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Preface 

The problem of identifiability is basic to all statistical methods 

and data analysis and it occurs in diverse areas such as reliability 

theory, survival analysis, econometrics, etc., where stochastic model-

ing is widely used. In many fields, the objective of the investigator's 

interest is not just the population or the probability distribution of 

an observable random variable but the physical structure or model 

leading to the probability distribution. Identification problems arise 

when observations can be explained in terms of one of several avail-

able models. In many problems of parameteric statistical inference, it 

is assumed that the family of probability distributions is completely 

known but for a set of unknown parameters. Any statistical pro-

cedure developed for estimation of these parameters is meaningful 

only if the unknown parameters are identifiable. The theory of com-

peting risks in survival analysis is another area where identifiability 

is essential for the validity of the statistical procedures developed. 

xi 
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Identification problems in econometrics deal with the possibility of 

drawing inferences from observed samples obtained from an under-

lying theoretical structure. A n important aspect of econometric the-

ory involves derivation of conditions under which a given structure 

is identifiable. Lack of identification is a reflection of lack of suffi-

cient information to discriminate between alternative structures. As 

Koopmans and Reiersol (1950) point out, the identification problem 

is ua general and fundamental problem arising in many fields of in-

quiry, as a concomitant of the scientific procedure that postulates the 

existence of a structure." However, they caution that " . . . .the temp-

tation to specify models in such a way as to produce identifiability of 

relevant characteristics is (should be) resisted." Another area where 

the problem of identifiability occurs is in the modeling of mixtures 

of populations. Mixtures of distributions are used quite frequently 

in building stochastic models in the biological and physical sciences. 

Identifiability of the mixing distribution is of paramount importance 

for modeling in this context. Mathematics dealing with the problem 

of identifiability per se is closely related to the so-called branch of 

"characterization problems" in probability theory. Summarization of 

statistical data without losing information is one of the fundamental 

objectives of statistical analysis. More precisely, the problem is to 

determine whether the knowledge of a possibly smaller set of func-

tions of several random components is sufficient to determine the 

behaviour of a larger set of individual random components. Here 

the problem of identifiability consists in identifying the component 

distributions from the joint distributions of some functions of them. 

The major motivation for writing this book is to bring together 

relevant material on identifiability as it occurs in diverse fields men-
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tioned at the beginning as well as to discuss some new results on iden-

tifiability or characterization of probability distributions not found 

elsewhere. The idea for writing this book arose during a short visit 

in 1986 to Oklahama State University at the invitation of Professor 

LI. Kotlarski. Professor Kotlarski is a major contributor for the ma-

terial discussed in the first five chapters. It is a pleasure to thank 

Professor Kotlarski for his interest in this project. 

As with all my earlier books, the Indian Statistical Institute has 
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Chapter 1 

Introduction 

Suppose X and Y are independent normally distributed random variables. 

Then Ζ = X + Y is also normally distributed. Cramer (1936) proved that 

the converse is true, that is, if the sum Ζ of two independent random vari-

ables X and Y has a normal distribution, then both X and Y have to 

be normally distributed. On the other hand, if X and Y are independent 

standard normal random variables, then the ratio U = X/Y has a Cauchy 

distribution. However the converse is not true as noted by Mauldon (1956). 

In other words, it is possible for X and Y to be independent and not nor-

mally distributed and yet U = X/Y could have a Cauchy distribution. The 

following example due to Steck (1958) illustrates this situation. Another 

example is given in Laha (1958). 

Example 1.1 : Suppose X and Y are independent and identically dis-

tributed (i.i.d.) random variables with the symmetric density function 

f(x) = — , - o o < χ < oo. (1.1) 
π 1 + χ* 

We leave it to the reader to check that U = X/Y has the standard Cauchy 

distribution. It is easy to see that U can also be written in the form 

U = (1/Y)/(1/X) where 1/Y and 1/X are i.i.d. random variables with 

1 
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the symmetric density function 

π 1 + ar* 

Hence Î7 = X' /Yf has the standard Cauchy distribution when X ' and Y' 

are i.i.d. with density function / * (# ) . 

Laha (1959a,b) and Kotlarski (1960) gave a complete description of the 

family of all density functions / such that the quotient X/Y follows the 

standard Cauchy distribution whenever X and Y are i.i.d. with density / . 

A natural question now is to find additional conditions under which the 

normal distribution can be identified from the distribution of quotients of 

independent random variables. Kotlarski (1967) proved the following result. 

Suppose X, Y and Ζ are independent real-valued random variables with 

density functions symmetric about zero. Denote U = X/Z and V = Y/Z. 

Then X, Y and Ζ are normally distributed with a common variance σ 2 if 

and only if the bivariate random vector (U, V) follows the bivariate Cauchy 

density given by 

fuvM = ± { 1 + u 2
1

+ v 2 ) 3 / 2, -oo<u,v<oo. (1.3) 

We will come back to the proof of this theorem later in this book. 

What is to be noted above is that even though the distribution of the 

ratio U = X/Y of two independent random variables X and Y does not 

determine the distributions of X and F, the situation changes completely 

if we consider the joint distribution of two ratios U = X/Z and V = Y/Z 

where X, Y and Ζ are three independent random variables. Kotlarski's 

result indicates that if the joint distribution is bivariate Cauchy, then X, Y 

and Ζ are normally distributed under some technical assumptions. 

Let us consider the problem in a more general framework. 

Suppose (X, B) is a measurable space and V is a family of probability 
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measures on (Χ, Β). Let Y = f(X) be a measurable map from (Χ,Β) into 

(y, τ ) . Let Qp be the probability measure induced by Y on (y, r ) when 

Ρ is the probability measure on (X,B). We are concerned with mappings 

/ ( · ) such that <2p is the same for all Ρ G Ρ denoted by and if for some 

probability measure P' on (Χ, β ) , Q£, = Q£, then P' G P. 

Example 1.2 (Kovalenko (I960)) : Suppose Χχ,Χ2, · · ·, Xn> τι > 3 are in-

dependent and identically distributed random variables with density 

p(x — 0), —oo < θ < oo. Let 

Υ = (Χι — Xn, X2 — Xn, . . . j X n - 1 - Xfi)- (1-4) 

Kovalenko (1960) has proved that the distribution of Y determines the 

characteristic function 

oo 
itx </>(t)= / eltxp(x)dx (1.5) 

to within a factor of the form e%lt on every interval where φ(ί) φ 0. In par-

ticular, if φ(ί) φ 0 for all t, then the statistic Y determines the distribution 

of Xi up to location for 1 < i < n. This conclusion also holds if φ(ί) is 

analytic in some neighbourhood of zero (see Theorem 2.1.1 in Chapter 2). 

Example 1.3 (Zinger (1956)) : Let θ = (μ ,σ ) , —oo < μ < οο,σ > 0 and 

ρ(*,β) = Ι * ( ΐ Ζ ϋ ) (1.6) 

where φ is the standard normal density. Suppose Xi,..., Xn are inde-

pendent and identically distributed random variables with density ρ(χ,θ). 

Define 

Y = (Y1,...,Yn) (1.7) 

where 
Yk = Xk X, l<k<n (1.8) 

S 
η 

with X = £ ] Γ Χ * and s 2 = ^(Xk - X)2- It is easy to see that = 0 
fc=l fc=l i = l 
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η 

and ^^y2 = 1. Hence the distribution of Y is concentrated on the set 
i=l 

{ΐ/ = Ϊ> = ο, χ>2 = ΐ } (
L 9

) 

t=l i=l 

which is of dimension (n — 2). It is known that the distribution of Y is 

uniform on a (n — 2)-dimensional sphere when the density p(x, Θ) is given 

by (1.6). Zinger (1956) proved the converse i.e., if the distribution of Y 

is uniform on a (n — 2)-dimensional sphere, then the distributions of 

1 < i < η are normal. 

Example 1.4 (Prohorov (1965)) : Let θ = (μ ,σ) , - o o < μ < οο,σ > 0 and 

(1.10) σ σ 

where ρ(·) is a symmetric density function in the sense that p(x) = p(-x), 

bounded and satisfies Cramer's condition 

ehxp(x)dx < oo (1.11) 

in a neighbourhood of zero. Suppose Xiy X2,...,Xn,η > 6 are i.i.d. with 

density p(x, Θ). Define 

Z* = (Y4-Yz\2 (Υ6-ΥΛ'' 
\Y2-YJ ' \Y2-YJ 

(1.12) 

where Yk is as defined by (1.8). Let 

_ (YA - Y3)2
 7,_(Ye-Y5)2 

(Y2-Yl)2' 

It is easy to see that 

( ^ 2 - ^ ι ) 2 

( X 6 - X 5 ) 2 

( J f 2- J f i ) 2' " a (X2-X1)2 

Suppose p'(-) is another symmetric density possibly different from ρ such 

that the distribution of Z* under ρ(·) is the same as the distribution of Z* 

file:///y2-yJ
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under ρ'(·)· Let 

w = (log ζι log ζ;) 
= (log(X4 - X3f-log(X2 - Xi)2, log(X6 - X5)2-log(X2 - J ^ )

2
) . 

It can be checked that Cramer's condition is satisfied by the distribution 

of log(X2 - - ^ i ) 2 under the density p(-) as well as under ρ'(·). Further-

more the distribution of W is the same under p(-) and ρ'(·). An appli-

cation of the result given in Example 1.2 shows that the distribution of 

log(X2 — ̂ i ) 2 is determined up to shift and hence the distribution of 

(X2 — X\)2 up to scale. But the distribution of (X2 — Xi) is symmet-

ric. Hence the distribution of X2 — Xi is also determined up to scale. 

If the density p(-) is standard normal, then X2 — X\ is also normal un-

der the density p'(-) and, by Cramer's theorem, it follows that X\ and 

X2 are (independent) normally distributed random variables. In general, 

for a symmetric density ρ(·), the distribution of Xi is determined by the 

distribution of X2 — Xi uniquely to within a shift parameter. 

The type of problems discussed above may be termed as problems of 

identification of families of distributions of some random variables from 

some functions of them. Several problems of this kind are investigated in 

Chapter 2 to Chapter 5. 

Other types of identinability problems arise in econometrics, reliabil-

ity or survival analysis and other areas where stochastic modeling is of 

paramount importance. Since stochastic modeling is modeling certain phe-

nomena through a probability structure or probability distribution, the 

problems of identification that come up in stochastic modeling are similar 

to those discussed above. For instance, suppose a random variable X is 

distributed normally with mean μι — μ2 and variance 1 where μι and μ2 

are real. It is clear that there is no way to estimate μι and μ2 separately 

using X and that the parameters μι and μ 2 are not identifiable. However, 
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ει — A*2 is estimable and in fact X is the unique uniformly minimum vari-

ance unbiased estimator of μι — μ2· There are an infinite number of pairs 

(ει,μ>2) which give rise to the same value μι — μ2· Let us consider another 

example — of a regression model. Let 

Yi = οίο + + ει , 

and 

Y2 = ßo + ßiYi+e2 

where αο, αϊ, ßo and ß\ are unknown parameters and rji, £\ and e2 are ran-

dom variables with Ε(ει) = 0 and E(e2) = 0. Suppose Yi is not observable 

but Y2 is. Then 

Y2 = 7o + 7i »7i + £3 

where 

7o = ßo + α0/?ι,7ι = A a i , £ 3 = ε 2 + Λ ε ι · 

Prom the general theory on linear models, it follows that 70 and 71 are 

identifiable (estimable) under some reasonable assumptions on the random 

variables 771, ει and e2. However εο,αο and ε\ are not identifiable indi-

vidually in general. In problems of statistical inference, estimation of a 

parameter is not meaningful unless it is identifiable. The problem of iden-

tifiability occurs in reliability and survival analysis. Suppose an individual 

is subject to two possible causes of death (or two types of terminal illness). 

Let Xi be the lifetime of the individual exposed to cause i alone for i = 1,2. 

In general Xi,i = 1,2 are not observable but Y = m i n ( X i , X 2) is observ-

able. Does the distribution of Y identify the distributions of X\ and X<£t 

Mixtures of distributions are used in building probability models in the 

biological and physical sciences. In order to devise statistical procedures 

for inferential aspects, an important problem is identifiability of the mixing 

distribution. The problem of identifiability for these types of stochastic 

models is discussed in Chapters 6 to 8. 



Chapter 2 

Identifiability of 

Distributions of Random 

Variables Based on Some 

Functions of Them 

In this chapter we consider characterization of distributions of independent 

random variables from the joint distribution of some functions of them. For 

instance, if X, Y and Ζ are three independent random variables, we would 

like to know conditions under which the joint distribution of U = g(X, Y, Z) 

and V = h(X, Y, Z) determine either the individual distributions of X, Y 

and Ζ or the family to which they belong when g(-) and h(-) are specified. 

g(-) and h(-) could be linear or nonlinear functions or they could be the 

maximum and minimum functions, and so on. 

2.1 Identifiability by Sums (or Ratios) 

Let Xi,X2 and X% be three independent real-valued random variables. 

7 
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and it follows from (2.2) that 

Define 

Z\ = X\ — x 3, 

Z2 = X2-X3. (2.1) 

The following result was proved by Kotlarski (1967). 

Theorem 2.1.1 : If the characteristic function of ( Z i , Z 2) does not van-

ish, then the joint distribution of (Ζχ,Ζ 2) determines the distributions of 

Xi, X 2, X3 up to a change of the location. 

Proof : Let φ(ί\,ί2) denote the characteristic function (cf.) of ( Z i , Z 2) 

and </>k(t) be the cf. of Xk for 1 < k < 3. Then 

φ{ίιΜ) = £ { e x p [ i ( * i Z i + * 2Z 2) ] } 

= E{exp[i(t1(X1-X3)+t2(X2-X3))}} 

= E{exp[i(tiXi + t2X2 - (ti + t2)X3)}} 

= Φιψι)φ2(ί2)φ3(-ίι-ί2) (2.2) 

by the independence of Xi, 1 < i < 3. Since φ(ίι,ί2) Φ 0 for all t\ and t2 

by hypothesis, it follows that φϊ(ί) φ 0 for all t for 1 < i < 3. 

Let Yi,Y2,Y3 be another set of three independent random variables 

with characteristic functions ψ%(ί),1 < i < 3 respectively satisfying the 

conditions in Theorem 2.1.1. Let 

wx = Y i - y 3 , 

W2 = Y2-Y3, (2.3) 

and ^{t\,t2) be the characteristic function of (Wi,W2). Suppose that the 

joint distributions of ( Z i , Z 2) and (W\, W2) are the same. Then 

t2) = ψ(ίιΜ), -oo<h,t2<oo (2.4) 
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0ΐ(*ΐ)02(*2)03(-*1-<2) 

= ^l(*l)^2(*2)^3(-*l - fc), -00 < *i,*2 < 00. (2.5) 

Furthermore φι(ί) φ 0 and ψΐ(ί) φ α for 1 < i < 3 for all £ by hypothesis. 

Let 

7 i ( * ) = l f c ( * ) M W > l < i < 3 . (2.6) 

Observe that 7i(-)> 1 < i < 3 are continuous complex-valued functions with 

7i(0) = 1,1 < i < 3 satisfying the equation 

7i(*i)72(*2)73(-*i - t2) = 1, - o o < tut2 < oo. (2.7) 

Let *i = t and t2 = 0 in (2.7). Then 

7i(*)73(-i) = 1* - o o < t < o o . (2.8) 

Let t2 = t and *i = 0. Then 

72(*)73(-*) = 1, - o o < t < oo . (2.9) 

Substituting for 71 (t) and j2(t) in terms of 73(E) in (2.7), it follows that 

73(^1+^2) = 73(^1)73(^2), - o o < t i , * 2 < o o (2.10) 

with 73(0) = 1. It is known that the only measurable solution of this 

equation is 

7s(*) = e ct (2.11) 

where c is a complex number. Hence, it follows from (2.8) and (2.9) that 

7i(*) = 7a(<) = 7s(t) = e c t. (2.12) 

Relation (2.6) implies that 

M*) = M * ) e r f, l < i < 3 . (2.13) 

Since V j W = a n <l Φι(ί) = 0j(—i), being characteristic functions, it 

follows that c = iß where β is a real number. Therefore 

= ^ ( i ) e « " , l < j < 3 (2.14) 
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where ε is a real number. From the uniqueness theorem for characteristic 

functions, it follows that Xj and Yj - ε have the same distribution for 

1 < J < 3. This proves that the distributions of Χχ, X2, X3 are determined 

up to a change of location. • 

Remarks 2.1.1 : If, in Theorem 2.1.1, E(X3) exists and is preassigned, 

then the distributions of Χχ, X2, X3 are uniquely determined from the dis-

tribution of (Χι — X3,X2 — X3). If the characteristic function of (Z\,Z2) 

in Theorem 2.1.1 is infinitely divisible, then the conclusion of Theorem 

2.1.1 holds since the characteristic function of an infinitely divisible law is 

nonvanishing. 

Remarks 2.1.2 : A slight variation of Theorem 2.1.1 for location pa-

rameter families is given in Prohorov (1965). Suppose X\,X2 and X3 

are independent and identically distributed ^-dimensional random vectors 

Xj = (X^\ . . . , xj£ )) with density p(x, θ) = p(x - Θ). Further assume 

that θ G θ which is a fc-dimensional subspace of Re. Without loss of gen-

erality, assume that θ = {θ G R£ : 0&+ι = · · · = θ ι = 0} . Further suppose 

that Cramer's condition holds, that is, 

E0[e{h>X)]= [ e^p(x)dx<oo (2.15) 
Jr* 

for h in a neighbourhood of zero in 

Theorem 2.1.2 : Let X'3 = (X^,..., Χ^,Ο,..., 0) and define 

Y = (Yi,Y2) 

where 

Υ ι = Xi — X ' 3, Y2 = X2 — Xf3-

Then the distribution of Y does not depend on θ and the distribution of 

Y determines the distribution of Xi up to shift . In fact, the distribution 

of Xi belongs to the family {p(x — 0) , θ G Θ} . 
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Remarks 2.1.3 : The conclusion in Theorem 2.1.2 also holds under the 

condition that the common characteristic function φ(ί) of Xj is nonzero 

for all teR1 instead of (2.15). 

Remarks 2.1.4 : An analogue of Theorem 2.1.2 holds for scale parameter 

families in multidimensions. Suppose Xj,l < j < 3, are i.i.d. 

^-dimensional random vectors with density 

p(x ,ö) = l p ( ^ , . . . , | ) , O < 0 < o o . 

Let Xj = (XjX\ · · ·, Consider the 21 - dimensional random vector 

V j = (log |JCj1>| log l-X-j^ l . s g n X ^ . ^ s g n X f ) . 

The density of Vj is of the form 

q(v, φ) = q(VW - φ,..., - φ, . . . , v™) 

where φ = log Θ. Define 

V'j = (]0g\XJ1)\,...,log\xf |,0,. . . ,0) 

and 

Y = (Vi-V'3,V2-V3). 

Prohorov (1965) proved the following theorem as a consequence of Theorem 

2.1.2. 

Theorem 2.1.3 : Suppose p(x) is bounded and satisfies Cramer's con-

dition (2.15). Then the distribution of Y does not depend on θ and the 

distribution of Y determines the distribution of X\ up to scale. In fact the 

distribution of X\ belongs to the scale parameter family 

φ φ · · · , ? ) . 0 < * < ο ο } . 

Let us now consider an extension of Theorem 2.1.1 to linear forms. 
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Suppose Χχ, X 2 and X3 are three independent real-valued random vari-

ables. Consider two linear forms 

Ζχ = αχΧχ + a2X2 + a3X3, (2.16) 

Z 2 = 61X1 + 62X2 + Ö3X3, (2.17) 

such that ai', hi Φ aj : bj for i φ j . Rao (1971) proved the following result. 

Theorem 2.1.4 : If the characteristic function of (Ζχ, Z2) does not vanish, 

then the distribution of (Ζχ, Z 2) determines the distributions of Χχ, X 2, X3 

up to a change of location. 

The proof of this theorem rests on the following lemmas and corollaries 

due to Rao (1966, 1967). 

Lemma 2.1.1 : Suppose 7χ ,72 , · · · ,7η are continuous complex-valued 

functions defined on the real line. If there exist distinct nonzero reals 

cx, C2,. . . , cn such that 

η 
^ 7 i( t + au) = A{t\u) + B{u\t) (2.18) 
i=l 

where A(x\y) and B(x\y) are polynomials in χ of degree less than or equal 

to a and b respectively for any fixed y, then the 7i ( t ) , l < i < n, are 

polynomials of degree less than or equal to a H- b + n. 

Corollary 2.1.1 : Suppose, in (2.18), 

A(t\u) = A(u) and B(u\t) = B{t) (2.19) 

where A(-) and B(-) are continuous functions. Then the ji(t),A(t) and 

B(t) are all polynomials of degree less than or equal to n. 

Lemma 2.1.2 : Suppose the expression on the right side in the equation 

(2.18) is of the form 

A(t) + B(u) + Pk(t,u) (2.20) 
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where A(t) and B(u) are continuous functions and Pk{t,u) is a polynomial 

of degree k in t for fixed u and in u for fixed t. Then ji(t), A(t) and B(t) 

are all polynomials of degree less than or equal to max (n, k). 

Lemma 2.1.3 : If the right side of (2.18) consists only of Pk(t,u) as given 

in (2.20), then the ji(t) are polynomials of degree less than or equal to 

max(n — 2, k). 

We refer the reader to Rao (1966, 1967) for proofs of these and related 

results (cf. Kagan et al. (1973)). Let us now prove Theorem 2.1.4. 

Proof of Theorem 2.1.4 : Let φ^ί) be the cf. of Xul < i < 3. Since 

the cf. of ( Z i , Z 2) does not vanish, it follows that φι(ί) φ 0 for all t and 

for 1 < i < 3. Let fy(t) = log φΐ(ί) denote the continuous branch of the 

logarithm of the cf. φΐ(ί) with 7^(0) = 0. Suppose ^i(t ) , l < i < 3 is 

another set of possible characteristic functions for Xi, 1 < i < 3 satisfying 

the hypothesis. Let ζ{(ί) = log ipi(t) as before and define 

Since the characteristic functions of ( Z i , Z 2) are the same for the choice 

Φί, 1 ^ * 5: 3, as well as 1 < i < 3, it follows that 

for all t, u real. Since : bi φ aj : bj for i φ j , 1 < i, j < 3 by hypothesis, 

the equation (2.22) can be written in one of the following forms depending 

on the values of a\ and bi : 

li(t) = rii(t)-(i(t), - o o < i < o o . (2.21) 

ji(ait + b\u) + 7 2(α 2£ -I- b2u) + 73(03^ + b3u) = 0 (2.22) 

(ϋ) 

(0 ji(t + cxu) + 7 2( t + c2u) + 73(2 + c 3u) = 0, 

ci φ c2 φ c 3 φ 0 ; 

7ι (ί + ciu) + 72(* + c2u) = A{t), εχφ^φΟ; (2.23) 

or 
(m) 71 (t + cu) = A(t) + B(u), c^O. 
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An application of Lemmas 2.1.2 and 2.1.3 implies that each 7fc(£) must be 

linear in t and hence 

0fcM = *l>k(t) exp[af e* + ßk\, - o o < t < oo (2.24) 

where ctk and ßk are constants. Since and f̂c are characteristic functions, 

it follows that ßk = 0 and α& = idfc where dk is real. Hence, for 1 < k < 3, 

0fc(*) = Vfc(*)eW f c t, - o o < * < o c . (2.25) 

This proves the theorem. • 

Remarks 2.1.5 : The assumption in Theorem 2.1.1 that the characteristic 

function of (Ζχ, Z 2) does not vanish can be replaced by the assumption that 

Xk, 1 < k < 3, have analytic characteristic functions. Since 0(0) = 1 for any 

characteristic function, φ(ΐ) φ 0 for t in a neighbourhood of zero. All the 

arguments given in the proof of Theorem 2.1.1 will be valid for t complex 

inside the region {t : \t\ < to}, for some to > 0 where the characteristic 

functions do not vanish. Because of the analyticity of the characteristic 

functions, the relation (2.14) will be valid for the whole real line. Similar 

remarks hold for Theorem 2.1.4 as the conclusions in Lemmas 2.1.1 to 2.1.3 

continue to hold in regions \t\ < to, \u\ < no, if the corresponding equations 

hold in those regions. 

Remarks 2.1.6 : If the assumption about the nonvanishing property of 

the characteristic function of ( Z i , Z 2) is omitted, then the conclusion of 

Theorem 2.1.1 does not hold, as shown by the following example . 

Example 2.1.1 : Let Xi,i = 1,2, and Yi,i = 1,2, be independent ran-

dom variables with the characteristic functions φι,ΐ = 1,2 and xpi,i = 1,2 

respectively given by 

{:• 
W < ) = W i ) = W * ) = W t ) = { " lf ! ί | >1 (2.26) 

1 1 |*| for |i| < 1 . 
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Let X3 be a random variable independent of X\ and X2 with the charac-

teristic function 

{ 0 if 

1 - M if and I3 be another random variable independent of Yi and Y2 with the 

characteristic function 

V>3 W = 1 - j for \t\ < 2, </>3(* + 4) = VaW. (2.28) 

It is easy to see that 

0ι(*ι)02(*2)03(-*ι - * 2) = MhMt2)M-ti ~ t2) (2.29) 

for all ii and t2. Clearly ψ3{ί) and 03(t) are not equal and ψ3(ί) is n° t 

of the form φ3{ϊ)είδί for any real δ. Hence ( X i , X 2, X 3) and ( y i , F 2, y 3) 

are sets of independent random variables such that the distribution of X3 

and the distribution of Y3 do not just differ by location but are completely 

different, and yet the joint distribution of (Xi — X 3, X2 — X3) is the same 

as that of (Yx - Y3, Y2 - Y3). 

Remarks 2.1.7 : Sasvari (1986) and Sasvari and Wolff (1986) improved 

the result in Theorem 2.1.1. They showed that if any two of the charac-

teristic functions of Xi , 1 < i < 3 are analytic or have no zeroes, then the 

distribution of (X\ — X 3, X2 — X 3) , determines the distributions of Xi,X2 

and X3 up to a change of location. Bondesson (1974) proved that Theorem 

2.1.1 holds if either 1 < i < 3 or ^ , 1 < i < 3 in (2.5) have "no 

(cf. Lemma 4.4 of Bondesson (1974)). 

It is easy to extend Theorem 2.1.1 to η independent real random vari-

ables, in the following form. 

Theorem 2.1.5 : Let Xi, 1 < i < n, be η independent real-valued random 

variables and define 

Zi = Xi-Xn, l < i < n - l . (2.30) 
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Suppose the characteristic function of Ζ = ( Z i , . . . , Z n_ i ) does not vanish. 

Then the distribution of Ζ determines the distributions of X\,Xn up to 

change of location. 

Remarks 2.1.8 : Rao (1971) extended Theorem 2.1.4 to ρ linear functions 

Zi,l < i < p, oî η independent random variables Xi. He obtained con-

ditions sufficient for determining the smallest number ρ of linear functions 

Zi, 1 < i < p, such that their joint distribution specifies the distribution of 

each random variable Xi, 1 < i < n, up to a change of location. He showed 

that 

2 n~ 2 

For details, see Rao (1971) (cf. Kagan et al. (1973)). 

Remarks 2.1.9 : Theorem 2.1.1 can be extended to η-dimensional random 

vectors Xk> Rao (1971) proved the following theorem. 

Theorem 2.1.6 : Suppose X\, X2 and X3 are independent n-dimensional 

random vectors. Consider two linear functions 

Zi = ΑχΧχ + A2X2 + A3X3 , 

Z2 = B1X1 + B2X2 + B3X3 (2.31) 

such that 

(i) Ai is either zero or a nonsingular matrix and only one of Ai is zero 

for any i, 

(ii) Bi is either zero or a nonsingular matrix and only one of Bi is zero 

for any i, 

(iii) Ai and Bi are not simultaneously zero for any i, and 

(iv) the matrix BiAj1 — BjA^1 is nonsingular when defined. 

If the characteristic function of (Ζι, Ζ2) does not vanish, then the dis-

tributions of the Xi are determined up to a change of location. 

This theorem follows as a consequence of extensions of Lemmas 2.1.1 to 
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2.1.3 to the multivariate ease. For details, see Rao (1971). We will consider 

more general results dealing with random elements taking values in Hilbert 

space later in this book. 

Theorem 2.1.1 can be rephrased in terms of ratios instead of sums in 

the following way. 

Theorem 2.1.7 : Suppose X i , X 2 , X 3 are three independent positive ran-

dom variables. Let Yi = X 1 / X 3 and Y2 = Χ2/Χ$. If the characteristic 

function of (log Yi, log Y2) does not vanish, then the distribution of (Yi, Y2) 

determines the distributions of Xi,X2,X$ up to a change of scale. 

Proof : This theorem follows immediately from Theorem 2.1.1 since log X&, 

k = 1,2,3, satisfy the assumptions of Theorem 2.1.1. • 

Remarks 2.1.10 : The positivity condition on the random variables Xk, 

1 < fc < 3, in Theorem 2.1.7 can be replaced by the conditions that the ran-

dom variables Xk have distributions symmetric about the origin and that 

P(Xk = 0) = 0 for 1 < k < 3. 

Applications 

Theorem 2.1.8(Characterization of the normal distribution): Let 

Χι , X 2, X3 be three independent random variables symmetrically distributed 

about the origin with P(Xk = 0) = 0,1 < k < 3. Let (Yi, Y2) be defined 

by 

A necessary and sufficient condition for the independent random variables 

Xfc> 1 < k < 3, to be normally distributed with a common variance σ 2 is 

that the joint density of (Yi, Y 2) is the bivariate Cauchy density given by 

(2.32) 

9YUY2 (Vi,V2) = 
1 

(2.33) 
2π(1 + y\ + 2 / 2

2
)

3
/

2 
-00 < 2/1,2/2 < +00. 

Proof : Let <t>k{t) denote the characteristic function of log|Xfc|. If Xk has 
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a normal distribution with mean 0 and variance σ 2, then 

^fc(t) = E[exp{itlog\Xk\}} 

= (> /2σ ) "Γ ( (1 + « ) / 2 ) π - * (2.34) 

and hence the characteristic function of (log\Υχ\, log IY2I) is given by 

</>(h,t2) = Φι(Η)φ2(ί2)φ3(-^-ί2) (2.35) 

- π - * Γ ( ^ ) Γ ( ^ ) Γ ( ^ % ± ^ ) . (2.36) 

Note that (fr(ti,t2) is nonvanishing for all t\ and ί2· It can be checked that 

the characteristic function of (log|Yi|,log II2I) is given by (2.36) whenever 

(Yi, y 2) has joint density given by (2.33). Hence the distributions of Xi are 

determined up to change of scale by Theorem 2.1.7 and Remarks 2.1.10. If 

the Xi are normally distributed with mean 0 and variance σ2, then one is 

led to the equation (2.36). Hence the random variables Xi, 1 < i < 3, have 

to be normally distributed with mean zero and the same variance σ 2. • 

Theorem 2.1.9 (Characterization of the gamma distribution): Let 

Xi,X2,X3 be three independent positive random variables. Define 

Yi = | i and Y2 = I 2- . (2.37) 
A 3 A 3 

A necessary and sufficient condition for Xk to have a gamma distribution 

with parameters pk and a, 1 < k < 3 is that the joint density of (Yi, Y2) is 

the bivariate beta density given by 

, χ Γ ( ρ ! + ρ 2 + Ρ 3 ) 2 /
Ρ ΐ

"
1
2 / Γ " 1 ^ Λ ^ n 

g { y U V 2) = Γ (ρ0Γ(ρ 2)Γ(ρ 3) (l + y i
y i > 0' W >° ( 2 . 3 8 ) 

= 0 otherwise . 

Proof : Let <ßk(t) denote the characteristic function of log Xk. If Xk has 

the gamma distribution with parameters pk and a, then 

0 f c(t) = E[exp{it log Xk)} 

- <«·> 
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and hence the characteristic function of (log Yi,log Y2) is 

<K*1,*2) = 0 l ( t l ) 0 2 ( * 2 ) 0 3 ( - * l - * 2 ) 
r ( p i + f t i ) T{p2 + rt2) Γ(ρ 3 - rti - rt2) 

Γ(ρ!) Γ(ρ 2) Γ(ρ3) 
(2.40) 

It can be checked that the characteristic function of (log Yi, log Y 2) , when-

ever (Yi, Y 2) has the joint density (2.38), is also given by the expression 

on the right side of (2.40). An application of Theorem 2.1.7 gives the 

result. • 

Theorem 2.1.10 (Characterization of the gamma distribution) : 

Let X i , X 2 , X 3 be three independent positive random variables and let 

(f/i, U2) be defined by 

U ~ XL JJ _ ^~ X% ^2 41) 
Χι + X2 X\ + X2 + X3 

A necessary and sufficient condition for Xk to be gamma-distributed with 

parameters pk and α, 1 < k < 3, is that U± and U2 are independent 

beta—distributed random variables , U\ with parameters (p\,p2) and U2 

with parameters (pi + ρ2,ρ3)· 

Theorem 2.1.11 (Another characterization of the normal distri-

bution) : Let Xi,X2,X3 be independent random variables symmetrically 

distributed about the origin and satisfying the condition 

P(Xk = 0) = 0,1 < k < 3. Let 

Vi = . f 1
 o and F2 = Ζ***** 0. (2.42) 

A necessary and sufficient condition for Xk to be normally distributed with 

a common variance σ 2 for 1 < k < 3 is that V\ and V2 are independent and 

V\,V2 are distributed according to the densities 

m J izh? i fH < i ( 2. 4 3) 

I 0 otherwise 
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and 

I 
if 0 < ν < 1 

f2{v)={ (2.44) 
0 otherwise 

respectively. 

For the proofs of Theorems 2.1.10 to 2.1.11, see Kotlarski (1967). Re-

lated results characterizing the chi-square distribution and the normal dis-

tribution using the Student's t distribution are given in Kotlarski (1966a,b). 

Suppose that Xq and X\ are independent identically distributed random 

variables distributed according to the chi-square distribution with η degrees 

of freedom. It is known that 

has the t distribution with η degrees of freedom (cf. Cacoullos (1965)). The 

problem is to find out whether the chi-square distribution can be character-

ized by this property. The answer is "no." There are independent positive 

random variables identically distributed with a distribution different from 

the chi-square distribution for which Y follows the t distribution. However, 

suppose there are three independent random variables Xq,X\,X2 and let 

Yi = — XL ~ X° Y2 = 5̂ X* ~ X° (2 46) 
2 y/ΧχΧο 2 y/X2Xo 

Note that 

where 

Ζ ^ φ - a n d Z ^ ! 2 - . (2.48) 
A O A O 

Kotlarski (1966a) proved that, using a suitable distribution for the ran-

dom vector (Yi, Y2), one can characterize the chi-square distribution of the 

random variables X q , X\, X2. 
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The results discussed in Theorems 2.1.1, 2.1.4 and 2.1.6 only indicate or 

give sufficient conditions under which the joint distribution of two or several 

linear forms determine the distributions of the individual summands up to 

change of location. But no method has been given to explicitly determine 

the distributions of individual summands if the joint distribution of suitable 

linear forms is known. We now consider this problem. 

Remarks 2.1.11 (Explicit determination of the distributions of the 

individual summands) : Let Xo,Xi,X2 be independent real-valued ran-

dom variables with characteristic functions φο,φ\,φ2 respectively. Assume 

that φο,φ\,φ2 are nonvanishing everywhere. Define 

Yi = X0 + Xi and Y2 = X0 + X2. (2.49) 

Let ψ{ίι,ί2), the characteristic function of (Yi, Y2), be known. Then 

V>(*1, *2) = Φο{Η + *2)0ΐ(*ΐ)02(*2), - o o < t u h < oo. (2.50) 

Clearly ^(ti,t2) is nonvanishing. Let t2 = 0. Then the equation (2.50) 

gives 

0o(*i)0i(*i) = </K*i,0), - o o < h < oo. (2.51) 

Let ii = 0 in (2.50). Then we have 

0o(*2)02(*2) = ^(O,*2) , - o o < t 2 < o o . (2.52) 

Relations (2.50) to (2.52) show that 

0θ(*1 + *2)0l(*l)02(*2)^(*l, 0)^(0, t2) 

= ^(*1,*2)0θ(*ΐ)0ΐ(*ΐ)Λ)(*2)^2(*2) (2.53) 

and hence 

M t l +v = «Z!mlt2)MtMt2) (2·54) 

for t\,t2 real. Let φί(ί) = logφi(t) be the continuous branch of the loga-

rithm of 0i(-) with ^i(O) = 0. Then it follows that 

*(ti+ί2) = los mïmL)+ Mt[)+Mt2) (2·55) 
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for all t[ and t2 real. Integrating on both sides of the equation (2.55) with 

respect to t[ over the interval [α,ίι], it can be checked that 

+ / 1 V o ( i ' i X + / 1 ^(ia)di ' i . (2.56) 

Let £ = ^ + t2 in the integral on the left hand side of (2.56). Then we have 

+ i ' W t J f i + t i ^ ) . (2.57) 

Rewriting (2.55) in the form 

^ 0 { i l + ^ = % ( & ^ ) + ^ ο ( ί ΐ ) + ^ ο ( ί ' 2 ) { 2 · 5 8 ) 

and integrating on both sides of this equation with respect to t2 over the 

interval [0,t2], it can be shown that 

f1+t2Mt)dt = f\og , , / ^ * 
Jtl Jo V>(*i> 0)^(0, ί'2) 

+ / ^ o ( * ) * + *2^o(*i). (2.59) 
Jo 

Equating (2.57) and (2.59), we have 

^ Ä * ( 2' 6 0) JO 

for all ii,Î2- Dividing both sides of the equation (2.60) by t\t2, we have 

^o(t2) Vo(*i) 1 RI'2, WlA) d f, 
t2 h WJo % ( < i , 0 ) # , i ' 2) 2 

JO 
1 ο^ ( η , ο ) ^ ( ο , ί 2) ^

] ( 2
·

6 1) 

for —oo < h,t2 < oo,iiÊ2 Φ 0. Let t2 = t and ti —• 0. Assume that 

mo = E(Xq) is finite and that the interchange of the limit and integral sign 
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is permitted in the following computations. Then, we have 

lim ^ = im0 (2.62) t-»o t 

and, from (2.61), 

—— = into + - lim / — log — — — - a v 

j _ r11 v^(u,«) , 
«ι Jo g VKo)V(o,i))d uJ 

- l o g - ^ ° ' * > 
^(0,0)V(0,i) 

Hence 

= ιτη0 + - hm / - l o g χ dt> ί « i - o 7 0 ix 6ν(<ι,0)ν(0,ι;) 

= tm 0 + i / " | > g J|.=odt;. (2.63) 
< y 0 du1 ip(u,0)ip(0,v) 

Mt) = imot + f |-[log — 5 ^ 1 _ ] „ = 0 d« . (2.64) 
Λ, au1 v(",o)v>(o,t;)J 

Using this formula for rpo(t), one can compute <£o(*) and hence 4>i{t) and 
<foM by the relations 

^ ^ • « ^ T F - - ο ο < ί < ο ο . (2.65) 

Relations (2.64) and (2.65) give explicit formulae for computing the char-

acteristic functions of Χο,Χχ and X2 given the characteristic function of 

( X 0 + X i , X o + * 2 ) . 

The results given above are due to Kotlarski . 

2.2 Identifiability by Maxima 
Let Xq, Xi and X2 be independent real-valued random variables. Define 

Yi = Χ0νΧχ and Y2 = X0VX2 (2.66) 
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where aVb denotes max(a, b). It is of interest to know whether the joint 

distribution of (Yi,Y2) determines the individual distributions of XQ, X\ 

and X2. 

Theorem 2.2.1 : The joint distribution of (Yi, Y2) uniquely determines 

the distributions of XQ,X\ and X2 provided the supports of XQ, X\ and 

X2 are the same. 

Proof : Let Fi and F* denote alternate possibilities for the distribution 

functions of Xi, i = 0,1,2. Let the joint distribution of (Yi, Y2) be denoted 

by Gd/1,2/2). Then, for - 0 0 < 2/1 < 2/2 < +00, 

by the independence of XQ, X\ and X2. Since F* is the alternate possible 

distribution for Xi, i = 0,1,2, it follows that 

G{yi,y2) = Ρ ( Υ ι < 2 / ι , Υ 2< 2 / 2) 

= P{Xo < 2/1, Xi < 2/1, Xo < 2/2, X2 < 2/2) 

= P(Xo< Vi, Xi < 2 /1 ,^2 < 2/2) 

= F0{y1)F1(y1)F2(y2) (2.67) 

^0(2/1)^1(2/1)^2(^2) = F0*(2 / i )F*(2 / i )F2*(2/ 2) (2.68) 

for —00 < 2/1 < 2/2 < 00. Let y2 -+ oc. Then it follows that 

^0(2 /1)^1(2 /1) = F 0*(2 / i )F*(2 / i ) , - 0 0 < yi < 00. (2.69) 

Relations (2.68) and (2.69) show that 

F2(y2) = F;(y2) (2.70) 

for all - 0 0 < 2/2 < 00 provided F0(2/1)^1 (2/1) > 0. Note that the support of 

F 0Fi is the same as the support of FQF? from (2.69). Let us now choose 

—00 < 2/2 < 2/1 < 00 and compute 
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G(yi,y2) = P(Yi<yi,Y2<y2) 

= P{Xo <yi,Xi<yi,Xo< y2,X2 < y2) 

= P(Xo <y2,Xi <yi,X2 < y2) 

= Foiy^FMFM 

= F0(min(tfi,i,2))Fi(yi)F2(ifti). (2.71) 

This relation leads to the equation 

Foiy^FMFM = F*(y2)F^yi)F;(y2) (2.72) 

for —oo < 2/2 < 2/1 < oo. Let 2/1 —• 00. Then 

^0(2 /2)^2(2 /2) = FS ( 2 / 2 ) ^ ( 2 / 2 ) (2.73) 

for —00 < 2/2 < 00. Hence, from (2.72) and (2.73), we have 

Fi(yi) = F*{yi) (2.74) 

whenever —00 < 2/1 < 00 provided Fo(y2)F2(2 /2) > 0. Note again that the 

support of FoF2 is the same as the support of FQ F2* from (2.73). Since 

the supports of Fo,Fi and F2 are all the same, it can be seen from (2.68), 

(2.70) and (2.74) that 

Fi(y) = F*(y),i = 0,1,2 (2.75) 

over the common support of Xo, X i , X2> Hence the distribution of (ΥΊ, Y2) 

uniquely determines the distributions of Χο ,Χι and X2. • 

Remarks 2.2.1 : It is known that Yi = XQVXI alone cannot determine 

the distributions of Xo and X i uniquely unless Xo and X\ are i.i.d. random 

variables. For a discussion on this topic, see Section 7.3. 

The results of this section are due to Kotlarski. 
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2.3 Identifiability by Minima 

A result analogous to Theorem 2.2.1 holds for minima of random vari-

ables. 

Theorem 2.3.1 : Let Χο,Χι and X2 be three independent random vari-

ables. Define 

where ahb denotes min(a, b). Suppose the distribution functions FQ, FI and 

F2 of XQ, X\,X2 respectively satisfy the conditions 

for some a < +00 . Then the joint distribution of (Yi,Y2) uniquely deter-

mines the distributions of Χο,Χι and X2. 

Proof : This theorem can be derived either as a consequence of Theorem 

2.2.1 or directly. Let F{ = 1 — F*. It is easy to check that 

for all yi and y2 and the rest of the proof is similar to that of Theorem 

Remarks 2.3.1 (Explicit determination of the component distri-

butions): Given the joint distribution GyLIY2(yi, y2) of (Yi,Y2) in Theorem 

2.2.1, one can explicitly write down the distributions of FQ,FI and F2. In 

fact, it is easy to check that 

Yi = Χ 0 Λ Χ 1 and Y2 = X 0A X 2 (2.76) 

Fi(a) = 1, Fi(w) < 1 for w < a, i = 0,1,2 (2.77) 

P(Yi > yuY2 > y2) = F0(yiVy2)Fi(yi)F2(y2) (2.78) 

2.2.1. 

Fo(z) 
GYl ,y2 (*, °o)GYl ,y2 ( O O , Z) 

GY1,Y2{Z,Z) 
(2.79) 

Fi(x) ^ ^ - F 2 ( y ) = 
' i ,y2(oo,x) 

GvUY2{y,y) 
Gn,y 2(2 / , oo ) 

(2.80) 

using the relation (2.71). 

Example 2.3.1 : Let Χο ,Χι and X2 be independent positive random 

variables whose distribution functions satisfy the conditions F(+0) = 0, 
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α < F(w) < 1 for w > 0; that is, the support of F is [0, oo). Define 

Yi = X0AXi and Y2 = X0KX2. (2.81) 

Suppose that 

exp(-ay1-by2 - cmaxfe i ,^ ) ) 

P(Yl>Vl,Y2>V2) = < exp( - (a + c)yi) 

exp(-(6 + c ) 2 / 2) 

1 

if 2/1 > 0 , y 2 > 0 

if 2/1 > 0,y2 < 0 

if 2/1 < 0, y 2 > 0 

if 2/1 < 0,2/2 < 0 . 

(2.82) 

Then all the components XQ, X\ and X2 are exponentially distributed with 

positive parameters a, b and c respectively. This result follows from The-

orem 2.3.1. It is easy to check from the definition of (Yi,Y2) in Theorem 

2.3.1 that 

H(yuy2) = P(Yi>y,Y2>y2) 

= P(X0 > y1Vy2)P(X1 > Vl)P(X2 > y2) 

= Fo(yiVy2)F1(y1)F2(y2) (2.83) 

and, given H(yi,y2), one can find F0,Fi and F2 from #( · , · ) by the fol-

lowing relations : 

H(z, — oo)H(—oo, z) 
F0(z) = 

and 

Fi(x) = 

F2(y) = 

H(z,z) 

i f (x , x) 
H (—00, χ) 

H(y,y)) 

(2.84) 

(2.85) 

(2.86) 
H(y,-oo) 

It is easy to show that Xo, Xi and X 2 have exponential densities when Η 

is given by (2.82), using the relations (2.84) and (2.85). 

