exhaustive hypotheses (i.e., all possible hypotheses are included in the set). Suppose an event
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A can be explained by the mutually exclusive hypotheses represented by B1, B2, ., Bn .
These hypotheses have certain prior probabilities P½Bi� of being true. Each of them can give
rise to the occurrence of the event A, but with distinct probabilities P½AjBi�, which are the
probabilities of observing A when Bi is known to be satisfied. The interpretation of (2.11) is
then: the probability of the hypothesis Bi , given the observation of A, is the prior probability
that Bi is true, multiplied by the probability of the observation assuming that Bi is true,
divided by the sum of the same product of probabilities for all allowed hypotheses. In this
approach, the prior probabilities are statements of one’s belief that a particular hypothesis
is true. Thus in the subjective approach, quoting the measurement of a mass as 10� 1 kg
is a valid statement that expresses one’s current belief about the true value of that quantity.

To illustrate how Bayes’ theorem can be used, consider an example where a football team
is in a knockout tournament and will play either team A or team B next depending on their
performance in earlier rounds. The manager assesses their prior probabilities of winning
against A or B as P½A� ¼ 3=10 and P½B� ¼ 5=10 and their probabilities of winning given
that they know their opponents as P½W jA� ¼ 5=10 and P½W jB� ¼ 7=10. If the team wins their
next game, we can calculate from (2.11) the probabilities that their opponents were eitherA or
B as P½AjW � ¼ 3=10 and P½BjW � ¼ 7=10. So if you had to bet, the odds favor the hypothesis
that the opponents were team B.

The result of this simple example is in agreement with common sense, but the following
examples illustrate that Bayes’ theorem can sometimes lead to results that at first sight are
somewhat surprising.

EXAMPLE 2.6

The process of producing microchips at a particular factory is known to result in 0.2% that do not satisfy

their specification, i.e., are faulty. A test is developed that has a 99% probability of detecting these chips if they

are faulty. There is also a 3% probability that the test will give a false positive, i.e., a positive result even

though the chip is not faulty. What is the probability that a chip is faulty if the test gives a positive result?

If we denote the presence of a fault by f and its absence by f, then P½f � ¼ 0:002 and P½f � ¼ 0:998.

The test has a 99% probability of detecting a fault if present, so it follows that the test yields a ‘false

negative’ result in 1% of tests, that is, the probability is 0.01 that the test will be negative even

though the chip tested does have a fault. So if we denote a positive test byþ and a negative one by�,

then P½þjf � ¼ 0:99 and P½�jf � ¼ 0:01. There is also a 3% probability of the test giving a false positive,

i.e., a positive result even though the chip does not have a fault, so P½þjf � ¼ 0:03 and P½�jf � ¼ 0:97.

Then from Bayes’ theorem,

P½f jþ� ¼ P½þjf �P½f �
P½þjf �P½f � þ P½þjf �P½f �

¼ 0:99� 0:002

ð0:99� 0:002Þ þ ð0:03� 0:998Þ ¼ 0:062:

So the probability of a chip having a fault given a positive test result is only 6.2%.3

3The same reasoning applied to a medical test for rare conditions shows that a positive test result often

means only a low probability for having the condition.
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EXAMPLE 2.7

An experiment is set up to detect particles of a particular type A in a beam, using a detector that has a 95%

efficiency for their detection. However, the beam also contains 15% of particles of a second type B and the

detector has a 10% probability of misrecording these as particles of type A. What is the probability that the

signal is due to a particle of type B?

If the observation of a signal is denoted by S, we have

P½A� ¼ 0:85, P½B� ¼ 0:15,

and

P½SjA� ¼ 0:95, P½SjB� ¼ 0:10:

Then from Bayes’ theorem,

P½BjS� ¼ P½B� P½SjB�
P½A� P½SjA� þ P½B� P½SjB�

¼ 0:15� 0:10

ð0:85� 0:95Þ þ ð0:15� 0:10Þ ¼ 0:018:

Thus there is a probability of only 1.8% that the signal is due a particle of type B, even though 15% of

the particles in the beam are of type B.

If we had to choose an hypothesis from the set Bi we would choose that one with the
greatest posterior probability. However (2.11) shows that this requires knowledge of the
prior probabilities P½Bi� and these are, in general, unknown. Bayes’ postulate is the hypothesis
that, in the absence of any other knowledge, the prior probabilities should all be taken as
equal. A simple example will illustrate the use of this postulate.

EXAMPLE 2.8

A container has four balls, which could be either all white (hypothesis 1), or two white and two black

(hypothesis 2). If n balls are withdrawn, one at a time, replacing them after each drawing, what are the

probabilities of obtaining an event E with n white balls under the two hypotheses? Comment on your answer.

If n balls are withdrawn, one at a time, replacing them after each drawing, the probabilities of

obtaining an event E with n white balls under the two hypotheses are

P½EjH1� ¼ 1 and P½EjH2� ¼ 2�n:

Now from Bayes’ postulate,

P½H1� ¼ P½H2� ¼ 1

2

and so from (2.11),

P½H1jE� ¼ 2n

1þ 2n
and P½H2jE� ¼ 1

1þ 2n
:

Providing no black ball appears, the first hypothesis should be accepted because it has the greater

posterior probability.
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While Bayes’ postulate might seem reasonable, it is the subject of controversy and can lead
to erroneous conclusions. In the frequency theory of probability it would imply that events
corresponding to the various Bi are distributed with equal frequency in some population
from which the actual Bi has arisen. Many statisticians reject this as unreasonable.4

Later in this book we will examine some of the many other suggested alternatives to
Bayes’ postulate, including the principle of least squares and minimum chi-squared. This
discussion will be anticipated by briefly mentioning here one principle of general applica-
tion, that of maximum likelihood.

From (2.11) we see that

P½BijA�fP½Bi� L, (2.12)

where L ¼ P½AjBi� is called the likelihood. The principle of maximum likelihood states that when
confronted with a set of hypotheses Bi , we choose the one that maximizes L, if one exists, that
is, the one that gives the greatest probability to the observed event. Note that this is not the
same as choosing the hypothesis with the greatest probability. It is not at all self-evident why
one should adopt this particular choice as a principle of statistical inference, and we will
return to this point in Chapter 7. For the simple case above, the maximum likelihood method
clearly gives the same result as Bayes’ postulate.

There are other ways of defining probabilities and statisticians do not agree among them-
selves on the ‘best’ definition, but in this book we will not dwell too much on the differences
between them,5 except to note that the frequency definition is usually used, although the
subjective approach will be important when discussing some aspects of interval estimation
and hypothesis testing.

PROBLEMS 2

2.1 The diagram shows an electrical circuit with four switches S ðS ¼ 1, 4Þ that when closed
allow a current to flow. If the switches act independently and have a probability p for
being closed, what is the probability for a current to flow from I to O? Check your
calculation by calculating the probability for no current to flow.

FIGURE 2.3 Circuit diagram.

4Bayes himself seems to have had some doubts about it and it was not published until after his death.
5To quote a remark attributed to the eminent statistician Sir Maurice Kendall: “In statistics it is a mark of

immaturity to argue over much about the fundamentals of probability theory.”
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2.2 In the sample space S ¼ f1, 2, 3, ., 9g, the events A, B, C, and D are defined by
A ¼ ð2, 4, 8Þ, B ¼ ð2, 3, 5, 9Þ, C ¼ ð1, 2, 4Þ, and D ¼ ð6, 8, 9Þ. List the structure of the events

ðaÞAXD, ðbÞ ðBXCÞWA, ðcÞ ðAXBXCÞ, ðdÞAXðBWDÞ:

2.3 A technician is 70% convinced that a circuit is failing due to a fault in a particular
component. Later it emerges that the component was part of a batch supplied from
a source where it is known that 15% of batches are faulty. How should this evidence alter
the technician’s view?

2.4 Over several seasons, two teams A and B have met 10 times. Team A has won 5 times,
team B has won 3 times, and 2 matches have been drawn. What is the probability that in
their next two encounters (a) team Bwill win both games and (b) team Awill win at least
one game?

2.5 Five physics books, 4 maths books, and 3 chemistry books are to be placed on a shelf so
that all books on a given subject are together. How many arrangements are possible?

2.6 a. One card is drawn at random from a standard deck of 52 cards. What is the probability
that the card is nine (9) or a club (C)?

b. If four cards are drawn, what is the probability that at least three will be of the
same suite?

2.7 A lie detector test is used to detect people who have committed a crime. It is known to be
95% reliable when testing people who have actually committed a crime and 99% reliable
when they are innocent. The test is given to a suspect chosen at random from a
population of which 3% have been convicted of a crime, and the result is positive, i.e.,
indicates guilt. What is the probability the suspect has not actually committed a crime?

2.8 BoxA contains 4 red and 2 blue balls, and box B contains 2 red and 6 blue balls. One of the
boxes is selected by tossing a die and then a ball is chosen at random from the selected
box. If the ball selected is red, what is the probability that it came from box A?

2.9 Three balls are drawn at random successively from a bag containing 12 balls, of which
3 are red, 4 are white, and 5 are blue. In case (a), each ball is not replaced after it has
been drawn, and in case (b) they are replaced. In both cases all three balls are found to
be in the order red, white, and blue. What are the probabilities for this in the two cases?
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In the present chapter we will define random variables and discuss their probability
distributions. This will be followed in the next chapter by a discussion of the properties of
some of the population distributions that are commonly encountered in physical science
and that govern the outcome of experiments.

3.1. RANDOM VARIABLES

The events discussed in Chapters 1 and 2 could be arbitrary quantities, heads, tails, etc.,
or numerical values. It is useful to associate a set of real numbers with the outcomes of an
experiment even if the basic data are non-numeric. This association can be expressed by
a real-valued function that transforms the points in S to points on the x axis. The function
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is called a random variable and to distinguish between random variables and other variables,
the former will also be called variates.1 Returning to the coining tossing experiment of
Example 1.2, the four events were

E1 ¼ ðH,HÞ; E2 ¼ ðH,TÞ; E3 ¼ ðT,HÞ; E4 ¼ ðT,TÞ,
and so if we let x be a random variable2 that can assume the values given by the number of
‘heads’, then

xðE1Þ ¼ 2; xðE2Þ ¼ 1; xðE3Þ ¼ 1; xðE4Þ ¼ 0:

And, using the frequency definition of probability,

P½x ¼ 0� ¼ P½E4� ¼ 1=4; P½x ¼ 1� ¼ P½E2WE3� ¼ 1=2; P½x ¼ 2� ¼ P½E1� ¼ 1=4,

where we have assumed an unbiased coin, so that throwing a ‘head’ or a ‘tail’ is equally
likely. From this example we see that a random variable can assume an ensemble of numer-
ical values in accord with the underlying probability distribution. These definitions can be
extended to continuous variates and to situations involving multivariates, as we will see
below. In general, it is the quantities P½x� that are the objects of interest and it is to these
that we now turn.

3.2. SINGLE VARIATES

In this section we will examine the case of a single random variable. The ideas discussed
here will be extended to the multivariate case in Section 3.3.

3.2.1. Probability Distributions

First we will need some definitions that extend those given in Chapter 2 in the discussion
of the axioms of probability, starting with the case of a single discrete random variable. If x is
a discrete random variable that can take the values xkðk ¼ 1, 2,.Þ with probabilities P½xk�,
then we can define a probability distribution fðxÞ by

P½x�h fðxÞ: (3.1a)

Thus,

P½xk� ¼ fðxkÞ for x ¼ xk, otherwise fðxÞ ¼ 0: (3.1b)

To distinguish between the cases of discrete and continuous variables, the
probability distribution for the former is often called the probability mass function (or

1Some authors use the word ‘variate’ to mean any variable, random or otherwise, that can take on

a numerical value.
2A convention that is often used is to denote random variables by upper case letters and the values they can

take by the corresponding lower case letter. As there is usually no ambiguity, lower case letters will be used

for both.
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simply a mass function) sometimes abbreviated to pmf. A pmf satisfies the following two
conditions:

1. fðxÞ is a single-valued non-negative real number for all real values of x, i.e., fðxÞ � 0;
2. fðxÞ summed over all values of x is unity:

X
x

fðxÞ ¼ 1: (3.1c)

We saw in Chapter 1 that we are also interested in the probability that x is less than or
equal to a given value. This was called the cumulative distribution function (or simply the distri-
bution function), sometimes abbreviated to cdf, and is given by

FðxÞ ¼
X
xk�x

fðxkÞ: (3.2a)

So, if x takes on the values xkðk ¼ 1, 2,. nÞ, the cumulative distribution function is

FðxÞ ¼

8>>>><
>>>>:

0 �N< x < x1
fðx1Þ x1 � x < x2
fðx1Þ þ fðx2Þ x2 � x < x3

« «
fðx1Þ þ/þ fðxnÞ xn � x < N

(3.2b)

FðxÞ is a nondecreasing function with limits 0 and 1 as x/�N and x/þN, respectively. The
quantile xa of order a, defined in Chapter 1, is thus the value of x such that FðxaÞ ¼ a, with
0� a� 1, and so xa ¼ F�1ðaÞ, where F�1 is the inverse function of F. For example, the median
is x0:5.

As sample sizes become larger, frequency plots tend to approximate smooth curves and if
the area of the histogram is normalized to unity, as in Fig. 1.5, the resulting function fðxÞ is
a continuous probability density function (or simply a density function) abbreviated to pdf, intro-
duced in Chapter 1. The definitions above may be extended to continuous random variables
with the appropriate changes. Thus, for a continuous random variable x, with a pdf fðxÞ,
(3.2a) becomes

FðxÞ ¼
Z x

�N
fðx0Þdx0, ð�N < x < NÞ: (3.3)

It follows from (3.3) that if a member of a population is chosen at random, that is, by amethod
that makes it equally likely that each member will be chosen, then FðxÞ is the probability that
the member will have a value �x. While all this is clearly consistent with earlier definitions,
once again we should note the element of circularity in the concept of randomness defined
in terms of probability. In mathematical statistics it is usual to start from the cumulative
distribution and define the density function as its derivative. For the mathematically
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well-behaved distributions usually met in physical science the two approaches are
equivalent.

The density function fðxÞ has the following properties analogous to those for discrete
variables.

1. fðxÞ is a single-valued non-negative real number for all real values of x.

In the frequency interpretation of probability, fðxÞdx is the probability of observing the
quantity x in the range ðx,xþ dxÞ. Thus, the second condition is:

2. fðxÞ is normalized to unity:

Z þN

�N
fðxÞdx ¼ 1:

It follows from property 2 that the probability of x lying between any two real values
a and b for which a < b is given by

P½a � x � b� ¼
Z b

a
fðxÞdx, (3.4)

and so, unlike a discrete random variable, the probability of a continuous random variable
assuming exactly any of its values is zero. This result may seem rather paradoxical at first
until you consider that between any two values a and b there is an infinite number of other
values and so the probability of selecting an exact value from this infinitude of possibilities
must be zero. The density function cannot therefore be given in a tabular form like that of
a discrete random variable.

EXAMPLE 3.1

A family has 5 children. Assuming that the birth of a girl or boy is equally likely, construct a frequency

table of possible outcomes and plot the resulting probability mass function fðgÞ and the associated cumulative

distribution function FðgÞ.
The probability of a sequence of births containing g girls (and hence b ¼ 5� g boys) is 

1

2

!g 
1

2

!b

¼
 
1

2

!5

. However there are 5Cg such sequences, and so the probability of having g girls

is P½g� ¼ 5Cg=32. The probability mass function fðgÞ is thus as given in the table below.

g 0 1 2 3 4 5

fðgÞ 1/32 5/32 10/32 10/32 5/32 1/32

From this table we can find the cumulative distribution function using (3.2b), and fðgÞ and FðgÞ
are plotted in Figs 3.1(a) and (b), respectively, below.
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EXAMPLE 3.2

Find the value of N in the continuous density function:

fðxÞ ¼
�
Ne�xx2=2 x � 0
0 x < 0

,

and find its associated distribution function FðxÞ. Plot fðxÞ and FðxÞ.
Because fðxÞ has to be correctly normalized, to find N we evaluate the integral:

N

2

Z N

0
e�xx2dx ¼ 1:

Integrating by parts, gives

1

N
¼ 1

2

Z N

0
e�xx2dx ¼ �1

2
½e�xðx2 þ 2xþ 2Þ�N0 ¼ 1,

so that N ¼ 1. The resulting density function is plotted in Fig. 3.2(a). The associated distribution

function is

FðxÞ ¼ 1

2

Z x

0
e�uu2du ¼ �1

2
½e�uðu2 þ 2uþ 2Þ�x0 ¼ �1

2
e�xðx2 þ 2xþ 2Þ þ 1,

and is shown in Fig. 3.2(b).

(a) (b)

FIGURE 3.1 Plots of the probability
mass function fðgÞ and the cumulative
distribution function FðgÞ.
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Some of the earlier definitions of Chapter 1 may now be rewritten in terms of these formal
definitions. Thus, the general moments about an arbitrary point l are, for a continuous
variate,

m0n ¼
Z þN

�N
fðxÞðx� lÞn, (3.5)

so that the mean and variance, also with respect to the point l, are

ml ¼
Z þN

�N
fðxÞðx� lÞdx and s2 ¼

Z þN

�N
fðxÞðx� mlÞ2dx, (3.6)

respectively. The integrals in (3.5) may not converge for all n, and some distributions possess
only the trivial zero-ordermoment. For convenience, usually l ¼ 0will be used inwhat follows.

3.2.2. Expectation Values

The expectation value, also called the expected value, of a random variable is obtained by
finding the average value of the variate over all its possible values weighted by the proba-
bility of their occurrence. Thus, if x is a discrete random variable with the possible values
x1,x2,., xn, then the expectation value of x is defined as

E½x�h
Xn
i¼1

xiP½xi� ¼
X
x

xfðxÞ, (3.7)

where the second sum is over all relevant values of x and fðxÞ is their probability mass distri-
bution. The analogous quantity for a continuous variate with density function fðxÞ is

E½x� ¼
Z þN

�N
x fðxÞ dx: (3.8a)

(a) (b)

FIGURE 3.2 Probability density function fðxÞ ¼ e�xx2=2ðx � 0Þ and the corresponding cumulative distribution
function FðxÞ.

3. PROBABILITY DISTRIBUTIONS I: BASIC CONCEPTS40



We can see from this definition that the nth moment of a distribution about any point l is

m0n ¼ E½ðx� lÞn�: (3.8b)

In particular, the nth central moment is

mn ¼ E½ðx� E½x�Þn� ¼
Z þN

�N
ðx� mÞnfðxÞdx, (3.8c)

and for l ¼ 0 the nth algebraic moment is

m0n ¼ E½xn� ¼
Z þN

�N
xnfðxÞdx (3.8d)

Thus, the mean is the first algebraic moment and the variance is the second central moment.
It follows from (3.8) that if c is a constant, then

E½cx� ¼ cE½x�, (3.9a)

and for a set of random variables A, B, C, etc.:

E½Aþ Bþ Cþ � � �� ¼ E½A� þ E½B� þ E½C� þ � � � (3.9b)

In addition, if the random variables A, B, C, etc. are independent, then

E½ABC.� ¼ E½A�E½B�E½C�. (3.9c)

EXAMPLE 3.3

Three ‘fair’ dice are thrown and yield face values a, b, and c. What is the expectation value for the sum of

their face values?

From (3.7),

E½a� ¼
X6
i¼1

ið1=6Þ ¼ 7=2 ,

and since E½a� ¼ E½b� ¼ E½c�, then from (3.9b) E½aþ bþ c� ¼ 21=2.

EXAMPLE 3.4

Find the mean of the continuous distribution of Example 3.2.

Using (3.8d), the mean is
m ¼ 1

2

Z N

0
x3e�xdx:

Integrating by parts gives
m ¼ �e�x

2
½x3 þ 3x2 þ 6xþ 6�N0 ¼ 3:
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3.2.3. Moment Generating, and Characteristic Functions

The usefulness of moments partly stems from the fact that knowledge of them determines
the form of the density function. Formally, if the moments m0n of a random variable x exist and
the series XN

n¼1

m0n
n!

rn (3.10)

converges absolutely for some r > 0, then the set of moments m0n uniquely determines the
density function. There are exceptions to this statement, but fortunately it is true for all the
distributions commonly met in physical science. In practice, knowledge of the first few
moments essentially determines the general characteristics of the distribution and so it is
worthwhile to construct a method that gives a representation of all the moments. Such a func-
tion is called a moment generating function (mgf) and is defined by

MxðtÞhE½ext�: (3.11)

For a discrete random variable x, this is

MxðtÞ ¼
X

extfðxÞ, (3.12a)

and for a continuous variable,

MxðtÞ ¼
Z þN

�N
extfðxÞdx: (3.12b)

The moments may be generated from (3.11) by first expanding the exponential,

MxðtÞ ¼ E

�
1þ xtþ 1

2!
ðxtÞ2 þ � � �

�
¼
XN
n¼0

1

n!
m0nt

n,

then differentiating n times and setting t ¼ 0, that is:

m0n ¼ vnMxðtÞ
vtn

�����t¼0
: (3.13)

For example, setting n ¼ 0 and n ¼ 1, gives m00 ¼ 1 and m01 ¼ m. Also, since the mgf about any
point l is

MlðtÞ ¼ E½expfðx� lÞtg�,
then if l ¼ m,

MmðtÞ ¼ e�mtMxðtÞ: (3.14)

An important use of the mgf is to compare two density functions fðxÞ and gðxÞ. If two
random variables possess mgfs that are equal for some interval symmetric about the
origin, then fðxÞ and gðxÞ are identical density functions. It is also straightforward to
show that the mgf of a sum of independent random variables is equal to the product of
their individual mgfs.
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It is sometimes convenient to consider, instead of the mgf, its logarithm. The Taylor expan-
sion3 for this quantity is

ln MxðtÞ ¼ k1tþ k2
t2

2
þ/,

where kn is the cumulant of order n, and

kn ¼ vnln MxðtÞ
vtn

����
t¼0

:

Cumulants are simply related to the central moments of the distribution, the first few rela-
tions being

ki ¼ mi ði ¼ 1, 2, 3Þ, k4 ¼ m4 � 3m22 :

For some distributions the integral defining the mgf may not exist and in these circum-
stances the Fourier transform of the density function, defined as

fxðtÞhE½eitx� ¼
Z þN

�N
eitxfðxÞdx ¼ MxðitÞ, (3.15)

may be used. In statistics, fxðtÞ is called the characteristic function (cf). The density function is
then obtainable by the Fourier transform theorem (known in this context as the inversion
theorem):

fðxÞ ¼ 1

2p

Z þN

�N
e�itxfxðtÞdt: (3.16)

The cf obeys theorems analogous to those obeyed by the mgf, that is: (a) if two random
variables possess cfs that are equal for some interval symmetric about the origin then
they have identical density functions; and (b) the cf of a sum of independent random
variables is equal to the product of their individual cfs. The converse of (b) is however
untrue.

EXAMPLE 3.5

Find the moment generating function of the density function used in Example 3.2 and calculate the three

moments m01, m
0
2, and m03.

Using definition (3.12b),

MxðtÞ ¼
Z N

0
extfðxÞdx ¼ 1

2

Z N

0
extx2e�xdx ¼ 1

2

Z N

0
e�xð1�tÞx2dx,

3Some essential mathematics is reviewed briefly in Appendix A.
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which integrating by parts gives:

MxðtÞ ¼
(

� e�xð1�tÞ

2ð1� tÞ3
½ð1� tÞ2x2 þ 2ð1� tÞxþ 2�

)N

0

¼ 1

ð1� tÞ3 :

Then, using (3.13), the first three moments of the distribution are found to be

m01 ¼ 3, m02 ¼ 12, m03 ¼ 60:

EXAMPLE 3.6

(a) Find the characteristic function of the density function:

fðxÞ ¼
�
2x=a2 a � x < 0
0 otherwise

,

and (b) the density function corresponding to a characteristic function e�jtj.

(a) From (3.15),

fxðtÞ ¼ E½eitx� ¼ 2

a2

Z a

0
eitxxdx:

Again, integration by parts gives

fxðtÞ ¼
2

a2

"
eitx

ðitÞ2
ðitx� 1Þ

#a
0

¼ � 2

a2t2

h
eitaðita� 1Þ þ 1

i
:

(b) From the inversion theorem,

fðxÞ ¼ 1

2p

Z N

�N
e�jtje�itxdx ¼ 1

p

Z N

0
e�tcosðtxÞdx,

where the symmetry of the circular functions has been used. The second integral may be evaluated

by parts to give

pfðxÞ ¼ �� e�tcosðtxÞ�N
0

� x
RN
0

e�tsinðtxÞdt

¼ 1� x

(�� e�tsinðtxÞ�N
0

þ x
RN
0

e�tcosðtxÞdt
)

¼ 1� px2fðxÞ:

Thus,

fðxÞ ¼ 1

pð1þ x2Þ , �N � x � N:

This is the density of the Cauchy distribution that we will meet again in Section 4.5.
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3.3. SEVERAL VARIATES

All the results of the previous sections may be extended to multivariate distributions. We
will concentrate on continuous variates, but the formulas may be transcribed in a straightfor-
ward way to describe discrete variates.

3.3.1. Joint Probability Distributions

The multivariate joint density function fðx1,x2,., xnÞof the n continuous random variables
x1, x2,. , xn is a single-valued non-negative real number for all real values of x1,x2, . , xn,
normalized so that Z þN

�N
/

Z þN

�N
fðx1,x2,.,xnÞ

Yn
i¼1

dxi ¼ 1, (3.17)

and the probability that x1 falls between any two numbers a1 and b1, x2 falls between any two
numbers a2 and b2, ., and xn falls between any two numbers an and bn, simultaneously, is
defined by

P½a1 � x1 � b1;.; an � xn � bn�h
Z bn

an

.

Z b1

a1

fðx1, x2, ., xnÞ
Yn
i¼1

dxi: (3.18)

Similarly, the multivariate joint distribution function Fðx1, x2, ., xnÞ of the n random variables
x1, x2, ., xm is

Fðx1, x2, ., xnÞh
Z xn

�N
.

Z x1

�N
fðt1, t2, ., tnÞ

Yn
i¼1

dti: (3.19)

For simplicity, consider the case of just two random variables x and y. These could corre-
spond to the energy and angle of emission of a particle emitted in a nuclear scattering reac-
tion. If an event A corresponds to the variable x being observed in the range ðx, xþ dxÞ and
the event B corresponds to the variable y being observed in the range ðy, yþ dyÞ, then

P½AXB� ¼ probability of x being in ðx, xþ dxÞ and y being in ðy, yþ dyÞ
¼ fðx, yÞdx dy:

As noted in Chapter 1, the joint density function corresponds to the density of points on
a scatter plot of x and y in the limit of an infinite number of points. This is illustrated in
Fig. 3.3, using the data shown on the scatter plot of Fig. 1.3(b).

3.3.2. Marginal and Conditional Distributions

Wemay also be interested in the density function of a subset of variables. This is called the
marginal density function fM, and in general for a subset x1ði ¼ 1, 2, ., m < nÞ of the variables
is given by integrating the joint density function over all the variables other than
x1, x2, ., xm. Thus,

3.3. SEVERAL VARIATES 45



fMðx1, x2, ., xmÞ ¼
Z þN

�N
/

Z þN

�N
fðx1, x2, ., xm, xmþ1,., xnÞ

Yn
i¼mþ1

dxi: (3.20a)

In the case of two variables, we may be interested in the density function of x regardless of
the value of y, or the density function of y regardless of x. For example, the failure rate of
a resistor may be a function of its operating temperature and the voltage across it, but in
some circumstances we might be interested in just the dependence on the former. In these
cases (3.20a) becomes

fMðxÞ ¼
Z þN

�N
fðx, yÞdy and fMðyÞ ¼

Z þN

�N
fðx,yÞdx: (3.20b)

These density functions correspond to the normalized histograms obtained by projecting
a scatter plot of x and y onto one of the axes. This is illustrated in Fig. 3.4, again using the
data of Fig. 1.3(b).

We can also define the multivariate conditional density function of the random variables
x1ði ¼ 1, 2, ., m < nÞ by

fCðx1, x2, ., xmjxmþ1, xmþ2, ., xnÞh fðx1, x2, ., xnÞ
fðxmþ1, xmþ2, ., xnÞ : (3.21)

Again, if we consider the case of two variables x and y, the probability for y to be in the
interval ðy, yþ dyÞ with any x (event B), given that x is in the interval ðx, xþ dxÞ with any
y (event A), is

P½BjA� ¼ P½AXB�
P½A� ¼ fðx, yÞdx dy

fMðxÞdx ,

FIGURE 3.3 A scatter plot of 1000 events that are functions of two random variables x and y showing two
infinitesimal bands dx and dy. The area of intersection of the bands is dx dy and fðx, yÞdx dy is the probability of
finding x in the interval ðx, xþ dxÞ and y in the interval ðy,yþ dyÞ.
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where fMðxÞ is the marginal density function for x. The conditional density function for y
given x, is thus

fCðyjxÞ ¼ fðx,yÞ
fMðxÞ ¼

fðx,yÞR
fðx,y0Þdy0 : (3.22a)

This is the density function of the single random variable y where x is treated as a constant.
It corresponds to projecting the events in a band dx centered at some value x onto the y axis
and renormalizing the resulting density so that it is unity when integrated over y. The form of
fCðyjxÞ will therefore vary as different values of x are chosen.

The conditional density function for x given y is obtained from (3.22a) by interchanging x
and y, so that

fCðxjyÞ ¼ fðx,yÞ
fMðyÞ ¼

fðx, yÞR
fðx0,yÞdx0 , (3.22b)

and combining these two equations gives

fCðxjyÞ ¼ fCðyjxÞfMðxÞ
fMðyÞ , (3.22c)

which is Bayes’ theorem for continuous variables.
We can use these definitions to generalize the law of total probability (2.6b) to the case of

continuous variables. Using conditional and marginal density functions we have

fðx, yÞ ¼ fCðyjxÞ fMðxÞ ¼ fCðxjyÞ fMðyÞ, (3.23)

so the marginal density functions may be written as

fMðyÞ ¼
Z þN

�N
fCðyjxÞ fMðxÞdx

FIGURE 3.4 Normalized histograms obtained by projecting the data of Fig. 1.3(b) onto the x and y axes, together
with the corresponding marginal probability density functions fMðxÞ and fMðyÞ.
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and

fMðxÞ ¼
Z þN

�N
fCðxjyÞ fMðyÞdy:

With more than one random variable we also have to consider the question of statistical
independence (by analogy with the work of Chapter 2). If the random variables may be split
into groups such that their joint density function is expressible as a product of marginal
density functions of the form

fðx1, x2, ., xnÞ ¼ fM1 ðx1, x2, ., xiÞfM2 ðxiþ1, xiþ2, ., xkÞ.fMn ðxlþ1, xlþ2, ., xnÞ,
then the sets of variables

ðx1, x2, ., xiÞ; ðxiþ1, xiþ2, ., xkÞ;. ; ðxlþ1, xlþ2, ., xnÞ,
are said to be statistically independent, or independently distributed. So two random variables x
and y are independently distributed if

fðx,yÞ ¼ fMðxÞ fMðyÞ: (3.24)

It follows from (3.22) that in this case the conditional density function of one variate does
not depend on knowledge about the other variate.

EXAMPLE 3.7

The joint mass function for two discrete variables x and y is given by

fðx, yÞ ¼
�
kð2xþ 3yÞ 0 � x � 3, 0 � y � 2
0 otherwise

,

where k is a constant. Find: (a) the value of k, (b) P½x � 2, y � 1�, and (c) the marginal density of x.

The mass function may be tabulated as below.

y
x 0 1 2 total
0 0 3k 6k 9k
1 2k 5k 8k 15k
2 4k 7k 10k 21k
3 6k 9k 12k 27k

total 12k 24k 36k 72k

(a) The normalization condition is
P
x, y

fðx, yÞ ¼ 1, so k ¼ 1=72.

(b) P½x � 2, y � 1� ¼ P½x ¼ 2, y ¼ 1� þ P½x ¼ 2, y ¼ 0� þ P½x ¼ 3, y ¼ 1� þ P½x ¼ 3, y ¼ 0�
¼ 7k þ 4k þ 9k þ 6k ¼ 26k ¼ 13=36:
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(c) The marginal probability of x is

P½x� ¼
X
y

P½x,y� ¼

8>><
>>:

9k ¼ 3=24 x ¼ 0
15k ¼ 5=24 x ¼ 1
21k ¼ 7=24 x ¼ 2
27k ¼ 9=24 x ¼ 3

EXAMPLE 3.8

If fðx,yÞis the joint density function of two continuous random variables x and y, defined by

fðx,yÞ ¼
�
e�ðxþyÞ x,y � 0
0 otherwise

,

find their conditional distribution.

From (3.22b),

fCðxjyÞ ¼ fðx,yÞ
fMðyÞ ,

where the marginal density of y is given from (3.20b) as

fMðyÞ ¼
Z N

0
fðx,yÞdx ¼ e�y½�e�x�N0 ¼ e�y:

Thus

fCðxjyÞ ¼ e�ðxþyÞ

e�y ¼ e�x:

3.3.3. Moments and Expectation Values

The definition of moments and expectation values can be generalized to the multivariable
case. Thus the rth algebraic moment of the random variable xi is given by

E
�
xri
� ¼ Z þN

�N
.

Z þN

�N
xri fðx1, x2, ., xnÞ

Yn
j¼1

dxj, (3.25)

from which we obtain the results

mi ¼
Z þN

�N
.

Z þN

�N
xi fðx1, x2, ., xnÞ

Yn
j¼1

dxj (3.26a)

and

s2i ¼
Z þN

�N
.

Z þN

�N
ðxi � miÞ2fðx1, x2, ., xnÞ

Yn
j¼1

dxj, (3.26b)
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for the mean and variance. In addition to the individual moments of (3.25) we can also define
joint moments. In general these are given by

E
h
xiax

j
b.xkc

i
h

Z þN

�N
.

Z þN

�N
ðxiaxjb. xkcÞfðx1, x2, ., xnÞ

Yn
m¼1

dxm: (3.27)

The most important of these is the covariance, introduced in Chapter 1 for two random vari-
ables, and now defined more generally for any pair of variates as

covðxi, xjÞh sij ¼
Z þN

�N
.

Z þN

�N
ðxi � miÞðxj � mjÞfðx1, x2, ., xnÞ

Yn
m¼1

dxm, (3.28)

where the means are given by (3.26a). In Chapter 1, the correlation coefficient rðxi, xjÞ was
defined by

rðxi, xjÞ h
covðxi, xjÞ
sðxiÞsðxjÞ

: (3.29)

This is a number lying between e1 and þ1. It is a necessary condition for statistical indepen-
dence that rðxi, xjÞ is zero. However, this is not a sufficient condition and rðxi, xjÞ ¼ 0 does
not always imply that xi and xj are independently distributed.

EXAMPLE 3.9

Find the means, variances, and covariance for the density of Example 3.8.

The mean mx (which is equal to my by symmetry) is, from (3.26a),

mx ¼
Z þN

�N

Z þN

�N
x fðx, yÞdx dy ¼

Z N

0
x e�xdx

Z N

0
e�ydy ¼ 1:

The variance follows from (3.26b), and is

s2x ¼
Z þN

�N

Z þN

�N
ðx� 1Þ2fðx, yÞdx dy ¼

Z N

0
ðx� mxÞ2e�xdx

Z N

0
e�ydy ¼ 1,

with s2x ¼ s2y by symmetry. Finally, from (3.28)

sxy ¼
Z þN

�N

Z þN

�N
ðx� mxÞðy� myÞ fðx, yÞdx dy ¼

Z N

0
ðx� 1Þe�xdx

Z N

0
ðy� 1Þe�ydy ¼ 0:
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EXAMPLE 3.10

If x has a density function that is symmetric about the mean, find the covariance of the two random

variables x1 ¼ x and x2 ¼ y ¼ x2. Comment on your answer.

The covariance is

covðx, yÞ ¼ E½xy� � E½x�E½y� ¼ E½x3� � E½x�E½x2�:

However because x has a density function that is symmetric about the mean, all the odd-order

moments vanish and, in particular,

E½x� ¼ E½x3� ¼ 0:

Thus covðx, yÞ ¼ 0 and hence rðx,yÞ ¼ 0, even though x and y are not independent. Thus covðx,yÞ ¼ 0

is a necessary but not sufficient condition for statistical independence.

3.4. FUNCTIONS OF A RANDOM VARIABLE

In practice, it is common to have to consider a function of a random variable, for example
yðxÞ. This is also a random variable, and the question arises: what is the density function of y,
given that we know the density function of x? If y is monotonic (strictly increasing or
decreasing) then the solution is simply

fðyfxgÞ ¼ fðxfygÞ
����dxdy
����, (3.30)

the absolute value being necessary to ensure that probabilities are always non-negative. If
instead y has a continuous nonzero derivative at all but a finite number of points, the range
must be split into a finite number of sections in each of which yðxÞ is a strictly monotonic
increasing or decreasing function of x with a continuous derivative, and then (3.30) applied
to each section separately. Thus, at all points where (i) dy=dxs0 and (ii) y ¼ yðxÞ has a real
finite solution for x ¼ xðyÞ, the required density function is

gðyfxgÞ ¼
Y
all x

fðxfygÞ
����dydx
�����1

: (3.31)

If the above conditions are violated, then gðyfxgÞ ¼ 0 at that point.
The method may be extended to multivariate distributions. Consider n random variables

xiði ¼ 1, 2, .,nÞ with a joint probability density fðx1, x2, ., xnÞ, and suppose we wish to
find the joint probability density gðy1, y2, ., ynÞ of a new set of variates yi, which are them-
selves a function of the n variables xiði ¼ 1, 2, .,nÞ, defined by yi ¼ yiðx1, x2, ., xnÞ. To do
this we impose the probability condition:

jfðx1, x2, ., xnÞ dx1 dx2/dxnj ¼
��gðy1, y2, ., ynÞ dy1 dy2/dyn

��:
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It follows that

gðy1, y2, ., ynÞ ¼ fðx1, x2, ., xnÞjJj, (3.32a)

where jJj is the modulus of the determinant of the Jacobian of xi with respect to yi, i.e., the
matrix

J ¼ vðx1, x2, ., xnÞ
v
�
y1, y2, ., yn

	 ¼
0
BBBB@

vx1
vy1

/
vxn
vy1

« 1 «
vx1
vyn

/
vxn
vyn

1
CCCCA, (3.32b)

where again the absolute value is necessary to ensure that probabilities are always non-
negative. If the partial derivatives are not continuous, or there is not a unique solution for
xi in terms of the yi, then the range of the variables can always be split into sections as for
the single variable case and (3.32) applied to each section. The marginal density of one of
the random variables can then be found by integrating the joint density over all the other
variables. For several random variables it is usually too difficult in practice to carry out
the above program analytically and numerical methods have to be used.

EXAMPLE 3.11

A random variable x has a density function:

fðxÞ ¼ 1ffiffiffiffiffiffi
2p

p exp

��x2

2

�
:

What is the density function of y ¼ x2?

Now

x ¼ � ffiffiffi
y

p
and

dy

dx
¼ 2x ¼ �2

ffiffiffi
y

p
:

Thus, for y < 0, x is not real and so gðyfxgÞ ¼ 0. For y ¼ 0, dx=dy ¼ 0, so again gðyfxgÞ ¼ 0. Finally,

for y > 0, we may split the range into two parts, x > 0 and x < 0. Then, applying (3.30) gives

gðyÞ ¼ 1

2
ffiffiffi
y

p
�
fðx ¼ � ffiffiffi

y
p Þ þ fðx ¼ þ ffiffiffi

y
p Þ� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffið2pyÞp exp

��y

2

�
:

EXAMPLE 3.12

The single-variable density function of Example 3.11 may be generalized to two variables, i.e.,

fðx1, x2Þ ¼ 1

2p
exp

�
� 1

2


x21 þ x22

��
:
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Find the joint density function gðy1, y2Þ of the variables y1 ¼ x1=x2 and y2 ¼ x1.

The Jacobian of the transformation is

J ¼ det

�
x2 �x22=x1
1 0

�
¼ x22

x1
¼ y2

y21
:

Thus, applying (3.32), (provided y1s0) gives

gðy1, y2Þ ¼ 1

2p

jy2j
y21

exp

(
� 1

2

 
y22 þ

y22
y21

!)
ðy1s0Þ

A particular example of interest is the density of the sum of two random variables x and y,
If we set u ¼ xþ y and v ¼ x, where the second choice is arbitrary, the Jacobian of the trans-
formation is

J ¼

�������
vx

vu

vy

vu
vx

vv

vy

vv

������� ¼
���� 0 1
1 �1

���� ¼ �1:

Thus the joint density of u and v is

gðu, vÞ ¼ fðx, yÞ ¼ fðv, u� vÞ:

The density function of u, denoted hðuÞ, is then

hðuÞ ¼ gMðuÞ ¼
Z N

�N
fðx, u� xÞdx, (3.33a)

and in the special case where x and y are independent, so that fðx,yÞ ¼ f1ðxÞf2ðyÞ, (3.33a)
reduces to

hðuÞ ¼
Z N

�N
f1ðxÞf2ðu� xÞdx, (3.33b)

which is called the convolution of f1 and f2 and is denoted f1 � f2.
Convolutions obeys the commutative, associative, and distributive laws of algebra, i.e.,

ðaÞ f1 � f2 ¼ f2 � f1, ðbÞ f1 � ðf2 � f3Þ ¼ ðf1 � f2Þ � f3,
and

ðcÞ f1 � ðf2 þ f3Þ ¼ ðf1 � f2Þ þ ðf1 � f3Þ:

They occur frequently in physical science applications. An example is the problem of
determining a physical quantity represented by a random variable x with a density f1ðxÞ
from measurements having experimental errors y distributed like the normal distribution
of Problem 1.6 with zero mean and variance s2. The measurements yield values of the
sum u ¼ xþ y. Then, using the form of the normal distribution given in Problem 1.6, equa-
tion (3.33b) gives
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fðuÞ ¼ 1ffiffiffiffiffiffi
2p

p
s

Z N

�N
f1ðxÞexp

"
� ðu� xÞ2

2s2

#
dx,

and wewish to find f1ðxÞ from the experimental values of fðuÞ and s2. In general this is a diffi-
cult problem unless fðuÞ turns out to be particularly simple. More usually, the form of f1ðxÞ is
assumed, but is allowed to depend on one or more parameters. The integral is then evaluated
and compared with the experimental values of fðuÞ and the parameters varied until a match
is obtained. Even so, exact evaluation of the integral is rarely possible and numerical methods
have to be used. One of these is the so-called Monte Carlo method that we will discuss briefly
in Section 5.1.1.

EXAMPLE 3.13

If two random variables x and y have probability densities of the form

fðxÞ ¼ 1

sx
ffiffiffiffiffiffi
2p

p exp

�
� x2

2s2x

�
,

and similarly for y, find the density function hðuÞ of the random variable u ¼ xþ y.

From (3.33b), the density hðuÞ is given by

hðuÞ ¼
Z N

�N
f1ðxÞf2ðu� xÞdx ¼ 1

2psxsy

Z N

�N
exp

"
� x2

2s2x
� ðu� xÞ2

2s2y

#
dx:

Completing the square for the exponent gives

� s2

2s2xs
2
y

��
x� s2x

s2
u

�2

�s4x
s4

u2 þ s2x
s2

u2
�
,

where s2 ¼ s2x þ s2y. Then changing variables to v ¼ ðs=sxsyÞðx� s2xu=s
2Þ in the integral and simpli-

fying yields,

hðuÞ ¼ 1

2ps
exp

"(�
s2x � s2

	
s2x

2s2s2xs
2
y

)
u2

#Z N

�N

�
�v2

2

�
dv ¼ 1

s
ffiffiffiffiffiffi
2p

p exp

�
� u2

2s2

�
:

Expectation values may also be found for functions of x. If hðxÞ is a function of x, then its
expectation value is

E½hðxÞ� ¼
Xn
i¼1

hðxiÞP½xi� ¼
X
x

hðxÞfðxÞ, (3.34a)

if the variate is discrete, and

E½hðxÞ� ¼
Z þN

�N
hðxÞfðxÞdx: (3.34b)
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if it is continuous. Note that in general E½hðxÞ�shðE½x�Þ:
Using these definitions, the following results are easily proved, where h1 and h2 are two

functions of x and c is a constant:

E½c� ¼ c, (3.35a)

E½chðxÞ� ¼ cE½hðxÞ�, (3.35b)

E½h1ðxÞ þ h2ðxÞ� ¼ E½h1ðxÞ� þ E½h2ðxÞ�, (3.35c)

and if x1 and x2 are independent variates,

E½h1ðx1Þh2ðx2Þ� ¼ E½h1ðx1Þ�E½h2ðx2Þ�: (3.35d)

PROBLEMS 3

3.1 Use the method of characteristic functions to find the first two moments of the
distribution whose pdf is

fðxÞ ¼ ag

GðgÞ e
�axxg�1, 0 � x � N; a > 0, g > 0,

where GðgÞ is the gamma function, defined by

GðgÞh
Z N

0
e�xxg�1dx, 0 < g < N:

3.2 A disgruntled employee types n letters and n envelopes, but assigns the letters randomly
to the envelopes. What is the expected number of letters that will arrive at their correct
destination?

3.3 An incompetent purchasing clerk repeatedly forgets to specify the magnitude of
capacitors when ordering them from a manufacturer. If the manufacturer makes
capacitors in 10 different sizes and sends one at random, what is the expected number of
different capacitor values received after 5 orders are placed?

3.4 Find the probability distribution of the discrete random variable whose characteristic
function is cos u.

3.5 Two random variables x and y have a joint density function:

fðx,yÞ ¼
�
3e�xe�3y 0 < x,y < N
0 otherwise

:

Find (a) P½x < y� and (b) P½x > 1, y < 2�.
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3.6 If h ¼ axþ by, where x and y are random variables and a and b are constants, find the
variance of h in terms of the variances of x and y and their covariance.

3.7 Two random variables x and y have a joint density function:

fðx,yÞ ¼
�
cx2ð1þ x� yÞ 0 < x,y < 1
0 otherwise

,

where c is a constant. Find the conditional density of x given y.

3.8 The table shows the joint probability mass function of two discrete random variables x
and y defined in the ranges 1 � x � 3 and 1 � y � 4. (Note that the probabilities are
correctly normalized.)

x

y 1 2 3 Row totals

1 3/100 4/25 1/20 6/25

2 3/25 7/50 1/20 31/100

3 1/10 9/100 3/50 1/4

4 1/20 1/20 1/10 1/5

Column totals 3/10 11/25 13/50 1

Construct the following marginal probabilities:

ðaÞ P½x � 2, y ¼ 1�, ðbÞ P½x > 2, y � 2� and ðcÞ P½xþ y ¼ 5�:

3.9 Find the probability density of the random variable u ¼ xþ y where x and y are two
independent random variables distributed with densities of the form

fxðxÞ ¼
�
1 0 � x < 1
0 otherwise

,

and similarly for fyðyÞ.
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4

Probability Distributions II: Examples

O U T L I N E

4.1 Uniform 57

4.2 Univariate Normal (Gaussian) 59

4.3 Multivariate Normal 63
4.3.1 Bivariate Normal 65

4.4 Exponential 66

4.5 Cauchy 68

4.6 Binomial 69

4.7 Multinomial 74

4.8 Poisson 75

In this chapter we will examine the properties of some of the theoretical distributions
commonly met in physical sciences, for both discrete and continuous variates, including
the all-important and ubiquitous so-called ‘normal’ distribution that we have discussed
briefly in earlier chapters.

4.1. UNIFORM

The uniform distribution for a continuous random variable x has a density function:

fðxÞh uðx; a, bÞ ¼
( 1

b� a
a � x � b

0 otherwise
, (4.1)

where a and b are constants1. The distribution function from (4.1) is

FðxÞ ¼

8><
>:

0 x < a
x� a

b� a
a � x < b

1 x � b

(4.2)

1Here, and in the distributions that follow, we use the convention of separating the random variable from

any constants by a semicolon.
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An example of the uniform distribution is the distribution of rounding errors made in arith-
metical calculations. Using equations (3.5) and (3.6) we can easily show that the mean and
variance are given by

m ¼ aþ b

2
; s2 ¼ ðb� aÞ2

12
: (4.3)

The value of a random variable uniformly distributed in the interval (0,1) is called
a (uniform) random number. These random numbers are useful because they enable
various probabilities and expectation values to be evaluated empirically. The theoretical
importance of the uniform distribution is enhanced by the fact that any density function
fðxÞ of a continuous random variable x may be transformed to the uniform density
function

gðuÞ ¼ 1, 0 � u � 1

by the transformation u ¼ FðxÞ, where FðxÞ is the distribution function of x. This follows from
the fact that

du

dx
¼ d

dx

Z x

�N
fðx0Þdx0 ¼ fðxÞ,

and hence by changing variables,

gðuÞ ¼ fðxÞ
����dudx
�����1

¼ 1, 0 � u � 1

This property is useful in generating random numbers from an arbitrary distribution by
transforming a set of uniformly distributed random numbers. It enables many properties
of continuous distributions to be exhibited, by proving them for the particular case of the
uniform distribution. It also follows that there is at least one transformation that transforms
any continuous distribution to any other; it is simply the product of the transformations that
take each distribution into the uniform distribution.

EXAMPLE 4.1

Trains to a given destination depart on the hour and at 30 minutes past the hour. A passenger arrives at the

station at a time that is uniformly distributed in the interval from one hour to the next. What is the probability

that they will have to wait at least 10 minutes for a train?

Let t denote the time in minutes past the hour that the passenger arrives at the station. Because t

is a random variable uniformly distributed in the interval (0,60), it follows that the passenger will

have to wait at least 10 minutes if they arrive up to 20 minutes past the hour, or between 30 and

50 minutes past the hour. Thus the required probability is

P½0 < t < 20� þ P½30 < t < 50� ¼ 20

60
þ 20

60
¼ 2

3
:
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4.2. UNIVARIATE NORMAL (GAUSSIAN)

This distribution is by far the most important in statistics because many distributions
encountered in practice are believed to be of approximately this form, a point that was
mentioned in Section 1.4 and that will be discussed in more detail in Chapter 5. The name
is perhaps unfortunate, because it might imply that all other distributions are somehow
‘abnormal’, which of course they are not. In physical sciences the normal distribution is
more usually known as a Gaussian distribution, although several people in addition to Gauss
have claims to have studied this function. In this book, the name used in statistics has been
adopted. We start with the case of a single variate.

The normal density function for a single continuous random variable x is defined as

fðxÞh nðx;m,sÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp

�
� 1

2

�
x� m

s

�2�
, ðs > 0Þ (4.4)

and its distribution function is

FðxÞhNðx;m,sÞ ¼ 1ffiffiffiffiffiffi
2p

p
s

Z x

�N
exp

�
� 1

2

�
t� m

s

�2�
dt: (4.5)

Graphs of fðxÞ and FðxÞ are shown in Fig. 4.1 for m ¼ 0 and s ¼ 0:5, 1:0 and 2:0. Keeping
the value of s fixed, but changing the value of the parameter m simply moves the curves along
the x axis.

As this is the first nontrivial distribution we have encountered it will be useful to
implement some of our previous definitions. First, it is clear from (4.4) that fðxÞ is a single-
valued non-negative real number for all values of x. Furthermore, by the substitution

t2 ¼ 1

2

�
x� m

s

�2

,

we can write Z þN

�N
fðxÞdx ¼ 1ffiffiffi

p
p

Z þN

�N
e�t2dt:

Since the integral on the right-hand side has the well-known value of
ffiffiffi
p

p
, we see that fðxÞ is

normalized to unity and is thus a valid density function.
To find the moments of the normal distribution we first find the mgf. From equation

(3.11),

MxðtÞ ¼ E½expðtxÞ� ¼ expðtmÞE½expftðx� mÞg�

¼ expðtmÞexpðs2t2=2Þ
ð2pÞ1=2s

Z N

�N
exp

"
�ðx� m� s2tÞ2

2s2

#
dx:

The integral is related to the area under a normal curve with mean ðmþ s2tÞ and variance
s2. Thus

MxðtÞ ¼ expðtmþ s2t2=2Þ: (4.6)
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On differentiating (4.6) twice and setting t ¼ 0, we have

m01 ¼ m , m02 ¼ s2 þ m2

and

varðxÞ ¼ m02 � ðm01Þ2 ¼ s2:

The mean and variance of the normal distribution are therefore m and s2, respectively. The
same technique for moments about the mean gives

m2n ¼ ð2nÞ!
n!2n

s2n and m2nþ1 ¼ 0, n � 1: (4.7)

The odd order moments are zero by virtue of the symmetry of the distribution. Using (4.7)
we can calculate quantities that are sometimes used to measure skewness and the degree
of peaking in a distribution. These are denoted b1 and b2, respectively (b2 is also called the
kurtosis) and are

b1hm23=m
3
2 ¼ 0 and b2hm4=m

2
2 ¼ 3 (4.8)

FIGURE 4.1 Normal (Gaussian) density function (upper graphs) and distribution function (lower graphs) for
m ¼ 0 and s ¼ 0:5, 1:0 and 2:0.
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This value of b2 is taken as a standard against which the kurtosis of other distributions may
be compared.

Using essentially the same technique that was used to derive the mgf we can show that the
cf of the normal distribution is

fðtÞ ¼ exp½itm� t2s2=2�, (4.9)

which agrees with (3.15) and which may be confirmed by applying the result of the inversion
theorem.

Any normal distribution may be transformed to a normal distribution in zwith m ¼ 0 and
s2 ¼ 1 by setting z ¼ ðx� mÞ=s. Then, from (4.4) and (4.5),

nðz; 0, 1Þ ¼ 1

ð2pÞ1=2
expð�z2=2Þ (4.10)

and

Nðz; 0, 1Þ ¼ 1

ð2pÞ1=2
Z z

�N
expð�u2=2Þdu: (4.11)

These forms are called the standard normal density function and the standard normal distribution
function, respectively, and will usually be denoted by nðzÞ and NðzÞ, omitting the constants.
Values ofNðzÞ are given in Appendix C, Table C.1. If these functions are required for negative
values of z, they may be found from the relations

nð�zÞ ¼ nðzÞ, (4.12)

and

Nð�zÞ ¼ 1�NðzÞ, (4.13)

which follow from the symmetry of the distribution. Another useful relation that follows
from (4.13) is

2

Z z

0
nðuÞdu ¼

Z z

�z
nðuÞdu ¼ 2NðzÞ � 1: (4.14)

Using (4.12)e(4.14) and Table C.1, the following results may be deduced:

1. The proportion of standard normal variates contained within 1, 2, and 3 standard
deviations from the mean is 68.3%, 95.4%, and 99.7%, respectively;

2. If ta denotes that value of the standard normal distribution for which

Z N

ta

nðt; 0, 1Þdt ¼ a, (4.15)

then ðm� tasÞ defines a 100ð1� 2aÞ% symmetric interval centered on m.

The first of these results was mentioned in Section 1.4, when discussing the behavior of
experimental frequency plots for cases where the sample size becomes large. They are
stronger conditions than the constraints implied by the Chebyshev inequality (1.11).
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The reason why such plots tend to the normal distribution is embedded in the so-called Law
of Large Numbers and will be discussed in the next chapter. The usefulness of the second
result will be evident when confidence intervals are discussed in Chapter 9.

We will see in Chapter 5 when we consider sampling in more detail that one can often
assume that the measurement errors on a quantity x are distributed according to a normal
distribution nðxÞ with mean zero, so that the probability of obtaining a value between x
and xþ dx is nðxÞdx. The dispersion s of the distribution is called the standard error and
(4.15) gives the probability for the true value being within an interval of plus or minus one,
two, or three standard errors about the measured value, given a single measurement of x.

One final useful result is that the distribution of a linear sum

T ¼
X
i

aixi

of n independent random variables xi, having normal distributionsNðxi;mi,s2i Þ, is distributed
as NðT;m,s2Þ, i.e., is also normally distributed. To show this, we can use the characteristic
function. Because the xi are independent, this may be written

fTðtÞ ¼
Yn
i¼1

E½expðitaixiÞ� ¼
Yn
i¼1

fiðtÞ,

where fiðtÞ is the cf of the random variable aixi. We have previously shown in (4.9) that

fiðtÞ ¼ exp½itaimi � ts2i a
2
i =2�

and so

fTðtÞ ¼ exp

(Xn
i�1

ðitaimi � t2a2i s
2
i =2

)
¼ expðitm� t2s=2Þ,

where

m ¼
Xn
i¼1

aimi and s2 ¼
Xn
i¼1

a2i s
2
i :

However this is the cf of a normal variate whose mean is m and whose variance is s2. Thus, by
the inversion theorem, T is distributed as NðT;m,s2Þ.

EXAMPLE 4.2

If x is a random variable normally distributed with mean m and variance s2, show that for any constants

a and b, with bs0, y ¼ aþ bx is a random variable with mean ðaþ bmÞ and variance b2s2.

Let FxðxÞ and FyðyÞ be the distribution functions of x and y, respectively. Then, for b > 0,

FyðyÞ ¼ P½ðaþ bxÞ � y� ¼ P½x � ðy� aÞ=b� ¼ Fxðfy� ag=bÞ:
Similarly, for b < 0,

FyðyÞ ¼ P½ðaþ bxÞ � y� ¼ P½x � ðy� aÞ=b� ¼ 1� Fxðfy� ag=bÞ:
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The associated density functions fxðxÞ and fyðyÞ are obtained by differentiating the distribution

functions, so

fyðyÞ ¼

8><
>:

1

b
fx

�
y� a

b

�
, b > 0

�1

b
fx

�
y� a

b

�
, b < 0

,

which combined is

fyðyÞ ¼ 1

jbj fx
�
y� a

b

�
¼ 1

sjbj ffiffiffiffiffiffi2p
p exp

�
� 1

2s2

�
y� a

b
� m

�2�

¼ 1

sjbj ffiffiffiffiffiffi2p
p exp

�
� 1

2

�
y� a� bm

bs

�2�
:

This is a normal distribution with mean ðaþ bmÞ and variance b2s2.

EXAMPLE 4.3

A company makes electrical components with a mean life of 800 days and a standard deviation of 20 days.

If the distribution of lifetimes is normal, what is the probability that a component chosen at random will last

between 780 and 850 days? Also, what is the minimum lifetime of the longest lived 12% of the components?

First convert to standard form by using the transformation z ¼ ðx� mÞ=s, so that z1 ¼ �1:0 and

z2 ¼ 2:5. Then

P½780 < x < 850� ¼ P½�1:0 < z < 2:5� ¼ P½z < 2:5� � P½z < �1:0�,
and using Table C.1, the right-hand side is 0:9938� ð1� 0:8413Þ ¼ 0:8351: To answer the second

question, we can use the ‘inverse’ transformation to find the value of z, say z0, such that

P½z < z0� ¼ 0:88. From Table C.1 this is z0 ¼ 1:175. Thus from the inverse transformation, we have

x0 ¼ z0sþ m ¼ ð1:175� 20Þ þ 800 ¼ 823:5 days

4.3. MULTIVARIATE NORMAL

If x1, x2, ., xnhx are n random variables, then the multivariate normal density function, of
order n, is defined as

fðxÞh 1

ð2pÞn=2jVj1=2
exp

�
� 1

2
ðx� mÞTV�1ðx� mÞ

�
, (4.16)

where the constant vector m is the mean of the distribution, and V is a symmetric positive-
definite matrix, which is the variance matrix of the vector x. The quantity

Q ¼ ðx� mÞTV�1ðx� mÞ, (4.17)
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is called the quadratic form of the multivariate normal distribution. The distribution possesses
a number of important properties, and three are discussed below.

The first concerns the form of the joint marginal distribution of a subset of the n variables.
If the n random variables x1, x2,., xn are distributed as an n-variate normal distribution,
then the joint marginal distribution of any set xiði ¼ 1, 2, .m < nÞ is the m-variate normal.
This result can be proved in a straightforward way by constructing the joint marginal distri-
bution from (4.16) using the definition (3.20a). It follows that the distribution of any single
random variable in the set xi (this is the case m ¼ 1) is distributed as the univariate normal.

This result can be used to derive the second property: the necessary condition under
which the variables of the distribution are independent. If we set covðxi, xjÞ ¼ 0 for isj,
then this implies that V is diagonal, so the quadratic form becomes

ðx� mÞTV�1ðx� mÞ ¼
Xn
i¼1

ðxi � miÞV�1
ii ,

and the density function may be written as

fðxÞ ¼
Yn
i¼1

fiðxiÞ,

where

fiðxiÞ ¼
1

ð2pÞ1=2
1

V
1=2
ii

exp

"
� ðxi � miÞ2

2Vii

#
: (4.18)

Equation (4.18) is the density function for a univariate normal distribution and so, by virtue
of the earlier result on the marginal distribution, and the definition of statistical indepen-
dence, equation (3.24), the variables xi are independently distributed. Thus a necessary
condition for the components of x to be jointly independent is if covðxi, xjÞ ¼ 0 for all isj.
In the case of the multivariate normal distribution, this is also a sufficient condition. It is
straightforward, by an analogous argument, to establish the inverse, i.e., that if xi are jointly
independent then V is diagonal.

The third, and final, property concerns the distribution of linear combinations:

S ¼
Xn
i¼1

aixi ¼ xTA,

of random variables x ¼ xiði ¼ 1, 2, ., nÞ, each of which has a univariate normal distribution,
where ai are constants and A ¼ aið i ¼ 1, 2, ., nÞ. The moment generating function of S is

MSðtÞ ¼ E½expðStÞ� ¼ E
�
exp

	

xTA

�
t
� ¼ exp

�

mTA

�
t

exp

h
ðx� mÞTAt

i
:

Now, if x has a multivariate normal distribution with mean m and variance matrix V, then

exp½ðx� mÞTAt� ¼ exp
�

ATVA

�
t2=2


,

and thus

MSðtÞ ¼ exp
�

mTA

�
tþ 
ATVA

�
t2=2
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However from (4.6), this is the mgf of a normal variate with mean

m ¼ mTA ¼
Xn
i¼1

aimi

and variance

s2 ¼ ATVA ¼
Xn
i¼1

Xn
j¼1

aiajVij,

and so S is distributed as NðS;m,s2Þ. This result is a generalization of the result obtained
at the end of Section 4.2.

4.3.1. Bivariate Normal

An important example of a multivariate normal distribution is the bivariate case, which
occurs frequently in practice. Its density function is

nðx, y;mx,my,sx,sy, rÞh nðx, yÞ ¼ 1

2psxsyð1� r2Þ1=2
exp

� �R

2ð1� r2Þ
�
, (4.20)

where

Rh

�
x� mx

sx

�2

�2r

�
x� mx

sx

��
y� my

sy

�
þ
�
y� my

sy

�2

, (4.21)

and r is the correlation coefficient, defined in (3.29). If the exponent in (4.20) is a constant
(eK), i.e.,

R ¼ 2


1� r2

�
K,

then the points ðx,yÞ lie on an ellipse with center ðmx,myÞ. The density function (4.20) is a
bell-shaped surface, and any plane parallel to the xy plane that cuts this surface will intersect
it in an elliptical curve. Any plane perpendicular to the xy plane will cut the surface in a
curve of the normal form.

