
MVVM in
Delphi

Architecting and Building Model View
ViewModel Applications
—
John Kouraklis

 MVVM in Delphi

 Architecting and Building
Model View ViewModel

Applications

 John Kouraklis

MVVM in Delphi: Architecting and Building Model View ViewModel Applications

John Kouraklis
London, United Kingdom

ISBN-13 (pbk): 978-1-4842-2213-3 ISBN-13 (electronic): 978-1-4842-2214-0
DOI 10.1007/978-1-4842-2214-0

Library of Congress Control Number: 2016956108

Copyright © 2016 by John Kouraklis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Nick Hodges
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com/9781484222133 . For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in
the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484222133
http://www.apress.com/source-code/

 To my parents, who demonstrated breadth of mind and a sense of vision when
they bought me my fi rst computer in times when computers were in their infancy

in my country and they were considered a “bad infl uence” on kids by many.

v

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

Introduction ... xv

 ■Chapter 1: MVVM as Design Pattern ... 1

 ■Chapter 2: Setting Up the POSApp .. 13

 ■Chapter 3: MVVM as Design Philosophy 43

 ■Chapter 4: Two-Way Communication .. 59

 ■Chapter 5: Converting the InvoiceForm .. 79

 ■Chapter 6: User Interaction .. 105

 ■Chapter 7: Input Validation ... 125

Index .. 143

vii

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

Introduction ... xv

 ■Chapter 1: MVVM as Design Pattern ... 1

Three-Tier Application Architecture ... 2

Model-View-Controller (MVC) .. 3

Model-View-Presenter (MVP) .. 6

Model-View-ViewModel (MVVM) ... 7

Summary ... 11

References .. 11

 ■Chapter 2: Setting Up the POSApp .. 13

POSApp Forms .. 14

Mixing Business and Presentation .. 22

Declaration of Classes .. 22

The Database Unit .. 23

Total Sales .. 26

The Main Form .. 28

■ CONTENTS

viii

The Sales Invoice Form ... 29

Retrieving Data ... 32

Updating the Form .. 35

Summary ... 42

References .. 42

 ■Chapter 3: MVVM as Design Philosophy 43

The View of the MainScreen .. 43

The Model of the MainScreen ... 45

The ViewModel of the MainScreen .. 48

Creating the Classes ... 51

How the Code Works ... 52

Creating the ViewModel and the Model Outside the Main Form 53

Notes About the Code .. 55

How We Converted MainScreen .. 57

Summary ... 58

 ■Chapter 4: Two-Way Communication .. 59

The Provider-Subscriber (ProSu) Framework .. 60

Two-Way Communication (Revisited) .. 65

Making the Code More Effi cient .. 71

Summary ... 77

References .. 77

 ■Chapter 5: Converting the InvoiceForm .. 79

The View of the InvoiceForm ... 79

The Model of the InvoiceForm ... 82

The ViewModel of the InvoiceForm ... 85

Retrieving the Labels from the ViewModel .. 87

 ■ CONTENTS

ix

Setting Up the Invoice Form .. 90

Disabling and Hiding Elements.. 98

Getting the Customer and Items Lists ... 101

Summary ... 103

 ■Chapter 6: User Interaction .. 105

Selecting a Customer .. 105

Adding an Item to the Invoice .. 112

The Model ... 112

The ViewModel ... 115

The View ... 119

Summary ... 124

 ■Chapter 7: Input Validation ... 125

Checking Inputs ... 125

Bits and Pieces .. 130

Deleting an Item from the Invoice .. 130

Applying Discounts to the Invoices ... 132

Printing the Invoice and Closing the Form .. 137

Summary ... 142

Index .. 143

xi

 About the Author

 John Kouraklis started exploring computers when he was 16. He started developing IN
Delphi, as a hobby, initially, and then as a professional activity. He developed a wide
range of applications, from financial software to reverse engineering tools and, more
recently, discovered the fascinating world of cross-platform development.

xiii

 About the Technical
Reviewer

 Nick Hodges is a Senior Software Engineer at Gateway
Ticketing Systems, a firm that provides ticketing and
access control systems to the largest amusement parks,
zoos, and museums around the world.

 Nick is a software developer at heart. He’s been
a Pascal/Delphi developer for over 20 years and still
thinks that Delphi is the best development tool out
there. He loves to read programming books, attend
conferences, and watch cool videos about new
programming techniques. He generally tries to be an
industry thought leader.

xv

 Introduction

 The wide use of portable devices (tablets, smart phones, and smart watches) and
the connectability between them gave rise to a whole new challenge to software
development. Cross-platform programming, or the production of applications that target
more than one platform, is getting momentum as the new wave of software development.
Under these circumstances, professionals must preserve resources (time, skills,
infrastructure, human capital, and knowledge) and maximize output while developing
for multiple target platforms. Companies and professionals have responded to this
development by offering new tools that facilitate the development of cross-platform
applications.

 Delphi FireMonkey framework is such a tool. It allows the development of cross-
platform applications using Delphi; an incarnation of Object Pascal and one of the
strongest and well developed programming languages available to developers. However,
having a tool is not enough to produce efficient cross-platform applications. Although
it makes programming easier and perhaps makes developing user interfaces on
different devices trivial, it does not answer the question about how we can design our
software in such way that cross-platform operations—such as moving across platforms,
switching data providers, and injecting new platform-dependent implementations of
algorithms—can be done with maximum flexibility and quality and minimum expense to
programming effort and time.

 These thoughts give strong support to programming patterns and, in particular, to
design patterns, which is the overall concept of this book. Design patterns take us one
step before designing the front-end GUI; they open the angle and perspective from which
we see our applications and force us to think in a modular way.

 The ModelView-View-Model (MVVM) design pattern is characterized by its
flexibility and adaptability to different situations under diverse conditions. This book
attempts to open the field of MVVM to Delphi developers. It saves deep theoretical
discussions and conceptual analysis for other types of publications and focuses on the
practicalities of implementing a Delphi framework according to the guidelines of MVVM.
At the same time, the book develops a methodology about how to convert an application
that doesn’t follow a design pattern to one that complies to the MVVM paradigm.

 As always, in the field of software development, there are hardly universal solutions
applicable to every situation; there are rather efficient solutions for specific problems.
The code in this book and the suggestions offered serve as a foundation to help you make
your own choices about the version and implementation of MVVM that suits your needs,
your company’s requirements and policies, and the specifications of the applications you
are developing. For sure, there are areas where you can apply more sophistication and
abstraction to the design and others that simpler approaches exist.

■ INTRODUCTION

xvi

 Who This Book Is For
 The book focuses on the busy Delphi developer with good knowledge of Object Pascal.
Although the code has been developed using Delphi, it doesn’t rely on specific features
that cannot be found in other versions of Object Pascal (including standard forms and
visual elements). Therefore, the value that can be gained expands the Delphi domain and
falls into the broader area of Object Pascal.

 After reading this book you will be able to:

• Identify the different aspects of the Model-ModelView-View
(MVVM) design pattern.

• Design applications based on the MVVM approach.

• Implement the different elements of the framework in Delphi in
ways that suit your application needs.

• Undertake the task of converting existing applications to meet the
MVVM design.

 The Development Environment
 The code in this book was developed using the following environment:

• Embarcadero Delphi 10 Seattle Architect

• Microsoft Windows 7 Professional

• FireMonkey framework

 I use the Architect edition of Delphi, but this is not a requirement. You can use
whichever version of Delphi you have access to. I use FireMonkey but, again, everything
we discuss in this book is applicable to VCL as well. If the VCL approach is different, I flag
this in the code. As mentioned, the code in this book uses pure Object Pascal which, in
turn, means you can use different versions of development environments like Lazarus
and the like. Lastly, if linking to the graphical interface (forms and views) is not your
concern or priority, you can develop a console application using the ViewModel and
Model classes as they are presented in this book, without any modifications. That is the
first hint to the simplicity and power of the MVVM pattern.

 The Book’s Structure
 This book has seven chapters. While you are going through the chapters, you will be
exploring different aspects of MVVM and your knowledge will gradually build to cover
common situations found in rich content applications.

 ■ INTRODUCTION

xvii

 Chapter 1 : MVVM as Design Pattern
 This chapter builds on your understanding of the MVVM framework. It briefly visits
different presentation patterns in a historical manner with the sole purpose of showing
how the approach to presentation patterns shifted toward MVVM.

 Chapter 2 : Setting Up the POSApp
 In this chapter, we create POSApp . This is a simple application that resembles more
sophisticated invoicing systems. We will build the application in such way that it doesn’t
respect any design patterns. In the following chapters, we rely on POSApp to demonstrate
the implementation of the MVVM pattern.

 Chapter 3 : MVVM as Design Philosophy
 In this chapter, we start exploring the MVVM pattern by first looking at a way to
organize the different aspects of POSApp as they are understood by MVVM. This is the
first time where we see the flexibility, clean separation of the different parts, and loose
communication. We also see how communication is achieved between the different parts
of the MVVM design.

 Chapter 4 : Two-Way Communication
 This chapter expands on the previous chapter and implements a way to accomplish
bidirectional communication between the MVVM components without jeopardizing the
principals of loose connections. At the end of this chapter, we formalize the methodology
to convert non-MVVM application to follow the paradigm.

 Chapter 5 : Converting the Invoice Form
 Chapter 5 continues with the development of the most complex form of the POSApp . In
this chapter, we apply the methodology we developed in Chapter 4 . This chapter offers a
systematic way to approach legacy (or monolithic) applications when you want to convert
them to modern patterns.

 Chapter 6 : User Interaction
 The content of this chapter deals with how we can manage user interactions (mouse clicks,
popup menus, and so on) with respect to the MVVM and generate responsive actions.

http://dx.doi.org/10.1007/978-1-4842-2214-0_1
http://dx.doi.org/10.1007/978-1-4842-2214-0_2
http://dx.doi.org/10.1007/978-1-4842-2214-0_3
http://dx.doi.org/10.1007/978-1-4842-2214-0_4
http://dx.doi.org/10.1007/978-1-4842-2214-0_5
http://dx.doi.org/10.1007/978-1-4842-2214-0_5
http://dx.doi.org/10.1007/978-1-4842-2214-0_4
http://dx.doi.org/10.1007/978-1-4842-2214-0_6

■ INTRODUCTION

xviii

 Chapter 7 : Input Validation
 The last chapter of the book deals with how to use the MVVM framework to check on
inputs by the user, as in the case of an edit field. We will also complete the conversion of
 POSApp by developing some secondary actions such as a close and cancel button.

 Code Files
 This book comes with Delphi code files. You can download the code from the publisher’s
web site at this address: http://www.apress.com/9781484222133 . For convenience,
I include Table 1 , which lists the project names per chapter and a short description.

 Table 1. Project Names Per Chapter as Found in the Book’s Code Files

 Chapter Project Name Notes

 2 POSApp

 3 POSAppMVVM The viewmodel and the model are
created inside the main form

 POSAppMVVMMainForm The viewmodel and the model are
created outside the main form

 4 POSAppMVVMMainFormTest Test application for the ProSu
framework

 POSAppMVVMMainFormInterfaces POSApp uses interfaces as it
appears in the chapter

 POSAppMVVMMainFormFullInterfaces POSApp is fully converted to
use interfaces

 5 View.InvoiceForm.fmx
 View.InvoiceForm.pas

 Empty invoice form

 POSAppMVVMStart Implements the invoice form with
dummy variables

 POSAppMVVMInvoiceForm Implements all the changes
in Chapter 5

 6 POSAppMVVMUserInteraction Implements user interaction

 7 POSAppMVVMFinal Final version of POSApp (converted
to MVVM)

http://dx.doi.org/10.1007/978-1-4842-2214-0_7
http://www.apress.com/9781484222133
http://dx.doi.org/10.1007/978-1-4842-2214-0_5

1© John Kouraklis 2016
J. Kouraklis, MVVM in Delphi, DOI 10.1007/978-1-4842-2214-0_1

 CHAPTER 1

 MVVM as Design Pattern

 Presentation patterns are already an old story. Although it is difficult to identify who
introduced them, it looks like the seminal programming language SmallTalk dating back
to the 1970s is responsible for making one of the first presentation patterns popular; the
Model-View-Controller (MVC) design (Kay, 1993; Timms, 2014).

 Krasner and Pope (1988) offered a formalized description of the MVC pattern and
they basically influenced a generation of programmers who appreciated the merits of
keeping apart what appears in the frond-end of an application and what is happening
behind the scenes. As the authors state,

 “Isolating functional units from each other as much as possible makes
it easier for the application designer to understand and modify each
particular unit”

 —Krasner and Pope (1988)

 There are three take-aways from the above statement, first, the separation in the
design; then this separation needs be as strong as possible giving independent units and,
lastly, the reason for the proposed separation. The developers are able to see clearly what
each unit is doing and to alter their behavior.

 Keeping functions apart creates an environment where changes to different parts
of an application can be performed in a controlled manner, with bugs being spotted and
fixed more easily. At the same time, it forces a specific mindset where developers think
of applications in a modular way. Put simply, this means that software is developed in
units and parts that are linked together with very strict but simple rules to the level of
abstraction. This concept is usually described with the term separation of concern (SoC)
and it is one of the most important concepts in modern software development and
presentation patterns.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2214-0_1) contains supplementary material, which is available
to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2214-0_1

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

2

 ■ Note A concern in computer science is a group of activities and data that represent
different but related functionalities in a piece of software. A separation of concerns
(SoC) is a school of thought in which the code is split into several distinct concerns, with
minimal overlapping (coupling). If you are not familiar with SoC or you need to refresh your
knowledge, visit these general resources (Wikipedia, n.d.; Greer, 2008.) and check this video
for a presentation about how SoC fits in object oriented programming and service oriented
architectures Lilleaas, 2013).

 The benefits you get with such loose connections include the ability to better test,
move, and share units among different projects with minimal, if not zero, modifications.
Reusability becomes the way to preserve resources (development time and effort) and
engineer highly maintainable code.

 Three-Tier Application Architecture
 Although this breakdown of functionality has been introduced in design patterns, such an
approach has been widely used in enterprise applications. It has materialized into what
is known as a three-tier architecture. According to this approach, there are three tiers
(or layers) in applications:

• Presentation layer : The user interface (UI) that shows data to the
user and represents states or different forms of data

• Business layer : This part deals with data validation and business
rules and norms

• Data Access layer : A mechanism that connects the application to
the medium of choice to store data

 It is important to realize that these layers are not just tags we put on sections or
files in our application in order to group them together. Earlier we identified that the
separation in the design serves different functionalities. Those layers are a way to
encapsulate the logic that each part performs. Logic is different from data and data itself
is different from information. Data in the form of raw elements (e.g., product price, bank
account transactions or discount rate) can move across layers and appear in any of them,
and each layer can capture data and interpret it in a way that makes sense to each layer.
At this stage, data has been transferred to information. For example, if you consider the
discount rate a customer is eligible to enjoy and the price of a product, both pulled from
a database, you are just dealing with “data”. Now, if you want to apply the discount to
the price of the product the customer ordered, you contextualize that data and generate
information.

 Both elements (data and information) may appear in any of the aforementioned
layers, depending on layer’s functionality (see Figure 1-1). Logic can be seen as the
tangible version of information; in this example, the logic would be to multiply the
discount rate and the price of the product. Logic can also be seen as the programming
code that appears in the layers.

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

3

 Presentation patterns form a different constellation of the tasks performed in an
application. They tend to identify a clear front-end that is accessed by a user (the View).
Then, the patterns define the part of the application that deals with data, the information
(to use the previous term) and programming logic. This part is usually called the Model.
A question that arises at this stage is how the communication between the View and the
Model is achieved. Many approaches have been proposed and today we have a group of
solutions that form the MV* family of patterns.

 In the next sections, we are going to visit two of the most prominent members:
the Model-View-Controller (MVC) and the Model-View-Presenter (MVP). This book
doesn’t discuss those patterns extensively. Instead, it covers the fundamentals before
concentrating our attention on the Model-View-ViewModel (MVVM) pattern.

 Model-View-Controller (MVC)
 The Model-View-Controller (MVC) pattern includes three parts: the Model, the View,
and the Controller. The Model represents the state of the application (not only the state
of data) and, obviously, sets up and maintains any communication with databases and
other sources of data. The View is pretty straightforward. It defines what the user sees
and gets from the application. This may include the user interface and different forms

 Figure 1-1. Three-tier application structure

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

4

of exported data (CSV or HTML files, for example). The Controller receives events from
the view and passes them to the Model. The Model processes the events and the View
synchronizes itself with any changes that occur in the Model (see Figure 1-2).

 Figure 1-2 indicates that the controller is aware of the existence of the Model and, in
most cases, of the View, as well. The View is aware of the Controller and the Model. The
Model works as a detached and separate entity that exhibits the biggest separation of
functionality. A typical problem in the implementation of the MV* patterns is the order of
creation of the parts and the responsibility for this. In the most common MVC approach,
the Controller is responsible for creating the Model and choosing the View.

 Thinking in terms of the three-tier architecture, you may notice that the mapping
between the MVC components and those in the three-tier design is not straightforward,
as there is an overlap of functions and tasks. Figure 1-3 shows how the two patterns are
related.

 Figure 1-2. The Model-View-Controller (MVC) pattern

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

5

 MVC is widely used to generate rich user interfaces. It is quite popular on the
web and the Android operating system implements this pattern (da Silva, 2014).
The introduction of the Model as a component with loose connections to the other
components implements a clear separation of concerns. Developers can test the View
and the Controller as separate entities.

 However, the interaction between the View and the Controller and their link to the
Model blur the separation among the View, the state of the application, and the state of
the View. For example, if you want to change the color of an edit field because the user
entered a wrong value, you need to contact the Controller for the user input, observe
the Model for the validation, and implement programming logic in the View in order to
change the color of the field based on the outcome of the validation. This “state of the
view” spans across the different layers of the pattern and it demonstrates that a good
level of coupling still exists. This, in turn, introduces a transferability issue. If you want
to replace the current View with an alternative one, you need to develop the Controller
again (Vice and Siddique, 2012).

 Figure 1-3. Relationship between the three-tier design and MVC

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

6

 Model-View-Presenter (MVP)
 The shortcomings of MVC have been addressed by the Model-View-Presenter model.
Microsoft has been using this pattern quite extensively in the WPF and Silverlight
applications. In this approach, the Controller is replaced with the Presenter and the
duties, responsibilities, and capabilities of each part have been altered. There is now a
clear separation between the View and the Model and the synchronization is performed
by the Presenter (see Figure 1-4).

 The View is not aware of the existence of the Model and vice versa. The Presenter
has a pivotal role, as it receives user inputs from the View, handles mapping between
the View and the Model, and performs complex business logic (Syromiatnikov, 2014).
The Presenter is typically created first. Using the previous example with the color of the
edit field, the validation is performed in the Presenter and the View is updated using a
number of setter methods. The Presenter is now responsible for providing the correct
color to the view.

 ■ Note The version of MVP pattern presented here indicates there is no communication
between the View and the Model. This is commonly referred as Passive View . There is an
alternative implementation of MVP that allows for communication between the View and the
Model, but it has limited scope. This is called Supervising Controller . See Martin Fowler’s
web site for a detailed presentation of the two implementations (Fowler, 2006a; 2006b).

 Figure 1-4. The Model-View-Presenter (MVP) pattern

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

7

 Figure 1-5 shows the three-tier structure for the MVP pattern.

 This time, the Presenter has moved deeper in the business layer. This is because the
Presenter is responsible for much of the validation and it keeps most of the state of the
View. The Model is unchanged in this version. The three elements are less interlinked
and this link is based on more flexible structures (interfaces). This arrangement offers
better testability, as the Model and the View can be replaced by mock units or by different
implementations.

 Apart from these benefits, developers find that while the user interface becomes
more sophisticated, there is the need for more code. More code means more
opportunities for bugs and an increase in the effort needed to maintain the code base.