The results in this section are due to Kotlarski. 
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2.4 Identifiability by Maximum and Minimum 

Let Χο,Χι and X2 be independent random variables. Define 

Yx = XoAX! and Y2 = X0VX2 . (2.87) 

Theorem 2.4.1 : Let Fi be the distribution function of Xi,i = 0,1,2. 

Suppose that, for some fixed a, 6, x0, q satisfying — oo < a < XQ < b < +oo, 

0 < q < 1, 

< l , x < 6 ; F i ( 6 - 0 ) = 1 (if b Ε Ä), 

*2(l/) > 0,1/ > a; F 2(a + 0) = 0 (if a Ε Ä) , (2.88) 

F0(a + 0) = 0, F0(b - 0) = 1, F 0( x 0) = q 

and Fo is strictly increasing in (a, 6). Then the joint distribution of (Yi, Y2) 

uniquely determines the distributions FQ,FI and F2. 

Proof : For —oo < yi < y2 < oo, 

P{Yi>yi,Y2<y2) = P{X0 > yi,Xi > yi,Xo < 2 /2 ,^2 < 2/2) 

= P ( yi < X 0 < 2/2, -ΧΊ > yi, -Ï2 < 2/2) 

= (F0(y2) - F0(y1))F1 (2 /1)^2(2 /2). (2.89) 

Suppose {FQ , i<\*, F2*} is another set of distribution functions for {X0, Χχ, X2} 

satisfying the conditions in the theorem such that the distributions of 

(Yi,Y2) under {Fi} as well as {F*} are the same. Then, for 

- 0 0 < 2/1 < y2 < 00, 

[FS(y2)-F*(yi)}F*(yi)F;(y2) 

= [*o(2/2) - F0(y1)]F1 (2 /1)^2(2 /2). (2.90) 

Let 2/2 -+ +00 in (2.89). Then 

F*(yi)F*{yi) = Fo(yi)Fifoi) , - 0 0 < 2/! < 00. (2.91) 

Let 2/1 -> - 0 0 in (2.89). Then 

Fo ( 2 / 2 ) ^ ( 2 / 2 ) = F0(y2)F2(y2), - 0 0 < y 2 < 00. (2.92) 
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Combining the relations (2.89) to (2.91), we have 

[*ï(Va) - FS(y1)}F*(y1)F;(y2)Fo(yi)F1(y1)F0(y2)F2(y2) 

= [Fo(y2)-Fo(yi)}F1(y1)F2(y2)F*0(yi)ri(y1)F^y2)F;(y2) (2.93) 

for —oo < yi < y2 < oo. Applying the conditions (2.87), we have 

F5(V2)-FS(vi) = FZ(yi)F5(v2) ( 2 M) 

F0(y2) - Fofoi) F 0( i , i ) F0(y2) ' ; 

for —oo < a < yi < y2 < b < oo. Since FQ(X0) = F0(x0) = <Z> it follows 

that, for —oo <a<y< xo, 

F0(x0) - F0(y) F0(y) 

It is easy to see that the relation (2.94) implies that 

Fo(y) = F0{y) for - oo < y < x0 . (2.96) 

Similarly we can prove that 

Fo(y) = F0(y) f o r x 0 < y < + o o . (2.97) 

Relations (2.90) and (2.91) prove that 

Fï(y) = Fi(y) and F^y) = F2{y) (2.98) 

completing the proof of the theorem. • 

Remarks 2.4.2 (Explicit determination) : Given the joint distribution 

of (Fi, Y2), one can explicitly write down the distributions of Χο ,Χι and 

X2. Let 

H(u,v) = P{Yl>u,Y2<v) 

= F1{u)F2{v)[F0{v) - Fo(u)], - 0 0 < u < ν < 00. (2.99) 

It can be checked that 

i q[H(z,xo)-H(-oc,x0)H(z,oo)] < 
qH(z,xo)-H(-ocxo)H(zoo)^ - 0 

gH(χρ,οο) Η(-οο,ζ) ^ v ' 
H(x0,oo)H(-oo,z)-(l-q)H(x0tz)' Z - X° 

- H(x,oc) i J ( - o c , y ) 
F i W = — , x ,F2{y) = 

Foix)  ̂ My) 
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where XQ and q are as defined by (2.87). We do not give the details here. 

The results in this section are due to Kotlarski (1978) . 

2.5 Identifiability by Product and Minimum (or Maximum) 

Let Χο,Χι and X2 be positive independent random variables. Define 

Yi = XQAXI and Y2 = X0X2 . (2.101) 

Theorem 2.5.1 : Suppose there exists ao > 0 such that the distribution 

functions F0,Fi and F2 of Χο,Χι and X2 satisfy the conditions 

Fi(x) < 1, i = 0,1 for χ < a0 < oo. (2.102) 

Further suppose that there exists ao > 1 such that hi (a) 

= E{Xf) > 0 and finite for 0 < a < ao,i = 0,2 and in addition assume 

that there exists a fixed constant q > 0 such that 0 < E(X0) = q < oo. 

Then the joint distribution of (ΥΊ, Y2) uniquely determines the distributions 

of XQ,XI on the interval (—οο,αο) and the moments E(X2),0 < a < αο· 

Proof : Let χ A denote the indicator function of a set A. Then, for any 

0 < a < ao and —oo < ε < oo, 

Η{α,ε) = £ [χ ( / 9,οο) (η)Κ?] 

= E[X(ßT0O)(X0AX1)(XoX2)a] 

= £ [ m o o )( X 0 ) X ( ^ ) ( X i ) X o a * 2 a ] 

= S[ X W, o o )(Xo)^o a]^[X(0 ,oc ) (^l)]^[^2 a] 

= {/ xa dF0(x)}F^)h2(a). (2.103) 
Jß 

If FQ , Fi and F£ are alternate possibilities for the distribution functions of 

Χο,Χι and X2 respectively satisfying (2.101), then we have 

/•OO 

H(a,ß) = { x<*dFZ{x)}F*{ß)h*2{a) (2.104) 
Jß 
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where h${a) = E(X?) when X2 has distribution F2*. Relations (2.102 ) 

and (2.103) imply that 

{Γχ° dFS{x)}F*{ß)W°) Jß 
Λ ΟΟ 

= { / xadF0(x)}F\(ß)h2{a),0 < α < α 0. (2.105) 

Let α = 0. Then we have 

F*(ß)F*(ß) = F\i(ß)F[{ß), - o o < ε < oo. (2.106) 

Let /3 = 0 in (2.104). Then we have 

/ΐο(α)/ΐ2(α) = Ηο{α)1ι2{(χ),0 < α < α 0· 

Relations (2.104) and (2.105) lead to the equation 

{ / xadF;(x)}Fj(ß)h*2(a)Fh(ß)F1(ß)h0{a)h2{a) 
Je 

0 

x ad F 0( x ) } W ) / i 2( a ) ^ r( / 3 ) f 7 ( / 3 ) / » S ( a ) / i ; ( a ) , 
0 

0 < a < a0, - o o < ε < oo. (2.107) 

Under the condition (2.101), F»(/3) and F*(ß) are positive for i = 0,1 when 

—oo < /? < ao < oo and hence 

/ f ° x < W 0* ( x ) f™xadF0(x) 
i ^ , ° ν = %ΓΙΛ„ λ ,0 < α < a 0, -oo < /3 < oo. (2.108) 
F0*(/3)/i5(a) F0(/3)fto(a) 

Since .Ε.ΧΌ = ? < oo is the same under both FQ and FQ by hypothesis, it 

follows that ho{l) = HQ(1) = q. Hence 

ÇxdF^jx) _ ÇxdFp(x) 

F*(ß) ~ W) ' 

from (2.107) or equivalently 

ÇxdF*(x) = ÇxdFp(x) 

FSiß) Mß) ' 

- o o < ε < α0 (2.109) 

-oo < ε < α0 (2.110) 
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where F = 1 — F. Integrating by parts on both sides of (2.109), we have 

FS (ß) W ) 
(2.111) 

Observe that lim x[l — F0(x)] = 0 when Ep0(Xo) = xdFo(x) is finite. 

Hence, we have 

-ßF*(ß) - S~F*(x)dx = -ßT0{ß) - J ~ f b ( « ) d x 

W ) TO) 

which leads to the equation 

!™Fg(x)dx _ f™Fo(x)dx 

(2.112) 

or equivalently 

r e o "Ë̂ jT/ χ . = f o o T T / χ , » - ° ° < Ρ < αο· (2.114) Jß F^(x)dx j ß F0(x)dx 

Therefore 

/•OO Λ Ο Ο 

log / ^ ( x ) d x = log / F\)(x)dx + c, - o o < /? < aQ (2.115) 

for some constant c. Hence 
/•OO Λ Ο Ο 

/ F£(x)dx = d F^(x)dx, -oo < ε < α 0 (2.116) 
Jß Jß 

for some constant d. Taking derivatives with respect to ε on both sides, 

we have 

FS{ß) = d TQ{ß), - o o < ε < ao . (2.117) 

Let ε = 0. Then Fo{0) = (0) = 1 by hypothesis and hence d = 1 which 

proves that 

FJ(/9) = F0(ß), -oo<ß< ao. (2.118) 

Relation (2.105) will imply that 

Fi(ß) = F1(ß), -oo<ß<a0 (2.119) 
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and (2.104) shows that 

h*(a) = Λ 2(α) , 0 < a < a 0. (2.120) 

This completes the proof of Theorem 2.5.1. • 

Remarks 2.5.1 (Explicit determination) : One can explicitly write 

down the distributions Fo,Fi and the function h2, given Η (α, ε) defined 

by (2.102). 

In fact, let Ηι(ε) be defined by 

Η[(ε) = Η(1,0)Η(0,ε) 

H^ß) H(l,0)H(0,ß)ß-ho(l)H(l,ß) {' ) 

where /io(l) = E(XQ) is specified. Then 

# i ( 0 ) F0(y) h0(a) 

We will not discuss the details here. The results presented here are due to 

Kotlarski . 

A result analogous to Theorem 2.5.1 holds identifying the probability 

distributions through the product and the maximum. We will state the 

result without proof. The result is due to Kotlarski. 

Theorem 2.5.2 : Let Χο,Χχ and X2 be independent positive random 

variables. Define 

Yi = Χ0νΧλ and Y2 = X0X2 . (2.123) 

Suppose the distribution functions Fo,Fi and F2 of Χο,Χι and X2 satisfy 

the conditions 

F i ( z ) > 0 f o r z > 0 , 2 = 0 , l , 2 . 

Further suppose that Ε[Χ?] = hi(a) is finite and positive for 

0 < a < αο,αο > 1 for i = 0,2 and E(X0) = q < oo is a fixed posi-

tive constant. 

Then the joint distribution of (Yi, Y2) uniquely determines the distribu-

tions of Xo> ̂ i and the moments E(X2), 0 < a < ao . 
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Let 

Then 

Η(α,ε) = Ε[ϊΤχ(-οοΜγι)] 
rß 

= Ä2(o)Fi()9) / zadF0(z). (2.124) 
Jo 

Fo(z) = e x p { - Γ ^/^^f^l Ί » , (2.125) 
Ü W P1 Λ u t f ( 0 , t z ) M l ) - # ( M ) 1 v ; 

„ , , H(Q,y) , , x Η(α ,οο) Λ 

2.6 Identifiability by Sum and Maximum (or Minimum) 

Let Χο,Χι and Χ2 be independent random variables and 

Yx = Xo + Xi and F2 = X0VX2. (2.126) 

Let Mi(a) = EeaXi for ζ = 0,1. Suppose that Mi(a) finite for 

0 < a < ao and Μο(α 0) is a given constant for α 0 Φ 0. Further sup-

pose that Fi(y) > 0 for y > a > —oo for i = 0,2 and 

r0 
lim e a°*F 0(z) = 0,0 < / e a° z ΛΡ0(*) < 

J-oo 
O O . 

Theorem 2.6.1 : Under the conditions stated above, the joint distribution 

of (Yi,Y2) uniquely determines the distributions of Xo,X2 on the interval 

(a, oo) and the function Μι (α), 0 < a < ao-

Let 

rß 

= M1(a)F2{ß) / e°"dF0(z). (2.127) 
J—oo 

Denote 

Η[(ε) α0Η(α0,οο)Η(0,ε) 
Hxiß) H(a0,oo)H(0,ß) - e^ßM0(a0)H(a0,ß) 

(2.128) 
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Then Fo(z) = Ae """Η'^ζ) where A is constant so that io(oo) = 1 and 

F'<*> = W ' M l< e > = ^ - ( 2· 1 2 9) 

An analogous result holds characterizing probability measures by sum 

and minimum. The result is due to Kotlarski. 

Let Χο,Χι and X2 be independent random variables and 

Yi = X0 + Xi and Y2 = X0AX2. (2.130) 

Let Mi(a) = EeaXi,i = 0,1. Suppose that Mi(a) is finite for 

0 < a < αο,αο > 0 a n^ M)(#o) is a fixed constant. Further suppose 

that the distribution functions Fi of Xi,i = 0,1,2 satisfy the conditions 

Fi(x) < 1 for χ < ao, ao < oo and 

lim eaoZF^{z) = 0. 
z—>oc 

Theorem 2.6.2 : Under the conditions stated above, the joint distribu-

tion of (Yi, Y2) uniquely determines the distributions of Xi, i = 0,2 on the 

interval (—οο,αο) and the function Μχ(α),0 < a < c*o-

Let 

Η (a, ß) = E[e^Xißj00)(Y2)} 
/ »OO 

= Mx{a)F2{ß) / eQZdF0(z). (2.131) 
Jß 

Denote 

H[(ß) = aoH{ao,0)H(0,ß) 
i î ( a o , ^ ( 0 , / 3 ) - M o ( a o ) i i ( a o , « e - ^ ' V' ' 

Then ίο(^) = -Ae - Q ,° z.H{(z) where A is determined from Fo(oo) = 1 . 

Furthermore 

S W - a f c f - , ( a ) - 3 M i , 2. ,33) 
F 0(y) M 0( a ) 
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The proofs of Theorems 2.6.1 and 2.6.2 are left as exercises for the reader. 

The results stated here are due to Kotlarski. 

2.7 Identiflability by Product and Sum 

Let Xo, Χι and X2 be positive random variables and define 

Yi = ΧλΧ0 and Y2 = X2 + X0. (2.134) 

Assume that hi(a) = E[eaXi] < oo, i = 0,1 for 0 < a < a0, a0 > 0. 

Theorem 2.7.1 : Suppose q = E(Xo) exists and is a fixed positive con-

stant. Then the joint distribution of (Yi, Y2) uniquely determines the dis-

tributions of XQ and X2 and the function E(eaXl), 0 < a < ao-

Let 

H(a,ß) = EY?eißY2 

ρ oc 
= Η1(α)φ2(ε) / zaeißxdF0(z) (2.135) 

Jo 

where hi (α) = E [ e a X l] , φ2{ε) = E[eißX*] and F0(-) is the distribution 

function of X0. Denote 

H[{ß) _ iqH{\,ß) 
Η^ε) Η(1,0)Η(0,ε) 

Then 

(2.136) 

H.iß) H(0,ß) u ,_Λ H(a,0) 
Mß)=im>Mß)=w,Me)=-ToW • ( 2· 1 3 7) 

We omit the proof of this result due to Kotlarski. 

Remarks 2.7.1 : Since the function hi(a) = E(eaXl) is determined for 

0 < a < αο,αο > 0 and X\ is a positive random variable, it follows that 

the moment-generating function of X\ is determined in a neighbourhood 
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of the origin and hence the distribution of X\ is determined in addition to 

the distributions of X0 and X2 in Theorem 2.7.1. 

2.8 Identifiability by Maxima of Several Random Variables 

Let Xi, X2,..., Xn be independent positive random variables with dis-

tribution functions Fi,F2,...,Fn respectively. Suppose that Fj(x) > 0 for 

all χ > 0,1 < j < n. Define 

Yi = m a x ( a i X i , . . . , a nX n) , 

y 2 = m a x ( 6 i X i , . . . , M r „ ) (2.138) 

where α,{ > 0, bi > 0 for 1 < i < η and ai : bi φ dj : bj for 1 < i\φ j < n. 

Theorem 2.8.1 : The joint distribution of (Yi, Y 2) uniquely determines 

the distributions of Xj,l <j < n. 

Proof : Let FJ be an alternative possible distribution of Xj for 1 < j < n. 

It is easy to see that 

H(t,s) = P(Yi<t,Y2<s) 

= m=1FA—Λ-^-),0 < M < oo. (2.139) 
aj bj 

Since Fj is an alternative distribution, it follows that 

n ? = 1F , - ( - A f ) = n ^ F / i - A f ),0 < t,s < oo. (2.140) 
aj bj aj bj 

Let Vj(t) = log Fj(^j) - log F / ( £ ) . The equation (2.139) can be written 

in the form 
η 

^2vj(cjtAs) = 0, 0 < t, s < oo (2.141) 

where the Cj — ̂ - are pairwise distinct. Without loss of generality, assume 

that 0 < ci < c2 < - · · < c n. Let t > 0 and s = rt where c n_ i < τ < cn. 

Then the equation (2.140) can be written in the form, 

n - l 
^2vj{cjt) + vn(rt) = 0 , 0 < t < oo. (2.142) 
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This equation proves that vn(-) is constant on the interval (c n_i£ ,c nt ) for 

any t > 0. Since t > 0 is arbitrary, it follows that vn(-) is constant on 

(0,oo). Since Vj(t) —> 0 as t —• +oo, it follows that vn(t) = 0 for t > 0. 

Repeating this process it is easy to see that 

Vj(t) = 0,1 < j < η - 1 . (2.143) 

This implies that 

Fj(^) = 0 < t < oo, 1 < j < η (2.144) 

from the definition of Vj(-) . Since t is arbitrary, it follows that 

Fj(t) = F*(t), 1 < j < n , 0 < i < o o . (2.145) 

This proves the theorem. • 

The next example indicates that the conclusion of the theorem does not 

hold if {Xi} are random variables taking positive and negative values with 

positive probability. 

Example 2.8.1 : Let Χχ and X2 be independent identically distributed 

random variables with distribution function F(x) where 

F(x) > 0 for all χ e Ä, 

= α , 0 < α < 1 . (2.146) 

Then the distribution of (Yi,Y 2) where 

Fi = max{XliX2),Y2 = max(XußX2) 

with ε > Ο,ε φ 1 does not determine the distributions of the random 

variables X\ and X2. This can be seen as follows. Let X[ and X'2 be 

independent random variables with distribution functions F* and F2* re-

spectively where 

, . F(x) if x > 0 / 
Fx*(x) = t (2.147) 

1 tF(x) if x < 0 
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and 

„, x ί Fix) if x > 0 , 
FÔix) = < (2.148) 

\ i F ( x ) if z < 0 . 

Define 
Y{ = max(Xi, X'2\ Y2' = mzx(X[, εΧ'2), ε>^εφ\. 

It is easy to check that the joint distribution of (Y{,Y2) is the same as 

that of (Yi,Y2). However, the distributions of X{ and X[ are different for 

i = 1,2. 

The following result holds if X i , X2,.. v Xn are independent random 

variables with distribution functions ίχ, F 2, . . . , Fn respectively, where 

Fj(x) > 0 for all χ G R and P ( X , = 0) = 0 for 1 < j < n. 

Theorem 2.8.2 : Under the conditions stated above, the joint distribu-

tion of (Yi,Y2) defined by (2.137) uniquely determines the distributions of 

Xj,l<j<n. 

Proof : As in the proof of Theorem 2.8.1, we have 
η 

Y^Vj(cjtAs) = 0, - o o < t, s < oo (2.149) 

where CJ = J£ are pairwise distinct and 0 < C\ < · · · < c n. It follows from 

the arguments given in Theorem 2.8.1 that Vj(t) = 0 for t > 0. Suppose 

t < 0. Let s = rt,r € ( c i , c 2) . Then, the equation (2.140) takes the form 
η 

Mrt) + Y^Vjicjt) = 0. (2.150) 
j=2 

Hence vi(-) is constant on the interval (c2t,c\t). Since t < 0 is arbitrary, 

it follows that v\{t) = 0 on (—oo,0). Note that v\ is continuous at χ = 0. 

Hence υι(0) = 0. Therefore vi(t) = 0 for all t. By induction, it follows 

that Vj(t) = 0 for all t, 1 < j < η and hence Fô = F* for 1 < j < n. This 

completes the proof of the theorem. • 

The results in this section are due to Klebanov (1973b). 
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2.9 Identifiability by Random Sums 

Let Xo,X\ and X2 be independent random variables and 

Yi = X0 + X\,Y2 = Xo + X2. We have proved in Section 2.1 that the 

distribution of (Yi, Y2) uniquely determines the distributions of Xo, Xi and 

X2 up to shift provided the characteristic functions of Xi^k = 0,1,2, do 

not vanish. We now study results of a similar type involving random sums 

of random variables. 

Theorem 2.9.1 : Let N,Xi,Yi,i > 1 be independent random variables 

nondegenerate at zero where AT is a nonnegative integer-valued random vari-

able with 0 < EN < oo fixed and the Xi are independent and identically 

distributed (i.i.d) as X with finite mean and nonvanishing characteristic 

function φ and Yi are i.i.d. as Y with finite mean and nonvanishing char-

acteristic function ψ. Further suppose that if the probability-generating 

function of Ν is 
oo 

(}(*)=Ρο + Σ*ηΡη, seS (2.151) 
71=1 

S has a subset So such that 

(i) α , / ? € Α ^ 0 ( α ) ι Κ / ? ) 6 5ο, 

(ii) Q is non-vanishing and one-to-one on So, and 

(iii) Q can be extended analytically from So to S. 

Let 

0 if N = 0 [ 0 ifAT = 0 
U = \ _ and F = 4 " (2.152) 

1 22xi if N = n>0 j Y^Yi iîN = n>0K } 

i=l V i=i 

Then the joint distribution of (£/, V) uniquely determines the distributions 
of X, Y and N. 
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Proof : The characteristic function %(r, t) of (f7, V) is given by 

X(r,t) = E[eirU+itv] 

= E{E[eirU+itV\N}} 

= E[eirU+itv\N = 0]P(N = 0) 
OO 

+ ^ £ [ e x p { w - ( X 1 + · · · + Χ * ) 
n = l 

+it(Y! + ••• + YN)}\N=n]P(N = n) 

= P(N = 0) 
OO 

+ ^ £ [ e x p O > ( X 1 + · · · + Xn) + + · · · + Yn)}]P(N = n) 
n = l 

(by the independence of Ν and X^Y^i > 1) 
oo 

= P(N = 0) + 5 > ( Γ ) Γ Μ « ) Γ Ρ ( ^ = η) 
n = l 

= Q(<l>(r)il>(t)), - o o < r , * < o c . (2.153) 

Suppose there is another collection of random variables 

{ΛΓ*,Χ*, Υ^,ζ > 1} satisfying the conditions stated in the theorem and 

define Ï7*,V* as before. Suppose further that the joint distribution of 

(17, V) is the same as that of (U*,V*). Then, it follows that 

* M ) = Q* (<£>)</>*(*)), - o o < r , t < o o . (2.154) 

Relations (2.152) and (2.153) imply that 

Q*{4>*{r)1>*(t)) = Q(<f>(r)il>(t)), - o o < r,t < oo. (2.155) 

Since Q and Q* are one-to-one on So by hypothesis, define 

q{s) = Q*~1(Q(s)), se S0. (2.156) 

Then 

<t>*(r)r(t) = g(0(r)iK*)),r,t e R. (2.157) 

Let * = 0 in (2.156). Then 0*(r) = g # ( r ) ) . Similarly V * W = ς#(*))· 

Hence 

«(0(r) ) 9(^(t ) ) - g ( # r M t ) ) , r, t € Ä. (2.158) 
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In view of the properties (i) and (ii) of Q and Q*, it follows that 

q(u)q(v) — q(uv), u, ν G SQ. (2.159) 

By property (iii) of Q and Q*, this relation can be extended to all of S by 

analyticity and we have 

q(u)q{v) = q(uv), u,v G S . (2.160) 

Since q(-) is a continuous function, it follows that 

q(s) = sc, se S (2.161) 

for some constant c. In particular, we have 

Q*-1(Q(s)) = q(s) = sc, seS 

or equivalent ly 

Q(s) = Q*{sc), seS. (2.162) 
OO OO 

Suppose 0 ( s ) = y ^ p n 5 n and Q*{s) = y " j 7 * s n . Since 
n=0 n=0 

dQ^dQ* c j C. 1 

ds ds 

from (2.161), it follows that £(iV) = £iV* · c. Since EN is given to be a 

fixed positive constant, it follows that c = 1 which in turn proves that 

Q(s) = Q*(s),seS. (2.163) 

This relation together with (2.154) proves that 

Q(4>*{r)il>*(t)) = Q ( ^ ( t ) ) , r , i € Ä. (2.164) 

Setting r = 0 and £ = 0 alternately, we have 

Q(<l>*(r)) = Q(<f>(r)) and Q(p(t)) = Q(i/j(t)),r,t G Ä . (2.165) 

Since Q(-) is one-to-one on So, it follows that 

φ*(τ) = 0(r) and^*(i) = ip{t),r,t e Ä. (2.166) 
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Relations (2.162) and (2.165) prove that Ν,Χχ,Υι have the same distribu-

tions as N*,XÎ,Y* respectively, completing the proof of the 

theorem. • 

Remarks 2.9.1 : It can be shown that, if 0 < EN < oo, then the prob-

ability generating function Q is one-to-one in a neighbourhood of 1. This 

implies that there is a neighbourhood of 1 relative to the unit disk such 

that Q " 1 exists in this neighbourhood (cf. Choike et ai (1980)). The 

condition that φ and φ are nonvanishing in the theorem can be replaced 

by that of analyticity. However, the following example shows that, without 

these assumptions on Q, Q*, φ, ψ, the result may not hold. 

Example 2.9.1 : Let Ν and N* be nonnegative integer-valued random 

variables with probability generating function Q(s) = s 2, |s| < 1. Let X be 

distributed according to the characteristic function 
2\r\ 

φ(τ) = 1 '—, —π < r < π, 
7Γ 

φ{τ + 2π) = φ(τ) otherwise . 

Let Χ* have the characteristic function \φ{τ)\ = 0*(r). Suppose Y and Y* 

are identically distributed with characteristic function φ. Then (f/, V) and 

(Î7*, V*) have the same distribution since 

Q*(4>*(r)r(t)) = Q(<Kr)4(t)),r,t G R 

although φ*(τ) φ φ(τ). 

Remarks 2.9.2 :If X and Y are symmetric real-valued nondegenerate ran-

dom variables with characteristic functions φ and ψ respectively, in Theo-

rem 2.9.1, then we can conclude that the distribution of (C7, V) determines 

the distribution of Χ, Υ, Ν uniquely provided 0 < EN < oo. No additional 

conditions on φ, ψ or Q are necessary. Note that φ and φ are real-valued 

functions with 0 < φ(ϊ) < 1 and 0 < ip(t) < 1 for all t G R. 

Remarks 2.9.3 (Explicit determination of Q,0 and φ given χ) : 

Here we consider the problem of explicit determination of the distributions 
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of N,X and Y in terms of the joint distribution of (£/, V). It is sufficient 

to solve the equation (2.152), namely, 

X( r , t) = Q{<Kr)tl>{t)), - o o < r, t < oo (2.167) 

for Q, 0 and t/> in terms of χ. Let α(κ;) = Q~1(w) be the inverse function 

of Q(-) defined on So- Relation (2.166) shows that 

Φ(τ)ψ(ί) = Q(x(r,t)) . (2.168) 

Substituting r = 0 and t = 0 alternately, we have the equation 

<7(x(r, t)) = q(X(r, 0))<?(χ(0, *)), - o o < r, t < oo (2.169) 

which is a functional equation in the unknown q given known χ. Let 

Qo = log ç (2.170) 

be the continuous branch of the natural logarithm of q satisfying 

logl = 0;qo is well defined since q(-) is nonvanishing. Equation (2.168) 

shows that 

<7o(x(r,t)) = <?o(x(r,0)) + g o( x ( 0 , t ) ) , r , t e R . (2.171) 

Assume that go(-) is differentiable twice and that %(r, t) has continuous 

second-order partial derivatives with respect to r and t. Taking partial 

derivatives with respect to t and then with respect to r we have 

* W , * ) ) ^ ^ + < n ( x ( r , * ) ) ^ = 0 , r , t e A 

or equivalently 

g o ( x ( r ' * ) ) = R T G R (2 172) 
Ç'0(X(R,T)) R' T £R ( 2· 1 7 2) 

where q'0 and #0 denote the first and second derivatives of qo. The above 

differentiation can be justified since E(X) and E(Y) are finite. Note that 

QoM Φ 0 m a neighbourhood of 1 since #0(1) = > *̂ Since the left 
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side of the equation (2.170) is a function of w = x{r,t), we can write the 

equation (2.171) in the form 

%(w) _ §Fdt ΐ (9 17TI 
H 0K } dr dt 

with boundary conditions #o(l) = 0><7o(l) = l e v > *̂ Given χ(·,·)> we 

solve this second order differential equation (2.172) subject to the boundary 

conditions <7o(l) = 0,^0(1) = ^ > 0 to obtain q0. Having obtained qo or 

equivalently the functions φ and ψ are determined by 

φ(ν) = q{X(r,0)),i/>(t) = g( X(0 ,*) ) ,r , t e R. 

Example 2.9.2 : Suppose (t/, V) as defined above has the characteristic 

function 
l + e- ( r 2+ * 2) 

x M ) = j ^»*€Ä 

and EN = 1. Here %(r, £) is a real-valued function. It is easy to see that 

the equation (2.172) reduces to 

where #o(l) = 0 and </ό(1) = 1· The solution of this differential equation is 

qo(w) = log y/2w — 1, ^ < tu < 1. 

Hence 
l -μ s2 

Q(*) = ^ - , - 1 < * < 1 . 

recalling that qo = log </ and q is the inverse of Q. Hence Ν is an integer-

valued random variable with 

P(7V = 0) = P(iV = 2) = i 
LI 

Furthermore 
^(r) = g(x(r,0)) = e - r 2/ 2 ) r eß 
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and 

# ) = (?(x(0,i)) = e - i 2/ 2 , i G i ? 

which show that X and Y have the standard normal distribution. 

The results in this section are due to Choike et al (1980) and Kotlarski 

(1984). 

2.10 Identifiability by the Maximum of a Random Number of 

Random Variables 

We now obtain an analogue of Theorem 2.9.1 given in the previous 

section for the maximum of a random number of random variables. 

Theorem 2.10.1 : Let N^X^Y^i > 1 be independent random vari-

ables and suppose Ν is a nonnegative integer-valued random variable with 

Pi = P(N = 1) > 0 fixed. Further suppose that Xi,i > 1, are i.i.d. with 

continuous strictly increasing distribution function F(-) , and Y;,z > 1, are 

i.i.d. with continuous strictly increasing distribution function (?(·) where 

F (a) = 0, F(b) = 1,0 < F(x) < 1 for - ο ο < α < χ < 6 < ο ο (2.174) 

and 

G(c) = 0,G(d) = 1,0 < G(y) < 1 for - oo<c<y<d<oo. 

Let 
U = a for Ν = 0 

(2.175) 
= max Xi forAT>0 

and 
V = c for AT = 0 

(2.176) 
= max Yi for Ν >0. K J 

l<i<N 

Then the joint distribution of (ET, V) uniquely determines the distribu-

tions of Ν, Xi and Yi. 
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Proof : Let Q(s) be the probability generating function of N. Then 

oo oo 

Q{») = Σ*ηΡ{Ν = η) = J V p » , 0 < s < 1. (2.177) 
n=0 n=0 

Since pi > 0, it follows that po < 1. Note that the range of Q(-) is [po, 1]. 

Let H(u,v) be the joint distribution function of (U,V). Then 

ff(u,v) = P[U<u,V<v] 
oo 

= < ^ ^ < i ; | i V = n]P(N = n) 
n=0 

oo 

= Po + y^p( max Xi < max Yi < v\N = n)P(iV = n) 
' K t < n K i < n 

n = l 
oo 

= PO + / P( m ax -^t < ^ 5 max Yi < v)pn ' l<i<n [Ki<n 
71 = 1 

(by the independence of the X^s and YJ's with TV ) 
oo 

= P 0 + E ^ W ) n ( G ( " ) ) > n 

n = l 

(by the independence of the XVs and Yi's) 

= Q(F{u)G(v)), - o o < u , v < o o . (2.178) 

Suppose ΛΓ*,Χ*, Y*,i > 1 is another collection of random variables 

having the same properties as AT,Xi and Y*, and define U*,V* in anal-

ogy with U, V. Suppose [U,V) and (Z7*,V*) have the same distribution. 

We shall prove that N,X\,Y\ have the same distributions as N*,X{,Y£ 

respectively. 

Since (t/, V) and (£/*,V*) have the same distribution, it follows from 

(2.177) that 

Q(F(u)G(v)) = Q*(F*(u)G*(v)), a<u<b,c<v<d (2.179) 

where F* and G* are the distribution functions of X{ and Yx* respectively. 

Let u = a and v = c in (2.178). Then it follows that 

Q(0) = Q*(0) (2.180) 
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and hence 

p*0=Po. (2.181) 

Let 

q(s) = Q*'1 (Q(s)), 0 < s < 1. (2.182) 

Then q(s) is a continuous function from [0,1] onto [0,1]. The equation 

(2.178) can be rewritten in the form 

F*(u)G*(v) = q(F(u)G{v)), a<u<b,c<v<d. (2.183) 

Substituting ν = d in (2.182), we get 

F*{u) = q(F(u)),a <u<b . (2.184) 

Similarly, let u = b in (2.182). Then we have 

G*(v) = q(G(v)),c<v<d . (2.185) 

Combining the above relations, we obtain the functional equation 

q(F{u)G(v)) = q(F{u))q{G(v)), a<u<b,c<v < d. (2.186) 

Let a = F(u) and ε = G(v). Note that F(u) and G(v) are continuous 

strictly increasing from 0 to 1 in the intervals [a, b] and [c, d\ respectively. 

This proves that 

q(a)q(ß) = q(aß), 0 < α < 1 , 0 < / ? < 1 (2.187) 

and q(s) is a continuous function from [0,1] onto [0,1]. Hence the only 

solution of (2.186) is 

q(s) = sa, 0 < s < 1 (2.188) 

for some constant a. In other words 

Q(s) = Q * ( 5 a) , 0 < s < 1 , (2.189) 

that is , 
oo oo 

PO + PIS + = P*O + PI3" + H P "
5

" " '
0
 <

 5
 < ! · ( 2 - 1 9° ) 

n=l n= l 
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Note that pi > 0 and p\ > 0 under the conditions of the theorem and 

Pi = p\. Since the equality in (2.189) holds for all s in [0,1], it follows that 

a = 1 and hence 

q(s) = s,0<s<l . (2.191) 

Therefore 

Q{s) = Q*{s),0<s<l . (2.192) 

Relations (2.183), (2.184) and (2.190) show that 

F*(u) = F(u),a< u < 6 and G*(υ) = G{v),c< ν < d. (2.193) 

This completes the proof of the theorem. • 

Remarks 2.10.1 : A result analogous to Theorem 2.10.1 can be proved 

for minima in both U and V or maximum in one of U and V and minimum 

in the other. The results given in this section are due to Kotlarski (1979). 

Remarks 2.10.2 (Explicit determination of the distributions of 

Χ,Υ,Ν given that of (U,V) defined by (2.174) and (2.175)): In addi-

tion to the assumptions stated in Theorem 2.10.1, suppose that the random 

variables X and Y have positive densities in the interiors of their supports. 

Let H(u,v) be the distribution function of (Î7, V),F and G be the distri-

bution functions of X and Y and Q be the probability generating function 

of N. Then 

H(u, v) = Q{F(u)G{v)), a<u<b,c<v <d . (2.194) 

Under the assumptions that pi > 0 (and hence po < 1) and that the 

mapping Q : [0,1] —• [po, 1] is invertible, let 

q(w) = Q-1(w),we\p<hl]. (2.195) 

It is easy to check that the relations (2.193) and (2.194) imply that 

q(H(u, v)) = q(H{u, d))q(H{b, v)), a<u<b,c<v<d (2.196) 
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where q is a strictly increasing continuous function mapping [po, 1] onto 

[0,1]. Let 

q0{w) = log q(w), p0<w<l. (2.197) 

Taking logarithms on both sides of the equation (2.195), we have 

q0{H(u, v)) = qo(H(u, d)) + qo(H(b, v)), a<u<b,c<v <d. (2.198) 

It is easy to solve this functional equation subject to the condition q(l) = 1 

and EN = m fixed. This can be done as in Remarks 2.9.3 to obtain q(-) 

and hence obtain F and G. The details are left to the reader (see Kotlarski 

(1985)). 

Example 2.10.3 : If H(u, v) = 1 +f ν\θ < u, υ < 1 and EN = 1, then it 

can be checked that 

1 + s2 

Q(*) = — 2 ~ , 0 < θ < 1 , 

q(w) = y/2w — 1, ^ < it; < 1, 

and hence 

F(x) = (χ, 1)) = χ, 0 < χ < 1, 

and 

G(y) = q(H(l,y)) = y,0<y<l. 

Remarks 2.10.5 : The results in this section and the previous section can 

be extended to several other variations of ([/, V) under suitable conditions. 

Some of them are of the following type : 

U = X + Fo, 

V = Υο + ΙΊ + . . . + y ^ (2.199) 

where Ν is a nonnegative integer-valued random variable, Υ*, i > 0 are i.i.d. 

and X, TV", Ŷ , i > 0 are independent, 

U = Z + X i + . - . + Xiv, 

V = Z + Υ^-.. + ΥΜ (2.200) 
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where JV, M are nonnegative integer-valued random variables, JV, Μ, Ζ, X j , Y*, 

1, are independent, and all of Z,Xi,Y{ are i.i.d., or 

U = X i + - · · + XN + Zi + - - - + ZT, 

V = Y1 + ... + YM + Z1 + -.- + ZT, (2.201) 

where JV, Μ, Τ are nonnegative integer-valued random variables indepen-

dent of Zi,Xj,Yk,i > l , j > l,fc > 1, which in turn are all independent 

and identically distributed with a known distribution. 

In all the above cases, the joint distribution of (£7, V) determines the 

unknown distributions of the random variables involved in their definition. 

The discussion given here is based on Kotlarski (1985). 

2.11 Identifiability by Random Linear Forms 

Suppose X\,X2 and X3 are three independent real-valued random vari-

ables. Let Yi ,Y2>*3 be random variables independent of Xi,X2,X$ and 

independent among themselves with known distributions. Let 

wx = y i X i + y 2* 2 , 

W2 = YiXi + YsXs . (2.202) 

The question now is to find conditions under which the joint distribution of 

(W î, W2) determines the distributions of Xi,X2,Xz. This is an extension 

of the problem discussed in Section 2.1. W\ and W2 are called linear forms 

with random coefficients or random linear forms . 

Theorem 2.11.1 : If the characteristic function of (Wi, W2) does not van-

ish, then the distributions of the products XiYi, 1 < i < 3 are determined 

up to shift. Furthermore if E(XiYi) is finite and fixed, then the distribu-

tion of XiYi is uniquely determined for 1 < i < 3. In addition, if X{Y{ 

has moments of all orders, the characteristic function of Xi is analytic and 

E(Y/e) Φ 0 for all k > 2, then the distribution of Xi is uniquely determined. 
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Proof : Suppose X-,Υ-,Ι < i < 3, is another set of random variables 

satisfying the conditions stated in the theorem. The first and second parts 

follow from Theorem 2.1.1. In other words ΧΧΥ% and X'jYl will have the 

same distribution for 1 < i < 3. Let η^ί) and d(t) be the characteristic 

functions of Xi and X[ respectively and be the distribution function of 

Yi (or equivalently Y(). Then the characteristic function of X%Yi and Χ[Υ( 

are the same and hence 

/

oo poo 

ni(ty)dßi(y) = / Ci{ty)dßi(y) . ( 2 . 2 0 3 ) 
-oo J—oo 

Differentiating under the integral sign with respect to t, it follows that 

/
OO Λ Ο Ο 

ykn\k\ty)dßi{y)= y^k\ty)dßi(y),k > 1 . ( 2 . 2 0 4 ) 

-oo J — oo 

In particular, let t = 0 in (2.203). Then, we have 

/
oo 

ykdßi(y) = 0,k>l. ( 2 . 2 0 5 ) 

- OO 

Since 
ΛΟΟ 

-oo 

by hypothesis, it follows that 

ykdßi(y)yi0,k> 2, ( 2 . 2 0 6 ) 

7 ?f ) ( 0 ) = c |
f e )

( 0 ) , f c > 2 . ( 2 . 2 0 7 ) 

Since the characteristic functions of Xi and X[ are analytic with E(Xi) = 

E{X'i), it follows that 

Vitt) = dit),-oo < t < oo (2.208) 

which shows that Xi and X[ have the same distribution. • 

Remarks 2.11.1 : It seems to be impossible to avoid a condition of the 

type (2.205) or some other condition on Yi equivalent to (2.205). For, in 

general, it is not true that if XiYi and Χ[Υ{ have the same distribution and 

Yi and Y( are identically distributed, then Xi and X[ have the same dis-

tribution even when Yi and Y( are independent of Xi and X[ respectively. 
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For instance different combinations of distributions with a given mixing 

distribution might lead to the same mixture (see Chapter 8 on identifiabil-

ity for mixtures) . The condition on the analyticity of the characteristic 

function of Xi in Theorem 2.11.1 can be weakened to the condition that 

the distribution of Xi be determined by its moments. 

In analogy with (2.16) and (2.17), let us now consider random linear 

forms 

W! = Y1X1+Y2X2 + YzX3, 

W2 = T1X1+T2X2 + T3X3 (2.209) 

where Χχ, X2l X3 are independent, identically distributed random variables, 

(Τι, T2, Γ3) and (Yi, Y2, Y3) are random vectors independent of (Χχ, X 2, X3) 

and the distributions of (Τχ,Τ2,Τ3) and (Yi,Y2,Y3) are specified. Let 

φ(Η,ί2) be the characteristic function of (W î, W2). Then 

φ(ίιΜ) = £[exp(ttiWi + it2W2)\ 

= EiexpiihÇY^ + Y ^ + YsXs) 

+ « 2( Γ ι Χ ι + T2X2 + Γ3Χ3)}] 

= EYRPLEEXPIII^Yx + t2T1)X1 + ι(^Υ2 + t2T2)X2 

+ 1 ( ^ 3 + t2T3)X3)\YuY2, r 3; Tu T 2, T 3} ] 

= ΕγρΜίΜ + t2ri)fj(tir2 + ^Τ2)η(^Υ3 + t 2T 3) ] 

(2.210) 

by the independence of the Xj's with the YJ's and Ti's and by the inde-

pendence of the Xi's among themselves. Let μ(η,υ) denote the joint dis-

tribution of ( y , T ) . Suppose X*,Y* and T* satisfy the conditions stated 

above for X,Y and T, and let £(£) denote the characteristic function of 

X{. Note that (Y*,T*) has the same distribution (V ,T) . Define and 

W2 in analogy with W\ and VF2. Suppose the distribution of (Wi, W 2) is 

the same as that of (Wf, WJ). Relation (2.209) implies that 
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/ n ^ = 1r / ( t i U j + t2VJ)dß(u, υ) 

= I l ß = 1C ( * i U j + t2VJ)dß(u, υ). (2.211) 

Suppose that, in the above functional equation, differentiation with respect 

to *i,Î2 under the integral sign is permissible any number of times. Dif-

ferentiate twice with respect to t\ and substitute t\ = 0. Differentiate the 

equation so obtained with respect to t2 and then substitute t2 = 0. After 

some easy though tedious computations, it can be shown that 

C !7/3>(0) + c277 ( 2) (0)iy ( 1 )(0) + c 3[»7 ( 1 )(0)] 3 

= C lC ( 3 )( 0 ) + c 2C ( 2 )(0 )C ( 1 )(0 ) + c 3[C ( 1 )(0 ) ] 3 (2.212) 

where c\, c2 and C3 are known constants depending on μ but not η or ζ and 

77(^(0) denotes the fcth derivative of η(-) evaluated at zero. This equation 

can be written in the form 

ci»7 ( 3 )(0) + Q ( f y ü )( 0 ) , l < J < 2 ) 

= cxC ( 3 )(0) + Q (C ü )( 0 ) , 1 < j < 2) (2.213) 

where Q is a known function depending on the derivatives of order less than 

three evaluated at zero. Relation (2.212) has the property that substitution 

of 0 for r?i in Q for 1 < i < 2 on the left side of (2.212) leads to the equation 

c 1r ?( 3)(0) = c 1C ( 3 )(0 ) . (2.214) 

This method allows us to use induction and establish that for suitable 

constants CK depending on μ, 

W f c) ( 0 ) = c f cC ( f c )(0), A:>3. (2.215) 

If 

ck φ 0 for k > 3 , (2.216) 

then we can conclude that 

i/*>(0) = C ( f c )( 0 ) , * > 3 . (2.217) 
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If E(Xi) = E(X%) and if η(ί) and CM are analytic charcteristic functions 

or the distribution of X\ is determined by its moments assuming that they 

exist, then the equation (2.216) implies that 

η(ί) = CM for all t (2.218) 

and hence X\ and X{ have the same distribution. We have the following 

theorem. 

