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Preface

The problem of identifiability is basic to all statistical methods
and data analysis and it occurs in diverse areas such as reliability
theory, survival analysis, econometrics, etc., where stochastic model-
ing is widely used. In many fields, the objective of the investigator’s
interest is not just the population or the probability distribution of
an observable random variable but the physical structure or model
leading to the probability distribution. Identification problems arise
when observations can be explained in terms of one of several avail-
able models. In many problems of parameteric statistical inference, it
is assumed that the family of probability distributions is completely
known but for a set of unknown parameters. Any statistical pro-
cedure developed for estimation of these parameters is meaningful
only if the unknown parameters are identifiable. The theory of com-
peting risks in survival analysis is another area where identifiability

is essential for the validity of the statistical procedures developed.
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PREFACE xii

Identification problems in econometrics deal with the possibility of
drawing inferences from observed samples obtained from an under-
lying theoretical structure. An important aspect of econometric the-
ory involves derivation of conditions under which a given structure
is identifiable. Lack of identification is a reflection of lack of suffi-
cient information to discriminate between alternative structures. As
Koopmans and Reiersol (1950) point out, the identification problem
is “a general and fundamental problem arising in many fields of in-
quiry, as a concomitant of the scientific procedure that postulates the
existence of a structure.” However, they caution that “....the temp-
tation to specify models in such a way as to produce identifiability of
relevant characteristics is (should be) resisted.” Another area where
the problem of identifiability occurs is in the modeling of mixtures
of populations. Mixtures of distributions are used quite frequently
in building stochastic models in the biological and physical sciences.
Identifiability of the mixing distribution is of paramount importance
for modeling in this context. Mathematics dealing with the problem
of identifiability per se is closely related to the so-called branch of
“characterization problems” in probability theory. Summarization of
statistical data without losing information is one of the fundamental
objectives of statistical analysis. More precisely, the problem is to
determine whether the knowledge of a possibly smaller set of func-
tions of several random components is sufficient to determine the
behaviour of a larger set of individual random components. Here
the problem of identifiability consists in identifying the component
distributions from the joint distributions of some functions of them.

The major motivation for writing this book is to bring together

relevant material on identifiability as it occurs in diverse fields men-



PREFACE xiii

tioned at the beginning as well as to discuss some new results on iden-
tifiability or characterization of probability distributions not found
elsewhere. The idea for writing this book arose during a short visit
in 1986 to Oklahama State University at the invitation of Professor
LI Kotlarski. Professor Kotlarski is a major contributor for the ma-
terial discussed in the first five chapters. It is a pleasure to thank
Professor Kotlarski for his interest in this project.

As with all my earlier books, the Indian Statistical Institute has
continued its support for this academic venture as well. 1 am grate-
ful for its support. Thanks are due to V.P. Sharma for TeXing the
manuscript on the word processor in an excellent manner in spite of
the innumerable changes made during the TeXing process. My chil-
dren Gopi, Vamsi and Venu and my wife Vasanta are now familiar
with my idiosyncrasies after watching me work over four books and

they put up with them. Thanks are due to them.

B.L.S. Prakasa Rao
New Delhi
January, 1992



Chapter 1

Introduction

Suppose X and Y are independent normally distributed random variables.
Then Z = X 4+ Y is also normally distributed. Cramér (1936) proved that
the converse is true, that is, if the sum Z of two independent random vari-
ables X and Y has a normal distribution, then both X and Y have to
be normally distributed. On the other hand, if X and Y are independent
standard normal random variables, then the ratio U = X/Y has a Cauchy
distribution. However the converse is not true as noted by Mauldon (1956).
In other words, it is possible for X and Y to be independent and not nor-
mally distributed and yet U = X/Y could have a Cauchy distribution. The
following example due to Steck (1958) illustrates this situation. Another
example is given in Laha (1958).

Example 1.1 : Suppose X and Y are independent and identically dis-

tributed (i.i.d.) random variables with the symmetric density function

V2 z?

fo) = o

—00 <z < 00. (1.1)

We leave it to the reader to check that U = X/Y has the standard Cauchy
distribution. It is easy to see that U can also be written in the form
U=1(1/Y)/(1/X) where 1/Y and 1/X are iid. random variables with

1



2 CHAPTER 1. INTRODUCTION

the symmetric density function

fHz) = \/75 rla:‘i’ —00 < z < 0. (1.2)

Hence U = X’/Y' has the standard Cauchy distribution when X’ and Y’

are i.i.d. with density function f*(z).

Laha (1959a,b) and Kotlarski (1960) gave a complete description of the
family of all density functions f such that the quotient X/Y follows the
standard Cauchy distribution whenever X and Y are i.i.d. with density f.
A natural question now is to find additional conditions under which the
normal distribution can be identified from the distribution of quotients of
independent random variables. Kotlarski (1967) proved the following result.
Suppose X,Y and Z are independent real-valued random variables with
density functions symmetric about zero. Denote U = X/Z and V = Y/Z.
Then X,Y and Z are normally distributed with a common variance o2 if
and only if the bivariate random vector (U, V') follows the bivariate Cauchy
density given by

1 1

g m, -0 < U,V < 0. (13)

fov(u,v) =

We will come back to the proof of this theorem later in this book.

What is to be noted above is that even though the distribution of the
ratio U = X/Y of two independent random variables X and Y does not
determine the distributions of X and Y, the situation changes completely
if we consider the joint distribution of two ratios U = X/Z and V = Y/Z
where X,Y and Z are three independent random variables. Kotlarski’s
result indicates that if the joint distribution is bivariate Cauchy, then X,Y

and Z are normally distributed under some technical assumptions.
Let us consider the problem in a more general framework.

Suppose (X, B) is a measurable space and P is a family of probability
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measures on (X, B). Let Y = f(X) be a measurable map from (X, B) into
(V,7). Let QY be the probability measure induced by Y on (), 7) when
P is the probability measure on (X, B). We are concerned with mappings
f(-) such that Q¥ is the same for all P € P denoted by Q¥ and if for some
probability measure P’ on (X, B), Q% = QY, then P’ € P.

Example 1.2 (Kovalenko (1960)) : Suppose X1, X2, -+, Xn,n > 3 are in-
dependent and identically distributed random variables with density

plx —6),—00 < 8 < 0o. Let
Y=(X1_Xn7X2-Xny- n 1~ 'n,) (1.4)

Kovalenko (1960) has proved that the distribution of Y determines the

characteristic function
oo
60 = [ ployis (15)
—00
to within a factor of the form €*”* on every interval where ¢(t) # 0. In par-
ticular, if ¢(t) # O for all ¢, then the statistic Y determines the distribution
of X; up to location for 1 < i < n. This conclusion also holds if ¢(t) is

analytic in some neighbourhood of zero (see Theorem 2.1.1 in Chapter 2).

Example 1.3 (Zinger (1956)) : Let 6 = (u,0),—00 < g < 00,0 > 0 and

p(z,0) = i— ¢ (x — “) (1.6)

a

where ¢ is the standard normal density. Suppose Xi,..., X, are inde-
pendent and identically distributed random variables with density p{(z, ).
Define

Y =(Yy,...,Yo) (1.7)
where .

Xr—X

Yo=———, 1<k<n (1.8)

n n n
with X = % ZXk and s = Z(X" —X)2. It is easy to see that ZY, =0
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n
and ZYf = 1. Hence the distribution of Y is concentrated on the set

i=1

{y:) =0, > =1} (1.9)
=1 i=1

which is of dimension (n — 2). It is known that the distribution of Y is
uniform on a (n — 2)-dimensional sphere when the density p(z, 8) is given
by (1.6). Zinger (1956) proved the converse i.e., if the distribution of Y
is uniform on a (n — 2)-dimensional sphere, then the distributions of X;,

1 < ¢ < n are normal.

Example 1.4 (Prohorov (1965)) : Let § = (u,0), —00 < g < 00,0 > 0 and

T —p
—) (1.10)

p(z,0) = = 8

where p(-) is a symmetric density function in the sense that p(z) = p(—=z),

bounded and satisfies Cramér’s condition

/00 et p(x)dr < oo (1.11)

—0oC

in a neighbourhood of zero. Suppose X;, Xs,...,X,,n > 6 are i.i.d. with

Vi-Y3\? (Ye-Y:\?
2-Y1)  \Ya-Y;

where Y}, is as defined by (1.8). Let

density p(z, ). Define

A (1.12)

L Ya=Ye)r L (Yo —Y5)?
VA

a= Y2-1)2’ 27 (Y, -Y)?

It is easy to see that

_ (Xa—Xs)? . (Xe— X5)?
7z =

ZF == "/ -_—
YT (X - X)) T (X - X))?

Suppose p(-) is another symmetric density possibly different from p such
that the distribution of Z* under p(-) is the same as the distribution of Z*
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INTRODUCTION 5
under p'(-). Let

W = (log Z7, log Z3)
= (log(X4 — X3)®—log(Xs — X1)?, log(Xe — X5)% —log(Xs — X1)?).

It can be checked that Cramér’s condition is satisfied by the distribution
of log(X2 ~ X1)? under the density p(-) as well as under p’(-). Further-
more the distribution of W is the same under p(-) and p'(:). An appli-
cation of the result given in Example 1.2 shows that the distribution of
log(Xs — X;)? is determined up to shift and hence the distribution of
(X2 — X1)? up to scale. But the distribution of (X, — X;) is symmet-
ric. Hence the distribution of X; — X; is also determined up to scale.
If the density p(-) is standard normal, then X, — X; is also normal un-
der the density p'(-) and, by Cramér’s theorem, it follows that X; and
X2 are {independent) normally distributed random variables. In general,
for a symmetric density p(-), the distribution of X; is determined by the

distribution of X5 — X; uniquely to within a shift parameter.

The type of problems discussed above may be termed as problems of
identification of families of distributions of some random variables from
some functions of them. Several problems of this kind are investigated in
Chapter 2 to Chapter 5.

Other types of identifiability problems arise in econometrics, reliabil-
ity or survival analysis and other areas where stochastic modeling is of
paramount importance. Since stochastic modeling is modeling certain phe-
nomena through a probability structure or probability distribution, the
problems of identification that come up in stochastic modeling are similar
to those discussed above. For instance, suppose a random variable X is
distributed normally with mean u; — p2 and variance 1 where py and po
are real. It is clear that there is no way to estimate p; and pe separately

using X and that the parameters y; and po are not identifiable. However,
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{1 — po is estimable and in fact X is the unique uniformly minimum vari-
ance unbiased estimator of y; — py. There are an infinite number of pairs
(p1, p2) which give rise to the same value y; — pg. Let us consider another

example — of a regression model. Let
Yi=as+am +e,

and
Yo =B+ B1Y1 + €2

where ag, a1, 8o and (; are unknown parameters and 7;,¢; and ¢, are ran-
dom variables with E(e;) = 0 and E(e2) = 0. Suppose Y; is not observable
but Y5 is. Then

Y=v%+mm+es

where

Yo = Bo + aoB,v1 = Prar, 3 = €2 + Prer.

From the general theory on linear I.nodels, it follows that vo and +; are
identifiable (estimable) under some reasonable assumptions on the random
variables n1,e; and 3. However By, ag and $; are not identifiable indi-
vidually in general. In problems of statistical inference, estimation of a
parameter is not meaningful unless it is identifiable. The problem of iden-
tifiability occurs in reliability and survival analysis. Suppose an individual
is subject to two possible causes of death (or two types of terminal illness).
Let X; be the lifetime of the individual exposed to cause ¢ alone for i = 1, 2.
In general X;,i = 1,2 are not observable but Y = min(X;, X;) is observ-
able. Does the distribution of Y identify the distributions of X; and X»?
Mixtures of distributions are used in building probability models in the
biological and physical sciences. In order to devise statistical procedures
for inferential aspects, an important problem is identifiability of the mixing
distribution. The problem of identifiability for these types of stochastic

models is discussed in Chapters 6 to 8.



Chapter 2

Identifiability of
Distributions of Random

Variables Based on Some

Functions of Them

In this chapter we consider characterization of distributions of independent
random variables from the joint distribution of some functions of them. For
instance, if X,Y and Z are three independent random variables, we would
like to know conditions under which the joint distribution of U = g(X,Y, Z)
and V = h(X,Y, Z) determine either the individual distributions of X,Y
and Z or the family to which they belong when g(-) and h(-) are specified.
g(-) and h(-) could be linear or nonlinear functions or they could be the

maximum and minimum functions, and so on.

2.1 Identifiability by Sums (or Ratios)

Let X1, X7 and X3 be three independent real-valued random variables.

7



8 CHAPTER 2. IDENTIFIABILITY BASED ON FUNCTIONS
Define

Zy = Xi— X,
Zg = Xz—X3. (21)

The following result was proved by Kotlarski (1967).

Theorem 2.1.1 : If the characteristic function of (Z;, Z3) does not van-
ish, then the joint distribution of (Z1, Z,) determines the distributions of
X1, X2, X3 up to a change of the location.

Proof : Let #(t1,t2) denote the characteristic function (c.f.) of (21, Z3)
and ¢(t) be the c.f. of X for 1 < k < 3. Then

#(t1,t2) = E{expi(t1Z1 +t22,)]}
= E{exp[i(t1(X1 — X3) + t2(X2 — X3))]}
= E{exp[i(t1 X1 + t2X2 — (81 + t2) X3)]}
= $1(t1)g2(t2)d3(~t1 — t2) (2:2)

by the independence of X;,1 < ¢ < 3. Since ¢(¢1,%2) # 0 for all ¢; and ¢,
by hypothesis, it follows that ¢;(t) # 0 for all ¢ for 1 < < 3.

Let Y1,Ys,Y; be another set of three independeht random variables
with characteristic functions 9;(t),1 < ¢ < 3 respectively satisfying the

conditions in Theorem 2.1.1. Let

W, = "h—Ys,
W = Ya-VY;, (2.3)

and 9(t1,t2) be the characteristic function of (Wy, W5). Suppose that the
joint distributions of (Z;, Z3) and (W, W3) are the same. Then

¢(t1,t2) = 'l/)(tl, t2), -0 < t1,1 < 00 (24)

and it follows from (2.2) that
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¢1(t1)¢a2(t2)d3(—t1 — t2)
= Y1(t1)Y2(ta)va(~t1 — t2), ~00 < t1,tg < 00.  (2.5)

Furthermore ¢;(t) # 0 and v¥;(t) # 0 for 1 < i < 3 for all ¢ by hypothesis.
Let

Yi(t) = ¥i(t)/di(t), 1<i<3. (2.6)

Observe that v;(-), 1 < i < 3 are continuous complex-valued functions with

7(0) = 1,1 < 7 < 3 satisfying the equation
Y1(t1)v2(t2)v3(—t1 — t2) = 1, —00 < t1,t5 < oo0. (2.7)
Let t; =t and t2 = 0 in (2.7). Then
1n{t)y3(~t) =1, —c0 <t < oo. (2.8)
Let t2 =t and t;, = 0. Then
Yo(t)ys(—t) =1, —0o<t<o0. (2.9)
Substituting for v;(¢) and ~2(t) in terms of y3(¢) in (2.7), it follows that
v3(t1 + t2) = va(t1)va(te), —oo < t1,t2 < 00 (2.10)

with 43(0) = 1. It is known that the only measurable solution of this
equation is
Ya(t) = € (2.11)

where ¢ is a complex number. Hence, it follows from (2.8) and (2.9) that
T1(t) = 72(t) = 73(t) = . (2.12)

Relation (2.6) implies that

() = g5 (e, 1< <3. (2.13)

Since 9;(t) = ¥;(—t) and ¢;(t) = ¢;(—t), being characteristic functions, it

follows that ¢ = i8 where 3 is a real number. Therefore

$i(t) = ¢; (1), 1< <3 (2.14)
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where (3 is a real number. From the uniqueness theorem for characteristic
functions, it follows that X; and Y; — 3 have the same distribution for
1 <7 < 3. This proves that the distributions of X1, X5, X3 are determined

up to a change of location. |

Remarks 2.1.1 : If, in Theorem 2.1.1, E(X3) exists and is preassigned,
then the distributions of X, X;, X3 are uniquely determined from the dis-
tribution of (X; — X3, X3 — X3). If the characteristic function of (Z;, Z5)
in Theorem 2.1.1 is infinitely divisible, then the conclusion of Theorem
2.1.1 holds since the characteristic function of an infinitely divisible law is

nonvanishing.

Remarks 2.1.2 : A slight variation of Theorem 2.1.1 for location pa-
rameter families is given in Prohorov (1965). Suppose X;, X, and X3
are independent and identically distributed ¢-dimensional random vectors
X; = (X§1),...,X§e)) with density p(x,0) = p(x — 8). Further assume
that 8 € © which is a k-dimensional subspace of R¢. Without loss of gen-
erality, assume that © = {@ € R®: 04,1 = --- = 6, = 0}. Further suppose
that Cramér’s condition holds, that is,

Eo[e(h”X)] = /};l e(h‘m)p(m)daz < 0o (2.15)

for h in a neighbourhood of zero in RY.
Theorem 2.1.2 : Let X5 = (X{",..., X" 0,...,0) and define
Y = (Yl7 YZ)

where

Yi=X:- XY, =X, X}

Then the distribution of Y does not depend on # and the distribution of
Y determines the distribution of X up to shift . In fact, the distribution
of X1 belongs to the family {p(x — 6),0 € 0}.
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Remarks 2.1.3 : The conclusion in Theorem 2.1.2 also holds under the
condition that the common characteristic function ¢(t) of X; is nonzero
for all t € R instead of (2.15).

Remarks 2.1.4 : An analogue of Theorem 2.1.2 holds for scale parameter
families in multidimensions. Suppose X;, 1 < j < 3, are iid.

{-dimensional random vectors with density
1 T
plx,8) = 0ep( 2] ), 0<6<oco0.
Let X; = (X J(-l), X J(-l)). Consider the 2¢ - dimensional random vector
[4 {4
V= (long;1)|,...,log[X](- )|,sgn X;l),...,sgn X](. )).
The density of V; is of the form
Q(v? ¢) = q(v(l) - ¢7 R ] ,U(l) - ¢? ,U(e+1)7 A ’v(2e))
where ¢ = logf. Define

£
Vi = (log |X{V],...,log |X{?],0,...,0)

and
Y =(V, -V, V- Vi)

Prohorov (1965) proved the following theorem as a consequence of Theorem
2.1.2.

Theorem 2.1.3 : Suppose p(x) is bounded and satisfies Cramér’s con-
dition (2.15). Then the distribution of Y does not depend on é and the
distribution of Y determines the distribution of X; up to scale. In fact the

distribution of X; belongs to the scale parameter family

1 T Ie
{Gep(5 50 <8 < oo}.

Let us now consider an extension of Theorem 2.1.1 to linear forms.
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Suppose X, X3 and X3 are three independent real-valued random vari-

ables. Consider two linear forms
Zy = a1 X1+ asXs + a3 X3, (2.16)
Zy = b1 X1 4+ b2 Xo + b3 X3, (2.17)
such that a; : b; # a; : b; for ¢ # j. Rao (1971) proved the following result.

Theorem 2.1.4 : If the characteristic function of (Zy, Z5) does not vanish,
then the distribution of (Z;, Z;) determines the distributions of X, X3, X3

up to a change of location.

The proof of this theorem rests on the following lemmas and corollaries
due to Rao (1966, 1967).

Lemma 2.1.1 : Suppose 7i,72,...,7: are continuous complex-valued
functions defined on the real line. If there exist distinct nonzero reals

€1,C2, - --,Cyp Such that
n
> vt + ciu) = A(tlu) + B(ult) (2.18)
i=1

where A(z|y) and B(z|y) are polynomials in z of degree less than or equal
to a and b respectively for any fixed y, then the v;(¢),1 < i < n, are

polynomials of degree less than or equal to a + b + n.
Corollary 2.1.1 : Suppose, in (2.18),
A(t|lu) = A(u) and B(u|t) = B(t) (2.19)

where A(-) and B(-) are continuous functions. Then the v(t), A(t) and

B(t) are all polynomials of degree less than or equal to n.

Lemma 2.1.2 : Suppose the expression on the right side in the equation
(2.18) is of the form
A(t) + B(u) + Py(t, u) (2.20)
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where A(t) and B{u) are continuous functions and Pk (¢, u) is a polynomial
of degree k in t for fixed u and in u for fixed ¢. Then ~;(¢), A(t) and B(t)

are all polynomials of degree less than or equal to max (n, k).

Lemma 2.1.3 : If the right side of (2.18) consists only of Pi(t,u) as given
in (2.20), then the ~;(t) are polynomials of degree less than or equal to

max(n — 2, k).

We refer the reader to Rao (1966, 1967) for proofs of these and related
results (cf. Kagan et al. (1973)). Let us now prove Theorem 2.1.4.

Proof of Theorem 2.1.4 : Let ¢;(¢) be the c.f. of X;,1 <4 < 3. Since
the c.f. of (Z1, Z3) does not vanish, it follows that ¢;(t) # 0 for all £ and
for 1 € ¢ £ 3. Let () = log ¢i(t) denote the continuous branch of the
logarithm of the c.f. ¢;(t) with n;(0) = 0. Suppose ¥;(t),1 < i < 3 is
another set of possible characteristic functions for X;,1 < i < 3 satisfying

the hypothesis. Let (;(t) = log 9;(t) as before and define
Yi(t) = ni(t) — (i(t), —oo <t < 0. (2.21)

Since the characteristic functions of (Z;, Z2) are the same for the choice

$i,1 <i<3, as well as ¥;,1 <1< 3, it follows that
vi{art + byu) + ~yo(azt + bou) + v3(ast + bsu) =0 (2.22)

for all ¢,u real. Since a; : b; # a; : b; for i # j,1 < 4,5 < 3 by hypothesis,
the equation (2.22) can be written in one of the following forms depending

on the values of a; and b; :

(i)  m(t+ciu) +72(t + c2u) +v3(t + cau) =0,
ciFc2Fc3#0;

(i) 7+ cru) +vet + c2u) = A(t),c1 #ca #0; (2.23)

or

(iii) 7y (t +cu) = At) + B(u),c # 0.
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An application of Lemmas 2.1.2 and 2.1.3 implies that each ~x(t) must be

linear in ¢ and hence
Or(t) = Yr(t) explart + Bi], —o0 <t < oo (2.24)

where oy, and S are constants. Since ¢y and vy are characteristic functions,

it follows that 8 = 0 and ay = id), where d, is real. Hence, for 1 < k < 3,
Sr(t) = Yr(t)eidt, —co <t < . (2.25)
This proves the theorem. n

Remarks 2.1.5 : The assumption in Theorem 2.1.1 that the characteristic
function of (Z1, Z3) does not vanish can be replaced by the assumption that
Xk, 1 <k < 3, have analytic characteristic functions. Since ¢(0) = 1 for any
characteristic function, ¢(¢) # 0 for ¢ in a neighbourhood of zero. All the
arguments given in the proof of Theorem 2.1.1 will be valid for ¢ complex
inside the region {t : [¢t| < ¢¢}, for some ¢, > 0 where the characteristic
functions do not vanish. Because of the analyticity of the characteristic
functions, the relation (2.14) will be valid for the whole real line. Similar
remarks hold for Theorem 2.1.4 as the conclusions in Lemmas 2.1.1 to 2.1.3
continue to hold in regions |t| < tg, |u| < ug, if the corresponding equations

hold in those regions.

Remarks 2.1.6 : If the assumption about the nonvanishing property of
the characteristic function of (Z;, Z,) is omitted, then the conclusion of

Theorem 2.1.1 does not hold, as shown by the following example .

Example 2.1.1 : Let X;,i = 1,2, and Y;,i = 1,2, be independent ran-
dom variables with the characteristic functions ¢;,i = 1,2 and v;,7 = 1,2

respectively given by

if  |¢g>1

$1() = ¢a(t) = P1(t) = a(t) =
1}t for Jf<1.

(2.26)
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Let X3 be a random variable independent of X; and X, with the charac-

f(0) = { 0 il > 2 227

teristic function

1- 5 g <2
and Y3 be another random variable independent of Y; and Y, with the

characteristic function
4
vt =1- Dt <2+ 0= w5, (228)
It is easy to see that

$1(t1)p2(t2)d3(—t1 — t2) = P1(t1)h2(ta)a(—t1 — t2) (2.29)

for all ¢t; and t;. Clearly ¥3(t) and ¢3(¢) are not equal and ¥3(t) is not
of the form ¢3(t)e? for any real §. Hence (X1, X5, X3) and (Y7,Ys,Ys)
are sets of independent random variables such that the distribution of X3
and the distribution of Y3 do not just differ by location but are completely
different, and yet the joint distribution of (X; — X3, X3 — X3) is the same
as that of (Y7 — Y3,Y2 — Y3).

Remarks 2.1.7 : Sasvari (1986) and Sasvari and Wolff (1986) improved
the result in Theorem 2.1.1. They showed that if any two of the charac-
teristic functions of X;,1 < ¢ < 3 are analytic or have no zeroes, then the
distribution of (X; — X3, X2 — X3), determines the distributions of X;, X3
and X3 up to a change of location. Bondesson (1974) proved that Theorem
2.1.1 holds if either ¢;,1 < i < 3 or ¢;,1 <7 < 3 in (2.5) have “no gaps”
(cf. Lemma 4.4 of Bondesson (1974)).

It is easy to extend Theorem 2.1.1 to n independent real random vari-

ables, in the following form.

Theorem 2.1.5 : Let X;,1 <7 < n, be n independent real-valued random

variables and define

Zi=Xi—Xn, 1<i<n-—1. (2.30)
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Suppose the characteristic function of Z = (Z1,..., Z,_1) does not vanish.
Then the distribution of Z determines the distributions of X3, ..., X,, up to

change of location.

Remarks 2.1.8 : Rao (1971) extended Theorem 2.1.4 to p linear functions
Ziy1 < ¢ < p, of n independent random variables X;. He obtained con-
ditions sufficient for determining the smallest number p of linear functions
Z,;,1 < i< p,such that their joint distribution specifies the distribution of
each random variable X;,1 < ¢ < n, up to a change of location. He showed

that
pe—1) o pp+1)
2 2
For details, see Rao (1971) (cf. Kagan et al. (1973)).

Remarks 2.1.9 : Theorem 2.1.1 can be extended to n-dimensional random

vectors X . Rao (1971) proved the following theorem.

Theorem 2.1.6 : Suppose X1, X3 and X 3 are independent n-dimensional

random vectors. Consider two linear functions

Z,
Zy

A1 X1+ AX,+ A3X 5,
B X, +BsX>+ B3X; (231)

such that

(i) A; is either zero or a nonsingular matrix and only one of A; is zero
for any i,

(ii) B; is either zero or a nonsingular matrix and only one of B; is zero
for any 1,

(iii) A; and B; are not simultaneously zero for any %, and

(iv) the matrix B,-A]-_1 ~ B;A;! is nonsingular when defined.

If the characteristic function of (Z;, Z2) does not vanish, then the dis-

tributions of the X; are determined up to a change of location.

This theorem follows as a consequence of extensions of Lemmas 2.1.1 to
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2.1.3 to the multivariate case. For details, see Rao (1971). We will consider
more general results dealing with random elements taking values in Hilbert
space later in this book.

Theorem 2.1.1 can be rephrased in terms of ratios instead of sums in

the following way.

Theorem 2.1.7 : Suppose X, X2, X3 are three independent positive ran-
dom variables. Let Y7 = X;/X3 and Y2 = X3/X3. If the characteristic
function of (log Y1,log Y2) does not vanish, then the distribution of (Y3, Ys)

determines the distributions of X;, X3, X3 up to a change of scale.

Proof: This theorem follows immediately from Theorem 2.1.1 since log Xj,
k =1,2,3, satisfy the assumptions of Theorem 2.1.1. |

Remarks 2.1.10 : The positivity condition on the random variables X},
1 <k <3, in Theorem 2.1.7 can be replaced by the conditions that the ran-
dom variables X have distributions symmetric about the origin and that
P(Xy=0)=0for1<k<3.

Applications

Theorem 2.1.8(Characterization of the normal distribution): Let
X1, X2, X3 be three independent random variables symmetrically distributed
about the origin with P(X; = 0) = 0,1 < k < 3. Let (Y1,Y>) be defined

by
X, X2
Y, = — d Y =—=. 2.32
1 X, aIn 2 X, ( )
A necessary and sufficient condition for the independent random variables

Xi,1 < k < 3, to be normally distributed with a common variance o2 is

that the joint density of (Y7,Y>) is the bivariate Cauchy density given by

1
1+ 9} +43)%2

ng»Y2(y19 yZ) = 27('( -0 < Y1,Yy2 < +00. (233)

Proof : Let ¢x(t) denote the characteristic function of log|X|. If X} has
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a normal distribution with mean 0 and variance ¢2, then

#r(t) = Elexp{itlog|Xl|}]
= (V2o)*T((1 +it)/2)n"2 (2.34)

and hence the characteristic function of (log |Y;|, log|Y2|) is given by

#(t1,t2) = ¢1(t1)¢2(t2?¢3(—t1 —.tz) ' (2.35)
- n-%r(l*’2“‘)1“(1’“2“2)1*(1_“;‘”2)). (2.36)

Note that ¢(t1,¢2) is nonvanishing for all ¢; and ;. It can be checked that
the characteristic function of (log|Y7|,log|Y>2|) is given by (2.36) whenever
(Y1,Y>) has joint density given by (2.33). Hence the distributions of X; are
determined up to change of scale by Theorem 2.1.7 and Remarks 2.1.10. If
the X; are normally distributed with mean 0 and variance o2, then one is
led to the equation (2.36). Hence the random variables X;,1 < ¢ < 3, have

to be normally distributed with mean zero and the same variance o2. B

Theorem 2.1.9 (Characterization of the gamma distribution): Let

X1, X3, X3 be three independent positive random variables. Define

X X,
Y1 = X3 and Y2 = X3. (237)

A necessary and sufficient condition for X to have a gamma distribution
with parameters p; and a,1 < k < 3 is that the joint density of (Y1,Y>2) is
the bivariate beta density given by

T(p1 + p2 + p3) yPr oyt
’ , >0,y2 >0
08 = )Tl (ps) (@ wr +gprres 917 0822 0g 55
= 0 otherwise .

Proof : Let ¢x(t) denote the characteristic function of log Xj. If Xj has

the gamma distribution with parameters p; and «, then

éx(t) Elexp(it log X)]
a_,.tI‘(pk + it)

I'(px)

(2.39)
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and hence the characteristic function of (log Yi,log Y3) is

B(t1,t2) = ¢1(t1)ga2(t2)da(—t1 —t2)
- [(p; +it1) T(p2 + ity) T(ps —ity — it2) (2.40)
I'(p1) T'(p2) ['(p3) ) ’

It can be checked that the characteristic function of (log Y3, log Y3), when-

ever (Y7,Ys) has the joint density (2.38), is also given by the expression
on the right side of (2.40). An application of Theorem 2.1.7 gives the
result. |

Theorem 2.1.10 (Characterization of the gamma distribution) :
Let X3, X2, X3 be three independent positive random variables and let
(U1, Uz) be defined by

Xl X1+X2

U = , Ug = .
! X+ Xo 2 X1+ X+ X3

(2.41)

A necessary and sufficient condition for X to be gamma-distributed with
parameters pr and «a,1 < k < 3, is that U; and U, are independent
beta—distributed random variables , U; with parameters (p;,p2) and Us

with parameters (p; + p2, p3).

Theorem 2.1.11 (Another characterization of the normal distri-
bution) : Let X3, X3, X3 be independent random variables symmetrically
distributed about the origin and satisfying the condition
P(Xy=0)=0,1<k<3. Let

X, VXI+ X2
Vi= ————and V, = . 2.42
YT V/XE+ X2 T /X + X2+ X2 (242)

A necessary and sufficient condition for X} to be normally distributed with

a common variance o2 for 1 < k < 3 is that V; and V; are independent and

V1, Va are distributed according to the densities

1 if lv] < 1
fl(v) — 1r\/1—v§ 1 I I (243)
0 otherwise
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and

d fo<v<l1
falv) = { Vi (2.44)
0 otherwise

respectively.

For the proofs of Theorems 2.1.10 to 2.1.11, see Kotlarski (1967). Re-
lated results characterizing the chi-square distribution and the normal dis-

tribution using the Student’s ¢ distribution are given in Kotlarski (1966a,b).

Suppose that X and X; are independent identically distributed random
variables distributed according to the chi-square distribution with n degrees

of freedom. It is known that

Y = ‘/Tﬁ —X‘/I—X_I_—;(%’ (2.45)
has the ¢ distribution with n degrees of freedom (cf. Cacoullos (1965)). The
problem is to find out whether the chi-square distribution can be character-
ized by this property. The answer is “no.” There are independent positive
random variables identically distributed with a distribution different from
the chi-square distribution for which Y follows the ¢ distribution. However,

suppose there are three independent random variables Xg, X1, X2 and let

vn X1 — X vn X2 — X
yi=¥- 2l 0y, - V222700 2.46
YT XX, T 2 VXX, (246)
Note that
N 1 Jn 1
Yi="—(VZ1—-—==),Y2=—(2Z2:— —= 2.47
where
Xy _ X
Zl = X() and Z2 = XO. (248)

Kotlarski (1966a) proved that, using a suitable distribution for the ran-
dom vector (Y7,Y3), one can characterize the chi-square distribution of the

random variables X3, X1, Xs.



2.1. IDENTIFIABILITY BY SUMS (OR RATIOS) 21

The results discussed in Theorems 2.1.1, 2.1.4 and 2.1.6 only indicate or
give sufficient conditions under which the joint distribution of two or several
linear forms determine the distributions of the individual summands up to
change of location. But no method has been given to explicitly determine
the distributions of individual summands if the joint distribution of suitable

linear forms is known. We now consider this problem.

Remarks 2.1.11 (Explicit determination of the distributions of the
individual summands) : Let X, X;, X2 be independent real-valued ran-
dom variables with characteristic functions ¢g, ¢1, ¢2 respectively. Assume

that ¢g, ¢1, P2 are nonvanishing everywhere. Define
Y = Xo+ X1 and V3 = X + Xo. (2.49)
Let (t1,t2), the characteristic function of (Y3, Y2), be known. Then

’l,[)(tl,tz) = ¢0(t1 + t2)¢1(t1)¢2(t2), —00 < 131,82 < o0, (250)

Clearly v(t1,t2) is nonvanishing. Let f; = 0. Then the equation (2.50)
gives
$o(t1)d1(t1) = ¥(t1,0), —o0 <t < oo. (2.51)

Let ¢; = 0 in (2.50). Then we have

¢0(t2)¢2(t2) = 1/)(0,t2), —00 < 19 < 00. (252)

Relations (2.50) to (2.52) show that

do(t1 + t2)d1(t1)da(t2)v(t1, 0)4(0, t2)
= 9(t1,t2)Po(t1)d1(t1)bo(t2)d2(t2) (2.53)

and hence

_ ¢(t17t2)
do(t1 +12) = m%(tl)d’o(tz) (2.54)

for t1,t2 real. Let 9;(t) = log ¢;(t) be the continuous branch of the loga-
rithm of ¢;(-) with 9;(0) = 0. Then it follows that

bolts + 1) = log Y (Ht2)

log S, 009(0,52) Yo(ty) + Po(tz) (2.55)
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for all ¢ and ¢, real. Integrating on both sides of the equation (2.55) with

respect to t) over the interval [0,1;], it can be checked that

u u (s, 12)
t +t dtt = / lo —-l’—dtl
, Velirtdh = o log e Gy
tl tl

+ A Yo(t7)dt] + A Yo(t2)dt;. (2.56)

Let t = ¢} + t2 in the integral on the left hand side of (2.56). Then we have

1+t t1 /
/ bo(t)dt = / 1 —Mdt’l

b o Pt 090, 2)
t1
+ [ tpo(t)dt + t1apo(ts). (2.57)
0
Rewriting (2.55) in the form
Yolty +13) = long%%—%—) + o(t1) + Yo(ty) (2.58)

and integrating on both sides of this equation with respect to 5 over the

interval [0, t], it can be shown that

fhitts t2 P(t1,th) /
= — T 127 d
/tl vo(idt = | log o w0, 5 4
123
+ Yo (t)dt + tarho(ty). (2.59)
0

Equating (2.57) and (2.59), we have

w(tl’ tl2)
8 $(t1,0)9(0,2)

b 1/}(t/17t2) ’
— — - _d R
/o o8 T, 00,5y (260

for all ¢1,¢,. Dividing both sides of the equation (2.60) by t;t5, we have
Yo(tz) Woltr) _ 1  [" Y(t1,15)

Loca) B0 = [ log

t2 t1 tita " Jo Y(t1,0)9(0,15)

t1 /
log Yt t2) dt}) (2.61)

“Jo T Y, 09(0,8)
for —o0 < t1,t < 00,81ty # 0. Let t2 = £ and t; — 0. Assume that

12
t1vo(t2) — tatho(t1) = / I dt),
0

dts

mg = E{Xp) is finite and that the interchange of the limit and integral sign
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is permitted in the following computations. Then, we have

lim M
t

lim = img (2.62)

and, from (2.61),
1 w(tla U)

Po(t) _ 1 ¢
i T Mty 111510[/0 % %8 521, 0)9(0,0)

I P(u,t)
“nly % Pw00,0)
P(t1,v)
= moty 11‘1’30[/ t1,0)1¢(0 0™
(0, 1)
(0 0)%(0,2)

dv

du]

_ t19v)
= 2m"+t lllino[/ 28 Ut 0)9(0,0) dv]

_ P{u,v)
= imp+ / 6u ¢(U )60, )]quodv. (2.63)

Hence

¢0(t) = imgt +[) %[log E%L,:Q dv . (264)

Using this formula for 1(t), one can compute ¢o(t) and hence ¢1(t) and
@2(t) by the relations

¥(t,0) $(0, %)
¢o(t) o(t) ’

Relations (2.64) and (2.65) give explicit formulae for computing the char-

$1(t) = , ¢alt) = -0 < t < o0 (2.65)

acteristic functions of Xg, X; and X, given the characteristic function of
(Xo + X1, X0 + X2).

The results given above are due to Kotlarski .

2.2 Identifiability by Maxima

Let Xy, X; and X, be independent real-valued random variables. Define

Y1 = X()VX1 and Y2 = X()VX2 (266)
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where aVb denotes max(a,b). It is of interest to know whether the joint
distribution of (Y7,Y3) determines the individual distributions of Xg, X;
and X2.

Theorem 2.2.1 : The joint distribution of (¥1,Y2) uniquely determines
the distributions of Xy, X; and X, provided the supports of Xy, X; and

X5 are the same.

Proof : Let F; and F} denote alternate possibilities for the distribution
functions of X;,i = 0, 1,2. Let the joint distribution of (Y3, Y2) be denoted
by G(y1,¥2). Then, for —oo < y; < y2 < +00,

G(y1,92) = P(Y1<y1,Y2 <o)
= P(Xo <y1, X1 <y1,Xo <2, X2 < 92)
= P(Xo <y, X1 <y, X2 < y2)
= Fo(y))Fi(y1)Fa(y2) (2.67)

by the independence of Xy, X; and X,. Since F;* is the alternate possible
distribution for X;,7 = 0,1, 2, it follows that

Fo(y1)Fi(y1) Fa(y2) = F§(y1) FY (y1)F3 (y2) (2.68)
for —oo < y; < Y2 < 00. Let y3 — 00. Then it follows that
Fo(y1)Fi(y1) = Fg (y1)FY (y1), —o0 <1 < oo. (2.69)
Relations (2.68) and (2.69) show that
Fa(y2) = F3 (y2) (2.70)

for all —oo < y2 < oo provided Fy{y1)F1(y1) > 0. Note that the support of
FoF; is the same as the support of FJFy* from (2.69). Let us now choose

—oo < y2 < y1 < 00 and compute
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G(y1,y2) = P(Y1<y,Y2 <)
= P(Xo <y1,X1 <y1,Xo < y2, X2 < y2)
= P(Xo <y2, X1 <1, X2 < 92)
= Fo(y2)F1(y1)F2(y2)
= Fo(min(y1,y2))F1(y1)Fa(y2)- (2.711)

This relation leads to the equation

Fo(y2)F1(y1)F2(y2) = Fg (y2) FT (y1) F5 (y2) (2.72)

for —oo < y3 < y1 < 00. Let y; — oo. Then

Fo(y2) Fa(y2) = Fg (y2)F5 (y2) (2.73)

for —oo <y, < oco. Hence, from (2.72) and (2.73), we have

Fi(y1) = Fi'(y1) (2.74)

whenever —0o < y; < oo provided Fp(y2)Fa(y2) > 0. Note again that the
support of FoF, is the same as the support of FyFy from (2.73). Since
the supports of Fy, F} and F; are all the same, it can be seen from (2.68),
(2.70) and (2.74) that

Fi(y) = F/(y),1=0,1,2 (2.75)

over the common support of Xy, X1, X2. Hence the distribution of (Y1, Y2)
uniquely determines the distributions of Xy, X; and Xs. [ |

Remarks 2.2.1 : It is known that Y; = XyV X, alone cannot determine
the distributions of Xy and X; uniquely unless X3 and X; are i.i.d. random

variables. For a discussion on this topic, see Section 7.3.

The results of this section are due to Kotlarski.
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2.3 Identifiability by Minima
A result analogous to Theorem 2.2.1 holds for minima of random vari-

ables.

Theorem 2.3.1 : Let Xy, X; and X, be three independent random vari-
ables. Define
Y1 = X()AX1 and Y2 = X()AX2 (276)

where aAb denotes min(a, b). Suppose the distribution functions Fy, F; and

F; of Xy, X1, X5 respectively satisfy the conditions
Fia)=1,F(w)<1lforw<a,i=0,1,2 (2.77)

for some @ < +oo. Then the joint distribution of (Y1, Y2) uniquely deter-

mines the distributions of X, X7 and X,.