 Model-View-ViewModel (MVVM)
 MVVM came as an alternative to MVC and MVP patterns. SmallTalk introduced this
framework in the 1980s, initially under the name Application Model and later using the
name Presentation Model (Vice and Siddique, 2012). Most of the arguments that support
MVVM are based on the the fact that the View and the View’s state in the previous
approaches (MVC/MVP) are still interlinked to the Model to a degree that individual
testing is hard to be achieved. This linkage interferes with the general principle of
modular programming.

 Figure 1-5. Relationship between the three-tier design and MVP

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

8

 In the MVVM pattern, the ViewModel replaces the Presenter and the Controller. The
responsibilities of the ViewModel and the View are now different.

 It is common to present the MVVM pattern in a linear way (Figure 1-6). The reason
behind this constellation is to emphasize the change to the tasks that are performed from
each part of the pattern and to point out the flow of data and information. The Model
remains mainly the same as in the MVP design. It is still responsible for accessing different
data sources (e.g., databases, files, or servers). Generally, the Model tends to be very
thin in the MVVM implementation. The View represents data in the appropriate format
(graphical/non-graphical), reflecting the state of the data, and it collects user interaction
and events. As with the Model, Views in MVVM include minimum implementation code,
only what is required to make the View work and allow user actions.

 In MVVM, the bulk of the code is found in the ViewModel. The concept behind the
ViewModel is that this component represents the way the view is expected to be (view
state) and is expected to behave to user interactions (view logic). It is the Model of the
View in the sense that it describes a set of principles and structures that present specific
data as retrieved via the Model. The ViewModel handles the communication between
the View and the Model by passing all the necessary data from the View to the Model in a
form that the Model can digest. Validation is performed in the ViewModel component.

 In this pattern, the components work in sets of two. The View is aware of the
ViewModel, updates the ViewModel’s properties, and tracks any changes that occur in the
latter. The ViewModel is not aware of the existence of the View. This one-way awareness
justifies the linear presentation of the pattern in Figure 1-6 , which is also found in many
books and articles. In a similar way, the model is not aware of the viewmodel (or the view
itself) but it is, only, the viewmodel which has access to the model. The ViewModel passes
events and data to the Model, as they are pushed by the view in forms that the Model can
interpret. The ViewModel tracks any changes created by the Model and, consequently,
pushes to the View any necessary signals according to View and the business rules.

 In many articles and presentations of the MVVM pattern, authors often attempt to
discuss the one-way relationships between the components by implying that the View and
the ViewModel are interchangeable or that they perform equivalent actions. For example,
Timms (2014) states that “In MVVM, the view believes that the ViewModel is its view”.

 Let me clarify the meaning of this statement, as it can have a number of design
implications if it is misinterpreted. As mentioned, the View is aware of the ViewModel
but the ViewModel is not aware of the View. If you follow the above statement, the View
sees the ViewModel as the tunnel that visualizes or expresses what is taking place in the
View. In addition, it indicates that the View can perform filtering or transformations
according to the required View logic. This is not the case with the MVVM pattern, because
the ViewModel is responsible for the job “behind the scenes of the view”. Moreover,
a view can very easily react to, connect to, and visualize several ViewModels, whereas
a ViewModel models only one view.

 Figure 1-6. The Model-View-ViewModel (MVVM) pattern

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

9

 Consider the case of a rowing machine that uses a performance monitor to show
various forms of data to the athlete. For the purpose of this example, I used screens from
the Concept2 rowing machine (see Figure 1-7).

 As the athlete pulls the handle, force is transmitted to the internal mechanism of
the machine. This mechanism has a circular construction that’s free to rotate around its
perpendicular axis. The rowing machine allows the athlete to rotate the internal circular
mechanism according to the force and the pace he or she is exercising to the handle. In
addition, the machine has an instrument that receives the heartbeats of the athlete. All
these technical parts provide the required elements (the variables) to the machine in
order to start making calculations, such as elapsed time, consumed calories, speed, etc.

 If we attempt to look at the rowing machine under the MVVM paradigm in an
educational approach, what the equipment does is to implement the model of the rowing
machine (application), which represents a dynamic state of “raw data”. The performance
monitor can be considered as a collection of different views of the model. What you need
in between is a way to transform data in forms that reveal meaningful information to
the athlete. For example, you need to take the rotation speed of the internal mechanism
and the elapsed time (as supplied by the model) and translate them to the distance the
athletes would cover if they were rowing in a real boat. This transformation of data is the
job of the ViewModel in the MVVM domain.

 The screen (view) of Concept2 reveals several pieces of information (e.g., elapsed
time, strokes per minute, estimated time to cover 500m, distance covered, heartbeats, and
projected distance for current speed). Depending on the complexity of the calculations
and the connections between them, they can be seen as information provided by
different ViewModels. Figure 1-8 shows one possible architecture.

 Figure 1-7. Different screens of the performance monitor of the Concept2 rowing machine
(Courtesy of Concept2, Inc; used with permission)

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

10

 In this design, you have two models (one that deals with data for the physical activity
and one that captures the heartbeats of the athlete). These models are used by a number
of ViewModels that produce different graphical interpretations (view models) of the data.
For example, the second screen has a part that shows the elapsed time and the speed and
another part that shows the force curve. What the MVVM approach has done is allow you
to understand which part of the application does what and to create loose connections
between the processing of data and information and the way they are presented to the
users. One point worth noting is that the design shown in the figure is not the only one
you can implement. This is one of the strengths of the MVVM approach; it allows you to
devise ViewModels that fit your Models and Views instead of having to adjust your Views
(and perhaps your Model) to the pattern, as is often the case with the other options in the
MV* domain.

 In terms of the three-tier architecture, now the Model has been pushed deeper to
the data layer, as it mostly deals with data (see Figure 1-9). It still covers aspects of the
business layer, as many times transformation of data is required at business level. The
View resides in the presentation layer like before and the ViewModel is now charged
with a wider range of activities and, therefore, occupies both the presentation and the
business layers. The presentation side of the figure captures the fact that the ViewModel
implements the logic and state of the View and the business layer corresponds to any
logic that allows the manipulation of data in ways that serve the View’s logic.

 Figure 1-8. A MVVM approach to the performance computer of Concept2 rowing machine

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

11

 Obviously, this is a generalized description of the relationship between the MVVM
parts and the three-tier architecture. Different applications, needs, and requirements
and different schools of thought in the MVVM universe may position the Model and the
ViewModel closer to the business layer, as the discussion about the alternative designs of
the Concept2 case has shown.

 Summary
 This chapter visited the most common design patterns and attempted to create a link
to the three-tier architecture design of enterprise software. One of the key points is
that MVVM is very flexible and developers can implement it following more than one
designs. This flexibility is one of the strong points of the pattern. What follows is an
implementation of such a design. The next chapter develops a sample application and
the rest of the book shows you how to apply the MVVM paradigm.

 References
 da Silva, L.P., 2014. “Model-driven GUI generation and navigation for Android BIS apps.”
Mode l-Driven Engineering and Software Development (MODELSWARD), 2014 2nd
International Conference on IEEE, pp.400–407.

 Figure 1-9. Relationship between the three-tier design and MVVM

CHAPTER 1 ■ MVVM AS DESIGN PATTERN

12

 Fowler, M., 2006a. “Passive View,” available at http://martinfowler.com/eaaDev/
PassiveScreen.html [Accessed 29/05/2016].

 Fowler, M., 2006b. “MVP: Supervising Controller,” available at http://
martinfowler.com/eaaDev/SupervisingPresenter.html [Access 29/05/2016].

 Greer, D., 2008. “The Art of Separation of Concerns,” available at http://
aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/ [Accessed
25/05/2016].

 Kay, A.C., 1993. “The Early History of Smalltalk,” ACM SIGPLAN Notices , [online]
28(3), pp.69–95. Available at < https://en.wikipedia.org/wiki/Smalltalk > .

 Krasner, G.E. and Pope, S.T., 1988. “A Cookbook for Using the Model-View-Controller
User Interface Paradigm”. Journal of Object-Oriented Programming .

 Lilleaas, A., 2013. “Service Oriented Architectures (Hardcore Separation of
Concerns)”, available at https://vimeo.com/68383348 [Accessed 27/05/2016].

 Syromiatnikov, A., 2014. A Journey Through the Land of Model-View-* Design Patterns.
 Timms, S., 2014. Mastering JavaScript Design Patterns . Packt Publishing Ltd.
 Vice, R. and Siddique, M.S., 2012. MVVM Survival Guide for Enterprise Architecture

in Silverlight and WPF. Packt Publishing.
 Wikipedia, n.d. “Separation of Concerns”, available at https://en.wikipedia.org/

wiki/Separation_of_concerns [Accessed 25/05/2016].

http://martinfowler.com/eaaDev/PassiveScreen.html
http://martinfowler.com/eaaDev/PassiveScreen.html
http://martinfowler.com/eaaDev/SupervisingPresenter.html
http://martinfowler.com/eaaDev/SupervisingPresenter.html
http://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/
http://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/
https://en.wikipedia.org/wiki/Smalltalk
https://vimeo.com/68383348
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Separation_of_concerns

13© John Kouraklis 2016
J. Kouraklis, MVVM in Delphi, DOI 10.1007/978-1-4842-2214-0_2

 CHAPTER 2

 Setting Up the POSApp

 As described in the introduction, in this book we will work on how to convert an
application to follow the MVVM pattern. The example application is a POS client for
purchasing clothes. The first version will use an approach that mixes the user interface
and the model of the application (the business logic). This type of design is referred as
 monolithic and it is pretty much what you have when you deal with so-called legacy code ,
especially if your application was created in the 1980s and 1990s.

 ■ Note You come across monolithic design in old applications (legacy) but you can also end
up with such a structure if you follow tightly the development workflow in Rapid Application
Development (RAD) environments, such as the IDE that comes with Delphi. RAD makes
very easy to write code for an event generated by a GUI element and access data-aware
components (non-GUI elements) in one line. This ease of coding creates a mindset of tight
design between the model and the presentation of an application. In turn, this contradicts
the philosophy of the presentation patterns. For more details about the pros and cons of RAD
environments and the implied methodologies, see Begel (2007) and Gerber (2007).

 Let’s call this application POSApp . The requirements for POSApp are the following:

• The user can create an invoice for a sale.

• The user can choose customers by name and see their
outstanding balances and discount rates (based on predefined
rates per customer). There is also a “Retail Customer” for general
(anonymous) sales.

• The user can add and remove items in the invoice for each sale
and adjust the quantities.

• The user can apply the relevant discount rate.

• The user can see the total amount of sales.

CHAPTER 2 ■ SETTING UP THE POSAPP

14

 POSApp Forms
 POSApp has two screens. The main screen (see Figure 2-1) shows the Total Sales and
includes a button that allows users to issue an invoice.

 The second screen is more complicated and can be seen in Figure 2-2 . It includes a
popup menu to allow the users to select a customer. They can then see the outstanding
balance of the customer and the discount rate that he or she is entitled to enjoy.

 Figure 2-1. The main screen of the POSApp

CHAPTER 2 ■ SETTING UP THE POSAPP

15

 There is also a region in the form where the user selects the items to sell and sets the
quantity. If users want to delete an item from the invoice, a popup is revealed when they
right-click on the items list (see Figure 2-3). The current balance is shown; users can print
the invoice or cancel it.

 Figure 2-2. The invoice screen of POSApp

CHAPTER 2 ■ SETTING UP THE POSAPP

16

 If you think that the screens are not the best in terms of user experience and interface
design, you are right. The point of the application is not to present a nice, optimized
user interface but to provide a workable application that will demonstrate the MVVM
framework.

 Let’s start building POSApp .

 1. Open Delphi IDE and create a new blank multi-device project
(choose File ➤ New ➤ Multi-Device Application ➤ Blank
Application).

 2. Your project has only one form (Unit1.pas). Rename the form
 MainForm and change the caption to POSApp . Save the form
and give it the name MainScreenForm.pas .

 3. In the right-side bar, you can see the Project Manager. If you
can’t see the Project Manager, use the View menu and select
the Project Manager menu item.

 4. Right-click on the Project1.exe label, then click Save and
enter the name POSApp .

 5. Right-click on the ProjectGroup1 label in the Project Manager
and select Save Project Group. Save the project under the
name POSAppProjectGroup. It is very likely that you’ll see
a different number in the ProjectGroup label. This doesn’t
affect the code here and you can continue with the next steps.

 6. Add three TLabel components and one TButton to the
 MainForm.

 7. Rename the components and edit their properties according
to Figure 2-4 .

 Figure 2-3. Right-click on an invoice item to reveal a popup menu

CHAPTER 2 ■ SETTING UP THE POSAPP

17

 8. Add a second multi-device form to the project. An alternative
way to do this instead of the process in Step 1 is to right-click
on the POSApp.exe element in the Project Manager (see
Figure 2-5) and choose HD Form from the wizard.

 Figure 2-4. Components and their properties of the MainScreenForm

CHAPTER 2 ■ SETTING UP THE POSAPP

18

 9. Name the form SalesInvoiceForm and save it as
 InvoiceForm.pas . Then use Figure 2-6 to add components,
rename them, and adjust their properties.

 Figure 2-5. The popup menu to add a form to the project

CHAPTER 2 ■ SETTING UP THE POSAPP

19

 Figure 2-6. The Components of the InvoiceForm and their properties

CHAPTER 2 ■ SETTING UP THE POSAPP

20

 At this stage, we have created the user interface for your application. Use the Project
➤ Options menu option and click Forms. Then, select the InvoiceForm from the left side
list and use the relevant button to transfer it to the list on the right, as shown in Figure 2-7 .
This will prevent the application from creating the InvoiceForm automatically. You can also
remove the following code from InvoiceForm.pas . We will create the forms manually.

 Figure 2-6. (continued)

CHAPTER 2 ■ SETTING UP THE POSAPP

21

 Switch to the MainScreenForm.pas unit. We will now add code to the ButtonInvoice
in order to open the InvoiceForm . Select the ButtonInvoice , click on the OnClick event
(or click on the button itself), and add the following code. You also need to make sure that
you declare the InvoiceForm in the unit’s uses clause.

 uses
 ..., InvoiceForm;

 procedure TMainForm.ButtonInvoiceClick(Sender: TObject);
 var
 tmpInvoiceForm: TSalesInvoiceForm;
 begin
 tmpInvoiceForm:=TSalesInvoiceForm.Create(self);
 tmpInvoiceForm.ShowModal;
 end;

 Compile and run the application. Click on the Issue Invoice button. You should now
be able to see the invoice form.

 Figure 2-7. The form options for the POSApp project

CHAPTER 2 ■ SETTING UP THE POSAPP

22

 Mixing Business and Presentation
 In this section, we will develop the POSApp in such way that mixes business logic and
presentation layers. We will follow the typical design that evolves when RAD tools are
used and developers do not consider any design patterns (called monolithic design).
Then, in the rest of the book, we will refactor this application to the MVVM pattern.

 We need the following entities (classes) for POSApp :

• TCustomer : A class that represents a customer and keeps track
of the name of the customer, the current outstanding balance,
the discount rate the customer is eligible for, and the ID of the
customer.

• TItem : A class that holds an item to be sold. It has a field for the
description of the item, its price, and ID number.

• TInvoice : A class that represents an invoice. It has an ID field and
a sequence number (the invoice no.).

• TInvoiceItem : Each invoice includes items for a specific transaction.
This class keeps the following data for each invoice item: ID
(rank number), itemID, invoiceID (the invoice the item belongs to),
the price per unit item, and the quantity of the item.

 Declaration of Classes
 To keep things organized in the code, we will keep all the declarations of the classes in
one unit. Add a new unit to the project (you can use the Add New ➤ Unit option from the
popup menu, as shown in Figure 2-5) and save it as Declarations.pas . Then, add the
following code to the unit.

 unit Declarations;

 interface

 type
 TCustomer = class
 private
 fID: Integer;
 fName: string;
 fDiscountRate: Double;
 fBalance: Currency;
 public
 property ID: integer read fID write fID;
 property Name: string read fName write fName;
 property DiscountRate: double read fDiscountRate write fDiscountRate;
 property Balance: Currency read fBalance write fBalance;
 end;

CHAPTER 2 ■ SETTING UP THE POSAPP

23

 TItem = class
 private
 fID: Integer;
 fDescription: string;
 fPrice: Currency;
 public
 property ID: integer read fID write fID;
 property Description: string read fDescription write fDescription;
 property Price: Currency read fPrice write fPrice;
 end;

 TInvoice = class
 private
 fID: integer;
 fNumber: integer;
 fCustomerID: integer;
 public
 property ID: Integer read fID write fID;
 property Number: Integer read fNumber write fNumber;
 property CustomerID: Integer read fCustomerID write fCustomerID;
 end;

 TInvoiceItem = class
 private
 fID: integer;
 fInvoiceID: integer;
 fItemID: integer;
 fUnitPrice: Currency;
 fQuantity: integer;
 public
 property ID: integer read fID write fID;
 property InvoiceID: integer read fInvoiceID write fInvoiceID;
 property ItemID: integer read fItemID write fItemID;
 property UnitPrice: Currency read fUnitPrice write fUnitPrice;
 property Quantity: Integer read fQuantity write fQuantity;
 end;

 implementation

 end.

 The Database Unit
 Create a new unit and save it as Database.pas . This unit represents the persistent
medium of your application. In a real-life application, you are most likely to use local
and/or remote databases but, in this case, we will use hard-coded data. We will generate
customer records, balances, and discount rates manually in the Create event of the class.

CHAPTER 2 ■ SETTING UP THE POSAPP

24

 Now we will create a TDatabase class to simulate the “persistent” data. In the
 interface section of the Database.pas unit, add the following code:

 uses Declarations, System.Generics.Collections;

 type
 TDatabase = class
 private
 fCustomers: TObjectList<TCustomer>;
 fItems: TObjectList<TItem>;
 public
 constructor Create;
 destructor Destroy; override;
 end;

 The class we created does not offer a way to expose the private fields. At this stage,
we will use the constructor to simulate the creation of records in a “persistent” medium,
as described. Later in this chapter, we will develop the class further to provide access to
the private fields according to our needs.

 The code in the implementation section for the constructor and deconstructor is as
follows. As you can see, we create a set of customers and items to resemble data retrieved
from dynamic storage.

 { TDatabase }

 constructor TDatabase.Create;
 var
 tmpCustomer: TCustomer;
 tmpItem: TItem;
 begin
 inherited;

 fCustomers:=TObjectList<TCustomer>.Create;

 //Create mock customers
 tmpCustomer:=TCustomer.Create;
 tmpCustomer.ID:=1;
 tmpCustomer.Name:='John';
 tmpCustomer.DiscountRate:=12.50;
 tmpCustomer.Balance:=-Random(5000);
 fCustomers.Add(tmpCustomer);

 tmpCustomer:=TCustomer.Create;
 tmpCustomer.ID:=2;
 tmpCustomer.Name:='Alex';
 tmpCustomer.DiscountRate:=23.00;
 tmpCustomer.Balance:=-Random(2780);
 fCustomers.Add(tmpCustomer);

CHAPTER 2 ■ SETTING UP THE POSAPP

25

 tmpCustomer:=TCustomer.Create;
 tmpCustomer.ID:=3;
 tmpCustomer.Name:='Peter';
 tmpCustomer.DiscountRate:=0.0;
 tmpCustomer.Balance:=-Random(9000);
 fCustomers.Add(tmpCustomer);

 tmpCustomer:=TCustomer.Create;
 tmpCustomer.ID:=4;
 tmpCustomer.Name:='Retail Customer';
 tmpCustomer.DiscountRate:=0.0;
 tmpCustomer.Balance:=0.0;
 fCustomers.Add(tmpCustomer);

 fItems:=TObjectList<TItem>.Create;
 //Create mock items to sell
 tmpItem:=TItem.Create;
 tmpItem.ID:=100;
 tmpItem.Description:='T-shirt';
 tmpItem.Price:=13.55;
 fItems.Add(tmpItem);

 tmpItem:=TItem.Create;
 tmpItem.ID:=200;
 tmpItem.Description:='Trousers';
 tmpItem.Price:=23.45;
 fItems.Add(tmpItem);

 tmpItem:=TItem.Create;
 tmpItem.ID:=300;
 tmpItem.Description:='Coat';
 tmpItem.Price:=64.00;
 fItems.Add(tmpItem);

 tmpItem:=TItem.Create;
 tmpItem.ID:=400;
 tmpItem.Description:='Shirt';
 tmpItem.Price:=28.00;
 fItems.Add(tmpItem);
 end;

 destructor TDatabase.Destroy;
 begin
 fCustomers.Free;
 fItems.Free;
 inherited;
 end;

CHAPTER 2 ■ SETTING UP THE POSAPP

26

 Total Sales
 The main screen of POSApp has a field that shows the total sales figure. If we want to implement
this, we need to have a way to store the sales that we generate every time we issue an invoice.
As before, in real-life applications, this figure is typically stored in a database or calculated
on-the-fly by accessing a database. Here, I use a normal text file to keep track of the invoice
amounts. This is, admittedly, a naïve and poor approach, but it will serve our purposes.
Delphi provides a very handy way to meet our needs, by providing the TIniFile class.