Theorem 2.11.2: Consider random linear forms defined by 

(2.208) where X\,X2,X$ are independent and identically distributed, 

(Χι,Υ2,Υ$',Τι,Τ2,Τ$) is independent of {Xi,X2,X$), and the condition 

(2.215) holds. Suppose the characteristic function of X\ is either analytic 

or the distribution of X\ is determined by its moments assuming that they 

exist.. Then the distribution of (Wi, W2) determines the distribution of X\ 

up to location. If further E{X\) is fixed, then the distribution of X\ is 

completely determined. 

The results in this section are due to Prakasa Rao (1990). 

2.12 Stability of Identifiability 

In all the discussions so far, we have considered the question of finding 

conditions under which the distribution of a statistic defined in terms of a 

sequence of random variables determines the distributions of the individual 

random variables up to a change in location or scale. We now consider 

stability of this property. Suppose the density is given by 

p(x, Θ) = p(x - 0), - o o < θ < oo (2.219) 

or 

p(x, θ) = - p(^—-), θ = (μ, σ ) , - o o < μ < oo, α < σ < oo . (2.220) 
σ σ 

The former class is called a location parameter family and the latter class 

a location—scale parameter family. Let Χχ, X2,..., XN be i.i.d. random 
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variables and define 

Υ = (Χι — Xpf, X2 — XNI · · · 5 XN-I — XN) (2.221) 

in the case of a location parameter family and 

Y* = (χιζΣ χιζΣι..., ΧΝ-Ι-χ\ ( 2 2 2 2) 

\ s s s J 

in the case of a location—scale parameter family where X is the sample 

mean and s is the sample standard deviation. Denote the analogues of Y 

and Y * by Yn and Y * when the density is pn instead of p. Let FN and F 

be the distribution functions corresponding to pn and p. It is known from 

the theory of weak convergence that if FN converges weakly to F, then 

Yn Λ Y (or Y*n Λ γη. The problem is that, if Yn Λ Y (or Y*n Λ y*) , 

can we conclude that FN F or FN ^ F(- — Θ) for some θ in the location 

case and FN A F ( ^ ) for some θ = (μ, σ) in the location—scale case ? 

Theorem 2.12.1 : Suppose the distribution of Y determines the distribu-

tion F up to shift in the location case and the distribution of Y * determines 

F up to location—scale in the location—scale parameter case. Then 

Y n - ^ Y =» FNZ F (2.223) 

with possibly a shift in the case of location parameter families and 

y ; Λ y* => FN Λ F (2.224) 

with possibly changes in location and scale in the case of location—scale 

parameter families. 

Proof (Location parameter case) : Since Yn —• y , it follows that the 

distribution of Χι — X2 under pn converges weakly to the distribution of 

Χι — X2 under p. Let φη(ί) be the characteristic function of Xi under pn 

and φ(ί) be that under p. Then 

\ΦΠ(T)\2 -+ \Φ(Ή\2 as η oo, - 0 0 < T < 00 (2.225) 
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since |0(£)|2 is the characteristic function of X\ — X2 under p . It is known 

that (2.224) implies that {pn} is "shift compact" in the sense of Parthasarathy 

(1968), that is, there exists a suitable sequence of constants οη such that 

the sequence of distributions with densities pn(x — οη) is weakly compact. 

Let {rik} be a subsequence such that the sequence of distributions with 

densities pnk(x — 6nk),k > 1 converges weakly to a limiting distribution 

with density p ' . But 

when ρ is the density of X\ by hypothesis. From earlier remarks it follows 

that 

where Ζ corresponds to Y when pf is the density of X\. Hence the distri-

bution of Y when ρ is the density of X\ and the distribution of Ζ when 

p' is the density of X\ are the same. But the distribution of Y determines 

the density ρ(·) up to shift by hypothesis. Hence, for some ο G Ä, 

p'{x) — p(x — 0), —oo < X < oo. 

A similar argument proves the result in the location—scale parameters case. 

• 

The results of this section are due to Klebanov (1973b) . 



Chapter 3 

Identifiability of 

Probability Measures on 

Abstract Spaces 

We will now discuss generalizations of some of the results obtained in Chap-

ter 2 to probability measures on abstract spaces. For the general theory of 

probability measures on metric spaces, see Parthasarathy (1968). 

3.1 Hilbert Spaces 

Let (Ω, Τ, μ) be a probability space and Η be a real separable Hilbert 

space. Let Β be the σ-algebra of Borel susets of Η generated by the norm 

topology. X is said to be a random element defined on Ω and taking values 

in Η if X : Ω -+ Η is such that X~XB € Τ for every Β e B. Define 

μχ(Β) = μ(χ-1Β), Be Β. (3.1) 

μχ is called the probability measure induced by X on B. Let (x, y) denote 

the inner product defined on Η for x,y Ε H. For any probability measure 

ν on (Η, ß ) , the characteristic functional ù(-) is a functional defined on H 

59 
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by the relation 

Hv) = [ e ^ d v i x ) , yeH. (3.2) 
JH 

The characteristic functional φχ(·) of X is given by 

φχ(ν) = Ele^'V] 

= [ β*Ιχ*)άμχ(χ), yeH 
JH 

= ί β*χ^^άμ{ω), yeH. (3.3) 
Jo, 

It is known that there is a one-to-one correspondence between the character-

istic functional and the probability measures on Η and the characteristic 

functional φχ{-) of a random element X satisfies the conditions 

<M0) = 1, \φχ{υ)\ <l^x{y) = φχ{-υ),υ e H, (3.4) 

where 0 denotes the null element in H. Moreover φχ{-) is continuous in the 

norm topology and positive definite. Further, if X and Y are independent 

random elements taking values in 77, then X + Y is a random element 

taking values in H and 

φχ+γ{ί) = φχ(ψ)φγ(ί). 

For proofs of these results, see Parthasarathy (1968) or Grenander (1963). 

We now prove an analogue of Theorem 2.1.1 for random elements taking 
values in a Hilbert space. 

Theorem 3.1.1 : Let X\,X2 and X3 be independent random elements 

taking values in a real separable Hilbert space H. Define 

Z\ — X\ — X 3, Z2 — X2— X?>> (3.5) 

Suppose the characteristic functional of ( Z i , Z 2) does not vanish. Then 

the probability measure of (Ζχ, Z2) determines the probability measures of 

Xi,X2,X% up to change in location. 
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Proof : The characteristic functional of {Ζχ,Ζ-χ) is given by 

(3.6) 

where (ßi(y) denotes the characteristic functional of Xi. Since ψ(j/χ, 2/2) φ 0 

for all yi, 2/2 in i f by hypothesis, it follows that <t>i(y) Φ 0 for y G i / for 

i = 1,2,3. Suppose 77*(y) is another possible characteristic functional of 

Xui = 1,2,3. Then 

<l>i(yi)(f>2(y2)(f>3(-yi - 2/2) = m(yi)v2(y2)v3(-yi - 2/2) (3.7) 

for all 2/i?2/2 in if. Note that 171(2/) ^ 0 for j / G if, 1 < i < 3. Define 

^ ( 2 / ) = log where the logarithm denotes the continuous branch of the 

logarithm with £(0) = 0. Note that Ci (2/) is a continuous functional on i f 

with Ci(0) = 0 and Ci(2/) = Ci(~2/)- Relation (3.7) implies that 

Ci(Vi) + C 2( 2 / 2) + Ca(-2 / i - 2/2) = 0 . (3.8) 

Substituting 2/1 = 0 G i f in (3.8) we have 

(2(2/2) = - C s ( - 2 / 2 ) . (3.9) 

Let 2/2 = 0 G i f in (3.8). Then it follows that 

Ci(2/i) = - C a ( - 2 / i ) · (3.10) 

The above relations imply that 

Ca(-2/2) + Ca(-2 / i ) = Ca(—2/1 ~ 2/2) (3.11) 

for all ΐ/χ, 2/2 Ε Ü or equivalently 

C3(2/i) + (3(2/2) = C3(2/i + 2/2), 2/1,2/2 € if. (3.12) 
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Hence CS(-) is a complex-valued continuous linear functional on H. Since 

the space H is reflexive, every real-valued continuous linear functional is of 

the form ( 7 , y) for some 7 G if. In particular 

Cs(w) = ( o + <«,»), yeH (3.13) 

where A € H and 6 € H. Since CZ{y) = CZ(—y), it follows that 

(A,y) = (-A,y), yeH. (3.14) 

This proves that A = 0 and hence 

<t>3{y) = n3{y)é(s>y\ yeH. (3.15) 

Using the equations (3.9) and (3.10), it is easy to see that 

= Vk(y)e^y\ yeH (3.16) 

for k = 1,2. Prom the one-to-one correspondence between the characteris-

tic functionals on Η and the probability measures on H (cf. Parthasarathy 

(1968)), it follows that the distributions of the Xfc,l < k < 3, are deter-

mined up to location. This completes the proof of the theorem. • 

One can extend Theorem 3.1.1 in the following way. The proof of the 

theorem is left as an exercise for the reader. 

Theorem 3.1.2 : Let Χχ, X2,..., Xn<> be η independent random elements 

taking values in a real separable Hilbert space H. Define 

Yj=Xj+Xn, l < j < n - l . (3.17) 

If the characteristic functional of (Yi, Y2,..., Yn-i) does not vanish, then 

the probability measure of (Yi, Y2,..., Yn-i) determines the probability 

measures of Χχ, X2,..., Xn up to change of location. 

Remarks 3.1.1 : The results of this section are due to Kotlarski (1966c). 

As a special case of Theorem 3.1.1, we get an extension of Theorem 2.1.1 

for random vectors. 
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3.2 Locally Convex Topological Vector Spaces 

Let (Ω,.77, μ) be a probability space and X be a real locally convex 

separable topological vector space with dual space X*. A mapping X : 

Ω —• X is said to be a random element taking values in X if X~l(G) G Τ 

for G open in X. The probability measure induced by X on (X,B) is 

defined by 

μ χ ( β ) = / / [ Ι - 1( 5 ) ) , 5 6 β (3.18) 

where Β is the σ-algebra generated by the topology on X. It is known that 

the characteristic functional of X , namely, 

φχ{χ*) = Eei<x*>x> 

= I ei<x*^ßx(dx) 
Jx 

= [ e
i<x^x^μ(άω)) ,x* e X* (3.19) 

JQ 

uniquely determines μχ and it has properties similar to those of the char-

acteristic function of a real-valued random variable (cf. Prohorov (1961), 

Vakhania (1981), Grenander (1963)). Here < > denotes the value of 

the linear functional x* G X* at χ G Χ. 

Theorem 3.2.1 : Let ΧΗΛ < fc < 3, be independent random elements 

taking values in X and define 

Z\ — X\ — X3, Z2 = X2 — X3. (3.20) 

If the characteristic functional of ( Z i , Z 2) does not vanish, then it deter-

mines the distributions of 1 < k < 3, up to a change of location. 

Proof: Let φ(χ{,χ2) be the characteristic functional of ( Z i , Z 2) . Observe 

that for x\,x2 in X*, 

φ{χ\,χΙ) = E[exp{i < χ\,Ζλ > +i < x2,Z2 >}] 

= E[exp{i < x\, Xi - X3 > + i < x*2, X2 - X3 >}] 

= E[exp{i < x\,X\ > +i < x2,X2 > + t < -x\ - x2,X3 >}] 

= ΦΙ(ΧΌΦ2(Χ*2)Φ3(-ΧΙ-Χ*2) (3.21) 
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where φϊ(χ*) is the characteristic functional of Xi. If ^ ( x * ) is an alternative 

possible characteristic functional of Xi for 1 < i < 3 giving rise to the same 

distribution for (Ζχ, Z 2) , then it follows that 

Φι(χΙ)φ2(χ*2)Φ3{-χΙ - *5) = Ψι{χϊ)Ψ2(χ*2)Μ-χ*ι - χΐ) (3 - 2 2) 

for all Χχ , x2 in X*. Since φ(χ{,χ2) φ 0 for all x\,x2 G X* by hypothesis, 

it follows that none of the φι and ψί vanish. Let 

Then relation (3.22) reduces to 

9i(x*Mx2)9s(-x*i - **) = 1 (3-24) 

for all xl and x% in X*Substituting x2 = 0 and x\ = 0 alternately, it is 

easy to see that 

93{x{ + x2) = 93(x*Mx*2) (3.25) 

for all x\,x2 in X* using the fact #3(0) = 1,#3(—x*) = g3(x*) where 0 is 

the null element in X*. Let h(x*) = log(73(0;*) where the logarithm is the 

continuous branch satisfying the condition log #3(0) = 0. Since 93{x*) is 

continuous in the weak* topology, it follows that h(x*) is also continuous 

in the weak * topology on X*. Furthermore 

h{x*1) + h{x*2) = h(x*1+x*2),x*l,x*2eX* . (3.26) 

Hence h is a complex-valued linear functional continuous in the weak* topol-
ogy on X*. By Banach's theorem (cf. Yosida (1965)), it follows that there 
exist xo and yo in X such that 

h(x*) =< y0,x* > +i < x0,x* > , χ * G Χ*. (3.27) 

Note that h(—x*) = h(x*),x* G X. Hence yo = 0. This in turn implies 
that 

h(x*) = i < x0,x* > , £ * G Χ* . (3.28) 
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Hence 

g3(x*) = ë ti<xo,x*> * ,x*£H (3.29) 

or equivalently 

<f>3(x*) = i>3(x*)ei<X0'x'>, (3.30) 

It is easy then to see that 

ΦΑχ·) = xi>j{x*y 
,*\ i<xo,x*> x*EH,j = 1,2 (3.31) 

using (3.24). These relations prove that the distributions of Xj for 

1 < j < 3 are determined up to change of location. This completes the 

Remarks 3.2.1 : The above theorem can be extended to weak-measurable 

random elements taking values in X in the following sense. Suppose that y 

is a subspace of the dual space X* of X and y is total over X (cf. Wilansky 

(1978, p. 95)). A function X : Ω —• X is said to be ^-measurable if 

< z,X > is measurable for all ζ £ y. Χχ,Χ2,Χ3 are said to be y~ 

independent if, for any 71,72,73 in y, the elements of the set < 7i ,X* > 

, 1 < i < 3, are independent random variables. Alspach and Kotlarski 

(1986a) obtained a generalization of Theorem 3.2.1 to ^-independent ran-

dom elements and gave explicit formulae for the characteristic functionals 

of X i , X 2 , ^ 3 in terms of the characteristic functional of (Ζχ,Ζ 2) under 

some additional conditions, where Z\ = X\ — X3 and Z2 = X2 — X3. 

3.3 Locally Compact Abelian Groups 

Let X denote a locally compact abelian separable metric group. Suppose 

X is a multiplicative group and y its character group. For χ G X and 

y € y, let (χ, y) denote the value of the character y at x. By Pontryagin's 

duality theory, the relation between X and y is symmetric, that is X is the 

character group of y. Further the character group of the direct product 

Χ χ X is isomorphic and homeomorphic to y χ y. For more information 

on such groups, see Loomis (1953) or Hewitt and Ross (1963). 

proof of theorem. 
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Let (Ω, Τ, μ) be a probability space. A mapping X : Ω —• X is said to 

be a random element taking values in X if X~XG G Τ for every G open in 

X. The distribution of X is given by the measure 

μχ(Β) = μ{[ω:Χ(ω)£Β}} (3.32) 

for all B G Β where Β is the σ-algebra generated by the open sets in X. 

Random elements X\, X2 are said to be independent if 

μ{[ω : (Χ1(ω),Χ2(ω)) Ε B1 χ B2]} 

= μ{[ω : Χχ(ω) G Βΐ]}μ{μ : Χ2(ω) G £ 2] } (3.33) 

for all Βι and #2 in Β. Let 1/ be a probability measure on X. The c/iar-

acteristic functional ν of 1/ is a complex-valued function on the character 

group y defined by 

Hv) = / (s,y)A>(x), i / e y 

= / ( l ( 4 y ) W , t / e y (3.34) 

if X is distributed with probability measure v . 

It is known that ν determines ν uniquely, ù(y) is a uniformly continuous 

functional of y, ù(e) = 1 where e is the identity character in y and |£(i/)| < 1 

for all y G y. For details, see Grenander (1963) or Parthasarathy (1968). 

Theorem 3.3.1 : Let Χι^Χ2ιΧ3 be three independent random elements 

taking values in a locally compact abelian separable metric group X. Let 

Z\ = X\X2 and Z2 = X\X3. (3.35) 

If the characteristic functional of ( Z i , Z 2) does not vanish, then the joint 

distribution of (Z\,Z2) determines the distributions of X i , X 2 , ^ 3 up to a 

change of scale. 

Proof : Let λ denote the joint distribution of Ζ = (Z\,Z2). Since the 

character group of the product Χ χ X is isomorphic and homeomorphic to 
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y χ y, we can identify the elements of the character group of Λ* χ A* by 3/11/2 
where 2/1 G y and 2/2 G 3̂ · By the definition of the characteristic functional 

λ of λ, it follows that 

λ(2/ΐ2/2) = / (Ζ,ι/ιΐ/2)μ(Λ*;) 
Jq 

= [ {Ζ1(ω),νι)(Ζ2{ω),ν2)μ(άω) 
Jq 

= / (Χι(ω)Χ2(ω),ν1)(Χ1(ω)Χ3{ω),ν2)μ{άω) 
Jq 

= l (Χ1(ω),νιρ2)(Χ2(ω)^1)(Χ3{ω),ν2)μ(άω) 
Jq 

= / {Χι(ω),νιν2)μ(άω) / (Χ2(ω),yx)μ(άω) / (Χ3(ω),ν2)μ(άω) 
Jq Jq Jq 

= Oi(2/12/2)ι>2(2/1)£3(2/2), 2/1,2/2 € 3̂ , (3.36) 

where i>i is the characteristic functional of Xi for 1 < ζ < 3. 

Since λ(2/ΐ2/2) ^ 0 for all 2/1,2/2 € ^ , it follows that 

*>i(y)#0 for = 1,2,3. (3.37) 

Suppose ήί is another possible characteristic functional for Xi, 1 < i < 3, 

such that 

M2/12/2) = r)i(2/12/2)̂ 2(2/1)̂ 3(2/2), 2/1,2/2 € (3.38) 

Note that 7)1(2/) 7e 0 for y G }>, 1 < i < 3. Let 

to = »i(v)/fii(v), yey,i<i<3. (3.39) 

(̂2/) is w el l defined and the relations (3.37) and (3.38) prove that 

î(2/i2/2)V'2(2/i)'03(2/2) = 1,2/1,2/2 € (3.40) 

Since i>2(e) = l,^3(e) = 1 and xp(y) = ψ(ν~ι), it is easy to see that 

1̂(2/12/2) = ̂ 1(2/1)̂ 1(2/2), 2/1,2/2 € J7- (3.41) 

Furthermore ̂ 1(2/) is continuous. Hence ψ\ is a continuous homomorphism 

on the locally compact abelian group y into the multiplicative group of 
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complex numbers of absolute value one. Therefore ψι is a character on 

y. Since the character group of y is X by Pontryagin's duality theory (cf. 

Hewitt and Ross (1963)), it follows that 

&(l , ) = (*o,tf) (3-42) 

for some xo € X. This relation proves that 

h(y) = m(y)(xo,y),yey. (3.43) 

Similarly, it can be shown, using (3.40), that 

My) = Vi(y)(^ô\y)^y € y,< = 1,2. (3.44) 

Hence the distributions of X*, 1 < i < 3, are determined up to a change of 

scale. This completes the proof of the theorem. • 

Remarks 3.3.1 :The results given above are due to Prakasa Rao (1968). 

Flusser (1972) extended Theorem 3.3.1 characterizing the marginal distri-

butions of a random vector X = (Xo, X\, X2) with Xo, X i and X 2 indepen-

dent and with values in a locally compact abelian group X in terms of the 

joint probability measure of Ζ where Ζ = T(X) and Τ is a homomorphism 

on X satisfying certain conditions. We now state his result. For the proof, 

see Flusser (1972). 

Theorem 3.3.2 : Let A* be a locally compact abelian separable metric 

group and suppose X is the direct sum of three of its subgroups XQ,XI 

and X2. For k = 0,1,2, let π& be the projection of X onto its kth di-

rect summand. Let X be a random element with values in X and define 

Xfc = KkX,k = 0,1,2. Suppose Xk,k = 0,1,2, are independent random 

elements with values in XQ, XI and X2 respectively and that the character-

istic functionals of Χο ,Χι and X 2 do not vanish. Let r be another locally 

compact abelian separable metric group and let Τ : X —• τ be a continuous 

homomorphism from X onto r. Let Tk = TV^, k = 0,1,2. Further assume 

that 
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(i) Γ 0 |ΛΌ is injective , 

(ii) (Τι + Τ2)\Χ1ΦΧ2 is bijective and 

(iii) Γ(ΑΤο) Π Γ(ΑΊ) = {0} and T(X0) Π T(X2) = {0} where 0 is the 

identity element in r. 

Let Ζ = T ( X ) . Then the distribution of Ζ determines the distributions 

of Χο,Χι and X2 up to shifts. The shift for Xo is given by an element 

xo € Xo and those for Χχ and X2 are determined by x$ (Here To|*0 denotes 

restriction of To to the set XQ) . 

Remarks 3.3.2 : The relation X — Xo Θ Χι Θ X2 and the condition (ii) in 

Theorem 3.3.2 imply that r is isomorphic and homomorphic to Xi®X2. In 

fact r = Τ(Χι) Θ T(X2). If we define Υ = Υχ + Υ2 where Yk = n'kY where 

n'k is the projection of r onto T(Xk), then the joint distribution of (Yi, Y2) 

determines the distributions of Χο ,Χι and X2 up to shifts. 

Remarks 3.3.3 : Rao (1971) proved that if Xi, 0 < i < 3, are four indepen-

dent real-valued random variables and if Y\, Y2 are two linear functions of 

Xi ,0 < i < 3, then the joint distribution of (Yi, Y2) determines the distri-

butions of Xi ,0 < i < 3 up to a normal factor, possibly degenerate under 

some conditions. Prakasa Rao (1975a) generalized this result to locally 

compact abelian separable metric groups extending the result of Flusser 

(1972) and Prakasa Rao (1968). 

3.4 Abelian Semigroups 

Let (Ω, Τ, μ) be a probability space. Let (X, B) be a measurable space 

where A* is a separable Hausdorff topological space and β is a σ-algebra 

of subsets of X generated by the open sets of Χ. X is said to be a ran-

dom element defined on Ω taking values in X if X : Ω —• X is such that 

Χ _ 1( £ ) G Τ for every Β £ Β. Define 

μχ(Α) = μ(Χ~λΑ),Α G Β. (3.45) 

μχ is called the probability measure induced by X on (X,B). Let X and 
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Y be random elements taking values in X. Random elements X and Y are 

said to be independent if 

μ{[ω : Χ{ω) e AuY(u>) e A2]} 

= μ{[ω : Χ(ω) G Α^μ^ω : Υ (ω) G Α2]} (3.46) 

for all Αι, A2 in β . 

Let 0 and V be two abelian semigroup operations on X, i.e., 

(i) # i , # 2 € X x\ox2 G X and x i V x 2 £ X; 

(ii) £ i , # 2 G A* # 1 0 X 2 = x2oxi and x i V x 2 = x2Vx\; 

(iii) if X i , X 2 , # 3 G X, then 

( £ 1 0 x 2 ) 0 2 3
 =

 ^ 1 0 ( ^ 2 0 ^ 3 ) (3.47) 

and 

( x i V x 2) V x 3 = # i V ( x 2V x 3) ; 

(iv) both X1OX2 and x i V x 2 are continuous on Χ χ X; and 

(v) there exist two identity elements ê 1^ and e^ in X such that e^ox = 

x = e ( 2 )V x for all χ G AT. 

Let X0, XI,X2 be three independent random elements on (Ω, Τ, μ) with 

values in (X,B). Let 

Z = (Z1,Z3) (3.48) 

where 

Zi = X00X1 and Z 2 = X0VX2. (3.49) 

Then Ζ is a random element on (Ω,Ρ, μ) with values in Χ χ X. For any 

μ(ζ1<ζ2)(Βι χ B2) 

= E(XBl(Zi)xih(Z2)) 

= £ ( X B 1 ( X 0O X I ) X B 2 ( X O V X 2 ) ) 

χ Β ι ( X 0 O X I ) X B 2 ( X O Vx 2)/ ix 0 (ώτο)μχι (dxi)A*x2 ( ώ 2 ) 

(3.50) 
- / / / 

·/# 
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where \b denotes the indicator function of the set B. 

Suppose (Α*, β , 0, V) is a measurable space with a double abelian semi-

group operation structure; that is (X, B) is a measurable space as described 

above where 0 and V are two (identical or distinct) abelian semigroup op-

erations. 

Let the kernels 

K(x, u), L{x, v),x€X,u£U,v€V (3.51) 

be two complex-valued functions such that 

(i) Κ and L are both continuous in £ on A*; 

(ii) \K(x, u)\ < 1, |L(x, v)\ < 1 for all χ G X, u G W, v G V; 

(iii) K(xi0X2,u) = K(xi,u)K(x2,u) for ail x±,x2 G X and u G W, 

L (x iVx2>^) = £(£ι>^)£(#2>^) for ail x\,x2 G A* and Î ; G V; 

(iv) K(e^\u) = 1 = L ( e ( 2 ), v) for ail u G W and t; G V; (3.52) 

and 

(v) there exist UQ G U and £ V such that 

i f (χ, wo) = 1 = υ0), χ EX. (3.53) 

The function K(x,u),x G A*,u G W is called a kernel on A* with the 

characteristic set U for the abelian semigroup operation o. Similarly, the 

function L(x,v),x G A*, t; G V is a kernel on Af with the characteristic set 

V for the semigroup operation V. The function 

K(x, u)L(x, v),x e X,ueU,v €V (3.54) 

is called a double kernel on A* with the characteristic set U x V for the pair 

of semigroup operations (ο, V) . For any random element X with values in 

X, define 

Φ $ ( Μ ) = EK(X,u), ueU 

Φ%(υ) = EL(X,v), veV (3.55) 

Φ ^ ( η , ν ) = £ [K(X ,u )L (X ,v ) ] , U G Z Y , V G V . 
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Note that 

Φ^(«, vo) = φ£(«); Φ^(«ο, «) = Φ&(«) (3.56) 

for « e W, υ € V where uo and υο are as defined by (3.53). 

The function φ£ is called the characteristic functional of the random 

element X corresponding to the kernel Κ if it determines the probability 

measure of X on (X, B) uniquely . 

If X\ and X2 are random elements taking values in (Χ, Β, ο, V ) , then 

= E[K{Xuu)L{X2,v)],u € U,v € V (3.57) 

is the characteristic functional of (Χχ,Χ2) corresponding to the double 

kernel KL if it determines the probability measure of ( X i , ^ ) uniquely. 

Define Ζ = (Zu Z2) by (3.48). Then 

ΦΡ(«,«) = 

= TO,t.)L(Z2,i))] 

= £[ür (X 0oXi ,u)L(XoVX 2, t ; ) ] 

= £[Ä-(X 0, u)Ä-(Xi, « ) L ( X 0, « ) L ( X 2, t;)] 

= E[X(Xo, u)L(X0, v)]E[K(X1, u)]E[L(X2, «)] 

= ^ ( u . ^ ^ W . t . e W . t i e V . (3.58) 

Let Φχ^,Φ^ and Φ^2 be another alternative triple of possible charac-

teristic functional of Χο,Χχ and X2 as defined above. Further suppose 

that 

φ£ L(u, v) = φ£ L{u, v)^Q,ueU,veV. (3.59) 

We have the relation 

Φχ.νιαΦ&ααΦ^Μ = Φ£.Λ(«,«)Φ&(«)φ£». (3.60) 

Substituting u = it0 and ν = v0 alternately, it can be checked that 

Φ*»Φ£(«) = Φ£0(η)Φ&(«),« 6 W (3.61) 

and 

Φχ„ (^)Φχ2 (») = Φ^„ ( « ) Φ ^ ( « ) , « € V . (3.62) 
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Relations (3.60) to (3.62) show that 

L(lL. ?Λ 
-,ueU,veV . (3.63) 

If the solution ( ^ f 0^ x 0 , ^ f 0
L) of this equation is unique, then we obtain 

that Φ^ = # £ o
L and the relations (3.61) and (3.62) show that Φ^ = ψ£ 

and Φχ2 = Φχ2· This in turn shows that the distributions of Χο,Χι and 

X2 are determined uniquely. 

Remarks 3.4.1 : Examples of the results obtained above are discussed in 

Chapter 2, for instance, characterizing the probability distributions of com-

ponents by the joint distribution of their product and their sum. The dis-

cussion in this section is from Alspach and Kotlarski (1986b). 

3.5 Homogeneous Spaces 

Let Ρ and Q be probability measures defined on the σ-algebra Β of 

Borel subsets of a homogeneous space (cf. Kelley (1953,p. 107)) X = G/H 

where G is a locally compact separable group of transformations and H a 

subgroup of G. Suppose that Xi,l < i < n, are independent identically 

distributed random elements taking values in X distributed according to Ρ 

or Q. A function / defined on Xn is said to be invariant with respect to G 

if 

f{gxu..., gxn) = f(xu · · ·, «n) (3.64) 

for all ( # i , . . . , x n) G Xn and g G G. Suppose that the distribution of any 

invariant function computed with respect to Ρ is the same as that computed 

with respect to Q. The problem is to find conditions under which Ρ and 

Q agree to within a shift by an element of G, that is, P{E) = Q{g^1E) for 

all Ε G Β for some #o € G. This problem was discussed in Chapter 2 in 

the case of the real line and in earlier sections of this chapter for the case 

of Hilbert spaces and locally compact abelian groups. 

Let us consider the special case when G is a compact group. Denote by 
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u(G) the set of all unitary irreducible (finite-dimensional) representations 

of the group G (cf. Vilenkin (1968)). Let A be the equivalence classes of 

sets of representations under the usual definition. Let Ua be a member 

from the equivalence class for each a £ A. Define P, the characteristic 

functional of P, by the relation 

P(a)= I Ua(g)dP(g),aeA. (3.65) 
JG 

Here we have assumed that Ρ is defined on the group G by extending Ρ 

on G/H using the relation P(Eh) = P(E) for h £ H. It is known that the 

characteristic functional Ρ(·) uniquely determines the probability measure 

P on G (cf. Grenander (1963)). 

Rukhin (1975) proved the following theorem. We omit the proof. 

Theorem 3.5.1 : Suppose Ρ and Q are probability measures defined on 

the σ-algebra of Borel sets Β of a compact group G. Further suppose that 

the characteristic functionals P(a) and Q{a) are nonsingular for all a £ A. 

If 

EP[f(Xu . . . , X n) ] = EQ[f(Xu · - - , * » ) ] (3.66) 

for all invariant functions / and some η > 3, then 

Q(E) = P(g^E)yEeB (3.67) 

for some go £ G. 

The result has been extended in the following form to random elements 

Xi which are independent but not necessarily identically distributed. 

Theorem 3.5.2 : Let X j , l < i < η, η > 3 be independent random ele-

ments with values in a compact group G. Suppose the distribution of each 

invariant function f(Xi,X2,..., Xn) when Xi is distributed with probabil-

ity measure Pi on G for 1 < i < η is the same as its distribution when Xi 
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is distributed with probability measure Qi on G for 1 < i < n. Further 

suppose that 

det[Pi(a)] / 0 , a G i , l < i < n . (3.68) 

Then there exists go € G such that 

Qj(E) = Ρ^Ε),Ε£ ß , l < j < η. (3.69) 

For proofs of above results and for further remarks, see Rukhin (1975, 

1977). 

3.6 Generalized Random Fields 

Let X be the space of all real-valued functions φ(χ) = φ(χ\,..., xn) of η 

real variables which are infinitely differentiable and have bounded supports. 

A sequence { 0 m} of functions in X is said to converge to zero if there exists 

a constant a such that </>m vanishes for ||a?|| > a for all m and, if for every </, 

the sequence {φ$} converges uniformly to zero. Here ||a;|| is the Euclidean 

norm on Rn and φ^ denotes any gth-order partial derivative of φ. Any 

continuous linear functional on X is called a generalized function. 

A random functional Φ is defined on X if for every φ G X there is 

associated a real-valued random variable Φ(φ). In other words, for every k 

elements φί, 1 < i < fc, in X, the joint distribution of (Φ (^ ι ) , . . . , Φ(^)) is 

specified and these probability distributions form a consistent family in the 

sense of Kolmogorov. The random functional Φ(·) is said to be linear if 

Φ(αφ -h ε<ψ) = αΦ(φ) -h εΦ{ψ) a.s. (3.70) 

for φ,φ G Χ and α,ε real. Φ(·) is said to be continuous if φ^ —• φ$, 

1 5: j ^ m, with φ^,φ$ G X, imply that Pm Ρ where Pm is the prob-

ability measure of (Φ(φ^)1..., Φ(Φ^)) and Ρ is the probability measure 

of (Φ(</>ι),..., Φ(φπι)) on Rm. Here denotes the weak convergence of 

probability measures (cf. Billingsley (1968)). 
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Any continuous linear random functional on X is called a generalized 

random function . If X consists of functions of one variable, then the 

corresponding random function Φ is called a generalized random process . 

If X consists of functions of several variables, then the functional Φ is called 

a generalized random field. 

Let Φ and Φ be two generalized random fields on Χ. Φ and Φ are 

said to be independent if the set of random variabes {Φ(0) : φ e X} is 

independent of the set {Φ(0) : φ e X}. This notion can be extended to 

any finite number of generalized random fields. 

For any generalized random field Φ, define 

L^) = E[ei*W]^eX. (3.71) 

L(-) is called the characteristic functional of the generalized random field 
Φ. It can be shown that 

L(0) = 1Μ-Φ) = W), \ΗΦ)\ < 1, (3.72) 

and L(-) is the continuous functional on X. In fact, there exists a one-to-one 

correspondence between the characteristic functionals L and generalized 

random fields Φ on X. 

For any two generalized random fields Φ and Φ, the joint characteristic 

functional of the two-dimensional generalized random field (Φ, Φ) is defined 

by 
L^, φ) = #[e**W)+**<i»], φ e Χ,ψ e X. (3.73) 

Let Φι and Φ2 be two generalized random fields on X and / and g be 
any two infinitely differentiable functions. The generalized random field 
/Φ ι + #Φ2 is defined by the relation 

(/Φι + 9Φ2){Φ) = + Φ2(<70), Φ eX. (3.74) 

Two generalized random fields Φι and Φ2 are said to be determined up 

to shift if there exists a generalized function m such that Φχ = Φ2 -f m. 
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We refer the reader to Gelfand and Vilenkin (1964) for further results 

on generalized random fields. 

Theorem 3.6.1 : Let Φί,α < i < 2, be three independent generalized 

random fields on X and define 

Φι = Φ0 + Φ1 + Φ2, 

φ2 = Α)Φο + /?ιΦι+/? 2Φ2 (3.75) 

where ßi,0 < i < 2 are infinitely differentiable functions such that ε%{χ) Φ 

ßj(x) for i φ j and all χ. Suppose the joint characteristic functional of 

(Φ ι ,Φ 2) does not vanish. Then the two-dimensional generalized random 

field ( ^ 1 , ^ 2 ) determines the generalized random fields Φο,Φι,Φ2 up to 

shift. 

Proof : Let Ι\, 0 < i < 2 be three independent generalized random fields on 

X such that the two-dimensional generalized random field (Σι , Σ2) where 

Σι = Γ 0 + Γ! + Γ 2, 

Σ2 = Α)Γο + / 3 ι Γ ι + & Γ 2 (3.76) 

has the same joint characteristic functional Η(φ,φ) as (Φ ι ,Φ 2) . Let Li(-) 

and Mi(-),0 < i < 2 be the characteristic functional of Φ* and 1\,0<ζ<2, 

respectively. It is easy to see that 

Η(φ, φ) = n2
i=0Mitt -h M) = n2

i=0Litt + M) (3.77) 

for φ, φ in X. Since Η(φ, φ) φ 0 for all 0, φ in Χ, Μφ) = log{L^)/Μ^φ)} 

is well defined where the logarithm is taken to be the continuous branch 
with Ji(0) = 0. Then it follows that 

2 

^ J i ( 0 + είψ) = Ο,φ,φ e X. (3.78) 
i=0 

Let φ, φ and λ be fixed in X and let φ' = φ — β 2λ and φ' = φ + λ. Then 

φ' and φ' belong to Χ and the equation (3.78) implies that 
2 

ΣΜΦ'+Ά1>') = 0 . (3.79) 
i=0 
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Substracting (3.78) from (3.79), we obtain the equation 
ι 

Σ[ΜΦ' + Μ') - ΜΦ + εχ'Φ)] = ο (3.80) 

for all φ, ψ and λ in Χ since φ' + ε2ψ — φ + ε2ψ. Let 

WM) = ΜΦ + X(ßi - ε2)) - ΜΦ), i = 0,1 (3.81) 

for any fixed λ in Χ. Relation (3.80) implies that 

\ν0{φ + εοΦ) + Wi(4> + ßnl>) = 0 (3.82) 

for any φ, ψ in Χ. Let φ, ψ and ν be fixed in X and let φ' = φ — ε\ν and 

ψ' = ψ + v . By arguments similar to those given above, we obtain the 

relation 

Υο(Φ + Μ) = 0 (3.83) 

where 

Υο(Φ) = W W + u(ß0 - ßi)) - Wb(0), 0 € A. (3.84) 

Relation (3.83) implies that 

Υ0(φ) = 0, 0 G Χ (3.85) 

which in turn shows that 

\ν0(φ + - ßi)) = Wb(0), ^ G Λ\ (3.86) 

from (3.84). Using the definition Wo(0) in (3.81), we have 

ΜΦ + i>(A) - A ) + λ(/30 - & ) ) - ΜΦ + - A ) ) 

= Jo(0 + X(ßo - A ) ) - Jo(0) (3.87) 

for all 0 G Λ\ Since ^ and λ are arbitrary and ßi(x) Φ ßj(x) for all χ with 

i φ j and infinitely differentiable, it follows that 

ΜΦ + y + λ) - Jo(0 + ι/) = Jo(0 + λ) - Μφ) (3.88) 
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for all φ, φ, ν and λ in A* or equivalently 

ΜΦ + ν + λ) + J o(0) = Jo(</> + ι/) + ΜΦ + λ) (3.89) 

for all </>, ι/ and λ in X. This can be written also in the form 

ΜΦ + Φ) = ΜΦ) + ΜΦ) (3.90) 

by choosing φ = 0 m X. Hence Jo(-) is a linear functional on A\ By the 

properties of characteristic functionals, Jo{') is a complex-valued continuous 

linear functional on X with Joi—φ) = ^{Φ)· In other words 

This proves that the random fields Φο and Γο differ by mo with probability 

one, that is Φο = Γο + mo a.s. Similar analysis proves that Φ^ and I\ differ 

by rrii for some generalized functions m; almost surely. This completes the 

Remarks 3.6.1 : The results in this section are from Prakasa Rao (1976). 

The theorem holds if ßi are constants all different from zero and different 

from each other. The results can be extended to multidimensional gener-

alized random fields. If the two-dimensional generalized random field in 

Theorem 3.6.1 is infinitely divisible, then it is known that its characteris-

tic functional does not vanish and the conclusion in Theorem 3.6.1 holds. 

Finally these results are not trivial consequences of earlier results for real-

valued random variables since for any fixed φ G Α', Φ<(0) is not a linear 

combination of Φj(φ),0 < j < 2, since ßi are not necessarily constants. A 

more general result on characterization of generalized random fields up to 

Gaussian factors is discussed in Prakasa Rao (1976). 

L^) = M o( 0 ) e r o W + i m o W, ( / > G X . 

proof of the theorem. 



Chapter 4 

Identifiability for Some 

Types of Stochastic 

Processes 

We now consider an extension of the results in Chapter 2 to the framework 

of stochastic processes. Some of these results can be derived as special cases 

of results in Chapter 3 but direct derivations are of independent interest. 

4.1 Point Processes 

It is known that every point process N(-) on [0, oo) corresponds to a 

triple (Ω,Τ,ΡΝ) where Ω is the set of all countable sequences of real num-

bers {U} without limit points and Τ is the σ-algebra generated by cylinder 

sets and PN is a probability measure (cf. Harris (1963)). The point pro-

cess N(-) is said to be degenerate if PN is concentrated at a single point 

0"i>F2« · · ·, ) in Ω. Let V denote the class of measurable functions ξ such 

that 0 < £(£) < 1 for all real t and ξ(ί) = 1 outside a bounded interval. 

The probability generating functional of a point process N(-) is defined by 

(4.1) 
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(If ξ(ί) = 0 over some set A in [0, oo), the exponent is defined to be zero 

unless Ν (A) = 0 when it is defined to be equal to one). The probability-

generating functional of a bivariate point process (Ni(-),N2(-)) is defined 

by 

ff(£i,f2) = £{exp[ J log + j log t2(t)dN2(t)]} (4.2) 

for ξι G V and ξ2 € V . 

Theorem 4.1.1 : Let iV0, iVi and iV2 be three independent point processes 

and define 

M1 = N1+ N0 and M2 = N2 + N0. (4.3) 

Then the bivariate point process ( M i , M 2) uniquely determines the point 

processes Νο,Νχ and N2. 

Proof : Let G {(ξ) denote the probability generating functional of JV»,i = 

0,1,2, and i f (£ i ,£ 2) denote the probability generating functional of 

(Mi, M2). It is easy to see that 

H(tuh) = E{exp[J\og ixWdM^t)* J log i2(t)dM2(t)]} 

= E{exp[ J toghWdN^t) + J log Mt)dN2(t) 

+1 log(ii(t)ia(*))i«Vb(t)]} 

= G i ( Î i ) ^ 2 ( 6 ) G o ( 6 6 ) (4.4) 

for ξι G V,£ 2 € V since NQ,N\ and 7V2 are independent point processes. 

Suppose that Ri,i = 0,1,2 are independent point processes such that 

the bivariate point process (Si,S2) has the same probability structure as 

(Μι, M2) where 

5i = Äi + Äo, S2 = R2 + Ro. (4.5) 

Let i^i(^),i = 0,1,2, be the probability generating functionals of = 

0,1,2 respectively. It is easy to see as before that 

= Κ1(ξ1)Κ2(ξ2)Κ0(ξ1ξ2)^1ιξ2 G V. (4.6) 
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Let Aj, 1 < j < m be disjoint Borel sets in [0, oo) and G{(z) and Ki(z) 

denote the probability generating functionals of (Ni(Ai),..., Ni(Am)) and 

(Ri(Ai),... ,Ri(Am)) respectively. Relations (4.4) and (4.6) imply that 

G1(z1)G2(z2)GQ(z1z2) = K1(z1)K2(z2)K0(z1z2) (4.7) 

for all ζ £ [0, l ] m where ζ\Z2 denotes the vector obtained by multiplying 

Z\ and z2 componentwise. Gi(z) and Ki(z),Q < i <2 are nonzero in the 

set D = {0 < Zj < 1,1 < j < m} where ζ = (ζι,..., zm). Let 

Ji(z) = Gi{z)lKi{z), 0 < i < 2, ζ e D. (4.8) 

Then Ji(z) is nonzero in D and 

Μζι)Μζ2)ΜζιΖ2) = 1, z u z2 e D. (4.9) 

Substituting z2 = 1, it follows that 

Ji{z1)Mzl) = l,z1eD . (4.10) 

Similarly, we have 

Μ*2)Μ*2) = l,z2eD . (4.11) 

Hence 

Mzi)Jo(z2) = Jo(z!Z2), zi, z2eD (4.12) 

and Jo is continuous on D. The only continuous solutions of this functional 

equation are functions of the type 

U™=1zc/ (4.13) 

where c^, 1 < j < m, are constants by results in Aczel (1966, p. 215). 

Hence 

G0(z) = Κ0(ζ)τν?=1ζα/ ,zeD. (4.14) 

In other words 

Go(î) = Κ0(ξ)Μξ) (4.15) 
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for ξ € V of the form 

m 
£(t) = 1 - £ ( 1 - Zj)XAj (t), 0 < Zj < 1,1 < j < m (4.16) 

where 

J o ( 0 = n3T=i^- (4.17) 

Here χ,4 is the indicator function of the set A and Αχ,..., A m are disjoint 

bounded Borel subsets of the real line. Every £ G V can be uniformly 

approximated by an increasing sequence of simple functions of the above 

type. Define 

for any ξ G V where {ξη} is an approximating sequence in V for ξ of the 

type (4.16). Therefore 

and Jo(£) is the probability generating functional of a degenerate point pro-

cess (Westcott (1972)). But the probability-generating functional uniquely 

determines the point process, by a result of Vere-Jones (1968) (cf. Daley 

and Vere-Jones (1988, p. 221)). Hence N0 and Äo differ by a degenerate 

point process. A similar argument shows that Ni,Ri and iV 2, i?2 differ by 

a degenerate point processes. But the structure of the bivariate point pro-

cess shows that we cannot add a degenerate point process to one without 

subtracting from the other. Hence iV0, Νχ and 7V2 are unique to the process 

J 0( 0 = lim J 0(£n) η 
(4.18) 

G o ( 0 = Κ0(ξ)J0(£), ξ&ν (4.19) 

(M1,M2). 

The results in this section are due to Prakasa Rao (1975b). 

4.2 Homogeneous Markov Chains 

Suppose that 

ο$ ••l<h,j<p,l<k<n (4.20) 
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is a collection of independent real-valued random variables. Let {r/j : j > 0} 

be a homogeneous Markov chain with state space and with a 

nonsingular transition matrix A = ((α^·)). We denote this Markov chain 

by {A}. 