Proof : This theorem can be derived either as a consequence of Theorem

2.2.1 or directly. Let F; =1 — Fj. It is easy to check that

P(Y1 > y1, Y2 > y2) = Fo(y1Vy2) F1(y1) Fa(y2) (2.78)

for all y; and y2 and the rest of the proof is similar to that of Theorem
2.2.1. [ |

Remarks 2.3.1 (Explicit determination of the component distri-
butions): Given the joint distribution Gy, v, (y1, y2) of (¥1,Y2) in Theorem
2.2.1, one can explicitly write down the distributions of Fy, F1 and F5. In

fact, it is easy to check that

— GYl Y2 (Z, OO)GYI »Y2(007 Z)
Fola) = Gy, ,Yz(z, z) ’ (2.79)

Gy, v, (z,x) Gy,,v.(¥, v)
Fz) = San@2) oo, GnnW:y) 2.80
1 (x) GY1 ¥ (OO, SE) 2(y) GY1 ¥ (y’ 00) ( )

using the relation (2.71).

Example 2.3.1 : Let Xy, X; and X3 be independent positive random

variables whose distribution functions satisfy the conditions F(+0) = 0,
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0 < F(w) < 1 for w > 0; that is, the support of F is [0,00). Define
Y1 = XoAXl and Yz = X()AXz. (2.81)
Suppose that

exp(—ay, —bys — cmax(y1,y2))
ify; >0,y2>0

P(Y1>y1,Y2>y2) = ¢ exp(—(a+c)y1) ify; >0,y2 <0
exp(—(b+ c)y2) ify1 <0,y2>0
\ 1 lfyISO»yZSO

(2.82)

Then all the components Xy, X; and X2 are exponentially distributed with
positive parameters a,b and c¢ respectively. This result follows from The-
orem 2.3.1. It is easy to check from the definition of (¥;,Y:) in Theorem
2.3.1 that

H(yi,y2) = P(Y1>y,Y2>y)
= P(Xo > yVy2)P(X1 > y1)P(X2 > y2)
= Fo1Vy2)F1(y1)Fa(y2) (2.83)

and, given H(y1,y2), one can find Fo,F; and F; from H(-,-) by the fol-

lowing relations :

= H(z,—00)H(—00,2)

Fo(z) = Hr2) , (2.84)
—= _ H(z,z)
nd
’ Foty) = H@:)
2(y) = Hy,—o0) (2.86)

It is easy to show that X, X7 and X, have exponential densities when H

is given by (2.82), using the relations (2.84) and (2.85).

The results in this section are due to Kotlarski.



28 CHAPTER 2. IDENTIFIABILITY BASED ON FUNCTIONS

2.4 Identifiability by Maximum and Minimum
Let X, X1 and X, be independent random variables. Define

Y1 = X()AX1 and Y2 = XOVX2 . (287)

Theorem 2.4.1 : Let F; be the distribution function of X;,7 = 0,1, 2.
Suppose that, for some fized a, b, zg, g satisfying —ooc < a < zg < b < +o0,
0<g<l,

Fi(z) <1,z < b; F1(b-0) =1 (if b € R),

Fy(y) >0,y >a; Fo{(a+0) =0 (ifa € R), (2.88)
Fo(a + 0) =0, Fg(b - 0) =1, Fo(.’lfo) =gq
and Fy is strictly increasing in (a,b). Then the joint distribution of (Y7, Y2)

uniquely determines the distributions Fy, F} and Fs.

Proof : For —co < y; < y2 < 00,
PY1>y,Y2<y2) = P(Xo>y1, X1 > y1, Xo <y2, X2 < 92)
= Py1 < Xo<Ly2, X1 >y, X2 < y2)
= (Fo(y2) — Fo(y1))F1(y1)Fa(y2). (2.89)

Suppose {F§, Fy, F3} is another set of distribution functions for { Xy, X1, X2}
satisfying the conditions in the theorem such that the distributions of
(Y1,Y2) under {F;} as well as {F} are the same. Then, for
—00 < y1 < y2 < 00,

[F5 (y2) — Fg (y1)]Ff (y1)F5 (y2)
= [Fo(y2) — Fo(y1)]|F1(y1) Fa(y2). (2.90)

Let y2 — +00 in (2.89). Then
FS(y)Ff (1) = Fo(y1)F1(y1), —o0 <y < oo. (2.91)
Let y; — —oo in (2.89). Then

F5 (y2)F3 (y2) = Fo(y2) Fa(y2), —00 < y2 < oo. (2.92)
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Combining the relations (2.89) to (2.91), we have

[F3 (y2) — F§(w0)|F} (y1)Fs (y2)Fo(y1) F1(y1) Fo(y2) Fa(y2)

= [Fo(y2) — Fo(y1)|F1(y1) Fa(y2) Fo (1) Fy (1) Fy () F3 (y2) (2.93)
for —oo < y1 € y2 < 0o. Applying the conditions (2.87), we have

Fg(y2) — F3(y1) _ F5(y) F5(y2)
Fo(y2) — Fo(y1)  Fo(y1) Fo(y2)

for —oo € a < y; < y2 < b < oo. Since Fj(zg) = Fyo(zo) = ¢, it follows

(2.94)

that, for —o0 < a < y < xy,
Fy (20) = F3(v) _ Fo(®)

Folao) = Foly) ~ Foly) (2%9)
It is easy to see that the relation (2.94) implies that
F5(y) = Fo(y) for —oco<y<zo . (2.96)
Similarly we can prove that
F(y) = Fo(y) forzg <y < +oo . (2.97)
Relations (2.90) and (2.91) prove that
Fi(y) = Fi(y) and F3(y) = F(y) (2.98)
completing the proof of the theorem. | |

Remarks 2.4.2 (Explicit determination) : Given the joint distribution
of (¥1,Y3), one can explicitly write down the distributions of Xy, X; and
Xs. Let

H(u,v) = P(Y1>u,Y2<v)
= fl(u)Fz(v)[Fo(’U) - F()(U)]v —o<u<v<oo. (299)

It can be checked that

dH(sm0)H(—coz)HEoo)l < o

Fo(z) = { G- HlosHEw) '  *S%0 4
0 qH (z,00)H(—00,2) 2>
Ao o)A (~o0,0)- (-0 H(zas)?  # 2 70

H(m’OO),Fz(y) — H(—oo,y)

e = =5 Fo(w)
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where zg and ¢ are as defined by (2.87). We do not give the details here.

The results in this section are due to Kotlarski (1978) .

2.5 Identifiability by Product and Minimum (or Maximum)

Let Xg, X; and X, be positive independent random variables. Define

Y1 = X()AX1 and )’2 = XOX2 . (2101)

Theorem 2.5.1 : Suppose there exists ag > 0 such that the distribution
functions Fy, F1 and F of Xy, X; and X, satisfy the conditions

Fi(z)<1,i=0,1forz < ag < oo. (2.102)

Further suppose that there exists ag > 1 such that h;(a)

= E(X) >0 and finite for 0 < @ < ap,? = 0,2 and in addition assume
that there exists a fixed constant ¢ > 0 such that 0 < E(Xp) = ¢ < oo.
Then the joint distribution of (Y1, Y2) uniquely determines the distributions
of Xo, X1 on the interval (—oo, ap) and the moments E(X$),0 < a < ap.

Proof : Let x4 denote the indicator function of a set A. Then, for any

0<a<agand —c0 < 8 < o0,

H(a,B) EX(8,00)(Y1)Y7']

= Ex(8,00)(X0AX1)(X0X2)"]

= Ex(8,00)(X0)X(8,00) (X1) X5 X7]

= EX(8,00)(X0) XG1EX(8,00)(X1)]E[X3]

= /ﬂ " 2 dFo(@)}F1 (B)ha(a). (2.103)

If Fg, FY and F5 are alternate possibilities for the distribution functions of

Xo, X1 and X, respectively satisfying (2.101), then we have

H(e,B) = { /ﬁ " 2odFy (@)} FF (AR (o) (2.104)
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where h3(a) = E(X§) when X, has distribution F}. Relations (2.102 )
and (2.103) imply that
{o0)

(] = drs @ Bhe
={ /ﬂ ~ z%dFy(z)} F1(B)ha(a),0 < a < ap. (2.105)
Let a = 0. Then we have
F5(B)FT(8) = Fo(B)F1(B), —00 < B < o0. (2.106)
Let 8 =0 in (2.104). Then we have
hi(a)hy(a) = ho(a)ha(a),0 < & < ap.
Relations (2.104) and (2.105) lead to the equation

{ /,3 " %R () (B0 Fo O (B)ho(0)ha(e)

= /ﬁ 2 dFo(2)}F1(B)ha(e) FE (B)FT (B)hiy(c) 3 (a0,
0<a<ay, —o0 < B < oo. (2.107)

Under the condition (2.101), F;(8) and F () are positive for = 0,1 when
-0 < B < ag < 00 and hence
Jg_ z*dFg(z) fg z*dFy(z)
F(B)hy(a) Fo(B)ho(a)
Since EXy = ¢ < oo is the same under both Fy and F§ by hypothesis, it
follows that ho(1) = hg(1) = ¢. Hence

Js zdFg(z) B f;o:z:dFo(x)

,0<a<ay,—x <8< ag. (2.108)

— = , —0o < fB<ag (2.109)
Fg(B) Fo(B)
from (2.107) or equivalently
> rdFg (z 2 zdFo(x
Jg” 2F5 )=fﬁ_ ol ),—oo<[3<a0 (2.110)

F5(B) Fo(B)
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where F = 1 — F. Integrating by parts on both sides of (2.109), we have

[F5 (@)If ~ 5" Fo (2)dz _ [zFo())F — [ Folz)de
F3(B) B Fo(B)

Observe that liI_P z[1-Fy(z)] = 0 when Ef,(Xo) = ffooo zdFy(z) is finite.
T—+00

(2.111)

Hence, we have

—BF3 (B) — Jp F3(z)dz _ —BFo(8) - J5” Fo(z)dz

— — (2.112)
F5(83) Fo(B)
which leads to the equation
2 Fr(z)dz < Fo(z)dx
f"_*ﬁ’( o _ Jp _0( ) ,—00 < 8 < ag (2.113)
F5(8) Fo(B)
or equivalently
L5lB) BB g <a, (2.114)
fﬂ F}(x)dz fﬂ Fo(z)dz
Therefore
oo _ o0 _
log/ Fj(z)dr = log/ Fo(z)dr +¢,—00 < < ag (2.115)
B B
for some constant ¢. Hence
oo _ OQ _
/ F}(z)dz = d/ Fy(x)dz, —00 < B < ag (2.116)
B B

for some constant d. Taking derivatives with respect to 8 on both sides,

we have

F5(8) =d Fo(B),—c0 < B < ap . (2.117)

Let 3 = 0. Then F5(0) = FJ(0) = 1 by hypothesis and hence d = 1 which
proves that
Fg(B) = Fo(B), —o0 < B < ao. (2.118)

Relation (2.105) will imply that

F{(B) = F1(B), —oo<fB<ao (2.119)
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and (2.104) shows that

hs(a) = ha(a), 0<a < a. (2.120)
This completes the proof of Theorem 2.5.1. | |

Remarks 2.5.1 (Explicit determination) : One can explicitly write
down the distributions Fp, F; and the function hg, given H(a, ) defined
by (2.102).

In fact, let H,(3) be defined by

Hi(B) _ H(1,0)H(0, 8)
H,(8) ~ H(LOHQ, )5 — ho( DA B) (2.120)
where ho(1) = E(X,) is specified. Then
o _ Hi(2) =, _ H(0,y) _ H(a,0)
Fo(z) = —HE(O), 1(y) = Fola) ha() = 5 o (2.122)

We will not discuss the details here. The results presented here are due to
Kotlarski .

A result analogous to Theorem 2.5.1 holds identifying the probability
distributions through the product and the maximum. We will state the

result without proof. The result is due to Kotlarski.

Theorem 2.5.2 : Let X3, X; and X2 be independent positive random
variables. Define
Yl = XOVX1 and Y2 = XOX2 . (2123)

Suppose the distribution functions Fy, F1 and Fp of Xy, X; and X, satisfy
the conditions

Fi(z)>0forz>0,i=0,1,2.

Further suppose that E[X®] = h;(a) is finite and positive for
0 <a<apa >1fori=02and E(X¢) = ¢ < oo is a fixed posi-
tive constant.

Then the joint distribution of (Y3, Y2) uniquely determines the distribu-
tions of Xy, X1 and the moments E(X§),0<a < ag .
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Let
H(a,8) = E[Y3*X(~c0,)(Y1)]
B
—  ha(a)Fi(B) /0 2 dFo(2). (2.124)
Then
(0, u)hs(1)
Fy(z) = exp{— / 2H (. u)hg(l)z—H(l )du} (2.125)
Fl(y) = %a’h(a) = _I%)C%:;;), 0<a S Qag.

2.6 Identifiability by Sum and Maximum (or Minimum)

Let Xg, X7 and X5 be independent random variables and
Y1 = Xo + Xl and Y2 = X()VXz. (2126)

Let M;(a) = Ee*Xi for i+ = 0,1. Suppose that M;(a) finite for
0 < a £ ap and Mo(ay) is a given constant for ag # 0. Further sup-
pose that Fi(y) > 0 for y > a > —oo for i = 0,2 and
B
lim e™*Fy(2) =0,0 < / e** dFy(z) < 0.
z——00 —oo
Theorem 2.6.1 : Under the conditions stated above, the joint distribution

of (Y1,Y2) uniquely determines the distributions of Xy, X on the interval

(a, 00) and the function M;(a),0 < a < ay.

Let
H(a»ﬁ) = E[anIX(—oo,ﬂ)(YZ)]
B
= Ml(a)Fz(ﬂ)/_ e**dFy(z). (2.127)
Denote
Hi(B) _ aoH (ap, 00)H(0, 5)

H.(8) ~ H(ao,0)H(0, B) — e2P My(ag)H(ao, B) (2.128)
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Then Fy(z) = Ae~**H|(2) where A is constant so that Fy(co) = 1 and

H(0,y) _ H(a,0)

= Tt M )

(2.129)

An analogous result holds characterizing probability measures by sum

and minimum. The result is due to Kotlarski.

Let Xg, X7 and X5 be independent random variables and
Y1 = X() + X1 and Y2 = X()AXg. (2130)

Let M;(a) = FEe*X:;i = 0,1. Suppose that M;(a) is finite for
0 < a < agap > 0 and My(ag) is a fixed constant. Further suppose
that the distribution functions F; of X;,7 = 0,1, 2 satisfy the conditions
Fi(z) < 1 for z < ap,ap < oo and

lim e**Fg(2) = 0.

Z2—00
Theorem 2.6.2 : Under the conditions stated above, the joint distribu-

tion of (Y}, Y>) uniquely determines the distributions of X;,i = 0,2 on the

interval (—o0,ag) and the function M(a),0 < a < ap.

Let
H(a7 ﬂ) = E[anI X(ﬂ,oo) (YZ)]
=M@E@Lewmn (2.131)
Denote
H{(ﬂ) _ aOH(O‘O»O)H(O, ﬂ) (2132)

Hi(8) ~ H(ao,B)H(0, 8) — Mo(ao)H(cxo, B)e~P
Then Fo(z) = Ae~*?H}(z) where A is determined from Fp(oo) = 1 .

Furthermore Ho,y) H(e,0)
=, _ H(0,y _ H{a,0
0= T M T e

. (2.133)
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The proofs of Theorems 2.6.1 and 2.6.2 are left as exercises for the reader.
The results stated here are due to Kotlarski.
2.7 Identifiability by Product and Sum
Let X, X; and X2 be positive random variables and define
Y1 =X Xoand Yy = X7 + Xo. (2.134)
Assume that h;(a) = E[e**/] < 00,i = 0,1 for 0 < a < ag, ag > 0.

Theorem 2.7.1 : Suppose ¢ = E(Xg) exists and is a fixed positive con-
stant. Then the joint distribution of (Y1,Y32) uniquely determines the dis-
tributions of Xy and X3 and the function E(e**1),0 < a < ayg.

Let

H(a,f) = EY{eoY
hMW@AzWWMd (2135)

where hi(a) = Ele®*X1],¢2(8) = Elet?X2] and Fy(-) is the distribution

function of Xg. Denote

Hi(B) _ __iqgH(Q,P)

() ~ H(LOH(,5) (2.136)
Then
Hy(8) H(0,8) , , . H(a,0) r
60(8) = F g #2(8) = () = T (2.137)

We omit the proof of this result due to Kotlarski.

Remarks 2.7.1 : Since the function h;(a) = E(e**1) is determined for
0 <a< aypay >0 and X, is a positive random variable, it follows that

the moment-generating function of X; is determined in a neighbourhood
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of the origin and hence the distribution of X; is determined in addition to
the distributions of Xy and X, in Theorem 2.7.1.

2.8 Identifiability by Maxima of Several Random Variables

Let X1, Xs,..., X, be independent positive random variables with dis-
tribution functions Fi, Fs, ..., F, respectively. Suppose that Fj(z) > 0 for
all z > 0,1 < j < n. Define

Y1 = ma.x(ale, caey aan),

Y = max(biX1,...,b,Xy) (2.138)
where a; > 0,b; >0for1<i<mnanda;:b; #a;:b;for1<i#j<n.

Theorem 2.8.1 : The joint distribution of (Y1,Y>) uniquely determines
the distributions of X;,1 < j < n.

Proof: Let F} be an alternative possible distribution of X; for 1 < j < n.

It is easy to see that

H(t,s) = P("1<t,Y2<3)
= H;'l:le(iAi),O <t, 8 <oo. (2.139)
aj bj

Since FJ’-‘ is an alternative distribution, it follows that

38

),0<t,8 < 00. (2.140)
b

t, s t
M, Fy(—AS) = Fr (A
T ey byt T Ry

Let v;(t) = log Fj(blj) — log FJ’-“({;). The equation (2.139) can be written
in the form

n
> vj(cjtAs) =0, 0<t,8 <00 (2.141)
=1

where the c; = g-;— are pairwise distinct. Without loss of generality, assume
that 0 <c; <ca <:---<ecp. Lett > 0and s =7t where ¢,.1 < 7 < ¢p.
Then the equation (2.140) can be written in the form,

n—1
Zvj(cjt) +up(rt) =0, 0<t < o00. (2.142)
Jj=1
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This equation proves that v,(-) is constant on the interval (c,—1t,cpt) for
any t > 0. Since t > 0 is arbitrary, it follows that v,(-) is constant on
(0,00). Since v;(t) — 0 as t — +o00, it follows that v,(t) = 0 for ¢t > 0.

Repeating this process it is easy to see that
v;(t)=0,1<j<n-1. (2.143)
This implies that

t t
Fj(;)=F;(F),0<t<OO7ISan (2.144)
J J

from the definition of v;(-) . Since ¢ is arbitrary, it follows that

Fi(t)=F}(t), 1<j<n,0<t<oo. (2.145)

This proves the theorem. [ |

The next example indicates that the conclusion of the theorem does not
hold if {X;} are random variables taking positive and negative values with

positive probability.

Example 2.8.1 : Let X; and X, be independent identically distributed
random variables with distribution function F(z) where
F(z) > Oforall z€R,

F(-0)
F(+0)

Then the distribution of (Y7,Y,) where

= a,0<a<l (2.146)

Y1 = maX(Xl,Xz),Yz = max(Xl,ﬂXg)

with 3 > 0,8 # 1 does not determine the distributions of the random
variables X; and X,. This can be seen as follows. Let X; and X} be
independent random variables with distribution functions Fy and Fj re-

spectively where

e} Fl@) if z>0
Fl(w)—{ oF(z) i <0 (2.147)
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and
F if >0
Fjx)={ (2) s (2.148)
<F(x) if z<0.
Define
Y{ = max(X}, X}), Y; = max(X}, 6X3),8 > 0,8 # 1.
It is easy to check that the joint distribution of (Y¥{,Y3) is the same as
that of (¥1,Y2). However, the distributions of X; and X are different for
i=1,2.

The following result holds if X;, X»,..., X, are independent random
variables with distribution functions Fi, F,,...,F, respectively, where
Fj(z)>0forallz € Rand P(X; =0)=0for1<j<n.

Theorem 2.8.2 : Under the conditions stated above, the joint distribu-
tion of (Y7,Y2) defined by (2.137) uniquely determines the distributions of

Proof : As in the proof of Theorem 2.8.1, we have

k13
Zvj(cths) =0, —0<ts<o0 (2.149)
i=1

where ¢; = %-J_L are pairwise distinct and 0 < ¢; < --- < ¢,. It follows from
the arguments given in Theorem 2.8.1 that v;(t) = 0 for ¢ > 0. Suppose
t < 0. Let s = 7t,7 € (c1,¢2). Then, the equation (2.140) takes the form

vi{rt) + ivj(cjt) =0. (2.150)
j=2

Hence v1(+) is constant on the interval (cat,cit). Since t < 0 is arbitrary,
it follows that v1(t) = 0 on (—oc,0). Note that v is continuous at z = 0.
Hence v1(0) = 0. Therefore v1(¢t) = 0 for all ¢. By induction, it follows
that v;(t) = 0 for all £,1 < j < n and hence F; = F} for 1 < j < n. This

completes the proof of the theorem. | |

The results in this section are due to Klebanov (1973b).
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2.9 Identifiability by Random Sums

Let Xo,X; and X, be independent random variables and
Y = Xo+ X1,Ys = Xg + X2. We have proved in Section 2.1 that the
distribution of (Y1, Y2) uniquely determines the distributions of Xg, X; and
Xy up to shift provided the characteristic functions of X,k = 0,1,2, do
not vanish. We now study results of a similar type involving random sums

of random variables.

Theorem 2.9.1 : Let N, X;,Y;,i > 1 be independent random variables
nondegenerate at zero where N is a nonnegative integer-valued random vari-
able with 0 < EN < oo fixed and the X; are independent and identically
distributed (i.i.d) as X with finite mean and nonvanishing characteristic
function ¢ and Y; are i.i.d. as Y with finite mean and nonvanishing char-
acteristic function 1. Further suppose that if the probability-generating
function of N is

Q(8)=po+ ) s"pn, SES (2.151)

n=1
S has a subset Sy such that
(i) a,8 € R = ¢(a)y(B) € So,

(ii) Q is non-vanishing and one-to-one on S, and

(iii) @ can be extended analytically from Sy to S.

Let
0 if N=0 0 N =0

U= " and V = n 2.152
ZX,- if N=n>0 ZY,- ifN=n>0( )
3=1 i=1

Then the joint distribution of (U, V') uniquely determines the distributions
of X,Y and N.
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Proof : The characteristic function x(r,t) of (U, V) is given by

X(Tv t) — E[eirU+itV]
- E{E[eirU+itV|N]}
— E[eirU+itV|N — O]P(N — O)
+ZE[exp{ir(X1 +---+XnN)

n=1

+it(Y1 + -+ - + Yn)}Hn=n]P(N = n)
= P(N=0)
+§:E[exp{ir(X1 +oo+ Xp)+it(Yi+ - + Y)HP(N =n)

n=1

(by the independence of N and X;,Y;,7 > 1)

= P(N=0)+) [¢(r)]"[)]"P(N =n)

n=1

= Q(é(r)¥(t)), —oo<r,t<o00. (2.153)

Suppose there is another collection of random variables
{N*,X},Y* i > 1} satisfying the conditions stated in the theorem and
define U*,V* as before. Suppose further that the joint distribution of
(U, V) is the same as that of (U*,V*). Then, it follows that

x(r,t) = Q7 (¢"(r)¥"(t)), —oo <r,t < oo (2.154)

Relations (2.152) and (2.153) imply that

Q*(¢*(r)¥* (1)) = Q(e(r)¥(t)), —oo <r,t < o0. (2.155)
Since Q and Q* are one-to-one on So by hypothesis, define
a(s) = Q* 7 (Q(s)), s € So. (2.156)
Then
¢*(r)y*(t) = q(o(r)(t)),rt € R. (2.157)

Let t = 0 in (2.156). Then ¢*(r) = ¢q(#(r)). Similarly ¥*(t) = q(9(¢)).
Hence

q(6(r))a(¥(t)) = q(é(r)¥(t)), .t € R. (2.158)
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In view of the properties (i) and (ii) of @ and Q*, it follows that
q(u)q(v) = q(uv), u,v € So. (2.159)

By property (iii) of @ and @*, this relation can be extended to all of 5§ by

analyticity and we have
g(u)g(v) = q(ww), v,v € S . (2.160)
Since ¢(-) is a continuous function, it follows that
g(s)=s% s€ 8 (2.161)
for some constant c¢. In particular, we have
Q" (Q() =q(s) =57, s€S

or equivalently

Q(s) =Q*(s%), s€S. (2.162)
o0 o0
Suppose ¢(s) = ansn and Q*(s) = Zp;s". Since
n=0 n=0
dQ _dQ* .,
ds ~ ds

from (2.161), it follows that E(N) = EN* - ¢. Since EN is given to be a

fixed positive constant, it follows that ¢ = 1 which in turn proves that
Q(s) =Q*(s),s€S. (2.163)
This relation together with (2.154) proves that
Q(e* (Y™ (1)) = Q(é(r)¥(t)),m,t € R. (2.164)
Setting 7 = 0 and ¢ = 0 alternately, we have

Q(47(r)) = Q(¢(r)) and Q(¥*(¢)) = Q(¥(t)), 7.t € R. (2.165)

Since Q(-) is one-to-one on Sy, it follows that

¢*(r) = ¢(r) and ¢*(t) = ¥(t),7,t € R. (2.166)
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Relations (2.162) and (2.165) prove that N, X;,Y] have the same distribu-
tions as N* X7,Y" respectively, completing the proof of the

theorem. [ ]

Remarks 2.9.1 : It can be shown that, if 0 < EN < oo, then the prob-
ability generating function @ is one-to-one in a neighbourhood of 1. This
implies that there is a neighbourhood of 1 relative to the unit disk such
that Q! exists in this neighbourhood (cf. Choike et al. (1980)). The
condition that ¢ and % are nonvanishing in the theorem can be replaced
by that of analyticity. However, the following example shows that, without

these assumptions on @, Q*, ¢, ¢, the result may not hold.

Example 2.9.1 : Let N and N* be nonnegative integer-valued random
variables with probability generating function Q(s) = s2,[s| < 1. Let X be

distributed according to the characteristic function

o) = 1-2,

T
¢(r +2r) = ¢(r) otherwise.

1 —-r<r<m,

Let X* have the characteristic function |¢(r)| = ¢*(r). Suppose ¥ and Y*
are identically distributed with characteristic function 1. Then (U, V) and

(U*,V*) have the same distribution since
QT (¢* (Y™ (1)) = Q(e(r)¥(t)),rt € R
although ¢*(r) # &(r).

Remarks 2.9.2 :If X and Y are symmetric real-valued nondegenerate ran-
dom variables with characteristic functions ¢ and 1 respectively, in Theo-
rem 2.9.1, then we can conclude that the distribution of (U, V) determines
the distribution of X, Y, N uniquely provided 0 < EN < oc. No additional
conditions on ¢, or @ are necessary. Note that ¢ and ¢ are real-valued

functions with 0 < ¢(¢) <1and 0 < ¢(t) < 1forallt € R.

Remarks 2.9.3 (Explicit determination of Q,¢ and ¢ given x) :

Here we consider the problem of explicit determination of the distributions
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of N,X and Y in terms of the joint distribution of (U, V). It is sufficient

to solve the equation (2.152), namely,

x(r,t) = Q(e(r)(t)), —oo <1t < o0 (2.167)

for Q,¢ and v in terms of x. Let ¢(w) = Q~1(w) be the inverse function
of Q(-) defined on Sp. Relation (2.166) shows that

$(r)p(t) = q(x(r, 1)) - (2.168)
Substituting » = 0 and ¢ = 0 alternately, we have the equation
a(x(r,t)) = q(x(r,0))a(x(0,t)), —00 < r,t < 00 (2.169)
which is a functional equation in the unknown ¢ given known x. Let
go = log ¢ (2.170)

be the continuous branch of the natural logarithm of ¢ satisfying
logl = 0;¢o is well defined since ¢(-) is nonvanishing. Equation (2.168)
shows that

QO(X(T’ t)) = qO(X(T9 0)) + qO(X(O’t))v'rvt €ER. (2171)

Assume that go(-) is differentiable twice and that x(r,t) has continuous
second-order partial derivatives with respect to r and £. Taking partial

derivatives with respect to ¢t and then with respect to r we have

" ax ax , a2X
t a. ar —
or equivalently
1 62
) (X("', t)) _ W(%
g(x(r,t)) &’ rnteR (2.172)

ar ot

where ¢f and q(')' denote the first and second derivatives of gqg. The above
differentiation can be justified since E(X) and E(Y) are finite. Note that
go(w) # 0 in a neighbourhood of 1 since gy(1) = g5 > 0. Since the left
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side of the equation (2.170) is a function of w = x(r,t), we can write the

equation (2.171) in the form

" 82
I (w) = - E—‘gt- Iw x{(r,t) (2 173)
! s} = s *
go(w) =

with boundary conditions go(1) = 0,q5(1) = g% > 0. Given x(-,-), we

solve this second order differential equation (2.172) subject to the boundary
conditions go(1) = 0,¢4(1) = Fx > 0 to obtain go. Having obtained go or

equivalently ¢, the functions ¢ and 1 are determined by

#(r) = q(x(r,0)),%(t) = ¢(x(0,1)),7,t € R.

Example 2.9.2 : Suppose (U,V) as defined above has the characteristic
function (21t
14 e {rtt
x(rt) = — s

and EN = 1. Here x(r,t) is a real-valued function. It is easy to see that

,rnt€R

the equation (2.172) reduces to

1 1 1
QO(w)=_ ,§<w$1,

go(w) w—3

where go(1) = 0 and g4(1) = 1. The solution of this differential equation is
1
go(w) = log V2w — '3 <w<1

Hence
1+ s?

Qs = 5,

-1<s<1.

recalling that go = log ¢ and ¢ is the inverse of ¢J. Hence N is an integer-

valued random variable with
1
P(N=0)=P(N=2)=§.

Furthermore
¢(r) = q(x(r,0) =" /2 re R
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and

B(t) = g(x(0,t)) = e /%t e R

which show that X and Y have the standard normal distribution.

The results in this section are due to Choike et al. (1980) and Kotlarski
(1984).

2.10 Identifiability by the Maximum of a Random Number of
Random Variables
We now obtain an analogue of Theorem 2.9.1 given in the previous

section for the maximum of a random number of random variables.

Theorem 2.10.1 : Let N, X;,Y;,7 > 1 be independent random vari-
ables and suppose NV is a nonnegative integer-valued random variable with
p1 = P(N = 1) > 0 fixed. Further suppose that X;,7 > 1, are i.i.d. with
continuous strictly increasing distribution function F(-), and Y;,7 > 1, are

ii.d. with continuous strictly increasing distribution function G(-) where

Flay=0,F(b)=1,0< F(z)<1for —~cc<a<zr<b<oo (2.174)

and
G(e)=0,G(d)=1,0<G(y)<1for —o<c<y<d< oo
Let
U = a for N=0
2.175
= max X; forN>0 ( )
1<i<N
and
V = ¢ for N=20
(2.176)
= max Y; for N>0.
1<i<N

Then the joint distribution of (U, V) uniquely determines the distribu-
tions of ¥V, X; and Y7.
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Proof : Let Q(s) be the probability generating function of N. Then
0 o0
Q(s)=) s"P(N=n)=) s"p,, 0<s<1L (2.177)
n=0 n=0
Since p; > 0, it follows that py < 1. Note that the range of Q(-) is {po, 1].
Let H(u,v) be the joint distribution function of (U, V). Then
H(u,v) = P[U<u,V <]

= iP[U <u,V <v|N =n]P(N =n)

n=0

= po+ZP(maxX <u, max ¥ <o[N =n)P(N =n)

= < <

po + ZP( max X; <uw, [1ma.x Y; <v)py

(by the 1ndependence of the X;’s and Y;’s with N )
= po+ Z(F(w (0)"p

(by the mdependence of the X;’s and ¥;’s)
= Q(F(u)G(v)), —o0 < u,v < oo. (2.178)

Suppose N*, X}, Y*,i > 1 is another collection of random variables
having the same properties as N, X; and Y;, and define U*,V* in anal-
ogy with U, V. Suppose (U,V) and (U*,V*) have the same distribution.
We shall prove that N, X1,Y; have the same distributions as N*, X7, Y7
respectively.

Since (U,V) and (U*,V*) have the same distribution, it follows from
(2.177) that

QF(uw)G)) =@ (F*(u)G*(v))a<u<bc<v<d (2.179)

where F* and G* are the distribution functions of X} and Y}* respectively.

Let u = a and v = ¢ in (2.178). Then it follows that

Q(0) =Q*(0) (2.180)
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and hence
Py = Po- (2.181)
Let
a(s) =Q" (Q(s)),0< s < L. (2.182)

Then ¢(s) is a continuous function from [0,1] onto [0,1]. The equation

(2.178) can be rewritten in the form
F*(u)G*(v) = q(F(u)G(v)),a<u<bec<v<d (2.183)
Substituting v = d in (2.182), we get
F*(u)=¢(F(u)),a<u<b . (2.184)
Similarly, let 4 = b in (2.182). Then we have
G*{(v) = q(G(v)),e<v<d . (2.185)
Combining the above relations, we obtain the functional equation
9(F(u)G(v)) = ¢(F(u))g(G(v)),a <u<bc<v<d (2.186)

Let @ = F(u) and f = G(v). Note that F(u) and G(v) are continuous
strictly increasing from 0 to 1 in the intervals [a,b] and {c, d] respectively.

This proves that
q(a)g(B) =¢(apf), 0<a<1,0<p5<1 (2.187)

and g(s) is a continuous function from [0, 1] onto [0,1]. Hence the only
solution of (2.186) is
g(s)=s5%,0<s<1 (2.188)

for some constant a. In other words
Q(s) =Q*(s"), 0<s<1, (2.189)

that is ,

o0 oo
po+pis+ ans" =py +pis® + Zp;s"“,O <s<1. (2.190)

n=1 n=1
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Note that p; > 0 and p] > 0 under the conditions of the theorem and
p1 = p}. Since the equality in (2.189) holds for all s in [0, 1], it follows that

a =1 and hence

g(s)=s5,0<s8<1 . (2.191)

Therefore

Q(s) =Q%(s),0<s<1 . (2.192)

Relations (2.183), (2.184) and (2.190) show that
F*(u) = F(u),a <u <band G*(v) = G(v),c <v <d. (2.193)
This completes the proof of the theorem. ]

Remarks 2.10.1 : A result analogous to Theorem 2.10.1 can be proved
for minima in both U and V or maximum in one of U and V and minimum

in the other. The results given in this section are due to Kotlarski (1979).

Remarks 2.10.2 (Explicit determination of the distributions of
X,Y,N given that of (U,V) defined by (2.174) and (2.175)): In addi-
tion to the assumptions stated in Theorem 2.10.1, suppose that the random
variables X and Y have positive densities in the interiors of their supports.
Let H(u,v) be the distribution function of (U, V), F and G be the distri-
bution functions of X and Y and @ be the probability generating function
of N. Then

H(u,v) = Q(F(u)G(w)),a<u<be<v<d. (2.194)

Under the assumptions that p; > 0 (and hence py < 1) and that the
mapping @ : [0, 1] — [po, 1] is invertible, let

g(w) = Q™ (w), w € [po, 1]. (2.195)
It is easy to check that the relations (2.193) and (2.194) imply that

q(H(u,v)) = ¢(H(u,d))g(H(b,v)),a <u<bhec<v<d (2.196)
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where ¢ is a strictly increasing continuous function mapping [pg,1] onto
[0,1]. Let
go(w) =log q(w), po<w< 1. (2.197)

Taking logarithms on both sides of the equation (2.195), we have
QO(H(U7 'U)) = QO(H(uv d)) + QO(H(b’ ’U)),a <u< b’c <v< d. (2198)

It is easy to solve this functional equation subject to the condition ¢(1) =1
and EN = m fixed. This can be done as in Remarks 2.9.3 to obtain g(-)
and hence obtain F and G. The details are left to the reader (see Kotlarski
(1985)).

Example 2.10.3 : If H(u,v) = 2% 0 < 4,y < 1 and EN = 1, then it
can be checked that

1+ s2
2

— 1

Q(s) =

, 0<s<1,

and hence

F(z) =q(H(z,1)) =2,0<z <1,

and

Gly) =qH(1,y) =y, 0<y <1

Remarks 2.10.5 : The results in this section and the previous section can
be extended to several other variations of (U, V') under suitable conditions.
Some of them are of the following type :

U = X+Y,,

V = Yo+Y1+:--+¥n, (2.199)
where N is a nonnegative integer-valued random variable, Y;, 7 > 0 are i.i.d.
and X, N,Y,,i > 0 are independent,

U = Z+X1+-+Xn,

V = Z4+Y1+---+Yy (2.200)
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where N, M are nonnegative integer-valued random variables, N, M, Z, X;,Y;,1 >

1, are independent, and all of Z, X;,Y; are i.i.d., or

U = Xi+---+Xn+2Z14+- -+ 2Zp,
V = W+ +Yu+2:14+---+2Zp, (2.201)

where N, M, T are nonnegative integer-valued random variables indepen-
dent of Z;, X;,Yy,4 > 1,5 > 1,k > 1, which in turn are all independent
and identically distributed with a known distribution.

In all the above cases, the joint distribution of (U, V') determines the

unknown distributions of the random variables involved in their definition.

The discussion given here is based on Kotlarski {1985).

2.11 Identifiability by Random Linear Forms
Suppose X1, X, and X3 are three independent real-valued random vari-
ables. Let Y37,Y3,Y3; be random variables independent of X, X5, X3 and

independent among themselves with known distributions. Let

Wi = "1X)+Y2Xs,
W, = 1 X1+Y3X3 . (2.202)

The question now is to find conditions under which the joint distribution of
(W1, Ws) determines the distributions of X;, X3, X3. This is an extension
of the problem discussed in Section 2.1. W, and W5 are called linear forms

with random coefficients or random linear forms .

Theorem 2.11.1 : If the characteristic function of (W7, W) does not van-
ish, then the distributions of the products X;Y;,1 < i < 3 are determined
up to shift. Furthermore if F(X,Y;) is finite and fixed, then the distribu-
tion of X,Y; is uniquely determined for 1 < 7 < 3. In addition, if X;Y;
has moments of all orders, the characteristic function of X; is analytic and
E(Y¥) # 0 for all k > 2, then the distribution of X; is uniquely determined.
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Proof : Suppose X/,Y/,1 < i < 3, is another set of random variables
satisfying the conditions stated in the theorem. The first and second parts
follow from Theorem 2.1.1. In other words X;Y; and XY/ will have the
same distribution for 1 < ¢ < 3. Let ;(¢) and (;(#) be the characteristic
functions of X; and X] respectively and p; be the distribution function of
Y; (or equivalently Y}'). Then the characteristic function of X;Y; and XY}

are the same and hence

o oo
[ ) = [ ) - (2203)
—00 —00
Differentiating under the integral sign with respect to ¢, it follows that
o0 [e o)
/ 0 (ty)dpa(y) = / v (ty)dpi (), k > 1. (2.204)
—00 —oo

In particular, let ¢ = 0 in (2.203). Then, we have

0 0) - ) [ " ) = 0,k > 1. (2.205)
Since -
/ yrdui(y) # 0,k > 2, (2.206)

by hypothesis, it follows that
220 =¢®0),k>2 . (2.207)

Since the characteristic functions of X; and X| are analytic with E(X;) =
E(X]), it follows that

mi(t) = Gi(t), —oo <t <00 (2.208)
which shows that X; and X have the same distribution. |

Remarks 2.11.1 : It seems to be impossible to avoid a condition of the
type (2.205) or some other condition on Y; equivalent to (2.205). For, in
general, it is not true that if X;Y; and X]Y, have the same distribution and
Y; and Y] are identically distributed, then X; and X have the same dis-

tribution even when Y; and Y] are independent of X; and X/ respectively.
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For instance different combinations of distributions with a given mixing
distribution might lead to the same mixture (see Chapter 8 on identifiabil-
ity for mixtures) . The condition on the analyticity of the characteristic
function of X; in Theorem 2.11.1 can be weakened to the condition that

the distribution of X; be determined by its moments.

In analogy with (2.16) and (2.17), let us now consider random linear

forms

W: = 1Xi1+Y:X2+Y3X5,
We = Th'Xi+TeX,+T3X3 (2.209)

where X;, X5, X3 are independent, identically distributed random variables,
(11, T>, T3) and (Y3, Y2, Y3) are random vectors independent of (X1, X2, X3)
and the distributions of (7},T2,T3) and (Y3,Y2,Y3) are specified. Let
¢(t1,t2) be the characteristic function of (W7, Ws). Then

¢(t1 3 t2)

Elexp(it W1 + it,W3)]
= Elexp{it1(Y1X1 + Y2 X5 + Y3X3)
+ita(Th X1 + T2 X + T3 X3)})
= By plEexp(i(t:Ys + 1T X; +i(t:Ys + £2T5) X
+i(t1Y3 + 12T3) X3) Y1, Y2, Y33 11, T3, T3]
= By rh(tiY1 +t2T1)n(t1Yz + £2T2)n(t1Ys + £2T3))
(2.210)

by the independence of the X;’s with the Y;’s and 7;’s and by the inde-
pendence of the X;’s among themselves. Let pu(u,v) denote the joint dis-
tribution of (Y, T). Suppose X*,Y™* and T* satisfy the conditions stated
above for X,Y and T, and let {(t) denote the characteristic function of
X7:. Note that (Y*,T™) has the same distribution (Y, T). Define W7 and
W3 in analogy with Wy and W,. Suppose the distribution of (Wy, Wy) is
the same as that of (W7, W}). Relation (2.209) implies that
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/Re I3_ n(tiu; + tav;)dp(u, v)
/};6 H?=1C(t1Uj + tav;)dp(u, v). (2.211)

Suppose that, in the above functional equation, differentiation with respect
to t1,t2 under the integral sign is permissible any number of times. Dif-
ferentiate twice with respect to t; and substitute ¢; = 0. Differentiate the
equation so obtained with respect to t3 and then substitute ¢t = 0. After

some easy though tedious computations, it can be shown that
1 (0) + c2n® (0)n™(0) + csn™ (0)?