 ■ Note If you are not familiar with the TIniFile class in Delphi, check out this resource
(DocWiki, 2016a).

 In the TDatabase class, add one private field to hold the path and the filename
of the file and two procedures to retrieve (GetTotalSales) the total amount and save
(SaveCurrentSales) each invoice’s sales amount. You also need to update the constructor
and the uses clause in the implementation section.

CHAPTER 2 ■ SETTING UP THE POSAPP

27

 ■ Note When I present code, I attempt to use good programming practices whenever
the scope justifies the complexity. In the previous code, I used the try...finally block to
make sure the INI object is properly managed even if an exception is thrown. You can learn
more about how to manage exceptions in this link (DocWiki, 2016b).

 We initialize the value of fFullFileName to point to the folder of the executable file.
If your target is set to Win32 and the build configuration is set to Debug, the POSApp.data
file will be created in:

 {the path you store the project files}\Win32\Debug

 GetTotalSales opens the INI file and loads the Total Sales value from the Sales
section of the file. SaveCurrentSales takes the amount of the current invoice and adds it
to the saved sales figure.

CHAPTER 2 ■ SETTING UP THE POSAPP

28

 The Main Form
 The last thing we need to implement is a way for the main screen to update the total
amount of sales. Return to the MainScreenForm unit and create a private procedure
entitled UpdateTotalSales .

 uses
 ..., Database;

 type
 TMainForm = class(TForm)
 ...
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private
 procedure UpdateTotalSales;
 public
 { Public declarations }
 end;

 Enter the following code in the OnCreate event and, then, develop
 UpdateTotalSales (click anywhere in the class declaration and press Ctrl+Shift+C.
Delphi will automatically create the skeleton of the procedure).

 procedure TMainForm.FormCreate(Sender: TObject);
 begin
 UpdateTotalSales;
 end;

 procedure TMainForm.UpdateTotalSales;
 var
 tmpSales: Currency;
 tmpDatabase: TDatabase;
 begin
 tmpSales:=0.00;

 tmpDatabase:=TDatabase.Create;
 try
 tmpSales:=tmpDatabase.GetTotalSales;
 finally
 tmpDatabase.Free;
 end;

CHAPTER 2 ■ SETTING UP THE POSAPP

29

 LabelTotalSalesFigure.Text:=Format('%10.2f',[tmpSales]);
 end;

 POSApp updates the total sales label when the form is created. You’ll also want this to
happen when you complete an invoice in the InvoiceForm screen. You do this by adding
a call to UpdateTotalSales in the OnClick event of the ButtonInvoice .

 procedure TMainForm.ButtonInvoiceClick(Sender: TObject);
 var
 ...
 begin
 ...
 UpdateTotalSales;
 end;

 The Sales Invoice Form
 Let’s move to the InvoiceForm unit. Open the form and go to the Code panel. In
order to implement the invoice functionality, we need a number of variables to keep
track of the invoice. The following fields are introduced in the private section of the
 TSalesInvoiceForm . You also need to update the uses part of the unit.

 We need to initialize the classes and free them when the form closes. Add the
following code to the OnCreate and OnDestroy events of the form.

CHAPTER 2 ■ SETTING UP THE POSAPP

30

 An inspection of the InvoiceForm shows that there is a workflow that defines which fields
the user can access and when. For example, there is no point to add items to an invoice
before the user selects a customer (even a generic anonymous retail customer) or to apply
a discount. This means that we need an initial setup of the properties of the components.
Once the form is created, we can set up the interface. Add the following procedure to the
 private section of the form and complete the code.

CHAPTER 2 ■ SETTING UP THE POSAPP

31

CHAPTER 2 ■ SETTING UP THE POSAPP

32

 First, we set up the labels, clear the popup boxes, and disable the group boxes. Then
we load the customer list (GetCustomerList) and the items (GetItems) from the database
and update the relevant popup boxes.

 Retrieving Data
 Switch back to the Database unit and add the following functions to the TDatabase class.
Now, we will add methods to expose the private fields we declared earlier.

 interface
 ...

 type
 TDatabase = class
 private
 ...
 public
 ...
 function GetCustomerList: TObjectList<TCustomer>;
 function GetItems: TObjectList<TItem>;
 ...
 end;

 implementation

 ...

 function TDatabase.GetCustomerList: TObjectList<TCustomer>;
 begin
 result:=fCustomers;
 end;

 function TDatabase.GeTItems: TObjectList<TItem>;
 begin
 result:=fItems;
 end;

 These functions simply return the lists from the TDatabase class. Back to
 InvoiceForm , the SetupGUI procedure cleans the edit field and the string grid and makes
the animated progress indicator and the label at the bottom invisible. If you execute
 POSApp and open an invoice, you should be able to select a customer from the popup box.

CHAPTER 2 ■ SETTING UP THE POSAPP

33

 The last thing that is left to do in the Customer Detail group box is to update the Discount
Rate and the Outstanding Balance fields that appear when the user selects a customer
name in the popup box. In the Database unit, the customer list is stored as an object list of
 TCustomer classes. When the user makes a selection in the popup box for the customers, we
only have the name of the customer. Therefore, we need a way to get the TCustomer class from
the name. Go back to the Database unit and add the following function.

 interface

 ...

 type
 TDatabase = class
 private
 ...
 public
 ...
 function GetCustomerFromName(const nameStr: string): TCustomer;
 ...
 end;

 implementation

 function TDatabase.GetCustomerFromName(const nameStr: string): TCustomer;
 var
 tmpCustomer: TCustomer;
 begin
 if not Assigned(fCustomers) then Exit;
 result:=nil;
 for tmpCustomer in fCustomers do
 begin
 if tmpCustomer.Name=nameStr then
 begin
 result:=tmpCustomer;
 exit;
 end;
 end;
 end;

 Now we have a way to retrieve the TCustomer class from the customer name. Switch to the
 InvoiceForm unit, click on the OnChange event of the PopupBoxCustomer component, and
add the following code:

CHAPTER 2 ■ SETTING UP THE POSAPP

34

CHAPTER 2 ■ SETTING UP THE POSAPP

35

 The code is straightforward; after retrieving the appropriate TCustomer class, it
updates the user interface accordingly and enables the relevant parts. The code also
cleans the string grid when the customer popup menu changes.

 Similar to the need we had earlier to retrieve the customer class from the name, we
need to be able to get the item’s class from its description. In the Database unit, add the
following method.

 type
 TDatabase = class
 private
 ...
 public
 ...
 function GetItemFromDescription(const desc: string): TItem;
 ...
 end;
 ...

 implementation
 ...

 function TDatabase.GetItemFromDescription(const desc: string): TItem;
 var
 tmpItem: TItem;
 begin
 result:=nil;
 if not Assigned(fItems) then Exit;
 for tmpItem in fItems do
 begin
 if tmpItem.Description=desc then
 begin
 result:=tmpItem;
 exit;
 end;
 end;
 end;

 Updating the Form

 The PopupBoxItems menu is enabled when the user selects a customer. We will add the
code to update the list with the selected item and the quantity. Click on the Add Item
button and add the following code.

CHAPTER 2 ■ SETTING UP THE POSAPP

36

CHAPTER 2 ■ SETTING UP THE POSAPP

37

 The method applies a number of validation checks and adds the new invoice item to
the fCurrentInvoiceItems list. We update the user interface (the string grid and the
label with the total invoice amount) using the two procedures at the end of the previous
method. You can develop the two procedures with the following code.

CHAPTER 2 ■ SETTING UP THE POSAPP

38

 We need to add the code for the GetItemFromID procedure (Database unit), which
appears in UpdateInvoiceGrid , as indicated previously.

 type
 TDatabase = class
 private
 ...
 public
 ...

CHAPTER 2 ■ SETTING UP THE POSAPP

39

 function GetItemFromID(const id: Integer): TItem;
 ...
 end;
 ...

 implementation
 ...

 function TDatabase.GetItemFromID(const id: Integer): TItem;
 var
 tmpItem: TItem;
 begin
 result:=nil;
 if not Assigned(fItems) then Exit;
 for tmpItem in fItems do
 begin
 if tmpItem.ID=id then
 begin
 result:=tmpItem;
 exit;
 end;
 end;
 end;

 Run the application. You should be able to add items in the invoice and then view
the updated invoice amount.

 There are a few things left. In the InvoiceForm , select the PopupMenuItems popup
menu component, open the Items Editor, and open a TMenuItem labeled Delete Entry.
Select the menu item you created and implement the OnClick event.

 interface
 ...

 type
 TSalesInvoiceForm = class(TForm)
 ...
 procedure MenuItemDeleteItemClick(Sender: TObject);
 private
 ...
 public
 { Public declarations }
 end;

 ...

 implementation

 ...

CHAPTER 2 ■ SETTING UP THE POSAPP

40

 procedure TSalesInvoiceForm.MenuItemDeleteItemClick(Sender: TObject);
 var
 tmpInvoiceItem: TInvoiceItem;
 begin
 if (StringGridItems.Selected>=0) and
 (StringGridItems.Selected<=StringGridItems.RowCount-1) then
 begin
 for tmpInvoiceItem in fCurrentInvoiceItems do
 if tmpInvoiceItem.ID=
 StringGridItems.Cells[4,StringGridItems.Selected].ToInteger then
 begin
 fCurrentInvoiceItems.RemoveItem(tmpInvoiceItem, TDirection.
FromBeginning);
 break;
 end;
 end;
 UpdateInvoiceGrid;
 UpdateBalance;
 end;

 Select the CheckBoxDiscount check box and write the OnChange event to update the
discounted amount, as you have already considered the discount in UpdateBalance .

 interface
 ...

 type
 TSalesInvoiceForm = class(TForm)
 ...
 procedure CheckBoxDiscountChange(Sender: TObject);
 private
 ...
 public
 { Public declarations }
 end;

 ...

 implementation

 ...
 procedure TSalesInvoiceForm.CheckBoxDiscountChange(Sender: TObject);
 begin
 UpdateBalance;
 end;

CHAPTER 2 ■ SETTING UP THE POSAPP

41

 When the user is ready to issue an invoice, they select the Print Invoice button. If they
want to cancel it, they simply select Cancel. The code behind the OnClick events of the
two buttons looks like this:

 The Cancel button simply closes the form and the Print Invoice button shows a
message and stores the invoice amount to our “database”.

 At this point, we have completed the POSApp . As you see, this implementation
provides the code that accesses our database and performs calculations (the business
logic) next to the code that updates the user interface (the presentation). If you want to
replace the form with another one, you need to spend a lot of time and effort developing
all the procedures of the new form. In fact, it does not have to be a completely new form.
You can face the same difficulty if you replace components in the form.

CHAPTER 2 ■ SETTING UP THE POSAPP

42

 For example, in the SalesInvoiceForm unit, we run a few calculations in several
places and update the GUI elements accordingly. If, at some point, we want to show the
discount rate in a pie chart or add a track bar to allow users to define the quantities to the
invoice items, we would need to visit all those places in the form and amend the code
that retrieves or shows this information. These kinds of complications, which are prone to
errors and bugs, are minimized and even avoided with the MVVM approach.

 Summary
 In this chapter, we created the POSApp application with code that mixes business logic,
presentation, and view states. In other words, at this stage, POSApp is a tightly coupled
application.

 By the end of this book, we will have a version of the application that allows us to
replace the view or the graphical elements with minimal effort. In the next chapter, we
will visit the foundations of a MVVM architecture in terms of coding and we develop a
methodology that allows us to convert POSApp to an MVVM application.

 References
 Begel, A. and Nagappan, N., 2007. “Usage and Perceptions of Agile Software Development
in an Industrial Context: An Exploratory Study,” First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007) , pp.255–264.

 DocWiki, E., 2016a. “Using TIniFile and TMemIniFile,” available at http://docwiki.
embarcadero.com/RADStudio/Seattle/en/Using_TIniFile_and_TMemIniFile [Accessed
17/03/2016].

 DocWiki, E., 2016b. “Writing Exception Handlers,” available at http://docwiki.
embarcadero.com/RADStudio/Seattle/en/Writing_Exception_Handlers [Accessed
17/03/2016].

 Gerber, A., Van Der Merwe, A., and Alberts, R., 2007. “Practical Implications of Rapid
Development Methodologies”.

http://docwiki.embarcadero.com/RADStudio/Seattle/en/Using_TIniFile_and_TMemIniFile
http://docwiki.embarcadero.com/RADStudio/Seattle/en/Using_TIniFile_and_TMemIniFile
http://docwiki.embarcadero.com/RADStudio/Seattle/en/Writing_Exception_Handlers
http://docwiki.embarcadero.com/RADStudio/Seattle/en/Writing_Exception_Handlers

43© John Kouraklis 2016
J. Kouraklis, MVVM in Delphi, DOI 10.1007/978-1-4842-2214-0_3

 CHAPTER 3

 MVVM as Design Philosophy

 In the previous chapter, we developed the POSApp using an all-in-one approach. We will
start converting the application to MVVM by looking at the view and considering which
functions should stay with it and which functionality will be delivered by the ViewModel
and the Model. I start exploring the MVVM pattern from the View, but this is not
necessary; you can begin your design from the Model or the ViewModel. Here, we will use
the View as a starting point, as it is easier to demonstrate a way of approaching the design
of an application in the MVVM domain.

 ■ Note The more familiar you become with the MVVM pattern, the easier it becomes to work
out the ViewModel first. ViewModels work as a bridge between the Model and the View and
allow different teams in bigger projects to work separately and in parallel without losing focus.
For example, you may have a group of developers working on the models and the ViewModels
of your application and a designer crafting the user interface and experience without the need
for the latter to wait until your developers complete an important part of the application.

 The View of the MainScreen
 The main screen of POSApp is pretty simple. It has a number of static labels, a button that
opens the invoice form, and one label that shows the updated sales figure. The most
obvious element that deserves its place in a ViewModel or in a Model is the total sales
figure. We map the visualization of the total sales figure to a property in the ViewModel,
which in turn receives its value from the Model itself via a function. Figure 3-1 shows
this relationship. The aim is to create a view that is as thin as possible and empty from
elements that define the view logic and view state . In this sense, we treat the static labels’
text and the button’s text as parameterized (for example, in an application that requires
translations) and we map them to separate fields and properties.

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

44

 Follow the next steps:

 1. Create a new folder to store the new version of POSApp . Call it
 POSAppMVVM . Within this folder, create three new folders called
 Models , ViewModels , and Views .

 2. Create a new multi-device application (Blank application)
in Delphi, save the new unit as Views.MainForm in the Views
folder, save the project as POSAppMVVM in the POSAppMVVM
folder, and then save the project group in the POSAppMVVM
folder as POSAppMVVMProjectGroup .

 3. Go to the Design tab of the MainForm and add the components
of the form as you did in the previous chapter (refer back to
Figure 2-4). This time, use dummy text for the labels (we will
retrieve the actual values from the ViewModel).

 ■ Tip In the book’s code, you will find the files (View.ModelForm.fmx and View.
ModelForm.pas) of an empty version of the MainForm for your convenience. They are
located in the Thin Forms folder. You can import them in an empty project (using the menu
in Figure 2-5 and the Add option) instead of creating the components from scratch.

 The Designer of the form and the Project Manager of your IDE environment should look
very similar to Figure 3-2 . Note that the form file in the right sidebar is located in the Views
folder. This will help us keep the files organized while we are developing the project.

 Figure 3-1. Main screen in an MVVM approach

http://dx.doi.org/10.1007/978-1-4842-2214-0_2#Fig4
http://dx.doi.org/10.1007/978-1-4842-2214-0_2#Fig5

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

45

 The Model of the MainScreen
 The model of the MainForm provides two functions, as discussed (see Figure 3-1).
Remember that the model is now responsible for accessing any data sources and
performing all the required manipulations to supply data to the ViewModel.

 1. Create a new unit and save it as Model.Main.pas in the Models
folder.

 2. You need the Declarations.pas and Database.pas units
from the first version of POSApp . Copy the original files and
paste them into the Models folder. Then, you can add the
units to the project. For consistency, you can rename the
files to Model.Declarations and Model.Database , but this is
not necessary. If you decide to rename the files, you need to
change the unit declarations too.

 3. Create a new unit and save it as Model.Main.pas .

 Figure 3-2. The IDE main window

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

46

 According to the plan, we need to be able to retrieve the labels of the components.
We could create separate functions for each one, but we will follow a simpler apprach
instead. We will create a record and populate it with the desired values. We also need to
retrieve the updated total sales figures, a job that was initially done in the MainForm .

 Load the Model.Declarations unit and declare the following record. Title field keeps
the caption of the LabelTitle component; IssueButtonCaption refers to the text of
 ButtonInvoice ; and TotalSalesText is for the LabelTotalSales element.

 Switch to the Model.Main unit and add the following code. You have to declare the
 Model.Declarations, Model.Database , and System.SysUtils units in the uses clauses.

 You can now add the GetTotalSales , which is the last function of this unit. This is a
simple reference to the appropriate function in the Model.Database unit.

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

47

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

48

 The ViewModel of the MainScreen
 As mentioned in Chapter 1 , the ViewModel has direct access to the Model. Create a new
unit and save it as ViewModel.Main.pas in the ViewModels folder. We will build the code
that receives data from the model and transforms it to information that makes sense to
the view (view logic/view state).

http://dx.doi.org/10.1007/978-1-4842-2214-0_1

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

49

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

50

 We can move forward by linking the View to the ViewModel. Open the View.
MainForm form and include the following piece of code.

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

51

 I have created two methods (UpdateLabels and UpdateTotalSalesFigure) to refresh
the graphical elements. Although I could include the code in the SetViewModel directly,
keeping the code separate serves several practical reasons, which will become apparent
later in the next chapter.

 Creating the Classes
 If you compile and execute the project, you will only see the main form with the “dummy”
labels. This is because we have not yet created the classes for the ViewModel and the Model. As
mentioned in the first chapter, there are different approaches to this regarding which part of the
MVVM structure should be created first. In this case, I will create the ViewModel and the Model
after the creation of the View for simplicity as we are, already, in the MainForm . When we create
the InvoiceForm , we will follow the other approach for demonstration purposes.

 In MainForm , write this code in the OnCreate and OnDestroy events of the form.

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

52

 How the Code Works
 When the MainForm is created, the OnCreate event creates a new instance of TMainModel .
Then, it creates a new ViewModel class (fViewModel) and assigns the Model to the
ViewModel. Finally, the ViewModel is attached to the View and this completes the chain
of M-VM-V (see Figure 3-3). One point you may notice in the code is that the mainModel
variable is local to the FormCreate procedure and it survives even though the procedure
ends. This is because we link mainModel to a variable that exists for the whole life of
 MainForm (fViewModel).

 Figure 3-3. Order of creation of classes in POSApp

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

53

 Creating the ViewModel and the Model Outside
the Main Form
 As you notice, we do all the job of creating the ViewModel and Model classes within
the form. This receives some criticism from a number of MVVM fans on the basis that
having all the elements in the View doesn't follow the MVVM principles and keeps the
parts together in such way that testing becomes difficult. My view is that you observe
this situation only when you set up the main form of the application. In regard to the
argument about the separation of the elements, we have only created the classes in a
procedure of the form and the form doesn't directly interact with the ViewModel or the
Model and the communication follows the MVVM logic. Despite this, I will show you how
to approach the creation of the ViewModel and the Model from outside the View.