A collection of random variabes 1 < k < n} is said to be defined on 

the homogeneous Markov chain {A} if 

tk=eW11lt,l<k<n, (4.21) 

that is, 

tk = ο$ if m-i = h,Vk=j,l<k<n. (4.22) 

Let 

ag)(x) = P [ & < x , i ; f c = = ft], (4.23) 

4b(*) = ((4*>(χ))), (4.24) 

and 

/
oo 

ei<xeL4fc(x), 1 < k < n, t € R . (4.25) 
- OO 

Observe that (ßk(0) = A and (fik(t) is continuous in t G Ä. 

j4fc(x) is called the matrix-valued distribution function of and 

is called the matrix-valued characteristic functional of £k defined on the 

homogeneous Markov chain {A}. It is easy to see that 

a^(x) = aHjFff(x) (4.26) 

where FJ^ (x) is the distribution function of 0Ĵ. Further the matrix-valued 

characteristic functional of the linear form 

αχξι + α2ξ2 + α3ξ3 (4.27) 

is 

Φι(α>ιήφ2(α2ήφ3(α3ή 

(cf. Gyires (1981a,b)). 

(4.28) 
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Given a nonsingular matrix M, there always exists a matrix L such that 

Μ = ΣτΓ ( 4· 2 9) 
ι/=0 

(Hille (1948, p. 125)). The matrix L is called the logarithm of the matrix 

M and is denoted by log M. Since A is nonsingular, it can be seen that 

the matrix-valued characteristic functional φ^ of given by (4.25) is non-

singuar in a neighbourhood of zero and $k{t) = log 0fc(£) exists in this 

neighbourhood. We choose that continuous version of logφk(t) for which 

$fc(0) = log A. Note that, if two nonsingular matrices M and Ν commute, 

then 

log MN = log M + log N. (4.30) 

For any 1 < i\ < i2 < · · · < ij < n, the matrix-valued characteristic 

functional of 

Ζ = a^h + . - - + α&, (4.31) 

is 

^ " V u M K 2 " * 1 " ^ ^ ^ (4.32) 

(cf. Gyires (1981a,b)). In particular, if 0 i r( t ) , l < r < j , commute with 

A for every t, then the matrix-valued characteristic functional of Ζ can be 

written in the form 

An-j4>il(a1t)---<l>ij{ajt). (4.33) 

We now have the following analogue of Theorem 2.1.1 for random vari-

ables defined on a homogeneous Markov chain. 

Theorem 4.2.1 : Let £1,^2? £3 be random variables defined on a homoge-

neous Markov chain {A}. Define 

Ζχ =ξ1-ξ2,Ζ2=ξ2-ξ3. (4.34) 

If the matrix-valued characteristic functional of (Zi,Z2) is nonsingular, 

then the matrix-valued distribution function of (Zi,Z2) determines the 

matrix-valued distribution functions of ξι, £2, £3 up to change in location. 
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Proo f : For any real t and u, 

E[exp{«(& - £2) + iu(& - 6 ) }* ( [ r /3 = Mm = h] 

= E[exp{it& + + u)£2 - ™ξ3}χ([η3 = j])|r?0 = Λ] (4.35) 

where χ(-Α) denotes the indicator function of the set A. Hence the matrix-

valued characteristic functional of (Ζχ, Z2) is 

<t>i(t)<l>2(u-t)(P3(-u) (4.36) 

from (4.28). Suppose that { 7 x , 7 2 , 7 3 } is another set of random variables 

defined on the homogeneous Markov chain {A} such that the matrix-

valued characteristic functional of (7χ — 72,72 — 7 3 ) is the same as that of 

(£1 — £2,62 — £ 3 ) · Let ψΐ, 1 < i < 3, be the matrix-valued characteristic 

functionals of 7», 1 < i < 3, respectively. It is obvious that 

Φι(ί)φ2(η - ί)φ3(-η) = Mt)Mu - t)t/j3(-u) (4.37) 

for all t, u real. Observe that the ^ ' s and Vi's are nonsingular matrices 

for all t and u since the joint matrix-valued characteristic functional of 

(£1 — £2,£2 — £ 3 ) is nonsingular by hypothesis. Substituting t = 0 in (4.37) 

we have 

Αφ2{ν)φ3(—υ) = Αψ2(η)ψ3(—υ,), - o o < u < 00 (4.38) 

or equivalently 

V,2_1(^)02(^) = Ψ3(-ν)φ3
1{-η), - o o < u < 00 (4.39) 

since A is nonsinguar by hypothesis. Similarly, substituting u = 0 in (4.37), 

we have 

φι(ί)φ2(-ί)Α = ^ i ( t ) ^ 2( - * ) A - 0 0 < ί < 00 (4.40) 

or equivalently 

Ψϊ\ΐ)Φι(1) = M-t)<t>2~\-t), - 0 0 < t < 00. (4.41) 

But 

Φϊ1^)Φ\{^)Φ2{η - ί)φ3(-υ,)ψ3
ι(-η) = ψ2(η - t), - 0 0 < t < 00 (4.42) 
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from (4.37). Using the relations (4.39) and (4.41), it follows that 

ψ2(-ί)φ21(-ήφ2(η - t^2
l(u)^2(u) = ψ2(υ, - t), - o c < u, t < oo. (4.43) 

Therefore 

φ2(—ί)φ2
ι{—ί)φ2{η — t) = ψ2(η - i )^ 1(u )0 2(^ ) , - o o < u, t < oo. (4.44) 

Let ζ2 = ψ2φ2
ι. It follows from (4.44) that 

ζ2{-ί)φ2(η - t) = ψ2(η - i )^ 1( i t )0 2(w) , - o o < u,t < oo . (4.45) 

Substituting t = u in (4.45), we have 

ζ2(—η)Α = Αψ^^φ^υ,), - o o < u < oo. (4.46) 

Hence, from (4.45) again, it follows that 

ζ2(-ί)φ2(ιι -t) = ψ2(η - i ) A _ 1C 2( - u ) A , - o o < u, t < oo (4.47) 

or equivalently 

Α~1ζϊ1(-η)Αζ2(-ί) = Ç2{u-t),-oc < u,t < oo. (4.48) 

The last equation can be written in the form 

A(2{-t) = ζ2(-η)Αζ2(η - t), - o o < u, t < oc. (4.49) 

Hence 

Αζ2(χ + y) = Ç2(x)AÇ2(y), - o o < x, y < oo. (4.50) 

Let y = 0 in (4.50). Then it follows that 

Αζ2(χ) = ζ2{χ)Α, - o o < χ < oo. (4.51) 

Hence A commutes with ζ2(χ) for all χ and we have 

Αζ2(χ + y) = A(2(x)Ç2(y), - o o < χ, y < oo. (4.52) 

Since A is nonsingular, relation (4.52) implies that 

C2(z + y) = (2(^X2(2/), - 0 0 < x, 2/ < 00 . (4.53) 
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Note that ζ2 is continuous with C2(0) = / . It follows from results in Hille 

and Phillips (1957, Theorem 9.6.1, p. 287) that there exists a matrix D2 

such that 

ζ2(χ) = e
xD\-oo <x<oo (4.54) 

and hence 

^2{u)e~uD2 = φ2{υ), ; - o o < u < oo . (4.55) 

Similar relations hold for ψι,φι and ^ 3 , 0 3 · By the uniqueness theorem for 

characteristic functionals (cf. Gyires 1981a,b)), the above relation implies 

that the matrix-valued distribution functions of £ι, ξ2, ξ3 are determined up 

to changes in location. This completes the proof of Theorem 4.2.1. • 

We now extend Theorem 4.2.1 to more general linear functions of ran-

dom variabes defined on a homogeneous Markov chain. 

Theorem 4.2.2 : Let {£fc,l < k < n} be random variables defined on a 

homogeneous Markov chain {A}. Suppose 1 < i\ < i2 < i3 < n. Define 

Z\ = ai&i + + Ö3&3 > 

Z2 = 6ΐ6χ + b2ii2 + &3&3 . (4.56) 

Further suppose that the matrix-valued characteristic functionals 

0i , (£ ) 5l < j < 3 of &,pl < j < 3, commute with each other and with 

A. Let {Ok, 1 < k < n} be another set of random variables defined on the 

homogeneous Markov chain {A} such that the matrix-valued characteristic 

fucntionals V -̂W> 1 < .7 < 3, of ζ"̂ ., 1 < j < 3, commute with each other 

and with A. Define 

Wi = aiCix + α2ζΐ2 + a3Ci3, 

W2 = b1Q1+b2Q2+b3b3 . (4.57) 

Assume that the joint matrix-valued characteristic functional of (Zi , Z2) is 

the same as that of (Wi, W2) and is nonsingular. Suppose that a* : bi φ 



90 CHAPTER 4. IDENTIFIABILITY FOR SOME PROCESSES 

aj :bj for i φ j, 1 < i, j < 3. Then the matrix-valued distribution functions 

of £i,, 1 < j ' < 3 are determined up to change of location. 

Remarks 4.2.1 : The proof of Theorem 4.2.2 depends on extensions of 

Lemmas 2.1.1 to 2.1.3 and Corollary 2.1.1 to matrix-valued functions. We 

omit the proofs. For details, see Prakasa Rao (1987). 

4.3 Homogeneous Processes with Independent Increments 

Suppose {X(t),t > 0} is a homogenous stochastic process with inde-

pendent increments in the sense that the distribution for X(t2) — X(ti) 

for 0 < t\ < t2 < oo depends on t2 — t\ and, for 0 < t\ < t2 < t3 < 

oo,X(t3) — X(t2) is independent of X(t2) — X(ti). Further suppose that 

the process {X(t),t > 0} is continuous in the sense that it has no fixed 

points of discontinuity. 

Let φ(η; h) denote the characteristic function of X(t + h) — X(t) for 

h > 0 and 0 < t < oo. It is well known that φ{η\ h) is infinitely divisible 

and φ(η;Η) = [φ(η; l)]h for all h > 0. For simplicity, let φ(·) denote the 

function </>(·;!)· The process {X(t),t > 0} is uniquely determined by the 

characteristic function of X(0) and by the function φ(-). Hereafter we 

assume that X{0) = 0. 

4.3.1 Stochastic integrals: Let g(-) be a real-valued function defined over 

an interval [A, B] C [0, oo) and let w(-) be a nonnegative function defined 

over [A, B], Consider a sequence of subdivisions 

Dn : A = tn£ < tn,i < ·" < tUykn = Β (4.58) 

of the interval [A, B] such that 

n—>oo l<k<kn 
lim max (fn > fe - ί η, * - ι ) = 0 . (4.59) 

L et *n,fc € [tn,k-l,tn,k. 

of partial sums 
,fc]> 1 ^ * ^ kn for all η > 1. Construct the sequence 

Sn = Y,9(tn,k)[X(w(tn,k)) - X(w(tn,k - l ) ) ] - (4.60) 
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If the sequence {Sn} converges in probability to a random variable S and 

if this limit does not depend on the choice of k and the sequence of 

subdivisions {Dn} satisfying (4.59), then we say that the stochastic integral 

S exists in probability and write 

S = j\(t)dX(w(t)). (4.61) 

If the sequence {Sn} converges in quadratic mean to a random variable 5, 

then we say that the stochastic integral S given by (4.61) exists in quadratic 

mean. 

The following results are known about the existence of such stochastic 

integrals. We omit the proofs. 

Theorem 4.3.1 : Let {X(t) ,£ > 0} be a continuous homogeneous process 

with independent increments. Suppose the process {X(t),t > 0} has finite 

mean function and finite covariance function both of bounded variation on 

a finite closed interval [A, B]. Further suppose that g(t) is real-valued and 

continuous on [A, B]. Then the stochastic integral 

Γ g(t)dX(t) (4.62) 
Ja 

exists in quadratic mean. 

Theorem 4.3.2 : Suppose {X(£),£ > 0} is a continuous homogeneous 

process with independent increments and g(t) is real-valued and continuous 

on [A, B]. Then the stochastic integral 

J g(t)dX(t) (4.63) 

exists in probability. 

For proofs of Theorems 4.3.1 and 4.3.2, see Lukacs (1968). Suppose w(-) 



92 CHAPTER 4. IDENTIFIABILITY FOR SOME PROCESSES 

V{(-oc,t}}={ 

is a nonnegative, nondecreasing and right-continuous function. Define 

0 if t < A 

w(t)-w(A) if A<t<B (4.64) 

[ w(B) - w(A) if t > Β 

where — oo < A < Β < oo. Then V gives rise to a finite measure with 

support contained in [A.B]. Denote this measure also by V. Suppose g(-) 

is continuous on [A, B]. Define 

wg(t) = V([x : g(x) < t]) . (4.65) 

Then Wg(-) is nondecreasing, nonnegative and right-continuous on [A, B]. 

The following result is due to Riedel (1980a). 

Theorem 4.3.3 : Suppose {X(t),t > 0} is a continuous homogeneous 

process with independent increments and g(-) is a continuous real-valued 

function on [A, B]. Suppose w(-) is a nondecreasing, nonnegative right-

continuous function on [A, B]. Define 

C = min q(t) and D = max q(t). (4.66) 

Then the integrals 

/ g(t)dX{w(t)) and / tdX(wg(t)) (4.67) 
Ja Jc 

exist in probability and are identically distributed. 

The next result gives a representation for the characteristic functions of 

the stochastic integrals defined above. 

Theorem 4.3.4 : Let {X(t),t > 0} be a continuous homogeneous process 

with independent increments. Further suppose that the process has finite 

mean function and finite covariance function which are of bounded variation 

on any finite closed interval [A, B]. Let g(-) and h(-) be continuous in [A, B]. 

Define 
pB pB 

Y= g(t)dX(t) and Ζ = / h(t)dX{t) (4.68) 
Ja Ja 
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and denote by <t>(u\h) and 0(u,v) the characteristic functions of 

X(t + h) — X(t) and (Y,Z) respectively. Then 9(u,v) is different from 

zero for all u and υ and 

Ja 

where ip(u) = log φ(η, 1) and the logarithm taken here is the continuous 

branch of the logarithm of 0(·; 1) with log 0(0; 1) = 0. 

Remarks 4.3.1 : For a proof of Theorem 4.3.4, see Lukacs (1968, pp. 

107—108). This theorem continues to hold if the integrals Y and Ζ exist in 

probability. 

Since {X(t),t > 0 } ,X (0 ) = 0 is a homogeneous process with indepen-

dent increments, the characteristic function φ(η) = φ(η; 1) of X(t+1)—X{t) 

is infinitely divisible and the Levy canonical representation for the charac-

teristic function of X(l) holds as given in Lukacs (1970, Theorem 5.5.2). 

Riedel (1980a) proved the following theorem. We omit the proof. 

Theorem 4.3.5 : Let {X(t),t > o},X(0) = 0 be a continuous homoge-

neous process with independent increments. Suppose w(-) is nondecreasing 

nonnegative and right-continuous on [0, oo). Let the Levy canonical repre-

sentation for the characteristic function of X(l) be given by α, σ, M and Ν. 

Then the Levy—Khintchin canonical representation for the characteristic 

function of the stochastic integral 

(4.69) 

(4.70) 

is given by the formulae 

'OO .3 

"W (l + ( i x ) 2) ( l + x 2) 
d(M(-x) + N{x)))dw(t) 

Ja 
(4.71) 

(4.72) 
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Mw(x) = - N(-)dw(t)+ / M{-)dw(t),x<0 (4.73) 
Jmin(A.O) * Jm&x(A<0) * 

^min(B,0) /«max(B,0) 

N(-)dw(t) + 
/min(A,0) r ^max(>l,0) 

and 

/»min(£,0) /«max(B,0) /»min^,u; /.max^,u; 

(x) = - M(-)dw{t) + N{-)dw{t),x>0. (4.74) 
Ληίη(Λ,Ο) * imax(A,0) * 

4.3.2 Identifiability : We say that the stochastic integral given by (4.61) 

determines the homogeneous process with independent increments 

{X(t),t > 0} if the characteristic function of S determines the charac-

teristic function of X(l). 

We first present a couple of results identifying such a stochastic process 

up to shift via stochastic integrals. 

Theorem 4.3.6 : Let {X(t),t > 0} be a continuous homogeneous pro-

cess with independent increments. Suppose the process has moments of 

all orders and its mean function and covariance function are of bounded 

variation in any finite closed interval. Suppose g(t) and h(t) are continuous 

functions on [A, J5] and [C, D] respectively such that A < C < Β < D. 

Further suppose that either 

rB 
[g(t)]kdt^0,k>2 (4.75) / 

Ja 

or 

Let 

/ [h(t)]kdt^0,k>2. (4.76) 
Jc 

pB pD 
Y= g{t)dX{t),Z= / h(t)dX{t). (4.77) 

Ja Jc 

Then the joint distribution of (Y, Z) completely determines the process X 

except possibly for change of location provided the characteristic function 

of X(l) is entire. In such an event either 

pB pD 
/ g(t)dt= / h(t)dt = 0 (4.78) 

Ja Jc 

or there is no change in location. 
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Proo f : Let 0(u, v) denote the characteristic function of (Y, Z) and ψ(η) 

denote the continuous branch of the logarithm of the characteristic function 

of X(l) with ψ(0) = 0. It is easy to check that 

logfl(u ,v) = / iß(ug(t))dt 
Ja 

+ / tl>(ug(t) + vh(t))dt + I tp(vh(t))dt. (4.79) 
Jc Jb 

Suppose that {W(t),t > 0} is another stochastic process with the same 

properties as {X(t),t > 0} . Let η(η) denote the continuous branch of the 

logarithm of the characteristic function of W(l) with 77(0) = 0. Suppose 

that the random vector (S, R) has the same joint distribution as (Y, Z) 

where 

g(t)dW(t) and R = J h{t)dW{t). (4.80) 

It follows from (4.79) that 

fA tl>{ug(t))dt + Sc M*9(t) + vh(t))dt + S£ ^{vh{t))dt 

çC çB çD 
= / v(ug(t))dt+ / rtug(t) + vh(t))dt + / ^vh{t))dt (4.81) 

Ja Jc Jb 

for all u,v real. Suppose that (4.75) holds. Let ν = 0 in (4.81). Then 

çB çB 
\ iP(ug(t))dt= / v(ug(t))dt, - 0 0 < u < 00. (4.82) 

Ja Ja 

Since the processes X and W have moments of all orders, the integrals 

on both sides can be differentiated with respect to u repeatedly under the 

integral sign and we have 

[B{g(t)]k̂ k\ug(t))dt = [B[g(t)]Wk)(ug(t))dt (4.83) 
Ja Ja 

where ip(k\-) denotes the fcth derivative of ψ. Let u = 0 in (4.83). Then it 

follows that B B 

V>( fc)(0) J [g(t)]kdt = i,(*)(0) J [g(t)}hdt (4.84) 

which proves that ip(k\0) = η^(0) for k > 2 in view of (4.75). Since ψ and 

η are entire functions with ^(0) = r/(0) = 0, φ{ί) = ψ(—t) and η(ί) = η(—£), 
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it follows that 

ip(u) = η(η) + ZCÎX, —oo < u < oo (4.85) 

for some real constant c. This proves that X{1) and W(l) + c have the 

same distribution. From the fact that {X(£),£ > 0} and {W(t),t > 0} are 

homogeneous processes with independent increments, it can be seen that 

X(t + ft) - X(t) and W(t + ft) - W(t) + eft 

are identically distributed for all t > 0 and ft > 0. If c = 0, then the 

processes {X(£), £ > 0} and {W(£), t > 0} are the same. If c ^ 0, then it is 

easy to check that 
pB pD 
/ g(t)dt = 0= / h{t)dt. (4.86) 

Ja Jc 

A similar argument proves the result in case (4.76) holds. This completes 

the proof. • 

As a special case of Theorem 4.3.6, we have the following result by 

choosing h(t) = 0 for all t. 

Theorem 4.3.7: Suppose a process {X(t),t > 0} satisfies the conditions 

stated in the above theorem. Suppose g(t) is real-valued and continuous on 

[A, B] and 
pB 
/ [g(t)]kdt^0,k>2. (4.87) 

Ja 
Let 

Υ = Γ g{t)dX{t). (4.88) 
Ja 

Then the distribution of Y completely determines the process {X{t), t > 0} 

except for a change of location, provided the characteristic function of X(l) 

is entire. In such an event either there is no change of location or 
rB 

g(t)dt = 0 . (4.89) / 
Ja 

Remarks 4.3.2 : The results obtained above are due to Prakasa Rao 

(1975c). The conditions that the process {X(t),t > 0} has moments of 
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all orders and the characteristic function of X(l) is entire are too strong. 

Riedel (1980b) has weakened these conditions and derived results determin-

ing the stochastic processes {X(t),t > 0} of the above type by means of 

stochastic integerals. His analysis involves some results on Wiener—Hopf 

factorization and a modern extension of the Phragmén—Lindelof theory (cf. 

Rossberg (1975)). We will state the results without proofs. 

Let g(t) be real-valued and continuous on [̂ 4, B] and w(t) be a nonnega-

tive, nondecreasing and right-continuous function on [A, B]. For Re(z) > 0, 

define ^ 

S(z) = I \g(t)\zdw(t), (4.90) 

and b 

S(z) = I \g{t)rlg{t)dw{t). (4.91) 
Ja 

Theorem 4.3.8 : Suppose {X( t ) , t > 0} is a continuous homogeneous 

process with independent increments and £ΊΧ(1)|λ < oo for some 0 < λ < 

2. Then the stochastic integral 

Y= Γ g(t)dX(w(t)) (4.92) 
Ja 

defined in the sense of convergence in probability determines the process 

{X(t),t > 0} iff the following conditions are satisfied: 

(i) S(z) ^ 0, λ < Re(z) < 2, 

(ii) S(z) φ 0, λ < Re(^) < 2 and (4.93) 

(iii) 5 ( 1 ) ^ 0 . 

Theorem 4.3.9 : Suppose {X{t), t > 0} is a continuous homogeneous pro-

cess with independent increments and E\X(1)\2 < oo. Then the stochastic 

integral Y defined by (4.94) in probability determines the process 

{ X ( t ) , t > 0 } iff 

S(l) = J g{t)dw(t)?0. (4.94) 
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Remarks 4.3.3 : For proofs of Theorems 4.3.8 and 4.3.9 and related re-

sults, see Riedel (1980b). These results make use of Theorem 4.3.5 on 

the representation of the characteristic function of a stochastic integral 

(cf. Riedel (1980a)). For a comprehensive survey on the identification of 

stochastic processes by stochastic integrals, see Prakasa Rao (1983a). 

4.4 Linear Processes 

Let {X(t), —oo < t < oo} be a homogeneous process with independent 

increments and / be a function such that |/| and f2 are integrable. It is 

known that the stochastic integral 

/

oo 
f(t - u)dX(u), - o o < t < oo (4.95) 

-oo 
exists in the sense of quadratic mean (cf. Doob (1953)) if 

E(X(t))2 < oo, - o o < t < oo. (4.96) 

{Af(t),— oo < t < oo} is called a linear process. The process 

{Af(t), —oo < t < oo} is a stationary process. Since {X(t), — oo < t < oo} 
is a homogeneous process with independent increments, it is known that 

E(exp{i0[X(t + u) - X(u)]}) = εχρ{ίφ(θ)} (4.97) 

where 1 poo ΐοχ _ 1 _ Aû~ 

φ(θ) = ίΊθ - U202 + / - L - ^ K ( d x ) , (4.98) 
Δ J-oo x 

7 and δ are real constants and K(-) is a nondecreasing bounded function 

with K(-oo) = 0 , # ( 0 + ) - Κ(0-) = α (cf. Lukacs (1968)). 

The characteristic functional of such a stochastic process {Λ/(£), —oo < 

t < oo} is defined by 

/
oo A/W£(*)]} (4.99) 
- OO 

where £(·) runs through real-valued signed totally finite measures on the 

σ-algebra of Borel subsets of the real line (cf. Bartlett (1966)). From the 
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fact that {Λ / ( ί ) , —oo < t < 0 0 } is a linear process, it can be shown that 

/ OO AOO 

Φ( . / ( * - t t ) Î ( d i ) ) d « } . (4.100) 
- OO J — OO 

Let 
C ( / , Θ) = log £ {exp *0A/(*)}, - o o < 0 < oo. (4.101) 

Note that A/(t) is an infinitely divisible random variable and hence C ( / , Θ) 

is well defined. It can be seen from (4.99) or directly that 

/

oo 
ip(ef(u))du, - o o < θ < oo , (4.102) 

- OO 

from the definition of the linear process {Λ/(£),— oo < t < oo}. Making 

use of the canonical representation (4.98) for ψ(θ), it can be shown that 

(cf. Weiss and Westcott (1976)) U o . o ί°° ei6x -1-ίθχ Λ 

where 

1 Λ Ζ*00
 pMte _ -ι _ jûr a 

C ( / , Θ) = iW - -δ}θ2 + / - 2 Kf(dx) (4.103) 

/

OO Λ ΟΟ 

f(t)dt,6} = 62 f2(t)dt, (4.104) 
-oo ·/—oo and jfy is a nondecreasing bounded function with Kf(-oo) = 0, 

Kf(0+) " ^ / ( ° - ) = 0 defined by 

Kf(dv)= [**z2K(—)\dh+(z)\ + fb z2K{- — )\dh-{z)\. (4.105) 
Jo z Jo z 

Here b± = supn / ±( w ) < 0 0 , ^ ( 2 / ) = λ{χ : / ± ( x ) > 2/} where λ is the 

Lebesgue measure. 

Let B2 denote the class of all real-valued functions / such that |/| and 

f2 are integrable. The following results are due to Weiss and Westcott 

(1976). We omit the proofs. 

Theorem 4.4.1 : ψ is uniquely determined given Λ/(·) and / for all / € 
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Suppose a process {A(t),— oo < t < 00} can be expressed as a linear 

process in two different ways : 

/

oo 

fi(t - u)dXi{u),-00 < t < 00, i = 1,2 (4.106) 

- 00 

where fi G B2li = 1,2 and {Xi(t),— 00 < t < 00} , i = 1,2 are homo-

geneous processes with independent increments. In general, two different 

representations (4.106) for the same linear process {A(t),— 00 < t < 00} 

are possible; for instance, f2 = cfi and X2(t) = ^-ΧΊ(·) and f2(t) = 

±fi(t + a),X2(i) = ±Xi(t) for constants c φ 0 and a. The next theo-

rem states that the representation is unique up to a constant factor and 

up to translations of / . If f2(t) = ±fi(t + a), then X2(t) = ±X\(t) by 

Theorem 4.4.1. 

Theorem 4.4.2 : If a linear process {Λ(£), —oo < t < 00} has two repre-

sentations with / i , / 2 G B2 and fi(t)dt = l , i = 1,2, and if the cases 

f2(t) = ±fi(t + a),X2(t) = ±Xi(t) are excluded, then the processes Χι{·) 

and Χ2(·) are Gaussian. 

Theorem 4.4.3 : If two linear processes 

/

oo 

/ <( * - u ) i Y <( t i ) , » = i,2 
- 00 

have the same characteristic functional as defined by (4.99), then either 

/2W = cfi(t + o) or Xi(t) and X2(t) are Gaussian. 

Remarks 4.4.1 : For the proofs of Theorems 4.4.1 to 4.4.3, see Weiss and 

Westcott (1976). 

Definition : A stationary stochastic process {X(t), —00 < t < 00} is said 

to be time-reversible if for all η and £1, t2,... , £ n, (X (£ i ) , . . . ,X(tn)) and 

{X(—1\),..., X(—tn)) have the same joint distribution. 

Remarks 4.4.2 : For example, stationary Gaussian processes are time-

reversible. If {X(£), —00 < t < 00} is a stationary process which is time-
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reversible, then for every h and every i i , £2,.. . , (X(h+ti),..., X ( f t+ i n) ) 

and (X(h — £ 1 ) , . . . , X(h — tn)) have the same joint probability distribution. 

The following result is an easy consequence of Theorem 4.4.3. 

Theorem 4.4.4 : Let Λ(·) be a linear process defined by (4.101). Suppose 

there does not exist a constant a such that f(t) = f(a — t) for all t or 

f(t) = —f(a — t) for all t and X(t) has a symmetric distribution for all t. 

If Λ(·) is time-reversible, then X(-) is Gaussian. 

Proo f : Let Ai(t) = A ( - * ) , - o o < £ < 00. Then Λ(·) and Αι(·) have the 

same probability structure due to the time-reversibility of the process Λ(·). 

Let = / ( - * ) and X^t) = X(-t). Then 

Since {Λ(£) , -οο < t < 00} and {Λι(£),—00 < t < 00} are two linear 

processes with the same probability structure and fi(t) φ cf(t + a) by 

hypothesis, it follows that {X(t), - 0 0 < t < 00} is Gaussian, by Theorem 

— 00 

and 

4.4.2. 

For detailed proofs, see Westcott (1970), Weiss (1975) and Weiss and 

Westcott (1976). 



Chapter 5 

Generalized Convolutions 

Some of the identifiability results studied in Chapter 2 have analogues in the 

theory of Laplace transforms and lead to methods of solving some partial 

differential equations. We discuss some of these results in this chapter. 

5.1 Generalized Convolutions 

Let / i and f2 be two real-valued functions such that fi(t) = f2(t) = 0 

for t < 0 and fa not identically zero for i = 1,2. The convolution of two 

such functions fi(t) and f2(t) is defined by the formula 

Jo 

assuming that this is defined. However, the convolution fi * f2 does not 

determine the functions / i and f2 uniquely. For instance, let 

(5.1) 

/ i (*) = l , t > 0 , / 2( i ) = | i a , i > 0 (5.2) 

and 

9i(t) = 92(t)=t,t>0. (5.3) 

It is easy to check that 

(fi*h)(t) = (gi*92)(t),t>0 (5.4) 

103 
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even though the pair ( / i , / 2 ) and (gi,g2) differ. We now define a notion 

of generalized convolution of three functions. If the generalized convolution 

is known, then the three functions are determined uniquely under some 

conditions. 

Definition : Let 0 < Ä: < 2 be real-valued functions, locally inte-

grable for t > 0. Further suppose that 

' e-st\fk(t)\dt (5.5) 
/•OO 

Jo 
is well defined whenever Re(s) > real, for 0 < k < 2. Then the 

generalized convolution of 0 < k < 2 is defined by 
/ • M I N ( I T I , 1 1 2 ) 

( / o , / i , / 2 ) K , < / 2 ) = / / o W / i ( w i - i ) / 2( u 2- t ) ( i t (5.6) 
Jo 

for 0 < ui, t*2 < 00. 

Lemma 5.1.1 : Let Fk(s) be the Laplace transform of fk(t). Then the 

two-dimensional Laplace transform F(si, 52) of the generalized convolution 

( Λ , / 1 , / 2 ) is given by 

«2) = fb(*i + 5 2 ) ^ ( ^ ) ^ 2 ( 5 2 ) (5.7) 

whenever the expression on the right side of the above relation is defined. 

Proo f : Note that 

F(8U82) 

rOO roo 
= / / e-^+8̂ \f0,f1,f2)(u1,u2)du1du2 

Jo Jo 
roo roo / · M I N ( - U I , 1 1 2 ) 

= / / e - ( ' i « i+««* ) { / / o ( t ) / i ( « i - * ) / 2 ( « 2 - < ) < t t } d M u 2 
Jo Jo Jo 

rOO rOO rOO 
= / fo(t){ e - ' ^ / j i u i - i J d u i / e - S 2 U 2/ 2 ( w 2 - i ) ^ 2 } d i 

Jo Jt J* 
/•OO 

= / fo(t)e-8itF1(s1)e-^tF2(s2)dt 
Jo 

= ib(s i + s 2) i ; ,
1( s 1) F 2( s 2) . (5.8) 
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Theorem 5.1.1 : Let /*(*) , 0 < k < 2, be real-valued functions defined 

for t > 0. Suppose fk(t) are not equal to zero almost everywhere. Further 

suppose that the Laplace transform of \fk(t)\ is Fk(s) defined by 

Fk(s) = / e-8t\fk(t)\dt, 0 <k <2. (5.9) 
Jo 

Then the generalized convolution (/ο,Λ,/2) of fk,0 < k < 2, determines 

the functions fkl 0 < k < 2, up to a set of Lebesgue measure zero, up to a 

shift, and up to nonzero constant factors. 

Proo f : Suppose gk,0 < k < 2 is another set of real-valued functions 

satisfying the conditions stated in the theorem such that 

(/o,/i,/2)W = {9o,9i,92)(t),t > 0. (5.10) 

Taking the two-dimensional Laplace transform on both sides of the equation 

(5.10), we have 

G0(s! + s2)G1(s1)G2(s2) = F0(s1 + s^F^s^F^) (5.11) 

by Lemma 5.1.1. Let (sio,S2o) be a point at which the expression on 

the right side of (5.11) does not vanish. Such a point exists since /&(£), 

0 < k < t are not equal to zero almost everywhere. From the continuity of 

the Laplace transforms Ffc(s),0 < k < 2, it follows that there exists some 

neighbourhood S of (s io 5S2o) in which the right side of (5.11) does not 

vanish. Hereafter, let us restrict attention to points ( 5 1 , 5 2 ) € S. Let 

Gk(s) = Fk(s)bkHk(s), 0<k<2 (5.12) 

where bk are nonzero complex constants and Hk(s) are complex-valued 

functions satisfying the conditions 

H0(s10 + 5 2o) = # i ( 5 i o ) = # 2 ( 5 2 0 ) = 1. (5.13) 

Relation (5.11) implies that 

b0b1b2H0(s1 + 82)H1(81)H2(82) = 1 (5.14) 
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for all ( 5 1 , 5 2 ) G 5. Equation (5.13) implies that 

b0hb2 = 1 (5.15) 

by choosing 5 i = 510 and 52 = 520· In particular it follows that 6&, 0 < k < 2 

are nonzero and we have 

Ηο(3! + s2)H1{s1)H2(s2) = 1 (5.16) 

for all ( 5 1 , 5 2 ) Ε S. Let 5 i = 5 i o -I- w\ and 52 = 520 + w2. Define 

h0(w) = #ο(5ΐΟ + 520 + w), 

hi(w) = Hi(s10 + w) 

and 

h2(w) = H2(s20 + w). (5.17) 

Then, it follows that 

ho(wi + w2)hi(wi)h2(w2) = 1 (5.18) 

for all ( ^ 1 , ^ 2 ) in a neighbourhood of (0,0). Furthermore 

M 0 ) = 1 , 0 < t < 2 (5.19) 

from (5.13). It is now easy to prove that there exists a complex constant c 

such that 

hQ(w) = ecw, hk(w) = e~cw, k - 1,2 (5.20) 

in a neighbourhood of 0. Retracing the definition of ft*,0 < fc < 2, it can 

be checked that 

G0(5) = F 0 ( 5 ) - ^ e c * , 
a i ö 2 

Gi(a) = F i ( 5 ) a i e - c s, (5.21) 

G2(s) = F2(s)a2e-cs 

for some nonzero complex constants a ,̂ i = 1,2 and some complex constant 

c in a neighbourhood of s 10 + 520 for Go, in a neighbourhood of 5 Χ0 for 



5.1. GENERALIZED CONVOLUTIONS 107 

Gi, and in a neighbourhood of s2o for G2. Prom the analyticity of Laplace 

transforms, it follows that (5.21) holds for all complex s. Again, from the 

properties of Laplace transforms, it follows that a\,a2 and c are real and 

we have the result. This completes the proof. • 

Remarks 5.1.1 : In analogy with generalized convolution of the func-

tions, we can also define generalized convolution of three sequences of real 

numbers. Suppose 

a = ( α 0, α ι , . . . ) , 

b = (b0,bi,...) 

and 

c = ( c 0 , c i , . . . ) (5.22) 

are three sequences of real numbers. The generalized convolution of these 

sequences is defined by the sequence 

min (n ,m) 

d n,m = ^kbn-kCm-k,n,m > 0. (5.23) 
fc=0 

Let d = (d n,m; n, m > 0) and 

A{s) = Y^aksk, 
k=0 

oo B(s) = 5>*fc, 
k=0 

oo 

C(s) = ΣΟ,Β" (5.24) k=0 

and 
oo oo 

D(u, ν) = Σ Σ dn>munvm (5.25) 
n = 0 m = 0 

where υ are complex. Then A(-), B(-), G(-) and D(-) are generating 

.functions of the sequences a, 6, c and d respectively. If the above series 

converge in a neighbourhood of the origin, then it is easy to check that 

D(u, v) = A(uv)B{u)C(v) (5.26) 
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in that neighbourhood of the origin. The following theorem can be proved 

characterizing the sequences a, 6, c by their generalized convolution d. We 

omit the proof. For details, see Kotlarski (1968a). 

Theorem 5.1.2 : Let a, 6, c be sequences of real numbers as defined above. 

Suppose αο φ 0, bo φ 0 and CQ φ 0 and the three power series given by 

(5.24) converge in a neighbourhood of the origin. Then the generalized 

convolution d defined by the sequence d n ?m given by (5.23) determines all 

the three sequences a, 6, c up to nonzero constant factors. 

The results of this section are due to Kotlarski (1968a). 

5.2 Applications to Solutions of Partial Differential Equations 

We now study a special class of partial differential equations which can 

be solved by methods described in this book. 

Let / and g be real-valued functions defined on (0, oo). Suppose / and 

g are different from zero almost everywhere and differentiable up to order 

n. Suppose the derivatives / W and g^l\ 1 < i < n, and / and g are all 

Laplace originals. Consider the differential equation 

η 

Y^ak(Dx + Dy)kf(x)g(y) = h(x, y), a: > 0, y > 0 (5.27) 
k=0 

with the initial conditions 

/ (0 ) = / ( i )( 0 ) = g(0) = gM{0) = 0,1 < i < η - 1 (5.28) 

where α ,̂α < k < η are unknown coefficients, the functions / and g are 

unknown but h is known. We assume that an φ 0. Here Dx = ^ and 
η — A. u

v - dy' 

We are interested in the existence and the uniqueness of the solution 

of the equation (5.27) and determining the solution explicitly under some 

conditions. 
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Let 
P(s) = a0 + £ a f es f c, s£R. (5.29) 

fe=l 

The function Ρ(·) is the generating function of {αο, αχ,..., a „ } . Let F, G, Η 

be the Laplace transforms of / , g, h respectively given by 
/•OO 

F(ti) = / e-uxf(x)dx,u>u0 (5.30) 
Jo 

G(v) = / e'vyg{y)dy,v>v0 
Jo 

and 

H(u,v) = / / e-ux-vyh{x,y)dxdy,u> u0,v > v0 . (5.31) 
Jo Jo 

Lemma 5.2.1 : Suppose the partial differential equation (5.27) has a so-

lution. Then 

P(u + v)F{u)G(v) = H{u, v), u > u 0, ν > v0 . (5.32) 

Proo f : For u > uo and
 ν
 > vo, 

poo poo 
H(u,v) = e-ux-vyh(x,y)dxdy 

Jo Jo 
roc / »OO = f ° Γ e-ux-vy[f^ak{Dx + Dy)kf(x)g(y)]dxdy 

Jo Jo k=0 

- Ε 0* j0°° jf° e~ u x~ v y( D x + Dv ) k f ( x w y ï d x dy 

ί > Σ ( f c ) if e'ux fU){x)dx Γ e'VVgik'J) {y)dy] 
k=0 j=0 

k 

= 2>E(2rF(ll),,*~,'G!(t,) \ 
k=o j=0 

η 

= 5 > ( U + t,) f cF(u)G(t;) 
fc=0 

= P(u + v)F(u)G(v). (5.33) 
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Theorem 5.2.1 : Suppose a£,0 < k < n, and the functions / * and g* 

satisfy conditions similar to those on α^,α < k < n, and the functions / 

and and both sets are solutions of the partial differential equation (5.27). 

Then 

f*(x) = af(x),x>0 

g*(y) = ßg(y),y>o (5.34) 

and 

α* = {αε)~χα^< k<n 

for some nonzero constants a and ε. 

Proo f : Define P*,F* and G* similar to P,F and G for the sequence 

α£,0 < k < n, and the functions / * and g*. Lemma 5.2.1 shows that 

P*{u + v)F*(u)G*(v) = H(u,v),u > u0,v > v0 . (5.35) 

Relations (5.32) and (5.35) show that 

P*(u + v)F*(u)G*{v) = P(u + v)F(u)G(v),u>u0,v>v0 . (5.36) 

It is sufficient to prove that 

F*(u) = aF(u),u > u 0, 

G*{v) = ßG(v),v>v0 (5.37) 

(5.38) 

and 

P*(s) = (aß^Pis),seR . (5.39) 

These relations in turn imply (5.34). Relations (5.37) and (5.38) can be 

proved using methods similar to those discussed earlier in this book and in 

Section 5.1. We omit the details (cf. Kotlarski (1986)). 
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Remarks 5.2.1 (Explicit determination of the solution) : Suppose 

h(x,y) is a known function and there exist constants α^,α < k < n, and 

functions / ( · ) and g(-) satisfying the partial differential equation ( 5 . 2 7 ) 

subject to the initial condition ( 5 . 2 8 ) . Define H,P,F and G as before. We 

now give explicit formulae for computation of P, F and G in terms of H. 

Lemma 5 . 2 . 1 implies that 

H{u, v) = P(u + v)F(u)G(v), u>u0,v> v0. ( 5 . 4 0 ) 

Let ν = vi > v0 in ( 5 . 3 9 ) . Then 

H{u, vx) = P{u + Ü I ) F ( U ) G ( Ü I ) , u>u0 ( 5 . 4 1 ) 

and let u = u\ > UQ in ( 5 . 3 9 ) . Then 

H(uu v) = P{m + v)F(u1)G(v), υ > VQ. ( 5 . 4 2 ) 

Furthermore 

H(uu vi) = P(u! + vi)F(ui)G(t;i). ( 5 . 4 3 ) 

It is easy to see from these relations that 

P(u + v)H(u, vi)H(ui,v)P(ui + vi) 

= H(u, v)P(u + vi)P(t*i -h v)H{uu vi) ( 5 . 4 4 ) 

for all u > u0, ν > v 0, u\ > u0 and v\ > VQ. This is a functional equation 

only in the unknown P. Taking the continuous branch of the logarithm 

satisfying log 1 = 0 on both sides of the equation, differentiating with 

respect to ν and substituting υ = vi, we have 

+ C ( 5 . 4 5 ) 
V=VI 

for some constant C. 

Integrating both sides of ( 5 . 4 4 ) with respect to u in the range u\ < u < 

s — v\, we obtain that 

/

s~Vl ß Η(ιι v) 

te l 0g H(ui y ) ^ d u} ( 5* 4 6) 

— (logP(ti + v)) 
•a H{U,V) • 

dvK g H(uuv)[ 
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for s > uo + where C is a nonzero real constant and c is a real constant. 

Since P(-) is the generating function of a finite sequence of constants, it has 

to be a polynomial. It can be shown that there exists a unique constant Co 

for which P(s) is a polynomial in s, namely, 

d log PQQ, 
CO = ~j~ | e = t * I + V I · (5.47) 

Choose c = Co as above in (5.45). Then we have P(-) and 

F(u) = a[P(u + vi)]~\ff(u,t;i),ti > u 0, 

G(t;) = ^ [ P ( u i + î; ) ] - 1i / ( ^ i , î ; ) , i ; > î ; o (5.48) 

from (5.39) and (5.40) where a and ε are arbitrary nonzero constants. 

Substituting the relations (5.47) in the equation (5.41), we obtain that 

C =[aßH(u1,v1)]-1 (5.49) 

where C is the constant given in (5.45). This gives us an explicit form 

for P(s) and hence for F(u) and G(v) where α, ε are arbitrary nonzero 

constants and υ,ι,υι and Co are as chosen above. 

Example 5.2.1 : Suppose 

h(x,y) = xy + x + y,x>0,y>0 . 

Then, following (5.31), 

H(u, v) = (1 + u + v)u~2v~2, u > 0, ν > 0. 

Let ui = v\ = 1. It can be checked that 

F(u) = c m ~ 2 , u > 0 , 

G(v) = εν~2,ν>0 

and 

P(s) = (α^9)"1(1 + 5 ) , - o o < s < oo 
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where a and ε are nonzero constants. If n = 1, then 

f(x) = ax,x> 0, g(y) = ßy,y> 0, 

and 

a0= ai = (a /3) " 1 

is the solution for the equation 

ι 

(aß)'1 Σ(£>* + Dy)kf(x)g(y) = h(x,y) 
k=0 

with 

/(0)=5(0) = 0. 

The results in this section are due to Kotlarski (1986). 



Chapter 6 

Identifiability in Some 

Econometric Models 

6.1 Introduction 

In many fields of biological, physical or social sciences, the main ob-

jective of the investigator is not to find the distribution F of an observed 

random variable X or a random vector X but to identify the probabil-

ity structure Ρ involved leading to the distribution F. It is theoretically 

possible, as we will see later in this chapter, that different underlying prob-

ability structures Ρ may lead to the same probability distribution F. The 

basic question then is whether a model specified has the property that, 

given a sample of observations, there could be one and only one probability 

structure that could have generated this sample. Loosely speaking, we say 

that a probability structure Ρ is identifiable if there is one and only one 

probability structure Ρ leading to a given probability distribution F. 

Suppose a random variable X is distributed Ν(μι — μ2,1). Obviously 

μι — ß2 can be estimated from X. In fact X is the uniformly minimum 

variance unbiased estimator of μι — μι. However, μι and μ2 are not in-

dividually estimable. There are infinitely many pairs (μΐΐ,μ^) such that 

115 
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ßu — ß2i = μι — fi>2 for given μι and μ 2. In other words the pair (μι, μ 2) is 

not identifiable. 

Let us discuss another example. Consider a pair of random variables 

Xi and X2 distributed as ΛΓ(μι,σ2) and Ν(μ2,σ2) respectively. Suppose 

Υ = Χι + X2 is observable but not the individual Xi and X2. It is obvious 

that Y is Ν(μι + μ 2, 2 σ 2) . If Y*, 1 < i < n is a random sample from 

this population, then we have information on μι + μ 2 only and not on the 

individual μι and μ2. In fact (F, Sy ) , where ? is the sample mean and Sy 

is the sample variance, is a sufficient statistic for (μι + μ 2, σ 2) . If μ'λ and μ 2 

is another pair of possible values for μι and μ2 such that μ[ +μ2 = μι + μ 2, 

then the joint density function of (Yi, F 2 , F n ) is 

where 0(y; μ , σ 2) is the normal density function with mean μ and variance 

σ 2, either when Xi is Ν(μ;, σ 2) , 1 < i < 2 or when X< is N(^,a2), 1 <i <2 

as long as μι Η- μ 2 = μ^ Η- μ 2. In other words the parameters μι and μ 2 are 

not identifiable in this structure. It is easy to see that σ 2 is identifiable . 