= e1¢®(0) + 20 (0)¢M(0) + es[¢ V(0] (2.212)

where c1, c2 and c3 are known constants depending on i but not # or ¢ and
7®)(0) denotes the kth derivative of 5(-) evaluated at zero. This equation

can be written in the form
e1n®(0) + Q(n9(0),1<j <2)

=¥ (0) + Q¢Y(0),1 < j < 2) (2.213)

where @ is a known function depending on the derivatives of order less than
three evaluated at zero. Relation (2.212) has the property that substitution
of (; for ; in Q for 1 < ¢ < 2 on the left side of (2.212) leads to the equation

e1n®(0) = ;¢ (0). (2.214)

This method allows us to use induction and establish that for suitable

constants c¢; depending on u,
exn™®(0) = cx¢®)(0), k> 3. (2.215)

If
ck #0fork>3, (2.216)

then we can conclude that

n®(0) = ¢®(0), % > 3. (2.217)
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If E(X;) = E(X7) and if 5(t) and {(t) are analytic charcteristic functions
or the distribution of X; is determined by its moments assuming that they

exist, then the equation (2.216) implies that
n(t) = ((t) for all ¢ (2.218)

and hence X; and X{ have the same distribution. We have the following

theorem.

Theorem 2.11.2: Consider random linear forms defined by
(2.208) where X;, X5, X3 are independent and identically distributed,
(Y1,Y,,Y3; T, T,,T3) is independent of (X, X2, X3), and the condition
(2.215) holds. Suppose the characteristic function of X; is either analytic
or the distribution of X; is determined by its moments assuming that they
exist.. Then the distribution of (W7, W3) determines the distribution of X,
up to location. If further E(X;) is fixed, then the distribution of X7 is

completely determined.

The results in this section are due to Prakasa Rao (1990).

2.12 Stability of Identifiability

In all the discussions so far, we have considered the question of finding
conditions under which the distribution of a statistic defined in terms of a
sequence of random variables determines the distributions of the individual
random variables up to a change in location or scale. We now consider

stability of this property. Suppose the density is given by
p(z,0) =p(z—0),—00 < 8 < 0 (2.219)

or

T—p
g

p(:z;,0)=%p( ),0 =(u,0),—c0o< p<o0,0<0o<00. (2.220)

The former class is called a location parameter family and the latter class

a location—scale parameter family. Let X, Xs,..., Xy be iid. random
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variables and define
Y=(X1-Xn,Xo— Xn,..., Xn-1— XN) (2.221)

in the case of a location parameter family and

Y*=<X1—X X:-X XN_l—X)

(2.222)

s yeeey
S § 8

in the case of a location—scale parameter family where X is the sample
mean and s is the sample standard deviation. Denote the analogues of Y
and Y* by Y,, and Y, when the density is p, instead of p. Let F,, and F
be the distribution functions corresponding to p, and p. It is known from
the theory of weak convergence that if F,, converges weakly to F, then
Y, 5 Y (or Y5 Y*). The problem is that, if ¥, 5 Y (or Y 5 Y*),
can we conclude that F,, = F or F, = F(- — 6) for some 6 in the location

case and F, 5 F(==£) for some 6 = (u,0) in the location—scale case ?

Theorem 2.12.1 : Suppose the distribution of Y determines the distribu-
tion F up to shift in the location case and the distribution of Y* determines

F up to location—scale in the location—scale parameter case. Then

Y. 5Y=>F, 5%F (2.223)

with possibly a shift in the case of location parameter families and
Y:4Y' 'S F, 5F (2.224)

with possibly changes in location and scale in the case of location—scale

parameter families.

Proof (Location parameter case) : Since Y, 4 Y, it follows that the
distribution of X; — X, under p, converges weakly to the distribution of
X1 — Xo under p. Let ¢,,(¢) be the characteristic function of X; under p,
and ¢(t) be that under p. Then

|6 ()2 — |6()|? as n — 00, —00 < t < 00 (2.225)
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since |@(t)|2 is the characteristic function of X; — X, under p. It is known
that (2.224) implies that {p, } is “shift compact” in the sense of Parthasarathy
(1968), that is, there exists a suitable sequence of constants 6, such that
the sequence of distributions with densities p,(z — 6,,) is weakly compact.
Let {ny} be a subsequence such that the sequence of distributions with
densities p,, (z — 05, ),k > 1 converges weakly to a limiting distribution
with density p’. But
Y. 5Y

when p is the density of X; by hypothesis. From earlier remarks it follows
that

Y. 52
where Z corresponds to Y when p’ is the density of X;. Hence the distri-
bution of Y when p is the density of X; and the distribution of Z when
p’ is the density of X are the same. But the distribution of Y determines

the density p(-) up to shift by hypothesis. Hence, for some 6 € R,
p'(z) = p(x - 6),—00 < T < 0.
A similar argument proves the result in the location—scale parameters case.

The results of this section are due to Klebanov (1973b) .



Chapter 3

Identifiability of
Probability Measures on

Abstract Spaces

We will now discuss generalizations of some of the results obtained in Chap-
ter 2 to probability measures on abstract spaces. For the general theory of

probability measures on metric spaces, see Parthasarathy (1968).

3.1 Hilbert Spaces
Let (Q, F, i) be a probability space and H be a real separable Hilbert
space. Let B be the o-algebra of Borel susets of H generated by the norm

topology. X is said to be a random element defined on Q and taking values
in H if X : Q — H is such that X~!B € F for every B € B. Define

px(B)=pu(X"'B), BeB. (3.1)

px is called the probability measure induced by X on B. Let (z,y) denote
the inner product defined on H for z,y € H. For any probability measure

v on (H, B), the characteristic functional ¥(-) is a functional defined on H

59



60 CHAPTER 3. IDENTIFIABILITY ON ABSTRACT SPACES

by the relation
o(y) = / e'@¥dy(z), ye H. (3.2)
H
The characteristic functional ¢x(-) of X is given by
E[e!®X)]

— [ eePdux@), yen
H

éx(y)

= /ei(X(‘”)’y)dp(w), y € H. (3.3)
Q

It is known that there is a one-to-one correspondence between the character-
istic functionals and the probability measures on H and the characteristic

functional ¢x(-) of a random element X satisfies the conditions

¢X(O) =1, I¢X(y)| <1, ¢X(y) = ¢X(_y)7y € H’ (34)

where 0 denotes the nuli element in H. Moreover ¢ x{-) is continuous in the
norm topology and positive definite. Further, if X and Y are independent
random elements taking values in H, then X + Y is a random element

taking values in H and
Px+v(t) = ox(t)dy (1)
For proofs of these results, see Parthasarathy (1968) or Grenander (1963).
We now prove an analogue of Theorem 2.1.1 for random elements taking
values in a Hilbert space.

Theorem 3.1.1 : Let X;,X, and X3 be independent random elements

taking values in a real separable Hilbert space H. Define
Z1 = X1 - X3, Z2 = Xg - X3. (35)

Suppose the characteristic functional of (Z;, Z,) does not vanish. Then
the probability measure of (Z,, Z2) determines the probability measures of

X1, X2, X3 up to change in location.
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Proof : The characteristic functional of (2, Z3) is given by

E[ei(zx ,y1)+i(22,y2)]

1/)(?/1, yz)

_ E[ei(Xl—X:s,w)+i(X2—X3,y2)]

— E[ei(xx,yl)ei(Xz,yz)ei(Xa,—yl—yz)]

$1(y1)d2(y2)d3(—y1 — ¥2), y1,y2 € H (3.6)

where ¢;(y) denotes the characteristic functional of X;. Since ¥(y1,y2) # 0
for all y1,y2 in H by hypothesis, it follows that ¢;(y) # 0 for y € H for
i = 1,2,3. Suppose 7;(y) is another possible characteristic functional of
X;,i=1,2,3. Then

¢1(y1)d2(y2)d3(—y1 — y2) = m(y1)n2(y2)n3(—y1 — ¥2) (3.7)

for all y1,y2 in H. Note that 7;(y) # 0 for y € H,1 < i < 3. Define
Ci(y) =log % where the logarithm denotes the continuous branch of the
logarithm with ¢;{(0) = 0. Note that {;(y) is a continuous functional on H
with ¢;(0) = 0 and (;(y) = G(—y). Relation (3.7) implies that

Culy1) + C2(y2) + G(—y1 —y2) = 0. (3.8)
Substituting ; = 0 € H in (3.8) we have
C2(y2) = —G3(—y2). (3.9)
Let y, = 0 € H in (3.8). Then it follows that
C(y1) = —G(=y1) - (3.10)
The above relations imply that
Ga(~=y2) + G3(—y1) = G(—y1 — ¥2) (3.11)
for all y1,y2 € H or equivalently

Ca(y1) + Ca(y2) = Ca(y1 + 92), 41,92 € H. (3.12)
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Hence (3(-) is a complex-valued continuous linear functional on H. Since
the space H is reflexive, every real-valued continuous linear functional is of

the form (v, y) for some v € H. In particular
Gy) =(a+iby), yeH (3.13)

where a € H and § € H. Since (3(y) = (3(—y), it follows that

(a,9) = (—a,y), y€H. (3.14)

This proves that o = 0 and hence

¢3(y) = na(y)e'®¥), ye H. (3.15)

Using the equations (3.9) and (3.10), it is easy to see that

oe(y) = m(y)e®Y), ye H (3.16)

for k = 1,2. From the one-to-one correspondence between the characteris-
tic functionals on H and the probability measures on H (cf. Parthasarathy
(1968)), it follows that the distributions of the X;,1 < k < 3, are deter-

mined up to location. This completes the proof of the theorem. | |

One can extend Theorem 3.1.1 in the following way. The proof of the

theorem is left as an exercise for the reader.

Theorem 3.1.2 : Let X, X3,...,X,, be n independent random elements

taking values in a real separable Hilbert space H. Define

If the characteristic functional of (¥;,Y3,...,Y,—_1) does not vanish, then
the probability measure of (Y;,Ya,...,Y,—1) determines the probability

measures of Xi, X5,..., X, up to change of location.

Remarks 3.1.1 : The results of this section are due to Kotlarski (1966c).
As a special case of Theorem 3.1.1, we get an extension of Theorem 2.1.1

for random vectors.
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3.2 Locally Convex Topological Vector Spaces
Let (2, F,u) be a probability space and X be a real locally convex
separable topological vector space with dual space X*. A mapping X :
) — X is said to be a random element taking values in X if X~}(G) € F
for G open in X. The probability measure induced by X on (X,B) is
defined by
px(B) = p[X~'(B)),B € B (3.18)

where B is the o-algebra generated by the topology on X'. It is known that

the characteristic functional of X, namely,
QSX(-'E*) = Eei(z',X>
/ ei<z.’w)[_l,x(d:l:)
X

= / <X @) y(dw)) | z* € X* (3.19)
Q

uniquely determines px and it has properties similar to those of the char-
acteristic function of a real-valued random variable (cf. Prohorov (1961),
Vakhania (1981), Grenander (1963)). Here < z*,z > denotes the value of

the linear functional z* € X* at x € X.

Theorem 3.2.1 : Let X;,1 < k£ < 3, be independent random elements

taking values in X and define
Z1 = X1 — X3, Zy = Xo — Xj3. (320)

If the characteristic functional of (Z;, Z;) does not vanish, then it deter-
mines the distributions of X;,1 < k < 3, up to a change of location.
Proof : Let ¢(x},z3) be the characteristic functional of (Z1, Z3). Observe

that for z1,z3 in X',

#(z1,23) = Elexp{i <z},2Z1 > +i < z3,2Z2 >}]

= Elexp{i < z1,X1 — X3 > +i < z3, X2 — X3 >}]

Elexp{i < z}, X1 > +i < 25, X3 > +i < —z] — 25, X3 >}]
¢1(z1)p2(23)d3(—x1 — 73) (3.21)
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where ¢;(z*) is the characteristic functional of X;. If ¢;(z*) is an alternative
possible characteristic functional of X; for 1 < ¢ < 3 giving rise to the same

distribution for (Z1, Z3), then it follows that

$1(27)b2(73)b3(—21 — 22) = Y1(a])¥2(z3)¢s(—7] — 73) (3.22)

for all z1,z3 in X*. Since ¢(z],z3) # 0 for all z1,z3 € X* by hypothesis,
it follows that none of the ¢; and v; vanish. Let

_ #(z?)
Yi(z*)’

Then relation (3.22) reduces to

8

gr(z*) 1<k<3,z"eX”. (3.23)

91(z1)g2(x3)g3(—21 — 3) = 1 (3.24)

for all z7 and z3 in X'*. Substituting z; = 0 and z] = 0 alternately, it is

easy to see that
g93(z] + 73) = gs(z7)g3(x3) (3.25)

for all z3,z3 in X* using the fact g3(0) = 1, gs(—z*) = gs(x*) where 0 is
the null element in X*. Let h(z*) = log gs(z*) where the logarithm is the
continuous branch satisfying the condition log g3(0) = 0. Since gs(z*) is
continuous in the weak* topology, it follows that h{z*) is also continuous

in the weak * topology on X*. Furthermore
h(z]) + h(z3) = h(z] + 23),27,25 € X . (3.26)

Hence h is a complex-valued linear functional continuous in the weak* topol-
ogy on X*. By Banach’s theorem (cf. Yosida (1965)), it follows that there

exist £g and yg in X such that

Mz™) =< yo, 2" > +i < zg,z* >, 2% € X*. (3.27)

Note that h(—z*) = h(z*),z* € X. Hence yo = 0. This in turn implies
that
h{z*) =1 < zo, 2" >,z* € X* . (3.28)
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Hence

g3(z*) = e<%="> g* € H (3.29)

or equivalently
b3(z*) = p3(z*)e?<* "> g* € H. (3.30)

It is easy then to see that
d)j(w*) — ¢j($*)ei<$o,x‘>, .’II* c H,] — 1,2 (331)

using (3.24). These relations prove that the distributions of X; for
1 € 7 £ 3 are determined up to change of location. This completes the

proof of theorem. [ |

Remarks 3.2.1 : The above theorem can be extended to weak-measurable
random elements taking values in X in the following sense. Suppose that )}
is a subspace of the dual space X'* of X and Y is total over X’ (cf. Wilansky
(1978, p. 95)). A function X : @ — X is said to be Y-measurable if
< z,X > is measurable for all z € Y. X, X3, X3 are said to be Y-
independent if, for any 7;, 72,73 in Y, the elements of the set < v;, X; >
,1 < ¢ < 3, are independent random variables. Alspach and Kotlarski
(1986a) obtained a generalization of Theorem 3.2.1 to Y-independent ran-
dom elements and gave explicit formulae for the characteristic functionals
of X1, X5, X3 in terms of the characteristic functional of (Z;, Z3) under

some additional conditions, where Z;, = X; — X3 and Z; = X, — X3.

3.3 Locally Compact Abelian Groups

Let & denote a locally compact abelian separable metric group. Suppose
A is a multiplicative group and Y its character group. For z € X and
y € Y, let (z,y) denote the value of the character y at z. By Pontryagin’s
duality theory, the relation between X and ) is symmetric, that is X is the
character group of ). Further the character group of the direct product
X x X is isomorphic and homeomorphic to Y x Y. For more information

on such groups, see Loomis (1953) or Hewitt and Ross (1963).
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Let (2, F, 1) be a probability space. A mapping X : & — X is said to
be a random element taking values in X' if X ~1G € F for every G open in

X. The distribution of X is given by the measure
px(B) = p{w : X(w) € B} (3.32)

for all B € B where B is the o-algebra generated by the open sets in X.

Random elements X, X, are said to be independent if

w{w : (X1(w), X2(w)) € By x By}

= p{w : X1(w) € B1]}u{w : X2(w) € Bs]} (3.33)

for all B; and B, in B. Let v be a probability measure on X. The char-
acteristic functional U of v is a complex-valued function on the character

group Y defined by

5(y) /X (@,w)dv(z), yed

= [X@.dute) v ey (3:34)

if X is distributed with probability measure v.

It is known that © determines v uniquely, #(y) is a uniformly continuous
functional of y, #(e) = 1 where e is the identity character in Y and |9(y)| < 1
for all y € Y. For details, see Grenander (1963) or Parthasarathy (1968).

Theorem 3.3.1 : Let X, X5, X3 be three independent random elements
taking values in a locally compact abelian separable metric group X. Let
Z1 = X1X2 and Z2 = X1X3. (335)

If the characteristic functional of (Z;, Z2) does not vanish, then the joint
distribution of (Z;, Z3) determines the distributions of X1, X5, X3 up to a

change of scale.

Proof : Let A denote the joint distribution of Z = (Z;,Z,). Since the

character group of the product X x X is isomorphic and homeomorphic to
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Y x Y, we can identify the elements of the character group of X x X’ by 4,y
where y; € Y and y2 € J. By the definition of the characteristic functional
X of ), it follows that

Ayiye) = /Q (Z,y1y2) p(dw)
= [(Z()1)(Zaw), )ud)
= [ (a0 Xa(w), 1) (X1 ) Xalw), sl )
= [ (010, 1) (), 10) (X ), o))

- / (X1 (@), y1y2)u(dw) ] (Xa(w), y2)(dw) / (Xa(w), y2)uldw)
Q Q Q
D1(y1y2)02(y1)23(y2), y1,¥2 € Y, (3.36)

where ©; is the characteristic functional of X; for 1 < i < 3.

Since A(y1y2) # 0 for all 43,42 € Y, it follows that
Di{y) #£#0forye Y,i=1,2,3. (3.37)
Suppose #; is another possible characteristic functional for X;,1 <¢ < 3,

such that

~

Ay1yz2) = M(y1y2)02(y1)93(y2), v1, 92 € V- (3.38)

Note that 9;{(y) #0fory € ¥,1 <: < 3. Let

P(y) = 5(y)/7(y)y € Y, 1< <3, (3.39)
¥i(y) is well defined and the relations (3.37) and (3.38) prove that

1 (v192)P2(y1)Ps(y2) = Ly1, 92 € V. (3.40)
Since Pa(e) = 1,%3(e) = 1 and P(y) = m, it is easy to see that

P1(y192) = $1(y)d1(v2), 1,92 € V. (3.41)

Furthermore %, (y) is continuous. Hence 1), is a continuous homomorphism

on the locally compact abelian group ) into the multiplicative group of
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complex numbers of absolute value one. Therefore 1/31 is a character on
Y. Since the character group of Y is X by Pontryagin’s duality theory (cf.
Hewitt and Ross (1963)), it follows that

~

Y1(y) = (%o, y) (3.42)

for some z¢ € X'. This relation proves that

1 (y) = m(y)(zo,y),y € Y. (3.43)

Similarly, it can be shown, using (3.40), that

pi(y) = ni(y)(zg L y)y eV i=1,2. (3.44)

Hence the distributions of X;,1 < i < 3, are determined up to a change of

scale. This completes the proof of the theorem. |

Remarks 3.3.1 :The results given above are due to Prakasa Rao (1968).
Flusser (1972) extended Theorem 3.3.1 characterizing the marginal distri-
butions of a random vector X = (Xg, X3, X3) with X3, X7 and X5 indepen-
dent and with values in a locally compact abelian group X in terms of the
joint probability measure of Z where Z = T(X) and T is a homomorphism
on X satisfying certain conditions. We now state his result. For the proof,
see Flusser (1972).

Theorem 3.3.2 : Let X be a locally compact abelian separable metric
group and suppose X is the direct sum of three of its subgroups Ay, &
and &>. For k = 0,1,2, let mx be the projection of X onto its kth di-
rect summand. Let X be a random element with values in X and define
X =m X,k =0,1,2. Suppose X,k = 0,1,2, are independent random
elements with values in Ay, Xy and X, respectively and that the character-
istic functionals of Xy, X; and X2 do not vanish. Let 7 be another locally
compact abelian separable metric group and let T : X — 7 be a continuous
homomorphism from X onto 7. Let Ty = T'ng, k = 0,1, 2. Further assume
that
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(i) To|x, is injective ,

(ii) (T1 + T2)|x, @ %, is bijective and

(iii) T(Xo) N T(X1) = {0} and T(A) N T(X;) = {0} where 0 is the
identity element in 7.

Let Z = T(X). Then the distribution of Z determines the distributions
of Xo,X; and X3 up to shifts. The shift for X, is given by an element
zg € Xp and those for X; and X, are determined by z (Here To|x, denotes

restriction of Tg to the set Xp) .

Remarks 3.3.2 : The relation X = X & X} & X, and the condition (ii) in
Theorem 3.3.2 imply that 7 is isomorphic and homomorphic to X; & Xs. In
fact 7 = T(X1) & T(X2). If we define Y = Y7 + Y5 where Yy = Y where
m}, is the projection of 7 onto T'(X}), then the joint distribution of (Y1, Y3)
determines the distributions of Xy, X1 and X5 up to shifts.

Remarks 3.3.3 : Rao (1971) proved that if X;,0 < 7 < 3, are four indepen-
dent real-valued random variables and if Y7,Y> are two linear functions of
X;,0 < i < 3, then the joint distribution of (Y1, Y2) determines the distri-
butions of X;,0 < i < 3 up to a normal factor, possibly degenerate under
some conditions. Prakasa Rao (1975a) generalized this result to locally
compact abelian separable metric groups extending the result of Flusser
(1972) and Prakasa Rao (1968).

3.4 Abelian Semigroups

Let (2, F, 1) be a probability space. Let (X, B) be a measurable space
where X is a separable Hausdorff topological space and B is a o-algebra
of subsets of X generated by the open sets of X. X is said to be a ran-
dom element defined on 2 taking values in X if X :  — X is such that
X~Y(B) € F for every B € B. Define

px(A) = pu(X1A4),A € B. (3.45)

ux is called the probability measure induced by X on (X, B). Let X and
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Y be random elements taking values in X. Random elements X and Y are

said to be independent if
p{lw: X(w) € 41, Y (w) € A2]}

= p{lw : X(w) € Ai]}u{lw : Y(w) € 4,]} (3.46)
for all Ay, A; in B.
Let 0 and V be two abelian semigroup operations on X, i.e.,
(i) z1,z2 € X = z1029 € X and z1Vzy € X
(ii) 21,22 € X = 11023 = T2071 and 71Vze = 22V

(iii) if 1,2, 3 € X, then
(z10z2)0z3 = T10(T20%3) (3.47)

and
(z1Vz2)Vz3 = 21 V(22 Vz3);

(iv) both zj0z2 and z,Vz, are continuous on X x X; and

(v) there exist two identity elements e(!) and e(?) in X such that e(Dox =
z=e®Vz forallz € X.

Let Xg, X1, X5 be three independent random elements on (Q, F, u) with
values in (X, B). Let

Z =(Z1,2) (3.48)

where

Z1 = XO0X1 and Z2 = XoVXz. (349)

Then Z is a random element on (2, F, u) with values in X x X. For any
B),B; €B,
W(z,,2,)(B1 X Bs)

= E(xB,(Z1)xB,(Z2))
E(xB,(X00X1)xB,(XoVX2))

///X&($00-’E1)X32(xovmz)uxo(dxo)uxl(d$1)ﬂxz(d$2)
xJx Jx
(3.50)
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where xp denotes the indicator function of the set B.

Suppose (X, B,0,V) is a measurable space with a double abelian semi-
group operation structure; that is (X, B) is a measurable space as described
above where 0 and V are two (identical or distinct) abelian semigroup op-
erations.

Let the kernels

K(z,u),L{z,v),z € X,u€eU,v €V (3.51)

be two complex-valued functions such that

(i) K and L are both continuous in z on &’;

(ii) |[K(z,u)| £ 1,|L(z,v)| < 1lforallz € X,u e U,v € V;

(iii) K(z10z2,u) = K(z1,u)K(zs,u) for all 1,7, € X and u € U,
L(z1Vzq,v) = L{z1,v)L(z2,v) for all 1,72 € X and v € V;

(iv) KEeW,u)=1= L, v)forallu e Y andv € V; (3.52)

and

(v) there exist ug € U and vy € V such that
K(z,up) =1=L{z,v0),z € X. (3.53)

The function K(z,u),z € X,u € U is called a kernel on X with the
characteristic set U for the abelian semigroup operation o. Similarly, the
function L(z,v),z € X,v € V is a kernel on X with the characteristic set

V for the semigroup operation V. The function
K(z,u)L(z,v),z € X,uceU,veY (3.54)

is called a double kernel on X with the characteristic set U x V for the pair

of semigroup operations (0, V). For any random element X with values in
X, define

% (v) = EL(X,v), vey (3.55)
OKL(u,v) E[K(X,u)L(X,v)], uelU,veV.
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Note that
<I>§L(u, vo) = <I>§(u);<I>§L(uo,v) = <I>§(v) (3.56)

for u € U,v € V where ug and vg are as defined by (3.53).

The function ®¥ is called the characteristic functional of the random
element X corresponding to the kernel K if it determines the probability
measure of X on (X, B) uniquely .

If X; and X, are random elements taking values in (X, B, 0, V), then
%Ly, (u,v) = E[K(X1,u)L(X2,v)],u €U,v €V (3.57)

is the characteristic functional of (X3, X3) corresponding to the double
kernel KL if it determines the probability measure of (X1, X3) uniquely.
Define Z = (Z1, Z>) by (3.48). Then

KL (u,v) @{‘ZI;,Zﬂ(u,v)
= E[K(Z1,u)L(Z2,v)]
= E[K(Xp0X;,u)L(XoVXs,v)]
= E[K(Xo,u)K(X1,u)L(Xo,v)L(X2,v)]
= E[K(Xo,u)L(Xo,v)|E[K (X1, u)| E[L(X3,)]
= ®%L(u,v)0%, (Wo%,(v),uelveV. (3.58)
Let XL, ¥% and ¥% be another alternative triple of possible charac-

teristic functionals of Xy, X; and X. as defined above. Further suppose
that

OKL(u,v) = UEL(u,v) £0,u eU,v € V. (3.59)
We have the relation
oK, (u, )%, (W%, (v) = VX (u,v) ¥, () V%, (v). (3.60)
Substituting © = ug and v = vy alternately, it can be checked that
K (1)K (v) = U (w)¥% (u),ueclu (3.61)

and
% (v)8%, (v) = %, (v)¥E, (v),v eV . (3.62)
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Relations (3.60) to (3.62) show that

(I>§0L(u, v) \Il§01‘(u, v)

% (u)@% (v) - X (w)% (v)

JWEUVEY . (3.63)

If the solution (% ,®% ,®%L) of this equation is unique, then we obtain
that <I>§0L = ‘I’§0L and the relations (3.61) and (3.62) show that <I>§l = ‘Il§1
and ®L2 = \Ifﬁz. This in turn shows that the distributions of Xg, X; and

X, are determined uniquely.

Remarks 3.4.1 : Examples of the results obtained above are discussed in
Chapter 2, for instance, characterizing the probability distributions of com-
ponents by the joint distribution of their product and their sum. The dis-

cussion in this section is from Alspach and Kotlarski (1986b).

3.5 Homogeneous Spaces

Let P and @ be probability measures defined on the o-algebra B of
Borel subsets of a homogeneous space (cf. Kelley (1953,p. 107)) X = G /H
where G is a locally compact separable group of transformations and H a
subgroup of G. Suppose that X;,1 < ¢ € n, are independent identically
distributed random elements taking values in X" distributed according to P
or Q. A function f defined on X™ is said to be invariant with respect to G
if

flgzy,. . 9zn) = f(z1,..., Tn) (3.64)

for all (z1,...,2,) € X™ and g € G. Suppose that the distribution of any
invariant function computed with respect to P is the same as that computed
with respect to Q. The problem is to find conditions under which P and
Q agree to within a shift by an element of G, that is, P(E) = Q(g; *E) for
all E € B for some gg € G. This problem was discussed in Chapter 2 in
the case of the real line and in earlier sections of this chapter for the case
of Hilbert spaces and locally compact abelian groups.

Let us consider the special case when G is a compact group. Denote by
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u(QG) the set of all unitary irreducible (finite-dimensional) representations
of the group G (cf. Vilenkin (1968)). Let .4 be the equivalence classes of
sets of representations under the usual definition. Let U, be a member
from the equivalence class for each a € A. Define P, the characteristic

functional of P, by the relation

Plo) = /G Un(g)dP(g),a € A. (3.65)

Here we have assumed that P is defined on the group G by extending P
on G/H using the relation P(Eh) = P(E) for h € H. 1t is known that the
characteristic functional P(-) uniquely determines the probability measure
P on G (cf. Grenander (1963)).

Rukhin (1975) proved the following theorem. We omit the proof.

Theorem 3.5.1 : Suppose P and @ are probability measures defined on
the o-algebra of Borel sets B of a compact group G. Further suppose that
the characteristic functionals P(c) and Q(«a) are nonsingular for all a € A.
If

Eplf(X1,...,Xn)] = EQ[f(X1,...,X4)] (3.66)
for all invariant functions f and some n > 3, then
Q(E)=P(g,'E),E€B (3.67)

for some gg € G.

The result has been extended in the following form to random elements

X; which are independent but not necessarily identically distributed.

Theorem 3.5.2 : Let X;,1 < ¢ < n,n > 3 be independent random ele-
ments with values in a compact group G. Suppose the distribution of each
invariant function f(X1, X2,...,X,) when X; is distributed with probabil-

ity measure P; on G for 1 < i < n is the same as its distribution when X;
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is distributed with probability measure Q; on G for 1 < i < n. Further
suppose that

det[Pi(a)] #0,a € A,1<i<n . (3.68)

Then there exists gg € G such that

Q;(E) = Pi(¢5'E),E€B,1<j<n. (3.69)

For proofs of above results and for further remarks, see Rukhin (1975,
1977).

3.6 Generalized Random Fields

Let X be the space of all real-valued functions ¢(x) = ¢(z1,...,z,) of n
real variables which are infinitely differentiable and have bounded supports.
A sequence {¢,,} of functions in X is said to converge to zero if there exists
a constant a such that ¢,, vanishes for ||z|| > a for all m and, if for every ¢,

the sequence {¢$,‘f)

} converges uniformly to zero. Here ||z|] is the Euclidean
norm on R™ and ¢(9 denotes any gth-order partial derivative of ¢. Any

continuous linear functional on X is called a generalized function.

A random functional ® is defined on X if for every ¢ € X there is
associated a real-valued random variable ®(¢). In other words, for every k
elements ¢;,1 < ¢ < k, in X, the joint distribution of (®(¢1),...,P(dx)) is
specified and these probability distributions form a consistent family in the

sense of Kolmogorov. The random functional ®(-) is said to be linear if

O(ag + ) = ad($) + BO(Y) a.s. (3.70)

for ¢,9 € X and a,f real. &(-) is said to be continuous if ¢x; — ¢;,
1< j <m, with ¢,;,¢; € X, imply that P, = P where P, is the prob-
ability measure of (®(¢x, ), ..., P(dk,,)) and P is the probability measure
of (®(¢1),..-,P(dm)) on R™. Here “=" denotes the weak convergence of
probability measures (cf. Billingsley (1968)).
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Any continuous linear random functional on X is called a generalized
random function . If X consists of functions of one variable, then the
corresponding random function @ is called a generalized random process .
If X consists of functions of several variables, then the functional ® is called

a generalized random field.

Let ® and ¥ be two generalized random fields on X. ® and ¥ are
said to be independent if the set of random variabes {®(¢) : ¢ € X} is
independent of the set {¥(¢) : ¢ € X}. This notion can be extended to
any finite number of generalized random fields.

For any generalized random field ®, define
L(¢) = E[e'*®)],¢ € X. (3.71)

L(-) is called the characteristic functional of the generalized random field

®. It can be shown that

L(0) = 1, L(~¢) = L(9), IL(#) < 1, (3.72)
and L(-) is the continuous functional on X. In fact, there exists a one-to-one
correspondence between the characteristic functionals L and generalized
random fields ® on X.

For any two generalized random fields ® and ¥, the joint characteristic
functional of the two-dimensional generalized random field (®, ¥) is defined
by

L(¢,9) = E[e®@DH¥W] g e x,p e X. (3.73)

Let ®; and ®; be two generalized random fields on X’ and f and g be
any two infinitely differentiable functions. The generalized random field

f®1 + g®2 is defined by the relation

(F@1+922)(¢) = 21(f9) + D2(g4), 0 € X. (3.74)

Two generalized random fields ®; and &, are said to be determined up

to shift if there exists a generalized function m such that &, = ®, + m.
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We refer the reader to Gelfand and Vilenkin (1964) for further results

on generalized random fields.

Theorem 3.6.1 : Let ®;,0 < ¢ < 2, be three independent generalized

random fields on X and define

¥, = 99+ + D,

Vo = [o®o+ 121+ 5292 (3.75)
where (3;,0 < ¢ < 2 are infinitely differentiable functions such that 8;(z) #
Bj(x) for ¢ # j and all . Suppose the joint characteristic functional of
(¥4, ¥;) does not vanish. Then the two-dimensional generalized random

field (¥4, ¥;) determines the generalized random fields &, ®1,®, up to
shift.

Proof: Let I';,0 < ¢ < 2 be three independent generalized random fields on
& such that the two-dimensional generalized random field (£,,%,) where
X1 = TDo+T1+47Ty,
Y2 = Bol'o+ Bl + oI (3.76)
has the same joint characteristic functional H(¢, ) as (¥, ¥3). Let L;(-)

and M;(-),0 <1 < 2 be the characteristic functionals of ®; and I';,0<i< 2,

respectively. It is easy to see that
H(¢,9) = T oMi(¢ + Bipy) = o Li(¢ + Bit) (3.77)
for ¢, in X. Since H(¢, ) # 0 for all ¢, ¢ in X, Ji(¢) = log{L;(¢)/M;(¢)}

is well defined where the logarithm is taken to be the continuous branch
with J;(0) = 0. Then it follows that

2
D Jil¢+Biy) =0,4,9 € X. (3.78)

i=0
Let ¢, and A be fixed in X and let ¢' = ¢ —F2) and ¥’ = ¢+ A. Then
¢’ and 9’ belong to X and the equation (3.78) implies that

2
DI +By) =0 . (3.79)

=0
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Substracting (3.78) from (3.79), we obtain the equation

1
D il¢ + B) — Ji(¢+ Bigy)] =0
=0
for all ¢,4 and X in X since ¢’ + Bot)’ = ¢ + P21, Let
Wi(¢) = Ji(¢p + A(B; — B2)) — Ji(¢),i = 0,1

for any fixed A in X. Relation (3.80) implies that

Wo(é + Bov) + Wi(p + Brp) =0

(3.80)

(3.81)

(3.82)

for any ¢, in X. Let ¢,% and v be fixed in X and let ¢ = ¢ — Biv and

¥ = ¥ + v. By arguments similar to those given above, we obtain the

relation
Yo(o + Boyp) =0

where

Yo(¢) = Wo(é + v(Bo — 1)) — Wo(d), ¢ € X.

Relation (3.83) implies that
)/0(43) =0, ¢ eEX
which in turn shows that

Wo(¢ +v(Bo — 61)) = Wo(¢), ¢ € X.

from (3.84). Using the definition Wy(¢) in (3.81), we have

Jo(¢ +v(Bo — B1) + A(Bo — B2)) — Jo(¢ + v(Bo — B1))

= Jo(¢ + A(Bo — B2)) — Jo(¢)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

for all ¢ € X. Since v and A are arbitrary and 3;(x) # B;(x) for all & with

i # j and infinitely differentiable, it follows that

Jo(@p+v+A) = Jo(9p+v) = Jo(d+ A) — Jo(¢)

(3.88)
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for all ¢,v,v and A in X or equivalently

Jo(p+ v+ A)+ Jo(¢) = Jo(¢ + v) + Jo(¢ + A) (3.89)

for all ¢,4,v and A in X. This can be written also in the form

Jo(¢ + ¥) = Jo(¢) + Jo(¥) (3.90)

by choosing ¢ = 0 in X. Hence Jp(-) is a linear functional on X. By the
properties of characteristic functionals, Jy(-) is a complex-valued continuous

linear functional on X with Jo(—¢) = Jo(¢). In other words
Lo(@) = Mo(g)e™@+mel) g e X .

This proves that the random fields ®q and I’y differ by mg with probability
one, that is ®¢ = I'g + mg a.s. Similar analysis proves that ®; and I'; differ
by m; for some generalized functions m; almost surely. This completes the

proof of the theorem. [ |

Remarks 3.6.1 : The results in this section are from Prakasa Rao (1976).
The theorem holds if 8; are constants all different from zero and different
from each other. The results can be extended to multidimensional gener-
alized random fields. If the two-dimensional generalized random field in
Theorem 3.6.1 is infinitely divisible, then it is known that its characteris-
tic functional does not vanish and the conclusion in Theorem 3.6.1 holds.
Finally these results are not trivial consequences of earlier results for real-
valued random variables since for any fixed ¢ € X, ¥;(¢) is not a linear
combination of ®;(¢),0 < j < 2, since f§; are not necessarily constants. A
more general result on characterization of generalized random fields up to
Gaussian factors is discussed in Prakasa Rao (1976).



Chapter 4

Identifiability for Some
Types of Stochastic

Processes

We now consider an extension of the results in Chapter 2 to the framework
of stochastic processes. Some of these results can be derived as special cases

of results in Chapter 3 but direct derivations are of independent interest.

4.1 Point Processes

It is known that every point process N(-) on [0,00) corresponds to a
triple (2, F, Pn) where § is the set of all countable sequences of real num-
bers {¢;} without limit points and F is the o-algebra generated by cylinder
sets and Py is a probability measure (cf. Harris (1963)). The point pro-
cess N(-) is said to be degenerate if Py is concentrated at a single point
(r1,72,...,) in §2. Let V denote the class of measurable functions £ such
that 0 < £(t) < 1 for all real ¢t and £(¢) = 1 outside a bounded interval.
The probability generating functional of a point process N(-) is defined by

G(€) = E{exp( /0 ~ log ¢(AN())}.€ € V. (4.1)

81
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(If &£(t) = 0 over some set A in [0, 00), the exponent is defined to be zero
unless N(A) = 0 when it is defined to be equal to one). The probability-
generating functional of a bivariate point process (Ny(-), N2(+)) is defined
by

H(e1,&) = Blexpl [ 10g £:0aM(0) + [10g OO (42)
for§g€eVandéeV.

Theorem 4.1.1 : Let Ny, N; and N; be three independent point processes
and define
M; = Ny + Ny and M; = N3 + Ng. (4.3)

Then the bivariate point process (M7, M) uniquely determines the point

processes Ng, N and N.

Proof : Let G;(£) denote the probability generating functional of N;,i =
0,1,2, and H(£;,&2) denote the probability generating functional of
(My, M3). Tt is easy to see that

H(§1,&) = E{exp[/ log €1(t)dM1(t)+/IOg &2(t)d M ()]}

E{exp| / log &1 (£)dN, (£) + ] log £&(t)dNa (1)

+ / log(€1(£)€2(t))dNo(1)]}
G1(£1)G2(€2)Go(6162) (4.4)

for &, € V,£& € V since Ny, N; and N, are independent point processes.
Suppose that R;,i = 0,1,2 are independent point processes such that
the bivariate point process (57, S2) has the same probability structure as
(M1, M3) where

Si =R; + Ry, S2 =R+ Ryg. (4.5)

Let K;(£),i = 0,1,2, be the probability generating functionals of R;,i =

0,1, 2 respectively. It is easy to see as before that

H(&1,60) = K1(&1)K2(€2)Ko(&1€2),£1,62 € V. (4.6)
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Let A;,1 < j < m be disjoint Borel sets in [0, 00) and G;(z) and K;(2)
denote the probability generating functionals of (N;(41),..., N;(4n)) and
(Ri(A1),...,Ri(Ap)) respectively. Relations (4.4) and (4.6) imply that

G1(21)G2(22)Go(z122) = K1(21)Ka(22)Ko(2122) (4.7)

for all z € [0,1]™ where z;2; denotes the vector obtained by multiplying
23 and 22 componentwise. G;(z) and K;(2z),0 < i < 2 are nonzero in the

set D={0<2; <1,1 <j<m} where z =(zy,...,2m). Let

Ji(z2) = Gi(2)/Ki(2),0<i<2,z€ D. (4.8)
Then J;(z) is nonzero in D and

Ji(z1)J2(z2)Jo(2122) = 1,271,292 € D. (4.9)

Substituting ze = 1, it follows that

Jl(zl)Jo(Zl) =1,z,€D . (410)
Similarly, we have
Jz(Zz)Jo(Zz) =1,20€D . (4.11)
Hence
Jo(z1)Jo(22) = Jo(2122),21,22 € D (4.12)

and Jj is continuous on D. The only continuous solutions of this functional

equation are functions of the type
7z (4.13)

where c¢;,1 < j < m, are constants by results in Aczel (1966, p. 215).