 1. Save POSAppMVVMProjectGroup and all its files in a different
folder under a different name. The code that comes with the
book uses the name POSAppMVVMMainForm for the folder and
the project group.

 2. Open View.MainForm and delete the FormCreate procedure.

 3. Execute POSApp . You should see the main screen with the
“dummy” labels and caption.

 We are going to create the ViewModel and the Model classes before we create the
main form.

 1. Go to the Project ➤ Options ➤ Forms menu and move the
 MainForm from the Auto-Create Forms list to the Available
Forms, as you did in the previous chapter (review Figure 2-7).

 2. Select POSAppMVVM.exe or POSAppMVVMMainForm.exe if you are
using the code from the book in the Project Manager panel.
Open the source of the .exe file (choose View Source from the
menu shown in Figure 2-5) or press Ctrl+V.

 3. Enter the following lines of code:

http://dx.doi.org/10.1007/978-1-4842-2214-0_2#Fig7
http://dx.doi.org/10.1007/978-1-4842-2214-0_2#Fig5

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

54

 In a graphical presentation, the order of creation of the classes and the form is shown
in Figure 3-4 . The MainForm unit is very simple in this case and only holds the code to
update the total figures label.

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

55

 Notes About the Code
 There are a few points to notice in the code we developed to implement the MVVM
pattern for the MainForm .

 1. Both Model.Main and View.MainForm are very light in the
implementation.

 2. ViewModel.Main is responsible for the way data is presented
to the view. The GetLabelsText function deals with default
values and the GetTotalSalesValue function formats the
sales figure as retrieved from the model.

 3. You may wonder why I get into the trouble to the trouble
to retrieve the labels from the model instead of setting the
captions directly in the form. Although it may look a small
thing in this application, it is a great opportunity to challenge
the way we see forms. Consider, for example, how you would
change the design if you were asked to provide the ability to
change the interface language at runtime. With this design,
you would simply go to the model unit and add a few lines
to the GetMainFormLabelsText function in order to get the
translated text.

 Figure 3-4. Order of creation of classes outside the MainForm

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

56

 4. Following the previous point, the View now is totally detached
from the text of the visual elements. This means that you
can send the form files to an UI designer (with the lines for
the class creation and retrieval of data commented) who is
familiar with Delphi and they will do all the visual work for
you. They can even rearrange the components as they feel
best for the workflow. When you receive it back, what you
have to do is uncomment all the lines in the code.

 5. This example exposed the Model and ViewModel in the
relevant classes by defining properties. I could, equally, use
the SetModel (in ViewModel.Main) and the SetViewModel (in
 View.MainForm) to get the same result (both methods should
be declared as public in that case). Properties allow the
creation of fluent interfaces where you can directly write

 mainViewModel.Model:=mainModel;

 instead of calling the procedure

 mainViewMode.SetModel(mainModel);

 Other than this, there are no real benefits, so you can consider
it a matter of personal preference.

 6. What we achieve by declaring TMainViewModel and setting
the View model and the Model to the form and the View
model respectively is a high degree of isolation and, therefore,
of reusability of the View model and the form classes. This
is an example of what is called dependency injection. It
allows programmers to modify at runtime any variables
(dependencies) the classes require. For example, if you have
the need, you can change the View Model of the main form
without closing it or restarting the application.

 7. If we wanted to control the color of the label in the main form,
we would have to create a new field in the ViewModel and
 GetTotalSalesValue would set the value. The Model and the
View would be ignorant of how we determined the color of the
label separating, in this way, the view logic and the view state
from the view .

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

57

 How We Converted MainScreen
 At this stage, we converted the MainScreen to follow the Model-ViewModel-View
paradigm. Figure 3-5 explains the steps we followed.

 1. We started with the MainScreen form (view). We recognized
the visual elements and decided that we can not keep
any code in the form that determines the content of the
visual elements. Instead, the only code we host in the View
just passes any values to the appropriate visual element
(controls). Therefore, we needed to remove the part of the
 UpdateTotalSales method that decides on the view state and
 view logic . Initializing values is a view state and formatting
values is view logic

 2. The action in the first step implies that we need a “place” to
format and initialize total sales. The obvious location for these
activities is in the ViewModel. The ViewModel determines
how the view state and view logic are implemented. Therefore,
the ViewModel formats the TotalSalesValue and gives
access to the view. We moved the code from the original
 UpdateTotalSales to the ViewModel under the method called
 TotalSalesValue .

 3. What is left is the initialization and, subsequently, the
updating of the values that are being passed to the view.
This is the job of the Model. New, separate methods
(GetLabelsText and GetTotalSales) appear in the Model.

CHAPTER 3 ■ MVVM AS DESIGN PHILOSOPHY

58

 Summary
 In this chapter, we converted the first of the forms of the application in such way that follows
the MVVM principles. Figure 3-5 , along with the descriptions, epitomize the steps we
followed to achieve this conversion. You can see them as the first part of a methodology that
allows us to work on monolithic applications. Before we move to the second form of POSApp ,
we need to develop some tools in order to establish bi-directional access to the elements of
MVVM. The next chapter deals with these tools.

 Figure 3-5. Code conversion to MVVM

59© John Kouraklis 2016
J. Kouraklis, MVVM in Delphi, DOI 10.1007/978-1-4842-2214-0_4

 CHAPTER 4

 Two-Way Communication

 Take a moment to revisit the code developed for POSApp so far. In particular, try to identify
the way that communication is being delivered among the View, the ViewModel, and
the Model. Then consider Figure 3-4 and the way the initial labels captions are retrieved.
Based on this figure and the description of the layout of the MVVM model as presented in
Chapter 1 , we may notice that each one of the components communicate with the next in
the layout in an one-way arrangement, as awareness of each element is limited. The View
is aware of the ViewModel, but the ViewModel doesn’t know anything about the View.
Likewise, the ViewModel is aware of the Model, but not vice versa. This design has served
us well in POSApp up to this point, as we simply wanted to get the values of the labels.

 However, if we go back and run the version of POSApp developed in Chapter 2 , we will
notice that the Total Sales figure in the MainScreen is updated every time a new invoice
is successfully issued. This implies that there is the need for a communication channel
that ends up to the View in addition to the one already in place, which originates from the
View and is described by the MVVM model (see Figure 4-1). In this case, how do we solve
this two-way communication requirement?

 Figure 4-1. Two-way communication requirement

http://dx.doi.org/10.1007/978-1-4842-2214-0_3#Fig4
http://dx.doi.org/10.1007/978-1-4842-2214-0_1
http://dx.doi.org/10.1007/978-1-4842-2214-0_2

CHAPTER 4 ■ TWO-WAY COMMUNICATION

60

 The Provider-Subscriber (ProSu) Framework
 There are many acceptable approaches to address this new challenge. We could create a
variable or even a property in the view of the InvoiceForm and directly link it to the label
that represents the Total Sales figure in the MainScreenForm (LabelTotalSalesFigure).
Then, before the InvoiceForm closes, it would update the LabelTotalSalesFigure with
the new value. Although this is a common approach, we will opt out here, because that
would create a tight linkage between two elements, leaving us with strong dependencies.
Instead, we will turn to patterns that implement looser coupling among a different (and
unknown) number of elements.

 The pattern we will be looking at this section is usually referred to as the observer
pattern. This is a one-to-many communication of change of states between objects that
are loosely coupled. The pattern is well explored in a variety of sources, with the most
notable being Gamma et. al. (1994). It’s presented in Figure 4-2 . In this pattern, a class
that acts as provider of messages (or publisher as it is also called) sends messages to a
number of classes (observers). The interpretation and, consequently, the course of action
to be taken by the transmitted messages is the sole duty of the observer.

 For our needs, we are going to develop our own implementation instead of using a
ready-made one. We shouldn't see this as restrictive; if we are familiar with an alternative
implementation, feel free to use it.

 Let's call this version the ProSu Framework (Pro vider- Su bscriber). For a number
of reasons that don't fall in the scope of this book and this chapter, a very efficient and
flexible way to implement this pattern is to employ interfaces.

 Figure 4-2. Provider-subscriber design pattern

CHAPTER 4 ■ TWO-WAY COMMUNICATION

61

 ■ Note An interface works like a class that holds well-defined procedures and functions
but doesn't provide the implementation of those methods; instead, it works as a blueprint
to indicate what we should expect to see in terms of procedures and functions in a class
that uses the interface. Interfaces are implemented in real classes and they allow the
implementation of multi-inheritance classes in Delphi. If you need a refresher on the topic
of interfaces, visit the documentation that comes with your version of Delphi or follow this
resource (DocWiki, 2015).

 Let's return to the PosAppMVVMMainForm project. The ProSu units will support our
application. In order to keep our housekeeping at good levels, we will place them in
separate folders.

 1. Go to the folder where we have saved the project and the
project group.

 2. Create a new folder called SupportCode .

 Figure 4-3 summarizes how the ProSu framework works. Any class (subscriber) that
needs to follow messages from the provider subscribes to it using the Subscribe method
of the provider (Step 1). Whenever the provider wants to alert the subscribers, it sends out
a signal using the NotifySubscriber method (Step 2).

 This method invokes the UpdateSubscriber method at the subscriber side (Step 3).
You will notice in Figure 4-3 that the subscriber has an UpdateMethod property and a
 SetUpdateSubscriberMethod . This is because we want to make the subscriber class
to adapt to any classes in the code (as we want the same for the provider class). This
means that the actual method the subscriber uses to respond to signals from the provider
is not known in advance but it is class-dependent. SetUpdateSubscriberMethod and
UpdateMethod provide a way to implement this, as we will see in the next lines of code.
Overall, this adaptability of the framework to unknown classes is built on the flexibility of
the interfaces. Now, let's dive into the code.

 In the POSAppMVVMMainForm project, add a new unit called Model.ProSu.
Interfaces.pas. (Remember? I said we’d try to keep the code as tidy as possible.) Save
the unit in the SourceCode folder we created earlier. Then, add the following code.

 Figure 4-3. Provider-subscriber implementation details

CHAPTER 4 ■ TWO-WAY COMMUNICATION

62

 This unit defines the interfaces for the framework. Follow the same steps when we
created the Model.ProSu.Interfaces.pas unit and create a new unit called Model.
ProSu.Provider.pas with the following

CHAPTER 4 ■ TWO-WAY COMMUNICATION

63

CHAPTER 4 ■ TWO-WAY COMMUNICATION

64

 We define the ProSuProvider class, which implements the IProviderInterface and
represents the provider. We need a way to keep track of the subscribers and we’ll do so by
introducing a private TList variable. Then, we implement the Subscribe , Unsubscribe ,
and NotifySubscribers methods by manipulating the TList<T> property. Subscribe
adds an interfaced subscriber to the list, Unsubscribe removes it, and NotifySubscribers
invokes the UpdateSubscriber method of the subscriber. Apart from this, the Create and
 Destroy methods take care the fSubscriberList .

 The last part of the framework deals with the subscriber. We need to create one more
unit as we did earlier (Model.ProSu.Subscriber.pas) and implement it according to the
following code. The subscriber unit is straightforward and simple.

 unit Model.ProSu.Subscriber;

 interface

 uses Model.ProSu.Interfaces;

 type
 TProSuSubscriber = class (TInterfacedObject, ISubscriberInterface)
 private
 fUpdateMethod: TUpdateSubscriberMethod;
 public
 procedure UpdateSubscriber (const notifyClass: INotificationClass);
 procedure SetUpdateSubscriberMethod (newMethod:
TUpdateSubscriberMethod);
 end;

 implementation

CHAPTER 4 ■ TWO-WAY COMMUNICATION

65

 { TProSuSubscriber }

 procedure TProSuSubscriber.SetUpdateSubscriberMethod(
 newMethod: TUpdateSubscriberMethod);
 begin
 fUpdateMethod:=newMethod;
 end;

 procedure TProSuSubscriber.UpdateSubscriber(const notifyClass:
INotificationClass);
 begin
 if Assigned(fUpdateMethod) then
 fUpdateMethod(notifyClass);
 end;

 end.

 Two-Way Communication (Revisited)
 We developed the ProSu framework as a response to the need we identified earlier
for the View (MainForm) to receive notifications in addition to its ability to initiate
communication with the ViewModel. The observer pattern does exactly this; it allows the
View to receive notifications from the InvoiceForm to update the Total Sales figure.

 Let’s see how this works. We are going to use a simple form to imitate the
functionality of printing an invoice and we will investigate how to make the MainForm
update the sales figure. We can find the full code in the POSAppMVVMMainFormTest folder
in the book’s files.

 1. Add a new form in the POSAppMVVMMainForm project, change
the name to TestPrintInvoiceForm , and save it in the Views
folder with the name View.TestPrintInvoice.pas.

 2. Add a new button (TButton) rename it to ButtonPrintInvoice
and change the text property to Print Invoice. The purpose of
the button is to simulate the process of completing an invoice
as we have it in the InvoiceForm . The TestPrintInvoice
button will notify the MainForm with the new updated sales
figure and will close the TestPrintInvoiceForm .

 3. The design of the TestPrintInvoiceForm and the properties
of the ButtonPrintInvoice are not important at this point.

 4. Using Figures 4-1 and 4-3 , we can draw comparisons and
assign the role of the observer to the MainForm and the role of
the provider to the TestPrintInvoiceForm in order to bring
the two forms together under the ProSu paradigm.

CHAPTER 4 ■ TWO-WAY COMMUNICATION

66

 Switch to the code view of the TestPrintInvoiceForm and declare a private
variable as IProviderInterface , which is exposed as a read-only property. Then, add
the following code to the FormCreate event. We also need to add the Model.ProSu.
Interfaces and Model.ProSu.Provider units to the uses clauses.

 interface

 uses
 ..., Model.ProSu.Interfaces, Model.ProSu.Provider;

 type
 TTestPrintInvoiceForm = class(TForm)
 ...
 procedure FormCreate(Sender: TObject);
 private
 fProvider: IProviderInterface;
 public
 property Provider: IProviderInterface read fProvider;
 end;

 implementation

 uses Model.ProSu.Provider;

 procedure TTestPrintInvoiceForm.FormCreate(Sender: TObject);
 begin
 fProvider:=TProSuProvider.Create;
 end;

 We don’t need to release the fProvider in the FormDestroy event because interfaces
manage their own lifecycles. What we need to do as the last step is write code in the
 OnClick event of the PrintInvoice button. The event will use the fProvider to update
the subscribers. Basically, what we need to tell the subscribers has two parts: update the
Total Sales figure’s label and supply the new value of the total sales.

 In order to achieve this, we need to look at the declaration of the NotifySubscribers
in the Model.ProSu.Interfaces unit. The declaration of the method shows that we can
only pass an INotificationClass interface parameter. This is quite fortunate as the
implementation of the interface is totally abstract. Considering the flexibility of interfaces,
what the INotifcationClass declaration tells us is that we can pass to the subscribers
 any class we need as long as it implements the INotificationClass interface, which by
definition is empty.

 Add a new unit to the project, save it in the SupportCode folder, and name it
 Model.ProSu.InterfaceActions . This unit will provide a reference to any actions we
want subscribers to perform. Add the following code to this new unit.

 unit Model.ProSu.InterfaceActions;

 interface

CHAPTER 4 ■ TWO-WAY COMMUNICATION

67

 type
 TInterfaceAction = (actUpdateTotalSalesFigure);
 TInterfaceActions = set of TInterfaceAction;

 implementation

 end.

 The only thing we do in this unit is to declare available actions to the subscribers. At
the moment, we have only one (UpdateTotalSalesFigure), but the following chapters
will introduce more. We have also declared a set of actions in order to allow subscribers to
perform more than one action with only one call from the provider.

 We now need to declare the notification class. Open the Model.Declarations unit, add
a reference to the Model.ProSu.InterfaceActions and Model.ProSu.Interfaces units,
and declare the following class.

 Back to the TestPrintInvoiceForm , implement the OnClick event of the
 ButtonPrintInvoice . We also need to add the Model.Declarations and Model.ProSu.
InterfaceActions units.

 interface

 ...

 type
 TTestPrintInvoiceForm = class(TForm)
 ...
 procedure ButtonPrintInvoiceClick(Sender: TObject);
 private

CHAPTER 4 ■ TWO-WAY COMMUNICATION

68

 ...
 public
 ...
 end;

 ...
 implementation
 ...

 uses ..., Model.Declarations, Model.ProSu.InterfaceActions;

 procedure TTestPrintInvoiceForm.ButtonPrintInvoiceClick(Sender: TObject);
 var
 tmpNotificationClass: TNotificationClass;
 begin
 tmpNotificationClass:=TNotificationClass.Create;
 try
 tmpNotificationClass.Actions:=[actUpdateTotalSalesFigure];
 tmpNotificationClass.ActionValue:=Random(1300);
 fProvider.NotifySubscribers(tmpNotificationClass);
 finally
 tmpNotificationClass.Free;
 end;
 end;

 It is time now to test whether the ProSu framework does the job. Open the View.
MainForm unit and declare a new private variable to indicate that this form has the role
of a subscriber in the ProSu domain.

 interface

 uses
 ..., Model.ProSu.Interfaces;

 type
 TMainForm = class(TForm)
 ...
 private
 ...
 fSubscriber: ISubscriberInterface;
 ...
 public
 ...
 end;

 ...
 implementation
 ...

CHAPTER 4 ■ TWO-WAY COMMUNICATION

69

 uses
 Model.ProSu.Subscriber;

 procedure TMainForm.FormCreate(Sender: TObject);
 ...
 begin
 ...
 fSubscriber:=TProSuSubscriber.Create;
 end;

 Create the OnClick event of the ButtonInvoice and add the following code, which creates
the TestPrintInvoiceForm and subscribes the MainForm to it.

CHAPTER 4 ■ TWO-WAY COMMUNICATION

70

 If we compile and execute POSAppMVVM , we will be able to open many test forms.
However, we will not see the Total Sales figure label updated when we press the Print
Invoice button. This is because, up to this point, we notify the subscriber (MainForm)
regarding a change to the sales value, but we do not process this signal in the MainForm .
In fact, we are one step behind the processing of the signal. The form is not yet aware that
there is a message to be processed. This is what we are going to fix next.

 When we developed the IProSuSubscriber interface and the TProSuSubscriber
class, we implemented SetUpdateSubscriberMethod . This method will help us resolve
the problem we are facing here. We need to declare a procedure in the subscriber
(MainForm) and pass it to the provider; then, when a message needs to be delivered, the
provider simply invokes this method.

 In the View.MainForm unit, declare the NotificationFromProvider procedure and
pass it to the provider.

CHAPTER 4 ■ TWO-WAY COMMUNICATION

71

 Now, we develop the NotificationFromProvider method to update the Total Sales
figure label.

 procedure TMainForm.NotificationFromProvider(
 const notifyClass: INotificationClass);
 var
 tmpNotifClass: TNotificationClass;
 begin
 if notifyClass is TNotificationClass then
 begin
 tmpNotifClass:=notifyClass as TNotificationClass;
 if actUpdateTotalSalesFigure in tmpNotifClass.Actions then
 LabelTotalSalesFigure.Text:=format('%10.2f',[tmpNotifClass.ActionValue]);

 end;
 end;

 We first translate notifyClass to TNotificationClass (typecast) and then check for
the required action from the provider. If the action is actUpdateTotalSalesFigure , we
update the Total Sales figure label. Compile and execute the application. Open a couple
of invoice forms and click on the Print Invoice button. You should be able to see the Total
Sales figure changing in the main form.

 ■ Note The way we processed the message from the provider violates the MVVM design,
as we bypassed the step where we retrieve the value from the ViewModel. Normally, we
should call the UpdateTotalSalesFigure method. We didn’t do this here because the aim
was just to test the ProSu framework and confirm that messages can be passed back to the
View. In the following material, we will revert to the use of the ViewModel.