Just as for the univariate normal distribution, we can define a standard bivariate normal
density function

nðu,vÞ ¼ 1

2pð1� r2Þ1=2
exp

�
�


u2 � 2ruvþ v2

�
2ð1� r2Þ

�
: (4.22)

where

u ¼ x� mx

sx
; v ¼ y� my

sy
:

A feature of this distribution is that for r ¼ 0

nðu, vÞ ¼ nðuÞnðvÞ, (4.23)
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which implies that u and v are independently distributed, a result that is not generally true for
all bivariate distributions.

Finally, the joint moment generating function may be obtained from the definition

Mxyðt1, t2Þ ¼ E½expðt1xþ t2yÞ� ¼
Z N

�N

Z N

�N
expðt1xþ t2yÞfðx,yÞdxdy, (4.24)

After changing variables to u and v, this becomes

Mxyðt1, t2Þ ¼
expðt1mx þ t2myÞ
2pð1� r2Þ1=2

ZZ
eðt1sxuþt2syvÞexp

�
u2 � 2ruvþ v2

�2ð1� r2Þ
�
dudv,

which, after some algebra, gives

Mxyðt1, t2Þ ¼ exp

�
t1mx þ t2my þ

1

2

�
t21s

2
x þ 2rt1t2sxsy þ t22s

2
y

��
: (4.25)

The moments may be obtained in the usual way by evaluating the derivatives of (4.25) at
t1 ¼ t2 ¼ 0. For example,

E½x2� ¼ v2Mxyðt1, t2Þ
vt21

�����
t1¼t2¼0

¼ s2x þ m2x:

4.4. EXPONENTIAL

The exponential density function for a continuous random variable x is

fðxÞh fðx; lÞ ¼
(
le�lx l > 0, x � 0

0 otherwise:
(4.26)

It is an example of a more general class of gamma distributions of the form

fðx;a, lÞ ¼ laxa�1e�lx

GðaÞ , a, l > 0, x > 0, (4.27)

for a ¼ 1, where the gamma function GðaÞ was defined in Problem 3.1 and Gð1Þ ¼ 1. From
(4.26) the distribution function is

FðxÞ ¼
Z x

0
fðx0Þdx0 ¼ 1� e�lx:

The mgf MxðtÞ ¼ E½etx� may be found from (4.26) and is

MxðtÞ ¼ l

Z N

0
etxe�lxdx ¼ l

l� t
, t < l: (4.28)

Differentiating as usual gives the mean m and variance s2 as

m ¼ 1=l and s2 ¼ 1=l2: (4.29)
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The exponential density is used to model probabilities where there is an interval of time
before an event occurs. Examples are the lifetimes of electronic components. In this context
the parameter l is the (failure) rate, or inverse lifetime, of the component. An interesting prop-
erty of exponential random variables is that they are memoryless, that is, for example, the
probability that a component will function for at least an interval ðtþ sÞ, having already oper-
ated for at least an interval t, is the same as the probability that a new component would oper-
ate for at least the interval s, if it were activated at time zero.

The proof of this key property, which is unique to exponentially distributed random vari-
ables, follows from the definition of conditional probability:

P½x > tþ sjx > t� ¼ P½x > tþ s�
P½x > t� : (4.30)

The probabilities on the right-hand side may be calculated from (4.26):

P½x > tþ s� ¼ l

Z N

tþs
e�lx0dx0 ¼ e�lðtþsÞ,

and

P½x > t� ¼ l

ZN
t

e�lx0dx0 ¼ e�lt:

Thus,

P½x > tþ sjx > t� ¼ e�ls ¼ P½x > s�:

EXAMPLE 4.4

A system has a critical component whose average lifetime is exponentially distributed with a mean value of

2000 hours. What is the probability that the system will not fail after 1500 hours?

From the memoryless property of the exponential distribution, the distribution of the remaining

lifetime of the component is exponential with parameter l ¼ 1=2000. Then,

P½remaining lifetime > 1500� ¼ 1� F½1500�

¼ exp

�
�1500

2000

�
¼ e�3=4z0:47:

If there are several independent random variables x1, x2, ., xn, each exponentially
distributed with parameters l1, l2, ., ln, respectively, then because the smallest value of
a set of numbers is greater than some value x if, and only if, all values are greater than x,

P½minðx1, x2, ., xnÞ > x� ¼ P½x1 > x, x2 > x, ., xn > x�:
However, because the variables are independently distributed,

P½minðx1, x2, ., xnÞ > x� ¼
Yn
i¼ 1

P½xi > x� ¼ exp

"
�
Xn
i¼ 1

lix

#
:
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This result may be used to model the lifetime of a complex system of several independent
components, all of which must be working for the system to function.

In the exponential distribution, the quantity l is a constant, but there are many situations
where it is more appropriate to assume that l is not constant. An example is when calcu-
lating the failure rate with time of aging components. In this case we could assume that
lðtÞ ¼ abtb�1ðt > 0Þ, where a and b are positive constants, so that lðtÞ increases or decreases
when b > 1 or b < 1, respectively. It was for precisely this situation, where the components
were light bulbs, that the Weibull distribution was devised, with a density function

fðx;a,bÞ ¼ abxb�1expð�axbÞ, x > 0

which reduces to the exponential distribution when b ¼ 1. It is a useful distribution for rep-
resenting a situation where a probability rises from small values of x to a maximum and then
falls again at large values of x.

4.5. CAUCHY

The density function of the Cauchy distribution is

fðx; qÞ ¼ 1

p

1

1þ ðx� qÞ2
, �N < x < N:

The parameter q can be interpreted as the mean m of the distribution only if the definition is
extended as follows:

m ¼ lim
N/N

Z N

�N
fðx; qÞxdx:

This is somewhat questionable and we will, in general, set q ¼ 0. Then the distribution func-
tion becomes

FðxÞ ¼ 1

2
þ 1

p
arctanðxÞ:

The moment about the mean (taken to be zero) of order 2n is

m2n ¼ 1

p

Z N

�N

x2n

1þ x2
dx, (4.31)

but the integral converges only for n ¼ 0, so only the trivial moment m0 ¼ 1 exists. Likewise,
the mgf does not exist, although the cf does and is given by (see Example 3.6b)

fðtÞ ¼ e�jtj:

It can be shown that the ratio of two standardized normal variates has a Cauchy density
function (see Example 4.5 below), which is one reason why it is encountered in practice. The
Cauchy distribution is also met frequently in physical science because it describes the line
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shape seen in the decay of an excited quantum state. In this context it is usually called the
Lorentz distribution or BreiteWigner formula and is written as

fðE;E0,GÞ ¼ 1

p

G=2

ðE� E0Þ2 þ G2=4
,

where E is the energy of the system and the parameters G and E0 are interpreted as the
‘width’ of the state, i.e., the full width at half maximum height of the line shape, and
its energy, respectively. This distribution must be treated with care because of the non-
convergence of the moment integrals, which is due to the long tails of the Cauchy density
comparedwith those of the normal density. In these regions the distribution is not necessarily
a good approximation to the physical system.

EXAMPLE 4.5

Two random variables x and y are each distributed with standardized normal density functions. Show that

the ratio x=y has a Cauchy probability density.

Define new variables r ¼ x=y and s ¼ y. Then if hðr, sÞ is the joint probability density of r and s,

this may be found from probability conservation, that is,

jhðr, sÞdrdsj ¼ jnðxÞnðyÞdxdyj,
where n is the standard normal density. Changing variables on the right-hand side to r and s gives

hðr, sÞdrds ¼ nðrsÞnðsÞJdrds,
where

J ¼

�������
vx

vr

vy

vr

vx

vs

vy

vs

��������
¼
����� y 0

0 1

����� ¼ y ¼ s

is the Jacobian of the transformation, as discussed in Section 3.4. Using the symmetry of the normal

density about zero, the probability density of r is given by

fðrÞ ¼ 2

Z N

0
nðrsÞnðsÞsds ¼ 1

p

Z N

0
exp

�
� 1

2
s2


1þ r2

��
s ds

¼ 1

p

2
64�

exp

�
� 1

2
s2ð1þ r2Þ

�
ð1þ r2Þ

3
75
N

0

¼ 1

p

1

1þ r2
,

which is a Cauchy density.

4.6. BINOMIAL

The binomial distribution concerns a population of members each of which either
possesses a certain attribute P, or does not possess this attribute, which we will denote by
Q. If the proportion of members possessing P is p and that possessing Q is q, then clearly
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FIGURE 4.2 Plots of the binomial probability function. The top row shows fðr;p,nÞ for p ¼ 0:5 and various
values of n; the middle row shows values for n ¼ 20 and various values of p; and the lower row shows fðr;p,nÞ for
a fixed value of np ¼ 3.
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ðpþ qÞ ¼ 1. An experiment involving such a population is called a Bernoulli trial, i.e., one with
only two possible outcomes. A simple example is tossing a coin, where the two outcomes are
‘heads’ and ‘tails’, with p ¼ q ¼ 0:5 if the coin is unbiased and thin, so that the probability of
landing on its edge can be neglected. Suppose now we wish to choose sets from the popula-
tion, each of which contains nmembers. From the work of Chapter 2, the proportion of cases
containing rPs and ðn� rÞQs is

nCrp
rqn�r ¼

�
n
r

�
prqn�r, (4.32)

i.e., the rth term of the binomial expansion of

fðp, qÞ ¼ ðqþ pÞn, (4.33)

hence the name of the distribution. Expressed in another way, if p is the chance of an
event happening in a single trial, then for n independent trials the terms in the
expansion

fðq,pÞ ¼ qn þ nqn�1pþ/þ pn,

give the chances of 0, 1, 2, ., n events happening. Thus, we are led to the following defini-
tion. The probability function of the binomial distribution is defined as

fðr;p,nÞh
�
n
r

�
prqn�r, (4.34)

and gives the probability of obtaining r ¼ 0, 1, 2,., n successes, i.e., events having the attri-
bute P, in an experiment consisting of n Bernoulli trials. Note that f is not a probability density,
but gives the actual probability. Tables of the cumulative binomial distribution are given in
Appendix C, Table C.2, and plots of the probability function for some values of its parameters
are shown in Fig. 4.2.

EXAMPLE 4.6

If a machine making components has a failure rate of 2%, i.e., 2% are rejected as being defective, what is the

probability that less than 3 components will be defective in a random sample of size 100?

Using the binomial distribution, the probability that less than 3 components will be found to be

defective is, with p ¼ 0:02,

P½r < 3� ¼ P½r ¼ 0� þ P½r ¼ 1� þ P½r ¼ 2�

¼
X2
r¼0

 
100

r

!

0:02

�r

0:98

�ð100�rÞ ¼ 0:6767:

EXAMPLE 4.7

A device consists of n components, each of which will function independently with a probability p and

operates successfully if at least 50% of its components are fully functioning. A researcher can buy 4
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components with p ¼ 0:5 or, for the same price, 3 components with a higher value of p. For what higher value

of p would it be better to use a 3-component system rather than one with 4 components?

The probability that a 4-component system will function is

P4 ¼
�
4
2

�
p2ð1� pÞ2 þ

�
4
3

�
p3ð1� pÞ þ

�
4
4

�
p4ð1� pÞ0,

which for p ¼ 0:5 is 11=16. The probability that a 3-component system will function is

P3 ¼
�
3
2

�
p2ð1� pÞ þ

�
3
3

�
p3ð1� pÞ0 ¼ 3p2 � 2p3:

A 3-component system is more likely to function than a 4-component one if P3 > P4, i.e., if

3p2 � 2p3 � 11

16
> 0,

which is true for (approximately) p > 0:63.

The moment distribution function may be found directly from (4.34) and the definition
(3.12a) and is

MrðtÞ ¼
Xn
r¼0

fðr; p, nÞetr ¼
Xn
r¼0

�
n
r

�
prqn�retr ¼ ðpet þ qÞn, (4.35)

from which

m01 ¼ m ¼ np, m02 ¼ npþ nðn� 1Þp2, (4.36)

and

s2 ¼ m02 � ðm01Þ2 ¼ npq: (4.37)

The mgf for moments about the mean is

MmðtÞ ¼ e�mtMðtÞ (4.38)

and gives

m3 ¼ npqðq� pÞ, m4 ¼ npq½1þ 3ðn� 2Þpq�: (4.39)

So, using the definitions given in (4.8), we have

b1 ¼ ðq� pÞ2=ðnpqÞ and b2 ¼ 3þ ð1� 6pqÞ=npq, (4.40)

which tend to the values for a normal distribution as n/N.
The plots shown in Fig. 4.2 suggest that the limiting form of the binomial distribu-

tion is indeed the normal. This may be proved using the characteristic function,
although it requires several stages. From the relation (3.15) and the form of the mgf
(4.35), the cf is

frðtÞ ¼ ðqþ peitÞn, (4.41)
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and the binomial distribution may be expressed in standard measure (i.e., with m ¼ 0 and
s2 ¼ 1) by the transformation:

x ¼ ðr� mÞ=s: (4.42)

This can be considered as the sum of two independent random variables r=s and �m=s, even
though the second term is actually a constant. From the work of Chapter 3, the characteristic
function of x is the product of the characteristic functions of these two variates. Setting m ¼ np
and using (4.41), we have

fxðtÞ ¼ exp

��itnp

s

��
qþ p exp

�
it

s

��n

:

Taking logarithms and using p ¼ 1� q, gives

lnfxðtÞ ¼
�itnp

s
þ n ln

�
1þ p

�
exp

�
it

s

�
� 1

��
,

and because t=s ¼ t=
ffiffiffiffiffiffiffiffi
npq

p
/0 as n/N, the exponential may be expanded giving

lnfxðtÞ ¼
�itnp

s
þ n ln

�
1þ p

�
it

s
� 1

2

�
t

s

�2

þ/

��
:

Next we expand the logarithm on the right-hand side using

lnð1þ 3Þ ¼ 3� 32=2þ 33=3�/,

with the result

lnfxðtÞ ¼
�itnp

s
þ n

�
itp

s
� 1

2

�
t

s

�2

ðp� p2Þ þOðn�1=2Þ
�

Finally, letting n/N and keeping t finite, gives

lnfxðtÞ ¼ �t2=2þOðn�1=2Þ,
where we have used s2 ¼ npq ¼ npð1� pÞ. So, for any finite t,

fðtÞ / expð�t2=2Þ:
This is the form of the cf of a standardized normal distribution and so by the inversion
theorem, the associated density function is

fðxÞ ¼ 1

ð2pÞ1=2
exp

�
�x2

2

�
, (4.43)

which is the standard form of the normal distribution.
The normal approximation to the binomial is excellent for large values of n and is still

good for small values provided p is reasonably close to ½. A working criterion is that the
approximation is good if np and nq are both greater than 5. This is confirmed by the plots
in Fig. 4.2.

4.6. BINOMIAL 73



EXAMPLE 4.8

If the probability of a success in a single Bernoulli trial is p ¼ 0:4, compare the exact probability of

obtaining r ¼ 5 successes in 20 trials with the normal approximation.

The binomial probability is

PB ¼
�
20
5

�
ð0:4Þ5ð0:6Þ15 ¼ 0:075,

to three significant figures. In the normal approximation this corresponds to the area under a

normal curve in standard form between the points corresponding to r1 ¼ 4:5 and r2 ¼ 5:5. Using

m ¼ np ¼ 8 and s ¼ ffiffiffiffiffiffiffiffi
npq

p ¼ 2:19, the corresponding standardized variables are z1 ¼ �1:60 and

z2 ¼ �1:14. Thus we need to find

PN ¼ P½z < �1:14� � P½z < �1:60� ¼ Fð�1:14Þ � Fð�1:60Þ,
where F is the standard normal distribution function. Using Fð�zÞ ¼ 1� FðzÞ and Table C.1 gives

PN ¼ 0:072, so the approximation is good.

4.7. MULTINOMIAL

The multinomial distribution is the generalization of the binomial distribution to the case
of n repeated trials where there are more than two possible outcomes to each. It is defined as
follows. If an event may occur with k possible outcomes, each with a probability
piði ¼ 1, 2, ., kÞ, with

Xk
i¼1

pi ¼ 1, (4.44)

and if ri is the number of times the outcome associated with pi occurs, then the random vari-
ables riði ¼ 1, 2, ., k � 1Þ have a multinomial probability defined as

fðr1, r2, ., rk�1Þh n!
Yk
i¼1

prii

�Yk
i¼1

ri!, ri ¼ 0, 1, 2, ., n: (4.45)

Note that each of the ri may range from 0 to n inclusive, and that only ðk � 1Þ variables are
involved because of the linear constraint:

Xk
i¼1

ri ¼ n:

Just as the binomial distribution tends to the univariate normal, so does the multinomial
distribution tend in the limit to the multivariate normal distribution.

With suitable generalizations the results of Section 4.6 may be extended to the multinomial.
For example the mean and variance of the random variables ri are npi and npið1� npiÞ, respec-
tively. Multiple variables mean that we also have a covariance matrix, given by

Vij ¼ E½fri � E½ri�gfri � E½ri�g�:
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It is straightforward to show that

Vij ¼
�
npið1� piÞ i ¼ j
�npipj otherwise:

An example of a multinomial distribution is if we were to construct a histogram of k bins
from n independent observations on a random variable, with ri entries in bin i. The negative
sign in the off-diagonal elements of the covariancematrix shows that if bin i contains a greater
than average number of events, then the probability is increased that a different bin j will
contain a smaller than average number, as expected.

EXAMPLE 4.9

A bag contains 5 white balls, 4 red balls, 3 blue balls, and 2 yellow balls. A ball is drawn at random from

the bag and then replaced. If 10 balls are drawn and replaced, what is the probability of obtaining 3 white, 3

red, 2 blue, and 2 yellow?

The probability of obtaining a given number of balls of a specified color after n drawings is given

by the multinomial probability. We know that in a single drawing

P½w� ¼ 5

14
, P½r� ¼ 4

14
, P½b� ¼ 3

14
and P½y� ¼ 2

14
:

Thus if 10 balls are drawn and replaced, the required probability is, using (4.45),

10!

3!3!2!2!

�
5

14

�3� 4

14

�3� 3

14

�2� 2

14

�2

¼ 0:0251:

4.8. POISSON

The Poisson distribution is an important distribution occurring frequently in practice and
that is derived from the binomial distribution by a special limiting process. Consider the
binomial distribution for the case when p, the probability of achieving the outcome P, is
very small, but n, the number of members of a given sample, is large such that

lim
p/0

ðnpÞ ¼ l, (4.46)

where l is a finite positive constant, i.e., where n[np[p. The kth term in the binomial
distribution then becomes" 

n

k

!
pkqn�k

#
¼ n!

k!ðn� kÞ!
�
l

n

�kð1� l=nÞn
ð1� l=nÞk

¼ lk

k!

�
nðn� 1Þðn� 2Þ/ðn� k þ 1Þ

nk

� ð1� l=nÞn
ð1� l=nÞk

¼ lk

k!

�
1� l

n

�n
"
ð1� 1=nÞð1� 2=nÞ/ð1� ðk � 1Þ=nÞ

ð1� l=nÞk
#
:
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Now as n/N,

lim
n/N

�
1� l

n

�n

¼ e�l

and all the terms in the square bracket tend to unity, so in the limit that n/N and p/0 but
np/l,

lim
np/l

��
n
k

�
pkqn�k

�
¼ fðk; lÞ ¼ lk

k!
expð�lÞ, l > 0, k ¼ 0, 1.: (4.47)

This is the probability function of the Poisson distribution and gives the probability for
different events when the chance of an event is small, but the total number of trials is
large.

Although in principle the number of values of k is infinite, the rapid convergence of
successive terms in (4.47) means that in practice the distribution function is accurately
given by the first few terms. Some examples of the Poisson probability are shown in
Fig. 4.3 and tables of the cumulative distribution are given in Appendix C, Table C.3.

Although in deriving the Poisson distribution we have taken the limit as n/N, the
approximation works well for modest values of n, provided p is small. This is illustrated
in Table 4.1, which shows probability values of the binomial distribution for various values
of n and p such that np ¼ 3 (see also the plots in Fig. 4.2) compared with the probabilities of
the Poisson distribution for l ¼ 3.

The moment generating function for the Poisson distribution is

MkðtÞ ¼ E½ekt� ¼ e�l
XN
k¼0

ðletÞk
k!

¼ e�lexpðletÞ: (4.48)

Differentiating (4.48) and setting t ¼ 0 gives

m01 ¼ l, m02 ¼ lðlþ 1Þ,
m03 ¼ l½ðlþ 1Þ2 þ l�, m04 ¼ l½l3 þ 6l2 þ 7lþ 1�, (4.49)

and from (1.11a)

m2 ¼ l, m3 ¼ l, m4 ¼ lð3lþ 1Þ: (4.50)

Thus,

m ¼ s2 ¼ l, (4.51)

a simple result which is very useful in practice. Also from (4.50) and (4.8), we have

b1 ¼
1

l
, b2 ¼ 3þ 1

l
(4.52)

From these results, and the fact that the Poisson distribution is derived from the binomial,
one might suspect that as l/N the Poisson distribution tends to the standard form of the
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FIGURE 4.3 Plots of the Poisson probability function fðk; lÞ ¼ lk expð�lÞ=k! for various values of l.
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normal, and indeed this is the case. It can be proved by again using the characteristic func-
tion, which using (3.15) and (4.48) is

fkðtÞ ¼ e�l expðleitÞ:
Transforming the distribution to standard measure by the relation

z ¼ ðk � mÞ=s,
gives

fzðtÞ ¼
Z N

�N
fðzÞexp½itðszþ mÞ�dz ¼ eitmfzðstÞ:

However from (4.51), m ¼ s2 ¼ l, and so

fkðtÞ ¼ expð�itl1=2Þe�lexpðleitl�1=2Þ:
and

lnfzðtÞ ¼ �itl1=2 � lþ l expðitl�1=2Þ:
If we now let l/N, keeping t finite, and expand the exponential, then

lnfzðtÞ ¼ �t2=2þOðl�1=2Þ:

TABLE 4.1 Comparison of the Binomial and Poisson probability functions for np ¼ l ¼ 3

k

Binomial

p[ 0.5 p[ 0.2 p[ 0.1 p[ 0.05 p[ 0.02 p[ 0.01 Poisson

n[ 6 n[ 15 n[ 30 n[ 60 n[ 150 n[ 300 l[ 3

0 0.0156 0.0352 0.0424 0.0461 0.0483 0.0490 0.0490

1 0.0937 0.1319 0.1413 0.1455 0.1478 0.1486 0.1486

2 0.2344 0.2309 0.2276 0.2259 0.2248 0.2244 0.2244

3 0.3125 0.2501 0.2361 0.2298 0.2263 0.2252 0.2252

4 0.2344 0.1876 0.1771 0.1724 0.1697 0.1689 0.1689

5 0.0937 0.1032 0.1023 0.1016 0.1011 0.1011 0.1010

6 0.0156 0.0430 0.0474 0.0490 0.0499 0.0501 0.0501

7 0.0000 0.0138 0.0180 0.0199 0.0209 0.0213 0.0213

8 0.0035 0.0058 0.0069 0.0076 0.0079 0.0079

9 0.0007 0.0016 0.0021 0.0025 0.0026 0.0026

10 0.0001 0.0004 0.0006 0.0007 0.0008 0.0008

11 0.0000 0.0001 0.0001 0.0002 0.0002 0.0002

12 0.0000 0.0000 0.0000 0.0000 0.0000
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Thus, for any finite t,

fðtÞ/expð�t2=2Þ,
which is the form of the c.f. of a standardized normal distribution and so, by the inversion
theorem, the associated density function is the standardized form of the normal distribution.
The rate of convergence to normality is the same as for the binomial distribution and so, in
particular, the normal approximation to the Poisson distribution is quite adequate for values
of l � 10 and some authors suggest even lower values.

As for the normal distribution, the characteristic functionmay also be used in a straightfor-
ward way to show that the sum of quantities independently distributed as Poisson variates is
itself a Poisson variate.

An example of a Poisson distribution is the probability of decay of a radioactive material.
A macroscopic amount of the material contains a vast number of atoms, each of which could
in principle decay, but the probability of any individual atom decaying in a given time
interval is a random event with a very small probability. In this case the quantity 1=l is
the lifetime of the unstable atom or nucleus. If decays occur randomly in time, with an
average of l events per unit time, then from the Poisson distribution, the probability of N
events occurring in an interval t is

P½N� ¼ 1

N!
ðltÞNe�lt,

and so the probability of no events in time t is an exponential distribution and the probability
that the time interval t between events (e.g., the time interval between the detection of the
decay particles in a detector) is greater than a specified value x is

P½t > x� ¼ e�lx:

The memoryless property of the exponential distribution implies that if no events have
occurred up to a time y, the probability of no events occurring in a subsequent period x is
independent of y.

Finally, it can be shown that if each of a Poisson number of events having mean l is
independently classified as being of one of the types 1, 2, ., r, with probabilities
p1, p2, ., pr respectively, where

Pr
i¼1 pr ¼ 1, then the numbers of events of types

1, 2, ., r are independent Poisson random variables with means lp1, lp2, ., lpr,
respectively.

EXAMPLE 4.10

If the probability of an adverse reaction to a single exposure to a very low dosage of radiation is 0.1% and

10000 people are exposed in an accident, use the Poisson distribution to find the probability that less than 3

will be adversely affected? Why is the use of this distribution justified?

The probability of an adverse reaction is an example of a Bernoulli trial, i.e., there is either

a reaction or no reaction. However, if the radiation dose is very low, the probability of an adverse

reaction is very small, so in practice the Poisson distribution may be used to predict how many

people will suffer an adverse reaction in a large sample. Then,

P½k < 3� ¼ P½k ¼ 0� þ P½k ¼ 1� þ P½k ¼ 2�:
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Using the Poisson distribution with l ¼ np ¼ 10000� 0:001 ¼ 10, this is

P½k < 3� ¼ e�10

�
100

0!
þ 101

1!
þ 102

2!

�
¼ 61e�10 ¼ 0:0028:

EXAMPLE 4.11

Use the data of Example 4.10 to investigate the normal approximation to the Poisson for calculating the

probability that exactly 5 people will have an adverse reaction.

The Poisson probability that exactly 5 people will have an adverse reaction is

P½k ¼ 5� ¼ e�10105

5!
¼ 0:0378:

In the normal approximation this corresponds to the area under the normal density curve between

the points 4.5 and 5.5 and in standard form these points are, using m ¼ l ¼ 10 and s ¼ ffiffiffi
l

p ¼ 3:16,

z1 ¼ �1:74 and z2 ¼ �1:42. Then using Table C.1, as in Example 4.8, we find a probability of 0.0384.

So the normal approximation is good.

PROBLEMS 4

4.1 The probability of recovering from a certain illness without medical intervention is 50%.
A new drug is developed and tested on 20 people with the illness. Fourteen rapidly
recover. Is the drug effective?

4.2 In a system designed to destroy incoming missiles, defensive weapons are arranged in
layers, each having an efficiency of 95%. To be sure of totally destroying a missile,
‘hits’ from weapons in at least two defensive layers are required. How many layers
would be needed to ensure a probability of at least 99.9% of destroying an incoming
missile?

4.3 A biased coin has a probability of 0.48 to fall ‘heads’ and 0.49 to fall ‘tails’. If the coin is
thick, so that there is also a probability of it landing on its edge, what is the probability of
obtaining 4 heads and 4 tails if it is tossed 10 times?

4.4 Find the coefficient of the term x6y4z6 in the expansion of ð2x2 � 3xy2 þ z3Þ6.

4.5 A beam of particles is incident on a target with sufficient energy to penetrate it.
The particles are mostly absorbed, but there is a small probability p of 5% that this is
accompanied by the emission of a new particle from the target. If 100 particles per second
are incident on the target, what is the probability that at least 5 particles per second are
emitted? Compare your result using the Poisson distribution.
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4.6 The average number of car accidents at a dangerous road junction is 5 per month. What is
the probability that there will be more than 3 accidents next month?

4.7 A nuclear physics experiment uses 80 detectors. They are checked between data runs and
any that have failed are replaced. It is found that the detectors have a 1% probability of
failing between checks. If a run can be successfully completed provided no more than 3
detectors fail during the run, find the probability that a data run will be spoiled because
of detector failure.

4.8 Resistors are manufactured with a mean value of R ¼ 50 ohms and values less than 48.0
ohms, or greater than 51.5 ohms, are considered defective. If the values of R are assumed
to be normally distributed with a standard deviation of 1 ohm, what percentage of
resistors would be expected to be defective?

4.9 A supply voltage V is assumed to be a normal random variable with mean 100 volts and
a variance of 5 volts. It is applied to a resistor R ¼ 50 ohms and the power W ¼ RV2

measured. What is the probability that W > 6� 105 watts?
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Sampling and Estimation

O U T L I N E
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5.1.1 Sampling Distributions 84
5.1.2 Properties of Point Estimators 86

5.2 Estimators for the Mean, Variance,
and Covariance 90

5.3 Laws of Large Numbers and the
Central Limit Theorem 93

5.4 Experimental Errors 97
5.4.1 Propagation of Errors 99

The previous chapters have been concerned almost exclusively with descriptive statis-
tics. The main properties of statistical distributions have been described, and some of the
general principles associated with them established. We are now going to consider how to
use these ideas to make inferences about a population, given that in practice we usually
only have access to a sample of the whole population. This raises several problems,
including how to ensure that any sample is random, what is the distribution of the func-
tion of the sample data chosen to make statistical inferences, and how to define the desir-
able properties of such functions so that reliable estimates may be made about the
corresponding population parameters. One aspect that will emerge from this discussion
is the explanation of why the normal distribution is so important in statistical applications
in physical sciences. Finally the formal link is made between theoretical statistics and
experimental data.

5.1. RANDOM SAMPLES AND ESTIMATORS

In this section we will consider how random samples are selected, what are their proba-
bility distributions, and what are the desirable properties of the functions of random vari-
ables that are used to make inferences about the underlying population.
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5.1.1. Sampling Distributions

A random sample of size n selected from a population was defined in Section 1.1 as result-
ing from a situation where every sample of this size had an equal chance of being selected,
while noting the intrinsic circularity of this definition. A more formal definition is as follows.
If x is a random variable distributed according to a density fðxÞ, then the population is the
totality of possible values of x. A sample of size n, i.e., x ¼ x1, x2, ., xn, defines a sample
space and is a random sample if (a) all samples are taken from the same distribution as
the population and (b) the samples are independently selected. The latter implies that the
joint probability density is given by

fðxÞ ¼ fðx1Þfðx2Þ.fðxnÞ: (5.1)

If fðxÞ is known, random samples can be obtained in principle from (5.1), but if fðxÞ
is unknown, it is often difficult to ensure that the conditions for randomness are
strictly met, particularly the first one. It is possible to test whether a given sample is
random, but since this is formally testing an hypothesis about the nature of the sample,
we will defer discussion of this until hypothesis testing in general is discussed in
Chapters 10 and 11. For the present, we will assume that samples have been selected
randomly.

We are very often interested in a function y of the sample x1, x2, ., xn. Any such function
is called a statistic, a term introduced in Chapter 1, and is itself a random variable. Because of
this, the values of y will vary with different samples of the same size and will be distributed
according to a new density function. The formal solution for finding the latter is via construc-
tion of the distribution function of y using (5.1), i.e.

FðyÞ ¼
Z

.

Z Yn
i¼ 1

fðxiÞdxi, (5.2)

where the integral is taken over the region such that y � yðx1,x2,., xnÞ. In practice it is often
convenient to let yðx1,x2, .,xnÞ be a new variable and then choose n� 1 other variables
(functions of xi) such that the n-dimensional integrand in (5.2) takes a simple form. An
example will illustrate this.

EXAMPLE 5.1

Find the sampling distribution of the means xn of samples of size n drawn from the Cauchy distribution

fðxÞ ¼ 1

p

1

1þ x2
, �N � x � N:

If we choose new variables ui ¼ xiði ¼ 1, 2,.,n� 1Þ and un ¼ xn, then the Jacobian of the trans-

formation is

J ¼ vðx1,x2,.,xnÞ
vðu1,u2,.,un�1, xnÞ,
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and the distribution function of the means becomes

FðxnÞ ¼
Z

.

Z
fðx1Þfðx2Þ.fðxnÞ J dx0n

Yn�1

i¼ 1

dxi,

where the density functions are expressed in terms of the new set of variables and the integrals are

taken over the region such that

x0n � 1

n

X
xi:

Thus

FðxnÞ ¼
Z xn

�N
dun

Z N

�N
.

Z N

�N

� n

pn

� Yn�1

j¼ 1

(�
1þ u2j

�"
1þ

 
nun �

Xn�1

i¼ 1

ui

!2#)�1

duj,

and the density function of xn is given by the (n� 1)-fold integration in ujðj ¼ 1, 2,. ,n� 1Þ. The
integral can be evaluated, but the algebra is rather lengthy. The result is the probability density

fðxnÞ ¼ 1

p

1

1þ xn
,

which is the same form as the population density for any value of n. We will see later in this chapter

that this result is unusual, and the sampling distribution of the sample mean for most distributions

commonly met in physical science is a normal distribution for large sample size n.

Even in the simple case given in Example 5.1, the integral is complicated and in practice
it is rarely possible to evaluate the required multidimensional integrals analytically.
Instead, numerical evaluation is used, but even then conventional techniques are usually
far too time consuming and a statistical method, known as the Monte Carlo method,
mentioned in Section 3.4, is used. The Monte Carlo technique is of rather general applica-
tion and a technical subject outside the scope of this book, but very briefly the principle of
the method in the current context is to use a sequence of random numbers to calculate prob-
abilities and related quantities. Random numbers u uniformly distributed in the interval
0 � u � 1 are readily available from computer programs called random number generators
and may be used to generate a new sequence of numbers distributed with any probability
density fðxÞ that is being studied by using the transformation property of probability distri-
butions referred to in Section 4.1. The new values of x can be viewed as simulated measure-
ments and used to build up an integral of fðxÞ, i.e., the distribution function FðxÞ, such as
given in (5.2).

EXAMPLE 5.2

Find an expression for random variables distributed with an exponential density in terms of random

variables uniformly distributed with the density

pðuÞ ¼
�
1 0 � u � 1

0 otherwise:
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The exponential density is, from Equation (4.26),

fðxÞ ¼
�
le�lx l > 0, x � 0

0 otherwise:

Conservation of probability requires thatZ u

�N
pðu0Þ du0 ¼

Z x

�N
fðx0Þ dx0

and so u ¼ 1� e�lx, and x ¼ �lnð1� uÞ=l. As u is distributed uniformly, then so is ð1� uÞ. Thus to
select random numbers distributed with an exponential density, we generate a sequence ui and

from them generate a new sequence xi using xi ¼ �lnðuiÞ=l.

Another useful method for finding sampling distributions is to construct the moment
generating function, or the characteristic function, for the statistic. If either of these is recog-
nized as that of a known pdf, then this is the pdf of the sampling distribution. This technique
is very practical and we shall have occasion to use it later. Alternatively, the inversion
theoremmay be used to identify the density function. For example, we have shown in Section
4.8 that the cf for a Poisson distribution with a general term e�llk=k! is

fðtÞ ¼ e�l expðleitÞ,
where l, the Poisson parameter, is also the mean of the distribution. From this we can form
the cf for a sample of size n as the product of terms of the form fðtÞ and hence show that the cf

for the mean is expfnlðeit � 1Þg. Finally, the inversion theorem may be used to show that the
sampling distribution of the mean is also a Poisson distribution, but whose general term is

e�nlðnlÞk=k!
A common situation is where the exact form of fðxÞ is unknown, but one has a model (or

hypothesis) for fðxÞ that depends on an unknown parameter q. The central problem is then to
construct a function of the observations x1, x2, ., xn that contains no unknown parameters
to estimate q, i.e., to give a value to q, and hence determine fðxÞ. This situation is an example of
parametric statistics. In these circumstances the statistic is referred to as a point estimator of q
and is written as q̂. The word ‘point’ will be omitted when it is obvious that we are talking
about the estimation of the value of a parameter by a single number. In general there could
be several unknown parameters q ¼ q1, q2, ., qm and associated estimators. Since the esti-
mator is a function of the random variables x ¼ x1, x2, ., xn, it is itself a random variable
and its value will therefore vary with different samples of the same size and be distributed
according to a new density function gðq̂; qÞ. The merit of an estimator is judged by the prop-
erties of this distribution and not by the values of a particular estimate. So wewill now turn to
consider the properties of ‘good’ estimators.

5.1.2. Properties of Point Estimators

An intuitively obvious desirable property of an estimator is that, as the sample size
increases, the estimate tends to the value of the population parameter. Any other result
would be inconvenient and even possibly misleading. This property is called consistency.
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Formally, an estimator q̂n computed from a sample of size n, is said to be a consistent estimator
of a population parameter q if, for any positive 3, arbitrarily small,

lim
n/N

P½jq̂n � qj > 3� ¼ 0: (5.3)

In these circumstances, q̂n is said to converge in probability to q. Thus, q̂n is a consistent esti-
mator of q if it converges in probability to q.

The property of consistency tells us the asymptotic (n/N) behavior of a suitable esti-
mator, although the approach to consistency does not have to be monotonic as n increases.
Having found such an estimator we may generate an infinite number of other consistent
estimators:

q̂0n ¼ pðnÞ q̂n, (5.4)

provided

lim
n/N

pðnÞ ¼ 1: (5.5)

However, we may further restrict the possible estimators by requiring that for all n the
expected value of q̂n is q, i.e., E½q̂n� ¼ q, or in full, using (5.1),

E½q̂ðxÞ � ¼
Z

q̂ðxÞgðq̂;qÞ dq̂ ¼
Z

.

Z
q̂ðxÞfðx1Þfðx2Þ.fðxnÞ dx1dx2.dxn ¼ q: (5.6)

Estimators with this property are called unbiased, with the bias b defined by

b h E½q̂n� � q: (5.7)

Estimators for which b/ 0 as n/ N are said to be asymptotically unbiased. Despite the name,
the fact that an estimator is biased is not often a serious problem, because there usually exists
a simple factor that converts such an estimator to an unbiased one. Unbiased estimators are
just more convenient to use in practice, although as the following example shows, they are
not unique.

EXAMPLE 5.3

If q̂i ði ¼ 1, 2, ., nÞ is a set of n unbiased estimators for the parameter q, show that any linear

combination

q̂ ¼
Xm
i¼ 1

liq̂i, m � n

where li are constants, is also an unbiased estimator for q, provided

Xm
i¼ 1

li ¼ 1:
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The expectation of q̂ is

E½q̂� ¼ E

"Xm
i¼ 1

liq̂i

#
¼
Xm
i¼ 1

liE½q̂i� ¼
Xm
i¼ 1

li q ¼ q:

Hence from (5.7), q̂ is an unbiased estimator for the parameter q.

The requirements of consistency and lack of bias alone do not produce unique estimators.
One can easily show that the sample mean is a consistent and unbiased estimator of the mean
of a normal population with known variance. However the same is true of the sample
median. Further restrictions must be imposed if uniqueness is required. One of these is the
efficiency of an estimator. An unbiased estimator with a small variance will produce estimates
more closely grouped around the population value q than one with a larger variance. If
two estimators q̂1 and q̂2, both calculated from samples of size n, have variances
such that varq̂1 < varq̂2, then q̂1 is said to be more efficient than q̂2 for samples of size n.
For the normal distribution,

varðmeanÞ ¼ s2=n,

for any n (this result is proved in Section 5.2 below). But for large n,

varðmedianÞ ¼ ps2=2n > s2=n:

Thus the mean is the more efficient estimator for large n. (In fact this is true for all n.) Consis-
tent estimators whose sampling variance for large samples is less than that of any other such
estimators are calledmost efficient. Such estimators serve to define a scale of efficiency. Thus if
q̂2 has variance y2 and q̂1, the most efficient estimator, has variance y1, then the efficiency of q̂2
is defined as

E2 ¼ y1=y2: (5.8)

It may still be that there exist several consistent estimators q̂ for a population parameter q.
Can one choose a ‘best’ estimator from among them? The criterion of efficiency alone is not
enough, since it is possible that for a given finite n, one estimator q̂n, which is biased, is consis-
tently closer to q than an unbiased estimator q̂0n. In this case the quantity to consider is not the
variance but the second moment of q̂n about q, which is

E
h
ðq̂n � qÞ2

i
:

Using (5.7) gives (see Problem 5.1)

E
h
ðq̂n � qÞ2

i
¼ varðq̂nÞ þ b2: (5.9)

This quantity is called the mean squared error and we define q̂n to be a best, or optimal, estimator
of the parameter q if

E
h
ðq̂n � qÞ2

i
� E

h
ðq̂0n � qÞ2

i
,
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where q̂0n is any other estimator of q. Thus an optimal unbiased estimator q̂n is one with
minimum variance. We will discuss how to obtain minimum variance estimators in more
detail in Chapter 7, Section 7.4.

EXAMPLE 5.4

If q̂i ði ¼ 1, 2Þ are two independent and unbiased estimators for a parameter q with variances s2i , what

value of the constant l in the linear combination

q̂ ¼ l q̂1 þ ð1� lÞ q̂2
ensures that q̂ is the optimal estimator for q?

Because q̂1 and q̂2 are both unbiased, so is q̂ (see Example 5.3). Thus the optimal estimator of q is

one that minimizes the mean squared error

varðq̂Þ ¼ E
h
ðq̂� qÞ2

i
:

Now because q̂1 and q̂2 are independent,

varðq̂Þ ¼ l2 var ðq̂1Þ þ ð1� lÞ2 var ðq̂2Þ
¼ l2s21 þ ð1� lÞ2s22,

and the minimum of varðq̂Þ is found from d varðq̂Þ=dl ¼ 0, i.e.

l ¼ 1=s21
1=s21 þ 1=s22

:

The discussion above gives an idea of the desirable properties of estimators, but there is
a more general criterion that can be used. Consider the case of estimating a parameter q

and let

fðq̂1, q̂2, ., q̂r; qÞ
be the joint density function of r independent estimators q̂iði ¼ 1, 2, ., rÞ. Then, from the
definition of the multivariate conditional density, we have (cf. equation (3.23))

fðq̂1, q̂2, ., q̂r; qÞ ¼ fMðq̂1; qÞfCðq̂2, q̂3, ., q̂r; qjq̂1Þ, (5.10)

where fMðq̂1;qÞ is the marginal density of q̂1 and fCðq̂2, q̂3, ., q̂r; qjq̂1Þ is the conditional
density of all the other q̂i given q̂1. Now if fC is independent of q, then clearly once q̂1 is spec-
ified the other estimators contribute nothing to the problem of estimating q, i.e., q̂1 contains all
the information about q. In these circumstances q̂1 is called a sufficient statistic for q. It is more
convenient in practice to write (5.10) as a condition on the likelihood function introduced in
Chapter 2.

Let fðx; qÞ denote the density function of a random variable x, where the form of f is known,
but not the value of q, which is to be estimated. Then let x1, x2, ., xn be a random sample of

5.1. RANDOM SAMPLES AND ESTIMATORS 89



size n drawn from fðx;qÞ. The joint density function fðx1, x2, ., xn; qÞ of the independent
random variables x1, x2, ., xn is given by

fðx1, x2, ., xn; qÞ ¼
Yn
i¼ 1

fðxi; qÞ, (5.11)

where fðxi, qÞ is the density function for the ith random variable. The function
fðx1, x2, ., xn; qÞ is the likelihood function of q and is written as Lðx1, x2, ., xn;qÞ. If L is
expressible in the form

Lðx1, x2, ., xn; qÞ ¼ L1ðq̂; qÞ L2ðx1, x2, ., xnÞ, (5.12)

where L1 does not contain the x’s other than in the form q, and L2 is independent of q, then q̂ is
a sufficient statistic for the estimation of q.

EXAMPLE 5.5

Find a sufficient estimator for estimating the variance of a normal distribution with zero mean.

The probability density is

fðxÞ ¼ 1ffiffiffiffiffiffi
2p

p 1

s
exp

�
� x2

2s2

�
,

and the likelihood function is therefore

Lðx1, x2, ., xn;s
2Þ ¼

�
1

s
ffiffiffiffiffiffi
2p

p
�n

exp

 
� 1

2s2

Xn
i¼ 1

x2i

!
:

If we let L2 ¼ 1 in (5.12), we have L1 ¼ L and L1 is a function of the sample xi only in terms ofP
x2i . Thus,

P
x2i is a sufficient estimator for s2. We will show in Section 5.2 that this estimator

is biased.

5.2. ESTIMATORS FOR THE MEAN, VARIANCE,
AND COVARIANCE

Estimators for the mean, variance, and covariance are of central importance in statistical
analysis, so we consider them in more detail. Let S denote a sample of n observations
xiði ¼ 1, 2,.,nÞ selected at random. The sample S is called a random sample with replacement
(or a simple random sample) if, in general, the observation xn�1 is returned to the population
before xn is selected. If xn�1 is not returned, then S is called a random sample without replace-
ment. Sampling with replacement implies, of course, that it is indeed possible to return the
‘observation’ to the population, as is the case when drawing cards from a deck. In most prac-
tical situations this is usually not possible and the sampling is without replacement.
Sampling from an infinite population is equivalent to sampling with replacement.

For any continuous population, finite or infinite, the sample mean x is an estimator for the
population mean m and since this is true for all possible samples of size n, the sample mean is
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an unbiased estimator. This result follows simply from the definition of the sample mean,
equation (1.3). Thus

E½x� ¼ E

"
1

n

Xn
i¼ 1

xi

#
¼ 1

n

Xn
i¼ 1

E½xi�:

But using (5.1),

E½xi� ¼
Z

.

Z
xi fðx1Þ.fðxnÞ dx1.dxn ¼ m

and so

E½x� ¼ 1

n

Xn
i¼ 1

m ¼ m: (5.13)

We can also find the expectation of the sample variance s2. This is

E

"
1

n� 1

Xn
i¼ 1

ðxi � xÞ2
#

¼ 1

n� 1
E

2
4Xn

i¼ 1

0
@xi �

1

n

Xn
j¼ 1

xj

1
A235

¼ 1

n� 1
E

2
4n� 1

n

Xn
i¼ 1

ðxiÞ2�
1

n

Xn
isj

xixj

3
5

¼ m02 � ðm01Þ2 ¼ s2:

(5.14)

Thus the presence of the factor 1=ðn� 1Þ in the definition of the sample variance, as we noted
in Chapter 1 differs from the analogous definition for the population variance to ensure that
s2 is an unbiased estimator of s2. Similarly, the sample covariance defined in (1.12b) is an
unbiased estimator for the population covariance of equation (1.12a).

Given any estimator q̂, one can calculate its variance. For example, the variance of the
sample mean drawn from an infinite population, or a finite population with replacement,
is by definition

s2x h var ðxÞ ¼ E
h
ðx� E½x�Þ2

i
¼ E

h
ðx� mÞ2

i
, (5.15)

which may be written as

var ðxÞ ¼ 1

n2
E

" Xn
i¼ 1

ðxi � mÞ
!2#

:

If we expand the square bracket on the right-hand side and again use (5.1), there are n terms
containing the form ðxi � mÞ2, each of which gives a contributionZ

.

Z
ðxi � mÞ2fðxiÞ.fðxnÞ dxi.dxn ¼ s2:
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The remaining terms are integrals over the forms ðxi � mÞðxj � mÞ with i < j, each of which,
using the definition of m, is zero. Thus

varðxÞ ¼ 1

n2

Xn
i¼ 1

s2 ¼ s2

n

¼ 1

nðn� 1Þ
Xn
i¼ 1

ðxi � xÞ2,
(5.16a)

where the second line follows if s2 is replaced by its estimator s2. If the sample is drawn from
a finite population without replacement, then this result is modified to

varðxÞ ¼ s2

n

�
N � n

N � 1

�
: (5.16b)

The square root of s2x, that is, the standard deviation sx, is called the (standard) error of the mean
and was introduced briefly when we discussed the normal distribution in Section 4.2. It is
worth emphasizing the difference between the standard deviation s and the standard error
on the mean sx. The former describes the extent to which a single observation is liable to vary
from the population mean m; the latter measures the extent that an estimate of the mean
obtained from a sample of size n is liable to differ from the true mean.

The result (5.16a) is of considerable importance, because it shows that as the sample size n
increases, the variance of the sample mean decreases, and hence the statistical error on a set of
measurements decreases (like 1=

ffiffiffi
n

p
in the case of (5.16a)) and the probability that the sample

mean is a good estimation of the population mean increases, a result that was referred to in
Chapter 1. Results (5.16) assume that the measurements are random samples and uncorre-
lated. If this is not the case, then this must be taken into account. They also assume that the
samples are obtained by simple random sampling from a single population. Better estimates
can be obtained if we have additional information about the sample. One example is stratified
sampling, mentioned briefly in Section 1.1. This technique requires that the population can be
divided into a number of mutually exclusive subpopulations, with known fractions of the
whole population in each. Then simple random samples using, for example, sample sizes
proportional to these fractions lead to smaller estimates for varðxÞ with the same total sample
size. However, as this situation is not usually met in physical science, we will continue to
consider only simple random sampling from a single homogeneous population.

We can go further, by using the general results for expectation values, and find the esti-
mator of the variance of s2 and hence the estimator of the standard deviation ss. The latter
is not the square root of the former, but, anticipating equation (5.45), is given by

varðs2Þ ¼
�
ds2

ds

�2

varðsÞ:

For a normal distribution, the result is simple:

ss ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 1Þp : (5.17)

Just as in (5.16a), to use this result one would usually have to insert an estimate for s obtained
from the data. Providing n is large, there is little loss in precision in doing this, but for small n
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an alternative approach would have to be adopted. This is discussed in Section 6.2. Alterna-
tively, (5.17) can be used to predict howmany events would be needed tomeasure s to a given
precision under different assumptions about its value. This could be useful at the planning
stages of an experiment.

EXAMPLE 5.6

A random sample xiði ¼ 1, 2, ., nÞ is drawn from a population with mean m and variance s2. Two

unbiased estimators for m are

m̂1 ¼ 1

2
ðx1 þ x2Þ and m̂2 ¼ xn:

What is the relative efficiency of m̂1 to m̂2?

From (5.16a), var ðm̂2Þ ¼ varðxnÞ ¼ s2=n. If the same steps to derive this result are used for m̂1,

then there is one term containing the form ðx1 � mÞ2, and one containing the form ðx2 � mÞ2, each of

which gives a contribution s2 and a single term containing ðx1 � mÞðx2 � mÞwhich contributes zero.

Thus var ðm̂1Þ ¼ s2=2 and so

relative efficiency ¼ varðm̂1Þ
varðm̂2Þ

¼ n

2
:

5.3. LAWS OF LARGE NUMBERS AND THE CENTRAL
LIMIT THEOREM

The results of Section 5.2 may be stated formally as follows. Let xi be a population of inde-
pendent random variables with mean m and finite variance and let xn be the mean of a sample
of size n. Then, given any 3 > 0 and d in the range 0 < d < 1, there exists an integer n such that
for all m � n

P½jxm � mj � 3� � 1� d: (5.18)

This is theweak law of large numbers. It tells us that jxn � mjwill ultimately be very small, but
does not exclude the possibility that for some finite n it could be large. Since, in practice, we
can only have access to finite samples, this possibility could be of some importance. Fortu-
nately there exists the so-called strong law of large numbers, which, in effect, states that the
probability of such an occurrence is extremely small. It is the laws of large numbers that
ensure that the frequency definition of probability adopted in Chapter 2 concurs in practice
with the axiomatic one.

The weak law of large numbers may be proved from Chebyshev’s inequality that we dis-
cussed in Chapter 1, equation (1.11), provided the population distribution has a finite vari-
ance. Chebyshev’s inequality may be written as

P

�
jxn � mj � ks

n1=2

	
� 1

k2
, (5.19)

so if we choose k ¼ d�1=2 and n > s2=d32 and substitute in (5.19), then (5.18) results.
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The bound given by (5.19) is usually weak, but if we restrict ourselves to the sampling
distribution of the mean then we can derive the most important theorem in statistics, the
central limit theorem, which may be stated as follows. Let the independent random variables
xi of unknown density be identically distributed with mean m and variance s2, both of which
are finite. Then the distribution of the sample mean xn tends to the normal distribution with
mean m and variance s2=n when n becomes large. Thus, if uðtÞ is the standard form of the
normal density function, then for arbitrary t1 and t2,

lim
n/N

P

�
t1 � xn � m

s=n1=2
� t2

	
¼
Z t2

t1

uðtÞ dt: (5.20)

The proof of this theorem illustrates the use of several earlier results and definitions and so is
worth giving.

By applying the results on expected values given in Chapter 3 to moment-generating func-
tions, it follows immediately that if the components of the sample are independent, then the
mean and variance of their sum

S ¼
Xn
i¼ 1

xi

are given by

mS ¼ nm and s2S ¼ ns2:

Now consider the variate

u ¼ S� mS

sS
¼ 1ffiffiffi

n
p

s

Xn
i¼ 1

ðxi � mÞ, (5.21)

with characteristic function fuðtÞ. If fiðtÞ is the cf of ðxi � mÞ, then

fuðtÞ ¼
Yn
i¼ 1

fiðtÞ
�

tffiffiffi
n

p
s

�
:

But all the ðxi � mÞ values have the same distribution and so

fuðtÞ ¼
�
fiðtÞ

�
tffiffiffi
n

p
s

�	n
: (5.22)

Just as the mgf can be expanded in an infinite series of moments, we can expand the cf,

fðtÞ ¼ 1þ
XN
r¼ 1

m0r
ðitÞr
r!

, (5.23)

and since the first two moments of ðxi � mÞ are zero and s2, respectively, we have from (5.22)
and (5.23)

fuðtÞ ¼
�
1� t2

2n
þO

�
1

n

�	n
:
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Expanding the square bracket, and then letting n/N but keeping fixed t, gives

fuðtÞ/e�t2=2, (5.24)

which is the cf of a standardized normal distribution. So by the inversion theorem, S is
distributed as the normal distribution nðS; mS, s2SÞ, and hence xn is distributed as
nðxn; m, s2=nÞ.

In practice, the normal approximation is good for n� 30 regardless of the shape of the pop-
ulation. For values of n less than about 30, the approximation is good only if the population
distribution does not differ much from a normal distribution. The sampling distribution of
the means when sampling from a normal population is normal independent of the size of n.

The form of the central limit theorem above is not the most general that can be given.
Provided certain (weak) conditions on the third moments are obeyed, then the condition that
the xi values all have the same distribution can be relaxed, and it is possible to prove that the
sampling distribution of any linear combination of independent randomvariables having arbi-
trary distributions with finite means and variances tends to normality for large samples. There
are even circumstances under which the assumption of independence can be relaxed.

EXAMPLE 5.7

Five hundred resistors are found to have a mean value of 10.3 ohms and a standard deviation of 0.2 ohms.

What is the probability that a sample of 100 resistors drawn at random from this population will have

a combined value between 1027 and 1035 ohms?

For the sampling distribution of the means, mx ¼ m ¼ 10:3 and the standard deviation of this

value is

sx ¼ sffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � nÞ
ðN � 1Þ

s
¼ 0:2ffiffiffiffiffiffiffiffi

100
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð500� 100Þ
ð500� 1Þ

s
¼ 0:018:

We seek the value of the probability such that P½10:27 < x < 10:35�. Using the central limit theorem,

we can use the normal approximation. So, using standardized variables, this is equivalent to

P½�1:67 < z < 2:78� ¼ Nð2:78Þ þNð1:67Þ � 1 z 0:95:

The central limit theorem applies to both discrete and continuous distributions and is
a remarkable theorem because nothing is said about the original density function, except that
it has finite mean and variance. Although in practice these conditions are not usually restric-
tions, they are essential. Thus we have seen in Example 5.1 that the distribution of xn for the
Cauchy distribution is the same as for a single observation. The failure of the theorem in this
case can be traced to the infinite variance of the Cauchy distribution and there are other exam-
ples, such as the details of the scattering of particles from nuclei, where the long ‘tails’ of distri-
butions cause the theoremto fail. It is the central limit theoremthatgives thenormaldistribution
such a prominent position both in theory and in practice. In particular, it allows (approximate)
quantitative probability statements to bemade in experimental situationswhere the exact form
of the underlying distribution is unknown. This was briefly mentioned in Section 1.4.
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Just as we have been considering the sampling distribution of means we can also consider
the sampling distribution of sums T ¼ P

xi of random variables of size n. If the random vari-
able x is distributedwithmean m, andvariance s2, then the sampling distribution ofThasmean

mT ¼ nm, (5.25)

and variance

s2T ¼
8<
:

ns2
�
N � n

N � 1

�

ns2
, (5.26)

where the first result is for sampling from a finite population of size N without replacement
and the second result is otherwise.

We will conclude with some results on the properties of linear combinations of means,
since up to now we have been concerned mainly with sampling distributions of a single
sample mean.

Let

l ¼
Xn
i¼ 1

aixi, (5.27)

where ai are real constants, and the xi values are random variables with means mi, variances
s2i , and covariances sijði, j ¼ 1, 2, . n ;isjÞ. (The index i now indicates different random
variables, not a sample of a single random variable.) Then,

ml ¼
Xn
i¼ 1

aimi (5.28)

and

s2l ¼
Xn
i¼ 1

a2i s
2
i þ 2

X
i<j

aiajsij, (5.29)

which reduces to

s2l ¼
Xn
i¼ 1

a2i s
2
i (5.30)

if the x’s are mutually independent. Note that the constants are squared in (5.30), so for
example, the variance of ðx1 þ x2Þ is the same as that of ðx1 � x2Þ. (For the proof of these
results, see Problem 5.3.)

A useful corollary to the above result is as follows. Let xiði ¼ 1, 2, ., nÞ be the means of
a random sample of size ni drawn from an infinite population with mean mi and variance si. If
x1 and x2 are independently distributed, then

mx1þx2 ¼ m1 � m2 (5.31)

and

s2x1þx2
¼
X2
i¼ 1

 
s2i
ni

!
: (5.32)
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These results follow immediately from (5.28) and (5.30), and the results (5.14) and (5.16a), by
the substitutions x1 ¼ x1 and x2 ¼ x2, with a1 ¼ a2 ¼ 1 for the first case and a1 ¼ �a2 ¼ 1
for the second.

5.4. EXPERIMENTAL ERRORS

In the preceding sections we were concerned with theoretical statistics only. In this section
we provide the link between theoretical statistics and experimental situations. This continues
the discussion started in Chapter 1. In an experimental observation one can never measure
the value of a quantity with absolute precision, that is, one can never reduce the statistical
error on the measurement to zero, although we can reduce it by increasing n, i.e., taking
more data. Recall in Section 1.4 we distinguished the precision of a measurement from its accu-
racy, that is, the deviation of the observation from the ‘true’ value, assuming that such
a concept is meaningful. Thus there may exist, in addition to fluctuations in the measurement
process that limit the precision, unknown systematic errors that limit the accuracy. In general,
the only errors that we can deal with in detail here are the former type, and the conventional
measure of this type of error is taken to be the standard error, defined above and which we
have previously introduced in Section 4.2. This definition of the error is, of course, arbitrary,
and formerly (but now only very rarely) the probable error p, defined byZ mþp

m�p
fðxÞdx ¼ 1=2,

was used. Needless to say, multiplying errors by an arbitrary factor ‘to be on the safe side’
renders statistical analyses meaningless.

Consider, for example, an idealized nuclear counting experiment for a scattering process.
The number of trials is very large, because the numbers of particles in the beam and target are
large, but the probability of a scatter, p, is very small. In this situation the Poisson distribution
is applicable, and as we have seen in equation (4.51), ifNe ¼ np is the total number of counts
recorded then s ¼ ffiffiffiffiffiffi

Ne
p

. The result of the experiment would be given as

N ¼ Ne � DN, (5.33)

where

DN ¼
ffiffiffiffiffiffi
Ne

p
: (5.34)

If the population distribution is unknown, then we can consider the sampling distribution.
For example, from a set of observations xi, we know that an estimate of the mean is the
sample mean

x ¼ 1

n

Xn
i¼ 1

xi (5.35)

and the laws of large numbers ensure that x is a good estimate for large n. The variance of x is

s2x ¼ s2=n, (5.36)
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so to calculate s2x, we need to estimate s2. We have seen that the sample variance is

s2 ¼ 1

n� 1

Xn
i¼ 1

ðxi � xÞ2, (5.37)

and thus

s2x ¼ 1

nðn� 1Þ
Xn
i¼ 1

ðxi � xÞ2: (5.38)

An experimental result would then be quoted as

x ¼ xe � Dx, (5.39a)

where

Dx ¼ sx ¼
"

1

nðn� 1Þ
Xn
i¼ 1

ðxi � xÞ2
#1=2

: (5.39b)

Now by the central limit theorem we know that the distribution of the sample means is
approximately normal, and therefore (5.39) may be interpreted (compare Section 4.2) as

P½xe � Dx � x � xe þ Dx�x 68:3%,

P½xe � 2Dx � x � xe þ 2Dx�x 95:4%,

P½xe � 3Dx � x � xe þ 3Dx�x 99:7%:

(5.40)

So even though the form of the underlying distribution of x is unknown, the central limit
theorem enables an approximate quantitative statement to be made about the probability
of the true value of x lying within a specified range.

Since we have moved away from mathematical statistics into the real world of experi-
mental data, it is worth commenting on a situation that commonly arises. In calculating sx
from (5.39b) one often finds that a few data points (referred to as ‘outliers’) are making
very significant contributions to the summation. What, if anything, should one do about
this? A general comment is that transforming the data can reduce the effect of outliers. For
example, taking logarithms shrinks large values much more than smaller ones, but this is
not always practical. In the light of (5.40), it might seem reasonable to ignore data that are,
say, three standard deviations away from the mean, and tables exist giving criteria to select
data for rejection. There is even a ‘rule’ for rejecting data (called Chauvenet’s criterion), one
version of which states that if we have n data points, the point xi should be rejected if
P½xi > x� < 1=2n. However, common sense tells you that the more data that you take, the
more outliers will be found. So, if we expect a rare (but real) event with a probability 1=2n
in a single trial, the probability of its occurrence at least once in n trials is

1�
�
1� 1

2n

�n

¼ 1�
(�

1� 1

2n

�2n
)1=2

z 1� e�1=2 ¼ 0:39

when n becomes large, which is not negligible. If outliers are rejected, for whatever reason,
and then xe and sx recalculated, because sx will now be smaller, you may well find new
points that satisfy the recalculated rejection criterion, and logically these should also be
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rejected. But if you were to repeat this process, you could converge to a value that seriously
distorted the information in the origin data set. So blindly applying a rule, however reason-
able it may appear, is dangerous and is to be discouraged.

The existence of outliers should alert you to possible problems and such points should be
examined very carefully to see if there is any valid experimental reason why they should be
rejected. But this should be done honestly, avoiding any temptation to ‘massage the data’ and
must be defensible. In the absence of such reasons, there are only two alternatives: either
include the outliers and accept that such statistical fluctuations do rarely occur or reject
them and possibly miss the chance of finding some new phenomenon. You should certainly
never use a rejection criterion on a data set more than once. Also, if you use n standard devi-
ations as the criteria for rejection, you will have to decide on a value for n, and n ¼ 3 would
definitely be considered too small. The choice is yours. But whatever you do, it should be
clearly stated when reporting the data.