Suppose that X\ is ΑΓ (μ,σ 2) and X2 is ΛΓ (μ,σ 2) and X i , X 2 indepen-

dent. Then Y is Ν(2μσ2 -h σ 2) . It is easy to see that μ is identifiable but 

σ\ and σ\ are not. 

Let us consider a more general model 

where (i) η2 = α -h for some constants α and (ii) 771 is normally 

distributed independent of ε = (ε ι ,ε 2) and (iii) ε = ( ε ι , ε 2) is bivariate 

normal with mean (0,0). It is easy to see that the joint distribution of 

Y = (Yi ,y 2) is bivariate normal with the covariance matrix 

η 
Π Φ(ν%\μι + μ2,2σ2) , 

Υι = »7ι+ει, 

m + ε 2 (6.1) 

(6.2) 
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where Σ y denotes the covariance matrix of V. The parameter ε is not 

uniquely determined by the above equation. For a fixed E y , given an 

arbitrary ε, one can always choose Var(ryi) such that Σγ is positive definite 

and the above equation holds. Since the distribution of Υ = (ΥΊ, Y2) is 

uniquely determined by the mean vector and the covariance matrix Σγ, it 

follows that the joint distribution of (Yi, Y2) does not identify ß. In fact, 

the parameter ε is uniquely determined if and only if the joint distribution 

of (Yi, Y2) is not bivariate normal. We will give a rigorous proof of this 

fact later in this chapter. 

The problem of identification of the parameters in a statistical model 

can be referred to as the problem of whether the values of the parameters 

are uniquely determined by the probability distribution of the model. 

Let us consider another example of a regression model. Let 

Yi = Oi0 + C*i77i + ε ι , 

and 

Y2=ßo + ßiYi+e2 . (6.3) 

Suppose Υχ is not observable but Y2 is. Then 

Y2 = 7o + + ^3 (6.4) 

where 

7o = ßo + ßicto 

7ι = ßi<*u (6.5) 

and 

£3 = £2+ßi£i . 

It is clear that 70 and 71 can be estimated from observations on Y2 but 70 

and 71 do not determine a0, αϊ , ßo and ßi uniquely. In other words, 70 and 

71 are identifiable but αο,αχ,βο and ε\ are not. 
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The identifiability problem is basic to the problem of statistical infer-

ence. Unless the parameters in a model are identifiable, there is no meaning 

of estimability or estimation of such parameters as several combinations of 

different values for the parameters may lead to the same probability distri-

bution under the given model. However, as Koopmans and Reirsol (1950) 

point out "...the temptation to specify models in such a way as to produce 

identifiability of relevant characteristics is (should be ) resisted. Scientific 

honesty demands that the specification of a model be based on prior knowl-

edge of the phenomenon studied and possibly on criteria of simplicity, but 

not on the desire for identifiability of characteristics in which the researcher 

happens to be interested." For an introduction to problems of identification 

in economics, see Bartels (1985). There is an extensive literature on identifi-

cation problems in time series models. We will not discuss it here. For some 

details, see Deistler and Hannan (1988) and Tigelaar (1982, 1988, 1990). A 

generalized proportional hazards model is used in econometric models for 

the study of duration of unemployment. Identifiability problems arising in 

such models are also of interest and importance. 

6.2 Parametric Identification Problem 

Following Rothenberg (1971) and Bowden (1973), we now study para-

metric identification of a probability structure. 

Let Y be an m-dimensional random vector representing the outcome of 

a random experiment. Suppose the probability distribution for Y is known 

to belong to a family Τ of distribution functions on Rm. A structure S is 

a set of hypotheses which implies a unique distribution function F(S) G T. 

The set of a priori possible structures is called a model denoted by ζ. There 

is a unique distribution function F(S) G Τ corresponding to each structure 

S G C- The identification problem is concerned with the existence of a 

unique inverse for this mapping. 

Definition 6.2.1 : Two structures in ζ are said to be observationally 

equivalent if they imply the same probability distribution for the observable 



6.2. PARAMETRIC IDENTIFICATION PROBLEM 119 

random vector Y. 

Definition 6.2.2 : A structure S in ζ is said to be identifiable if there is 

no other structure in ζ which is observâtionally equivalent. 

Suppose that every structure S is described by a vector θ G Rm and 

the model ζ is described by a set θ C Rm. Further suppose that the 

distribution of Y under θ is F(y ,0) . As you might have noticed, by a 

model here, we mean a probability distribution F(y, ·) of known form and, 

by a structure, we mean a probability distribution function F(y, Θ) for a 

given parameter Θ. Thus the problem of differentiating between structures 

is converted into a problem of differentiating between different values of 

the parameter Θ. Definitions 6.2.1 and 6.2.2 can be recast in the following 

form. 

Definition 6.2.1' : Suppose the family {F(- ,0) ,0 G θ } is dominated 

by a σ-finite measure μ. Two parameter values θο and θ\ are said to be 

observationally equivalent if 

Definition 6.2.2' : Suppose the family G 6 } is dominated by 

a σ-finite measure μ. A parameter value oo £ θ is said to be (globally) 

identifiable if there exists no other θ G θ such that 

Definition 6.2.3' : Suppose the family {F(- ,0) ,0 G © } is dominated by a 

σ-finite measure μ. A parameter θο G θ is said to be locally identifiable if 

there exists an open neighbourhood of θο containing no other θ G θ which 

is observationally equivalent to 0O-

a.e[/z] . 

a.e[/x] . 

Remarks 6.2.1 : It is easy to check that the property of identifiabil-

ity does not depend on the choice of the dominating measure. Hereafter 
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we assume that the family {F(- ,0) ,0 G Θ} is dominated by a σ-finite 

measure μ. 

If μ is the Lebesgue measure on Rm, then F(-,6) is an absolutely con-

tinuous distribution function for every θ G Θ. Let / ( · ,0 ) denote a version 

of its density function. Definitions 6.2.1' to 6.2.3' can be restated in the 

following form. 

Definition 6.2.1" : Two parameter values θ\ and θ2 in θ are said to be 

observationally equivalent if 

/ ( M i ) = / ( M 2 ) a.e[A] 

where λ is the Lebesgue measure on Rm. 

Definition 6.2.2" : A parameter value 0O G θ is said to be (globally) 

identifiable if there is no other θ € θ which is observationally equivalent to 

ο0. 

Definition 6.2.3" : A parameter oo € θ is said to be locally identifiable if 

there exists an open neighbourhood of oo containing no other 0 G θ which 

is observationally equivalent to θ0. 

The identification problem can be stated as the problem of finding nec-

essary and sufficient conditions for the identifiability of the parameter θ G θ 

based on the family of distribution functions G θ } (or the fam-

ily of density functions {f(y, θ),θ G θ } whenever they exist) and Θ. It is 

worth noting that the distribution function F(y, Θ) (or the density function 

/(t/ ,0)) discussed above could also arise as a mixture of two distribution 

functions (or two density functions) and the identifiability of the mixing 

parameter is of interest (cf. Quandt and Ramsey (1978) and Ghosh and 

Sen (1985)). 

We should again caution that identifiability is logically prior to inference 

and it is connected with proper specification of the theoretical structure 

that generates the sample observations. It is expected that suitable prior 
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restrictions on θ and the family of distribution functions {F(x ,0) ,0 e Θ} 

or the family of density functions {/(χ, 0),0 Ε ©} will bring about the 

identifiability. 

6.3 A General Parametric Identification Criterion 

Suppose a family of distribution functions {F(x, 0), 0 G θ } is dominated 

by a σ-finite measure μ on Rk and {x : dF̂ f^ > 0} does not depend on 

0 e Θ. Define 

-<»·«•>-Μ*$ΑΙ}- (6·Β) 

For simplicity, we write 

If μ is the Lebesgue measure on Ä, then 

Η(θ, θο) = Γ I o g [ ^ ^ ] / ( x , θο)άχ . (6.9) 

Η(θ,θο) is called the Kuliback—Leibler information (cf. Kullback (1959)). 

This measure of information can be interpreted in the following manner. 

Let HQ denote the hypothesis that the true density is f(x, Θ) with respect 

to a σ-finite measure μ. Then the quantity log J^Q^ can be taken as the 

information at χ for discriminating between Ho and H$0 and the expected 

information for discrimination between Θ and θο is given by 

ff(Mo) = Γ l o g [ ^ | \ ] / ( x , 9 o ) d M ( x ) 
J-oo f{x,Oo) 

which is the Kullback—Leibler information described above. 

Theorem 6.3.1 : If the distribution function Ρ(·,0) is different from the 

distribution function F(- ,0O) and if Η(θ,θ0) < oo, then Η(θ,θ0) < 0. 
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Proof : Since the distribution functions F(-,6) and F(- ,0O) are different, 

it follows that 
dF(x,9) 
dF(x,e0) Ψ 

on a set with positive probability under θο- By Jensen's inequality, strict 
concavity of the function log χ implies that 

dF(X,e) 
Η(θ,θ0) = Εθΰ log 

dF(X,e0) 

< <"·> 

Remarks 6.3.1 : It is easy to see that, if θ = θο , then Η(0, θο) = 0. Hence 

the parameter θ is globally identifiable iff the equation Η(θ,θο) = 0 has a 

unique solution θ = 0ο· Observe that Η(θ,θο) attains its maximum at θ0. 

Hence a sufficient condition that θ is globally identifiable is that Η(θ, θ0) 

is strictly concave on θ and θ is convex. 

Let us now discuss the relation between the Kullback—Leibler informa-

tion and Fisher information. 

Case of scalar parameter : Assume that θ is a scalar parameter, that 

is, θ C R. 

Suppose the function Η(θ,θο) is differentiable twice with respect to θ 

under the integral sign. Note that 

Η(Θ9Θ0)= [ \og[^^-]f{xMdß{x) (6.11) 

and hence 

Η>(θ,θ0) = ±{J l 0 g [̂ ] / ( * A M M* ) } 

= / ÎM/(*A)<iM*) 
JR f{n,v) 

= Εθο[-^ log ί(Χ,θ)). (6.12) 
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Furthermore 

-I f(x,e)f"(x,9)-(f(x,e))* 
( / ( * , 0 ) ) 2 

r / " ( X , 0 ) , „ rö l o g / ( X , ö ) l 2 

Ϊ(χ,θ0)άμ(χ) 

- » 1 · ( 6· 1 3 ) 

Here g' and g" denote the first and second derivatives of g respectively. 

Since 

' /{χ,θ)άμ(χ) = 1, (6.14) 

it follows that 

j /'{χ,θ)άμ(χ) = J/"(χ,θ)άμ(χ) = 0 (6.15) 

under the assumption of differentiability twice under the integral sign with 

respect to 0. It is now easy to check that 

#'(0o,0o) = O (6.16) 

and 

Η"(90,θ0) = - E e 0 \ d l O g Î
d l X ' e ) \ e 0 ? 

= -Wo) (6.17) 

where I(6Q) is the Fisher information. Hence, if 0 < Ι(θο) < oo, then 

Η"(θ0,θ0) < 0. Since Η'(θ,θ0) = 0 at θ = θ0, the function Η(θ,θ0) has a 

local maximum at θο and the parameter θο is locally identifiable. 

Case of vector parameter : If θ is a vector parameter, i.e., θ = (0χ,..., 0^) 

say, then it can be checked, under the classical regularity conditions for the 

validity of Cramer—Rao inequality, that 

Η"(θ0,θο) = -Ι(θ0) (6.18) 



124 CHAPTER 6. ECONOMETRIC MODELS 

where Ι(θο) is the Fisher information matrix with (i, j)th element 

lij(Vo)=Ùe0[ — \ο=ο QQm \ο=ο\ · (0.19) 

If Ι(θ0) is of full rank and hence positive definite, then H"(0Q, 0 o) is negative 

definite and it follows that #(0,00 ) has a local maximum at 0 = 0o since 

Η'(θο,θο) = 0. Hence θο is locally identifiable. Here H" is the Hessian and 

H' is the gradient of H. 

Exponential families : For most of the problems encountered in practice, 

the interest is in global identifiability of the parameter rather than local 

identifiability. In general, conditions implying global identifiability are not 

easy to obtain for the class of densities { / ( y ,0 ) , 0 £ Θ} . However, for 

exponential families, this can be done as will be shown below. Suppose 

k 

/ ( y , Θ) = exp[A(y) + Β(θ) + £ ΘΜ{ν)] (6.20) 
i=l 

for all y and θ G θ with respect to a σ-finite measure μ and further assume 

that, for some θ\ φ θ2 in θ , 

/ ( » , e i ) = /(y ,fl2)a.e[M]. (6.21) 

Then it follows that 
k k 

A(y) + 5 (0 ! ) + YfiMv) = A(y) + Β(θ2) + ^i2Ti(y) a.e [μ] (6.22) 
i=l i=l 

where θχ = (on, ...,0*ι) and 0 2 = (0i2, ...,0fc2). Hence 

k 

Β{θλ) - Β{θ2) = - fl«)r<(y) a.e[/i] . (6.23) 

Assume that Β(θ) is continuously differentiable with respect to 0 on θ . 

Then it follows that there exists 0* 6 θ such that 

(0! - ο2ΥνΒ(ο*) = - ( 0 ! - 02)<T(y) a.e [μ] (6.24) 
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where VB(9) = ( ^ j j l , . . . , « j o ) * , r ( y ) = (^(y),... ,Tk(y)Y and a* de-

notes the transpose of row vector a. Observe that 0* does not depend on 

y. In other words 

{οι - θ2)*[νΒ(ο*) + T(y)} = 0 a.e[4 (6.25) 

Note that 

V log f(y, Θ) = VB(fl) + T(y). (6.26) 

Hence 

(ο! - Θ2Υ V log / ( y , β*) = 0 a.e[M] (6.27) 

where 0* does not depend on y or equivalently 

(0! - 02)* V log /(y,0*) V log /(y,0*)*(0i - 0 2) = 0 a.e [μ]. (6.28) 

Taking expectation with respect to 0*, it follows that 

(01 - Θ2)*Ι{Θ*)(Θ1 - 0 2) = 0. (6.29) 

Since 0ι φ 0 2, it follows that 7(0*) is a singular matrix. Hence we have the 

following theorem. 

Theorem 6.3.2 : Suppose the family of density functions { / (y, 0), 0 G Θ} 

is a multivariate exponential family given by 

k 

log / (y , 0) = A(y) + 5 (0 ) + ^ > ï ; ( y ) (6.30) 
i=l 

with respect to a σ-finite measure μ. Further suppose that Β(θ) is continu-

ously differentiate in 0 G θ . Then every 0 in θ is globally identifiable if the 

Fisher information matrix (assumed to be finite) is nonsingular equivalently 

of full rank for every 0 G θ . 

Another situation where global identification is possible is given by the 

following theorem. 
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Theorem 6.3.3 : Suppose there exist k known functions φί(ν), 1 < i < k 

such that 

Qi = Εθ[φΐ{Υ)1 l<i<k,0eG (6.31) 

when Y has the distribution F(y, Θ) under the parameter Θ. Then every 

θ G θ is globally identifiable . 

Proof : This result is an easy consequence of the fact that if F(y ,#i) = 

F(y,02) for all y, then 

J&(y)dF(y,0i) = JMv)dF{yMl < i < k 

and hence On = Θί2,1 <i < k where 6j = ( 0 i j , 0 f c j ) , j = 1,2. • 

The results in this section are due to Rothenberg (1971) and Bowden 

(1973). 

6.4 Identifiability for Some Structural Models 

The identification problem for structural models in econometrics is ex-

tensively discussed (cf. Fisher (1966)). We will not discuss all the results 

in this area but concentrate on some special models. 

Example 6.4.1 (Reiersol (1950)). Let us consider the following model : 

Model (A) 

Yi = m+eu 

Y2 = V2 + £2 (6.32) 

where 

(i) η2 = α + εηι, 
(ii) 771 independent of (ει, £2)and 

(iii) ( ε ι , ε 2 ) is bivariate normal with mean 

(0,0) and covariance matrix Σ . 

(6.33) 
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tj_ + ßt2 = u and ίχ + ß*t2 = 0 (6.39) 

Suppose Y2 is observable but not Yi. The problem is to find conditions 

under which the parameters α, ε and other unknown parameters and dis-

tributions are identifiable; i.e., the model is identifiable. Let 

y - β ) - < " = ( : ; ) · ( " « 

Let $Zi,z2(*i>*2) denote the characteristic function of a bivariate ran-

dom vector (Zi , Z 2) and </>z W denote the characteristic function of a ran-

dom variable Z. Observe that 

Φγ{ΗΜ) = £[exp{ ;y i* i+il2*2}] 

= £[exp{i(77i + ει)*ι -h i(a + /fyi + ε 2) ί 2} ] 

= E[exp{iat2 + Î ( * I -h ßt2)m + ^ιει -h ^ 2ε 2} ] 

= e^cß^+ßt^eit^h) (6.35) 

since r/i is independent of ετ = (ει, ε 2) . But 

0e(*i,* 2) = e x p { - i * TE t } (6.36) 

where t T = (h,t2) and t = (£). 

Suppose there exist two different structures 

S = (/?,a,E,<£7 ? 1(*)) 

and 

5· = ( ^ « , α · , Σ · , ^ ( * ) ) (6.37) 

generating the same joint distribution for Y. Then 

= e i Q' 1^ ; i ( i i + / 3 * < 2) e x p { - i < TE * t } . (6.38) 

Suppose ε ψ ε*. Given an arbitrary u, let us determine ii and t2 such that 
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This can be done by choosing 

Then, the equation (6.38) implies that 1.38) implies that 

ß-ß* 
(6.40) 

7 Τ ( Σ * - Σ ) 7 } (6.41) 

where j T = (—/?*, 1). Since φηι (·) is the characteristic function of a random 

variable, it follows that 771 is either normally distributed or 771 is a constant 

with probability one. Since 772 = a + βηι, it is obvious that 772 is also 

normally distributed or 772 is a constant. In fact (771,772) has either a nonde-

generate bivariate normal distribution or it is a constant with probability 

one. This proves the following result. 

Proposition 6.4.1 : A sufficient condition that the parameter β is iden-

tifiable in the Model (A) is that (771,772) neither is degenerate nor does it 

have a bivariate normal distribution, or equivalently if (771,772) has a bi-

variate normal distribution or it is a constant, then the parameter β is not 

identifiable. 

Let us now suppose that the parameter β is identifiable in the 

Model (A). Then, for any two equivalent structures S and S* given by 

(6.37), we have β = β* and hence 

where u = t\ + ßt% from (6.39). Let ψηι(η) be the principal branch of 

log φηι (u) with ψηι (0) = 0. Since the expression on the left side of equation 

(6.42) does not depend on t^, it follows that the coefficients of £ 2 ^ 2 a nd 

uti must be zero on the right side. Hence 

= e x p « a * - a)(u - ßt2) - i ( u - ßt2,h)&* - Σ)(" ' ^ Υ } (6.42) 

a* = a, 

λ ΐ 2 — AJ2 = β{λψ1 — ^ll) (6.43) 
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and 

where and λ*^ are (z, j )th elements of Σ and Σ* respectively. This proves 

that a is identifiable if ε is identifiable in Model (A). Relation (6.43) proves 

that 

ΦνΛνΜπΛη)]-1 = e x p { - i ( A n - X*n)u2} . (6.44) 

Hence the distributions of r/i differ by a normal factor under both the 

structures S and S* provided λη — > 0. 

Example 6.4.2 (Willassen (1979)): Let us now consider a generalization 

of the Model (A) discussed in Example 6.4.1. 

Mode l ( A * ) 

Xi = Yi + εί,0 < i < k , 

Yo = 7 o + 7 i ^ i + . . . + 7 Ä (6.45) 

Suppose the random variables {Xf ,0 < i < k} are observable where as 

{Yi,0 < i < k} are not observable. {Y%,0 < i < k} are called latent 

variables. Here {ε*,0 < i < k} are the unobserved errors. Assume that 

(i) the vector ε = (ει, ε ι , . . . , ε&) is independent of Y = (Yo, Υί,..., Υ*.), 

(ϋ) ε is multivariate normal with mean zero and covariance matrix Σ 

and 

(iii) {Y», 1 < i < k} are independent. 

Let X = (X0lXi,... ,Xk) and tT = ( £ o > L e t φχ denote the char-

acteristic function of X. It is easy to check that 

1 k 

φχ(ί) = exp(*7o*o - -*ΤΣ*)Π< .̂(7jt0 + tj) . (6.46) 
1 3=1 

Let us call 
Η = {7ο ,7 ι>· · ·>7*>Σ ,0^ , . . . ,0^} 

the latent structure of the model. There may exist several different struc-

tures H* which generate the same joint distribution F for X. The problem 
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of identification is to find conditions under which the correspondence be-

tween the family of latent structures H and the family of distributions F 

for X is one-to-one. 

Suppose H and H* generate the same probability distribution F for X. 

Let 

^ = { 7 ο % 7 ι * , . . . , 7 ^ Σ * , ^ , . . . , ^ } . 

Equating the characteristic functions of -X" under both the structures Η 

and if*, we have 
k 

exp(z7oi0 - §tTEt)JJ0̂ .(7̂ 0 + tj) 

1 k 

= exp(z7o**o - 2*ΓΣ**)Π«5(7;*o + *;) · (6.47) 

Suppose that the parameters 7 1 , 7 2 , . . . J 7* are not identifiable. Then 

7j Φ IjA < 3 < & a nd yet the distribution F of X is the same under 

both H and if* . Suppose 7* ^ 0. Let us choose (£o,*i, such that 

7Î*o + *i = 0, 

7 2% + *2 = 0, (6.48) 

and 

7ib*o + *fc = 0. 
Then 

*o = ~,U = - 7 * * 0 = ^ , 2 < t < k . (6.49) 
7i 7i 

Substituting these values of £0,£i, m the equation (6.47) we have 

Π<Μ \* 3 *i) = e xP{^(7o - 7ο )*ο}βχρ(-μ ^ ) 
i=i 71 2 

= exp(i{^=^}t1-ß
tj) (6.50) 

7 ι Δ 

where μ is a positive constant. In other words, the sum of independent 

rescaled independent random variables YJ, 1 < i < k is normally distributed. 
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By the decomposition theorem of Cramer (cf. Lukacs (1970, Sec. 8.2)), it 

follows that Yi, 1 < i < k are normally distributed. 

Conversely, suppose that Yi, 1 < i < k are independent normally dis-

tributed random variables under Model (A*) satisfying the assumptions (i) 

to (iii) . Then -X" = (Χο,Χι, >~,Xk) has a multivariate normal distribution 

and the distribution of X is determined by its mean vector and its covari-

ance matrix. Note that 

E(Xj) = E(Yj), 0 < j < f c , (6.5L4) 

Var(X,) = Var^O + V a r ^ ) , 1 < j < fc, (6.5LB) 
k 

Var(Xo) = ΣΊ] Var(l}) + Var(e0), (6.51C) 

Cov(Xi,Xj) = Cov(Yi, Y3) + αον(ε<,ε,), 1 < i, j < k; (6.512?) 

and 

Cov(X 0,Xj) = 7j Var(y^) + α ο ν ( ε 0 , e 0 ) , l < j < k . (6.51E) 

Apart from the means of l j , 0 < j < k which are identifiable from the 

means of Xj,0 < j < k from (6.51 A), the system of independent equations 

in (6.51B) to (6.51E) is 

* ( * - ! ) , 2 fc , 1 = (* + 2)(t + l ) 

in number. However, the number of unknown parameters is 

2 f c + ( fc + 2)( fc + l ) 
2 

since Var( l j ) , l < j < fc;7j, 1 < j < k and C o v ^ i ^ j ) , 0 < i,j < k are 

unknown. Hence there is no unique solution for the system for a given set 

of Cov(Xi,Xj),l < i,j < k. In other words 7 i ,72 , . . . ,7 fc are not identifi-

able. This result together with the one obtained above proves the following 

proposition. 

Proposition 6.4.2 : Suppose the assumptions (i) to (iii) hold in Model 

(A*). A necessary and sufficient condition for the set { 7 1 , 7 2 , . . . , 7 * } to be 



132 CHAPTER 6. ECONOMETRIC MODELS 

identifiable in the Model (A*) is that the set of (Yi, 1 < i < k} is not 

normally distributed. 

Remarks 6.4.1 : (i) If it is assumed that the random vector ε in Model 

(A*) has independent components, then Willassen (1979) has proved that 

nonidentifiability of 71,72, .-.,7fc implies that Yi,l < i < k are normally 

distributed. We omit the proof. 

(ii) Results obtained here continue to hold if the Model (A*) contains 

random vectors Xi, Yi,6i and the coefficient 7^ are matrices of suitable 

dimensions. One has to use the Cramer decomposition theorem in the 

multivariate setup (cf. Cuppens (1975, p. 109)) in this case. 

(iii) An alternate approach to obtain these types of results is due to 

Linnik (1964) and Rao (1966, 1971) via functional equations as discussed 

in Chapter 2 . 

Example 6.4.3 (Rothenberg (1971)): Consider the nonlinear regression 

model 

Yi = hi(6,Xi) + ε», 1 < i < η, η > k 

where 0 G Rk,hi is twice differentiate in 0 and {ε*} are i.i.d. iV(0,1) 

random variables and Xi are known constants. It is easy to check that the 

Fisher information matrix is 

7(0) = Η(Θ)Η{Θ)Τ 

where 

H(e) = ((hi(e,xj)))kxk 

and 0 is locally identifiable if Η(θ) has full rank. 

Example 6.4.4 (Bowden (1973)): Suppose Y = (Y i , . . . , Yk)T is multi-

variate normal with mean Xßo and nonsingular covariance matrix Σ0. Let 

0 = (/?, Σ). Then the Kullback—Leibler information number is 
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Η(θ,θ0) = ik>g( 

+\E0O,U[{Y - Xßo)TZö\Y - Xßo)] 

-\Εεο̂ 0[(Υ-Χε)τΣ-1(Υ-Χε)} 

+i ( fc - tr Σ-χΣ0 -(ε- ε0)τΧΤ Σ,~ιΧ(ε - ß0)) 

and 

^ = -(ΧτΣ-1Χ)(ε-ε0). 

It is clear that ^ = 0 for ε φ ßo only if X does not have full rank. In fact 

if X has full rank, then ßo is identifiable and if θ = (/?, Σ) is observationally 

equivalent to θο = (ßo, Σο), then ε = ß0. In this case 

If this equation Η(θ,θο) = 0 in Σ has only one solution Σ = Σο, then θο 

is identifiable. If X does not have full rank, then ßo is not identifiable and 

hence θο is not identifiable. 

Example 6.4.5 : Consider the linear model Υ = Χε -h ε where Χ is the 

design matrix, Ε(ε) = 0 and the covariance matrix of ε is σ 2/ . Then ε is 

identifiable if X has full rank but σ 2 is always identifiable. This can be 

seen from the following remarks. Note that 

It is obvious that two different values of σ 2 in the model cannot give the 

same covariance matrix for Y. Hence σ 2 is identifiable always. Suppose 

there are two values of ε (say) εο,ει for which E(Y) is the same. Then 

Η(θ,θ0) = \ l o g ( ^ ) + \{k - tr Σ-%). 

E{Y) = Χε and Cov(Y) = σ' 

E(Y) = Xßo = Xßi 

and hence 

X(ßo-ßi) = 0. 
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If X has full rank, then ε0 = ει and hence ε is identifiable. If X does not 

have full rank, then there exist ßo and ει,εο φ ßi, such that 

x ( A ) - / ? i ) = o. 

Further information about the distribution or parameter restrictions on ε 

are needed to identify the parameter ε. 

6.5 Further Remarks on Identifiability 

(i) It is useful to note that if a vector parameter 0 is identifiable in a 

model and g(-) is a single—valued function of 0, then φ = g(6) is identifiable. 

Here, by a single-valued function, we mean that if φ = g (θ) and φ* = 

#(0*),then φ φ φ* implies θ φ θ*. It is possible that the parameter 0 itself 

may not be identifiable but there might be a function 7(0) (nonconstant) 

which is identifiable. Then 0 is said to be partially identifiable and 7 is said 

to be identifiable. 

(ii) It is possible that two structures are not strictly observationally 

equivalent but nearly identifiable or there might be situations where the 

problem of near unidentifiability might occur as for instance in the model 

discussed in Kumar and Gapinski (1974) and Kumar and Asher (1974). 

Here the question of degree of identifiability is also relevant. We do not go 

into the discussion here and the problem does not seem to have received 

attention. The problem is akin to the discussion on stability of characteri-

zation of probability distribution. 

(iii) It is interesting to observe that if there exists a consistent estimator 

for a parameter 0, then the parameter is identifiable. This can be seen from 

the following arguments. Suppose 0 is not identifiable. Then there exist 

at least two different values of the parameter (say) 0i and 02 leading to 

the same distribution for the observations. If 0 n is a consistent estimator 

of 0 based on the observation ( Χ ι , Χ 2, •••,^n)5 then 0 n should converge to 

both 0i and 0 2 in probability as η —> oo. This is impossible since 0ΐ φ 0 2. 

This proves that the existence of a consistent estimator for 0 implies its 

identifiability . However, the converse is not true in general (Gabrielsen 
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(1978)). This can be seen by the following example. Consider the stochastic 

model 

Yi = ßpi+ei,l<i<n (6.52) 

where ρ is known with \p\ < Ι,ε» i.i.d. iV(0,1) and β > 0 but unknown. 

Since 

E(Yi) = βρ' 

and ρ is known, it immediately follows that β is identifiable. However, there 

exists no consistent estimator for β. This can be seen from the following 

analysis. It is easy to see that 

ßn = C£piY*)/CEp2i) (6·53) 
i=l i=l 

is the maximum likelihood estimator of β based on ( Υ χ , Y n) . It can be 

checked that 

Εφη) = β (6.54) 

and 

σψ = Var (Â) = l / ( £ > * ) = /{1~/p2ny (6-64A) 

Hence σ 2 —»· σ 2 = as η —• oo. Observe that /?n is ΑΓ(/3, σ 2) . Hence 

/?n Ν(β,σ2). If /3n were consistent for 9̂, then βη ^ β by definition and 

hence β β which contradicts the fact that /3n Ν(β,σ2). Hence /3n is 

inconsistent for β. 

Let us consider a test of the hypothesis Ho : β = 0 against the alter-

native Hi : β > 0. The uniformly most powerful (UMP) level a test for 

testing Ho against Hi has the critical region 

[ßn > σηζι-α] 

where ζι-α is such that Ρτ[Ζ > ζι-α] = a and the random variable Ζ 

has the standard normal distribution. It is easy to check that the power 

function ηη(β) of this UMP test is given by 

%(β) = φ(Ε- - Z l_ a ) (6.55) 
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where Φ is the standard normal distribution function. Observe that no 

other test depending on Y i , Y n has more power than %{ε). 

Suppose /?* is a consistent estimator of ε. Let us consider the test which 

rejects H0 if /?* > 1. For any ε > 0, power of this test is 

Ί*η(ε) = ρτεΐε*η>ΐ]. 

Since the test based on εη is the UMP test, it follows that 

Ίη(ε) > Ί*η(ε) -

Hence 

Tim~7n(/3)> Tim" 7 : (/?). 
n—>oc n—•OO 

But 

Tim %(ε) < - 2 ! _ α) . 

η—•OO CT 

Hence 

Tim"7;(̂ ) < Φ(- - ζ ι -α) · (6-56) 
η—>οο CT 

Since /3* is consistent for /3, it follows that 

7 ; ( / 3 ) - P r / 3( / 3 > l ) a s n - , o o
 (6.57) 

which is equal to 1 for ε > 1. This contradicts the inequality (6.56) since 

Φ(^ — zi-a) < 1. Hence there exists no consistent estimator for ε. 

(iv) Example 6.4.5 gives the impression that both estimability as dis-

cussed in the statistical literature and identifiability are one and the same. 

Indeed, they are equivalent in the context of linear models or when the 

distribution of the observation vector Y has a multivariate normal distri-

bution. See the discussion in Mitra (1980) or Bunke and Bunke (1974). 

(v) Extensive discussions on identification of structural economic models 

are given in books on econometrics. For instance, see F.M. Fisher (1966). 

Moran (1971) surveys the problem of estimating a linear relationship be-

tween variables which are observed with errors known as "errors-in-variables 

model." The variables could be either fixed variables (functional relation-

ship) or random variables (structural relationship). Several results were 
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discussed on identifiability for such models in Moran (1971). For related 

results on identifiability problems in time series models, see Tigelaar (1982, 

1988, 1990) and Deistler and Hannan (1988). We have discussed sufficient 

conditions for identifiability of a model. The basic problem is to obtain 

necessary and sufficient conditions. As we have noted already, the model 

specification for identifiability requires restrictions to be imposed on the 

family of distribution functions {F(:r,0),0 € Θ} or the family of density 

functions { / (# ,0 ) ,0 G θ } and θ so that identifiability is achieved. How-

ever, there may exist different sets of restrictions that might achieve the 

same goal, namely identifiability. The question is how to choose among 

such sets of conditions. Is it possible to arrive at a minimal set of sufficient 

conditions for identifiability? 

6.6 Identifiability for a Generalized Proportional Hazard Model 

Econometricians studying labour market phenomena have developed 

methods for the analysis of duration of unemployment (cf. Lancaster 

(1979)). One of the methods that was proposed in Lancaster (1979) is a 

generalization of the proportional hazard model developed by Cox (1972). 

The model tries to explain the length of an individual spell of unemploy-

ment or equivalently the probability of leaving the state of unemployment. 

Let the probability that an individual leaves unemployment in the interval 

[t, t + At) be 0(t, χ, ε)At where t is the time elapsed since the beginning of 

the spell of unemployment, χ is a vector of covariates and ε is a parameter 

vector . Suppose 

ο(ί,χ,ε) = φ(χ,ε)φ(ί)ν (6.58) 

which generalizes the proportional hazard model introduced by Cox (1972). 

The reasoning behind the model (6.58) is that the function φ(χ,ε) is pos-

sibly subject to a specification error since there might be some covariates 

which have been ignored either due to unobservability or due to the ig-

norance of the underlying mechanism and this specification error may be 

measured by a positive multiplicative disturbance V. The function φ(χ, ε) 
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is interpreted as the observed and V as the unobserved heterogeneity . The 

function φ specifies the time dependence on the probability. If φ = 1, there 

is no time dependence on the probability. It is easy to see that the duration 

distribution is given by 

G(t, χ, ε) = 1 - / exp [ -0 ( « , ß)Z(t)v]F(dv) (6.59) 
Jo 

where Z(i) = J* ip(s)ds and F is the distribution function of the random 

variable V. Lancaster (1979) has given methods of estimation for ε for 

given functional forms of φ and Ζ and a given distribution F of V. These 

methods of estimation are meaningful only when G identifies φ, Ζ and the 

distribution F of Y. Identifiability problems of this nature were investigated 

by Elbers and Ridder (1982) and Heckman and Singer (1984) under different 

conditions mainly on the random variable V and covariates χ . We now 

discuss their results briefly. 

Identifiability when E(V) < oo : Let {G(t, χ ) , x G S}, S C Rk be a fam-

ily of strictly increasing distribution functions represented by the relation 

G(t,x) = 1 - E{e-^ẑ v},t > 0, x G 5. (6.60) 

Here and in the following discussion, we suppress the parameter vector ε 

in φ. Let us assume that the following conditions hold : 

(A i) V > 0 and E(V) < oo. 

Without loss of generality, assume that 

E(V) = 1 ; (6.61) 

(Aii ) Ζ{t) = j *ß(s)ds, t>0 (6.62) 

where φ > 0 and φ is locally integrable . 

(A iii) The function φ is positive, differentiable and nonconstant on Rk. 

(A iv) S is open in Rk . 

Since G(t, x) —> 1 as t —* +oo, it follows that Z(t) —• oo as t —• oo from 

(6.60). Furthermore G(0,x) = 0 for all x G 5 since Z(0) = 0 from (6.62). 
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Let 
/•OO 

My (s)= / e8VF{dv),s<0. (6.63) 
Jo 

Since the support of F is contained in [0, oo), it follows that the moment 

generating function My(s) exists and is bounded between 0 and 1 for all 

s < 0. Since E(V) is finite, it follows that My is differentiable on (—oo,0) 

and infact 

M£\O) = E(V) 

(cf. Feller (1966, p. 412)). Let us note that F is uniquely determined by 

My . Observe that 

G(t, x) = 1 - Μν{-Ζ{ί)φ{χ)), t > 0. (6.64) 

Theorem 6.6.1 (Elbers and Ridder (1982)): Suppose differention under 

the integral sign with respect to t is permissible in (6.60) and the assump-

tions (A i ) to (A iv) hold. Then G identifies (φ, Z, F) with the proviso 

that φ is identified up to translation by a constant. 

Proo f : It is easy to see that G is differentiable with respect to t under the 

hypothesis. Let g(t,x) denote the derivative of G with respect to t. Then 
Λ ΟΟ 

g{t,χ) = φ(χ)φ(ί) / ve-^W^Fidv),xeS,t>0. (6.65) 

It is easy to check that g(t, x) > 0 for all t and χ G S. In particular, for a 

given x0 G 5, 

g(t,x) _ Φ(Χ) f^ve-^x̂ F(dv) (6.66) 
g(t,x0) Φ(χο) J™ve-<"l>(xo)zWF(dv) 

for all t > 0 and x G S. Let t —» 0. By the bounded convergence theorem, 

it follows that 
/•oo roo 

/ ve-v̂ x)mF(dv) / vF(dv) <oo (6.67) 
Jo Jo 

for every x G S. Hence 

lim - ^ 
t-+0 g(t,X0) φ(χ0) 
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or equivalently 

φ(χ) = φ(χο)}ιπίι - j ^ . (6.68) t—o g(t,x0) 

This relation shows that the family of densities {g(t, x),t > 0} determine 

φ(χ) up to a constant factor. In view of the relation (6.64), it follows that 

1 - G(t, χ) = Μν(-Ζ{ί)φ{χ)) (6.69) 

and hence 

-Z{W(x) = My\l-G{t,x)) 

or equivalently 

m = ZM ^ - G ^ t > Q x eS 

φ{χ) 

This relation defines the function Z(t) provided My *(·) is well defined. Let 

T(t,x) = l-G{t,x) . (6.71) 

Then 
_ Z ( ( ) =M « 

Note that the left side of the equation does not depend on x. In particular, 

the partial derivatives with respect to χ of the function on the right side 

are equal to zero for all χ and 

φ(χ) Α [ Μ - ΐ ( Τ ( ί )Χ ) )] _ Μ - ΐ ( τ ( ί )Χ ) )^ ) = 0, x e s,t > 0 

or equivalently 

A [ M - i ( r ( t > a 5 ) ) ] ^ î ) _ M-\T{t,x)) ^ = 0 , , G S , < > 0 

(6.73) 

where s = T(£, x) = 1—G(t, x) or equivalently t = K(s, x) . Note that t > 0 

and 0 < s < 1. Such an inverse map Κ exists since G is strictly increasing 

and differentiable in t. Then it follows that, for any fixed 1 < i < k, 

4>(x)§-8[Mç\s)] ^ ^ l \ ( K ( a M )- M y \ s ) ^ = 0,x € 5,0 < s < 1. 

(6.74) 
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Solving this differential equation for My1, it follows that 

MyHs) = C expi^LM f 1 d u} ( 6. 7 5) 

for some constant C. This proves that Μγι(·) is well defined by φ and G. 

We have already seen that φ is determined by G up to a constant factor. 

Suppose there exists another random variable W with a distribution F* and 

another function r(t) but with the same regression function φ(χ) satisfying 

(A i) - (A iv) such that 

1 - G(£, x) = Mw(-r(t)<l>(x)). (6.76) 

Then, relation (6.74) implies that 

Mw(s) = C exp{ — / -55η du} 

and hence, from (6.75) and (6.77), it follows that 

M^\s) = ^My\s)^<s<\. 

But 

and 

Hence 

dMw(u) 
du 

\u=0 = E(W) = 1 

(6.77) 

dMy\s) dM^(s) 

This proves that C* = C and therefore 

My1(s) = Miv
1(s), 0<s<l 

or equivalently 

Mv(u) = Mw(u), u<0. (6.78) 

Since V and W have supports on [0, oo), it follows that the distributions of 

V and W are the same from Feller (1966, p. 230). • 
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Theorem 6.6.1 makes use of the fact that the distribution function 

G(t,x) is absolutely continuous. However, Theorem 6.6.1 continues to hold 

even for discrete distributions G(t, x) as the following arguments will show. 

Theorem 6.6.2 (Elbers and Ridder (1982)): Suppose Gi(t) and G2(t) are 

distribution functions such that 

1 - Gi(t) = Mv(-<l>iZ(t)),t > α,ζ = 1,2 (6.79) 

where φι > α,ζ = 1,2,0ΐ φ φ2,Ζ(ί) nondecreasing continuous with 

Z(0) = 0 and My(') is the moment generating function of a nonnegative 

random variable V. Further suppose that E(V) = 1 and My1 is well de-

fined. Then the numbers φχ, i = 1,2 , the function Z(t) and the distribution 

of V are uniquely determined by G*, i = 1,2. 

Proo f : Without loss of generality, assume that φι = 1 and φ2 < φι. 

Suppose that both the triples (Z(£),V, φ2) and (R{t), W, ψ2) satisfy the 

relations (6.79). Let 

Lv(s) = Mv(-s). (6.80) 

Then 

and 

Therefore 

and 

Lv{Z(t)) = Lw{R(t)), t > 0 (6.81) 

Lv̂ 2Z{t)) = Lw(^2R{t)), t > 0. (6.81A) 

1>2R{t) = L${Lv(faZ(t))), t > 0 (6.82) 

tl>2R{t) = i/j2L^(Lv(Z{t)),t > 0. (6.82Λ) 

Hence 

1>2R{t) = L^iLyfaZit))) = xp2L^Lv{Z(t)),t > 0 . (6.83) 

Let 

f = Lw1oLv . (6.84) 
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Note that R(t) —• oo as t —• oo and Z(t) —» oo as t —• oo since Gi and G 2 

are distribution functions. Hence 

f(t) -+ oo as t -+ oo (6.85) 

and 

/(02*) = l f c / ( * ) , * > O . (6.86) 

Since = = 1, it follows that / is differentiable with respect to 5 

and /^(O-h) = 1 where f^(s) denotes the derivative of f(s) for s > 0 and 

/(1)(o+) = lim/(i)( s) ( 6. 8 7) 
S JO 

(cf. Feller (1966, p. 412)). Let s = = <fe«'. Then 

Ml* ' ) = ï>îf(s') (6-88) 

from (6.86). In general 

/ (02*) = W ( * ) I * > 0 > " > 1 . (6.89) 

Differentiating with respect to 5 on both sides, it follows that 

f W( » ) = * > 0 , n > l . (6.90) 

Since 0 < 02 < 1, taking limit as η —» oo, we obtain that 

/ « ( , ) = /<i>(0+) ]im 

= l i m ( ^ ) n , s > 0 . (6.91) 
71—•OO 

Let s I 0. Then it follows that 

1 = / « ( 0 + ) = lim ( ^ ) n . (6.92) 
n—•oo ψ2 

The last relation holds iff φ2 = V>2 and hence / ( 1 )( s ) = 1, s > 0 from (6.91). 

Since / (0 ) = 1, it follows that f(s) = s for all s. In other words 

(L^oLv)(s) = a, s > 0 . (6.93) 
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Therefore 

Lv(s) = Lw(s),s > 0 . (6.94) 

Since Ly and Lw uniquely determine the distributions of V and W, it 

follows that the distributions of V and W are the same. Since φ2 = φι and 

(L^oLv){s) = 5, it follows that R(t) = Z(t) from equation (6.83). This 

completes the proof of Theorem 6.6.2. • 

Identifiability when E(V) = oo: One of the major assumptions in 

Theorem 6.6.1 is that E(V) < oo where V is the positive multiplicative 

disturbance. There are examples of positive random variabes for which 

E(V) = oo, for instance, if the density of V is given by 

/ ( « ) = 2 V0 < χ < oo (6.95) 
7Γ(1 + ΧΔ) 

Heckman and Singer (1984) have given alternate sufficient conditions for 

identifiability to take care of this situation. The condition E(V) < oo 

is replaced by a condition on the tail behaviour of the distribution of V. 

They assume that V has an absolutely continuous distribution with density 

/ such that 

f(v) ^ Γ 7 — — — — — as ν —• oo (6.96) 
J K } (log v)6vl+eL(v) v ; 

where c > 0 , 0 < ε < 1 , 5 > 0 and L(-) is a slowly varying function in the 

sense that 

^τττ~ -* 1 as υ -> oo for u > 0. (6.97) 

Here ε is specified number in (0,1). If V is a discrete random variable 

having masses at 0 < vo < v\ · · · with jumps p k at Vk, then it is assumed 

that 

^ " c f c a n d p^ ( l o g f e ) ¥ ^ W
 ( 6· 9 8) 

where ο > 0 , δ > 0 , 0 < ε < 1 (specified ) and L is slowly varying. In 
addition to these conditions on the distribution of V, Heckman and Singer 
(1984) prove identifiability under additional conditions on Z(t) and φ(χ). 
We omit the details. 
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Identifiability in some parametric models when covariates are not 

present : Suppose a distribution function G satisfies the relation 

G(t) = 1 - Mv[-Z(t)],t > 0 (6.99) 

or equivalently 
ROO 

g(t) = zW(t) / ve-vẐ F(dv), t > 0 (6.100) 
Jo 

where g(t) denotes the derivative of G(t) and Z^\t) denotes the derivative 

of Z(t). Let us suppose that Z(t) belongs to a parametric family Z(a,t). 