 We have tested the ProSu framework and now have the tools to establish two-way
communication between the View and the ViewModel and, similarly, between the ViewModel
and the Model. We don’t need the TestPrintInvoiceForm unit any more, so you can either
remove it from the project or just remove the code in the ButtonInvoiceClick method. In the
code files that come with the book, you can load the POSAppMVVMInterfaces project.

 Making the Code More Efficient
 We have set up a way to organize the code, defined the different responsibilities and
actions of the elements of the MVVM, and established two-way communication of
the several elements. Before we move on and convert the InvoiceForm to the MVVM
paradigm, I will discuss some changes to the code which allow for more efficient coding.
This step is not vital for MVVM but it is good practice. It follows modern code architecture
and fits nicely in our case. We will use interfaces extensively in the next chapter. This
section introduces a form of structuring the code that hides the actual classes deep in the
implementation section of the units and exposes them with interfaces.

CHAPTER 4 ■ TWO-WAY COMMUNICATION

72

 ■ Note There are many articles and sources you can consult regarding the advantages
of interfaces. I recommend reading this article (Hodges, 2016) and this excellent example of
the S.O.L.I.D principles (Csaba, 2013). The latter article puts interfaces in a broader context
in software development.

 We’ll start with the Model.Database unit and will expose the TDatabase class via an
interface. In order to do this, we’ll declare an interface in the interface section of the unit
and will move the class declaration to the implementation section. Then, a function is
required to access the class.

 1. Open Model.Database unit.

 2. Move the TDatabase declaration in the Implementation
section.

 3. In the Interface section of the unit, declare this interface.

 type
 IDatabaseInterface = interface
 ['{DDE3E13A-0EC5-4712-B068-9B510977CF71}']
 function GetCustomerList: TObjectList<TCustomer>;
 function GetCustomerFromName(const nameStr: string): TCustomer;
 function GetItems: TObjectList<TItem>;
 function GetItemFromDescription(const desc: string): TItem;
 function GetItemFromID(const id: Integer): TItem;
 function GetTotalSales: Currency;
 procedure SaveCurrentSales(const currentSales: Currency);
 end;

 4. Change the declaration part of TDatabase to the following:

 type
 TDatabase = class (TInterfacedObject, IDatabaseInterface)

 5. In the Interface section, declare the following function:

 function CreateDatabaseClass: IDatabaseInterface;

 6. In the Implementation section, develop the
 CreateDatabaseClass function:

 function CreateDatabaseClass: IDatabaseInterface;
 begin
 result:=TDatabase.Create;
 end;

CHAPTER 4 ■ TWO-WAY COMMUNICATION

73

 7. Every time we need a TDatabase class, we will declare the
 IDatabaseInterface and use the CreateDatabaseClass .

 8. Open the Model.Main unit and change the type of fDatabase .

 9. In TMainModel.Create , change the line where your create the
 TDatabase class. Your code should look like this:

 10. Interfaces don’t need to be freed explicitly, as they can
manage their lifecycle. This means that we don’t need the
 fDatabase.Free line in the destructor of the TMainModel class.
You can delete the whole destructor method.

 Next, in the Model.Main unit, follow Steps to 2-9 in order to convert the TMainModel
class. Your unit now looks like this:

 unit Model.Main;

 interface

 uses Model.Declarations, Model.Database;

 type
 IMainModelInterface = interface
 ['{345910DF-654D-43CF-BDE8-E708A9F33624}']
 function GetMainFormLabelsText: TMainFormLabelsText;
 function GetTotalSales: Currency;
 end;

CHAPTER 4 ■ TWO-WAY COMMUNICATION

74

 function CreateMainModelClass: IMainModelInterface;

 implementation

 uses
 System.SysUtils;

 type
 TMainModel = class (TInterfacedObject, IMainModelInterface)
 private
 fMainFormLabelsText: TMainFormLabelsText;
 fDatabase: IDatabaseInterface;
 public
 function GetMainFormLabelsText: TMainFormLabelsText;
 function GetTotalSales: Currency;
 constructor Create;
 end;

 { TMainModel }

 ...

 function CreateMainModelClass: IMainModelInterface;
 begin
 result:=TMainModel.Create;
 end;

 We now need to change the way we use IMainModel in the source code of the project
(select the .exe file in the Project Manager and press Ctrl+V).

 The last piece of code we need to change in order to accommodate the new way to
use the TMainModel class is in ViewModel.Main .

CHAPTER 4 ■ TWO-WAY COMMUNICATION

75

 unit ViewModel.Main;

 interface

 ...

 type
 TMainViewModel = class
 private
 fModel: IMainModelInterface;
 procedure SetModel (const newModel: IMainModelInterface);
 ...
 public
 property Model: IMainModelInterface read fModel write SetModel;
 ...
 end;

 implementation

 procedure TMainViewModel.SetModel(const newModel: IMainModelInterface);
 begin
 fModel:=newModel;
 end;

 If you execute POSApp , you should be able to see the MainForm without getting any
errors during the compilation. You can now change all the classes created so far using the
approach we developed so far. I don’t include all the changes here, as they are redundant
and would take up lots of space. You can find the new versions of the files in the supplied
code (POSAppMVVMMainFormFullInterfaces). In summary, these are the changes
compared to the old code. The parentheses show the name of the interface and the name
of the function that creates the class.

 Model.ProSu.Provider:

 1. Move TProSuProvider to the Implementation section.

 2. Add a CreateProSuProviderClass function.

 Model.ProSu.Subscriber:

 1. Move TProSuSubscriber to the Implementation section.

 2. Add a CreateProSuSubscriberClass function.

 ViewModel.Main:

 1. TMainViewModel (IMainViewModelInterface ;
 CreateMainViewModelClass)

 2. Property Model has a getter GetModel function.

 3. Property LabelsText has a getter GetLabelsText function.

CHAPTER 4 ■ TWO-WAY COMMUNICATION

76

 View.MainForm:

 1. The fViewModel property in the TMainForm class is declared as
 IMainViewModelInterface.

 2. The fSubscriber property in the TMainForm class is declared
as ISubscriberInterface.

 3. The property ViewModel is declared as
 IMainViewModelInterface.

 4. Use procedure SetViewModel (const newViewModel:
IMainViewModelInterface) in both the definition of the class
and the implementation of the procedure.

 5. In the project file , change the declaration of
 mainViewModel :

 var
 ...
 mainViewModel: IMainViewModelInterface;

 6. In the project file, mainViewModel:=CreateMainViewModelClass;

 7. In TMainForm.Create , fSubscriber:=
CreateProSuSubscriberClass;

 8. Remove the TMainForm.FormDestroy event.

 One last move before we continue to the InvoiceForm ; when we developed the
ProSu units, we created a dedicated unit to keep all the declarations of the interfaces. This
is good practice and now we will also move the interface declarations of the Model, the
ViewModel, and the database to a new unit.

 1. Create a new unit and save it as Model.Interfaces in the
 Models folder.

 2. Move the IDatabaseInterface declaration from the Model.
Database unit to the Model.Interfaces unit.

 3. Add the Model.Declarations unit in the uses clause of
 Model.Databases.

 4. Add System.Generics.Collections in the uses clause of
 Model.Interfaces .

 5. Add Model.Interfaces in the Implementation uses clause of
 Model.Main.

 6. Move the IMainModelInterface declaration from the Model.
Main unit to Model.Interfaces unit.

CHAPTER 4 ■ TWO-WAY COMMUNICATION

77

 7. Add the Model.Interfaces unit in the Interface uses clause
of Model.Main .

 8. Add the Model.Interfaces unit in the Implementation uses
clause of ViewModel.Main.

 9. Move the IMainViewModelInterface declaration from the
 ViewModel.Main unit to the Model.Interfaces unit.

 10. Add the Model.Interfaces unit in the uses clause of the
 View.MainForm file.

 ■ Note At this stage, we have organized our code into small, manageable units.
Interfaces helped a lot in this regard. We converted all the core classes that are linked to the
MVVM; however, we didn’t touch the classes in the Model.Declarations unit. In a real-
world application, you may also want to use interfaces for those classes. In the rest of the
book, we will use the original version of Model.Declarations (without interfaces), because
converting those classes to use interfaces requires additional work that is not related to the
scope of this book. This can be a challenge to you!

 Summary
 The ProSu framework (observer pattern) provides a way to establish bi-directional
communication between the different components of the MVVM. Basic implementation
of S.O.L.I.D principles and the knowledge and methodology we developed in the previous
chapters provide the tools to continue the conversion of the last part of the application,
the InvoiceForm . This is the focus of the next chapter.

 References
 Csaba, P., 2013. “The SOLID Principles: Envato Tuts+ Code Tutorials,” available at
 http://code.tutsplus.com/series/the-solid-principles--cms-634 .

 DocWiki, 2015. “Interface References (Delphi),” available at h ttp://docwiki.
embarcadero.com/RADStudio/Seattle/en/Interface_References [Accessed 08/07/ 2016].

 Gamma, E., Helm, R., Johnson, R., Vlissidis, J., and Booch, G., 1994. Design Patterns:
Elements of Resusable Object-Oriented Software, Addison-Wesley Professional.

 Hodges, N., 2016. “Why you Should Be Using Interfaces and Not Direct References,”
Available at http://www.nickhodges.com/page/Why-You-Should-be-Using-
Interfaces-and-not-Direct-References.aspx [Accessed 24/06/2016].

http://code.tutsplus.com/series/the-solid-principles--cms-634
http://docwiki.embarcadero.com/RADStudio/Seattle/en/Interface_References
http://docwiki.embarcadero.com/RADStudio/Seattle/en/Interface_References
http://www.nickhodges.com/page/Why-You-Should-be-Using-Interfaces-and-not-Direct-References.aspx
http://www.nickhodges.com/page/Why-You-Should-be-Using-Interfaces-and-not-Direct-References.aspx

79© John Kouraklis 2016
J. Kouraklis, MVVM in Delphi, DOI 10.1007/978-1-4842-2214-0_5

 CHAPTER 5

 Converting the InvoiceForm

 In the previous chapters, we developed a methodology to guide us in converting an
application to follow the MVVM design. In summary, those steps are the following:

 1. Identify the different tasks for each procedure, class, and view
the application performs.

 2. Identify which of those tasks are duties of the Model, the
ViewModel, and the View, according to the MVVM paradigm.

 3. Consider moving procedures and functions from the View to
the ViewModel and the Model.

 4. Build the required links to make the new code functional on
the normal direction View-ViewModel-Model by developing
the necessary properties, procedures, and functions.

 5. Add functionality to the new code to support two-way
communication between the View-ViewModel-Model
according to the design needs of the application.

 The View of the InvoiceForm
 This section starts the convertion of the InvoiceForm by parameterizing the labels and
the button captions of the form, as we did with the main screen. Figure 5-1 shows how the
View retrieves the captions of the labels and buttons from the ViewModel and the Model.
The approach is similar to Figure 3-1 . We will also use dummy label values as we did
before (Figure 3-1).

 Follow these steps:

 1. Open the project you developed in the previous chapter or
load POSAppMVVMFullInterfaces from the code files that
come with the book.

http://dx.doi.org/10.1007/978-1-4842-2214-0_3#Fig1
http://dx.doi.org/10.1007/978-1-4842-2214-0_3#Fig1

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

80

 2. Add a new form to the project and save it as View.
InvoiceForm in the Views folder.

 3. Open the form in the IDE and add the components (labels,
group boxes, and buttons) as you did in Figure 2-6 using
“dummy” labels.

 ■ Tip In the book’s code files, you will find the InvoiceForm files (View.InvoiceForm.
fmx and View.InvoiceForm.pas) in the Thin Forms folder. For convenience, you can import
them into your project instead of creating the form from scratch.

 4. Open View.MainForm , click on the ButtonInvoice button,
and add the following code to the ButtonInvoiceClick
event. You also need to add the View.InvoiceForm in the
 Implementation uses clause.

 unit View.MainForm;

 interface

 ...

 type

 Figure 5-1. InvoiceForm in the MVVM design

http://dx.doi.org/10.1007/978-1-4842-2214-0_2#Fig6

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

81

 TMainForm = class(TForm)
 ...
 procedure ButtonInvoiceClick(Sender: TObject);
 ...
 end;

 ...

 implementation

 uses
 ..., View.InvoiceForm;

 {$R *.fmx}

 { TMainForm }

 procedure TMainForm.ButtonInvoiceClick(Sender: TObject);
 var
 tmpInvoiceForm: TSalesInvoiceForm;
 begin
 tmpInvoiceForm:=TSalesInvoiceForm.Create(self);
 try
 tmpInvoiceForm.ShowModal;
 finally
 tmpInvoiceForm.Free;
 end;
 end;

 ...

 end.

 If you compile and run the project at this stage, you can click on the Issue Invoice
button in the main screen and get the invoice form with the “dummy” labels.

 ■ Tip In the code files, you can open the POSAppMVVMStart project. This project
implements the previous steps and you can use it to work on the changes introduced in
the following pages. The POSAppMVVMInvoiceForm project includes the changes we will
incorporate in this chapter.

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

82

 The Model of the InvoiceForm
 We now need to provide the captions and the text for InvoiceForm ’s labels. As explained,
we will use the same approach we implemented when we considered how to allow
translations of the label captions in the MainScreen form.

 Open the Model.Declarations unit and define a record to keep the labels’ values
and the buttons’ captions. You can use Figure 5-1 as a guide.

 unit Model.Declarations;

 interface

 ...

 type
 ...

 TInvoiceFormLabelsText = record
 Title,
 CustomerDetailsGroupText,
 CustomerText,
 CustomerDiscountRateText,
 CustomerOutstandingBalanceText,

 InvoiceItemsGroupText,
 InvoiceItemsText,
 InvoiceItemsQuantityText,
 InvoiceItemsAddItemButtonText,
 InvoiceItemsGridItemText,
 InvoiceItemsGridQuantityText,
 InvoiceItemsGridUnitPriceText,
 InvoiceItemsGridAmountText,

 BalanceGroupText,
 BalanceInvoiceBalanceText,
 BalanceDiscountText,
 BalanceTotalText,

 PrintInvoiceButtonText,
 PrintingText,
 CancelButtonText: string;
 end;

 implementation
 ...

 end.

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

83

 1. Create a new unit and save it as Model.Invoice.pas under the
 Models folder. This hosts the Model of the InvoiceForm .

 2. Load the Model.Interfaces unit and declare a new interface
for the Model of the invoice form. For now, we need only one
function, which provides access to the labels of the form.

 unit Model.Interfaces;

 interface

 ...

 type
 ...

 IInvoiceModelInterface = interface
 ['{A286914B-7979-4726-8D9C-18865B47CD12}']
 function GetInvoiceFormLabelsText: TInvoiceFormLabelsText;
 end;

 implementation

 end.

 3. In the Model.Invoice unit, add the following code. We define
the class for the Model of the invoice form and a function to
allow access.

 unit Model.Invoice;

 interface

 uses
 Model.Interfaces;

 function CreateInvoiceModelClass: IInvoiceModelInterface;

 implementation

 uses
 Model.Declarations;

 type
 TInvoiceModel = class (TInterfacedObject, IInvoiceModelInterface)
 private
 fInvoiceFormLabelsText: TInvoiceFormLabelsText;

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

84

 public
 function GetInvoiceFormLabelsText: TInvoiceFormLabelsText;
 end;

 function CreateInvoiceModelClass: IInvoiceModelInterface;
 begin
 result:=TInvoiceModel.Create;
 end;

 { TInvoiceModel }

 function TInvoiceModel.GetInvoiceFormLabelsText: TInvoiceFormLabelsText;
 begin
 fInvoiceFormLabelsText.Title:='Sales Invoice';
 fInvoiceFormLabelsText.CustomerDetailsGroupText:='Customer Details';
 fInvoiceFormLabelsText.CustomerText:='Customer:';
 fInvoiceFormLabelsText.CustomerDiscountRateText:='Discount Rate:';
 fInvoiceFormLabelsText.CustomerOutstandingBalanceText:='Outstanding
Balance:';

 fInvoiceFormLabelsText.InvoiceItemsGroupText:='Invoice Items';
 fInvoiceFormLabelsText.InvoiceItemsText:='Item:';
 fInvoiceFormLabelsText.InvoiceItemsQuantityText:='Quantity:';
 fInvoiceFormLabelsText.InvoiceItemsAddItemButtonText:='Add Item';

 fInvoiceFormLabelsText.InvoiceItemsGridItemText:='Item';
 fInvoiceFormLabelsText.InvoiceItemsGridQuantityText:='Quantity';
 fInvoiceFormLabelsText.InvoiceItemsGridUnitPriceText:='Unit Price';
 fInvoiceFormLabelsText.InvoiceItemsGridAmountText:='Amount';

 fInvoiceFormLabelsText.BalanceGroupText:='Balance';
 fInvoiceFormLabelsText.BalanceInvoiceBalanceText:='Invoice Balance:';
 fInvoiceFormLabelsText.BalanceDiscountText:='Discount';
 fInvoiceFormLabelsText.BalanceTotalText:='Total:';

 fInvoiceFormLabelsText.PrintInvoiceButtonText:='Print Invoice';
 fInvoiceFormLabelsText.PrintingText:='Printing Invoice…';
 fInvoiceFormLabelsText.CancelButtonText:='Cancel';

 result:=fInvoiceFormLabelsText;
 end;

 end.

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

85

 The ViewModel of the InvoiceForm
 We have created the two side components of the design (Model and View). Now we need
to bring these two together. This is the job of the ViewModel of the invoice form, which will
fetch the labels and the captions from the Model and feed them to the View. In order for
this to happen, we need access to the Model and a way to retrieve the labels. We will do
the last part by declaring a property.

 1. Open the Model.Interfaces unit and declare the appropriate
interface.

 unit Model.Interfaces;

 interface
 ...

 type
 IInvoiceViewModelInterface = interface
 ['{87D2F27E-8B33-46C5-B44C-DBFC58A871BC}']
 function GetModel: IInvoiceModelInterface;
 procedure SetModel(const newModel: IInvoiceModelInterface);
 function GetLabelsText: TInvoiceFormLabelsText;
 property Model: IInvoiceModelInterface read GetModel write SetModel;
 property LabelsText: TInvoiceFormLabelsText read GetLabelsText;
 end;

 implementation

 end.

 2. Create a new unit called ViewModel.Invoice and develop the
ViewModel as per the following code.

 unit ViewModel.Invoice;

 interface

 uses
 Model.Interfaces;

 function CreateInvoiceViewModelClass: IInvoiceViewModelInterface;

 implementation

 uses
 Model.Declarations;

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

86

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 fModel: IInvoiceModelInterface;
 fLabelsText: TInvoiceFormLabelsText;
 function GetModel: IInvoiceModelInterface;
 procedure SetModel(const newModel: IInvoiceModelInterface);
 function GetLabelsText: TInvoiceFormLabelsText;
 public
 property Model: IInvoiceModelInterface read GetModel write SetModel;
 property LabelsText: TInvoiceFormLabelsText read GetLabelsText;
 end;

 function CreateInvoiceViewModelClass: IInvoiceViewModelInterface;
 begin
 result:=TInvoiceViewModel.Create;
 end;

 { TInvoiceViewModel }

 function TInvoiceViewModel.GetLabelsText: TInvoiceFormLabelsText;
 begin
 result:=fModel.GetInvoiceFormLabelsText;
 end;

 function TInvoiceViewModel.GetModel: IInvoiceModelInterface;
 begin
 result:=fModel;
 end;

 procedure TInvoiceViewModel.SetModel(const newModel:
IInvoiceModelInterface);
 begin
 fModel:=newModel;
 end;

 end.

 This code follows the design patterns we developed in the previous chapters—it uses
interfaces, hides the class implementation inside the units, and creates loose connections
between the View, the ViewModel, and the Model.

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

87

 Retrieving the Labels from the ViewModel
 We are now ready to update the invoice form with the labels and the captions as they are
provided by the ViewModel. Switch to the View.InvoiceForm unit and add the following code.