5.4.1. Propagation of Errors

If we have a function y of the p variables qiði ¼ 1, 2, ., pÞ, i.e.
y h yðqÞ ¼ yðq1, q2, ., qpÞ,

then we are often interested in knowing the approximate error on y, given that we know the
errors on qi. If the true values of qi are qi (in practice, estimates of these quantities would
usually have to be used) and the quantities ðqi � qiÞ are small, then a Taylor expansion of
yðqÞ about the point q ¼ q gives, to first order in ðqi � qiÞ,

yðqÞ ¼ yðqÞ þ
Xp
i¼ 1

ðqi � qiÞ
vyðqÞ
vqi

j
q¼q

: (5.41)

Now

var yðqÞ ¼ E
h�

yðqÞ � E½yðqÞ�
�2i

xE
h
fyðqÞ � yðqÞg2

i
(5.42)

and using (5.41) in (5.42) gives

var yðqÞx
Xp
i¼ 1

Xp
j¼ 1

vyðqÞ
vqi

j
q¼q

E
h
ðqi � qiÞðqj � qjÞ

ivyðqÞ
vqj

j
q¼q

: (5.43)

But from Equation (3.28),

Vij ¼ E
h

qi � qiÞðqj � qjÞ

i
,

is the variance matrix of the parameters qi. Thus, if we set

ðDyÞ2 ¼ var y,

we have

ðDyÞ2 ¼
Xp
i¼ 1

Xp
j¼ 1

(
vyðqÞ
vqi

j
q¼q

Vij
vyðqÞ
vqj

j
q¼q

)
: (5.44)
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Equation (5.44) is often referred to as the law of propagation of errors. If the errors are uncorre-
lated ði:e: covðqi, qjÞ ¼ 0Þ, then

Vij ¼
� ðDqiÞ2 , i ¼ j

0, is j

and (5.44) reduces to

ðDyÞ2 ¼
Xp
i¼ 1

�
vyðqÞ
vqi

j
q¼q

Dqi

	2
: (5.45)

When using these expressions one should always ensure that the quantities Dqihqi � qi
are small enough to justify truncation of the Taylor series (5.41). In particular, care should
be taken with functions that are highly nonlinear in the vicinity of the mean of a size compa-
rable to the standard deviation of the parameters qi. Such situations are better dealt with by
using the method of confidence intervals discussed in Chapter 9.

EXAMPLE 5.8

If s and t are two random variables with variances s2s and s
2
t , respectively, and a covariance s

2
st, what are the

approximate errors on the function: (a) x ¼ asþ bt, (b) x ¼ ast, and (c) x ¼ as=t,where a and b are constants?

(a) Taking derivatives, we have vx=vs ¼ a and vx=vt ¼ b. Also, the variance matrix is

Vst ¼
 

s2s s2st

s2ts s2t

!
, with s2ts ¼ s2st:

So, using (5.44) gives

s2x ¼ a2s2s þ b2s2t þ 2abs2st,

and the approximate error on x is Dx ¼ sx.

(b) Taking derivatives, vx=vs ¼ at and vx=vt ¼ as, and using the same variance matrix as in

(a) gives

s2x ¼ ðatssÞ2 þ ðasstÞ2 þ 2a2sts2st:

(c) Taking derivatives, vx=vs ¼ a=t and vx=vt ¼ �as=t2, and using the same variance matrix as in

(a) gives

s2x ¼
�as
t

�2�s2s
s2

þ s2t
t2

� 2
s2st
st

	
:

The results (5.44) and (5.45) are for the case of a single function yðqÞ that is a function of the
p parameters qiði ¼ 1, 2, ., pÞ. They are easily generalized to the case where there are n
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functions ykðk ¼ 1, 2, .,nÞ ¼ yðqÞ that are functions of the same p parameters. Then (5.44)
becomes the set of equations

varðykÞ ¼ ðDykÞ2 ¼
Xp
i¼ 1

Xp
j¼ 1

(
vykðqÞ
vqi

j
q¼q

Vij
vykðqÞ
vqj

j
q¼q

)
, k ¼ 1, 2, ., n: (5.46)

A new feature is that the various functions yk will be correlated, because they are all formed
from the same set of parameters qiði ¼ 1, 2, ., pÞ. This will be truewhether or not the param-
eters are themselves correlated. Their covariances may be found from definition (3.28) and are

covðyk,ylÞ ¼
Xn
i¼ 1

Xn
j¼ 1

�
vyk
vqi

� 
vyl
vqj

!
covðqi, qjÞ: (5.47)

The two results (5.46) and (5.47) may be combined in the single matrix form

Vy ¼ GVqG
T , (5.48)

whereVy is the ðn� nÞ variance matrix of y;Vq is the ðp� pÞ variance matrix of q; andG is an
ðn� pÞ matrix of derivatives with elements

Gki ¼
vyk
vqi

:

EXAMPLE 5.9

Measurements are made of a particle’s position in two dimensions using the independent Cartesian

coordinates ðx,yÞ, with measurement errors sx and sy. What is the variance matrix for the corresponding

cylindrical polar coordinates ðr,fÞ, where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
and tan f ¼ y=x?

From the relationship between cylindrical polar and Cartesian coordinates, we have

G ¼
 

vr=vx vr=vy

vf=vx vf=vy

!
¼
 

x=r y=r

�y=r2 x=r2

!
:

Also

VCartesian ¼
 
s2x 0

0 s2y

!
,

and so from (5.48)

Vpolar ¼
 

x=r y=r

�y=r2 x=r2

! 
s2x 0

0 s2y

! 
x=r �y=r2

y=r x=r2

!
:

Multiplying out gives

Vpolar ¼

 h
ðx=rÞ2s2x þ ðy=rÞ2s2y

i h

xy=r3

��
s2y � s2x

�i
h

xy=r3

��
s2y � s2x

�i 1

r2

h
ðx=rÞ2s2x þ ðy=rÞ2s2y

i
!
:
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Calculations involving a set of parameters that are uncorrelated are less complicated than
those where correlations exist, because in the former case the variance matrix is diagonal.
Given a set of variables qi that are correlated, it is always possible to find a new set of uncor-
related variables ui, for which the associated variance matrix is diagonal, in terms of the orig-
inal set. This is achieved by a linear transformation of the form

ui ¼
Xn
j¼ 1

Aijqj, (5.49)

which leads to a variance matrix Uij for the set yi, given by

Uij ¼ covðui,ujÞ ¼ cov

 Pn
k¼ 1

Aikqk,
Pn
l¼ 1

Ajlql

!

¼ Pn
k, l¼ 1

AikAjl covðqk, qlÞ ¼ Pn
k, l¼ 1

AikVklA
T
lj ,

(5.50)

or in matrix notation U ¼ AVAT . Thus we need to find the matrix A that transforms the real
symmetric matrix V to diagonal form. This is a standard technique in matrix algebra, but we
will not pursue it further, because although this may simplify calculations, the transformed
variables usually do not have a simple physical interpretation, and also if there are more than
three variables, numerical techniques have to be used anyway.

So far we have implicitly assumed that the errors are statistical in origin, i.e., random, but
since we are making the connection between mathematical statistics and experiments, this is
a convenient place to return to the problem of systematic errors. In Chapter 1, the advice was
to keep these separate from random errors and quote results in the form x� DR � DS, where
DR and DS are the random and systematic errors, respectively. One reason for this is that it
makes clear whether making more measurements is worthwhile. This is because taking
more data will in general reduce the size of DR, but will not change DS, and there is no point
in reducing DR much below the value of DS.

Nevertheless, we may still need to use both errors to calculate the overall error, or in
general the variance matrix, for a function of x. This can be done using the general result
(5.48) provided we know the variance matrix Vq. For example, if we have two parameters
q1 and q2 with random errors s1 and s2 and a common systematic error S, then we can
consider each parameter to be the sum of two parts, qR1 with random error s1 and qS1 with
a systematic error S, and similarly for q2. By construction, qR1 and qR2 are independent of
each other, but qS1 and qS2 are totally correlated because they effect q1 and q2 in the same
way. Then, using the definitions from Chapter 3,

var ðq1Þ ¼ E
�
q21
� ðE½q1�Þ2

¼ E
h

qR1 þ qS1

�2i� �E½qR1 þ qS1 �
�2 ¼ s21 þ S2,

and similarly for q2; and

covðq1, q2Þ ¼ E½q1q2� � E½q1�E½q2�
¼ E

�

qR1 þ qS1

�

qR2 þ qS2

�� E
�

qR1 þ qS1

�
E
�

qR2 þ qS2

�
¼ cov



qS1, q

S
2

� ¼ S2:
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So the variance matrix is

Vq ¼
�
s21 þ S2 S2

S2 s22 þ S2

!
: (5.51)

This may be generalized in a straightforward way to the case where there are several sources
of systematic errors that may be shared by subsets of the parameters.

PROBLEMS 5

5.1 A variable x is uniformly distributed in the interval I � x � I þ 1. If xn is the mean of
a random sample of size n drawn from the population, find an unbiased estimator for I in
terms of xn. What is the mean squared error of the associated biased estimator?

5.2 Prove the relation (5.9).

5.3 A sample of size n1 ¼ 6 is drawn from a normal population with a mean m1 ¼ 60
a variance s21 ¼ 12. A second sample, of size n2 ¼ 4, is selected, independent from the
first sample, from a different normal population having a mean m2 ¼ 50 and variance
s22 ¼ 8. What is P½ðx1 � x2Þ < 7:5�?

5.4 Prove the results given in (5.28) and (5.29).

5.5 A particular organism is repeatedly exposed to doses of radiation ri that are normally
distributed with mean 4 and variance 2 (in arbitrary units). It is found that the maximum
cumulative dosage of radiation R that the organism can absorb without suffering
permanent damage is normally distributed with mean 100 and variance 25 (in the same
units). What is the maximum number of doses that the organism may absorb before the
probability of damage exceeds 3%?

5.6 A power unit is manufactured by an identical process in several different factories A, B,
C, etc. and the mean output of the unit across all factories is 50 watts with a standard
deviation s of 7 watts. A random sample of 100 units is taken from factory A and the
sample mean is found to be 49 watts. Is the product from factory A up to the overall
standard of manufacture?

5.7 A prospective purchaser of resistors decides to buy a sample of size n from the
manufacturer to check that their average value does not vary by more than 3% from
the average value R of all resistors from the samemanufacturer, with a probability of 0.05.
If the values of the resistors are normally distributed with a standard deviation that
is 15% of the value R, how many would have to be bought?

5.8 A beam of particles is incident on a target and F events are recorded where the particle
scatters into the forward hemisphere and B events where it scatters into the backward
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hemisphere. What is the standard deviation on the ‘forwardebackward asymmetry’ R,
defined as R h ðF� BÞ=ðFþ BÞ?

5.9 Fðx,y, zÞis a function of the three variables x,y, z with the form Fðx,y, zÞ ¼ xy2z3. If the
variance matrix of x,y, z is

V ¼ 1

1000

0
@ 1 �1 1

�1 1 0
1 0 1

1
A,

what is the percentage error on F when x ¼ 2, y ¼ 1 and z ¼ 1?
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C H A P T E R

6

Sampling Distributions Associated
with the Normal Distribution

O U T L I N E

6.1 Chi-Squared Distribution 105

6.2 Student’s t Distribution 111

6.3 F Distribution 116

6.4 Relations Between c2, t, and F
Distributions 119

The special position held by the normal distribution, mainly by virtue of the central limit
theorem, is reflected in the prominent positions of distributions resulting from sampling from
the normal. In this chapter we consider the basic properties of three frequently used sampling
distributions: the chi-squared, the Student’s t,1 and the Fdistributions. These arewidely used in
estimation problems, for finding both the best values of parameters and their optimal ranges,
and in testing hypotheses, topics that will be discussed in detail in Chapters 7e11.

6.1. CHI-SQUARED DISTRIBUTION

If we wish to concentrate on a measure to describe the dispersion of a population, then we
consider the sample variance. The chi-squared distribution is introduced for problems
involving this quantity. It is defined as follows.

If xiði ¼ 1, 2, ., nÞ is a sample of n random variables normally and independently
distributed with means mi and variances s2i , then the statistic

c2h
Xn
i¼ 1

�
xi � mi

si

�2

(6.1)

1Confusingly, this not a distribution specifically designed for use by students. The name refers to its

originator, W.S. Gosset, who published under the pseudonym ‘Student’.
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is distributed with density function

fðc2,nÞ ¼ 1

2n=2=Gðn=2Þc
2½ðn=2Þ�1�expð�c2=2Þ, c2 > 0: (6.2)

This is known as the c2-distribution (chi-squared)with n degrees of freedom. It is another example
of the general gamma distribution defined in equation (4.27), this time with
x ¼ c2, a ¼ n=2 and l ¼ 1=2. The symbol G in (6.2) is the gamma function (used previ-
ously in Problem 3.1) defined by the integral

GðxÞh
Z N

0
e�uux�1du, 0 < x < N: (6.3)

It is frequently encountered in sampling distributions associated with the normal
distribution.

The c2-distribution may be derived using characteristic functions, as follows. We first
write c2 as

c2 ¼
Xn
i¼ 1

z2i ,

where the zi are distributed as the standard normal distribution Nðzi; 0, 1Þ. The quantities
ui ¼ z2i therefore have density functions

nðuiÞ ¼ 1

ð2puiÞ1=2
expð�ui=2Þ,

and the cf of ui is

fiðtÞ ¼
Z N

0

1

ð2puiÞ1=2
eð�ui=2Þeituidui ¼ ð1� 2itÞ�1=2, ðui � 0Þ: (6.4)

If fðtÞ is the cf of c2, then since the random variables ui are independently distributed, we
know from the work of Section 3.2.3 that

fðtÞ ¼
Xn
i¼ 1

fiðtÞ ¼ ð1� 2itÞ�n=2: (6.5)

Finally, the density function of c2 is obtained from the inversion theorem

fðc2,nÞ ¼ 1

2p

Z N

0
ð1� 2itÞ�n=2e�ic2t dt:

Using the definition of the gamma function, this yields (6.2), although the evaluation of the
integral is rather lengthy.

If the variables xi are not independent, but have a joint n-dimensional normal distribution
with anassociatedvariancematrixV, as discussed in Section 4.3, then thevariable to consider is

z ¼ ðx� mÞTV�1ðx� mÞ:
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EXAMPLE 6.1

Use the result Gð1=2Þ ¼ ffiffiffi
p

p
to verify (6.4).

Change variables in the integrand to x ¼ u

�
1

2
� it

�
. This gives

fiðtÞ ¼ 1ffiffiffi
p

p ð1� 2itÞ1=2
Z N

0
x�1=2e�xdx,

and from (6.3) Z N

0
x�1=2e�xdx ¼ Gð1=2Þ ¼ ffiffiffi

p
p

:

Therefore

fiðtÞ ¼ ð1� 2itÞ�1=2:

FIGURE 6.1 Graphs of the c2 density
function fðc2,nÞ and its distribution func-
tion Fðc2,nÞ for n ¼ 1, 4 and 10:
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The c2 distribution is one of the most important sampling distributions occurring in phys-
ical science. Its density and distribution functions are one-parameter families of curves.
Examples of fðc2,nÞ and the distribution function Fðc2,nÞ for n ¼ 1, 4 and 10 are shown
in Fig. 6.1. The distribution function Fðc2,nÞ is tabulated in Appendix C, Table C.4 for a range
of values of n. An alternative useful table may be constructed by calculating the proportion a

of the area under the c2 curves to the right of c2a, i.e., points such that

P
�
c2 � c2a

� ¼ a ¼
Z N

c2
a

fðc2,nÞ dc2: (6.6)

Such points are called percentage points, or critical values, of the c2 distribution (recall the
percentiles defined in Chapter 1) and may be deduced from Table C.4. They are shown
graphically in Fig. 6.2. A point of interest about these curves is that for a fixed value of P,
the ratio c2=n/ 1 as n/ N.

EXAMPLE 6.2

(a) What is P½c2 � 30� when c2 is a random variable with 26 degrees of freedom? (b) If c2 is a random

variable with 15 degrees of freedom, what is its value that corresponds to a ¼ 0:05?

(a) From Table C.4, we have to find an entry close to, but not more than 30 for n ¼ 26. This is a little

less than 0.75. The exact figure would have to be found by direct integration of the density

function.

(b) From the definition (6.6), we need to find a value c2c of c
2 for 15 degrees of freedom such that

P½c2 � c2c � ¼ 0:05, that is, a value c2c such that P½c2 � c2c � ¼ 0:95. From Table C.4, this is

c2c ¼ 25.

FIGURE 6.2 Percentage points of the chi-
squared distribution, P ¼ P½c2 � c2a�.
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The mgf of the c2 distribution is obtainable directly from (6.4) and is

MðtÞ ¼ ð1� 2tÞ�n=2: (6.7)

It follows that the mean and variance are given by

m ¼ n and s2 ¼ 2n: (6.8)

The third and fourth moments about the mean may also be found from the mgf. They are

m3 ¼ 8n; m4 ¼ 12nðnþ 4Þ
giving

b1 ¼ 8

n
, b2 ¼ 3

�
1þ 4

n

�
,

which tend to the values for the normal distribution as n/N, and the c2 distribution does
indeed tend to normality for large samples.

This can be demonstrated by constructing the cf for the standardized variable

yh

�
c2 � m

s

�
¼
�
c2 � nffiffiffiffiffiffi

2n
p

�
,

which from (6.4) is

fyðtÞ ¼ exp

"
� int

ð2nÞ1=2

#"
1� 2it

ð2nÞ1=2

#�n=2

,

and taking logarithms gives

lnfyðtÞ/� int

ð2nÞ1=2
� n

2
ln

"
1� 2it

ð2nÞ1=2

#
:

Finally, letting n/N and expanding the logarithm gives

lnfyðtÞ/� int

ð2nÞ1=2
� n

2

"
� 2it

ð2nÞ1=2
� 1

2

 
2it

ð2nÞ1=2

!2

.

#
, ðn/NÞ,

implying

fyðtÞ/expð�t2=2Þ:

This is the cf of a standardized normal distribution and so, by the inversion theorem, the c2

distribution tends to normality as n/ N, although the rate of convergence is quite slow.
Because the c2 distribution is a one-parameter family of curves, it frequently happens

that tabulated values do not exist for precisely the range one requires. In such cases
a very useful statistic is ð2c2Þ1=2, which can be shown to tend rapidly to normality with
mean m ¼ ð2n� 1Þ1=2 and unit variance. The statistic

u ¼ ð2c2Þ1=2 � ð2n� 1Þ1=2 (6.9a)
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is therefore a standard normal variate for even quite moderate values of n, and so tables of the
normal distribution may be used. Table 6.1 shows a comparison between the exact c2 distri-
bution and the normal approximation based on the statistic ð2c2Þ1=2 for a range of values of n
and c2. Another statistic that converges to normality faster, but is more complicated to calcu-
late, is ðc2=nÞ1=3. This can be shown to tend very rapidly to normality with mean 1� 2=ð9nÞ
and variance 2=ð9nÞ. Thus the statistic

u ¼
��

c2

n

�1=3

þ 2

9n
� 1

��
9n

2

�1=2

(6.9b)

is a standard normal variate for even moderate values of n.
An important property of the c2 distribution is that the sum of m-independent random

variables c21, c
2
2, ., c2m, each having chi-squared distributions with n1, n2, .,nm degrees

of freedom, respectively, is itself distributed as c2 with n ¼ n1 þ n2 þ . þ nm degrees
of freedom. This is called the additive property of c2 and may be proved by using the
characteristic function (see Problem 6.3).

There are two other important results that we shall need later. The first concerns a sample
x1, x2, ., xn of size n drawn from a normal population with mean zero and unit variance.
Then the statistic

u ¼
Xn
i¼ 1

ðxi � xÞ2, (6.10)

is distributed as c2 with ðn� 1Þ degrees of freedom. In general, if the parent population has
variance s2, then

c2 ¼ 1

s2

Xn
i¼ 1

ðxi � xÞ2, (6.11)

is distributed as c2 with ðn� 1Þ degrees of freedom. Moreover, since the sample variance is

s2 ¼ s2c2

n� 1
, (6.12)

TABLE 6.1 Values of P½c2 � c2a� for n ¼ 5, 10, and 20, and c2a ¼ 2, 5, 10, 20, and 30 using the exact c2

distribution function, and the normal approximation using the variable u of (6.9a)

n
5 10 20

c2a exact approx. exact approx. exact approx.

2 0.849 0.841 0.996 0.991

5 0.416 0.436 0.891 0.885

10 0.075 0.071 0.441 0.456 0.968 0.963

20 0.001 0.001 0.029 0.024 0.458 0.462

30 0.001 0.000 0.070 0.067
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it follows that ðn� 1Þs2=s2 is distributed as c2 with ðn� 1Þ degrees of freedom, independent of
the sample mean x. Thus the sample mean and sample variance are independent random
variables when sampling from normal populations. This somewhat surprising result is
very important in practice and we shall use it later to construct the sampling distribution
known as the Student’s t distribution.

If we assume that a sample is drawn at random from a single normal population with
mean m and variance s2, then from (6.1)

c2 ¼ 1

s2

Xn
i¼ 1

ðxi � mÞ2: (6.13)

However, since the mean of the population is rarely known, in these cases it is more useful
to use the result that the quantity u in (6.10) is distributed as c2 with ðn� 1Þ degrees of
freedom. In that case c2 defined in (6.11) is distributed with ðn� 1Þ degrees of freedom if x
is used instead of m. This illustrates an important general result: the number of degrees of freedom
must be reduced by one for each parameter estimated from the data.

EXAMPLE 6.3

Points are plotted randomly in a two-dimensional plane using Cartesian coordinates ðx,yÞ and the

distance from a fixed point ðx0,y0Þ measured. If the differences

Dx ¼ x0 � x and Dy ¼ y0 � y

are independent random variables, normally distributed with zero means and standard deviations 2.1, what is

the probability that the distance between the points ðx,yÞ and ðx0,y0Þ exceeds 3.5?
The distance d between the points ðx,yÞ and ðx0,y0Þis given by

d2 ¼ D2
x þ D2

y,

and because the quantities zx, y ¼ Dx, y=s ¼ Dx, y=2:1 are standard normal variates,

P
h
d2 > ð3:5Þ2 ¼ 12:25

i
¼ P

h
z2x þ z2y > ð12:25=ð2:1Þ2 ¼ 2:78

i
¼ P

�
c2 > 2:78

� ¼ 1� P
�
c2 < 2:78

� ¼ 0:25:

6.2. STUDENT’S t DISTRIBUTION

The central limit theorem tells us that the distribution of the sample mean x is approxi-
mately normal with mean m (the population mean) and variance s2=n (where s2 is the pop-
ulation variance and n is the sample size). Thus, in standard measure, the statistic

u ¼
�
x� m

sn

�
,
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where sn ¼ s=
ffiffiffi
n

p
, is approximately normally distributed with mean zero and unit variance

for large n. However, in experimental situations neither themean nor the population variance
may be known, in which case they must be replaced by estimates from the sample. While s2

can be safely replaced by the sample variance s2 for large n� 30, for small n the statistic uwill
not be approximately normally distributed and serious loss of meaning in the interpretation
will occur. So we have to consider the distribution of the variable

t ¼
�
x� m

s=
ffiffiffi
n

p
�
,

where s ¼ ŝ is an estimator for s. If we write t as

t ¼
�
x� m

s=
ffiffiffi
n

p
��

ŝ

s

��1

,

we see from the central limit theorem that the numerator is distributed like a standard
normal variable and the denominator is distributed like a c2 variable with either ðn� 1Þ or
n degrees of freedom, depending whether or not m is estimated from the data (see equation
(5.16a)). The distribution of t is called the Student’s t distribution. It enables one to use the
sample variance, as well as the sample mean, to make statements about the population
mean. The discussion will concentrate around three important results, but firstly we will
derive the density function of t.

Let u have a normal distribution with mean zero and unit variance. Further, let w have a c2

distribution with n degrees of freedom, and let u and
ffiffiffiffi
w

p
be independently distributed.

Because u and
ffiffiffiffi
w

p
are independently distributed, their joint density is the product of their

individual densities. Thus from the form of the chi-squared distribution (6.2), and the stan-
dardized normal distribution (4.10), the joint density function of u and w is

fðu,w;nÞ ¼ 1

ð2pÞ1=2
e�u2=2 1

Gðn=2Þ2n=2w
ðn�2Þ=2e�w=2: (6.14)

If we substitute

u ¼ t
	w
n


1=2
,

then (6.14) becomes

fðt,w;nÞ ¼ e�t2w=2ne�w=2wðn�2Þ=2

ð2pÞ1=2Gðn=2Þ2n=2
,

and fðt;nÞ is the marginal distribution of t, i.e.

fðt;nÞ ¼
Z N

0
fðt,w;nÞdw:

This integral may be evaluated directly using the definition of the gamma function (6.3) with
result that the random variable

t ¼ u

ðw=nÞ1=2
,
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has a density function

fðt;nÞ ¼ G½ðnþ 1Þ=2�
ðpnÞ1=2Gðn=2Þ

�
1þ t2

n

��ðnþ1Þ=2
, �N< t < N: (6.15)

The statistic t is said to have a Student’s t distribution with n degrees of freedom. It tends
to a standard normal distribution for n/N, as we will prove below, but for small n the
tails are wider than those of the latter, and for n ¼ 1 the distribution is of the Cauchy
form.

Like the c2 distribution, the Student’s t distribution is a one-parameter family of curves.
The distribution function is tabulated in Table C.5, and in using it one can use the fact that

P½t < �taðnÞ� ¼ P½t > taðnÞ� ¼ a,

since the distribution is symmetrical about t ¼ 0. Percentage points for the distribution are
shown graphically in Fig. 6.3.

EXAMPLE 6.4

(a) What is P½t� 0:7� when t is a random variable with 16 degrees of freedom? (b) If t is a random variable

with 5 degrees of freedom, what is its value that corresponds to a ¼ 0:05?

(a) From Table C.5, we have to find an entry close to, but not more than, 0.7 for n ¼ 16. This is very

close to 0.75.

(b) From the definition analogous to (6.6), we need to find a value tc of t for 5 degrees of freedom

such that P½t � tc� ¼ 0:05, that is, a value tc such that P½t � tc� ¼ 0:95. From Table C.5, this is

approximately tc ¼ 2:

FIGURE 6.3 Percentage points of the
Student’s t distribution, P ¼ P½t > ta�.

6.2. STUDENT’S t DISTRIBUTION 113



The mean and variance as usual can be found from the mgf. From (6.13) and the defini-
tions (3.11) and (3.13) we can show that moments of order r only exist for r < n and are
zero by symmetry for odd moments. For even moments, direct integration gives

m2r ¼ nr
Gðrþ 1=2ÞGðn=2� rÞ

Gð1=2ÞGðn=2Þ , 2r < n: (6.16)

The mean and variance follow from (6.16): they are

m ¼ 0; s2 ¼ n

n� 2
: ðn > 2Þ (6.17)

We now return to the three basic results mentioned earlier. The first of these specifies the
distribution of the difference of the sample mean and the population mean with respect to the
sample variance. Let xiði ¼ 1, 2, ., nÞ be a random sample of size n drawn from a normal
population with mean m and variance s2. Then the statistic

u ¼
�
x� m

s=
ffiffiffi
n

p
�

is distributed as Nðu; 0, 1Þ. Furthermore, from (6.12) we know that the statistic
w ¼ ðn� 1Þs2=s2, where as usual s2 is the sample variance, is distributed as c2 with ðn� 1Þ
degrees of freedom. Therefore, from the form of the Student’s t distribution, the statistic

t ¼ uh
w=ðn� 1Þ

i1=2 ¼
ffiffiffi
n

p
s
ðx� mÞ (6.18)

is distributed as t with ðn� 1Þ degrees of freedom.

EXAMPLE 6.5

A group of 9 students entering the physics department of university A has a mean score of 78% in

a national science examination, with a standard deviation of 5%. The national average for all students taking

the same examination is 75%. What can be said about whether university A is getting significantly better

than average students?

Using x ¼ 78, s ¼ 5, and m ¼ 75, we have t ¼ ffiffiffi
n

p ðx� mÞ=s ¼ 1:8, and this value is for

n� 1 ¼ 8 degrees of freedom. From Table C.5, Fðt,nÞ ¼ 0:95 for t ¼ 1:86 and n ¼ 8. Thus the

probability of getting a sample mean at least as large as this is approximately 5%.

The second result concerns the asymptotic behavior of the t distribution. As the number of
degrees of freedom of the distribution approaches infinity, the distribution tends to the
normal distribution in standard form. This follows by using Stirling’s approximation,

Gðnþ 1Þ/ð2pÞ1=2nnþ1=2e�n, n/N

in the gamma functions in (6.16). Then the moments (6.16) become

m2r/
ð2rÞ!
2rr!

: (6.19)
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However (6.19) is the form for the moments of the normal distribution expressed in standard
measure (see equation (4.7)). Therefore the Student’s t distribution tends to a normal distri-
bution with mean zero and unit variance.

The final result concerns the t distribution when two normal populations are involved. Let
random samples x11, x12, ., x1n1

and x21, x22, ., x2n2
of sizes n1 and n2, respectively, be

independently drawn from two normal populations 1 and 2 with means m1 and m2, and
the same variance s2; and define the statistic t by

th
ðx1 � x2Þ � ðm1 � m2Þ�
S2Pð1=n1 þ 1=n2Þ

�1=2
,

(6.20)

where

xi ¼
1

ni

Xni

j¼ 1

xij, i ¼ 1, 2,

and S2P, the pooled sample variance, is given by

S2P ¼
P2

i¼ 1

Pni

j¼ 1ðxij � xiÞ2
n1 þ n2 � 2

¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
n1 þ n2 � 2

: (6.21)

Then, using (6.12) and the additive property of c2, the quantity

w ¼ S2pðn1 þ n2 � 2Þ=s2, (6.22)

is distributed as c2 with ðn1 þ n2 � 2Þ degrees of freedom. Furthermore, we know, from equa-
tions (5.31) and (5.32), that x ¼ x1 � x2 is normally distributed with mean m ¼ m1 � m2 and
variance

s2d ¼ s2

n1
þ s2

n2
:

Thus the quantity

u ¼ ðx1 � x2Þ � ðm1 � m2Þ
½s2ð1=n1 þ 1=n2Þ�1=2

¼ x� m

sd
, (6.23)

is normally distributed with mean zero and unit variance. But we showed in Section 6.1
that the sample mean and sample variance are independent variables when sampling
randomly from a normal population, so x and u are independent random variables.
Thus the quantity

t ¼ u

½w=ðn1 þ n2 � 2Þ�1=2
, (6.24)

has a t distribution with ðn1 þ n2 � 2Þ degrees of freedom. Substituting (6.22) and (6.23) into
(6.24) gives (6.20) and completes the proof.
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EXAMPLE 6.6

The table shows the scores in a certain examination of two groups of students, A and B. The students in

group A attended revision classes to prepare for the exam. Has this significantly improved the mean score of

the group compared to that of group B?

n 1 2 3 4 5 6 7

A 71 75 79 71 70 73 72

B 70 68 72 73 67

From the data we can calculate, xA ¼ 73, xB ¼ 70, ðnA � 1Þs2A ¼ 58, and ðnB � 1Þs2B ¼ 26,

where nA ¼ 7 and nB ¼ 5, so from (6.21), S2P ¼ 8:4 We can now test whether mA ¼ mB by calcu-

lating t from (6.20). Thus, assuming mA ¼ mB,

t ¼ ðxA � xBÞ
�
S2P

�
1

nA
þ 1

nB

���1=2

¼ 1:77:

From Table C.5, the probability of getting a value of t at least as great as this for 10 degrees of

freedom is less than 5%.

6.3. F DISTRIBUTION

The F distribution is designed for use in situations where we wish to compare two vari-
ances, or more than two means, situations for which the c2 and the Student’s t distributions
are not appropriate.

We begin by constructing the form of the F density function. Let two independent random
variables u ¼ c21 and y ¼ c22 be distributed as c2 with m and n degrees of freedom, respec-
tively. Then the joint density of u and y is, from (6.2),

gðu, yÞ ¼ uðm�2Þ=2yðn�2Þ=2

Gðm=2ÞGðn=2Þ2ðmþnÞ=2 exp
�
� 1

2
ðuþ yÞ

�
:

The statistic F is defined by

F ¼ Fðm,nÞhc21=m

c22=n
¼ u=m

y=n
(6.25)

and so substituting

u ¼
	m
n



yF,

into gðu, yÞ gives the joint density function of F and y as

fðF, yÞ ¼ yðn�2Þ=2

Gðm=2ÞGðn=2Þ2ðmþnÞ=2
	ny
m


�myF

n

�ðn�2Þ=2
exp

h
� y

2

	
1þm

n
F

i

:
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The density function of F is then obtained by integrating out the dependence on y. Thus

fðF;m,nÞ ¼ Fðn�2Þ=2

Gðm=2ÞGðn=2Þ2ðmþnÞ=2
	m
n


m=2
IðF;m,nÞ:

where, using the definition of the gamma function,

IðF;m,nÞ ¼
Z N

0
yðmþn�2Þ=2 exp

h
� y

2

	
1þm

n
F

i

dv

¼ G½ðmþ nÞ=2�2ðmþnÞ=2

ð1þmF=nÞðmþnÞ=2 :

So, finally, the density function for the statistic F is

fðF;m,nÞ ¼ G½ðmþ nÞ=2�
Gðm=2ÞGðn=2Þ

	m
n


m=2 Fðm�nÞ=2

ð1þmF=nÞðmþnÞ=2, F � 0 (6.26)

with m and n being degrees of freedom.
Themgf may be deduced in the usual way from its definition. Themoments of order r exist

only for 2r < n and are given by

m0r ¼
	n
m


rGðrþm=2ÞGðn=2� rÞ
Gðm=2ÞGðn=2Þ : (6.27)

The mean and variance follow directly from (6.27) and are

m ¼ n

n� 2
, n > 2,

and

s2 ¼ 2n2ðmþ n� 2Þ
mðn� 2Þ2ðn� 4Þ

, n > 4:

Equation (6.27) may also be used to calculate b1 and b2 and the result shows that the F distri-
bution is always skewed. The pdf of the F distribution is more complicated than those of the
c2 and t distributions in being a two-parameter family of curves.

The distribution function of F is tabulated in Table C.6. Percentage points are defined in the
same way as for the c2 distribution. Thus,

P½F � Fa� ¼ a ¼
Z N

Fa

fðF;m,nÞdF:

Right-tailed percentage points may be obtained from Table C.6, and should left-tailed
percentage points be needed they may be obtained from the relation

F1�aðm,nÞ ¼ ½Faðn,mÞ��1: (6.28)
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As an example, the percentage points for P ¼ 0:05 are shown graphically in Fig. 6.4.

EXAMPLE 6.7

(a) Find the critical value F0:05 for m ¼ 6 and n ¼ 14. (b) Find the critical value F0:975 for m ¼ 9 and

n ¼ 30.

(a) This is the value for which P½F > F0:05� ¼ 0:05, or equivalently P½F � F0:05� ¼ 0:95: From

Table C.6, with m ¼ 6 and n ¼ 14, this is F0:05 ¼ 2:85.

(b) We first find the critical value F0:025 for m ¼ 30 and n ¼ 9. This is the value for which

P½F > F0:025� ¼ 0:025, or equivalently P½F � F0:025� ¼ 0:975: From Table C.6, with m ¼ 30 and

n ¼ 9, this is F0:025 ¼ 3:56. Now we can use (6.28) to give

F0:975ð30, 9Þ ¼ ½F0:025ð9, 30Þ��1 ¼ 0:281:

One use of the F distribution is to compare two variances, for example to see whether two
variances are equal so that the conditions for applying the Student’s t test are satisfied. Let s21
and s22 be the variances of two independent random samples of sizes m and n, respectively,
whose populations are assumed to be normal with variances s21 and s22. Then from the defi-
nition of the sample variance, we may write

s2 ¼ 1

n� 1

Xn
i¼ 1

ðxi � xÞ2 ¼ c2

n� 1
,

F

n

FIGURE 6.4 Percentage points of the F distribution, P ¼ P½F > Fa� ¼ 0:05:

6. SAMPLING DISTRIBUTIONS ASSOCIATED WITH THE NORMAL DISTRIBUTION118



where c2 is a chi-squared random variable with ðn� 1Þ degrees of freedom. Thus, if we
assume that s21 ¼ s22, the ratio F ¼ s21=s

2
2 is distributed as an F random variable with

ðm� 1Þ and ðn� 1Þ degrees of freedom.

EXAMPLE 6.8

Do the data of Example 6.6 justify the use of the t distribution to compare the mean scores of the two groups

of students?

From the results of Example 6.6, we have s2A ¼ 9:67 and s2B ¼ 6:50, so that Fð6, 4Þ ¼ 1:49: From

Table C.6, the value of Fð6:4Þ is 4.01 for a critical value of 10%. As the value found from the data is

well below this, the use of the Student’s t distribution is compatible with the data.

6.4. RELATIONS BETWEEN c2, t, AND F DISTRIBUTIONS

The F distribution is related to the c2 distribution as follows. It is straightforward to show
that as n / N,

P
hc2=n� 1

i / 0:

Thus

Fðm,NÞ ¼ c21=m, (6.29)

(see for example Fig. 6.2), and the distribution of c21=mwith m degrees of freedom is a special
case of the F distribution with m and N degrees of freedom. So for any a,

Faðm,NÞ ¼ c2aðmÞ
m

, (6.30)

which may be directly verified by the use of a set of tables. If we consider the limit asm/ N,
we have

FðN,nÞ ¼ n

c2ðnÞ, (6.31)

and so

FaðN,nÞ ¼ n

c21�aðnÞ
: (6.32)

Thus the left-tailed percentage points of the c2=n are special cases of the right-tailed
percentage points of FðN,nÞ.

The F distribution is also related to the Student’s t distribution. This can be seen by noting
that whenm ¼ 1, then c2=m ¼ u2, where u is a standard normal variate. Wemay thus write

Fð1,nÞ ¼ u2

ðc22=nÞ
: (6.33)
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But the variate

t ¼ u

ðc22=nÞ1=2
, (6.34)

is distributed as the Student’s t distribution with n degrees of freedom, so (6.33) may be
written as

Fð1,nÞ ¼ t2ðnÞ: (6.35)

Using (6.35),

P½Fð1,nÞ < Fað1,nÞ� ¼ 1� a

is equivalent to

P½�ðFað1,nÞÞ1=2 < tðnÞ < ðFað1,nÞÞ1=2� ¼ 1� a,

and using the symmetry of the t distribution about t ¼ 0 we have

P½tðnÞ < �ðFað1,nÞÞ1=2� ¼ P½tðnÞ > ðFað1,nÞÞ1=2� ¼ a=2: (6.36)

But

P½tðnÞ > ta=2ðnÞ� ¼ a=2

and so

ta=2ðnÞ ¼ Fa½ð1,nÞ�1=2,
or

Fað1,nÞ ¼ t2a=2ðnÞ: (6.37)

Similarly, we can show that for n ¼ 1

Fðm, 1Þ ¼ ½t2ðmÞ��1, (6.38)

and

Faðm, 1Þ ¼ ½t2ð1þaÞ=2ðmÞ��1: (6.39)

Finally, if m ¼ 1 and n/ N

Fað1,NÞ ¼ u2a=2, (6.40)

and if n ¼ 1 and m/ N

FaðN, 1Þ ¼ ½u2ð1þa=2Þ=2��1, (6.41)

where ua is a point of the standard normal variate such that

P½u > ua� ¼ a:
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The various relationships above are summarized in Table 6.2.

The relationships between these three distributions in certain limiting situations are
shown in Fig. 6.5, together with their relationships to the three most important population
distributions discussed in Chapter 4.

PROBLEMS 6

6.1 Find the value of the 90th percentile of the c2 distribution for n ¼ 100 degrees of
freedom.

6.2 Prove the result stated in the text that for a sample x1, x2, ., xn of size n drawn from
a normal population with mean zero and unit variance, the statistic

u ¼
Xn
i¼ 1

ðxi � xÞ2,

is distributed as c2 with ðn� 1Þ degrees of freedom.

TABLE 6.2 Percentage points Fa of the Fðm,nÞ distribution and their relation to the c2 and Student’s t
distributions.

m

n 1 m N

1 t2
a=2ð1Þ ¼ 1

t2ð1þaÞ=2ð1Þ
1

t2ð1þaÞ=2ðmÞ
1

u2ð1þaÞ=2

n t2
a=2ðnÞ Faðm,nÞ n

c21�aðnÞ

N u2
a=2

c2aðmÞ
m

1

FIGURE 6.5 The relationships
between the population distributions
(Binomial, Poisson, and normal) and the
sampling distributions (chi-squared,
Student’s t and F) as their parameters
tend to certain limits.
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6.3 Prove the additive property of c2.

6.4 Twenty measurements taken from a normal population that was assumed to have mean
14.5 yielded values of the sample mean and sample variance of 15 and 2.31, respectively.
Use the Students’s t distribution to test the assumption.

6.5 A target is to be located in an n-dimensional hyperspace by measuring its coordinates
from a fixed point. If the coordinate errors are normal variates with mean zero and
variance 4/3, what is the largest value of n for which the method can be used if the
probability that the distance from the fixed point to the target D exceeds 4 is 10%.

6.6 Prove the relation (6.28).

6.7 A random sample of size 20 is selected from a normal distribution and the t statistic
calculated. Find the value of k that satisfies P½k < t < �1:328� ¼ 0:075.

6.8 Find the number h such that P½�h < t < h� ¼ 0:90 where t is a random variable with
a Student’s t distribution with 15 degrees of freedom.

6.9 Resistors of a given value are manufactured by two machines A and B, and for
consistency the outputs from both machines should have equal variances. A random
sample of nA ¼ 16 resistors from machine A has s2A ¼ 15 and an independent random
sample of size nB ¼ 21 from machine B has s2B ¼ 5. Are the machines making the
resistors consistently?
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7

Parameter Estimation I: Maximum
Likelihood and Minimum Variance

O U T L I N E

7.1 Estimation of a Single Parameter 123

7.2 Variance of an Estimator 128
7.2.1 Approximate methods 130

7.3 Simultaneous Estimation of Several
Parameters 133

7.4 Minimum Variance 136
7.4.1 Parameter Estimation 136
7.4.2 Minimum Variance Bound 137

In previous chapters we have encountered the problem of estimating the values of the
parameters of a population from a sample. For example, we have used the sample mean
and the sample variance as estimators of the corresponding population parameters. These
choices satisfy the desirable general properties of point estimators discussed in Chapter 5
and are supported by the laws of large numbers. In this chapter and in the one that follows
we turn to a discussion of specific practical methods of point estimation, starting with the so-
called maximum likelihood method. We briefly met the likelihood function in Chapters 2 and 5,
but in this chapter we will consider its use in estimation problems. Of all the possible
methods of parameter estimation, that of maximum likelihood is, in a sense to be discussed
below, the most general, and is widely used in practice.

7.1. ESTIMATION OF A SINGLE PARAMETER

The likelihood function has been defined in (5.11). If the dependence of L on xi is sup-
pressed, then for a sample of size n,

LðqÞ ¼
Yn
i¼1

fðxi; qÞ, (7.1)
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where fðx;qÞ is the density function of the parameter population.l The maximum likelihood
(ML) estimator of a population parameter q is defined as that statistic q̂ which maximizes
LðqÞ for variations of q, that is, the solution (if it exists) of the equations2

vLðqÞ
vq

¼ 0,
v2LðqÞ
vq2

< 0: (7.2)

Since LðqÞ > 0, the first equation is equivalent to

1

L

vLðqÞ
vq

¼ v ln LðqÞ
vq

¼ 0, (7.3)

which is the form more often used in practice. It is clear from (7.2) that the solution obtained
by estimating the parameter q is the same as estimating a function of q, e.g., FðqÞ since

v ln L

vq
¼ v ln LðFÞ

vF

vF

vq
, (7.4)

and the two sides vanish together. This is a useful invariance property of maximum likeli-
hood estimators, but it does not extend to their variances. This is readily seen by considering
the probability

P½q1 � q � q2� ¼
" Z q2

q1

LðqÞdq
#" Z N

�N
LðqÞdq

#�1

, (7.5)

i.e., the probability that an interval ðq1, q2Þ will contain the true value q. For example, if this
probability is chosen to be 0.68, then for a normal distribution it would correspond to a stan-
dard error of one standard deviation in the usual sense. If we now use a function FðqÞ to esti-
mate the parameter q, then

P½q1 � q � q2� ¼
"Z F2

F1

L
vq

vF
dF

#" Z N

�N
LðqÞdq

#�1

,

which in general will not be equal to the value obtained from (7.5).
A practical consideration when using the maximum likelihood method is that the data do

not have to be binned. However, this strength can become aweakness in the case of very large
samples, because a complicated function may have to be evaluated at many points. In this
case it is usual to apply the method to binned data. If N observations, distributed with
a density fðx;qÞ, are divided into m bins, with njði ¼ 1, 2,.,mÞ entries in bin j, then

ejðqÞ ¼ N

Z xmax
j

xmin
j

fðx; qÞdx

lWe have assumed that fðx; qÞ is a function of the single random variable x, but all the results of this section,

and Section 7.2, may be generalized in a straightforward way to the case of estimating a single parameter

from a multivariate distribution.
2A brief review of maxima and minima is given in Appendix A, Section A.2.
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is the expectation value of the number of entries in the jth bin having lower and upper limits
xmin
j and xmax

j , respectively. If we take the probability to be in bin j as ðej=NÞ, the joint prob-
ability is given by the multinomial distribution defined in Section 4.7,

fjoint ¼ N!

n1!n1!.nm!

�e1
N

�n1
�e2
N

�n2

.
�em
N

�nm

and

ln LðqÞ ¼
Xm
j¼1

nj ln ejðqÞ þ C, (7.6)

where C does not depend on the parameter q. The ML estimator q̂ is now obtained by
maximizing (7.6) with respect to q, usually by numerical means. It is evident from
this expression that the method has no difficulty in accommodating bins that have
no data.

The importance ofML estimators stems from their properties. It can be shown that they are
generally consistent and have minimum variance. If a sufficient estimator for a parameter
exists then it is a function of the ML estimator. The latter follows directly from the factoriza-
tion condition (5.12), because maximizing L is equivalent to choosing q̂ to maximize L1ðq̂;qÞ in
that equation. Another important property is that for large samples, ML estimators have
a distribution that tends to normality. There are situations where these results do not hold
and the ML estimator is a poor estimator, but for the common distributions met in practice
they are valid.

To prove the normality property, we set ln LðqÞ ¼ hðqÞ, so that the ML estimator is
defined by the solution of dhðqÞ=dqh h0ðqÞ ¼ 0. Then, providing h0ðqÞ can be differentiated
further, we can expand it about the point q̂ to give

h0ðqÞ ¼ h0ðq̂Þ þ ðq� q̂Þh00ðq̂Þ þ/ (7.7)

where, setting fi ¼ fðxi; qÞ and using (7.1),

h0ðq̂Þ ¼
Xn
i¼1

�
f 0i
fi

�����
q¼q̂

and h00ðq̂Þ ¼
Xn
i¼1

��
f 0i
fi

�0�����
q¼q̂

,

and the primes denote differentiation with respect to q. For large samples we know that
E½h0ðq̂Þ� ¼ 0, i.e.

E½h0ðq̂Þ� ¼
Z N

�N

f 0ðxÞ
fðxÞ fðxÞdx ¼ 0:

Differentiating this result again, and writing out in full gives

Z N

�N

�
f 02ðxÞ
fðxÞ þ fðxÞ

�
f 0ðxÞ
fðxÞ

�0�
dx ¼

Z N

�N

��
f 0ðxÞ
fðxÞ

�2

þ
�
f 0ðxÞ
fðxÞ

�0�
fðxÞdx

¼ E

	�
f 0ðxÞ
fðxÞ

�2

þ E

	�
f 0ðxÞ
fðxÞ

�0

¼ 0,
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that is,

E
h
fh0ðq̂Þg2

i
¼ �E½h00ðq̂Þ� ¼ 1=c2, (7.8)

where c2 depends on the density f and the estimator q̂. Substituting (7.8) into (7.7) and inte-
grating gives

hðqÞ � hðq̂Þ ¼ � 1

2

�
q� q̂

c

�2

,

where we have used h0ðq̂Þ ¼ 0. Finally, taking exponentials,

LðqÞ ¼ k exp

�
� 1

2

�
q� q̂

c

�2�
,

where k is a constant. So we have proved thatML estimators are asymptotically distributed as
a normal distribution.

One has to be a little careful about using (7.4), because if the result of maximizing L,
or its logarithm, results in an unbiased estimator, it does not always follow that the
estimator obtained by maximizing a function of L is also unbiased. So one has to
balance the convenience of the invariance property of ML estimators against the fact
that the resulting estimator may not be unbiased. For example, for the exponential
distribution

fðt; sÞ ¼ 1

s
e�t=s,

that among other things describes the decay of an unstable quantum state, the mean of the
measurements ti is an unbiased ML estimator for the lifetime s, i.e.

ŝ ¼ 1

n

Xn
i¼1

ti (7.9)

for all n (see in Problem 7.1). However, the estimator for any function of s may be found by
evaluating the function using ŝ. So if we were to take the function to be R ¼ 1=s (the rate of
decay), then from (7.9),

R̂ ¼ 1

ŝ
¼ n

 Xn
i¼1

ti

!�1

,

but it is straightforward to show (for example by the method used in Problem 7.1) that

E½R̂� ¼ n

n� 1
R,

and so R̂ is not an unbiased estimator for R, except asymptotically when n is large. Fortu-
nately, this latter condition is usually satisfied in practical applications of the maximum like-
lihood method.
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The use of the maximum likelihood method for estimating one parameter is illustrated by
the following example. The related problem of finding the ML estimator for the variable s2 in
a normal population is left to Problem 7.2.

EXAMPLE 7.1

Find the ML estimator m̂ for the parameter m in the normal population

f
�
x; m,s2

� ¼ 1

ð2ps2Þ1=2
exp

	
� 1

2

�
x� m

s

�2

,

for samples of size n, where s is known and �N � x � N: Is the estimator unbiased?

From (7.1) we have

lnL
�
m,s2

� ¼ �n ln
h�
2ps2

�1=2i� 1

2s2

Xn
i¼1

ðxi � mÞ2:

The ML estimator of m is found by maximizing ln L with respect to m, that is, the solution of

v lnLðmÞ
vm

¼ 1

s2

Xn
i¼1

ðxi � mÞ ¼ 0:

Thus

m̂ ¼ 1

n

Xn
i¼1

xi ¼ x:

Therefore the sample mean is the ML estimator of the parameter m. One could shown in a straight-

forward way that m̂ is an unbiased estimator for m by calculating its expectation value using the joint

probability distribution for the xi. (This is done in full for a related exercise in Problem 7.2.)

However it also follows from the general result that the sample mean is an unbiased estimator of

the mean for any probability density function.

EXAMPLE 7.2

Find the ML estimator for the parameter q in a population with a density function

fðx; qÞ ¼ ð1þ qÞxq, ð0 � x � 1Þ:
The likelihood function is

LðqÞ ¼
Yn
i¼1

ð1þ qÞxqi ,

with

lnLðqÞ ¼ n ln ð1þ qÞ þ q S, where Sh
Xn
i¼1

ln xi:
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Taking the derivative gives

v lnLðqÞ=vq ¼ n=ð1þ qÞ þ S ¼ 0,

and so

q̂ ¼ �ðnþ SÞ=S:

In the above discussion, we have made the usual assumption that n is a fixed known
number. However, there are often circumstances where the number of events observed in
an experiment is itself a random variable, typically with a Poisson distribution with mean
l. In these cases, the overall likelihood function is the product of the probability of finding
a given value of n (given by equation (4.47)) and the usual likelihood function for the n values
of x. So the combined likelihood function is

Lðn, qÞ ¼ ln

n!
e�l
Yn
i¼1

fðxi; qÞ:

This is called the extended likelihood function. It differs from the usual likelihood function
only in that it is taken to be a function of both n and the sample values xi. Much of the stan-
dard formalism of the maximum likelihood method carries over to Lðn, qÞ and we will not
pursue it further here, except to say that the extended likelihood method usually results in
smaller variances for estimators q̂ because the method exploits the statistical information
contained in n as well as that in the sample.

7.2. VARIANCE OF AN ESTIMATOR

The likelihood function LðqÞmay be formally regarded as a probability density function for
the parameter q viewed as a random variable. Thus we can define the variance of the esti-
mator as

var q̂ ¼
Z N

�N
ðq� q̂Þ2LðqÞdq

Z N

�N
LðqÞdq,


(7.10)

and, by analogy with the work of Section 5.4, an estimate from experimental data would be
quoted as

q ¼ q̂e � Dq̂e (7.11a)

where q̂e is the ML estimator obtained from the data and

Dq̂e ¼ ðvar q̂eÞ1=2: (7.11b)

The interpretation of (7.11a) is that if the experiment were to be repeated many times, with
the same number of measurements in each experiment, one would expect the standard devi-
ation of the distribution of the estimates of q to be Dq̂e.
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From the normality property of ML estimators, it follows that for large samples, the form
of LðqÞ is

LðqÞ ¼ 1

ð2pyÞ1=2
exp

"
� 1

2

ðq� q̂Þ2
y

#
, (7.12)

where y ¼ var q̂. Then

ln LðqÞ ¼ � ln
h�

2pyÞ1=2
i
� 1

2

ðq� q̂Þ2
y

, (7.13)

and

v2 ln LðqÞ
vq2

¼ �1

y
:

Thus

var q̂ ¼
"
� v2 ln LðqÞ

vq2

#�1�����q¼q̂
: (7.14)

This is the most commonly used form for the variance of an ML estimator when making
numerical calculations.

EXAMPLE 7.3

Find the ML estimator m̂ and its variance for the parameter m in the same normal population as in

Example 7.1, but now for a set of experimental observations of the same quantity xi with associated

experimental errors Dxi.

The density function is

fðx,Dx; mÞ ¼ 1ffiffiffiffiffiffi
2p

p
Dx

exp

	
� 1

2

�
x� m

Dx

�2

,

from which

ln LðmÞ ¼ � ln

"
ð2pÞ1=2

Xn
i¼1

Dxi

#
� 1

2

Xn
i¼1

�
xi � m

Dxi

�2

,

and

v ln LðmÞ
vm

¼
Xn
i¼1

"
xi � m

ðDxiÞ2
#
:

Setting this last expression to zero gives

m̂ ¼
Xn
i¼1

�
xi=Dx

2
i

�.Xn
i¼1

�
1 Dx2i

�
:

�
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This result is called the weighted mean of a set of observations. The variance of m̂may be found using

the second derivative

v2 ln LðmÞ
vm2

¼ �
Xn
i¼1

"
1

ðDxiÞ2
#

in (7.14). It is

var m̂ ¼ ðDm̂Þ2 ¼
"Xn

i¼1

�
1

Dx1

�2
#�1

:

The formula for the weighted mean m̂, although formally correct, should be used with care. This is

because the experimental errors Dxi are only estimates of the population standard deviation and we

must be sure that they are mutually consistent; that is, we must be sure that the measurements all

come from the same normal distribution. We will return to this question in Section 11.1, where we

discussways of testingwhether a set of data does indeed come from the same population distribution.

7.2.1. Approximate methods

If an experiment has ‘good statistics’ then the likelihood function will indeed be a close
approximation to a normal distribution and the method above for estimating the variance
will be valid. However, many effects may be present which could produce a function that
is clearly not normal and in this case the use of (7.14) usually produces an underestimate
for Dq̂. In these circumstances a more realistic estimate is to average v2 ln LðqÞ=vq2 over the
likelihood function, so that

1

ðDq̂Þ2
¼ �

 
v2 ln LðqÞ

vq2

!
¼
2
4Z N

�N

 
� v2 ln LðqÞ

vq2

!
LðqÞdq

3
5
2
4Z N

�N
LðqÞdq

3
5�1

, (7.15)

where the overbar denotes an average.
A related method that partially deals with the problem of non-invariance is to use the

function

SðqÞ ¼
"
�
 
v2 ln LðqÞ

vq2

!#�1=2
v ln LðqÞ

vq
,

called the Bartlett S function, which can be shown to have a mean m ¼ 0 and variance s2 ¼ 1.
In the case of a normal distribution, SðqÞ is a straight line passing through zero when q ¼ q̂

and the values at �n standard deviations are found from the points where S ¼ �n. For
non-normal functions, the solutions of the equations Sðq�Þ ¼ H1 determine the ‘one-stan-
dard deviation’ quantities q� so that the result would be quoted as

q ¼ q̂
þqþ
�q�

:
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Alternatively, a direct graphical method can be used to estimate the variance. A plot of LðqÞ
is made and the two values found where it falls to e1=2 of its maximum value, i.e., the two
values that would correspond to one standard deviation in the case of a normal distribution.
Reverting to using lnLðqÞ, we can expand this in a Taylor series about theML estimate q̂ to give

ln LðqÞ ¼ ln Lðq̂Þ þ
	
v ln L

vq


����
q¼q̂

ðq� q̂Þ þ 1

2!

"
v2 ln L

vq2

#�����q¼q̂
ðq� q̂Þ2 þ/ (7.16)

From the definition of q̂, we know that ln Lðq̂Þ ¼ ln Lmax, and the second term is zero because
v ln LðqÞ=vq ¼ 0 for q ¼ q̂. So, if we ignore terms of higher order than those shown in (7.16),
we have

ln LðqÞ ¼ ln Lmax � ðq� q̂Þ2
2 var q̂

, (7.17a)

where we have used (7.14), and var q̂ is evaluated at q ¼ q̂. Equation (7.17a) implies that

ln Lðq̂� ŝÞ ¼ ln Lmax � 1

2
: (7.17b)

Thus a change in the value of q of one standard deviation from its ML estimate q̂ corresponds
to a decrease in the value of ½ from its maximum value. Likewise a decrease of 2 defines the
points where q changes by two standard deviations from its ML estimate, and so on. In the
case where the likelihood function has an approximate normal distribution, ln LðqÞ will be
approximately parabolic.

This is illustrated in Fig. 7.1 for a case where q̂ ¼ 10:0 and ln Lmax ¼ �50. In this case the
two points where q̂ changes by one standard deviation can be found from the figure and lead
to error estimates ŝ� ¼ 0:52 and ŝþ ¼ 0:58. These are close enough that it is reasonable to
average them and quote the final result as ŝ ¼ 10:0� 0:55. Alternatively, the asymmetric

–50.0

–49.5

–50.5

–51.0

–51.5

–52.0

10.0 10.5 11.0 11.58.5 9.0 9.5

–52.5

ln Lmax

ln Lmax
1
2

ln Lmax 2

ln
L

(
)

ˆ 2 ˆ ˆ 2 ˆ

FIGURE 7.1 Graphical method for finding
errors on an ML estimate.
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errors could be quoted, i.e., ŝ ¼ 10:0þ0:58
�0:52, as would have to be done if the curve were not

approximately parabolic.
Another useful formula for Dq̂ may be derived for situations where one wants to answer

the question: how many data are required to establish a particular result to a specified accu-
racy? The problem is to find a value for v2 ln LðqÞ=vq2 averaged over many repeated exper-
iments consisting of n events each. Since

ln Lðx; qÞ ¼
Xn
i¼1

ln fðxi; qÞ,

we have  
v2 ln LðqÞ

vq2

!
¼ n

Z
v2 ln fðx;qÞ

vq2
fðx;qÞdx ¼ nE

"
v2 ln fðx;qÞ

vq2

#
: (7.18a)

This formmay be used in (7.15) directly, or it may be expressed in terms of first derivatives by
writing

v2 ln f

vq2
¼ 1

f

v2f

vq2
� 1

f2

�
vf

vq

�2

¼ 1

f

v2f

vq2
�
�
v ln f

vq

�2

,

and then taking expectation values to give

E

"
v2 ln f

vq2

#
¼ �E

	
v ln f

vq


2
þ E

"
1

f

v2f

vq2

#
¼ �

Z
1

f

�
vf

vq

�2

dx, (7.18b)

since the second term is

E

"
1

f

v2f

vq2

#
¼ v2

vq2

Z
fðqÞdx ¼ 0:

From (7.18a) and (7.18b),Z
v2 ln fðx; qÞ

vq2
fðx; qÞdx ¼ �

Z �
vfðx; qÞ

vq

�2 1

fðx; qÞdx, (7.19)

and so

Dq̂ ¼ 1ffiffiffi
n

p
	 Z �

vfðx; qÞ
vq

�2 1

fðx; qÞdx

�1=2

: (7.20)

This result also confirms that to increase the precision of the experiment n-fold requires n2 as
many events.

EXAMPLE 7.4

Consider the density function

fðx; qÞ ¼ 1

2
ð1þ qxÞ, � 1 � x � 1:
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How many events would be required to determine q to a precision of 1% for a value of q̂ ¼ 0:5?

We have

vfðx; qÞ
vq

¼ x

2
,

and Z 1

�1

�
vfðx; qÞ

vq

�2 1

fðx; qÞdx ¼ 1

2q3

	
1

2
ð1þ qxÞ2� 2ð1þ qxÞ þ ln ð1þ qxÞ


1
�1

¼ 1

2q3

	
ln

�
1þ q

1� q

�
� 2q



:

Thus from (7.20), �
Dq̂

q̂

�
¼
�
2q̂

n

�1=2	
ln

 
1þ q̂

1� q̂

!
� 2q̂


�1=2

:

Setting ðDq̂=q̂Þ ¼ 0:01 for q̂ ¼ 0:5 gives n x 1:01� 105.

7.3. SIMULTANEOUS ESTIMATION OF SEVERAL PARAMETERS

If we wish to estimate simultaneously several parameters then the preceding results
generalize in a straightforward manner. The maximum likelihood equation becomes the
set of simultaneous equations

v ln Lðq1, q2,., qi,., qnÞ
vqi

¼ 0, i ¼ 1, 2,.,n: (7.21)

Also the analogous properties of the ML estimators for a single parameter hold. As an
example, consider the generalization of the normality property. This states that the ML
estimators q̂iði ¼ 1, 2,., qpÞ for the parameters of a density function fðx; q1, q2,., qpÞ
from samples of size n are, for large samples, approximately distributed as the multivar-
iate normal distribution with means q1, q2,., qp and a variance matrix V where

Mij ¼ ðVijÞ�1 ¼ �nE

"
v2 ln fðx; q1, q2,., qpÞ

vqivqj

#
: (7.22)

The use of (7.21) and (7.22) is illustrated in the following example.