Observe that φ(χ) = 1 in (6.99) when compared with relation (6.64). The 

presence of at least one covariates in the model is essential for the validity 

of results in Theorem 6.6.1. We prove now identifiability in a parametric 

model even when no covariate is present in the model. For a general dis-

cussion of such results, see Heckman and Singer (1984). The identifiability 

problem can be stated as follows : suppose 
/•OO 

= Ζ ( 1 )(α<,*) / ve-vẐ Fi(dv) (6.101) 
Jo 

for i = 1,2. If go(t) = gi(t) for all t > 0, can we conclude that ao = <*i and 

F0 = F{! 

We now discuss one such example due to Heckman and Singer (1984). 

Suppose 

Z ( 1) (a , i ) = e x p ( 7 ( ^ ^ ) ) (6.102) 

where a = (7, λ), λ φ 0. This class of models is called the Box-Cox haz-

ard models introduced by Flinn and Heckman (1982). If λ = 1, then the 

model reduces to the Gompertz hazard model. If 7 = 0, then the model 

is exponential and, as λ —• 0, the model approaches the Weibull hazard 

model. 

Proposition 6.6.1 (Heckman and Singer (1984)) : Suppose E(V) is finite 

and λ < 0. Then a* = (7, λ, F) is uniquely determined by g defined by 

(6.101) whenever 7 ^ 0 . If 7 = 0, then F is uniquely determined by g. 
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Proo f : Suppose there exists a* = (7*, λ*, Fi), i = 0,1 such that 

9o(t)=9i(t),t>0 

where gi is as defined by the relations (6.101) and (6.102). Then 

1 _ g l(t) _ e x P [ 7 i ( ^ ) ] C ve-^F^dv) ^ 

9o(t) exp[^o(^)]J^ve'z^t)Fo{dv) ' " 

Suppose 70 Φ 0 and λ0 < 0. It can be checked that 

lim — — = 0 or 00 

whenever λι φ λο· This contradicts the relation (6.103). Hence λι = λο· 

If 7 l φ 7o5 then 

limexp(̂ l(7l-70))=(° lf >̂̂  (6.104) 
*->0 Ao 1̂  00 if 71 < 70 

again contradicting (6.103) since 

Z ( a < , t ) - » 0 a s t - > 0 (6.105) 

and 
Λ OO 

/ ve'ẑ t)vFi{dv) -+ < 00 as t 0 . (6.106) 
Λ) 

Hence 71 = 7 0 . This proves that 
/•OO /»OO 

/ î ; e - z ( a^ vF o ( d î ; ) = / ve~ẑ vFx{dv),t > 0 (6.107) 
./o «/o 

where ao = #1 = a. Since Z(a,t) is a continuous function taking all values 

between [0,00), it follows that the Laplace of transform of F* defined by 

Ff{dv) = vFi(dv),i = 0,1 (6.108) 

is identical. Since F*,i = 0,1 with supports on [0,00) are uniquely deter-

mined by their Laplace transforms, it follows that F0 and Fi are identical 

being distribution functions. 

If 70 = 0, then Z^\a, t) = 1 for all t and the result is a consequence of 

uniqueness of Laplace of transforms. This completes the proof. • 

For more examples, see Heckman and Singer (1984). 



Chapter 7 

Identifiability in 

Reliability and Survival 

Analysis 

7.1 Introduction 

In the previous chapter, we have seen problems of identifiability in 

many stochastic models encountered in econometric modeling. As we have 

pointed out earlier, the notion of estimability of a parameter in a model 

is meaningful only when the parameter is identifiable in the model. Recall 

that a parameter θ G θ is nonidentifiable by a random vector Y if there is 

at least one pair (0,0'), 0 φ θ' in θ such that the distributions of Y are 

the same under both θ and θ'. This type of identifiability may be termed as 

parametric identifiability. Suppose the class of distribution functions under 

consideration are not indexed by a parameter. Then we have the problem of 

identifiability in a nonparametric framework. Problems of this type occur 

in reliability as well as survival analysis. Let us discuss such problems. 

An individual may be subject to two causes of death (or two types of 

147 
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terminal illness). Let Xi represent the lifetime of the individual exposed 

to cause i (or disease i ) alone . X^i = 1,2 are not observable in practice 

and Y = min(Xi, X2) is observable. Does the distribution of Y identify 

the distributions of Χχ and X2? Consider a 2-components system when the 

components i = 1,2 are connected in series. Let Xi be the lifetime of the 

it h component. Suppose the system fails if at least one of the components 

fails and one can observe only Y = min(Xi, X2) the lifetime of the system. 

Does the distribution of Y identify the distributions of X\ and X2 ? Let X\ 

and X2 be the demand and supply for a commodity at a given price p. Then 

the amount that is transacted in the market is Y = min(Xi, X2). Does the 

distribution of Y determine the distributions of X\ and X2 ? Such problems 

are termed the problems of competing risks in the literature on reliability 

and survivial analysis. Associated with the problems of competing risks is 

the dual problem of complementary risks (Basu and Ghosh (1980)). Let us 

again consider a 2-component system connected in parallel. Let X\ and X2 

be the lifetimes of the two components. The system life Ζ = max.{Xi,X2) 

is observable. There are examples where X\ and X2 are not individually 

observable but Ζ is, for instance, the flight of a twin engine aircraft or a 

satellite etc. Another example is the failure of internal body organs like 

kidneys : exact time of failure of each kidney may not be known but when 

both kidneys fail to function, the time to death can be recorded. The 

problem again is to find whether the distributions of the components X\ 

and X2 are identifiable when the distribution of Ζ is observable. 

For a survey of identifiability results in problem of this nature, see Basu 

(1981), Puri (1979) and Birnbaum (1979). 

Let us consider a specific example. Suppose X\ and X2 are independent 

random variables with distribution functions Pi and F2 respectively where 

Fi(x) = l-e~XiX, x>0 

= 0, χ < 0 
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for i = 1,2 where λ* > 0,i = 1,2. It is easy to see that Y = min (Xi ,X 2) 

has the exponential distribution Fy given by 

Note that the parameters λι and λ2 in F\ and F 2 respectively are not 

identifiable from the distribution Fy of Y since there are infinite number 

of pairs (λι, λ2) leading to the same value of λ = λι + λ2. 

Even though the problem discussed above leads to nonidentifiability, it 

is sometimes possible to rectify the problem by observing another random 

variable. We will discuss this later in this chapter. 

7.2 Identifiability 

Let us recall the definition of identifiability given in Chapter 6. 

Let Y be an observable random vector with distribution function 

Fg G Τ = {Fe, θ G θ } , a family of distribution functions indexed by a 

parameter 0 G θ . 0 is said to be nonindentifiable if there is at least one 

pair (0,0 ') , 0 Φ 0 ' ,0 ,0 ' € θ such that Fe(y) = Fe>{y) for all y. Otherwise 

0 is said to be identifiable. 

Suppose 0 itself is not identifiable but there exists a function 7(0) (non-

constant) which is identifiable, that is , for any 0,0' in Q,Fß(y) = Fe»(y) 

for all y implies that 7(0') = 7(0) . Then 0 is said to be partially identifiable 

and 7 is said be identifiable. 

Suppose 0 is not identifiable but an additional random variable J can 

be introduced such that the joint distribution of (Υ, J) identifies 0. Then 

the identifiability problem is said to be rectifiable. 

From the definition identifiability of a parametric function 7(0) of 0, it 

follows that 7(0) is identifiable iff different points in the range of 7 corre-

spond to different F in T, or equivalently, iff 7 coincides with a function a 

FY(y) = 1 - Β " (
Λ Ι + Λ 2

^ , y>0 

y<o. = 0 
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on Τ such that 

7( 0 ) = *{Fe) . 

It is easy to see that every function ψ(·) of an identifiable parametric 

function η(θ) is identifiable and a vectorial function is identifiable iff all its 

components are identifiable. 

For an extensive discussion on identification in statistical inference, see 

Van der Genügten (1977). 

7.3 Identifiability in the Problem of Competing or Complemen-

tary Risks (Independent Case) 

Suppose Xi, X2, ..·, Xk are independent random variables with contin-

uous distribution functions Fi, F 2 , r e s p e c t i v e l y . Let 

Y = mm(X1,X2,...,Xk). (7-0) 

It is clear that the distribution function of Y is given by 

k 

FY(V) = 1 - I F T 1 - F*w)> -°° < y < °°· (7Λ) 
i=l 

If Xi, 1 < i < k are i.i.d. random variables, then Fi(y) = F(y) for 1 < i < η 

for some distribution function F and hence 

FY(y) = 1 - (1 - F(y))k, - 0 0 < y < 00 . (7.2) 

It is obvious that the distribution function Fy(-) determines F(-) uniquely. 
In fact 

F(y) = 1 - [1 - Fyiy)}1̂ , - 0 0 < y < 00 . (7.3) 

If Xi,l < i < k are independent but not identically distributed, then the 

distribution functions Fi, 1 < i < k may not be uniquely determined from 

jpy using the equation (7.1). In other words, the individual distribution 

functions Fi, 1 < i < k may not be identifiable from the distribution func-

tion Fy. However, it is easy to check that identifiability holds for fc-out of-p 
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identical component systems. For a discussion of identifiability for A>out 

of-p systems, see Section 7.7. 

It is clear that Pr(Xi = Xj) = 0 for all i φ j . Let J be the random 

index j for which Y = Xj. 

Theorem 7.3.1 (Berman (1963)): The joint distribution of (Y, J) uniquely 

determines the distribution functions F», 1 < i < k. 

Proo f : Let 

Then, for χ such that Fj(x) < 1, 

Hj(x) = Probability that Xj is the minimum 

among X\,..., Xn and Xj is less than or equal to χ 

Hj(x) = Pi[Y <x,I = j). (7.4) 

(7.5) 

since 
k 

1 - = 1 - P r ( y < t ) 

= P r ( r > t ) 
k 

= H(l-Fi(t)) 

Therefore 
k 

(7.6) 
i=l 
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or equivalently 

Fj(x) = 1 - e x p { - Γ (1 - ΣΗ*Wr'dHjix)}, 1 < j < k . (7.7) 
J-°° i=l 

This proves that the distribution functions Fj(x)11 < j < k are determined 

uniquely by the class of functions Hi(x),l < i < k. In other words, the 

joint distribution function of (Y,I) identifies the distribution functions F», 

1 < i < k. • 

Remarks 7.3.1 : The random variable Y = min(Xi , . . . Xk) is called 

nonidentified minimum and the random vector ( Y, / ) is said to be identified 

minimum. Since max(X i , . . . , Xk) is the same as — min(—Xi, . . . , —Xk), 

it follows that the distribution of the identified maximum (Z, J ) , where 

Ζ = max (X i , . . . , Xk) and J is the random index j for which Ζ = Xj, 

uniquely determines the distribution functions Fj, 1 < j < k. 

Let us now suppose that the extrema Ζ or y do not identify the distri-

bution functions i^, 1 < i < k. We now give some sufficient conditions on 

the family {Fi} for identifiability. 

Theorem 7.3.2 (Anderson and Ghurye (1977)) : Let be a family 

of density functions / on the real line which are continuous and posi-

tive to the right of some point a and such that if / and g belong to 

then \imx-^00[f(x)/g(x)] exists and is either 0 or oo. Suppose Χι, . , . ,Χ^ 

are independent random variables with densities respectively in 

Τ and Wi, Wi are independent random variables with densities 

g\,g2,~->>gi respectively in T. Further suppose that m a x ( X i , X k ) and 

m a x ( V F i , W i ) are identically distributed. Then k = i and there exists 

a permutation { ή , . . . , ^ } of {1,2, ...,fc} such that the probability density 

function of Wj is fi3;, 1 < j < k. 

Proo f : Let Fi(x) be the distribution function of Xi and Gj(x) be the 
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Λ+i = 0i>*fc+i = Gj-, 1 < j < I. 

Suppose there exists a density function fi (say) / i among Λ , 1 < ^ < & + 1 

such that 

lim £ ^ = 0 o r l 

for 1 < r < k + L Let 

M = {i : -> 1 as χ -> oo} . (7.11) 

distribution function of Wj. By hypothesis, we have 

Prf max Xi < x] = Pr[ max Wj < x], —oo < χ < oo . Ll<i<fc ~ J i<j<i ~ 

Independence of {Xi} and independence of {Wj} imply that 

k ι 

Π^ίΟ*) = ΠαΛχ)> - o o < x < o o . (7.8) 
t=l j=l 

Hence, for all χ > α, 

k t 

J > g = J > g Gj(x). 

i=l j=l 

Differentiating with respect to x on both sides, we have 

By a change in the notation, we can rewrite the equation (7.9) in the form 

ΈαίΡΓ\=°>α <*<°° (7·10) 
<=i * A x) 

where 

di = -hi, 1 < i < k; ajb+J = —1,1 < j < l\ 

and 



154 CHAPTER 7. RELIABILITY AND SURVIVAL ANALYSIS 

Dividing both sides of the relation (7.10) by fi(x) and allowing χ —• oo, we 

have 

Σ*αΐ = 0 (7.12) 

where Σ* denotes the sum over i € Ai. Since E*aj = 0 and a* is either 

+1 or -1 , it follows that Ai contains an even number of elements and half 

of these are from {1,2, ...,fc}. Hence a certain number of in (7.9) are 

identical to one another and to the same number of Qi . Observe that if 

i e Ai, then fi(x) = fi(x) for all x, for if fi(x) φ fi(x) for some x, then 

Ιίηία-,+οο = 0 or oo by hypothesis contradicting the definition of Ai. 

Subtracting these identical terms from both sides of (7.9), we have a new 

equation of the same form but with fewer terms. Repeat the process until 

each term on one side of (7.9) is matched with a term from the other side 

of (7.9). If k = I, then the theorem is proved. If k Φ I, (say), k < t, then 

t — koîgi are such that g%{x) = 0 for χ > a contradicting the assumption 

on T. Hence k — £ and { / i , f k } is a permutation of {g\,gk}> • 

A result analogous to Theorem 7.3.2 can be proved for the case of min-

ima of sets of random variables. We omit the proof but state the result. 

Theorem 7.3.3 (Basu and Ghosh (1980)): Let Τ be a family of probabil-

ity density functions on the real line with support (a, b), —oo < a < b < oo 

which are continuous and are positive to the left of some point a and such 

that if / and g are any two distinct members of T, then limx-+a(f(x)/g(x)) 

exists and is equal to either 0 or oo. Let Xi,X2̂ ^,Xk be independent 

random variables with density functions / i , f 2 , f k respectively in Τ and 

Wi> . . . , W J Î be independent random variables with density functions in 

T. Suppose that m i n ( X i , X k ) and m i n ( W i , W i ) have identical distri-

butions. Then k = ί and there exists a permutation {ii,%k} of { 1 , 2 , £ } 

such that the density function of Wj is fi^j = 1,2, 

Example 7.3.1 (Anderson and Ghurye (1977)): Consider the family Τ of 
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normal density functions 

/ ( χ ; μ , σ 2) = 1 
e x p { — — Τ · (χ — μ ) 2} , —oo < μ < ο ο , 0 < σ < ο ο . 

\/2πσ2 

The family Τ satisfies the conditions of Theorem 7.3.2 and Theorem 7.3.3. 

Hence the conclusions of the Theorems 7.3.2 and 7.3.3 hold and the family 

Τ is identified by the minimum or by the maximum up to a permutation. 

Example 7.3.2 : Consider the family Τ of exponential densities 

where λ > 0. This family Τ satisfies the conditions stated in Theorem 

7.3.2. Hence the conclusion of Theorem 7.3.2 holds and the family Τ is 

identified by the maximum up to a permutation. 

Remarks 7.3.2: There are families of densities for which the assumptions 

in Theorem 7.3.2 do not hold and yet they are identified by the maximum 

up to a permutation . This can be seen by the following examples. 

Example 7.3.3 (Anderson and Ghurye (1977)) : Consider the family Τ of 

exponential densities 

where — oo < θ < oo. It is easy to check that the family Τ does not satisfy 

the conditions stated in Theorem 7.3.2. In fact, for 0 < θ\ < θ2, 

In fact 

/ ( χ ; λ ) = Xe 

= 0, 

χ > 0 

χ < 0 

/ ( x , 0 ) = e-(*-ô\ χ>θ 

= 0, χ < θ 

/ ( M a ) = β - ( « - * > 

/ ( Μ ΐ ) e-(*-*i) 
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for χ > 02 and hence 

which is neither zero nor infinity. Let Χ\,...,Χκ be independent ran-

dom variables with exponential densities f(x, 0i) , l < i < k respectively. 

Let W\,...,Wi be independent random variables with exponential densi-

ties f(x, < j < i. Suppose that maxi<j<fcXj and maxi<j<^Wj are 

identically distributed. It is easy to see from the structure of the distribu-

tion functions of maxi<i<fc Xi and maxi<j<^ Wj and the fact that they are 

identically distributed that 

max 6i — max 0'· . 

Since the distribution functions of maxi<i<fc Xi and maxi<j<£ Wj are the 

same for values of χ between the largest of 0 '̂s and the second largest of 

distinct O^s, it follows that the number of 0i, 1 < i < k equal to the largest 

of 0j's is the same as the number of 0j = maxi<i<fc 0i(= maxi<j<^ 0 )̂ and 

the second largest 0* is equal to the second largest 0 .̂ Proceeding this way, 

we obtain that k = £ and { 0 i , 0 & } is a permutation of {0^,..., θ'έ}. 

Example 7.3.4 (Anderson and Ghurye (1977)) : Consider the family Τ of 

double exponential densities 

/ ( x ,0 ) = I e~| a ;- ö |,-oo < X < oo 

where — oo < 0 < oo. It is again easy to check that this family does not 

satisfy the conditions stated in Theorem 7.3.2 and yet it is identifiable by 

the maximum up to a permutation. This can be seen in the following way. 

Suppose Xi, 1 < i < k are independent random variables with densities 

f(x, 0f), 1 < i < k respectively and Wj, 1 < j < £ are independent random 

variables with densities f(x,6j),l < j < £ respectively. Further suppose 

that 

max Xi and max Wj 
l<i<k i<j<£ 



7.3. IDENTIFIABILITY IN RISK PROBLEMS 157 

axe identically distributed. Then, it is easy to check that 

n i l - i e - ^ ) | = n | l - i e - ^ ) | 
i=l j=l 

for large x. Without loss of generality, assume that k < £. Let ζ = ex. 

Multiplying both sides by zl, we have 

ze-kU(z-\e°>) = fl(z-1-e°>). 
i=l j=l 

Since this equality holds for all ζ = ex,x large, it follows that the zeroes 

of polynomials in ζ on both sides should be the same. Hence k = £ and 

{ ö i , l < 2 < f c } = { ^ , l < j<£}. 

Example 7.3.5 : Suppose a random variable Xi has the gamma density 

function 

e-x/ßIXOLI-l 

= 0, χ < 0 

where > 0, ßi > 0 and at least one of ai and ßi is different from unity. 

Suppose Xi, 1 < i < 4 are independent random variables and the random 

variables min(Xi,X2) and min(Xs,X4) are identically distributed. Then, 

Basu and Ghosh (1980) proved that either 

( α ι , α 2) = ( α 3, α 4) and {ει,ε2) = (εζ,ει) 

or 

( α ι , α 2) = ( α 4, α 3) and {ει,ε2) = (Α,Α). 

However the family Τ of density functions {f{x; α, ε)} does not satisfy the 

conditions of the theorem. We omit the details. 

Example 7.3.6 : Suppose Xi has the Weibull density 

f(x;Pi,ei) = fy^e-^i^, z > 0 

= 0, χ < 0 
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where 0̂  > 0 and pi > 0. It is easy to check that the distribution function 

of Xi is 

F(x;pi,0i) = \-e~xVile\ χ > 0 

= 0, χ < 0 . 

Suppose Xi, 1 < i < 4 are independent. We leave it to the reader to check 

that the above family of densities does not satisfy the conditions stated in 

Theorem 7.3.3 (cf. Basu and Ghosh (1980)). Suppose the distribution of 

min (Xi ,X 2) is the same as that of min(X3, X±). Then 

(1 - Fi(x)) ( l - F2(x)) = (1 - F3(x))(l - F 4(x ) ) , - o o < χ < oo . 

Taking logarithms on both sides, it follows that 

χΡί χΡ2 χΡ3 χΡ4 

01 02 #3 $4 

Suppose pi φρ2> Without loss of generality, assume that pi < p2. Taking 

limits as χ —• 0 and χ —• oo in the above relation, it can be shown that 

Pi = min(p3,p4) and p2 = max(p3,p4). Since pi Φ p2, it follows that 

P3 Φ Ρ4· Suppose ps < p^. Then it can be checked that pi = p$ and p2 = p±. 

It is easy to see that ο\ = 03 and ο2 = 04 by the linear independence of the 

family {xp,p > 0} . Hence 

(pi,0i) = (P3,0a) and (ρ2,θ2) = (ρ^θ^). 

If pi > p2, then it can be shown by similar arguments that 

(Pi,0i) = (P4,04) and (p 2, ö 2) = (ρ3,03)· 

This shows that the Weibull family is identifiable up to a permutation. 

Remarks 7.3.3 : We remark that even though several examples given 

above illustrate families of densities identified by the maximum or minimum 

up to permutation, there exist families which are not identifiable by the 

maximum as shown by the following example . 
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Example 7.3.7 : Suppose a random variable Xi has the exponential den-

sity 

/ ( * , λ<) = λίε-χ<χ,χ>0 

= 0, χ < 0 

for 1 < i < n. Suppose Xi, 1 < i < n are independent. Y = maxi<j<„ Xi. 

Then Y has the exponential density 

/ ( y , λ) = Xe-xy,y>0 

= 0, y<0 
η η 

where λ = ^^λ*. Hence the distribution of Y specifies ^^λ^ but not 
i=l i=l 

the individual Ài,l < i < n. This does not contradict the conclusion in 

Example 7.3.2 where two independent samples were considered. 

Let us again consider the problem studied in Theorem 7.3.2. This can 

be stated as follows: If FiF2 · · · Fk = GiG2-Gt where F< and Gj are 

univariate distribution functions, then, is k = £ and is {F±, F2,Fk} a 

permutation of {Gi , G2,Gi} when k — Π Let us consider a special case 

of this problem again when 

Fi{x) = F(dix) and G3{x) = F{b0x) 

where F is a distribution function and a*, fy, 1 < i < fc, 1 < j < £ are real 

numbers. Define 
k i 

Y[ F(dix) = YI F(bjx), - o o < χ < oo . (7.13) 
i=l j=l 

Note that en and bj are necessarily positive since Fi(x) = F(a,ix) and 

Gj(x) = G(bjx) are distribution functions by assumption. The ques-

tion is to find out whether k = £ and {αϊ , a 2 , a ^ } is a permutation of 

&2» ···» &/} under some conditions. 

( A l ) Suppose the function 

* M = (7.14) 
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where F' is the derivative of F can be expanded in an infinite power series 

about zero so that 

9(χ) = Σχ"9—^Ρ-,-α<χ<α 
n=0 

(7.15) 

where g^n\0) is the nth derivative of g(-) evaluated at 0 and 0 < a < oo. 

Taking logarithms on both sides of (7.13) and differentiating with respect 

to x, we have 

Λ F'(oix) F'ibjx) _ . 
X > j s f c ) = ^ T P ' - < - < - (7.16) 

Under the assumption (Al) on g(x) stated above, it follows that 

Β Σ > Γ ' * · ^ > - t < i > f ' * · Α ) , _ a < x < a ( 7 , 7 ) 

1 = 1 8 = 0 j=l 8=0 

or equivalently, for —a < χ < α, 

D & r ^ - f é î " ^ <7·18> 
8=0 i=l 8=0 j=l 

by Fubini's theorem under the additonal assumption that the series 

(A2) 

Σ Σ ^ - ψ 
8 = 0 1=1 and oo £ ^ ( s )( o ) 

8 = 0 j=l 

are absolutely convergent for every χ in —a < χ < a. Equation (7.18) 

implies that 

i=l j=l 
for all integers s > 0 since the power series are identical in — a < χ < α, 

where a > 0. In particular, it follows that 
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since g^(a) φ 0 for sufficiently large s > 0 which in turn follows from the 

fact that the function g(x) has infinite power series expansion by ( A l ) . 

Note that a* > 0, bj > 0 for 1 < i < fc, 1 < j < i. Let s oo. Then 

k 

(^2ai)1/s -> max ai as s oo (7.21) Ki<k 
i=l 

and 

This proves that 

£ 

(S^të)1/8 —> max bj as s —> oo . v ^ J/ i<j<i 3 

max ai = max bj . (7.22) 
i<i<k i<j<£ 

Delete the maximum terms on both sides of (7.20) and then let s —• oo. 

Repeat the procedure. Then it follows that k = ί and {α^,Ι < i < k} 

is a permutation of {bj,l < j < i} in view of the fact that > 0 and 

bj > 0,1 < i < fc, 1 < j < i. The above discussion leads to the following 

theorem due to Mukherjea et al. (1986). 

Theorem 7.3.4: (Mukherjea et al. (1986)) : Let F(x) be a distribution 

function and and bj be positive numbers such that 

k t 
F(aix) = J"! F(bjx), -a<x <a 

i=l j=l 

for some a > 0. Suppose that function g(x) = satisfies the assumption 

( A l ) and the assumption (A2 ) holds for #(·), {a»} and {bj}. Then k = i 

and { α χ , α & } is a permutation of &2> .··? be}. 

Remarks 7.3.4 (Mukherjea et al. (1986)): gives another set of sufficient 

conditions for the conclusion in Theorem 7.3.4 to hold. For general para-

metric families, the following result due to Basu and Ghosh (1983) holds. 

We omit the proof. 

Theorem 7.3.5 (Basu and Ghosh (1983)): Let Τ = {F(x ,0) ,0 G θ } be a 
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family of distribution functions with failure rate functions ×(÷,è), that is 

for all ÷ such that F(x,6) < 1 where f(x,6) is the density function of 

F ( x , 0 ) . Suppose < i < k are k independent random variables 

with distribution functions F(x,0i) and failure rate functions ë(÷,èÀ) for 

1 < i < k. Then Æ = m i n ( X i , X k ) identifies 0*, 1 < i < k up to a 

permutation iff ë (÷ ,# À ) , 1 < i < k are linearly independent . 

Remarks 7.3.5 : An example of a family of distributions satisfying the 

conditions stated in Theorem 7.3.5 is the Weibull family discussed in Ex-

ample 7.3.6. 

7.4 Identifiability in the Dependent Case 

Let ×÷,×2, be k random variables with joint distribution func-

tion F(xi,x2, Let Æ = min (Xi , . . . ,X f c ) and / = i if Æ = X^. In 

the previous section, we have discussed the identifiability problem, that is, 

identifying the distribution of X^, 1 < i < k given the distribution of Æ or 

that of the identified minimum ( Z , / ) when Á º , X 2 , X k are independent 

random variables. There are physical situations where X*, 1 < i < k might 

not be independent. The problem of interest is to know whether Æ or ( Z , J) 

still identifies the joint distribution function of ( X i , X & ) . 

Let us first consider the case k = 2. Suppose ( X i , X 2) has the joint 

distribution F(xi,X2) and the joint density f{xi,x2) > 0 for all x\ and x2. 

Let 

F(xux2) = P r ( X i > xx,X2 > x2) (7.23) 

and 

Fi{Xl,x2) = ^ l ^ , i = 1,2. (7.24) 
Define 

Gi(x) = e x p { - Ã ~^Z'**dz],-oo < ÷ < oo (7.25) 
J -oo F(z,z) 
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and suppose that 

-Fj(z,z) 

F(z,z) 
dz = oo, æ = 1,2 . (7.26) 

Then Gi(x), i = 1,2 will be distribution functions. We leave it to the reader 

to check that the random vector ( Z , J) has the same distribution function 

whether (Xi,X2) is distributed with joint distribution function F{x\,x2) 

or with joint distribution function 

In other words, independent random variables Xf and X2 with distribu-

tion functions Gi(xi) and G2(x2) respectively and random vector (X\,X2) 

with joint distribution function F(xi,x2) give rise to the same distribution 

function for the identified minimum ( Z , / ) . Hence ( Z , J) does not identify 

the joint distribution F(xi,x2). 

The nonidentifiability aspect of the problem was noted at first by Cox 

(1959) and further investigations were made by Tsiatis (1975). The above 

discussion due to Basu and Ghosh (1978) shows that the problem of iden-

tifiability cannot be resolved in a nonparametric framework when the com-

ponents are dependent. This leads us to the question of identifiability in 

parametric families. 

We will discuss identifiability for families of bivariate normal distribu-

tions later in this chapter. Let us consider some other families of bivariate 

distributions. 

Example 7.4.1 : The tail probability of the bivariate exponential distri-

bution introduced by Marshall and Olkin (1967) is given by 

F{xux2) = P r ( X i > xi,X2 > x2) 

= exp[—ë\×\ — X2x2 — Ai2 max(xi ,X2)] (7.28) 

if ÷é > 0, x2 > 0 

F*(x1,x2) = G1(x1)G2(x2) . (7.27) 

= 0 otherwise 
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where ëé > Ï, ë2 > 0 and ëÀ2 > 0. Let fi(z) be the conditional density of 

Æ given I = i. Observe that the joint density of ( Z , J) is 

Pifi{z) = Xi2e~Xz i f i = 0 , z > 0 

= Xie~Xz i f t = l , * > 0 

= X2e~Xz i f i = 2 , z > 0 

= 0 otherwise 

(7.29) 

where ë = ëé + ë 2 + ×\2 and i = 0 if × é = × 2 , i = 1 ºÀ Æ = ×÷ and i — 2 

if Æ = ×2· Here pi = Pr(7 = i). It is clear that all the parameters are 

identifiable from the distribution of ( Z , J ) . However, if Æ is only observable, 

then the parameters are not identifiable since the density of Æ is 

f(z) = Xe~Xz i f z > 0 

= 0 otherwise 

and ë = ëé + ë 2 + ëÀ2· 

Example 7.4.2 : Consider the absolutely continuous bivariate exponential 

distribution with density given by 

f(xi,x2) = { Ë Ë é^ Ë2 + Ë À 2^ } e x p { - A i X i - ( ë 2 + ë é 2) ÷ 2} 
Á÷ + ë2 

if ÷é < ÷2 

= { Ë Ë 2^ Ë é + Ë À 2^ } â ÷ ñ { - ( Á é + ë é 2) ÷ é - ë 2 æ 2 } 
Á é Ç- ë2 

if ÷é > ÷2 

= 0 otherwise (7.30) 

This distribution was introduced by Block and Basu (1974). Here the joint 

density of ( Æ , I) is given by 

= 0, æ < 0 

for i = 1,2 where A > 0 and the parameter set (ë , Ai, A2, A i 2) is not identi-

fiable but the set (ë , ÷
×_£÷2, is identifiable. If Æ is only observable, 

then A is the only parameter which is identifiable. 
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Similar results can be obtained for the bivariate exponential distribution 

introduced by Gumbel (1960). For further discussion, see Basu and Ghosh 

(1978, 1980). 

7.5 Identifiability for Families of Bivariate Normal Distributions 

(The Case of Identified M i n i m u m ) 

Suppose a random vector (×é, X2) has the bivariate normal distribution 

with the mean vector ( ì é , ì 2) and the covariance matrix Ó = ((aij))- Let 

ήβ = ή\ and = Πή^ή^é ö j . For simplicity, we write (Xi,X2) is 

Â í Í ( ì é , ì 2; ó é , ó 2; ì ) . Assume that \p\ < 1. 

Theorem 7.5.1 (Basu and Ghosh (1978), Nadas (1971)) : Suppose {XUX2) 

is B V N ( ì é , ì 2; ó é , ó 2; ñ ) . Let Æ = m i n ( X i , X 2) and I — i\î Æ — X^i = 

1,2. Further assume that ( X 3, X * ) is BVN( /x 3, ì 4; ó 3, ó 4; Π'). Define Æ' = 

m i n ( X 3, ×Á) and J' = i if Æ' = Xi,i = 3,4. Let 

á é = 1 - ñ ^ , á 2 = 1 - ñ — , (7.31) 
ó 2 ó é 

and 

β3 = 1 - Π' ^ , á 4 = 1 - Π' — . (7.32) 
ó 4 ó 3 

If ( Æ , J) and ( Æ ' , / ' ) have the same distribution, then 

( ì é , ì 2; ó é , ó 2; ì ) = ( ì 3 , ì 4 ; ó 3 , ó 4 ; Π') . (7.33) 

Proof : Recall that (Æ,I) is called the identified minimum of (X\,X
2). 

Note that 

(P -){P - ) = < 1 (7-34) ó é ó 2 

and hence at least one of Π 21 and ì 21 is less than one. In other words, 
' (T\ ' CT 2 either ot\ or a2 is positive. Similarly either a 3 or a 4 is positive. Let fc(z) 

be the conditional density of Æ given I = i and ì^ = Pr(J = i). Let i f be 

the distribution function of ( Æ , I). Observe that 
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H(z,I) = P r ( Z < z , / = l ) 

= Pr(J = 1) - Pr (z < ×ë < X2) 
/•OO Ë Ï Ï 

= Pi- / ç ( : ô 2|™(£é ) , ó 2( 1 ~ Π2))ç{÷1\Ά1,ήÉ)Ü÷2Ü÷1 

= Pl - jT{l - Í{ó*~™^/210,1)}ç(÷|ì1;ó\)Ü÷ (7.35) 

where 

and 

(J2 
m(x) = Ά2 + Π — ( ÷ - ì é ) , (7.36) 

ç(÷\ì,ó2) = - ± = exp{-J (7.37) 

é (y - Ì)2 
Í(÷\ì,ó2) = Ã - J = â÷ ñ { - ± (7.38) 

J-00 í2ðóæ * í 
This identity implies that 

Pifi(z) = ç(æ\ìé, ó\){1 - N { ^ ~ ^ l / 2| 0 , 1 ) } . (7.39) 

Observe that 

z-m(z) ( 1 - ñ ^ ) - { ì 2 - ( ñ £ ) ì é } 
ó 2( 1 - ñ 2 ) 1 / 2 <÷2(1 - p 2 ) i / 2 

If a 2 = 1 - & i > 0, then 

(7.40) 

Pih(z) = Öç(æ)[1 - Ö 2. 2. ( æ ) ] (7.41) 

where 

öéé(æ) is the density function of Í(ìé,ó2), (7-42) 

º>2*2*{æ) is the density function of . Ë Ã ( ì 2, ó 2
2) , (1Ë2Á) 

Ë = (ß2~P —Άα)/β2 (7Ë2Â) 

and 

ó*2=ó2(1-ñø2/á2. (7.42C) 

Here Ö (æ) denotes the distribution function corresponding to ö(æ). 

If a2 = 0, then 

Pifi(z) = Öéé(æ)(1 - Ö 2. 2* ( 0 ) ) (7.43) 
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and 

Note that 

Similarly 

WACO = <M*')[1 - Ö3·3·(^)1 · (7.48C) 

Öαα(Η) 

Psfsiz') 

1 as 2; - 0 0 . (7.49) 

1 as æ' - o o . (7.50) 

Since the distributions of ( Z , J) and ( Æ ' , / ' ) are identical by hypothesis, it 

follows that pifi(z) = ^ 3 / 3 ( 2 ) and hence 

M 4 ^ l a ŝ _ o o . (7.51) 
<A33 ( * ) 

where 

Ά*2 = Ά2- Άα (for á 2 = 0) (7.44) 

and 

ó; = ó 2( 1 - ñ Õ / ^ Ï Ã á 2 = 0). (7.45) 

If á 2 = 1 - < ï, then 

Pifi(z) = öç(æ)Ö2*2*(æ) (7.46) 

where ö and Ö are as defined above. Similar relations hold for p2f2{z). In 

fact 

= 022 W [ l - Ö é . é . ( * ) ] if « é > 0 (7.47) 

= <Ì * ) Ö é * é * ( 2 ) if á ÷ < 0 (7.47A) 

= 022 ( z ) [ l - Öé . é . (0 ) ] if á÷ = 0 . (7.47B) 

Analogous relations hold for the B V N ( / / 3, ì 4; ó 3, ó 4; ñ ' ) . We have already 

noted that at least one of «1,0:2 and at least one of á 3 , á 4 are positive. 

Case (1) Suppose á» > 0,1 < i < 4. Then 

Pih(z) = 0 n ( z ) [ l - Ö 2. 2. ( * ) ] , (7.48) 

P2Î2(z) = ö22(æ)[1 - Ö é · é . ( * ) ] , (7.48Á) 

Ps/sOO = <Ì* ' ) [1 - < W * ' ) ) L (7 .485) 
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In other words 

_ l M * - » - o o . (7.52) 

^ ^ p i - è C - T f ) 2 } 
Hence 

ó 3 1 æ - ì é 2 1 æ - ì 3 2 n — e x p { - - ( Y + - ( — — Ã } 1 as Η - o o . 

(Jl Æ <7÷ Z (J3 

It is easy to check that this limit holds iff ó\ — ó 3 and ìé = ì 3. Similarly 

we obtain that ó 2 = ó 4 and ì 2 = ì4 ,Ñé = Pr(J = 1) = P r ( X i < X 2) and 

p3 = Pr(7 = 3) = P r ( X 3 < X4) . Since pi = ì 3, it follows that r M2 - ìé Í = Ö, ì4 - ìâ 

-

h ó\

 -

 2 ì ó é ó

2

) V f + ó\

 -

 2 ì ' ó

3

ó

4

 y 

which implies that Π = p' as óé = ó 3, ó 2 = ó 4, ìé = ì 3 and ì 2 = ì 4· This 

proves that 

(ìé , ì 2; ó ÷, ó 2; Π) = ( ì 3, ì 4; ó 3, ó 4; Π') (7.53) 

and hence ( Æ , 7) identifies the Â V N (ìé , ì 2; ó ÷ , ó 2; ì) . 

Case (2) Suppose that exactly one of ( á é , á 2) and one of ( á 3, á 4) is posi-

tive. Without loss of generality, assume that a 3 > 0, a 2 < 0. Then either 

a 3 > 0 and á 4 < 0 or a 3 < 0 and a 4 > 0. Assume that á 3 > 0 and a 4 < 0. 

Then we have á÷ > 0, a2 < 0> « 3 > 0 and a 4 < 0. Since a 2 < 0 and a 4 < 0, 

it follows that 

Pifi(z) = Öαα{Η)Ö2*2*(Η) = 033(* )$4*4* (2 ) = Psfsiz) (7.54) 

from (7.47). Hence 

$2*2.(<Z) = ( 0 1 l ( z ) ) ~ V 3 3 ( * ) $ 4 . 4 . ( * ) , " O O < Æ < OO . (7.55) 

Let Η —• oo. Then it follows that 

(011 W r V s s M - 1 as Η oo . (7.56) 

It is easy to check that this relation holds iff ìé = ì 3 and ó é = ó 3. Since 

ai > 0 and á 3 > 0 , it can be shown that ì 2 = ì 4 and ó 2 = ó 4 by the 
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arguments given in Case (1) . These two relation show that p = Π' again by 

the arguments developed in Case (1) . Hence 

( ì é , ì 2; ó é , ó 2; ì ) = ( ì 3, ì4À ó 3, ó4 À p') · (7.57) 

Suppose that á ú > 0, á 2 < 0 but á 3 < 0 and á 4 > 0. Then 

Pifi(z) = Öαα(Η)Ö2*2*(Η) = 0 3 3 ( * ) ( 1 - $ 4 . 4 * ( * ) ] = Pzh(z) (7.58) 

from relations of the type given in (7.48) and the fact that ( Æ , I) and ( Æ ' , / ' ) 

are identically distributed. Hence 

[ 0 3 3 ( * ) ] " V l l ( * ) * 2 . 2 . ( * ) = 1 - $ 4 * 4 * ( * ) , -OO < Ζ < 00 . (7.59) 

Let Η —> —oo in (7.59) on both sides. The term on the right side tends 

to 1 and hence 

[Ό33{Η)]~1ΌΔ{Η)Ö2̂ *(Η) • 1 as z • oo . (7.60) 

It is easy to show that, for any ×÷ distributed Í(ìú,ó?) and Xj distributed 

Ë Ã ( ì , · , ó ? ) , 

1,0 or o c a s æ — - * ± o o . (7.61) 
Öβ{Η) 

Furthermore 

$ 2 . 2 . (*) —• 0 as z —• —oo . (7.62) 

Hence the equation (7.60) does not hold and the condition 

áé > 0, a2 < 0, a 3 < 0, á 4 > 0 (7.63) 

is impossible whenever ( Z , J ) , ( Æ ' , / ' ) are identically distributed. Similarly 

it can be shown that in all other cases on a*, 1 < i < 4 either there is 

identifiability given ( Z , 7 ) or the conditions on á^, 1 < i < 4 will not hold. 

For details, see Basu and Ghosh (1978). • 
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7.6 Identifiability for Families of Bivariate Normal Distributions 

(The Case of Nonidentified M i n i m u m ) 

Let us assume again that (×÷, X 2 ) has ÂíÍ(ì÷, ì 2; ó÷, ó 2; ñ) and (×3, X4) 

has Â í Í ( ì 3, ì 4 ; ó 3 , ó 4 ; / 0 1) . Let Æ = m i n ( X x , X 2) and Æ ' = min(X3, X 4 ) . 

Æ is called the nonidentified minimum of ×÷ and X 2 . The problem of in-

terest is to find whether the distribution of Æ identifies the distribution of 

( X x , X 2) . The following result is due to Basu and Ghosh (1978). 

Theorem 7.6.1 (Basu and Ghosh (1978)): If Æ and Z ' have the same 

distribution, then either 

ìé = ì 3 , ó÷ = ó 3, ì 2 = ì 4, ó 2 = ó 4 and ì = Π' 
or 

ìé = ì 4 , ó-÷ = ó 4, ì 2 = ì 3 , °2 = ó 3 and Π = Π' . 

In other words, either the distributions of ( X 3 , X 4) and ( × ÷ , × 2) are the 

same bivariate normal distribution or the distributions of ( X 3 , X 4) and 

( X 2, X x ) are the same bivariate normal distribution. 

Remarks 7.6.1 : Proof of Theorem 7.6.1 in Basu and Ghosh (1978) es-

sentially uses the methods developed in the proof of Theorem 7.5.1 and the 

fact that the normal distribution function is not an elementary function. 

Alternate proofs of this result are given in Anderson and Ghurye (1979), 

Mukherjea et al (1986) and Gilliland and Hannan (1980). We have already 

seen that the identifiability question is an important problem in economet-

rics. In the Fair—Jaffee model with ì÷ and ì 2, regression of supply and de-

mand on some regression variables and full rank covariance matrix, Hartley 

and Mallela (1977) consider the problem of estimation of ή\, ó 2 and Π based 

on the observed minima of supply and demand. Identifiability was implic-

itly assumed by them. The general problem of identification of parameters 

by the distribution of the maximum random variable in the trivariate nor-

mal case and the general multivariate normal case is studied in Basu and 

Ghosh (1978) and Mukherjea and Stephens (1990a,b). The result in the 

multivariate normal case can be stated in the following manner. We omit 

the proofs. 
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Theorem 7.6.2 (Mukherjea and Stephens (1990b)) : Let X u l < i < k 

be k independent ç-dimensional random vectors each with a nonsingular 

multivariate normal distribution with zero mean vector and positive partial 

correlations. Suppose that ×é = (Jt»i, ...,Xin) and Õ = (Yi, Y 2, . . . , Õç) 

where Yj = max(Xij, 1 < i < k). Let W be another ç-dimensional random 

vector which is the vector of maxima componentwise of another such family 

of independent ç-dimensional random vectors Zj,l < j < £. Then the 

distributions of X^s , 1 < i < k are a rearrangement of the distribution of 

Z^s ,1 <j <ß (and hence necessarily k = i) whenever Y and W have the 

same distribution. 

7.7 Identifiability for a fc-out of -p System 

We now consider a generalization of the problem discussed in Section 

7.3. Let us consider a generalization of the concepts of competing and 

complementary risks. The problem can be paraphrased as the problem of 

identifying the distributions of component lifetimes from that of system 

lifetime where the system is a fc-out of - ñ system; that is, the system 

with ñ components works if and only if k or more of ñ components of the 

system function or equivalently the system fails when the first r = ñ — k + 1 

components fail. It can be checked that identifiability holds for a fc-out ïÀ-ñ 

identical component system following arguments similar to those given at 

the beginning of Section 7.3. 

Let X^ 1 < i < ñ be the component lifetimes and X ( r) denote the rth-

order statistic. Suppose the random variable X ( r) is the only observable. 

Given the distribution function of X ( r) , is it possible to determine the 

joint distribution of ( X i , . . . , X p) ? If r = 1, the problem reduces to the 

problem of competing risks and, if r = p, then it reduces to the problem of 

complementary risks. Note that if r = 1, then the system is in series and if 

r = p, then the system is in parallel. 
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Let I = i when X ( r) = Xi, 1 < i < p. The pair ( X ( r) , J) is called the 

identified rth order statistic. Observe X ( r) is termed nonidentified rth-order 

statistic. 

Basu and Ghosh (1983) proved that, for 1 < r < p, ( X ( r) , 7 ) identi-

fies the distributions of X^, 1 < i < ñ when Xi follows the exponential 

distribution and X i , l < i < ñ are independent. If X ( r) is nonidentified, 

then, for 2 < r < p, the distribution of X^r) determines the distributions 

of Xi, 1 < i < ñ up to a permutation whenever Xi follows the exponential 

distribution and X%,\ < i < ñ are independent. Results for the case of 

general distributions are unknown as far as the author is aware. We now 

discuss these results from Basu and Ghosh (1983). 