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

88

 This code will change the labels and the captions of the components of the form but only
when we make the form, the ViewModel, and the Model aware of each other. In the View.
MainForm unit, update the ButtonInvoiceClick event to create the different elements.

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

89

 If you execute POSApp , you should be able to see the correct labels and captions in
the invoice form. There are a few points in the code to note:

• The ButtonInvoiceClick event declares the Model, the
ViewModel, and the View of the invoice form as local variables.
There are many developers who think that the Model and the
ViewModel should be declared as private variables of the form.
There is no doubt this can also be done. My choice is to use
local variables because I prefer to have organized and neat code
whenever the scope of the variables is limited, as it is in this case.

• In the same event, we independently create the Model,
the ViewModel, and the View and then continue with the
assignments. This is one approach to the issue of the order
of creation. In the MVVM community, there are discussions
regarding which part of the pattern you create next (View-
ViewModel-Model). For example, in this case, you could create
the ViewModel and assign it to the form. The ViewModel would
then create the Model and assign it to itself. This approach has its
place in MVVM coding, but it is not always easy to implement.

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

90

• The task of retrieving the values of the labels and the captions
from the Model is quite trivial. As you can observe, in this case,
the ViewModel just passes the values from the Model to the
View without any processing. In the broader community of
developers (not only among Delphi programmers), many feel
that in cases like this, the MVVM pattern generates additional
coding without offering any significant advantages. Sometimes,
they refer to such situations with the term boilerplate code . It
may be true that there are simple cases in which MVVM does not
appear to increase efficiency. In general, MVVM thrives whenever
significant manipulation of data and information is required to
generate loosely coupled, complex outputs and sophisticated
user interfaces. The pattern performs well in such cases because it
offers a middle layer (ViewModel) that gives space to developers to
maneuver according to their needs without touching the Model or
the View. For example, in the case with the labels, imagine you have
two separate models that offer English and Greek labels but that the
Greek translation is incomplete. The ViewModel could retrieve the
Greek labels and fill in the gaps from the English model.

 Setting Up the Invoice Form
 Following the current methodology, before we break up the different parts of the form to
meet the MVVM design rules, we need to identify which steps the form is implementing.
Looking at the FormCreate event, you can see that there are two major components that
are being initialized when the form is created—the classes and the graphical elements of
the form (see Figure 5-2).

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

91

 FormCreate initializes the required classes to track an invoice (the database, invoice,
and invoice items classes). Then, the SetupGUI procedure is called, which changes the
title of the form, initializes the popup boxes (the customer and items), disables the
invoice items (the group box, the balance group box, and the Print Invoice button), and
initializes the invoice balance label. The procedure then retrieves the customer and items
lists from the database, populates the lists in the relevant popup boxes, and sets the initial
values of those elements. It sets the quantity to one, clears the grid and, then hides the
animated indicator and the label with the “ Printing... ” text.

 Next, we need to clarify which components of the MVVM pattern are responsible for
performing these tasks. This may be straightforward in some cases, but in other situations
a more complicated approach may be required. Figure 5-3 inspects the FormCreate event
and identifies that the event defines three classes that are part of the business logic (the
Model) of the invoice form. Therefore, we need to declare and initialize these classes in
the Model.

 Figure 5-2. Initial set up of InvoiceForm

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

92

 Open the Model.Invoice unit and declare the following variables in the private
section of the TInvoiceModel class. You also need to add System.Generics.Collections
in the Implementation uses clause and implement the constructor and the destructor of
the class.

 unit Model.Invoice;

 interface

 ...

 implementation

 uses
 ..., System.Generics.Collections;

 type
 TInvoiceModel = class (TInterfacedObject, IInvoiceModelInterface)
 private
 ...
 fDatabase: IDatabaseInterface;
 fInvoice: TInvoice;
 fCurrentInvoiceItems: TObjectList<TInvoiceItem>;
 public
 ...
 constructor Create;
 destructor Destroy; override;
 end;

 Figure 5-3. The FormCreate event in the MVVM design

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

93

 constructor TInvoiceModel.Create;
 begin
 fDatabase:=CreateDatabaseClass;
 fInvoice:=TInvoice.Create;
 fInvoice.ID:=1;
 fInvoice.Number:=Random(3000);
 fCurrentInvoiceItems:=TObjectList<TInvoiceItem>.Create;
 end;

 destructor TInvoiceModel.Destroy;
 begin
 fCurrentInvoiceItems.Free;
 fInvoice.Free;
 inherited;
 end;

 ■ Note In the Create event, we used an interfaced class for the TDatabase but a normal
class for the TInvoice . This is because we decided in Chapter 4 to keep that class (and a
few others) in their normal form.

 You may also notice that we use a new database class in the TInvoiceModel class.
This means that every time an invoice form is created, a new database class is going
to be instantiated as well. Admittedly, this is not optimal design for a line-of-business
application. In such cases, you typically have a separate class that provides access to the
database and you inject it into every class, component, or procedure that requires access
to the database. In some cases, you may keep the database connection open during the
lifetime of the application. In POSApp , the database class is very generic and limited in
scope, but it allows us to focus on the design pattern.

 FormCreate calls SetupGUI procedure, which changes the title label of the invoice
form to include the invoice number (see Figure 5-4). Changing the title is something
that falls under the View and the invoice number comes from the Model. The choice of
including the invoice number in the title is a very simple example of what is called View
state and it is performed by the ViewModel.

http://dx.doi.org/10.1007/978-1-4842-2214-0_4

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

94

 Open the Model.Interfaces unit and add the following function and property to the
declarations of IInvoiceModelInterface and IInvoiceViewModelInterface .

 type
 ...
 IInvoiceModelInterface = interface
 ...
 procedure SetInvoice(const newInvoice: TInvoice);
 procedure GetInvoice(var invoice: TInvoice);
 end;
 ...
 IInvoiceViewModelInterface = interface
 ...
 function GetTitleText: string;
 ...
 property TitleText: string read GetTitleText;
 end;

 Move to the Model.Invoice unit and develop the GetInvoice and SetInvoice
procedures as in the following code. Then, open ViewModel.Invoice and create the
 GetTitleText .

 unit Model.Invoice;

 interface

 Figure 5-4. The first part of SetupGUI in MVVM

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

95

 ...

 implementation

 ...

 type
 TInvoiceModel = class (TInterfacedObject, IInvoiceModelInterface)
 ...
 public
 ...
 procedure SetInvoice(const newInvoice: TInvoice);
 procedure GetInvoice(var invoice: TInvoice);
 end;

 ...

 procedure TInvoiceModel.GetInvoice(var invoice: TInvoice);
 begin
 invoice:=fInvoice;
 end;

 procedure TInvoiceModel.SetInvoice(const newInvoice: TInvoice);
 begin
 fInvoice:=newInvoice;
 end;

 ...

 end.

 unit ViewModel.Invoice;

 interface

 ...

 implementation

 ...

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 ...
 function GetTitleText: string;
 public
 ...

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

96

 end;

 ...

 function TInvoiceViewModel.GetTitleText: string;
 var
 tmpInvoice: TInvoice;
 begin
 fModel.GetInvoice(tmpInvoice);
 result:=fModel.GetInvoiceFormLabelsText.Title+' #'+IntToStr(tmpInvoice.
Number)

 end;

 ...

 end.

 GetTitleText creates the correct title for the InvoiceForm by accessing the invoice
Model. The last step we need to implement is to call GetTitleText from the InvoiceForm .
In the View.InvoiceForm , create a new private procedure called SetupGUI . In the initial
version of the invoice form, SetupGUI is called in the constructor of the form. In this
implementation, this will not work because we assign the ViewModel of the invoice
form after we create the form. The appropriate location to call SetupGUI is at the end of
the assignment of the ViewModel (SetViewModel). In addition, according to Figure 5-4 ,
 SetupGUI clears the two popup boxes and the string grid and sets the default value of the
quantity edit field.

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

97

 Run POSApp and open an invoice form. You can now see the number of the invoice at
the top of the form.

Here we retrieve
the �tle from the
ViewModel

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

98

 Disabling and Hiding Elements
 The rest of the actions in the original SetupGUI follow the pattern used to update the
title of the InvoiceForm . This section looks at how we can disable and hide elements of
the form. Disabling and hiding are two states of the View components. Therefore, they
represent view state and, as a consequence, they must be controlled by the ViewModel.
It is this ViewModel which determines the View state by looking at data from the Model.

 Open Model.Interfaces and declare the following properties and functions in
 IInvoiceViewModelInterface .

 ...

 IInvoiceViewModelInterface = interface
 ...
 function GetGroupBoxInvoiceItemsEnabled: Boolean;
 function GetGroupBoxBalanceEnabled: Boolean;
 function GetButtonPrintInvoiceEnabled: Boolean;
 function GetAniIndicatorProgressVisible: Boolean;
 function GetLabelPrintingVisible: Boolean;

 ...
 property GroupBoxInvoiceItemsEnabled: boolean read
GetGroupBoxInvoiceItemsEnabled;
 property GroupBoxBalanceEnabled: boolean read GetGroupBoxBalanceEnabled;
 property ButtonPrintInvoiceEnabled: Boolean read
GetButtonPrintInvoiceEnabled;
 property AniIndicatorProgressVisible: Boolean read
GetAniIndicatorProgressVisible;
 property LabelPrintingVisible: Boolean read GetLabelPrintingVisible;
 end;

 Then, write the implementations of these functions in the ViewModel.Invoice unit.
In this unit, you need to create the constructor of the class in order to set up the initial
state of the components.

 unit ViewModel.Invoice;

 interface

 ...

 implementation

 ...

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

99

 ...
 fInvoiceItemsEnabled,
 fBalanceEnabled,
 fPrintButtonEnabled,
 fAniIndicatorVisible,
 fPrintingLabelVisible: boolean;
 ...
 function GetGroupBoxInvoiceItemsEnabled: Boolean;
 function GetGroupBoxBalanceEnabled: Boolean;
 function GetButtonPrintInvoiceEnabled: Boolean;
 function GetAniIndicatorProgressVisible: Boolean;
 function GetLabelPrintingVisible: Boolean;
 public
 constructor Create;
 ...
 end;

 ...

 { TInvoiceViewModel }

 constructor TInvoiceViewModel.Create;
 begin
 fInvoiceItemsEnabled:=false;
 fBalanceEnabled:=false;
 fPrintButtonEnabled:=false;
 fAniIndicatorVisible:=false;
 fPrintingLabelVisible:=false;
 end;

 function TInvoiceViewModel.GetAniIndicatorProgressVisible: Boolean;
 begin
 result:=fAniIndicatorVisible;
 end;

 function TInvoiceViewModel.GetButtonPrintInvoiceEnabled: Boolean;
 begin
 result:=fPrintButtonEnabled;
 end;

 function TInvoiceViewModel.GetGroupBoxBalanceEnabled: Boolean;
 begin
 result:=fBalanceEnabled;
 end;

 function TInvoiceViewModel.GetGroupBoxInvoiceItemsEnabled: Boolean;
 begin
 Result:=fInvoiceItemsEnabled;
 end;

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

100

 function TInvoiceViewModel.GetLabelPrintingVisible: Boolean;
 begin
 result:=fPrintingLabelVisible;
 end;
 ...

 end.

 View.InvoiceForm includes two procedures— UpdateGroups and UpdatePrinting .
This gives us the flexibility to update the printing labels independently of the groups. The
initial call of the procedures is done in SetViewModel .

 unit View.InvoiceForm;

 interface

 ...

 type
 TSalesInvoiceForm = class(TForm)
 ...
 private
 ...
 procedure UpdateGroups;
 procedure UpdatePrintingStatus;
 public
 ...
 end;

 implementation

 ...

 procedure TSalesInvoiceForm.SetViewModel(
 const newViewModel: IInvoiceViewModelInterface);
 begin
 ...
 UpdateGroups;
 UpdatePrintingStatus;
 end;

 procedure TSalesInvoiceForm.UpdateGroups;
 begin
 GroupBoxInvoiceItems.Enabled:=fViewModel.GroupBoxInvoiceItemsEnabled;
 GroupBoxBalance.Enabled:=fViewModel.GroupBoxBalanceEnabled;
 ButtonPrintInvoice.Enabled:=fViewModel.ButtonPrintInvoiceEnabled;
 end;

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

101

 procedure TSalesInvoiceForm.UpdatePrintingStatus;
 begin
 AniIndicatorProgress.Visible:=fViewModel.AniIndicatorProgressVisible;
 LabelPrinting.Visible:=fViewModel.LabelPrintingVisible;
 end;

 ...

 end.

 Getting the Customer and Items Lists
 We follow similar steps as before in order to get the lists of the customers and the items.
We start from the interface of the Model.Invoice unit, where we expose procedures to
retrieve data from the database. Then, we declare new properties and procedures in the
 ViewModel.Invoice interface and develop the relevant code in the units.

 unit Model.Interfaces
 ...

 IInvoiceModelInterface = interface
 ['{A286914B-7979-4726-8D9C-18865B47CD12}']
 function GetInvoiceFormLabelsText: TInvoiceFormLabelsText;
 procedure SetInvoice(const newInvoice: TInvoice);
 procedure GetInvoice(var invoice: TInvoice);
 procedure GetCustomerList(var customers: TObjectList<TCustomer>);
 procedure GetItems(var items: TObjectList<TItem>);
 end;

 IInvoiceViewModelInterface = interface
 procedure GetCustomerList(var customers: TObjectList<TCustomer>);
 procedure GetItems(var items: TObjectList<TItem>);
 ...
 end;
 ...
 end.

 unit Model.Invoice;

 interface

 ...

 implementation

 ...

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

102

 type
 TInvoiceModel = class (TInterfacedObject, IInvoiceModelInterface)
 private
 ...
 public
 ...
 procedure GetCustomerList(var customers: TObjectList<TCustomer>);
 procedure GetItems(var items: TObjectList<TItem>);
 end;

 ...

 procedure TInvoiceModel.GetCustomerList(var customers:
TObjectList<TCustomer>);
 begin
 customers:=fDatabase.GetCustomerList
 end;

 procedure TInvoiceModel.GetItems(var items: TObjectList<TItem>);
 begin
 items:=fDatabase.GetItems
 end;

 ...

 end.

 unit ViewModel.Invoice;

 interface

 ...

 implementation

 ...

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 ...
 procedure GetCustomerList(var customers: TObjectList<TCustomer>);
 procedure GetItems(var items: TObjectList<TItem>);
 public
 ...
 end;

 ...

CHAPTER 5 ■ CONVERTING THE INVOICEFORM

103

 procedure TInvoiceViewModel.GetCustomerList(
 var customers: TObjectList<TCustomer>);
 begin
 if not Assigned(fModel) then
 Exit;
 fModel.GetCustomerList(customers);
 end;

 procedure TInvoiceViewModel.GetItems(var items: TObjectList<TItem>);
 begin
 if not Assigned(fModel) then
 Exit;
 fModel.GetItems(items);
 end;

 end.

 Summary
 In this chapter, we started bringing the tools and skills developed in the previous chapters
together. We formalized a methodology to convert code to the MVVM pattern and started
applying it to the InvoiceForm . This transformation looked at content that does not
change according to user interactions. In the following chapter, we will learn how to make
the MVVM responsive to user events.

105© John Kouraklis 2016
J. Kouraklis, MVVM in Delphi, DOI 10.1007/978-1-4842-2214-0_6

 CHAPTER 6

 User Interaction

 Views (including forms, the console, and other means of data presentation) are created to
present information and data to users and to allow them to interact with the software. User
interaction is an integral part of every design pattern, including MVVM. As presented in
Chapter 4 , the way this project implements two-way communication between the different
elements of the pattern is by using the Provider-Subscriber (ProSu) framework. In this
chapter, we learn how to put ProSu into action and implement user interaction.

 Selecting a Customer
 When the user selects a customer from the popup box, POSApp retrieves the discount rate
and the outstanding balance from the database and updates the relevant fields in the
 InvoiceForm . It enables the group boxes for the invoice items and the balances, clears the
grid of any items left, and resets the discount check box.

 1. Following Figure 4-2 , the View (InvoiceForm) works as
the subscriber and the ViewModel is the provider. Use
the project we developed in the previous chapter or open
 POSAppMVVMInvoiceForm from the code that comes with the
book. Go to Model.Interfaces and declare a property to hold
the provider class and a getter method. We also need to add
the relevant units in the uses section.

 unit Model.Interfaces;

 interface

 uses
 ..., Model.ProSu.Interfaces;

 type
 ...
 IInvoiceViewModelInterface = interface
 ...
 function GetProvider: IProviderInterface;

http://dx.doi.org/10.1007/978-1-4842-2214-0_4
http://dx.doi.org/10.1007/978-1-4842-2214-0_4#Fig2

CHAPTER 6 ■ USER INTERACTION

106

 ...
 property Provider: IProviderInterface read GetProvider;

 end;

 2. In the ViewModel.Invoice unit, add the Model.ProSu.
Interfaces and Model.ProSu.Provider unit references,
declare a private variable in the TInvoiceViewModel class
to hold the provider class, and develop the method declared
in the interface of the class. In addition, add the code in the
constructor to initiate the provider class.

 unit ViewModel.Invoice;

 interface

 ...

 implementation

 uses
 ...
 Model.ProSu.Interfaces, Model.ProSu.Provider;

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 ...
 fProvider: IProSuProviderInterface;
 ...
 function GetProvider: IProviderInterface;
 public
 …
 end;
 ...

 constructor TInvoiceViewModel.Create;
 begin
 ...
 fProvider:=CreateProSuProviderClass;
 end;

 function TInvoiceViewModel.GetProvider: IProviderInterface;
 begin
 result:=fProvider;
 end;

CHAPTER 6 ■ USER INTERACTION

107

 ...
 end.

 3. In the View.InvoiceForm unit, add the following code.

 unit View.InvoiceForm;

 interface

 ...

 type
 TSalesInvoiceForm = class(TForm)
 ...
 private
 ...
 fSubscriber: ISubscriberInterface;
 ...
 public
 ...
 end;

 implementation

 ...

 procedure TSalesInvoiceForm.SetViewModel(
 const newViewModel: IInvoiceViewModelInterface);
 begin
 fViewModel:=newViewModel;
 if not Assigned(fViewModel) then
 raise Exception.Create('Sales Invoice View Model is required');
 fSubscriber:=CreateProSuSubscriberClass;
 fViewModel.Provider.Subscribe(fSubscriber);
 ...
 end;

 We have now a communication channel that starts from the ViewModel and ends
to the View. Next, we need to retrieve the details of the customer who is selected in the
customer popup box.

 4. Go to Model.Declarations and create this record.

 unit Model.Declarations

 ...

CHAPTER 6 ■ USER INTERACTION

108

 interface
 ...

 type
 ...
 TCustomerDetailsText = record
 DiscountRate,
 OutstandingBalance: string;
 end;

 implementation

 end.

 5. In Model.Interfaces , declare the GetCustomer procedure.

 unit Model.Interfaces

 ...

 interface

 ...
 type
 ...
 IInvoiceModelInterface = interface
 ...
 procedure GetCustomer (const customerName: string; var customer:
TCustomer);
 end;

 IInvoiceViewModelInterface = interface
 ...
 procedure GetCustomerDetails (const customerName: string; var
customerDetails: TCustomerDetailsText);
 end;

 implementation

 end.

CHAPTER 6 ■ USER INTERACTION

109

 6. In Model.Invoice , develop the actual procedure.

 unit Model.Invoice;

 interface

 ...

 implementation

 uses
 ..., System.SysUtils;

 type
 TInvoiceModel = class (TInterfacedObject, IInvoiceModelInterface)
 private
 ...
 public
 ...
 procedure GetCustomer (const customerName: string; var customer:
TCustomer);
 end;

 ...

 procedure TInvoiceModel.GetCustomer(const customerName: string;
 var customer: TCustomer);
 begin
 if trim(customerName)='' then
 customer:=nil
 else
 begin
 customer.ID:=fDatabase.GetCustomerFromName(trim(customerName)).ID;
 customer.Name:=fDatabase.GetCustomerFromName(trim(customerName)).Name;
 customer.DiscountRate:=fDatabase.GetCustomerFromName(trim(customerName)).
DiscountRate;
customer.Balance:=fDatabase.GetCustomerFromName(trim(customerName)).Balance;

 fInvoice.CustomerID:=customer.ID;
 end;
 end;

 end.