Hence

Go(2) = Ko(2)IIJL 2 ,z € D, (4.14)

In other words

Go(€) = Ko(£)Jo(£) (4.15)
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for £ € V of the form

m
1= (1—2)xa;(1),0< 2z <1L,1<j<m (4.16)
j=1

where
Jo(€) =TI7L, 2. (4.17)

Here x4 is the indicator function of the set A and Ay, ..., 4y, are disjoint
bounded Borel subsets of the real line. Every £ € V can be uniformly
approximated by an increasing sequence of simple functions of the above

type. Define
Jo(€) = lim Jo(£a) (4.18)

for any £ € V where {£,} is an approximating sequence in V for £ of the
type (4.16). Therefore

Go(&) = Ko(€)Jo(§), £€V (4.19)

and Jp(£) is the probability generating functional of a degenerate point pro-
cess (Westcott (1972)). But the probability-generating functional uniguely
determines the point process, by a result of Vere-Jones (1968) (cf. Daley
and Vere-Jones (1988, p. 221)). Hence Ny and Ry differ by a degenerate
point process. A similar argument shows that Ny, Ry and N, R, differ by
a degenerate point processes. But the structure of the bivariate point pro-
cess shows that we cannot add a degenerate point process to one without

subtracting from the other. Hence Ny, N1 and N; are unique to the process
(M1, Ms). |

The results in this section are due to Prakasa Rao (1975b).

4.2 Homogeneous Markov Chains
Suppose that
) 1<hj<pl<k<n (4.20)
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is a collection of independent real-valued random variables. Let {n; : j > 0}
be a homogeneous Markov chain with state space {1,...,p} and with a
nonsingular transition matrix A = ((an;)). We denote this Markov chain
by {4}.

A collection of random variabes {{k,1 < k < n} is said to be defined on

the homogeneous Markov chain {A} if

=0  1<k<n, (4.21)
that is,
& =0y m-1=hm=51<k<n. (4.22)
Let
o (@)= Ples <z,m = jlne—1 = hl, (4.23)
Anz) = (@D (), (4.24)
and
w .
or(t) = / e®dAr(z),1<k<n,teR . (4.25)
—00

Observe that ¢5(0) = A and @i (t) is continuous in ¢t € R.
Ag(z) is called the matriz-valued distribution function of & and ¢r(t)
is called the matriz-valued characteristic functional of £, defined on the

homogeneous Markov chain {A}. It is easy to see that
k k
ot (2) = anFL) (z) (4.26)

where F,Ef) (z) is the distribution function of 02’;). Further the matrix-valued

characteristic functional of the linear form

a181 + axés + a3s (4.27)

is
#1(a1t)p2(ast)ps(ast) (4.28)

(cf. Gyires (1981a,b)).
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Given a nonsingular matrix M, there always exists a matrix L such that
oo
LV
M= 27 (4.29)
v=0

(Hille (1948, p. 125)). The matrix L is called the logarithm of the matriz
M and is denoted by log M. Since A is nonsingular, it can be seen that
the matrix-valued characteristic functional ¢ of & given by (4.25) is non-
singuar in a neighbourhood of zero and ®x(t) = log ¢x(t) exists in this
neighbourhood. We choose that continuous version of log ¢ (t) for which
®,(0) = log A. Note that, if two nonsingular matrices M and N commute,

then

log MN =log M +log N. (4.30)

For any 1 < 43 < i3 < --- < i; < n, the matrix-valued characteristic
functional of

Z =a1&, +- -+ ai&;; (4.31)

is
Ai1_1¢il (alt)AiZ_il_ldnz (agt) v Aij —ij_l_ltf)ij (ajt)An_ij (432)
(cf. Gyires (1981a,b)). In particular, if ¢; (¢),1 < r < j, commute with

A for every t, then the matrix-valued characteristic functional of Z can be

written in the form
An_jd)i‘ (alt) M ¢i,~ (ajt). (433)
We now have the following analogue of Theorem 2.1.1 for random vari-

ables defined on a homogeneous Markov chain.

Theorem 4.2.1 : Let £;, &2, &3 be random variables defined on a homoge-

neous Markov chain {A4}. Define
21 =8 — 2,22 =& — &3 (4.34)

If the matrix-valued characteristic functional of (Z1, Z3) is nomnsingular,
then the matrix-valued distribution function of (Z;, Z3) determines the

matrix-valued distribution functions of £;,&2,£3 up to change in location.
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Proof : For any real ¢ and u,
Elexp{it(&; — &2) + iu(é2 — €3)}x([ns = j])|no = h]
= Elexp{ité: + i(—t + u)é2 — tués}x([n3 = j])|no = R} (4.35)

where x(A) denotes the indicator function of the set A. Hence the matrix-

valued characteristic functional of (Z;, Z2) is

$1(t)p2(u — t)p3(—u) (4.36)

from (4.28). Suppose that {y1,72,73} is another set of random variables
defined on the homogeneous Markov chain {A} such that the matrix-
valued characteristic functional of (7y; — 72,72 — 73) is the same as that of
(€1 — &2,€2 — £3). Let 9;,1 < i < 3, be the matrix-valued characteristic

functionals of v;,1 < ¢ < 3, respectively. It is obvious that
$1(t)p2(u — t)p3(—u) = P1(t)y2(u — t)¥3(—u) (4.37)

for all t,u real. Observe that the ¢;’s and ;’s are nonsingular matrices
for all ¢ and u since the joint matrix-valued characteristic functional of
(&1 — £2,&2 — £3) is nonsingular by hypothesis. Substituting ¢ = 0 in (4.37)
we have

Apa(u)ds(—u) = Ae(u)ips(—u), —0o < u < 00 (4.38)

or equivalently

5 (u)pa(u) = P3(—u)d3 ' (—u), —00 < u < 00 (4.39)
since A is nonsinguar by hypothesis. Similarly, substituting u = 0 in (4.37),
we have
¢1(t)p2(—1)A = P1(t)y2(—t)A, —00 <t <00 (4.40)
or equivalently

P (E)d1(t) = a(—t)d3 ' (—t), —00 < t < oo. (4.41)

But

T ()d1(8)a(u — t)pa(—u)ppy ' (—u) = Pa(u — 1), —c0 < u,t < oo (4.42)
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from (4.37). Using the relations (4.39) and (4.41), it follows that
ba(=)d3 " (~t)b2(u — )7 " (w)tha(u) = 92(u — t), —00 < u,t < co. (4.43)
Therefore
Pa(—t)d3 () da(u — 1) = Pha(u — £)9h; L (w)da(u), —00 < u,t < co. (4.44)
Let (2 = ta¢; . It follows from (4.44) that
Ga(—t)¢2(u — t) = Yo(u — )3 ' (u)ga(u), —c0 <u,t <oo . (4.45)
Substituting ¢ = u in (4.45), we have
Ca(—u)A = AYy M (u)da(u), —00 < u < oo. (4.46)
Hence, from (4.45) again, it follows that
Ca(—t)p2(u —t) = ha(u — ) A" o(—u)A, —00 < u,t < 0o (4.47)
or equivalently
ATIG N (—u) Al (—t) = ((u —t), —00 < u,t < oco. (4.48)
The last equation can be written in the form
Ala(—t) = ((—u)Al(u— 1), —co < u,t < oo. (4.49)

Hence

AG(z + y) = ((2)Ad2(y), —00 < z,y < o0, (4.50)

Let y = 0 in (4.50). Then it follows that
Ala(z) = (2(z)A, —00 < T < 0. (4.51)
Hence A commutes with (2(z) for all z and we have
Aa(z +y) = AQ(z)(2(y), —00 < 7,y < co. (4.52)
Since A is nonsingular, relation (4.52) implies that

Gz +y) = (2(2)(2(y), —00 < z,y < 00 (4.53)
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Note that (s is continuous with (2(0) = I. It follows from results in Hille
and Phillips (1957, Theorem 9.6.1, p. 287) that there exists a matrix Ds
such that

Colz) = "2 —00 < z < o0 (4.54)

and hence

Ya(u)e P2 = ¢y(u),; —00 < u < 0 . (4.55)

Similar relations hold for ¢, ¢1 and 3, ¢3. By the uniqueness theorem for
characteristic functionals (cf. Gyires 1981a,b)), the above relation implies
that the matrix-valued distribution functions of £1, £3, €5 are determined up

to changes in location. This completes the proof of Theorem 4.2.1. u

We now extend Theorem 4.2.1 to more general linear functions of ran-

dom variabes defined on a homogeneous Markov chain.

Theorem 4.2.2 : Let {{kx,1 < k < n} be random variables defined on a
homogeneous Markov chain {A}. Suppose 1 < iy < i3 < i3 < n. Define

Zy = ay&;, + a2, +asli, ,

Zy = b1&;, + b2k, + b3, . (4.56)

Further suppose that the matrix-valued characteristic functionals
¢, (t),1 < j < 3of &;,1 < j < 3, commute with each other and with
A. Let {{,1 < k < n} be another set of random variables defined on the
homogeneous Markov chain {4} such that the matrix-valued characteristic
fucntionals ¥;;(t),1 < j < 3, of (;,,1 < j < 3, commute with each other
and with A. Define

W1 = a1, + a2, + azli,,

Wa = b1i, + b2Gi, + 0365 - (4.57)

Assume that the joint matrix-valued characteristic functional of (Z;, Z5) is

the same as that of (Wi, W>) and is nonsingular. Suppose that a; : b; #
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a; : b; fori # j,1 < 4,5 < 3. Then the matrix-valued distribution functions

of §;,,1 < j < 3 are determined up to change of location.

Remarks 4.2.1 : The proof of Theorem 4.2.2 depends on extensions of
Lemmas 2.1.1 to 2.1.3 and Corollary 2.1.1 to matrix-valued functions. We
omit the proofs. For details, see Prakasa Rao (1987).

4.3 Homogeneous Processes with Independent Increments

Suppose {X(t),t > 0} is a homogenous stochastic process with inde-
pendent increments in the sense that the distribution for X(t;) — X (¢1)
for 0 < t;y < t2 < oo depends on t; —t; and, for 0 < t; < #5 < t3 <
00, X (t3) — X (o) is independent of X(tz) — X(t1). Further suppose that
the process {X(t),t > 0} is continuous in the sense that it has no fixed
points of discontinuity.

Let ¢(u;h) denote the characteristic function of X (¢t + h) — X (¢) for
h>0and 0 <t < oo Itis well known that ¢(u; h) is infinitely divisible
and ¢(u;h) = [@(u;1)]* for all A > 0. For simplicity, let ¢(-) denote the
function ¢(-;1). The process {X (¢),t > 0} is uniquely determined by the
characteristic function of X(0) and by the function ¢(-). Hereafter we
assume that X(0) = 0.

4.3.1 Stochastic integrals: Let g(-) be a real-valued function defined over
an interval [A, B] C [0,00) and let w(-) be a nonnegative function defined

over [A, B]. Consider a sequence of subdivisions
D, A=t,0< 1 < <tpg, =B (4.58)
of the interval [4, B] such that

lim rr’iax (tnk —tak—1)=0 . (4.59)

n—oo 1<
Let t’,"h,c € tnk-1,tnk),1 < k <k, for all n > 1. Construct the sequence

of partial sums
kn

Z w )X (W(tak)) = X (w(tnx-1))] - (4.60)
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If the sequence {S,} converges in probability to a random variable S and
if this limit does not depend on the choice of tnr and the sequence of
subdivisions {D, } satisfying (4.59), then we say that the stochastic integral

S exists in probability and write

B
S = / g(t)dX (w(t)). (4.61)
A

If the sequence {S,} converges in quadratic mean to a random variable S,
then we say that the stochastic integral S given by (4.61) exists in quadratic

mean.

The following results are known about the existence of such stochastic

integrals. We omit the proofs.

Theorem 4.3.1 : Let {X(t),t > 0} be a continuous homogeneous process
with independent increments. Suppose the process {X(t),¢ > 0} has finite
mean function and finite covariance function both of bounded variation on
a finite closed interval [4, B]. Further suppose that g(¢) is real-valued and

continuous on [4, B]. Then the stochastic integral

B
/ g(t)dX(t) (4.62)
A
exists in quadratic mean.

Theorem 4.3.2 : Suppose {X(¢),t > 0} is a continuous homogeneous
process with independent increments and g(#) is real-valued and continuous

on (A, B]. Then the stochastic integral

/B g{t)dX(t) (4.63)

A

exists in probability.

For proofs of Theorems 4.3.1 and 4.3.2, see Lukacs {1968). Suppose w(-)
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is a nonnegative, nondecreasing and right-continuous function. Define

0 if t<A4
V{(=0,8]} ={ w(t)—w(A) if A<t<B (4.64)

w(B) —w(A4) if t>B
where —o0 < A < B < o©0. Then V gives rise to a finite measure with
support contained in [A.B]. Denote this measure also by V. Suppose g{-)

is continuous on [A, B]. Define
wyt) = V([ : g(z) < 1) (4.65)

Then wgy(-) is nondecreasing, nonnegative and right-continuous on [A, B].

The following result is due to Riedel (1980a).

Theorem 4.3.3 : Suppose {X(t),t > 0} is a continuous homogeneous
process with independent increments and g(-) is a continuous real-valued
function on [A, B]. Suppose w(-) is a nondecreasing, nonnegative right-

continuous function on [A4, B]. Define

C= Argntlgag(t) and D = AréltanBg(t). (4.66)
Then the integrals
B D
/ 9(t)dX (w(t)) and / t dX (wq(t)) (4.67)
A c

exist in probability and are identically distributed.

The next result gives a representation for the characteristic functions of

the stochastic integrals defined above.

Theorem 4.3.4 : Let {X(t),t > 0} be a continuous homogeneous process
with independent increments. Further suppose that the process has finite
mean function and finite covariance function which are of bounded variation
on any finite closed interval [4, B]. Let g(-) and h(-) be continuous in [4, B].
Define

B B
Y =L g(t)dX(t) and Z =L h(t)dX (t) (4.68)
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and denote by ¢(u;h) and 6(u,v) the characteristic functions of
X(t+ h) — X(¢) and (Y, Z) respectively. Then 6(u,v) is different from

zero for all v and v and

B
log 6(u,v) = /A Plug(t) + vh(t)]dt (4.69)

where ¥(u) = log ¢{u,1) and the logarithm taken here is the continuous
branch of the logarithm of ¢(-;1) with log ¢(0;1) = 0.

Remarks 4.3.1 : For a proof of Theorem 4.3.4, see Lukacs {1968, pp.
107—108). This theorem continues to hold if the integrals Y and Z exist in
probability.

Since {X (¢),t > 0}, X(0) = 0 is a homogeneous process with indepen-
dent increments, the characteristic function ¢{u) = ¢(u; 1) of X (#4+1)—X (t)
is infinitely divisible and the Lévy canonical representation for the charac-
teristic function of X (1) holds as given in Lukacs (1970, Theorem 5.5.2).
Riedel (1980a) proved the following theorem. We omit the proof.

Theorem 4.3.5 : Let {X(¢),t > 0},X(0) = 0 be a continuous homoge-
neous process with independent increments. Suppose w(-) is nondecreasing
nonnegative and right-continuous on [0, 00). Let the Lévy canonical repre-
sentation for the characteristic function of X (1) be given by a,0, M and N.
Then the Lévy—Khintchin canonical representation for the characteristic

function of the stochastic integral

B
/ tdX (w(t)) (4.70)
A

is given by the formulae

Gy = /B(ta +t(1 - t?) /00 il d(M(—z) + N(z)))dw(t)
Y Ja o+ (1+(z)?)(1 +2?) '
(4.71)

= o? /A ? t2dw(t), (4.72)

gn
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min(B,0) z max(B,0) T
My (2)=— / N(E)duw(t) + / M(3)dw(t),z <0 (4.73)
min{A,0) max(A4,0)

and

min(B,0) z max{B,0) T
No(z) = — / ME)dw(t) + / NE)dw(t),z > 0. (4.74)
min(A,0) t max(A,0) t

4.3.2 Identifiability : We say that the stochastic integral given by (4.61)
determines the homogeneous process with independent increments
{X(t),t > 0} if the characteristic function of S determines the charac-
teristic function of X(1).

We first present a couple of results identifying such a stochastic process

up to shift via stochastic integrals.

Theorem 4.3.6 : Let {X(¢),t > 0} be a continuous homogeneous pro-
cess with independent increments. Suppose the process has moments of
all orders and its mean function and covariance function are of bounded
variation in any finite closed interval. Suppose g(t) and h(t) are continuous
functions on [4, B] and [C, D] respectively such that A < C < B < D.
Further suppose that either

/A B[g(t)]"dt #0,k>2 (4.75)
o D
/C [h(t))*dt # 0,k > 2. (4.76)
Let ., .
Y= /A 9(B)dX (1), Z = /C h(t)dX (£). (4.77)

Then the joint distribution of (Y, Z) completely determines the process X
except possibly for change of location provided the characteristic function

of X(1) is entire. In such an event either

B D
/ g(t)dt = / h(t)dt =0 (4.78)
A C

or there is no change in location.
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Proof : Let 6(u,v) denote the characteristic function of (Y, Z) and 9(u)
denote the continuous branch of the logarithm of the characteristic function
of X(1) with 4(0) = 0. It is easy to check that

log 6(u,v) /¢ugt)

D
+ / P(ug(t) + vh(t))dt + / (vh())dt. (4.79)
C B

Suppose that {W(t),t > 0} is another stochastic process with the same
properties as {X(t),t > 0}. Let n{u) denote the continuous branch of the
logarithm of the characteristic function of W(1) with n{0) = 0. Suppose
that the random vector (S, R) has the same joint distribution as (Y, Z)
where

S= / £)AW (2) and R = / h(£)dW (). (4.80)
It follows from (4.79) that

e & P(ug(t))dt + fC (ug(t) + vh(t))dt + fB (vh(t))dt
D

C B
= / n(ug(t))dt + / n(ug(t) + vh(t))dt + / n(vh(t))dt  (4.81)
A C B

for all u,v real. Suppose that (4.75) holds. Let v = 0 in (4.81). Then

B B
/ P(ug(t))dt = / n(ug(t))dt, —o0o < u < . (4.82)
A A

Since the processes X and W have moments of all orders, the integrals
on both sides can be differentiated with respect to u repeatedly under the

integral sign and we have

B B
/[mmwﬂwwumu=/[ﬂm%“mmth (4.83)
A A

where ¥(¥)(-) denotes the kth derivative of ¢. Let u = 0 in (4.83). Then it
follows that

B B
wmﬁww%=wmﬁwm% (4.84)

which proves that 1) (0) = n*)(0) for ¥ > 2 in view of (4.75). Since ¢ and
n are entire functions with 1(0) = 5(0) = 0,v%(t) = ¥(-t) and n(t) = n(-1),
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it follows that

P(u) = n(u) + icu, —00 < u < 00 (4.85)
for some real constant ¢. This proves that X (1) and W(1) + ¢ have the
same distribution. From the fact that {X(¢),t > 0} and {W{(¢),t > 0} are

homogeneous processes with independent increments, it can be seen that
X(@t+h)—X(t)and W(t+h) —W(t)+ch

are identically distributed for all £ > 0 and A > 0. If ¢ = 0, then the
processes {X(t),t > 0} and {W(t),t > 0} are the same. If ¢ # 0, then it is
easy to check that
B D
/ g(t)dt =0 = / h(t)dt. (4.86)
A c
A similar argument proves the result in case (4.76) holds. This completes

the proof. [ |

As a special case of Theorem 4.3.6, we have the following result by

choosing h(t) = 0 for all ¢.

Theorem 4.3.7: Suppose a process {X(t),t > 0} satisfies the conditions
stated in the above theorem. Suppose g(t) is real-valued and continuous on
[A, B] and

B

/ [g(t)]*dt # 0,k > 2. (4.87)

A

Let
B
Y = / g(O)dX (2). (4.88)
A

Then the distribution of Y completely determines the process {X(¢),t > 0}

except for a change of location, provided the characteristic function of X (1)

is entire. In such an event either there is no change of location or

B
/ g(t)dt = 0. (4.89)
A

Remarks 4.3.2 : The results obtained above are due to Prakasa Rao
(1975¢c). The conditions that the process {X(¢),¢ > 0} has moments of



4.3. PROCESSES WITH INDEPENDENT INCREMENTS 97

all orders and the characteristic function of X (1) is entire are too strong.
Riedel (1980b) has weakened these conditions and derived results determin-
ing the stochastic processes {X(¢),t > 0} of the above type by means of
stochastic integerals. His analysis involves some results on Wiener—Hopf
factorization and a modern extension of the Phragmén—Lindelof theory (cf.
Rossberg (1975)). We will state the results without proofs.

Let g(t) be real-valued and continuous on [A, B] and w(t) be a nonnega-
tive, nondecreasing and right-continuous function on [A, B]. For Re(z) > 0,
define

B
5(z) = /A lo(6) Fdu(t), (4.90)

and

. B
§(z) = /A l9(6) () (). (4.91)

Theorem 4.3.8 : Suppose {X(t),t > 0} is a continuous homogeneous
process with independent increments and E|X (1)]* < oo for some 0 < A <

2. Then the stochastic integral

B
Y = / g(t)dX (w(t)) (4.92)
A

defined in the sense of convergence in probability determines the process
{X(t),t > 0} iff the following conditions are satisfied:

(1) S()#0, A<Re(z) <2,
(i) S8(z)#0, A<Re(z)<2and (4.93)
(i) S(1)#0.

Theorem 4.3.9 : Suppose {X (¢),f > 0} is a continuous homogeneous pro-
cess with independent increments and E|X(1)|? < co. Then the stochastic
integral Y defined by (4.94) in probability determines the process
{X(t),t > 0} iff

B
S5(1) = /A g(t)dw(t) # 0. (4.94)
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Remarks 4.3.3 : For proofs of Theorems 4.3.8 and 4.3.9 and related re-
sults, see Riedel (1980b). These results make use of Theorem 4.3.5 on
the representation of the characteristic function of a stochastic integral
(cf. Riedel (1980a)). For a comprehensive survey on the identification of

stochastic processes by stochastic integrals, see Prakasa Rao (1983a).

4.4 Linear Processes
Let {X(t),—00 < t < 00} be a homogeneous process with independent
increments and f be a function such that |f| and f2? are integrable. It is

known that the stochastic integral
o0
Af(t) = / flt —uw)dX(u),—o00 <t < oo (4.95)
—0o0Q
exists in the sense of quadratic mean (c¢f. Doob (1953)) if
E(X(t)? < 00,—00 < t < 0. (4.96)

{Af(t),—00 < t < oo} is called a linear process. The process
{A4(t), —00 < t < oo} is a stationary process. Since {X(t), —oo < t < oo}

is a homogeneous process with independent increments, it is known that

E(exp{i6[X (¢ + u) — X(u)]}) = exp{ts(6)} (4.97)
where o s .
¥(0) = ivf — %6202 + / e—‘;z—"e"”K(dx), (4.98)

v and 4 are real constants and K(-) is a nondecreasing bounded function
with K(—occ) = 0, K(0+) — K(0—) = 0 (cf. Lukacs (1968)).

The characteristic functional of such a stochastic process {A¢(t), —o0 <
t < oo} is defined by

o0

oa,(6) = Blewsli [ A6} (4.99)

where £(-) runs through real-valued signed totally finite measures on the

o-algebra of Borel subsets of the real line (cf. Bartlett (1966)). From the
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fact that {Af(t), —oo <t < oo} is a linear process, it can be shown that

60,0 = exof [ o i T ft-wed)d).  (4100)

Let
C(f,0) =log E{exp i6A¢(t)}, —o0 < 8 < o0. (4.101)

Note that Ag(t) is an infinitely divisible random variable and hence C(f, 6)
is well defined. It can be seen from (4.99) or directly that

C(f,8) = /_ % (87 (w))du, —00 < 6 < o0 , (4.102)

from the definition of the linear process {Af(t),—00 < t < oo}. Making
use of the canonical representation (4.98) for 1(8), it can be shown that
(cf. Weiss and Westcott (1976))

®© T _ 1 _ifr .

C(f,0) = i7s0 — %3}02 + / K;(dz) (4.103)

2
—o0 T

where

Af =1 /- ” f(t)dt, 63 = 6 /_ ” fA(t)dt, (4.104)

and K ¢ is a nondecreasing bounded function with K #(—00) =0,
K(04) — K(0-) = 0 defined by

b—

b+ v v
Ky(dv) = /0 zzK(EiZ—)Idh+(z)l+ /0 zzK(—%-)ldh'(z)l. (4.105)

Here by = sup, f*¥(u) < oo,h*(y) = Mz : fE(x) > y} where X is the

Lebesgue measure.

Let B denote the class of all real-valued functions f such that |f| and
f? are integrable. The following results are due to Weiss and Westcott
(1976). We omit the proofs.

Theorem 4.4.1: 9 is uniquely determined given A(-) and f for all f € Bs.
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Suppose a process {A(t),—o0 < t < oo} can be expressed as a linear

process in two different ways :
At) = / filt —wdX;(u),—c0 <t < 00,1 =1,2 (4.106)

where f; € Bs,i = 1,2 and {X;(t),—00 < t < o©},i = 1,2 are homo-
geneous processes with independent increments. In general, two different
representations (4.106) for the same linear process {A(t),—o0 < t < oo}
are possible; for instance, fo = c¢f; and X3(t) = %Xl(-) and fo(t) =
+f1(t + a), X2(t) = £X;(t) for constants ¢ # 0 and a. The next theo-
rem states that the representation is unique up to a constant factor and
up to translations of f. If fa(t) = xfi(t + a), then Xq(t) = £X;(t) by
Theorem 4.4.1.

Theorem 4.4.2 : If a linear process {A(t), —o0 < ¢t < 0o} has two repre-
sentations with fi, f2 € By and [ f2(t)dt = 1,i = 1,2, and if the cases
f2(8) = £f1(t + a), X2(t) = £ X1(¢) are excluded, then the processes X;(-)

and X,(-) are Gaussian.
Theorem 4.4.3 : If two linear processes
o
Ai(t) = / f,’(t - u)dX,-(u),i = 1, 2
—00

have the same characteristic functional as defined by (4.99), then either
f2(t) = cfi(t + a) or X1(t) and X5(t) are Gaussian.

Remarks 4.4.1 : For the proofs of Theorems 4.4.1 to 4.4.3, see Weiss and
Westcott (1976).

Definition : A stationary stochastic process {X(t), —oo < t < oo} is said
to be time-reversible if for all n and ty,¢s,...,t,, (X (t1),...,X(t,)) and
(X(=t1),...,X(—t,)) have the same joint distribution.

Remarks 4.4.2 : For example, stationary Gaussian processes are time-

reversible. If {X(t), —00 < t < oo} is a stationary process which is time-
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reversible, then for every h and every ty,tz,...,t,, (X(h+t1),..., X (h+t,))
and (X(h—t,),...,X(h—t,)) have the same joint probability distribution.

The following result is an easy consequence of Theorem 4.4.3.

Theorem 4.4.4 : Let A(-) be a linear process defined by (4.101). Suppose
there does not exist a constant a such that f(t) = f(a — ¢) for all ¢ or
f(&) = —f(a —t) for all t and X(t) has a symmetric distribution for all ¢.

If A(-) is time-reversible, then X (-) is Gaussian.

Proof : Let A;(t) = A{(—t),—00 < t < 0o. Then A(-) and A;(-) have the
same probability structure due to the time-reversibility of the process A(-).
Let f1(t) = f(—t) and X,(t) = X(—t). Then

MO=AC) = [ ft-waxe
= [ aG-wixiw
and -
Alt) = /_ f(t — w)dX (u).

Since {A(t),—00 < t < oo} and {A;(t),—0c0 < t < oo} are two linear
processes with the same probability structure and fi(t) # cf(t + a) by
hypothesis, it follows that {X(¢), —oo < t < oo} is Gaussian, by Theorem
4.4.2. [ ]

For detailed proofs, see Westcott (1970), Weiss (1975) and Weiss and
Westcott (1976).



Chapter 5

Generalized Convolutions

Some of the identifiability results studied in Chapter 2 have analogues in the
theory of Laplace transforms and lead to methods of solving some partial

differential equations. We discuss some of these results in this chapter.

5.1 Generalized Convolutions
Let f; and f; be two real-valued functions such that fi(t) = f2(t) =0
for t < 0 and f; not identically zero for i = 1,2. The convolution of two
such functions fi(¢) and f2(t) is defined by the formula
t
(fr+ )0 = [ f@)falt = ot e 2 0 (5.)
0

assuming that this is defined. However, the convolution f; x f does not

determine the functions f; and f; uniquely. For instance, let
18 = 1,620, /5(8) = 5#,¢ 20 (52)
and
91(t) = g2(t) = ¢, 2 0. (5.3)
It is easy to check that
(fix f2)(t) = (91 x g2)(t),t 2 0 (5.4)

103
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even though the pair (f1, f2) and (g1, g2) differ. We now define a notion
of generalized convolution of three functions. If the generalized convolution
is known, then the three functions are determined uniquely under some

conditions.

Definition : Let fr(t),0 < k < 2 be real-valued functions, locally inte-
grable for t > 0. Further suppose that

/ " et fut)dt (5.5)

is well defined whenever Re(s) > si, s real, for 0 < k < 2. Then the
generalized convolution of fi,0 < k < 2 is defined by

min(uy,uz)
(fo fs Fo) (s, uz) = /0 fol®)fa(us — O fauz — )t (5.6)
for 0 < uy,u2 < 00.

Lemma 5.1.1 : Let Fi(s) be the Laplace transform of fi(t). Then the

two-dimensional Laplace transform F(sy, s2) of the generalized convolution
(fo, f1, f2) is given by

F(s1,82) = Fo(s1 + 82)F1(81)F2(s2) (5.7)

whenever the expression on the right side of the above relation is defined.

Proof : Note that
F(slv 32)

[0 o] x>
/ / emlermteun)(f, £ £o)(uy, ug)dusdug
o Jo

0o oo min(u1,u2)
/ / e—(31u1+32u2){/ f()(t)fl (’U,l d t)fz(Ug - t)dt}duld’U.z
0 0 0
/(; fO(t){/t e 1" fy(ug — t)du1/t €™ fo(ug — t)dug }dt

/0°° fo(t)e™* *Fy(s1)e™** Fy(s5)dt
Fo(s1 + s2)F1(s1)Fa(s2). (5.8)
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Theorem 5.1.1 : Let fi(t),0 < k < 2, be real-valued functions defined
for t > 0. Suppose fi(t) are not equal to zero almost everywhere. Further

suppose that the Laplace transform of |fi(¢)] is F(s) defined by
Fy(s) = / e fu(t)|dt,0 < k < 2. (5.9)
0

Then the generalized convolution ( fo, f1, f2) of fr,0 < k < 2, determines
the functions fi,0 < k < 2, up to a set of Lebesgue measure zero, up to a

shift, and up to nonzero constant factors.

Proof : Suppose gx,0 < k < 2 is another set of real-valued functions

satisfying the conditions stated in the theorem such that

(fO, fl,fz)(t) = (907gl$ g2)(t))t Z 0. (510)

Taking the two-dimensional Laplace transform on both sides of the equation
(5.10), we have

Go(s1 + 32)G1(81)G2(s2) = Fo(s1 + s2)F1(s1)Fa(s2) (5.11)

by Lemma 5.1.1. Let (810,820) be a point at which the expression on
the right side of (5.11) does not vanish. Such a point exists since fi (%),
0 < k <t are not equal to zero almost everywhere. From the continuity of
the Laplace transforms Fi(s),0 < k < 2, it follows that there exists some
neighbourhood S of (s;¢, 820) in which the right side of (5.11) does not

vanish. Hereafter, let us restrict attention to points (s1,32) € S. Let
Gi(8) = Fr(8)b Hi(8),0< k <2 (5.12)

where by are nonzero complex constants and Hy(s) are complex-valued

functions satisfying the conditions
Ho(s10 + 820) = H1(s10) = Ha(s20) = 1. (5.13)
Relation (5.11) implies that

b0b1b2H0(31 + 82)H1(81)H2(82) =1 (5.14)
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for all (s1,s2) € S. Equation (5.13) implies that
bobiby =1 (5.15)

by choosing s; = 519 and 85 = s89¢. In particular it follows that b;,0 < k < 2

are nonzero and we have
H0(81 + 82)H1(81)H2(82) =1 (5.16)

for all (s1,82) € S. Let 3; = 810 + w1 and 82 = 859 + wy. Define

ho(w) = Ho(s10 + 520 + w),
hl(w) = Hl(slo + w)
and
ha(w) = Ha(s20 + w). (5.17)
Then, it follows that
ho('wl + 11)2)h1(11)1)h2(w2) =1 (518)

for all (w1, ws) in a neighbourhood of {(0,0). Furthermore
he(0) =1,0< k<2 (5.19)

from (5.13). It is now easy to prove that there exists a complex constant ¢
such that
ho(w) = e hg(w) = e ¥,k =1,2 (5.20)

in a neighbourhood of 0. Retracing the definition of ht,0 < k < 2, it can
be checked that

Go(s) = Fo(s)

ecs
a1a2 ’
Gi(s) = Fi(s) a1e™, (5.21)

G2(8) = Fg(s)aze"“

for some nonzero complex constants a;,i = 1,2 and some complex constant

¢ in a neighbourhood of s1p + 820 for Gy, in a neighbourhood of sy for
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G+, and in a neighbourhood of s9¢ for G2. From the analyticity of Laplace
transforms, it follows that (5.21) holds for all complex s. Again, from the
properties of Laplace transforms, it follows that a;,as; and ¢ are real and

we have the result. This completes the proof. | |

Remarks 5.1.1 : In analogy with generalized convolution of the func-
tions, we can also define generalized convolution of three sequences of real

numbers. Suppose

a = (ao,al,...),
= (bo,bl,...)
and
Cc= (Co, Cly.. ) (522)

are three sequences of real numbers. The generalized convolution of these
sequences is defined by the sequence

min{n,m)

dnm= Y Gkbo_kCm—r,n,m > 0. (5.23)
k=0

Let d = (dn,m;n,m > 0) and
o
A(s) = Zaksk,
k=0

B(S) = Zbk ska
k=0

oo
C(s) = Y sk (5.24)
k=0
and o o
D(u,v) = E Zdn,mu”v"‘ (5.25)
n=0m=0

where s,u,v are complex. Then A(:), B(:),C(-) and D(-) are generating
functions of the sequences a,b,c and d respectively. If the above series

converge in a neighbourhood of the origin, then it is easy to check that

D(u,v) = A(uww)B(u)C(v) (5.26)
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in that neighbourhood of the origin. The following theorem can be proved
characterizing the sequences a, b, ¢ by their generalized convolution d. We

omit the proof. For details, see Kotlarski (1968a).

Theorem 5.1.2 : Let a, b, ¢ be sequences of real numbers as defined above.
Suppose ag # 0,bp # 0 and ¢g # 0 and the three power series given by
(5.24) converge in a neighbourhood of the origin. Then the generalized
convolution d defined by the sequence d, ,, given by (5.23) determines all

the three sequences a, b, ¢ up to nonzero constant factors.
The results of this section are due to Kotlarski (1968a).

5.2 Applications to Solutions of Partial Differential Equations
We now study a special class of partial differential equations which can
be solved by methods described in this book.
Let f and g be real-valued functions defined on (0, c0). Suppose f and
g are different from zero almost everywhere and differentiable up to order
n. Suppose the derivatives f) and ¢(,1 < i < n, and f and g are all

Laplace originals. Consider the differential equation
S ak(Ds + D) f(@)au) = hz,y)hz 20520 (5.27)
k=0

with the initial conditions
£(0) = f(0) = g(0) =g (0) =0,1<i<n-1 (5.28)

where a;,0 < k < n are unknown coeflicients, the functions f and g are
unknown but h is known. We assume that a, # 0. Here D, = % and
=4
D, = By
We are interested in the existence and the uniqueness of the solution
of the equation (5.27) and determining the solution explicitly under some

conditions.
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Let

n
P(s)=ao+ Y axs* s€R. (5.29)
k=1
The function P(-) is the generating function of {ag, a1,...,a,}. Let F,G,H

be the Laplace transforms of f, g, h respectively given by

Flu) = /:0 e YT f(z)dz,u > ug (5.30)

Gl) = / e~g(y)dy, v > vo
o
and

o0 le o]
H(u,v) = / / e "TTUh(z, y)dzdy, u > ug,v > vy . (5.31)
o Jo

Lemma 5.2.1 : Suppose the partial differential equation (5.27) has a so-

lution. Then

P(u+v)F(u)G(v) = H(u,v),u > ug,v > v . (5.32)

Proof : For u > ug and v > vy,

o0 oo
H{u,v) = /; /(; e TV h(z, y)dzdy

/ ” | " e[S ay(D, + Dy £(w)g(y)ldady
¢ Jo k=0

= éak /0 N /0 ” e™"* (D, + D)k f(z)g(y)dady
= iak [ mi (f) 79 (2)g 9 (y)dedy
- gak§< [ e @an [ ety

= Zakz< )u-’F(u k=1 G(v)

= Zak(u +v)*F(u)G(v)

= (u + v)F{u)G(v). (5.33)
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Theorem 5.2.1 : Suppose af,0 < k < n, and the functions f* and g*
satisfy conditions similar to those on ax,0 < k < n, and the functions f
and g, and both sets are solutions of the partial differential equation (5.27).
Then

fAz) = af(z),z20
Bg(y),y >0 (5.34)

9" (v)

and

a; = (aB) lax,0<k<n
for some nonzero constants a and 3.

Proof : Define P*  F* and G* similar to P, F and G for the sequence
a;,0 < k <n, and the functions f* and g*. Lemma 5.2.1 shows that

P*(u+v)F*(u)G*(v) = H(u,v),u > ug,v > vp - (5.35)
Relations (5.32) and (5.35) show that
P*(u+v)F*(u)G*(v) = P(u+v)F(u)G(v),u > ug,v >vg . (5.36)

It is sufficient to prove that

F*(u) = aF(u),u> ug,
G*(v) = BG(v),v > (5.37)
(5.38)
and
P*(s) = (aB)"'P(s),s€R . (5.39)

These relations in turn imply (5.34). Relations (5.37) and (5.38) can be
proved using methods similar to those discussed earlier in this book and in
Section 5.1. We omit the details (cf. Kotlarski (1986)).
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Remarks 5.2.1 (Explicit determination of the solution) : Suppose
h{z,y) is a known function and there exist constants ax,0 < k < n, and
functions f(-) and g(-) satisfying the partial differential equation (5.27)
subject to the initial condition (5.28). Define H, P, F and G as before. We
now give explicit formulae for computation of P, F and G in terms of H.

Lemma 5.2.1 implies that
H(u,v) = P(u+v)F(u)G(v),u > ug,v > vp. (5.40)
Let v = w1 > vg in {5.39). Then
H(u,v1) = P(u+ v1)F(u)G(v1),u > uo (5.41)
and let u = u; > ug in (5.39). Then
H(uy,v) = P(uy + v)F{u1)G(v),v > vp. (5.42)

Furthermore
H(uy,v1) = P(uy +v1)F(u1)G(v1). (5.43)

It is easy to see from these relations that
P(u + v)H(u,v1)H(u1, v)P(uy + v1)

= H(u,v)P(u + v;1)P(u + v)H(u1,v1) (5.44)

for all u > ug,v > vg,u; > ug and v; > vg. This is a functional equation
only in the unknown P. Taking the continuous branch of the logarithm
satisfying log 1 = 0 on both sides of the equation, differentiating with
respect to v and substituting v = v;, we have

H{u,v)

v=v1

[(%(log Plu+ v))]

v=v;
for some constant C.

Integrating both sides of (5.44) with respect to u in the range u; < u <
8 — v1, we obtain that

P(s) = Cexp{es +/ 2 lo H(u,v)

” [8’0 g m],:vl du} (5.46)
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for s > ug + vg where C' is a nonzero real constant and c is a real constant.
Since P(-) is the generating function of a finite sequence of constants, it has
to be a polynomial. It can be shown that there exists a unique constant cg

for which P(s) is a polynomial in s, namely,

d log P(s
Co = _38—()|8=u1+v1 . (547)

Choose ¢ = ¢g as above in (5.45). Then we have P(-) and

G(v)

alP(u+ v;)] " H(u,v1),u > ug,
BIP(u1 + v)] " H(u1,v),v > vo (5.48)

from (5.39) and (5.40) where a and (3 are arbitrary nonzero constants.

Substituting the relations (5.47) in the equation (5.41), we obtain that
C = [aBfH(uw,v1)] ™" (5.49)

where C is the constant given in (5.45). This gives us an explicit form
for P(s) and hence for F(u) and G(v) where o, are arbitrary nonzero

constants and u1,v; and ¢g are as chosen above.
Example 5.2.1 : Suppose
Wz, y)=zy+z+y,z>0,y>0 .
Then, following (5.31),
H(u,v) =1 +u+v)u 2w 2u>0,v>0.
Let u; = v1 = 1. It can be checked that

Flu) = au%,u>0,

G(v) Bv=20>0

and

P(s) = (af)"1(1+s),—0 < 5 < 0



5.2. SOLUTION TO A PARTIAL DIFFERENTIAL EQUATION
where a and 3 are nonzero constants. If n = 1, then

f(z) = az,z > 0,9(y) = By,y > 0,
and
ag =ay = (aB)™!
is the solution for the equation

1
(@B)™' Y (Ds + Dy)* f(2)g(y) = h(z,y)

k=0

with

The results in this section are due to Kotlarski (1986).
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Chapter 6

Identifiability in Some

Econometric Models

6.1 Introduction

In many fields of biological, physical or social sciences, the main ob-
jective of the investigator is not to find the distribution F' of an observed
random variable X or a random vector X but to identify the probabil-
ity structure P involved leading to the distribution F. It is theoretically
possible, as we will see later in this chapter, that different underlying prob-
ability structures P may lead to the same probability distribution F'. The
basic question then is whether a model specified has the property that,
given a sample of observations, there could be one and only one probability
structure that could have generated this sample. Loosely speaking, we say
that a probability structure P is identifiable if there is one and only one

probability structure P leading to a given probability distribution F'.