EXAMPLE 7.5

Find the simultaneous ML estimators for the parameters m and s of the normal population

fðx; m,sÞ ¼ 1

ð2ps2Þ1=2
exp

	
� 1

2

�
x� m

s

�2

,

and find the form of the joint distribution of the estimators for large samples.
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From (7.21),

v ln Lðm,sÞ
vm

¼ 1

s2

Xn
j¼1

ðxj � mÞ ¼ 0,

and

v ln Lðm,sÞ
vs

¼ 1

2s4

Xn
j¼1

ðxj � mÞ2 � n

2s2
¼ 0,

giving

m̂ ¼ x; ŝ2 ¼ 1

n

Xn
j¼1

ðxj � xÞ2:

Note that ŝ2 is a biased estimator of s2. This is often the case with ML estimators, but fortunately

there usually exists a constant c, in this case n=ðn� 1Þ, such that multiplying the ML estimator by c

produces an unbiased estimator.

Because the two estimators m̂ and ŝ are approximately normally distributed with mean m and

a matrix M given by (7.22), we have, with m ¼ q1 and s ¼ q2,

M11 ¼ �nE

	
� 1

s2



¼ n

s2
, M22 ¼ �nE

"
� 3ðx� mÞ2

s4
þ 1

s2

#
¼ 2n

s2

and

M12 ¼ M21 ¼ �nE

	
� 2ðx� mÞ

s3



¼ 0:

Thus, the variance matrix is

Vij ¼
�
M�1

�
ij¼
�
s2=n 0

0 s2=2n

!
,

and the variance and covariances are given by

1

n
sij ¼ Vij:

Finally, from (4.17) the form of the distribution of the estimators is

Sðm̂, ŝÞ ¼
ffiffiffi
2

p
n

2ps2
exp

�
� n

2

	
2

�
ŝ� s

s

�2

þ
�
m̂� m

s

�2
�
:

There is one point that should be remarked about the simultaneous estimation of several
parameters, which is illustrated by reference to Example 7.4. If we know m, the estimation of
s2 alone gives (see Problem 7.2)

ŝ2 ¼ 1

n

Xn
i¼1

ðxi � mÞ2, (7.23a)
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whereas in Example 7.5, we found from the simultaneous estimation of m and s2 that

ŝ2 ¼ 1

n

Xn
j¼1

ðxj � xÞ2: (7.23b)

However, from the results found in Example 7.1 we see that we can estimate m,
independent of any possible knowledge of s2, to be x. Thus, if we now find the
estimator of s2 that maximizes the likelihood for all samples giving the estimated value
of m ¼ x, it might be thought that the result (7.23b) would ensue, whereas in fact in this
latter case

ŝ2 ¼ 1

n� 1

Xn
i¼1

ðxi � xÞ2: (7.23c)

The difference between (7.23b) and (7.23c) is that in the former case we have considered the
variations of ln Lðm,sÞ over all samples of size n, whereas in the latter the constraint that

P
x

is a constant has been imposed, and thus the number of degrees of freedom has been lowered
by one. For large n the difference is of little importance, but it is a useful reminder that every
parameter estimated from the sample (i.e., every constraint applied) lowers the number of
degrees of freedom by one.

The maximum likelihood method has the disadvantage that in order to estimate a param-
eter the form of the distribution must be known. Furthermore, it often happens that LðqÞ is
a highly nonlinear function of the parameters, and so maximizing the likelihood function
may be a difficult problem.3 Finally, if the data under study are normally distributed, then
maximizing LðqÞ is equivalent to minimizing

c2 ¼
Xn
i¼1

�
xi � mi

si

�2

,

which may be more useful in practice, as we shall illustrate when we consider the method of
minimum chi-squared in Chapter 8.

We will conclude with a few brief remarks on the interpretation of maximum likeli-
hood estimators. Bayes’ theorem tells us that maximizing the likelihood does not neces-
sarily maximize the posterior probability of an event. This is only true if the prior
probabilities are equal or somehow ‘smooth’. Thus, ML estimators (and of course other
estimators) should always be interpreted in the light of prior knowledge. In Chapter 8
we shall see how such knowledge can formally be included in the estimation procedure.
However, because in general it is difficult to reduce prior knowledge to the required
form, the actual method of estimation is not always of practical use. An alternative
method is to form a likelihood function that is the product of the likelihood functions
for all previous related experiments and use this function to make a new estimate of
the parameter.

3A brief discussion of optimizing non-linear functions is given in Appendix B.
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7.4. MINIMUM VARIANCE

The requirement that an estimator has minimum variance can also, in principle, be used as
a criterion for parameter estimation and this is illustrated below.

7.4.1. Parameter Estimation

Consider the problem of estimating the population parameter m, where samples are drawn
from n populations, each with the same mean m but with different variances. The estimate
will be obtained by combining the sample means xi and the corresponding sample variances.

Since xi is an unbiased estimate of m, we have seen in Example 5.3 that the quantity

x ¼
Xn
i¼1

aixi, (7.24a)

with

Xn
i¼1

ai ¼ 1, (7.24b)

is also an unbiased estimate, regardless of the values of the coefficients ai, so the problem is
one of selecting a suitable set of ai. This will be done by choosing the set ai such that x has
minimum variance. Thus we seek to minimize

var ðxÞ ¼ var

 Xn
i¼1

aixi

!

¼
Xn
i¼1

a2i varðxiÞ ¼
Xn
i¼1

a2i s
2
i ,

subject to the constraint (7.24b). To do this we use the method of Lagrange multipliers.4

If we introduce a multiplier l, then the variational function is

L ¼
Xn
i¼1

a2i s
2
i þ l

 Xn
i¼1

ai � 1

!
:

and

vL

vai
¼ 0 ¼ 2ais

2
i þ l:

Thus ai ¼ �l=2s2i , and since the sum of the ai is unity,

l ¼ �2

2
4Xn

j¼1

�
1=s2j

�35�1

:

4Readers unfamiliar with this technique are referred to Appendix A.
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Hence

ai ¼ ð1=s2i Þ
2
4Xn

j¼1

ð1=s2j Þ
3
5�1

,

giving

x ¼
"Xn

i¼1

�
xi=s

2
i

�#"Xn
i¼1

�
1=s2i

�#�1

and varðxÞ ¼
2
4Xn

j¼1

�
1=s2j

�35�1

:

In this example, the minimum variance estimator is the weighted mean, identical to the
estimator obtained using the maximum likelihood method (cf. Example 7.2), where the popu-
lation distribution was assumed to be normal. For other population densities, the results of the
two methods will differ.

7.4.2. Minimum Variance Bound

In many cases it is not possible to find the variance of an estimator analytically (i.e., exactly)
and even to do so numerically, for example by using the Monte Carlo method, involves a great
deal of computation. In this situation, a very useful result that puts a lower limit on the vari-
ance may be used. This has various names, such as the CraméreRao, or Fréchet, inequality, or
simply the minimum variance bound, and is true in general and not just for ML estimators.

Consider the ML estimator q̂ of a parameter q that is a function of the sample
x ¼ x1, x2,.,xn, with a joint pdf given by (7.1). The expectation value of q̂ is

E½q̂� ¼
Z

q̂Lðx; qÞdx: (7.25)

Differentiating with respect to q, gives

dE½q̂�
dq

¼
Z

q̂
dLðx; qÞ

dq
dx

¼
Z

q̂
d ln Lðx; qÞ

dq
Lðx; qÞdx ¼ E

	
q̂
d ln LðqÞ

dq



:

(7.26)

However in general,

E½q̂� ¼ qþ bðqÞ, (7.27)

where b is the bias. Differentiating (7.27) and suppressing the dependence of L on x give

1þ dbðqÞ
dq

¼ E

	
q̂
d ln LðqÞ

dq



: (7.28)

The right-hand side of (7.28) may be evaluated by firstly differentiating the normalization
condition Z

Lðx; qÞdx ¼ 1
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to give Z
dLðqÞ
dq

dx ¼
Z

d ln LðqÞ
dq

LðqÞdx ¼ E

	
d ln Lðx; qÞ

dq



¼ 0: (7.29)

Multiplying (7.28) by E½q̂� and subtracting the result from (7.27) give

E

	
q̂
d ln LðqÞ

dq



� E½q̂�E

	
d ln LðqÞ

dq



¼ E

	�
q̂� E½q̂ �

�
d ln LðqÞ

dq



¼ 1þ dbðqÞ

dq
: (7.30)

The second step is to use a form of the so-called Schwarz inequality, which for two random
variables x and y, such that x2 and y2 have finite expectation values, takes the form5

fE½xy�g2� E½x2�E½y2�: (7.31)

Applying this to (7.30) gives�
1þ dbðqÞ

dq

�2

� E
h
ðq̂� E½q̂�Þ2

i
E

	�
d ln LðqÞ

dq

�2

: (7.32)

The first factor on the right-hand side is varðq̂Þ ¼ s2ðq̂Þ. To evaluate the second factor,
we have

E

	�
d ln LðqÞ

dq

�2

¼ nE

	�
dfðx; qÞ=dq

fðx; qÞ
�2


h IðqÞ � 0, (7.33)

where the quantity IðqÞ is called the information of the sample with respect to q, or simply the
information. It may also be written in the form (cf (7.19))

IðqÞ ¼ E

	
� d2 ln LðqÞ

dq2



:

So, finally, for a single parameter q having an estimator q̂ with a bias b, the bound is

varðq̂Þ ¼ s2ðq̂Þ �
�
1þ db

dq

�2�
E

	
� d2 ln L

dq2


��1

: (7.34)

It is worth noting that in the derivation no assumption has been made about the estimator. If
the equality holds in (7.34), the estimator is efficient.

5The result (7.31) may be proved as follows. For any value l, E½ðlxþ yÞ2� ¼ l2E½x2� þ 2lE½xy� þ E½y2� � 0

and the solutions for l in the case of the equality are

l� ¼ �E½xy�
E½x2� �

��
E½xy�
E½x2�

�2

�
�
E½y2�
E½x2�

��1=2

:

So the inequality holds only if fE½xy�g2 � E½x2�E½y2�:
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There remains the question of what conditions are necessary for the minimum variance
bound to be attained, that is, for the equality in (7.31) to hold. This is valid if ðlxþ yÞ ¼ 0,
because only then is E½ðlxþ yÞ2� ¼ 0 for all values of l, x, and y. Applying this to (7.31)
with x ¼ q̂� E½q̂� and y ¼ d ln LðqÞ=dq gives

d ln LðqÞ
dq

¼ AðqÞðq̂� E½q̂ �Þ, (7.35)

where AðqÞ does not depend on the sample x1, x2,., xn. Finally, integrating (7.35) gives the
condition

ln LðqÞ ¼ BðqÞq̂þ CðqÞ þD, (7.36)

where B and C are functions of q, and D is independent of q. Thus an estimator q̂ will have
a variance that satisfies the minimum bound if the associated likelihood function has the
structure (7.36). The actual value of the minimum variance bound may be found by using
(7.34) in (7.32). For an unbiased estimator, this gives

s2ðq̂Þ ¼ 1

½AðqÞ�2E
h
ðq̂� E½q̂�Þ2

i ¼ 1

½AðqÞ�2s2ðq̂Þ
,

and so

s2ðq̂Þ ¼ jAðqÞj�1: (7.37)

EXAMPLE 7.6

Find the ML estimator for the parameter p of the binomial distribution and show that it is an unbiased

minimum variance estimator.

The binomial probability is given by equation (4.34) as

fðr; p, nÞ ¼
�
n
r

�
prð1� pÞn�r,

and so

LðpÞ ¼
Yn
i¼1

�
n
ri

�
prið1� pÞn�ri :

Then, taking logarithms,

ln LðpÞ ¼
Xn
i¼1

�
ri ln pþ ðn� riÞ lnð1� pÞ þ ln

�
n
ri

��
:

and

d ln LðpÞ
dp

¼ h

p
� n� h

1� p
,
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where

h ¼
Xn
i¼1

ri:

Setting d ln LðpÞ=dp ¼ 0 shows that p̂ ¼ h=n ¼ r is an unbiased estimator for the parameter p.

Moreover, using p̂ ¼ r we can write ln LðpÞ as

ln LðpÞ ¼ np̂½ ln p� lnð1� pÞ� þ n2 lnð1� pÞ þ
Xn
i¼1

�
n
ri

�
,

which is of the form (7.36), so r is a minimum variance estimator for p. The value of the variance is

found by writing

d ln LðpÞ
dp

¼ h

p
� n� h

1� p
¼ nðp̂� pÞ

pð1� pÞ ,

which is of the form (7.35), with AðpÞ ¼ n=½ðpð1� pÞ�, and so

s2ðp̂Þ ¼ A�1ðpÞ ¼ pð1� pÞ=n:

PROBLEMS 7

7.1 Find the ML estimator for the parameter s (the lifetime) in the exponential density
fðt; sÞ ¼ e�t=s=s and show that it is an unbiased estimator. Also find its variance.

7.2 Find the ML estimator ŝ2 for the parameter s2 in the normal population

fðx; m,s2Þ ¼ 1

ð2ps2Þ1=2
exp

	
� 1

2

�
x� m

s

�2

,

for samples of size n. Is the estimator unbiased?

7.3 Find theML estimator for the parameter l of the Poisson distribution (see equation (4.47))
and show that it is an unbiased minimum variance estimator.

7.4 Find equations for the ML estimators of the constants a and b in the Weibull distribution
of Section 4.4.

7.5 Find theML estimator for the parameter k for a sample of size n from a population having
a density function

fðxÞ ¼
�
aðk þ 2Þ3xk 0 � x � 1

0 otherwise

where a is a constant.
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7.6 A data set is subject to two independent scans. In the first scan, n1 events of a given type x
are identified and in the second, n2 events of the same type are found. If there are n12
events in common in the two scans, what is the efficiency E1 of the first scan and what is
its standard deviation? Estimate the total number of events of type x.

7.7 A set of n independent measurements Eiði ¼ 1, 2,., nÞ is made of the energy of
a quantum system in the vicinity of an excited state of energy E0 and width G described
by the BreiteWigner density of Section 4.5. If jEi � E0j � G, show that the mean energy E
is the ML estimator of E0.

7.8 Find the unbiased minimum variance bound (MVB) for the parameter q in the
distribution

fðx; qÞ ¼ 1

p

1h
1þ ðx� qÞ2

i:
Note the integral: Z N

0

ð1� x2Þ
ð1þ x2Þ3

dx ¼ p

8
:
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The method of least squares is an application of minimum variance estimators, which
were introduced in Section 7.4, to the multivariate problem and is widely used in situations
where a functional form is known (or assumed) to exist between the observed quantities and
the parameters to be estimated. This may be dictated by the requirements of a theoretical
model of the data, or may be chosen arbitrarily to provide a convenient interpolation formula
for use in other situations. We will firstly consider the technique for the situation where it is
most used; where the data depend linearly on the parameters to be estimated. In this form the
least-squares method is frequently used in curve-fitting problems.

8.1. UNCONSTRAINED LINEAR LEAST SQUARES

Initially the method will be formulated as a general procedure for finding estimators
q̂iði ¼ 1, 2, ., pÞ of parameters qiði ¼ 1, 2, ., pÞ which minimize the function
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S ¼
Xn
i¼ 1

ðyi � ĥiÞ2 ¼
Xn
i¼ 1

r2i , (8.1)

where

ĥi ¼ fðx1i, x2i, ., xki; q̂1, q̂2, ., q̂pÞ, (8.2)

with x1i, x2i, ., xki being the ith set of observations on ðk þ 1Þ variables, of which only yi is
random. Relation (8.2) is called the equation of the regression curve of best fit, or simply the best-
fit curve. The word ‘regression’ comes from an early investigation that showed that tall fathers
tended to have tall sons, although not on average as tall as themselves e referred to as
‘regression to the norm’ e and some authors prefer that regression is used to describe situ-
ations like this one where only qualitative statements can be made about the relationship
between two variables.

We shall consider firstly the general case where the observations are correlated and have
different ‘weights’ that are proportional to their experimental errors.1 Later we will look at
simpler cases, which follow easily from the general situation. Suppose we make observations
of a quantity y that is a function fðx; q1, q2, ., qpÞ of one variable x and p parameters
qiði ¼ 1, 2, ., pÞ. Note that x is not a random variable and f is not a density function. The
observations yi are made at points xi and are subject to experimental errors ei. If the n obser-
vations yi depend linearly on the p parameters then the observational equations may be
written as

yi ¼
Xp
k¼ 1

qkfkðxiÞ þ ei , i ¼ 1, 2, ., n (8.3)

where fkðxÞ are any linearly independent functions of x. The word ‘linear’ here refers to the
coefficients qk, that is, they contain no powers, square roots, trigonometric functions, etc.
Many situations that at first sight look nonlinear can be transformed so that the linear
least-squares method may be used. For example, by taking logarithms of the equation
y ¼ aelx, we get ln y ¼ ln aþ lx, which is a linear relationship between ln y and x (see
Example 8.1). On the other hand, the fitting functions fkðxÞ can be nonlinear provided
they only depend on the variables xi. In matrix notation2 (8.3) may be written as

Y ¼ F Qþ E, (8.4)

where Y and E are ðn� 1Þ column vectors, Q is a ðp� 1Þ column vector, and F is the ðn� pÞ
matrix (known as the design matrix):

F ¼

0
BBB@

f1ðx1Þ f2ðx1Þ / fpðx1Þ
f1ðx2Þ f2ðx2Þ / fpðx2Þ

« « «

f1ðxnÞ f2ðxnÞ / fpðxnÞ

1
CCCA:

1The least-squares method can also be formulated when both x and y have errors, but is more complicated.

As it is not the usual situation met in practice, it will not be discussed here.
2A brief review of matrix algebra is given in Appendix A, Section A.1.
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8.1.1. General Solution for the Parameters

The problem is to obtain estimates q̂k for the parameters. For n ¼ p a unique solution
exists and is obtainable directly from (8.4) by a simple matrix inversion, but for the more
practical case where n > p the system of equations is over-determined. In this situation, no
general unique solution exists, and so what we seek is a ‘best average solution’ in a sense
that will be discussed later. Thus we seek to approximate the experimental points yi by
a series of degree p, i.e.

fih fðxi; q1, q2, ., qpÞ ¼
Xp
k¼ 1

qkfkðxiÞ: (8.5)

Since the experimental errors are assumed to be random we would expect them to have
a joint distribution with zero mean, i.e.,

E½Y�hY0 ¼ FQ; (8.6)

and an associated variance matrix

Vij ¼

0
BB@

s21 s12 / s1n

s21 s22 / s2n

« « «

sn1 sn2 / s2n

1
CCCA, (8.7)

where

s2i ¼ E½e2i � ¼ varðyiÞ,
and

sij ¼ sji ¼ E½eiej� ¼ covðyi, yjÞ:
Note that we have only assumed that the population distribution of the errors has a finite
second moment. In particular, it is not necessary to assume that the distribution is normal.
However, if the errors are normally distributed, as is often the case, then the least-squares
method gives the same results as the maximum likelihood method.

The quantities ri of (8.1), called the residuals, are now replaced by

rih yi � f̂ i ¼ yi �
Xp
k¼ 1

qkfkðxiÞ, (8.8)

and we will minimize the weighted sum

S ¼
Xn
i¼ 1

Xn
j¼ 1

rirjðV�1Þij ¼ RTV�1R, (8.9)

where R is an ðn� 1Þ column vector of residuals.
To minimize S with respect to Q, we set vS=vQ ¼ 0, giving the solution

Q̂ ¼ ðFTV�1FÞ�1
FTV�1Y, (8.10)
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or, in nonmatrix notation,

q̂k ¼
Xp
l¼ 1

ðE�1Þkl
Xn
i¼ 1

Xn
j¼ 1

flðxiÞðV�1Þijyj, (8.11)

where

Ekl ¼
Xn
i¼ 1

Xn
j¼ 1

fkðxiÞðV�1ÞijflðxjÞ: (8.12)

These are the so-called normal equations for the parameters. Note that to find the estimators for
the parameters only requires knowledge of the relative errors on the observations, because
any scale factor in V would cancel in (8.10). However, this is not true for the variances of
the parameters, as we shall see in Section 8.1.2 later.

EXAMPLE 8.1

The table below shows the values of data yi ði ¼ 1, 2, . , 7Þ with uncorrelated errors si taken at the

points xi. Use the general formulation of the least-squares method to find estimators for the parameters a and

b in a fit to the data of the form y ¼ a expðbxÞ and calculate the predictions for ŷi. Plot the data and the best-fit
line.

i 1 2 3 4 5 6 7

xi 1 2 3 4 5 6 7

yi 4 5 8 16 30 38 70

si 2 2 3 3 4 5 5

By taking logarithms of the fitting function, the problem can be converted to the linear form

y0 ¼ a0 þ b0x0, where y0 ¼ ln y, a0 ¼ ln a, b0 ¼ b and x0 ¼ x. The errors on y0 follow from (5.45)

for the propagation of errors, that is

s0 ¼ d ln y

dy
s ¼ s

y
:

A new table can then be constructed as follows:

i 1 2 3 4 5 6 7

x0i 1 2 3 4 5 6 7

y0i 1.386 1.609 2.079 2.773 3.401 3.638 4.248

s0i 0.500 0.400 0.375 0.188 0.133 0.105 0.071

Using the notation above, the various matrices needed for the primed quantities are

F0T ¼
�
1 1 1 1 1 1 1
1 2 3 4 5 6 7

�
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Y0T ¼ ð 1:386 1:609 2:079 2:773 3:401 3:638 4:248 Þ,
and

V0 ¼ 10�3

0
BBBBBBBB@

250:00 0 0 0 0 0 0
0 160:00 0 0 0 0 0
0 0 140:63 0 0 0 0
0 0 0 35:34 0 0 0
0 0 0 0 17:69 0 0
0 0 0 0 0 11:03 0
0 0 0 0 0 0 5:05

1
CCCCCCCCA
:

These can be used to calculate thematrices ðF0TV0�1F0Þ�1 and ðF0TV0�1Y0Þ and hence Q̂ from (8.11),

where q̂1 ¼ â0 ¼ ln â and q̂2 ¼ b̂0 ¼ b̂. The result is â ¼ 2:101 and b̂ ¼ 0:498. From these we can

calculate the fitted values from ŷi ¼ â expðb̂xiÞ and they are given below:

i 1 2 3 4 5 6 7
ŷ
i

3:46 5:69 9:37 15:42 23:38 41:78 68:76:

A plot of the data and the fitted function is shown in Fig. 8.1.

In (8.9) the sums are over all the data points, but the least-squares method can also be
applied to binned data. In this case we will assume that the fitting function is a probability
density, and for simplicity is a function of a single parameter q to be estimated. Using the nota-
tion in the analogous discussion in Section 7.1 about fitting binned data using the maximum
likelihood method, we assume there areN observations of a random variable x independently
distributedwith a density function fðx;qÞ, and divided betweenm bins. If the observed number
of entries in the jth bin is oj, then the predicted (expected) number of entries for that bin is

ejðqÞ ¼ E½oj� ¼ N

Z xxmax
j

xxmin
j

fðx; qÞdx ¼ NpjðqÞ, (8.13)

0 2 4
x

y

6 8

0

20

40

60

80

FIGURE 8.1 Best fit to the data using y ¼ 2:101expð0:498xÞ.
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where xxmin
j and xxmax

j define the bin limits and pjðqÞ is the probability of having an entry in
the jth bin. Then, by analogy with (8.9), the least-squares estimators are found by numerically
minimizing the quantity

S ¼
Xm
j¼ 1

½oj � ejðqÞ�2
s2j

, (8.14)

where s2j are the variances on the observed number of entries in the jth bin. If the mean
number of entries in each bin is small compared to N, the entries in each bin are defined by
the Poisson distribution, for which the variance is equal to the mean, s2j ¼ ei, so in this case

S ¼
Xm
j¼ 1

½oj � ejðqÞ�2
ejðqÞ

¼
Xm
j¼ 1

½oj �NpjðqÞ�2
NpjðqÞ

: (8.15)

Sometimes, for reasons of computational simplicity, the variance of the number of entries in
a bin is replaced by the number of entries actually observed oj, rather than the predicted
number ej, so that S becomes

S ¼
Xm
j¼ 1

½oj � ejðqÞ�2
oj

¼
Xm
j¼ 1

½oj �NpjðqÞ�2
oj

, (8.16)

but this is only valid if the number of entries in each bin is large; if for example any of the oj
were zero, clearly S is undefined.

The estimates q̂k from (8.11) have been obtained by minimizing the sum of the residuals,
and although this has an intrinsic geometrical appeal, it still might be considered rather arbi-
trary. However, the importance of least-squares estimates stems from their minimum vari-
ance properties, which are summarized by the statement that the least-squares estimates
q̂k of the parameters qk minimize the variance of any linear combination of the parameters.
To prove this, consider the general sum

L ¼ CTQ; (8.17)

where C is a ðp� 1Þ vector of known constant coefficients. Let G be any ðn� 1Þ vector such
that

CT ¼ GTF: (8.18)

The problem of minimizing the variance of L is now equivalent to minimizing the variance of
GTY subject to the constraint (8.18). To do this, we use the method of Lagrange multipliers, as
used in Section 7.4.1 when discussing the maximum likelihood method. SinceG is a constant
vector,

varðGTYÞ ¼ GTðvarYÞ G ¼ GTVG,

which is easily proved from the definition of the variance matrix, and we can construct a vari-
ational function

F ¼ GTVG�LðFTG� CÞ, (8.19)
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where L is a ðp� 1Þ vector of Lagrange multipliers. Setting dF ¼ 0 gives

GT ¼ LTFTV�1, (8.20)

and so

LT ¼ GTF ðFTV�1FÞ�1: (8.21)

Eliminating LT between (8.20) and (8.21) gives

GT ¼ GTF ðFTV�1FÞ�1
FTV�1: (8.22)

If we now multiply (8.22) on the right by Y and use (8.10), we have

GTY ¼ ðGTFÞ Q̂ ¼ CTQ̂: (8.23)

Thus we have shown that the value of Q̂ which minimizes the variance of any linear combi-
nation of the parameters is the least-squares estimate, a result originally due to Gauss.

8.1.2. Errors on the Parameter Estimates

Having obtained the least-squares estimates q̂k, we can now consider their variances and
covariances. As mentioned above, this cannot be done with only knowledge of the relative
errors on the observations, but instead requires the absolute values of these quantities. It is
therefore convenient at this stage to allow for the possibility that the variance matrix may
only be determined up to a scale factor w by writing

V ¼ wW�1, (8.24)

where W is the so-called weight matrix of the observations. In this case (8.9) becomes

S ¼ 1

w
ðY�FQÞTWðY�FQÞ: (8.25)

and the solution of the normal equations is

Q̂ ¼ ðFTWFÞ�1
FTWY: (8.26)

We have previously used the result that for any linear combination of yi, say PTY, with P
a constant vector

varðPTYÞ ¼ PTvarðYÞ P: (8.27)

Applying (8.27) to Q̂ as given by (8.26), we have

varðQ̂Þ ¼ ðFTWFÞ�1
FTW varðYÞWFðFTWFÞ�1,

and using

varðYÞ ¼ V ¼ w W�1:

gives

E ¼ varðQ̂Þ ¼ wðFTWFÞ�1: (8.28)
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This is the variance matrix of the parameters and is given by a quantity that appears in the
solution (8.26) for the parameters themselves. The matrix E is also called the error matrix, and
the errors on the parameters are

Dq̂i ¼ ŝi ¼ ðEiiÞ1=2:

It is sometimes useful to know which linear combinations of parameter estimates have
zero covariances. Since E is a real, symmetric matrix, it can be diagonalized by a unitary
matrix U. This same matrix then transforms the parameter estimates into the required linear
combination.

Finally, if w is unknown, we need to find an estimate for it. This may be done by returning
to (8.25) and finding the expected value of the weighted sum of residuals S:

wE½S� ¼ E½RTWR�: (8.29)

When Q ¼ Q̂, the right-hand side of (8.29) becomes

E ½RTWðY�F Q̂Þ� ¼ E ½RTWY�,
since

RTWFQ ¼ 0,

is equivalent to the statement of the normal equations. Furthermore,

RTWY ¼ ðYT � Q̂TFTÞWY ¼ ðYTWYÞ � ðQ̂T
NQ̂Þ, (8.30)

where

N ¼ FTWF:

By using the normal equations once again, (8.30) may be reduced to

ðY� Y0ÞTWðY� Y0Þ � ðQ̂�QÞTNðQ̂�QÞ,
where Y0 is defined in (8.6), and thus we have arrived at the result that

E½S� ¼ E½RTV�1R�
¼ E½ðY� Y0ÞTV�1ðY� Y0Þ � ðQ̂�QÞTM�1ðQ̂�QÞ�,

(8.31)

where

M ¼ w N�1:

The result (8.31) is the variance matrix of the parameters.
Consider the first term in (8.31). The quantity ðY� Y0Þ is a vector of random variables

distributed with mean zero and variance matrix V. Thus

E½ðY� Y0ÞTV�1ðY� Y0Þ� ¼ E½Tr fðY� Y0ÞTV�1ðY� Y0Þg�
¼ TrfE½ðY� Y0ÞTðY� Y0ÞV�1�g
¼ Tr ðVV�1Þ ¼ n,
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where Tr denotes the trace of a matrix. Similarly, since M is the variance matrix of Q̂,

E½ðQ̂�QÞTM�1ðQ̂�QÞ� ¼ p:

Thus, from (8.31) we have

E½RTV�1R� ¼ n� p,

and so an unbiased estimate for w is

ŵ ¼ RTWR

n� p
,

and consequently an unbiased estimate for the variance matrix of Q̂ is

E ¼ RTWR

n� p
ðFTWFÞ�1 ¼ RTV�1R

n� p
ðFTV�1FÞ�1: (8.32)

Equation (8.32) looks rather complicated, but RTWR can be calculated in a straightforward
way from

RTWR ¼ ðY�F Q̂ÞTWðY�F Q̂Þ,
using the measured and fitted values. In the common case where the values yi are random
variables normally distributed about fi, then RTV�1R is the chi-squared value for the fit
and ðn� pÞ is the number of degrees of freedom ndf . In this case (8.32) becomes

E ¼ c2

ndf
ðFTV�1FÞ�1: (8.33)

EXAMPLE 8.2

Calculate the errors on the best-fit parameters in Example 8.1.

These follow immediately using the matrices calculated in Example 8.1. For the primed quan-

tities defined in Example 8.1, the error matrix is

E0 ¼ ðF0TV0�1F0Þ�1 ¼ 10�2

�
6:053 �0:959

�0:959 0:159

�
,

from which

sðaÞ ¼ âsða0Þ ¼ 2:101�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:06053

p
¼ 0:517

and

sðbÞ ¼ sðb0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00159

p
¼ 0:040

8.1.3. Quality of the Fit

To examine how well the predictions of the least-squares method fit the data we have to
assume a distribution for the yi, and this will be taken to be normal about fi, with the errors on
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the observations used to define theweights of the data, i.e.,w ¼ 1, which is the usual situation
in practice. In this case, we have seen above that the weighted sum of residuals S, of (8.9), is
distributed asc2with n� pdegrees of freedom.Thus for afit of given order p, one can calculate
the probability Pp that the expected value Se is smaller than the observed values So. The order
of the fit is then increased until this probability reaches any desired level. To increase p
below the point where c2wðn� pÞ would result in apparently better fits to the data.
However, to do so would ignore the fact that yi are random variables and as such contain
only a limited amount of information. The fit of Example 8.1 has a c2 value of 2.72 for 5
degrees of freedom, which is acceptable because P½c25 < 2:72� is approximately 0.25.

What should one do if a satisfactory value of c2wðn� pÞ cannot be achieved using
a reasonable order p (for example if p is dictated by the model), that is, if c2[ndf? Firstly,
one should examine the data to see whether there are isolated data points that contribute
substantially higher-than-average values to c2. If this is the case, then these points should
be carefully examined to see if there are any genuine reasons why they should be rejected,
but as emphasized in Section 5.4 this must be done honestly, avoiding any temptation to
‘massage the data’, and must be defensible. In the absence of such reasons, one may have
to conclude that the errors on the data have been underestimated and/or contain systematic
errors. In this situation, one possibility is to scale the experimental errors by choosing a value
ofw so that c2wndf . This will not change the values of the estimated parameters of the best fit,
but will increase their variances to better reflect the spread of the data. Conversely, if
c2 � ndf , the errors should be examined to see whether they have been overestimated.

Another test that can be used to supplement the c2 test is based on the F distribution of
Section 6.3. This procedure can test the significance of adding additional terms in expansion
(8.5), that is, to answer the question: is qk different from zero? If Sp and Sp�1 denote the values
of S for fits of order p and p� 1, respectively, then from the additive property pf c2, the quan-
tity ðSp�1 � SpÞ obeys a c2 distribution with one degree of freedom, and which is distributed
independently of Sp itself. Thus the statistic

F ¼ Sp�1 � Sp

Sp=ðn� pÞ
obeys an F distribution with 1 and ðn� pÞ degrees of freedom. From tables of the F distri-
bution we can now find the probability P that the observed value Fo is greater than the
expected value Fe. Thus if Pp corresponds to Foðn� pÞ then we may assume qp ¼ 0 with
a probability Pp of being correct. It is still possible that even though qp ¼ 0, higher terms
are nonzero, but in this case the c2 test would indicate that a satisfactory fit had not yet
been achieved. These points will be discussed in more detail in Chapter 10, when we
discuss hypothesis testing.

8.1.4. Orthogonal Polynomials

The solutions for the parameters Q̂ and their error matrix E both require the inversion of
the matrix ðFTV�1FÞ. In the discussion so far we have not specified the functions fkðxÞ
except that they form a linearly independent set. If simple powers of x are used for fkðxÞ,
then the matrix is ill-conditioned for even quite moderate values of k, and the degree of
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ill-conditioning increases as k becomes larger. Ill-conditioning simply means that the large
differences in the size of the elements of the matrix to be inverted can lead to serious round-
ing errors in the inverted matrix, and these can lead to errors in Q̂ as calculated from (8.10). If
a power series, or similar form, is dictated by the requirements of a particular model, the
parameters of which are required to be estimated, then one can only hope to circumvent
the problem by a judicious choice of method to invert the matrix. Such techniques are to
be found in books on numerical methods. However, if all that is required is any form that
gives an adequate representation of the data then it would clearly be advantageous to choose
functions such that the matrix ðFTV�1FÞ is diagonal. Such functions are called orthogonal
polynomials and their construction is briefly described here.

We will assume that the observations are uncorrelated (this is the usual situation met in
practice) and denote the diagonal elements of the weight matrix W ¼ w V�1 for the data
as WðxjÞ ðj ¼ 1, 2, . nÞ. Then if we fit using polynomials jkðxÞ ðk ¼ 1, 2, . ,pÞ, the
matrix of the normal equations will be diagonal if

Xn
j¼ 1

WðxjÞ jrðxjÞ jsðxjÞ ¼ 0, (8.34a)

for r s s. In this case, the least-squares estimate Q̂ from (8.10) is

q̂k ¼
Pn

j¼ 1 WðxjÞyjjkðxjÞPn
j¼ 1WðxjÞj2

kðxjÞ
, k ¼ 1, 2, . , p: (8.35)

Avaluable feature of using orthogonal polynomials is seen if we calculate the weighted sum
of squared residuals at the minimum. From (8.9) this is, using p polynomials,

Sp ¼ 1

w

Xn
j¼ 1

WðxjÞ
"
y2j �

Xp
k¼ 1

q̂2k j
2
kðxjÞ

#
:

If we now perform a new fit using pþ 1 polynomials, Sp is reduced by

1

w
q̂2pþ1

Xn
j¼ 1

WðxjÞj2
pþ1ðxjÞ,

and the first p coefficients q̂kðk ¼ 1, 2, . ,pÞ are unchanged.
To construct the polynomials we will assume for convenience that the values of x are

normalized to lie in the interval ð�1, 1Þ, and since it is desirable that none of the jkðxÞ has
a large absolute value, we will arrange that the leading coefficient of jkðxÞ is 2k�2. In this
case it can be shown that the polynomials satisfy the following recurrence relations, the deri-
vation of which may be found in many textbooks on numerical analysis:

j1ðxÞ ¼ 1=2,
j2ðxÞ ¼ ð2xþ b1Þj1ðxÞ,

and for r � 2,

jrþ1ðxÞ ¼ ð2xþ brÞjrðxÞ þ gr�1jr�1ðxÞ:
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To calculate the coefficients br and gr, we apply the orthogonality condition to js and jrþ1,
that is,

Xn
j¼ 1

WðxjÞ jsðxjÞjrþ1ðxjÞ ¼ 0, s s rþ 1: (8.34b)

Then using the recurrence relations in (8.34b) and setting first s ¼ j and then s ¼ j� 1 leads
immediately to the results

br ¼ �
Pn

j¼ 1WðxjÞxjj2
r ðxjÞPn

j¼ 1WðxjÞj2
r ðxjÞ

, r ¼ 1, 2, ., (8.36a)

and

gr�1 ¼ �
Pn

j¼ 1WðxjÞj2
r ðxjÞPn

j¼ 1WðxjÞj2
r�1ðxjÞ

, r ¼ 2, 3, .: (8.36b)

8.1.5. Fitting a Straight Line

Because the least-squares method has been formulated above for any linear functions
and allows for the data to have correlated errors, the resulting formulas look a little forbid-
ding, so it is instructive to derive explicit formulas for the simple case where the errors are
uncorrelated, the situation often met in practice, and are fitted by a linear form containing
just two parameters. It is worth re-emphasizing that ‘linear’ refers to the parameters and
that the fitting functions do not have to be linear, so even the two-parameter case can be
far from trivial and is widely used (see Example 8.1). To make things even simpler, we shall
assume that the fitting function is the straight line y ¼ aþ bx. In this case, p ¼ 2, with
q1 ¼ a, q2 ¼ b, f1ðxÞ ¼ 1, and f2ðxÞ ¼ x, and the variances of the data values will be
used to construct the weights, i.e., we will set the scale factor w ¼ 1. It is then straightfor-
ward, if rather tedious, to show from the general equations that for data with uncorrelated
errors,

â ¼ x2y� x xy

x2 � x2
and b̂ ¼ xy� x y

x2 � x2
, (8.37a)

where the overbars as usual denote averages, but in this case taking account of the errors on
the measurements. For example,

yh

Pn
i¼ 1 yi=s

2
iPn

i¼ 1 1=s
2
i

/
1

n

Xn
i¼ 1

yi if the errors are all equal: (8.37b)

The denominator is the total weight and acts as a normalization factor. Thus, denoting the
denominator in (8.37b) as N, (8.37a) for b̂ written out in full is

b̂ ¼ N
Pn

i¼ 1 xiyi=s
2
i �

Pn
i¼ 1 xi=s

2
i

Pn
i¼ 1 yi=s

2
i

N
Pn

i¼ 1 x
2
i =s

2
i �

�Pn
i¼ 1 xi=s

2
i

�2 : (8.38a)
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A similar expression can be derived for â, but in practice, it is easier to calculate â from

â ¼ y� b̂ x (8.38b)

once b̂ has been found. The final result y ¼ âþ b̂x can be used to interpolate to points where
there are no measured data. In principle it can also be used to extrapolate to points outside
the region where measurements exist, but care should be taken if this done, because no data
have been used in these regions to constrain the parameters, and the results can rapidly
become unreliable as one moves away from the fitted region.

To find the variances and covariance for the fitted parameters for the simple case of
a straight-line fit we could again return to the general result (8.26). However it is simpler
to use the results for â and b̂ given in (8.37a). For example, b̂ may be written as

b̂ ¼ xy� x y

x2 � x2
¼
Xn
i¼ 1

1

n

ðxi � xÞ
ðx2 � x2Þ

yi: (8.39)

Setting si ¼ s for simplicity, and using the results in Section 5.4.1 for combining errors, gives

varðb̂Þ ¼
Xn
i¼ 1

�
1

n

ðxi � xÞ
ðx2 � x2Þ

�2
s2 ¼ s2

nðx2 � x2Þ
: (8.40)

Finally, if the errors on the data are independent but unequal, we make substitutions analo-
gous to those in (8.37b), including setting

s2 / s2 ¼
Pn

i¼ 1 s
2
i =s

2
iPn

i¼ 1 1=s
2
i

¼ nPn
i¼ 1 1=s

2
i

: (8.41)

Then, writing out the result for the variance in full gives

varðb̂Þ ¼ N

"
N
Xn
i¼ 1

x2i =s
2
i �

 Xn
i¼ 1

xi=s
2
i

!2#�1

: (8.42a)

In a similar way we can show that

varðâÞ ¼
Xn
j¼ 1

x2j =s
2
j

"
N
Xn
i¼ 1

x2i =s
2
i �

 Xn
i¼ 1

xi=s
2
i

!2#�1

, (8.42b)

and

covðb̂, âÞ ¼ �
Xn
j¼ 1

xj=s
2
j

"
N
Xn
i¼ 1

x2i =s
2
i �

 Xn
i¼ 1

xi=s
2
i

!2#�1

, (8.42c)

with a common factor appearing on the right-hand side of all three expressions.
To find the error on the fitted value of f we can use (8.5), leading to

ðDfÞ2hvar fðxÞ ¼
Xp
k¼ 1

Xp
l¼ 1

fkðxÞEklflðxÞ, (8.43)
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which could also have been obtained from (5.44). For the straight-line fit y ¼ aþ bx, this
reduces to

varðyÞ ¼ varðâÞ þ x2 varðb̂Þ þ 2x covðb̂, âÞ: (8.44)

It is essential that the covariance term is included in (8.44). Without it, the value of var ðyÞ
could be seriously in error.

EXAMPLE 8.3

The table below shows the values of data yi ði ¼ 1, 2, . , 7Þ with uncorrelated errors si taken at the

points xi. Use the specific formulas for a straight-line fit y ¼ aþ bx to find estimators for the parameters

a and b and their error matrix. Calculate the predictions for ŷi and plot the data and the best-fit line. What is

the predicted error at the point x ¼ 1:5?

i 1 2 3 4 5 6 7

xi e3 e2 e1 0 1 2 3

yi 0 1 2 6 6 10 12

si 1 1 1 1 2 2 2

Using the notations above,

N ¼
X7
i¼ 1

1=s2i ¼ 4:75,
X7
i¼ 1

xi=s
2
i ¼ �4:5,

X7
i¼ 1

yi=s
2
i ¼ 16:0,

X7
i¼ 1

x2i =s
2
i ¼ 17:5,

 X7
i¼ 1

xi=s
2
i

!2

¼ 20:25,
X7
i¼ 1

xiyi=s
2
i ¼ 11:5:

Substituting these numbers into (8.38a) gives b̂ ¼ 2:014. Then from (8.38b) â is given by

â ¼ y� b̂x ¼ 5:276. To find the errormatrix we substitute into equations (8.42) to find the variances

and the covariance. This gives

–4 –2 0

y

x

0

5

10

15

2 4

FIGURE 8.2 Least-squares fit to the data using y ¼ 5:276þ 2:014x.
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varðb̂Þ ¼ 0:2783, varðâÞ ¼ 0:0755 and covarðb̂, âÞ ¼ 0:0716,

and hence the error matrix is

E ¼
�
0:2783 0:0716
0:0716 0:0755

�
:

From the values â and b̂ we can calculate the values of ŷi ¼ âþ b̂xi as:

i 1 2 3 4 5 6 7
ŷi �0:77 1:25 3:26 5:28 7:29 9:30 11:32

A plot of the data and the fitted function is shown in Fig. 8.2. To calculate the predicted error at the

point x ¼ 1:5, we use (8.44). This gives the variance as 0.9165 and hence the error on the fitted point

is 0.96.

Because in the foregoing discussion we have not in general assumed a specific distribu-
tion, the basic formulation given above (but not necessarily that involving the c2 values of
the fit) can be generalized to the case where the observations have both random and system-
atic errors. To illustrate this in principle, we will consider the simple example of a straight-
line fit to data that have independent random errors si and a systematic error u that is
common to all data points. We have shown in Section 5.4.1, equation (5.51), that in this
case the variance matrix of the observations yi has the form

Vij ¼
(
s2i þ u2 i ¼ j

u2 i s j
: (8.45)

We now repeat the steps that led to (8.42a). Thus, setting si ¼ s, (8.40) becomes

varðb̂Þ ¼ 1

n2ðx2 � x2Þ2
Xn
i¼ 1

Xn
j¼ 1

ðxi � xÞðxj � xÞ covðyi, yjÞ,

which using (8.45) is

varðb̂Þ ¼ 1

n2ðx2 � x2Þ2

2
4Xn

i¼ 1

ðxi � xÞ2s2 þ
Xn
i¼ 1

Xn
j¼ 1

ðxi � xÞðxj � xÞ u2

3
5: (8.46)

From the definition of the mean, the second term in (8.46) is zero. So after relaxing the condi-
tion si ¼ s, (8.46) reduces to (8.40), or written in full to (8.42a), and hence varðb̂Þ is
unchanged. This is in accord with common sense, because if the systematic error is the
same for all data points, then they will all move in parallel and the slope of the fitted straight
line will not change. In a similar way, we can show that

varðâÞ ¼ 1

n2ðx2 � x2Þ2
Xn
i¼ 1

Xn
j¼ 1

ðx2 � x xiÞðx2 � x xjÞ covðyi,yjÞ:
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Again, using (8.45), we see that the term in s2 will reproduce the former result
(8.42b), but the term in u2 in this case does not cancel. Thus, over all, the effect of
the systematic error in this simple case is to modify the error on the slope of the
best-fit line, with the random and systematic errors adding in quadrature to the vari-
ance of â.

8.1.6. Combining Experiments

The least-squares results may be used in a simple way to combine the results of
several experiments measuring the same quantities. This was considered in Example
7.2 for the simple case of repeated measurements yiði ¼ 1, 2, ., nÞ of a single quantity
y each having independent errors siði ¼ 1, 2, ., nÞ. The result was the so-called
weighted mean,

ŷ ¼
Pn

i¼ 1 yi=s
2
iPn

i¼ 1 1=s
2
i

, with varðŷÞ ¼ 1Pn
i¼ 1 1=s

2
i

: (8.47)

It also follows directly from the general solution (8.11) for the simple case where the fitted
function is a constant andV is a diagonal matrix. Thus (8.47) are the least-squares estimators.
Knowing this, we can easily generalize the result to the case where the measurements are not
independent, which would occur, for example if they were based in part on the same data set.
Then the expression for S of (8.9) becomes

SðlÞ ¼
Xn
i, j¼ 1

ðyi � lÞðV�1Þijðyj � lÞ,

and we seek an estimator l̂ for the true value l, given a set of measurements yi of l. As
usual, this is found by setting the derivative of S with respect to l equal to zero and
gives

l̂ ¼
Xn
i¼ 1

wiyi, (8.48a)

where the weights are now given by

wi ¼
Xn
j¼ 1

ðV�1Þij

2
4 Xn

k, l¼ 1

ðV�1Þkl

3
5�1

, (8.48b)

with the variance of l̂ given by

varðl̂Þ ¼
Xn
i, j¼ 1

wiVijwj: (8.48c)

Formulas (8.48) reduce to (8.47) if the errors are uncorrelated.
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EXAMPLE 8.4

Three measurements of a quantity l yield the results 3, 3.5, and 4 with a variance matrix

V ¼
0
@ 2 0 1

0 3 1
1 1 4

1
A:

Find the least-squares estimate for l and its variance.

From the variance matrix, we have

V�1 ¼ 1

19

0
@ 11 1 �3

1 7 �2
�3 �2 6

1
A

and so 2
4 X3

k, l¼ 1

	
V�1



kl

3
5�1

¼ 19

16
:

Thus from (8.48b) the weights are

w1 ¼ 9=16, w2 ¼ 6=16, w3 ¼ 1=16

and from (8.84a), l̂ ¼ 52=16 ¼ 3:25. The variance is found from (8.48c) and is 19=16. Thus

l̂ ¼ 3:3� 1:1.

Combining data from different experiments has to be done with care if it is to be meaning-
ful, because the various experiments may not be compatible, something we mentioned
briefly in Section 7.2. Thus a test, such as that based on the Student’s t distribution, or on
c2, should be used to establish compatibility. For example, the results in Example 8.4 yield
a value c2 ¼ 0:2. Even if the data are compatible, averaging highly correlated data is difficult
because a small error in the covariance matrix can result in a large error in the estimated
value l̂ and an incorrect estimate of its variance. Also, the relative weights of the observations
may not be what they might seem at first sight. For example, when counting the decay parti-
cles from a long-lived radioactive atom, assumed to be a Poisson process, one might be temp-
ted to assume that the errors were the square root of the number of counts. However this is
only true for the expected number of counts, which is a constant for a given time interval. So
in this case the weights of different counts are the same, although unknown.

The above discussion can be generalized to situations where we wish to combine data
from experiments that measure combinations of quantities l1, l2, etc. An example is given
in Problem 8.3.

8.2. LINEAR LEAST SQUARES WITH CONSTRAINTS

It sometimes happens in practice that one has some information that can be used to refine
the fit. As an example, we will generalize the discussion of Section 8.1 by considering the
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situation where the additional information takes the form of a set of linear constraint equations
on the parameters of the form

Clpqp ¼ Zl,

or, in matrix notation

CQ[Z, (8.49)

where the rank of C is l. Thus we have to nowminimize the sum of residuals S given by (8.9),
subject to the constraint (8.49). This problem can be solved if we introduce an ðl� 1Þ vector of
Lagrange multipliers L. Then the variation function that we have to consider is

L ¼ ðRTV�1RÞ � 2LTðCQLZÞ,
and the minimum of S subject to (8.49) is found by setting the total differential dL ¼ 0, which
gives

dL ¼ 0 ¼ 2½�YTV�1F þ Q̂T
c ðFTV�1FÞ �LTC� dQ,

i.e.

LTC ¼ Q̂T
c ðFTV�1FÞ L YTV�1F, (8.50)

where Q̂c is the vector of estimates under the constraints.
Earlier we have seen that

ðYTV�1FÞ ¼ Q̂TðFTV�1FÞ, (8.51)

where Q̂ is the estimate without the constraints, and using this relation in equation (8.50)
gives

LTC ¼ ðQ̂c � Q̂ÞTðFTV�1FÞ, (8.52)

If, as before, we set

M ¼ wðFTV�1FÞ ¼ ðFTWFÞ, (8.53)

then

wLTCM�1CT ¼ ðQ̂c � Q̂ÞTCT ¼ ZT � Q̂TCT ,

from which we obtain the result for LT :

wLT ¼ ðZT � Q̂TCTÞðCM�1CTÞ�1: (8.54)

Substituting (8.54) into (8.52) and solving for Q̂c gives

Q̂T
c ¼ Q̂T þ ðZT � Q̂TCTÞðCM�1CTÞ�1CM�1, (8.55)

This is the solution for the least-squares estimate of Q under the constraints, and like the
unconstrained problem it only depends on the relative variances of the observations, because
any scale factor in V, and hence in M, cancels in (8.55).
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To find the variance matrix for the estimates Q̂c does require knowledge of the full vari-
ance matrix of the observations, so if we use a scale factor w as defined in (8.24), then from
(8.55),

varðQ̂cÞ ¼ w ½M�1 �M�1CTðCM�1CTÞ�1CM�1�, (8.56)

and we are again left with the problem of finding an estimate for w. This may be done in
a similar way to the unconstrained problem. Thus we consider the expected value of the
weighted sum of the residues under the constraints. This is

E½S� ¼ E½ðRTV�1RÞ þ ðQ̂c � Q̂ÞTðFTV�1FÞðQ̂c � Q̂Þ�, (8.57)

where R is the matrix of residuals without constraints as defined in (8.9). Using the same
technique previously used in Section 8.1.2, we can show that the second term has an expected
value of l, the rank of the constraint matrix C, and we have already shown that the expected
value of the first term is ðn� pÞ. So an unbiased estimate of w is

ŵ ¼ ðRTWRÞ þ ðQ̂c � Q̂ÞTðFTWFÞðQ̂c � Q̂Þ
n� pþ l

: (8.58)

The second term may be written in a form that is independent of Q̂c by using (8.55) for
ðQ̂c � Q̂Þ. This gives

ŵ ¼ ðRTWRÞ þ ðZ� CQ̂ÞTðCM�1CTÞ�1ðZ� CQ̂Þ
n� pþ l

: (8.59)

Finally, the error matrix for the parameters Q̂c is given by (8.56) with ŵ given by (8.59). An
example using these results is given in Problem 8.4.

Analogous formulas to those above may be derived for situations where the constraints
are directly on the measurements themselves. As before, we will only consider the simple
case of a set of linear constraint equations of the form

B ĥ ¼ Z

analogous to (8.49). Then repeating the steps that led to (8.55) gives the constrained solution

ŶT
c ¼ ŶT þ ðZT � ŶTBTÞ ðBVBTÞ�1BTV, (8.60)

with an associated variance matrix

varðŶT
c Þ ¼ var ðŶTÞ �VBTðBVBTÞ�1BV, (8.61)

where for simplicity we have set w ¼ 1. The use of (8.60) and (8.61) is illustrated in the
following example.

EXAMPLE 8.5

Independent measurements of the three angles yiði ¼ 1, 2, 3Þ of a triangle yield (in degrees) the values

89� 1, 33� 2, and 64� 2. Find the least-squares estimate for the angles and their variance matrix, subject to

the constraint that the sum of the angles is exactly 180 degrees.
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The various matrices we will need are

V ¼
0
@ 1 0 0

0 4 0
0 0 4

1
A,

B ¼ ð 1 1 1 Þ, Y ¼ ð 89 33 64 Þ and Z ¼ 180:

Then

ðBVBTÞ�1 ¼ 1=9 and BTV ¼ ð 1 4 4 Þ
and so from (8.60),

ŶT
c ¼ ð 89 33 64 Þ � 2

3
ð 1 4 4 Þ,

and hence

ŷ1 ¼ 88
1

3
, ŷ2 ¼ 30

1

3
and ŷ3 ¼ 61

1

3
:

As expected, the ‘excess’ of 6 in the measured sum of the angles has been divided unequally, with

least being subtracted from y1 because it is more precisely determined than the other angles. The

variance matrix follows from (8.61) and is

var
	
Ŷ
T

c


 ¼ 1

9

0
@ 8 �4 �4

�4 20 0
�4 0 20

1
A,

so that ŷ1 ¼ 88:3� 0:9, ŷ2 ¼ 30:3� 1:5 , and ŷ3 ¼ 61:3� 1:5: Imposing the constraint has

improved the precision of the angles, as expected.

The above discussion may be extended in several ways, for example to situations where
there are constraints on both the data and the parameters to be estimated from them, or
where the constraints are nonlinear. The general formalism is considerably more compli-
cated, and in the nonlinear case the solution can usually only be obtained by iteration.

8.3. NONLINEAR LEAST SQUARES

If the fitting functions FðQÞ are not linear in the parameters, then the weighted sum of
residuals to be minimized is

S ¼ ½Y� FðQÞ�TW½Y� FðQÞ�, (8.62)

and differentiating Swith respect toQ and setting the result to zero leads to a set of nonlinear
simultaneous equations and consequently present a difficult problem to be solved. In prac-
tice S is minimized directly by an iterative procedure, starting from some initial estimates for
Q, which may be suggested by the theoretical model or in extreme situations may be little
more than educated guesses. We will illustrate how such a scheme might in principle be
applied.
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The method is based on trying to convert the nonlinear problem to a series of linear ones.
Let the initial estimate of Q be Q0, Then if Q0 is close enough to the ‘true’ value Q, we may
expand the quantity ½Y� FðQÞ� in a Taylor series about Q0 and keep only the first term. The
technique relies on the truncation of the series being valid. Thus,

D0 ¼ Y� FðQ0Þ x vFðQ0Þ
vQ0

d0, (8.63)

where d0 is a vector of small increments of Q. The problem of calculating d0 is now reduced
to one of linear least squares, since both D0 and the design matrix

F0 ¼ vFðQ0Þ
vQ

are obtainable. Given a solution for d0 from the normal equations, a new approximation

FðQ1Þ ¼ FðQ0 þ d0Þ
may be calculated. This in turn will lead to a new design matrix

F1 ¼ vFðQ1Þ
vQ

and a new vector D1 and hence, via the normal equations, to a new incremental vector d1. This
linearization procedure may now be iterated until the changes inQ from one iteration to the
next one are very small. At the close of the iterations the variance matrix for the parameters is
again taken to be the inverse of the matrix of the normal equations.

As we have emphasized, the above procedure is only to illustrate a possible method of
finding the minimum of S. In practice several difficulties could occur, for example the initial
estimatesQ0 could be such as to invalidate the truncation of the Taylor series at its first term.
In general such a method is not sure of converging to any value, let alone to values represent-
ing a true minimum of S.

The problem of minimizing S is an example of a more general class of problems that come
under the heading of ‘optimization of a function of several variables’ and in Appendix B
there is a brief review of the methods that have proved to be successful in practice.

8.4. OTHER METHODS

Estimation using maximum likelihood, as described in Chapter 7, is a very general tech-
nique and is widely used in practical work, as is the method of least-squares described above.
But several other methods are also in common use, and may be more suitable for certain
applications. Three of them are briefly described below.

8.4.1. Minimum Chi-Square

Consider the case in which all the values of a population fall into k mutually exclusive
categories ciði ¼ 1, 2, ., kÞ and let pi denote the proportion of values falling into category
ci, where
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Xk
i¼ 1

pi ¼ 1: (8.64)

Furthermore, in a random sample of n observations, let oi and ei ¼ npi denote the observed
and expected frequencies in category ci, where

Xk
i¼ 1

oi ¼
Xk
i¼ 1

ei ¼ n: (8.65)

Now in Section 4.7 we considered the multinomial distribution with density function:

fðr1, r2, ., rk�1Þ ¼ n!
Xk
i¼ 1

prii

 Xk
i¼ 1

ri!

!�1

, (8.66)

where ri denotes the frequency of observations in the ith category in which the true propor-
tion of observations is piði ¼ 1, 2, ., kÞ. We recall that the multinomial density function
gives exact probabilities for any set of observed frequencies

r1 ¼ o1, r2 ¼ o2, ., rk ¼ ok: (8.67)

Each ri is distributed binomially and we have seen in Section 4.8 that the binomial distri-
bution tends rapidly to a Poisson distribution with both mean and variance equal to npi.
The Poisson distribution in turn tends to a normal distribution as npi increases. Conven-
tionally the Poisson distribution is considered approximately normal if the mean m � 9.
Thus if npi � 9, ri is approximately normally distributed with mean and variance npi.
By converting to standard measure, it follows that the statistic

ui ¼
ri � npi

ðnpiÞ1=2
(8.68)

is approximately normally distributed with mean zero and unit variance. Furthermore,

c2 ¼
Xk
i¼ 1

u2i ¼
Xk
i¼ 1

ðri � npiÞ2
npi

¼
Xk
i¼ 1

ðoi � eiÞ2
ei

(8.69)

is distributed as c2 with ðk � 1Þ degrees of freedom. Equation (8.69) can be used to test
whether data are consistent with a specific distribution. We will return to this use of chi-
squared in Chapter 11 when we discuss hypothesis testing.

A more common situation that arises in practice is where the generating density function
is not completely specified, but instead contains a number of unknown parameters. If the
observed frequencies are used to provide estimates of the pi, then the quantity analogous
to c2 of (8.69) is

c02 ¼
Xk
i¼ 1

ðoi � np̂iÞ2
np̂i

: (8.70)

There now arise two questions: (1) what is the best way of estimating pi and (2) what is the
distribution of c02? There are clearly many different methods available to estimate the pi, but
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one which is widely used is to choose values which minimize c02. This may in general be
a difficult problem and is another example of the general class of optimization problems
mentioned above, and which are briefly discussed in Appendix B. It can be shown that for
a wide class of methods of estimating the pi, including that of minimum chi-square, c02 is
asymptotically distributed as c2 with ðk � 1� cÞ degrees of freedom where c is the number
of independent parameters of the distribution used to estimate the pi.

In general, if xi is a sample of size n from amultinomial populationwithmean mðqÞ and vari-

ance matrixVðqÞ, where q is to be estimated, then the value q̂ ðx1,x2, ., xnÞwhich minimizes

c2 ¼ 1

n
½x� mðqÞ�T ½VðqÞ��1½x� mðqÞ�,

i.e., the minimum c2 estimate of q, is known to be consistent, asymptotically efficient, and
asymptotically normal distributed if x is distributed like the binomial, Poisson, or normal
distribution (and many others).

EXAMPLE 8.6

A method for generating uniformly distributed random integers in the range 0e9 has been devised and

tested by generating 1000 digits with results shown below.

Digit 0 1 2 3 4 5 6 7 8 9

Frequency 106 89 85 110 123 93 82 110 91 111

Do these results support the idea that the method of generation is suitable?

If the digits were uniformly distributed, then the expected frequencies would all be 100. So,

using (8.69), we find c2 ¼ 16:86 and this is for 9 degrees of freedom. FromTable C.4, P½c2 � 16:9� for
9 degrees of freedom is 0.05. So although it cannot be ruled out, as this is a fairly low probability, it

raises some doubt that the method really is producing uniformly distributed integers. (Such

statements will be made more precise when hypothesis testing is discussed in Chapter 11.)

The minimum chi-squared method of estimation can be used in a range of other situations,
including those where the parameters are subject to constraints. An example is given in
Problem 8.5.

8.4.2. Method of Moments

In Section 3.2.3 we saw that two distributions with a commonmoment generating function
were equal. This provides a method for estimating the parameters of a distribution by esti-
mating the moments of the distribution.

Let fðx; q1, q2, ., qpÞ be a univariate density function with p parameters
qiði ¼ 1, 2, ., pÞ, and let the first p algebraic moments be

m0jðq1, q2, ., qpÞ ¼
Z N

�N
xj fðx; q1, q2, ., qpÞ dx, j ¼ 1, 2, ., p: (8.71)
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Let xn be a random sample of size n drawn from the density f. The first p sample algebraic
moments are given by

m0
j ¼

1

n

Xn
i¼ 1

x
j
i: (8.72)

The estimators q̂i of the parameters qi are obtained from the solutions of the p equations

m0
j ¼ m0j, j ¼ 1, 2, ., p: (8.73)

EXAMPLE 8.7

Use the method of moments to find the estimators for the mean and variance of a normal distribution.

We have previously seen (equation (4.6)) that for a normal distribution,

m01 ¼ m; m02 ¼ s2 þ m2:

The sample moments are

m0
1 ¼ 1

n

Xn
i¼ 1

xi; m0
2 ¼ 1

n

Xn
i¼ 1

x2i :

Applying (8.73) gives

m̂ ¼ 1

n

Xn
i¼ 1

xi ¼ x,

and

ŝ2 þ m̂2 ¼ 1

n

Xn
i¼ 1

x2i ,

i.e.

ŝ2 ¼ 1

n

"Xn
i¼ 1

x2i � nx2

#
¼ 1

n

Xn
i¼ 1

ðxi � xÞ2:

Thus, the estimators obtained by the method of moments are, for this example, the same as those

obtained by the maximum likelihood method.