CHAPTER 6 ■ USER INTERACTION

110

 7. In ViewModel.Invoice , retrieve the customer class and
convert the data according to the View logic.

CHAPTER 6 ■ USER INTERACTION

111

 8. Getting the labels for the components in the customer detail
group box in View.InvoiceForm is very similar to initializing
the text and captions of the InvoiceForm components. We
write a new UpdateCustomerDetails procedure, which is
initially called in SetupGUI to reset the fields. For this to
work, I have declared a private fCustomerDetailsText field
and move the uses declaration in the interface section.
In addition, a method to reset the string grid is introduced
(CleanInvoiceGrid).

CHAPTER 6 ■ USER INTERACTION

112

 The Model is the part of the design that accesses the persistent medium. Neither the
ViewModel nor the View are aware how and from which sources datasets are retrieved. If
you check the code of the GetCustomerDetails in the ViewModel, you can easily see that
this is the part where we decide how information is going to be presented in the View. In
other words, we have encapsulated the View logic of the information in the ViewModel.
Similarly, the UpdateCustomerDetails method in the form is agnostic about the actual
content of the fields to be presented and which group boxes should be activated,
deactivated, or disabled; this is done at the ViewModel level.

 Adding an Item to the Invoice
 After a customer is selected, the user needs to add items in the invoice. We have a popup
box menu with the items, a field for the quantity, and a button to add the item to the
invoice. The added item appears in the string grid.

 The Model
 Managing the items of the invoice is part of the business logic and, thus, is the duty of the
Model. Therefore, we need procedures to add an item to the invoice, to delete items, to
retrieve the number of the items in an invoice, and to calculate the total amount of the
invoice.

 1. Add the following code in the IInvoiceModelInterface
declaration in the Model.Interfaces unit.

 IInvoiceModelInterface = interface
 ...
 procedure AddInvoiceItem(const itemDescription: string; const quantity:
integer);
 procedure GetInvoiceItems (var itemsList: TObjectList<TInvoiceItem>);
 procedure DeleteAllInvoiceItems;
 procedure CalculateInvoiceAmounts;
 function GetInvoiceRunningBalance:Currency;
 function GetNumberOfInvoiceItems: integer;
 property InvoiceRunningBalance: Currency read GetInvoiceRunningBalance;
 property NumberOfInvoiceItems: integer read GetNumberOfInvoiceItems;
 end;

 2. Develop the code in the Model.Invoice unit.

 type
 TInvoiceModel = class (TInterfacedObject, IInvoiceModelInterface)
 private
 ...
 fRunningBalance: Currency;
 function GetInvoiceRunningBalance:Currency;
 function GetNumberOfInvoiceItems: integer;

CHAPTER 6 ■ USER INTERACTION

113

 public
 ...
 procedure AddInvoiceItem(const itemDescription: string; const quantity:
integer);
 procedure GetInvoiceItems (var itemsList: TObjectList<TInvoiceItem>);
 procedure GetInvoiceItemFromID (const itemID: Integer; var item: TItem);
 procedure DeleteAllInvoiceItems;
 procedure CalculateInvoiceAmounts;
 end;

 ...

 procedure TInvoiceModel.AddInvoiceItem(const itemDescription: string; const
quantity: integer);
 var
 tmpInvoiceItem: TInvoiceItem;
 tmpItem: TItem;
 begin
 if trim(itemDescription)='' then
 Exit;

 tmpItem:=fDatabase.GetItemFromDescription(trim(itemDescription));
 if not Assigned(tmpItem) then
 Exit;

 tmpInvoiceItem:=TInvoiceItem.Create;
 tmpInvoiceItem.ID:=tmpItem.ID;
 tmpInvoiceItem.InvoiceID:=fInvoice.ID;
 tmpInvoiceItem.UnitPrice:=tmpItem.Price;
 tmpInvoiceItem.Quantity:=quantity;

 fCurrentInvoiceItems.Add(tmpInvoiceItem);

 end;

 procedure TInvoiceModel.GetInvoiceItems(
 var itemsList: TObjectList<TInvoiceItem>);
 var
 tmpInvoiceItem: TInvoiceItem;
 i: integer;
 begin
 if not Assigned(itemsList) then
 Exit;
 itemsList.Clear;
 for i:=0 to fCurrentInvoiceItems.Count-1 do
 begin
 tmpInvoiceItem:=TInvoiceItem.Create;
 tmpInvoiceItem.ID:=fCurrentInvoiceItems.Items[i].ID;

CHAPTER 6 ■ USER INTERACTION

114

 tmpInvoiceItem.InvoiceID:=fCurrentInvoiceItems.Items[i].InvoiceID;
 tmpInvoiceItem.ItemID:=fCurrentInvoiceItems.Items[i].ItemID;
 tmpInvoiceItem.UnitPrice:=fCurrentInvoiceItems.Items[i].UnitPrice;
 tmpInvoiceItem.Quantity:=fCurrentInvoiceItems.Items[i].Quantity;

 itemsList.Add(tmpInvoiceItem);
 end;
 end;

 procedure TInvoiceModel.GetInvoiceItemFromID(const itemID: Integer;
 var item: TItem);
 var
 tmpItem: TItem;
 begin
 if not Assigned(item) then
 Exit;
 tmpItem:=fDatabase.GetItemFromID(itemID);
 if Assigned(tmpItem) then
 begin
 item.ID:=tmpItem.ID;
 item.Description:=tmpItem.Description;
 item.Price:=tmpItem.Price
 end;
 end;

 procedure TInvoiceModel.CalculateInvoiceAmounts;
 var
 tmpItem: TInvoiceItem;
 begin
 fRunningBalance:=0.00;
 for tmpItem in fCurrentInvoiceItems do
 fRunningBalance:=fRunningBalance+(tmpItem.Quantity*tmpItem.UnitPrice);
 end;

 function TInvoiceModel.GetInvoiceRunningBalance: Currency;
 begin
 CalculateInvoiceAmounts;
 Result:=fRunningBalance;
 end;

 procedure TInvoiceModel.DeleteAllInvoiceItems;
 begin
 fCurrentInvoiceItems.Clear;
 end;

 function TInvoiceModel.GetNumberOfInvoiceItems: integer;
 begin
 result:=fCurrentInvoiceItems.Count;
 end;

CHAPTER 6 ■ USER INTERACTION

115

 The ViewModel
 1. Add and develop the following procedures in the Model.

Interface and ViewModel.Invoice units.

 unit Model.Interface;

 implementation

 ...

 type
 ...
 IInvoiceViewModelInterface = interface
 ...
 procedure AddInvoiceItem(const itemDescription: string; const quantity:
integer);
 procedure DeleteAllInvoiceItems;
 end;

 implementation

 end.

 unit ViewModel.Invoice;

 interface
 ...

 implementation

 ...

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 ...
 public
 ...
 procedure AddInvoiceItem(const itemDescription: string; const quantity:
integer);
 procedure DeleteAllInvoiceItems;
 end;

 procedure TInvoiceViewModel.AddInvoiceItem(const itemDescription: string;
 const quantity: integer);
 begin
 fModel.AddInvoiceItem(itemDescription, quantity);

CHAPTER 6 ■ USER INTERACTION

116

 end;

 procedure TInvoiceViewModel.DeleteAllInvoiceItems;
 begin
 fModel.DeleteAllInvoiceItems;
 end;

 2. The ViewModel is doing all the required work to prepare the
data into a form suitable for presentation. Suitable in this case
means that the ViewModel should present the data to the
View in such way that it could be shown in the string grid of
the form. This illustrates the flexibility of the MVVM pattern;
we use the ViewModel layer to adjust and manipulate the
presentation state of the data according to the requirements of
the View without the need to change the structural elements
of the View (or the Model).

 3. The string grid has five columns and receives strings. There
are many ways to prepare data for this constellation. I will
use a set of arrays that map to the columns of the string grid.
Admittedly, this is not the best way to achieve this effect,
but in this case, it is adequate as a demonstration of the
functionality of the ViewModel.

 4. Open Model.Declarations and add the following record.

 unit Model.Declarations;

 interface

 ...

 type
 ...

 TInvoiceItemsText = record
 DescriptionText,
 QuantityText,
 UnitPriceText,
 PriceText,
 IDText: array of string;
 InvoiceRunningBalance,
 InvoiceTotalBalance: string;
 end;

 implementation

 end.

CHAPTER 6 ■ USER INTERACTION

117

 5. Declare a property and a getter function in the Model.
Interfaces unit and write the code for the procedure in
 ViewModel.Invoice .

 unit Model.Interfaces;

 interface

 ...

 type
 ...
 IInvoiceViewModelInterface = interface
 ...
 function GetInvoiceItemsText: TInvoiceItemsText;

 ...
 property InvoiceItemsText: TInvoiceItemsText read GetInvoiceItemsText;
 end;

 implementation

 end.

 unit ViewModel.Invoice;

 interface

 ...

 implementation

 uses
 ...

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 ...
 function GetInvoiceItemsText: TInvoiceItemsText;
 public
 ...
 end;

 ...

 function TInvoiceViewModel.GetInvoiceItemsText: TInvoiceItemsText;
 var

CHAPTER 6 ■ USER INTERACTION

118

 tmpRunning: Currency;
 tmpInvoiceItems: TObjectList<TInvoiceItem>;
 i, tmpLen: integer;
 tmpItem: TItem;
 begin
 tmpLen:=0;
 SetLength(fInvoiceItemsText.DescriptionText,tmpLen);
 SetLength(fInvoiceItemsText.QuantityText,tmpLen);
 SetLength(fInvoiceItemsText.UnitPriceText,tmpLen);
 SetLength(fInvoiceItemsText.PriceText,tmpLen);
 SetLength(fInvoiceItemsText.IDText, tmpLen);
 tmpRunning:=0.00;

 tmpInvoiceItems:=TObjectList<TInvoiceItem>.Create;
 fModel.GetInvoiceItems(tmpInvoiceItems);
 for i := 0 to tmpInvoiceItems.Count-1 do
 begin
 tmpLen:=Length(fInvoiceItemsText.DescriptionText)+1;
 SetLength(fInvoiceItemsText.DescriptionText,tmpLen);
 SetLength(fInvoiceItemsText.QuantityText,tmpLen);
 SetLength(fInvoiceItemsText.UnitPriceText,tmpLen);
 SetLength(fInvoiceItemsText.PriceText,tmpLen);
 SetLength(fInvoiceItemsText.IDText, tmpLen);

 tmpItem:=TItem.Create;
 fModel.GetInvoiceItemFromID(tmpInvoiceItems.Items[i].ID, tmpItem);
 fInvoiceItemsText.DescriptionText[tmpLen-1]:=tmpItem.Description;
 tmpItem.Free;

 fInvoiceItemsText.QuantityText[tmpLen-1]:=tmpInvoiceItems.Items[i].
Quantity.ToString;

 fInvoiceItemsText.UnitPriceText[tmpLen-
1]:=format('%10.2f',[tmpInvoiceItems.Items[i].UnitPrice]);

 fInvoiceItemsText.PriceText[tmpLen-1]:=
 format('%10.2f',[tmpInvoiceItems.Items[i].

UnitPrice*tmpInvoiceItems.items[i].Quantity]);
 fInvoiceItemsText.IDText[tmpLen-1]:=tmpInvoiceItems.Items[i].ID.ToString;
 end;
 tmpInvoiceItems.Free;

 tmpRunning:=fModel.InvoiceRunningBalance;

 fInvoiceItemsText.InvoiceRunningBalance:=Format('%10.2f', [tmpRunning]);
 fInvoiceItemsText.InvoiceTotalBalance:=Format('%10.2f', [tmpRunning]);

 fPrintButtonEnabled:=fModel.NumberOfInvoiceItems > 0;

 Result:=fInvoiceItemsText;
 end;

CHAPTER 6 ■ USER INTERACTION

119

 6. The last procedure demonstrates the typical manipulation
of data from the Model at the level of the ViewModel to
represent the View logic. It also changes the status of the Print
button to synchronize the View state with the state of the data.

 The View
 In the InvoiceForm , we need to retrieve the updated data from the ViewModel and
present it in the form.

 In View.InvoiceForm , declare a private variable called fInvoiceItemsText and add code
to the click event of the Add button. We also need a procedure to update the items in the
string grid (UpdateInvoiceGrid) and a procedure to update the total balances of the invoice
(UpdateBalances). The following code (indicated in bold) also updates the SetViewModel
procedure to call UpdateBalances in order to initialize the labels with the invoice’s balances.

CHAPTER 6 ■ USER INTERACTION

120

CHAPTER 6 ■ USER INTERACTION

121

 The simplest way to update the grid with the invoice items is to call
 UpdateInvoiceGrid in the ButtonAddItemClick event. We are not going to follow this
approach. Instead, we will ask the ViewModel to inform the View that there is a change to
the invoice items and, therefore, it’s time to refresh the string grid.

 In order to achieve this effect, we will use the ProSu framework developed in Chapter 4 .

 1. Add an action (actInvoiceItemsChanged) in Model.ProSu.
InterfaceActions to signify the need to update the grid with
the invoice items.

 unit Model.ProSu.InterfaceActions;

 interface

 type
 TInterfaceAction = (actUpdateTotalSalesFigure, actInvoiceItemsChanged);
 TInterfaceActions = set of TInterfaceAction;

 implementation

 end.

 2. In View.InvoiceForm , declare a new procedure
(NotificationFromProvider) that will be used to trigger
actions from the message provider, register it with the
provider, and write code to update the grid.

http://dx.doi.org/10.1007/978-1-4842-2214-0_4

CHAPTER 6 ■ USER INTERACTION

122

 3. In ViewModel.Invoice , create a new procedure to send out
messages to subscribers (SendNotification). Call it from the
 AddInvoiceItem and DeleteAllInvoiceItems , as follows.

CHAPTER 6 ■ USER INTERACTION

123

 Compile POSApp and execute it. Choose a customer from the popup box. Select an
item and try to add it to the invoice. You should be able to see that the grid updates the
items and balances.

CHAPTER 6 ■ USER INTERACTION

124

 You may argue that there is no need to create the notification loop to get an update
of the invoice items’ grid in this View. We could very easily retrieve fViewModel.
InvoiceItemsText in the View and publish the data. This is correct and it would work
very well, too. The reason I chose to use ProSu here is because I wanted to show how the
ViewModel (or the Model) could initiate communication.

 For example, in a real application, we may have a situation in which item prices
change in real-time due to availability and demand. Because of the way we constructed
this application, we could easily implement this scenario. The ViewModel would send an
 actInvoiceItemsChanged to report on any updates even if the user was in the middle of
issuing an invoice.

 ■ Note There is a small glitch in the GUI at this stage. If you select a customer and
add a few items to the invoice, you can see the balance. Selecting another customer
from the popup box clears the grid, but doesn't initialize the balance. This is because we
don't delete the invoice items from the Model. To fix this, add the following lines in the
 PopupBoxCustomerChange procedure in View.InvoiceForm .

 procedure TSalesInvoiceForm.PopupBoxCustomerChange(Sender: TObject);
 begin

 fViewModel.GetCustomerDetails(PopupBoxCustomer.Text,fCustomerDetailsText);
 fViewModel.DeleteAllInvoiceItems;
 PopupBoxItems.ItemIndex:=-1;
 UpdateCustomerDetails;
 end;

 Summary
 We took some big steps in this chapter. We converted the most important parts of
 InvoiceForm in a way that builds boundaries between business logic, view state, and view
logic. We also saw how the methodology we developed in the previous chapter, along
with the tools and concepts we learned earlier in the book, all fit together to serve the
purpose of MVVM design.

125© John Kouraklis 2016
J. Kouraklis, MVVM in Delphi, DOI 10.1007/978-1-4842-2214-0_7

 CHAPTER 7

 Input Validation

 The POSApp at this stage illustrates how we can use the MVVM pattern to capture user
interaction. In this implementation, it doesn’t perform any checks on data entered by
the users. For example, users could enter a negative number or even a character in the
quantity field. This will generate an error and will block the application. This chapter
explains how we can deal with this situation.

 Checking Inputs
 This section shows how to check the user-entered data against three validation rules:
users must select an item before they press the Add button, the quantity field must not be
empty, and the quantity must be a non-zero positive number.

 1. Use the project from the previous chapter (it’s also found
in the code files as POSAppMVVMUserInteraction) and
add new types. They will identify errors in Model.ProSu.
InterfaceActions and declare a new class to handle
notifications for errors in Model.Declarations .

 unit Model.ProSu.InterfaceActions;

 interface

 type
 ...
 TInterfaceError = (errInvoiceItemEmpty, errInvoiceItemQuantityEmpty,
 errInvoiceItemQuantityNonPositive,
 errInvoiceItemQuantityNotNumber, errNoError);
 TInterfaceErrors = set of TInterfaceError;

 Implementation

 end.

 unit Model.Declarations;

CHAPTER 7 ■ INPUT VALIDATION

126

 interface
 ...

 type
 ...
 TErrorNotificationClass = class (TInterfacedObject, INotificationClass)
 private
 fActions: TInterfaceErrors;
 fActionMessage: string;
 public
 property Actions: TInterfaceErrors read fActions write fActions;
 property ActionMessage: string read fActionMessage write fActionMessage;
 end;

 implementation

 end.

 2. Add two procedures in the interface part of
 IInvoiceViewModelInterface in Model.Interfaces. Both
procedures accept a string as an argument. We will pass
whatever the popup box and the edit field provide. Remember
that the View (InvoiceForm) is not (and should not be) aware
of the type of data users enter; in other words, the form does
not know that the quantity edit field must be a number.

 IInvoiceViewModelInterface = interface
 ...
 procedure ValidateItem (const newItem: string);
 procedure ValidateQuantity (const newQuantityText: string);
 end;

 3. The ViewModel performs the checks on the strings. In bigger
and more complex applications, the Model can do validation
and perform checks as well.

 4. Create a procedure in ViewModel.Invoice to send error
messages to subscribers.

CHAPTER 7 ■ INPUT VALIDATION

127

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 ...
 procedure SendErrorNotification (const errorType: TInterfaceErrors;
 const errorMessage: string);
 public
 ...
 end;
 ...

 procedure TInvoiceViewModel.SendErrorNotification (const errorType:
TInterfaceErrors;
 const errorMessage: string);
 var
 tmpErrorNotificationClass: TErrorNotificationClass;
 begin
 tmpErrorNotificationClass:=TErrorNotificationClass.Create;
 try
 tmpErrorNotificationClass.Actions:=errorType;
 tmpErrorNotificationClass.ActionMessage:=errorMessage;
 fProvider.NotifySubscribers(tmpErrorNotificationClass);
 finally
 tmpErrorNotificationClass.Free;
 end;
 end;

 5. Write the following code in the validation procedures.

 procedure TInvoiceViewModel.ValidateItem(const newItem: string);
 begin
 if trim(newItem)='' then
 SendErrorNotification([errInvoiceItemEmpty], 'Please choose an item')
 else
 SendErrorNotification([errNoError], '');
 end;

CHAPTER 7 ■ INPUT VALIDATION

128

 procedure TInvoiceViewModel.ValidateQuantity(const newQuantityText: string);
 var
 value,
 code: integer;
 begin
 if trim(newQuantityText)='' then
 begin
 SendErrorNotification([errInvoiceItemQuantityEmpty], 'Please enter
quantity');
 Exit;
 end;

 Val(trim(newQuantityText), value, code);
 if code<>0 then
 begin
 SendErrorNotification([errInvoiceItemQuantityNotNumber], 'Quantity must
be a number');
 Exit;
 end;

 if trim(newQuantityText).ToInteger<=0 then
 begin
 SendErrorNotification([errInvoiceItemQuantityNonPositive],
 'The quantity must be positive
number');
 Exit;
 end;

 SendErrorNotification([errNoError], '');
 end;

 6. Now the only thing we need to do is process the error signals
in View.InvoiceForm . We already have a procedure to manage
signals from the provider (NotificationFromProvider); thus,
we just update it accordingly.