Suppose a random variable X is distributed N(u — pg,1). Obviously
i1 — po can be estimated from X. In fact X is the uniformly minimum
variance unbiased estimator of py — pe. However, py and po are not in-

dividually estimable. There are infinitely many pairs (u1;, 42;) such that
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11 — Wo; = p1 — pe for given py and pa. In other words the pair (p1, p2) is
not identifiable.

Let us discuss another example. Consider a pair of random variables
X; and X, distributed as N(u1,0?) and N{ug,0?) respectively. Suppose
Y = X; + X, is observable but not the individual X; and X,. It is obvious
that Y is N(uy + p2,202%). If ¥;,1 < i < n is a random sample from
this population, then we have information on p; + p2 only and not on the
individual 1 and po. In fact (Y, s2), where Y is the sample mean and s3
is the sample variance, is a sufficient statistic for (u; + p2,0?). If ) and b
is another pair of possible values for p; and u2 such that p] + uh = g1+ po,
then the joint density function of (¥y,Y3,...,Yy) is

n

I 6w 1 + 12, 26%)

i=1
where ¢(y; u, 02) is the normal density function with mean p and variance
o2, either when X; is N(p;,02),1 < i < 2 or when X; is N(u},02%),1 <i <2
as long as py + p2 = p} + ph. In other words the parameters uy and p, are
not identifiable in this structure. It is easy to see that o2 is identifiable .
Suppose that X7 is N(u,0?) and X3 is N(u,02) and X, X, indepen-
dent. Then Y is N(2p,02 4+ 02). It is easy to see that yu is identifiable but

o? and 0% are not.

Let us consider a more general model
Yi = m+ey,
Yo = noteq (6.1)

where (i) 72 = a + B for some constants o and 3, (ii) 7 is normally
distributed independent of € = (£1,¢2) and (ili) € = (e1,¢2) is bivariate
normal with mean (0,0). It is easy to see that the joint distribution of

Y = (1, Y2) is bivariate normal with the covariance matrix

1
Yy = 3 52 Var{m) + Z¢ (6.2)
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where Xy, denotes the covariance matrix of V. The parameter 8 is not
uniquely determined by the above equation. For a fixed ¥y, given an
arbitrary 3, one can always choose Var(n;) such that Xy is positive definite
and the above equation holds. Since the distribution of Y = (¥1,Y3) is
uniquely determined by the mean vector and the covariance matrix Xy, it
follows that the joint distribution of (Y3, Y2) does not identify 3. In fact,
the parameter 3 is uniquely determined if and only if the joint distribution
of (Y1,Y2) is not bivariate normal. We will give a rigorous proof of this

fact later in this chapter.

The problem of identification of the parameters in a statistical model
can be referred to as the problem of whether the values of the parameters

are uniquely determined by the probability distribution of the model.
Let us consider another example of a regression model. Let
Yi =00+ 01m +ey,

and

Yo =06+ 1Y &3 . (63)

Suppose Y; is not observable but Y3 is. Then

Y2 = +mm +e3 (6.4)
where
Yo = fo + Brag
1 = by, (6.5)
and

ez =e2+ Pe1 -

It is clear that o and 7; can be estimated from observations on Y2 but o
and 7; do not determine ag,a;, B and By uniquely. In other words, v and

4 are identifiable but ag, a1, 8y and B; are not.
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The identifiability problem is basic to the problem of statistical infer-
ence. Unless the parameters in a model are identifiable, there is no meaning
of estimability or estimation of such parameters as several combinations of
different values for the parameters may lead to the same probability distri-
bution under the given model. However, as Koopmans and Reirsol (1950)
point out “...the temptation to specify models in such a way as to produce
identifiability of relevant characteristics is (should be ) resisted. Scientific
honesty demands that the specification of a model be based on prior knowl-
edge of the phenomenon studied and possibly on criteria of simplicity, but
not on the desire for identifiability of characteristics in which the researcher
happens to be interested.” For an introduction to problems of identification
in economics, see Bartels (1985). There is an extensive literature on identifi-
cation problems in time series models. We will not discuss it here. For some
details, see Deistler and Hannan (1988) and Tigelaar (1982, 1988, 1990). A
generalized proportional hazards model is used in econometric models for
the study of duration of unemployment. Identifiability problems arising in

such models are also of interest and importance.

6.2 Parametric Identification Problem

Following Rothenberg (1971) and Bowden (1973), we now study para-
metric identification of a probability structure.

Let Y be an m-dimensional random vector representing the outcome of
a random experiment. Suppose the probability distribution for Y is known
to belong to a family F of distribution functions on R™. A structure S is
a set of hypotheses which implies a unique distribution function F(S) € F.
The set of a priori possible structures is called a model denoted by {. There
is a unique distribution function F(S) € F corresponding to each structure
S € (. The identification problem is concerned with the existence of a

unique inverse for this mapping.

Definition 6.2.1 : Two structures in ¢ are said to be observationally

equivalent if they imply the same probability distribution for the observable
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random vector Y.

Definition 6.2.2 : A structure S in ( is said to be identifiable if there is

no other structure in ¢ which is observationally equivalent.

Suppose that every structure S is described by a vector 8 € R™ and
the model ( is described by a set & C R™. Further suppose that the
distribution of Y under 8 is F(y,6). As you might have noticed, by a
model here, we mean a probability distribution F(y,-) of known form and,
by a structure, we mean a probability distribution function F(y,8) for a
given parameter 8. Thus the problem of differentiating between structures
is converted into a problem of differentiating between different values of
the parameter 8. Definitions 6.2.1 and 6.2.2 can be recast in the following

form.

Definition 6.2.1’ : Suppose the family {F(-,6),6 € O} is dominated
by a o-finite measure u. Two parameter values 8y and 6; are said to be
observationally equivalent if

dF(x,00) dF(x;6)
- dn a.e[p] .

Definition 6.2.2' : Suppose the family {F(-,6),6 € O} is dominated by
a o-finite measure u. A parameter value §; € © is said to be (globally)
identifiable if there exists no other 8 € © such that
dF(x,6 dF(z,0
( 0) — ( ) a.e[u] .
du du

Definition 6.2.3' : Suppose the family {F(-,8),8 € ©} is dominated by a
o-finite measure y. A parameter 8y € © is said to be locally identifiable if
there exists an open neighbourhood of §y containing no other § € © which

is observationally equivalent to 6.

Remarks 6.2.1 : It is easy to check that the property of identifiabil-

ity does not depend on the choice of the dominating measure. Hereafter
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we assume that the family {F(-,0),0 € ©} is dominated by a o-finite
measure /.

If p is the Lebesgue measure on R™, then F(-,6) is an absolutely con-
tinuous distribution function for every 8 € ©. Let f(-,8) denote a version
of its density function. Definitions 6.2.1' to 6.2.3' can be restated in the

following form.

Definition 6.2.1” : Two parameter values §; and 6, in © are said to be

observationally equivalent if

f(@,61) = f(z,02) ae[}]

where A is the Lebesgue measure on R™.

Definition 6.2.2” : A parameter value §, € © is said to be (globally)

tdentifiable if there is no other § € © which is observationally equivalent to
fo.

Definition 6.2.3” : A parameter §; € © is said to be locally identifiable if
there exists an open neighbourhood of 8y containing no other # € © which

is observationally equivalent to 6.

The identification problem can be stated as the problem of finding nec-
essary and sufficient conditions for the identifiability of the parameter 6 € ©
based on the family of distribution functions {F(y,8),8 € ©} (or the fam-
ily of density functions {f(y,0),0 € ©} whenever they exist) and ©. It is
worth noting that the distribution function F(y, #) (or the density function
f(y,8)) discussed above could also arise as a mixture of two distribution
functions (or two density functions) and the identifiability of the mixing
parameter is of interest (cf. Quandt and Ramsey (1978) and Ghosh and
Sen (1985)).

We should again caution that identifiability is logically prior to inference
and it is connected with proper specification of the theoretical structure

that generates the sample observations. It is expected that suitable prior
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restrictions on © and the family of distribution functions {F(z,0),6 € ©}
or the family of density functions {f(z,6),6 € ©} will bring about the
identifiability.

6.3 A General Parametric Identification Criterion

Suppose a family of distribution functions {F(x, 6),8 € ©} is dominated
by a o-finite measure  on RF and {z : %Z—’Q > 0} does not depend on
0 € ©. Define

H(8,80) = Eg, {mg[%]} . (6.6)
For simplicity, we write
H(8,80) = Eg,[log %] (6.7)
= / log[%]dF(z,Oo) : (6.8)
If 1 is the Lebesgue measure on R, then
H(8,80) = /_ : log] ff((:’oi)] F(z,80)dz . (6.9)

H(6,0,) is called the Kullback— Leibler information (cf. Kullback (1959)).
This measure of information can be interpreted in the following manner.
Let Hy denote the hypothesis that the true density is f(z,#) with respect
to a o-finite measure x. Then the quantity log }L((% can be taken as the
information at x for discriminating between Hy and Hy, and the expected

information for discrimination between 6 and 8y is given by

HO.00) = [ Z log[fi(‘jf(%lf(w, o) du()

which is the Kullback—Leibler information described above.

Theorem 6.3.1 : If the distribution function F(-, ) is different from the
distribution function F(-,8y) and if H(6,0y) < oo, then H(6,6,) < 0.
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Proof : Since the distribution functions F(-,8) and F(-,8y) are different,

it follows that
dF(x,0)

—— = #1
dF ((l) f 90) :,é
on a set with positive probability under §;. By Jensen’s inequality, strict

concavity of the function log z implies that

dF(X,6
H(0,0o) = Ego IOg m
dF(X,0)

< IOg Eeo m =0. (610)

|

Remarks 6.3.1 : It is easy to see that, if § = 6y , then H(6,63) = 0. Hence
the parameter 6 is globally identifiable iff the equation H(6,600) = 0 has a
unique solution 8 = 63. Observe that H(6,60y) attains its maximum at 6.
Hence a sufficient condition that @ is globally identifiable is that H(6,8,)

is strictly concave on © and © is convex.

Let us now discuss the relation between the Kullback—Leibler informa-

tion and Fisher information.

Case of scalar parameter : Assume that # is a scalar parameter, that
is, ® C R.

Suppose the function H(8,8;) is differentiable twice with respect to 8
under the integral sign. Note that

106,60) = [ toglZ 212, 00)aut) (6.11)
and hence
H'(6,6,) = il / ff((m’g 1f(x,60)du(x)}
f

f (z, 60)du(x)

Eeo[ao log f(X,0)]. (6.12)
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Furthermore

(0,00 = ¢ &”Q £ (@, 60)du(z)}
/ S EE D@ b0)due)

" —{f! 2
/ f(z,0)f f}”{ﬁ,’a»ﬁ” 2O f(,B0)du(e)

f'(X,6), . @ log f(X 6)
o gy) Bl 2.

Eg, | (6.13)

Here ¢’ and ¢” denote the first and second derivatives of g respectively.

Since
[ @8)aut@) =1, (6.14)
it follows that

/ £, 0)du(z) = / (2, 0)du(z) = 0 (6.15)

under the assumption of differentiability twice under the integral sign with

respect to 6. It is now easy to check that

H'(60,60) = 0 (6.16)
and
H"(00,00) = g, T8 LX),
= —I(6) (6.17)

where I(6p) is the Fisher information. Hence, if 0 < I(fp) < oo, then
H"(64,65) < 0. Since H'(6,6p) = 0 at 6§ = 8y, the function H{(f,6,) has a

local maximum at 8; and the parameter 6y is locally identifiable.

Case of vector parameter : If # is a vector parameter, i.e., § = (61, ...,0%)
say, then it can be checked, under the classical regularity conditions for the

validity of Cramér—Rao inequality, that

H"(60,00) = —1(60) (6.18)
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where I(fp) is the Fisher information matrix with (¢, 7)th element

0 log f(-’if,f))| 0 log f(X,(?)| ]
99, 8=bo a6, §=boi -

I«,;j(eo) = Ego[ (6.19)

If I(6y) is of full rank and hence positive definite, then H" (6y,8;) is negative
definite and it follows that H(#,6p) has a local maximum at § = 6 since
H'(69,80) = 0. Hence 8 is locally identifiable. Here H"” is the Hessian and
H’ is the gradient of H.

Exponential families : For most of the problems encountered in practice,
the interest is in global identifiability of the parameter rather than local
identifiability. In general, conditions implying global identifiability are not
easy to obtain for the class of densities {f(y,6),6 € ©}. However, for

exponential families, this can be done as will be shown below. Suppose

k
f(y,0) = exp[A(y) + B(O) + >_ 6, Ti(y)] (6.20)

i=1
for all y and 6 € © with respect to a o-finite measure p and further assume
that, for some 8; # 65 in O,

f(y,61) = f(y,02) a-eu]. (6.21)
Then it follows that
k k
Aly)+B(6:1) + ) 0aTi(y) = A(y) + B(62) + Y _6:aTi(y) ae [u] (6.22)
=1 i=1

where 0; = (611, ...,0k1) and 82 = (012, ..., 0x2). Hence

k
B(6:) — B(62) = =) (61 — 0:2)Ti(w) aelu] - (6.23)

i=1

Assume that B(8) is continuously differentiable with respect to # on ©.
Then it follows that there exists 8* € © such that

(61 - 62)'VB(8*) = —(61 — 62)'T(y) a-e [4] (6.24)



6.3. PARAMETRIC IDENTIFICATION CRITERION 125

where VB(0) = (222, ..., 22Ot T(y) = (T1(y), ..., Te(y))! and o de-

notes the transpose of row vector a. Observe that 6* does not depend on

y. In other words

(61 = 62)'[VB(6") + T(y)] = 0 a-e[y]. (6.25)
Note that
Vieg f(y,8) = VB#) + T(y). (6.26)
Hence
(61 — 62)'Vlog f(y,6") = 0 a.e[y] (6.27)

where 8* does not depend on y or equivalently
(61— 62)' V log f(y,0%) V log f(y,0%)" (01 —62) =0 aefu]. (6.28)
Taking expectation with respect to 6*, it follows that
(61— 62)*1(6%)(6: — 82) = 0. (6.29)

Since 6; # 05, it follows that I(#*) is a singular matrix. Hence we have the

following theorem.

Theorem 6.3.2 : Suppose the family of density functions {f(y, ), € ©}

is a multivariate exponential family given by

k
log f(y,0) = A(y) + B(6) + Zoi:n-(y) (6.30)

i=1

with respect to a o-finite measure u. Further suppose that B(6) is continu-
ously differentiable in # € ©. Then every § in © is globally identifiable if the
Fisher information matrix (assumed to be finite) is nonsingular equivalently
of full rank for every 8 € © .

Another situation where global identification is possible is given by the

following theorem.
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Theorem 6.3.3 : Suppose there exist k¥ known functions ¢;(y),1 <i <k
such that

6 = Bglgi(Y), 1 <i<k,0€0 (6.31)

when Y has the distribution F(y,8) under the parameter §. Then every
8 € O is globally identifiable .

Proof : This result is an easy consequence of the fact that if F(y,6,) =
F(y,6,) for all y, then

/ 6:(u)dF (y,6:) = / $i(y)dF(y, 02),1 <i <k

and hence 01'1 = 9,'2, 1 S 1 S k where 0]' = (01]', ...,ij),j = 1,2. ]

The results in this section are due to Rothenberg (1971) and Bowden
(1973).

6.4 Identifiability for Some Structural Models
The identification problem for structural models in econometrics is ex-
tensively discussed (cf. Fisher (1966)). We will not discuss all the results

in this area but concentrate on some special models.
Example 6.4.1 (Reiersol (1950)). Let us consider the following model :
Model (A)

Y1 =n +e¢,

Yo=1n2+ e (6.32)
where

(i) m=a+pfm,

ii independent of (¢4, £5)and
(i) 71 indep (e1,€2) (6:33)
(iif) (e1,€2) is bivariate normal with mean

(0,0) and covariance matrix X .
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Suppose Y; is observable but not Y;. The problem is to find conditions
under which the parameters «, 3 and other unknown parameters and dis-

tributions are identifiable; i.e., the model is identifiable. Let

Y = (2) and € = (2) . (6.34)

Let ¢z, 2,(t1,t2) denote the characteristic function of a bivariate ran-
dom vector (Z1, Z2) and ¢z(t) denote the characteristic function of a ran-

dom variable Z. Observe that

¢y (t1,t2) = Elexp{iYit: +iYata}]
= Elexp{i(m +e1)t1 +i(a + Bm + €2)t2}]
= Elexp{iats + i(t1 + Bt2)n1 + it1e1 + itaea}]
= ¢, (b1 + Btz)de(ts, t2) (6.35)

since 7, is independent of €7 = (¢1,€2). But
1
de(t1, ta) = exp{—tT5t} (6.36)

where tT = (t;,t;) and t = (:;)

Suppose there exist two different structures

S = (,87 «, 2, ¢T)1 (t))

and

§* = (8%,0", T, 6}, (1)) (6.37)

generating the same joint distribution for Y. Then

by (t) = ei"‘t2¢,,1(t1+ﬁt2)exp{—%tTEt}

. . 1 .
e (b + ﬂ*tz)exp{—§tT2 t}. (6.38)
Suppose 3 # B*. Given an arbitrary u, let us determine ¢; and ¢; such that

L1+ Bty =uandt; + 8%t =0 . (6.39)
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This can be done by choosing

-B*u . u
ﬂ_ﬂ*,tg— i (6.40)

Then, the equation (6.38) implies that

t1=

2

b0y () = exps Gt BT S T

where 4T = (—3*,1). Since ¢y, (-) is the characteristic function of a random
variable, it follows that #; is either normally distributed or 7 is a constant
with probability one. Since 72 = a + O, it is obvious that 7, is also
normally distributed or 7, is a constant. In fact (11, 72) has either a nonde-
generate bivariate normal distribution or it is a constant with probability

one. This proves the following result.

Proposition 6.4.1 : A sufficient condition that the parameter g is iden-
tifiable in the Model (A) is that (n;,72) neither is degenerate nor does it
have a bivariate normal distribution, or equivalently if (71,72) has a bi-
variate normal distribution or it is a constant, then the parameter 3 is not
identifiable.

Let us now suppose that the parameter (3 is identifiable in the
Model (A). Then, for any two equivalent structures S and S* given by
(6.37), we have 3 = 5* and hence

b (W[5, (W]

= exp{i(a* — a)(u — Bty) — %(u — Bta, t2)(5* — z)( ﬂt"’) } (6.42)

where v = t; + Bty from (6.39). Let 9, (u) be the principal branch of
log éy, (u) with 4, (0) = 0. Since the expression on the left side of equation
(6.42) does not depend on t,, it follows that the coefficients of 3,3 and

uts must be zero on the right side. Hence

a* = aq,

A1z — Al = B(A1—AYy) (6.43)
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and
Az2 — Azp = B(A12 — Al,)
where A;; and Aj; are (3, j)th elements of ¥ and X* respectively. This proves

that o is identifiable if 3 is identifiable in Model (A). Relation (6.43) proves
that

by ()83, (] = exp{= 3 (s = Ny} (6.44)

Hence the distributions of 7; differ by a normal factor under both the

structures S and S* provided A\;; — A}; > 0.

Example 6.4.2 (Willassen (1979)): Let us now consider a generalization
of the Model (A) discussed in Example 6.4.1.

Model (A*)

X‘i = Y,"'E;,OS'LS’C,

Yo = mw+mYi+...+%Yk (6.45)

Suppose the random variables {X;,0 < i < k} are observable where as
{Y;,0 < i < k} are not observable. {Y;,0 < i < k} are called latent
variables. Here {¢;,0 < i < k} are the unobserved errors. Assume that

(i) the vector £ = (e1,€1,...,¢k) is independent of Y = (Yp, Y1, ..., Y& ),

(ii) e is multivariate normal with mean zero and covariance matrix £
and

(iii) {Y;,1 <4 < k} are independent.
Let X = (X, X1,...,Xx) and t7 = (to,...,tx). Let ¢ x denote the char-
acteristic function of X. It is easy to check that

k

o (1) = explinato — 575 [[ov, (uto +15) . (6.46)
ji=1

Let us call
H= {709717 vy Yk 27 ¢Y1 ye ey ¢Yk}

the latent structure of the model. There may exist several different struc-

tures H* which generate the same joint distribution F for X. The problem
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of identification is to find conditions under which the correspondence be-
tween the family of latent structures H and the family of distributions F
for X is one-to-one.

Suppose H and H* generate the same probability distribution F for X.
Let

H* = {73771*) "'?’Y;’E*’¢*Yl,""¢;k} M

Equating the characteristic functions of X under both the structures H

and H*, we have

k
exp(ivoto — %tTZt)Hd’Y, (vjto +t5)
j=1
1 k
= exp(iyato — EtTE*t)HqS;j (Vito +¢5) - (6.47)

Jj=1
Suppose that the parameters ~i,7s,...,7% are not identifiable. Then

Y; # 75,1 < j < k and yet the distribution F' of X is the same under
both H and H* . Suppose ; # 0. Let us choose (%o, t1, ..., tx) such that

"/;to +t = 0,

Yto+ta = 0, (6.48)
and
Yito + tx = 0.
Then
t it
to=——sti=—yfto= 222<i<k . (6.49)
" N

Substituting these values of tg, ¢, ..., tx in the equation (6.47) we have

k

* oy 2
ij(“’—ﬁl)tl) = expli(s — )t} exp(—s )
j=1

) A t2
= exp(z{707 Mt — => (6.50)

*
1
where p is a positive constant. In other words, the sum of independent

rescaled independent random variables Y;, 1 < i < k is normally distributed.
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By the decomposition theorem of Cramér (cf. Lukacs (1970, Sec. 8.2)), it
follows that Y;,1 < i < k are normally distributed.

Conversely, suppose that Y;,1 < ¢ < k are independent normally dis-
tributed random variables under Model (A*) satisfying the assumptions (i)
to (iii) . Then X = (Xy, X1, ..., Xx) has a multivariate normal distribution
and the distribution of X is determined by its mean vector and its covari-

ance matrix. Note that

E(X;) = E(Yj), 0<j<k, (6.514)
Var(X;) = Var(Y;) + Var(e;), 1<7<k, (6.51B)
k
Var(Xy) = 27]2 Var(Y;) + Var(eo), (6.51C)
=1
Cov(X;,X;) = Cov(Y;,Y;)+ Coviei,ej), 1<14,5<k; (6.51D)
and
Cov(Xg, X;) = v; Var(Y;) + Cov(ep,€;),1<j < k. (6.51F)

Apart from the means of Y;,0 < j < k which are identifiable from the
means of X;,0 < j <k from (6.51A), the system of independent equations
in (6.51B) to (6.51E) is

k(k-1) (k+2)(k+1)
2

2

+2%+1=

in number. However, the number of unknown parameters is

k+(k+2)(k+1)

2 2

since Var(Y;),1 < j < k;vj,1 < j < k and Cov(e;,€5),0 < 4,5 < k are
unknown. Hence there is no unique solution for the system for a given set
of Cov(X;, X;),1 < 4,j < k. In other words v1,72,..., 7% are not identifi-
able. This result together with the one obtained above proves the following

proposition.

Proposition 6.4.2 : Suppose the assumptions (i) to (iii) hold in Model
(A*). A necessary and sufficient condition for the set {v1,72,...,7} to be
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identifiable in the Model (A*) is that the set of (Y¥;,1 < i < k} is not

normally distributed.

Remarks 6.4.1 : (i) If it is assumed that the random vector € in Model
(A*) has independent components, then Willassen (1979) has proved that
nonidentifiability of 71,72, ...,7x implies that Y;,1 < ¢ < k are normally
distributed. We omit the proof.

(ii) Results obtained here continue to hold if the Model (A*) contains

random vectors X;,Y;,&; and the coefficient 4, are matrices of suitable
dimensions. One has to use the Cramér decomposition theorem in the

multivariate setup (cf. Cuppens (1975, p. 109)) in this case.

(ili) An alternate approach to obtain these types of results is due to
Linnik (1964) and Rao (1966, 1971) via functional equations as discussed
in Chapter 2 .

Example 6.4.3 (Rothenberg (1971)): Consider the nonlinear regression
model

}/i =hi(9,$i)+€i,1 Slﬁnﬂlzk
where 6 € RF h; is twice differentiable in 6 and {e;} are iid. N(0,1)

random variables and z; are known constants. It is easy to check that the

Fisher information matrix is
I(0) = HOYH(6)T
where
H(0) = ((hi(0,z;)))kxk
and 0 is locally identifiable if H(#) has full rank.

Example 6.4.4 (Bowden (1973)): Suppose Y = (Yi,...,Y;)T is multi-
variate normal with mean Xy and nonsingular covariance matrix Xy. Let
6 = (3,Z). Then the Kullback—Leibler information number is
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H(O,00) = % og(S2)
+5 an,zo[(Y X Bo)"T5 (Y = X o))
~ 5B mal(Y = XBTSY - X))
- %log((if:tio)
5k = tr 27180 — (8- 6o)T X7 £7IX(8 ~ o)
and -
a5 = ~(XETX)(B - bo).

It is clear that aH = 0 for B # Bp only if X does not have full rank. In fact
if X has full rank, then S, is identifiable and if 8 = (3, ¥) is observationally
equivalent to 8y = (Bg, o), then 8 = By. In this case

1 detX 1
H(9»90)=§ (dt;)‘*' =(k — tr Z718y).

If this equation H(0,6p) = 0 in ¥ has only one solution ¥ = X, then 6§,
is identifiable. If X does not have full rank, then 8; is not identifiable and

hence 6y is not identifiable.

Example 6.4.5 : Consider the linear model Y = X3 + € where X is the
design matrix, E(¢) = 0 and the covariance matrix of & is 62I. Then S is
identifiable if X has full rank but o2 is always identifiable. This can be

seen from the following remarks. Note that
E(Y) = XB and Cov(Y) = 0?1

It is obvious that two different values of o2 in the model cannot give the
same covariance matrix for Y. Hence o? is identifiable always. Suppose

there are two values of 8 (say) S, 81 for which E(Y") is the same. Then
E(Y)=XB=Xp

and hence

X(Bo—p1) =0.
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If X has full rank, then 8y = 3; and hence (3 is identifiable. If X does not
have full rank, then there exist 8y and 8;, 8y # Bi, such that

X(Bo— 1) =0.

Further information about the distribution or parameter restrictions on 8

are needed to identify the parameter 3.

6.5 Further Remarks on Identifiability

(i) It is useful to note that if a vector parameter 6 is identifiable in a
model and g¢(-) is a single—valued function of 8, then ¢ = g(#) is identifiable.
Here, by a single-valued function, we mean that if ¢ = ¢g(0) and ¢* =
g{0*),then ¢ # ¢* implies 8 # 6*. It is possible that the parameter @ itself
may not be identifiable but there might be a function v(6) (nonconstant)
which is identifiable. Then 8 is said to be partially identifiable and ~ is said
to be identifiable.

(ii) It is possible that two structures are not strictly observationally
equivalent but nearly identifiable or there might be situations where the
problem of near unidentifiability might occur as for instance in the model
discussed in Kumar and Gapinski (1974) and Kumar and Asher (1974).
Here the question of degree of identifiability is also relevant. We do not go
into the discussion here and the problem does not seem to have received
attention. The problem is akin to the discussion on stability of characteri-
zation of probability distribution.

(iil) It is interesting to observe that if there exists a consistent estimator
for a parameter 8, then the parameter is identifiable. This can be seen from
the following arguments. Suppose 8 is not identifiable. Then there exist
at least two different values of the parameter (say) 6; and 6, leading to
the same distribution for the observations. If é,, is a consistent estimator
of § based on the observation (X1, Xs, ..., X,,), then én should converge to
both 6; and #; in probability as n — oco. This is impossible since 8; # 6,.
This proves that the existence of a consistent estimator for # implies its

identifiability . However, the converse is not true in general (Gabrielsen
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(1978)). This can be seen by the following example. Consider the stochastic
model

Yi=8p +¢ei,1<i<n (6.52)

where p is known with |p| < 1,¢; i.i.d. N(0,1) and 8 > 0 but unknown.
Since

E(Y:) = Bp*
and p is known, it immediately follows that 3 is identifiable. However, there
exists no consistent estimator for 4. This can be seen from the following

analysis. It is easy to see that
n n
B = PV (6.53)
i=1 i=1

is the maximum likelihood estimator of 8 based on (Y3,...,Y,). It can be
checked that

E(Bn) =8 (6.54)
and

o7 = Var(Ba) = 1/(26/)2‘) L
" = p*(1 - p*")

Hence 02 — 6% = 1—;5i as n — co. Observe that 8, is N(B,02). Hence
Bn AN (B,0?). If B, were consistent for 8, then 3, & 8 by definition and
hence 3 5 B which contradicts the fact that 3, 5N (8,0?). Hence 3, is

inconsistent for 3.

(6.544)

Let us consider a test of the hypothesis Hy : 3 = 0 against the alter-
native H; : 8 > 0. The uniformly most powerful (UMP) level « test for

testing Hy against H; has the critical region
[Bn > Unzl—a]

where 21, is such that Pr[Z > 2;_,] = a and the random variable Z
has the standard normal distribution. It is easy to check that the power
function 4, (3) of this UMP test is given by

() = ¢ L — 1) (6.55)

On
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where ® is the standard normal distribution function. Observe that no
other test depending on Y3, ..., ¥, has more power than 4, ().
Suppose G, is a consistent estimator of 3. Let us consider the test which

rejects Hy if 85 > 1. For any 8 > 0, power of this test is

T (B8) = Prglf; > 1] .

Since the test based on [‘In is the UMP test, it follows that

A (B) Z 7 (B) -
Hence
Tim () 2 lim v (8) .
But
Tim 3a(8) < 22 —z10)
Hence
Tim a() < 82— 210 (6.56)

Since G} is consistent for 3, it follows that
Yu(B) — Prg(B>1)asn — oo (6.57)

which is equal to 1 for 8 > 1. This contradicts the inequality (6.56) since
<I>(§ — 21-4) < 1. Hence there exists no consistent estimator for S.

(iv) Example 6.4.5 gives the impression that both estimability as dis-
cussed in the statistical literature and identifiability are one and the same.
Indeed, they are equivalent in the context of linear models or when the
distribution of the observation vector Y has a multivariate normal distri-
bution. See the discussion in Mitra (1980) or Bunke and Bunke (1974).

(v) Extensive discussions on identification of structural economic models
are given in books on econometrics. For instance, see F.M. Fisher (1966).
Moran (1971) surveys the problem of estimating a linear relationship be-
tween variables which are observed with errors known as “errors-in-variables
model.” The variables could be either fixed variables (functional relation-

ship) or random variables (structural relationship). Several results were
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discussed on identifiability for such models in Moran {(1971). For related
results on identifiability problems in time series models, see Tigelaar (1982,
1988, 1990) and Deistler and Hannan (1988). We have discussed sufficient
conditions for identifiability of a model. The basic problem is to obtain
necessary and sufficient conditions. As we have noted already, the model
specification for identifiability requires restrictions to be imposed on the
family of distribution functions {F(z,8),6 € ©} or the family of density
functions {f(z,6),0 € ©} and O so that identifiability is achieved. How-
ever, there may exist different sets of restrictions that might achieve the
same goal, namely identifiability. The question is how to choose among
such sets of conditions. Is it possible to arrive at a minimal set of sufficient

conditions for identifiability?

6.6 Identifiability for a Generalized Proportional Hazard Model
Econometricians studying labour market phenomena have developed
methods for the analysis of duration of unemployment (cf. Lancaster
(1979)). One of the methods that was proposed in Lancaster (1979) is a
generalization of the proportional hazard model developed by Cox (1972).
The model tries to explain the length of an individual spell of unemploy-
ment or equivalently the probability of leaving the state of unemployment.
Let the probability that an individual leaves unemployment in the interval
[t,t + At) be 6(t, ¢, B)At where t is the time elapsed since the beginning of
the spell of unemployment, z is a vector of covariates and 3 is a parameter

vector . Suppose

6(t, z, B) = ¢(, B)Y(H)V (6.58)

which generalizes the proportional hazard model introduced by Cox {(1972).
The reasoning behind the model (6.58) is that the function ¢(x, 3) is pos-
sibly subject to a specification error since there might be some covariates
which have been ignored either due to unobservability or due to the ig-
norance of the underlying mechanism and this specification error may be

measured by a positive multiplicative disturbance V. The function ¢{(z, 3)
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is interpreted as the observed and V as the unobserved heterogeneity . The
function 1 specifies the time dependence on the probability. If ¢ = 1, there
is no time dependence on the probability. It is easy to see that the duration

distribution is given by
Gta.p)=1- [ exl-d(e.HZOUF@)  (659)

where Z(t) = f(f 1(s)ds and F is the distribution function of the random
variable V. Lancaster (1979) has given methods of estimation for 3 for
given functional forms of ¢ and Z and a given distribution F of V. These
methods of estimation are meaningful only when G identifies ¢, Z and the
distribution F of Y. Identifiability problems of this nature were investigated
by Elbers and Ridder (1982) and Heckman and Singer (1984) under different
conditions mainly on the random variable V' and covariates £ . We now

discuss their results briefly.

Identifiability when E(V) < oo : Let {G(t,x),z € S}, S C R* be a fam-

ily of strictly increasing distribution functions represented by the relation
G(t,z) =1— E{e¢®@2Z0OV} ¢t >0,z € S. (6.60)

Here and in the following discussion, we suppress the parameter vector 8
in ¢. Let us assume that the following conditions hold :
(Ai) V>0and E(V) < 0.

Without loss of generality, assume that

E(V) =

13 (6.61)
(Ai)  Z(t) = /:w(s)ds, £>0 (6.62)

where 9 > 0 and % is locally integrable .
(A iii) The function ¢ is positive, differentiable and nonconstant on RF.
(A iv) S is open in RF .
Since G(t,z) — 1 as t — +00, it follows that Z(t) — oo as t — oo from
(6.60). Furthermore G(0,z) = 0 for all € S since Z(0) = 0 from (6.62).
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Let o

My (s) = /0 e F(dv), s < 0. (6.63)
Since the support of F is contained in [0, 00}, it follows that the moment
generating function My (s) exists and is bounded between 0 and 1 for all
8 < 0. Since E(V) is finite, it follows that My is differentiable on (—oc, 0)
and infact

M (0) = B(V)

(cf. Feller (1966, p. 412)). Let us note that F is uniquely determined by
My . Observe that

G(t,z) = 1 — My(-Z(t)é()), t > 0. (6.64)

Theorem 6.6.1 (Elbers and Ridder (1982)): Suppose differention under
the integral sign with respect to ¢ is permissible in (6.60) and the assump-
tions (A i) to (A iv) hold. Then G identifies (¢, Z, F') with the proviso

that ¢ is identified up to translation by a constant.

Proof : It is easy to see that G is differentiable with respect to ¢ under the

hypothesis. Let g(t,z) denote the derivative of G with respect to ¢. Then
o0
g(t, ) = ¢(x)y(t) / ve VP E@ZO F(dy),x € S,t > 0. (6.65)
0

It is easy to check that g(t,&) > 0 for all £ and « € S. In particular, for a
given xg € S,

g(t, ) d(x) [Jo ve ¥ @ZOF(dy)
9(t,zo)  d(xo) [, ve~vH(EZ() F(dv)

(6.66)

for allt > 0 and # € S. Let t — 0. By the bounded convergence theorem,
it follows that

o0 o o]
/ ve Y@V Z F(dy) — / vF(dv) < oo (6.67)
0 ]

for every € §. Hence

gt,r) _ $(=)
10 g(t,20)  H(@o)
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or equivalently

#() = #(=0) lim g—g((tij—o)) . (6.68)

This relation shows that the family of densities {g(¢,),t > 0} determine

¢(x) up to a constant factor. In view of the relation (6.64), it follows that
1-G(t z) = My(-Z(t)¢(x)) (6.69)

and hence
-Z(t)¢(z) = My (1 - G(t,x))

or equivalently

— _1 —
_ My G(t"")),tzo,mes . (6.70)

This relation defines the function Z(t) provided M, *(-) is well defined. Let
T(t,z)=1-G(t,x) . (6.71)
Then
My (T(t, z))
d(x)

Note that the left side of the equation does not depend on x. In particular,

—Z(t) = (6.72)

the partial derivatives with respect to = of the function on the right side

are equal to zero for all  and

ai[M‘;l(T(t, z))] — M} (T(t, :v)) ( ) =0,z€5,t>0

or equivalently

0 (21 oT(t, ) -1 9¢(x)
il A\ = >
¢(z) 5 [My (T(t, z))] oz, Mo (Tt:2)) 55— =0,z€5t20
(6.73)
where s = T'(t,z) = 1—-G(¢, x) or equivalently t = K(s,z) . Note that ¢ > 0
and 0 < s < 1. Such an inverse map K exists since G is strictly increasing

and differentiable in ¢. Then it follows that, for any fixed 7,1 <i < k,
oT(t, m) 6¢(z) _

0,z€ S5,0<s<1.
(6.74)

8@ 5 M7 (5] oDy gy 11 ) 262D
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Solving this differential equation for M, ! it follows that

Myi(s) = C exp{ 28 ¢(@) / ) 1 du} (6.75)

Iz, 12 3= (K (uz) @)

for some constant C. This proves that M;;!(-) is well defined by ¢ and G.
We have already seen that ¢ is determined by G up to a constant factor.
Suppose there exists another random variable W with a distribution F* and

another function r(t) but with the same regression function ¢(z) satisfying
(A i) — (A iv) such that

1-G(t,z) = Mw (—r(t)p(x)). (6.76)

Then, relation (6.74) implies that

1 i 1
Mii(s) = C* exp{2108 ¢(®) - du} (6.77)
0zi Sy o ke @)
and hence, from (6.75) and (6.77), it follows that
-1 cr
MW(3)=?MV (s),0<s<1.
But
dMv(u
—EV—(—lu_o = E(V)=1
and
dMw (u
—lﬁlu —o=E(W)=1.
Hence
My (s) dM(s)
Is—l =1= |s=1
ds ds
This proves that C* = C and therefore
My (s) = Myl(s), 0<s<1
or equivalently
My(u) = Mw(u),u<0. (6.78)

Since V and W have supports on [0, 00), it follows that the distributions of
V and W are the same from Feller (1966, p. 230). [ |
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Theorem 6.6.1 makes use of the fact that the distribution function
G(t, x) is absolutely continuous. However, Theorem 6.6.1 continues to hold

even for discrete distributions G(t, ) as the following arguments will show.

Theorem 6.6.2 (Elbers and Ridder (1982)): Suppose G;(t) and G2(t) are

distribution functions such that
1-Gi(t) = My(—¢:Z(t)),t >20,i=1,2 (6.79)

where ¢; > 0,1 = 1,2,¢1 # ¢2,Z(t) nondecreasing continuous with
Z(0) = 0 and My (-) is the moment generating function of a nonnegative
random variable V. Further suppose that E(V) = 1 and M;! is well de-
fined. Then the numbers ¢;,i = 1,2, the function Z(t) and the distribution
of V are uniquely determined by G;,i =1,2.

Proof : Without loss of generality, assume that ¢; = 1 and ¢; < ¢;.
Suppose that both the triples (Z(t),V,¢2) and (R(t), W,12) satisfy the
relations (6.79). Let

Ly (s) = My(-s). (6.80)
Then
Lv(Z(t)) = Lw(R(1)),t 2 0 (6.81)
and
Ly(¢2Z(t)) = Lw(¢2R(t)),t > 0. (6.814)
Therefore
Y2R(t) = Ly} (Lv ($22(1))),t 2 0 (6.82)
and
Y2R(t) = 2Ly (Lv(Z(t)), > 0. (6.824)
Hence
$2R(t) = Ly} (Lv($22(t))) = ¥2 Ly Lv(Z(#)),t > 0 . (6.83)
Let

f=LyloLy . (6.84)
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Note that R(t) — oo as t — oo and Z(t) — o0 as t — oo since Gy and G,

are distribution functions. Hence
f(t) s o0ast— o0 (6.85)

and
f(¢28) = 92f(s),5>0. (6.86)

Since EV = EW = 1, it follows that f is differentiable with respect to s
and f(0+) = 1 where f(!)(s) denotes the derivative of f(s) for s > 0 and

FO(0+) = limfD(s) (6.87)
(cf. Feller (1966, p. 412)). Let s == ¢25'. Then
F(#38") = v3f(s) (6.88)
from (6.86). In general
f(#38) =93 f(s),s>20,n2>1. (6.89)
Differentiating with respect to s on both sides, it follows that
n
106 = (2) 100, s20n21. (6.90)
Since 0 < ¢ < 1, taking limit as n — oo, we obtain that

FO@) = fD0+) lim (2

n—00 2

= lim (20, (6.91)
n—oo 9
Let s | 0. Then it follows that
1= f0(0+) = lim (—;’ZZ . (6.92)
n—00 2

The last relation holds iff ¢ = ¥, and hence f(1)(s) = 1,s > 0 from (6.91).
Since f(0) = 1, it follows that f(s) = s for all 5. In other words

(L oLy)(s) = 38,8 >0 . (6.93)
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Therefore
Ly(s)=Lw(s),s>0. (6.94)

Since Ly and Ly uniquely determine the distributions of V and W, it
follows that the distributions of V and W are the same. Since ¢ = 95 and
(L' oLy)(s) = s, it follows that R(t) = Z(t) from equation (6.83). This
completes the proof of Theorem 6.6.2. [ |

Identifiability when E(V) = oo: One of the major assumptions in
Theorem 6.6.1 is that E(V) < oo where V is the positive multiplicative
disturbance. There are examples of positive random variabes for which
E(V) = oo, for instance, if the density of V is given by

2

f(’l))=m,0<l‘<00. (695)

Heckman and Singer (1984) have given alternate sufficient conditions for
identifiability to take care of this situation. The condition E(V) < oo
is replaced by a condition on the tail behaviour of the distribution of V.
They assume that V has an absolutely continuous distribution with density

f such that
c

flv) = (log v)bv1+e L(v)
where ¢ > 0,0 < e < 1,6 > 0 and L(-) is a slowly varying function in the

as v — 00 (6.96)

sense that
L{vu)

L(v)

Here ¢ is specified number in (0,1). If V is a discrete random variable

—lasv—ooforu>0. (6.97)

having masses at 0 < vg < vy --- with jumps p; at vg, then it is assumed

that
c

(log k)6k1te L(k)
where ¢ > 0,6 > 0,0 < € < 1 (specified ) and L is slowly varying. In

v ~ ck and pg ~ (6.98)

addition to these conditions on the distribution of V, Heckman and Singer
(1984) prove identifiability under additional conditions on Z(t) and ¢(x).
We omit the details.
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Identifiability in some parametric models when covariates are not

present : Suppose a distribution function G satisfies the relation
G(t)y=1- My[-Z(t)},t >0 (6.99)
or equivalently
g(t) = ZW(¢) /000 ve 2O F(dv),t > 0 (6.100)

where g(t) denotes the derivative of G(t) and Z(1)(t) denotes the derivative
of Z(t). Let us suppose that Z(t) belongs to a parametric family Z(a,t).
Observe that ¢(x) =1 in (6.99) when compared with relation (6.64). The
presence of at least one covariates in the model is essential for the validity
of results in Theorem 6.6.1. We prove now identifiability in a parametric
model even when no covariate is present in the model. For a general dis-
cussion of such results, see Heckman and Singer (1984). The identifiability
problem can be stated as follows : suppose

o0
gi(t) = Z(l)(ai,t)/ ve vZ(@t) B (dy) (6.101)
0

fori=1,2. If go(t) = g1(t) for all t > 0, can we conclude that o = a; and
Fy = Fy?