In some applications where the population density function is not completely known it may
be advantageous to use particular linear combinations of moments. Consider, for example,
a density function fðx; q1, q2, ., qpÞ, which is unknown but may be expanded in the form

fðx; q1, q2, ., qpÞ ¼
Xp
j¼ 1

qjPjðxÞ, (8.74)
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where PjðxÞ is a set of orthogonal polynomials normalized such thatZ
PiðxÞPjðxÞdx ¼

�
fj, i ¼ j
0, is j:

(8.75)

The population moments deduced from (8.74) are

m0i ¼
Z Xp

j¼ 1

qjPjðxÞ xj dx: (8.76)

However, we may also consider the linear combination of moments given by

Ui ¼
Z Xp

j¼ 1

qjPjðxÞPi ðxÞ dx, (8.77)

which by (8.75) is

Ui ¼ qifi: (8.78)

The equivalent sample moments are

mi ¼
1

n

Xn
j¼ 1

PiðxjÞ, (8.79)

and so, by equating the two, we have

q̂i ¼
1

nfi

Xn
j¼ 1

PiðxjÞ: (8.80)

This method is useful, for example, for finding the angular distribution coefficients aj in the
expansion of a differential cross-section in particle scattering problems. In this case, the
differential cross-section ds=d cosq is

ds

d cosq
¼
X
j

ajPjðcosqÞ, (8.81)

where Pj are Legendre polynomials and the coefficients are

âj ¼
�
2jþ 1

2n

�Xn
i¼ 1

PjðxiÞ:

Themodificationsnecessary to the abovesimple account inorder toapply it to binneddata are
similar to those thathavebeendiscussed for themaximumlikelihoodand least-squaresmethods,
and sowewill not discus these further. Under quite general conditions, it can be shown that esti-
mators obtained by the method of moments are consistent, but not in general most efficient.

8.4.3. Bayes’ Estimators

In Section 2.3.2 we discussed the Bayesian interpretation of probability. There are several
advantages of the Bayesian viewpoint. Foremost of these is that it can incorporate prior
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information about the parameter to be estimated. However, we saw from Bayes’ theorem that
to maximize the posterior probability requires knowledge of prior probabilities, and in
general these are not known completely. Nevertheless, cases do occur where partial informa-
tion is available, and in these circumstances it would clearly be advantageous to include it in
the estimation procedure if possible. The objection to the Bayesian approach is that one has to
choose a prior pdf and as this is necessarily subjective, different choices can lead to different
outcomes. The Bayesian answer to this objection is that it is a fact of life that different people
will have different views about data and so it is entirely reasonable that different interpreta-
tions should exist. There is no definite answer to this question, but it can make it difficult to
compare different inferences drawn from comparable data sets.

We will consider the case where the prior information about the parameter is such that the
parameter itself can be formally regarded as a random variable with a prior density fpriorðqÞ, as
in the maximum likelihoodmethod. There has been much theoretical work done on the ques-
tion of how to choose a prior density, but all suggestions have problems. Empirically, the
form for fpriorðqÞ could be obtained, for example, by plotting all previous estimates of q.
This will very often be found to be an approximately Gaussian form, and from the results
estimates of the mean and variance of the associated normal distribution could be made.
In these cases where both the usual variable and the parameter be regarded as random vari-
ables we will denote the corresponding pdf as fRðx; qÞ.

In Bayesian estimation, the emphasis is not on satisfying the requirements of ‘good’ point
estimators as discussed in Section 5.1.2, but rather on minimizing ‘information loss’,
expressed through a so-called loss function lðq̂; qÞ. Expressed loosely, the latter gives the
loss of information incurred by using the estimate q̂ instead of the true value q. In practice
it is difficult to know what form to assume for the loss function, but a simple, common sense,
form that suggests itself is

lðq̂; qÞ ¼ ðq̂� qÞ2: (8.82)

(A loss function that is bounded by zero, as in (8.82), is an example of a more general function
found in decision theory, called a risk function.) The other quantities we need follow directly
from work of previous chapters. Thus

jðx1, x2, ., xn; qÞ ¼ fðx1, x2, ., xnjqÞfpriorðqÞ, (8.83)

is the joint density of x1, x2, ., xn and q and

mðx1, x2, ., xnÞ ¼
Z N

�N
jðx1, x2, ., xn, qÞdq (8.84)

is the marginal distribution of the x’s. From equation (3.23) it then follows that the conditional
distribution of q given x1, x2, ., xn is

cðqjx1, x2, ., xnÞ ¼ jðx1, x2, ., xn; qÞ
mðx1,x2, ., xnÞ

¼ fðx1, x2, ., xnjqÞfpriorðqÞ
mðx1, x2, ., xnÞ :

(8.85)

This is the posterior density fpostðqjx1, x2, ., xnÞ. We can now define a Bayes’ estimator.
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Let x1, x2, ., xn be a random sample of size n drawn from a density fRðx; qÞ; and let
fpriorðqÞ be the prior density of q and fðx1, x2, ., xnjqÞ be the conditional density of the set
xi given q. Furthermore, let fpostðqjxÞ be the posterior density of q given the set xi, and let
lðq̂, qÞ be the loss function. Then the Bayes’ estimator of q is that function defined by

q̂ ¼ dðx1, x2, ., xnÞ
which minimizes the quantity

Bðq̂; x1, x2, ., xnÞ ¼
Z N

�N
lðq̂, qÞ fpostðqjx1, x2, ., xnÞdq: (8.86)

The disadvantage in using (8.86) is the necessity of assuming a form for both fpriorðqÞ and
lðq̂; qÞ. The following example illustrates the use of the method.

EXAMPLE 8.8

Let x1,x2, ., xn be an independent random sample of size n drawn from a normal density fRðx; q, aÞwith
unknown mean q and unit variance a2 ¼ 1. If q is assumed to be normally distributed with known mean m

and unit variance b2 ¼ 1, find the Bayes’ estimator for q, using a loss function of the form lðq̂, qÞ ¼ ðq̂� qÞ2.
From the above, setting a ¼ 1,

fRðx; q, aÞ ¼ ð2pÞ�1=2 exp

�
� 1

2
ðx� qÞ2

�
,

and hence

fðx1, x2, ., xnjqÞ ¼ 1

ð2pÞn=2
exp

"
� 1

2

 Xn
i¼ 1

x2i � 2q
Xn
i¼ 1

xi þ nq2

!#
:

Also, setting b ¼ 1,

fpriorðqÞ ¼ ð2pÞ�1=2 exp½�ðq� mÞ2=2�,
so that from (8.83)

jðx1, x2, ., xn, qÞ ¼ 1

ð2pÞðnþ1Þ=2 exp

"
� 1

2

 Xn
i¼ 1

x2i þ m2

!#
exp

�
� 1

2
ðnþ 1Þq2 þ ðnxþ mÞq

�
,

and from (8.84)

mðx1, x2, ., xnÞ ¼ ð2pÞ�ðnþ1Þ=2 exp
�
� 1

2

�X
x2i þ m2

�� ZN
�N

exp

�
qðnxþ mÞ � 1

2
ðnþ 1Þq2

�
dq

¼ 1

ðnþ 1Þ1=2ð2pÞn=2
exp

"
� 1

2

�X
x2i þ m2

�
þ 1

2

ðnxþ mÞ2
nþ 1

#
:

Then using these in (8.85) gives

fpostðqjx1,x2, ., xnÞ ¼
�
nþ 1

2p

�1=2

exp

�
� ðnþ 1Þ

2

�
q� nxþ m

nþ 1

�2�
,
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and, using lðq̂, qÞ ¼ ðq̂� qÞ2 and this expression for fpostðqjx1, x2, ., xnÞ in (8.86), we find, after

some algebra,

Bðq̂; x1, x2, ., xnÞ ¼
�
nþ 1

2p

�1=2 ZN
�N

ðq̂� qÞ2exp
�
� ðnþ 1Þ

2

�
q� nxþ m

nþ 1

�2�
dq

¼ q̂2 � 2q̂ðxnþ mÞ
nþ 1

þ 1

nþ 1
þ
�
xnþ m

nþ 1

�2

:

Finally, to minimize B we set

vB

vq̂
ðq̂; x1, x2, ., xnÞ ¼ 0,

giving

q̂ ¼ mþ nx

nþ 1
,

which is the Bayes’ estimator for q. It can be seen that q̂ is the weighted average of the samplemean x

and the prior mean m.

If we extend the case studied in Example 8.8 to the situation where the variances a and
b are not zero, then a useful general result is as follows, which is given without proof, but
may be obtained by repeating the step in Example 8.8. If x is the mean of a random sample
of size n from a normal population with known variance a2, and the prior distribution of the
population mean is a normal distribution with mean m and variance b2, then the posterior
distribution of the population mean is also a normal distribution and the Bayes’ estimators
for the mean and variance are

m1 ¼ a2mþ nb2x

a2 þ nb2
(8.87a)

and

s21 ¼ a2b2

a2 þ nb2
: (8.87b)

If the prior was uniform, the posterior density is also normal, although in this casewith m1 ¼ x
and s21 ¼ a2=n, which are the limits of (8.87) as n/N. In fact for large samples, equations
(8.87) hold for an independent random sample of size n drawn form any distribution with
a finite variance. This is the Bayesian statement of the central limit theorem.

Under very general conditions it can be shown that Bayes’ estimators, independent of the
assumed prior distribution fpriorðqÞ, are efficient, consistent, and a function of sufficient
estimators.

It is useful to consider the relation between Bayes’ estimators and those obtained from the
maximum likelihood method. Using Bayes’ theorem, the posterior pdf of (8.85) may be
written in terms of the likelihood (which is not a pdf) as

fpostðqjxÞ ¼ LðxjqÞfpriorðqÞR
Lðxjq0Þfpriorðq0Þdq0

: (8.88)
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In the absence of any prior information, it is common to take fpriorðqÞ to be a constant and in
this case the posterior pdf is proportional to the likelihood and the two methods are very
similar. However, a uniform prior has potential problems. First, if the parameter can take
on any values, fpriorðqÞ cannot be normalized, although in practice this is not usually a diffi-
culty because in the denominator it appears multiplied by the likelihood function. But
a second problem is that one could take the prior to be uniform in a function of q rather
than the parameter itself and this would lead to a different posterior pdf and hence a different
estimate. Thus Bayes’ estimators with a uniform prior do not have the useful invariance
property that ML estimators have. In practice, the distinction between different methods
of estimation lessens as the sample size increases (because of the central limit theorem)
and in particular Bayes’ estimators depend less on the assume prior density.

PROBLEMS 8

8.1 Figure 8.3 shows some data fitted with polynomials of order 1, 2, and 3. Assuming the
data are normally distributed, the c2 values for the fits are 13.9, 12.0, and 5.1, respectively.
Comment on these results.

8.2 The table below shows the values of a quantity y, assumed to be normally distributed,
and their associated errors s, measured at six values of x.

i 1 2 3 4 5 6

xi 1 2 3 4 5 6

yi 2.5 3.0 6.0 9.0 10.5 10.5

si 1 1 1 1 1 1

2

linear
quadratic
cubic

1 3
x

y

4 5

1

2

3

4

5

FIGURE 8.3 Data fitted with linear, quadratic, and cubic polynomials.

PROBLEMS 8 171



By successively fitting polynomials of increasing order, deduce the lowest order polyno-
mial that gives an acceptable fit to the data and justify your answer. Find the coefficients
of the polynomials corresponding to the best fit and their errors and plot the resulting
best-fit curve.

8.3 An experiment determines two parameters l1 and l2 and finds values y
ð1Þ
1 ¼ 1:0 and

y
ð1Þ
2 ¼ �1:0 with a variance matrix

Vð1Þ ¼
�

2:0 �1:0
�1:0 1:5

�
� 10�2:

A second experiment finds a new value of l2 to be y
ð2Þ
2 ¼ �1:1with a variance 10�2. Find

the least-squares estimates for l1 and l2 and their associated error matrix.

8.4 Rework Problem 8.3, but now with the constraint l1 þ l2 ¼ 0.

8.5 Measurements are made of the lengths xiði ¼ 1, 2, 3Þ of the sides of a right-angled
triangle and the values hiði ¼ 1, 2, 3Þ found. If these are assumed to be normally
distributed with equal variances s2, find the minimum chi-squared estimates for
xiði ¼ 1, 2, 3Þ.

8.6 Two determinations are made of the parameters of a straight line y ¼ axþ b. The first is
a1 ¼ 4, b1 ¼ 12 and the second is a2 ¼ 3, b2 ¼ 14. The associated variance matrices
are

V1 ¼
�

1 �1
�1 2

�
and V2 ¼

�
1 �1

�1 3

�
:

Find the best estimate for a and b and the associated error matrix.

8.7 Let r1, r2, ., rn be an independent random sample of size n drawn from a binomial
density fRðr; p, nÞwith unknown parameter p. If p is assumed to be uniformly distributed
in the interval ð0, 1Þ, find the Bayes’ estimator for p, using a loss function of the form
lðp̂, pÞ ¼ ðp̂� pÞ2. Compare your solution with that obtained by using the maximum
likelihood method (Problem 7.7). Note the integral

Z 1

0
xnð1� xÞmdx ¼ n!m!

ðnþmþ 1Þ!:

8.8 Use the method of moments to find an estimator for the parameter a in the two-
parameter distribution:

fðx; a, bÞ ¼ a exp½�aðx� bÞ�, a,b > 0, x > 0

in terms of the first two sample moments.
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Boundaries 187

9.7 Bayesian Confidence Intervals 189

In Chapters 7 and 8, we discussed point estimation e the estimation of the value of
a parameter. In practice, point estimation alone is not enough. It is also necessary to supply
a statement about the error on the estimate. In those chapters, we did this by calculating the
variance on the estimator and taking its square root, the standard deviation, as a ‘standard
error’ to define error bars. In practice, because of the central limit theorem, most density func-
tions lead to a normal form for the sampling density of the estimate in the case of large
samples. In cases where this is not true, we could still use the standard deviation as a measure
of uncertainty, but in these situations it is more usual to consider a generalization called
interval estimation, based on the concept of a confidence interval, which is an interval con-
structed in such a way that a predetermined percentage of them will contain the true value
of the parameter. This chapter will describe these ideas and their application, including the
problematic case where an estimate leads to a value of a parameter that is close to its physical
boundary.
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9.1. CONFIDENCE INTERVALS: BASIC IDEAS

We have already encountered the idea of a confidence interval in Chapter 1, although it
was not called that there. In Section 1.3.4, we noted that the distribution of the observations
on a random variable x for large samples often, indeed usually, had a density nðxÞ of approx-
imately normal form about the sample mean x with variance s2. In that case, we could find
values

C ¼
Z xU

xL

nðxÞdx

for any values xL and xU . The quantityC is called the confidence coefficient and is usuallywritten
C ¼ ð1� 2aÞ. (The reason for using the quantity ð1� 2aÞ will become clear later.) We also
refer to 100C% ¼ 100ð1� 2aÞ% as the confidence level. The confidence coefficient corresponds
to a random interval ðxL, xUÞ, called the confidence interval xL � x� xU , which depends only on
the observed data. For example, from tables of the normal density, we know that C ¼ 0:683,
i.e., a confidence level of 68.3%, for a confidence interval m� s � x � mþ s. In general, if the
confidence coefficient is C ¼ ð1� 2aÞ, then 100ð1� 2aÞ% of the corresponding confidence
intervals computed will include the true value of the parameter being estimated. Figure 9.1
shows an example of a confidence interval for a 90% confidence level of a normal distribution.
Note that, in this case, the shaded areas both contain ½ð100� 90Þ% ¼ 5% of the area of the
distribution.

Confidence intervals are not uniquely defined by the value of the confidence level. In addi-
tion to the choice used in Fig. 9.1, where the probabilities above and below the interval are
equal, called a central interval, we could, for example, have chosen a symmetric interval about
the mean, so that ðxU � mÞ and ðm� xLÞ were equal, or values of xL and xU that minimize
ðxU � xLÞ, although, in practice, the construction of confidence intervals that are shortest
for a given confidence coefficient is difficult, or may not even be possible. For symmetric
distributions like the normal distribution, all three choices produce the same confidence
intervals, but this is not true in general for asymmetric probability densities. The usual choice
is the central interval.

FIGURE 9.1 Central confidence interval corresponding to a 90% confidence level for a normal distribution.
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Suppose we are interested in estimating a single parameter q from an experiment that
consists of n observations of a random variable x drawn from a probability density fðx; qÞ.
The sample x1, x2,.,xn is used to construct an estimator q̂ðx1, x2,., xnÞ for q, for example,
by one of the methods discussed in earlier chapters. If q̂e is the value of the estimator
observed in the experiment, and ŝe is the estimate of its standard deviation, then the
measurement would be given as q ¼ q̂e � ŝe. The interpretation of this is that if repeated esti-
mates, all based on n observations of the random variable x, are made, they will be distrib-
uted according to the same sampling distribution gðq̂; qÞ centered around the true value q

and with a true standard deviation sq that are estimated to be q̂e and ŝe. For most practical
cases, gðq̂; qÞ will be approximately normal for large samples. Our aim is to find intervals
about the estimator q̂ such that we may make probabilistic statements concerning the prob-
ability of the true value q being within the intervals.

Onemethod that is applicable in many cases is the following. One finds, if possible, a func-
tion of the sample data and the parameter to be estimated, say u, which has a distribution
independent of the parameter. Then a probability statement of the form

P½u1 � u � u2� ¼ p

is constructed and converted into a probability statement about the parameter to be esti-
mated. It is not always possible to find such a function, and in these cases more general
methods (to be described in Section 9.2) must be used. For the present, we will illustrate
this method by an example.

EXAMPLE 9.1

A sample of size 100 is drawn from a population with unit variance, but unknown mean m. If m̂ is

estimated from the sample to be m̂e ¼ 1:0, find a random interval for a confidence coefficient of 0.95.

The quantity

u ¼
�
m̂e � m

s=
ffiffiffi
n

p
�

¼ 10ðm̂e � mÞ,

is, in general, normally distributed with mean zero and unit variance, and so has a density function

fðuÞ ¼ 1ffiffiffiffiffiffi
2p

p exp

�
�u2

2

�
,

which is independent of m. The probability that u lies between any two arbitrary values u1 and u2 is

thus

P½u1 � u � u2� ¼
Z u2

u1

fðtÞdt:

Then, from Table C.1, we can find values u1 ¼ �u2 ¼ �1:96 such that

P½�1:96 � u � 1:96� ¼
Z 1:96

�1:96
fðtÞdt ¼ 0:95:

Transforming back to the variable m, this becomes

P½m̂e � 0:196 � m � m̂e þ 0:196� ¼ 0:95,
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and since m̂ is estimated from the sample to be m̂e ¼ 1:0, we have

P½0:804 � m � 1:196� ¼ 0:95:

This is the required confidence interval. The interpretation of this is that if samples of size 100 were

repeatedly drawn from the population, and if random intervals were computed as above for each

sample, then 95% of those intervals would be expected to contain the true mean.

For obvious reasons, the intervals discussed above are called two-tailed confidence intervals.
One-tailed confidence intervals are also commonly used. In these cases, the confidence coeffi-
cients are defined by

CU ¼ P½x < xU � ¼
Z xU

�N
fðxÞdx

if one is only interested in the upper limit of the variable, or

CL ¼ P½x > xL� ¼
Z N

xL

fðxÞdx

if one is only interested in its lower limit. It is worth emphasizing that a central interval cor-
responding to a confidence level C is not the same as a one-tailed limit corresponding to the
same value of C. For example, for a normal distribution, the upper limit of a 90% two-tailed
central confidence interval has 95% of the distribution below it and 5% above, whereas for
a one-tailed confidence interval, a 90% upper limit has 90% of the distribution below it
and 10% above.

EXAMPLE 9.2

Out of 1000 decays of an unstable particle, 9 are observed to be of type E.What can be said about the upper

limit for the probability of a decay of this type?

The Poisson distribution is applicable here andwe have m ¼ s2 ¼ 9. However, we also know that

for m � 9, the Poisson distribution is well approximated by a normal distribution. Thus, the quantity

u ¼ ðx� mÞ=s ¼ ðx� 9Þ=3,
is a standard normal variate. So, for example, from Table C.1,

P½u � 1:645� ¼ 0:95,

and, hence, x� 13:9. Hence, the upper limit for the probability of this type of decay is P� 0:014with

95% confidence.

The concept of interval estimation for a single parameter may be extended in a straightfor-
ward way to include simultaneous estimation of several parameters. Thus, a 100ð1� 2aÞ%
confidence region is a region constructed from the sample such that, for repeatedly drawn
samples, 100ð1� 2aÞ% of the regions would be expected to contain the set of parameters
under estimation.
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It should be remarked immediately that confidence intervals and regions are essentially
arbitrary, because they depend on what function of the observations is chosen to be an esti-
mator. This is easily illustrated by reference to the normal distribution of Example 9.1. If we
use the sample mean as an estimator of the population mean, then for a confidence coefficient
of 0.95,

P

�
x� 1:96sffiffiffi

n
p � m � xþ 1:96sffiffiffi

n
p

�
¼ 0:95: (9.1)

and the length of the interval is 2� 1:96s=
ffiffiffi
n

p
. However, we could also use any given single

observation to be an estimator, in which case, the confidence interval would be
ffiffiffi
n

p
times as

long. An important property of ML estimators is that, for large samples, they provide confi-
dence intervals and regions that, on average, are smaller than intervals and regions deter-
mined by any other method of estimation of the parameters.

9.2. CONFIDENCE INTERVALS: GENERAL METHOD

The method used in Section 9.1 requires the existence of functions of the sample and
parameters that are distributed independently of the parameters. This is its disadvantage,
for in many cases such functions do not exist. However, for these cases, there exists
a more general method that we now describe.

Let gðq̂; qÞ be the sampling pdf of q̂, the estimator for samples of size n drawn from a pop-
ulation density fðx; qÞ containing a parameter q. Figure 9.2 shows a plot of gðq̂; qÞ as a function
of q̂ for a given value of the true parameter q. Also shown are two shaded regions that give the
values of q̂ for which

P½q̂ � haðqÞ� ¼
Z N

haðqÞ
gðq̂; qÞdq̂ ¼ 1� Gðha; qÞ ¼ a (9.2)

and

P½q̂ � hbðqÞ� ¼
Z hbðqÞ

�N
gðq̂; qÞdq̂ ¼ Gðhb; qÞ ¼ b, (9.3)

g( ˆ, )

hh

FIGURE 9.2 The density function of gðq̂; qÞ for a given value of the true parameter q.
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where G is the distribution function corresponding to the density gðq̂; qÞ. Thus, for a fixed
value of q, a 100ð1� a� bÞ% confidence interval for q̂ is

P½haðqÞ � q̂ � hbðqÞ� ¼
Z hbðqÞ

haðqÞ
gðq̂, qÞdq̂ ¼ 1� a� b: (9.4)

Equations (9.2) and (9.3) determine the functions haðqÞ and hbðqÞ. If the equations q̂ ¼ haðqÞ
and q̂ ¼ hbðqÞ are plotted as a function of the true parameter q, a diagram such as that shown
in Fig. 9.3 would result. The region between the two curves is called the confidence belt.
A vertical line through any value of q, say q, intersects haðqÞ and hbðqÞ at the values
q̂ ¼ haðqÞ and q̂ ¼ hbðqÞ, which determine the 100ð1� a� bÞ% confidence limits. Thus,
(9.4) gives the probability for the estimator to be within the belt, regardless of the value of q.

A horizontal line through some experimental value of q̂ ¼ q̂e, corresponding to an esti-
mate based on a sample of size n, cuts the curves at values qaðq̂eÞ and qbðq̂eÞ, where qa and
qb are the values of the inverse functions h�1

a ðq̂Þ and h�1
b ðq̂Þ, respectively. Since the

inequalities

q̂ � haðqÞ and q̂ � hbðqÞ
imply

qa � q and qb � q,

respectively, (9.2) and (9.3) become

P½qa � q� ¼ a and P½qb � q� ¼ b

or, equivalently

P
�
qaðq̂eÞ � q � qbðq̂eÞ

� ¼ 1� a� b:

FIGURE 9.3 General method to construct a confidence interval.
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Thus, to construct a confidence interval for q, we first calculate an estimate q̂e from a sample
of size n. Then, we draw a horizontal line through q̂e to cut the curves at values qaðq̂eÞ and
qbðq̂eÞ, as shown in Fig. 9.3, so that, by construction, the required confidence limit is

P
�
qaðq̂eÞ � q � qbðq̂eÞ

� ¼ 1� a� b: (9.5)

A confidence interval is often expressed by asymmetric error bars in the same way as the
use of a standard deviation. Thus, if we set a ¼ qaðq̂eÞ and b ¼ qbðq̂eÞ, then the result of the
measurement would be written q ¼ q̂e

þd�c , where c ¼ q̂e � a and d ¼ b� q̂e. If we are
only interested in one-sided confidence intervals, then qa represents a lower limit on q,
i.e., P½a � q� ¼ 1� a, and, similarly, qb represents an upper limit with P½q � b� ¼ 1� b.

To find the curves haðqÞ and hbðqÞ may be a lengthy procedure. However, in some cases,
the values a and b may be obtained without knowing these curves. From (9.2) and (9.3),
a and b are solutions of the equations

a ¼
Z N

q̂e

gðq̂, aÞdq̂ ¼ 1� Gðq̂e; aÞ, (9.6a)

and

b ¼
Z q̂e

�N
gðq̂, bÞdq̂ ¼ Gðq̂e; bÞ, (9.6b)

So, if these equations can be solved (possibly numerically), the confidence interval results
directly.

The general method given above can be extended to the case of confidence regions for the p
parameters of the population fðx; q1, q2,., qpÞ, i.e., that region R in the parameter space,
such that

P½q̂1, q̂2,., q̂p are contained in R�

¼
Z
R
.

Z
gðq̂1, q̂2,., q̂n; q1, q2,., qpÞ

Yp
i¼ 1

dq̂i

¼ 1� a� b: (9.7)

This can be done assuming that the sampling distribution of the estimators is a multivariate
normal distribution with a given covariance matrix. This will not be pursued further here,
except to say that the confidence region for two variables is approximately an ellipse and,
for n variates, is an n-dimensional ellipsoid.

Finally, we note that the method cannot be used to obtain confidence regions for a subset r
of the p parameters in the density fðx; q1, q2,., qpÞ, except for the case of large samples. This
is discussed in Section 9.5 below.

9.3. NORMAL DISTRIBUTION

Because the normal distribution is very widely used in physical sciences, we will obtain
specific confidence intervals for its parameters.
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9.3.1. Confidence Intervals for the Mean

From (9.1), it is clear that a confidence interval for the mean m cannot be calculated unless
the variance s2 is known, and so we will initially assume that this is the case. We will also
assume, as usual, that the distribution of x, the sample mean, is approximately normal
with mean m and standard deviation s, i.e., its sampling distribution function is

Gðx; m,sÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2ps

p
Z x

�N
exp

�
� 1

2

�
x0 � m

s

�2�
dx0:

Then a confidence interval [a, b] may be constructed if equations (9.6) can be solved. These
are

a ¼ 1�Nðx; a,sÞ
and

b ¼ Nðx; b,sÞ,
whereN is the standardized form of the normal distribution function. The solutions for a and
b are

a ¼ x� sN�1ð1� aÞ (9.8a)

and

b ¼ xþ sN�1ð1� bÞ, (9.8b)

whereN�1 is the inverse function of N, i.e., the quantile of the standardized normal distribu-
tion function, and we have taken N�1ðbÞ ¼ �N�1ð1� bÞ for symmetry. The relationship
between the inverse function and the confidence level is illustrated in Fig. 9.4.

If we consider a central confidence interval so that a ¼ b ¼ g=2, a common choice for the
interval is to use values such that N�1ð1� g=2Þ ¼ 1, 2,. Similarly, for a one-sided interval
we could choose N�1ð1� aÞ ¼ 1, 2,. Tables of the inverse function N�1 are published, but

(a) (b)

FIGURE 9.4 The standardized normal density nðxÞ and the relationship between the inverse function N�1 and
the confidence level for (a) a two-tailed central confidence level and (b) a one-tailed confidence level.
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in practice only a few values are commonly used. The resulting confidence levels for
these values are shown in Table 9.1(a). The conventional 68.3% central confidence
interval has a ¼ b ¼ g=2 with N�1ð1� g=2Þ ¼ 1 and corresponds to ‘one s’ errors
bars. Alternatively, we could choose a convenient number for the confidence level itself
and find the corresponding values of N�1. Again, the commonly used values are shown
in Table 9.1(b).

If s2 is not known, then, for large samples, we could use an estimate ŝ2 for this quantity
without significant loss of precision, but, for small samples, this procedure is not satisfactory.
The solution is to use the quantity

t ¼ x� m

ðs2=nÞ1=2
¼ ðx� mÞ

"
1

nðn� 1Þ
Xn
i¼ 1

ðxi � xÞ2
#�1=2

, (9.9)

which we have seen in Section 6.2 has a Student’s t distribution with ðn� 1Þ degrees of
freedom, and only involves m. Thus, we can find a number ta such that

P½�ta � t � ta� ¼
Z ta

�ta

fðt; n� 1Þdt ¼ ð1� 2aÞ: (9.10)

As in Example 9.1, we may now transform the inequality in (9.10) to give

P½x� Ta � m � xþ Ta� ¼ ð1� 2aÞ, (9.11)

TABLE 9.1(a) Values of the confidence level for different values of the inverse of the
standardized normal distributionN�1: (A) for a central confidence interval
with confidence level ð1� gÞ (see Fig. 9.4(a)); and (B) a one-tailed
confidence interval with confidence level ð1� aÞ(see Fig. 9.4(b))

(A) Central two-tailed (B) One-tailed

NL1ð1Lg=2Þ 1Lg NL1ð1LaÞ 1La

1 0.6827 1 0.8413

2 0.9544 2 0.9772

3 0.9973 3 0.9987

TABLE 9.1(b) Values of the inverse of the standardized normal distributionN�1 for different
values of the confidence level: (A) for a central confidence interval and
N�1ð1� g=2Þ (see Fig. 9.4(a)); and (B) a one-tailed confidence interval with
N�1ð1� aÞ (see Fig. 9.4(b))

(A) Central two-tailed (B) One-tailed

1Lg NL1ð1Lg=2Þ 1La NL1ð1LaÞ
0.90 1.645 0.90 1.282

0.95 1.960 0.95 1.645

0.99 2.576 0.99 2.326
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where

Ta ¼ ta

"
1

nðn� 1Þ
Xn
i¼ 1

ðxi � xÞ2
#1=2

:

Thewidth of the interval is then 2Ta. The number ta is called the 100a% level of t, and gives the
point that cuts off 100a% of the area under the curve fðtÞ on the upper tail.

EXAMPLE 9.3

Find: (a) a 95% central confidence interval for the mean of a normal distribution with unknown variance,

given that the sample mean and sample variance are x ¼ 5 and s2 ¼ 6, respectively, using a sample size of

60; (b) an exact 95% central confidence interval using the Student’s t distribution for the same statistics.

Repeat the calculations for a sample size of 8 and comment on your results.

(a) For n ¼ 60, we can use the normal approximation and the interval [a, b] is then given by (9.8).

Using Table 9.1(b), a 95% confidence interval is��
x� 1:96� sffiffiffi

n
p

�
,

�
xþ 1:96� sffiffiffi

n
p

��
¼ ½4:38, 5:62�

and has a length 1.24.

(b) For an exact confidence level, we use the t distribution and (9.11). Then, using Table C.4,

a 95% confidence interval is��
x� 1:67� sffiffiffi

n
p

�
,

�
xþ 1:67� sffiffiffi

n
p

��
¼ ½4:47, 5:53�

which has a length 1.06, i.e., a reduction of 15%. Repeating the calculation using a sample size of 8,

the confidence intervals are [3.30, 6.70], with a length 4.40, in the normal approximation, and [3.55,

6.45], with a length 2.90, using the exact form from the t distribution, a reduction of 34%. These

differences are greater for n ¼ 8 than for n ¼ 60, because in the former, the small sample size

means that the normal approximation is poor.

9.3.2. Confidence Intervals for the Variance

To find confidence intervals for the variance, we use the c2 distribution. We know that the
quantity

c2 ¼ 1

s2

Xn
i¼ 1

ðxi � xÞ2 (9.12)

has a c2 distribution with ðn� 1Þ degrees of freedom, and so we can use it to find numbers c21
and c22 such that

P½c21 � c2 � c22� ¼
Z c2

2

c2
1

fðc2; n� 1Þdc2 ¼ 1� 2a,
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or, equivalently,

P

"
1

c22

Xn
i¼ 1

ðxi � xÞ2 � s2 � 1

c21

Xn
i¼ 1

ðxi � xÞ2
#

¼ 1� 2a: (9.13)

Since the c2 distribution is not symmetric, the shortest confidence interval cannot be simply
obtained for a given a. However, provided the number of degrees of freedom is not too small,
a good approximation is to choose c21 and c22 such that 100a% of the area of fðc2Þ is cut off
from each tail, i.e., such that Z N

c2
1

fðc2; n� 1Þdc2 ¼ 1� a,

and Z N

c2
2

fðc2; n� 1Þdc2 ¼ a:

Such numbers can easily be obtained from tables of the c2 distribution function.

EXAMPLE 9.4

The following random sample was drawn from a normal distribution with variance s2:

10 11 13 13 12 13 10 14 12 12

Find an approximate 99% central confidence interval for s2.

This is found by using (9.13). First, we find the sample mean x ¼ 12, and hence

X10
i¼ 1

ðxi � xÞ2 ¼ 16:

For an approximate central confidence interval, we need to find values of c21 and c22 such that equal

areas are cut off from the upper and lower tails of the chi-squared distribution function. So, for

a 99% confidence level,Z c2
1

�N
fðc2,n� 1Þdc2 ¼ 0:005 and

Z N

c2
2

fðc2,n� 1Þdc2 ¼ 1�
Z c2

2

�N
fðc2,n� 1Þdc2 ¼ 0:005,

where fðc2,n� 1Þ is the chi-squared distribution for n� 1 degrees of freedom. Using Table C.4,

for n ¼ 10, gives c21 ¼ 1:73 and c22 ¼ 23:6. Hence, from (9.13) the interval is [0.68, 9.25], with

width 8.57.

9.3.3. Confidence Regions for the Mean and Variance

In constructing a confidence region for the mean and variance simultaneously, we cannot
use the region bounded by the limits of the confidence intervals obtained separately for m and
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s2 (a rectangle in the ðm,s2Þ plane), because the quantities t of (9.9) and m are not indepen-
dently distributed, and hence the joint probability that the two intervals contain the true
parameter values is not equal to the product of the separate probabilities. However, the distri-
butions of x and

Pðxi � xÞ2 are independent and may be used to construct the required confi-
dence region. Thus, for a 100ð1� 2aÞ% confidence region, we may find numbers aiði ¼ 1, 4Þ
such that

P

�
� a1 �

�
x� m

s=
ffiffiffi
n

p
�

� a2

�
¼ ð1� 2aÞ1=2, (9.14a)

and

P

"
� a3 �

 Pðxi � xÞ2
s2

!
� a4

#
¼ ð1� 2aÞ1=2: (9.14b)

The joint probability is then 100ð1� 2aÞ by virtue of the independence of the variables.
The region defined by (9.14) will not, in general, be the smallest possible, but will not
differ much from the minimum (which is roughly elliptical) unless the sample size is
very small.

9.4. POISSON DISTRIBUTION

Another important distribution commonly met in physical science is the Poisson that we
discussed in Section 4.8. Recall that the probability of observing k events is given by the
Poisson density (4.47),

fðk;lÞ ¼ lk

k!
expð�lÞ, l > 0, k ¼ 0, 1, 2,. (9.15)

and l is the mean of the distribution, i.e., l ¼ E½k�. The aim is to a construct a confidence
interval for a single measurement l̂e ¼ ke. For values of ke � 9, we can use the normal
approximation to the Poisson, as we did in Example 9.2, but for smaller values, we
must use the exact form of the distribution. The general technique given in Section 9.2
is not directly applicable because, for a discrete parameter, the functions ha and hb
that define the confidence corridor do not exist for all values of the parameter. For
example, in the present case, we would need to find values of ha and hb satisfying the
conditions

P½l̂ � haðlÞ� ¼ a and P½l̂ � hbðlÞ� ¼ b

for all values of l. But, if a and b have fixed values, then because l̂e only takes on the discrete
values ke, these inequalities hold only for particular values of l. However, we can still
construct a confidence interval [a, b] by using equations (9.6). For discrete variables, these
become

a ¼ P½l̂ � l̂e; a� and b ¼ P½l̂ � l̂e; b� (9.16a)
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and, for the case of a Poisson variable, using (9.15), they take the forms

a ¼
XN
k¼ ke

fðk; aÞ ¼ 1�
Xke�1

k¼ 0

fðk; aÞ ¼ 1�
Xke�1

k¼ 0

ak

k!
e�a (9.16b)

and

b ¼
Xke
k¼ 0

fðn; bÞ ¼
Xke
k¼ 0

bk

k!
e�b: (9.16c)

For a given estimate l̂ ¼ ke, these equations may be solved numerically by iteration to yield
values for a and b. Some values of the upper and lower limits obtained for a range of values of
ke are given in Table 9.2. Note that a lower limit is not obtainable if ke ¼ 0.

The interpretation of equations (9.16a) is that if l ¼ a, the probability of observing a value
greater than or equal to the one actually observed is a. Likewise, if l ¼ b, the probability of
observing a value less than or equal to the one actually observed is b. The confidence inter-
vals for the mean are

P½l � a� � 1� a, P½l � b� � 1� b

and

P½a � l � b� � 1� a� b:

An important case is when ke ¼ 0, i.e., no events are observed. In this case, (9.16c)
becomes b ¼ expð�bÞ, or b ¼ �ln b.

TABLE 9.2 Lower and upper limits for a Poisson variable for various observed values ke.

ke

Lower limit a Upper limit b

a[ 0:1 a[ 0:05 a[ 0:01 b[ 0:1 b[ 0:05 b[ 0:01

0 e e e 2.30 3.00 4.61

1 0.11 0.05 0.01 3.89 4.74 6.64

2 0.53 0.36 0.15 5.32 6.30 8.41

3 1.10 0.82 0.44 6.68 7.75 10.04

4 1.74 1.37 0.82 7.99 9.15 11.60

5 2.43 1.97 1.28 9.27 10.51 13.11

6 3.15 2.61 1.79 10.53 11.84 14.57

7 3.89 3.29 2.33 11.77 13.15 16.00

8 4.66 3.98 2.91 12.99 14.43 17.40

9 5.43 4.70 3.51 14.21 15.71 18.78

10 6.22 5.43 4.13 15.41 16.96 20.14
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EXAMPLE 9.5

How does the probability calculated in Example 9.2 change if no events were observed?

With less than about 9 events, the normal approximation used in Example 9.2 is not appropriate

and we have to use the Poisson distribution. If we still work at a confidence level of 95%, so that

b ¼ 0:05, the upper limit obtained from (9.16c) is b ¼ �lnð0:05Þx3, as shown in Table 9.2. Thus, if

the number of occurrences of a rare event follows a Poisson distribution with mean l and no such

event is observed, the 95% upper limit for the mean is 3; that is, if the true mean were 3, then the

probability of observing zero events is 5%. So, if no events were seen, the probability of the

occurrence of a type E event is P � 0:003 with 95% confidence.

9.5. LARGE SAMPLES

In Chapter 7, we have seen that the large-sample distribution of the ML estimator q̂ of
a parameter q in the density function fðx; qÞ is approximately normal about q as mean. In
this situation, approximate confidence intervals may be simply constructed. The method
is, by analogy with Example 9.1, to convert an inequality of the form

P

"
� ua � q̂� q

ðvar q̂Þ1=2
� ua

#
x 1� 2a (9.17)

for the distribution of q̂ expressed in standardmeasure, to an inequality for q itself. Recall that
a is defined by

1ffiffiffiffiffiffi
2p

p
Z ua

�ua

exp

�
�u2

2

�
du ¼ 1� 2a: (9.18)

This will be illustrated by applying the method to the binomial distribution.

EXAMPLE 9.6

Find an approximate 95% confidence interval for p, the parameter of the binomial distribution.

If we apply equation (7.14) to the binomial distribution of equation (4.29), we find (see

Example 7.6)

varðq̂Þh q̂2 ¼ pð1� pÞ
n

: (9.19)

An approximate ð1� 2aÞ confidence interval is then obtained from (9.17) by considering the

statement

P

"
� ua � p̂� p

½pð1� pÞ=n�1=2
� ua

#
x 1� 2a, (9.20)
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which, if we neglect terms of order 1=
ffiffiffi
n

p
, may be written as

P

"
p̂� ua

	
p̂ð1� p̂Þ

n


1=2

� p � p̂þ ua

	
p̂ð1� p̂Þ

n


1=2
#
x 1� 2a: (9.21)

So, a 95% confidence interval for p is defined by

P

�
p̂� 1:96

�
p̂ð1� p̂Þ

n

�1=2

� p � p̂þ 1:96

�
p̂ð1� p̂Þ

n

�1=2�
x 0:95:

The above method may be extended to confidence regions. In terms of the matrix Mij,
defined in equation (7.34), we know that

c2 ¼
Xp
i¼ 1

Xp
j¼ 1

ðq̂i � qÞiMijðq̂j � qjÞ, (9.22)

is approximately distributed as c2, with p degrees of freedom. So, just as we used (9.15) for
the normal distribution, we can use the a percentage points of the c2 distribution to set up
a confidence region for the parameters qi. It is an ellipsoid with the center at ðq1, q2,., qpÞ.

At the end of Section 9.2, we remarked that it was not possible, in general, to obtain a confi-
dence region for a subset of the p parameters for samples of arbitrary size. However, for large
samples, this is possible. If we wish to construct a region for a subset of r parameters ðr < pÞ,
then the elements of the matrix M0

ij analogous to Mij above are given by

M0
ij ¼ ðV0Þ�1

ij , (9.23)

where the matrix V0 is obtained by removing the last ðp� rÞ rows and columns in Vij. The
quadratic form

c0 2 ¼
Xr
i¼ 1

Xr
j¼ 1

ðq̂i � qiÞM0
ijðq̂j � qjÞ, (9.24)

is then approximately distributed as c2 with r degrees of freedom, and will define an ellip-
soid in the qið1, 2,., rÞ space.

9.6. CONFIDENCE INTERVALS NEAR BOUNDARIES

In the discussion of point estimation in Chapters 7 and 8, it was implicitly assumed that an
individual measurement could take on any value.1 However, this assumption is not always
true. An example often cited is that of the mass of a body, which cannot be negative. If the
mass of a body is obtained by a direct measurement, for example by weighing it, then this

1The constraints discussed in the context of the least-squares method were on combinations of data or the

parameters used in the fitting procedure.
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condition is automatically satisfied. But a direct measurement may not always be possible.
For example, in the case of a sub-atomic particle, it is usual to measure its energy E and
momentum p. The mass m is then found from the general expression m2c4 ¼ E2 � p2c2,
where c is the speed of light. But, in this situation, E and p are both random variables with
associated uncertainties, so that even though both will be positive, the resulting experimental
value of the squared mass, being the difference of two terms, can be, and sometimes is, found
to be negative. In general, a measurement of any quantity q, that is known to be positive for
physical reasons, when found from the differences of random variables, can result in a nega-
tive value for a specific measurement of its estimator q̂. In these circumstances, the construc-
tion and interpretation of confidence intervals must be treated with care if one is not to end
up making misleading probability statements. Similar difficulties occur whenever a param-
eter has a physical boundary, but the method of estimation allows its estimator to take values
in unphysical regions. The example below will illustrate this.

Consider the simple case where an estimator q̂ of a parameter q, known for physical
reasons to be non-negative, is given in terms of two independent random variables, x and
y, by q̂ ¼ x� y. If x and y are both normally distributed with means mx and my and variances
s2x and s2y, respectively, we know from the work of previous chapters that q̂ is also normally
distributed, with mean q ¼ mx � my and variance s2q ¼ s2x þ s2y. If, now, an experiment gives
a value q̂e for q̂, then the upper limit for q at a confidence level of ð1� bÞ is obtained from
(9.8b) and is

qup ¼ q̂e þ sqN
�1ð1� bÞ: (9.25a)

For example, if q̂e is measured to be e3.0 with sq ¼ 1:5, where the latter is either known or
estimated from the data, and we use a 95% confidence interval, with N�1ð0:95Þ ¼ 1:645 (see
Table 9.1b), then from (9.25a), qup ¼ �0:532: The interval, ½�N, � 0:532�, therefore will
contain, by construction, the true value q with a probability of 95%, regardless of the actual
value of q. Although this may look odd at first sight, there is nothing intrinsically wrong with
this. If the true value of qwere zero, half of such estimates would be expected to be negative.
But the upper limit is also in the unphysical region. Again, we would expect this for 5% of
similar experiments if q really were zero. There is nothing incorrect with the procedure;
we have simply encountered an experiment that does not lie within the interval constructed
by applying the frequency definition of probability. So, unless there are other compelling
reasons for doing so, the data should certainly not be discarded as being ‘wrong’. Neverthe-
less, since we know that q cannot be negative, the measurement has not added to our prior
knowledge in any significant way, so the question arises as to whether this single estimate can
be better used.

Unfortunately, there is no unique answer to this question. The first possibility is to do
nothing except to report the measurement. Other experiments will produce different values
of q̂e and by combining them (for example, by combining the likelihood functions for each
experiment, as mentioned in Chapter 7, or by using the least-squares method as in Section
8.1.6), a more precise overall estimate q̂ may be found. A second possibility is to increase
the confidence limit until the upper limit enters the physical region. Using the example
above, if the confidence limit is increased to 99%, with N�1ð0:99Þ ¼ 2:326 from Table 9.1b,
then from (9.25a), qup ¼ 0:489. Although this is comfortably greater than zero, it could be
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smaller than the precision of the experiment as measured by sq, and in this example it is
because we took sq ¼ 1:5. An extreme example of the difficulty that this strategy can lead
to is if a confidence level is deliberately chosen so that qup is only just positive. Thus, if we
choose a confidence level of 97.725%, we would quote the value qup ¼ 1:5� 10�5 at this
confidence level, which is clearly absurd. A third possibility is to move a negative value of
q̂e to zero, before using (9.25a) to calculate qup, so that

qup ¼ maxðq̂e, 0Þ þ sqN
�1ð1� bÞ: (9.25b)

For the example above, this gives qup ¼ 2:468, which is both in the physical region and
compatible with the precision of the experiment. The drawback with this method is that
we can no longer interpret the computed interval as a range that will include the true value
with a probability ð1� bÞ. The actual probability will always be greater, because the value of
qup from (9.25b) will always be greater than the value calculated from (9.25a).

9.7. BAYESIAN CONFIDENCE INTERVALS

The strategies outlined in Section 9.6 to handle the problem of confidence intervals when
the estimated value of a parameter is close to a boundary all use the frequency interpreta-
tion of probability. A final possibility is to incorporate our prior knowledge, including the
fact that the parameter cannot have a negative value, by using subjective probability,
leading to so-called Bayesian intervals. Although such intervals may look similar to the
confidence intervals discussed previously, because they are based on posterior probability
densities their interpretation is very different and, for this reason, they are usually called
probability intervals or credible intervals, to distinguish them from confidence intervals con-
structed using the frequency interpretation of probability. In the latter, x is a random vari-
able and gives rise to a random interval that has a specific probability of containing the
fixed, but unknown, value of the parameter q. In the Bayesian approach, the parameter is
random in the sense that we have a prior belief about its value and the interval can be
thought of as fixed, once this information is available. Only if the prior distribution of
the unknown parameter is chosen to be a uniform distribution are the two intervals
equivalent.

The starting point for constructing credible intervals is Bayes’ theorem, which we first intro-
duced fordiscretevariables inequation (2.11)andgeneralized to the caseof continuousvariables
in equation (3.22c). In the present context, it ismore convenient towrite Bayes’ theorem in terms
of the likelihood function, as was done in Section 8.4.3. Thus, for a single variable q, if Lðx; qÞ is
the likelihood function of the set of n variables xðx1,x2,., xnÞ for a given value of q, i.e.,

LðxjqÞ ¼
Yn
i¼ 1

fðxi; qÞ,

where fðx; qÞ is the density function of the variables x, then rewriting (8.88), the posterior
probability density fpostðqjxÞ is given by

fpostðqjxÞ ¼ LðxjqÞfpriorðqÞR
Lðxjq0Þfpriorðq0Þdq0

, (9.26)
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where fpriorðqÞ is the prior probability density for q. The density fpostðqjxÞ replaces the distri-
butions (usually the normal) assumed in previous sections and can be used to construct an
interval [a, b], such that for any given probabilities a and b,

a ¼
Z a

�N
fpostðqjxÞdq and b ¼

Z N

b
fpostðqjxÞdq:

Thus, a ¼ b gives a central interval with a predetermined probability ð1� a� bÞ; alterna-
tively, one could choose fpostðajxÞ ¼ fpostðbjxÞ, which leads to the shortest interval and is
what is usually used in practice. The advantage of the subjective approach over the
frequency approach is that, in principle, prior knowledge can be incorporated via the
density fpriorðqÞ. The credible interval then contains a fraction of one’s total belief about
the parameter, in the sense that one would be prepared to bet, with well-defined odds
that depend on a and b, that the true value of q lies in the interval. The qualifier ‘in principle’
is necessary because, as in all applications of subjective probability, the problem arises in
choosing a form for fpriorðqÞ. An example of the construction of a credible interval is given
in Problem 9.7.

For the case discussed in Section 9.6, where q > 0, we can certainly set fpriorðqÞ ¼ 0 for q� 0.
Then, using (9.26), the upper limit is given by

1� b ¼
Z qup

�N
fpostðqjxÞdq

¼
Z qup

�N
LðxjqÞfpriorðqÞdq

2
4Z N

�N
LðxjqÞfpriorðqÞdq

3
5�1

:

But, for q > 0, it is not so clear what to do. If we invoke Bayes’ postulate, we would choose

fpriorðqÞ ¼
	
0 q � 0

1 q > 0
(9.27)

While this has the advantage of simplicity, it also has a serious problem. Continuing with our
example of identifying qwith a mass, usually one would have some knowledge of at least its
order of magnitude from physical principles. If the body were an atom, for example, we
would expect to find values of the order of 10�22 grams, and it would be unrealistic to assume
that the probabilities of obtaining any positive value were all equal. Other forms have been
suggested for fpriorðqÞ, but none are without their difficulties. Moreover, Bayes’ postulate
applied to different functions of q result in different credible intervals, that is, the method
is not invariant with respect to a nonlinear transformation of the parameter. Despite these
limitations, in practice, the simple form (9.27) is often used.

PROBLEMS 9

9.1 Potential voters in an election are asked whether or not they will vote for candidate X. If
700 out of a sample of 2000 indicate that they would, find a 95% confidence interval for
the fraction of voters who intend to vote for candidate X.
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9.2 A signal of strength S is sent between two points. En route, it is subject to random noise
N, known to be normally distributed with mean zero and variance 5, so that the received
signal R has strength ðSþNÞ. If the signal is sent 10 times with the results:

Ri 6 7 11 15 12 8 9 14 5 13

construct (a) a 95% central confidence interval and (b) 95% upper and lower bounds, for S.

9.3 Rework Problem 9.2(a) for the case where s is unknown.

9.4 In the study of very many decays of an elementary particle, 8 events of a rare decay
mode are observed. If the expected value of events due to other random processes is 2,
what is the 90% confidence limit for the actual number of decays?

9.5 Electrical components are manufactured consecutively and their effective lifetimes s
are found to be given by the exponential distribution of (4.26) with a common parameter
l. Use the fact that the sample mean lifetime s of n components is related to the c2

variable with 2n degrees of freedom by 2lnsxc22n , to construct a 90% confidence interval
for the population lifetime, given that the sample mean for the first 15 components is
200 hrs.

9.6 Extend the work of Section 9.3.1 to the case of two normal populations Nðm1,s21Þ and
Nðm2,s22Þ, to derive a confidence interval for the difference ðm1 � m2Þ. If a national physics
examination is taken by a sample of 40 women and 80 men, and produces average marks
of 60 and 70, with standard deviations of 8 and 10, respectively, use your result to
construct a 95% confidence interval for the difference in the marks for all men and
women eligible to take the examination.

9.7 Electrical components are manufactured with lifetimes that are approximately normally
distributed with a standard deviation of 15. Prior experience suggests that the lifetime is
a normal random variable with a mean of 800 hrs and a standard deviation of 10 hrs. If
a random sample of 25 components has an average lifetime of 780 hrs, use the results
given in Section 9.6 to find a 95% credible interval for the mean and compare it with
a 95% confidence interval.

9.8 All school leavers applying for a place at university take a standard national English
language test. At a particular school, the test was taken by 16 boys and 13 girls. The boys’
average mark was 75 with a standard deviation of 8, and the corresponding numbers for
the girls were 80 and 6. Assuming a normal distribution, find a 95% confidence interval
for the ratio s2b=s

2
g, where s2b, g are, respectively, the variances of all boys and girls who

take the test nationally.
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In earlier chapters, we have discussed one of the two main branches of statistical infer-
ence as applied to physical science: estimation. We now turn to the other main branch:
hypothesis testing. This is a large topic and so, for convenience, it has been split into two
parts. In this chapter we consider situations where the parent distribution is known, usually
a normal distribution, either exact or approximate, and the aim is to test hypotheses about
its parameters, for example, whether they do, or do not, have certain values, rather than to
estimate the values of the parameters. This topic was touched upon in previous chapters,
particularly Chapter 6, where we discussed the use of the c2, t, and F distributions, and
much of the preliminary work has been done in Chapter 9, when confidence intervals
were constructed. The aim of the present chapter is to bring together and extend those ideas
to discuss hypothesis testing on parameters in a systematic way. The Bayesian approach to
hypothesis testing will not be discussed. It is very similar, from a calculational viewpoint, to
the frequency approach, but uses the appropriate posterior probability distributions, as
defined in Chapter 9, and hence, by analogy with Bayesian confidence intervals, the inter-
pretation is different.

In the following chapter, we consider other types of hypotheses, such as whether a sample
of data is compatible with an assumed distribution, or whether a sample is really random.We
also discuss hypotheses that can be applied to situations that are occasionally met in physical
science where the data are non-numeric.
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10.1. STATISTICAL HYPOTHESES

Consider a set of random variables x1, x2, ., xn defining a sample space S of n dimen-
sions. If we denote a general point in the sample space by E, then if R is a region in S, any
hypothesis concerning the probability that E falls in R, i.e., P½E˛R�, is called a statistical
hypothesis. Furthermore, if the hypothesis determines P½E˛R� completely, then it is called
simple; otherwise, it is called composite. For example, when testing the significance of the
mean of a sample, it is a statistical hypothesis that the parent population is normal. Further-
more, if the parent population is postulated to have mean m and variance s2, then the hypoth-
esis is simple, because the density function is then completely determined.

The hypothesis under test is called the null hypothesis and denotedH0. The general proce-
dure for testing H0 is as follows: Assuming the hypothesis to be true, we can find a region Sc
in the sample space S such that the probability of E falling in Sc is any pre-assigned value a,
called the significance level. The region S0 ¼ ðS� ScÞ is called the region of acceptance, and Sc is
called the critical region, or region of rejection. If the observed event E falls in Sc, we reject H0;
otherwise, we accept it. It is worth being clear about the meaning of the phrase ‘accept the
hypothesis H0’. It does not mean that H0 is definitely true; rather, it means that the data
are not inconsistent with the hypothesis, in the sense that the observed value would be
expected at least a% of the time if the null hypothesis were true. In practice, as we shall
discuss below, the critical region is determined by a statistic, the nature of which depends
upon the hypothesis to be tested.

Just as there are many confidence intervals for a given confidence level, so there are many
possible acceptance regions for a given hypothesis at a given significance level a. For all of
them, the hypothesis will be rejected, although true, in some cases. Such ‘false negatives’
are called type I errors and their probability, denoted by P½I�, is equal to the significance level
of the test. The value of a is arbitrary, and the choice of a suitable value depends on how
important the consequence of rejecting H0 is. Thus, if its rejection could have serious conse-
quences, such as a substantial loss, either of money, time etc., or even lives in extreme cases,
then one would tend to be conservative and choose a value a ¼ 0:05, 0.01, or even smaller.
Values commonly used in physical science are 0.1 and 0.05. It is also possible that even
though the hypothesis is false, we fail to reject it. These ‘false positives’ are called type II errors.
We are led to the following definition of error probabilities.

Consider a parameter q and two hypotheses, the null hypothesis H0 : q˛R0 and the alter-
native Ha : q ˛ Ra, where Ro and Ra are two mutually exclusive and exhaustive regions of the
parameter space. Further, let S0 and Sa be the acceptance and critical regions of the sample
space S associated with the event Eh ðx1, x2, ., xnÞ, assumingH0 to be true. Then, the prob-
ability of a type I error is

P½I� ¼ P½E˛SajH0 : q˛R0�, (10.1)

and, if H0 is false, but Ha is true, the probability of a type II error is

P½II� ¼ P½E˛S0jHa : q˛Ra�: (10.2)

The two types of error are inversely related; for a fixed sample size, one can only be reduced
at the expense of increasing the other. From (10.1) and (10.2), we can define a useful quantity,
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called the power, that can be used to compare the relative merits of the two tests. The power of
a statistical test is defined as

bðqÞhP½E˛SajHa : q˛Ra� ¼ 1� P½E˛S0jHa : q˛Ra� (10.3)

and so is the probability of rejecting the hypothesis when it is false. Clearly, an acceptable test
should result in a power that is large. From (10.1) and (10.2), it follows that

bðqÞ ¼
�

P½I�, q˛R0

1� P½II�, q˛Ra:
(10.4)

To see how these definitions are used in practice, we will look at a simple example con-
cerning a normal population with unknown mean m and known variance s2. We will test
the null hypothesis H0: m ¼ m0 against the alternative Ha: m s m0, where m0 is a constant,
using a sample of size n. Since the arithmetic mean is an unbiased estimator for m, it is reason-
able to accept the null hypothesis if x is not too different from m0, so the critical region for the
test is determined by the condition

P½jx� m0j > c :H0� ¼ a,

whereH0 indicates that the probability is calculated under the assumption thatH0 is true, i.e.,
that the mean is m0. In this case, we know that x is normal distribution with mean m0 and vari-
ance s2=n, so that the quantity z ¼ ðx� m0Þ=ðs=

ffiffiffi
n

p Þ has a standard normal distribution and
thus

P
�
z > c

ffiffiffi
n

p
=s
� ¼ a=2:

However, we know that

P
h
z > za=2

i
¼ a=2

and so c ¼ za=2 s=
ffiffiffi
n

p
. Thus, at the significance level a, we conclude thatffiffiffi

n
p
s
jx� m0j > za=2 0 H0 is rejected (10.5a)

and ffiffiffi
n

p
s
jx� m0j � za=2 0 H0 is accepted: (10.5b)

This is shown in Fig. 10.1 and, for obvious reasons, this is called a two-tailed test.
The decision of whether or not to accept a null hypothesis using a test with a fixed value of

a often depends on very small changes in the value of the test statistic. It is therefore useful to
have a way of reporting the result of a significance test that does not depend on having to
choose a value of the significance level beforehand. This may be done by calculating the
so-called p-value of the test. It may be defined in several ways. For example, the smallest level
of significance which would lead to rejection of the null hypothesis using the observed
sample, or the probability of observing a value of the test statistic that contradicts the null
hypothesis at least as much as that computed from the sample. Thus H0 will be accepted
(rejected) if the significance level a is less than (greater than or equal to) the p-value.
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EXAMPLE 10.1

A manufacturer aims to produce power packs with an output O of 10 watts and a standard

deviation of 1 watt. To control the quality of its output, 20 randomly chosen power packs are tested and

found to have an average value of 9.5 watts. Test the hypothesis H0:O ¼ 10 against the alternative

Ha :Os 10 at a 5% significance level. What is the lowest significance level at which H0 would be

accepted?

If we assume we can use the normal distribution, then the test statistic is

z ¼ jx�Oj
s=

ffiffiffi
n

p ¼ 2:236,

if H0 is true. This value is to be compared with z0:025 because we are using a two-tailed test. From

Table C.1, z0:025 ¼ 1:96 and since z > z0:025, the null hypothesis must be rejected at the 5% signifi-

cance level, and the critical region from (10.5a) is

x < 9:56 and x > 10:44:

Notice that even though the lower of these values is very close to the observed mean, we are

forced to reject H0 because we have set the value of a before the test. The p-value for the sample

is given by

p ¼ P½jzj > 2:236� ¼ 2P½z > 2:236� ¼ 0:0254,

again using Table C.1. Thus, for a > 0:0254,H0 would still be rejected, but for values lower than this,

it would not be rejected.

We also have to consider type II errors, because if these turn out to be large, the test may
not be useful. In principle, this is not an easy question to address. In the present example,
each value of ms m0 leads to a different sampling distribution, and, hence, a different
value of the type II error. In practice, however, what can be done is to find a curve that,
for a given value of a, gives the probability of a type II error for any value of ðm� m0Þ.

FIGURE 10.1 Two-tailed test for
H0:m ¼ m0 against Ha:ms m0.
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This is called the operating characteristic (OC) curve. From the definition (10.2), and using
the fact that

z ¼ x� m

s=
ffiffiffi
n

p

is approximately distributed as standard normal distribution, it is straightforward to show
that the OC curve is given by

P½II ;m� ¼ N

�
m0 � m

s=
ffiffiffi
n

p þ za=2

�
�N

�
m0 � m

s=
ffiffiffi
n

p � za=2

�
(10.6)

and is symmetric about the point where ðm� m0Þ equals zero.
Figure 10.2(a) shows a plot of (10.6) as a function of m for the data of Example 10.1. For this

example, the maximum of the OC curve is at m ¼ 10, where ð1� aÞ ¼ 0:95. The curve shows
that the probability of making a type II error is larger when the true mean is close to the value
m0 and decreases as the difference becomes greater, but if mz m0, a type II error will presum-
ably have smaller consequences. The associated power curve 1� P½II;m� is given in
Fig. 10.2(b). This shows that the power of the test increases to unity as the true mean gets
further away from the H0 value, which is a statement of the fact that it is easier to reject an
hypothesis as it gets further from the truth. Decreasing a, with a fixed sample size, reduces
the power of the test, whereas increasing the sample size produces a power curve with
a sharper minimum and will increase the power of the test, except at m ¼ m0. Once a and
the sample size n are chosen, the size of the type II error is determined, but we can also
use the OC curve to calculate the sample size for a fixed a that gives a specific value for
the type II error. From (10.6), this is equivalent to

P½II ;mn� ¼ N

�
m0 � mn

s=
ffiffiffi
n

p þ za=2

�
�N

�
m0 � mn

s=
ffiffiffi
n

p � za=2

�
,

(a) (b)

FIGURE 10.2 (a) Operating characteristic curve as a function of; m and (b) power curve, both for the data for
Example 10.1.
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where P½II ;mn� is the probability of acceptingH0 when the true mean is mn. Given P½II ;mn� and
a, a solution for n may be obtained from this relation numerically.

10.2. GENERAL HYPOTHESES: LIKELIHOOD RATIOS

The example in Section 10.1 exhibits all the steps necessary for testing an hypothesis. In
this section, we turn to tests derived from a consideration of likelihood ratios, starting
with the simplest of all possible situations, that of a simple hypothesis and one simple alter-
native. This case is not very useful in practice, but it will serve as an introduction to the
method.