Theorem 7.7.1 (Basu and Ghosh (1983)): Suppose Xi,l < i < ñ are 

independent random variables and Xi follows the exponential distribution 

with parameter ë* > 0, that is, the density function of Xi is 

f(xuXi) = Xie-XiX,Xi>0 

= 0, Xi<0 

for 1 < i < p. Then the distribution of the identified rth order statistic 

( X ( r) , / ) uniquely determines ë é , ..., ë ñ whenever 1 < r < p. 

Proof : Let pj be the probability that I = j and fj(y) be the conditional 

density of Y = X ( r) gives I = j . It is easy to check that 

r—1 Π 

pJfi(y) = ^~XiVT/(Yl(1-e~Xaiy) Ð e _ w ] (7·64) 
i=l s=r+l 

where (á÷, a2l..., ï:Ã_÷; /?Ã+÷, . . . , ^ p) is a permutation of the integers 

(1 ,2 , — l , j -f l , . . . , p ) partitioned into two sets (á÷, . . . , a r_ x ) 

and (/3 r+i, and X Qi < X ( r) and > X ( r ), 1 < i < r - 1 and r + 1 < 

5 < p. The summation Ó runs over all such sets (á÷, . . . , á Ã_ ÷ ; /?Ã+é, ···, /3Ñ)· 

Note that the term with the highest power of e~y on the left side of (7.64) 

is 

( - 1 ) Ã- 1ë , · â - < ë é +· " + ë' > ú ' . 
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This identifies ë^. By repeating the procedure for 1 < j < p, all the 

parameters ë é , ë 2, . . . , ë ñ can be identified. • 

Theorem 7.7.2 (Basu and Ghosh (1983)) : Let ×÷, X 2 , X p be indepen-

dent random variables and suppose Xi has the exponential distribution with 

parameter ë* > 0. Then the distribution of the nonidentified X ( r) deter-

mines the values of ë é , ë 2, · · ·, ë ñ up to a permutation whenever 2 < r < p. 

Proof : The density of X ( r) is 

/(Ã)(À/) = Ó { ë , · â - ë^ [ Ð ( À - â - ë- ^ ) Þ e~XßtV]} (7·65) 
j=l i=l s=r+l 

where the expression in {· · ·} on the right side of (7.65) is obtained from 

the expression on the right side in (7.64). A typical term on the right side 

of (7.65) (after collecting together different expressions involving the same 

power of e~y) is of the form 

(ë 

where 1 < ii ,i 2, . . . ,^ < p,i8 Ό it for s Ό £,0 < τ < Π — 1 and ë = 

ëé + · · · + ë ñ . Thus we can identify ë and ë — ë ^ — \ 2 — · · · — ë ^ , 

1 < - - - º Ç < Pi is Ö Ç for s Ό t, 1 < τ < Π — 1. It can be checked that 

these values uniquely determine ë é , ë 2 , X p up to a permutation (cf. Basu 

and Ghosh (1983)). • 

Remarks 7.7.1 : It is interesting to observe that in the case of exponential 

distribution, nonidentifiability occurs if and only if r = 1, that is, the 

minimum does not identify the component exponential distributions. 

Remarks 7.7.2 (Identifiability in coherent systems) : Competing 

risks deal with a system failing as a consequence of the failure of one of 

its components. It was shown in Theorem 7.3.1 that if the components 

have independent lifetimes, then the joint distribution of the sytems fail-

ure time and the identity of the failed component uniquely determine the 

lifetime distribution of each of the components. 
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In reliability theory, coherent systems are also used to model the systems 

(cf. Barlow and Proschan (1975)). Coherent systems extend the theory of 

competing risks to systems failing as a consequence of the failure of some 

of its components rather than just one. 

Given a coherent system with ç components having independent life-

times Xi let Æ be the age of the system at breakdown and / be the set 

of componets failed by time Z . / is called the diagnostic set Then 

I = {i : Xi < Z}. A set of components Å is called a cut set if, when 

all components in Å have failed, the system fails. Å is a minimal cut set if 

it is a cut set which does not contain a proper subset which is itself a cut 

set. Let { i i , / 2 , ···> Ëç} be the collection of all minimal cut sets. Let M be 

the ðé ÷ ç incidence matrix of { / é , I 2 , / m} « In other words Mij = 1 if 

j G Ii and = 0 otherwise. Meilijson (1985) showed that if the compo-

nent lifetimes ×÷,X2,Xn are nonatomic, independent and possess the 

same essential extrema and if the rank of the matrix M is n, then the joint 

distribution of Æ and J determine the distribution of each Xi, 1 < i < ç 

uniquely. In other words, the system is identifiable. Meilijson (1985) also 

proved that a necessary condition for identifiability is that no two compo-

nents be in parallel, that is, belong to the same minimal cut sets. Suppose 

that the independent lifetimes Xi, 1 < i < ç have mutually absolutely con-

tinuous distributions and that each component lifetime possesses a single 

positive atom at the common essential infimum. Nowik (1990) proved that 

the joint distribution of ( Z , J) identifies the life time distribution of each 

component if and only if there is at most one component belonging to all 

cut sets or equivalently no two components are in parallel. For further 

details, see Nowik (1990). 

7.8 Identifiability from Survival Functions 

Let (Ti ,T2) be a bivariate nonnegative random vector with the joint 

survival function 

ST̂ T2(hM) = Pr (T ! > tuT2 > t2) 
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with 5 ( 0 , 0 ) = 1. Suppose the variables Ã÷ and T 2 are subject to censoring 

by random intervals [×÷, Õ÷] and [ X 2, Y 2] respectively. In other words, Ã÷ 

and T 2 are observable iff ×÷ < Ã÷ < Õ÷ and X 2 < Y 2 < Ã 2. The information 

on Ã÷ and Ã 2 can be expressed by the random vectors (W\, W2) and (ß÷, ä2) 

where 

for i = 1,2. 

An example of this type of double censoring can be illustrated by the 

following scenario. Suppose we have a follow-up study for determining the 

ages Ã÷ and Ã 2 respectively at which a male-child and a female-child of the 

same family developed a particular skill for the first time. Ã÷ and Ã 2 are 

observable if the skills were developed after admitting into a program. It 

is possible that for some females or males in the program, the individual 

might have developed the skill prior to joining the program resulting in left 

censoring of Ã÷ or Ã 2. On the other hand, a right censoring may occur due 

to withdrawal of the child either due to withdrawal from the study or by 

not attaining the skill before the program is terminated. Here the random 

vector (Ã÷, Ã 2) is subject to double censoring. The joint survival function of 

( Ã ÷ , Ã 2) is unobservable but is of importance. The problem is to determine 

sufficient conditions under which the distribution of (W,6) determines the 

joint survival function 5ôé , ô 2 (tiih) uniquely. 

Another example where right censoring is only present can be described 

as follows. Assume that a pair of individuals, a wife and a husband for 

instance, are under study. The observation on each of the individuals is 

terminated in the event of death or in the case of withdrawal from the 

study. The joint life length of the two individuals is of importance but 

Wi = mzx(mm{Yi, Ã , ) , X* ) ) , i = 1,2 

and 
1 if Xi<Ti<Yi 

2 if Ti > Yi 

3 if Ti < Xi 
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is unobservable. Again the problem is to determine sufficient conditions 

under which the observed distribution uniquely determines the unobservable 

distributions. 

By observing a series system of d components, we can only determine 

its life length and the components that cause the system to fail. In partic-

ular, the life length of a series subsystem consisting of k components where 

(0 < k < d) is unobservable. Some k of the d components may be in the 

system to support operation of the remaining d — k main components. The 

distribution function of the life length of the series subsystem consisting of 

the k main components is unobservable. The problem is again to deter-

mine sufficient conditions under which the observed distribution uniquely 

determines the unobservable distributions. 

Langberg and Shaked (1982) discussed the identifiability problem from 

multivariate survival functions under right censoring. Chang (1984) dis-

cussed the univariate case under double censoring. We briefly discuss re-

sults due to Ebrahimi (1988). 

Let 

SYUY2(tut2) = P r ( Y i > t i , y 2 > * 2 ) , 

Sxltx2(tut2) = Pr(X1>tuX2>t2), 

SXl,YAti,t2) = Pr(Xl>tuY2>t2), 

SYux2(ti,t2) = Pr(Y1>t1,X2>t2) 

and 

SxuXa(tut2) = P r ( X i > ti,X2 > t2) . 

We assume that P r ( X i < Õº, X2 < Y2) = 1 and the above survival functions 

are continuously differentiable for t\ > 0, t2 > 0. We further assume that 

( T i , T 2) and {(Xi, Y i ) , (X2, Y2)} are independent random vectors. Let 

Qij(tut2) = Pr (Wi > tuW2 > t 2, « i = * , « 2 = i) 
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for 1 < i < 3,1 < j < 3. Ebrahimi (1988) proved the following result 

generalizing results of Langberg and Shaked (1982) in the bivariate case for 

random right censoring and Chang (1984) in the univariate case for random 

double censoring. We omit the proof. 

Theorem 7.8.1 (Ebrahimi (1988)) : In addition to the conditions stated 

earlier, suppose that for all (ti,t2),ti > 0,^2 > 0, 

S y l fy a( i i , t 2 ) ~ SxuY2(ti,t2) - SY1,x2(ti,t2) + Sxux2(h,t2) > 0, 

ö^[SYux2(ti,t2) - Sx^x^tuh)} < 0, 

^[SxuvAtiih) - SXux2(h,t2)] < 0, 

Q 
^r[SYLTY2(ti,t2) - 5 Ì( < é , ß 2 ) ] < 0, 
ot2 

^-[SYUYSIM) - 5 ÷ é Ë( ß é , ß 2 ) ] < 0 
Oti 

and 

STuT2(tiM) > 0 . 

Then the unobservable survival functions Sylix2(ti,t2), Sx1,x2(ti,t2), 

S V i . Y b ^ i j ^ ) * SxliY2(ti,t2) and S t i , t 2( £ i ^ 2 ) are uniquely determined by the 

observable survival functions 

0 y ( * i , * 2 ) , l < i , i < 3 . 

Remarks 7.8.1 : The result can be extended to the multivariate case. 

7.9 Nonidentifiability in Some Stochastic Models 

7.9.1 (Accident models): Occurrence of nonidentifiability in some stochas-

tic models fitted to accident data was pointed out by Cane (1972, 1977). 

Negative binomial distribution is often used as a model for fitting for acci-

dent data and it was found to be a good fit most often. It is known that 

two explanations, one in terms of the accident proneness and the other in-

volving contagion, can be given for fitting a negative binomial distribution 
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as a model. It is generally assumed that one can decide the underlying 

model if complete information, that is, the time of each accident for every 

individual in the sample is known. Cane (1972) indicated that, even with 

such complete information, it is not possible to pick the underlying mech-

anism from the two described above. In fact there are infinite number of 

mechanisms each of which gives rise to the same type of data and hence the 

presence of nonidentifiability in modeling. We now discuss some of these 

results due to Cane (1972, 1977). 

M o d e l 1 : The Poisson process is generally used for modeling the oc -

currence of accidents. Here it is assumed that the accidents occur at a 

rate Xu where ë refers to the accident proneness of any individual at risk, 

u refers to the danger of the situation in which accidents occur and the 

distribution of the number of the accidents in a time Ô has Poisson dis-

tribution with mean XuT with the probability generality function (p.g.f.) 

0 i ( * ) = exp{\uT(s - 1 ) } . 

It was found that the accident data in factories do not conform to the 

Model 1. An alternate model was proposed by Greenwood and Yule (1920). 

M o d e l 2 (Accident proneness model) : Here it is assumed that Model 

1 holds for any given individual but that the individuals may have different 

ë values and that the variation in ë can be described by a gamma density 

/ ( ë ) = 
ckXk-le-\c 

, ë > 0 
Ã ( * ) 

= 0. ë < ï . 

The p.g.f. of the distribution of accidents in time Ô is 

<t>2(s) = Ex[<fn(8)] = ck(c - uT(s - 1)) 
-k 

It is convenient to absorb c into u and replace c by 1. 

A third model was suggested by McKendrick (1926). 
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M o d e l 3 (Contagion model) : Here it is assumed that a person who has 

had ç accidents in time (0, t) has a conditional probability j+^udt of having 

another accident in (£, t + di) independent of the times of the preceding 

accidents. All individuals of the population have the same probability ku dt 

of an accident in (0,dt). 

Nonidentiflability : Let us now show that the Model 2 and Model 3 are 

equivalent. 

Suppose that an individual has ç accidents at times U, 1 < i < n, 

0 = t0 < *i < · · · < t n < Ô . 

The conditional probability for such an event under Model 2 given ë is 

ç 

YJLe-^(ti-ti.1)XudUe-Xu(T-tn) ( 7 6 6) 

and the probability under Model 3 is 

fla1*"**'1)9*"-1 \ + i' 1 u d t i } ( \ ± ^ ) k ^ n . (7.67) 

These expressions can be rewritten in the form 

e-\uT 
(n\dt1...dtnT-n)(XuT)n — (7.68) 

n! 

and 

{n\dt1...dtnT-n)(uT)n{l + uT)-n~k + " " ^ (7.69) 

respectively. Observe that the term 

( ç ! Ë é · · · Ë çÃ " ç) 

in (7.68) and (7.69) gives the conditional probability that accidents occur 

at the specified times in [0, Ã ) given that there are ç accidents in all in 

[0 ,T) . Thus the distribution of (ß÷, t 2 , t n ) , conditional on ç accidents 

in time Ã , is the same under both the Models 2 and 3. In fact, it is the 

joint distribution of the order statistics for a random sample of size ç from 
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the uniform distribution on [0 ,T ) . Furthermore, it can be checked that 

each model gives the same value for the (unconditional) probability pn(t) 

of ç accidents in time t (choosing c = 1 = u in Model 2 and it = 1 in 

Model 3) . Thus the Models 2 and 3 are indistinguishable. In other words, 

if the accident records of a large number of people are such that the distribu-

tion of accidents in time [0, t) (possibly rescaled) fits the negative binomial 

distribution with probability generating function ip(s) — ( l + £ — ts)~k, then 

no additional data on individual records will provide information in distin-

guishing between the two models and there is no mathematical difference 

between the Models 2 and 3. 

For general discussion on this problem, see Cane (1972, 1977) and Puri 

(1979). For earlier remarks on this problem, see Feller (1966, p. 57). 

7.9.2 ( A threshold-type shock model) : Consider a system involving a 

single component. Suppose the system is subject to "shocks" at random 

times. Assume that the system fails as soon as the threshold Ê for the 

number of shocks is reached. Suppose the shocks are governed by a time-

homogeneous Poisson process with parameter ë. Hence the lifetime L of 

the system has the distribution 

ffi(t) = Pr (L < t) = 1 - Y)^-e-XtPk,t > 0 (7.70) 
k=Q 

where 

pk = Pt(K >k),k = 0 , 1 , 2 , a n d p0 = 1. (7.71) 

This model is called a "threshold-type" model. In practice, it is not possible 

to observe the occurrence of shocks and L is the only observable quantity. 

Let Ô be the family of distributions of L generated by varying ë and {pk}-

This family Ô is not identifiable. This can be seen as follows. Let 

ffi(t) = l - f f i ( t ) 

= Óô6~ë^>'>°· (7·72) 
k=o ê' 
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However, H\(t) can also be written in the form 

Hi(t) = Y , - T T e " / tÛ > t >0 <7·73) 
fc=o ê· 

where 

ft = v~k ( k ) (" - X)k~JP^ k = 0 , 1 ,2 , . . . (7.74) 
3=0 

with qo = 1. Hence the family F is not identifiable. 

7.9.3 ( A nonthreshold-type shock model) : Here we assume the ex-

istence of a nonnegative risk function ß(N(t),t), where N(t) denotes the 

number of shocks received up to time t, such that 

Pr [Failure of the system occurs in time (t, t + At) given that no failure 

of the system occurred until time t and N(t) = n] 

= ß(n,t)At + 0(At) . (7.75) 

Suppose that ß(n, t) = ç a(t) where a(-) is a nonnegative locally integrable 

function on [0, oo) such that 
poo poo 

J [1
 -

 e x p {
-
 J a(u)du}]dr

 =
 oo . (7.76) 

Then the lifetime L has the distribution function 

H2(t) = l-Pv(L>t) 

= 1-E{exp[- f N(u)a(u)du]} . (7.77) 

Hence 

H2(t) =
 1-H2(t) 

=
 exp{-\ J [1- e x p ( - J a{u)du)]dr} (7.78) 

when N(t) is a Poisson process with parameter ë. Let T* be the family of 

distributions of L generated by varying ë and a subject to the conditions 

stated above. T* is not identifiable. In fact, given è — ( ë , á ( · ) ) generat-

ing Ç2{') defined by (7.78), it can be checked that the same H2{-) is also 
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generated by è' = (A',a: ' (-)) where ë ' > ë, 

a'(t) = ë a(t)h(t)[{\' - X)t + Xhit)]-1 (7.79) 

and ^ ^ 

h(t) = / exp[— / a(u)du]dr . 
Jo JT 

Remarks 7.9.1 : Discussion in subsections 7.9.2 and 7.9.3 is based on 

Puri (1979). 



Chapter 8 

Identifiability for 
Mixtures of Distributions 

8.1 Introduction 

Mixtures of distributions are used in building probability models quite 

frequently in biological and physical sciences. For instance, in order to 

study certain characteristics in natural populations of fish, a random sam-

ple might be taken and the characteristic measured for each member of the 

sample; since the characteristic varies with the age of the fish, the distri-

bution of the characteristic in the total population will be a mixture of the 

distributions at different ages. In order to analyze the qualitative charac-

ter of inheritance, a geneticist might observe a phenotypic value that has 

a mixture distribution because each genotype might produce phenotypic 

values over an interval. For applications where mixtures of distributions 

arise, see Bruni et al. (1983), Merz (1980) and Christensen et al. (1980). 

Other applications are in the area of pattern recognition, for instance, in 

image reconstruction and statistical model building for positron emission 

tomography (Vardi et al. (1975)). 

In order to devise statistical procedures for inferential purposes, an im-

183 
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portant problem is the identifiability of the mixing distribution. Unless 

the mixing distribution is identifiable in the model, it is not meaningful 

to estimate the distribution either nonparametrically or in a parametric 

framework. Some discussion on identifiability in the problem is given in 

Everitt and Hand (1981), Prakasa Rao (1983b), Titterington et al. (1985) 

and Maritz and Levin (1989). In this chapter we discuss the identifiability 

aspect of the problem more extensively. 

Let (X,!F) and ( è , â ) be measurable spaces such that Â contains all 

singletons of È. Let V = {ÑÈ,È G è } be a family of probability measures 

on (×,Ô) such that the mapping è —• ÑÈ(Á) is Â - measurable for each 

A G T. Let G be a probability measure on ( è , B) and define 

Then H is a probability measure on (X,F). H is called a mixture of the 

family V = {ÑÈ,È G è } . G is called a mixing distribution . Let Ë be the 

class of all mixing distributions G on ( è , B) and æ be the corresponding 

class of mixtures. Define Q : Ë —• æ by Q(G) = H. The class Ë and 

equivalently the family æ is said to be identifiable with respect to V if the 

mapping Q is a one-to-one mapping between Ë and æ. 

As was pointed out earlier, the problem of estimation of G is meaningful 

only when the family Ë is identifiable. It is easy to see that if Ã is a 

measurable mapping from (X, T) to (y, T) and if the family Ë is identifiable 

with respect to the family VT'1 = { P ÖT _ 1, Ö G è } on ( y , Ô ) , then Ë is 

identifiable with respect toV = {ÑÈ,È G è } on (X,F). 

The distribution H defined by (8.1) is called a finite mixture if the 

mixing distribution G is a discrete distribution with finite number of mass 

points. H is said to be a countable mixture if the mixing distribution G 

is a discrete distribution possibly with countable number of mass points. 

H is said to be an arbitrary mixture if G is any general mixing probability 

distribution. 

(8.1) 
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In order to indicate that the problem of nonidentifiability does arise in 

these problems, we now present some examples. 

Example 8.1.1 : Let Pq be the binomial distribution Â(2,è) with two 

trials and è as the probability of success, 0 < è < 1. Let Ge1ß2̂  be a 

mixing distribution given by 

Pr(0 = ïé ) = á , ÑÃ{È = è2) = 1-á (8.2) 

where è ÷ ö è2,0 < á < 1. Let × denote a random variable with the 

distribution which is a mixture of {ÑÈ,Ï < è < 1} with respect to the 

mixing distribution Ï^,^ ,á - Then 

Pv(X = 0) = a(l - è÷)2 + (1 - a)(l - 0 2) 2, (8.3) 

P r ( X = 1) = 2áè÷(1 - è÷) + 2áè2{1 - è2), (8.3Ë) 

and 

P r ( X = 2) = áè\ -h (1 - á)è\ . ( 8 . 35 ) 

2 

Since ^ P r ( X = i) = 1, two of the above equations (8.3) to (8.3B) de-

termine P r ( X = i) for i = 0 ,1 ,2 . Let us consider the equations (8.3) and 

(8.3A) . These are two equations containing three parameters á,è÷ and è2 . 

Obviously there are infinitely many solutions (á,è÷,è2) for a given pair of 

values for P r ( X = 0) and Ñô(× = 1). Hence the family 

Ë = { G ö le 2, Q, : 0 < è÷,è2 < 1,è,öè2,0< a < 1 } 

is not identifiable with respect to V = {B(2,0), 0 < è < 1 } . In other words, 

the family of convex mixtures of two binomials B(2, è÷) and B(2, è2) is not 

identifiable. 

Example 8.1.2 : Let 

* ( * É ë )= ( f c ) A f c( l - A ) n- f c, f e = 0 , l , 2 , . . . , n (8.4) 
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and G(X) be an arbitrary mixing distribution on [0,1]. Let X be a random 

variable with the distribution which is a mixture of p(k\X) with respect to 

the mixing distribution G. Then, for 0 < k < n, 

P r ( X = fc) = / p(k\X)G(dX) 
Jo 

= jX (fy\k(l-X)n-kG(dX) (8.5) 

and Pr(X = k) is a linear function of the first ç moments of G, namely, 

ìÃ= f XrdG(X),0<r<n. (8.6) 
Jo 

Hence any other distribution G*, with the same first ç moments as those 

of G, will yield the same value for Pt(X = k) as that given by G for 

0 < k < n. This shows the lack of identifiability of G with respect to the 

family {B(n, ë ) , 0 < ë < 1} where ç is known. 

Example 8.1.3 : Let Ua,ß{x) denote the uniform distribution function 

on the interval ( á , â). It is easy to check that 

Uo,i(x) = aUo,a(x) + (1 — &)Ua,i{x), —oo < ÷ < oo (8.7) 

for any 0 < a < 1. In other words, the standard uniform distribution on 

(0,1) is a convex mixture of the uniform distributions on (0, a ) and (á , 1) 

for every a, 0 < a < 1. This proves that the family of discrete distributions 

{ G a , 0 < a < 1} with 

G a( / 3 ) = a for â = 0 

= I - a for â = a (8.8) 

is not identifiable with respect to the family {C/ (a , /?) , 0 < á , â < 1 } . Hence 

the family of mixtures of uniform distributions is not identifiable. 

Examples given above illustrate the fact that the problem of identifia-

bility for mixtures is not artificial. Hence we would like to obtain sufficient 

conditions for identifiability in the later sections of this chapter. We point 
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out that if a family Ë is identifiable with respect to a family V, then any 

subfamily of Ë is also identifiable with respect to V. This follows from the 

fact that the mapping Q : Ë —• æ is one-to-one where æ is the family of 

mixtures. 

Remarks 8.1.1 : It is trivial to check that if Ë contains all degenerate 

distributions over è and if 

Ja 
for some è' G È and some nondegenerate distribution G G Ë, then Ë is not 

identifiable. 

According to our discussion, Ë or equivalently æ is identifiable if the 

mapping Q : Ë —> æ is one-to-one where æ is the class of mixtures. In some 

of the literature, æ is said to be identifiable (cf. Teicher (1954), Yakowitz 

and Spragins (1968)) in such an event. This need not create confusion 

among the readers in the light of explanation given earlier. In view of 

this duality, we interchangeably use the notion of identifiability either for 

æ or for Ë depending on the context, convenience in interpretation and 

applicability. 

8.2 Identifiability for Finite Mixtures 

The following result gives a necessary and sufficient condition for the 

identifiability of a finite mixing distribution. A discrete mixing distribution 

with finite number of mass points is called a finite mixing distribution. 

Theorem 8.2.1 (Yakowitz and Spragins (1968)) : A necessary and suffi-

cient condition, on a family V = G è } of probability measures so 

that the class Ë of all finite mixing distributions is identifiable relative to V, 

is that the family V = {ÑÈ>È G è G è } is linearly independent as functions 

on T. 

Proof : Suppose the family V is not linearly independent as functions on 

(8.9) 
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T. Then there exists constants Ci not zero and 0* Å È , É < i < Í such 

that 
Í 

Y^CiP9i{Ä) = 0,AeF. (8.10) 
i=l 

Without loss of generality, assume that 

Ci < C 2 < · · · < CM < 0 < C M+ i < · · · < CN . (8.11) 

Then 
Ì Í 

Ó|£74|Ñâ é(Ë)= Ó |^|Ñ^(Ë) ,
 (8.12) 

i=l ß=Ì+1 and hence 

Ì Í 

Ó\Ïº\ÑÈº(×)= Ó\&\ÑÂ{(×)
 (8.13) 

i=l Ì+1 which proves that 
Í Í 

ÓÀ^É= Ó = 6 (say) . (8.14) 

i=l i = M + l 

It is obvious that b > 0. Let a* = |Ci|/fc, 1 < i < N. Then, it follows that 

Ì Í 

ÓÁºÑÈº(Á)= Ó «iPeM),A€T (8.15) 
i=l i=M+l 

are two distinct representations of the same finite mixture. Hence Ë is not 

identifiable and equivalently V*, the family of convex mixtures of elements 

of V, is not identifiable. 

Conversely, suppose the family V = {P# ,0 G è } are linearly indepen-

dent. Then they form a basis for the linear space < V > spanned by V. 

Since æ C < V > , the identifiability of Ë is a consequence of the uniqueness 

of the representation of elements in æ with respect to the basis V. • 

As a corollary to Theorem 8.2.1, the following result holds. 

Corollary 8.2.1 : A necessary and sufficient condition on the family so 

that the class Ë of all finite mixing distributions is identifiable with respect 

to the family V, is that the image of V under any isomorphism on < V > 
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consists of linearly independent elements in the image space. Here <V> 

is the linear space spanned by V. 

Proof : This result is a consequence of Theorem 8.2.1 by observing that 

the set V is linearly independent iff its image is linearly independent in the 

Remarks 8.2.1 : Corollary 8.2.1 is quite useful in checking identifiability. 

For instance, it is often convenient to check the linear independence of 

the family of Fourier transforms of distribution functions (characteristic 

functions) rather than the linear independence of the family of distribution 

functions themselves. 

Example 8.2.1 : Let V be the family of distribution functions 

{F(x + 0 ) ,— oo < è < o o } where F is a given distribution function. We 

claim that the family V is linearly independent and hence the correspond-

ing Ë of finite mixing distributions is identifiable. Let Ό(ß, è) denote the 

characteristic function of the distribution function F(x + È). Then 

Since the correspondence between the characteristic functions and the dis-

tribution functions on the real line is one-to-one and linear, it is sufficient 

to prove that 

image space. 

0(t, è) = ΘττΊΌ(ß, 0 ) , - o o < t < oo . (8.16) 

k 

Óá3Ö(ßé èý) = 0 aj = 0,1 < j < k . (8.17) 
3 = 1 

Note that 

k k 

3=1 3=1 
;á,·â·" '0(ß,Ï), -oo < t < oo . (8.18) 

Hence 
k 

(8.19) 
3 = 1 
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implies that 
k 

= 0 (8.20) 
j = l 

in a neighbourhood {t : \t\ < 6} of zero for some ä > 0 since 0(t,O) ö 0 in 

a neighbourhood of zero. Suppose ad- ö 0 for j = û , i 2 , i t - Without loss 

of generality, assume that I = k and 

á÷ < a2 < - - · < am < 0 < a m+ i < · · · < a* . 

Then, it follows that 

m k 

j=l j=m+l 
Let ß = 0. Then it follows that 

m k 

j = l j = m + l 
Note that & > 0. We have 

m fc 

_ £ ^ L e ^ = 52 ^ e i W> , - i < t < Ä . (8.21) 
3 = 1 j=m+l 

The function on the left side of (8.21) can be interpreted as the charac-

teristic function of a random variable X taking values 0i , 0 2, ··? 0 m with 

probabilities — ^ respectively. Similarly the right side of the 

equation (8.21) is the characteristic function of another random variable Y 

taking values 0 m+ i , ...,0/k with probabilities ^ t l, a m
b

+ * . Relation (8.21) 

implies that 

ö÷(ß) = öã(ß)Àïô \t\ <6 . (8.22) 

Since ö÷(ß) and </>y(£) are entire characteristic functions being linear func-

tions of exponentials, it follows that 

<M*) = ÖΥ(Ϊ) for a lU (8.23) 

which proves that X and Y should have the same distribution. However, 

the distributions of X and Y are different by earlier remarks. This is a 

contradiction. Hence a3; = 0 for 1 < j < k . 
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Example 8.2.2 : Let V be the family of univariate normal distributions 

ËÃ(ì ,ó 2) ,—oo < ì < ïï,Ï < ó2 < oo. We claim that the corresponding 

family Ë of finite mixing distributions is identifiable. Corollary 8.2.1 implies 

that the identifiability will hold provided 
k 

5^á*âì'*+*ó«í = 0, - o o < t < oo (8.24) 
i=l 

implies that á* = 0,1 < i < k. Observe that the function â÷ñ(ì*£ + \ó2ß2) 

is the moment generating function of Í (ìé, ó2). Let us choose tj, 1 < j < k 

such that the matrix ((7 )̂) is nonsingular where 

jij = e x p ^ i , + ^ó?Þ}, l < i j <k. (8.25) 

Since 
k 

Óáßºßß = °'1 - Î- k » 
i=l 

it follows that a\ = · · · = ak = 0 as the matrix ((7 )̂) is nonsingular. 

Hence the family of finite mixtures of univariate normal distributions or 

equivalently the family Ë of finite mixing distributions is identifiable. This 

result does not hold if Ë is the class of all arbitrary mixing distributions 

(Teicher ( I960) ) . See Example 8.4.2. 

Remarks 8.2.2 : Suppose the family V consists of distributions with the 

property 
m 

Y^e^j(t) = 0 for \t\ < 6,6 > 0 

implies that 0j1 = 0,1 < j < m whenever <j)j(t), 1 < j < m are the charac-

teristic functions of distributions F i , . . . , F m in V. Then it follows that the 

family V is linearly independent and the class Ë of finite mixing distribu-

tions is identifiable. 

Remarks 8.2.3 : Suppose the family V consists of a finite number of 

distribution functions {Fi(x), 1 < i < k}. Theorem 8.2.1 implies that the 

family of finite mixtures of V or equivalently the family Ë of finite mixing 
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distributions on V is identifiable iff there exist k distinct values x i , x2, Xfc 

such that 

' F^Xi) · · · F f c( x i ) 

Fi(xi) ••• Fk(x2) Ö0 (8.26) 

Fi(xk) ••• Fk(xk) 

Similar results can be given in case the family V is defined either through 

density functions or through probability mass functions. 

Example 8.2.3 : The family of finite mixtures of geometric distributions 

Ñ ë, 0 < ë < 1 defined by PX{X = i) = À i _ 1( l - ë ) , i > 1 is identifiable. 

This can be shown by choosing = i, 1 < i < k and checking that 

ñ ë é( × = À ) Ñ÷Ë* = À) »· Ñ\Ë* = À) 

Ñ ë é( × = 2) Ñ÷2(× = 2) ... Ñ÷Ë× = æ) 

PXl(X = k) Px2(X = k) Pxk(X = k) 

= (0(1-^)} 

1 

ëé 

1 

ë 2 

i=l 
k-1 \k-l 

1 

Xk 
(8.27) 

Let Tk(ßi, ì 2 , ß k ) denote the class of all univariate distributions F 

such that the first (k + 1) central moments of F are ìï = 1,ìé,. . . ,ì& 

respectively. Let 

a< = EFi{X) = J xFi(dx) (8.28) 

and 

aitr = EFi[Xr] = JxrFi(dx),r > 2 . (8.29) 

Then 
Ì « , Ã = f(x - OLi)rFi{dx) . (8.30) 
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We are assuming that < oo, 1 < r < k. For any fixed 1 < i < fc, de-

note Tk(ß\, ì2> ···> ßk) by An example of such a family is a translation 

parameter family as discussed in Example 8.2.1. 

Theorem 8.2.2 (Rennie (1974)) : The class Ë of finite mixing distributions 

is identifiable with respect to V = {Fi, 1 < i < k} where Fi G Tk~x with 

unequal means. 

Proof : It is sufficient to prove that V is linearly independent. Suppose 

k 

This can be seen by induction argument on r. Suppose r = 0. It is obvious 

that (8.32) holds for r = 0 by letting ÷ —• oo in (8.31). Suppose the relation 

(8.32) holds for some 0 < m < r < k. We will show that (8.32) holds for 

m = ã + 1. Note that 

(8.31) 

Then we claim that 
k 

(8.32) 
i=l 

m =0 

(8.33) 

Furthermore 
k 

(8.34) 

k 
since 

2=1 
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™=(Ë m > i=i 

V 7 z=l 

k 

= (8.35) 

i=l 

by the induction hypotheses
.
 Relations (8.34) and (8.35) prove that 

k 

Ó ^ < + 1= 0 (8.36) 
i=l 

which completes the induction argument. Hence 

k 

Y^Cial = 0 , 0 < r < À; .
 (8.37) 

i=l 
Writing the above set of equations in matrix from, we have 

1 1 ·· 1 " 0 ' 

Oil a2 c 2 — 
0 

. « Î - 1 
« t

1
 ' . 0 . 

(8.38) 

The matrix ({al))kxk is the Vandermonde matrix with determinant 

Yli<i<j<k(aj ~ ai) nonzero since ai ö aj for i ö j by assumption. 

Hence the matrix ((al))kxk is nonsingular and it follows that C\ = C2 = 

• · · = Cfc = 0 which in turn implies the identifiability of finite mixtures of 

{ F ! , F 2 , . . . , F f c} whenever EFi{X) ö EFj(X) for ÷ö j , l < i,j < k. • 

Remarks 8.2.4 : As a consequence of the above theorem, we obtain that 

the family of finite mixtures generated by two distributions with different 

means is identifiable. Similarly the family generated by three distributions 

with different means but common variances is identifiable and the family 

generated by four distributions with different means but common variance 

and common third absolute central moments (for example symmetric dis-

tributions) is identifiable. 
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For other applications of Theorem 8.2.1, see Yakowtiz and Spragins 

(1968). 

Let us now consider another result due to Teicher (1963) which gives a 

sufficient condition for identifiability in the case of finite mixtures. 

Theorem 8.2.3 : Suppose that to each P G V is associated a transform 

ö with domain of definition ûö and the mapping M : V —• ö is linear. 

Further suppose that there is a total ordering < of V such that Pi < P2 => 

ûö1 C ¼ö2 and for each P i G V there exists t\ G Ã é = {t : öé{ß) Ό 0 } such 

that 

hm £ W = 0 (8.39) 

whenever P\ < P2, P i , P2 G V. Then the class Ë of all finite mixing distri-

butions is identifiable. 

Proof: Suppose 
Í 

Y^CiPi = 0,Pi G Ñ , 1 < i < Í . (8.40) 

Without loss of generality, assume that Pi < Pj if i < j . By hypothesis, 
TV 

5^Ci0<(i) = 0, - o o < t < oo . (8.41) 
i=l 

Let Ti = {£ G JD^ : ö^ß) Ό 0 } . For ß G Ãé , 

TV 
^ + Ó^ÉÀ7Ô = 0 ( 8· 4 2) 

and hence as t —• G Ã é through values of Ãé , we get that C\ = 0 by 

(8.39) . Hence 
Í 

Y^CiPi = 0 . (8.43) 
i=2 

Repeating the process, we get that Ci = 0,1 < i < N. Hence we have the 

identifiability of Ë. • 

Example 8.2.4 (Teicher (1963)): A n application of Theorem 8.2.3 shows 

that the finite mixtures of gamma densities are identifiable. This can be 
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checked in the following way. Consider the gamma density 

f(x;6,a) = T^xa~le~6x, 0 < ÷ < oo 

= 0 otherwise 

where 0 > 0 and a > 0. The moment generating function of this density is 

given by 

È,a) = ( ^ - t ) a = (1 - | ) - e for - oo < t < è . (8.44) 

Let us order the family of distributions F(x;6,a) corresponding to the 

densities f(x;6, a ) by the ordering 

F ( x , f l i , a i ) < F ( x , f l 2, a 2) (8.45) 

if 0! < 0 2 or 0i = 0 2 but a i > a 2. Note that if i\ = F ( - , 0 i , a i ) < 

F{-,62,0.2) = F 2, then = (—00,0i) is contained in D^2 = {—00,62) 

and we can take t\ = 0÷ in Theorem 8.2.3. Furthermore 

l im y f c - ) _ l im ( i - ^ p _ á - Ý ) " _ 0 ( 8. 4 6) 

· - · • « ( , « , , a , ) 1-1. ( 1 - ^ · ) - « ' ( 1 - ^ ) » V ' 

since ßé = 0é· Hence the class of finite mixtures of gamma distributions 

is identifiable by Theorem 8.2.3. Choosing a = 1, we note that the finite 

mixtures of exponential distributions are identifiable. 

8.3 Identifiability of Finite Mixtures for Directional D a t a 

One of the distributions that is widely used for modeling directional 

data (circular data) is the Von-Mises distribution with density given by 

f(6;a,k) = ( 2 ð / 0( Á ; ) ) " 1 exp[fc cos (0 - á ) ] , 0 < 0 < 2ð 

= 0 otherwise 

where 0 < a < 2n,k > 0 and Io(k) is the modified Bessel function of the 

first kind and order zero (cf. Mardia (1972)). However, when modeling 

multimodal directional data, finite mixtures of these distributions or finite 

mixtures of other circular distributions are used. Hence the question of 
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identifiability of these mixtures is of importance prior to statistical inference 

aspects for directional data. Results in this direction are given in Eraser 

et al. (1981) and Kent (1983). Eraser et al. (1981) proved that the finite 

mixtures of Von-Mises distributions are identifiable using Theorem 8.2.1 

due to Yakowitz and Spragins (1968). More general resuts are obtained in 

Kent (1983). We now discuss results from Kent (1983). 

Let M be a connected manifold which can be embedded in the Eu-

clidean space Rk. Let E{M) denote the family of functions on M of the 

form e x p { P ( x ) } where P(x) is a polynomial on Rk of arbitrary but finite 

degree. We are interested in the identifiability of finite mixtures of prob-

ability densities on M with respect to some underlying ó-finite measure ì 

on M when the density is proportional to an element in E(M). It is easy 

to see that the identifiability holds iff the collection E(M) is identifiable 

as a collection of functions on M provided the support of ì contains an 

open subset of M. The last condition is natural since we are dealing with 

probability measures on M. In other words, for the study of identifiability, 

the form of ì is irrelevant and it is sufficient to discuss identifiability of 

E(M) in the following sense following Theorem 8.2.1 due to Yakowitz and 

Spragins (1968). 

A family r of functions on M is called identifiable if all finite sets 

of essentially distinct functions in r are linearly independent. That is, if 

/ i ( x ) , 1 < i < ç are essentially distinct functions on M such that 

i=l 

then ëé = · · · = ë ç = 0. Here fi and f2 are said to be essentially distinct 

if / i and f2 are not proportional to each other. 

Note that two distinct polynomials on Rk need not define two dis-

tinct polynomials on M. If P\{x) — P2(#) is a constant for ÷ G M where 

P i ( x ) , l < i < 2 are polynomials on Rk, then e x p { P i ( x ) } and e x p { P 2 ( x ) } 

define essentially the same function in E(M) but not on Rk. For example, 

Δ 
(8.47) 
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the polynomials P(x) = 1 and P(x) = {x\ + x2)3,x = ( ^ 1 ^ 2 ) € R2 are 

same on the unit circle x\ + ÷% = 1 but are not the same on all of R2. 

It is clear from the definition of identifiability given above that if Ãé and 

Ã 2 are identifiable families of functions on manifolds M\ and M2, then the 

class {f(x)g(y) : / G Ãé,g G Ã 2} is identifiable on the product manifold 

Ì é ÷ M 2. 

Suppose the manifold M is a direct product of Stiefel manifolds and 

copies of the real line R. A Stiefel manifold 0(p, k) can be embedded in Rpk 

as the set of ñ ÷ k matrices X such that ×ôX = Ik, the k ÷ k identity 

matrix. If k = p, then we add the additional condition d e t ( X ) = 1. If 

k = 1, then we obtain the unit sphere in p-dimension as an example of a 

Stiefel manifold. Manifolds of this type occur in modeling directional data 

(Beran (1979), Johnson and Wehrly (1978), Mardia and Sutton (1978)). 

Theorem 8.3.1 : Let M be a finite direct product of Stiefel manifolds and 

copies of the real line. Then the family E(M) is identifiable. 

Proof : In view of earlier remarks on identifiability on products of mani-

folds, it is sufficient to study identifiability on the real line and on all Stiefel 

manifolds. 

Case (1) ( M is a circle 0 (2 ,1 ) ) ' Every point (xi,x2) on the unit circle 

can be represented in the form xi = cos È, x2 = sin è and every element in 

E(0(2,1)) can be represented uniquely in the form 

for some m > 0. The parameters kj > 0 are uniquely determined and, if 

kj > 0, then á3· 6 [0,2ð) is uniquely determined. Let 

m 

(8.48) 

Vj(a) = kj cos(ja — otj), \ < j <m (8.49) 

and 

Ψ(ή)Φ = (vi(a),...,vm(a)) . (8.50) 
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Define Σ^(ή) > Σ^2\ή) if for some j with 1 < j < m, vf\a) > vf\a) 

and Vj]\a) = Vp\a) for j < f < m whenever Σ^(ή) and Ψ^2\ή) are of 

the same length. Any two vectors Σ(ή) of possibly different lengths can be 

compared by appending zeroes to the end of the shorter vector. This will 

give a total ordering on the collection {Ψ(ή)}. 

In order to prove the identifiability for E(M), it is sufficient to show 

that 
Í 

Ó W r )( 0 ) = 0,0 < è < 2ð => ëé = · - - = ×Í = 0 (8.51) 
r=l 

where 

9̂ (è) = e x p { £ f c j r ) cos (j9 - c*5r))} . 

Since g^{9), 1 < r < Í are entire functions of È, it follows that 

Í 

5^Ar</r) (0) = 0,0 = ó + zr, - o o < ó < oo, - o o < ô < oo 
r=l 

from (8.53). Note that 

c o s ( j a + j i r — ot^p) = cosQ'a — a ^ ) cos(ijr) 

— sin( ja — a ^ ) s in ( i j r ) 

= cos( ja — (*P ) cosh( jr) 

Hence 

\g^(ó + IT)I = exp{ fc^ cos(ja — a"p) cosher)} 

= e x p { y ^ Vjr\a) cosher)} 

and 
^ ( ó + æô) 

0 as ô —* oo 

provided 
g^(a + ir) 

v{r\a)<v{s\a) . 

(8.52) 

(8.53) 

—i s inQa — a ^ ) sinner) . (8.54) 

(8.55) 

(8.56) 

(8.57) 



200 CHAPTER 8. IDENTIFIABILITY FOR MIXTURES 

If and are two different components in the mixture, there exists 

at least one j such that 

(tfUf^^.oS'')- (8·58) 
Hence, for all but finitely many ó G [0,27r]),vJrV) ö õ^8)(ó). Therefore 

v(r\a) ö õ(8\ó) for all but finitely many ó G [0 ,2ð) . Hence there exists at 

least one ó for which í^ô\ó), 1 < r < Í are all distinct. Choose such a ó 

and order the functions g(r\0), 1 < r < ç so that õ^(ó) > · · · > õ^Í\ó). 

Dividing (8.55) by g^{0) with è = ó + ßô and allowing r —• oo, we get that 

ëé = 0. Proceeding in a similar way with the remaining terms, we obtain 

that ëé = · · · = Xn = 0. This proves the identifiability of E ( M ) when M 

is a circle . 

Case (2) ( M is a Stiefel manifold ) : We reduce the problem of identi-

fiability to that of a circle discussed above in Case (1) and apply the result 

obtained therein. 

Let us denote an element of the Stiefel manifold by a matrix X of order 

px k. Without loss of generality, we assume that k = p, for, if k < p, then 

any polynomial Ñé(×é) defined for Xi G 0(p, k) can be extended to 0(p ,p) 

by the relation 

P(X) = P1(X1),X e0(p,p) (8.59) 

where Xi contains the first k columns of X. Any linear relation between 

essentially distinct functions on 0(p, k) leads to another linear relation be-

tween essentially distinct functions on 0 (p ,p ) . 

Let us assume k = p. Suppose 

Í 

5 > / W ( A : ) = 0 (8.60) 

i=l 

for X G M = 0(p,p) where f{i)(X) = e x p { P « ( X ) } and are 

essentially distinct functions. 

Note that Ip G 0 (p ,p) where Ip is the identity matrix of order p. 

Without loss of generality, let us choose the constants in the polynomi-

als p(r\X), r = 1,..., Í so that P^(IP) = 0. Since P^{X) is an analytic 
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function on the analytic manifold 0(p,p), it is determined by its values on 

any open subset in 0(p,p). Therefore, given any two distinct polynomials 

on 0 (p ,p ) , the points at which they differ must be dense in 0 (p ,p ) . Hence 

the points at which P(r\X), 1 < r < Í take Í distinct values are dense 

in 0 (p ,p ) . Let -X"* be such a point in 0(p,p). Let 

j ( 0 ) = 
cos è sin è 

— sin è cos è 
, 0 < è < 2ð (8.61) 

Define 

Â(èé,è2, . . . , 0 g) = 

J ( 0 i ) 

J ( 0 2) 

J(0q) 

(8.62) 

where q = \ when ñ is even and 

Â(è÷,è2, ...,0g) = 

J ( f f i ) 

J ( 0 2) 

1 

(8.63) 

for g = [|] when ñ is odd. Here Â(èé,è2, .·., 0 g) is a block diagonal orthog-

onal matrix. By the decomposition theorem for orthogonal matrices (cf. 