CHAPTER 7 ■ INPUT VALIDATION

129

CHAPTER 7 ■ INPUT VALIDATION

130

 7. In this design, the validation check reports on any errors by
sending out an action that indicates an error
(errInvoiceItemEmpty , errInvoiceItemQuantityEmpty ,
 errInvoiceItemQuantityNonPositive , or
 errInvoiceItemQuantityNotNumber) or errNoError to show
there is no error. The process takes place in the
 NotificationFromProvider procedure, so we must not add the
item in the ButtonAddClick event. The process of adding the
item is now handled by the NotificationFromProvider method.

 Bits and Pieces
 We have now completed the major tasks in the InvoiceForm . There are a few left before
we have a fully rewritten version of the initial monolithic design of POSApp . These last
tasks include a way to delete items from an invoice, apply discount to the total amount of
the invoice, print the invoice and close the form.

 Deleting an Item from the Invoice
 When the user right-clicks on the invoice item list, a popup menu appears with an option
to delete the selected item. In order to implement this functionality, follow the next steps:

 1. Add DeleteInvoiceItem in IInvoiceModelInterface in
 Model.Interfaces .

 IInvoiceModelInterface = interface
 ...
 procedure DeleteInvoiceItem (const delItemID: integer);
 end;

 2. Develop the procedure in Model.Invoice .

 implementation

 ...

 type
 TInvoiceModel = class (TInterfacedObject, IInvoiceModelInterface)
 private
 ...

CHAPTER 7 ■ INPUT VALIDATION

131

 public
 ...
 procedure DeleteInvoiceItem (const delItemID: integer);
 ...
 end;

 ...

 procedure TInvoiceModel.DeleteInvoiceItem(const delItemID: integer);
 var
 i: integer;
 begin
 if delItemID<=0 then
 Exit;
 for i := 0 to fCurrentInvoiceItems.Count-1 do
 begin
 if fCurrentInvoiceItems.Items[i].ID=delItemID then
 begin
 fCurrentInvoiceItems.Delete(i);
 break;
 end;
 end;
 end;

 3. Back in Model.Interfaces , add a similar DeleteInvoiceItem
for the ViewModel. Notice that this time, the procedure gets
text as an argument because this is what the View can feed in
to the ViewModel as it gets data from a string grid.

 IInvoiceViewModelInterface = interface
 ...
 procedure DeleteInvoiceItem (const delItemIDAsText: string);
 end;

 4. In ViewModel.Invoice , add the code to DeleteInvoiceItem .

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 ...
 public
 ...
 procedure DeleteInvoiceItem (const delItemIDAsText: string);
 end;
 ...

 procedure TInvoiceViewModel.DeleteInvoiceItem(const delItemIDAsText:
string);

CHAPTER 7 ■ INPUT VALIDATION

132

 begin
 if (trim(delItemIDAsText)='') then
 Exit;
 fModel.DeleteInvoiceItem(delItemIDAsText.ToInteger);
 SendNotification([actInvoiceItemsChanges]);
 end;

 5. In View.Invoice , we only need to call the DeleteInvoiceItem
from the ViewModel. Then, the ViewModel will notify the View
that there is a change to the invoice items and the balances.

 6. Add an event handler to the MenuItemDeleteItem menu item
of the PopupMenuItems popup menu component in View.
InvoiceForm .

 type
 TSalesInvoiceForm = class(TForm)
 ...
 procedure MenuItemDeleteItemClick(Sender: TObject);
 private
 ...
 public
 ...
 end;

 ...

 procedure TSalesInvoiceForm.MenuItemDeleteItemClick(Sender: TObject);
 begin

 if (StringGridItems.Selected>=0) and
 (StringGridItems.Selected<=StringGridItems.RowCount-1) then
 fViewModel.DeleteInvoiceItem(StringGridItems.Cells[4, StringGridItems.
Selected]);
 end;

 Applying Discounts to the Invoices
 The discount check box signals POSApp to apply the customer discount, which then appears
in the top part of the form. We will implement this functionality by declaring a property in the
ViewModel and the Model and changing the ViewModel’s property from the View.

 1. Declare a property in Model.Interfaces for the
 IInvoiceModelInterface and IInvoiceViewModelInterface .

 IInvoiceModelInterface = interface
 ...

CHAPTER 7 ■ INPUT VALIDATION

133

 function GetInvoiceDiscount: Currency;
 ...
 property InvoiceDiscount: Currency read GetInvoiceDiscount;
 end;

 IInvoiceViewModelInterface = interface
 ...
 procedure SetDiscountApplied (const discount: boolean);
 function GetDiscountApplied: boolean;
 ...
 property DiscountApplied: boolean read GetDiscountApplied write
SetDiscountApplied;
 end;

 2. Add the code for the procedure and the function in the
 ViewModel.Invoice unit.

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 ...
 fDiscountChecked: boolean;
 ...
 procedure SetDiscountApplied (const discount: boolean);
 function GetDiscountApplied: boolean;
 public
 ...
 end;
 ...

 function TInvoiceViewModel.GetDiscountApplied: boolean;
 begin
 result:=fDiscountChecked;
 end;

 procedure TInvoiceViewModel.SetDiscountApplied(const discount: boolean);
 begin
 fDiscountChecked:=discount;
 end;

 3. In Model.Declarations , add a field to TInvoiceItemsText .

 TInvoiceItemsText = record
 ...
 InvoiceDiscountFigure,
 InvoiceTotalBalance: string;
 end;

CHAPTER 7 ■ INPUT VALIDATION

134

 4. Develop the procedures declared in the Model.Invoice unit.
Notice the auxiliary procedure, which provides the customer
record based on customerID (GetCustomerFromID).

 5. In ViewModel.Invoice , we need to develop the getter and
setter of the DiscountApplied property. We also need to
update the GetInvoiceItemsText function to include the
discount in the calculations.

 type
 TInvoiceViewModel = class(TInterfacedObject, IInvoiceViewModelInterface)
 private
 ...
 procedure SetDiscountApplied (const discount: boolean);
 function GetDiscountApplied: boolean;

CHAPTER 7 ■ INPUT VALIDATION

135

 public
 ...
 end;

 ...

 function TInvoiceViewModel.GetDiscountApplied: boolean;
 begin
 result:=fDiscountChecked;
 end;

 procedure TInvoiceViewModel.SetDiscountApplied(const discount: boolean);
 begin
 fDiscountChecked:=discount;
 end;

 function TInvoiceViewModel.GetInvoiceItemsText: TInvoiceItemsText;
 var
 ...
 tmpDiscount: Currency;
 begin
 ...
 tmpRunning:=0.00;
 tmpDiscount:=0.00;

 tmpInvoiceItems:=TObjectList<TInvoiceItem>.Create;
 fModel.GetInvoiceItems(tmpInvoiceItems);
 for i := 0 to tmpInvoiceItems.Count-1 do
 begin
 tmpLen:=Length(fInvoiceItemsText.DescriptionText)+1;
 SetLength(fInvoiceItemsText.DescriptionText,tmpLen);
 SetLength(fInvoiceItemsText.QuantityText,tmpLen);
 SetLength(fInvoiceItemsText.UnitPriceText,tmpLen);
 SetLength(fInvoiceItemsText.
PriceText,tmpLen); SetLength(fInvoiceItemsText.IDText, tmpLen);

 tmpItem:=TItem.Create;
 fModel.GetInvoiceItemFromID(tmpInvoiceItems.Items[i].ID, tmpItem);
 fInvoiceItemsText.DescriptionText[tmpLen-1]:=tmpItem.Description;
 tmpItem.Free;

 fInvoiceItemsText.QuantityText[tmpLen-1]:=tmpInvoiceItems.Items[i].
Quantity.ToString;

 fInvoiceItemsText.UnitPriceText[tmpLen-
1]:=format('%10.2f',[tmpInvoiceItems.Items[i].UnitPrice]);

 fInvoiceItemsText.PriceText[tmpLen-1]:=
 format('%10.2f',[tmpInvoiceItems.Items[i].UnitPrice*tmpInvoiceItems.

items[i].Quantity]);

CHAPTER 7 ■ INPUT VALIDATION

136

 fInvoiceItemsText.IDText[tmpLen-1]:=tmpInvoiceItems.Items[i].ID.ToString;
 end;
 tmpInvoiceItems.Free;

 tmpRunning:=fModel.InvoiceRunningBalance;

 if fDiscountChecked then
 tmpDiscount:=fModel.InvoiceDiscount;

 fInvoiceItemsText.InvoiceRunningBalance:=Format('%10.2f', [tmpRunning]);
 fInvoiceItemsText.InvoiceDiscountFigure:=Format('%10.2f', [tmpDiscount]);
 fInvoiceItemsText.InvoiceTotalBalance:=Format('%10.2f', [tmpRunning-
tmpDiscount]);

 fPrintButtonEnabled:=fModel.NumberOfInvoiceItems > 0;

 Result:=fInvoiceItemsText;
 end;

 6. Move to View.InvoiceForm and write the change event of
the CheckBoxDiscount . Then update the UpdateBalances to
include the discount figure and the status of the check box.

 type
 TSalesInvoiceForm = class(TForm)
 ...
 procedure CheckBoxDiscountChange(Sender: TObject);
 private
 ...
 public
 ...
 end;
 ...

 procedure TSalesInvoiceForm.CheckBoxDiscountChange(Sender: TObject);
 begin
 fViewModel.DiscountApplied:=CheckBoxDiscount.IsChecked;
 fInvoiceItemsText:=fViewModel.InvoiceItemsText;
 UpdateBalances;
 end;

 procedure TSalesInvoiceForm.UpdateBalances;
 begin
 ...
 LabelDiscount.Text:=fInvoiceItemsText.InvoiceDiscountFigure;
 CheckBoxDiscount.IsChecked:=fViewModel.DiscountApplied;
 end;

CHAPTER 7 ■ INPUT VALIDATION

137

 Compile the project and execute it. Add a customer who has a discount, add a few
items, and check and uncheck the discount check box. You should be able to see that the
amount is updated.

 Printing the Invoice and Closing the Form
 When the user attempts to print an invoice, the ViewModel changes the visibility of the
animated indicator and the printing label and pushes the request to the Model. Then,
the ViewModel informs the View that the process is complete. A confirmation message
appears and the invoice form sends a message to the main form to update the sales figure.
Eventually, the form closes. Once again, the starting point is the interface declarations.

 1. In Model.Interfaces , declare two identical procedures
(PrintInvoice), one for the Model and one for the
ViewModel.

 IInvoiceModelInterface = interface
 ...
 procedure PrintInvoice;
 end;

 IInvoiceViewModelInterface = interface
 ...
 procedure PrintInvoice;
 end;

 2. Implement PrintInvoice in the Model.Invoice unit.

 type
 TInvoiceModel = class (TInterfacedObject, IInvoiceModelInterface)
 private
 ...
 procedure PrintInvoice;
 public
 ...
 end;
 ...
 procedure TInvoiceModel.PrintInvoice;
 begin
 fDatabase.SaveCurrentSales(fRunningBalance-fDiscount);
 end;

CHAPTER 7 ■ INPUT VALIDATION

138

 3. Based on the original POSApp developed in Chapter 2 , we want
the animated indicator and printing label to appear when the
user prints an invoice. In the MVVM design, this means that the
View needs to know when to update the status of the controls,
which is received from the ViewModel. Once again, the ProSu
framework developed earlier is handy here. The ViewModel
will notify the View to update the status of the components.

 4. A similar behavior is expected after the invoice has been
printed. We need to declare a new interface action in Model.
ProSu.InterfaceActions , as follows.

 5. The ViewModel.Invoice unit manipulates the state of the
View, accesses the Model, and implements the View logic.

http://dx.doi.org/10.1007/978-1-4842-2214-0_2

CHAPTER 7 ■ INPUT VALIDATION

139

 6. In View.Invoice , we process the notifications in the
 NotificationFromProvider procedure and write the
 PrintInvoice click event.

 type
 TSalesInvoiceForm = class(TForm)
 ...
 procedure ButtonPrintInvoiceClick(Sender: TObject);
 private
 ...
 end;
 ...

 procedure TSalesInvoiceForm.ButtonPrintInvoiceClick(Sender: TObject);
 begin
 fViewModel.PrintInvoice;
 end;
 ...

 procedure TSalesInvoiceForm.NotificationFromProvider(
 const notifyClass: INotificationClass);
 ...
 begin
 if notifyClass is TNotificationClass then
 begin
 tmpNotifClass:=notifyClass as TNotificationClass;
 if actInvoiceItemsChanges in tmpNotifClass.Actions then
 UpdateInvoiceGrid;

 if actPrintingStart in tmpNotifClass.Actions then
 begin
 AniIndicatorProgress.Visible:=fViewModel.AniIndicatorProgressVisible;
 LabelPrinting.Visible:=fViewModel.LabelPrintingVisible;
 end;

 if actPrintingFinish in tmpNotifClass.Actions then
 begin
 ShowMessage('Invoice Printed');
 AniIndicatorProgress.Visible:=fViewModel.AniIndicatorProgressVisible;
 LabelPrinting.Visible:=fViewModel.LabelPrintingVisible;
 self.Close;
 end;
 end;
 ...
 end;

CHAPTER 7 ■ INPUT VALIDATION

140

 7. The last thing we need to do is update the total sales figure in
the MainForm . This time, the InvoiceForm sends a message to
the MainForm to perform the update. In the ProSu design, the
 InvoiceForm is the provider and the MainForm plays the role of
the subscriber.

 8. In View.InvoiceForm , add the following code. We also need to
declare Model.ProSu.Provider in the uses clause.

 type
 TSalesInvoiceForm = class(TForm)
 ...
 private
 ...
 fProvider: IProviderInterface
 ...
 procedure UpdateMainBalance;
 public
 property Provider: IProviderInterface read fProvider;
 end;
 ...
 implementation

 uses
 ..., Model.ProSu.Provider;
 ...

 procedure TSalesInvoiceForm.NotificationFromProvider(
 const notifyClass: INotificationClass);
 ...
 begin
 if notifyClass is TNotificationClass then
 begin
 tmpNotifClass:=notifyClass as TNotificationClass;
 if actInvoiceItemsChanges in tmpNotifClass.Actions then
 UpdateInvoiceGrid;

 if actPrintingStart in tmpNotifClass.Actions then
 begin
 AniIndicatorProgress.Visible:=fViewModel.AniIndicatorProgressVisible;
 LabelPrinting.Visible:=fViewModel.LabelPrintingVisible;
 end;

 if actPrintingFinish in tmpNotifClass.Actions then
 begin
 ShowMessage('Invoice Printed');
 AniIndicatorProgress.Visible:=fViewModel.AniIndicatorProgressVisible;

CHAPTER 7 ■ INPUT VALIDATION

141

 LabelPrinting.Visible:=fViewModel.LabelPrintingVisible;
 UpdateMainBalance;
 self.Close;
 end;
 end;
 ...
 end;
 ...

 procedure TSalesInvoiceForm.SetViewModel(
 const newViewModel: IInvoiceViewModelInterface);
 begin
 ...
 fProvider:=CreateProSuProviderClass;
 end;
 procedure TSalesInvoiceForm.UpdateMainBalance;
 var
 tmpNotificationClass: TNotificationClass;
 begin
 tmpNotificationClass:=TNotificationClass.Create;
 tmpNotificationClass.Actions:=[actUpdateTotalSalesFigure];
 if Assigned(fProvider) then
 fProvider.NotifySubscribers(tmpNotificationClass);
 tmpNotificationClass.Free;
 end;

 9. Finally, in View.MainForm , subscribe the form to the
 InvoiceForm ’s provider and retrieve the total sales figure
directly from the ViewModel.

CHAPTER 7 ■ INPUT VALIDATION

142

 The final touch is to create the event for the Cancel button. This is a straightforward
call to close the View.InvoiceForm .

 type
 TSalesInvoiceForm = class(TForm)
 ...
 procedure ButtonCancelClick(Sender: TObject);
 private
 ...
 end;
 ...

 procedure TSalesInvoiceForm.ButtonCancelClick(Sender: TObject);
 begin
 self.Close;
 end;

 Summary
 We have now completed the development of POSApp under the MVVM approach. In
this chapter, we moved one step ahead from user interaction and saw how the MVVM
paradigm, the ProSu pattern, and the bi-directional exchange of messages among the
components of MVVM can help validate user input. We implemented different types
of validations and evaluated how the View and ViewModel can sync when we need to
complete processes involving different steps, such as when printing an invoice.

143© John Kouraklis 2016
J. Kouraklis, MVVM in Delphi, DOI 10.1007/978-1-4842-2214-0

 A, B, C, D, E, F, G, H
 Concept2 performance monitor , 9–10

 I, J, K
 Invoice form

 deleting an item
 model , 112–114
 view , 119–124
 viewmodel , 115–119

 dummy variables , 79–81
 model , 82–84, 91
 setting up , 90–97
 view , 79–81, 89
 viewmodel , 85–86, 89, 96

 L
 Legacy code , 13

 M, N
 Main form

 dummy variables , 44, 51, 53
 model , 45–48, 53–55
 view , 43–45, 65
 viewmodel , 48–51, 53–56

 Model-View-ViewModel (MVVM)
 disabling and hiding

elements , 98–101
 input validation , 125–142
 two-way communication , 59–77
 user interaction , 8, 103, 105–125, 142

 Monolithic design , 13, 22

 O
 Observer pattern , 60, 65, 77

 P, Q, R
 Presentation patterns

 MVC , 3–5
 MVP , 6–7
 MVVM , 7–11, 22

 Provider-Subscriber (ProSu) Framework ,
60–65, 68, 71, 77, 105, 121, 138

 S
 Separation of concerns (SoC) , 1, 2, 5

 T, U
 3-tier application architecture

 business layer , 2, 7, 10
 data access layer , 2
 presentation layer , 2, 10

 3-tier application architecture
and MVC , 3–7

 3-tier application architecture and MVP , 6–8
 3-tier application architecture and

MVVM , 7–11

 V, W, X, Y, Z
 View logic , 8, 43, 48, 56–57, 110, 112, 119,

124, 138
 View state , 8, 42–43, 48, 56–57, 93,

98, 119, 124

 Index

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: MVVM as Design Pattern
	Three-Tier Application Architecture
	Model-View-Controller (MVC)
	Model-View-Presenter (MVP)
	Model-View-ViewModel (MVVM)
	Summary
	References

	Chapter 2: Setting Up the POSApp
	POSApp Forms
	Mixing Business and Presentation
	Declaration of Classes
	The Database Unit
	Total Sales

	The Main Form
	The Sales Invoice Form
	Retrieving Data
	Updating the Form

	Summary
	References

	Chapter 3: MVVM as Design Philosophy
	The View of the MainScreen
	The Model of the MainScreen
	The ViewModel of the MainScreen
	Creating the Classes
	How the Code Works
	Creating the ViewModel and the Model Outside the Main Form
	Notes About the Code
	How We Converted MainScreen
	Summary

	Chapter 4: Two-Way Communication
	The Provider-Subscriber (ProSu) Framework
	Two-Way Communication (Revisited)
	Making the Code More Efficient
	Summary
	References

	Chapter 5: Converting the InvoiceForm
	The View of the InvoiceForm
	The Model of the InvoiceForm
	The ViewModel of the InvoiceForm
	Retrieving the Labels from the ViewModel
	Setting Up the Invoice Form
	Disabling and Hiding Elements
	Getting the Customer and Items Lists
	Summary

	Chapter 6: User Interaction
	Selecting a Customer
	Adding an Item to the Invoice
	The Model
	The ViewModel
	The View

	Summary

	Chapter 7: Input Validation
	Checking Inputs
	Bits and Pieces
	Deleting an Item from the Invoice
	Applying Discounts to the Invoices
	Printing the Invoice and Closing the Form

	Summary

	Index