10.2.1. Simple Hypothesis: One Simple Alternative

The likelihood ratio l for a sample xiði ¼ 1, 2, ., nÞ of size n having a density fðx, qÞ is
defined by

lh

Qn
i¼ 1 fðxi ; q0ÞQn
i¼ 1 fðxi ; qaÞ

¼ Lðq0Þ
LðqaÞ: (10.7a)

Then, for a fixed k > 0, the likelihood ratio test for deciding between a simple null hypothesis
H0 : q ¼ q0 and the simple alternative Ha : q ¼ qa is

for l > k, H0 is accepted
for l < k, H0 is rejected
for l ¼ k, either action is taken:

(10.7b)

The inequality l > k determines the acceptance and critical region S0 and Sa, respectively, as
illustrated by the following example.

EXAMPLE 10.2

If x is a random sample of size one, drawn from a normal distribution with mean and variance both equal

to 1, find the acceptance and critical regions for testing the null hypothesis H0:m ¼ �1 against the

alternative Ha :m ¼ 0 for k ¼ e1=2.

The normal density with unit variance is

fðx ; qÞ ¼ 1ffiffiffiffiffiffi
2p

p exp

"
� ðx� mÞ2

2

#
,

and from (10.7a), the likelihood ratio is

l ¼ exp

�
� 1

2
ðxþ 1Þ2

	
exp

�
1

2
x2
	
¼ exp

�
� 1

2
ð2xþ 1Þ

	
:

So, with k ¼ e1=2, the inequality l > k implies e�x > e, which is true for �N < x < �1 and deter-

mines the acceptance region for H0. Likewise, N > x � �1 determines the critical region.

10. HYPOTHESIS TESTING I: PARAMETERS198



For a fixed sample size, the method of testing described in Section 10.1 concentrates on
controlling only type I errors, and type II errors are calculated a posteriori. A better test would
be one that for a null hypothesis H0 : q˛R0, with an alternative Ha : q˛Ra, gives

P½I� � a, for q˛R0,

and maximizes the power

bðqÞ ¼ 1� P½II�, for q˛Ra:

For the case of a simple null hypothesis and a simple alternative, such a test exists, and is
defined as follows.

The critical region Rk, which, for a fixed significance level a, maximizes the power of the
test of the null hypothesis H0 : q ¼ q0 against the alternative Ha : q ¼ qa, where x1, x2, ., xn
is a sample of size n from a density fðx ; qÞ, is that region for which the likelihood ratio

l ¼ Lðq0Þ
LðqaÞ < k, (10.8a)

for a fixed number k, and

Z
Rk

.

Z Yn
i¼ 1

fðxi ; q0Þdxi ¼ a: (10.8b)

This result is known as the NeymanePearson lemma. The proof is as follows.
The object is to find the region R that maximizes the power

b ¼
Z
R
LðqaÞdx,

subject to the condition implied by equation (10.8b), i.e.,Z
R
Lðq0Þdx ¼ a:

Consider the region Rk defined to be that where the likelihood ratio

l ¼ Lðq0Þ
LðqaÞ < k:

In Rk, it follows that Z
Rk

LðqaÞdx >
1

k

Z
Rk

Lðq0Þdx:

But, for all regions, equation (10.8b) must hold, and so we have, for any region R,Z
Rk

LðqaÞdx >
1

k

Z
R
Lðq0Þdx: (10.9a)
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Now for a region R outside Rk,

l ¼ Lðq0Þ
LðqaÞ > k,

and hence,

1

k

Z
R

Lðq0Þdx >

Z
R

LðqaÞdx: (10.9b)

Combining the two inequalities (10.9a) and (10.9b) givesZ
Rk

LðqaÞdx >

Z
R
LðqaÞdx, (10.9c)

which is true for any R, and all Rk such that l < k. Thus Rk is the required critical region. Once
l is chosen, the values of type I and type II errors, and hence the power, are determined.

We will illustrate the use of the NeymanePearson lemma by an example involving the
normal distribution.

EXAMPLE 10.3

If q is the mean of a normal population with unit variance, test the null hypothesis H0:q ¼ 2 against the

alternative Ha:q ¼ 0, given a sample of size n.

Using the normal density, the likelihood ratio is

l ¼ exp

"
� 1

2

Xn
i¼ 1

ðxi � 2Þ2
#(

exp

�
� 1

2

Xn
i¼ 1

x2i

	)�1

¼ exp

" Pn
i¼ 1

ð2xi � 2Þ
#

¼ exp½2nx� 2n�,

and thus, from (10.7b), H0 is accepted if l > k, i.e., if

x > c ¼ ln k

2n
þ 1, (10.10)

and rejected if x < c.

The error probabilities for Example 10.3 are given by the shaded areas in Fig. 10.3. To find
the point for which P½I� is a given value for a fixed value of n, we note that when q ¼ 2,

P½I� ¼ P½x < cjq ¼ 2� ¼ a,

so, for a ¼ 0:05 and n ¼ 4 (say), using Table C.1 gives

c ¼ q� 1:645ffiffiffi
4

p ¼ 1:1775,
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and for this value of c,

P½II� ¼ P½x > 1:1775jq ¼ 0� ¼ 0:009:

It is also possible to find the sample size necessary to control the values of P½I� and P½II�.
Thus, for example, if we want the error probabilities to be P½I� ¼ 0:03 and P½II� ¼ 0:01,
then using approximate numbers from Table C.1, we require that

c ¼ q0 � 1:88ffiffiffi
n

p ¼ 2� 1:88ffiffiffi
n

p ,

and

c ¼ qa þ 2:33ffiffiffi
n

p ¼ 2:33ffiffiffi
n

p ,

simultaneously. This gives n ¼ 4:43, and so a sample size of 5 would suffice.

10.2.2. Composite Hypotheses

The case considered in Section 10.2.1 is really only useful for illustrative purposes. More
realistic situations usually involve composite hypotheses. The first that we will consider is
when the null hypothesis is simple and the alternative is composite, but may be regarded
as an aggregate of simple hypotheses. If the alternative is Ha, then for each of the simple
hypotheses in Ha, say H0

a, we may construct, for a given a, a region R for testing H0 against
H0

a. However, Rwill vary from one hypothesis H0
a to the next and we are therefore faced with

the problem of determining the best critical region for the totality of hypotheses H0
a. Such

a region is called the uniformly most powerful (UMP) and a UMP test is defined as follows.

FIGURE 10.3 Error probabilities for
Example 10.3.
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A test of the null hypothesis H0 : q˛R0 against the alternative Ha : q˛Ra is a uniformly most
powerful (UMP) test at the significance level a if the critical region of the test is such that

P½I� � a for all q˛R0

and

bðqÞ ¼ 1� P½II� is a maximum for each q˛Ra:

The following simple example will illustrate how such a UMP test may be constructed.

EXAMPLE 10.4

Test the null hypothesis H0 :m ¼ m0 against the alternative Ha :m > m0, for a normal distribution with

unit variance, using a sample of size n.

The hypothesis Ha may be regarded as an aggregate of hypotheses H0
a of the form H0

a :m ¼ ma
where ma > m0. The likelihood ratio for testing H0 against H0

a is, from (10.7a),

l ¼ exp

�
� 1

2

�
2nxðma � m0Þ þ n



m20 � m2a

���
:

The NeymanePearson lemma may now be applied for a given k and gives the critical region

x > c ¼ �ln k

nðma � m0Þ
þ 1

2
ðm0 þ maÞ:

Thus the critical region is of the form x > c, regardless of the value of ma, provided ma > m0. There-

fore, to reject H0 if x > c tests H0 against Ha :m > m0. The number c may be found from

P½I� ¼ a ¼
 n

2p

�1=2 Z N

c
exp

h
� n

2
ðx� m0Þ2

i
dx:

The integral is evaluated by substituting u ¼ ffiffiffi
n

p ðx� m0Þ and using Table C.1. For example,

choosing a ¼ 0:025 gives c ¼ m0 þ 1:96=
ffiffiffi
n

p
.

A more complicated situation that can occur is testing one composite hypothesis against
another, for example, testing the null hypothesis H0 : q1 < q < q2 against Ha : q < q1, q > q2.
In such cases, a UMP test does not exist, and other tests must be devised whose power is
not too inferior to the maximum power tests. A useful method is to construct a test having
desirable large-sample properties and hope that it is still reasonable for small samples.
One such test is the generalized likelihood ratio described below.

Let x1, x2, ., xn be a sample of size n from a population density fðx; q1, q2, ., qpÞ, where S
is the parameter space. Let the null hypothesis be H0 : ðq1, q2,., qpÞ˛R0, and the alternative
beHa : ðq1, q2,., qpÞ˛ðS� R0Þ. Then, if the likelihood of the sample is denoted by LðSÞ and its
maximum value with respect to the parameters in the region S denoted by LðŜÞ, the general-
ized likelihood ratio is given by

l ¼ LðR̂0Þ
LðŜÞ , (10.11)
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and 0 < l < 1. Furthermore, if P½I� ¼ a, then the critical region for the generalized likelihood
ratio test is 0 < l < A where Z A

0
gðljH0Þdl ¼ a,

and gðljH0Þ is the density of l when the null hypothesis H0 is true. Again, we will illustrate
the method by an example.

EXAMPLE 10.5

Use the generalized likelihood ratio to test the null hypothesisH0 :m ¼ 2 against Ha :ms 2, for a normal

density with unit variance.

In this example, the region R0 is a single point m ¼ 2, and ðS� R0Þ is the rest of the real axis. The
likelihood is

L ¼
�

1

2p

�n=2

exp

"
� 1

2

Xn
i¼ 1

ðxi � mÞ2
#

¼
�

1

2p

�n=2

exp

"
� 1

2

Xn
i¼ 1

ðxi � xÞ2�n

2
ðx� mÞ2

#
,

and the maximum value of LðSÞ is obtained when m ¼ x, i.e.

LðŜÞ ¼
�

1

2p

�n=2

exp

"
� 1

2

Xn
i¼ 1

ðxi � xÞ2
#
: (10.12)

Similarly,

LðR̂0Þ ¼
�

1

2p

�n=2

exp

"
� 1

2

Xn
i¼ 1

ðxi � xÞ2�n

2
ðx� 2Þ2

#
, (10.13)

and so the generalized likelihood ratio is

l ¼ exp
h
� n

2
ðx� 2Þ2

i
: (10.14)

If we use a ¼ 0:025, the critical region for the test is given by 0 < l < A, whereZ A

0
gðljH0Þdl ¼ 0:025:

Now, ifH0 is true, x is normally distributed with mean 2 and variance 1=n. Then, nðx� 2Þ2 is distrib-
uted as chi-square with one degree of freedom. Taking the logarithm of (10.14), it follows that

ð�2 ln lÞ is also distributed as chi-square with one degree of freedom. Setting c2 ¼ �2 ln l, and

using Table C.4 gives

0:025 ¼
Z A

0
gðljH0Þdl ¼

Z N

�2 ln l
f


c2;1

�
dc2

¼
Z N

5:02
f


c2;1

�
dc2:
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Thus, the critical region is defined by �2 ln l > 5:02, i.e., nðx� 2Þ2 > 5:02, or

x > 2þ 2:24ffiffiffi
n

p ; x < 2� 2:24ffiffiffi
n

p : (10.15)

The generalized likelihood ratio test has useful large-sample properties. These can be stated
as follows. Let x1, x2, ., xn be a random sample of size n drawn from a density
fðx;q1, q2,., qpÞ, and let the null hypothesis be

H0 : qi ¼ qi, i ¼ 1, 2,., k < p,

with the alternative

Ha : qi s qi:

Then, when H0 is true, �2 ln l is approximately distributed as chi-square with k degrees of
freedom, if n is large.

To use this result to test the null hypothesis H0 with P½I� ¼ a, we need to only compute
�2 ln l from the sample, and compare it with the a level of the chi-square distribution.
If �2 ln l exceeds the a level, H0 is rejected; if not H0 is accepted.

10.3. NORMAL DISTRIBUTION

Because of the great importance of the normal distribution, in this section we shall give
some more details concerning tests involving this distribution.

10.3.1. Basic Ideas

In Section 10.1, we discussed a two-tailed test of the hypothesis H0: m ¼ m0 against the
alternative Ha: ms m0 for the case where the population variance is known nðx :m,s2Þ. To
recap the result obtained there, the null hypothesis is rejected if the quantity
W0 ¼ ffiffiffi

n
p ðx� m0Þ=s is greater than Wg in modulus, i.e., if jW0j > Wg, where

P
�jW j � Wg

� ¼
�

1

2p

�1=2
(Z �Wg

�N
e�t2=2dtþ

Z N

Wg

e�t2=2dt

)

¼ 2
�
1�N



Wg;0, 1

�� ¼ 2g:

If the alternative hypothesis isHa : m > m0, then P½I� is the area under only one of the tails of the
distribution, and the significance level of the test is thus

P½I� ¼ a ¼ g:

Such a test is called a one-tailed test. We also showed how to find the probability of a type II
error and, from this, the power of the test. If, for definiteness, the alternative is taken to be
Ha : m ¼ ma, then the power is given by

b ¼ 1� P

�
�Wa=2 �

�
ma � m0

s=
ffiffiffi
n

p
�

� Wa � �Wa=2 þ
�
ma � m0

s=
ffiffiffi
n

p
�	

:
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If ma � m0 is small, then

P½II�x 1� P½I�,
and hence

bx a:

Thus, the power of the test will be very low. This situation can only be improved by making
ðma � m0Þ large, or by having n large. This is in accord with the common-sense view that it is
difficult to distinguish between two close alternatives without a large quantity of data. The
situation is illustrated in Fig. 10.4, which shows the power b as a function of the parameter
D ¼ ffiffiffi

n
p ðma � m0Þ=s for two sample values of a, the significance level. This is a generalization

of the specific case shown in Fig. 10.2(b).
We are now in a position to review the general procedure followed to test a hypothesis:

1. State the null hypothesis H0, and its alternative Ha;
2. Specify P½I� and P½II�, the probabilities for errors of types I and II, respectively, and

compute the necessary sample size n.1 In practice, P½I� ¼ a and n are commonly given.
However, since even a relatively small P½II� is usually of importance, a check should
always be made to ensure that the values of a and n used lead to a suitable P½II�.

3. Choose a test statistic and determine the critical region for the test. Alternatively, calculate
the p-value and then choose a suitable value of a a posteriori.

4. Accept or reject the null hypothesis H0, depending on whether or not the value obtained
for the sample statistic falls inside or outside the critical region.

A graphical interpretation of the above scheme is shown in Fig. 10.5. The curve f0ðqjH0Þis the
density function of the test statistic q ifH0 is true and faðqjHaÞ is its density function ifHa is true.
The hypothesisH0 is rejected if q > qa, andHa is rejected if q < qa. The probabilities of the errors
of types I and II are also shown. It is perhaps worth repeating that failure to reject a hypothesis
does not necessarily mean that the hypothesis is true. However, if we can reject the hypothesis
on the basis of the test, then we can say that there is experimental evidence against it.

FIGURE 10.4 The power of a test comparing two means for a normal population with known variance.

1Tables for this purpose applying to some of the tests we will consider are given in O.L. Davies Design and

Analysis of Industrial Experiments, Research Vol 1, Oliver and Boyd Ltd (1948).
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10.3.2. Specific Tests

We shall now turn to more practical cases, where one of the parameters of the distribution
is unknown, and use the general procedure given above to establish some commonly used
tests, deriving them from the likelihood ratio.

(a) Test of whether the mean is different from some specified value.

The null hypothesis in this case is

H0 :m ¼ m0, 0 < s2 < N,

and the alternative is

H0 :ms m0, 0 < s2 < N,

since the variance is unknown. The parameter space is

S ¼ ��N < m < N; 0 < s2 < N
�
,

and the acceptance region associated with the null hypothesis is

R0 ¼ �
m ¼ m0: 0 < s2 < N

�
:

In this case, the null hypothesis is not simple because it does not specify the value of s2. For
large samples we could use an estimate s2 for s2 and then take over the results of Section
10.3.1. However, for small samples, this procedure could lead to errors and so we must
devise a test where s2 is not explicitly used. Such a test is based on the use of the Student’s
t-distribution. Its derivation is as follows.

The likelihood function for a sample of size n drawn from the population is given by

L ¼ 1

ð2pÞn=2
1

sn
exp

"
� 1

2

Xn
i¼ 1

�
xi � m

s

�2
#
, (10.16)

FIGURE 10.5 Graphical representation of a general hypothesis test.
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and we have seen in Chapter 7 that the ML estimators of m and s2 are

m̂ ¼ 1

n

Xn
i¼ 1

xi and s2 ¼ 1

n

Xn
i¼ 1

ðxi � xÞ2: (10.17)

Using (10.17) in (10.16) gives

LðŜÞ ¼
"

n

2p
Pðxi � xÞ2

#n=2
e�n=2: (10.18)

To maximize L in R0, we set m ¼ m0, giving

L0 ¼ 1

ð2pÞn=2
1

sn
exp

"
� 1

2

Xn
i¼ 1

�
xi � m0

s

�2
#
:

Then, the value of s2 that maximizes L0 is

ŝ2 ¼ 1

n

Xn
i¼ 1

ðxi � m0Þ2,

and hence

LðR̂0Þ ¼
"

n

2p
Pðxi � m0Þ2

#n=2
e�n=2: (10.19)

So, from (10.18) and (10.19), the generalized likelihood ratio is

l ¼
" Pðxi � xÞ2Pðxi � m0Þ2

#n=2
: (10.20)

We must now find the distribution of l if H0 is true. Rewriting (10.20) gives

l ¼
"
1þ nðx� m0Þ2Pðxi � xÞ2

#�n=2

¼
�
1þ t2

n� 1

��n=2

, (10.21)

where

t ¼
"

nðn� 1ÞPðxi � xÞ2
#1=2

ðx� m0Þ

is distributed as the t-distribution with ðn� 1Þ degrees of freedom. From (10.21), a critical
region of the form 0 < l < A is equivalent to the region t2 > FðAÞ. Thus, a significance level
of a corresponds to the pair of intervals

t < �ta=2 and t > ta=2,

where Z N

ta=2

fðt;n� 1Þdt ¼ a=2, (10.22)
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and fðt;n� 1Þ is the t-distribution with ðn� 1Þ degrees of freedom. If t lies between �ta=2 and
ta=2, thenH0 is accepted; otherwise, it is rejected. This is a typical example of a two-tailed test,
and is exactly equivalent to constructing a 100ð1� 2aÞ% confidence interval for m, and accept-
ing H0 if m lies within it. The test is summarized as follows:

Observations n values of x

Significance level a

Null hypothesis H0 :m ¼ m0, 0 < s2 < N

Alternative hypothesis H0 :ms m0, 0 < s2 < N

Test statistic t ¼
"

nðn� 1ÞPðxi � xÞ2
#1=2

ðx� m0Þ ¼ ðx� m0Þ
s=

ffiffiffi
n

p (10.23)

Decision criterion. The test statistics obeys a t-distribution with ðn� 1Þ degrees of freedom if
null hypothesis is true; so if the observed value of t lies between�ta=2 and ta=2, where the latter
is defined by (10.22), the null hypothesis is accepted; otherwise, it is rejected. Alternatively, it is
accepted (rejected) if the calculated p-value is larger (smaller) than a specified value of a.

This may be generalized in an obvious way to test the null hypothesis against the alterna-
tives Ha:m > m0 and Ha:m < m0. The test statistic is the same, but the critical regions are now
t > ta and t < �ta, respectively.

The above procedure has controlled type I errors by specifying the significance level. We
must now consider the power of the test. This is no longer a simple problem, because if H0 is
not true, then the statistic t no longer has a Student’s t-distribution. If the alternative
hypothesis is

Ha :m ¼ ma, 0 < s2 < N

and Ha is true, it can be shown that t obeys a noncentral t-distribution of the form

fncðtÞ ¼ 2�ðn�1Þ=2

Gðn=2ÞðnpÞ1=2
�
1þ t2

n

��ðnþ1Þ=2
exp

�
� 1

2

�
d2

1þ t2=n

�	

�
Z N

0
xnexp

"
� 1

2

 
x� tn

ðt2 þ nÞ1=2

!#
dx,

where n ¼ n� 1 and d ¼ ffiffiffi
n

p jma � m0j=s. Unfortunately, this distribution, apart from being
exceedingly complex, contains the population variance s2 in the noncentrality parameter d.
An estimate of the power of the test may be obtained by replacing s2 by the sample variance
s2 in the noncentral distribution and then using tables of the distribution.

Noncentral distributions typically arise if we wish to consider the power of a test, and are
generally functions of a noncentrality parameter that itself is a function of the alternative
hypothesis and a population parameter that is unknown.
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EXAMPLE 10.6

An experiment finds the mean lifetime of a rare nucleus to be s ¼ 125ms. A second experiment finds 20

examples of the same decay with lifetimes given below (in ms):

120 113 120 140 136 117 140 136 110 119
123 119 118 120 134 121 137 129 137 140

Test whether the data from the second experiment are compatible with those from the first experiment at the

10% level.

Formally, we are testing the null hypothesis H0 : s ¼ 125 with the alternative Ha : ss 125, using

test (a) above. Firstly, using the data given, we find the mean to be x ¼ 126:45 and the standard

deviation s ¼ 10:02, and using these, then calculate the value of t as 0.647. Next, we find ta=2 from

(10.23) for a ¼ 0:10 and 19 degrees of freedom. Using Table C.5, this gives ta=2 ¼ 1:73. As this value

is greater than the observed value of t, the null hypothesis is accepted, that is, the two experiments

are compatible at this significance level.

Another use of the Student’s t-distribution is contained in the following test, which wewill
state without proof.

(b) Test of whether the means of two populations having the same, but unknown, variance
differ.

where the pooled sample variance, s2p , is given by

s2p ¼ ðm� 1Þs21 þ ðm� 1Þs22
mþm� 2

: (10.24b)

Decision criterion: The test statistic obeys a t-distribution with ðmþ n� 2Þ degrees of freedom
if the null hypothesis is true; so, if the observed value of t lies in the range t�a=2 < t < ta=2,
where Z N

ta=2

fðt; mþ n� 2Þdt ¼ a=2, (10.25)

the null hypothesis is accepted; otherwise, it is rejected.

Observations m values of x1, n values of x2
Significance level a

Null hypothesis H0 :m1 ¼ m2, �N < s21, 2 < Nðs21 ¼ s22Þ
Alternative hypothesis Ha :m1 s m2, �N < s21;2 < Nðs21 ¼ s22Þ

Test statistic t ¼ ðx1 � x2Þ
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=mÞ þ ð1=nÞp , (10.24a)
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Again, this test may be extended to the cases m1 > m2 and m1 < m2, with critical regions
t > ta and t < �ta, respectively. It may also be extended in a straightforward way to test
the null hypothesis H0 :m1 � m2 ¼ d, where d is a specified constant, and to cases where
the two variances are both unknown and unequal.

We will now consider two tests associated with the variance of a normal population, and,
by analogy with the discussion of tests involving the mean, we start with a test of whether the
variance is equal to some specific value.

(c) Test of whether the variance is equal to some specific value

The null hypothesis in this case is

H0 : s
2 ¼ s20, �N < m < N,

and the alternative is

Ha : s
2 s s20, �N < m < N,

since the mean is unknown. The parameter space is

S ¼ f�N < m < N; 0 < s2 < Ng,
and the acceptance region associated with the null hypothesis is

R0 ¼ ��N < m < N; s2 ¼ s20
�
:

The test will involve the use of the c2 distribution and will again be derived by the method of
likelihood ratios.

As before, the likelihood function for a sample of size n drawn from the population is
given by

L ¼
�

1

2p

�n=2 1

sn
exp

"
� 1

2

Xn
i¼ 1

�
xi � m

s

�2
#

and in the acceptance region R0

L ¼
�

1

2p

�n=2 1

sn0
exp

"
� 1

2

Xn
i¼ 1

�
xi � m

s0

�2
#
:

This expression is a maximum when the summation is a minimum, i.e., when x ¼ m. Thus,

LðR̂0Þ ¼
�

1

2p

�n=2 1

sn0
exp

"
� 1

2

Xn
i¼ 1

�
xi � x

s0

�2
#

¼
�

1

2p

�n=2 1

sn0
exp

"
� ðn� 1Þs2

2s20

#
,

where s2 is the sample variance. To maximize L in S, we have to solve the maximum likeli-
hood equations. The solutions have been given in (10.18) and, hence,

LðŜÞ ¼
�

1

2p

�n=2 1

sn

 n

n� 1

�n=2
exp


�n

2

�
:
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We may now form the generalized likelihood ratio

l ¼ LðR̂0Þ
LðŜÞ ¼

"
ðn� 1Þs2

ns20

#n=2
exp

"
n

2
� ðn� 1Þs2

2s20

#
,

from which we see that a critical region of the form l < k is equivalent to the region

k1 <
s2

s20
< k2,

where k1 and k2 are constants depending on n and a, the significance level of the test. If H0 is
true, then ðn� 1Þs2=s20 obeys a c2 distribution with ðn� 1Þ degrees of freedom and so, in prin-
ciple, the required values of k1 and k2 could be found. A good approximation is to choose
values of k1 and k2 using equal right and left tails of the chi-squared distribution. Thus,
we are led to the following test procedure.

Decision criterion. The test statistics obeys a c2 distribution with ðn� 1Þ degrees of freedom if
the null hypothesis is true; so if the observed value of c2 lies in the interval c21�a=2 < t < c2

a=2,
where Z N

ta=2

fðc2; n� 1Þdt ¼ a=2, (10.27)

the null hypothesis is accepted; otherwise, it is rejected.

As previously, we now have to examine the question: what is the probability of a type II
error in this test? If the alternative hypothesis is

Ha :s
2 ¼ s2a ,

and if Ha is true, then the quantity

c2a ¼ s2

s2a
ðn� 1Þ

will be distributed as c2 with ðn� 1Þ degrees of freedom. Thus, from the definition of the
power function, we have

b ¼ 1� P

"
c2a=2ðn� 1Þ � ðn� 1Þs

2

s20
� c21�a=2ðn� 1Þ

#
,

Observations n values of x

Significance level a

Null hypothesis H0: s
2 ¼ s20

Alternative hypothesis Ha: s
2 s s20

Test statistic c2 ¼
Xn
i¼ 1

�
xi � x

s0

�2

¼ s2

s20
ðn� 1Þ: (10.26)
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and therefore,

b ¼ 1� P

�
c2a=2ðn� 1Þs

2
0

s2a
� ðn� 1Þs

2

s2a
� c21�a=2ðn� 1Þs

2
0

s2a

	
: (10.28)

Having fixed the significance level a and the values of s0 and sa, we can read off from tables
the probability that a chi-square variate with ðn� 1Þ degrees of freedom lies between the two
limits in the square brackets.

Again, this test may be simply adapted to deal with the hypotheses Ha :s
2 > s20 and

Ha : s
2 < s20. The critical regions are c2 > c2a and c2 < c21�a, respectively.

EXAMPLE 10.7

Steel rods of notional standard lengths are produced by a machine whose specifications states that,

regardless of the length of the rods, their standard deviation will not exceed 2 (in centimeter units). During

commissioning, a check is made on a random sample of 20 rods, whose lengths (in centimeters) were found to be

105 104 103 98 100 102 103 97 99 106
105 102 99 100 98 97 102 101 100 99

Test at the 10% level whether the machine is performing according to its specification.

Here, we are testing the null hypothesis H0 : s
2 � s20 against the alternative Ha : s

2 > s20, where

s20 ¼ 4. That is, we are using a one-tailed test, which is an adaptation of test (c) above. From the

data, x ¼ 101 and s2 ¼ 7:474, so the test statistic is

c2 ¼ s2ðn� 1Þ=s20 ¼ 35:5:

Now, from Table C.4, we find that for a ¼ 0:10 and 19 degrees of freedom, c20:1 ¼ 27:2. As this

value is less than c2, we conclude that the machine is not performing according to its

specification.

The final test concerns the equality of the variances of two normal populations, which we
quote without proof.

(d) Test of whether the variances of two populations with different, but unknown, means
differ.

Observations m values of x1, n values of x2
Significance level a

Null hypothesis H0: s
2
1 ¼ s22

Alternative hypothesis Ha: s
2
1 s s22

Test statistic F ¼ s21
s21

¼
ðn� 1ÞP

i
ðx1i � x1Þ2

ðm� 1ÞP
j
ðx2i � x2Þ2

, (10.29)
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Decision criterion. The test statistic obeys the F distribution with ðm� 1Þ and ðn� 1Þ degrees
of freedom if null hypothesis is true; so, if the observed value of F lies in the intervalh

Fa=2ðn� 1,m� 1Þ
i�1

< F < Fa=2ðm� 1,n� 1Þ,
where Z N

ta=2

fðF; m� 1,n� 1ÞdF ¼ a=2, (10.30)

the null hypothesis is accepted; otherwise, it is rejected.

To calculate the power of the test, we note that P½II� depends on the value of s21=s
2
2. If the

true value of this ratio is d then, since ðm� 1Þs21=s21 for a sample from a normal population is
distributed as c2m�1, we find s21=s

2
2 is distributed as

s21

s22
Fðm� 1,n� 1Þ ¼ dFðm� 1,n� 1Þ:

Thus,

b ¼ 1� P

"
F1�a=2ðm� 1,n� 1Þ � s21

s22
� Fa=2ðm� 1,n� 1Þ

#

is equivalent to

b ¼ 1� P

�
F1�a=2ðm� 1,n� 1Þ

d
� F � Fa=2ðm� 1,n� 1Þ

d

	
: (10.31)

TABLE 10.1 Summary of hypothesis tests on a normal distribution

H0 Test statistic Ha Critical region

m ¼ m0
s2 unknown

t ¼ x� m0

s=
ffiffiffi
n

p distributed as t with n� 1 degrees of

freedom

ms m0
m > m0
m < m0

t > ta=2 and t < �ta=2
t > ta
t < �ta

m1 ¼ m2

s21 ¼ s22
unknown

t ¼ ðx1 � x2Þ
sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=mÞ þ ð1=nÞp , where

s2p ¼ ðm� 1Þs21 þ ðn� 1Þs22
mþ n� 2

, distributed as t with

(mþ n� 2)degrees of freedom

m1sm2
m1 > m2
m1 < m2

t > ta=2 and t < �ta=2
t > ta
t < �ta

s2 ¼ s20
m unknown

c2 ¼ s2ðn� 1Þ=s20 distributed as c2 with ðn� 1Þ
degrees of freedom

s2 s s20

s2 > s20

s2 < s20

c2 < c21�a=2 and c2 > c2
a=2

c2 > c2a
c2 < c21�a

s21 ¼ s22
m1 s m2
unknown

F ¼ s21=s
2
2 distributed as F with ðm� 1Þ and ðn� 1Þ

degrees of freedom

s21 s s22
s21 > s22

s21 < s22

F < F1�a=2 and F > Fa=2
F > Fa
F < F1�a
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For any given value of d, these limits may be found from tables of the F distribution. It can be
shown, by consulting these tables, that the power of the F test is rather small unless the ratio
of variances is large, a result that is in accordance with common sense.

As before, this test may be adapted to test the null hypotheses s21 > s22 and s21 < s22. The
critical regions are f > fa and f < f1�a, respectively.

A summary of some of the tests mentioned above is given in Table 10.1.

10.4. OTHER DISTRIBUTIONS

The ideas discussed in previous sections can be applied to other distributions and we will
look briefly at two important examples, the binomial and Poisson.

Consider a situation where there are only two outcomes of a trial, for example, either satis-
factory or unsatisfactory, with the latter outcome having a probability p. In this situation, the
number of unacceptable outcomes in n independent random trials is given by the binomial
distribution. As an example, we will test the null hypothesisH0 : p� p0 against the alternative
Ha : p > p0, where p0 is some specified value. If the observed number of unacceptable
outcomes is x, then from equation (4.34),

P½x � k� ¼
Xn
r¼ k

�
n
r

�
prð1� pÞn�r:

It follows that when H0 is true, that is, when p � p0,

P½x � k� �
Xn
r¼ k

�
n
r

�
pr0


1� p0

�n�r
h Bðk,p0Þ:

In practice, if we calculate Bðk,p0Þ, we accept the null hypothesis if Bðk,p0Þ > a; otherwise
reject it. Alternatively, from the value of Bðk, p0Þ, we can decide at what value of a the null
hypothesis can be accepted and decide at that stage whether it is a reasonable value.

EXAMPLE 10.8

In the literature of a supplier of capacitors, it is stated that no more than 1% of its products are defective. A

buyer checks this claim by testing a random sample of 100 capacitors at the 5% level and finds that 3 are

defective. Does the buyer have a claim against the supplier?

We need to calculate the probability that in a random sample of 100 capacitors, there would be at

least 3 that are defective if p0 ¼ 0:01. From the binomial distribution with p ¼ p0,

P½x � 3� ¼ 1� P½x < 3�

¼ 1�
X2
r¼ 0

�
100
r

�

0:01Þrð0:99Þ100�r:

This may be evaluated exactly by direct calculation, or approximately by using the normal approx-

imation to the binomial for large n. The value of P½x � 3� then corresponds approximately to

P

�
z � 2:5� m

s

	
,
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where m ¼ np0 ¼ 1 and s ¼ ½np0ð1� p0Þ�1=2 ¼ 1:005. The direct calculation gives 0.0694 compared

to the normal approximation of 0.0681, and as these are both greater than 0.05, the hypothesis

cannot be rejected and no claim can be made against the supplier.

In the case of a random Poisson variable k distributed with parameter l, as an example we
could consider testing the null hypothesis H0 : l ¼ l0 against the alternative Ha : ls l0. By
analogy with the procedure followed for the binomial distribution, for a given significance
level, we would calculate the probability that the observed value of k is greater than or
less than the value predicted if the null hypothesis is true and compare this with the signif-
icance level. Alternatively, the p-value could be calculated and, from this, a value of the
significance level found, above which the null hypothesis would be rejected. An example
is given in Problem 10.9.

Just as for the normal distribution, these tests may be extended to other related cases, for
example to test the equality of the parameters p1 and p2 in two Bernoulli populations, or the
equality of the parameters of two Poisson distributions, but we will not pursue this further.

Finally, can we test a null hypothesis, such as H0:m ¼ m0, against a suitable alternative
when the population distribution is unknown? The answer is yes, but the methods are gener-
ally less powerful than those available when the distribution is known. Hypothesis testing in
the former situation is an example of nonparametric statistics and is discussed in Chapter 11.

10.5. ANALYSIS OF VARIANCE

In Section 10.3, we discussed how to test the hypothesis that the means of two normal
distributions with the same, but unknown, variance differ. It is natural to consider how to
extend that discussion to the case of several means. The technique for doing this is called anal-
ysis of variance, usually abbreviated to ANOVA. It can be used, for example, to test the consis-
tency of a series of measurements carried out under different conditions, or whether different
manufacturers are producing a particular component to the same standard. ANOVA is an
important technique in biological and social sciences, but is much less used in the physical
sciences and so the discussion here will be very brief.

Consider the case of m groups of measurements, each leading to an average value
miði ¼ 1, 2, .,mÞ. We wish to test the null hypothesis

H0 :m1 ¼ m2 ¼ . ¼ mm (10.32a)

against the alternative

Ha : mi s mj for some i s j, (10.32b)

at some significance level. Thus, we are testing whether the various measurements all come
from the same population and, hence, have the same variance. ANOVA is a method for split-
ting the total variation in the data into independent components that measure different sour-
ces of variation. A comparison is then made of these independent estimates of the common
variance s2. In the simplest case, there are two independent estimates. The first of these, s2W , is
obtained from measurements within groups, and their corresponding means. It is a valid
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estimator of s2, independent of whether H0 is true or not. The second estimator, s2B, is obtained
from the measurements between groups, and their corresponding means. It is only valid when
H0 is true, and moreover if H0 is false, it will tend to exceed s2. The test is, therefore, to
compare the values of these two estimators and to reject H0 if the ratio s2B=s

2
W is sufficiently

large. This is done using the F distribution.
The above is an example of a one-way analysis because the observations are classified under

a single classification, for example, the manufacturing process in the example above.
ANVOA may be extended to deal with multi-way classifications. In our example, a second
classification might be the country where the components were made. This situation is
referred to as multi-way analysis, but we will discuss only the simpler, one-way analysis. In
addition, we will assume that all samples are of the same size. This condition is preferable
in practical work, but can be relaxed if necessary at the expense of somewhat more compli-
cated equations.

The procedure starts with random samples, each of size n selected from m populations.
Each sample is assumed to be normally and independently distributed with means
m1 ¼ m2 ¼ . ¼ mm and a common, but unknown, variance s2. If xij is the jth sample value
from the ith population, the sample mean of the ith population is

xi ¼
1

n

Xn
j¼ 1

xij, i ¼ 1, 2,.,m (10.33a)

and the mean of the whole sample is

x ¼ 1

mn

Xr
i¼ 1

Xn
j¼ 1

xij ¼
1

m

Xm
i¼ 1

xi (10.33b)

The estimate of the variance from the entire sample is given by

s2 ¼ SST=ðmn� 1Þ (10.34)

where SST is the total sum of squares given by

SST ¼
Xm
i¼ 1

Xn
j¼ 1


xij � x

�2
: (10.35)

By writing the right-hand side of this expression as

Xm
i¼ 1

Xn
j¼ 1


xij � xi þ xi � x

�2
,

and noting that by virtue of (10.33a,b),

Xm
i¼ 1

Xn
j¼ 1

ðxij � xiÞðxi � xÞ ¼ 0,

the quantity SST may be written as the sum of two terms,

SST ¼ SSBþ SSW , (10.36)
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where

SSB ¼ n
Xm
i¼ 1

ðxi � xÞ2 (10.37)

is the sum of squares between the groups, and

SSW ¼
Xm
i¼ 1

Xn
j¼ 1


xij � xi

�2
(10.38)

is the sum of squares within the groups. Alternative forms for (10.35), (10.37) and (10.38), that are
more convenient for calculations, are:

SST ¼
Xm
i¼ 1

Xn
j¼ 1

x2ij � nmx2, (10.39a)

SSB ¼ n
Xm
i¼ 1

ðxi � xÞ2 (10.39b)

and, using (10.36),

SSW ¼
Xm
i¼ 1

Xn
j¼ 1

x2ij � n
Xm
i¼ 1

x2i : (10.39c)

The two sums, SSW and SSB, form the basis of the two independent estimates of the vari-
ance we require. From previous work on the chi-squared distribution, in particular its addi-
tive property, we know that if H0 is true, the quantity s2W ¼ SSW=mðn� 1Þ is distributed as
c2 with mðn� 1Þ degrees of freedom; s2B ¼ SSB=ðm� 1Þ is distributed as c2 with ðm� 1Þ
degrees of freedom; and s2T ¼ SST=ðnm� 1Þ is distributed as c2 with ðnm� 1Þ degrees of
freedom. The quantities s2T , s

2
B and s2w are also called the mean squares. The test statistic is

then F ¼ s2B=s
2
W , which is distributed with ðm� 1Þ and mðn� 1Þ degrees of freedom and is

unbiased if H0 is true. The variance of SSW is the same, whether H0 is true or not, but the
variance of SSB if H0 is not true may be calculated and is greater if H0 is false. Thus, since
s2B overestimates s2 when H0 is false, the test is a one-tailed one, with the critical region
such thatH0 is rejected at a significance level awhen F > Fa½ðm� 1Þ,mðn� 1Þ�. Alternatively,
one could calculate the p-value for a value n of the test statistic, i.e.

p� value ¼ P½Ffðm� 1Þ,mðn� 1Þg � n�
and choose the significance level a posteriori. The test procedure is summarized in Table 10.2.

TABLE 10.2 Analysis of variance for a one-way classification

Source of variation Sums of squares Degrees of freedom Mean square Test statistic

Between groups SSB m� 1 s2B ¼ SSB=ðm� 1Þ F ¼ s2B=s
2
W

Within groups SSW mðn� 1Þ s2W ¼ SSW=½mðn� 1Þ�
Total SST nm� 1 s2 ¼ SST=ðnm� 1Þ
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EXAMPLE 10.9

Three students each use five identical balances to weigh a number of objects to find their average weight,

with the results as show below.

S1 22 17 15 20 16
S2 29 23 22 20 28
S3 29 31 27 30 32

Test, at a 5% significance level, the hypothesis that the average weights obtained do not depend on which

student made the measurements.

This can be solved using a simple spreadsheet. Intermediate values are:

x1 ¼ 18:0, x2 ¼ 24:4, x3 ¼ 29:8 and x ¼ 24:07:

Then, from (10.39)

SSB ¼ 209:4, SSW ¼ 249:6

and so

F ¼ s2B=s
2
W ¼ 2:10:

From Table C.5, F0:05ð4, 10Þ ¼ 3:48 and since F < 3:48, the hypothesis cannot be rejected at this

significance level.

PROBLEMS 10

10.1 A signal with constant strength S is sent from location A to location B. En route, it is
subject to random noise distributed as Nð0, 8Þ. The signal is sent 10 times and the
strength of the signals received at B are:

14 15 13 16 14 14 17 15 14 18

Test, at the 5% level, the hypothesis that the signal was transmitted with strength 13.

10.2 A factory claims to produce ball bearings with an overall meanweight ofW ¼ 250g and
a standard deviation of 5g. A quality control check of 100 bearing finds an average
weight of W ¼ 248g. Test, at a 5% significance level, the hypothesis H0:W ¼ 250g
against the alternative Ha:Ws250g. What is the critical region for W and what is the
probability of accepting H0, if the true value of the overall mean weight is 248g?

10.3 Nails are sold in packets with an average weight of 100g and the seller has priced the
packets in the belief that 95% of them are within 2g of the mean. A sample of 20 packets
are weighed with the results:

100 97 89 93 103 105 93 110 101 102
98 99 105 106 89 103 90 93 92 106
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Assuming an approximate normal distribution, test this hypothesis at a 10% significance
level against the alternative that the variance is greater than expected.

10.4 A supplier sells resistors of nominal value 5 ohms in packs of 10 and charges a premium
by claiming that the average value of the resistors in a pack is not less than 5 ohms. A
buyer tests this claim by measuring the values of the resistors in two packs with the
results:

5:3 5:4 4:9 5:1 5:0 4:8 5:1 5:2 4:7 4:9
5:2 5:5 4:7 4:6 5:5 5:4 5:0 5:0 4:8 5:4

Test the supplier’s claim at a 10% significance level.

10.5 New production technique M1 has been developed for the abrasive material of car
brakes and it is claimed that it reduces the spread in the lifetimes of the product. It is
tested against the existing techniqueM2, bymeasuring samples of the effective lifetimes
of random samples of each production type. Use the lifetime data below to test the claim
at a 5% significance level.

10.6 Two groups of students study for a physics examination. Group 1 of 15 students study
full-time at college and achieve an average mark of 75% with a standard deviation of 3.
Group 2 of 6 students study part-time at home and achieve an average mark of 70%with
a standard deviation of 5. If the two populations are assumed to be normally distributed
with equal variances, test at a 5% level of significance the claim that full-time study
produces better results.

10.7 Six samples of the same radioisotope are obtained from four different sources and their
activities in kBq measure and found to be:

S1 S2 S3 S4

91 129 119 100

100 127 141 93

99 100 123 89

89 98 137 110

110 97 132 132

96 113 124 116

Test, at a 10% significance level, the hypothesis that the mean activity does not depend
on the source of the supply.

M1 98 132 109 116 131 124 117 120 116 99 109 113
M2 100 120 134 99 130 113 106 124 118
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10.8 Amanufacturer of an electrical device states that if it is stress tested with a high voltage,
on average no more than 4% will fail. A buyer checks this by stress testing a random
sample of 1000 units and finds that 50 fail. What can be said about the manufacturer’s
statement at a 10% significance level?

10.9 The supplier in Example 10.8 claims that a defective rate of 1%means that no more than
10 unacceptable capacitors are distributed on any day. This is checked by daily testing
batches of capacitors. A five-day run of such tests resulted in 13, 12, 15, 12, 11 defective
capacitors. Is the supplier’s claim supported at the 5% significance level?
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In Chapter 10 we discussed how to test a statistical hypothesis H0 about a single popu-
lation parameter, such as whether its mean mwas equal to a specific value m0, against a defi-
nite alternativeHa, for example that mwas greater than m0, and gave a very brief explanation
about how this may be extended to many parameters by the method known as analysis of
variance. In this chapter we will discuss a range of other tests. Some of these address ques-
tions about the population as a whole, without always referring to a specific alternative,
which is left as implied. Examples are those that examine whether a set of observations
is described by a specific probability density, or whether a sample of observations is
random, or whether two sets of observations are compatible. We will also discuss some tests
that are applicable to non-numeric data. We will start by looking at the first of these
questions.

11.1. GOODNESS-OF-FIT TESTS

In Section 8.4.1 we introduced the method of estimation known as ‘minimum chi-square’,
and at the beginning of that chapter we briefly discussed how the same technique could be
used to test the compatibility of repeated measurements. In the latter applications we are
testing the statistical hypothesis that estimates produced by the measurement process all
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come from the same population. Such procedures, for obvious reasons, are known as good-
ness-of-fit tests and are widely used in physical science.

11.1.1. Discrete Distributions

Wewill start by considering the case of a discrete random variable x that can take on a finite
number of values xiði ¼ 1, 2, ., kÞ with corresponding probabilities piði ¼ 1, 2, ., kÞ. We
will test the null hypothesis

H0 : pi ¼ pi, i ¼ 1, 2,., k, (11.1a)

against the alternative

Ha : pi s pi, (11.1b)

where pi are specified fixed values and

Xk
i¼ 1

pi ¼
Xk
i¼ 1

pi ¼ 1:

To do this we will use the method of likelihood ratios that was developed in Chapter 10. The
likelihood function for a sample of size n is

LðpÞ ¼
Yk
i¼ 1

p
fi
i ,

where fi ¼ fiðxÞ is the observed frequency of the value xi. The maximum value of LðpÞ ifH0 is
true is

max LðpÞ ¼ LðpÞ ¼
Yk
i¼ 1

p
fi
i : (11.2)

To find the maximum value of LðpÞ if Ha is true, we need to know the ML estimator of p, i.e.,
p̂. Thus we have to maximize

ln LðPÞ ¼
Xk
i¼ 1

fi ln pi, (11.3a)

subject to the constraint

Xk
i¼ 1

pi ¼ 1 (11.3b)

Introducing the Lagrange multiplier L, the variation function is

P ¼ ln LðPÞ �L

"Xk
i¼ 1

pi � 1

#
,
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and setting vP=vpi ¼ 0, gives pj ¼ fi=L. Now since

Xk
j¼ 1

pj ¼ 1 ¼ 1

L

Xk
j¼ 1

fj ¼
n

L
:

the required ML estimator is pj ¼ fi=n. Thus the maximum value of LðPÞ if Ha is true is

Lðp̂Þ ¼
Yk
i¼ 1

�
fi
n

�fi

: (11.4)

The likelihood ratio is therefore, from (11.2) and (11.4),

l ¼ LðpÞ
Lðp̂Þ ¼ nn

Yk
i¼ 1

�
pi

fi

�fi

: (11.5)

Finally,H0 is accepted if l < lc,where lc is a given fixed value of l that depends on the confi-
dence level of the test, and H0 is rejected if l > lc.

EXAMPLE 11.1

A die is thrown 60 times and the resulting frequencies of the faces are as shown in the table.

Face 1 2 3 4 5 6

Frequency 9 8 12 11 6 14

Test whether the die is ‘true’ at a 10% significance level.

From equation (11.5),

�2 ln l ¼ �2

"
n ln nþ

Xk
i¼ 1

fi ln

�
pi

fi

�#
, (11.6)

where

pi ¼ 1=6; n ¼ 60; and k ¼ 6:

Thus

�2 ln l ¼ �2½60 ln 60 � 60 ln 6� 9 ln 9.� 14 ln 14�x 4:3:

We showed in Chapter 10 that �2 ln l is approximately distributed as c2,with ðk � 1Þ, in this case 5,

degrees of freedom. (There are only 5 degrees of freedom, not 6, because of the constraint (11.3b).)

From Table C.4 we find

c20:1ð5Þ ¼ 9:1,

and since c2 < 9:1, we can accept the hypothesis that the die is true, i.e.,

H0 : pi ¼ 1=6, i ¼ 1, 2,., 6,

at a 10% significance level. Alternatively, we could calculate the p-value for a c2 value of 4.3. This is

approximately 0.5, so that the hypothesis would be accepted for all significance levels a < 0:5.

11.1. GOODNESS-OF-FIT TESTS 223



An alternative goodness-of-fit test is due to Pearson. He considered the statistic

X2 ¼
Xk
i¼ 1

ðfi � eiÞ2
ei

¼
Xk
i¼ 1

ðfi � npiÞ2
npi

, (11.7)

where fi are the observed frequencies and ei are the expected frequencies under the null
hypothesis. Pearson showed that X2 is approximately distributed as c2 with ðk � 1Þ degrees
of freedom for large values of n. At first sight the two statistics X2 and �2 ln l appear to be
unrelated, but in fact they can be shown to be equivalent asymptotically. To see this, we
define

Dih ðfi � npiÞ=npi,

and write (11.6) as

�2 ln l ¼ 2
Xk
i¼ 1

fi lnð1þ DiÞ:

For small Di we can expand the logarithm as

lnð1þ DiÞ ¼ Di � D2
i =2þ.,

which gives

�2 ln l ¼ 2
Xk
i¼ 1

��
fi � npi

�þ npi

��
Di �

1

2
D2
i þO

	
n�3=2


�

¼ 2
Xk
i¼ 1

��
fi � npi

�
Di þ npiDi �

1

2
npiD

2
i þO

	
n�1=2


�
:

Using the definition of Di and the fact that

Xk
i¼ 1

Dipi ¼ 0,

gives

�2 ln l ¼
Xk
i¼ 1

h
npiD

2
i þO

	
n�1=2


i
¼ X2

h
1þO

	
n�1=2


i
:

So X2 and �2 ln l are asymptotically equivalent statistics, although they will differ for small
samples. Using the data of Example 11.1, gives X2 ¼ 4:20, compared to �2 ln l ¼ 4:30. The
Pearson statistic is easy to calculate and in practice is widely used. It is usually written as

c2 ¼
Xk
i¼ 1

ðoi � eiÞ2
ei

; (11.8)

where oi are the observed frequencies and ei are the expected frequencies under the null
hypothesis.
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EXAMPLE 11.2

Amanufacturer produces an electrical component in four different and increasing qualities A, B, C, and D.

These are produced independently with probabilities 0.20, 0.20, 0.25, and 0.35, respectively. A laboratory

purchases a number of components and pays a lower price by agreeing to accept a sample chosen at random

from A, B, C, and D. To test that the manufacturer is not in practice supplying more lower quality

components than expected, the lab tests a random sample of 60 of them and finds 15, 7, 19, and 19 are of

quality A, B, C, and D, respectively. At what significance level do the components not satisfy the manu-

facturer’s claim?

We are testing the hypothesis

H0 : pi ¼ pi, i ¼ 1, 2,., k

where

pi ¼ 0:20; 0:20; 0:25; 0:35; for i¼ 1; 2; 3; 4; respectively:

We start by calculating the expected frequencies under H0, i.e., ei ¼ 60pi. Thus

ei ¼ 12, 12, 15, 21, for i ¼ 1, 2, 3, 4, respectively:

Then from (11.8) we find c2 ¼ 4:09 for 3 degrees of freedom. The p-value of the test is therefore

p ¼ P½c2 � 4:09:H0� and from Table C.4 this is approximately 0.25. Thus H0 would only be rejected

at significance levels above about 0.25, i.e., in practice the manufacturer is fulfilling the contract.

11.1.2. Continuous Distributions

For the case of continuous distributions, the null hypothesis is usually that a population is
described by a certain density function fðxÞ. This hypothesis may be tested by dividing the
observations into k intervals and then comparing the observed interval frequencies
oiði ¼ 1, 2,., kÞ with the expected values eiði ¼ 1, 2,., kÞ predicted by the postulated
density function, using equation (11.8). For practical work a rule of thumb is that the number
of observations in each bin should not be less than about 5. This may necessitate combining
data from two or more bins until this criterion is satisfied.

If the expected frequencies pi are unknown, but are estimated from the sample in terms of
r parameters to be p̂i then the statistic

c2 ¼
Xk
i¼ 1

ðoi � np̂iÞ2
np̂i

, (11.9)

is also distributed as c2 but now with ðk � 1� rÞ degrees of freedom. In using the chi-square
test of a continuous distribution with unknown parameters, one always has to be careful that
the method of estimating the parameters still leads to an asymptotic c2 distribution. In
general, this will not be true if the parameters are estimated either from the original data
or from the grouped data. The correct procedure is to estimate the parameters q by the ML
method using the likelihood function
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LðqÞ ¼
Yk
i¼ 1

½piðx,qÞ�fi ,

where pi is the appropriate density function. Such estimates are usually difficult to
obtain; however if one uses the simple estimates then one may be working at a higher
significance level than intended. This will happen, for example, in the case of the normal
distribution.

EXAMPLE 11.3

A quantity x is measured 100 times in the range 0e40 and the observed frequencies o in eight bins are

given below.

x 0e5 5e10 10e15 15e20 20e25 25e30 30e35 35e40

o 5 9 15 26 18 14 8 5

Test the hypothesis that x has a normal distribution.

If the hypothesis is true, then the expected frequencies e have a normal distribution with the

same mean and standard deviation as the observed data. The latter may be estimated from the

sample and are x ¼ 19:6 and s ¼ 8:77. Using these we can find the expected frequencies for each of

the bins. This may be done either by finding the z value at each of the bin boundaries and using

Tables C.1 of the normal distribution function or by direct integration of the normal pdf. Either way,

the expected frequencies are

e 3.5 8.9 16.3 21.8 21.3 15.1 7.8 2.9

Since the first and last bins have entries less than 5, we should combine these with the neighboring

bins, so that we finally get

o 14 15 26 18 14 13

e 12.4 16.3 21.8 21.3 15.1 10.7

Then from (11.9) we find c2 ¼ 2:21 and because we have estimated two parameters from the data,

this is for 3 degrees of freedom. From Table C.4, there is a probability of approximately 50% of

finding a value at least large as this for 3 degrees of freedom; so the hypothesis of normality is

very consistent with the observations.

A disadvantage of Pearson’s c2 test is that the data have to be binned, which could be
a problem in cases where the number of observations is small. One method that does not
require binning is the KolmogoroveSmirnov test. In this test we start with a sample yi of size
n from a continuous distribution and test the hypothesis H0 that the distribution function
is FðxÞ. This is done by defining a piecewise continuous function FeðxÞ as the proportion of
the observed values that are less than x, i.e., ðyi � xÞ=n. If H0 is true, FeðxÞ will be close to
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FðxÞ and a natural test statistic is the quantity D h maxjFeðxÞ � FðxÞj, where the maximum
is found by considering all values of x. This is called the Kolmogorove
Smirnov statistic.

To compute D, the sample is first ordered in increasing values and relabeled
yð1Þ, yð2Þ,. ,yðnÞ. Then FeðxÞ consists of a series of steps with increases of 1=n at the
points yð1Þ, yð2Þ,. , yðnÞ as shown in Fig. 11.1. Now because D is defined in terms of
a modulus, it can be written as

D ¼ maxfmax½FeðxÞ � FðxÞ�,max½FðxÞ � FeðxÞ�g

¼ max

�
j

n
� F½yðjÞ�,F½yðjÞ� � j� 1

n


,

(11.10)

where j takes all values from 1 to n. So if the data lead to a value of D ¼ d, the p-value of the
test is

p ¼ P½D � d : H0�:
Although this probability in principle depends on whether H0 is true, it can be shown that in
practice it is independent of the form of FðxÞ and, without proof, a test at significance level a
can be found by considering the quantity

D� h ð ffiffiffi
n

p þ 0:12þ 0:11=
ffiffiffi
n

p ÞD, (11.11)

which approximates to
ffiffiffi
n

p
D for large samples. Then if P½D� � d�� ¼ a, the critical values of

d�a are

d�0:1 ¼ 1:224, d�0:05 ¼ 1:358, d�0:025 ¼ 1:480, d�0:01 ¼ 1:626: (11.12)

Finally, a test at a significance level awould reject H0 if the observed value of D� is at least as
large as d�a.

FIGURE 11.1 Construction of the KolmogoroveSmirnov statistic.
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EXAMPLE 11.4

A sample of size six is drawn from a population and the values in ascending order are:

1 2 3 4 5 6

0.20 0.54 0.71 1.21 1.85 2.45

Test the hypothesis that the sample comes from a population with the distribution function of Example 3.2.

From the data and the distribution function of Example 3.2, we can construct the following table:

j 1 2 3 4 5 6

F½yðjÞ� 0.001 0.018 0.035 0.123 0.283 0.443

j=n� F½yðjÞ� 0.166 0.316 0.465 0.544 0.551 0.557

F½yðjÞ� � ðj� 1Þ=n 0.001 e0.149 e0.298 e0.377 e0.385 e0.390

From this table and equation (11.10) we have D ¼ 0:557 and hence from (11.11) we have

D� ¼ 1:456. Finally, using the critical values given in (11.12), we reject the null hypothesis at the

0.05 level of significance, but not at the 0.025 level.

11.1.3. Linear Hypotheses

In Section 8.1.3 we brieflymentioned the use of the c2and F distributions as goodness-of-fit
tests in connection with the use of the linear least-squares method of estimation. These appli-
cations were designed to test hypotheses concerning the quality of the approximation of the
observations by some assumed expression linear in the parameters. We shall generalize that
discussion now to consider some other hypothesis tests that can be performed using the least-
squares results.

We have seen in Section 8.1 that the weighted sum of residuals S ¼ RTV�1R, where

R ¼ Y�FQ;

and V is the variance matrix of the observations, is distributed as c2 with ðn� pÞ degrees of
freedom, where n is the number of observations and p is the number of parameters
qkðk ¼ 1, 2,.,pÞ. We also saw (compare equation (8.31)) that

RTV�1R ¼ ðY� Y0ÞTV�1ðY� Y0Þ � ðQ̂�QÞTM�1ðQ̂�QÞ,
whereM is the variance matrix of the parameters. It follows from the additive property of c2

that since

ðY� Y0ÞTV�1ðY� Y0Þ
is distributed as c2 with n degrees of freedom, the quantity

ðQ̂�QÞTM�1ðQ̂�QÞ
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is distributed as c2 with p degrees of freedom. To test deviations from the least-squares esti-
mates for the parameters we need to know the distribution of

ðQ̂�QÞTE�1ðQ̂�QÞ
where E is the error matrix of equation (8.32). In the notation of Section 8.1.2,

E ¼ ŵðFTWFÞ�1, (11.13)

and so

ðQ̂�QÞTE�1ðQ̂�QÞ ¼ 1

ŵ
ðQ̂�QÞTðFTWFÞðQ̂�QÞ:

That is,

ðQ̂�QÞTE�1ðQ̂�QÞ ¼ ðQ̂�QÞTM�1ðQ̂�QÞ
	w
ŵ



:

But we have seen above that

ðQ̂�QÞTM�1ðQ̂�QÞ
is distributed as c2 with p degrees of freedom, and so

ðQ̂�QÞTE�1ðQ̂�QÞ=p
is distributed as

c2ðpÞ=p
c2ðn� pÞ=ðn� pÞ ¼ Fðp,n� pÞ:

Thus to test the hypothesis H0 : Q ¼ Q0, we compute the test statistic

F0 ¼ ðQ̂�QÞTE�1ðQ̂�QÞ=p (11.14)

and reject the hypothesis at a significance level of a if F0 > Faðp,n� pÞ.
The foregoing discussion is based on the work of Section 8.2, where we considered the

least-squares method in the presence of linear constraints on the parameters. By analogy
we will now generalize the discussion to include the general linear hypothesis

H0 : Clpqp ¼ Zl, l � p: (11.15)

This may be a hypothesis about all of the parameters, or any subset of them. The null hypoth-
esis H0 may be tested by comparing the least-squares solution for the weighted sum of resid-
uals when H0 is true, i.e., Sc, with the sum in the unconstrained situation, i.e., S. In the
notation of Section 8.2, the additional sum of residuals Sa ¼ Sc � S, which is present if the
hypothesis H0 is true, is distributed as c2 with l degrees of freedom, independently of S,
which itself is distributed as c2 with ðn� pÞ degrees of freedom. Thus the ratio

F ¼ Sa=l

S=ðn� pÞ, (11.16)
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is distributed as Fðl,n� pÞ. Using the results of Section 8.2 we can then show that

F ¼ ðZ� CQ̂ÞTðCECTÞ�1ðZ� CQ̂Þ=l: (11.17)

Thus H0 is rejected at the a significance level if F > Faðl,n� pÞ. (Compare the discussion at
the end of Section 8.1.3.)

EXAMPLE 11.5

An experiment results in the following estimates for three parameters, based on ten measurements

q̂1 ¼ 2; q̂2 ¼ 4; q̂3 ¼ 1,

with an associated error matrix

E ¼
0
@ 1 0 0

0 2 1
0 1 1

1
A:

Test the hypothesis

H0 : q1 ¼ 0; q2 ¼ 0

at the 5% significance level.

For the above hypothesis,

Q̂ ¼
0
@ 2

4
1

1
A; C ¼

�
1 0 0
0 1 0

�
; Z ¼

�
0
0

�
,

and the calculated value of F from equation (11.17) is 6. From Table C.5 of the F distribution, we find

that

Faðl,n� pÞ ¼ F0:05ð2, 7Þ ¼ 4:74,

and so we can reject the hypothesis at a 5% significance level.

Finally, we have to consider the power of the test of the general linear hypothesis, i.e., we
have to find the distribution of F if H0 is not true. Now S=ðn� pÞ is distributed as c2=ðn� pÞ
regardless of whether H0 is true or false, but Sa=l is only distributed as c2=l if H0 is true. If H0

is false, then Sa=l will in general be distributed as noncentral c2, which has, for l degrees of
freedom, a density function

fncðc2; lÞ ¼
XN
p¼ 0

�
e�llp

p!

�
fðc2; lþ 2pÞ,

where fðc2; lþ 2pÞ is the density function for a c2 variable with ðlþ 2pÞ degrees of freedom,
and the noncentrality parameter is

l ¼ 1

2
ðCQ� ZÞTðCMCTÞ�1ðCQ� ZÞ:
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It follows that F is distributed as a noncentral F distribution. Tables of the latter distribution are
available to construct the power curves. A feature of the noncentral F distribution is that the
power of the test increases as l increases.

11.2. TESTS FOR INDEPENDENCE

The c2 procedure of Section 11.1 can also be used to construct a test for the independence
of variables. Suppose n observations have been made and the results are characterized by
two random variables x and y that can take the discrete values x1, x2,., xr and
y1, y2,., yc, respectively. (Continuous variables can be accommodated by dividing the
range into intervals, as described in Section 11.1.2) If the number of times the value xi is
observed together with yi is nij, then the data can be summarized in the matrix form shown
in Table 11.1, called an r� c contingency table.