We now discuss one such example due to Heckman and Singer (1984).
Suppose

) -1
Z%(a,t) = exp(y(

) (6.102)

where a = (v, ), A # 0. This class of models is called the Box-Cox haz-
ard models introduced by Flinn and Heckman (1982). If A = 1, then the
model reduces to the Gompertz hazard model. If ¥ = 0, then the model
is exponential and, as A\ — 0, the model approaches the Weibull hazard

model.

Proposition 6.6.1 (Heckman and Singer (1984)) : Suppose E(V) is finite
and A < 0. Then a* = (v, A, F) is uniquely determined by g defined by
(6.101) whenever v # 0. If v = 0, then F is uniquely determined by g.
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Proof : Suppose there exists o = (v;, Ai, F;),4 = 0,1 such that

90(t) = g1(¢),t 2 0
where g; is as defined by the relations (6.101) and (6.102). Then

A
_ o) _ expln(SEfE ver iR (do)
90(?) exp[fyo(txf\o‘l)] J5° ve=Z(a0:t) Fy(dvw) ’

Suppose y9 # 0 and Ag < 0. It can be checked that

>0. (6.103)

whenever A1 # Ag. This contradicts the relation (6.103). Hence A; = Ag.
If 71 # 70, then

. tho — 1 0 ifyi >
lim exp(——(71 — %)) = , (6.104)
t=0 0 oo ifrn <
again contradicting (6.103) since
Z(a;,t) > 0ast — 0 (6.105)
and
o o)
/ ve 2@t E(dy) - Ep (V) <ocoast— 0. (6.106)
0
Hence 7; = vo. This proves that
oo o0
/ ve~Z( @ B () =/ ve 2NV F (dy), ¢ > 0 (6.107)
0 0

where ap = a1 = a. Since Z(a,t) is a continuous function taking all values

between [0, 00), it follows that the Laplace of transform of F}* defined by
F}(dv) = vF;(dv),i = 0,1 (6.108)

is identical. Since F}*,i = 0,1 with supports on [0, c0) are uniquely deter-
mined by their Laplace transforms, it follows that Fy and Fy are identical
being distribution functions.

If v =0, then Z m(a, t) = 1 for all t and the result is a consequence of

uniqueness of Laplace of transforms. This completes the proof. n

For more examples, see Heckman and Singer (1984).



Chapter 7

Identifiability in
Reliability and Survival
Analysis

7.1 Introduction

In the previous chapter, we have seen problems of identifiability in
many stochastic models encountered in econometric modeling. As we have
pointed out earlier, the notion of estimability of a parameter in a model
is meaningful only when the parameter is identifiable in the model. Recall
that a parameter § € © is nonidentifiable by a random vector Y if there is
at least one pair (6,0'),0 # ¢ in © such that the distributions of Y are
the same under both 8 and #'. This type of identifiability may be termed as
parametric identifiability. Suppose the class of distribution functions under
consideration are not indexed by a parameter. Then we have the problem of
identifiability in a nonparametric framework. Problems of this type occur

in reliability as well as survival analysis. Let us discuss such problems.

An individual may be subject to two causes of death (or two types of

147
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terminal illness). Let X; represent the lifetime of the individual exposed
to cause i (or disease i ) alone . X;,7 = 1,2 are not observable in practice
and Y = min(X;, X;) is observable. Does the distribution of Y identify
the distributions of X; and X,? Consider a 2-components system when the
components ¢ = 1,2 are connected in series. Let X; be the lifetime of the
ith component. Suppose the system fails if at least one of the components
fails and one can observe only Y = min(X;, X3) the lifetime of the system.
Does the distribution of Y identify the distributions of X; and X5 ? Let X,
and X2 be the demand and supply for a commodity at a given price p. Then
the amount that is transacted in the market is Y = min(X;, X5). Does the
distribution of Y determine the distributions of X; and X5 ? Such problems
are termed the problems of competing risks in the literature on reliability
and survivial analysis. Associated with the problems of competing risks is
the dual problem of complementary risks (Basu and Ghosh (1980)). Let us
again consider a 2-component system connected in parallel. Let X; and X,
be the lifetimes of the two components. The system life Z = max{X;, X5)
is observable. There are examples where X; and X5, are not individually
observable but Z is, for instance, the flight of a twin engine aircraft or a
satellite etc. Another example is the failure of internal body organs like
kidneys : exact time of failure of each kidney may not be known but when
both kidneys fail to function, the time to death can be recorded. The
problem again is to find whether the distributions of the components X;

and X, are identifiable when the distribution of Z is observable.

For a survey of identifiability results in problem of this nature, see Basu
(1981), Puri (1979) and Birnbaum (1979).

Let us consider a specific example. Suppose X; and X3 are independent

random variables with distribution functions F; and F; respectively where

Fi(r) = 1—-e™% >0
= 0, <0
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for i = 1,2 where A; > 0,7 = 1,2. It is easy to see that ¥ = min(X}, X3)

has the exponential distribution Fy given by

Fy(y) = 1-e bty y>0
= 0, y<0.

Note that the parameters A\; and Ay in F; and F, respectively are not
identifiable from the distribution Fy of Y since there are infinite number

of pairs (A1, A2) leading to the same value of A = A; + As.

Even though the problem discussed above leads to nonidentifiability, it
is sometimes possible to rectify the problem by observing another random

variable. We will discuss this later in this chapter.

7.2 Identifiability
Let us recall the definition of identifiability given in Chapter 6.

Let Y be an observable random vector with distribution function
Fy € F = {Fy,6 € ©}, a family of distribution functions indexed by a
parameter 8 € ©. 0 is said to be nonindentifiable if there is at least one
pair (0,8'),0 # 6',6,0' € © such that Fy(y) = Fg(y) for all y. Otherwise
# is said to be identifiable.

Suppose 8 itself is not identifiable but there exists a function () (non-
constant) which is identifiable, that is , for any 6,8’ in ©, Fy(y) = Fyp(y)
for all y implies that v(6') = v(8). Then 6 is said to be partially identifiable
and + is said be identifiable.

Suppose § is not identifiable but an additional random variable I can
be introduced such that the joint distribution of (Y, I) identifies §. Then
the identifiability problem is said to be rectifiable.

From the definition identifiability of a parametric function ~(8) of 8, it
follows that (@) is identifiable iff different points in the range of v corre-

spond to different F in F, or equivalently, iff v coincides with a function a
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on F such that
Y(6) = a(Fy) .

It is easy to see that every function %(-) of an identifiable parametric
function ~(6) is identifiable and a vectorial function is identifiable iff all its

components are identifiable.

For an extensive discussion on identification in statistical inference, see
Van der Genugten (1977).

7.3 Identifiability in the Problem of Competing or Complemen-
tary Risks (Independent Case)
Suppose Xi, X3, ..., Xi are independent random variables with contin-

uous distribution functions Fi, F5, ..., F), respectively. Let
Y = min(X,, X2, ..., X&) - (7.0)

It is clear that the distribution function of Y is given by

k
Fy(y)=1-J(1 - Fi(y)), —o0<y < oo. (7.1)

i=1
If X;,1 < i < kareiid. random variables, then Fi(y) = F(y)for 1 <i<n

for some distribution function F' and hence
Fy(y)=1-(1-F(y)*, —co<y<oo . (1.2)

It is obvious that the distribution function Fy () determines F(-) uniquely.
In fact

Fy)=1-[1-Fy(y)]"* -co<y<oo. (7.3)

If X;,1 < i< k are independent but not identically distributed, then the
distribution functions F;,1 < 7 < k may not be uniquely determined from
Fy using the equation (7.1). In other words, the individual distribution
functions F;,1 < ¢ € k may not be identifiable from the distribution func-
tion Fy. However, it is easy to check that identifiability holds for k-out of-p
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identical component systems. For a discussion of identifiability for k-out

of-p systems, see Section 7.7.

It is clear that Pr(X; = X;) = 0 for all 4 # j. Let I be the random
index j for which ¥ = Xj;.

Theorem 7.3.1 (Berman (1963)): The joint distribution of (Y, I) uniquely

determines the distribution functions F;,1 < < k.

Proof : Let
Hij(z)=PrlY <z,I=j]. (7.4)

Then, for = such that F;(z) <1

H;j(z) = Probability that X; is the minimum

among X3,...,X, and X; is less than or equal to z

=/_H1—' F;(t)

i#tj
1<i<k

= / H D ar 1)

= - / {1- ZH (t)}dlog[l — F;(t)] (7.5)

i=1

since

k
1->"Hi(t) = 1-Pr(Y <t)

= Pr(Y >1t)
k
= [[a-F@) .
i=1
Therefore .
dH;(z) = —[1 = Y _ Hi(x)dlog[l — F;(z)] (7.6)

=1
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or equivalently

T k
Fi(z)=1- exp{—/ A=Y Hi(t) 'dH;(z)},1<j<k . (7.7)
- i=1

This proves that the distribution functions Fj(z),1 < j < k are determined
uniquely by the class of functions H;{(z),1 < i < k. In other words, the
joint distribution function of (Y, I) identifies the distribution functions F;,
1<:i<k. |

Remarks 7.3.1 : The random variable Y = min(X;,... Xy) is called
nonidentified minimum and the random vector (Y, I) is said to be identified
minimum. Since max(Xy,...,Xy) is the same as —min(—Xj,...,—X}),
it follows that the distribution of the identified maximum (Z,J), where
Z = max(X1,...,Xx) and J is the random index j for which Z = Xj,

uniquely determines the distribution functions Fj,1 < j < k.

Let us now suppose that the extrema Z or Y do not identify the distri-
bution functions F;,1 < i < k. We now give some sufficient conditions on

the family {F;} for identifiability.

Theorem 7.3.2 (Anderson and Ghurye (1977)) : Let F be a family
of density functions f on the real line which are continuous and posi-
tive to the right of some point a and such that if f and g belong to F,
then lim,_,o[f(x)/g(z)] exists and is either 0 or co. Suppose X1, ..., Xk
are independent random variables with densities fi,..., fr respectively in
F and Wi, Wa,,...,W; are independent random variables with densities
g1, 92, ---, g¢ respectively in F. Further suppose that max(Xy, ..., Xy) and
max(Wi, ..., W) are identically distributed. Then k = £ and there exists
a permutation {i1,...,ix} of {1,2,...,k} such that the probability density
function of Wj is f;,,1 < j < k.

Proof : Let Fi(r) be the distribution function of X; and G;(z) be the
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distribution function of W;. By hypothesis, we have

Pr[max X; <z]=Pr[max W; <z], —co<z < 0.
1<i<k 1<5<¢t

Independence of {X;} and independence of {W;} imply that
k 3
[1 Fz) =[] Gi(z), —0 < z < co. (7.8)

i=1 j=1

Hence, for all z > «,

k ¢
Zlog Fi(z)= Zlog Gj(z) .
=1 j=1

Differentiating with respect to £ on both sides, we have

filz) _ ~gi(@)
2 Fi(x)—-;ij(z),a<x<oo. (7.9)

By a change in the notation, we can rewrite the equation (7.9) in the form

k+¢ f(IL')
Zai L =0,a<z<00 (7.10)
2 @)
where
a;=+1,1<1<kj apy; =-1,1<j< 4
and

fr+i =9, Fr+j =G, 1 <j< L.

Suppose there exists a density function f; (say) f1 among f;,1<i<k+1
such that

. fr(®)
zll»n;o f—l(x_) =0orl
for1<r<k+£ Let
N={i: filz) — lasz — 0o} . (7.11)

" fi(z)
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Dividing both sides of the relation (7.10) by fi1{z) and allowing z — oo, we

have

T*a; =0 (7.12)

where £* denotes the sum over i € M. Since X*a; = 0 and a; is either
+1 or -1, it follows that A contains an even number of elements and half
of these are from {1,2,...,k}. Hence a certain number of f; in (7.9) are
identical to one another and to the same number of g; . Observe that if
i € N, then fi(z) = fi(z) for all z, for if f;(x) # fi(z) for some z, then
limg 400 % = 0 or oo by hypothesis contradicting the definition of N.
Subtracting these identical terms from both sides of (7.9), we have a new
equation of the same form but with fewer terms. Repeat the process until
each term on one side of (7.9) is matched with a term from the other side
of (7.9). If k = £, then the theorem is proved. If k # £, (say), k < ¢, then
£ — k of g; are such that g;(z) = 0 for z > a contradicting the assumption

on F. Hence k = £ and {f1, ..., fx} is a permutation of {g1,...,gx} |

A result analogous to Theorem 7.3.2 can be proved for the case of min-

ima of sets of random variables. We omit the proof but state the result.

Theorem 7.3.3 (Basu and Ghosh (1980)): Let F be a family of probabil-
ity density functions on the real line with support (a,b), —co < a < b < o
which are continuous and are positive to the left of some point « and such
that if f and g are any two distinct members of F, then lim,_..(f(z)/g(z))
exists and is equal to either 0 or oo. Let Xy, X»,..., Xx be independent
random variables with density functions fi, fs, ..., fx respectively in F and
Wi, Wa, ..., W be independent random variables with density functions in
F. Suppose that min(Xy, ..., X5) and min(W;, ..., W;) have identical distri-
butions. Then k = £ and there exists a permutation {41, ...,%x} of {1,2, ..., £}

such that the density function of W; is f;;,7 = 1,2,..., L.

Example 7.3.1 (Anderson and Ghurye (1977)): Consider the family F of
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normal density functions

1
eXP{—ﬁ(x — )P}, —co < p<00,0<a<00.

flaz;p,0%) =

1
V2ro?
The family F satisfies the conditions of Theorem 7.3.2 and Theorem 7.3.3.
In fact
0 if o2>c02o0rifo?=02u1>us

. 2
b f@iod)

: 2 2 e 2 2
= oo if of<ojorifof =04 pu <pe
s—xoo f(z;p1,0%) ! T

1 if of=0d,p=pm
Hence the conclusions of the Theorems 7.3.2 and 7.3.3 hold and the family

F is identified by the minimum or by the maximum up to a permutation.

Example 7.3.2 : Consider the family F of exponential densities

fz;A) = 2de™ >0
= 0, z<0
where A > 0. This family F satisfies the conditions stated in Theorem

7.3.2. Hence the conclusion of Theorem 7.3.2 holds and the family F is

identified by the maximum up to a permutation.

Remarks 7.3.2: There are families of densities for which the assumptions
in Theorem 7.3.2 do not hold and yet they are identified by the maximum

up to a permutation . This can be seen by the following examples.

Example 7.3.3 (Anderson and Ghurye (1977)) : Consider the family F of

exponential densities
f(z,0) = e @0 >0

= 0, fl,‘sg

where —00 < 0 < 0o. It is easy to check that the family F does not satisfy
the conditions stated in Theorem 7.3.2. In fact, for 0 < 6; < 64,

f(x»02) _ e‘(z_%) —_ 692—91
f(z’ol) - e—(ﬁ—gl) =
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for £ > 65 and hence

H f(x? 92) — 92—91
% f@0) ¢

which is neither zero nor infinity. Let X,,..., Xk be independent ran-
dom variables with exponential densities f(z,0;),1 < i < k respectively.
Let W1,..., W, be independent random variables with exponential densi-
ties f(z,05),1 < j < £. Suppose that maxi<;<x X; and maxig;<¢ W; are
identically distributed. It is easy to see from the structure of the distribu-
tion functions of max;<;<x X; and max;<;<¢ W; and the fact that they are
identically distributed that

max 6; = max ¢ .
1<i<k 1<i<e 7

Since the distribution functions of max;<;<x X; and max;<j<¢ W; are the
same for values of z between the largest of 6;’s and the second largest of
distinct 6;s, it follows that the number of 6;,1 < i < k equal to the largest
of 6;’s is the same as the number of 9; = maxi<i<k 0; (= max;<j<e 0;) and
the second largest 8; is equal to the second largest 9;. Proceeding this way,
we obtain that k = £ and {61, ...,60;} is a permutation of {61, ...,6;}.

Example 7.3.4 (Anderson and Ghurye (1977)) : Consider the family F of

double exponential densities
f(z,0) = "lz ol 00 <z <0

where —00 < § < oo. It is again easy to check that this family does not
satisfy the conditions stated in Theorem 7.3.2 and yet it is identifiable by
the maximum up to a permutation. This can be seen in the following way.
Suppose X;,1 < ¢ < k are independent random variables with densities
f(z,8;),1 <14 < k respectively and Wj,1 < j < £ are independent random
variables with densities f(z, 0;-), 1 < j < £ respectively. Further suppose
that

max X; and max W;
1<i<k 1<5<¢
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are identically distributed. Then, it is easy to check that

k

[ -gee) = 1‘[|1——e-<$ &l

i=1
for large . Without loss of generality, assume that k < £. Let 2 = €%,

Multiplying both sides by z¢, we have

2tk ﬁ(z - lea") = f[(z - leg;)
=1 2 Jj=1 2

Since this equality holds for all z = e*,z large, it follows that the zeroes
of polynomials in z on both sides should be the same. Hence k£ = £ and
{0:,1<i<k}={6;,1<j<t}

Example 7.3.5 : Suppose a random variable X; has the gamma density
function
e-x / ﬂi xai -1

fz04,8) = W,m >0

= 0, <0

where a; > 0,5; > 0 and at least one of «; and 3; is different from unity.
Suppose X;,1 < i < 4 are independent random variables and the random
variables min(X, X3) and min(X3, X,) are identically distributed. Then,
Basu and Ghosh (1980) proved that either

(a1, 02) = (as,a4) and (B, B2) = (B3, Pa)

or
(a17a2) = (047 03) and (ﬂl,ﬁ2) = (ﬂ‘i’ )83)
However the family F of density functions {f(z;a, 3)} does not satisfy the

conditions of the theorem. We omit the details.

Example 7.3.6 : Suppose X; has the Weibull density

f(z;pt') 01) = %::wpi‘le—zpi/e" > 0
= 0, z S 0
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where 6; > 0 and p; > 0. It is easy to check that the distribution function
of X; is

F(z;pi,0;) = 1—¢e /% >0
= 0, z<0.
Suppose X;,1 < ¢ < 4 are independent. We leave it to the reader to check
that the above family of densities does not satisfy the conditions stated in
Theorem 7.3.3 (cf. Basu and Ghosh (1980)). Suppose the distribution of
min(X1, X5) is the same as that of min(X3, X4). Then

(1 - Fy(2))(1 - Fa(z)) = (1 — F3(2))(1 — Fi4(z)), —00 < £ < 00 .

Taking logarithms on both sides, it follows that

ZP1 P2 gP3 P4
E+9—2=0—3+E,z>0.

Suppose p; # p2. Without loss of generality, assume that p; < ps. Taking
limits as £ — 0 and z — oo in the above relation, it can be shown that
p1 = min(ps,ps4) and ps = max(ps,ps). Since p; # p2, it follows that
D3 # p4. Suppose p3 < pg. Then it can be checked that p1 = p3 and p; = p4.
It is easy to see that #; = f3 and 8, = 4 by the linear independence of the

family {zP,p > 0}. Hence

(P1,01) = (p3,63) and (p2,62) = (p4,04)-

If p; > pg, then it can be shown by similar arguments that

(P1,601) = (p4,64) and (p3,62) = (p3,63)-
This shows that the Weibull family is identifiable up to a permutation.

Remarks 7.3.3 : We remark that even though several examples given
above illustrate families of densities identified by the maximum or minimum
up to permutation, there exist families which are not identifiable by the

maximum as shown by the following example .
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Example 7.3.7 : Suppose a random variable X; has the exponential den-
sity
f(xa A,) = ’\ie_,\iz,x >0

= 0, z <0
for 1 <i < mn. Suppose X;,1 < i < n are independent. ¥ = maxj<i<n X;-
Then Y has the exponential density

F@,d) = AeM,y>0
= 0, y<0

n n
where A = Z)"" Hence the distribution of Y specifies Z)‘i but not

=1 i=1
the individual A;,1 < 7 < n. This does not contradict the conclusion in

Example 7.3.2 where two independent samples were considered.

Let us again consider the problem studied in Theorem 7.3.2. This can
be stated as follows: If FiFy---Fp, = G1G2- -Gy where F; and G; are
univariate distribution functions, then, is k = £ and is {Fy, F»,..., Fx} a
permutation of {G1, G2, ..., G¢} when k = {7 Let us consider a special case

of this problem again when
Fi(z) = F(a;z) and Gj(z) = F(b;z)

where F is a distribution function and a;,b;,1 <1 < k,1 < j < £ are real

numbers. Define

k £
HF(ai:L') = H F(bjzr), -0 <z <00. (7.13)
=1 j=1
Note that a; and b; are necessarily positive since Fij(z) = F(a;z) and

G;(z) = G(bjz) are distribution functions by assumption. The ques-
tion is to find out whether k¥ = £ and {a;,as, ..., a5} is a permutation of

{b1,b2,...,be} under some conditions.

(A1) Suppose the function
_ F'(z)

(7.14)
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where F' is the derivative of F can be expanded in an infinite power series

about zero so that

o (n)
g(z) = Zx nd (0 ,—a<zc<a (7.15)

where g(™(0) is the nth derivative of g(-) evaluated at 0 and 0 < & < oo.
Taking logarithms on both sides of (7.13) and differentiating with respect

to x, we have

k
F'(a;
> o) - zj

i=1

,—a<z<a. (7.16)

Under the assumption (Al) on g(m) stated above, it follows that

Z(Z o+l sg( s) 0)) _ Z(st+l sg 0)) —a<z<a (7-17)

i=1 s=0 j=1 8=0

or equivalently, for —a < z < «,

Z(Z r+1)qe 82(0) (0 i(st“ (7.18)
=0 =1 s=0 j=1

by Fubini’s theorem under the additonal assumption that the series
(A2)

o k

S Stz 00

8=0 =1

i ze:bs+1 3g( )(0)

8=0 j=1

and

are absolutely convergent for every z in —a < = < a. Equation (7.18)

implies that
0) )0
(Z s+1 g’ ( - (Z s+1 gy (7.19)

for all integers s > 0 since the power series are identical in —a < z < «,
where a > 0. In particular, it follows that
£

k
Sartt =St s >0 (7.20)
i=1

j=1
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since g(*)(a) # 0 for sufficiently large s > 0 which in turn follows from the
fact that the function g(z) has infinite power series expansion by (A1).
Note that a; > 0,b; >0for 1 <i<k,1<j<{ Let s — co. Then

(Za Vs 11218.)( a; as 8 — 00 (7.21)
i<

and
]

E b3)1/8—+ max bjass— 00.
poet 1<5<e
This proves that

;= b; . 22
s M TG (7.22)

Delete the maximum terms on both sides of (7.20) and then let s — oc.
Repeat the procedure. Then it follows that ¥ = £ and {a;,1 < ¢ < k}
is a permutation of {b;,1 < j < ¢} in view of the fact that a; > 0 and
b; > 0,1 <t<k,1<j<{ The above discussion leads to the following
theorem due to Mukherjea et al. (1986).

Theorem 7.3.4: (Mukherjea et al . (1986)) : Let F(z) be a distribution

function and a; and b; be positive numbers such that

HF(a,:c) HFbx h—a<z<a

Jj=1

for some a > 0. Suppose that function g(z) = FTI((;—”% satisfies the assumption
(A1) and the assumption (A2) holds for g(-),{a;} and {b;}. Then k =¢

and {ay,..., ax} is a permutation of {by, bz, ..., b¢}.

Remarks 7.3.4 (Mukherjea et al. (1986)): gives another set of sufficient
conditions for the conclusion in Theorem 7.3.4 to hold. For general para-
metric families, the following result due to Basu and Ghosh (1983) holds.
We omit the proof.

Theorem 7.3.5 (Basu and Ghosh (1983)): Let F = {F(z,0),0 € 8} be a
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family of distribution functions with failure rate functions A(z, #), that is
A@0) =1 f%iz?e)

for all x such that F(xz,0) < 1 where f(z,8) is the density function of

F(z,6). Suppose X;,1 < i < k are k independent random variables

with distribution functions F(z,6;) and failure rate functions Az, 9;) for

1 <4< k. Then Z = min(X,,...,Xx) identifies 6;,1 < 7 < k up to a

permutation iff A(z,6;),1 <1 < k are linearly independent .

Remarks 7.3.5 : An example of a family of distributions satisfying the
conditions stated in Theorem 7.3.5 is the Weibull family discussed in Ex-
ample 7.3.6.

7.4 Identifiability in the Dependent Case

Let Xy, Xo, ..., X§ be k random variables with joint distribution func-
tion F(zy,zs,...,2k). Let Z = min(X1,...Xz)and I =1if Z = X;. In
the previous section, we have discussed the identifiability problem, that is,
identifying the distribution of X;,1 < i < k given the distribution of Z or
that of the identified minimum (Z,I) when X;, X, ..., X3, are independent
random variables. There are physical situations where X;,1 < ¢ < k might
not be independent. The problem of interest is to know whether Z or (Z,I)
still identifies the joint distribution function of (Xy, ..., Xi).

Let us first consider the case £ = 2. Suppose (X, X2) has the joint
distribution F(zy,z2) and the joint density f(z,z2) > 0 for all x; and z,.
Let

F(z1,72) = Pr(X1 > 1, X3 > 3) (7.23)
and

_ OF(zy,x

Fi(z1,22) = % =1,2. (7.24)
Define

Gi(z) = exp{~ / (2, z)d bh—oo <z <oo (7.25)
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.and suppose that

i _Fi(‘z’Z) :
———dz=00,t=1,2. 7.26
/_oo F(z,z) (7.26)

Then G;i(z), i = 1,2 will be distribution functions. We leave it to the reader
to check that the random vector (Z,I) has the same distribution function
whether (X, X,) is distributed with joint distribution function F(z;,z2)

or with joint distribution function
F*(z1,72) = G1(z1)G2(z2) - (7.27)

In other words, independent random variables X} and X3 with distribu-
tion functions G1(z;) and Gz(z2) respectively and random vector (X, X»)
with joint distribution function F(x,,x2) give rise to the same distribution
function for the identified minimum (Z,I). Hence (Z,I) does not identify
the joint distribution F(z;,x2).

The nonidentifiability aspect of the problem was noted at first by Cox
(1959) and further investigations were made by Tsiatis (1975). The above
discussion due to Basu and Ghosh (1978) shows that the problem of iden-
tifiability cannot be resolved in a nonparametric framework when the com-
ponents are dependent. This leads us to the question of identifiability in

parametric families.

We will discuss identifiability for families of bivariate normal distribu-
tions later in this chapter. Let us consider some other families of bivariate

distributions.

Example 7.4.1 : The tail probability of the bivariate exponential distri-
bution introduced by Marshall and Olkin (1967) is given by

F($1,.’E2) = PI‘(Xl >y, X3 > .’112)

exp[—A1z1 — A2Z2 — A2 max(z1, z2)] (7.28)
ifzxy >0,22>0

= 0 otherwise
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where A\; > 0,A2 > 0 and Ajz > 0. Let f;(2) be the conditional density of
Z given I = 4. Observe that the joint density of (Z,I) is

pifi(z) = Ape™™* ifi=0,2>0
= Ade ™ fi=1,2>0
= e ™M fi=22>0

= 0 otherwise

(7.29)

where A= A1+ o+ dppandi=0if Xy =Xp,i=1fZ=X;andi=2
if Z = X,. Here p; = Pr(I = ). It is clear that all the parameters are
identifiable from the distribution of (Z, I). However, if Z is only observable,

then the parameters are not identifiable since the density of Z is

f(z) = Xe™™* ifz>0

= 0 otherwise

and A = A1 + Ay + Ao,

Example 7.4.2 : Consider the absolutely continuous bivariate exponential
distribution with density given by

A/\l(/\z + /\12)

S }exp{—=A1z1 — (A2 + A12)z2}

ifzy <zo

f(z1,22) = {

/\)\2(/\1 + /\12)

= {W} exp{—(A1 + A12)T1 — Agz2}
ifzy >z
= 0 otherwise (7.30)

This distribution was introduced by Block and Basu (1974). Here the joint
density of (Z,I) is given by

pifi(z) = RjLe7*=, 2>0
= O, z S 0

for ¢ = 1,2 where A > 0 and the parameter set (A, A1, Az, A12) is not identi-

fiable but the set (), v+~ x + vl m?T is identifiable. If Z is only observable,

then A is the only parameter which is identifiable.
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Similar results can be obtained for the bivariate exponential distribution
introduced by Gumbel (1960). For further discussion, see Basu and Ghosh
(1978, 1980).

7.5 Identifiability for Families of Bivariate Normal Distributions
(The Case of Identified Minimum)

Suppose a random vector (X1, X3) has the bivariate normal distribution
with the mean vector (p1, u2) and the covariance matrix > = ((0;)). Let
04 = o} and 0i; = poioj,i # j. For simplicity, we write (X1, X) is

BVN(p1, 2301, 02; p). Assume that |p| < 1.

Theorem 7.5.1 (Basu and Ghosh (1978), Nadas (1971)): Suppose (X1, X2)
is BVN (u1, po;01,09;p). Let Z = min(X,Xp)and I =i if Z = X;,1 =
1,2. Further assume that (X3, X4) is BVN(us, t4;03,04; p'). Define Z' =
min(Xas, Xs) and I' = i if Z' = X;,i = 3,4. Let

ar=1-play=1-p2, (7.31)
o2 o1
and
as=1-p Blag=1-p 2, (7.32)
04 03

If (Z,I) and (Z',I’) have the same distribution, then

(11, pio; 01,02; p) = (U3, pa; 03,043 9") - (7.33)

Proof : Recall that (Z,I) is called the identified minimum of (X, X3).
Note that

(0 Z)(p j—p =p<1 (7.34)

and hence at least one of p -gf and p %12- is less than one. In other words,
either a; or ay is positive. Similarly either aj or a4 is positive. Let f;(2)
be the conditional density of Z given I = i and p; = Pr(I = i). Let H be
the distribution function of (Z, I). Observe that
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H(z,I) = Pi(Z<z1I=1)
= Pr(I=1)-Pr(z < X; < X3)
= m- [ [ naaim@). e300 - nelin, of)desde,

m{z)
= n- [N 0 Dintelinod)ds (7.35)
where
o
m(z) = p2 + p ;%(w - p1), (7.36)
1 1 (z-p)?
2y — —_———
n((El[_I,,O' ) - W exp{ 2 0,2 }’ (737)
and . R
1 1(y—p)
2y — —_——
Nlme®) = [ = o=z Eja. @)
This identity implies that
m(z)
p1f1(z) = n(z|p1, 03){1 ~ N(—(—WIO, 1}. (7.39)
Observe that
z—m(z) _ (A =p2)—{p2— (pZ)m} (7.40)
oa(l — p2)1/2 0.2(1 — p2)i/2
Ifa2=1—’f—1’>0,then
P1f1(2) = d11(2)[1 — Pau24(2)] (7.41)
where
#11(2) is the density function of N(u;,07), (7.42)
$2x24(2) is the density function of N(u3,032), (7.424)
. o
pz = (p2—p ﬁul)/az (7.42B)
and
o3 =03(1—p*)?/ay. (7.420)

Here ®(z) denotes the distribution function corresponding to ¢{z).
If az =0, then
P1f1(2) = ¢11(2)(1 — P2x24(0)) (7.43)
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where
uy = po ~ g (for as = 0) (7.44)

and
03 = 03(1 — p?)/?(for ay = 0). (7.45)

Ifa2=1—%l<0,then
p1f1(2) = 11(2)P2424(2) (7.46)

where ¢ and ® are as defined above. Similar relations hold for ps f2(z). In
fact

pzfz(z) = ¢22(Z)[1 - @1*1*(z)] ifa; >0 (7.47)
= $22(2)P1e14(2) ifa; <0 (7.47A4)
= $22(2)[1 — @1414(0)] if ;1 =0. (7.47B)

Analogous relations hold for the BVN(u3, i14;03,04; ¢'). We have already

noted that at least one of a1, as and at least one of a3, a4 are positive.

Case (1) Suppose a; > 0,1 <i < 4. Then

p1f1(2) = $11(2)[1 — Pauau(2)], (7.48)
p2f2(2) = ¢22(2)[1 — 1a14(2)), (7.484)
p3fs(2') = $a3(2)[L — Banan(2))], (7.48B)
and
Pafa(2") = d4a(2)[1 — Pausa(2')] - (7.48C)
Note that L)
P1j1\2
(0 lasz — —o0. (7.49)
Similarly f()
P3J3\z ’ —00. .
S03(2) —lasz' — (7.50)

Since the distributions of (Z,I) and (Z’, I') are identical by hypothesis, it
follows that p; f1(2) = p3fs(z) and hence
$11(2)

— =t —lasz— —00. (7.51)

$33(2)
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In other words

- exp{-1(254)%)

21ra

Vorg o= (5

—lasz— —o00. (7.52)

Hence
% expl—5 (4 5L~ lasz oo
It is easy to check that this limit holds iff 61 = o3 and py = us. Similarly
we obtain that o3 = 04 and ps = p4,p; = Pr(I = 1) = Pr(X; < X;) and
p3 =Pr(I =3) =Pr(X3 < X4) . Since p; = p3, it follows that

&( — - M4 — U3
o? + 02 200102) o2+ 02 - 2p'030,4

which implies that p = p' as 61 = 03,09 = 04, 1 = p3 and po = pg. This
proves that

(11, p2; 01,025 p) = (3, 145 03,045 ') (7.53)
and hence (Z,I) identifies the BVN (1, p2; 01,02; p).
Case (2) Suppose that exactly one of (a1, a2) and one of (a3, ay) is posi-
tive. Without loss of generality, assume that az > 0,as < 0. Then either
az > 0and a4 < 0or ag <0 and ay > 0. Assume that az > 0 and a4 < 0.

Then we have a; > 0,22 < 0,a3 > 0 and a4 < 0. Since ay < 0 and a4 < 0,
it follows that

P1f1(2) = $11(2)Pas2e(2) = $33(2)Paxan(2) = p3fa(z) (7.54)
from (7.47). Hence
Dou2u(2) = (¢11(2)) 1 h33(2)Panan(2), —00 < 2 < 0 . (7.55)
Let z — co. Then it follows that
($11(2)) 133(z) = lasz — 00 (7.56)

It is easy to check that this relation holds iff u; = p3 and o, = o3. Since
a1 > 0 and ag > 0, it can be shown that us = p4 and o2 = o4 by the
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arguments given in Case (1). These two relation show that p = p’ again by

the arguments developed in Case (1). Hence
(1, p2;01,02; p) = (13, 143 03,04 9') - (7.57)
Suppose that a; > 0,a2 < 0 but a3 < 0 and ay > 0. Then
P1f1(2) = 11(2)P2u24(2) = #33(2)(1 — Pausu(2)] = p3fa(2) (7.58)

from relations of the type given in (7.48) and the fact that (Z,I) and (Z',I')

are identically distributed. Hence

[#33(2)] 1 011(2)Pouau(2) = 1 — Bgugu(2),—00 < 2 < 00. (7.59)

Let z » —oo in (7.59) on both sides. The term on the right side tends

to 1 and hence

[¢33(z)]_1¢11(z)<1>2,2‘(z) —lasz— —00. (7.60)

It is easy to show that, for any X; distributed N(u;,02) and X ; distributed
N (/Jj’ 0'_72)7

$;i(z)
2= —1,00rocoas z —>— 00 . 7.61
#ii(2) (7.61)
Furthermore
Dop0.(2) 2 0asz > —©. (7.62)

Hence the equation (7.60) does not hold and the condition
a; >0,a3 < 0,3 <0,a4 >0 (763)

is impossible whenever (Z,I),(Z’,I') are identically distributed. Similarly
it can be shown that in all other cases on «a;,1 < ¢ < 4 either there is
identifiability given (Z,I) or the conditions on a;,1 £ i £ 4 will not hold.
For details, see Basu and Ghosh (1978). [ |
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7.6 Identifiability for Families of Bivariate Normal Distributions
(The Case of Nonidentified Minimum )

Let us assume again that (X1, X2) has BVN(uy, p2; 01, 02; p) and (X3, X4)
has BVN(u3, ft4; 03,04; p*). Let Z = min(X;, X3) and Z’ = min(X3, X4).
Z is called the nonidentified minimum of X; and Xs. The problem of in-
terest is to find whether the distribution of Z identifies the distribution of
(X1, X2). The following result is due to Basu and Ghosh (1978).

Theorem 7.6.1 (Basu and Ghosh (1978)): If Z and Z’ have the same
distribution, then either
P1 = [3,01 = 03, ig = pg,02 = 04 and p = p'

or
H1 = 4,01 = 04, pig = pi3,02 =0z and p=p .

In other words, either the distributions of (X3, X4) and (X1, X3) are the
same bivariate normal distribution or the distributions of (X3, X4) and

(X2, X;) are the same bivariate normal distribution.

Remarks 7.6.1 : Proof of Theorem 7.6.1 in Basu and Ghosh (1978) es-
sentially uses the methods developed in the proof of Theorem 7.5.1 and the
fact that the normal distribution function is not an elementary function.
Alternate proofs of this result are given in Anderson and Ghurye (1979),
Mukherjea et al. (1986) and Gilliland and Hannan (1980). We have already
seen that the identifiability question is an important problem in economet-
rics. In the Fair—Jaffee model with p; and us, regression of supply and de-
mand on some regression variables and full rank covariance matrix, Hartley
and Mallela (1977) consider the problem of estimation of 02, 02 and p based
on the observed minima of supply and demand. Identifiability was implic-
itly assumed by them. The general problem of identification of parameters
by the distribution of the maximum random variable in the trivariate nor-
mal case and the general multivariate normal case is studied in Basu and
Ghosh (1978) and Mukherjea and Stephens (1990a,b). The result in the
multivariate normal case can be stated in the following manner. We omit

the proofs.
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Theorem 7.6.2 (Mukherjea and Stephens (1990b)): Let X;,1 < i < k
be k independent n-dimensional random vectors each with a nonsingular
multivariate normal distribution with zero mean vector and positive partial
correlations. Suppose that X; = (Xi1,....,Xin) and Y = (Y1, Y5, ..., Y,)
where Y; = max(X;;,1 < i < k). Let W be another n-dimensional random
vector which is the vector of maxima componentwise of another such family
of independent n-dimensional random vectors Z;,1 < j < £. Then the
distributions of X;’s , 1 < i < k are a rearrangement of the distribution of
Z;’s ,1 < j < (and hence necessarily k = £) whenever Y and W have the

same distribution.

7.7 1dentifiability for a k-out of -p System

We now consider a generalization of the problem discussed in Section
7.3. Let us consider a generalization of the concepts of competing and
complementary risks. The problem can be paraphrased as the problem of
identifying the distributions of component lifetimes from that of system
lifetime where the system is a k-out of - p system; that is, the system
with p components works if and only if k¥ or more of p components of the
system function or equivalently the system fails when the first r = p—-k+1
components fail. It can be checked that identifiability holds for a k-out of-p
tdentical component system following arguments similar to those given at

the beginning of Section 7.3.

Let X;,1 < < p be the component lifetimes and X(,y denote the rth-
order statistic. Suppose the random variable X(,) is the only observable.
Given the distribution function of X, is it possible to determine the
joint distribution of (Xj,...,X,) ? If r = 1, the problem reduces to the
problem of competing risks and, if r = p, then it reduces to the problem of
complementary risks. Note that if r = 1, then the system is in series and if

r = p, then the system is in parallel.
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Let I = i when X,y = X;,1 <4 < p. The pair (X(r),I) is called the
identified rth order statistic. Observe X,y is termed nonidentified rth-order

statistic.