Herstein (1964, p. 306 ) ) , it follows that there exists an orthogonal matrix 

H such that 

X* = HB(ei,...,e*q)HT 

where 0 < è* < 2ð, 1 < i < q. Consider the submanifold 

(8.64) 

M 0 = {HB(0i,..., È
9
)ÇT : 0 < 0< < 2ð, 1 < i < q). (8.65) 

Then Mo C 0(p ,p) and Mo is a multidimensional torus containing both 

I ñ and X * . Any polynomial in X can be regarded as a polynomial in 

(cos0i , s in0i ) , 1 < i < q on M 0 and the functions f(r\X), 1 < r < Í can 

be considered as essentially distinct functions in E(Mq). 
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In view of the fact that the property of identifiability is closed under 

direct products and the result for a circle holds as proved in Case (1 ) , it 

follows that the result as stated in the theorem holds for E(Mo). In other 

words f(r̂ (X), 1 < r < Í are linearly independent and ëé = · · · = ×÷ = 0. 

Case (3) (M is the real line): Here the proof follows along the same 

method as that given in Case (1) . Observe that the ratio for any two 

distinct functions in E(R) tends to zero or infinity as X —• oo. 

This completes the proof of Theorem 8.3.1. • 

Remarks 8.3.1 : As a consequence of Theorem 8.3.1, it follows that the 

finite mixtures of Von-Mises densities 
m 

9é(è) = ^ X i e xP ( ^ i c o s( 0 - ai)) (8·66) 
i=l 

are identifiable. Similarly finite mixtures of densities of the form 

m 

92(è) = c e x p { £ 7 j cosO'0 - ßj)} (8.67) 

are identifiable. In addition, it follows that the finite mixtures of multivari-

ate normal distributions on Rn are identifiable (see Remarks 8.6.2). 

8.4 Identifiability for Countable Mixtures 

Let {F», æ > 1 } be a sequence of distribution functions and 

oo 
F(x) = Y/ßiFi(x) (8.68) 

where J^IAI < = 1· F is called a countable mixture of {Fi}. 
i Note that ßi could be negative. If ßi are all nonnegative, then F will be a 

distribution function. The mixture F or equivalently the sequence {ßi} is 

said to be identifiable if 

oo oo oo 

F(x) = ÓÁÁ(÷),Ó|/%| < ð,Óâß = 1 (8·69) 
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and 
oo oo oo 

f(x) = $ > ¹ ( * ) , Ó í < °°> Ó* =1 (8·69 )̂ 
t=l i=l α=1 

imply that 
ßi = 7<» * > 1 · 

In other words, the representation (8.68) is unique. The problem is to find 

conditions on the family {Fi} for the identifiability of the mixture F. 

The infinite set {Fi,i > 1 } is said to be linearly independent if every 

finite subset is linearly independent. It is said to be strongly linearly inde-

pendent if 

oo oo 

Ó ^iFi(x) = 0, Ó \ai\ < oo => ai = 0 for all i > 1. (8.70) 
2=1 1=1 

Theorem 8.4 .1 : A necessary condition that the mixture F defined by 

(8.68) is identifiable is that the set {Fi,i > 1 } is linearly independent. 

Proof : Suppose the set {Fi,i > 1} is not linearly independent. Then 

there exists a finite subset which is linearly dependent. By renumbering if 

necessary, we can assume without loss of generality that 

k-l 

Fk{x) = YjaiFi{x). (8.71) 
i=l 

Hence 
k—l oo 

F(x) = '£(ßi + aißk)Fi(x)+ Ó ßjFjix). (8.72) 

i=l j=k+l 

An alternate representation for F(x) is 

oo 
F{x) = Yjß'iFi{x) (8.73) 

i = l 

where 

# = A + e a j , l < i < * - l , (8.74) 

ß'k = ßk - å (8.74Ë) 
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and 

ß[ = ßui>k. (8 .74B) . 

This can be seen from the fact 
fc-l 

5>* = 1 (8.75) 
i=l 

which follows from the equation (8.71) by letting ω —» + o c . It is easy to 

see that 
£ ) | ß | < o o , £ ß = l. 

The relations (8.74) and (8.75) give two distinct representations for F(x). 

Hence the mixture F is not identifiable. • 

Remarks 8.4.1 : The condition of linear independence of the set {Fi} is 

a necessary and sufficient condition for the identifiability finite mixtures. 

It is a necessary condition for the identifiability of countable mixtures. As 

we will show below, it is not a sufficient condition for the identifiability of 

countable mixtures. 

Let {F*,i > 1} be a strongly linearly independent family. Define 

F < + 1= i ? , i > l 

and 
oo 

F1=Y/ßiF* 
i=l 

where ßi > 0,i > 1 and Y^ißi = 1. Then the set {Fi} is linearly inde-

pendent but not strongly linearly independent and hence mixtures of {Fi} 

are not identifiable. It is easy to see that the mixture F defined by (8.68) 

is identifiable iff the set {Fi,i > 1 } is strongly linearly dependent. 

In view of Theorem 8.4.1, we will assume that {Fi} is linearly indepen-

dent. Suppose Fi G L2(R), the space of square integrable functions with 

respect to the Lebesgue measure on R. Applying Gram—Schmidt orthog-

onalization process, we can obtain an associated orthonormal system {ö^} 
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under the inner product 

/

oo 

f(x)g(x)dx,f,g£L2(R). (8.76) 

- OO 

Let 

/
oo 

öß(÷)Ñ3(÷)Ü÷ (8.77) 
-oo 

and Ê = ({kij)). Ê is an infinite (dimensional) matrix. For results on 

infinite matrices, see Cooke (1950) and Kantorovich and Krylov (1959). 

Dienes (1932) discusses linear equations in infinite matrices. 

Remarks 8.4.2 : Suppose Fi(x) < H(x) for all ÷ and H e L2(R). Assume 

that there exists a vector â ô = (/?i, / 3 2, . . . ) such that 

oo 

F(x) = J2ßiFi(x)- (8-78) 
i=l 

Let 

Then 

/
oo 

Ότ(ω)Ã(ω)έω . (8.79) 
-oo 

/

oo k 
ΌÀ{ω) lim CS^ß0F3{x)}dx (8.80) 

-oo JT[ 

/
oo & 

Öτ(ω)(^2â^(ω)}έω (8.81) 
3 

by the dominated convergence theorem since 

k 

3=1 3=1 

for all k and the function Όα{ω)Ç{ω) is integrable. Hence 

oti = lim ^ßjKij 

oo 
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Let 

aT = (aua2,...). (8.84) 

Then it follows that 

á = Ê â. (8.85) 

On the other hand, suppose there exists a solution â to the equation 

Êâ = ex. Then 

/

oo oo 

- ^3F3{x))dx = 0 (8.86) 

for all i > 1. Let Ã be the closed subspace spanned by {ΌÀ,ß > 1} or 

equivalently by {Fj, j > 1 } . Relation (8.86) shows that 
oo 

F{x) = Y^ß3F3{x) a.e. 
3 = 1 

Hence we have the following theorem . 

Theorem 8.4.2 : Suppose 

Fi(x)<H{x) where H e L2(R) (8.87) 

for all i > 1. If â is a solution of the equation 

oo 

F(x) = Y^ßjFjix) a.e (8.88) 
3=1 

then á = Ê â. Conversely if á = Ê â, then â is a solution of the equation 

(8.90). 

Remarks 8.4.3 : The above theorem continues to hold without the condi-

tion (8.87) if we insist that ft > 0 for all i > 1 in (8.68). The result follows 

from an application of the monotone convergence theorem in equations 

(8.80) and (8.81). 

Remarks 8.4.4 : It is clear that the solution â for the equation 

ct = Êâ (8.89) 
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is unique iff Ê 1 exists. In fact, in such an event, 

â = K~la . (8.90) 

Let us consider a mixture 

oo 

g(x) = ò ^ · ( 4 Ó ê ß < °°>Ó^ = 1 · (8·91) 
Suppose 

Y^w3F3{x) = ^2õ3ö3(÷) a.e. (8.92) 
j=l j=l 

where {ö3} is the orthonormal system for L2(R) described earlier. Multi-

plying both sides by ö{ and integrating over the real line, we have 

oo 

J2w3Ki3=yui>l (8.93) 
j=l 

or equivalently 

y = Kw. (8.94) 

Let 

/

oo 

Fi{x)Fj(x)dx,i > 1, j > 1. (8.95) 

-oo 
Multiplying both sides of (8.95) by Fi and integrating over the real line, we 

have 
oo oo 

^w3di3 = Y^yiK3i
 (8.96) 

j=l j=l 
or equivalently 

Dw = KTy
 (8.97) 

where D = ( (d i j ) ) . Relations (8.94) and (8.97) prove that 

Dw = KTKw . (8.98) 

It can be shown that Ê~ë exists iff £ > _ 1 exists. Hence the countable 

mixture F is identifiable iff D~l exists. Recall that we have assumed that 

the set { F » } is linearly independent and Fi(x) < H(x) e L2(R) for all i > 1. 
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Remarks 8.4.5: It is easy to see that the condition that D _ 1 exists is also 

necessary and sufficient for identifiability if we consider convex mixtures of 

{Fi}, that is, mixtures of the form 

oo oo 

ÓßiFi(x),ßi > 0, ^ ft = 1. (8.99) 
i=l i=l 

Furthermore, the results obtained above continue to hold if we replace F{ 

by its density fa or by its characteristic function öé for every i. 

Example 8.4.1 : Suppose 

0 otherwise 

for i>l. Let 

/
oo 

fi(x)fj(x)dx . 
-oo 

It is easy to see that dij is either 0, \ or 1. In fact, for any i > 1, 

and = 0 for all other j. The equation 

Dx = 0 

leads to the set of equations \x%-\ + x% + |#ß+é = 0, i > 1 where we define 

#o = 0 and the condition W < 00 holds. Let 

i=l 

Then it follows that 

/ W - â 1 x 1 

If ÷é ^ 0, then 
^ 1 
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and the power series expansion of g is obviously not of the form Y^=1 XiS1 

with positive powers of s. Hence x\ = 0 which in turn implies that g(s) = 0 

for 0 < s < 1. Clearly #(0) = 0. Hence g(s) = 0 for 0 < s < 1 which shows 

that ÷ = 0. This proves that D~l exists and the family of convex mixtures 

° f {fiii > 1} is identifiable. 

Example 8.4.2 : Let 

fi(x) = V ß Ð - ^ < ÷ < À - £ 

— 0 otherwise 

for i > 1. Here D is a diagonal matrix and Dx = 0 iff ÷ = 0. Hence the 

family of convex mixtures of {fi,i > 1 } is identifiable. 

Remarks 8.4.6 : Results in this section are due to Tallis (1969) with slight 

modification. Patil and Bildikar (1966) discussed identifiability of count-

able mixtures of discrete probability distributions using methods of infinite 

matrices. Luexmann(1987) investigated the identifiability of mixtures of 

infinitely divisible power series distributions. 

8.5 Identifiability for Arbitrary Mixtures 

Corollary 8.2.1 deals with a necessary and sufficient condition for the 

identifiability of the class Ë of finite mixing distributions with respect to 

a family V of probability measures. In general, this result does not hold 

for the class Ë of arbitrary mixing distributions. For instance, the class of 

arbitrary mixtures of normal distributions {Í(ì, ó 2) , —oo < ì < ïï,Ï < 

ó 2 < o o } is not identifiable (Teicher (I960)) whereas the class finite mix-

tures of normal distributions {Í(ì, ó 2) , —oo < ì < oo, 0 < ó 2 < o o } forms 

an identifiable family as shown in Example 8.2.2. 

We shall now obtain some sufficient conditions for identifiability of ar-

bitrary mixtures. 
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Let { / ( · , 0 ) , 0 G è } be a family of densities on the real line where è is 

an interval on the real line. Let G be a probability distribution on è and 

define 

fG(x)= i / ( x , 0 ) d G ( 0 ) , - o o < ÷ < oo. (8.100) 
Je 

Let V = { / ( · , 0 ) , 0 G È } and Ã = { / ( ÷ , - ) , - ï ï < ÷ < o o } . Let C o( 0 ) be 

the Banach space of continuous functions on the interval è vanishing at 

infinity and normed by 

IMI = sup|0(y)| (8.101) 

for g G C o ( 6 ) . 

Theorem 8.5.1 (Blum and Susarla (1977)): Suppose Ã C <7 0(è ) . Then 

the family Ë of arbitrary mixing distributions is identifiable, that is, 

/ g W = fH(x), - o o < ÷ < oo => Ç(è) = G ( 0 ) , 0 G θ (8.102) 

iff Ã generates Co ( è ) under the supremum norm defined by (8.103). 

Proof : Suppose the family Ë is identifiable. Let Â be the closed subspace 

of C o ( 6 ) generated by Ã. If possible, suppose there exists 

g € C o ( 6 ) — B,g Ö 0. By the Hahn—Banach theorem, there exists a 

bounded linear functional ø on C o ( 6 ) such that 

t/>(g) = 1 and t/>(h) = 0, h G Â. (8.103) 

But, by the Riesz representation theorem, there exist nondecreasing non-

negative functions K\ and K2 of bounded variation on è such that 

1>(f) = Ι Ú{è)Ü{Êë - ÜT2)(0), / G ó 0( è ) . (8.104) 
Je 

Hence 

/ ç(è)ÜÊ1(è)= τ ç{è)ÜÊ2(è),Éé<ÎÂ (8.105) 
Je Je 

by (8.103). This proves that Êë{è) = Ê2{è) -h C for some constant C 

by the identifiability of Ë and the fact that Â is generated by Ã. Hence 

Ø(ß) — 0> / G Co(0) . In particular \j)(g) = 0. This contradicts the fact that 
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ø(è) = 1 given by (8.103). Hence there exists no element g G C o ( © ) —J5, g ö 

0. In other words, Ã generates Co ( è ) . 

Conversely, assume that Ã generates C o ( 6 ) . Suppose 

fG{x)= f f(x,e)G{M)= [ f{x,e)H(de) = fH(x),-oc<x<oc 
Je Je 

(8.106) 

for some probability distributions G and H on È. Since Ã generates C o ( 6 ) 

under the supremum norm, it is easy to check that 

/ g{e)dG{0)= τ 9(è)ÜÇ(è),9Åè0(È). (8.107) 
Je Je 

Let 

Ö(9)= τ g(9)dG(e),geC0m (8.108) 
Je 

Then ø(·) is a bounded linear functional on Cq(9) since G is of bounded 

variation on È. Prom the uniqueness in the Riesz representation theorem, it 

follows that G—H is a constant. Since G and H are probability distributions 

on È, it follows that G(0) = ft(0),0 G è proving the identifiability of the 

class Ë. • 

Remarks 8.5.1 : Theorem 8.5.1 essentially generalizes Theorem 8.2.1 to 

the family Ë of arbitrary mixing distributions. Teicher (1961) extended 

the result discussed in Example 8.2.1 to the family Ë of arbitrary mixing 

distributions. His result is as follows: suppose F is a distribution with 

characteristic function \ö(ß)\ > 0 in a neighbourhood of zero; then the 

family Ë is identifiable with respect to the family {F(x + 6); è G è } for any 

interval è contained in R. We omit the proof. 

Example 8.5 .1 : Suppose / ( # , ë ) is normal density with mean ë and vari-

ance one. Let us define 

fG(x) = / / ( a , \)dG(\), - o o < ÷ < oo . (8.109) 
J—oo 

Then / g ( # ) is the density of a mixture of normal densities with mean ë 

and variance one with mixing distribution G(X). The characteristic function 
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ø(ß) of the mixture / G ( * ) is 

'OO 

4>a(t) = eitxfG(x)dx = / eitx[ f(x,X)dG(X)}d: Ix 
—oo 

/ [ / eitxf(x, X)dx]dG(X) 

2 Ã 
= e - V / e

atdG(X). (8.110) J—OO 

All the above equations are justified by Fubini's theorem. Let 0 G ( O denote 

the characteristic function of the distribution function G. It follows that 

This relation shows that there is a one-to-one correspondence between the 

characteristic function corresponding to G and the characteristic function 

corresponding to / G - Hence, it follows that the distribution function corre-

sponding to / G is uniquely determined by the distribution function G. Thus 

G is identifiable and the family of mixtures of {ΑΓ ( ë , 1), —oo < ë < oo} is 

identifiable. It is clear that the result holds for any family of normal distri-

butions with specified variance. As we have already mentioned earlier, the 

result is not true if the variance is not specified (Teicher ( I960) ) . See the 

next example for details. 

Example 8.5.2 (Teicher 1960): Let V = { Λ Γ ( 0 , ó 2) , - o o < ì < oo, 

0 < ó 2 < oo } and G be a probability measure on the space R ÷ Let 

where Ö(÷; 0, ó 2) denotes the normal distribution function with mean 0 and 

variance ó 2. Let Go\a2(-\a2) be the conditional distribution function of 0 

given ó 2. Note that 

(8.111) 

(8.112) 

H(x) 

(8.113) 



8.5. IDENTIFIABILITY FOR ARBITRARY MIXTURES 213 

where G\{a2) denotes the marginal distribution of ó 2. Therefore 

H(x) = ; 0 a ) d G < ^ ( % 2) ] d G i ( < T 2) 

OO 

[Ö(÷; 0, ó 2) * G e W2 ( ÷ | ó 2) ] Ë ? é ( ó 2) (8.114) 

where * denotes convolution. Let h(t) denote the charcteristic function 

of the distribution function H(x) and ø(τ\ή2) denote the characteristic 

function of the conditional distribution function εΘ\ή2{÷\ή2). Then 

h(t)= / ° ° â " ó 2* 2 /í ( * | ^ 2 ) ^ é ( ó 2 ) . (8.115) 
Jo 

Suppose the probability measure G is such that the conditional distribu-

tion of Ί given ή2 is symmetric. Then ø(τ\ή2) is a real-valued function 

and relations (8.114) and (8.115) prove that i f is a Gi-mixture of normal 

distribution function Ö(÷; 0, ó 2) . However Ç is also a G-mixture of normal 

distribution functions Ö ( ÷ ; 0 , ó 2) from (8.112). Hence arbitrary mixtures 

of normal distributions are not identifiable. 

Remarks 8.5.2 (Convolution): Suppose 

/

oo 

K(x - X)G(dx), - c o < ÷ < oo (8.116) 

- OO 

where Ê and G are distribution functions. In other words H = Ê * G. 

Convolution is a special mixture of distributions. We claim that H identifies 

G if the characteristic function of G is analytic. This can be seen from 

following observations. Suppose 

/
OO Ë Ï Ï 

K(x - X)G!(dX) = / K(x-X)G2(d\),-oo < ÷ < oo

. 
-oo

 J

—oo 

(8.117

) 

Then 

Öξ{α)Ό0α(τ) = ΌÇ(τ) = ÖξÌÖφË*) (8·118) 

for all t where 0 f W denotes the characteristic function of the distribution 

function F. Since Όξ{μ) does not vanish in a neighbourhood (say) V of 

zero, it follows that 

= 0 c a V . (8.119) 
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This will in general not prove that G\ = G<i. However, if the characteristic 

functions of G\ and G2 are analytic, then it follows that 

Öè! (t) = öï2 (t), - 0 0 < t < 00 (8.120) 

and G i = G2. However, if öê{ß) ö 0 for all t, then the relation (8.118) 

implies that </>GiM = ΦΊ2(^) f ° r a^ ^ a nd hence G i = G2. For instance, if 

Ê is an infinitely divisible distribution, then öê{ß) ö 0 for all t and hence 

G i = G2. In particular, if K(-) is a normal distribution function, then 

G\ = G2. 

Remarks 8.5.3 (Additively closed families) : Suppose we consider 

mixtures of the form 

K(x, A)G(dA), - 0 0 < ÷ < 00 (8.121) 

where Ê belongs to an additively closed family of distribution functions in 

the sense 

K(x, ë é ) * K(x, ë 2) = K(x, ëé + ë 2) (8.122) 

and * denotes convolution. An example of an additively closed family 

is Ñ ( ë ) , 0 < ë < oo where P (A) denotes the Poisson distribution with 

parameter ë. Let </>&(£, ë ) denote the characteristic function of K(x, ë ) . 

Then 

ëé)0*(ß, A 2) = 0fc(t, ëé + ë 2) , - o o < t < 00 . (8.123) 

Since </>&(£, 1) is a measurable function, the only measurable solution of the 

above functional equation is 

0 f c(t, ë ) = eXc{t\ - 0 0 < t < 00 (8.124) 

for some function c(t). Hence 

0 f c(t, ë ) = [0 f c(t , 1 ) ] \ - 0 0 < t < 00 . (8.125) 

Since (/>&(£, ë ) is a characteristic function, it follows that ë > 0 and G has 

to be a measure on [0,00). Let ΦΔ(μ) denote the characteristic function of 

H. 
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Then 

/•OO 

<M*) = / <t>K(tX)G(d\) 
Jo 

roc 

= / [öê(ß, l)]xG(d\), -oc<t<oc. (8.126) 
Jo 

Suppose that G\ and G2 are two probability measures with support on 

[0,00) such that 

/•oo poo 

H(x)= / K{x,\)Gi{dX)= / K(x,X)G2(d\) (8.127) 
Jo Jo 

for all x. Then 

Ë OO Ë Ï Ï 

ΦΔ(Ϊ)= [<ÌÌ)]ë<?é(ßßë) = / [öê(ß,1)]÷02(Üë) (8.128) 
Jo Jo 

for —00 < t < 00. Let 

Ë ÏÏ 

øâ(æ)= / z AG ( d À ) . (8.129) 
Jo 

The function ^ G ( ^ ) is analytic in {z : 0 < |z| < 1 } . Since öóÁ*) = Øï2(æ) 

for æ = </>fc(i, 1) and for all ß G fi, it follows that ipGi(z) = ̂ G2iz) f ° r 

0 < |z| < 1. In particular 

V ) G l( p e i t) = V G 2( p e < <) (8.130) 

for 0 < ñ < 1 and — 00 < t < 00. Applying the dominated convergence 

theorem, it follows that (8.130) holds for ñ = 1. Therefore 

/•oo Ë Ï Ï 

/ e?txG1{d\)= I eitxG2{d\),-oo<t<oo. (8.131) 
Ë) Jo 

Since the characteristic functions of G\ and G2 are identical, it follows that 

G i = G2 by the inversion theorem. 

Results discussed above are due to Teicher (1961). We leave it to the 

reader to check that the family of mixtures of gamma densities 

k{x, ë ) = : ^ À ô æ
Ë - 1Â " Á* , 0 < Ë < oc (8.132) 

Ã ( ë ) 

is identifiable (assuming that a is known) using the above result. 
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Remarks 8.5.4: It is possible to use the techniques from the theory of 

integral equations for identifiability. Let us suppose that 

F(x) = j F(x, è)Üâ(è), - o o < ÷ < oo (8.133) 

where F(x, È) is a distribution function for every È. Here G is a function of 

bounded variation with G ( l ) = 1 and G(—1) = 0. Suppose that 

J X M ) - ^ ( M 3 4 ) 

exists and is continuous in È. Further assume that Ã is square integrable 

on [—1,1] ÷ [—1,1] with respect to the Lebesgue measure. Then 

F(x) = J F(x,e)dG(e) 

= F(x,l)G(l)-F(x,-l)G(-l)-J Ô(÷,è)à(è)Üè 

= F(x,l)-J Ô(÷,è)à(è)Üè. (8.135) 

Let 

L(x) = F(x,l)-F(x) 

= J Ô(÷,è)â(è)Üè, (8.136) 

K(x,y) = J T(x,z)T(y,z)dz (8.137) 

and Xi and öé be the eigenvalues and the corresponding eigenfunctions of 

K, that is, 
1 

(t>i(z)K{z,y)dz = \i<pi(y) . 

It can be shown that the mixture F defined by (8.133) is identifi-

able iff {öé} is a complete orthonormal system for L2([—1,1]) following 

Tricomi (1957, p.150). Recall that F is identifiable iff there exists a unique 

square integrable solution G(-) in L 2 ( - l , 1) for (8.133). 
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Discussion here is based on Tallis (1969). For more details and further 

discussion, see Tallis (1969). 

8.6 Identifiability for Multivariate Mixtures 

The following characterization of identifiability is useful in studying the 

connection between the identifiability problem in the multivariate case and 

the identifiability of the marginals. 

Theorem 8.6.1 (Chandra (1977)): Let (X,f) and ( è , â ) be two measur-

able spaces and V — {ÑÈ,È G è } be a family of probability measures on 

{X,F) such that the mapping è —• ÑÈ(Á) is ß-measurable for each A G T. 

Suppose there exists a measurable mapping Ô from (X, T) onto (y, T) such 

that a family Ë of mixing distributions on ( è , B) is identifiable with respect 

to VT'1 = { Ñ 0 Ã _ 1, 0 G è } on {y,Ô). Then the family Ë is identifiable 

with respect to the family V. 

Proof: Suppose 

/ ÑÈ(Á)â1(Üè)= [ Pe(A)G2(de),Aef (8.138) 
Je Je 

where Gx and G2 G Ë. Let B G T . Then A = T~XB G T by the measura-

bility of the mapping T. Relation (8.138) implies that 

/ ÑÈ{Ô-ÉÂ)à1(Üè)= τ ÑÈ(Ô-1Â)â2(Üè),Â G T . (8.139) 
Je Je 

Hence 

/ ÑÈÔ-1(Â)à1(Üè) = / PeT-\B)G2(de),B G T . (8.140) 
Je Je 

By the identifiablity of Ë relative to the family VT~l = {ÑÈÔ'1, è G è } , it 

follows that G i = G2. This proves that the family Ë is identifiable relative 

toV. • 

As a consequence of the above theorem, identifiability relative to a fam-

ily of multivariate distributions can be studied from identifiability relative 

to the corresponding marginals. 
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Corollary 8 .6 .1 : Let Xi be a random variable with probability measure 

PeiA e Èß,É < i < k. Let Vi = {PoiA € è<} ,1 < i < k. Suppose 

the class Ë» of arbitrary mixing distributions on è* is identifiable relative 

to the family Vi. Then the class Ë = Ð£=é ^ 1S identifiable with re-

spect to the family of joint distributions Pq of X = (×÷,×2, · · ·, -X"*) where 

è = (01,02, · * * ,0fc). 

Proof : Let Ô be a map from X to X* where components of X* are 

treated as independent components. Let Pq be the joint distribution of X 

where 0 = (0i , · · ·, 0^). It is easy to see that 

k 

ÑèÔ-é = \[Ñèß=Ñ; say (8.141) 
i=l 

by the construction of the measurable map T . 

Suppose G and H are arbitrary mixing distributions on è such that 

/ PS{A)G[M) = É Ñè*(Á)Ç(Üè) (8.142) 
Je Je 

for all measurable sets A in Ð^-é where Xi is the range space of Xi. In 

particular, it follows that 

/ Pei(Ai)Gi{M) = [ Pei{Ai)Hi{de),l<i<k (8.143) 
Jei Jet 

for all measurable sets Á÷ in Xi where Gi is the marginal of G corresponding 

to 0f. This can be done by choosing A = X\ ÷ X2 x · · · x X%-i x Ai ÷ 

Xi+i x · · · x Xjç- Since the class A< of arbitary mixing distributions on 

is identifiable relative to Vi = { ^ , 0 * € © i } , it follows that the probability 

measures Gi and Hi are identical on è*. Hence 

G i ÷ G2 ÷ - - · ÷ Gk = Çë ÷ H2 ÷ · · · x Hk (8.144) 

on è = è é ÷ 02 x · · · x 6fc. In other words, the family Ë of product 

measures on è is identifiable relative to the family V* = { P q , 0 G è } . An 

application of Theorem 8.6.1 shows that the family Ë is identifiable relative 

the family V = {Pe, 0 € È } of joint distributions of X. • 
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Remarks 8.6.1 : As a special case of the above result, we obtain that 

if the class A* of arbitrary mixing distributions is identifiable relative to 

a family Vi for 1 < i < fc, then the class Ë = ÃÀ£=é Ë< of product mix-

ing distributions is identifiable relative to the family of product measures 

V = Vi x V2 x * · · x Vk> It is easy to check that if the class of arbitrary 

mixing distributions is identifiable relative to V = Ð ß = é ^ > then the class 

Ai of mixing distributions is identifiable relative to Vi for 1 < i < k. If the 

measures in V are not product measures, then it is not true in general that 

the identifiability relative to the joint distributions implies the identifiabil-

ity relative to the corresponding marginals. The following examples due to 

Rennie (1972) illustrate our remarks. 

Example 8.6.1 (Rennie (1972)): Consider the family V = { Ë , / 2 , / 3 } of 

bivariate densities where 

/ i ( x , y) = 1 if 0 < ÷ < 1,1 < y < 2 (8.145) 

= 0 otherwise , 

and 

f2{x,y) = l i f l < a : < 2 , l < y < 3 

= 0 otherwise 

f3(x,y) = § if l < x < 3 , 3 < 2 / < 4 

= 0 otherwise . 

(8.147A) 

(8 .147£) 

Let Ë be the family of finite mixing distributions on the class V. Any 

mixture is of the form 

f(x,y) =Pih(x,y) + £ 2 / 2 ( ^ , 2 / ) +P3fs(x,y) (8.148) 

where 0 < pi < 1 and pi + p2 + P 3 = 1. Since = 1,2,3 have disjoint 

supports, it follows that Ë is identifiable relative to V. This can also be seen 

as a consequence of Theorem 8.2.1. It is easy to check that the marginals 

of X for the family V are 

{ 1 i f O < x < l 
(8.149) 

0 otherwise, 



220 CHAPTER 8. IDENTIFIABILITY FOR MIXTURES 

. 1 if 1 < a: < 2 
hx{x) = { - (8.149Ë) 

I 0 otherwise 

and 

f 1 i f 2 < x < 3 
hx(x) = { " (8 .1495) 

I 0 otherwise . 

It is again obvious that Ë is identifiable relative to Vx = {fix, f2x,Î3x} 

as fix, 1 < i < 3 have disjoint supports. But the marginals of Y for the 

family are given by 

i l i f l < y < 2 
TIY(v) = < (8.150) 

I 0 otherwise, 

f2Y(y)={ 1 i f l^ y <3 (8.150Ë) 
0 otherwise 

and 

f3y(y) = < 1 i f 2" y <3 (8.160B) 
0 otherwise. 

Note that Ë is not identifiable relative to Vy = { / i y , fiy, fzy }· In fact 

Î2Y(v) = \hv{y) + \hy(y), - o o < y < oo. (8.151) 

Here is an example of a family of bivariate mixtures which is identifiable 

but the mixture of one of its marginals is not identifiable. 

It is also possible to give examples when mixtures of marginals for all 

components fail to be identifiable while the mixture of joint distribution is 

identifiable as shown below. 

Example 8.6.2 (Rennie (1972)): Define / i ? 1 < % < 3 as in Example 8.6.1 

and 

h(x,y)=\ (8.152) 
0 otherwise. 
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Let Ñ = { / é , / 2 , / 3 , f±\. It can be checked that the mixtures of V are iden-

tifiable but the mixtures of marginals of either X or Y are not identifiable. 

In fact 

fix(x) = \î2x(x) + ^f3x(x), - o o < ÷ < oo (8.153) 

and 

Î2Y (y) = \hv{y) + \hv{y), -oo<y<oo. (8.154) 

The next example shows that it is possible that the mixtures of one of 

the marginals are identifiable while the mixtures of the joint distribution 

are not identifiable. 

Example 8.6.3 (Rennie (1972)): Let VY = { / i y , / 2y , / 3 y } be as defined 

in Example 8.6.1 and Vx be the family of all univariate normal distribu-

tions. We have seen that finite mixtures of Vy do not form an identifiable 

family from Example 8.6.1. But finite mixtures of members of Vx form an 

identifiable family as shown in Example 8.2.2. Let 

V = {f(x,y) = fx(x)Mv) : fx e V x , f Y ePY}. (8.155) 

Then mixtures of V are not identifiable. In fact 

fx(x)f2Y(y) = \fx{x)fiY{y) + \fx{x)hv{y) (8.156) 

for all ÷ and y. 

Remarks 8.6.2 (Identifiability for mixtures of multivariate normal 

distributions) : Let us consider the class of bivariate normal distributions 

ÂíÍ(ìé, ì2; Ó) where Ó ls a known covariance matrix. Suppose ( X i , X2) 

is distributed as ÂíÍ (ìé, ì 2; Ó ) · Let G be a probability measure on R2 

and (XIG>>X2G) be a random vector with the joint characteristic function 

i,a{t) = f JtTxdFG{x) 

eitTxdF(x\ßUß2)dG(ßi, ì2) (8.157) 
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where FG ( - , ·) is the joint distribution of (XIG,X2g)- It is the mixture of 

the family {Â í Í ( ì é , ì 2, Ó)} w^ n mixing measure G. Here F(x\ßi,ß2) is 

the bivariate normal distribution function with mean vector (ìé,ì2) and 

known covariance matix Ó· It is easy to see that 

<M*) — J^^dFcix) 

= Â" 2 * Ô Ó * / ΈßÔìÜá(ì) = Θ-*τÔÓ*Ό0(À) (8.158) 

where t T = {ß\,12),ìô = ( ì é , ì 2 ) 5 # T = ( # 1 ^ 2 ) and (/>G(£) denotes the 

characteristic function of G. This relation proves that øï uniquely deter-

mines ö G and hence G is identifiable. In other words arbitrary mixtures of 

bivariate normal distributions with a specified covariance matrix are iden-

tifiable. 

Bruni and Koch (1985) considered the following equation : 

/(*)= / Np(x;X(y))G(dy) (8.159) 

J D 
where x G Rp, D is a compact subset of i 2 n, G is a probability measure on 

D, X(y) = {my,Y^y) denotes the mean vector and covariance matrix Ó 

defined on D and Np(x; \(y)) is the multivariate normal density: 

Np(x; X(y)) = ( 2 ð ) " « | E y| " * e x p { - | ( x - m y J ' E y 1 ^ - m y ) } . (8.160) 

Without loss of generality, D is assumed to be connected by adding sets of 

G-measure zero. The problem is to identify ë and G given / . They have 

also investigated whether / is uniquely and continuously associated to the 

pair (ë , G ) . Bruni and Koch (1985) furher considered equations of the type 

/ ( * ) = Ý / *<tfp(*;Mv))Gi(dy) (8.161) 

where í is a known integer, cti > 0, ÓÃ=é á* = 1 a n (^ G i , l < i < i/ are 

probability measures on D. The assumption that D is compact is necessary 

here for it is known that the family of arbitrary Gaussian mixtures over R2 

is not identifiable from results discussed earlier (cf. Teicher (1961)). 
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8.7 Identifiability for Mixtures on Abstract Spaces 

Let (X, T) be a measurable space and S be a set of probability measures 

on (X, J7). Let 5 be a ó-algebra of subsets of S and ì be a probability 

measure defined on ( 5 , 5 ) . Define 

Ìì{Â) = J Ñ(Â)Üì{Ñ),Â G JF . (8.162) 

Ìì is a probability measure on {X,F). Ìì is called a mixture over S with 

mixing measure ì. 

Definition 8.7 .1 : The mapping M : ì —• Ì ì , ì G r is said to be identifi-

able if the mapping M is one-to-one from r to the class {Ìì : ì G ô } . 

In the above definition, ì is considered to be a probability measure. 

However, if ì is allowed to be any signed measure on (5 , 5 ) with ì ( 5 ) = 1, 

then the set of mixtures of S with mixing measures ì G r is said to be 

identifiable if 

Ìì= τ ÑÜì(Ñ) = 0 =• ì = 0 . (8.163) 
Js 

It is clear that if the set of mixtures of S is identifiable in the sense de-

scribed earlier, then (8.162) holds. The converse follows from the following 

proposition. 

Proposition 8.7 .1 . If ì is a nonzero signed measure on ( 5 , 5 ) such that 

Ìì = J ÑÜì(Ñ) = 0 (8.164) 

holds, then there are two different probability measures ìé and ì 2 on ( 5 , 5 ) 

such that 

Ììé = [ Pdßl(P) = / ÑÜì2(Ñ) = Ìì2 
Js Js 

and hence the set of mixtures of S is not identifiable. 

Proof : Supppose ì is a nonzero signed measure on (5 , S) such that (8.164) 

holds. Let ì = ìé — ì 2 where ìé and ì 2 are measures on ( 5 , 5 ) such that 
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either ì ÷( 5 ) < oo or ì 2( 5 ) < oo. Since P(X) = 1 for all Ñ G S, it follows 

that 

Relation (8.164) implies that ìé(3) — ì 2( 5 ) = 0 and hence both ì÷(S) and 

ì 2 are finite. Rescaling, if necessary, we can choose ìé (S) — ì 2( 5 ) = 1 

since ì is a nonzero measure. Hence 

for probability measures ìé and ì 2 on ( 5 , 5 ) . Hence the set of mixtures of 

Remarks 8.7.1 : We assume that 5 contains all singletons {P},P G S. 

In particular, the set of mixtures of S contains the convex hull of 5 , that 

Remarks 8.7.2 : Suppose X is a Polish space (complete separable metric 

space) and Ô is the associated Borel ó-algebra. Any probability measure 

Ñ on (×,Ñ) is regular and is determined by its values on open sets (cf. 

Billingsley (1968)). Since X is separable, every open set in X is a union 

of members of a countable collection of open sets {U{} in X. Without 

loss of generality, it can be assumed that {Ui} are disjoint; if not, let 

Vi = UUV2 = U2 - £7i and in general, let Vn = Un - U?~?Ui,n > 1. 

Then {Vn} is a countable basis for X. Hence every probability measure 

P on (X,T) is determined by its values on the countable collection {V^}. 

Let S be a set of probability measures on {X,!F) and 5 be the associated 

Borel ó-algebra generated by the weak convergence of probability measures 

on {X,T). It is easy to see that the singleton {P} is a closed subset of S 

for any probability measure on Ñ on (×,Ô) and hence {P} G 5 for every 

P G 5 . In particular, the set of mixtures over S contains the convex hull 

described in Remarks 8.7.1. 

Let M{X) denote the space of all probability measures on (X^J7) and 

the topology on M(X) be determined by the weak convergence of proba-

(8.165) 

5 is not identifiable. 

is, the set {Ó"=1 KPi, Pi eS,\i> 0, £ ? = i A< = 1, ç > 1 } . 
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bility measures on {X,T). Let D = {Px : x G X}. It is known that X 

is homeomorphic to the subset D C M(X) and Z> is a sequentially closed 

subset of M(X). Furthermore M(X) is metrizable as a separable metric 

space since A* is a separable metric space. All these facts follow from re-

sults in Parthasarathy (1968). Let pi denote a metric metrizing M{X) as 

a separable metric space. 

Note that S C M(X) and (S,pi) is also a separable metric space. Let 

M(S) denote the set of all probability measures on ( 5 , 5 ) where S is the 

associated Borel ó-algebra generated by the topology on S (which in turn 

is generated by the weak convergence of probability measures on {X,F)). 

Since S is a separable metric space, it follows that M(S) is also separable 

metric space. Let p2 denote a metric metrizing M(S) as a separable metric 

space. Define the function 

The problem of identifiability essentially reduces to the existence of 

an inverse for the mapping / . We first prove a general result regarding 

existence of a bounded inverse for mapping between two sets. 

Suppose Mi and M2 are two sets and pi : Mi x Mi —• R+ such that 

Pi(x,x) = 0 for x G Mi and pi(x,y) ö 0 for ÷ ö y G Mi,i = 1,2. Let 

/ : Ìé -> M2 with V(f) C Ìé and M(f) C m 2 where V(f) denotes the 

domain of / and M(f) denotes its range. Define the norm of / by 

||/||= mî{p2(f(x),f(y))<ap1(x,y),x,yeV(f)} (8.168) 
A > 0 

/ : M(S) - M{X) (8.166) 

by 

(8.167) 

and if / 1 exists, define 

É É Ã º É = ù ' Ì Ã Ç ^ , Ã Ç Ψ ) ) < a p2(u,v),u,v € M(f)} . (8.169) 
A > 0 
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It is easy to see that ||/ 1|| > 0 unless V(f) is a singleton. Assume that 

V(f) is not a singleton. 

L e m m a 8.7.1 : / - 1 exists and 0 < < oo if and only if there exists 

a > 0 such that 

p 2( / ( * ) , / ( < / ) ) > ocPl{xiy),x,y G V(f) · (8.170) 

Proof : Suppose there exists a > 0 such that (8.170) holds. Let x , y G T>(f) 

such that / ( # ) = f(y). Then p2{f{x),f(y)) = 0 and hence pi{x,y) = 0 

from (8.170). Therefore ÷ = y from the definition of ñ÷. This proves that 

there exists one-to-one correspondence between V(f) and M(f) . In other 

words, f~l exists. Furthermore, relation (8.170) implies that 

Pi(x,y) < -P2(f(x),f(y)),x,ye V(f) (8.171) 
a 

or equivalently 

Pi(f~l(u), f-\v)) < - p 2( u , t;),u, í G . (8.172) 
a 

This shows that < oo from (8.169) and > 0 since £>( / ) is not 

a singleton. 

Conversely, if / _ 1 exists and 0 < < oo, then 

PI(X,v) = Pi{r\f{?)),r\f{v))) 
< \\rl\\P2{f{x),f{v)) (8.173) 

from the definition of Therefore 

P2(f(x)J{y)) > ||^x||Pi(^y) 

= apxfay) (8.174) 

with a-1 = II / " 1! ! for all x,y G £>( / ) . This shows that (8.170) holds. • 

Let us now apply Lemma 8.7.1 to the separable metric spaces M2 = 

M{S) and Mi = M(X) and the mapping / defined by (8.166) and (8.167). 

The following theorem is a consequence of Lemma 8.7.1. 
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Theorem 8.7.1 : The set of mixtures over S is identifiable and the map-

ping / has bounded inverse if and only if 

P i ( m 1, m 2) = ñ é ( / ÑÜìé(Ñ), τ ÑÜì2{Ñ)) 
Js Js 

> áñ2(ìé,ì2) (8.175) 

for ì é , ì 2 G M2 = M(X) for some a > 0 where pi and p2 are metrics on 

Mi = M(S) and Ë º 2 = Ë º ^ ) respectively. 

Example 8.7.1 : Let (X,T, Pq) be a probability space and suppose 

{Pq,6 e Ù } is a family of probability measures on {X,T) dominated by 

a ó-finite measure v. Suppose (Ù, r , ë ) is a measure space and C is class of 

probability measures on (Ù, r ) such that every ì £ C is dominated by ë. 

Let 

p(x, È) = ^P-(X), x e ×, è e Ù. (8.176) 
dv 

Assume that 

and 

/ / ñ2{ω,è)Üì{è)Üí{ω)<ïï (8.177) 
Jx Jq 

Jci 
(^fdX < oo. (8.178) 

Ici áë 

We want to obtain sufficient conditions under which the set of mixtures of 

{Ñè, è € Ù } is identifiable with respect to members of C . If Q is a mixture 

of { Ñ è , 0 € Ù } , then 

Q(A) = ÉÙÑ(Á,è)Üì(è), At Ô 

= !n[!Ap{x,9)dv(x)W{e), AÇlF 

= J a L M * . è)$(è)Ü\(è)]Üí(ω), AzT 

= jAq(x)du(x), A€F 

where 

q(x) = ^ñ(ω,è)^(è)Ü×(è). (8.179) 

Applying Lemma 8.7.1. it follows that the set of mixtures M2 over 

{Ñè,è G Ù } with respect to C is identifiable iff 

IJdt{e) - w ] 2 > ° * Ix
[qi(x) - ^ d v ^ > °· (8-i8°) 
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Suppose p(x, È) can be expanded as an infinite series given by 

p(x, È) = ÓñçÖç{÷)ØçØ),x G ×, è € Ù (8.181) 
ç 

where {ÖÇ} and {ÖÇ} are biorthonormal series and ñç > 0 on 

L 2 ( ^ x i î , f x r , i / x ë ) . Note that 

Ix[<li{x) - °2{x)?dv{x) 

= ljΙ^Ί)[^(Ί) - Ü-^{è)]Ü×{Ί)ãÜí{×) 

= Jx\Jn ÓÑΔÖΔ{×)ÌΊ)(^{Ί) - ^(Ί))έΡ(Ί)\2έΌ) 

= fx \Õ,ÑÇÖÇ{×) Ι^Δ(Ί)(^(Ί) - ^(Ί))έ\(Ί)\*έΌ) 

= / \^2ÁÇÑÇÖÇ{×)\2̂ (×) 

= Ó^É«ç|2 (8.182) 
Δ 

where áç is as defined by (8.184) given below. All the above statements 

can be justified by using Fubini's theorem. The statement (8.176) and the 

relation (8.182) prove that the set of mixtures is identifiable if and only if 

/ l l ^ W - ^(Ί)?έΡ(Ί) > 0 * Ó>>ç|2 > 0 (8.183) 
. d \ w dX 

where 

<*„ = j i * . ( « ) [ ^ ( « ) - ^ ( « ) l < « ( » ) 

(8.184) 

The statement (8.183) holds if { ά Δ } forms a complete family for £ 2( Ù , r, ë ) . 

Hence the set of mixtures M2 over {ÑÈ,È G Ù } is identifiable with respect 

to C iff the family { ά Δ } given by (8.181) is complete. 

Remarks 8.7.3 : The results in this section are due to Tallis and Chesson 

(1982). Estimation of mixing measures in metric spaces is investigated in 

Fisher and Yakowitz (1970). 
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