If we denote by pi the marginal probability for xi, i.e., the probability for x to have the value
xi, independent of the value of y, and likewise denoted by qj the marginal probability for yj,
then if the null hypothesis H0 is that x and y are independent variables, the probability for
observing xi simultaneously with yj is piqj ði ¼ 1, 2,., r; j ¼ 1, 2,., cÞ. Since the marginal
probabilities are not specified in the null hypothesis they must be estimated. Using the
maximum likelihood method, this gives

p̂i ¼
1

n

Xc
j¼ 1

nij, i ¼ 1, 2,., r, (11.18a)

and

q̂j ¼
1

n

Xr
i¼ 1

nij, j ¼ 1, 2,., c, (11.18b)

and ifH0 is true, the expected values for the elements of the contingency table are np̂iq̂j. SoH0

can be tested by calculating the quantity

c2 ¼
Xr
i¼ 1

Xc
j¼ 1

ðnij � np̂
i
q̂
j
Þ2

np̂iq̂j
(11.19)

TABLE 11.1 An r� c contingency table

y1 y2 / yc

x1 n11 n12 / n1c

x2 n21 n22 / n2c

« « « «

xr nr1 nr1 / nrc

11.2. TESTS FOR INDEPENDENCE 231



and comparing it with c2a at a significance level a. It remains to find the number of degrees of
freedom for the statistic c2. First we note that because

Xr
i¼ 1

p̂i ¼
Xc
i¼ j

q̂j ¼ 1, (11.20)

only ðr� 1Þ parameters pi and ðc� 1Þ parameters qi need to be estimated, i.e., ðrþ c� 2Þ in
total. Therefore the number of degrees of freedom is

ðnumber of entries� 1Þ � ðrþ c� 2Þ ¼ ðr� 1Þðc� 1Þ: (11.21)

EXAMPLE 11.6

A laboratory has three pieces of test apparatus of the same type, and they are used by four technicians on

a one-month rota. A record is kept of the number of machine breakdowns for each month, and the average

number is shown in the table according to which technician was using the machine.

Equipment

Technician E1 E2 E3 Total

T1 3 6 1 10

T2 0 1 2 3

T3 3 2 4 9

T4 6 2 1 9

Total 12 11 8 31

Are the variables E, the equipment number, and T, the technician who used the equipment, independent

random variables in determining the rate of breakdowns?

In the notation above, r ¼ 4, c ¼ 3 and n ¼ 31. So from (11.18), using the data given in the table,

p̂1 ¼ 10

31
, p̂2 ¼ 3

31
, p̂3 ¼ 9

31
, p̂4 ¼ 9

31
,

and

q̂1 ¼ 12

31
, q̂2 ¼ 11

31
, q̂3 ¼ 8

31
:

Then from (11.19)

c2 ¼
Xc
i¼ 1

Xr
j¼ 1

ðnij � np̂
i
q̂
j
Þ2

np̂iq̂j
¼ 10:7,

and this is for ðr� 1Þðc� 1Þ ¼ 6 degrees of freedom. The p-value is

p ¼ P½c26 � 5:66:H0� ¼ a

and from Table C.4, a z 0:1; so the data are consistent at the 10% significance level with the inde-

pendence of the two variables in determining the number of breakdowns.
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11.3. NONPARAMETRIC TESTS

The tests that were discussed in Chapter 10 all assumed that the population distribu-
tion was known. However there are cases were this is not true, and to deal with these situ-
ations we can order the observations by rank and apply tests that do not rely on
information about the underlying distribution. These are variously called nonparametric
tests, or distribution-free tests. Not making assumptions about the population distribution
is both a strength and a weakness of such tests; a strength because of their generality
and a weakness because they do not use all the information contained in the data. An
additional advantage is that such tests are usually quick and easy to implement, but
because they are less powerful than more specific tests we have discussed, the latter
should usually be used if there is a choice. In addition, although the data met in physical
science are usually numeric, occasionally we have to deal with non-numeric data, for
example, when testing a piece of equipment the outcome could ‘pass’ or ‘fail’. Some
nonparametric tests can also be applied to these situations. The discussion will be brief,
and not all proofs of statements will be given.

11.3.1. Sign Test

In Section 10.5 we posed the question of whether it is possible to test hypotheses about the
average of a population when its distribution is unknown. One simple test that can do this is
the sign test, and as an example of its use we will test the null hypothesis H0 : m ¼ m0 against
some alternative, such as Ha : m ¼ ma or Ha : m > m0 using a random sample of size n in the
case where n is small, so that the sampling distribution may not be normal. In general if we
make no assumption about the form of the population distribution, then in the sign test and
those that follow, m refers to the median, but if we know that the population distribution is
symmetric, then m is the arithmetic mean. For simplicity the notation m will be used for both
cases.

We start by assigning a plus sign to all data values that exceed m0 and a minus sign to all
those that are less than m0. We would expect the plus and minus signs to be approximately
equal and any deviation would lead to rejection of the null hypothesis at some significance
level. In principle, because we are dealing with a continuous distribution, no observation
can in principle be exactly equal to m0, but in practice approximate equality will occur
depending on the precision with which the measurements are made. In these cases the
points of ‘practical equality’ are removed from the data set and the value of n reduced
accordingly. The test statistic X is the number of plus signs in the sample (or equally we
could use the number of minus signs). If H0 is true, the probabilities of obtaining a plus
or minus sign are equal to ½ and so X has a binomial distribution with p ¼ p0 ¼ 1=2.
Significance levels can thus be obtained from the binomial distribution for one-sided and
two-sided tests at any given level a.

For example, if the alternative hypothesis is Ha : m > m0, then the largest critical region of
size not exceeding a is obtained from the inequality x � ka, whereXn

x¼ ka

Bðx : n, p0Þ � a, (11.22a)
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and B is the binomial probability with p0 ¼ p ¼ ½ if H0 is true. Similarly, if Ha : m < m0, we
form the inequality x � k0a , where k0a is defined by

Xk0a
x¼ 0

Bðx : n, p0Þ � a (11.22b)

Finally, ifHa : ms m0, i.e., we have a two-tailed test, then the largest critical region is defined by

x � k0a=2 and x � ka=2: (11.22c)

For sample sizes greater than about 10, the normal approximation to the binomial may be
used with mean m ¼ np and s2 ¼ npð1� pÞ.

EXAMPLE 11.7

A mobile phone battery needs to be regularly recharged even if no calls are made. Over 12 periods when

charging was required, it was found that the intervals in hours between chargings were:

50 35 45 65 39 38 47 52 43 37 44 40

Use the sign test to test at a 10% significance level the hypothesis that the battery needs recharging on average

every 45 hours.

We are testing the null hypothesis H0 : m0 ¼ 45 against the alternative Ha : m0 s 45. First we

remove the data point with value 45, reducing n to 11, and then assign a plus sign to those

measurements greater than 45 and a minus sign to those less than 45. This gives x ¼ 4 as the

number of plus signs. As this is a two-tailed test, we need to find the values of k0:05 and k00:05 for

n ¼ 11. From Table C.2, these are k00:05 ¼ 3 and k0:05 ¼ 9. Since x ¼ 4 lies in the acceptance region,

we accept the null hypothesis at this significance level.

The sign test can be extended in a straightforward way to two-sample cases, for example,
to test the hypothesis that m1 ¼ m2 using samples of size n drawn from two non-normal
distributions. In this case the differences diði ¼ 1, 2,.,nÞ of each pair of observations is
replaced by a plus or minus sign depending on whether di is greater than or less than
zero, respectively. If the null hypothesis instead of being m1 � m2 ¼ 0 is instead
m1 � m2 ¼ d, then the procedure is the same, but the quantity d is subtracted from each di
before the test is made.

11.3.2. Signed-Rank Test

The sign test uses only the positive and negative signs of the differences between the
observations and m0 in a one-sample case (or the signs of the differences di between observa-
tions in a paired sample case). Because it ignores the magnitudes of the differences, it can, for
example, lead to conclusions that differ from those obtained using the t-distribution, which
assumes the population distribution is normal. There is however another test, called theWil-
coxon signed-rank test, or simply the signed-rank test, that does take into account the magnitude
of these differences. The test proceeds as follows.
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We will assume that the null hypothesis is H0 : m ¼ m0 and that the distribution is
symmetric. If the latter is not true then the tests will refer to the median of the distribution.
First, the differences di ¼ xi � m0ði ¼ 1, 2,.,nÞ (or di ¼ xi � yi) are found and any that are
zero discarded. The absolute values of the remaining set of differences are then ranked in
ascending order, i.e., rank 1 assigned to the smallest absolute value of di, rank 2 assigned
to the second smallest absolute value of di, etc. If jdij is equal for two or more values, their
rank is assigned to be the average of the ranks they would have had if they had been slightly
different and so distinguishable. For example, if two differences are equal and notionally
have rank 5, both would be assigned a rank of 5.5 and the next term would be assigned
a rank 7.

We now define wþ and w� to be the sum of the rank numbers corresponding to di > 0 and
di < 0, respectively, and w ¼ minfwþ,w�g. For different samples of the same size n, the
values of these statistics will vary, and for example to test H0 : m ¼ m0 against the alternative
Ha : m < m0, i.e., a one-tailed test, we would rejectH0 ifwþ is small andw� large. (Similarly for
testing H0 : m1 ¼ m2 against Ha : m1 < m2.) Likewise if wþ is large and w� small, we would
accept Ha : m > m0 (and similarly Ha : m1 > m2). For a two-tailed test with Ha : ms m0, or
Ha : m1 s m2, H0 would be rejected if either wþ, w�, and hence w, were sufficiently small.
If the two-tailed case is generalized to H0 : m1 � m2 ¼ d0, then the same test can be used by
subtracting d0 from each of the differences di, as in the sign test, and in this case the distribu-
tion need not be symmetric.

The final question is to decide what is ‘large’ and ‘small’ in this context. For small n < 5, it
can be shown that provided a < 0:05 for a one-tailed test, or less than 0.10 for a two-tailed
test, any value of w will lead to acceptance of the null hypothesis. The test is summarized
in Table 11.2.

For n greater than about 25, it can be shown that the sampling distribution of wþ, or w�,
tends to a normal distribution with

mean m ¼ nðnþ 1Þ
4

and variance s2¼ nðnþ 1Þð2nþ 1Þ
24

(11.23)

so that the required probabilities may be found using the standardized variable
z� ¼ ðw� � mÞ=s. For the range 5� n� 25 it is necessary to calculate the explicit probabilities
or obtain values from tabulations, such as given in Table C.7.

TABLE 11.2 Signed-rank test

H0 Ha Test statistic

m ¼ m0 ms m0 w

m < m0 wþ

m > m0 w�

m1 ¼ m2 m1 s m2 w

m1 < m2 wþ

m1 > m2 w�
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EXAMPLE 11.8

Rework Example 11.7 using the rank-sign test.

Using the data of Example 11.7 with m0 ¼ 45, we have

xi 50 35 45 65 39 38 47 52 43 37 44 40

di 5 e10 0 20 e6 e7 2 7 e2 e8 e1 e5

jdij 5 10 20 6 7 2 7 2 8 1 5

rank 4.5 10 11 6 7.5 2.5 7.5 2.5 9 1 4.5

where the point with di ¼ 0 has been discarded and the rank of ties have been averaged. From the

rank numbers we calculate wþ ¼ 25:5 , w� ¼ 40:5, and so w ¼ minfwþ,w�g ¼ 25:5. From Table

C.7, the critical region for n ¼ 11 in a two-tailed test with a ¼ 0:10 is strictly w � 13 (although w �
14 is also very close), but since w is greater than either of these values we again accept the null

hypothesis at this significance level.

11.3.3. Rank-Sum Test

The rank-sum test, which is also called the Wilcoxon, or ManneWhitney, rank-sum test, is
used to compare the means of two continuous distributions. When applied to the case of
non-normal distributions, it is more powerful than the two-sample t-test discussed in
Chapter 10.

We will use it to test the null hypothesis H0 : m1 ¼ m2 against some suitable alternative.
First, samples of sizes n1 and n2 are selected from the two populations, and if n1 s n2 we
assume that n2 > n1. Then the n ¼ n1 þ n2 observations are arranged in an ascending order
and a rank number 1, 2,., n is assigned to each. In the case of ties, the rank number is taken
to be the mean of the rank numbers that the observations would have had if they had been
distinguishable, just as in the signed-rank test. We now proceed in a similar way to that used
in the signed-rank test.

Let w1, 2 be the sums of the rank numbers corresponding to the n1, 2 sets of observations.
With repeated samples, the values of w1, 2 will vary and may be viewed as random variables.
So, just as for the signed-rank test,H0 : m1 ¼ m2 will be rejected in favor ofHa : m1 < m2 ifw1 is
small andw2 is large, and similarly it will rejected in favor ofHa : m1 > m2 ifw1 is large andw2 is
small. For a two-tailed test, H0 is rejected in favor of Ha : m1sm2 if w ¼ minfw1,w2g is suffi-
ciently small. It is common practice to work with the statistics

u1, 2 ¼ w1, 2 �
n1, 2ðn1, 2 þ 1Þ

2
: (11.24)

The test is summarized in Table 11.3.
For large sample sizes the variables u1, 2 are approximately normally distributed with

mean m ¼ n1n2
2

and variance s2 ¼ n1n2ðn1 þ n2 þ 1Þ
12

: (11.25)
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Conventionally this approximation is used for n1 � 10 and n2 � 20. Then, as usual, the statis-
tics z1, 2 ¼ ðu1, 2 � mÞ=s are standardized normal variates and may be used to find suitable
critical regions for the test. For smaller samples, critical values of umay be found from tables,
such as Table C.8. The rank-sum test may be extended to accommodate many populations,
when it is called the KruskaleWallis test.

EXAMPLE 11.9

A laboratory buys power packs from two sources S1 and S2. Both types have a nominal rating of 10 volts.

The results of testing a sample of each type yield the following data for the actual voltage:

S1 9 8 7 8

S2 10 9 8 11 7 9

Use the rank-sum test to test the hypothesis that the two types of pack supply the same average voltage at the

10% significance level.

The data are first ranked as follows:

S1 9 8 7 8

S2 10 9 8 11 7 9

Rank 7 9 4 7 1.5 4 4 10 1.5 7

where we have averaged the ranking numbers for ties. From this table we calculate w1 ¼ 16:5,

w2 ¼ 38:5 and hence, in the notations above, u1 ¼ 6:5 and u2 ¼ 17:5, so that u ¼ 6:5. From Table

C.8, the critical region u, for a two-tailed test at significance level 0.10 and sample sizes n1 ¼ 4 and

n2 ¼ 6 is u� 3. Since the calculated value of u is greater than 3, we accept the hypothesis at the 10%

significance level.

11.3.4. Runs Test

It is a basic assumption in much of statistics that a data set constitutes a simple random
sample from some underlying population distribution. But we have noted in Section 5.2.1
that it is often difficult to ensure that randomness has been achieved and so a test for this
is desirable. The runs test does this. In this test, the null hypothesis H0 is that the observed
data set is a random sample.

To derive the test, we shall consider a simple case where the elements of the sample
xiði� 1, 2, 3. ,NÞ can only take the values A or B. (In a non-numeric situation these might

TABLE 11.3 Rank-sum test

H0 Ha Test statistic

m1 ¼ m2 m1 s m2 u

m1 < m2 u1

m1 > m2 u2
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be ‘pass’ and ‘fail’.) A run is then defined as a consecutive sequence of either A’s or B’s, for
example

AAABAABBBBBAABBBABBAA:

In this example, there are n ¼ 10 A’s, m ¼ 11 B’s, with N ¼ nþm ¼ 21, and r ¼ 9 runs.
The total number of permutations of the N points is NCn ¼ N! =ðn!m!Þ, and if H0 were
true, then each would be equally likely. We therefore have to find the probability mass func-
tion for r, the number of runs. This is

P½r ¼ k : H0� h
probability of obtaining k runs

NCn

: (11.26)

The numerator can be found by considering only the A’s and calculating for a given n how
many places are there where a run can terminate and a new one begin. If k is even, there
are ðk=2� 1Þ places where a run ceases and a new one starts. There are ðn� 1Þ of these where
the first run could cease and the second start, ðn� 2Þ where the second ceases and the third
starts, and so on, giving n�1Ck=2�1 distinct arrangements for the A’s. There is a corresponding
factor for the possible arrangements of the B’s and the product of these two terms must be
multiplied by a factor of two because the entire sequence could start with either an A or
a B. Thus,

P½r ¼ 2k : H0� ¼ 2
ðn�1ÞCðk�1Þ � ðm�1ÞCðk�1Þ

NCn

: (11.27a)

An analogous argument for k odd gives

P½r ¼ 2k þ 1 : H0� ¼
	
ðn�1ÞCðk�1Þ � ðm�1ÞCk



þ
	
ðn�1ÞCk � ðm�1ÞCðk�1Þ



NCn

: (11.27b)

For small values of n and m these expressions can be used to calculate the required
probabilities, but it is rather tedious. Usually one consults tabulations, an example of
which is Table C.9. For example, for a two-tailed test at significance level a, the critical
region is defined by the inequalities r � a and r � b, where a is the largest value of r
for which

P½r � a : H0� � a=2, (11.28a)

and b is the smallest value of r0 for which

P½r � b : H0� � a=2: (11.28b)

The values of a and b are given in Table C.9, and may be used for a one-tailed test at a signif-
icance level of 0.05, or a two-tailed test at a significance level of 0.1.

For large n and m, it can be shown that r is approximately normally distributed with mean
and variance given by

m ¼ 2nm

nþm
þ 1 and s2 ¼ 2nmð2nm�NÞ

N2ðN � 1Þ , (11.29)
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so the variable z h ðr� mÞ=s will be approximately distributed as a standardized normal
distribution. In this case the p-value is approximately

p-value ¼ 2minfNðzÞ, 1�NðzÞg: (11.30)

One use of the run test is to supplement the c2 goodness-of-fit test described in
Section 11.1.1. An example of this is given below.

EXAMPLE 11.10

Figure 11.2 shows a linear least-squares fit to a set of 24 data points. The c2 value is 19.8 for 22 degrees of

freedom, which is acceptable. Use the runs test to test at a 10% significance level whether the data are

randomly distributed about the fitted line.

The data have n ¼ 7, m ¼ 16 (one point is on the fitted line) and for a two-tailed test at a 10%

significance level, the critical regions may be found using Table C.9. They are r� 6 and r� 15. Since

the observed value of r is 9, the hypothesis that the data are randomly distributed about the best-fit

line must be accepted.

11.3.5. Rank Correlation Coefficient

In previous chapters we have used the sample (Pearson’s) correlation coefficient r to
measure the correlation between two sets of continuous random variables x and y. If instead
we replace their numerical values by their rankings, then we obtain the rank correlation coef-
ficient (this is due to Spearman and so is also called the Spearman rank correlation coefficient)
denoted rR. It is given by

rR ¼ 1� 6

nðn2 � 1Þ
Xn
i¼ 1

d2i , (11.31)

0

2

4

FIGURE 11.2 Linear fit to data.
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where n is the number of data points and di are the differences in the ranks of xi and yi. In
practice, ties are treated as in the previous tests, i.e., the differences are averaged as if the
ties could be distinguished. The rank correlation coefficient rR is similar to r. It is a number
between þ1 and e1 with the extreme values indicating complete positive or negative corre-
lation. For example, rR ¼ 1 implies that the ranking numbers of xi and yi are identical and
a value close to zero indicates that the ranking numbers are uncorrelated. The advantages
of using the Spearman correlation coefficient rather than Pearson’s are the usual ones: no
assumptions need to be made about the distribution of the x and y variables, and the test
can be applied to non-numeric data.

The significance of the rank correlation coefficient is found by considering the distribu-
tion of rR under the assumption that x and y are independent. In this case rR ¼ 0 and
values of critical values can be calculated. An example is Table C.10. Note that the distribu-
tion of values of rR is symmetric about rR ¼ 0, so left-tailed areas are equal to right-tailed
areas for a given significance level a and for a two-tailed test the critical regions are equal in
the two tails of the distribution. For larger values n � 30, the normal distribution may be
used with mean zero and variance ðn� 1Þ�1=2, so that z ¼ rR

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
is a standard normal

variable.

EXAMPLE 11.11

A laboratory manager is doubtful whether regular preventive maintenance is leading to fewer breakdowns

of his portfolio of equipment, so he records details of the annual rate of breakdowns (B) and the interval in

months between services (I) for 10 similar machines (M), with the results shown below. Test the hypothesis

that there is no correlation between B and I at a 5% significance level.

M 1 2 3 4 5 6 7 8 9 10

B 2 5 4 3 6 8 9 10 1 12

I 3 4 3 5 6 4 6 5 3 6

We start by rank ordering B and I to give BR, IR, and d2 h ðBR � IRÞ2:

M B I BR IR d2 h ðBRLIRÞ2

1 2 3 2 2 0

2 5 4 5 4.5 2.25

3 4 3 4 2 4

4 3 5 3 6.5 12.25

5 6 6 6 8 4

6 8 4 7 4.5 6.25

7 9 6 8 8 0

8 10 5 9 6.5 6.25

9 1 3 1 2 1

10 12 6 10 8 4
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Then from (11.31) we find rR ¼ 0:76. We will test the null hypothesis H0 : rR ¼ 0 against the alter-

native H0 : rR > 0. From Table C.10, we find that we would reject H0 at the 0.05 significance level

because rR > 0:564. Recall from the remarks in Section 1.3.3 that this does notmean that preventive

maintenance causes fewer breakdowns, but simply means that there is a significant correlation

between the two variables so that this assumption cannot be ruled out.

PROBLEMS 11

11.1 A radioactive source was observed for successive periods of 1minute and the number of
particles emitted of a specific type during 500 intervals recorded. The resulting
observations oi are shown below.

Test the hypothesis that the number of particles emitted has a Poisson distribution with
parameter l ¼ 5.

11.2 Two experiments give the following results for the value of a parameter (assumed to be
normally distributed), 2:05� 0:01 and 2:09� 0:02, what can one say about their
compatibility?

11.3 A sample of size ten is drawn from a population and the values are:.

Use the KolmogoroveSmirnov technique to test at a 10% significance level
the hypothesis that the sample comes from an exponential population with
mean 100.

11.4 Four measurements of a quantity give values 1.12, 1.13, 1.10, and 1.09. If they all come
from the same normal population with s2 ¼ 4� 10�4, test at a 5% significance level the
hypothesis that the populations are identical and have a common mean m0 ¼ 1:09
against the alternative that m0 s 1:09.

11.5 Three operatives (O) are given the task of testing identical electrical components for
a fixed period of time in the morning (M), afternoon (A), and evening (E) and the
numbers successfully tested are given below.

counts 0 1 2 3 4 5 6 7 8 9 10 11 12

oi 1 8 38 67 75 85 89 66 39 15 10 5 2

1 2 3 4 5 6 7 8 9 10

48 55 65 77 94 118 135 150 167 190
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Test at the 10% significance level the hypothesis that the variables O and the time of
day are independent variables in determining the number of components tested.

11.6 Use the normal approximation to the sign test to calculate the p-value for the hypothesis
that the median of the following numbers is 35.

9 21 34 47 54 55 53

47 38 28 21 15 11 8

11.7 The sample of size 10 shown below was drawn from a symmetric population.

x 12 11 18 17 15 19 19 20 17 16

Use the signed-rank test to examine at a 5% significance level the hypothesis that the
population mean is 15.5.

11.8 Two samples of weights are measured and give the following data:

S1 9 6 7 8 7

S2 8 7 9 10 9 11 8

Use the rank-sum test to test at a 5% significance level the hypothesis that the mean
value obtained from S1 is smaller than that from S2.

11.9 Test at a 10% significance level whether the following numbers are randomly
distributed about their mean.

2 4 7 3 7 9 5 9 3 6

7 5 2 8 9 7 3 4 2 1

M A E

O1 65 70 75

O2 95 89 70

O3 85 70 58
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A.1. MATRIX ALGEBRA

A matrix A is a two-dimensional array of numbers, which is written as

A ¼

0
BB@

a11 a12 / a1n

a21 a22 / a2n

« « «

am1 am2 / amn

1
CCCA

where the general element in the ith row and jth column is denoted by aij. A matrix with m
rows and n columns is said to be of order ðm� nÞ. For the cases m ¼ 1 and n ¼ 1, we have the
row and column matrices

ð a1 a2 . an Þ and

0
BB@

a1

a2

«

am

1
CCCA,

respectively.
Matrices are frequently used in Chapter 8 to write the set of n linear equations in p

unknowns: Xp
j¼1

aijxj ¼ bi, i ¼ 1, 2, . , n
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in the compact form

AX ¼ B,

where A is of order ðn� pÞ, X is an ðp� 1Þ column vector, and B is a ðn� 1Þ column vector.
The set of n column vectors Xiði ¼ 1, 2, ., nÞ, all of the same order, are said to be linearly
dependent if there exist n scalars aiði ¼ 1, 2, . , nÞ, not all zero, such that

Xn
i¼1

aiXi ¼ 0,

where 0 is the null matrix, i.e., a matrix with all its elements zero. If no such set of scalars
exists, then the set of vectors is said to be linearly independent.

The transpose of the matrix A, denoted by AT, is obtained by interchanging the rows and
columns of A, so

AT ¼

0
BB@

a11 a21 . am1

a12 a22 . am2

« « «

a1n a2n . amn

1
CCCA

is an ðn�mÞ matrix.
A matrix with an equal number of rows and columns is called a square matrix, and if

a square matrix A has elements such that aji ¼ aij, it is said to be symmetric. A particular
example of a symmetric matrix is the unit-matrix 1, with elements equal to unity for i ¼ j,
and zero otherwise. A symmetric matrix A is said to be positive definite if for any vector
V, (i) VTAV � 0 and (ii) VTAV ¼ 0 implies V ¼ 0: A square matrix with elements aijs0
only if i ¼ j is called diagonal; the unit matrix is an example of such a matrix. The line contain-
ing the elements a11, a22, ., ann is called the principal, or main, diagonal and the sum of its
terms is the trace of the matrix, written as

TrA ¼
Xn
i¼1

aii:

The determinant of a square ðn� nÞ matrix A is defined by

det A ¼ jAjh
X

ð�a1ia2j. ankÞ, (A.1)

where the summation is taken over all permutations of i, j, ., k, where these indices are the
integers 1, 2, ., n. The positive sign is used for even permutations and the negative sign for
odd permutations. The minor mij of the element aij is defined as the determinant obtained
fromAbydeleting the ith rowand the jth column, and the cofactorof aij isdefinedas ð�1Þiþj times
theminormij. The determinant ofAmay also bewritten in terms of its cofactors. For example, if

A ¼
0
@ 2 1 3

1 2 4
2 1 1

1
A, (A.2)
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then

det A ¼ 2�
���� 2 4
1 1

����� 1�
���� 1 4
2 1

����þ 3�
���� 1 2
2 1

����
¼ 2� ð2� 4Þ � ð1� 8Þ þ 3� ð1� 4Þ ¼ �6:

The adjointmatrix is defined as the transposedmatrix of cofactors and is denoted byAy. Thus,
the adjoint of the matrix in (A.2) is

Ay ¼
0
@�2 2 �2

7 �4 �5
�3 0 3

1
A: (A.3)

A matrix Awith real elements that satisfies the condition AT ¼ A�1 is said to be orthogonal
and its complex analog is a unitarymatrix for whichAy ¼ A�1. For any real symmetric matrix
A, a unitary matrixUmay be found, that when multiplyingA transforms it to diagonal form,
i.e., the matrix UA has zeros everywhere except on the principal diagonal.

One particular determinant we have met is the Jacobian J. Consider n random variables
xiði ¼ 1, 2, ., nÞ which are themselves function of n other linearly independent random
variables yiði ¼ 1, 2, ., nÞ, and assume that the relations can be inverted to give
xiðy1, y2, /, ynÞ. If the partial derivatives vyi=vxj are continuous for all i and j, then J is
defined by (some authors use the term Jacobian to mean the determinant of J, i.e., jJj)

Jh
vðy1, y2,/ ynÞ
vðx1, x2, / xnÞh

0
BBBBBBB@

vy1
vx1

vy2
vx1

/
vyn
vx1

vy1
vx2

vy2
vx2

/
vyn
vx2

« « «

vy1
vxn

vy2
vxn

/
vyn
vxn

1
CCCCCCCCCCCA
:

The Jacobian has been used, for example, in Section 3.4, when discussing functions of
a random variable. In this case, if n random variables xiði ¼ 1, 2,., nÞ have a joint probability
density fðx1,x2,.,xnÞ, then the joint probability density gðy1,y2,.,ynÞ of a new set of vari-
ates yi, which are themselves function of the n variables xiði ¼ 1, 2,.,nÞ defined by
yi ¼ yiðx1, x2,.,xnÞ, is given by

gðy1,y2,.,ynÞ ¼ fðx1,x2,., xnÞjJj:

Two matrices may be added and subtracted if they contain the same number of rows and
columns, and such addition is both commutative and associative. The (inner) product
A ¼ BC of two matrices B and C has elements given by

aij ¼
X
k

bikckj
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and so is defined only if the number of columns in the first matrix B is equal to the number of
rows in the second matrix C. Matrix multiplication is not, in general, commutative, but is
associative.

Division of matrices is more complicated and needs some preliminary definitions. If we
form all possible square submatrices of the matrix A (not necessarily square), and find
that at least one determinant of order r is nonzero, but all determinants of order ðrþ 1Þ are
zero, then the matrix is said to be of rank r. A square matrix of order n with rank r < n has
det A ¼ 0 and is said to be singular. The rank of a matrix may thus be expressed as the greatest
number of linearly independent rows or columns existing in the matrix, and so, for example,
a nonsingular square matrix of order ðn� nÞmust have rank n. Conversely, if a square matrix
A, of order ðn� nÞ, has rank r ¼ n, then it is nonsingular and there exists a matrixA�1, known
as the inverse matrix, such that

AA�1 ¼ A�1A ¼ 1, (A.4)

where 1 is a diagonal matrix with elements of unity along the principle diagonal and
zeros elsewhere. This is the analogous process to division in scalar algebra. The inverse
is given by

A�1 ¼ AyjAj�1: (A.5)

Thus, if

A ¼
�
1 2
3 4

�
,

then

Ay ¼
�

4 �2
�3 1

�
and jAj ¼ ð1� 4Þ � ð3� 2Þ ¼ �2,

so that

A�1 ¼ �1

2

�
4 �2

�3 1

�
,

and to check

AA�1 ¼ �1

2

�
1 2
3 4

��
4 �2

�3 1

�
¼

�
1 0
0 1

�
¼ 1:

Finally, for products of matrices,

ðABC.DÞT ¼ DT.CTBTAT , (A.6)

and, if A, B, C, . , D are all square nonsingular matrices,

ðABC.DÞ�1 ¼ D�1.C�1B�1A�1: (A.7)
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A point worth remarking is that in practice equations (A.1) and (A.5) are only
useful for the practical evaluation of the determinant and inverse of a matrix in simple
cases of low dimensionality. For example, in the least-squares method where the
matrix of the normal equations (which is positive definite) has to be inverted, the
most efficient methods in common use are those based either on the so-called Choles-
ki’s decomposition of a positive definite matrix or on Golub’s factorization by orthog-
onal matrices, the details of which may be found in any modern textbook on
numerical methods.

A.2. CLASSICAL THEORY OF MINIMA

If fðxÞ is a function of the single variable xwhich in a certain interval possesses continuous
derivatives

f ðjÞðxÞh djfðxÞ
dxj

, ðj ¼ 1, 2,.,nþ 1Þ,

then Taylor’s Theorem states that if x and ðxþ hÞ belong to this interval then

fðxþ hÞ ¼
Xn
j¼0

hj

j!
f ðjÞðxÞ þ Rn,

where f ð0ÞðxÞ ¼ fðxÞ, and the remainder term is given by

Rn ¼ hnþ1

ðnþ 1Þ! f
ðnþ1Þðxþ qhÞ, 0 < q < 1

For a function of p-variables, Taylor’s expansion becomes

fðxþ thÞ ¼
Xn
j¼0

t j

j!
ðhVÞjfðxÞ þ Rn,

where h is the row vector ðh1,h2,., hpÞ, VTis the row vector�
v

vx1

v

vx2
/

v

vxp

�
and

Rn ¼ tnþ1

ðnþ 1Þ!ðhVÞ
nþ1fðxþ qthÞ, 0 < q < 1

A necessary condition for a turning point (maximum, minimum or saddle point) of fðxÞto
exist is that

vfðxÞ
vxi

¼ 0
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for all i ¼ 1, 2,.,p. A sufficient condition for this point to be a minimum is that the second
partial derivatives exist, and that Di > 0 for all i ¼ 1, 2,.,p, where

Di ¼

���������������

v2f

vx21

v2f

vx1vx2
/

v2f

vx1vxi

v2f

vx2vx1

v2f

vx22
/

v2f

vx2vxi

« « «

v2f

vxivx1

v2f

vxivx2
/

v2f

vx2i

������������������

:

If we seek a minimum of fðxÞ, subject to the s equality constraints

ejðxÞ ¼ 0, j ¼ 1, 2,., s,

then the quantity to consider is the Lagrangian form

Lðx,lÞ[ fðxÞ þ
Xs
j¼1

liejðxÞ,

where the constants li are the so-called Lagrange multipliers. If the first partial derivatives of
ejðxÞ exist, then the required minimum is the unconstrained solution of the equations

ejðxÞ ¼ 0, j ¼ 1, 2,., s

and

vfðxÞ
vxi

þ
Xs
j¼1

lj
vejðxÞ
vxi

¼ 0, i ¼ 1, 2,., p:

This technique has been used in several places, and extensively in the discussion of the least-
squares method of estimation in chapter 8.
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Optimization of Nonlinear Functions1

O U T L I N E

B.1 General Principles 249

B.2 Unconstrained Minimization of
Functions of One Variable 252

B.3 Unconstrained Minimization
of Multivariable Functions 253

B.3.1 Direct Search Methods 253
B.3.2 Gradient Methods 254

B.4 Constrained Optimization 255

In Chapters 7 and 8 we encountered the problem of finding the maxima, or minima, of
nonlinear functions, sometimes of several variables. These are examples of a more general
class of optimization problems, which although occurring frequently in statistical estimation
procedures, are not of a statistical nature. In practice, computer codes exist to tackle these
problems, and it is not suggested that the reader write their own optimization code except
in the simplest of circumstances, but nevertheless it is useful to know a little of the theory
on which the methods are based to better appreciate their limitations. The discussion of
this appendix is therefore confined to the main ideas involved, illustrated by one or two
examples. Fuller accounts are given in the books cited in the bibliography, from which these
brief notes draw extensively.

B.1. GENERAL PRINCIPLES

We consider only minimization problems since

min fðxÞ ¼ max ½�fðxÞ�:

1This appendix makes extensive use of matrix notations. These are reviewed briefly in Appendix A.
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The general problem to be solved is then to minimize the function fðx1, x2 , . , xpÞh fðxÞ,
subject to the m inequality constraints

ciðxÞ � 0, i ¼ 1, 2, ., m

and the s equality constraints,

ejðxÞ ¼ 0, j ¼ 1, 2, ., s:

All other constraints can be reduced to either of the above forms by suitable transformations.
We will discuss first the features of methods of optimization in general and then describe in
more detail a few of the most successful methods in current use.

Any point that satisfies all the constraints is called feasible, and the entire set of such points
is called the feasible region. Points lying outside the feasible region are said to be nonfeasible.
Nearly all practical methods of optimization are iterative in the sense that an initial feasible
vector xð0Þmust be specified from which the method will generate a series of vectors
xð1Þ, xð2Þ, ., xðnÞ etc., which represent improved approximations to the solution.

The iterative procedure may be expressed by the equation

xðnþ1Þ ¼ xðnÞ þ hndn, (B.1)

where dn is a p-dimensional directional vector, and hn is the distance moved along it. The basic
problem is to determine the most suitable vector dn, since once it is chosen the function fðxÞ
can be calculated and a suitable value of hn found. Iterative techniques fall naturally into two
classes, (a) direct search methods and (b) gradient methods.

Direct search methods are based on a sequential examination of a series of trial solutions
produced from an initial feasible point. On the basis of the examinations, the strategy for
further searching is determined. These methods are characterized by the fact they only explic-
itly require values of the function, and knowledge of the derivatives of fðxÞ is not required. The
latter fact is both a strength and a weakness of the methods, for although in problems
involving many variables the calculation of derivatives can be difficult, and/or time
consuming, it is clear that more efficient methods should be possible if the information con-
tained in the derivatives is used. In practice, direct search methods are most useful for situa-
tions involving a few parameters, or where the calculation of derivatives is very difficult, or for
finding promising regions in the parameter space where optima might reasonably be located.

Gradient methods make explicit use of the partial derivatives of the function, in addition
to values of the function itself. The gradient direction at any point is that direction whose
components are proportional to the first-order partial derivatives of the function at the point.
The importance of this quantity will be seen as follows. If we make small perturbations dx
from the current point x, then to first order in dx,

df ¼
Xp
j¼1

vf

vxj
dxj: (B.2)

To obtain the perturbation giving the greatest change in the function, we need to consider the
Lagrangian form

Fðx, lÞ ¼ df þ l

0
@Xp

j¼1

dx2j � D2

1
A, (B.3)
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where l is a Lagrange multiplier and D is the magnitude of the perturbations, i.e.,

D ¼
2
4Xp

j¼1

dx2j

3
51=2:

Using (B.2) in (B.3), and forming the differential with respect to dxj, gives

vf

vxj
þ 2ldxj ¼ 0, j ¼ 1, 2, ., p

and hence

dx1
vf=vx1

¼ dx2
vf=vx2

¼ . ¼ dxp
vf=vxp

:

That is, for any D the greatest value of df is obtained if the perturbations dxj are chosen to be
proportional to vf=vxj, and that, further, if df < 0, i.e., the search is to converge to a minimum,
the constant of proportionality must be negative. This direction is called the direction of steep-
est descent. It follows that the function can always be reduced by following the direction of
steepest descent, although this may only be true for a short distance.

One remark that is worth making about gradient methods concerns the actual calculation
of the derivatives. Although gradient methods are in general more efficient than direct search
methods, their efficiency can drop considerably if the derivatives are not obtained analyti-
cally, and so if numerical methods are used to calculate these quantities, great care has to
be taken to ensure that inaccuracies do not result.

So far we have not specified the form of the function to be minimized, except that it is
nonlinear in its variables. However, in many practical problems involving unconstrained func-
tions it is found that the function can be well approximated by a quadratic form in the neigh-
borhood of the minimum. There is therefore considerable interest in methods that guarantee to
find the minimum of a quadratic in a specified number of steps. Such methods are said to be
quadratically convergent, and the hope is that problems that are not strictly quadratic may still be
tractable by such methods, a hope that is borne out rather well in practice.

The most useful of the methods having the property of quadratic convergence are those
making use of the so-called conjugate directions, defined as follows. Two direction vectors
d1 and d2 are said to be conjugate with respect to the positive definite matrix G if
dT
1Gd2 ¼ 0. The importance of conjugate directions in optimization problems stems from

the following theorem. If diði ¼ 1, 2 , ., pÞ is a set of vectors mutually conjugate with respect
to the positive definite matrix G, the minimum of the quadratic form

fðxÞ ¼ 1

2
xTGxþ bTxþ a, (B.4)

where a is a constant and b a constant vector, can be found from an arbitrary point xð0Þ by
a finite descent calculation in which each of the vectors di is used as a descent direction
only once, their order of use being arbitrary. The proof of this important result may be found
in the books listed in the bibliography.

Although methods having the property of quadratic convergence will guarantee to
converge to the exact minimum of a quadratic in p steps, where p is the dimensionality of
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the problem, when applied to functions that are not strictly quadratic the problem arises of
determining when convergence has taken place. A suitable practical criterion is to consider
that convergence has been achieved if, for given small values of 3 and 30

f ½xðnÞ� � f ½xðnþ1Þ� < 3,

and/or

jxðnÞ � xðnþ1Þj < 30,

for a sequence of q successive iterations, where q is a number which will vary with the type of
function being minimized. A generous overestimate is qwp, the number of variables and
a considerably smaller number of values are usually sufficient.

Finally, it should be mentioned that all present techniques for optimizing nonlinear func-
tions locate only local optima, i.e., points xm at which fðxmÞ < fðxÞ for all x in a region in the
neighborhood of xm. For multivariate problems there may well be better local optima located
at some distance from xm. At present, there are no general methods for locating the global
optimum (i.e., the absolute optimum) of a function, and so it is essential to restart the search
procedure from different initial points xð0Þ to ensure that the full p-dimensional space has
been explored.

B.2. UNCONSTRAINED MINIMIZATION OF FUNCTIONS
OF ONE VARIABLE

The problem of minimizing a function of one variable is very important in practice,
because many methods for optimizing multivariate functions proceed by a series of
searches along a line in the parameter space, and each of these searches is equivalent to
a univariate search. The latter fall into two groups (a) those which specify an interval within
which the minimum lies and (b) those which specify the minimum by a point approxi-
mating it. The latter methods are the most useful in practice and we shall only consider
them here. The basic procedure is as follows. Proceeding from an initial point xð0Þ, a system-
atic search technique is applied to find a region containing the minimum. This bracket is
then refined by fitting a quadratic interpolation polynomial to the three points making
up the bracket, and the minimum of this polynomial found. As a result of this evaluation
a new bracket is formed, and the procedure is repeated. The method is both simple and
very safe in practice.

A practical implementation of this procedure is as follows. The function is first evaluated
at xð0Þ and ðxð0Þ þ hÞ. If fðxð0Þ þ hÞ � fðxð0ÞÞ, then fðxð0Þ þ 2hÞ is evaluated. This doubling of the
step length h is repeated until a value of fðxÞ is found such that fðxð0Þ þ 2nhÞ> fðxð0Þ þ 2n�1hÞ.
At this point the step length is halved and a step again taken from the last successive point,
i.e., the ðn� 1Þth. This procedure produces four points equally spaced along the axis of
search, at each of which the function has been evaluated. The end point farthest from the
point corresponding to the smallest function value is rejected, and the remaining three points
used for quadratic interpolation. Had the first step failed, then the search is continued by
reversing the sign of the step length. If the first step in this direction also fails, then the
minimum has been bracketed and the interpolation may be made. If the three points used
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for the interpolation are x1, x2, x3 with x1 < x2 < x3 and x3 � x2 ¼ x2 � x1 ¼ l, then the
minimum of the fitted quadratic is at

xm ¼ x2 þ l½fðx1Þ � fðx3Þ�
2½fðx1Þ � 2fðx2Þ þ fðx3Þ�:

An iteration is completed by evaluating fðxmÞ. Convergence tests are now applied and, if
required, a further iteration is performed, with a reduced step length, using as the initial
point whichever of x2 or xm corresponds to the smaller function value.

B.3. UNCONSTRAINED MINIMIZATION
OF MULTIVARIABLE FUNCTIONS

Many methods for locating optima of multivariate functions are based on a series of linear
searches along a line in the parameter space. By a linear method, we will therefore mean any
technique which uses a set of direction vectors in the search, and which proceeds by explo-
rations along these directions, deciding future strategy by the results obtained in previous
searches.

B.3.1. Direct Search Methods

The simplest of all possible direct searchmethodswould be to keep ðp� 1Þ of the parameters
fixed and find a minimum with respect to the pth parameter, doing this in turn for each vari-
able. The progress of such an alternating variable search is in general very inefficient because
the contours of equal function value will be aligned along the so-called principal axes, which
are not parallel to the coordinate axes, so only very small steps will be taken at each stage.
Moreover, the inefficiency increases as the number of variables increases. It would clearly
be very much more efficient to re-orientate the direction vectors along more advantageous
directions and this is done in several techniques, themost successful of which is due to Powell.

The method uses conjugate directions and utilizes the fact that, for a positive definite
quadratic form, if searches for minima are made along p conjugate directions then the join
of these minima is conjugate to all of those directions, a result that follows from the definition
of conjugate directions. The procedure is to start from xð0Þand locate the minimum in the
direction d

ðnÞ
1 . Then from the new minimum point xð1Þ locate the minimum in the direction

d
ðnÞ
2 etc. until the minimum in the direction d

ðnÞ
p is found. The direction of total progress

made during this cycle is then

d ¼ xðpÞ � xð0Þ

New search directions are now constructed and care must be taken to ensure that the new
direction vectors are always linearly independent. Powell showed that for the quadratic
form of (B.4), if d

ðnÞ
i is scaled so that

d
ðnÞT
i Gd

ðnÞ
i ¼ 1, i ¼ 1, 2, ., p

then the determinant D of the matrix whose columns are d
ðnÞ
i has a maximum if, and only if,

the vectors d
ðnÞ
i are mutually conjugate with respect toG. Thus, the direction d only replaces
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an existing search direction if by so doing D is increased. In this case, the minimum in the
direction d is found and used as a starting point in the next iteration, the list of direction
vectors being updated as follows:

ðdðnþ1Þ
1 , d

ðnþ1Þ
2 ,., d

ðnþ1Þ
p Þ ¼ ðdðnÞ

1 , d
ðnÞ
2 ,., d

ðnÞ
j�1, d

ðnÞ
jþ1,., d

ðnÞ
p , dÞ,

where d
ðnÞ
j is that direction vector along which the greatest reduction in the function value

occurred during the nth stage.

B.3.2. Gradient Methods

The simplest technique using gradients is that of steepest descent mentioned above. In this
method, the normalized gradient vector at the current point is found, and using a step length
hi a new point is generated via the general iterative equation. This procedure is continued
until a function value is found which has not decreased. The step length is then reduced
and the search restarted from the best previous point. If the actual minimum along each
search direction is located, then the performance of this method is similar in appearance to
an alternating variable search, and is rather erratic, the search directions oscillating about
the principal axes. A method that in principle is far better is based on an examination of
the second derivatives of the function.

a. Newton’s Method

A second-order Taylor expansion of the function fðxÞ about the minimum point xmin is

fðxÞ ¼ fðxminÞ þ
Xp
j¼1

hj

 
vf

vxj

!
x¼xmin

þ 1

2

Xp
j¼1

Xp
k¼1

hjhk

 
v2f

vxjvxk

!
x¼xmin

:

Differentiating this equation gives

glh
vf

vxl
¼
Xp
j¼1

hj

 
v2f

vxjvxl

!
x¼xmin

, i ¼ 1, 2, ., p (B.11)

The minimum is therefore obtained in one step by the move xmin ¼ x� h, where the compo-
nents of h are found by solving the p linear equations (B.11). If we define

Gjk h

 
v2f

vxjvxk

!
:

then

xmin ¼ x�G�1
min g,

where, again, Gmin means that G is evaluated at xmin. Since G�1
min will not of course be

known, it is usual to replace it byG�1 evaluated at the current point xðiÞ and use the iterative
equation

xðnþ1Þ ¼ xðnÞ �G�1
n gn: (B.12)

The method is clearly quadratically convergent, but suffers from severe difficulties.
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First, there is the numerical problem of calculating the inverse matrix of second deriva-
tives, and second, and more seriously, for a general function, G�1 is not guaranteed to be
positive definite, and in this case the method will diverge. Thus, while Newton’s method
is efficient in the immediate neighborhood of a minimum, away from this point it has little
to recommend it, the method of steepest descent being far preferable.

In view of the above remarks, an efficient method would be one that starts by using the
method of steepest descent and, at a later stage, uses Newton’s method. A method that
does this automatically is due to Davidon, and represents the most powerful method
currently available for optimizing unconstrained functions.

b. Davidon’s method

This method is an iterative scheme based on successive approximations to the matrix
G�1

min. The best approximation to this matrix, say Hn, is used to define a new search direction
by a modification of equation (B.12), i.e.,

xðnþ1Þ ¼ xðnÞ � hnHngn,

where gn is the vector of first derivatives of fðxðnÞÞ with respect to xðnÞ. The step length hn is
that necessary to find theminimum in the search direction dn ¼ �Hngn, andmay be found by
any univariate search procedure. If the sequence fHng is positive definite, it can be shown
that the convergence of this method is guaranteed. Furthermore, if the search directions dn

are mutually conjugate, then the method is quadratically convergent.
Davidon has shown that both of these conditions can be met if, at each stage of the itera-

tion, the matrix Hn is updated according to the relation

Hnþ1 ¼ Hn þAn þ Bn,

where the matrices An and Bn are given by

An ¼ �hn
�
Hngng

T
nH

T
n

�
ðHngnÞTV

and Bn ¼ �HnVVTHT
n

VTHnV
,

with V ¼ gnþ1 � gn, where gnþ1 is the gradient at xnþ1. It is usual to start the iteration from
the unit matrixH0 ¼ 1. The matrixAn ensures that the sequence fHng converges toG�1

min, and
Bn ensures that eachHn is positive definite. The derivation of these expressions may be found
in the book by Kowalik and Osborne, cited in the bibliography.

B.4. CONSTRAINED OPTIMIZATION

Constrained optimization, not surprisingly, is a more difficult problem than unconstrained
optimization, and only a very brief discussion will be given here.

First, an obvious remark: if the constraints can be removed by suitable transformations
then this should be done. For example, many problems involve simple constraints on the
parameters that can be expressed in the form

l � x � u,
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which can be removed completely by the transformation

x ¼ lþ ðu� lÞsin2y,
thereby enabling an unconstrained minimization to be performed with respect to y. Such
transformations cannot produce additional local optima. If the constraints cannot be
removed, then one of the simplest ways of incorporating them is to arrange that the produc-
tion of nonfeasible points is unattractive. This is the basis of a practical technique involving
penalty functions, where the function to be minimized is modified by additional terms
designed to achieve this.

The general problem was stated in Section B.1. Using the notation for constraints given
there, we consider the function

FðxÞ ¼ fðxÞ þ
Xn
i¼1

li c
2
i ðxÞS½ciðxÞ� þ

Xs
j¼1

l0i e
2
j ðxÞ, (B.13)

where SðqÞ is the function

SðqÞ ¼
� 0, q � 0

1, q < 0

and li, l0i are positive scale factors, chosen so that the contributions of the various terms to
(B.13) are approximately equal. The ‘penalty’, i.e., the sum of the second and third terms
on the right-hand side of (B.13), is thus the weighted sum of squares of the amounts by which
the constraints are violated.

This method works reasonably well in practice, but has the disadvantage of requiring that
values of fðxÞ be calculated at nonfeasible points, and this may not always be possible,
leading to program failure. A method which restricts the search to feasible points is due to
Carroll, and is known as Carroll’s created response surface technique. In this method, if the
constraints are inequalities, the surface

Fðx, kÞ ¼ fðxÞ þ k
Xm
i¼1

wi

ciðxÞ
,

is considered, where k > 0, and the wi are positive constants. A minimum is found as a func-
tion of x and this is then used as the starting value for a newminimization for a reduced value
of k, and the procedure repeated until k ¼ 0 is reached. In all minimizations, nonfeasible
points are excluded. The theoretical development of this method and its extension to incor-
porate equality constraints may be found in the book of Kowalik and Osborne.
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C.1. NORMAL DISTRIBUTION

The table gives values of the standardized cumulative distribution function

FðxÞ ¼ 1

ð2pÞ1=2
Z x

�N
exp

�
�t2

2

�
dt:

Note that Fð�xÞ ¼ 1� FðxÞ:

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

(Continued)
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x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7349

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9980 .9980 .9981

2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

x 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.891 4.417

FðxÞ .90 .95 .975 .99 .995 .999 .9995 .99995 .999995

2½1� FðxÞ� .20 .10 .05 .02 .01 .002 .001 .0001 .00001
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C.2. BINOMIAL DISTRIBUTION

The table gives values of F, the cumulative binomial distribution, i.e., the probability of
obtaining s or more successes in n independent Bernoulli trials,

F ¼
Xn
r¼r0

�
n
r

�
prqn�r,

for specified values of n, r0and p, where the probability of a success in a single trial is equal to
p. If p > 0:5 the values for F are obtained from

1�
Xn

r¼n�r0þ1

�
n
r

�
prqn�r:

p

n r 0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

2 1 .0975 .1900 .2775 .3600 .4375 .5100 .5775 .6400 .6975 .7500

2 .0025 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

3 1 .1426 .2710 .3859 .4880 .5781 .6570 .7254 .7840 .8336 .8750

2 .0072 .0280 .0608 .1040 .1562 .2160 .2818 .3520 .4252 .5000

3 .0001 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

4 1 .1855 .3439 .4780 .5904 .6836 .7599 .8215 .8704 .9085 .9375

2 .0140 .0523 .1095 .1808 .2617 .3483 .4370 .5248 .6090 .6875

3 .0005 .0037 .0120 .0272 .0508 .0837 .1265 .1792 .2415 .3125

4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625

5 1 .2262 .4095 .5563 .6723 .7627 .8319 .8840 .9222 .9497 .9688

2 .0226 .0815 .1648 .2627 .3672 .4718 .5716 .6630 .7438 .8125

3 .0012 .0086 .0266 .0579 .1035 .1631 .2352 .3174 .4069 .5000

4 .0000 .0005 .0022 .0067 .0156 .0308 .0540 .0870 .1312 .1875

5 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312

6 1 .2649 .4686 .6229 .7379 .8220 .8824 .9246 .9533 .9723 .9844

2 .0328 .1143 .2235 .3447 .4661 .5798 .6809 .7667 .8364 .8906

3 .0022 .0158 .0473 .0989 .1694 .2557 .3529 .4557 .5585 .6562

4 .0001 .0013 .0059 .0170 .0376 .0705 .1174 .1792 .2553 .3438

5 .0000 .0001 .0004 .0016 .0046 .0109 .0223 .0410 .0692 .1094

6 .0000 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156

(Continued)
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p

n r 0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

7 1 .3017 .5217 .6794 .7903 .8665 .9176 .9510 .9720 .9848 .9922

2 .0444 .1497 .2834 .4233 .5551 .6706 .7662 .8414 .8976 .9375

3 .0038 .0257 .0738 .1480 .2436 .3529 .4677 .5801 .6836 .7734

4 .0002 .0027 .0121 .0333 .0706 .1260 .1998 .2898 .3917 .5000

5 .0000 .0002 .0012 .0047 .0129 .0288 .0556 .0963 .1529 .2266

6 .0000 .0000 .0001 .0004 .0013 .0038 .0090 .0188 .0357 .0625

7 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078

8 1 .3366 .5695 .7275 .8322 .8999 .9424 .9681 .9832 .9916 .9961

2 .0572 .1869 .3428 .4967 .6329 .7447 .8309 .8936 .9368 .9648

3 .0058 .0381 .1052 .2031 .3215 .4482 .5722 .6846 .7799 .8555

4 .0004 .0050 .0214 .0563 .1138 .1941 .2936 .4059 .5230 .6367

5 .0000 .0004 .0029 .0104 .0273 .0580 .1061 .1737 .2604 .3633

6 .0000 .0000 .0002 .0012 .0042 .0113 .0253 .0498 .0885 .1445

7 .0000 .0000 .0000 .0001 .0004 .0013 .0036 .0085 .0181 .0352

8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039

9 1 .3698 .6126 .7684 .8658 .9249 .9596 .9793 .9899 .9954 .9980

2 .0712 .2252 .4005 .5638 .6997 .8040 .8789 .9295 .9615 .9805

3 .0084 .0530 .1409 .2618 .3993 .5372 .6627 .7682 .8505 .9102

4 .0006 .0083 .0339 .0856 .1657 .2703 .3911 .5174 .6386 .7461

5 .0000 .0009 .0056 .0196 .0489 .0988 .1717 .2666 .3786 .5000

6 .0000 .0001 .0006 .0031 .0100 .0253 .0536 .0994 .1658 .2539

7 .0000 .0000 .0000 .0003 .0013 .0043 .0112 .0250 .0498 .0898

8 .0000 .0000 .0000 .0000 .0001 .0004 .0014 .0038 .0091 .0195

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020

10 1 .4013 .6513 .8031 .8926 .9437 .9718 .9865 .9940 .9975 .9990

2 .0861 .2639 .4557 .6242 .7560 .8507 .9140 .9536 .9767 .9893

3 .0115 .0702 .1798 .3222 .4744 .6172 .7384 .8327 .9004 .9453

4 .0010 .0128 .0500 .1209 .2241 .3504 .4862 .6177 .7340 .8281

5 .0001 .0016 .0099 .0328 .0781 .1503 .2485 .3669 .4956 .6230
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n r 0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

6 .0000 .0001 .0014 .0064 .0197 .0473 .0949 .1662 .2616 .3770

7 .0000 .0000 .0001 .0009 .0035 .0106 .0260 .0548 .1020 .1719

8 .0000 .0000 .0000 .0001 .0004 .0016 .0048 .0123 .0274 .0547

9 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0017 .0045 .0107

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010

11 1 .4312 .6862 .8327 .9141 .9578 .9802 .9912 .9964 .9986 .9995

2 .1019 .3026 .5078 .6779 .8029 .8870 .9394 .9698 .9861 .9941

3 .0152 .0896 .2212 .3826 .5448 .6873 .7999 .8811 .9348 .9673

4 .0016 .0185 .0694 .1611 .2867 .4304 .5744 .7037 .8089 .8867

5 .0001 .0028 .0159 .0504 .1146 .2103 .3317 .4672 .6029 .7256

6 .0000 .0003 .0027 .0117 .0343 .0782 .1487 .2465 .3669 .5000

7 .0000 .0000 .0003 .0020 .0076 .0216 .0501 .0994 .1738 .2744

8 .0000 .0000 .0000 .0002 .0012 .0043 .0122 .0293 .0610 .1133

9 .0000 .0000 .0000 .0000 .0001 .0006 .0020 .0059 .0148 .0327

10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0007 .0022 .0059

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0005

12 1 .4596 .7176 .8578 .9313 .9683 .9862 .9943 .9978 .9992 .9998

2 .1184 .3410 .5565 .7251 .8416 .9150 .9576 .9804 .9917 .9968

3 .0196 .1109 .2642 .4417 .6093 .7472 .8487 .9166 .9579 .9807

4 .0022 .0256 .0922 .2054 .3512 .5075 .6533 .7747 .8655 .9270

5 .0002 .0043 .0239 .0726 .1576 .2763 .4167 .5618 .6956 .8062

6 .0000 .0005 .0046 .0194 .0544 .1178 .2127 .3348 .4731 .6128

7 .0000 .0001 .0007 .0039 .0143 .0386 .0846 .1582 .2607 .3872

8 .0000 .0000 .0001 .0006 .0028 .0095 .0255 .0573 .1117 .1938

9 .0000 .0000 .0000 .0001 .0004 .0017 .0056 .0153 .0356 .0730

10 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0028 .0079 .0193

11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0011 .0032

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

13 1 .4867 .7458 .8791 .9450 .9762 .9903 .9963 .9987 .9996 .9999

2 .1354 .3787 .6017 .7664 .8733 .9363 .9704 .9874 .9951 .9983

3 .0245 .1339 .2704 .4983 .6674 .7975 .8868 .9421 .9731 .9888

4 .0031 .0342 .0967 .2527 .4157 .5794 .7217 .8314 .9071 .9539

5 .0003 .0065 .0260 .0991 .2060 .3457 .4995 .6470 .7721 .8666
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6 .0000 .0009 .0053 .0300 .0802 .1654 .2841 .4256 .5732 .7095

7 .0000 .0001 .0013 .0070 .0243 .0624 .1295 .2288 .3563 .5000

8 .0000 .0000 .0002 .0012 .0056 .0182 .0462 .0977 .1788 .2905

9 .0000 .0000 .0000 .0002 .0010 .0040 .0126 .0321 .0698 .1334

10 .0000 .0000 .0000 .0000 .0001 .0007 .0025 .0078 .0203 .0461

11 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0013 .0041 .0112

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0017

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

14 1 .5123 .7712 .8972 .9560 .9822 .9932 .9976 .9992 .9998 .9999

2 .1530 .4154 .6433 .8021 .8990 .9525 .9795 .9919 .9971 .9991

3 .0301 .1584 .3521 .5519 .7189 .8392 .9161 .9602 .9830 .9935

4 .0042 .0441 .1465 .3018 .4787 .6448 .7795 .8757 .9368 .9713

5 .0004 .0092 .0467 .1298 .2585 .4158 .5773 .7207 .8328 .9102

6 .0000 .0015 .0115 .0439 .1117 .2195 .3595 .5141 .6627 .7880

7 .0000 .0002 .0022 .0116 .0383 .0933 .1836 .3075 .4539 .6047

8 .0000 .0000 .0003 .0024 .0103 .0315 .0753 .1501 .2586 .3953

9 .0000 .0000 .0000 .0004 .0022 .0083 .0243 .0583 .1189 .2120

10 .0000 .0000 .0000 .0000 .0003 .0017 .0060 .0175 .0426 .0898

11 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0039 .0114 .0287

12 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0022 .0065

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0009

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

15 1 .5367 .7941 .9126 .9648 .9866 .9953 .9984 .9995 .9999 1.0000

2 .1710 .4510 .6814 .8329 .9198 .9647 .9858 .9948 .9983 .9995

3 .0362 .1841 .3958 .6020 .7639 .8732 .9383 .9729 .9893 .9963

4 .0055 .0556 .1773 .3518 .5387 .7031 .8273 .9095 .9576 .9824

5 .0006 .0127 .0617 .1642 .3135 .4845 .6481 .7827 .8796 .9408

6 .0001 .0022 .0168 .0611 .1484 .2784 .4357 .5968 .7392 .8491

7 .0000 .0003 .0036 .0181 .0566 .1311 .2452 .3902 .5478 .6964

8 .0000 .0000 .0006 .0042 .0173 .0500 .1132 .2131 .3465 .5000

9 .0000 .0000 .0001 .0008 .0042 .0152 .0422 .0950 .1818 .3036

10 .0000 .0000 .0000 .0001 .0008 .0037 .0124 .0338 .0769 .1509
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n r 0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

11 .0000 .0000 .0000 .0000 .0001 .0007 .0028 .0093 .0255 .0592

12 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0019 .0063 .0176

13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0011 .0037

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

16 1 .5599 .8147 .9257 .9719 .9900 .9967 .9990 .9997 .9999 1.0000

2 .1892 .4853 .7161 .8593 .9365 .9739 .9902 .9967 .9990 .9997

3 .0429 .2108 .4386 .6482 .8029 .9006 .9549 .9817 .9934 .9979

4 .0070 .0684 .2101 .4019 .5950 .7541 .8661 .9349 .9719 .9894

5 .0009 .0170 .0791 .2018 .3698 .5501 .7108 .8334 .9147 .9616

6 .0001 .0033 .0235 .0817 .1897 .3402 .5100 .6712 .8024 .8949

7 .0000 .0005 .0056 .0267 .0796 .1753 .3119 .4728 .6340 .7228

8 .0000 .0001 .0011 .0070 .0271 .0744 .1594 .2839 .4371 .5982

9 .0000 .0000 .0002 .0015 .0075 .0257 .0671 .1423 .2559 .4018

10 .0000 .0000 .0000 .0002 .0016 .0071 .0229 .0583 .1241 .2272

11 .0000 .0000 .0000 .0000 .0003 .0016 .0062 .0191 .0486 .1051

12 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0149 .0384

13 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0035 .0106

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0021

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

17 1 .5189 .8332 .9369 .9775 .9925 .9977 .9993 .9998 1.0000 1.0000

2 .2078 .5182 .7475 .8818 .9499 .9807 .9933 .9979 .9994 .9999

3 .0503 .2382 .4802 .6904 .8363 .9226 .9673 .9877 .9959 .9988

4 .0088 .0826 .2444 .4511 .6470 .7981 .8972 .9536 .9816 .9936

5 .0012 .0221 .0987 .2418 .4261 .6113 .7652 .8740 .9404 .9755

6 .0001 .0047 .0319 .1057 .2347 .4032 .5803 .7361 .8529 .9283

7 .0000 .0008 .0083 .0377 .1071 .2248 .3812 .5522 .7098 .8338

8 .0000 .0001 .0017 .0109 .0402 .1046 .2128 .3595 .5257 .6855

9 .0000 .0000 .0003 .0026 .0124 .0403 .0994 .1989 .3374 .5000

10 .0000 .0000 .0000 .0005 .0031 .0127 .0383 .0919 .1834 .3145
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11 .0000 .0000 .0000 .0001 .0006 .0032 .0120 .0348 .0826 .1662