Basu and Ghosh (1983) proved that, for 1 < r < p,(X(),I) identi-
fies the distributions of X;,1 < i < p when X; follows the exponential
distribution and X;,1 < i < p are independent. If X, is nonidentified,
then, for 2 < r < p, the distribution of X,y determines the distributions
of X;,1 <14 < p up to a permutation whenever X; follows the exponential
distribution and X;,1 < i < p are independent. Results for the case of
general distributions are unknown as far as the author is aware. We now

discuss these results from Basu and Ghosh (1983).

Theorem 7.7.1 (Basu and Ghosh (1983)): Suppose X;,1 < i < p are
independent random variables and X; follows the exponential distribution

with parameter ); > 0, that is, the density function of X is
f(-'l/'iy/\i) = /\ie_/\‘x,.’ﬂi >0
= 0, T; S 0

for 1 < i < p. Then the distribution of the identified rth order statistic
(X(r),I) uniquely determines Ay, Az, ..., Ap whenever 1 <7 < p.

Proof : Let p; be the probability that I = j and f;(y) be the conditional
density of Y = X, gives I = j. It is easy to check that

r—1 P
pify@) = e SI[J =) ] ean (169)
i=1

s=r+1
where (o1, @2,..., @r—1; Br41, -, Bp) is a permutation of the integers
(1,2,..,5 — 1,5 + 1,..,p) partitioned into two sets (ai,..,r—1)
and (Br41, .-, Bp) and Xo, < X(py and Xg, > X(5), 1 <i<r—landr+1<
s < p. The summation ¥ runs over all such sets (a1, ..., @r—1; Br+1, -, Bp)-
Note that the term with the highest power of e™¥ on the left side of (7.64)
is

(_l)r—lAje—(z\1+...+z\p)y )
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This identifies A;. By repeating the procedure for 1 < j < p, all the

parameters A, Ag, ..., A, can be identified. | |

Theorem 7.7.2 (Basu and Ghosh (1983)): Let X1, Xs, ..., X, be indepen-
dent random variables and suppose X; has the exponential distribution with
parameter A; > 0. Then the distribution of the nonidentified X, deter-

mines the values of A1, A2,- -+, Ay up to a permutation whenever 2 <r < p.

Proof : The density of X(,) is

r r-1 P
fy@) => e M [[a-e?) ] e} (7.65)
j=1 =1

s=r+1
where the expression in {---} on the right side of (7.65) is obtained from
the expression on the right side in (7.64). A typical term on the right side
of (7.65) (after collecting together different expressions involving the same

power of e~¥) is of the form

rt—1{P—€—=1\ _5_s. ..,
A= Xi, = diy — - = Ay, )(=1)7¢ 1<r—£—1)e A=Xip o =Aiy)y
where 1 < 41,82,...,%¢ < p,is # 9s for s # t,0 < L < p—1and A =
A1+ -+ Ay . Thus we can identify A and A — Ay, — Ay, — -+ — Ay,

1 <4y, < pyig # 4 for s #1,1 < £ < p-—1. It can be checked that
these values uniquely determine Aq, Az, ..., Ap up to a permutation (cf. Basu
and Ghosh (1983)). [ ]

Remarks 7.7.1: It is interesting to observe that in the case of exponential
distribution, nonidentifiability occurs if and only if r = 1, that is, the

minimum does not identify the component exponential distributions.

Remarks 7.7.2 (Identifiability in coherent systems): Competing
risks deal with a system failing as a consequence of the failure of one of
its components. It was shown in Theorem 7.3.1 that if the components
have independent lifetimes, then the joint distribution of the sytems fail-
ure time and the identity of the failed component uniquely determine the

lifetime distribution of each of the components.
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In reliability theory, coherent systems are also used to model the systems
(cf. Barlow and Proschan (1975)). Coherent systems extend the theory of
competing risks to systems failing as a consequence of the failure of some
of its components rather than just one.

Given a coherent system with n components having independent life-
times X; let Z be the age of the system at breakdown and I be the set
of componets failed by time Z. I is called the diagnostic set. Then
I={i: X; <Z}. A set of components E is called a cut set if, when
all components in F have failed, the system fails. E is a minimal cut set if
it is a cut set which does not contain a proper subset which is itself a cut
set. Let {I1,I2,..., I} be the collection of all minimal cut sets. Let M be
the m x n incidence matrix of {I1,I,...,In}. In other words M;; = 1 if
J € I; and M;; = 0 otherwise. Meilijson (1985) showed that if the compo-
nent lifetimes X1, X, ..., X,, are nonatomic, independent and possess the
same essential extrema and if the rank of the matrix M is n, then the joint
distribution of Z and I determine the distribution of each X;,1 < i< n
uniquely. In other words, the system is identifiable. Meilijson (1985) also
proved that a necessary condition for identifiability is that no two compo-
nents be in parallel, that is, belong to the same minimal cut sets. Suppose
that the independent lifetimes X;,1 < ¢ < n have mutually absolutely con-
tinuous distributions and that each component lifetime possesses a single
positive atom at the common essential infimum. Nowik (1990) proved that
the joint distribution of (Z,I) identifies the life time distribution of each
component if and only if there is at most one component belonging to all
cut sets or equivalently no two components are in parallel. For further
details, see Nowik (1990).

7.8 Identifiability from Survival Functions
Let (T1,T:) be a bivariate nonnegative random vector with the joint

survival function

Sty (t1,t2) = Pr(Ty > 1, Ty > ta)
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with S(0,0) = 1. Suppose the variables T; and T are subject to censoring
by random intervals [X1, Y1] and [X3, Y3] respectively. In other words, T}
and T5 are observable iff X; < Ty <Y; and X, <Y, < T5. The information
on Ty and T, can be expressed by the random vectors (W7, W,) and (81, 82)

where
W; = max(min(Y;, T3), X;)),i = 1,2
and
1 if <T<Ys
6;=¢ 2 if T;>Y,
3 if T;<X;
fori=1,2.

An example of this type of double censoring can be illustrated by the
following scenario. Suppose we have a follow-up study for determining the
ages T1 and T respectively at which a male-child and a female-child of the
same family developed a particular skill for the first time. T; and T3 are
observable if the skills were developed after admitting into a program. It
is possible that for some females or males in the program, the individual
might have developed the skill prior to joining the program resulting in left
censoring of 771 or T5. On the other hand, a right censoring may occur due
to withdrawal of the child either due to withdrawal from the study or by
not attaining the skill before the program is terminated. Here the random
vector (T1,T3) is subject to double censoring. The joint survival function of
(T1,T>) is unobservable but is of importance. The problem is to determine
sufficient conditions under which the distribution of (W, §) determines the

joint survival function 51, 1, (t1,t2) uniquely.

Another example where right censoring is only present can be described
as follows. Assume that a pair of individuals, a wife and a husband for
instance, are under study. The observation on each of the individuals is
terminated in the event of death or in the case of withdrawal from the

study. The joint life length of the two individuals is of importance but
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is unobservable. Again the problem is to determine sufficient conditions
under which the observed distribution uniquely determines the unobservable

distributions.

By observing a series system of d components, we can only determine
its life length and the components that cause the system to fail. In partic-
ular, the life length of a series subsystem consisting of k£ components where
(0 < k < d) is unobservable. Some k of the d components may be in the
system to support operation of the remaining d — & main components. The
distribution function of the life length of the series subsystem consisting of
the k main components is unobservable. The problem is again to deter-
mine sufficient conditions under which the observed distribution uniquely

determines the unobservable distributions.

Langberg and Shaked (1982) discussed the identifiability problem from
multivariate survival functions under right censoring. Chang (1984) dis-
cussed the univariate case under double censoring. We briefly discuss re-
sults due to Ebrahimi (1988).

Let
Syl,y2 (tl,tz) = PI‘(Y1 >t1,Yy > tz),
thx,‘,(tl,tz) = PI‘(X1 >t1,Xs > tz),
leyyz(tl,tg) = PI‘(X1 >t1,Yy > tz),
Sy, x,(t1,t2) = Pr(Y: > t1, X2 > t2)
and

thxz(tbtz) = PI‘(X1 >t1, X9 > tz) .

We assume that Pr(X; < Y;, X3 < Y2) =1 and the above survival functions
are continuously differentiable for ¢; > 0,t; > 0. We further assume that
(T1,T2) and {(X1,Y1),(X2,Y2)} are independent random vectors. Let

Qij(t1,t2) = Pr(Wy > 1, Wy > 2,61 = 4,62 = j)
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for 1 <7< 3,1 <j <3 Ebrahimi (1988) proved the following result
generalizing results of Langberg and Shaked (1982) in the bivariate case for
random right censoring and Chang (1984) in the univariate case for random

double censoring. We omit the proof.

Theorem 7.8.1 (Ebrahimi (1988)) : In addition to the conditions stated
earlier, suppose that for all (t,¢2),¢; > 0,12 > 0,

Sy, v, (t1,t2) — Sx, v, (t1,t2) — Sy, x, (t1,t2) + Sx, x,(t1,t2) > 0,
0

W[Syl,xg(tl,tz) - Sx,,x,(t1,t2)] < 0,
2
0

a_h[SX1,Y2(t13t2) - Sx,,x,(t1,t2)] < 0,
1s)

a_tz[Syl,Yg(tl, t2) — Sx,,v,(t1,t2)] < O,
0

at_l[SYhYz(tl’t2) - leyxz(tlth)] < 0

and
ST,,Tg(tl»tZ) >0.

Then the unobservable survival functions Sy, x,(f1,%2), Sx,,x,(t1,%2),
Sy,.v, (t1,t2), Sx,,v2 (t1,t2) and St, 1,(t1,12) are uniquely determined by the
observable survival functions

Qij(tlth)a 1 S 7'9.7 S 3.

Remarks 7.8.1 : The result can be extended to the multivariate case.

7.9 Nonidentifiability in Some Stochastic Models

7.9.1(Accident models): Occurrence of nonidentifiability in some stochas-
tic models fitted to accident data was pointed out by Cane (1972, 1977).
Negative binomial distribution is often used as a model for fitting for acci-
dent data and it was found to be a good fit most often. It is known that
two explanations, one in terms of the accident proneness and the other in-

volving contagion, can be given for fitting a negative binomial distribution
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as a model. It is generally assumed that one can decide the underlying
model if complete information, that is, the time of each accident for every
individual in the sample is known. Cane (1972) indicated that, even with
such complete information, it is not possible to pick the underlying mech-
anism from the two described above. In fact there are infinite number of
mechanisms each of which gives rise to the same type of data and hence the
presence of nonidentifiability in modeling. We now discuss some of these
results due to Cane (1972, 1977).

Model 1 : The Poisson process is generally used for modeling the oc-
currence of accidents. Here it is assumed that the accidents occur at a
rate Au where A refers to the accident proneness of any individual at risk,
u refers to the danger of the situation in which accidents occur and the
distribution of the number of the accidents in a time T has Poisson dis-

tribution with mean AuT with the probability generality function (p.g.f.)
#1(8) = exp{AuT (s — 1)}.

It was found that the accident data in factories do not conform to the

Model 1. An alternate model was proposed by Greenwood and Yule (1920).

Model 2 (Accident proneness model) : Here it is assumed that Model

1 holds for any given individual but that the individuals may have different

A values and that the variation in A can be described by a gamma density
ck /\k—l e—Ac

(k)
= 0, A<0.

f) LA>0

The p.g.f. of the distribution of accidents in time T is
$2(s) = Ex[¢1(s)] = c*(c —uT(s - 1))7*.
It is convenient to absorb ¢ into u and replace ¢ by 1.

A third model was suggested by McKendrick (1926).



7.9. NONIDENTIFIABILITY 179

Model 3 (Contagion model) : Here it is assumed that a person who has
had n accidents in time (0, ¢) has a conditional probability ﬁ”fiudt of having
another accident in (t,t + dt) independent of the times of the preceding
accidents. All individuals of the population have the same probability ku dt

of an accident in (0, dt).

Nonidentifiability : Let us now show that the Model 2 and Model 3 are
equivalent.

Suppose that an individual has n accidents at times #;,1 < i < n,
O=to<ti <---<t, <T.

The conditional probability for such an event under Model 2 given A is

He—z\u(ti—ti—l))‘u dtie_A‘“(T“tn) (766)

i=1
and the probability under Model 3 is

1+ut, 1\ ktie 1lc+i— 1+utn \kin
H{ 1+ ut; Trui ) 1+ ut; '}(1+uT) ’ (7.67)

These expressions can be rewritten in the form

—AuT
(ndty...dt, T~™)(AuT)"

(7.68)

and

(nldty...dt, T~™)(uT)"(1 + uT)"""* (k T Z - 1) (7.69)

respectively. Observe that the term
(nldty---dt,T™™)

in (7.68) and (7.69) gives the conditional probability that accidents occur
at the specified times in [0,7) given that there are n accidents in all in
[0,T). Thus the distribution of (t1,%,...,ts), conditional on n accidents
in time T, is the same under both the Models 2 and 3. In fact, it is the

joint distribution of the order statistics for a random sample of size n from
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the uniform distribution on [0,T). Furthermore, it can be checked that
each model gives the same value for the (unconditional) probability p,(t)
of n accidents in time ¢ (choosing ¢ = 1 = u in Model 2 and u = 1 in
Model 3). Thus the Models 2 and 3 are indistinguishable. In other words,
if the accident records of a large number of people are such that the distribu-
tion of accidents in time [0,t) {possibly rescaled) fits the negative binomial
distribution with probability generating function #(s) = (1+t—ts)~¥, then
no additional data on individual records will provide information in distin-
guishing between the two models and there is no mathematical difference

between the Models 2 and 3.

For general discussion on this problem, see Cane (1972, 1977) and Puri
(1979). For earlier remarks on this problem, see Feller (1966, p. 57).

7.9.2 (A threshold-type shock model): Consider a system involving a
single component. Suppose the system is subject to “shocks” at random
times. Assume that the system fails as soon as the threshold K for the
number of shocks is reached. Suppose the shocks are governed by a time-
homogeneous Poisson process with parameter A. Hence the lifetime L of

the system has the distribution

(At
Hi(t) = Pr(L < t) Z ) e M, t >0 (7.70)
k=0
where
px =Pr(K >k),k=0,1,2,...,and po = 1. (7.71)

This model is called a “threshold-type” model. In practice, it is not possible
to observe the occurrence of shocks and L is the only observable quantity.
Let F be the family of distributions of L generated by varying A and {px}.
This family F is not identifiable. This can be seen as follows. Let

Hy(t) = 1—H1()

Z (’\t) e Mpr,t>0. (7.72)
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However, Hy(t) can also be written in the form

I_{ . - (Vt)k —vt =~
1(t) = Z o€ dx,t >0 (7.73)
k=0
where
L .
ge=vFk Z(j)(u — N5,k =10,1,2,... (7.74)
j=0

with §o = 1. Hence the family F is not identifiable.

7.9.3 (A nonthreshold-type shock model) : Here we assume the ex-
istence of a nonnegative risk function 3(N(t),t), where N(t) denotes the
number of shocks received up to time ¢, such that

Pr [Failure of the system occurs in time (¢,¢ + At) given that no failure

of the system occurred until time ¢ and N(t) = n]
= B(n,t)At + 0(At) . (7.75)

Suppose that B(n,t) = n aft) where «(-) is a nonnegative locally integrable

function on [0, 00) such that

/000[1 —exp{— /oo a(u)du}]dr = oo . (7.76)
Then the lifetime L has the distribution function
Hy(t) = 1-Pr(L>1)
= 11— E{exp[— /Ot N(u)a(u)du]} . (7.77)
Hence
Hy(t) = 1-Ha(t)

exp{—/\/0 [1—exp(—/ afu)du)|dr} (7.78)

when N(t) is a Poisson process with parameter A. Let F* be the family of
distributions of L generated by varying A and o subject to the conditions
stated above. F* is not identifiable. In fact, given 8 = (A, a(-)) generat-
ing Hy(-) defined by (7.78), it can be checked that the same Hj(-) is also
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generated by ' = (X, a’(+)) where X' > A,
&' (t) = A a(®)R@)[(N = At + Ah(t)] ! (7.79)

and

h(t) = /Ot exp[— /j af{u)duldr .

Remarks 7.9.1 : Discussion in subsections 7.9.2 and 7.9.3 is based on
Puri (1979).



Chapter 8

Identifiability for

Mixtures of Distributions

8.1 Introduction

Mixtures of distributions are used in building probability models quite
frequently in biological and physical sciences. For instance, in order to
study certain characteristics in natural populations of fish, a random sam-
ple might be taken and the characteristic measured for each member of the
sample; since the characteristic varies with the age of the fish, the distri-
bution of the characteristic in the total population will be a mixture of the
distributions at different ages. In order to analyze the qualitative charac-
ter of inheritance, a geneticist might observe a phenotypic value that has
a mixture distribution because each genotype might produce phenotypic
values over an interval. For applications where mixtures of distributions
arise, see Bruni et al. (1983), Merz (1980) and Christensen et al. (1980).
Other applications are in the area of pattern recognition, for instance, in
image reconstruction and statistical model building for positron emission
tomography (Vardi et al. (1975)).

In order to devise statistical procedures for inferential purposes, an im-

183
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portant problem is the identifiability of the mixing distribution. Unless
the mixing distribution is identifiable in the model, it is not meaningful
to estimate the distribution either nonparametrically or in a parametric
framework. Some discussion on identifiability in the problem is given in
Everitt and Hand (1981), Prakasa Rao (1983b), Titterington et al. (1985)
and Maritz and Levin (1989). In this chapter we discuss the identifiability

aspect of the problem more extensively.

Let (X,F) and (©, B) be measurable spaces such that B contains all
singletons of ©. Let P = {P3,6 € ©} be a family of probability measures
on (X, F) such that the mapping § — Py(A) is B - measurable for each
A € F. Let G be a probability measure on (0, B) and define

H(A) = /6 Ps(A)dG(6), A€ F . (8.1)

Then H is a probability measure on (X,F). H is called a mizture of the
family P = {Py,0 € ©}. G is called a mizing distribution . Let A be the
class of all mixing distributions G on (©, B) and { be the corresponding
class of mixtures. Define @ : A — ¢ by Q(G) = H. The class A and
equivalently the family ¢ is said to be identifiable with respect to P if the

mapping Q is a one-to-one mapping between A and (.

As was pointed out earlier, the problem of estimation of G is meaningful
only when the family A is identifiable. It is easy to see that if T is a
measurable mapping from (X, F) to (¥, T) and if the family A is identifiable
with respect to the family PT~! = {P,T~1,0 € ©} on (¥,T), then A is
identifiable with respect to P = {Ps,6 € ©} on (X, F).

The distribution H defined by (8.1) is called a finite mizture if the
mixing distribution G is a discrete distribution with finite number of mass
points. H is said to be a countable mizture if the mixing distribution G
is a discrete distribution possibly with countable number of mass points.
H is said to be an arbitrary mizture if G is any general mixing probability

distribution.
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In order to indicate that the problem of nonidentifiability does arise in

these problems, we now present some examples.

Example 8.1.1 : Let Py be the binomial distribution B(2,6) with two
trials and 6 as the probability of success, 0 < § < 1. Let Gg, 4, be a

mixing distribution given by
Pr(0=0,)=a,Pr(0=0;)=1—aqa (8.2)

where 0; # 65,0 < a < 1. Let X denote a random variable with the
distribution which is a mixture of {Ps,0 < # < 1} with respect to the

mixing distribution Gg, g, o. Then

Pr(X =0)=a(l-6)*+ (1 —a)(1 - 6,)?, (8.3)
Pr(X = 1) = 2a6,(1 - 6;) + 2a6;(1 — 6,), (8.34)

and
Pr(X =2)=af? + (1 —a)b?. (8.3B)

2
Since ZPr(X = i) = 1, two of the above equations (8.3) to (8.3B) de-

termin?(ll-’r(X =1) for ¢ = 0,1,2. Let us consider the equations (8.3) and
(8.3A). These are two equations containing three parameters a,6; and 6, .
Obviously there are infinitely many solutions (a, 6;,6;) for a given pair of
values for Pr(X = 0) and Pr(X = 1). Hence the family

A ={G6,6,0,:0<01,02<1,0,#602,0< a<1}

is not identifiable with respect to P = {B(2,8),0 < 8 < 1}. In other words,
the family of convex mixtures of two binomials B(2,6;) and B(2,6,) is not
identifiable.

Example 8.1.2 : Let

p(k|X) = (Z) M1 -0 Fk=01,2,..,n (8.4)
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and G()) be an arbitrary mixing distribution on [0,1]. Let X be a random
variable with the distribution which is a mixture of p(k|A) with respect to
the mixing distribution G. Then, for 0 < k < n,

1
Pr(X =k) = /0 p(k|\)G(d))

= /0 1 (:) AE(1 = )"k G(dA) (8.5)

and Pr(X = k) is a linear function of the first n moments of G, namely,

1
by = f NdG(),0< T <n. (8.6)
4]

Hence any other distribution G*, with the same first n moments as those
of G, will yield the same value for Pr(X = k) as that given by G for
0 < k < n. This shows the lack of identifiability of G with respect to the
family {B(n, A),0 < A < 1} where n is known.

Example 8.1.3 : Let U, g(z) denote the uniform distribution function

on the interval (a, 8). It is easy to check that
Up,1(z) = aUpa(z) + (1 — a)Uqy1(z), —00 < z < 00 (8.7)

for any 0 < a < 1. In other words, the standard uniform distribution on
(0,1) is a convex mixture of the uniform distributions on (0, @) and (a, 1)
for every a,0 < a < 1. This proves that the family of discrete distributions
{Ga,0 < a < 1} with

Go(B8) = « for =0
l—a forf=a (8.8)

is not identifiable with respect to the family {U(«, 8),0 < a, 3 < 1}. Hence

the family of mixtures of uniform distributions is not identifiable.

Examples given above illustrate the fact that the problem of identifia-
bility for mixtures is not artificial. Hence we would like to obtain sufficient

conditions for identifiability in the later sections of this chapter. We point
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out that if a family A is identifiable with respect to a family P, then any
subfamily of A is also identifiable with respect to P. This follows from the
fact that the mapping @ : A — ( is one-to-one where ( is the family of

mixtures.

Remarks 8.1.1 : It is trivial to check that if A contains all degenerate

distributions over © and if
Py (A) = / Py(A)dG(0),A € F (8.9)
A

for some 8’ € © and some nondegenerate distribution G € A, then A is not
identifiable.

According to our discussion, A or equivalently ¢ is identifiable if the
mapping @ : A — ( is one-to-one where ( is the class of mixtures. In some
of the literature, ¢ is said to be identifiable (cf. Teicher (1954), Yakowitz
and Spragins (1968)) in such an event. This need not create confusion
among the readers in the light of explanation given earlier. In view of
this duality, we interchangeably use the notion of identifiability either for
¢ or for A depending on the context, convenience in interpretation and

applicability.

8.2 Identifiability for Finite Mixtures
The following result gives a necessary and sufficient condition for the
identifiability of a finite mixing distribution. A discrete mixing distribution

with finite number of mass points is called a finite mizing distribution.

Theorem 8.2.1 (Yakowitz and Spragins (1968)) : A necessary and suffi-
cient condition, on a family P = {Py,0 € ©} of probability measures so
that the class A of all finite mixing distributions is identifiable relative to P,
is that the family P = {Py,0 € © € O} is linearly independent as functions
on F.

Proof : Suppose the family P is not linearly independent as functions on
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F. Then there exists constants C; not zero and §; € ©,1 < i < N such

that N
> CiPs(A)=0,A€ F. (8.10)
=1

Without loss of generality, assume that

C1<C<---<Cy <0< Cy41<---<Cn. (8.11)
Then
M N
D ICiIPs (A) = Y [CilPs,(4), (8.12)
=1 i=M+1
and hence
M N
D ICiIPy(X) = Y |Cil P, (%) (8.13)
i=1 M+1

which proves that

N N
dICil= Y ICi| =b(say). (8.14)
i=1 i=M+1

It is obvious that b > 0. Let a; = |C;|/b,1 <4 < N. Then, it follows that

M N
> aiPp(A)= > a;Ps(A),A€F (8.15)
=1 i=M+1

are two distinct representations of the same finite mixture. Hence A is not
identifiable and equivalently P*, the family of convex mixtures of elements
of P, is not identifiable.

Conversely, suppose the family P = {P,,0 € O} are linearly indepen-
dent. Then they form a basis for the linear space < P > spanned by P.
Since { C< P >, the identifiability of A is a consequence of the uniqueness

of the representation of elements in ¢ with respect to the basis P. |
As a corollary to Theorem 8.2.1, the following result holds.

Corollary 8.2.1: A necessary and sufficient condition on the family P, so
that the class A of all finite mixing distributions is identifiable with respect

to the family P, is that the image of P under any isomorphism on < P >
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consists of linearly independent elements in the image space. Here < P >

is the linear space spanned by P.

Proof : This result is a consequence of Theorem 8.2.1 by observing that
the set P is linearly independent iff its image is linearly independent in the

image space. | |

Remarks 8.2.1 : Corollary 8.2.1 is quite useful in checking identifiability.
For instance, it is often convenient to check the linear independence of
the family of Fourier transforms of distribution functions (characteristic
functions) rather than the linear independence of the family of distribution

functions themselves.

Example 8.2.1 : Let P be the family of distribution functions

{F(z + 6),—00 < 6§ < oo} where F is a given distribution function. We
claim that the family P is linearly independent and hence the correspond-
ing A of finite mixing distributions is identifiable. Let ¢(t,8) denote the

characteristic function of the distribution function F(z + ). Then
B(t,0) = e ¢(t,0), —0o < t < 00 . (8.16)

Since the correspondence between the characteristic functions and the dis-
tribution functions on the real line is one-to-one and linear, it is sufficient

to prove that

k
Y a;6(t,0;) =0 a;=0,1<j <k . (8.17)
j=1
Note that
k k ]
3 a;(t,6;) = Y ;e 4(2,0), —c0 <t < oo (8.18)
j=1 j=1
Hence
k
Zajd)(t, 91-) =0,—oc0o<t< 0 (8.19)

=1



190 CHAPTER 8. IDENTIFIABILITY FOR MIXTURES

implies that
k
D e =0 (8.20)
j=1

in a neighbourhood {t : |t| < 6} of zero for some § > 0 since ¢(t,0) # 0 in
a neighbourhood of zero. Suppose a; # 0 for j = iy, 12, ...,5¢. Without loss

of generality, assume that £ = k£ and
a1 <a< - < ap<0<aps1<---<ag.

Then, it foliows that
m k )
—Zaje’wj = Z aje’wf,—é <t<$é.
j=1 j=m+1
Let t = 0. Then it follows that
m k
—Zaj = Z a; = b(say).
i=1 j=m+1

Note that b > 0. We have

m k
_ Z%]eue,- _ Z %Jeitof,_a <t<§. (8.21)
j=1 j=m+1

The function on the left side of (8.21) can be interpreted as the charac-
teristic function of a random variable X taking values 61,0s,...,0,, with
probabilities —4%,..., —%m respectively. Similarly the right side of the
equation (8.21) is the characteristic function of another random variable Y’
taking values 0,41, ..., with probabilities 2=+, .., 2tk Relation (8.21)
implies that

ox(t) = ¢y (t) for |t| < 6. (8.22)
Since ¢ x (t) and ¢y (t) are entire characteristic functions being linear func-

tions of exponentials, it follows that

ox(t) = ¢y (t) for all ¢ (8.23)

which proves that X and Y should have the same distribution. However,
the distributions of X and Y are different by earlier remarks. This is a

contradiction. Hencea; =0 for 1 <j <k.
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Example 8.2.2 : Let P be the family of univariate normal distributions
N(p,02),~00 < p < 00,0 < 02 < 0o. We claim that the corresponding
family A of finite mixing distributions is identifiable. Corollary 8.2.1 implies
that the identifiability will hold provided

k
> aierttioit =g, 0o <t < 00 (8.24)

i=1
implies that a; = 0,1 < ¢ < k. Observe that the function exp(u;t + 307t?)
is the moment generating function of N(u;,0?). Let us choose t;,1 < j <k

such that the matrix ((7i;)) is nonsingular where

1
i = exp{pit; + 3 t2} 1<4,j<k. (8.25)
Since
k
> v =01<j<k,
i=1
it follows that a; = --- = ax = 0 as the matrix ((vi;)) is nonsingular.

Hence the family of finite mixtures of univariate normal distributions or
equivalently the family A of finite mixing distributions is identifiable. This
result does not hold if A is the class of all arbitrary mixing distributions
(Teicher (1960)). See Example 8.4.2.

Remarks 8.2.2 : Suppose the family P consists of distributions with the
property
> 6;0i(t) =0 for || < 6,6 >0

implies that §; = 0,1 < j < m whenever ¢;(t),1 < j < m are the charac-
teristic functions of distributions Fi, ..., F,, in P. Then it follows that the
family P is linearly independent and the class A of finite mixing distribu-

tions is identifiable.

Remarks 8.2.3 : Suppose the family P consists of a finite number of
distribution functions {F;(z),1 < i < k}. Theorem 8.2.1 implies that the

family of finite mixtures of P or equivalently the family A of finite mixing
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distributions on P is identifiable iff there exist k distinct values z1, g, ..., Tk

such that

Fl(.’El) Fk(xl)
Fi(zg) -+ Fy(z2) £0. (8.26)
Fi(zg) - Fy(ze)

Similar results can be given in case the family P is defined either through

density functions or through probability mass functions.

Example 8.2.3 : The family of finite mixtures of geometric distributions
Py,0 < XA < 1 defined by Py\(X = 4) = A*"1(1 — A),i > 1 is identifiable.
This can be shown by choosing z; = 4,1 < ¢ < k and checking that

Py(X=1) Py (X=1) .. P (X=1)
Py(X=2) Py (X=2) .. P (X=2)
Py (X =k) P,(X=k) P (X =k)
11 1
k
={[Ja-x} Moo e A (8.27)
. DD SR

Let F*(u1, p2, ..., ux) denote the class of all univariate distributions F
such that the first (k + 1) central moments of F are po = 1,1y, ...,

respectively. Let
a;=Ep(X)= /mFi(d:v) (8.28)

and

;= Ep[XT] = /m'Fi(dx),r >2. (8.29)

Then
pir = [ (@ =) Filds) (8.30)
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We are assuming that p;, < 00,1 <1 < k. For any fized p1;,1 < i < k, de-
note F*(u1, pa, ..., ux) by F*. An example of such a family is a translation

parameter family as discussed in Example 8.2.1.

Theorem 8.2.2 (Rennie (1974)): The class A of finite mixing distributions
is identifiable with respect to P = {F;,1 < i < k} where F; € F*~1 with

unequal means.

Proof : It is sufficient to prove that P is linearly independent. Suppose

k
ZC,'F,'(z) =0, —0o<z<00. (8.31)
=1
Then we claim that
k
> Ciaf=0,0<r<k. (8.32)
i=1

This can be seen by induction argument on r. Suppose r = 0. It is obvious
that (8.32) holds for r = 0 by letting z — oo in (8.31). Suppose the relation
(8.32) holds for some 0 < m < r < k. We will show that (8.32) holds for
m = r + 1. Note that

T r ™
Qg = Z (m> Pr—ma™ . (8.33)

m=0
Furthermore
k
ZCiai,r.H =0 (8.34)
i=1
k
since ZC’,-F,-(x) =0,—00 <z < 00 and
i=1
k k T+1
r+1
Stairn = 2OIY (T ursromal]
i=1 =1 m=0
T+1

-3 (’gl)urﬂ_m(gaam

m=0
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r

= Z (T 7: 1) Mr+1—m(gcia;n)

m=0
+<r + 1>u ic o
0 (107
r+1 =
k
= > Ciaf™! (8.35)
i=1

by the induction hypotheses. Relations (8.34) and (8.35) prove that
k
> Ciajtt =0 (8.36)
i=1
which completes the induction argument. Hence
k
> Ciaf=0,0<r<k. (8.37)
=1

Writing the above set of equations in matrix from, we have

1 1 | 1
C 0
a3 a [ 2
! 2 k =| 1. (8.38)
- S e 0

The matrix ((af )kxk is the Vandermonde matrix with determinant
[licicj<k(@j — a;) nonzero since a; # oy for i # j by assumption.
Hence the matrix ((a?))kxk is nonsingular and it follows that C; = Cp =
-+ = Cg = 0 which in turn implies the identifiability of finite mixtures of
{F1, F3, ..., Fi} whenever Er (X) # Ep(X) fori#j,1<i,j<k. | |

Remarks 8.2.4 : As a consequence of the above theorem, we obtain that
the family of finite mixtures generated by two distributions with different
means is identifiable. Similarly the family generated by three distributions
with different means but common variances is identifiable and the family
generated by four distributions with different means but common variance
and common third absolute central moments (for example symmetric dis-

tributions) is identifiable.
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For other applications of Theorem 8.2.1, see Yakowtiz and Spragins
(1968).
Let us now consider another result due to Teicher (1963) which gives a

sufficient condition for identifiability in the case of finite mixtures.

Theorem 8.2.3 : Suppose that to each P € P is associated a transform
¢ with domain of definition Dy and the mapping M : P — ¢ is linear.
Further suppose that there is a total ordering < of P such that P; < P, =
Dy, C Dy, and for each P; € P there exists t; € T; = {t : ¢1(t) # 0} such

that
. 92(t)
tllot (t)
teT é1
whenever P; < P;, P;, P, € P. Then the class A of all finite mixing distri-

=0 (8.39)

butions is identifiable.

Proof: Suppose
Y CiP=0,PeP,1<i<N. (8.40)
i=1

Without loss of generality, assume that P; < P; if ¢ < j. By hypothesis,

N
D Cigi(t) =0,—00 <t < o0. (8.41)

i=1
Let Ty = {t € l)¢1 1 1(t) # O} Forte Ty,

C1+ ZC 2‘((? (8.42)

and hence as t — t; € T through values of Tj, we get that C; = 0 by
(8.39) . Hence

N
S CiPi=0. (8.43)
=2
Repeating the process, we get that C; = 0,1 < i < N. Hence we have the
identifiability of A. | |

Example 8.2.4 (Teicher (1963)): An application of Theorem 8.2.3 shows

that the finite mixtures of gamma densities are identifiable. This can be
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checked in the following way. Consider the gamma density

f(z;0,0) = W"%xa‘le‘“, 0<z< o0

= 0 otherwise

where § > 0 and o > 0. The moment generating function of this density is

given by

z/)(t;G,a):(%)“ =(1- g)"" for —co<t<@. (8.44)

Let us order the family of distributions F(z;6,a) corresponding to the
densities f(x; 6, a) by the ordering

F(:I:’olval) S F($’029a2) (845)

if 61 < 62 or 8; = B but a; > az. Note that if F} = F(-,61,a;) <
F(-,02,a2) = F3, then Dy, = (—00,6;) is contained in Dy, = (—00,8;)

and we can take t; = #; in Theorem 8.2.3. Furthermore

1— ty-oz 1- L)
i Y0n0) o (1797 ";) =0 (8.46)
(23

it P8, 0,01) it (L- £) (1-
since ¢; = ;. Hence the class of finite mixtures of gamma distributions
is identifiable by Theorem 8.2.3. Choosing a = 1, we note that the finite

mixtures of exponential distributions are identifiable.

8.3 Identifiability of Finite Mixtures for Directional Data
One of the distributions that is widely used for modeling directional

data (circular data) is the Von-Mises distribution with density given by

f(6;a,k) = (2nIo(k)) lexplk cos(§ —a)], 0<6<2r

= 0 otherwise

where 0 < a < 27,k > 0 and Iy(k) is the modified Bessel function of the
first kind and order zero (cf. Mardia (1972)). However, when modeling
multimodal directional data, finite mixtures of these distributions or finite

mixtures of other circular distributions are used. Hence the question of
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identifiability of these mixtures is of importance prior to statistical inference
aspects for directional data. Results in this direction are given in Fraser
et al. (1981) and Kent (1983). Fraser et al. (1981) proved that the finite
mixtures of Von-Mises distributions are identifiable using Theorem 8.2.1
due to Yakowitz and Spragins (1968). More general resuts are obtained in
Kent (1983). We now discuss results from Kent (1983).

Let M be a connected manifold which can be embedded in the Eu-
clidean space R¥. Let E(M) denote the family of functions on M of the
form exp{P(x)} where P(z) is a polynomial on R¥ of arbitrary but finite
degree. We are interested in the identifiability of finite mixtures of prob-
ability densities on M with respect to some underlying o-finite measure p
on M when the density is proportional to an element in E(M). It is easy
to see that the identifiability holds iff the collection E(M) is identifiable
as a collection of functions on M provided the support of u contains an
open subset of M. The last condition is natural since we are dealing with
probability measures on M. In other words, for the study of identifiability,
the form of u is irrelevant and it is sufficient to discuss identifiability of
E(M) in the following sense following Theorem 8.2.1 due to Yakowitz and
Spragins (1968).

A family 7 of functions on M is called identifiable if all finite sets
of essentially distinct functions in 7 are linearly independent. That is, if

fi(z),1 < i < n are essentially distinct functions on M such that

> Aifi(z) =0,z € M, (8.47)
i=1
then A\; =--- = A, = 0. Here f; and f, are said to be essentially distinct

if f1 and f» are not proportional to each other.

Note that two distinct polynomials on R* need not define two dis-
tinct polynomials on M. If Pi(z) — Py(z) is a constant for z € M where
Pi(z),1 < i < 2 are polynomials on R¥, then exp{P;(z)} and exp{Py(z)}

define essentially the same function in E(M) but not on R*. For example,
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the polynomials P(z) = 1 and P(x) = (z? + 22)3, ¢ = (z1,72) € R? are

same on the unit circle z2 + zZ = 1 but are not the same on all of R2.

It is clear from the definition of identifiability given above that if I'y and
I’ are identifiable families of functions on manifolds M; and M,, then the
class {f(z)g(y) : f € I'1,g9 € '3} is identifiable on the product manifold
M; x M,.

Suppose the manifold M is a direct product of Stiefel manifolds and
copies of the real line R. A Stiefel manifold 0(p, k) can be embedded in RP*
as the set of p x k matrices X such that XTX = I, the k x k identity
matrix. If £ = p, then we add the additional condition det(X) = 1. If
k = 1, then we obtain the unit sphere in p-dimension as an example of a
Stiefel manifold. Manifolds of this type occur in modeling directional data
(Beran (1979), Johnson and Wehrly (1978), Mardia and Sutton (1978)).

Theorem 8.3.1 : Let M be a finite direct product of Stiefel manifolds and
copies of the real line. Then the family E(M) is identifiable.

Proof : In view of earlier remarks on identifiability on products of mani-
folds, it is sufficient to study identifiability on the real line and on all Stiefel

manifolds.

Case (1) ( M is a circle 0(2,1)) : Every point (z1,z2) on the unit circle
can be represented in the form z; = cos 6,2 = sin 6 and every element in
E(0(2,1)) can be represented uniquely in the form
m
g(6) =c exp[ij cos(jl — a;)] (8.48)
=1
for some m > 0. The parameters k; > 0 are uniquely determined and, if

k; > 0, then a; € [0,27) is uniquely determined. Let
vj(0) = k;j cos(jo —a;),1<j<m (8.49)

and

v(0)T = (v1(0), ..., vm(0)) . (8.50)
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Define v(V(0) > v (o) if for some j with 1 < j < m, v§1)(a) > vﬁz)(o)

(1) (2

and v3;,’(0) = vj,)(a) for j < j' < m whenever v)(5) and v¥ (o) are of

jl
the same length. Any two vectors v(o) of possibly different lengths can be
compared by appending zeroes to the end of the shorter vector. This will
give a total ordering on the collection {v(o)}.

In order to prove the identifiability for E(M), it is sufficient to show

that

N
Y AgM (@) =0,0<f<2r = A =--=Ay=0  (85)
r=1
where
(o
g (8) = exp{ Zky) cos (56 — ay))} . (8.52)
=1

Since g(’)(e), 1 <7 < N are entire functions of 6, it follows that

N
D> g™ (B) = 0,6 =0 + i1, —00 < 7 < 00, —00 < T < 0 (8.53)

r=1

from (8.53). Note that

cos(jo + jit — ag.')) = cos(jo — ay)) cos(ijT)

~sin(jo — i) sin(ij7)
= cos(jo — a§r)) cosh(j7)

—i sin(jo — ay)) sinh(jr) . (8.54)

Hence

m

9 (o +i7)] = exp{ Eky) cos(jo — agr)) cosh(j7)}
i=1

m")
= exp{Y_ v\ (c)cosh(jr)} (8.55)
Jj=1

and
9 (0 + ir)

m —Q0asT — o0 (856)

provided
v (o) < vV (o). (8.57)
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If () and g¢®) are two different components in the mixture, there exists

at least one j such that

(k5 af7) # (ko). (8.58)

Hence, for all but finitely many ¢ € [0, 27r]),v§r)(0) # v§s) (o). Therefore
v(")(c) # v{®) (o) for all but finitely many o € [0,27). Hence there exists at
least one o for which v(')(a), 1 < r < N are all distinct. Choose such a o
and order the functions g("(6),1 < r < n so that v(D(g) > ... > v™) (o).
Dividing (8.55) by ¢(*(8) with 6 = ¢ + 7 and allowing 7 — oo, we get that
A1 = 0. Proceeding in a similar way with the remaining terms, we obtain
that Ay = --- = Ay = 0. This proves the identifiability of E(M) when M

is a circle .

Case (2) (M is a Stiefel manifold ) : We reduce the problem of identi-
fiability to that of a circle discussed above in Case (1) and apply the result
obtained therein.
Let us denote an element of the Stiefel manifold by a matrix X of order
p X k. Without loss of generality, we assume that k = p, for, if k¥ < p, then
any polynomial P;(X ;) defined for X; € 0(p, k) can be extended to 0(p, p)
by the relation
P(X) = Pi(X1),X € 0(p,p) (8.59)

where X; contains the first k¥ columns of X. Any linear relation between
essentially distinct functions on 0(p, k) leads to another linear relation be-
tween essentially distinct functions on 0(p, p).