12 .0000 .0000 .0000 .0000 .0001 .0007 .0030 .0106 .0301 .0717

13 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0025 .0086 .0245

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0005 .0019 .0064

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0012

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 1 .6028 .8499 .9464 .9820 .9944 .9984 .9996 .9999 1.0000 1.0000

2 .2265 .5497 .7759 .9009 .9605 .9858 .9954 .9987 .9997 .9999

3 .0581 .2662 .5203 .7287 .8647 .9400 .9764 .9918 .9975 .9993

4 .0109 .0982 .2798 .4990 .6943 .8354 .9217 .9672 .9880 .9962

5 .0015 .0282 .1206 .2836 .4813 .6673 .8114 .9058 .9589 .9846

6 .0002 .0064 .0419 .1329 .2825 .4656 .6450 .7912 .8923 .9519

7 .0000 .0012 .0118 .0513 .1390 .2783 .4509 .6257 .7742 .8811

8 .0000 .0002 .0027 .0163 .0569 .1407 .2717 .4366 .6085 .7597

9 .0000 .0000 .0005 .0043 .0193 .0596 .1391 .2632 .4222 .5927

10 .0000 .0000 .0001 .0009 .0054 .0210 .0597 .1347 .2527 .4073

11 .0000 .0000 .0000 .0002 .0012 .0061 .0212 .0576 .1280 .2403

12 .0000 .0000 .0000 .0000 .0002 .0014 .0062 .0203 .0537 .1189

13 .0000 .0000 .0000 .0000 .0000 .0003 .0014 .0058 .0183 .0481

14 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0154

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0010 .0038

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0007

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 1 .6226 .8649 .9544 .9856 .9958 .9989 .9997 .9999 1.0000 1.0000

2 .2453 .5797 .8015 .9171 .9690 .9896 .9969 .9992 .9998 1.0000

3 .0665 .2946 .5587 .7631 .8887 .9538 .9830 .9945 .9985 .9996

4 .0132 .1150 .3159 .5449 .7639 .8668 .9409 .9770 .9923 .9978

5 .0020 .0352 .1444 .3267 .5346 .7178 .8500 .9304 .9720 .9904
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6 .0002 .0086 .0537 .1631 .3322 .5261 .7032 .8371 .9223 .9682

7 .0000 .0017 .0163 .0676 .1749 .3345 .5188 .6919 .8273 .9165

8 .0000 .0003 .0041 .0233 .0775 .1820 .3344 .5122 .6831 .8204

9 .0000 .0000 .0008 .0067 .0287 .0839 .1855 .3325 .5060 .6762

10 .0000 .0000 .0001 .0016 .0089 .0326 .0875 .1861 .3290 .5000

11 .0000 .0000 .0000 .0003 .0023 .0105 .0347 .0885 .1841 .3238

12 .0000 .0000 .0000 .0000 .0005 .0028 .0114 .0352 .0871 .1796

13 .0000 .0000 .0000 .0000 .0001 .0006 .0031 .0116 .0342 .0835

14 .0000 .0000 .0000 .0000 .0000 .0001 .0007 .0031 .0109 .0318

15 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0028 .0096

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0022

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 1 .6415 .8784 .9612 .9885 .9968 .9992 .9998 1.0000 1.0000 1.0000

2 .2642 .6083 .8244 .9308 .9757 .9924 .9979 .9995 .9999 1.0000

3 .0755 .3231 .5951 .7939 .9087 .9645 .9879 .9964 .9991 .9998

4 .0159 .1330 .3523 .5886 .7748 .8929 .9556 .9840 .9951 .9987

5 .0026 .0432 .1702 .3704 .5852 .7625 .8818 .9490 .9811 .9941

6 .0003 .0113 .0673 .1958 .3828 .5836 .7546 .8744 .9447 .9793

7 .0000 .0024 .0219 .0867 .2142 .3920 .5834 .7500 .8701 .9423

8 .0000 .0004 .0059 .0321 .1018 .2277 .3990 .5841 .7480 .8684

9 .0000 .0001 .0013 .0100 .0409 .1133 .2376 .4044 .5857 .7483

10 .0000 .0000 .0002 .0026 .0139 .0480 .1218 .2447 .4086 .5881

11 .0000 .0000 .0000 .0006 .0039 .0171 .0532 .1275 .2493 .4119

12 .0000 .0000 .0000 .0001 .0009 .0051 .0196 .0565 .1308 .2517

13 .0000 .0000 .0000 .0000 .0002 .0013 .0060 .0210 .0580 .1316

14 .0000 .0000 .0000 .0000 .0000 .0003 .0015 .0065 .0214 .0577

15 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0016 .0064 .0207

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0015 .0059

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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C.3. POISSON DISTRIBUTION

The table gives values of the cumulative Poisson distribution

F ¼
XN
k¼k0

fðk; lÞ

for specified values of l an k, where

fðk; lÞ ¼ lk

k!
expð�lÞ, l > 0, k ¼ 0, 1, .

l

k0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .0952 .1813 .2592 .3297 .3935 .4512 .5034 .5507 .5934 .6321

2 .0047 .0175 .0369 .0616 .0902 .1219 .1558 .1912 .2275 .2642

3 .0002 .0011 .0036 .0079 .0144 .0231 .0341 .0474 .0629 .0803

4 .0000 .0001 .0003 .0008 .0018 .0034 .0058 .0091 .0135 .0190

5 .0000 .0000 .0000 .0001 .0002 .0004 .0008 .0014 .0023 .0037

6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0006

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

k0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .6671 .6988 .7275 .7534 .7769 .7981 .8173 .8347 .8504 .8647

2 .3010 .3374 .3732 .4082 .4422 .4751 .5068 .5372 .5663 .5940

3 .0996 .1205 .1429 .1665 .1912 .2166 .2428 .2694 .2963 .3233

4 .0257 .0338 .0431 .0537 .0656 .0788 .0932 .1087 .1253 .1429

5 .0054 .0077 .0107 .0143 .0186 .0237 .0296 .0364 .0441 .0527

6 .0010 .0015 .0022 .0032 .0045 .0060 .0080 .0104 .0132 .0166

7 .0001 .0003 .0004 .0006 .0009 .0013 .0019 .0026 .0034 .0045

8 .0000 .0000 .0001 .0001 .0002 .0003 .0004 .0006 .0008 .0011

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0002
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k0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .8775 .8892 .8997 .9093 .9179 .9257 .9328 .9392 .9450 .9502

2 .6204 .6454 .6691 .6916 .7127 .7326 .7513 .7689 .7854 .8009

3 .3504 .3773 .4040 .4303 .4562 .4816 .5064 .5305 .5540 .5768

4 .1614 .1806 .2007 .2213 .2424 .2640 .2859 .3081 .3304 .3528

5 .0621 .0725 .0838 .0959 .1088 .1226 .1371 .1523 .1682 .1847

6 .0204 .0249 .0300 .0357 .0420 .0490 .0567 .0651 .0742 .0839

7 .0059 .0075 .0094 .0116 .0142 .0172 .0206 .0244 .0287 .0335

8 .0015 .0020 .0026 .0033 .0042 .0053 .0066 .0081 .0099 .0119

9 .0003 .0005 .0006 .0009 .0011 .0015 .0019 .0024 .0031 .0038

10 .0001 .0001 .0001 .0002 .0003 .0004 .0005 .0007 .0009 .0011

11 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002 .0003

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

k0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .9550 .9592 .9631 .9666 .9698 .9727 .9753 .9776 .9798 .9817

2 .8153 .8288 .8414 .8532 .8641 .8743 .8838 .8926 .9008 .9084

3 .5988 .6201 .6406 .6603 .6792 .6973 .7146 .7311 .7469 .7619

4 .3752 .3975 .4197 .4416 .4634 .4848 .5058 .5265 .5468 .5665

5 .2018 .2194 .2374 .2558 .2746 .2936 .3128 .3322 .3516 .3712

6 .0943 .1054 .1171 .1295 .1424 .1559 .1699 .1844 .1994 .2149

7 .0388 .0446 .0510 .0579 .0653 .0732 .0818 .0919 .1005 .1107

8 .0142 .0168 .0198 .0231 .0267 .0308 .0352 .0401 .0454 .0511

9 .0047 .0057 .0069 .0083 .0099 .0117 .0137 .0160 .0185 .0214

10 .0014 .0018 .0022 .0027 .0033 .0040 .0048 .0058 .0069 .0081

11 .0004 .0005 .0006 .0008 .0010 .0013 .0016 .0019 .0023 .0028

12 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0007 .0009

13 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002 .0003

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001
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k0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .9834 .9850 .9864 .9877 .9889 .9899 .9909 .9918 .9926 .9933

2 .9155 .9220 .9281 .9337 .9389 .9437 .9482 .9523 .9561 .9596

3 .7762 .7898 .8026 .8149 .8264 .8374 .8477 .8575 .8667 .8753

4 .5858 .6046 .6228 .6406 .6577 .6743 .6903 .7058 .7207 .7350

5 .3907 .4102 .4296 .4488 .4679 .4868 .5054 .5237 .5418 .5595

6 .2307 .2469 .2633 .2801 .2971 .3412 .3316 .3490 .3665 .3840

7 .1214 .1325 .1442 .1564 .1689 .1820 .1954 .2092 .2233 .2378

8 .0573 .0639 .0710 .0786 .0866 .0951 .1040 .1133 .1231 .1334

9 .0245 .0279 .0317 .0358 .0403 .0451 .0503 .0558 .0618 .0681

10 .0095 .0111 .0129 .0149 .0171 .0195 .0222 .0251 .0283 .0318

11 .0034 .0041 .0048 .0057 .0067 .0078 .0090 .0104 .0120 .0137

12 .0011 .0014 .0017 .0020 .0024 .0029 .0034 .0040 .0047 .0055

13 .0003 .0004 .0005 .0007 .0008 .0010 .0012 .0014 .0017 .0020

14 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006 .0007

15 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0002 .0002

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

k0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .9939 .9945 .9950 .9955 .9959 .9963 .9967 .9970 .9973 .9975

2 .9628 .9658 .9686 .9711 .9734 .9756 .9776 .9794 .9811 .9826

3 .8835 .8912 .8984 .9052 .9116 .9176 .9232 .9285 .9334 .9380

4 .7487 .7619 .7746 .7867 .7983 .8094 .8200 .8300 .8396 .8488

5 .5769 .5939 .6105 .6267 .6425 .6579 .6728 .6873 .7013 .7149

6 .4016 .4191 .4365 .4539 .4711 .4881 .5050 .5217 .5381 .5543

7 .2526 .2676 .2829 .2983 .3140 .3297 .3456 .3616 .3776 .3937

8 .1440 .1551 .1665 .1783 .1905 .2030 .2159 .2290 .2424 .2560

9 .0748 .0819 .0894 .0974 .1056 .1143 .1234 .1328 .1426 .1528
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k0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

10 .0356 .0397 .0441 .0488 .0538 .0591 .0648 .0708 .0722 .0839

11 .0156 .0177 .0200 .0225 .0253 .0282 .0314 .0349 .0386 .0426

12 .0063 .0073 .0084 .0096 .0110 .0125 .0141 .0160 .0179 .0201

13 .0024 .0028 .0033 .0038 .0045 .0051 .0059 .0068 .0078 .0088

14 .0008 .0010 .0012 .0014 .0017 .0020 .0023 .0027 .0031 .0036

15 .0003 .0003 .0004 .0005 .0006 .0007 .0009 .0010 .0012 .0014

16 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0004 .0004 .0005

17 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0002

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

k0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .9978 .9980 .9982 .9983 .9985 .9986 .9988 .9989 .9990 .9991

2 .9841 .9854 .9866 .9877 .9887 .9897 .9905 .9913 .9920 .9927

3 .9423 .9464 .9502 .9537 .9570 .9600 .9629 .9656 .9680 .9704

4 .8575 .8658 .8736 .8811 .8882 .8948 .9012 .9072 .9129 .9182

5 .7281 .7408 .7531 .7649 .7763 .7873 .7978 .8080 .8177 .8270

6 .5702 .5859 .6012 .6163 .6310 .6453 .6594 .6730 .6863 .6993

7 .4098 .4258 .4418 .4577 .4735 .4892 .5047 .5201 .5353 .5503

8 .2699 .2840 .2983 .3127 .3272 .3419 .3567 .3715 .3864 .4013

9 .1633 .1741 .1852 .1967 .2084 .2204 .2327 .2452 .2580 .2709

10 .0910 .0984 .1061 .1142 .1226 .1314 .1404 .1498 .1505 .1695

11 .0469 .0514 .0563 .0614 .0668 .0726 .0786 .0849 .0916 .0985

12 .0224 .0250 .0277 .0307 .0339 .0373 .0409 .0448 .0495 .0534

13 .0100 .0113 .0127 .0143 .0160 .0179 .0199 .0221 .0245 .0270

14 .0042 .0048 .0055 .0063 .0071 .0080 .0091 .0102 .0115 .0128

15 .0016 .0019 .0022 .0026 .0030 .0034 .0039 .0044 .0050 .0057

16 .0006 .0007 .0008 .0010 .0012 .0014 .0016 .0018 .0021 .0024

17 .0002 .0003 .0003 .0004 .0004 .0005 .0006 .0007 .0008 .0010

18 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003 .0004

19 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001
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l

k0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .9992 .9993 .9993 .9994 .9994 .9995 .9995 .9996 .9996 .9997

2 .9933 .9939 .9944 .9949 .9953 .9957 .9961 .9964 .9967 .9970

3 .9725 .9745 .9764 .9781 .9797 .9812 .9826 .9839 .9851 .9862

4 .9233 .9281 .9326 .9368 .9409 .9446 .9482 .9515 .9547 .9576

5 .8359 .8445 .8527 .8605 .8679 .8751 .8819 .8883 .8945 .9004

6 .7119 .7241 .7360 .7474 .7586 .7693 .7797 .7897 .7994 .8088

7 .5651 .5796 .5940 .6080 .6218 .6354 .6486 .6616 .6743 .6866

8 .4162 .4311 .4459 .4607 .4754 .4900 .5044 .5188 .5330 .5470

9 .2840 .2973 .3108 .3243 .3380 .3518 .3657 .3796 .3935 .4075

10 .1798 .1904 .2012 .2123 .2236 .2351 .2469 .2589 .2710 .2834

11 .1058 .1133 .1212 .1293 .1378 .1465 .1555 .1648 .1743 .1841

12 .0580 .0629 .0681 .0735 .0792 .0852 .0915 .0980 .1048 .1119

13 .0297 .0327 .0358 .0391 .0427 .0464 .0504 .0546 .0591 .0638

14 .0143 .0159 .0176 .0195 .0216 .0238 .0261 .0286 .0313 .0342

15 .0065 .0073 .0082 .0092 .0103 .0114 .0127 .0141 .0156 .0173

16 .0028 .0031 .0036 .0041 .0046 .0052 .0059 .0066 .0074 .0082

17 .0011 .0013 .0015 .0017 .0020 .0022 .0026 .0029 .0033 .0037

18 .0004 .0005 .0006 .0007 .0008 .0009 .0011 .0012 .0014 .0016

19 .0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0006 .0005

k0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .9997 .9997 .9998 .9998 .9998 .9998 .9998 .9998 .9999 .9999

2 .9972 .9975 .9977 .9979 .9981 .9982 .9984 .9985 .9987 .9988

3 .9873 .9882 .9891 .9900 .9907 .9914 .9921 .9927 .9932 .9938

4 .9604 .9630 .9654 .9677 .9699 .9719 .9738 .9756 .9772 .9788

5 .9060 .9113 .9163 .9211 .9256 .9299 .9340 .9379 .9416 .9450

6 .8178 .8264 .8347 .8427 .8504 .8578 .8648 .8716 .8781 .8843

7 .6987 .7104 .7219 .7330 .7438 .7543 .7645 .7744 .7840 .7932

8 .5609 .5746 .5881 .6013 .6144 .6272 .6398 .6522 .6643 .6761

9 .4214 .4353 .4493 .4631 .4769 .4906 .5042 .5177 .5311 .5443
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l

k0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

10 .2959 .3085 .3212 .3341 .3470 .3600 .3731 .3863 .3994 .4126

11 .1942 .2045 .2150 .2257 .2366 .2478 .2591 .2706 .2822 .2940

12 .1193 .1269 .1348 .1429 .1513 .1600 .1689 .1780 .1874 .1970

13 .0687 .0739 .0793 .0850 .0909 .0971 .1035 .1102 .1171 .1242

14 .0372 .0405 .0439 .0476 .0514 .0555 .0597 .0642 .0689 .0739

15 .0190 .0209 .0229 .0251 .0274 .0299 .0325 .0353 .0383 .0415

16 .0092 .0102 .0113 .0125 .0138 .0152 .0168 .0184 .0202 .0220

17 .0042 .0047 .0053 .0059 .0066 .0074 .0082 .0091 .0101 .0111

18 .0018 .0021 .0023 .0027 .0030 .0034 .0038 .0043 .0048 .0053

19 .0008 .0009 .0010 .0011 .0013 .0015 .0017 .0019 .0022 .0024

k0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 1.0000 1.0000

2 .9989 .9990 .9991 .9991 .9992 .9993 .9993 .9994 .9995 .9995

3 .9942 .9947 .9951 .9955 .9958 .9962 .9965 .9967 .9970 .9972

4 .9802 .9816 .9828 .9840 .9851 .9862 .9871 .9880 .9889 .9897

5 .9483 .9514 .9544 .9571 .9597 .9622 .9645 .9667 .9688 .9707

6 .8902 .8959 .9014 .9065 .9115 .9162 .9207 .9250 .9290 .9329

7 .8022 .8108 .8192 .8273 .8351 .8426 .8498 .8567 .8634 .8699

8 .6877 .6990 .7101 .7208 .7313 .7416 .7515 .7612 .7706 .7798

9 .5574 .5704 .5832 .5958 .6082 .6204 .6324 .6442 .6558 .6672

10 .4258 .4389 .4521 .4651 .4782 .4911 .5040 .5168 .5295 .5421

11 .3059 .3180 .3301 .3424 .3547 .3671 .3795 .3920 .4045 .4170

12 .2068 .2168 .2270 .2374 .2480 .2588 .2697 .2807 .2919 .3032

13 .1316 .1393 .1471 .1552 .1636 .1721 .1809 .1899 .1991 .2084

14 .0790 .0844 .0900 .0958 .1019 .1081 .1147 .1214 .1284 .1355

15 .0448 .0483 .0520 .0559 .0600 .0643 .0688 .0735 .0784 .0835

16 .0240 .0262 .0285 .0309 .0335 .0362 .0391 .0421 .0454 .0487

17 .0122 .0135 .0148 .0162 .0177 .0194 .0211 .0230 .0249 .0270

18 .0059 .0066 .0073 .0081 .0089 .0098 .0108 .0119 .0130 .0143

19 .0027 .0031 .0034 .0038 .0043 .0048 .0053 .0059 .0065 .0072
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l

k0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

20 .0012 .0014 .0015 .0017 .0020 .0022 .0025 .0028 .0031 .0035

21 .0005 .0006 .0007 .0008 .0009 .0010 .0011 .0013 .0014 .0016

22 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0005 .0006 .0007

23 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003

24 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001
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F

n .005 .010 .025 .050 .100 .250 .500 .750 .900 .950 .975 .990 .995

1 .0000393 .000157 .000982 .00393 .0158 .102 .455 1.32 2.71 3.84 5.02 6.63 7.88

2 .0100 .0201 .0506 .103 .211 .575 1.39 2.77 4.61 5.99 7.38 9.21 10.6

3 .0717 .115 .216 .352 .584 1.21 2.37 4.11 6.25 7.81 9.35 11.3 12.8

4 .207 .297 .484 .711 1.06 1.92 3.36 5.39 7.78 9.49 11.1 13.3 14.9

5 .412 .554 .831 1.15 1.61 2.67 4.35 6.63 9.24 11.1 12.8 15.1 16.7

6 .676 .872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 14.4 16.8 18.5

7 .989 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.0 14.1 16.0 18.5 20.3

8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.2 13.4 15.5 17.5 20.1 22.0

9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.4 14.7 16.9 19.0 21.7 23.6

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 23.2 25.2

11 2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7 21.9 24.7 26.8

12 3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0 23.3 26.2 28.3

13 3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4 24.7 27.7 29.8

14 4.07 4.66 5.63 6.57 7.79 10.2 13.3 17.1 21.1 23.7 26.1 29.1 31.3

15 4.60 5.23 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0 27.5 30.6 32.8
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C.4. CHI-SQUARED DISTRIBUTION

The table gives values of c2 for values of n and F, where Fðc2;nÞ ¼ 1

2n=2Gðn=2Þ
Z c2

0
tn=2�1expð�t=2Þdt:

C
.4
.
C
H
I-S

Q
U
A
R
E
D

D
IS
T
R
IB
U
T
IO

N
2
7
3



F

n .005 .010 .025 .050 .100 .250 .500 .750 .900 .950 .975 .990 .995

16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3 28.8 32.0 34.3

17 5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 30.2 33.4 35.7

18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 31.5 34.8 37.2

19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 32.9 36.2 38.6

20 7.43 8.26 9.59 10.9 12.4 15.5 19.3 23.8 28.4 31.4 34.2 37.6 40.0

21 8.03 8.90 10.3 11.6 13.2 16.3 20.3 24.9 29.6 32.7 35.5 38.9 41.4

22 8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.8 40.3 42.8

23 9.26 10.2 11.7 13.1 14.8 18.1 22.3 27.1 32.0 35.2 38.1 41.6 44.2

24 9.89 10.9 12.4 13.8 15.7 19.0 23.3 28.2 33.2 36.4 39.4 43.0 45.6

25 10.5 11.5 13.1 14.6 16.5 19.9 24.3 29.3 34.4 37.7 40.6 44.3 46.9

26 11.2 12.2 13.8 15.4 17.3 20.8 25.3 30.4 35.6 38.9 41.9 45.6 48.3

27 11.8 12.9 14.6 16.2 18.1 21.7 26.3 31.5 36.7 40.1 43.2 47.0 49.6

28 12.5 13.6 15.3 16.9 18.9 22.7 27.3 32.6 37.9 41.3 44.5 48.3 51.0

29 13.1 14.3 16.0 17.7 19.8 23.6 28.3 33.7 39.1 42.6 45.7 49.6 52.3

30 13.8 15.0 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.8 47.0 50.9 53.7
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C.5. STUDENT’S t DISTRIBUTION

The table gives values of t for specific values of n and F where

Fðt; nÞ ¼ 1

ðpnÞ1=2
G½ðnþ 1Þ=2�

Gðn=2Þ
Z t

�N

�
1þ x2

n

��ðnþ1Þ=2
dx:

Note that Fð�tÞ ¼ 1� FðtÞ:

F

n .60 .75 .90 .95 .975 .99 .995 .9995

1 .325 1.000 3.078 6.314 12.706 31.821 63.657 636.619

2 .289 .816 1.886 2.920 4.303 6.695 9.925 31.598

3 .277 .765 1.638 2.353 3.182 4.541 5.841 12.921

4 .271 .741 1.533 2.132 2.776 3.747 4.604 8.610

5 .267 .727 1.476 2.015 2.571 3.365 4.032 6.869

6 .265 .718 1.440 1.943 2.447 3.143 3.707 5.959

7 .263 .711 1.415 1.895 2.365 2.998 3.499 5.408

8 .262 .706 1.397 1.860 2.306 2.896 3.355 5.041

9 .261 .703 1.383 1.833 2.262 2.821 3.250 4.781

10 .260 .700 1.372 1.812 2.228 2.764 3.169 4.587

11 .260 .697 1.363 1.796 2.201 2.718 3.106 4.437

12 .259 .695 1.356 1.782 2.179 2.681 3.055 4.318

13 .259 .694 1.350 1.771 2.160 2.650 3.012 4.221

14 .258 .692 1.345 1.761 2.145 2.624 2.977 4.140

15 .258 .691 1.341 1.753 2.131 2.602 2.947 4.073

16 .258 .690 1.337 1.746 2.120 2.583 2.921 4.015

17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.965

18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.922

19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.883

20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.850

21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.819

22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.792

23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.768

24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.745

25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.725
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F

n .60 .75 .90 .95 .975 .99 .995 .9995

26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.707

27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.690

28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.674

29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.659

30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.646

40 .255 .681 1.303 1.684 2.021 2.423 2.704 3.551

60 .254 .679 1.296 1.671 2.000 2.390 2.660 3.460

120 .254 .677 1.289 1.658 1.980 2.358 2.617 3.373

N .253 .674 1.282 1.645 1.960 2.326 2.576 3.291
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F(F; m, n) ¼ 0.90

m

n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 N

1 39.86 49.50 53.59 55.83 57.24 58.20 58.81 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13

4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72

7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47

8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80

(Continued)

C.6. F DISTRIBUTION

The table gives values of F such that

FðF;m,nÞ ¼ G½ðmþ nÞ=2�
Gðm=2ÞGðn=2Þ

�m
n

�m=2
Z F

0

xðm�2Þ=2

½1þ ðm=nÞx�ðmþnÞ=2 dx

for specified values of m and n. Values corresponding to FðFÞ ¼ 0:10, 0:05 and 0:025 may be found using the relation
F1�aðn,mÞ ¼ ½Faðm,nÞ��1.
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F(F; m, n) ¼ 0.90

m

n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 N

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19

N 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00
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m

n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 N

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.70 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.21 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

(Continued)

F(F; m, n) ¼ 0.95
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m

n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 N

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.23 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

N 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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m

n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 N

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1 997.2 1001 1006 1010 1014 1018

2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50

3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95 13.90

4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31 8.26

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07 6.02

6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.90 4.85

7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.57 4.47 4.42 4.36 4.31 4.25 4.20 4.14

8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.84 3.78 3.73 3.67

9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39 3.33

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.20 3.14 3.08

11 6.72 5.29 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.00 2.94 2.88

12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79 2.72

13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66 2.60

14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55 2.49

15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 2.59 2.52 2.46 2.40

16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38 2.32

17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.50 2.44 2.38 2.32 2.25

18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.67 2.56 2.50 2.44 2.38 2.32 2.26 2.19

19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 3.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.20 2.13

(Continued)

F(F; m, n) ¼ 0.975
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m

n 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 N

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16 2.09

21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11 2.04

22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.60 2.50 2.39 2.33 2.27 2.21 2.14 2.08 2.00

23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.57 2.47 2.36 2.30 2.24 2.18 2.11 2.04 1.97

24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01 1.94

25 5.69 4.29 2.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.30 2.24 2.18 2.12 2.05 1.98 1.91

26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95 1.88

27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.00 1.93 1.85

28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91 1.83

29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89 1.81

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.20 2.14 2.07 2.01 1.94 1.87 1.79

40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.80 1.72 1.64

60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58 1.48

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43 1.31

N 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.83 1.71 1.64 1.57 1.48 1.39 1.27 1.00
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C.7. SIGNED-RANK TEST

The table gives critical values of wþ for a one-tailed signed-rank test for samples of size n.
For a two-tailed test use the statistic w at a 2a value.

n

One-tailed a[ 0:01 One-tailed a[ 0:025 One-tailed a[ 0:05

Two-tailed a[ 0:02 Two-tailed a[ 0:05 Two-tailed a[ 0:10

5 0

6 0 2

7 0 2 3

8 1 3 5

9 3 5 8

10 5 8 10

11 7 10 13

12 9 13 17

13 12 17 21

14 15 21 25

15 19 25 30

16 23 29 35

17 27 34 41

18 32 40 47

19 37 46 53

20 43 52 60

21 49 58 67

22 55 65 75

23 62 73 83

24 69 81 91

25 76 89 100

26 84 98 110

27 92 107 119

28 101 116 130

29 110 126 140

30 120 137 151

Footnote: Formulas for the calculation of this table are given in F. Wilcoxon, S.K. Katti and R.A. Wilcox, ‘Critical values and probability

levels for the Wilcoxon rank-sum test and the Wilcoxon signed-rank test’, Selected Tables in Mathematical Statistics, Vol. 1 (1973),

American Mathematical Society, Providence, Rhode Island, U.S.A.
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C.8. RANK-SUM TEST (See footnote to Table C.7.)

Values of u01, 2 such that P½u1, 2 � u01, 2� � a, for samples of sizes n1 and n2 > n1. For a two-
tailed test use the statistic u at a 2a value.

n2

n1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 1 1 1 1 2 2 2 2 One-tailed test,
a ¼ 0:025; or
two-tailed test,
a ¼ 0:05

3 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

4 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 14

5 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27

7 8 10 12 14 16 18 20 22 24 26 28 30 32 34

8 13 15 17 19 22 24 26 29 31 34 36 38 41

9 17 20 23 26 28 31 34 37 39 42 45 48

10 23 26 29 33 36 39 42 45 48 52 55

n2

n1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 1 1 1 2 2 3 3 3 3 4 4 4 One-tailed test,
a ¼ 0:05; or
two-tailed test,
a ¼ 0:10

3 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 11

4 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18

5 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25

6 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32

7 11 13 15 17 19 21 24 26 28 30 33 35 37 39

8 15 18 20 23 26 28 31 33 36 39 41 44 47

9 21 24 27 30 33 36 39 42 45 48 51 54

10 27 31 34 37 41 44 48 51 55 58 62
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m

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 (2,e) (2,e) (2,e) (2,e) (2,e) (2,e) (2,e) (2,e) (2,e) (2,e) (2,e) (2,e) (2,e)

3 (e,7) (2,e) (2,e) (2,e) (2,e) (2,e) (3,e) (3,e) (3,e) (3,e) (3,e) (3,e) (3,e) (3,e) (3,e) (3,e) (3,e)

4 (2,8) (2,9) (3,9) (3,9) (3,e) (3,e) (3,e) (4,e) (4,e) (4,e) (4,e) (4,e) (4,e) (4,e) (4,e) (4,e) (4,e)

5 (3,9) (3,10) (3,10) (3,11) (4,11) (4,11) (4,e) (4,e) (4,e) (5,e) (5,e) (5,e) (5,e) (5,e) (5,e) (5,e)

6 (3,11) (4,11) (4,12) (4,12) (5,12) (5,13) (5,13) (5,13) (5,13) (6,e) (6,e) (6,e) (6,e) (6,e) (6,e)

7 (4,12) (4,13) (5,13) (5,13) (5,14) (6,14) (6,14) (6,14) (6,15) (6,15) (7,15) (7,15) (7,15) (7,e)

8 (5,13) (5,14) (6,14) (6,15) (6,15) (6,15) (7,16) (7,16) (7,16) (7,16) (8,16) (8,16) (8,17)

9 (6,14) (6,15) (6,15) (7,16) (7,16) (7,17) (8,17) (8,17) (8,17) (8,18) (8,18) (9,18)

10 (6,16) (7,16) (7,17) (8,17) (8,17) (8,18) (8,18) (9,18) (9,19) (9,19) (9,19)

11 (7,17) (8,17) (8,18) (8,18) (9,19) (9,19) (9,19) (10,20) (10,20) (10,20)

12 (8,18) (9,18) (9,19) (9,19) (10,20) (10,20) (10,21) (10,21) (11,21)

13 (9,19) (9,20) (10,20) (10,21) (10,21) (11,21) (11,22) (11,22)

14 (10,20) (10,21) (11,21) (11,22) (11,22) (12,23) (12,23)

15 (11,21) (11,22) (11,22) (12,23) (12,23) (12,24)

16 (11,23) (12,23) (12,24) (13,24) (13,25)

17 (12,24) (13,24) (13,25) (13,25)

18 (13,25) (14,25) (14,26)

19 (14,26) (14,27)

20 (15,27)

C.9. RUNS TEST

The table gives lower and upper critical values for r, the number of runs, in the form ða, bÞ, for given values of n and
m > n for use in a one-tailed test at significance level a ¼ 0:05, or a two-tailed test at significance level a ¼ 0:1. A dash
means there is no value that satisfies the required conditions.

C
.9
.
R
U
N
S
T
E
S
T

2
8
5



C.10. RANK CORRELATION COEFFICIENT

The table gives critical values of Spearman’s rank correlation coefficient for specified
values of a, the significance level.

n a[ 0:05 a[ 0:025 a[ 0:01

5 0.900

6 0.829 0.886 0.943

7 0.714 0.786 0.893

8 0.643 0.738 0.833

9 0.600 0.683 0.783

10 0.564 0.648 0.745

11 0.523 0.623 0.736

12 0.497 0.591 0.703

13 0.475 0.566 0.673

14 0.457 0.545 0.646

15 0.441 0.525 0.623

16 0.425 0.507 0.601

17 0.412 0.490 0.582

18 0.399 0.476 0.564

19 0.388 0.462 0.549

20 0.377 0.450 0.534

21 0.368 0.438 0.521

22 0.359 0.428 0.508

23 0.351 0.418 0.496

24 0.343 0.409 0.485

25 0.336 0.400 0.475

26 0.329 0.392 0.465

27 0.323 0.385 0.456

28 0.317 0.377 0.448

29 0.311 0.370 0.440

30 0.305 0.364 0.432
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A P P E N D I X

D

Answers to Odd-Numbered Problems

O U T L I N E

Problems 1 287

Problems 2 288

Problems 3 288

Problems 4 288

Problems 5 289

Problems 6 289

Problems 7 289

Problems 8 290

Problems 9 290

Problems 10 290

Problems 11 291

PROBLEMS 1

1.1 Possible events are 1H, 1T, 3H, 3T, 5H, 5T, 2HT, 2TH, 2TT, 4HH, 4HT, 4TH, 4TT, 6HH,
6HT, 6TH, and 6TT; 18 elements in the sample space.

1.3 The bins are 0� x < 12:5, 12:5� x < 25:0, etc. with widths 12.5. The frequencies are 0, 1, 5,
7, 9, 11, 4, and 3. The cumulative distribution is

Bin < 12:5 < 25 < 37:5 < 50 < 62:5 < 75 < 87:5 < 100

Cumulative frequency 0 1 6 13 22 33 37 40

1.5 For the unbinned data, x ¼ 58:375 and s ¼ 18:62. For the binned data x ¼ 58:75
and s ¼ 18:82. Shepard’s correction reduces this to 18.47, but would not alter the estimate
for the mean. The percentage of unbinned data that falls within the range
x� 2s < x < xþ 2s is 97.5%. If the data followed a normal distribution, the percentage
would be 95.4%.
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1.7 Solve the quadratic equation for m that follows from fmaxðxÞ ¼ 1=s
ffiffiffiffiffiffi
2p

p
.

1.9 The correlation coefficient r ¼ �0:64.

PROBLEMS 2

2.1 Probability for a current to flow is P ¼ ½ð1X2ÞWð3W4Þ� ¼ 2p� 2p3 þ p4, and for no
current to flow is P ¼ P½1W2�P½3X4� ¼ 1� 2pþ 2p3 � p4. Pþ P ¼ 1, which checks.

2.3 If F denotes the event where the component is faulty and B the event where the
component is part of a faulty batch, then P½FjB� ¼ 0:94 and the technician should now be
94% certain that the component is the problem.

2.5 The number of possible arrangements is 103680.

2.7 If + denotes a positive (guilty) test result and G innocence, then P½Gjþ� ¼ 0:254

2.9 If W2 means the second draw has resulted in a white ball, etc., then
(a) P½R1XW2XB3� ¼ 0:022 and (b) P½R1XW2XB3� ¼ 0:018.

PROBLEMS 3

3.1 m01 ¼ g=a and m02 ¼ gðgþ 1Þ=a2.

3.3 Expected number is 4.095.

3.5 (a) P½x < y� ¼ 0:25. (b) P½x > 1,y < 2� ¼ 0:367.

3.7 fCðxjyÞ ¼ 12x2ð1þ x� yÞ=ð7� 4yÞ

3.9 fðuÞ ¼ u, ð0 � u < 1Þ and fðuÞ ¼ 2� u, ð1 � u < 2Þ, i.e., a triangle with a peak at u ¼ 1.

PROBLEMS 4

4.1 Without medical intervention, P½n ¼ 14� ¼ 0:0369, i.e., 3.7%. This is to be compared with
70% who recover if they use the drug. So, on the basis of this very small sample, the drug
is effective.

4.3 P ¼ 0:0087:

4.5 Using the binomial, P½r � 5� ¼ 0:564; using the Poisson, P½r � 5� ¼ 0:559.
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4.7 P½k � 3� ¼ 0:047.

4.9 P½W > 6� 105�z 0:09

PROBLEMS 5

5.1 An unbiased estimator for I is xn � 1=2 and E
h
ðxn � mÞ2

i
¼ 1=12nþ 1=4.

5.3 P½x < 7:5� ¼ 0:1056.

5.5 Any more than 22 exposures.

5.7 Approximately 96.

5.9 The percentage error on F is 12%.

PROBLEMS 6

6.1 c2 ¼ 82:3.

6.3 Use the properties of the characteristic function of a variate c2j having a chi-squared
distribution with nj degrees of freedom.

6.5 n ¼ 7

6.7 k ¼ �2:093

6.9 The probability of a difference in the variances of the measured size is between 0.02 and
0.05 and hence the machines do not appear to be consistent.

PROBLEMS 7

7.1 The ML estimator ŝ of the lifetime s is the mean of the measured times t. To show that it
is an unbiased estimator for s, show that E½ŝðt1, t2,., tnÞ� ¼ s. The variance is
s2ðŝÞ ¼ s2=n.

7.3 The mean k is an unbiased estimator l̂ for the parameter l and s2ðkÞ ¼ l=n.

7.5 k̂ ¼ �2� 3=
P

ln xi

7.7 Find the ML estimators for E0 in the case where jEi � E0j � G and G > 0.
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PROBLEMS 8

8.1 From the c2 probabilities only the cubic fit is acceptable.

8.3 l̂1 ¼ 1:04 and l̂2 ¼ �1:06, with an error matrix

E ¼
�

1:6 �0:4
�0:4 0:6

�
� 10�2:

8.5 x1 ¼ h1

�
1� q1

q2

�
, x2 ¼ h2

�
1� q1

q2

�
, x3 ¼ h3

�
1þ q1

q3

�
,

where

q1 ¼ h21 þ h22 � h23; q2 ¼ 2

�
h21 þ h22 þ h3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22

q �
;

and

q3 ¼ 2

�
h23 þ h3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22

q �
:

8.7 The Bayes’ estimator is

p̂ ¼ ðP rÞ þ 1

nþ 2
:

This differs slightly from theML estimator found in Problem 7.7, which was p̂ ¼ ðP rÞ=n.

PROBLEMS 9

9.1 0:329 < p < 0:371

9.3 7:5 � S � 12:5

9.5 137:0 < s < 324:7

9.7 credible interval: 780:5 < m < 782:7: confidence interval: 774:1 < m < 785:9.

PROBLEMS 10

10.1 The test statistic is z ¼ 2:24 and z0:025 ¼ 1:96. Therefore, the hypothesis must be rejected.

10.3 The test statistic is c2 ¼ 43:9. As this is greater than c20:1ð19Þ, the null hypothesis must be
rejected.
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10.5 The test statistic is F ¼ 0:738 for 11 and 8 degrees of freedom. Since
F < F0:95ð11, 8Þz 3:3, we cannot reject the alternative hypothesis.

10.7 Using ANOVA, F ¼ s2B=s
2
W ¼ 1:39. Since F < F0:05ð5, 18Þ ¼ 2:77, the hypothesis cannot be

rejected at this significance level.

10.9 P½k � 63�z 0:033 < 0:05, so the supplier’s claim is rejected.

PROBLEMS 11

11.1 Using chi-squared to compare the values of the expected number of intervals ei with
a given number of counts with the observations, gives c2 ¼ 10:51 for 12 degrees of
freedom, and since c20:5 ¼ 11:3 and c20:75 ¼ 8:4, the hypothesis is acceptable at any
reasonable significance level.

11.3 From (11.10) D ¼ 0:356, and from (11.11) D� ¼ 1:18. Thus, from (11.12) the hypothesis
would accepted at a 10% significance level.

11.5 The calculated c2 ¼ 6:03 for 4 degrees of freedom, and since c2 < c20:01ð4Þ ¼ 7:78, we
accept the null hypothesis of independence.

11.7 From the rank numbers, wþ ¼ 37:5, w� ¼ 15:0 and hence w ¼ minfwþ,w�g ¼ 15:0. The
critical region for n ¼ 10 in a two-tailed test (because we are testing an equality) with
a ¼ 0:05 is w � 8, so we accept the null hypothesis at this significance level.

11.9 Assigning + and e signs to whether the value is greater than or less than the mean,
we have n ¼ 8, m ¼ 10 and r ¼ 9 runs. The critical regions at a 10% significance level are
r � 6 and r � 14, so the hypothesis is accepted.
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Note: Page numbers followed by f indicate figures, t indicate tables.

A
Acceptance region, 194
Accuracy, 17
Additive property of c2, 110
Additive rule of probability, 23
Algebra, matrix, 243e247
Algebraic moment, 41
Alternative hypothesis, 194
Analysis of variance (ANOVA), 215e218

multi-way analysis, 216
one-way analysis, 215e216
sum of squares and, 216, 217t

ANOVA. See Analysis of variance
Arithmetic mean, 8

B
Bar chart, 4e5, 5f
Bayes’ estimators, 167e171

loss function and, 168
Bayes’ postulate, 29e31
Bayes’ theorem, 29e30, 47
Bayesian confidence intervals, 189e190
Bernoulli number, 11
Bernoulli trial, 69e72
Best fit curve, 143e144
Bias, 87
Binomial probability distributions, 69e74

Bernoulli trial and, 69e72
characteristic function, 72e73
examples, 71be72b
hypothesis testing and, 214
limiting form of, 70f, 72e73
moment distribution function, 72
normal approximations, 73
Poisson distribution and, 75e76, 78t
probability function, 69e71
sampling distributions related to, 121f
tables, 259e265

Bins, 4e5
Bivariate normal, 65e66
Breit-Wigner formula, 69

C
Cauchy probability distribution, 68e69

central limit theorem and, 95
Lorentz distribution and, 68e69

Central interval, 174, 174f
Central limit theorem

Cauchy distribution and, 95
sampling and, 93e97

Central moment, 11, 41
Characteristic function (cf)

binomial distribution, 73
chi-squared distribution, 109
normal distribution, 61
Poisson distribution, 76e79
random variables and, 42e44
sampling distributions and, 86

Chebyshev’s inequality, 12

weak law of large numbers and, 93
Chi-square test, Pearson’s, 224
Chi-squared distribution

additive property of, 110
characteristic function, 109
critical values, 108, 108f
degrees of freedom and, 111
density and distribution functions of, 107f, 108
independence tests and, 231
mgf, 109
normal approximations, 109e110, 110t
normal distribution and, 105e111
normality convergence and, 109e110, 110t
percentage points of, 108, 108f
population distributions related to, 121f
quality of fit and, 152
Student’s t distribution and F distribution and,

119e121, 121f, 121t
tables, 272e274

Classical theory of minima, 247e248
Composite hypotheses, 194, 201e204

likelihood ratio test, 198, 202, 203be204b
UMP test and, 201

Conditional density function, 45e49
Conditional probability, 23, 25f
Confidence belt, 177e178
Confidence coefficient, 174
Confidence intervals, 174e190

Bayesian, 189e190
central interval, 174, 174f
confidence belt, 177e178
confidence coefficient, 174
confidence region, 176
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Confidence intervals (Continued )
credible intervals, 189
general method, 177e179, 177f, 178f
for mean and variance, 183e184
large samples, 186e187
near boundaries, 187e189
normal distribution, 179e184

for mean, 180e182, 181t
for mean and variance, 183e184
for variance, 182e183

one-tailed, 176, 176b
Poisson distribution, 184e186, 185t
two-tailed, 175

Confidence level, 174
Confidence regions, 176, 183e184
Consistent estimator, 86e87
Constrained optimization, 255e256
Contingency table, 231, 231t
Continuous single variate probability distribution, 37
Converge in probability, 86e87
Convolutions, 53
Correlation, 12e14. See also Spearman rank correlation

coefficient

binned data and, 14
coefficient, 50
interpretation, 13e14
Pearson’s correlation coefficient, 13
rank correlation coefficient, 239e241
scatter plot, 13, 13f

Covariance, 50

estimators for, 90e93
sample, 12e13

Cramér-Rao inequality, 137e140
Credible intervals, 189
Critical region, 194
Critical values, 108, 108f
Cumulants, 43
Cumulative distribution function, 37, 39f
Cumulative frequency, 4e5, 5f

D
Data

numerically summarized, 7e15
location measures, 8e9
more than one variable, 12e15
spread measures, 9e12

representations
bar chart, 4e5, 5f
frequency table, 4e5
histograms, 4e5, 6f, 7
lego and scatter plots, 7, 7f

Davidon’s method of minimization, 225
Degrees of freedom, chi-squared distribution and, 111

Density function. See Probability distributions
Descriptive statistics

defined, 1
displaying data, 4e7

bar chart, 4e5, 5f
frequency table, 4e5
histograms, 4e5, 6f, 7
lego and scatter plots, 7, 7f

experimental errors, 17e19
experiments and observations, 2e4
large samples and, 15e17

Discrete single variate, 36
Dispersion, 9e10
Displaying data

bar chart, 4e5, 5f
frequency table, 4e5
histograms, 4e5, 6f, 7
lego and scatter plots, 7, 7f

Distribution. See Probability distributions
Distribution-free tests. See Nonparametric tests

E
Equation of regression curve of best fit, 143e144
Error, 17e19

bars, 17e18
contributions to, 17
experimental

descriptive statistics and, 17e19
estimation and, 103e104
outliers and, 98e99
probable error, 97
propagation of errors law, 99e103
random, 17
sampling and, 103e104
statistical, 17
systematic errors, 102

matrix, 149e150
mean squared, 88e89
precision and accuracy, 17e18, 18f
probabilities, 194e195
standard, 62

of mean, 91e92
statistical hypotheses and, 194
systematic, 18, 18f
type I or II, 194

Estimation

central limit theorem and, 93e97
interval estimation, 173e191
large number laws and, 93e97
of mean, variance and covariance, 90e93
point estimation

Bayesian, 167e171
least-squares, 143e162
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maximium likelihood, 123e135
method of moments, 165e166
minimum chi-squared, 163e164
minimum variance, 136e140

Event, 2
Expectation values, 40e41, 49e51
Experimental errors, 17e19

outliers and, 98e99
probable error and, 97
propagation of errors law, 99e103
sampling and estimation and,

103e104
systematic errors, 102
variance matrix, 102e103

Experiments and observations, 2e4
Exponential probability distributions, 66e68

memory and, 67
Extended likelihood function, 128

F
F distribution

chi-squared and Student’s t distributions and,
119e121, 121f, 121t

constructing form of, 116
linear hypotheses and, 230e231
mgf, 117
noncentral, 230e231
normal distribution and, 116e119
pdf, 117
percentage points of, 117, 118f
population distributions related to, 121f
quality of fit and, 152
tables, 276e282

Fréchet inequality, 137e140
Frequency interpretation of probability, 27e29

table, 4e5
Full width at half maximum height (FWHM), 17
Functions of random variables. See Random

variables

G
Gamma distributions, 66
Gaussian distribution, 16, 16f
General hypotheses: likelihood ratios, 198e204

composite hypotheses, 201e204
likelihood ratio test, 198
Neymane-Pearson lemma and, 199
simple hypothesis, 198e201

Generalized likelihood ratio test, 198, 202
Goodness-of-fit tests, 221e231

continuous distributions, 225e228
discrete distributions, 222e225
independence tests as, 231e232

Kolmogorov-Smirnov test, 226e227, 227f
linear hypotheses, 228e231
Pearson’s chi-squared test, 224e225, 225b
rank correlation coefficient, 239e241
runs test, 237e239
signed-rank test, 234e236

Gradient method of optimization, 254e255

Davidon’s method, 255
Newton’s method, 254e255

H
Half-width, 17
Histograms, 4, 6f, 7
Hypothesis testing

acceptance region, 194
alternative hypothesis, 205
analysis of variance, 215e218
ANOVA, 215e218
composite hypothesis, 194
critical region, 194
error probabilities, 194
generalized likelihood ratio, 202e204
goodness-of-fit tests, 222e231
likelihood ratios, 198e201
Neyman-Pearson lemma, 199
nonparametric tests, 233e241
normal distribution, 204e214

table of tests, 213
tests of means, 206e210
tests on variances, 210e214

null hypothesis, 194
OC curve, 196e197, 197f
one-tailed test, 195
p-value, 195
Poisson distribution, 214e215
power of test, 195
rejection region, 194
significance level, 194
simple hypothesis, 84e85
tests for independence, 231e233
two-tailed test, 195
type I errors, 194
type II errors, 194
uniformly most powerful test, 201e202

I
Independence tests

chi-squared procedure and, 231
as goodness-of-fit tests, 231e232
contingency table, 231, 231t

Independent measurements, 2e3
Inference, statistical, 29
Interval estimation. See Confidence intervals
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Inverse lifetime, 67
Inversion theorem, 43

J
Joint marginal distribution, 64
Joint moments, 49e51
Joint probability density, 45

K
Kolmogorov-Smirnov test, 226e227, 227f
Kurtosis, 60e61

L
Large numbers laws, 93e97
Large samples, 15e17, 186e187
Law of total probability, 25e26
Laws of large numbers, 93e97
Least squares estimation

constrainted, 159e162
variance matrix, 161

nonlinear, 162e163
linearization procedure and, 163

unconstrained linear, 143e159
best fit curve, 143e144
binned data, 147e148
combining experiments, 158e159
error matrix, 149e150
minimum variance properties, 148e149
normal equations, 145e147
orthogonal polynomials, 152e154
parameters estimates errors, 149e151, 151b
parameters general solution, 145e149
quality of fit, 151e152
residuals, 145
straight line fit, 154e158
weight matrix, 149e150

Lego plots, 7, 7f
Likelihood, 32

ratios, 198e204
composite hypotheses, 201e204
Neymane-Pearson lemma and, 199
simple hypothesis, 198e201
test, 198, 202

Linear hypotheses

goodness-of-fit tests and, 228e231
noncentral F distribution and, 230e231
power of test and, 230e231

Location measures, 8e9

mean, 8
mode and median, 8
quantile and percentile, 8e9

Lorentz distribution, 68e69
Loss function, 168

M
Mann-Whitney rank-sum test, 236e237

summarized, 237t
Marginal density function, 45e49, 47f
Marginal probability, 25e26
Mass function, 37, 39f
Matrix algebra, 243e247
Maximum likelihood (ML)

Bayes’ theorem, 170e171
estimation

approximate methods, 130e133
binned data and, 124e125
combining experiments, 135
defined, 123e124
disadvantages, 135
extended likelihood function, 128
graphical method, 131, 131f
interpretation of, 135
minimum variance bound and,
137e140

several parameters, 133e135
single parameter, 123e128
unbiased estimator and, 126
variance of estimator, 128e133, 137e140

normality of large samples, 125e126
principle, 32

Mean

arithmetic, 8
confidence intervals for, 180e182
error of, 91e92
estimators for, 90e93
linear combinations of, 96
location measures, 8
point estimators for, 90e91
population, 8
squared error, 88e89

Median, 8
Memory, 67
Method of moment, 165e167
mgf. See Moment generating function
Minima, classical theory of, 247e248
Minimum chi-square, 163e165
Minimum variance, 136e140. See also Least squares

bound, 137e140
parameter estimation and, 136e137
properties, 148e149
Schwarz inequality and, 138

ML. See Maximum likelihood
Mode, 8
Moment generating function (mgf), 42e43

chi-squared distribution and, 109
F distribution, 117
multivariate normal distribution, 66
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Poisson distribution, 76e79
sampling distributions, 86
Student’s t distribution, 114

Moments, 11

algebraic, 41
central, 41
expectation values relation to, 41, 49e51
generating function, 72
joint, 49e51

Monte Carlo method, 85e86
Multinomial probability distributions, 74e75
Multiplicative rule, probability, 23e24
Multivariate distributions

conditional density function, 45e49
joint density function, 45, 46f
joint distribution function, 45
normal probability distributions, 63e66
bivariate normal, 65e66
independent variable, 64
joint marginal distribution, 64
joint mgf, 66
quadratic form, 63e64

Multi-way analysis, 216

N
Newton’s method of minimization, 254e255
Neyman-Pearson lemma, 199
Noncentral F distribution, 230e231
Nonlinear functions, optimization of

constrained optimization, 255e256
general principles, 249e252
unconstrained minimization
direct search methods, 253e254
of multivariable functions, 253e255
of one variable functions, 252e253

Nonlinear least squares, 162e163

linearization procedure and, 163
Nonparametric tests, 233e241

rank correlation coefficient, 239e241
rank-sum test, 236e237
summarized, 237t

runs test, 237e239
sign test, 233e234
signed-rank test, 234e236
summarized, 235t

Normal approximations

binomial, 73e74
chi-squared, 109e110
student’s t, 114e115

Normal density function, 59e63, 60f
Normal distribution, 16, 16f

bivariate, 65e66
characteristic function, 61

chi-squared distribution and, 105e111
confidence intervals, 179e184

for mean, 180e182, 181t
for mean and variance, 183e184
for variance, 182e183

Gaussian distribution and, 59e63, 60f
hypothesis testing: parameters, 204e214

table of tests, 213t
tests on means, 206e210
tests on variances, 210e214

inverse of standardized
N�1 table, 180e181, 181t

multivariate, 66
sampling distributions related to, 121f
standard form, 61
Student’s t distribution and, 111e116
tables, 257e258
univariate, 59e63, 60f

Null hypothesis, 194

O
OC. See Operating characteristic curve
One-tailed confidence intervals, 176
One-tailed test, 204e205
One-way analysis, 215e216
Operating characteristic (OC) curve, 196e197, 197f
Optimal estimator, 88e89
Optimization of nonlinear functions. See Nonlinear

functions, optimization of
Orthogonal polynomials, 153

ill-conditioning and, 152e153
least squares and, 152e154
recurrence relations and, 153e154

Outliers, 98e99

P
Parameter, 7
Parameter estimation. See Estimation
Parametric statistics, 86
pdf. See Probability density function
Pearson’s chi-squared test, 224e225
Pearson’s correlation coefficient, 13
Percentage points, 108e109, 108f

chi-squared distribution, 108e109, 108f
Student’s t distribution, 113f

Percentile, 8e9
Permutations theorem, 26
Point estimators, 86

Bayesian, 167e171
for mean, 90e91
least squares method, 143e158
minimum variance and, 136e140

bound, 137e140
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Point estimators (Continued )
parameter estimation, 136e137
Schwarz inequality, 138

ML method, 123e136
moments method, 165e167

Poisson probability distributions, 75e80

binomial distribution and, 75e76, 78t
cf and mgf for, 76e79
hypothesis testing and, 215
interval estimation and, 184e186, 185t
normal approximation, 76e79
sampling distributions related to, 121f
tables, 266e272

Population

defined, 2e3
distributions. See Probability distributions
mean, 8
variance, 9e10

Posterior probability density, 167e168
Power, 194e195
Power of test

linear hypotheses and, 230e231
normal distribution and, 204e205, 205f
UMP and, 201

Prior probability density, 168
Probability

additive rule, 23
axioms of, 21e23
calculus of, 23e27
conditional probability, 23e24, 25f
frequency interpretation, 27e29
intervals, 189
law of total probability, 25e26
marginal, 25e26
multiplicative rule, 23e24
permutations theorem, 26
posterior probability density, 167e168
prior probability density, 168
subjective interpretation, 27e32
Venn diagrams, 22, 22f

Probability density function (pdf). See Probability
distributions

F distribution and, 117
sampling distributions and, 86

Probability distributions

binomial, 69e74
bivariate normal, 65e66
Cauchy, 68e69
chi-squared, 105e111
continuous single variate, 37
cumulative distribution function, 37, 39f
discrete single variate, 36
exponential, 66e68

F distribution, 116e119
gamma, 66
marginal density function, 45e49, 47f
mass function, 37, 39f
multinomial, 74e75
multivariate conditional density function,

45e49
multivariate joint density function, 45, 46f
multivariate joint distribution function, 45
multivariate normal, 63e66
Poisson, 75e80
Student’s t distribution, 111e116
uniform, 57e58
univariate normal, 59e63, 60f
Weibull, 68

Probability mass function, 37, 39f
Probable error, 97
Propagation of errors law, 99e103
p-value, 195e196

Q
Quadratic form, 63e64
Quality of fit

least squares and, 151e152
chi-squared test, 152
F distribution test, 152

Quantile, 8e9

R
Random error, 17
Random number, 58

generators, 85e86
Random samples

central limit theorem and, 93e97
definition regarding, 3e4, 84
estimators and, 83e90
large numbers laws and, 93e97
point estimators, 86e90
with and without replacement, 90
sampling distributions, 84e86

cf, pdf, and mgf and, 86
Monte Carlo method and, 85e86

simple sampling, 3e4
Random variables

cf, 42e44
convolutions, 53
cumulative distribution function, 37, 39f
density function, 37, 40f
expectation values, 40e41
functions of, 51e55
marginal density function, 45e49, 47f
mass function, 37, 39f
mgf, 42e44
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moments and expectation values, 41, 49e51
multivariate
conditional density function, 45e49
joint density function, 45, 46f
joint distribution function, 45

single variates, 36e44
Rank correlation coefficient, 239e240

tables, 286
Rank-sum test, 236e237

summarized, 237t
tables, 284

Region of acceptance, 194
Region of rejection, 194
Regression curve, 144
Rejection region, 194
Risk function, 168
Runs test, 237e239

tables, 284e285

S
Sample

covariance, 12e13
space, 2e3
variance, 9e10

Sampling

central limit theorem and, 93e97
experimental errors and, 103e104
large numbers laws and, 93e97
linear combinations of means and, 96
random samples and estimators, 83e90

Sampling distributions, 84e86

cf, pdf, and mgf and, 86
chi-squared distribution, 105e111
F distribution, 116e119
Monte Carlo method and, 85e86
parametric statistics and, 86
population distributions related to, 121f
statistic and, 84e85
Student’s t distribution, 111e116

Scatter plots, 7, 7f
Schwarz inequality, 138
Sheppard’s corrections, 11
Sign test, 233e234
Signed-rank test, 234e236

summarized, 235t
tables, 283

Significance level, 194
Simple hypothesis: one alternative, 198e201

likelihood ratios and, 198e204
likelihood ratio test, 198
Neymane-Pearson lemma and, 199

Simple random sampling, 3e4
Single variates, 36e44

cf, 42e44
continuous, 37
cumulative distribution function, 37, 39f
discrete, 36
expectation values, 40e41
mgf, 42e44
probability density function, 37, 40f
probability distributions, 36e40
probability mass function, 37, 39f

Skewness, 12
Spearman rank correlation coefficient, 239e241
Spread measures, 9e12
SSB. See Sum of squares between groups
SST. See Total sum of squares
SSW. See Sum of squares within groups
Standard bivariate normal density function,

65e66
Standard deviation, 9e10
Standard error, 62

of mean, 91e92
Standard normal density function, 61
Standard normal distribution function, 61
Statistic, 7
Statistical error, 17
Statistical hypotheses, 194e198

error probabilities and, 194
OC curve and, 196e197, 197f
one-tailed test, 204e205
power and, 194e195
p-value and, 195e196
two-tailed test and, 195, 196f

Statistical independence, 48
Statistical tables

binomial distribution, 259e265
chi-squared distribution, 272e274
F distribution, 276e282
normal distribution, 257e258
Poisson distribution, 266e272
rank correlation coefficient, 286
rank-sum test, 284
runs test, 284
signed-rank test, 283
Student’s t distribution, 275e276

Statistics

applications, 1e2
definitions, 1

Stratified sampling, 4
Strong law of large numbers, 93e97
Student’s t distribution

asymptotic behavior of, 114e115
background, 111e112
derivation, 112
mgf and, 114
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Student’s t distribution (Continued )
normal distribution and, 111e116
percentage points of, 113f
population distributions related to, 121f
tables, 275e276

Subjective interpretation of probability, 29e30
Sufficient estimator, 89
Sum of squares between groups (SSB), 216, 217, 217t
Sum of squares within groups (SSW), 216, 217t
Systematic error, 18, 18f

propagation of errors law and, 102
Systematic sampling, 4

T
Tables. See Statistical tables
Taylor’s series, 247e248
Tests for independence, 231e233
Total sum of squares (SST), 216, 217, 217t, 218b
Two-tailed confidence intervals, 175b, 175e176
Two-tailed test, 195, 196f
Type I or II errors, 194

U
UMP. See Uniformly most powerful test
Unbiased estimator, 126
Unbiased point estimators, 87e88
Unconstrained linear least squares, 143e159

best fit curve, 143e144
binned data, 147e148
combining experiments, 158e159, 159b
error matrix, 149e150
minimum variance properties, 148e149
normal equations, 145e147
orthogonal polynomials, 152e154
parameters estimates errors, 149e151, 151b
parameters general solution, 145e149
quality of fit, 151e152
residuals, 145
straight line fit, 154e158
weight matrix, 149e150

Unconstrained minimization

of multivariable functions, 253e255

direct search methods, 253e254
gradient methods, 254e255

of one variable functions, 252e253
Uniform probability distribution, 57e58
Uniformly most powerful (UMP) test, 201
Univariate normal distribution function,

59e63, 60f
Univariate normal probability distributions,

59e63, 60f

linear sum distribution, 62e63

V
Variance

confidence intervals, 182e184
of estimator, 128e133

approximate methods, 130e133
graphical method and, 131, 131f

estimators for, 90e93
matrix, 102e103
minimum, 136e140

bound, 137e140
parameter estimation and, 136e137
Schwarz inequality and, 138

ML estimator and, 128e133,
137e140

point estimators for, 91e92
population, 9e10
sample, 9e10
unconstrained linear least squares and,

148e149
Venn diagrams, 22, 22f

W
Weak law of large numbers, 93e97

Chebyshev’s inequality and, 93
Weibull distribution, 68
Weighted mean, 130, 158
Weight matrix, 149e150
Wilcoxon rank-sum test, 236e237

summarized, 237t
Wilcoxon signed-rank test, 234e236

summarized, 235t
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