Let us assume k = p. Suppose

N
S NfO(X)=0 (8.60)

i=1

for X € M = 0(p,p) where f&(X) = exp{P®(X)} and f)(X) are
essentially distinct functions.

Note that I, € O(p,p) where I, is the identity matrix of order p.

Without loss of generality, let us choose the constants in the polynomi-

als P)(X),r =1, ..., N so that P)(1,) = 0. Since P("(X) is an analytic
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function on the analytic manifold 0(p, p), it is determined by its values on
any open subset in 0(p,p). Therefore, given any two distinct polynomials
on 0(p,p), the points at which they differ must be dense in 0(p,p). Hence
the points at which P("(X),1 < r < N take N distinct values are dense
in O(p,p). Let X* be such a point in 0(p, p). Let

6 in 8
Jo)=| 7 MV o<cp<oar. (8.61)
—sinf cos @

Define
J(61)
J(6
B(6,,6;,...,6,) = (62) (8.62)
J(6q)
where ¢ = £ when p is even and
[ J(6) ]
J(02)
J(6q)
1

for ¢ = [£] when p is odd. Here B(6,,0;,...,8;) is a block diagonal orthog-
onal matrix. By the decomposition theorem for orthogonal matrices (cf.
Herstein (1964, p. 306 }), it follows that there exists an orthogonal matrix
H such that

X*=HB(#;,...6;)H" (8.64)

where 0 < 87 < 27,1 < i < ¢q. Consider the submanifold
Mo ={HB(,...,0)HT :0<6; <2m,1<i<g}. (8.65)

Then My C 0(p,p) and My is a multidimensional torus containing both
I, and X*. Any polynomial in X can be regarded as a polynomial in
(cos8;,sin6;),1 < i < g on My and the functions f(')(X),l <r < N can

be considered as essentially distinct functions in E(Mp).
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In view of the fact that the property of identifiability is closed under
direct products and the result for a circle holds as proved in Case (1), it
follows that the result as stated in the theorem holds for E(My). In other
words f("(X),1 < r < N are linearly independent and Ay = --- = Ay = 0.

Case (3) (M is the real line): Here the proof follows along the same
method as that given in Case (1). Observe that the ratio for any two
distinct functions in E(R) tends to zero or infinity as X — oc.

This completes the proof of Theorem 8.3.1. |

Remarks 8.3.1 : As a consequence of Theorem 8.3.1, it follows that the

finite mixtures of Von-Mises densities
m
a1(8) = Z A; exp(K; cos(6 — o)) (8.66)
i=1
are identifiable. Similarly finite mixtures of densities of the form
92(6) = ¢ exp{)_ v; cos(j0 — 5;)} (8.67)
i=1
are identifiable. In addition, it follows that the finite mixtures of multivari-

ate normal distributions on R™ are identifiable (see Remarks 8.6.2).

8.4 Identifiability for Countable Mixtures

Let {F;,7 > 1} be a sequence of distribution functions and
o0
F(z) =) f:Fi(z) (8.68)
i=1

where Zlﬂ‘[ < oo,zﬂi = 1. F is called a countable mizture of {F;}.

i
Note that 3; could be negative. If 3; are all nonnegative, then F will be a
distribution function. The mixture F' or equivalently the sequence {3;} is
said to be identifiable if

F(z) =) BiFi(z), Y IAl <0,y =1 (8.69)
i=1 =1 =1
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and
o0 o0 oo
F(z) =) %Fi(2), Y |nl <00,y m=1 (8.694)
i=1 i=1 i=1
imply that
Bi=%,1>1.

In other words, the representation (8.68) is unique. The problem is to find
conditions on the family {F;} for the identifiability of the mixture F.

The infinite set {F;,¢ > 1} is said to be linearly independent if every

finite subset is linearly independent. It is said to be strongly linearly inde-

pendent if
oo oo
> aiFi(z)=0,Y a;| <oo=>a; =0 forall i>1. (8.70)

Theorem 8.4.1: A necessary condition that the mixture F defined by
(8.68) is identifiable is that the set {F;,7 > 1} is linearly independent.

Proof : Suppose the set {F;,i > 1} is not linearly independent. Then
there exists a finite subset which is linearly dependent. By renumbering if

necessary, we can assume without loss of generality that

k—1
Fi(z) =Y _ aiFi(x). (8.71)
i=1
Hence
k—1 oo
F(z) =Y (B + a:f)Fi(z) + Y BiF;(). (8.72)
i=1 j=k+1
An alternate representation for F(x) is
e o]
F(z) =) BiFi(z) (8.73)
i=1
where
B;=PBi+ea;,1<i<k-—-1, (8.74)

Bi=Pr—e (8.744)
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and

Bi = Bi,i > k. (8.74B).

This can be seen from the fact
da=1 (8.75)

which follows from the equation (8.71) by letting £ — +o0. It is easy to

1Bl <00, Bi=1.

The relations (8.74) and (8.75) give two distinct representations for F(z).

see that

Hence the mixture F is not identifiable. m

Remarks 8.4.1 : The condition of linear independence of the set {F;} is
a necessary and sufficient condition for the identifiability finite mixtures.
It is a necessary condition for the identifiability of countable mixtures. As
we will show below, it is not a sufficient condition for the identifiability of
countable mixtures.

Let {F},i > 1} be a strongly linearly independent family. Define
Fiyi=F'i>1

and

o
Fy =) BiF;
i=1

where 8; > 0,4 > 1 and };2, B = 1. Then the set {F;} is linearly inde-
pendent but not strongly linearly independent and hence mixtures of {F;}
are not identifiable. It is easy to see that the mixture F defined by (8.68)
is identifiable iff the set {F;,¢ > 1} is strongly linearly dependent.

In view of Theorem 8.4.1, we will assume that {F;} is linearly indepen-
dent. Suppose F; € L?(R), the space of square integrable functions with
respect to the Lebesgue measure on R. Applying Gram—Schmidt orthog-

onalization process, we can obtain an associated orthonormal system {¢;}
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under the inner product

<fg9>= / ” f(@)3(@)dz, f,g € LA(R). (8.76)

Let
b= [ a@F @ .77)
and K = ((k;;)). K is an infinite (dimensional) matrix. For results on

infinite matrices, see Cooke (1950) and Kantorovich and Krylov (1959).

Dienes (1932) discusses linear equations in infinite matrices.

Remarks 8.4.2 : Suppose F;(z) < H(z) for all z and H € L?(R). Assume
that there exists a vector 87 = (B4, B2, . ..) such that

F(z)=)_piFi(z). (8.78)
Let -
ai=/ ¢i(x)F(z)dr . (8.79)
Then
0o k
a; = / qS,'(x)klirgo{Zﬂij(x)}d:c (8.80)
oo —t
oo Jk
— Jlim [ 6@ BF @) (8.81)
oo P

by the dominated convergence theorem since

k oo
|6:(x) > BiFi(2)| < |¢s(z)|H(z) Y 18] (8.82)

for all £ and the function ¢;(z)H(z) is integrable. Hence
Q; = lim ZﬁjK,;j

= Y BiKi; . (8.83)
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Let
ol = (0q,0z,...). (8.84)

Then it follows that
a=Kg. (8.85)

On the other hand, suppose there exists a solution @ to the equation
K3 = . Then

| 6@IFe) - SRk =0 (8.56)
.

for all ¢ > 1. Let T" be the closed subspace spanned by {¢;,i > 1} or

equivalently by {F;,j > 1}. Relation (8.86) shows that
oo
F(z)= Zﬂij (z) a.e.
=1
Hence we have the following theorem .

Theorem 8.4.2 : Suppose
Fi(z) < H(z) where H € L*(R) (8.87)

for all 4 > 1. If B is a solution of the equation
F(z)= B;iFj(z)ae (8.88)
j=1

then o = K 3. Conversely if &« = K3, then 3 is a solution of the equation
(8.90).

Remarks 8.4.3 : The above theorem continues to hold without the condi-
tion (8.87) if we insist that 8; > 0 for all ¢ > 1 in (8.68). The result follows
from an application of the monotone convergence theorem in equations
(8.80) and (8.81).

Remarks 8.4.4 : It is clear that the solution 3 for the equation
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is unique iff K ~1 exists. In fact, in such an event,

B=K'a. (8.90)
Let us consider a mixture
o0
G(z) = ijFj(:v), Z lwj| < oo,Zw,- =1. (8.91)
=1
Suppose
o0 o0
ijFj(x) = Zyj¢j(x) a.e. (8.92)
j=1 Jj=1

where {¢;} is the orthonormal system for L?(R) described earlier. Multi-

plying both sides by ¢; and integrating over the real line, we have

o0
> wiKi=yi,i>1 (8.93)
Jj=1
or equivalently
y = Kw. (8.94)
Let
dy= [ R@R@dniz1i1 (3.95)
-0

Multiplying both sides of (8.95) by F; and integrating over the real line, we

have
oo o
Z wjd,-j = Z yini (8.96)
j=1 j=1
or equivalently
Dw=KTy (8.97)

where D = ((d;;)). Relations (8.94) and (8.97) prove that
Dw=K'Kw. (8.98)

It can be shown that K ! exists iff D! exists. Hence the countable
mixture F is identifiable iff D™* exists. Recall that we have assumed that
the set {F;} is linearly independent and F;(z) < H(z) € L*(R) for alli > 1.
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Remarks 8.4.5: It is easy to see that the condition that D! exists is also
necessary and sufficient for identifiability if we consider convex mixtures of

{F;}, that is, mixtures of the form
> BiFi(z),5 >0, Bi=1. (8.99)
i=1 i=1

Furthermore, the results obtained above continue to hold if we replace F;

by its density f; or by its characteristic function ¢; for every i.

Example 8.4.1 : Suppose

1 if &=t <z< i+l
filz) = 2
0 otherwise
for 1 > 1. Let

d;; = /_Z fi(z)fi(z)dz .

It is easy to see that d;; is either 0, % or 1. In fact, for any ¢ > 1,

=

dij_1=-,di;=1,di;41 = 2

o

and d; ; = 0 for all other j. The equation
Dz =0

leads to the set of equations %zi_l +x; + %xiﬂ = 0,7 > 1 where we define

zo = 0 and the condition Y ;o |zi| < co holds. Let

>0 .
g(s) = ins’ .
i=1

Then it follows that

s 1
1+24 y==
o1 +5+5) = 2o
If z; # 0, then
L1
g(s) = z 7 0<s<1
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and the power series expansion of g is obviously not of the form Zfil z;8t
with positive powers of s. Hence z; = 0 which in turn implies that g(s) =0
for 0 < s < 1. Clearly g(0) = 0. Hence g(s) = 0 for 0 < s < 1 which shows
that £ = 0. This proves that D™ exists and the family of convex mixtures
of {fi,i > 1} is identifiable.

Example 8.4.2 : Let

filg) = 28 ifl-z<z<1-4

0 otherwise

for 1 > 1. Here D is a diagonal matrix and Dz = 0 iff € = 0. Hence the

family of convex mixtures of {f;,7 > 1} is identifiable.

Remarks 8.4.6 : Results in this section are due to Tallis (1969) with slight
modification. Patil and Bildikar (1966) discussed identifiability of count-
able mixtures of discrete probability distributions using methods of infinite
matrices. Luexmann(1987) investigated the identifiability of mixtures of

infinitely divisible power series distributions.

8.5 Identifiability for Arbitrary Mixtures

Corollary 8.2.1 deals with a necessary and sufficient condition for the
identifiability of the class A of finite mixing distributions with respect to
a family P of probability measures. In general, this result does not hold
for the class A of arbitrary mixing distributions. For instance, the class of
arbitrary mixtures of normal distributions {N(u,02),—00 < p < 00,0 <
0% < oo} is not identifiable (Teicher (1960)) whereas the class finite mix-
tures of normal distributions {N(u,0?%), —00 < p < 00,0 < 02 < oo} forms

an identifiable family as shown in Example 8.2.2.

We shall now obtain some sufficient conditions for identifiability of ar-

bitrary mixtures.
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Let {f(-,6),0 € ©} be a family of densities on the real line where © is
an interval on the real line. Let G be a probability distribution on © and
define

felz) = / f(z,0)dG(8),—o00 < T < 0. (8.100)
e
Let P = {f(-,0),0 € ©} and T = {f(z,),—00 < z < oo}. Let Co(©) be

the Banach space of continuous functions on the interval © vanishing at

infinity and normed by
llgll = sup |g(¥)| (8.101)
yeo

for g € Co(O).

Theorem 8.5.1 (Blum and Susarla (1977)): Suppose I' C Cp(©). Then

the family A of arbitrary mixing distributions is identifiable, that is,
falz) = fu(r),—~0o <z <00 = H(F)=G#),0€0 (8.102)
iff T generates Cp(©) under the supremum norm defined by (8.103).

Proof : Suppose the family A is identifiable. Let B be the closed subspace
of Cp(®) generated by T. If possible, suppose there exists
g € Co(®)—B,g # 0. By the Hahn—Banach theorem, there exists a
bounded linear functional ¢ on Cy(©) such that

¥(g) =1 and ¥(h) =0, h € B. (8.103)

But, by the Riesz representation theorem, there exist nondecreasing non-

negative functions K; and K of bounded variation on © such that

¥(f) = /e F(6)d(K, — K2)(0), f € Co(©) . (8.104)

Hence
/ h(6)dK,(8) = / h(6)dK,(8),h € B (8.105)
) e

by (8.103). This proves that K;(f8) = K.(8) + C for some constant C
by the identifiability of A and the fact that B is generated by I'. Hence
(f) =0, f € Co(H). In particular 1/(g) = 0. This contradicts the fact that
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¥(g) = 1 given by (8.103). Hence there exists no element g € Co(©)—B, g #
0. In other words, I" generates Cy(©).

Conversely, assume that T generates Co(©). Suppose

fol@) = [ @,0)6(d9) = [ f(a,6)(d6) = fu(a), ~o0 <z < o0
) )

(8.106)
for some probability distributions G and H on ©. Since I" generates Cy(©)

under the supremum norm, it is easy to check that

/ (8)dG(8) = / g(8)dH(8),g € Co(O). (8.107)
(2] o

Let
wm=/ﬂwmwge%@> (8.108)
(2]

Then 9(-) is a bounded linear functional on Cy(6) since G is of bounded
variation on ©. From the uniqueness in the Riesz representation theorem, it
follows that G—H is a constant. Since G and H are probability distributions
on O, it follows that G(8) = h(8),0 € © proving the identifiability of the
class A. ||

Remarks 8.5.1 : Theorem 8.5.1 essentially generalizes Theorem 8.2.1 to
the family A of arbitrary mixing distributions. Teicher (1961) extended
the result discussed in Example 8.2.1 to the family A of arbitrary mixing
distributions. His result is as follows: suppose F is a distribution with
characteristic function |¢{t)| > 0 in a neighbourhood of zero; then the
family A is identifiable with respect to the family {F{(z +0);8 € ©} for any

interval © contained in R. We omit the proof.

Example 8.5.1: Suppose f(z,\) is normal density with mean A and vari-

ance one. Let us define
folz) = / flz, )dG(A),—o0o <z < 00 . (8.109)

Then fg(z) is the density of a mixture of normal densities with mean A

and variance one with mixing distribution G(A). The characteristic function
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() of the mixture fg(-) is

Ya(t) = /_ Z e'*® fo(z)dx f_ Z e [ Z f(z,\)dG()\)]dz
/_ Z[ /_ Z €'’ f(z, A)dz]dG(\)

2 *
= e 7 / eMdG(N) . (8.110)

All the above equations are justified by Fubini’s theorem. Let ¢g(t) denote

the characteristic function of the distribution function G. It follows that
2
Pa(t) = e 7 ¢g(t), —oo < t < 0. (8.111)

This relation shows that there is a one-to-one correspondence between the
characteristic function corresponding to G and the characteristic function
corresponding to fg. Hence, it follows that the distribution function corre-
sponding to fg is uniquely determined by the distribution function G. Thus
G is identifiable and the family of mixtures of {N(A,1), —c0 < A < oo} is
identifiable. It is clear that the result holds for any family of normal distri-
butions with specified variance. As we have already mentioned earlier, the
result is not true if the variance is not specified (Teicher (1960)). See the

next example for details.

Example 8.5.2 (Teicher 1960): Let P = {N(8,0?%), —00 < p < 00,
0 < 02 < 0o} and G be a probability measure on the space R x R*. Let

H(z) = /R 0(z0,0%)d6(0, ) (8.112)

where ®(z; 6, 02) denotes the normal distribution function with mean 6 and
variance 2. Let Ggj,2(+|0?) be the conditional distribution function of 8

given o2. Note that

H(z) = /R . @(”“0;0.1)da(9,02)

INAS

1dGy(c?)  (8.113)
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where G1(0?) denotes the marginal distribution of 2. Therefore

H(z) = /Ooo[/oo <I>($ ; 8;0, 1)dGg|o2(8]0?)]dG1(0?)

-0

= / Oo[cp(x;o, 0?) * Ggjo2(2]0?)]dG1(0?) (8.114)
0

where * denotes convolution. Let h(t) denote the charcteristic function
of the distribution function H(zx) and v(t|0c?) denote the characteristic

function of the conditional distribution function Ggj,2(z|o?). Then

h(t) = /0 ~ e~ 124 (t]02)dG1 (0?). (8.115)

Suppose the probability measure G is such that the conditional distribu-

2 is symmetric. Then v(t[o?) is a real-valued function

tion of 8 given ¢
and relations (8.114) and (8.115) prove that H is a G1-mixture of normal
distribution function ®(z;6,02). However H is also a G-mixture of normal
distribution functions ®(z;6,0?) from (8.112). Hence arbitrary mixtures

of normal distributions are not identifiable.

Remarks 8.5.2 (Convolution): Suppose
o0
H(z) = / K(z — A\)G(dx),—00o < < 00 (8.116)

where K and G are distribution functions. In other words H = K * G.
Convolution is a special mixture of distributions. We claim that H identifies
G if the characteristic function of G is analytic. This can be seen from

following observations. Suppose

H(z) = / ” K(z - NGy (d)) = / ' K(z — NGa(d)), —00 < < 0o,
(8.117)
Then
Pk (t)da, (t) = du(t) = ok (t)dec, (t) (8.118)

for all t where ¢r(t) denotes the characteristic function of the distribution
function F. Since ¢x(t) does not vanish in a neighbourhood (say) V of

zero, it follows that
$G, (t) = dg,(t),t €V . (8.119)
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This will in general not prove that G; = G,. However, if the characteristic

functions of G; and G2 are analytic, then it follows that
¢G1 (t) = ¢G2 (t)» -0 <t< oo (8120)

and Gi1 = G5. However, if ¢x(t) # 0 for all ¢, then the relation (8.118)
implies that ¢g, (t) = ¢g,(t) for all ¢, and hence G = G,. For instance, if
K is an infinitely divisible distribution, then ¢ (¢) # 0 for all ¢ and hence

G1 = G,. In particular, if K(-) is a normal distribution function, then
Gl = Gg.

Remarks 8.5.3 (Additively closed families) : Suppose we consider

mixtures of the form
oo
H(z) = / K(z, \)G(dA), —00 < & < 00 (8.121)

where K belongs to an additively closed family of distribution functions in
the sense
K(z, ) * K(z,)2) = K(z,A1 + A2) (8.122)

and * denotes convolution. An example of an additively closed family
is P(A),0 < A < oo where P()\) denotes the Poisson distribution with
parameter A. Let ¢x(¢,A) denote the characteristic function of K(z,A).
Then

it A1)k (t, Aa) = dr(t, A1 + Xa), —00 < t < 00 . (8.123)

Since ¢x(t, 1) is a measurable function, the only measurable solution of the

above functional equation is
Sr(t,A) = X —0o <t < o0 (8.124)
for some function ¢(t). Hence
Skt A) = [dr(t, 1)}, —co < t < 00 (8.125)

Since ¢r(t,A) is a characteristic function, it follows that A > 0 and G has

to be a measure on [0, 00). Let ¢y (t) denote the characteristic function of
H.
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Then

ou(t)

/0 ” px(tNG(dN)

/oo[d)x(t, D*G(dA), 00 < t < oo. (8.126)
0

Suppose that G; and G2 are two probability measures with support on
[0, 00) such that

H(z) = /0 " K(z, )Gy (@A) = /0 ” K(z, )G () (8.127)

for all z. Then

ba(t) = / k(6 DGa(N) = /O Tk DPC@N)  (8.128)

for —oo < t < 00. Let

Ya(z) = /0 ” 22G(d)). (8.129)

The function ¥g(2) is analytic in {z : 0 < |z| < 1}. Since 9g, (2) = ¢, (2)
for z = ¢x(t,1) and for all ¢t € R, it follows that ¥g, (2) = ¢¥g,(z) for
0 < |z| < 1. In particular

v, (pe) = Y, (pe™) (8.130)

for 0 < p<1and —o0 < t < oo. Applying the dominated convergence
theorem, it follows that (8.130) holds for p = 1. Therefore

/ PGy (dN) = / €A Gy(dN), —00 < t < 00 . (8.131)
0 0

Since the characteristic functions of G; and G5 are identical, it follows that

G1 = G2 by the inversion theorem.

Results discussed above are due to Teicher (1961). We leave it to the

reader to check that the family of mixtures of gamma densities

A
k(z, ) = 1-%5:5*—15“,0 <A< oo (8.132)

is identifiable (assuming that « is known) using the above result.
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Remarks 8.5.4: It is possible to use the techniques from the theory of
integral equations for identifiability. Let us suppose that
1
F(z) = / F(z,0)dG(6),—0 <z < o0 (8.133)
-1
where F(z, ) is a distribution function for every 8. Here G is a function of

bounded variation with G(1) = 1 and G{-1) = 0. Suppose that

T(z,8) = % (8.134)

exists and is continuous in #. Further assume that 7T is square integrable

on [—1,1] x [-1,1] with respect to the Lebesgue measure. Then

1
F(z) /_ F(z,6)dG(6)

1 8F(z,6)
1 08

[F(z,0)G(O)]%, — G(6)do

= F(z,1)G(1) - F(z, -1)G(~1) — / 1 T(z,8)G(8)dé

-1

1
= Fs1)- / T(z,6)G(6)d6 . (8.135)
1
Let
L(z) = F(z,1)— F(z)
= / T2, 0)G(0)d0 (8.136)
1
K(z,y) = / T(z, )Ty, 2)dz (8.137)
-1

and A; and ¢; be the eigenvalues and the corresponding eigenfunctions of
K that is,

1
/_ DK () = Xbilo)

It can be shown that the mixture F' defined by (8.133) is identifi-
able iff {¢;} is a complete orthonormal system for L2([—1,1]) following
Tricomi (1957, p.150). Recall that F is identifiable iff there exists a unique
square integrable solution G(-) in L?(~1,1) for (8.133).



8.6. IDENTIFIABILITY FOR MULTIVARIATE MIXTURES 217

Discussion here is based on Tallis {1969). For more details and further
discussion, see Tallis (1969).

8.6 Identifiability for Multivariate Mixtures
The following characterization of identifiability is useful in studying the
connection between the identifiability problem in the multivariate case and

the identifiability of the marginals.

Theorem 8.6.1 (Chandra (1977)): Let (X, F) and (©, B) be two measur-
able spaces and P = {Py,0 € O} be a family of probability measures on
(X, F) such that the mapping § — Py(A) is B-measurable for each 4 € F.
Suppose there exists a measurable mapping T from (X, F) onto (), T ) such
that a family A of mixing distributions on (©, B) is identifiable with respect
to PT~! = {PsT71,6 € ©} on (¥, 7). Then the family A is identifiable
with respect to the family P.

Proof: Suppose
/Pg(A)Gl(dO) = / Py(A)Go(dB), A€ F (8.138)
e e

where G, and G2 € A. Let B€ T. Then A =T"1B € F by the measura-
bility of the mapping T'. Relation (8.138) implies that

/ Ps(T~1B)G:(d8) = / Py(T"'B)G4(dd),Be T. (8.139)
e S}
Hence
/ PyT~Y(B)G1(df) = / PyT~1(B)G3(d8),BeT. (8.140)
(5] <]

By the identifiablity of A relative to the family PT~! = {P,T~1,6 € 0}, it
follows that G; = G3. This proves that the family A is identifiable relative
to P. [ ]

As a consequence of the above theorem, identifiability relative to a fam-
ily of multivariate distributions can be studied from identifiability relative

to the corresponding marginals.
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Corollary 8.6.1: Let X; be a random variable with probability measure
Py, ,0; € ©;,1 <1 < k. Let P, = {Py,,0; € 6;},1 < i < k. Suppose
the class A; of arbitrary mixing distributions on ©; is identifiable relative
to the family P;. Then the class A = HLI A; is identifiable with re-
spect to the family of joint distributions Py of X = (X1, X3, -+, Xi) where
6 = (61,02, --,0k).

Proof : Let T be a map from X to X* where components of X* are
treated as independent components. Let Py be the joint distribution of X

where § = (61,---,0%). It is easy to see that

k
PT' =[] Po, = P} say (8.141)

i=1
by the construction of the measurable map T.

Suppose G and H are arbitrary mixing distributions on © such that
/ Py (AYG(d6) = / P;(A)H(d9) (8.142)
e )

for all measurable sets A in Hf_l A; where X; is the range space of X;. In
particular, it follows that

|| PeaGi@d) = [ PafaiHian,1<i< (8.143)

@,‘ i

for all measurable sets A; in &; where G; is the marginal of G corresponding
to 6;. This can be done by choosing A = X} x Xy x --- x X;_; x A; X
Xit1 X -+ - X Xg. Since the class A; of arbitary mixing distributions on ©;
is identifiable relative to P; = {Py,,0; € ©;}, it follows that the probability

measures G; and H; are identical on ©;. Hence
GlXG2X---XGk=H1XH2X'--XHk (8144)

on O = ©) X Oy X --- X O. In other words, the family A of product
measures on © is identifiable relative to the family P* = {P;,0 € ©}. An
application of Theorem 8.6.1 shows that the family A is identifiable relative
the family P = {Ps,0 € 6} of joint distributions of X. ]
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Remarks 8.6.1 : As a special case of the above result, we obtain that
if the class A; of arbitrary mixing distributions is identifiable relative to
a family P; for 1 < 1 < k, then the class A = Hf=1 A; of product mix-
ing distributions is identifiable relative to the family of product measures
P =Py xPyx---xPi. Itiseasy to check that if the class of arbitrary
mixing distributions is identifiable relative to P = Hle Pi, then the class
A; of mixing distributions is identifiable relative to P; for 1 < ¢ < k. If the
measures in P are not product measures, then it is not true in general that
the identifiability relative to the joint distributions implies the identifiabil-
ity relative to the corresponding marginals. The following examples due to

Rennie (1972) illustrate our remarks.

Example 8.6.1 (Rennie (1972)): Consider the family P = {f1, f2, fa} of

bivariate densities where

filz,y) = 11 0<z<],1<y<2 (8.145)

= 0 otherwise ,

, = 1if 1<z<2,1<y<3
fale,w) s =Y (8.1474)
= 0 otherwise
and
, = 1if 1<zr<33<y<4
fa(@,9) 2 03T =Y (8.147B)

= 0 otherwise .
Let A be the family of finite mixing distributions on the class P. Any

mixture is of the form

f(z,y) = prfi(z,y) + p2fo(z,¥) + pafs(z,y) (8.148)

where 0 < p; < 1 and p; + p2 + p3 = 1. Since f;,i = 1,2,3 have disjoint
supports, it follows that A is identifiable relative to P. This can also be seen
as a consequence of Theorem 8.2.1. It is easy to check that the marginals

of X for the family P are

1 if0<z<1
fix(z) = _ (8.149)
0 otherwise,
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1 ifi<z<?2
fax(a) = (8.1494)

0 otherwise

and

1 if2<z<3
fax(z) = (8.149B)

0 otherwise .

It is again obvious that A is identifiable relative to Px = {fix, f 2x, fax}
as fix,1 < i < 3 have disjoint supports. But the marginals of Y for the

family are given by

1 ifi<y<2
fiv(y) = i (8.150)
0 otherwise,

1 if1<y<3
fov(y) =14 2 : (8.1504)
0 otherwise
and
1 if2<y<3
fay(y) = (8.150B)

0 otherwise.

Note that A is not identifiable relative to Py = {fiv, fay, fay }. In fact

Fav@) = S hiv(y) + pfav(y)—o0 <y <oo.  (815)

Here is an example of a family of bivariate mixtures which is identifiable

but the mixture of one of its marginals is not identifiable.

It is also possible to give examples when mixtures of marginals for all
components fail to be identifiable while the mixture of joint distribution is

identifiable as shown below.

Example 8.6.2 (Rennie (1972)): Define f;,1 < i < 3 as in Example 8.6.1

and

L if1<r<33<y<4
f4(m,y)={ 3 (8.152)

otherwise.



8.6. IDENTIFIABILITY FOR MULTIVARIATE MIXTURES 221

Let P = {f1, f2, f3, f4}. It can be checked that the mixtures of P are iden-
tifiable but the mixtures of marginals of either X or Y are not identifiable.

In fact

fax(z) = %fzx(ﬂv) + %fax(x), —00< T <00 (8.153)
and
Jar(y) = %fl)’(y) + %fsy(y), —00<y<oo. (8.154)

The next example shows that it is possible that the mixtures of one of
the marginals are identifiable while the mixtures of the joint distribution

are not identifiable.

Example 8.6.3 (Rennie (1972)): Let Py = {fiv, fov, fay } be as defined
in Example 8.6.1 and Px be the family of all univariate normal distribu-
tions. We have seen that finite mixtures of Py do not form an identifiable
family from Example 8.6.1. But finite mixtures of members of Px form an

identifiable family as shown in Example 8.2.2. Let

P={f(z,y) = fx(@)fr(y) : fx € Px, fy €Pyr}. (8.155)

Then mixtures of P are not identifiable. In fact

Ix@far () = 5 Ix@fir (W) + 5 Ix(@) for v) (8.156)
for all z and y.

Remarks 8.6.2 (Identifiability for mixtures of multivariate normal
distributions) : Let us consider the class of bivariate normal distributions
BVN(u1, t2; >.) where Y is a known covariance matrix. Suppose (X, X2)
is distributed as BVN(u1, u2; Y_). Let G be a probability measure on R?

and (Xi¢, X2¢) be a random vector with the joint characteristic function

volt) = [ et'Tarsa)

lo o] o o] 4T
[ / AR (2, p2)dG s, ) (8.157)
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where Fg(-,-) is the joint distribution of (X1q, Xa;). It is the mixture of
the family {BVN(u1, ug, y.)} with mixing measure G. Here F(x|u1, py2) is
the bivariate normal distribution function with mean vector (ui, p2) and

known covariance matix ). It is easy to see that
4T
/ et TdFg(x)

= R [ g = Do) s159
R2

1]

Pa(t)

where tT = (t1,t2),uT = (p1,2), 7 = (z1,z2) and $g(t) denotes the
characteristic function of . This relation proves that ¢ uniquely deter-
mines ¢¢ and hence G is identifiable. In other words arbitrary mixtures of
bivariate normal distributions with a specified covariance matrix are iden-
tifiable.

Bruni and Koch (1985) considered the following equation :

f(z) = /D N (; My))G(dy) (8.159)

where & € RP, D is a compact subset of R™, G is a probability measure on
D, Xy) = (my, Ey) denotes the mean vector and covariance matrix 3

defined on D and Np(z; A(y)) is the multivariate normal density:
- 1 1 -
Ny(z; M(y)) = (2m) %[Z)y] 3 eXP{_E(m - my)' Tyt (e — my)}. (8.160)

Without loss of generality, D is assumed to be connected by adding sets of
G-measure zero. The problem is to identify A and G given f. They have
also investigated whether f is uniquely and continuously associated to the

pair (A, G). Bruni and Koch (1985) furher considered equations of the type
1@ =Y [ aily(@i x(w)Gilay) (8161)
i=1

where v is a known integer, a; > 0, Z;':l a; =1and G;,1 < i< v are
probability measures on D. The assumption that D is compact is necessary
here for it is known that the family of arbitrary Gaussian mixtures over R?

is not identifiable from results discussed earlier (cf. Teicher (1961)).
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8.7 Identifiability for Mixtures on Abstract Spaces
Let (X, F) be a measurable space and S be a set of probability measures
on (X,F). Let 8§ be a o-algebra of subsets of S and p be a probability

measure defined on (S5,S). Define
M,(B) = / P(B)du(P),B € F . (8.162)
s

M, is a probability measure on (X, F). M, is called a mizture over S with

MITING MeEAsuTe L.

Definition 8.7.1: The mapping M : p — M, . € T is said to be identifi-
able if the mapping M is one-to-one from 7 to the class {M, : p € 7}.

In the above definition, u is considered to be a probability measure.
However, if i is allowed to be any signed measure on (S, S) with u(S) =1,
then the set of mixtures of § with mixing measures 4 € 7 is said to be
identifiable if

M, = / Pdu(P)=0=p=0. (8.163)
S

It is clear that if the set of mixtures of S is identifiable in the sense de-
scribed earlier, then (8.162) holds. The converse follows from the following

proposition.
Proposition 8.7.1. If 4 is a nonzero signed measure on (5, S) such that
M, = / Pdu(P) =0 (8.164)
5

holds, then there are two different probability measures p; and ug on (S, S)
such that

M;u E/‘I)d[,l,l(lj)=\/I)d[l,2(.P)EMM2
) S

and hence the set of mixtures of S is not identifiable.

Proof : Supppose u is a nonzero signed measure on (S, 8) such that (8.164)
holds. Let g = p; — po where p; and po are measures on (S,S) such that
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either 11(S) < 00 or p3(S) < 0. Since P(X) =1 for all P € §, it follows
that

M(¥) = [ PP) = [auP) = u(s).  (s169)

Relation (8.164) implies that p1(S) — p2(S) = 0 and hence both u;(S) and
2 are finite. Rescaling, if necessary, we can choose p1(S) = p2(S) =1

since y is a nonzero measure. Hence

My, = [ Pa(P) = [ Pda(P) = M,

for probability measures u; and ps on (5,8). Hence the set of mixtures of
S is not identifiable. |

Remarks 8.7.1 : We assume that S contains all singletons {P},P € S.
In particular, the set of mixtures of S contains the convex hull of S, that
is, the set {37 AP, B, € S,A > 0,37 Ai=1,n>1}

Remarks 8.7.2 : Suppose X is a Polish space (complete separable metric
space) and F is the associated Borel o-algebra. Any probability measure
P on (X,F) is regular and is determined by its values on open sets (cf.
Billingsley (1968)). Since X is separable, every open set in X is a union
of members of a countable collection of open sets {U;} in X. Without
loss of generality, it can be assumed that {U;} are disjoint; if not, let
Vi = U1,Vo = Uy, — U; and in general, let V,, = U,, — U?z_llUi,n > 1.
Then {V,} is a countable basis for X. Hence every probability measure
P on (X, F) is determined by its values on the countable collection {V;}.
Let S be a set of probability measures on (X, F) and S be the associated
Borel o-algebra generated by the weak convergence of probability measures
on (X, F). It is easy to see that the singleton {P} is a closed subset of S
for any probability measure on P on (X, F) and hence {P} € S for every
P € S. In particular, the set of mixtures over S contains the convex hull
described in Remarks 8.7.1.

Let M(X) denote the space of all probability measures on (X, F) and
the topology on M(X) be determined by the weak convergence of proba-



8.7. IDENTIFIABILITY ON ABSTRACT SPACES 225

bility measures on (X,F). Let D = {P, : z € X}. It is known that X
is homeomorphic to the subset D C M(X) and D is a sequentially closed
subset of M(X). Furthermore M(X’) is metrizable as a separable metric
space since X' is a separable metric space. All these facts follow from re-
sults in Parthasarathy (1968). Let p; denote a metric metrizing M(X) as
a separable metric space.

Note that S € M(X) and (S, p1) is also a separable metric space. Let
M(S) denote the set of all probability measures on (S,S) where S is the
associated Borel o-algebra generated by the topology on S (which in turn
is generated by the weak convergence of probability measures on (X, F)).
Since S is a separable metric space, it follows that M(S) is also separable
metric space. Let p; denote a metric metrizing M(S) as a separable metric

space. Define the function

f:M(S) = M(X) (8.166)

1) = My = [ Pdu(P). e M(S) . (8.167)

The problem of identifiability essentially reduces to the existence of
an inverse for the mapping f. We first prove a general result regarding

existence of a bounded inverse for mapping between two sets.

Suppose M; and M, are two sets and p; : M; x M; — R* such that
pi(z,z) = 0 for x € M; and pi(z,y) # 0 for z # y € M;,i = 1,2. Let
f i My — Mo with D(f) € M; and IR(f) C my where D(f) denotes the
domain of f and IR(f) denotes its range. Define the norm of f by

171l = inf {p2(f(2), S®) S @ pr(@,v),my €D} (8.168)

and if f~1 exists, define

15741 = inf {1 (f 7 (w), £7(0) < @ palu, ), w0 € R(D} . (8.169)
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It is easy to see that ||f~!|| > 0 unless D(f) is a singleton. Assume that
D(f) is not a singleton.

Lemma 8.7.1: f~! exists and 0 < ||f~!|| < oo if and only if there exists
a > 0 such that

p2(f(2), f()) 2 api(z,y),z,y € D(f) . (8.170)

Proof: Suppose there exists @ > 0 such that (8.170) holds. Let z,y € D(f)
such that f(z) = f(y). Then p2(f(z), f(y)) = 0 and hence p;(z,y) = 0
from (8.170). Therefore x = y from the definition of p;. This proves that
there exists one-to-one correspondence between D(f) and R(f) . In other

words, f~1 exists. Furthermore, relation (8.170) implies that

p1(2,9) < 2paf(2), (@), 2,y € D) (8.171)

or equivalently

p1(fH(u), f71(v)) < %Pz(u, v),u,v € R(f) . (8.172)

This shows that || f~!|| < oo from (8.169) and ||f~1|| > 0 since D(f) is not

a singleton.

Conversely, if f~1 exists and 0 < ||f || < oo, then

pr(FHF@), £ W)
17 p2(f (), £ (1)) (8.173)

from the definition of f~!. Therefore

p1(z,y)

IA

p(f(@), fw) > ﬁm(%y)
= ap(z,y) (8.174)

with a=! = {|f~!|| for all z,y € D(f). This shows that (8.170) holds. M

Let us now apply Lemma 8.7.1 to the separable metric spaces My =
M(S) and M; = M(X) and the mapping f defined by (8.166) and (8.167).

The following theorem is a consequence of Lemma 8.7.1.



8.7. IDENTIFIABILITY ON ABSTRACT SPACES 227

Theorem 8.7.1 : The set of mixtures over S is identifiable and the map-

ping f has bounded inverse if and only if

pumma) = pul /S Pduy(P), [5 Pdus(P))
> apa(p1, p2) (8.175)

for w1, pe € Mg = M(X) for some a > 0 where p; and p; are metrics on
M = M(S) and M3 = M(X) respectively.

Example 8.7.1 : Let (X,F,Ps) be a probability space and suppose
{Ps,0 € Q} is a family of probability measures on (X, F) dominated by
a o-finite measure v. Suppose ({2, 7, A) is a measure space and C is class of
probability measures on (£2,7) such that every u € C is dominated by A.

Let
dPy

p(z,0) = % —(z),z € X,0 € Q. (8.176)
Assume that
/ /p2(:l;, fdu(0)dv(z) < oo (8.177)
xJa
and
/ (d“ 2d) < 0. (8.178)

We want to obtain sufficient conditions under which the set of mixtures of
{Py,6 € Q} is identifiable with respect to members of C . If @Q is a mixture
of {Pg,0 € Q}, then

Q) = fQ P(A,6)du(6), AeF
= fQ[fA p(z,0)dv(z)|du(d), AeF
= [ op(@ 0L EODOV(), AeF
= [pa(z)dv(z), AeF
where
@) = [ p(e G ODE). (8.179)

Applying Lemma 8.7.1. it follows tha.t the set of mixtures M, over
{Ps,0 € Q} with respect to C is identifiable iff

[156 - Bor> 06 [ 0@ - a@law >0 (3150
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Suppose p(z,8) can be expanded as an infinite series given by

6) =) pndn(2)¥n(6),7 € X,6 € Q (8.181)

where {¢,} and {¢,} are biorthonormal series and p,, > 0 on
L2(X x Q,F x 1,v x A). Note that

Jxlai(z) — go(z))?dv()

J [ 2l 016 - Lo dv(a)

[ S pnnlen(0) d‘“() 2 () @) Pav(z)
/ |an¢n / Wn 0)(d“ 1(g) - % =22 (6))dx(6) *dv (x)

/ Zanpn¢n .’1,‘)'2d1./( )
anlanl2 (8.182)

where a, is as defined by (8.184) given below. All the above statements
can be justified by using Fubini’s theorem. The statement (8.176) and the
relation (8.182) prove that the set of mixtures is identifiable if and only if

d d
/ 5L (0) - L2 (O)Par6) > 0 ¢ Y pRlenl? > 0 (8.183)

where

Qn

/ Yn(O)(ZEL(0) ~ 22 (6)]aro)

d d
< Y, —ﬂ(()) “2 220)> . (8.184)
X
The statement (8.183) holds if {1, } forms a complete family for L2(£2, 7, A).
Hence the set of mixtures M, over {Py, 8 € Q} is identifiable with respect

to C iff the family {4, } given by (8.181) is complete.

Remarks 8.7.8 : The results in this section are due to Tallis and Chesson

(1982). Estimation of mixing measures in metric spaces is investigated in
Fisher and Yakowitz (1970).
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